Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/uaccess.h>
43#include <linux/iversion.h>
44#include <linux/unicode.h>
45#include <linux/part_stat.h>
46#include <linux/kthread.h>
47#include <linux/freezer.h>
48#include <linux/fsnotify.h>
49#include <linux/fs_context.h>
50#include <linux/fs_parser.h>
51
52#include "ext4.h"
53#include "ext4_extents.h" /* Needed for trace points definition */
54#include "ext4_jbd2.h"
55#include "xattr.h"
56#include "acl.h"
57#include "mballoc.h"
58#include "fsmap.h"
59
60#define CREATE_TRACE_POINTS
61#include <trace/events/ext4.h>
62
63static struct ext4_lazy_init *ext4_li_info;
64static DEFINE_MUTEX(ext4_li_mtx);
65static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70static void ext4_update_super(struct super_block *sb);
71static int ext4_commit_super(struct super_block *sb);
72static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76static int ext4_sync_fs(struct super_block *sb, int wait);
77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78static int ext4_unfreeze(struct super_block *sb);
79static int ext4_freeze(struct super_block *sb);
80static inline int ext2_feature_set_ok(struct super_block *sb);
81static inline int ext3_feature_set_ok(struct super_block *sb);
82static void ext4_destroy_lazyinit_thread(void);
83static void ext4_unregister_li_request(struct super_block *sb);
84static void ext4_clear_request_list(void);
85static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87static int ext4_validate_options(struct fs_context *fc);
88static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92static int ext4_get_tree(struct fs_context *fc);
93static int ext4_reconfigure(struct fs_context *fc);
94static void ext4_fc_free(struct fs_context *fc);
95static int ext4_init_fs_context(struct fs_context *fc);
96static const struct fs_parameter_spec ext4_param_specs[];
97
98/*
99 * Lock ordering
100 *
101 * page fault path:
102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103 * -> page lock -> i_data_sem (rw)
104 *
105 * buffered write path:
106 * sb_start_write -> i_mutex -> mmap_lock
107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
108 * i_data_sem (rw)
109 *
110 * truncate:
111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112 * page lock
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114 * i_data_sem (rw)
115 *
116 * direct IO:
117 * sb_start_write -> i_mutex -> mmap_lock
118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119 *
120 * writepages:
121 * transaction start -> page lock(s) -> i_data_sem (rw)
122 */
123
124static const struct fs_context_operations ext4_context_ops = {
125 .parse_param = ext4_parse_param,
126 .get_tree = ext4_get_tree,
127 .reconfigure = ext4_reconfigure,
128 .free = ext4_fc_free,
129};
130
131
132#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133static struct file_system_type ext2_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext2",
136 .init_fs_context = ext4_init_fs_context,
137 .parameters = ext4_param_specs,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140};
141MODULE_ALIAS_FS("ext2");
142MODULE_ALIAS("ext2");
143#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
144#else
145#define IS_EXT2_SB(sb) (0)
146#endif
147
148
149static struct file_system_type ext3_fs_type = {
150 .owner = THIS_MODULE,
151 .name = "ext3",
152 .init_fs_context = ext4_init_fs_context,
153 .parameters = ext4_param_specs,
154 .kill_sb = kill_block_super,
155 .fs_flags = FS_REQUIRES_DEV,
156};
157MODULE_ALIAS_FS("ext3");
158MODULE_ALIAS("ext3");
159#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
160
161
162static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 bh_end_io_t *end_io)
164{
165 /*
166 * buffer's verified bit is no longer valid after reading from
167 * disk again due to write out error, clear it to make sure we
168 * recheck the buffer contents.
169 */
170 clear_buffer_verified(bh);
171
172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
173 get_bh(bh);
174 submit_bh(REQ_OP_READ | op_flags, bh);
175}
176
177void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
178 bh_end_io_t *end_io)
179{
180 BUG_ON(!buffer_locked(bh));
181
182 if (ext4_buffer_uptodate(bh)) {
183 unlock_buffer(bh);
184 return;
185 }
186 __ext4_read_bh(bh, op_flags, end_io);
187}
188
189int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
190{
191 BUG_ON(!buffer_locked(bh));
192
193 if (ext4_buffer_uptodate(bh)) {
194 unlock_buffer(bh);
195 return 0;
196 }
197
198 __ext4_read_bh(bh, op_flags, end_io);
199
200 wait_on_buffer(bh);
201 if (buffer_uptodate(bh))
202 return 0;
203 return -EIO;
204}
205
206int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
207{
208 lock_buffer(bh);
209 if (!wait) {
210 ext4_read_bh_nowait(bh, op_flags, NULL);
211 return 0;
212 }
213 return ext4_read_bh(bh, op_flags, NULL);
214}
215
216/*
217 * This works like __bread_gfp() except it uses ERR_PTR for error
218 * returns. Currently with sb_bread it's impossible to distinguish
219 * between ENOMEM and EIO situations (since both result in a NULL
220 * return.
221 */
222static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
223 sector_t block,
224 blk_opf_t op_flags, gfp_t gfp)
225{
226 struct buffer_head *bh;
227 int ret;
228
229 bh = sb_getblk_gfp(sb, block, gfp);
230 if (bh == NULL)
231 return ERR_PTR(-ENOMEM);
232 if (ext4_buffer_uptodate(bh))
233 return bh;
234
235 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
236 if (ret) {
237 put_bh(bh);
238 return ERR_PTR(ret);
239 }
240 return bh;
241}
242
243struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
244 blk_opf_t op_flags)
245{
246 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
247}
248
249struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
250 sector_t block)
251{
252 return __ext4_sb_bread_gfp(sb, block, 0, 0);
253}
254
255void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
256{
257 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
258
259 if (likely(bh)) {
260 if (trylock_buffer(bh))
261 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
262 brelse(bh);
263 }
264}
265
266static int ext4_verify_csum_type(struct super_block *sb,
267 struct ext4_super_block *es)
268{
269 if (!ext4_has_feature_metadata_csum(sb))
270 return 1;
271
272 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
273}
274
275__le32 ext4_superblock_csum(struct super_block *sb,
276 struct ext4_super_block *es)
277{
278 struct ext4_sb_info *sbi = EXT4_SB(sb);
279 int offset = offsetof(struct ext4_super_block, s_checksum);
280 __u32 csum;
281
282 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
283
284 return cpu_to_le32(csum);
285}
286
287static int ext4_superblock_csum_verify(struct super_block *sb,
288 struct ext4_super_block *es)
289{
290 if (!ext4_has_metadata_csum(sb))
291 return 1;
292
293 return es->s_checksum == ext4_superblock_csum(sb, es);
294}
295
296void ext4_superblock_csum_set(struct super_block *sb)
297{
298 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
299
300 if (!ext4_has_metadata_csum(sb))
301 return;
302
303 es->s_checksum = ext4_superblock_csum(sb, es);
304}
305
306ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
307 struct ext4_group_desc *bg)
308{
309 return le32_to_cpu(bg->bg_block_bitmap_lo) |
310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
312}
313
314ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
315 struct ext4_group_desc *bg)
316{
317 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
320}
321
322ext4_fsblk_t ext4_inode_table(struct super_block *sb,
323 struct ext4_group_desc *bg)
324{
325 return le32_to_cpu(bg->bg_inode_table_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
328}
329
330__u32 ext4_free_group_clusters(struct super_block *sb,
331 struct ext4_group_desc *bg)
332{
333 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
336}
337
338__u32 ext4_free_inodes_count(struct super_block *sb,
339 struct ext4_group_desc *bg)
340{
341 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
344}
345
346__u32 ext4_used_dirs_count(struct super_block *sb,
347 struct ext4_group_desc *bg)
348{
349 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
352}
353
354__u32 ext4_itable_unused_count(struct super_block *sb,
355 struct ext4_group_desc *bg)
356{
357 return le16_to_cpu(bg->bg_itable_unused_lo) |
358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
360}
361
362void ext4_block_bitmap_set(struct super_block *sb,
363 struct ext4_group_desc *bg, ext4_fsblk_t blk)
364{
365 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
368}
369
370void ext4_inode_bitmap_set(struct super_block *sb,
371 struct ext4_group_desc *bg, ext4_fsblk_t blk)
372{
373 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
376}
377
378void ext4_inode_table_set(struct super_block *sb,
379 struct ext4_group_desc *bg, ext4_fsblk_t blk)
380{
381 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
384}
385
386void ext4_free_group_clusters_set(struct super_block *sb,
387 struct ext4_group_desc *bg, __u32 count)
388{
389 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
392}
393
394void ext4_free_inodes_set(struct super_block *sb,
395 struct ext4_group_desc *bg, __u32 count)
396{
397 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
400}
401
402void ext4_used_dirs_set(struct super_block *sb,
403 struct ext4_group_desc *bg, __u32 count)
404{
405 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
408}
409
410void ext4_itable_unused_set(struct super_block *sb,
411 struct ext4_group_desc *bg, __u32 count)
412{
413 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
416}
417
418static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
419{
420 now = clamp_val(now, 0, (1ull << 40) - 1);
421
422 *lo = cpu_to_le32(lower_32_bits(now));
423 *hi = upper_32_bits(now);
424}
425
426static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
427{
428 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
429}
430#define ext4_update_tstamp(es, tstamp) \
431 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
432 ktime_get_real_seconds())
433#define ext4_get_tstamp(es, tstamp) \
434 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
435
436/*
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
443 */
444static int block_device_ejected(struct super_block *sb)
445{
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
448
449 return bdi->dev == NULL;
450}
451
452static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
453{
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
458
459 BUG_ON(txn->t_state == T_FINISHED);
460
461 ext4_process_freed_data(sb, txn->t_tid);
462
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
471 }
472 spin_unlock(&sbi->s_md_lock);
473}
474
475/*
476 * This writepage callback for write_cache_pages()
477 * takes care of a few cases after page cleaning.
478 *
479 * write_cache_pages() already checks for dirty pages
480 * and calls clear_page_dirty_for_io(), which we want,
481 * to write protect the pages.
482 *
483 * However, we may have to redirty a page (see below.)
484 */
485static int ext4_journalled_writepage_callback(struct page *page,
486 struct writeback_control *wbc,
487 void *data)
488{
489 transaction_t *transaction = (transaction_t *) data;
490 struct buffer_head *bh, *head;
491 struct journal_head *jh;
492
493 bh = head = page_buffers(page);
494 do {
495 /*
496 * We have to redirty a page in these cases:
497 * 1) If buffer is dirty, it means the page was dirty because it
498 * contains a buffer that needs checkpointing. So the dirty bit
499 * needs to be preserved so that checkpointing writes the buffer
500 * properly.
501 * 2) If buffer is not part of the committing transaction
502 * (we may have just accidentally come across this buffer because
503 * inode range tracking is not exact) or if the currently running
504 * transaction already contains this buffer as well, dirty bit
505 * needs to be preserved so that the buffer gets writeprotected
506 * properly on running transaction's commit.
507 */
508 jh = bh2jh(bh);
509 if (buffer_dirty(bh) ||
510 (jh && (jh->b_transaction != transaction ||
511 jh->b_next_transaction))) {
512 redirty_page_for_writepage(wbc, page);
513 goto out;
514 }
515 } while ((bh = bh->b_this_page) != head);
516
517out:
518 return AOP_WRITEPAGE_ACTIVATE;
519}
520
521static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
522{
523 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
524 struct writeback_control wbc = {
525 .sync_mode = WB_SYNC_ALL,
526 .nr_to_write = LONG_MAX,
527 .range_start = jinode->i_dirty_start,
528 .range_end = jinode->i_dirty_end,
529 };
530
531 return write_cache_pages(mapping, &wbc,
532 ext4_journalled_writepage_callback,
533 jinode->i_transaction);
534}
535
536static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
537{
538 int ret;
539
540 if (ext4_should_journal_data(jinode->i_vfs_inode))
541 ret = ext4_journalled_submit_inode_data_buffers(jinode);
542 else
543 ret = ext4_normal_submit_inode_data_buffers(jinode);
544 return ret;
545}
546
547static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
548{
549 int ret = 0;
550
551 if (!ext4_should_journal_data(jinode->i_vfs_inode))
552 ret = jbd2_journal_finish_inode_data_buffers(jinode);
553
554 return ret;
555}
556
557static bool system_going_down(void)
558{
559 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
560 || system_state == SYSTEM_RESTART;
561}
562
563struct ext4_err_translation {
564 int code;
565 int errno;
566};
567
568#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
569
570static struct ext4_err_translation err_translation[] = {
571 EXT4_ERR_TRANSLATE(EIO),
572 EXT4_ERR_TRANSLATE(ENOMEM),
573 EXT4_ERR_TRANSLATE(EFSBADCRC),
574 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
575 EXT4_ERR_TRANSLATE(ENOSPC),
576 EXT4_ERR_TRANSLATE(ENOKEY),
577 EXT4_ERR_TRANSLATE(EROFS),
578 EXT4_ERR_TRANSLATE(EFBIG),
579 EXT4_ERR_TRANSLATE(EEXIST),
580 EXT4_ERR_TRANSLATE(ERANGE),
581 EXT4_ERR_TRANSLATE(EOVERFLOW),
582 EXT4_ERR_TRANSLATE(EBUSY),
583 EXT4_ERR_TRANSLATE(ENOTDIR),
584 EXT4_ERR_TRANSLATE(ENOTEMPTY),
585 EXT4_ERR_TRANSLATE(ESHUTDOWN),
586 EXT4_ERR_TRANSLATE(EFAULT),
587};
588
589static int ext4_errno_to_code(int errno)
590{
591 int i;
592
593 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
594 if (err_translation[i].errno == errno)
595 return err_translation[i].code;
596 return EXT4_ERR_UNKNOWN;
597}
598
599static void save_error_info(struct super_block *sb, int error,
600 __u32 ino, __u64 block,
601 const char *func, unsigned int line)
602{
603 struct ext4_sb_info *sbi = EXT4_SB(sb);
604
605 /* We default to EFSCORRUPTED error... */
606 if (error == 0)
607 error = EFSCORRUPTED;
608
609 spin_lock(&sbi->s_error_lock);
610 sbi->s_add_error_count++;
611 sbi->s_last_error_code = error;
612 sbi->s_last_error_line = line;
613 sbi->s_last_error_ino = ino;
614 sbi->s_last_error_block = block;
615 sbi->s_last_error_func = func;
616 sbi->s_last_error_time = ktime_get_real_seconds();
617 if (!sbi->s_first_error_time) {
618 sbi->s_first_error_code = error;
619 sbi->s_first_error_line = line;
620 sbi->s_first_error_ino = ino;
621 sbi->s_first_error_block = block;
622 sbi->s_first_error_func = func;
623 sbi->s_first_error_time = sbi->s_last_error_time;
624 }
625 spin_unlock(&sbi->s_error_lock);
626}
627
628/* Deal with the reporting of failure conditions on a filesystem such as
629 * inconsistencies detected or read IO failures.
630 *
631 * On ext2, we can store the error state of the filesystem in the
632 * superblock. That is not possible on ext4, because we may have other
633 * write ordering constraints on the superblock which prevent us from
634 * writing it out straight away; and given that the journal is about to
635 * be aborted, we can't rely on the current, or future, transactions to
636 * write out the superblock safely.
637 *
638 * We'll just use the jbd2_journal_abort() error code to record an error in
639 * the journal instead. On recovery, the journal will complain about
640 * that error until we've noted it down and cleared it.
641 *
642 * If force_ro is set, we unconditionally force the filesystem into an
643 * ABORT|READONLY state, unless the error response on the fs has been set to
644 * panic in which case we take the easy way out and panic immediately. This is
645 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
646 * at a critical moment in log management.
647 */
648static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
649 __u32 ino, __u64 block,
650 const char *func, unsigned int line)
651{
652 journal_t *journal = EXT4_SB(sb)->s_journal;
653 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
654
655 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
656 if (test_opt(sb, WARN_ON_ERROR))
657 WARN_ON_ONCE(1);
658
659 if (!continue_fs && !sb_rdonly(sb)) {
660 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
661 if (journal)
662 jbd2_journal_abort(journal, -EIO);
663 }
664
665 if (!bdev_read_only(sb->s_bdev)) {
666 save_error_info(sb, error, ino, block, func, line);
667 /*
668 * In case the fs should keep running, we need to writeout
669 * superblock through the journal. Due to lock ordering
670 * constraints, it may not be safe to do it right here so we
671 * defer superblock flushing to a workqueue.
672 */
673 if (continue_fs && journal)
674 schedule_work(&EXT4_SB(sb)->s_error_work);
675 else
676 ext4_commit_super(sb);
677 }
678
679 /*
680 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
681 * could panic during 'reboot -f' as the underlying device got already
682 * disabled.
683 */
684 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
685 panic("EXT4-fs (device %s): panic forced after error\n",
686 sb->s_id);
687 }
688
689 if (sb_rdonly(sb) || continue_fs)
690 return;
691
692 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
693 /*
694 * Make sure updated value of ->s_mount_flags will be visible before
695 * ->s_flags update
696 */
697 smp_wmb();
698 sb->s_flags |= SB_RDONLY;
699}
700
701static void flush_stashed_error_work(struct work_struct *work)
702{
703 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
704 s_error_work);
705 journal_t *journal = sbi->s_journal;
706 handle_t *handle;
707
708 /*
709 * If the journal is still running, we have to write out superblock
710 * through the journal to avoid collisions of other journalled sb
711 * updates.
712 *
713 * We use directly jbd2 functions here to avoid recursing back into
714 * ext4 error handling code during handling of previous errors.
715 */
716 if (!sb_rdonly(sbi->s_sb) && journal) {
717 struct buffer_head *sbh = sbi->s_sbh;
718 handle = jbd2_journal_start(journal, 1);
719 if (IS_ERR(handle))
720 goto write_directly;
721 if (jbd2_journal_get_write_access(handle, sbh)) {
722 jbd2_journal_stop(handle);
723 goto write_directly;
724 }
725 ext4_update_super(sbi->s_sb);
726 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
727 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
728 "superblock detected");
729 clear_buffer_write_io_error(sbh);
730 set_buffer_uptodate(sbh);
731 }
732
733 if (jbd2_journal_dirty_metadata(handle, sbh)) {
734 jbd2_journal_stop(handle);
735 goto write_directly;
736 }
737 jbd2_journal_stop(handle);
738 ext4_notify_error_sysfs(sbi);
739 return;
740 }
741write_directly:
742 /*
743 * Write through journal failed. Write sb directly to get error info
744 * out and hope for the best.
745 */
746 ext4_commit_super(sbi->s_sb);
747 ext4_notify_error_sysfs(sbi);
748}
749
750#define ext4_error_ratelimit(sb) \
751 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
752 "EXT4-fs error")
753
754void __ext4_error(struct super_block *sb, const char *function,
755 unsigned int line, bool force_ro, int error, __u64 block,
756 const char *fmt, ...)
757{
758 struct va_format vaf;
759 va_list args;
760
761 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
762 return;
763
764 trace_ext4_error(sb, function, line);
765 if (ext4_error_ratelimit(sb)) {
766 va_start(args, fmt);
767 vaf.fmt = fmt;
768 vaf.va = &args;
769 printk(KERN_CRIT
770 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
771 sb->s_id, function, line, current->comm, &vaf);
772 va_end(args);
773 }
774 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
775
776 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
777}
778
779void __ext4_error_inode(struct inode *inode, const char *function,
780 unsigned int line, ext4_fsblk_t block, int error,
781 const char *fmt, ...)
782{
783 va_list args;
784 struct va_format vaf;
785
786 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
787 return;
788
789 trace_ext4_error(inode->i_sb, function, line);
790 if (ext4_error_ratelimit(inode->i_sb)) {
791 va_start(args, fmt);
792 vaf.fmt = fmt;
793 vaf.va = &args;
794 if (block)
795 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
796 "inode #%lu: block %llu: comm %s: %pV\n",
797 inode->i_sb->s_id, function, line, inode->i_ino,
798 block, current->comm, &vaf);
799 else
800 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
801 "inode #%lu: comm %s: %pV\n",
802 inode->i_sb->s_id, function, line, inode->i_ino,
803 current->comm, &vaf);
804 va_end(args);
805 }
806 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
807
808 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
809 function, line);
810}
811
812void __ext4_error_file(struct file *file, const char *function,
813 unsigned int line, ext4_fsblk_t block,
814 const char *fmt, ...)
815{
816 va_list args;
817 struct va_format vaf;
818 struct inode *inode = file_inode(file);
819 char pathname[80], *path;
820
821 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
822 return;
823
824 trace_ext4_error(inode->i_sb, function, line);
825 if (ext4_error_ratelimit(inode->i_sb)) {
826 path = file_path(file, pathname, sizeof(pathname));
827 if (IS_ERR(path))
828 path = "(unknown)";
829 va_start(args, fmt);
830 vaf.fmt = fmt;
831 vaf.va = &args;
832 if (block)
833 printk(KERN_CRIT
834 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
835 "block %llu: comm %s: path %s: %pV\n",
836 inode->i_sb->s_id, function, line, inode->i_ino,
837 block, current->comm, path, &vaf);
838 else
839 printk(KERN_CRIT
840 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
841 "comm %s: path %s: %pV\n",
842 inode->i_sb->s_id, function, line, inode->i_ino,
843 current->comm, path, &vaf);
844 va_end(args);
845 }
846 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
847
848 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
849 function, line);
850}
851
852const char *ext4_decode_error(struct super_block *sb, int errno,
853 char nbuf[16])
854{
855 char *errstr = NULL;
856
857 switch (errno) {
858 case -EFSCORRUPTED:
859 errstr = "Corrupt filesystem";
860 break;
861 case -EFSBADCRC:
862 errstr = "Filesystem failed CRC";
863 break;
864 case -EIO:
865 errstr = "IO failure";
866 break;
867 case -ENOMEM:
868 errstr = "Out of memory";
869 break;
870 case -EROFS:
871 if (!sb || (EXT4_SB(sb)->s_journal &&
872 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
873 errstr = "Journal has aborted";
874 else
875 errstr = "Readonly filesystem";
876 break;
877 default:
878 /* If the caller passed in an extra buffer for unknown
879 * errors, textualise them now. Else we just return
880 * NULL. */
881 if (nbuf) {
882 /* Check for truncated error codes... */
883 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
884 errstr = nbuf;
885 }
886 break;
887 }
888
889 return errstr;
890}
891
892/* __ext4_std_error decodes expected errors from journaling functions
893 * automatically and invokes the appropriate error response. */
894
895void __ext4_std_error(struct super_block *sb, const char *function,
896 unsigned int line, int errno)
897{
898 char nbuf[16];
899 const char *errstr;
900
901 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
902 return;
903
904 /* Special case: if the error is EROFS, and we're not already
905 * inside a transaction, then there's really no point in logging
906 * an error. */
907 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
908 return;
909
910 if (ext4_error_ratelimit(sb)) {
911 errstr = ext4_decode_error(sb, errno, nbuf);
912 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
913 sb->s_id, function, line, errstr);
914 }
915 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
916
917 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
918}
919
920void __ext4_msg(struct super_block *sb,
921 const char *prefix, const char *fmt, ...)
922{
923 struct va_format vaf;
924 va_list args;
925
926 if (sb) {
927 atomic_inc(&EXT4_SB(sb)->s_msg_count);
928 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
929 "EXT4-fs"))
930 return;
931 }
932
933 va_start(args, fmt);
934 vaf.fmt = fmt;
935 vaf.va = &args;
936 if (sb)
937 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
938 else
939 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
940 va_end(args);
941}
942
943static int ext4_warning_ratelimit(struct super_block *sb)
944{
945 atomic_inc(&EXT4_SB(sb)->s_warning_count);
946 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
947 "EXT4-fs warning");
948}
949
950void __ext4_warning(struct super_block *sb, const char *function,
951 unsigned int line, const char *fmt, ...)
952{
953 struct va_format vaf;
954 va_list args;
955
956 if (!ext4_warning_ratelimit(sb))
957 return;
958
959 va_start(args, fmt);
960 vaf.fmt = fmt;
961 vaf.va = &args;
962 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
963 sb->s_id, function, line, &vaf);
964 va_end(args);
965}
966
967void __ext4_warning_inode(const struct inode *inode, const char *function,
968 unsigned int line, const char *fmt, ...)
969{
970 struct va_format vaf;
971 va_list args;
972
973 if (!ext4_warning_ratelimit(inode->i_sb))
974 return;
975
976 va_start(args, fmt);
977 vaf.fmt = fmt;
978 vaf.va = &args;
979 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
980 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
981 function, line, inode->i_ino, current->comm, &vaf);
982 va_end(args);
983}
984
985void __ext4_grp_locked_error(const char *function, unsigned int line,
986 struct super_block *sb, ext4_group_t grp,
987 unsigned long ino, ext4_fsblk_t block,
988 const char *fmt, ...)
989__releases(bitlock)
990__acquires(bitlock)
991{
992 struct va_format vaf;
993 va_list args;
994
995 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
996 return;
997
998 trace_ext4_error(sb, function, line);
999 if (ext4_error_ratelimit(sb)) {
1000 va_start(args, fmt);
1001 vaf.fmt = fmt;
1002 vaf.va = &args;
1003 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1004 sb->s_id, function, line, grp);
1005 if (ino)
1006 printk(KERN_CONT "inode %lu: ", ino);
1007 if (block)
1008 printk(KERN_CONT "block %llu:",
1009 (unsigned long long) block);
1010 printk(KERN_CONT "%pV\n", &vaf);
1011 va_end(args);
1012 }
1013
1014 if (test_opt(sb, ERRORS_CONT)) {
1015 if (test_opt(sb, WARN_ON_ERROR))
1016 WARN_ON_ONCE(1);
1017 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1018 if (!bdev_read_only(sb->s_bdev)) {
1019 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1020 line);
1021 schedule_work(&EXT4_SB(sb)->s_error_work);
1022 }
1023 return;
1024 }
1025 ext4_unlock_group(sb, grp);
1026 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1027 /*
1028 * We only get here in the ERRORS_RO case; relocking the group
1029 * may be dangerous, but nothing bad will happen since the
1030 * filesystem will have already been marked read/only and the
1031 * journal has been aborted. We return 1 as a hint to callers
1032 * who might what to use the return value from
1033 * ext4_grp_locked_error() to distinguish between the
1034 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1035 * aggressively from the ext4 function in question, with a
1036 * more appropriate error code.
1037 */
1038 ext4_lock_group(sb, grp);
1039 return;
1040}
1041
1042void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1043 ext4_group_t group,
1044 unsigned int flags)
1045{
1046 struct ext4_sb_info *sbi = EXT4_SB(sb);
1047 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1048 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1049 int ret;
1050
1051 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1052 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1053 &grp->bb_state);
1054 if (!ret)
1055 percpu_counter_sub(&sbi->s_freeclusters_counter,
1056 grp->bb_free);
1057 }
1058
1059 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1060 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1061 &grp->bb_state);
1062 if (!ret && gdp) {
1063 int count;
1064
1065 count = ext4_free_inodes_count(sb, gdp);
1066 percpu_counter_sub(&sbi->s_freeinodes_counter,
1067 count);
1068 }
1069 }
1070}
1071
1072void ext4_update_dynamic_rev(struct super_block *sb)
1073{
1074 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1075
1076 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1077 return;
1078
1079 ext4_warning(sb,
1080 "updating to rev %d because of new feature flag, "
1081 "running e2fsck is recommended",
1082 EXT4_DYNAMIC_REV);
1083
1084 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1085 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1086 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1087 /* leave es->s_feature_*compat flags alone */
1088 /* es->s_uuid will be set by e2fsck if empty */
1089
1090 /*
1091 * The rest of the superblock fields should be zero, and if not it
1092 * means they are likely already in use, so leave them alone. We
1093 * can leave it up to e2fsck to clean up any inconsistencies there.
1094 */
1095}
1096
1097/*
1098 * Open the external journal device
1099 */
1100static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1101{
1102 struct block_device *bdev;
1103
1104 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1105 if (IS_ERR(bdev))
1106 goto fail;
1107 return bdev;
1108
1109fail:
1110 ext4_msg(sb, KERN_ERR,
1111 "failed to open journal device unknown-block(%u,%u) %ld",
1112 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1113 return NULL;
1114}
1115
1116/*
1117 * Release the journal device
1118 */
1119static void ext4_blkdev_put(struct block_device *bdev)
1120{
1121 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1122}
1123
1124static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1125{
1126 struct block_device *bdev;
1127 bdev = sbi->s_journal_bdev;
1128 if (bdev) {
1129 ext4_blkdev_put(bdev);
1130 sbi->s_journal_bdev = NULL;
1131 }
1132}
1133
1134static inline struct inode *orphan_list_entry(struct list_head *l)
1135{
1136 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1137}
1138
1139static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1140{
1141 struct list_head *l;
1142
1143 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1144 le32_to_cpu(sbi->s_es->s_last_orphan));
1145
1146 printk(KERN_ERR "sb_info orphan list:\n");
1147 list_for_each(l, &sbi->s_orphan) {
1148 struct inode *inode = orphan_list_entry(l);
1149 printk(KERN_ERR " "
1150 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1151 inode->i_sb->s_id, inode->i_ino, inode,
1152 inode->i_mode, inode->i_nlink,
1153 NEXT_ORPHAN(inode));
1154 }
1155}
1156
1157#ifdef CONFIG_QUOTA
1158static int ext4_quota_off(struct super_block *sb, int type);
1159
1160static inline void ext4_quota_off_umount(struct super_block *sb)
1161{
1162 int type;
1163
1164 /* Use our quota_off function to clear inode flags etc. */
1165 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1166 ext4_quota_off(sb, type);
1167}
1168
1169/*
1170 * This is a helper function which is used in the mount/remount
1171 * codepaths (which holds s_umount) to fetch the quota file name.
1172 */
1173static inline char *get_qf_name(struct super_block *sb,
1174 struct ext4_sb_info *sbi,
1175 int type)
1176{
1177 return rcu_dereference_protected(sbi->s_qf_names[type],
1178 lockdep_is_held(&sb->s_umount));
1179}
1180#else
1181static inline void ext4_quota_off_umount(struct super_block *sb)
1182{
1183}
1184#endif
1185
1186static void ext4_put_super(struct super_block *sb)
1187{
1188 struct ext4_sb_info *sbi = EXT4_SB(sb);
1189 struct ext4_super_block *es = sbi->s_es;
1190 struct buffer_head **group_desc;
1191 struct flex_groups **flex_groups;
1192 int aborted = 0;
1193 int i, err;
1194
1195 /*
1196 * Unregister sysfs before destroying jbd2 journal.
1197 * Since we could still access attr_journal_task attribute via sysfs
1198 * path which could have sbi->s_journal->j_task as NULL
1199 * Unregister sysfs before flush sbi->s_error_work.
1200 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1201 * read metadata verify failed then will queue error work.
1202 * flush_stashed_error_work will call start_this_handle may trigger
1203 * BUG_ON.
1204 */
1205 ext4_unregister_sysfs(sb);
1206
1207 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1208 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1209 &sb->s_uuid);
1210
1211 ext4_unregister_li_request(sb);
1212 ext4_quota_off_umount(sb);
1213
1214 flush_work(&sbi->s_error_work);
1215 destroy_workqueue(sbi->rsv_conversion_wq);
1216 ext4_release_orphan_info(sb);
1217
1218 if (sbi->s_journal) {
1219 aborted = is_journal_aborted(sbi->s_journal);
1220 err = jbd2_journal_destroy(sbi->s_journal);
1221 sbi->s_journal = NULL;
1222 if ((err < 0) && !aborted) {
1223 ext4_abort(sb, -err, "Couldn't clean up the journal");
1224 }
1225 }
1226
1227 ext4_es_unregister_shrinker(sbi);
1228 timer_shutdown_sync(&sbi->s_err_report);
1229 ext4_release_system_zone(sb);
1230 ext4_mb_release(sb);
1231 ext4_ext_release(sb);
1232
1233 if (!sb_rdonly(sb) && !aborted) {
1234 ext4_clear_feature_journal_needs_recovery(sb);
1235 ext4_clear_feature_orphan_present(sb);
1236 es->s_state = cpu_to_le16(sbi->s_mount_state);
1237 }
1238 if (!sb_rdonly(sb))
1239 ext4_commit_super(sb);
1240
1241 rcu_read_lock();
1242 group_desc = rcu_dereference(sbi->s_group_desc);
1243 for (i = 0; i < sbi->s_gdb_count; i++)
1244 brelse(group_desc[i]);
1245 kvfree(group_desc);
1246 flex_groups = rcu_dereference(sbi->s_flex_groups);
1247 if (flex_groups) {
1248 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1249 kvfree(flex_groups[i]);
1250 kvfree(flex_groups);
1251 }
1252 rcu_read_unlock();
1253 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1254 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1255 percpu_counter_destroy(&sbi->s_dirs_counter);
1256 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1257 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1258 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1259#ifdef CONFIG_QUOTA
1260 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1261 kfree(get_qf_name(sb, sbi, i));
1262#endif
1263
1264 /* Debugging code just in case the in-memory inode orphan list
1265 * isn't empty. The on-disk one can be non-empty if we've
1266 * detected an error and taken the fs readonly, but the
1267 * in-memory list had better be clean by this point. */
1268 if (!list_empty(&sbi->s_orphan))
1269 dump_orphan_list(sb, sbi);
1270 ASSERT(list_empty(&sbi->s_orphan));
1271
1272 sync_blockdev(sb->s_bdev);
1273 invalidate_bdev(sb->s_bdev);
1274 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1275 /*
1276 * Invalidate the journal device's buffers. We don't want them
1277 * floating about in memory - the physical journal device may
1278 * hotswapped, and it breaks the `ro-after' testing code.
1279 */
1280 sync_blockdev(sbi->s_journal_bdev);
1281 invalidate_bdev(sbi->s_journal_bdev);
1282 ext4_blkdev_remove(sbi);
1283 }
1284
1285 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1286 sbi->s_ea_inode_cache = NULL;
1287
1288 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1289 sbi->s_ea_block_cache = NULL;
1290
1291 ext4_stop_mmpd(sbi);
1292
1293 brelse(sbi->s_sbh);
1294 sb->s_fs_info = NULL;
1295 /*
1296 * Now that we are completely done shutting down the
1297 * superblock, we need to actually destroy the kobject.
1298 */
1299 kobject_put(&sbi->s_kobj);
1300 wait_for_completion(&sbi->s_kobj_unregister);
1301 if (sbi->s_chksum_driver)
1302 crypto_free_shash(sbi->s_chksum_driver);
1303 kfree(sbi->s_blockgroup_lock);
1304 fs_put_dax(sbi->s_daxdev, NULL);
1305 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1306#if IS_ENABLED(CONFIG_UNICODE)
1307 utf8_unload(sb->s_encoding);
1308#endif
1309 kfree(sbi);
1310}
1311
1312static struct kmem_cache *ext4_inode_cachep;
1313
1314/*
1315 * Called inside transaction, so use GFP_NOFS
1316 */
1317static struct inode *ext4_alloc_inode(struct super_block *sb)
1318{
1319 struct ext4_inode_info *ei;
1320
1321 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1322 if (!ei)
1323 return NULL;
1324
1325 inode_set_iversion(&ei->vfs_inode, 1);
1326 ei->i_flags = 0;
1327 spin_lock_init(&ei->i_raw_lock);
1328 INIT_LIST_HEAD(&ei->i_prealloc_list);
1329 atomic_set(&ei->i_prealloc_active, 0);
1330 spin_lock_init(&ei->i_prealloc_lock);
1331 ext4_es_init_tree(&ei->i_es_tree);
1332 rwlock_init(&ei->i_es_lock);
1333 INIT_LIST_HEAD(&ei->i_es_list);
1334 ei->i_es_all_nr = 0;
1335 ei->i_es_shk_nr = 0;
1336 ei->i_es_shrink_lblk = 0;
1337 ei->i_reserved_data_blocks = 0;
1338 spin_lock_init(&(ei->i_block_reservation_lock));
1339 ext4_init_pending_tree(&ei->i_pending_tree);
1340#ifdef CONFIG_QUOTA
1341 ei->i_reserved_quota = 0;
1342 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1343#endif
1344 ei->jinode = NULL;
1345 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1346 spin_lock_init(&ei->i_completed_io_lock);
1347 ei->i_sync_tid = 0;
1348 ei->i_datasync_tid = 0;
1349 atomic_set(&ei->i_unwritten, 0);
1350 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1351 ext4_fc_init_inode(&ei->vfs_inode);
1352 mutex_init(&ei->i_fc_lock);
1353 return &ei->vfs_inode;
1354}
1355
1356static int ext4_drop_inode(struct inode *inode)
1357{
1358 int drop = generic_drop_inode(inode);
1359
1360 if (!drop)
1361 drop = fscrypt_drop_inode(inode);
1362
1363 trace_ext4_drop_inode(inode, drop);
1364 return drop;
1365}
1366
1367static void ext4_free_in_core_inode(struct inode *inode)
1368{
1369 fscrypt_free_inode(inode);
1370 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1371 pr_warn("%s: inode %ld still in fc list",
1372 __func__, inode->i_ino);
1373 }
1374 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1375}
1376
1377static void ext4_destroy_inode(struct inode *inode)
1378{
1379 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1380 ext4_msg(inode->i_sb, KERN_ERR,
1381 "Inode %lu (%p): orphan list check failed!",
1382 inode->i_ino, EXT4_I(inode));
1383 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1384 EXT4_I(inode), sizeof(struct ext4_inode_info),
1385 true);
1386 dump_stack();
1387 }
1388
1389 if (EXT4_I(inode)->i_reserved_data_blocks)
1390 ext4_msg(inode->i_sb, KERN_ERR,
1391 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1392 inode->i_ino, EXT4_I(inode),
1393 EXT4_I(inode)->i_reserved_data_blocks);
1394}
1395
1396static void init_once(void *foo)
1397{
1398 struct ext4_inode_info *ei = foo;
1399
1400 INIT_LIST_HEAD(&ei->i_orphan);
1401 init_rwsem(&ei->xattr_sem);
1402 init_rwsem(&ei->i_data_sem);
1403 inode_init_once(&ei->vfs_inode);
1404 ext4_fc_init_inode(&ei->vfs_inode);
1405}
1406
1407static int __init init_inodecache(void)
1408{
1409 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1410 sizeof(struct ext4_inode_info), 0,
1411 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1412 SLAB_ACCOUNT),
1413 offsetof(struct ext4_inode_info, i_data),
1414 sizeof_field(struct ext4_inode_info, i_data),
1415 init_once);
1416 if (ext4_inode_cachep == NULL)
1417 return -ENOMEM;
1418 return 0;
1419}
1420
1421static void destroy_inodecache(void)
1422{
1423 /*
1424 * Make sure all delayed rcu free inodes are flushed before we
1425 * destroy cache.
1426 */
1427 rcu_barrier();
1428 kmem_cache_destroy(ext4_inode_cachep);
1429}
1430
1431void ext4_clear_inode(struct inode *inode)
1432{
1433 ext4_fc_del(inode);
1434 invalidate_inode_buffers(inode);
1435 clear_inode(inode);
1436 ext4_discard_preallocations(inode, 0);
1437 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1438 dquot_drop(inode);
1439 if (EXT4_I(inode)->jinode) {
1440 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1441 EXT4_I(inode)->jinode);
1442 jbd2_free_inode(EXT4_I(inode)->jinode);
1443 EXT4_I(inode)->jinode = NULL;
1444 }
1445 fscrypt_put_encryption_info(inode);
1446 fsverity_cleanup_inode(inode);
1447}
1448
1449static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1450 u64 ino, u32 generation)
1451{
1452 struct inode *inode;
1453
1454 /*
1455 * Currently we don't know the generation for parent directory, so
1456 * a generation of 0 means "accept any"
1457 */
1458 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1459 if (IS_ERR(inode))
1460 return ERR_CAST(inode);
1461 if (generation && inode->i_generation != generation) {
1462 iput(inode);
1463 return ERR_PTR(-ESTALE);
1464 }
1465
1466 return inode;
1467}
1468
1469static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1470 int fh_len, int fh_type)
1471{
1472 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1473 ext4_nfs_get_inode);
1474}
1475
1476static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1477 int fh_len, int fh_type)
1478{
1479 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1480 ext4_nfs_get_inode);
1481}
1482
1483static int ext4_nfs_commit_metadata(struct inode *inode)
1484{
1485 struct writeback_control wbc = {
1486 .sync_mode = WB_SYNC_ALL
1487 };
1488
1489 trace_ext4_nfs_commit_metadata(inode);
1490 return ext4_write_inode(inode, &wbc);
1491}
1492
1493#ifdef CONFIG_QUOTA
1494static const char * const quotatypes[] = INITQFNAMES;
1495#define QTYPE2NAME(t) (quotatypes[t])
1496
1497static int ext4_write_dquot(struct dquot *dquot);
1498static int ext4_acquire_dquot(struct dquot *dquot);
1499static int ext4_release_dquot(struct dquot *dquot);
1500static int ext4_mark_dquot_dirty(struct dquot *dquot);
1501static int ext4_write_info(struct super_block *sb, int type);
1502static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1503 const struct path *path);
1504static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1505 size_t len, loff_t off);
1506static ssize_t ext4_quota_write(struct super_block *sb, int type,
1507 const char *data, size_t len, loff_t off);
1508static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1509 unsigned int flags);
1510
1511static struct dquot **ext4_get_dquots(struct inode *inode)
1512{
1513 return EXT4_I(inode)->i_dquot;
1514}
1515
1516static const struct dquot_operations ext4_quota_operations = {
1517 .get_reserved_space = ext4_get_reserved_space,
1518 .write_dquot = ext4_write_dquot,
1519 .acquire_dquot = ext4_acquire_dquot,
1520 .release_dquot = ext4_release_dquot,
1521 .mark_dirty = ext4_mark_dquot_dirty,
1522 .write_info = ext4_write_info,
1523 .alloc_dquot = dquot_alloc,
1524 .destroy_dquot = dquot_destroy,
1525 .get_projid = ext4_get_projid,
1526 .get_inode_usage = ext4_get_inode_usage,
1527 .get_next_id = dquot_get_next_id,
1528};
1529
1530static const struct quotactl_ops ext4_qctl_operations = {
1531 .quota_on = ext4_quota_on,
1532 .quota_off = ext4_quota_off,
1533 .quota_sync = dquot_quota_sync,
1534 .get_state = dquot_get_state,
1535 .set_info = dquot_set_dqinfo,
1536 .get_dqblk = dquot_get_dqblk,
1537 .set_dqblk = dquot_set_dqblk,
1538 .get_nextdqblk = dquot_get_next_dqblk,
1539};
1540#endif
1541
1542static const struct super_operations ext4_sops = {
1543 .alloc_inode = ext4_alloc_inode,
1544 .free_inode = ext4_free_in_core_inode,
1545 .destroy_inode = ext4_destroy_inode,
1546 .write_inode = ext4_write_inode,
1547 .dirty_inode = ext4_dirty_inode,
1548 .drop_inode = ext4_drop_inode,
1549 .evict_inode = ext4_evict_inode,
1550 .put_super = ext4_put_super,
1551 .sync_fs = ext4_sync_fs,
1552 .freeze_fs = ext4_freeze,
1553 .unfreeze_fs = ext4_unfreeze,
1554 .statfs = ext4_statfs,
1555 .show_options = ext4_show_options,
1556#ifdef CONFIG_QUOTA
1557 .quota_read = ext4_quota_read,
1558 .quota_write = ext4_quota_write,
1559 .get_dquots = ext4_get_dquots,
1560#endif
1561};
1562
1563static const struct export_operations ext4_export_ops = {
1564 .fh_to_dentry = ext4_fh_to_dentry,
1565 .fh_to_parent = ext4_fh_to_parent,
1566 .get_parent = ext4_get_parent,
1567 .commit_metadata = ext4_nfs_commit_metadata,
1568};
1569
1570enum {
1571 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1572 Opt_resgid, Opt_resuid, Opt_sb,
1573 Opt_nouid32, Opt_debug, Opt_removed,
1574 Opt_user_xattr, Opt_acl,
1575 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1576 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1577 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1578 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1579 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1580 Opt_inlinecrypt,
1581 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1582 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1583 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1584 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1585 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1586 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1587 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1588 Opt_inode_readahead_blks, Opt_journal_ioprio,
1589 Opt_dioread_nolock, Opt_dioread_lock,
1590 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1591 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1592 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1593 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1594#ifdef CONFIG_EXT4_DEBUG
1595 Opt_fc_debug_max_replay, Opt_fc_debug_force
1596#endif
1597};
1598
1599static const struct constant_table ext4_param_errors[] = {
1600 {"continue", EXT4_MOUNT_ERRORS_CONT},
1601 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1602 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1603 {}
1604};
1605
1606static const struct constant_table ext4_param_data[] = {
1607 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1608 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1609 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1610 {}
1611};
1612
1613static const struct constant_table ext4_param_data_err[] = {
1614 {"abort", Opt_data_err_abort},
1615 {"ignore", Opt_data_err_ignore},
1616 {}
1617};
1618
1619static const struct constant_table ext4_param_jqfmt[] = {
1620 {"vfsold", QFMT_VFS_OLD},
1621 {"vfsv0", QFMT_VFS_V0},
1622 {"vfsv1", QFMT_VFS_V1},
1623 {}
1624};
1625
1626static const struct constant_table ext4_param_dax[] = {
1627 {"always", Opt_dax_always},
1628 {"inode", Opt_dax_inode},
1629 {"never", Opt_dax_never},
1630 {}
1631};
1632
1633/* String parameter that allows empty argument */
1634#define fsparam_string_empty(NAME, OPT) \
1635 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1636
1637/*
1638 * Mount option specification
1639 * We don't use fsparam_flag_no because of the way we set the
1640 * options and the way we show them in _ext4_show_options(). To
1641 * keep the changes to a minimum, let's keep the negative options
1642 * separate for now.
1643 */
1644static const struct fs_parameter_spec ext4_param_specs[] = {
1645 fsparam_flag ("bsddf", Opt_bsd_df),
1646 fsparam_flag ("minixdf", Opt_minix_df),
1647 fsparam_flag ("grpid", Opt_grpid),
1648 fsparam_flag ("bsdgroups", Opt_grpid),
1649 fsparam_flag ("nogrpid", Opt_nogrpid),
1650 fsparam_flag ("sysvgroups", Opt_nogrpid),
1651 fsparam_u32 ("resgid", Opt_resgid),
1652 fsparam_u32 ("resuid", Opt_resuid),
1653 fsparam_u32 ("sb", Opt_sb),
1654 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1655 fsparam_flag ("nouid32", Opt_nouid32),
1656 fsparam_flag ("debug", Opt_debug),
1657 fsparam_flag ("oldalloc", Opt_removed),
1658 fsparam_flag ("orlov", Opt_removed),
1659 fsparam_flag ("user_xattr", Opt_user_xattr),
1660 fsparam_flag ("acl", Opt_acl),
1661 fsparam_flag ("norecovery", Opt_noload),
1662 fsparam_flag ("noload", Opt_noload),
1663 fsparam_flag ("bh", Opt_removed),
1664 fsparam_flag ("nobh", Opt_removed),
1665 fsparam_u32 ("commit", Opt_commit),
1666 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1667 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1668 fsparam_u32 ("journal_dev", Opt_journal_dev),
1669 fsparam_bdev ("journal_path", Opt_journal_path),
1670 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1671 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1672 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1673 fsparam_flag ("abort", Opt_abort),
1674 fsparam_enum ("data", Opt_data, ext4_param_data),
1675 fsparam_enum ("data_err", Opt_data_err,
1676 ext4_param_data_err),
1677 fsparam_string_empty
1678 ("usrjquota", Opt_usrjquota),
1679 fsparam_string_empty
1680 ("grpjquota", Opt_grpjquota),
1681 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1682 fsparam_flag ("grpquota", Opt_grpquota),
1683 fsparam_flag ("quota", Opt_quota),
1684 fsparam_flag ("noquota", Opt_noquota),
1685 fsparam_flag ("usrquota", Opt_usrquota),
1686 fsparam_flag ("prjquota", Opt_prjquota),
1687 fsparam_flag ("barrier", Opt_barrier),
1688 fsparam_u32 ("barrier", Opt_barrier),
1689 fsparam_flag ("nobarrier", Opt_nobarrier),
1690 fsparam_flag ("i_version", Opt_removed),
1691 fsparam_flag ("dax", Opt_dax),
1692 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1693 fsparam_u32 ("stripe", Opt_stripe),
1694 fsparam_flag ("delalloc", Opt_delalloc),
1695 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1696 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1697 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1698 fsparam_u32 ("debug_want_extra_isize",
1699 Opt_debug_want_extra_isize),
1700 fsparam_flag ("mblk_io_submit", Opt_removed),
1701 fsparam_flag ("nomblk_io_submit", Opt_removed),
1702 fsparam_flag ("block_validity", Opt_block_validity),
1703 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1704 fsparam_u32 ("inode_readahead_blks",
1705 Opt_inode_readahead_blks),
1706 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1707 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1708 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1709 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1710 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1711 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1712 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1713 fsparam_flag ("discard", Opt_discard),
1714 fsparam_flag ("nodiscard", Opt_nodiscard),
1715 fsparam_u32 ("init_itable", Opt_init_itable),
1716 fsparam_flag ("init_itable", Opt_init_itable),
1717 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1718#ifdef CONFIG_EXT4_DEBUG
1719 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1720 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1721#endif
1722 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1723 fsparam_flag ("test_dummy_encryption",
1724 Opt_test_dummy_encryption),
1725 fsparam_string ("test_dummy_encryption",
1726 Opt_test_dummy_encryption),
1727 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1728 fsparam_flag ("nombcache", Opt_nombcache),
1729 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1730 fsparam_flag ("prefetch_block_bitmaps",
1731 Opt_removed),
1732 fsparam_flag ("no_prefetch_block_bitmaps",
1733 Opt_no_prefetch_block_bitmaps),
1734 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1735 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1736 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1737 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1738 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1739 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1740 {}
1741};
1742
1743#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1744
1745#define MOPT_SET 0x0001
1746#define MOPT_CLEAR 0x0002
1747#define MOPT_NOSUPPORT 0x0004
1748#define MOPT_EXPLICIT 0x0008
1749#ifdef CONFIG_QUOTA
1750#define MOPT_Q 0
1751#define MOPT_QFMT 0x0010
1752#else
1753#define MOPT_Q MOPT_NOSUPPORT
1754#define MOPT_QFMT MOPT_NOSUPPORT
1755#endif
1756#define MOPT_NO_EXT2 0x0020
1757#define MOPT_NO_EXT3 0x0040
1758#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1759#define MOPT_SKIP 0x0080
1760#define MOPT_2 0x0100
1761
1762static const struct mount_opts {
1763 int token;
1764 int mount_opt;
1765 int flags;
1766} ext4_mount_opts[] = {
1767 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1768 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1769 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1770 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1771 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1772 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1773 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1774 MOPT_EXT4_ONLY | MOPT_SET},
1775 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1776 MOPT_EXT4_ONLY | MOPT_CLEAR},
1777 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1778 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1779 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1780 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1781 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1782 MOPT_EXT4_ONLY | MOPT_CLEAR},
1783 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1784 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1785 {Opt_commit, 0, MOPT_NO_EXT2},
1786 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1787 MOPT_EXT4_ONLY | MOPT_CLEAR},
1788 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1789 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1790 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1791 EXT4_MOUNT_JOURNAL_CHECKSUM),
1792 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1793 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1794 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1795 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1796 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1797 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1798 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1799 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1800 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1801 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1802 {Opt_journal_path, 0, MOPT_NO_EXT2},
1803 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1804 {Opt_data, 0, MOPT_NO_EXT2},
1805 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1806#ifdef CONFIG_EXT4_FS_POSIX_ACL
1807 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1808#else
1809 {Opt_acl, 0, MOPT_NOSUPPORT},
1810#endif
1811 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1812 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1813 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1814 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1815 MOPT_SET | MOPT_Q},
1816 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1817 MOPT_SET | MOPT_Q},
1818 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1819 MOPT_SET | MOPT_Q},
1820 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1821 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1822 MOPT_CLEAR | MOPT_Q},
1823 {Opt_usrjquota, 0, MOPT_Q},
1824 {Opt_grpjquota, 0, MOPT_Q},
1825 {Opt_jqfmt, 0, MOPT_QFMT},
1826 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1827 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1828 MOPT_SET},
1829#ifdef CONFIG_EXT4_DEBUG
1830 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1831 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1832#endif
1833 {Opt_err, 0, 0}
1834};
1835
1836#if IS_ENABLED(CONFIG_UNICODE)
1837static const struct ext4_sb_encodings {
1838 __u16 magic;
1839 char *name;
1840 unsigned int version;
1841} ext4_sb_encoding_map[] = {
1842 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1843};
1844
1845static const struct ext4_sb_encodings *
1846ext4_sb_read_encoding(const struct ext4_super_block *es)
1847{
1848 __u16 magic = le16_to_cpu(es->s_encoding);
1849 int i;
1850
1851 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1852 if (magic == ext4_sb_encoding_map[i].magic)
1853 return &ext4_sb_encoding_map[i];
1854
1855 return NULL;
1856}
1857#endif
1858
1859#define EXT4_SPEC_JQUOTA (1 << 0)
1860#define EXT4_SPEC_JQFMT (1 << 1)
1861#define EXT4_SPEC_DATAJ (1 << 2)
1862#define EXT4_SPEC_SB_BLOCK (1 << 3)
1863#define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1864#define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1865#define EXT4_SPEC_s_want_extra_isize (1 << 7)
1866#define EXT4_SPEC_s_max_batch_time (1 << 8)
1867#define EXT4_SPEC_s_min_batch_time (1 << 9)
1868#define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1869#define EXT4_SPEC_s_li_wait_mult (1 << 11)
1870#define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1871#define EXT4_SPEC_s_stripe (1 << 13)
1872#define EXT4_SPEC_s_resuid (1 << 14)
1873#define EXT4_SPEC_s_resgid (1 << 15)
1874#define EXT4_SPEC_s_commit_interval (1 << 16)
1875#define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1876#define EXT4_SPEC_s_sb_block (1 << 18)
1877#define EXT4_SPEC_mb_optimize_scan (1 << 19)
1878
1879struct ext4_fs_context {
1880 char *s_qf_names[EXT4_MAXQUOTAS];
1881 struct fscrypt_dummy_policy dummy_enc_policy;
1882 int s_jquota_fmt; /* Format of quota to use */
1883#ifdef CONFIG_EXT4_DEBUG
1884 int s_fc_debug_max_replay;
1885#endif
1886 unsigned short qname_spec;
1887 unsigned long vals_s_flags; /* Bits to set in s_flags */
1888 unsigned long mask_s_flags; /* Bits changed in s_flags */
1889 unsigned long journal_devnum;
1890 unsigned long s_commit_interval;
1891 unsigned long s_stripe;
1892 unsigned int s_inode_readahead_blks;
1893 unsigned int s_want_extra_isize;
1894 unsigned int s_li_wait_mult;
1895 unsigned int s_max_dir_size_kb;
1896 unsigned int journal_ioprio;
1897 unsigned int vals_s_mount_opt;
1898 unsigned int mask_s_mount_opt;
1899 unsigned int vals_s_mount_opt2;
1900 unsigned int mask_s_mount_opt2;
1901 unsigned long vals_s_mount_flags;
1902 unsigned long mask_s_mount_flags;
1903 unsigned int opt_flags; /* MOPT flags */
1904 unsigned int spec;
1905 u32 s_max_batch_time;
1906 u32 s_min_batch_time;
1907 kuid_t s_resuid;
1908 kgid_t s_resgid;
1909 ext4_fsblk_t s_sb_block;
1910};
1911
1912static void ext4_fc_free(struct fs_context *fc)
1913{
1914 struct ext4_fs_context *ctx = fc->fs_private;
1915 int i;
1916
1917 if (!ctx)
1918 return;
1919
1920 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1921 kfree(ctx->s_qf_names[i]);
1922
1923 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1924 kfree(ctx);
1925}
1926
1927int ext4_init_fs_context(struct fs_context *fc)
1928{
1929 struct ext4_fs_context *ctx;
1930
1931 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1932 if (!ctx)
1933 return -ENOMEM;
1934
1935 fc->fs_private = ctx;
1936 fc->ops = &ext4_context_ops;
1937
1938 return 0;
1939}
1940
1941#ifdef CONFIG_QUOTA
1942/*
1943 * Note the name of the specified quota file.
1944 */
1945static int note_qf_name(struct fs_context *fc, int qtype,
1946 struct fs_parameter *param)
1947{
1948 struct ext4_fs_context *ctx = fc->fs_private;
1949 char *qname;
1950
1951 if (param->size < 1) {
1952 ext4_msg(NULL, KERN_ERR, "Missing quota name");
1953 return -EINVAL;
1954 }
1955 if (strchr(param->string, '/')) {
1956 ext4_msg(NULL, KERN_ERR,
1957 "quotafile must be on filesystem root");
1958 return -EINVAL;
1959 }
1960 if (ctx->s_qf_names[qtype]) {
1961 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
1962 ext4_msg(NULL, KERN_ERR,
1963 "%s quota file already specified",
1964 QTYPE2NAME(qtype));
1965 return -EINVAL;
1966 }
1967 return 0;
1968 }
1969
1970 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
1971 if (!qname) {
1972 ext4_msg(NULL, KERN_ERR,
1973 "Not enough memory for storing quotafile name");
1974 return -ENOMEM;
1975 }
1976 ctx->s_qf_names[qtype] = qname;
1977 ctx->qname_spec |= 1 << qtype;
1978 ctx->spec |= EXT4_SPEC_JQUOTA;
1979 return 0;
1980}
1981
1982/*
1983 * Clear the name of the specified quota file.
1984 */
1985static int unnote_qf_name(struct fs_context *fc, int qtype)
1986{
1987 struct ext4_fs_context *ctx = fc->fs_private;
1988
1989 if (ctx->s_qf_names[qtype])
1990 kfree(ctx->s_qf_names[qtype]);
1991
1992 ctx->s_qf_names[qtype] = NULL;
1993 ctx->qname_spec |= 1 << qtype;
1994 ctx->spec |= EXT4_SPEC_JQUOTA;
1995 return 0;
1996}
1997#endif
1998
1999static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2000 struct ext4_fs_context *ctx)
2001{
2002 int err;
2003
2004 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2005 ext4_msg(NULL, KERN_WARNING,
2006 "test_dummy_encryption option not supported");
2007 return -EINVAL;
2008 }
2009 err = fscrypt_parse_test_dummy_encryption(param,
2010 &ctx->dummy_enc_policy);
2011 if (err == -EINVAL) {
2012 ext4_msg(NULL, KERN_WARNING,
2013 "Value of option \"%s\" is unrecognized", param->key);
2014 } else if (err == -EEXIST) {
2015 ext4_msg(NULL, KERN_WARNING,
2016 "Conflicting test_dummy_encryption options");
2017 return -EINVAL;
2018 }
2019 return err;
2020}
2021
2022#define EXT4_SET_CTX(name) \
2023static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2024 unsigned long flag) \
2025{ \
2026 ctx->mask_s_##name |= flag; \
2027 ctx->vals_s_##name |= flag; \
2028}
2029
2030#define EXT4_CLEAR_CTX(name) \
2031static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2032 unsigned long flag) \
2033{ \
2034 ctx->mask_s_##name |= flag; \
2035 ctx->vals_s_##name &= ~flag; \
2036}
2037
2038#define EXT4_TEST_CTX(name) \
2039static inline unsigned long \
2040ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2041{ \
2042 return (ctx->vals_s_##name & flag); \
2043}
2044
2045EXT4_SET_CTX(flags); /* set only */
2046EXT4_SET_CTX(mount_opt);
2047EXT4_CLEAR_CTX(mount_opt);
2048EXT4_TEST_CTX(mount_opt);
2049EXT4_SET_CTX(mount_opt2);
2050EXT4_CLEAR_CTX(mount_opt2);
2051EXT4_TEST_CTX(mount_opt2);
2052
2053static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit)
2054{
2055 set_bit(bit, &ctx->mask_s_mount_flags);
2056 set_bit(bit, &ctx->vals_s_mount_flags);
2057}
2058
2059static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2060{
2061 struct ext4_fs_context *ctx = fc->fs_private;
2062 struct fs_parse_result result;
2063 const struct mount_opts *m;
2064 int is_remount;
2065 kuid_t uid;
2066 kgid_t gid;
2067 int token;
2068
2069 token = fs_parse(fc, ext4_param_specs, param, &result);
2070 if (token < 0)
2071 return token;
2072 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2073
2074 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2075 if (token == m->token)
2076 break;
2077
2078 ctx->opt_flags |= m->flags;
2079
2080 if (m->flags & MOPT_EXPLICIT) {
2081 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2082 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2083 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2084 ctx_set_mount_opt2(ctx,
2085 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2086 } else
2087 return -EINVAL;
2088 }
2089
2090 if (m->flags & MOPT_NOSUPPORT) {
2091 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2092 param->key);
2093 return 0;
2094 }
2095
2096 switch (token) {
2097#ifdef CONFIG_QUOTA
2098 case Opt_usrjquota:
2099 if (!*param->string)
2100 return unnote_qf_name(fc, USRQUOTA);
2101 else
2102 return note_qf_name(fc, USRQUOTA, param);
2103 case Opt_grpjquota:
2104 if (!*param->string)
2105 return unnote_qf_name(fc, GRPQUOTA);
2106 else
2107 return note_qf_name(fc, GRPQUOTA, param);
2108#endif
2109 case Opt_sb:
2110 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2111 ext4_msg(NULL, KERN_WARNING,
2112 "Ignoring %s option on remount", param->key);
2113 } else {
2114 ctx->s_sb_block = result.uint_32;
2115 ctx->spec |= EXT4_SPEC_s_sb_block;
2116 }
2117 return 0;
2118 case Opt_removed:
2119 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2120 param->key);
2121 return 0;
2122 case Opt_abort:
2123 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED);
2124 return 0;
2125 case Opt_inlinecrypt:
2126#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2127 ctx_set_flags(ctx, SB_INLINECRYPT);
2128#else
2129 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2130#endif
2131 return 0;
2132 case Opt_errors:
2133 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2134 ctx_set_mount_opt(ctx, result.uint_32);
2135 return 0;
2136#ifdef CONFIG_QUOTA
2137 case Opt_jqfmt:
2138 ctx->s_jquota_fmt = result.uint_32;
2139 ctx->spec |= EXT4_SPEC_JQFMT;
2140 return 0;
2141#endif
2142 case Opt_data:
2143 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2144 ctx_set_mount_opt(ctx, result.uint_32);
2145 ctx->spec |= EXT4_SPEC_DATAJ;
2146 return 0;
2147 case Opt_commit:
2148 if (result.uint_32 == 0)
2149 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
2150 else if (result.uint_32 > INT_MAX / HZ) {
2151 ext4_msg(NULL, KERN_ERR,
2152 "Invalid commit interval %d, "
2153 "must be smaller than %d",
2154 result.uint_32, INT_MAX / HZ);
2155 return -EINVAL;
2156 }
2157 ctx->s_commit_interval = HZ * result.uint_32;
2158 ctx->spec |= EXT4_SPEC_s_commit_interval;
2159 return 0;
2160 case Opt_debug_want_extra_isize:
2161 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2162 ext4_msg(NULL, KERN_ERR,
2163 "Invalid want_extra_isize %d", result.uint_32);
2164 return -EINVAL;
2165 }
2166 ctx->s_want_extra_isize = result.uint_32;
2167 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2168 return 0;
2169 case Opt_max_batch_time:
2170 ctx->s_max_batch_time = result.uint_32;
2171 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2172 return 0;
2173 case Opt_min_batch_time:
2174 ctx->s_min_batch_time = result.uint_32;
2175 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2176 return 0;
2177 case Opt_inode_readahead_blks:
2178 if (result.uint_32 &&
2179 (result.uint_32 > (1 << 30) ||
2180 !is_power_of_2(result.uint_32))) {
2181 ext4_msg(NULL, KERN_ERR,
2182 "EXT4-fs: inode_readahead_blks must be "
2183 "0 or a power of 2 smaller than 2^31");
2184 return -EINVAL;
2185 }
2186 ctx->s_inode_readahead_blks = result.uint_32;
2187 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2188 return 0;
2189 case Opt_init_itable:
2190 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2191 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2192 if (param->type == fs_value_is_string)
2193 ctx->s_li_wait_mult = result.uint_32;
2194 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2195 return 0;
2196 case Opt_max_dir_size_kb:
2197 ctx->s_max_dir_size_kb = result.uint_32;
2198 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2199 return 0;
2200#ifdef CONFIG_EXT4_DEBUG
2201 case Opt_fc_debug_max_replay:
2202 ctx->s_fc_debug_max_replay = result.uint_32;
2203 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2204 return 0;
2205#endif
2206 case Opt_stripe:
2207 ctx->s_stripe = result.uint_32;
2208 ctx->spec |= EXT4_SPEC_s_stripe;
2209 return 0;
2210 case Opt_resuid:
2211 uid = make_kuid(current_user_ns(), result.uint_32);
2212 if (!uid_valid(uid)) {
2213 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2214 result.uint_32);
2215 return -EINVAL;
2216 }
2217 ctx->s_resuid = uid;
2218 ctx->spec |= EXT4_SPEC_s_resuid;
2219 return 0;
2220 case Opt_resgid:
2221 gid = make_kgid(current_user_ns(), result.uint_32);
2222 if (!gid_valid(gid)) {
2223 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2224 result.uint_32);
2225 return -EINVAL;
2226 }
2227 ctx->s_resgid = gid;
2228 ctx->spec |= EXT4_SPEC_s_resgid;
2229 return 0;
2230 case Opt_journal_dev:
2231 if (is_remount) {
2232 ext4_msg(NULL, KERN_ERR,
2233 "Cannot specify journal on remount");
2234 return -EINVAL;
2235 }
2236 ctx->journal_devnum = result.uint_32;
2237 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2238 return 0;
2239 case Opt_journal_path:
2240 {
2241 struct inode *journal_inode;
2242 struct path path;
2243 int error;
2244
2245 if (is_remount) {
2246 ext4_msg(NULL, KERN_ERR,
2247 "Cannot specify journal on remount");
2248 return -EINVAL;
2249 }
2250
2251 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2252 if (error) {
2253 ext4_msg(NULL, KERN_ERR, "error: could not find "
2254 "journal device path");
2255 return -EINVAL;
2256 }
2257
2258 journal_inode = d_inode(path.dentry);
2259 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2260 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2261 path_put(&path);
2262 return 0;
2263 }
2264 case Opt_journal_ioprio:
2265 if (result.uint_32 > 7) {
2266 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2267 " (must be 0-7)");
2268 return -EINVAL;
2269 }
2270 ctx->journal_ioprio =
2271 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2272 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2273 return 0;
2274 case Opt_test_dummy_encryption:
2275 return ext4_parse_test_dummy_encryption(param, ctx);
2276 case Opt_dax:
2277 case Opt_dax_type:
2278#ifdef CONFIG_FS_DAX
2279 {
2280 int type = (token == Opt_dax) ?
2281 Opt_dax : result.uint_32;
2282
2283 switch (type) {
2284 case Opt_dax:
2285 case Opt_dax_always:
2286 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2287 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2288 break;
2289 case Opt_dax_never:
2290 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2291 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2292 break;
2293 case Opt_dax_inode:
2294 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2295 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2296 /* Strictly for printing options */
2297 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2298 break;
2299 }
2300 return 0;
2301 }
2302#else
2303 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2304 return -EINVAL;
2305#endif
2306 case Opt_data_err:
2307 if (result.uint_32 == Opt_data_err_abort)
2308 ctx_set_mount_opt(ctx, m->mount_opt);
2309 else if (result.uint_32 == Opt_data_err_ignore)
2310 ctx_clear_mount_opt(ctx, m->mount_opt);
2311 return 0;
2312 case Opt_mb_optimize_scan:
2313 if (result.int_32 == 1) {
2314 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2315 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2316 } else if (result.int_32 == 0) {
2317 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2318 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2319 } else {
2320 ext4_msg(NULL, KERN_WARNING,
2321 "mb_optimize_scan should be set to 0 or 1.");
2322 return -EINVAL;
2323 }
2324 return 0;
2325 }
2326
2327 /*
2328 * At this point we should only be getting options requiring MOPT_SET,
2329 * or MOPT_CLEAR. Anything else is a bug
2330 */
2331 if (m->token == Opt_err) {
2332 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2333 param->key);
2334 WARN_ON(1);
2335 return -EINVAL;
2336 }
2337
2338 else {
2339 unsigned int set = 0;
2340
2341 if ((param->type == fs_value_is_flag) ||
2342 result.uint_32 > 0)
2343 set = 1;
2344
2345 if (m->flags & MOPT_CLEAR)
2346 set = !set;
2347 else if (unlikely(!(m->flags & MOPT_SET))) {
2348 ext4_msg(NULL, KERN_WARNING,
2349 "buggy handling of option %s",
2350 param->key);
2351 WARN_ON(1);
2352 return -EINVAL;
2353 }
2354 if (m->flags & MOPT_2) {
2355 if (set != 0)
2356 ctx_set_mount_opt2(ctx, m->mount_opt);
2357 else
2358 ctx_clear_mount_opt2(ctx, m->mount_opt);
2359 } else {
2360 if (set != 0)
2361 ctx_set_mount_opt(ctx, m->mount_opt);
2362 else
2363 ctx_clear_mount_opt(ctx, m->mount_opt);
2364 }
2365 }
2366
2367 return 0;
2368}
2369
2370static int parse_options(struct fs_context *fc, char *options)
2371{
2372 struct fs_parameter param;
2373 int ret;
2374 char *key;
2375
2376 if (!options)
2377 return 0;
2378
2379 while ((key = strsep(&options, ",")) != NULL) {
2380 if (*key) {
2381 size_t v_len = 0;
2382 char *value = strchr(key, '=');
2383
2384 param.type = fs_value_is_flag;
2385 param.string = NULL;
2386
2387 if (value) {
2388 if (value == key)
2389 continue;
2390
2391 *value++ = 0;
2392 v_len = strlen(value);
2393 param.string = kmemdup_nul(value, v_len,
2394 GFP_KERNEL);
2395 if (!param.string)
2396 return -ENOMEM;
2397 param.type = fs_value_is_string;
2398 }
2399
2400 param.key = key;
2401 param.size = v_len;
2402
2403 ret = ext4_parse_param(fc, ¶m);
2404 if (param.string)
2405 kfree(param.string);
2406 if (ret < 0)
2407 return ret;
2408 }
2409 }
2410
2411 ret = ext4_validate_options(fc);
2412 if (ret < 0)
2413 return ret;
2414
2415 return 0;
2416}
2417
2418static int parse_apply_sb_mount_options(struct super_block *sb,
2419 struct ext4_fs_context *m_ctx)
2420{
2421 struct ext4_sb_info *sbi = EXT4_SB(sb);
2422 char *s_mount_opts = NULL;
2423 struct ext4_fs_context *s_ctx = NULL;
2424 struct fs_context *fc = NULL;
2425 int ret = -ENOMEM;
2426
2427 if (!sbi->s_es->s_mount_opts[0])
2428 return 0;
2429
2430 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2431 sizeof(sbi->s_es->s_mount_opts),
2432 GFP_KERNEL);
2433 if (!s_mount_opts)
2434 return ret;
2435
2436 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2437 if (!fc)
2438 goto out_free;
2439
2440 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2441 if (!s_ctx)
2442 goto out_free;
2443
2444 fc->fs_private = s_ctx;
2445 fc->s_fs_info = sbi;
2446
2447 ret = parse_options(fc, s_mount_opts);
2448 if (ret < 0)
2449 goto parse_failed;
2450
2451 ret = ext4_check_opt_consistency(fc, sb);
2452 if (ret < 0) {
2453parse_failed:
2454 ext4_msg(sb, KERN_WARNING,
2455 "failed to parse options in superblock: %s",
2456 s_mount_opts);
2457 ret = 0;
2458 goto out_free;
2459 }
2460
2461 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2462 m_ctx->journal_devnum = s_ctx->journal_devnum;
2463 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2464 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2465
2466 ext4_apply_options(fc, sb);
2467 ret = 0;
2468
2469out_free:
2470 if (fc) {
2471 ext4_fc_free(fc);
2472 kfree(fc);
2473 }
2474 kfree(s_mount_opts);
2475 return ret;
2476}
2477
2478static void ext4_apply_quota_options(struct fs_context *fc,
2479 struct super_block *sb)
2480{
2481#ifdef CONFIG_QUOTA
2482 bool quota_feature = ext4_has_feature_quota(sb);
2483 struct ext4_fs_context *ctx = fc->fs_private;
2484 struct ext4_sb_info *sbi = EXT4_SB(sb);
2485 char *qname;
2486 int i;
2487
2488 if (quota_feature)
2489 return;
2490
2491 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2492 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2493 if (!(ctx->qname_spec & (1 << i)))
2494 continue;
2495
2496 qname = ctx->s_qf_names[i]; /* May be NULL */
2497 if (qname)
2498 set_opt(sb, QUOTA);
2499 ctx->s_qf_names[i] = NULL;
2500 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2501 lockdep_is_held(&sb->s_umount));
2502 if (qname)
2503 kfree_rcu(qname);
2504 }
2505 }
2506
2507 if (ctx->spec & EXT4_SPEC_JQFMT)
2508 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2509#endif
2510}
2511
2512/*
2513 * Check quota settings consistency.
2514 */
2515static int ext4_check_quota_consistency(struct fs_context *fc,
2516 struct super_block *sb)
2517{
2518#ifdef CONFIG_QUOTA
2519 struct ext4_fs_context *ctx = fc->fs_private;
2520 struct ext4_sb_info *sbi = EXT4_SB(sb);
2521 bool quota_feature = ext4_has_feature_quota(sb);
2522 bool quota_loaded = sb_any_quota_loaded(sb);
2523 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2524 int quota_flags, i;
2525
2526 /*
2527 * We do the test below only for project quotas. 'usrquota' and
2528 * 'grpquota' mount options are allowed even without quota feature
2529 * to support legacy quotas in quota files.
2530 */
2531 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2532 !ext4_has_feature_project(sb)) {
2533 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2534 "Cannot enable project quota enforcement.");
2535 return -EINVAL;
2536 }
2537
2538 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2539 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2540 if (quota_loaded &&
2541 ctx->mask_s_mount_opt & quota_flags &&
2542 !ctx_test_mount_opt(ctx, quota_flags))
2543 goto err_quota_change;
2544
2545 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2546
2547 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548 if (!(ctx->qname_spec & (1 << i)))
2549 continue;
2550
2551 if (quota_loaded &&
2552 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2553 goto err_jquota_change;
2554
2555 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2556 strcmp(get_qf_name(sb, sbi, i),
2557 ctx->s_qf_names[i]) != 0)
2558 goto err_jquota_specified;
2559 }
2560
2561 if (quota_feature) {
2562 ext4_msg(NULL, KERN_INFO,
2563 "Journaled quota options ignored when "
2564 "QUOTA feature is enabled");
2565 return 0;
2566 }
2567 }
2568
2569 if (ctx->spec & EXT4_SPEC_JQFMT) {
2570 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2571 goto err_jquota_change;
2572 if (quota_feature) {
2573 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2574 "ignored when QUOTA feature is enabled");
2575 return 0;
2576 }
2577 }
2578
2579 /* Make sure we don't mix old and new quota format */
2580 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2581 ctx->s_qf_names[USRQUOTA]);
2582 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2583 ctx->s_qf_names[GRPQUOTA]);
2584
2585 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2586 test_opt(sb, USRQUOTA));
2587
2588 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2589 test_opt(sb, GRPQUOTA));
2590
2591 if (usr_qf_name) {
2592 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2593 usrquota = false;
2594 }
2595 if (grp_qf_name) {
2596 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2597 grpquota = false;
2598 }
2599
2600 if (usr_qf_name || grp_qf_name) {
2601 if (usrquota || grpquota) {
2602 ext4_msg(NULL, KERN_ERR, "old and new quota "
2603 "format mixing");
2604 return -EINVAL;
2605 }
2606
2607 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2608 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2609 "not specified");
2610 return -EINVAL;
2611 }
2612 }
2613
2614 return 0;
2615
2616err_quota_change:
2617 ext4_msg(NULL, KERN_ERR,
2618 "Cannot change quota options when quota turned on");
2619 return -EINVAL;
2620err_jquota_change:
2621 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2622 "options when quota turned on");
2623 return -EINVAL;
2624err_jquota_specified:
2625 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2626 QTYPE2NAME(i));
2627 return -EINVAL;
2628#else
2629 return 0;
2630#endif
2631}
2632
2633static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2634 struct super_block *sb)
2635{
2636 const struct ext4_fs_context *ctx = fc->fs_private;
2637 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2638 int err;
2639
2640 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2641 return 0;
2642
2643 if (!ext4_has_feature_encrypt(sb)) {
2644 ext4_msg(NULL, KERN_WARNING,
2645 "test_dummy_encryption requires encrypt feature");
2646 return -EINVAL;
2647 }
2648 /*
2649 * This mount option is just for testing, and it's not worthwhile to
2650 * implement the extra complexity (e.g. RCU protection) that would be
2651 * needed to allow it to be set or changed during remount. We do allow
2652 * it to be specified during remount, but only if there is no change.
2653 */
2654 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2655 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2656 &ctx->dummy_enc_policy))
2657 return 0;
2658 ext4_msg(NULL, KERN_WARNING,
2659 "Can't set or change test_dummy_encryption on remount");
2660 return -EINVAL;
2661 }
2662 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2663 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2664 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2665 &ctx->dummy_enc_policy))
2666 return 0;
2667 ext4_msg(NULL, KERN_WARNING,
2668 "Conflicting test_dummy_encryption options");
2669 return -EINVAL;
2670 }
2671 /*
2672 * fscrypt_add_test_dummy_key() technically changes the super_block, so
2673 * technically it should be delayed until ext4_apply_options() like the
2674 * other changes. But since we never get here for remounts (see above),
2675 * and this is the last chance to report errors, we do it here.
2676 */
2677 err = fscrypt_add_test_dummy_key(sb, &ctx->dummy_enc_policy);
2678 if (err)
2679 ext4_msg(NULL, KERN_WARNING,
2680 "Error adding test dummy encryption key [%d]", err);
2681 return err;
2682}
2683
2684static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2685 struct super_block *sb)
2686{
2687 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2688 /* if already set, it was already verified to be the same */
2689 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2690 return;
2691 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2692 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2693 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2694}
2695
2696static int ext4_check_opt_consistency(struct fs_context *fc,
2697 struct super_block *sb)
2698{
2699 struct ext4_fs_context *ctx = fc->fs_private;
2700 struct ext4_sb_info *sbi = fc->s_fs_info;
2701 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2702 int err;
2703
2704 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2705 ext4_msg(NULL, KERN_ERR,
2706 "Mount option(s) incompatible with ext2");
2707 return -EINVAL;
2708 }
2709 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2710 ext4_msg(NULL, KERN_ERR,
2711 "Mount option(s) incompatible with ext3");
2712 return -EINVAL;
2713 }
2714
2715 if (ctx->s_want_extra_isize >
2716 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2717 ext4_msg(NULL, KERN_ERR,
2718 "Invalid want_extra_isize %d",
2719 ctx->s_want_extra_isize);
2720 return -EINVAL;
2721 }
2722
2723 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2724 int blocksize =
2725 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2726 if (blocksize < PAGE_SIZE)
2727 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2728 "experimental mount option 'dioread_nolock' "
2729 "for blocksize < PAGE_SIZE");
2730 }
2731
2732 err = ext4_check_test_dummy_encryption(fc, sb);
2733 if (err)
2734 return err;
2735
2736 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2737 if (!sbi->s_journal) {
2738 ext4_msg(NULL, KERN_WARNING,
2739 "Remounting file system with no journal "
2740 "so ignoring journalled data option");
2741 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2742 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2743 test_opt(sb, DATA_FLAGS)) {
2744 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2745 "on remount");
2746 return -EINVAL;
2747 }
2748 }
2749
2750 if (is_remount) {
2751 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2752 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2753 ext4_msg(NULL, KERN_ERR, "can't mount with "
2754 "both data=journal and dax");
2755 return -EINVAL;
2756 }
2757
2758 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2759 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2760 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2761fail_dax_change_remount:
2762 ext4_msg(NULL, KERN_ERR, "can't change "
2763 "dax mount option while remounting");
2764 return -EINVAL;
2765 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2766 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2767 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2768 goto fail_dax_change_remount;
2769 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2770 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2771 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2772 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2773 goto fail_dax_change_remount;
2774 }
2775 }
2776
2777 return ext4_check_quota_consistency(fc, sb);
2778}
2779
2780static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2781{
2782 struct ext4_fs_context *ctx = fc->fs_private;
2783 struct ext4_sb_info *sbi = fc->s_fs_info;
2784
2785 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2786 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2787 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2788 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2789 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2790 sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2791 sb->s_flags &= ~ctx->mask_s_flags;
2792 sb->s_flags |= ctx->vals_s_flags;
2793
2794#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2795 APPLY(s_commit_interval);
2796 APPLY(s_stripe);
2797 APPLY(s_max_batch_time);
2798 APPLY(s_min_batch_time);
2799 APPLY(s_want_extra_isize);
2800 APPLY(s_inode_readahead_blks);
2801 APPLY(s_max_dir_size_kb);
2802 APPLY(s_li_wait_mult);
2803 APPLY(s_resgid);
2804 APPLY(s_resuid);
2805
2806#ifdef CONFIG_EXT4_DEBUG
2807 APPLY(s_fc_debug_max_replay);
2808#endif
2809
2810 ext4_apply_quota_options(fc, sb);
2811 ext4_apply_test_dummy_encryption(ctx, sb);
2812}
2813
2814
2815static int ext4_validate_options(struct fs_context *fc)
2816{
2817#ifdef CONFIG_QUOTA
2818 struct ext4_fs_context *ctx = fc->fs_private;
2819 char *usr_qf_name, *grp_qf_name;
2820
2821 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2822 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2823
2824 if (usr_qf_name || grp_qf_name) {
2825 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2826 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2827
2828 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2829 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2830
2831 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2832 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2833 ext4_msg(NULL, KERN_ERR, "old and new quota "
2834 "format mixing");
2835 return -EINVAL;
2836 }
2837 }
2838#endif
2839 return 1;
2840}
2841
2842static inline void ext4_show_quota_options(struct seq_file *seq,
2843 struct super_block *sb)
2844{
2845#if defined(CONFIG_QUOTA)
2846 struct ext4_sb_info *sbi = EXT4_SB(sb);
2847 char *usr_qf_name, *grp_qf_name;
2848
2849 if (sbi->s_jquota_fmt) {
2850 char *fmtname = "";
2851
2852 switch (sbi->s_jquota_fmt) {
2853 case QFMT_VFS_OLD:
2854 fmtname = "vfsold";
2855 break;
2856 case QFMT_VFS_V0:
2857 fmtname = "vfsv0";
2858 break;
2859 case QFMT_VFS_V1:
2860 fmtname = "vfsv1";
2861 break;
2862 }
2863 seq_printf(seq, ",jqfmt=%s", fmtname);
2864 }
2865
2866 rcu_read_lock();
2867 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2868 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2869 if (usr_qf_name)
2870 seq_show_option(seq, "usrjquota", usr_qf_name);
2871 if (grp_qf_name)
2872 seq_show_option(seq, "grpjquota", grp_qf_name);
2873 rcu_read_unlock();
2874#endif
2875}
2876
2877static const char *token2str(int token)
2878{
2879 const struct fs_parameter_spec *spec;
2880
2881 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2882 if (spec->opt == token && !spec->type)
2883 break;
2884 return spec->name;
2885}
2886
2887/*
2888 * Show an option if
2889 * - it's set to a non-default value OR
2890 * - if the per-sb default is different from the global default
2891 */
2892static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2893 int nodefs)
2894{
2895 struct ext4_sb_info *sbi = EXT4_SB(sb);
2896 struct ext4_super_block *es = sbi->s_es;
2897 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2898 const struct mount_opts *m;
2899 char sep = nodefs ? '\n' : ',';
2900
2901#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2902#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2903
2904 if (sbi->s_sb_block != 1)
2905 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2906
2907 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2908 int want_set = m->flags & MOPT_SET;
2909 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2910 m->flags & MOPT_SKIP)
2911 continue;
2912 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2913 continue; /* skip if same as the default */
2914 if ((want_set &&
2915 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2916 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2917 continue; /* select Opt_noFoo vs Opt_Foo */
2918 SEQ_OPTS_PRINT("%s", token2str(m->token));
2919 }
2920
2921 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2922 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2923 SEQ_OPTS_PRINT("resuid=%u",
2924 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2925 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2926 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2927 SEQ_OPTS_PRINT("resgid=%u",
2928 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2929 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2930 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2931 SEQ_OPTS_PUTS("errors=remount-ro");
2932 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2933 SEQ_OPTS_PUTS("errors=continue");
2934 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2935 SEQ_OPTS_PUTS("errors=panic");
2936 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2937 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2938 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2939 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2940 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2941 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2942 if (nodefs || sbi->s_stripe)
2943 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2944 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2945 (sbi->s_mount_opt ^ def_mount_opt)) {
2946 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2947 SEQ_OPTS_PUTS("data=journal");
2948 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2949 SEQ_OPTS_PUTS("data=ordered");
2950 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2951 SEQ_OPTS_PUTS("data=writeback");
2952 }
2953 if (nodefs ||
2954 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2955 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2956 sbi->s_inode_readahead_blks);
2957
2958 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2959 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2960 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2961 if (nodefs || sbi->s_max_dir_size_kb)
2962 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2963 if (test_opt(sb, DATA_ERR_ABORT))
2964 SEQ_OPTS_PUTS("data_err=abort");
2965
2966 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2967
2968 if (sb->s_flags & SB_INLINECRYPT)
2969 SEQ_OPTS_PUTS("inlinecrypt");
2970
2971 if (test_opt(sb, DAX_ALWAYS)) {
2972 if (IS_EXT2_SB(sb))
2973 SEQ_OPTS_PUTS("dax");
2974 else
2975 SEQ_OPTS_PUTS("dax=always");
2976 } else if (test_opt2(sb, DAX_NEVER)) {
2977 SEQ_OPTS_PUTS("dax=never");
2978 } else if (test_opt2(sb, DAX_INODE)) {
2979 SEQ_OPTS_PUTS("dax=inode");
2980 }
2981
2982 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2983 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2984 SEQ_OPTS_PUTS("mb_optimize_scan=0");
2985 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2986 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2987 SEQ_OPTS_PUTS("mb_optimize_scan=1");
2988 }
2989
2990 ext4_show_quota_options(seq, sb);
2991 return 0;
2992}
2993
2994static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2995{
2996 return _ext4_show_options(seq, root->d_sb, 0);
2997}
2998
2999int ext4_seq_options_show(struct seq_file *seq, void *offset)
3000{
3001 struct super_block *sb = seq->private;
3002 int rc;
3003
3004 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3005 rc = _ext4_show_options(seq, sb, 1);
3006 seq_puts(seq, "\n");
3007 return rc;
3008}
3009
3010static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3011 int read_only)
3012{
3013 struct ext4_sb_info *sbi = EXT4_SB(sb);
3014 int err = 0;
3015
3016 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3017 ext4_msg(sb, KERN_ERR, "revision level too high, "
3018 "forcing read-only mode");
3019 err = -EROFS;
3020 goto done;
3021 }
3022 if (read_only)
3023 goto done;
3024 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3025 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3026 "running e2fsck is recommended");
3027 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3028 ext4_msg(sb, KERN_WARNING,
3029 "warning: mounting fs with errors, "
3030 "running e2fsck is recommended");
3031 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3032 le16_to_cpu(es->s_mnt_count) >=
3033 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3034 ext4_msg(sb, KERN_WARNING,
3035 "warning: maximal mount count reached, "
3036 "running e2fsck is recommended");
3037 else if (le32_to_cpu(es->s_checkinterval) &&
3038 (ext4_get_tstamp(es, s_lastcheck) +
3039 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3040 ext4_msg(sb, KERN_WARNING,
3041 "warning: checktime reached, "
3042 "running e2fsck is recommended");
3043 if (!sbi->s_journal)
3044 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3045 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3046 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3047 le16_add_cpu(&es->s_mnt_count, 1);
3048 ext4_update_tstamp(es, s_mtime);
3049 if (sbi->s_journal) {
3050 ext4_set_feature_journal_needs_recovery(sb);
3051 if (ext4_has_feature_orphan_file(sb))
3052 ext4_set_feature_orphan_present(sb);
3053 }
3054
3055 err = ext4_commit_super(sb);
3056done:
3057 if (test_opt(sb, DEBUG))
3058 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3059 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3060 sb->s_blocksize,
3061 sbi->s_groups_count,
3062 EXT4_BLOCKS_PER_GROUP(sb),
3063 EXT4_INODES_PER_GROUP(sb),
3064 sbi->s_mount_opt, sbi->s_mount_opt2);
3065 return err;
3066}
3067
3068int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3069{
3070 struct ext4_sb_info *sbi = EXT4_SB(sb);
3071 struct flex_groups **old_groups, **new_groups;
3072 int size, i, j;
3073
3074 if (!sbi->s_log_groups_per_flex)
3075 return 0;
3076
3077 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3078 if (size <= sbi->s_flex_groups_allocated)
3079 return 0;
3080
3081 new_groups = kvzalloc(roundup_pow_of_two(size *
3082 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3083 if (!new_groups) {
3084 ext4_msg(sb, KERN_ERR,
3085 "not enough memory for %d flex group pointers", size);
3086 return -ENOMEM;
3087 }
3088 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3089 new_groups[i] = kvzalloc(roundup_pow_of_two(
3090 sizeof(struct flex_groups)),
3091 GFP_KERNEL);
3092 if (!new_groups[i]) {
3093 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3094 kvfree(new_groups[j]);
3095 kvfree(new_groups);
3096 ext4_msg(sb, KERN_ERR,
3097 "not enough memory for %d flex groups", size);
3098 return -ENOMEM;
3099 }
3100 }
3101 rcu_read_lock();
3102 old_groups = rcu_dereference(sbi->s_flex_groups);
3103 if (old_groups)
3104 memcpy(new_groups, old_groups,
3105 (sbi->s_flex_groups_allocated *
3106 sizeof(struct flex_groups *)));
3107 rcu_read_unlock();
3108 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3109 sbi->s_flex_groups_allocated = size;
3110 if (old_groups)
3111 ext4_kvfree_array_rcu(old_groups);
3112 return 0;
3113}
3114
3115static int ext4_fill_flex_info(struct super_block *sb)
3116{
3117 struct ext4_sb_info *sbi = EXT4_SB(sb);
3118 struct ext4_group_desc *gdp = NULL;
3119 struct flex_groups *fg;
3120 ext4_group_t flex_group;
3121 int i, err;
3122
3123 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3124 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3125 sbi->s_log_groups_per_flex = 0;
3126 return 1;
3127 }
3128
3129 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3130 if (err)
3131 goto failed;
3132
3133 for (i = 0; i < sbi->s_groups_count; i++) {
3134 gdp = ext4_get_group_desc(sb, i, NULL);
3135
3136 flex_group = ext4_flex_group(sbi, i);
3137 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3138 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3139 atomic64_add(ext4_free_group_clusters(sb, gdp),
3140 &fg->free_clusters);
3141 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3142 }
3143
3144 return 1;
3145failed:
3146 return 0;
3147}
3148
3149static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3150 struct ext4_group_desc *gdp)
3151{
3152 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3153 __u16 crc = 0;
3154 __le32 le_group = cpu_to_le32(block_group);
3155 struct ext4_sb_info *sbi = EXT4_SB(sb);
3156
3157 if (ext4_has_metadata_csum(sbi->s_sb)) {
3158 /* Use new metadata_csum algorithm */
3159 __u32 csum32;
3160 __u16 dummy_csum = 0;
3161
3162 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3163 sizeof(le_group));
3164 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3165 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3166 sizeof(dummy_csum));
3167 offset += sizeof(dummy_csum);
3168 if (offset < sbi->s_desc_size)
3169 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3170 sbi->s_desc_size - offset);
3171
3172 crc = csum32 & 0xFFFF;
3173 goto out;
3174 }
3175
3176 /* old crc16 code */
3177 if (!ext4_has_feature_gdt_csum(sb))
3178 return 0;
3179
3180 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3181 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3182 crc = crc16(crc, (__u8 *)gdp, offset);
3183 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3184 /* for checksum of struct ext4_group_desc do the rest...*/
3185 if (ext4_has_feature_64bit(sb) &&
3186 offset < le16_to_cpu(sbi->s_es->s_desc_size))
3187 crc = crc16(crc, (__u8 *)gdp + offset,
3188 le16_to_cpu(sbi->s_es->s_desc_size) -
3189 offset);
3190
3191out:
3192 return cpu_to_le16(crc);
3193}
3194
3195int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3196 struct ext4_group_desc *gdp)
3197{
3198 if (ext4_has_group_desc_csum(sb) &&
3199 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3200 return 0;
3201
3202 return 1;
3203}
3204
3205void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3206 struct ext4_group_desc *gdp)
3207{
3208 if (!ext4_has_group_desc_csum(sb))
3209 return;
3210 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3211}
3212
3213/* Called at mount-time, super-block is locked */
3214static int ext4_check_descriptors(struct super_block *sb,
3215 ext4_fsblk_t sb_block,
3216 ext4_group_t *first_not_zeroed)
3217{
3218 struct ext4_sb_info *sbi = EXT4_SB(sb);
3219 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3220 ext4_fsblk_t last_block;
3221 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3222 ext4_fsblk_t block_bitmap;
3223 ext4_fsblk_t inode_bitmap;
3224 ext4_fsblk_t inode_table;
3225 int flexbg_flag = 0;
3226 ext4_group_t i, grp = sbi->s_groups_count;
3227
3228 if (ext4_has_feature_flex_bg(sb))
3229 flexbg_flag = 1;
3230
3231 ext4_debug("Checking group descriptors");
3232
3233 for (i = 0; i < sbi->s_groups_count; i++) {
3234 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3235
3236 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3237 last_block = ext4_blocks_count(sbi->s_es) - 1;
3238 else
3239 last_block = first_block +
3240 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3241
3242 if ((grp == sbi->s_groups_count) &&
3243 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3244 grp = i;
3245
3246 block_bitmap = ext4_block_bitmap(sb, gdp);
3247 if (block_bitmap == sb_block) {
3248 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3249 "Block bitmap for group %u overlaps "
3250 "superblock", i);
3251 if (!sb_rdonly(sb))
3252 return 0;
3253 }
3254 if (block_bitmap >= sb_block + 1 &&
3255 block_bitmap <= last_bg_block) {
3256 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3257 "Block bitmap for group %u overlaps "
3258 "block group descriptors", i);
3259 if (!sb_rdonly(sb))
3260 return 0;
3261 }
3262 if (block_bitmap < first_block || block_bitmap > last_block) {
3263 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3264 "Block bitmap for group %u not in group "
3265 "(block %llu)!", i, block_bitmap);
3266 return 0;
3267 }
3268 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3269 if (inode_bitmap == sb_block) {
3270 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3271 "Inode bitmap for group %u overlaps "
3272 "superblock", i);
3273 if (!sb_rdonly(sb))
3274 return 0;
3275 }
3276 if (inode_bitmap >= sb_block + 1 &&
3277 inode_bitmap <= last_bg_block) {
3278 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3279 "Inode bitmap for group %u overlaps "
3280 "block group descriptors", i);
3281 if (!sb_rdonly(sb))
3282 return 0;
3283 }
3284 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3285 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3286 "Inode bitmap for group %u not in group "
3287 "(block %llu)!", i, inode_bitmap);
3288 return 0;
3289 }
3290 inode_table = ext4_inode_table(sb, gdp);
3291 if (inode_table == sb_block) {
3292 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3293 "Inode table for group %u overlaps "
3294 "superblock", i);
3295 if (!sb_rdonly(sb))
3296 return 0;
3297 }
3298 if (inode_table >= sb_block + 1 &&
3299 inode_table <= last_bg_block) {
3300 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3301 "Inode table for group %u overlaps "
3302 "block group descriptors", i);
3303 if (!sb_rdonly(sb))
3304 return 0;
3305 }
3306 if (inode_table < first_block ||
3307 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3308 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3309 "Inode table for group %u not in group "
3310 "(block %llu)!", i, inode_table);
3311 return 0;
3312 }
3313 ext4_lock_group(sb, i);
3314 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3315 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3316 "Checksum for group %u failed (%u!=%u)",
3317 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3318 gdp)), le16_to_cpu(gdp->bg_checksum));
3319 if (!sb_rdonly(sb)) {
3320 ext4_unlock_group(sb, i);
3321 return 0;
3322 }
3323 }
3324 ext4_unlock_group(sb, i);
3325 if (!flexbg_flag)
3326 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3327 }
3328 if (NULL != first_not_zeroed)
3329 *first_not_zeroed = grp;
3330 return 1;
3331}
3332
3333/*
3334 * Maximal extent format file size.
3335 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3336 * extent format containers, within a sector_t, and within i_blocks
3337 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3338 * so that won't be a limiting factor.
3339 *
3340 * However there is other limiting factor. We do store extents in the form
3341 * of starting block and length, hence the resulting length of the extent
3342 * covering maximum file size must fit into on-disk format containers as
3343 * well. Given that length is always by 1 unit bigger than max unit (because
3344 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3345 *
3346 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3347 */
3348static loff_t ext4_max_size(int blkbits, int has_huge_files)
3349{
3350 loff_t res;
3351 loff_t upper_limit = MAX_LFS_FILESIZE;
3352
3353 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3354
3355 if (!has_huge_files) {
3356 upper_limit = (1LL << 32) - 1;
3357
3358 /* total blocks in file system block size */
3359 upper_limit >>= (blkbits - 9);
3360 upper_limit <<= blkbits;
3361 }
3362
3363 /*
3364 * 32-bit extent-start container, ee_block. We lower the maxbytes
3365 * by one fs block, so ee_len can cover the extent of maximum file
3366 * size
3367 */
3368 res = (1LL << 32) - 1;
3369 res <<= blkbits;
3370
3371 /* Sanity check against vm- & vfs- imposed limits */
3372 if (res > upper_limit)
3373 res = upper_limit;
3374
3375 return res;
3376}
3377
3378/*
3379 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3380 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3381 * We need to be 1 filesystem block less than the 2^48 sector limit.
3382 */
3383static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3384{
3385 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3386 int meta_blocks;
3387 unsigned int ppb = 1 << (bits - 2);
3388
3389 /*
3390 * This is calculated to be the largest file size for a dense, block
3391 * mapped file such that the file's total number of 512-byte sectors,
3392 * including data and all indirect blocks, does not exceed (2^48 - 1).
3393 *
3394 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3395 * number of 512-byte sectors of the file.
3396 */
3397 if (!has_huge_files) {
3398 /*
3399 * !has_huge_files or implies that the inode i_block field
3400 * represents total file blocks in 2^32 512-byte sectors ==
3401 * size of vfs inode i_blocks * 8
3402 */
3403 upper_limit = (1LL << 32) - 1;
3404
3405 /* total blocks in file system block size */
3406 upper_limit >>= (bits - 9);
3407
3408 } else {
3409 /*
3410 * We use 48 bit ext4_inode i_blocks
3411 * With EXT4_HUGE_FILE_FL set the i_blocks
3412 * represent total number of blocks in
3413 * file system block size
3414 */
3415 upper_limit = (1LL << 48) - 1;
3416
3417 }
3418
3419 /* Compute how many blocks we can address by block tree */
3420 res += ppb;
3421 res += ppb * ppb;
3422 res += ((loff_t)ppb) * ppb * ppb;
3423 /* Compute how many metadata blocks are needed */
3424 meta_blocks = 1;
3425 meta_blocks += 1 + ppb;
3426 meta_blocks += 1 + ppb + ppb * ppb;
3427 /* Does block tree limit file size? */
3428 if (res + meta_blocks <= upper_limit)
3429 goto check_lfs;
3430
3431 res = upper_limit;
3432 /* How many metadata blocks are needed for addressing upper_limit? */
3433 upper_limit -= EXT4_NDIR_BLOCKS;
3434 /* indirect blocks */
3435 meta_blocks = 1;
3436 upper_limit -= ppb;
3437 /* double indirect blocks */
3438 if (upper_limit < ppb * ppb) {
3439 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3440 res -= meta_blocks;
3441 goto check_lfs;
3442 }
3443 meta_blocks += 1 + ppb;
3444 upper_limit -= ppb * ppb;
3445 /* tripple indirect blocks for the rest */
3446 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3447 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3448 res -= meta_blocks;
3449check_lfs:
3450 res <<= bits;
3451 if (res > MAX_LFS_FILESIZE)
3452 res = MAX_LFS_FILESIZE;
3453
3454 return res;
3455}
3456
3457static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3458 ext4_fsblk_t logical_sb_block, int nr)
3459{
3460 struct ext4_sb_info *sbi = EXT4_SB(sb);
3461 ext4_group_t bg, first_meta_bg;
3462 int has_super = 0;
3463
3464 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3465
3466 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3467 return logical_sb_block + nr + 1;
3468 bg = sbi->s_desc_per_block * nr;
3469 if (ext4_bg_has_super(sb, bg))
3470 has_super = 1;
3471
3472 /*
3473 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3474 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3475 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3476 * compensate.
3477 */
3478 if (sb->s_blocksize == 1024 && nr == 0 &&
3479 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3480 has_super++;
3481
3482 return (has_super + ext4_group_first_block_no(sb, bg));
3483}
3484
3485/**
3486 * ext4_get_stripe_size: Get the stripe size.
3487 * @sbi: In memory super block info
3488 *
3489 * If we have specified it via mount option, then
3490 * use the mount option value. If the value specified at mount time is
3491 * greater than the blocks per group use the super block value.
3492 * If the super block value is greater than blocks per group return 0.
3493 * Allocator needs it be less than blocks per group.
3494 *
3495 */
3496static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3497{
3498 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3499 unsigned long stripe_width =
3500 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3501 int ret;
3502
3503 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3504 ret = sbi->s_stripe;
3505 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3506 ret = stripe_width;
3507 else if (stride && stride <= sbi->s_blocks_per_group)
3508 ret = stride;
3509 else
3510 ret = 0;
3511
3512 /*
3513 * If the stripe width is 1, this makes no sense and
3514 * we set it to 0 to turn off stripe handling code.
3515 */
3516 if (ret <= 1)
3517 ret = 0;
3518
3519 return ret;
3520}
3521
3522/*
3523 * Check whether this filesystem can be mounted based on
3524 * the features present and the RDONLY/RDWR mount requested.
3525 * Returns 1 if this filesystem can be mounted as requested,
3526 * 0 if it cannot be.
3527 */
3528int ext4_feature_set_ok(struct super_block *sb, int readonly)
3529{
3530 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3531 ext4_msg(sb, KERN_ERR,
3532 "Couldn't mount because of "
3533 "unsupported optional features (%x)",
3534 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3535 ~EXT4_FEATURE_INCOMPAT_SUPP));
3536 return 0;
3537 }
3538
3539#if !IS_ENABLED(CONFIG_UNICODE)
3540 if (ext4_has_feature_casefold(sb)) {
3541 ext4_msg(sb, KERN_ERR,
3542 "Filesystem with casefold feature cannot be "
3543 "mounted without CONFIG_UNICODE");
3544 return 0;
3545 }
3546#endif
3547
3548 if (readonly)
3549 return 1;
3550
3551 if (ext4_has_feature_readonly(sb)) {
3552 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3553 sb->s_flags |= SB_RDONLY;
3554 return 1;
3555 }
3556
3557 /* Check that feature set is OK for a read-write mount */
3558 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3559 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3560 "unsupported optional features (%x)",
3561 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3562 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3563 return 0;
3564 }
3565 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3566 ext4_msg(sb, KERN_ERR,
3567 "Can't support bigalloc feature without "
3568 "extents feature\n");
3569 return 0;
3570 }
3571
3572#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3573 if (!readonly && (ext4_has_feature_quota(sb) ||
3574 ext4_has_feature_project(sb))) {
3575 ext4_msg(sb, KERN_ERR,
3576 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3577 return 0;
3578 }
3579#endif /* CONFIG_QUOTA */
3580 return 1;
3581}
3582
3583/*
3584 * This function is called once a day if we have errors logged
3585 * on the file system
3586 */
3587static void print_daily_error_info(struct timer_list *t)
3588{
3589 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3590 struct super_block *sb = sbi->s_sb;
3591 struct ext4_super_block *es = sbi->s_es;
3592
3593 if (es->s_error_count)
3594 /* fsck newer than v1.41.13 is needed to clean this condition. */
3595 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3596 le32_to_cpu(es->s_error_count));
3597 if (es->s_first_error_time) {
3598 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3599 sb->s_id,
3600 ext4_get_tstamp(es, s_first_error_time),
3601 (int) sizeof(es->s_first_error_func),
3602 es->s_first_error_func,
3603 le32_to_cpu(es->s_first_error_line));
3604 if (es->s_first_error_ino)
3605 printk(KERN_CONT ": inode %u",
3606 le32_to_cpu(es->s_first_error_ino));
3607 if (es->s_first_error_block)
3608 printk(KERN_CONT ": block %llu", (unsigned long long)
3609 le64_to_cpu(es->s_first_error_block));
3610 printk(KERN_CONT "\n");
3611 }
3612 if (es->s_last_error_time) {
3613 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3614 sb->s_id,
3615 ext4_get_tstamp(es, s_last_error_time),
3616 (int) sizeof(es->s_last_error_func),
3617 es->s_last_error_func,
3618 le32_to_cpu(es->s_last_error_line));
3619 if (es->s_last_error_ino)
3620 printk(KERN_CONT ": inode %u",
3621 le32_to_cpu(es->s_last_error_ino));
3622 if (es->s_last_error_block)
3623 printk(KERN_CONT ": block %llu", (unsigned long long)
3624 le64_to_cpu(es->s_last_error_block));
3625 printk(KERN_CONT "\n");
3626 }
3627 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3628}
3629
3630/* Find next suitable group and run ext4_init_inode_table */
3631static int ext4_run_li_request(struct ext4_li_request *elr)
3632{
3633 struct ext4_group_desc *gdp = NULL;
3634 struct super_block *sb = elr->lr_super;
3635 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3636 ext4_group_t group = elr->lr_next_group;
3637 unsigned int prefetch_ios = 0;
3638 int ret = 0;
3639 u64 start_time;
3640
3641 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3642 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3643 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3644 if (prefetch_ios)
3645 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3646 prefetch_ios);
3647 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3648 prefetch_ios);
3649 if (group >= elr->lr_next_group) {
3650 ret = 1;
3651 if (elr->lr_first_not_zeroed != ngroups &&
3652 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3653 elr->lr_next_group = elr->lr_first_not_zeroed;
3654 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3655 ret = 0;
3656 }
3657 }
3658 return ret;
3659 }
3660
3661 for (; group < ngroups; group++) {
3662 gdp = ext4_get_group_desc(sb, group, NULL);
3663 if (!gdp) {
3664 ret = 1;
3665 break;
3666 }
3667
3668 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3669 break;
3670 }
3671
3672 if (group >= ngroups)
3673 ret = 1;
3674
3675 if (!ret) {
3676 start_time = ktime_get_real_ns();
3677 ret = ext4_init_inode_table(sb, group,
3678 elr->lr_timeout ? 0 : 1);
3679 trace_ext4_lazy_itable_init(sb, group);
3680 if (elr->lr_timeout == 0) {
3681 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3682 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3683 }
3684 elr->lr_next_sched = jiffies + elr->lr_timeout;
3685 elr->lr_next_group = group + 1;
3686 }
3687 return ret;
3688}
3689
3690/*
3691 * Remove lr_request from the list_request and free the
3692 * request structure. Should be called with li_list_mtx held
3693 */
3694static void ext4_remove_li_request(struct ext4_li_request *elr)
3695{
3696 if (!elr)
3697 return;
3698
3699 list_del(&elr->lr_request);
3700 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3701 kfree(elr);
3702}
3703
3704static void ext4_unregister_li_request(struct super_block *sb)
3705{
3706 mutex_lock(&ext4_li_mtx);
3707 if (!ext4_li_info) {
3708 mutex_unlock(&ext4_li_mtx);
3709 return;
3710 }
3711
3712 mutex_lock(&ext4_li_info->li_list_mtx);
3713 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3714 mutex_unlock(&ext4_li_info->li_list_mtx);
3715 mutex_unlock(&ext4_li_mtx);
3716}
3717
3718static struct task_struct *ext4_lazyinit_task;
3719
3720/*
3721 * This is the function where ext4lazyinit thread lives. It walks
3722 * through the request list searching for next scheduled filesystem.
3723 * When such a fs is found, run the lazy initialization request
3724 * (ext4_rn_li_request) and keep track of the time spend in this
3725 * function. Based on that time we compute next schedule time of
3726 * the request. When walking through the list is complete, compute
3727 * next waking time and put itself into sleep.
3728 */
3729static int ext4_lazyinit_thread(void *arg)
3730{
3731 struct ext4_lazy_init *eli = arg;
3732 struct list_head *pos, *n;
3733 struct ext4_li_request *elr;
3734 unsigned long next_wakeup, cur;
3735
3736 BUG_ON(NULL == eli);
3737 set_freezable();
3738
3739cont_thread:
3740 while (true) {
3741 next_wakeup = MAX_JIFFY_OFFSET;
3742
3743 mutex_lock(&eli->li_list_mtx);
3744 if (list_empty(&eli->li_request_list)) {
3745 mutex_unlock(&eli->li_list_mtx);
3746 goto exit_thread;
3747 }
3748 list_for_each_safe(pos, n, &eli->li_request_list) {
3749 int err = 0;
3750 int progress = 0;
3751 elr = list_entry(pos, struct ext4_li_request,
3752 lr_request);
3753
3754 if (time_before(jiffies, elr->lr_next_sched)) {
3755 if (time_before(elr->lr_next_sched, next_wakeup))
3756 next_wakeup = elr->lr_next_sched;
3757 continue;
3758 }
3759 if (down_read_trylock(&elr->lr_super->s_umount)) {
3760 if (sb_start_write_trylock(elr->lr_super)) {
3761 progress = 1;
3762 /*
3763 * We hold sb->s_umount, sb can not
3764 * be removed from the list, it is
3765 * now safe to drop li_list_mtx
3766 */
3767 mutex_unlock(&eli->li_list_mtx);
3768 err = ext4_run_li_request(elr);
3769 sb_end_write(elr->lr_super);
3770 mutex_lock(&eli->li_list_mtx);
3771 n = pos->next;
3772 }
3773 up_read((&elr->lr_super->s_umount));
3774 }
3775 /* error, remove the lazy_init job */
3776 if (err) {
3777 ext4_remove_li_request(elr);
3778 continue;
3779 }
3780 if (!progress) {
3781 elr->lr_next_sched = jiffies +
3782 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3783 }
3784 if (time_before(elr->lr_next_sched, next_wakeup))
3785 next_wakeup = elr->lr_next_sched;
3786 }
3787 mutex_unlock(&eli->li_list_mtx);
3788
3789 try_to_freeze();
3790
3791 cur = jiffies;
3792 if ((time_after_eq(cur, next_wakeup)) ||
3793 (MAX_JIFFY_OFFSET == next_wakeup)) {
3794 cond_resched();
3795 continue;
3796 }
3797
3798 schedule_timeout_interruptible(next_wakeup - cur);
3799
3800 if (kthread_should_stop()) {
3801 ext4_clear_request_list();
3802 goto exit_thread;
3803 }
3804 }
3805
3806exit_thread:
3807 /*
3808 * It looks like the request list is empty, but we need
3809 * to check it under the li_list_mtx lock, to prevent any
3810 * additions into it, and of course we should lock ext4_li_mtx
3811 * to atomically free the list and ext4_li_info, because at
3812 * this point another ext4 filesystem could be registering
3813 * new one.
3814 */
3815 mutex_lock(&ext4_li_mtx);
3816 mutex_lock(&eli->li_list_mtx);
3817 if (!list_empty(&eli->li_request_list)) {
3818 mutex_unlock(&eli->li_list_mtx);
3819 mutex_unlock(&ext4_li_mtx);
3820 goto cont_thread;
3821 }
3822 mutex_unlock(&eli->li_list_mtx);
3823 kfree(ext4_li_info);
3824 ext4_li_info = NULL;
3825 mutex_unlock(&ext4_li_mtx);
3826
3827 return 0;
3828}
3829
3830static void ext4_clear_request_list(void)
3831{
3832 struct list_head *pos, *n;
3833 struct ext4_li_request *elr;
3834
3835 mutex_lock(&ext4_li_info->li_list_mtx);
3836 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3837 elr = list_entry(pos, struct ext4_li_request,
3838 lr_request);
3839 ext4_remove_li_request(elr);
3840 }
3841 mutex_unlock(&ext4_li_info->li_list_mtx);
3842}
3843
3844static int ext4_run_lazyinit_thread(void)
3845{
3846 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3847 ext4_li_info, "ext4lazyinit");
3848 if (IS_ERR(ext4_lazyinit_task)) {
3849 int err = PTR_ERR(ext4_lazyinit_task);
3850 ext4_clear_request_list();
3851 kfree(ext4_li_info);
3852 ext4_li_info = NULL;
3853 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3854 "initialization thread\n",
3855 err);
3856 return err;
3857 }
3858 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3859 return 0;
3860}
3861
3862/*
3863 * Check whether it make sense to run itable init. thread or not.
3864 * If there is at least one uninitialized inode table, return
3865 * corresponding group number, else the loop goes through all
3866 * groups and return total number of groups.
3867 */
3868static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3869{
3870 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3871 struct ext4_group_desc *gdp = NULL;
3872
3873 if (!ext4_has_group_desc_csum(sb))
3874 return ngroups;
3875
3876 for (group = 0; group < ngroups; group++) {
3877 gdp = ext4_get_group_desc(sb, group, NULL);
3878 if (!gdp)
3879 continue;
3880
3881 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3882 break;
3883 }
3884
3885 return group;
3886}
3887
3888static int ext4_li_info_new(void)
3889{
3890 struct ext4_lazy_init *eli = NULL;
3891
3892 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3893 if (!eli)
3894 return -ENOMEM;
3895
3896 INIT_LIST_HEAD(&eli->li_request_list);
3897 mutex_init(&eli->li_list_mtx);
3898
3899 eli->li_state |= EXT4_LAZYINIT_QUIT;
3900
3901 ext4_li_info = eli;
3902
3903 return 0;
3904}
3905
3906static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3907 ext4_group_t start)
3908{
3909 struct ext4_li_request *elr;
3910
3911 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3912 if (!elr)
3913 return NULL;
3914
3915 elr->lr_super = sb;
3916 elr->lr_first_not_zeroed = start;
3917 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3918 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3919 elr->lr_next_group = start;
3920 } else {
3921 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3922 }
3923
3924 /*
3925 * Randomize first schedule time of the request to
3926 * spread the inode table initialization requests
3927 * better.
3928 */
3929 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3930 return elr;
3931}
3932
3933int ext4_register_li_request(struct super_block *sb,
3934 ext4_group_t first_not_zeroed)
3935{
3936 struct ext4_sb_info *sbi = EXT4_SB(sb);
3937 struct ext4_li_request *elr = NULL;
3938 ext4_group_t ngroups = sbi->s_groups_count;
3939 int ret = 0;
3940
3941 mutex_lock(&ext4_li_mtx);
3942 if (sbi->s_li_request != NULL) {
3943 /*
3944 * Reset timeout so it can be computed again, because
3945 * s_li_wait_mult might have changed.
3946 */
3947 sbi->s_li_request->lr_timeout = 0;
3948 goto out;
3949 }
3950
3951 if (sb_rdonly(sb) ||
3952 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3953 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3954 goto out;
3955
3956 elr = ext4_li_request_new(sb, first_not_zeroed);
3957 if (!elr) {
3958 ret = -ENOMEM;
3959 goto out;
3960 }
3961
3962 if (NULL == ext4_li_info) {
3963 ret = ext4_li_info_new();
3964 if (ret)
3965 goto out;
3966 }
3967
3968 mutex_lock(&ext4_li_info->li_list_mtx);
3969 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3970 mutex_unlock(&ext4_li_info->li_list_mtx);
3971
3972 sbi->s_li_request = elr;
3973 /*
3974 * set elr to NULL here since it has been inserted to
3975 * the request_list and the removal and free of it is
3976 * handled by ext4_clear_request_list from now on.
3977 */
3978 elr = NULL;
3979
3980 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3981 ret = ext4_run_lazyinit_thread();
3982 if (ret)
3983 goto out;
3984 }
3985out:
3986 mutex_unlock(&ext4_li_mtx);
3987 if (ret)
3988 kfree(elr);
3989 return ret;
3990}
3991
3992/*
3993 * We do not need to lock anything since this is called on
3994 * module unload.
3995 */
3996static void ext4_destroy_lazyinit_thread(void)
3997{
3998 /*
3999 * If thread exited earlier
4000 * there's nothing to be done.
4001 */
4002 if (!ext4_li_info || !ext4_lazyinit_task)
4003 return;
4004
4005 kthread_stop(ext4_lazyinit_task);
4006}
4007
4008static int set_journal_csum_feature_set(struct super_block *sb)
4009{
4010 int ret = 1;
4011 int compat, incompat;
4012 struct ext4_sb_info *sbi = EXT4_SB(sb);
4013
4014 if (ext4_has_metadata_csum(sb)) {
4015 /* journal checksum v3 */
4016 compat = 0;
4017 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4018 } else {
4019 /* journal checksum v1 */
4020 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4021 incompat = 0;
4022 }
4023
4024 jbd2_journal_clear_features(sbi->s_journal,
4025 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4026 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4027 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4028 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4029 ret = jbd2_journal_set_features(sbi->s_journal,
4030 compat, 0,
4031 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4032 incompat);
4033 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4034 ret = jbd2_journal_set_features(sbi->s_journal,
4035 compat, 0,
4036 incompat);
4037 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4038 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4039 } else {
4040 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4041 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4042 }
4043
4044 return ret;
4045}
4046
4047/*
4048 * Note: calculating the overhead so we can be compatible with
4049 * historical BSD practice is quite difficult in the face of
4050 * clusters/bigalloc. This is because multiple metadata blocks from
4051 * different block group can end up in the same allocation cluster.
4052 * Calculating the exact overhead in the face of clustered allocation
4053 * requires either O(all block bitmaps) in memory or O(number of block
4054 * groups**2) in time. We will still calculate the superblock for
4055 * older file systems --- and if we come across with a bigalloc file
4056 * system with zero in s_overhead_clusters the estimate will be close to
4057 * correct especially for very large cluster sizes --- but for newer
4058 * file systems, it's better to calculate this figure once at mkfs
4059 * time, and store it in the superblock. If the superblock value is
4060 * present (even for non-bigalloc file systems), we will use it.
4061 */
4062static int count_overhead(struct super_block *sb, ext4_group_t grp,
4063 char *buf)
4064{
4065 struct ext4_sb_info *sbi = EXT4_SB(sb);
4066 struct ext4_group_desc *gdp;
4067 ext4_fsblk_t first_block, last_block, b;
4068 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4069 int s, j, count = 0;
4070 int has_super = ext4_bg_has_super(sb, grp);
4071
4072 if (!ext4_has_feature_bigalloc(sb))
4073 return (has_super + ext4_bg_num_gdb(sb, grp) +
4074 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4075 sbi->s_itb_per_group + 2);
4076
4077 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4078 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4079 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4080 for (i = 0; i < ngroups; i++) {
4081 gdp = ext4_get_group_desc(sb, i, NULL);
4082 b = ext4_block_bitmap(sb, gdp);
4083 if (b >= first_block && b <= last_block) {
4084 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4085 count++;
4086 }
4087 b = ext4_inode_bitmap(sb, gdp);
4088 if (b >= first_block && b <= last_block) {
4089 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4090 count++;
4091 }
4092 b = ext4_inode_table(sb, gdp);
4093 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4094 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4095 int c = EXT4_B2C(sbi, b - first_block);
4096 ext4_set_bit(c, buf);
4097 count++;
4098 }
4099 if (i != grp)
4100 continue;
4101 s = 0;
4102 if (ext4_bg_has_super(sb, grp)) {
4103 ext4_set_bit(s++, buf);
4104 count++;
4105 }
4106 j = ext4_bg_num_gdb(sb, grp);
4107 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4108 ext4_error(sb, "Invalid number of block group "
4109 "descriptor blocks: %d", j);
4110 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4111 }
4112 count += j;
4113 for (; j > 0; j--)
4114 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4115 }
4116 if (!count)
4117 return 0;
4118 return EXT4_CLUSTERS_PER_GROUP(sb) -
4119 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4120}
4121
4122/*
4123 * Compute the overhead and stash it in sbi->s_overhead
4124 */
4125int ext4_calculate_overhead(struct super_block *sb)
4126{
4127 struct ext4_sb_info *sbi = EXT4_SB(sb);
4128 struct ext4_super_block *es = sbi->s_es;
4129 struct inode *j_inode;
4130 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4131 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4132 ext4_fsblk_t overhead = 0;
4133 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4134
4135 if (!buf)
4136 return -ENOMEM;
4137
4138 /*
4139 * Compute the overhead (FS structures). This is constant
4140 * for a given filesystem unless the number of block groups
4141 * changes so we cache the previous value until it does.
4142 */
4143
4144 /*
4145 * All of the blocks before first_data_block are overhead
4146 */
4147 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4148
4149 /*
4150 * Add the overhead found in each block group
4151 */
4152 for (i = 0; i < ngroups; i++) {
4153 int blks;
4154
4155 blks = count_overhead(sb, i, buf);
4156 overhead += blks;
4157 if (blks)
4158 memset(buf, 0, PAGE_SIZE);
4159 cond_resched();
4160 }
4161
4162 /*
4163 * Add the internal journal blocks whether the journal has been
4164 * loaded or not
4165 */
4166 if (sbi->s_journal && !sbi->s_journal_bdev)
4167 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4168 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4169 /* j_inum for internal journal is non-zero */
4170 j_inode = ext4_get_journal_inode(sb, j_inum);
4171 if (j_inode) {
4172 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4173 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4174 iput(j_inode);
4175 } else {
4176 ext4_msg(sb, KERN_ERR, "can't get journal size");
4177 }
4178 }
4179 sbi->s_overhead = overhead;
4180 smp_wmb();
4181 free_page((unsigned long) buf);
4182 return 0;
4183}
4184
4185static void ext4_set_resv_clusters(struct super_block *sb)
4186{
4187 ext4_fsblk_t resv_clusters;
4188 struct ext4_sb_info *sbi = EXT4_SB(sb);
4189
4190 /*
4191 * There's no need to reserve anything when we aren't using extents.
4192 * The space estimates are exact, there are no unwritten extents,
4193 * hole punching doesn't need new metadata... This is needed especially
4194 * to keep ext2/3 backward compatibility.
4195 */
4196 if (!ext4_has_feature_extents(sb))
4197 return;
4198 /*
4199 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4200 * This should cover the situations where we can not afford to run
4201 * out of space like for example punch hole, or converting
4202 * unwritten extents in delalloc path. In most cases such
4203 * allocation would require 1, or 2 blocks, higher numbers are
4204 * very rare.
4205 */
4206 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4207 sbi->s_cluster_bits);
4208
4209 do_div(resv_clusters, 50);
4210 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4211
4212 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4213}
4214
4215static const char *ext4_quota_mode(struct super_block *sb)
4216{
4217#ifdef CONFIG_QUOTA
4218 if (!ext4_quota_capable(sb))
4219 return "none";
4220
4221 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4222 return "journalled";
4223 else
4224 return "writeback";
4225#else
4226 return "disabled";
4227#endif
4228}
4229
4230static void ext4_setup_csum_trigger(struct super_block *sb,
4231 enum ext4_journal_trigger_type type,
4232 void (*trigger)(
4233 struct jbd2_buffer_trigger_type *type,
4234 struct buffer_head *bh,
4235 void *mapped_data,
4236 size_t size))
4237{
4238 struct ext4_sb_info *sbi = EXT4_SB(sb);
4239
4240 sbi->s_journal_triggers[type].sb = sb;
4241 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4242}
4243
4244static void ext4_free_sbi(struct ext4_sb_info *sbi)
4245{
4246 if (!sbi)
4247 return;
4248
4249 kfree(sbi->s_blockgroup_lock);
4250 fs_put_dax(sbi->s_daxdev, NULL);
4251 kfree(sbi);
4252}
4253
4254static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4255{
4256 struct ext4_sb_info *sbi;
4257
4258 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4259 if (!sbi)
4260 return NULL;
4261
4262 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4263 NULL, NULL);
4264
4265 sbi->s_blockgroup_lock =
4266 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4267
4268 if (!sbi->s_blockgroup_lock)
4269 goto err_out;
4270
4271 sb->s_fs_info = sbi;
4272 sbi->s_sb = sb;
4273 return sbi;
4274err_out:
4275 fs_put_dax(sbi->s_daxdev, NULL);
4276 kfree(sbi);
4277 return NULL;
4278}
4279
4280static void ext4_set_def_opts(struct super_block *sb,
4281 struct ext4_super_block *es)
4282{
4283 unsigned long def_mount_opts;
4284
4285 /* Set defaults before we parse the mount options */
4286 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4287 set_opt(sb, INIT_INODE_TABLE);
4288 if (def_mount_opts & EXT4_DEFM_DEBUG)
4289 set_opt(sb, DEBUG);
4290 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4291 set_opt(sb, GRPID);
4292 if (def_mount_opts & EXT4_DEFM_UID16)
4293 set_opt(sb, NO_UID32);
4294 /* xattr user namespace & acls are now defaulted on */
4295 set_opt(sb, XATTR_USER);
4296#ifdef CONFIG_EXT4_FS_POSIX_ACL
4297 set_opt(sb, POSIX_ACL);
4298#endif
4299 if (ext4_has_feature_fast_commit(sb))
4300 set_opt2(sb, JOURNAL_FAST_COMMIT);
4301 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4302 if (ext4_has_metadata_csum(sb))
4303 set_opt(sb, JOURNAL_CHECKSUM);
4304
4305 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4306 set_opt(sb, JOURNAL_DATA);
4307 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4308 set_opt(sb, ORDERED_DATA);
4309 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4310 set_opt(sb, WRITEBACK_DATA);
4311
4312 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4313 set_opt(sb, ERRORS_PANIC);
4314 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4315 set_opt(sb, ERRORS_CONT);
4316 else
4317 set_opt(sb, ERRORS_RO);
4318 /* block_validity enabled by default; disable with noblock_validity */
4319 set_opt(sb, BLOCK_VALIDITY);
4320 if (def_mount_opts & EXT4_DEFM_DISCARD)
4321 set_opt(sb, DISCARD);
4322
4323 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4324 set_opt(sb, BARRIER);
4325
4326 /*
4327 * enable delayed allocation by default
4328 * Use -o nodelalloc to turn it off
4329 */
4330 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4331 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4332 set_opt(sb, DELALLOC);
4333
4334 if (sb->s_blocksize == PAGE_SIZE)
4335 set_opt(sb, DIOREAD_NOLOCK);
4336}
4337
4338static int ext4_handle_clustersize(struct super_block *sb)
4339{
4340 struct ext4_sb_info *sbi = EXT4_SB(sb);
4341 struct ext4_super_block *es = sbi->s_es;
4342 int clustersize;
4343
4344 /* Handle clustersize */
4345 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4346 if (ext4_has_feature_bigalloc(sb)) {
4347 if (clustersize < sb->s_blocksize) {
4348 ext4_msg(sb, KERN_ERR,
4349 "cluster size (%d) smaller than "
4350 "block size (%lu)", clustersize, sb->s_blocksize);
4351 return -EINVAL;
4352 }
4353 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4354 le32_to_cpu(es->s_log_block_size);
4355 sbi->s_clusters_per_group =
4356 le32_to_cpu(es->s_clusters_per_group);
4357 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4358 ext4_msg(sb, KERN_ERR,
4359 "#clusters per group too big: %lu",
4360 sbi->s_clusters_per_group);
4361 return -EINVAL;
4362 }
4363 if (sbi->s_blocks_per_group !=
4364 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4365 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4366 "clusters per group (%lu) inconsistent",
4367 sbi->s_blocks_per_group,
4368 sbi->s_clusters_per_group);
4369 return -EINVAL;
4370 }
4371 } else {
4372 if (clustersize != sb->s_blocksize) {
4373 ext4_msg(sb, KERN_ERR,
4374 "fragment/cluster size (%d) != "
4375 "block size (%lu)", clustersize, sb->s_blocksize);
4376 return -EINVAL;
4377 }
4378 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4379 ext4_msg(sb, KERN_ERR,
4380 "#blocks per group too big: %lu",
4381 sbi->s_blocks_per_group);
4382 return -EINVAL;
4383 }
4384 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4385 sbi->s_cluster_bits = 0;
4386 }
4387 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4388
4389 /* Do we have standard group size of clustersize * 8 blocks ? */
4390 if (sbi->s_blocks_per_group == clustersize << 3)
4391 set_opt2(sb, STD_GROUP_SIZE);
4392
4393 return 0;
4394}
4395
4396static void ext4_fast_commit_init(struct super_block *sb)
4397{
4398 struct ext4_sb_info *sbi = EXT4_SB(sb);
4399
4400 /* Initialize fast commit stuff */
4401 atomic_set(&sbi->s_fc_subtid, 0);
4402 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4403 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4404 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4405 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4406 sbi->s_fc_bytes = 0;
4407 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4408 sbi->s_fc_ineligible_tid = 0;
4409 spin_lock_init(&sbi->s_fc_lock);
4410 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4411 sbi->s_fc_replay_state.fc_regions = NULL;
4412 sbi->s_fc_replay_state.fc_regions_size = 0;
4413 sbi->s_fc_replay_state.fc_regions_used = 0;
4414 sbi->s_fc_replay_state.fc_regions_valid = 0;
4415 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4416 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4417 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4418}
4419
4420static int ext4_inode_info_init(struct super_block *sb,
4421 struct ext4_super_block *es)
4422{
4423 struct ext4_sb_info *sbi = EXT4_SB(sb);
4424
4425 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4426 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4427 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4428 } else {
4429 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4430 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4431 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4432 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4433 sbi->s_first_ino);
4434 return -EINVAL;
4435 }
4436 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4437 (!is_power_of_2(sbi->s_inode_size)) ||
4438 (sbi->s_inode_size > sb->s_blocksize)) {
4439 ext4_msg(sb, KERN_ERR,
4440 "unsupported inode size: %d",
4441 sbi->s_inode_size);
4442 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4443 return -EINVAL;
4444 }
4445 /*
4446 * i_atime_extra is the last extra field available for
4447 * [acm]times in struct ext4_inode. Checking for that
4448 * field should suffice to ensure we have extra space
4449 * for all three.
4450 */
4451 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4452 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4453 sb->s_time_gran = 1;
4454 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4455 } else {
4456 sb->s_time_gran = NSEC_PER_SEC;
4457 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4458 }
4459 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4460 }
4461
4462 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4463 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4464 EXT4_GOOD_OLD_INODE_SIZE;
4465 if (ext4_has_feature_extra_isize(sb)) {
4466 unsigned v, max = (sbi->s_inode_size -
4467 EXT4_GOOD_OLD_INODE_SIZE);
4468
4469 v = le16_to_cpu(es->s_want_extra_isize);
4470 if (v > max) {
4471 ext4_msg(sb, KERN_ERR,
4472 "bad s_want_extra_isize: %d", v);
4473 return -EINVAL;
4474 }
4475 if (sbi->s_want_extra_isize < v)
4476 sbi->s_want_extra_isize = v;
4477
4478 v = le16_to_cpu(es->s_min_extra_isize);
4479 if (v > max) {
4480 ext4_msg(sb, KERN_ERR,
4481 "bad s_min_extra_isize: %d", v);
4482 return -EINVAL;
4483 }
4484 if (sbi->s_want_extra_isize < v)
4485 sbi->s_want_extra_isize = v;
4486 }
4487 }
4488
4489 return 0;
4490}
4491
4492#if IS_ENABLED(CONFIG_UNICODE)
4493static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4494{
4495 const struct ext4_sb_encodings *encoding_info;
4496 struct unicode_map *encoding;
4497 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4498
4499 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4500 return 0;
4501
4502 encoding_info = ext4_sb_read_encoding(es);
4503 if (!encoding_info) {
4504 ext4_msg(sb, KERN_ERR,
4505 "Encoding requested by superblock is unknown");
4506 return -EINVAL;
4507 }
4508
4509 encoding = utf8_load(encoding_info->version);
4510 if (IS_ERR(encoding)) {
4511 ext4_msg(sb, KERN_ERR,
4512 "can't mount with superblock charset: %s-%u.%u.%u "
4513 "not supported by the kernel. flags: 0x%x.",
4514 encoding_info->name,
4515 unicode_major(encoding_info->version),
4516 unicode_minor(encoding_info->version),
4517 unicode_rev(encoding_info->version),
4518 encoding_flags);
4519 return -EINVAL;
4520 }
4521 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4522 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4523 unicode_major(encoding_info->version),
4524 unicode_minor(encoding_info->version),
4525 unicode_rev(encoding_info->version),
4526 encoding_flags);
4527
4528 sb->s_encoding = encoding;
4529 sb->s_encoding_flags = encoding_flags;
4530
4531 return 0;
4532}
4533#else
4534static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4535{
4536 return 0;
4537}
4538#endif
4539
4540static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4541{
4542 struct ext4_sb_info *sbi = EXT4_SB(sb);
4543
4544 /* Warn if metadata_csum and gdt_csum are both set. */
4545 if (ext4_has_feature_metadata_csum(sb) &&
4546 ext4_has_feature_gdt_csum(sb))
4547 ext4_warning(sb, "metadata_csum and uninit_bg are "
4548 "redundant flags; please run fsck.");
4549
4550 /* Check for a known checksum algorithm */
4551 if (!ext4_verify_csum_type(sb, es)) {
4552 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4553 "unknown checksum algorithm.");
4554 return -EINVAL;
4555 }
4556 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4557 ext4_orphan_file_block_trigger);
4558
4559 /* Load the checksum driver */
4560 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4561 if (IS_ERR(sbi->s_chksum_driver)) {
4562 int ret = PTR_ERR(sbi->s_chksum_driver);
4563 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4564 sbi->s_chksum_driver = NULL;
4565 return ret;
4566 }
4567
4568 /* Check superblock checksum */
4569 if (!ext4_superblock_csum_verify(sb, es)) {
4570 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4571 "invalid superblock checksum. Run e2fsck?");
4572 return -EFSBADCRC;
4573 }
4574
4575 /* Precompute checksum seed for all metadata */
4576 if (ext4_has_feature_csum_seed(sb))
4577 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4578 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4579 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4580 sizeof(es->s_uuid));
4581 return 0;
4582}
4583
4584static int ext4_check_feature_compatibility(struct super_block *sb,
4585 struct ext4_super_block *es,
4586 int silent)
4587{
4588 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4589 (ext4_has_compat_features(sb) ||
4590 ext4_has_ro_compat_features(sb) ||
4591 ext4_has_incompat_features(sb)))
4592 ext4_msg(sb, KERN_WARNING,
4593 "feature flags set on rev 0 fs, "
4594 "running e2fsck is recommended");
4595
4596 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4597 set_opt2(sb, HURD_COMPAT);
4598 if (ext4_has_feature_64bit(sb)) {
4599 ext4_msg(sb, KERN_ERR,
4600 "The Hurd can't support 64-bit file systems");
4601 return -EINVAL;
4602 }
4603
4604 /*
4605 * ea_inode feature uses l_i_version field which is not
4606 * available in HURD_COMPAT mode.
4607 */
4608 if (ext4_has_feature_ea_inode(sb)) {
4609 ext4_msg(sb, KERN_ERR,
4610 "ea_inode feature is not supported for Hurd");
4611 return -EINVAL;
4612 }
4613 }
4614
4615 if (IS_EXT2_SB(sb)) {
4616 if (ext2_feature_set_ok(sb))
4617 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4618 "using the ext4 subsystem");
4619 else {
4620 /*
4621 * If we're probing be silent, if this looks like
4622 * it's actually an ext[34] filesystem.
4623 */
4624 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4625 return -EINVAL;
4626 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4627 "to feature incompatibilities");
4628 return -EINVAL;
4629 }
4630 }
4631
4632 if (IS_EXT3_SB(sb)) {
4633 if (ext3_feature_set_ok(sb))
4634 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4635 "using the ext4 subsystem");
4636 else {
4637 /*
4638 * If we're probing be silent, if this looks like
4639 * it's actually an ext4 filesystem.
4640 */
4641 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4642 return -EINVAL;
4643 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4644 "to feature incompatibilities");
4645 return -EINVAL;
4646 }
4647 }
4648
4649 /*
4650 * Check feature flags regardless of the revision level, since we
4651 * previously didn't change the revision level when setting the flags,
4652 * so there is a chance incompat flags are set on a rev 0 filesystem.
4653 */
4654 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4655 return -EINVAL;
4656
4657 return 0;
4658}
4659
4660static int ext4_geometry_check(struct super_block *sb,
4661 struct ext4_super_block *es)
4662{
4663 struct ext4_sb_info *sbi = EXT4_SB(sb);
4664 __u64 blocks_count;
4665
4666 /* check blocks count against device size */
4667 blocks_count = sb_bdev_nr_blocks(sb);
4668 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4669 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4670 "exceeds size of device (%llu blocks)",
4671 ext4_blocks_count(es), blocks_count);
4672 return -EINVAL;
4673 }
4674
4675 /*
4676 * It makes no sense for the first data block to be beyond the end
4677 * of the filesystem.
4678 */
4679 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4680 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4681 "block %u is beyond end of filesystem (%llu)",
4682 le32_to_cpu(es->s_first_data_block),
4683 ext4_blocks_count(es));
4684 return -EINVAL;
4685 }
4686 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4687 (sbi->s_cluster_ratio == 1)) {
4688 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4689 "block is 0 with a 1k block and cluster size");
4690 return -EINVAL;
4691 }
4692
4693 blocks_count = (ext4_blocks_count(es) -
4694 le32_to_cpu(es->s_first_data_block) +
4695 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4696 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4697 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4698 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4699 "(block count %llu, first data block %u, "
4700 "blocks per group %lu)", blocks_count,
4701 ext4_blocks_count(es),
4702 le32_to_cpu(es->s_first_data_block),
4703 EXT4_BLOCKS_PER_GROUP(sb));
4704 return -EINVAL;
4705 }
4706 sbi->s_groups_count = blocks_count;
4707 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4708 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4709 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4710 le32_to_cpu(es->s_inodes_count)) {
4711 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4712 le32_to_cpu(es->s_inodes_count),
4713 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4714 return -EINVAL;
4715 }
4716
4717 return 0;
4718}
4719
4720static void ext4_group_desc_free(struct ext4_sb_info *sbi)
4721{
4722 struct buffer_head **group_desc;
4723 int i;
4724
4725 rcu_read_lock();
4726 group_desc = rcu_dereference(sbi->s_group_desc);
4727 for (i = 0; i < sbi->s_gdb_count; i++)
4728 brelse(group_desc[i]);
4729 kvfree(group_desc);
4730 rcu_read_unlock();
4731}
4732
4733static int ext4_group_desc_init(struct super_block *sb,
4734 struct ext4_super_block *es,
4735 ext4_fsblk_t logical_sb_block,
4736 ext4_group_t *first_not_zeroed)
4737{
4738 struct ext4_sb_info *sbi = EXT4_SB(sb);
4739 unsigned int db_count;
4740 ext4_fsblk_t block;
4741 int ret;
4742 int i;
4743
4744 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4745 EXT4_DESC_PER_BLOCK(sb);
4746 if (ext4_has_feature_meta_bg(sb)) {
4747 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4748 ext4_msg(sb, KERN_WARNING,
4749 "first meta block group too large: %u "
4750 "(group descriptor block count %u)",
4751 le32_to_cpu(es->s_first_meta_bg), db_count);
4752 return -EINVAL;
4753 }
4754 }
4755 rcu_assign_pointer(sbi->s_group_desc,
4756 kvmalloc_array(db_count,
4757 sizeof(struct buffer_head *),
4758 GFP_KERNEL));
4759 if (sbi->s_group_desc == NULL) {
4760 ext4_msg(sb, KERN_ERR, "not enough memory");
4761 return -ENOMEM;
4762 }
4763
4764 bgl_lock_init(sbi->s_blockgroup_lock);
4765
4766 /* Pre-read the descriptors into the buffer cache */
4767 for (i = 0; i < db_count; i++) {
4768 block = descriptor_loc(sb, logical_sb_block, i);
4769 ext4_sb_breadahead_unmovable(sb, block);
4770 }
4771
4772 for (i = 0; i < db_count; i++) {
4773 struct buffer_head *bh;
4774
4775 block = descriptor_loc(sb, logical_sb_block, i);
4776 bh = ext4_sb_bread_unmovable(sb, block);
4777 if (IS_ERR(bh)) {
4778 ext4_msg(sb, KERN_ERR,
4779 "can't read group descriptor %d", i);
4780 sbi->s_gdb_count = i;
4781 ret = PTR_ERR(bh);
4782 goto out;
4783 }
4784 rcu_read_lock();
4785 rcu_dereference(sbi->s_group_desc)[i] = bh;
4786 rcu_read_unlock();
4787 }
4788 sbi->s_gdb_count = db_count;
4789 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4790 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4791 ret = -EFSCORRUPTED;
4792 goto out;
4793 }
4794 return 0;
4795out:
4796 ext4_group_desc_free(sbi);
4797 return ret;
4798}
4799
4800static int ext4_load_and_init_journal(struct super_block *sb,
4801 struct ext4_super_block *es,
4802 struct ext4_fs_context *ctx)
4803{
4804 struct ext4_sb_info *sbi = EXT4_SB(sb);
4805 int err;
4806
4807 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4808 if (err)
4809 return err;
4810
4811 if (ext4_has_feature_64bit(sb) &&
4812 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4813 JBD2_FEATURE_INCOMPAT_64BIT)) {
4814 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4815 goto out;
4816 }
4817
4818 if (!set_journal_csum_feature_set(sb)) {
4819 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4820 "feature set");
4821 goto out;
4822 }
4823
4824 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4825 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4826 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4827 ext4_msg(sb, KERN_ERR,
4828 "Failed to set fast commit journal feature");
4829 goto out;
4830 }
4831
4832 /* We have now updated the journal if required, so we can
4833 * validate the data journaling mode. */
4834 switch (test_opt(sb, DATA_FLAGS)) {
4835 case 0:
4836 /* No mode set, assume a default based on the journal
4837 * capabilities: ORDERED_DATA if the journal can
4838 * cope, else JOURNAL_DATA
4839 */
4840 if (jbd2_journal_check_available_features
4841 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4842 set_opt(sb, ORDERED_DATA);
4843 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4844 } else {
4845 set_opt(sb, JOURNAL_DATA);
4846 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4847 }
4848 break;
4849
4850 case EXT4_MOUNT_ORDERED_DATA:
4851 case EXT4_MOUNT_WRITEBACK_DATA:
4852 if (!jbd2_journal_check_available_features
4853 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4854 ext4_msg(sb, KERN_ERR, "Journal does not support "
4855 "requested data journaling mode");
4856 goto out;
4857 }
4858 break;
4859 default:
4860 break;
4861 }
4862
4863 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4864 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4865 ext4_msg(sb, KERN_ERR, "can't mount with "
4866 "journal_async_commit in data=ordered mode");
4867 goto out;
4868 }
4869
4870 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4871
4872 sbi->s_journal->j_submit_inode_data_buffers =
4873 ext4_journal_submit_inode_data_buffers;
4874 sbi->s_journal->j_finish_inode_data_buffers =
4875 ext4_journal_finish_inode_data_buffers;
4876
4877 return 0;
4878
4879out:
4880 /* flush s_error_work before journal destroy. */
4881 flush_work(&sbi->s_error_work);
4882 jbd2_journal_destroy(sbi->s_journal);
4883 sbi->s_journal = NULL;
4884 return -EINVAL;
4885}
4886
4887static int ext4_journal_data_mode_check(struct super_block *sb)
4888{
4889 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4890 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4891 "data=journal disables delayed allocation, "
4892 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4893 /* can't mount with both data=journal and dioread_nolock. */
4894 clear_opt(sb, DIOREAD_NOLOCK);
4895 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4896 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4897 ext4_msg(sb, KERN_ERR, "can't mount with "
4898 "both data=journal and delalloc");
4899 return -EINVAL;
4900 }
4901 if (test_opt(sb, DAX_ALWAYS)) {
4902 ext4_msg(sb, KERN_ERR, "can't mount with "
4903 "both data=journal and dax");
4904 return -EINVAL;
4905 }
4906 if (ext4_has_feature_encrypt(sb)) {
4907 ext4_msg(sb, KERN_WARNING,
4908 "encrypted files will use data=ordered "
4909 "instead of data journaling mode");
4910 }
4911 if (test_opt(sb, DELALLOC))
4912 clear_opt(sb, DELALLOC);
4913 } else {
4914 sb->s_iflags |= SB_I_CGROUPWB;
4915 }
4916
4917 return 0;
4918}
4919
4920static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
4921 int silent)
4922{
4923 struct ext4_sb_info *sbi = EXT4_SB(sb);
4924 struct ext4_super_block *es;
4925 ext4_fsblk_t logical_sb_block;
4926 unsigned long offset = 0;
4927 struct buffer_head *bh;
4928 int ret = -EINVAL;
4929 int blocksize;
4930
4931 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4932 if (!blocksize) {
4933 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4934 return -EINVAL;
4935 }
4936
4937 /*
4938 * The ext4 superblock will not be buffer aligned for other than 1kB
4939 * block sizes. We need to calculate the offset from buffer start.
4940 */
4941 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4942 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4943 offset = do_div(logical_sb_block, blocksize);
4944 } else {
4945 logical_sb_block = sbi->s_sb_block;
4946 }
4947
4948 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4949 if (IS_ERR(bh)) {
4950 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4951 return PTR_ERR(bh);
4952 }
4953 /*
4954 * Note: s_es must be initialized as soon as possible because
4955 * some ext4 macro-instructions depend on its value
4956 */
4957 es = (struct ext4_super_block *) (bh->b_data + offset);
4958 sbi->s_es = es;
4959 sb->s_magic = le16_to_cpu(es->s_magic);
4960 if (sb->s_magic != EXT4_SUPER_MAGIC) {
4961 if (!silent)
4962 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4963 goto out;
4964 }
4965
4966 if (le32_to_cpu(es->s_log_block_size) >
4967 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4968 ext4_msg(sb, KERN_ERR,
4969 "Invalid log block size: %u",
4970 le32_to_cpu(es->s_log_block_size));
4971 goto out;
4972 }
4973 if (le32_to_cpu(es->s_log_cluster_size) >
4974 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4975 ext4_msg(sb, KERN_ERR,
4976 "Invalid log cluster size: %u",
4977 le32_to_cpu(es->s_log_cluster_size));
4978 goto out;
4979 }
4980
4981 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4982
4983 /*
4984 * If the default block size is not the same as the real block size,
4985 * we need to reload it.
4986 */
4987 if (sb->s_blocksize == blocksize) {
4988 *lsb = logical_sb_block;
4989 sbi->s_sbh = bh;
4990 return 0;
4991 }
4992
4993 /*
4994 * bh must be released before kill_bdev(), otherwise
4995 * it won't be freed and its page also. kill_bdev()
4996 * is called by sb_set_blocksize().
4997 */
4998 brelse(bh);
4999 /* Validate the filesystem blocksize */
5000 if (!sb_set_blocksize(sb, blocksize)) {
5001 ext4_msg(sb, KERN_ERR, "bad block size %d",
5002 blocksize);
5003 bh = NULL;
5004 goto out;
5005 }
5006
5007 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5008 offset = do_div(logical_sb_block, blocksize);
5009 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5010 if (IS_ERR(bh)) {
5011 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5012 ret = PTR_ERR(bh);
5013 bh = NULL;
5014 goto out;
5015 }
5016 es = (struct ext4_super_block *)(bh->b_data + offset);
5017 sbi->s_es = es;
5018 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5019 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5020 goto out;
5021 }
5022 *lsb = logical_sb_block;
5023 sbi->s_sbh = bh;
5024 return 0;
5025out:
5026 brelse(bh);
5027 return ret;
5028}
5029
5030static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5031{
5032 struct ext4_super_block *es = NULL;
5033 struct ext4_sb_info *sbi = EXT4_SB(sb);
5034 struct flex_groups **flex_groups;
5035 ext4_fsblk_t block;
5036 ext4_fsblk_t logical_sb_block;
5037 struct inode *root;
5038 int ret = -ENOMEM;
5039 unsigned int i;
5040 int needs_recovery, has_huge_files;
5041 int err = 0;
5042 ext4_group_t first_not_zeroed;
5043 struct ext4_fs_context *ctx = fc->fs_private;
5044 int silent = fc->sb_flags & SB_SILENT;
5045
5046 /* Set defaults for the variables that will be set during parsing */
5047 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5048 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5049
5050 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5051 sbi->s_sectors_written_start =
5052 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5053
5054 /* -EINVAL is default */
5055 ret = -EINVAL;
5056 err = ext4_load_super(sb, &logical_sb_block, silent);
5057 if (err)
5058 goto out_fail;
5059
5060 es = sbi->s_es;
5061 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5062
5063 err = ext4_init_metadata_csum(sb, es);
5064 if (err)
5065 goto failed_mount;
5066
5067 ext4_set_def_opts(sb, es);
5068
5069 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5070 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5071 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5072 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5073 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5074
5075 /*
5076 * set default s_li_wait_mult for lazyinit, for the case there is
5077 * no mount option specified.
5078 */
5079 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5080
5081 if (ext4_inode_info_init(sb, es))
5082 goto failed_mount;
5083
5084 err = parse_apply_sb_mount_options(sb, ctx);
5085 if (err < 0)
5086 goto failed_mount;
5087
5088 sbi->s_def_mount_opt = sbi->s_mount_opt;
5089
5090 err = ext4_check_opt_consistency(fc, sb);
5091 if (err < 0)
5092 goto failed_mount;
5093
5094 ext4_apply_options(fc, sb);
5095
5096 if (ext4_encoding_init(sb, es))
5097 goto failed_mount;
5098
5099 if (ext4_journal_data_mode_check(sb))
5100 goto failed_mount;
5101
5102 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5103 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5104
5105 /* i_version is always enabled now */
5106 sb->s_flags |= SB_I_VERSION;
5107
5108 if (ext4_check_feature_compatibility(sb, es, silent))
5109 goto failed_mount;
5110
5111 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
5112 ext4_msg(sb, KERN_ERR,
5113 "Number of reserved GDT blocks insanely large: %d",
5114 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
5115 goto failed_mount;
5116 }
5117
5118 if (sbi->s_daxdev) {
5119 if (sb->s_blocksize == PAGE_SIZE)
5120 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
5121 else
5122 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
5123 }
5124
5125 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
5126 if (ext4_has_feature_inline_data(sb)) {
5127 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
5128 " that may contain inline data");
5129 goto failed_mount;
5130 }
5131 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
5132 ext4_msg(sb, KERN_ERR,
5133 "DAX unsupported by block device.");
5134 goto failed_mount;
5135 }
5136 }
5137
5138 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
5139 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
5140 es->s_encryption_level);
5141 goto failed_mount;
5142 }
5143
5144 has_huge_files = ext4_has_feature_huge_file(sb);
5145 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5146 has_huge_files);
5147 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5148
5149 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5150 if (ext4_has_feature_64bit(sb)) {
5151 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5152 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5153 !is_power_of_2(sbi->s_desc_size)) {
5154 ext4_msg(sb, KERN_ERR,
5155 "unsupported descriptor size %lu",
5156 sbi->s_desc_size);
5157 goto failed_mount;
5158 }
5159 } else
5160 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5161
5162 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5163 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5164
5165 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5166 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5167 if (!silent)
5168 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5169 goto failed_mount;
5170 }
5171 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5172 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5173 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5174 sbi->s_inodes_per_group);
5175 goto failed_mount;
5176 }
5177 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5178 sbi->s_inodes_per_block;
5179 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5180 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5181 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5182 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5183
5184 for (i = 0; i < 4; i++)
5185 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5186 sbi->s_def_hash_version = es->s_def_hash_version;
5187 if (ext4_has_feature_dir_index(sb)) {
5188 i = le32_to_cpu(es->s_flags);
5189 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5190 sbi->s_hash_unsigned = 3;
5191 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5192#ifdef __CHAR_UNSIGNED__
5193 if (!sb_rdonly(sb))
5194 es->s_flags |=
5195 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5196 sbi->s_hash_unsigned = 3;
5197#else
5198 if (!sb_rdonly(sb))
5199 es->s_flags |=
5200 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5201#endif
5202 }
5203 }
5204
5205 if (ext4_handle_clustersize(sb))
5206 goto failed_mount;
5207
5208 /*
5209 * Test whether we have more sectors than will fit in sector_t,
5210 * and whether the max offset is addressable by the page cache.
5211 */
5212 err = generic_check_addressable(sb->s_blocksize_bits,
5213 ext4_blocks_count(es));
5214 if (err) {
5215 ext4_msg(sb, KERN_ERR, "filesystem"
5216 " too large to mount safely on this system");
5217 goto failed_mount;
5218 }
5219
5220 if (ext4_geometry_check(sb, es))
5221 goto failed_mount;
5222
5223 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5224 if (err)
5225 goto failed_mount;
5226
5227 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5228 spin_lock_init(&sbi->s_error_lock);
5229 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
5230
5231 /* Register extent status tree shrinker */
5232 if (ext4_es_register_shrinker(sbi))
5233 goto failed_mount3;
5234
5235 sbi->s_stripe = ext4_get_stripe_size(sbi);
5236 sbi->s_extent_max_zeroout_kb = 32;
5237
5238 /*
5239 * set up enough so that it can read an inode
5240 */
5241 sb->s_op = &ext4_sops;
5242 sb->s_export_op = &ext4_export_ops;
5243 sb->s_xattr = ext4_xattr_handlers;
5244#ifdef CONFIG_FS_ENCRYPTION
5245 sb->s_cop = &ext4_cryptops;
5246#endif
5247#ifdef CONFIG_FS_VERITY
5248 sb->s_vop = &ext4_verityops;
5249#endif
5250#ifdef CONFIG_QUOTA
5251 sb->dq_op = &ext4_quota_operations;
5252 if (ext4_has_feature_quota(sb))
5253 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5254 else
5255 sb->s_qcop = &ext4_qctl_operations;
5256 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5257#endif
5258 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5259
5260 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5261 mutex_init(&sbi->s_orphan_lock);
5262
5263 ext4_fast_commit_init(sb);
5264
5265 sb->s_root = NULL;
5266
5267 needs_recovery = (es->s_last_orphan != 0 ||
5268 ext4_has_feature_orphan_present(sb) ||
5269 ext4_has_feature_journal_needs_recovery(sb));
5270
5271 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
5272 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
5273 goto failed_mount3a;
5274
5275 /*
5276 * The first inode we look at is the journal inode. Don't try
5277 * root first: it may be modified in the journal!
5278 */
5279 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5280 err = ext4_load_and_init_journal(sb, es, ctx);
5281 if (err)
5282 goto failed_mount3a;
5283 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5284 ext4_has_feature_journal_needs_recovery(sb)) {
5285 ext4_msg(sb, KERN_ERR, "required journal recovery "
5286 "suppressed and not mounted read-only");
5287 goto failed_mount3a;
5288 } else {
5289 /* Nojournal mode, all journal mount options are illegal */
5290 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5291 ext4_msg(sb, KERN_ERR, "can't mount with "
5292 "journal_async_commit, fs mounted w/o journal");
5293 goto failed_mount3a;
5294 }
5295
5296 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5297 ext4_msg(sb, KERN_ERR, "can't mount with "
5298 "journal_checksum, fs mounted w/o journal");
5299 goto failed_mount3a;
5300 }
5301 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5302 ext4_msg(sb, KERN_ERR, "can't mount with "
5303 "commit=%lu, fs mounted w/o journal",
5304 sbi->s_commit_interval / HZ);
5305 goto failed_mount3a;
5306 }
5307 if (EXT4_MOUNT_DATA_FLAGS &
5308 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5309 ext4_msg(sb, KERN_ERR, "can't mount with "
5310 "data=, fs mounted w/o journal");
5311 goto failed_mount3a;
5312 }
5313 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5314 clear_opt(sb, JOURNAL_CHECKSUM);
5315 clear_opt(sb, DATA_FLAGS);
5316 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5317 sbi->s_journal = NULL;
5318 needs_recovery = 0;
5319 }
5320
5321 if (!test_opt(sb, NO_MBCACHE)) {
5322 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5323 if (!sbi->s_ea_block_cache) {
5324 ext4_msg(sb, KERN_ERR,
5325 "Failed to create ea_block_cache");
5326 goto failed_mount_wq;
5327 }
5328
5329 if (ext4_has_feature_ea_inode(sb)) {
5330 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5331 if (!sbi->s_ea_inode_cache) {
5332 ext4_msg(sb, KERN_ERR,
5333 "Failed to create ea_inode_cache");
5334 goto failed_mount_wq;
5335 }
5336 }
5337 }
5338
5339 if (ext4_has_feature_verity(sb) && sb->s_blocksize != PAGE_SIZE) {
5340 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
5341 goto failed_mount_wq;
5342 }
5343
5344 /*
5345 * Get the # of file system overhead blocks from the
5346 * superblock if present.
5347 */
5348 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5349 /* ignore the precalculated value if it is ridiculous */
5350 if (sbi->s_overhead > ext4_blocks_count(es))
5351 sbi->s_overhead = 0;
5352 /*
5353 * If the bigalloc feature is not enabled recalculating the
5354 * overhead doesn't take long, so we might as well just redo
5355 * it to make sure we are using the correct value.
5356 */
5357 if (!ext4_has_feature_bigalloc(sb))
5358 sbi->s_overhead = 0;
5359 if (sbi->s_overhead == 0) {
5360 err = ext4_calculate_overhead(sb);
5361 if (err)
5362 goto failed_mount_wq;
5363 }
5364
5365 /*
5366 * The maximum number of concurrent works can be high and
5367 * concurrency isn't really necessary. Limit it to 1.
5368 */
5369 EXT4_SB(sb)->rsv_conversion_wq =
5370 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5371 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5372 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5373 ret = -ENOMEM;
5374 goto failed_mount4;
5375 }
5376
5377 /*
5378 * The jbd2_journal_load will have done any necessary log recovery,
5379 * so we can safely mount the rest of the filesystem now.
5380 */
5381
5382 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5383 if (IS_ERR(root)) {
5384 ext4_msg(sb, KERN_ERR, "get root inode failed");
5385 ret = PTR_ERR(root);
5386 root = NULL;
5387 goto failed_mount4;
5388 }
5389 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5390 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5391 iput(root);
5392 goto failed_mount4;
5393 }
5394
5395 sb->s_root = d_make_root(root);
5396 if (!sb->s_root) {
5397 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5398 ret = -ENOMEM;
5399 goto failed_mount4;
5400 }
5401
5402 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
5403 if (ret == -EROFS) {
5404 sb->s_flags |= SB_RDONLY;
5405 ret = 0;
5406 } else if (ret)
5407 goto failed_mount4a;
5408
5409 ext4_set_resv_clusters(sb);
5410
5411 if (test_opt(sb, BLOCK_VALIDITY)) {
5412 err = ext4_setup_system_zone(sb);
5413 if (err) {
5414 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5415 "zone (%d)", err);
5416 goto failed_mount4a;
5417 }
5418 }
5419 ext4_fc_replay_cleanup(sb);
5420
5421 ext4_ext_init(sb);
5422
5423 /*
5424 * Enable optimize_scan if number of groups is > threshold. This can be
5425 * turned off by passing "mb_optimize_scan=0". This can also be
5426 * turned on forcefully by passing "mb_optimize_scan=1".
5427 */
5428 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5429 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5430 set_opt2(sb, MB_OPTIMIZE_SCAN);
5431 else
5432 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5433 }
5434
5435 err = ext4_mb_init(sb);
5436 if (err) {
5437 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5438 err);
5439 goto failed_mount5;
5440 }
5441
5442 /*
5443 * We can only set up the journal commit callback once
5444 * mballoc is initialized
5445 */
5446 if (sbi->s_journal)
5447 sbi->s_journal->j_commit_callback =
5448 ext4_journal_commit_callback;
5449
5450 block = ext4_count_free_clusters(sb);
5451 ext4_free_blocks_count_set(sbi->s_es,
5452 EXT4_C2B(sbi, block));
5453 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5454 GFP_KERNEL);
5455 if (!err) {
5456 unsigned long freei = ext4_count_free_inodes(sb);
5457 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5458 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5459 GFP_KERNEL);
5460 }
5461 if (!err)
5462 err = percpu_counter_init(&sbi->s_dirs_counter,
5463 ext4_count_dirs(sb), GFP_KERNEL);
5464 if (!err)
5465 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5466 GFP_KERNEL);
5467 if (!err)
5468 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5469 GFP_KERNEL);
5470 if (!err)
5471 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5472
5473 if (err) {
5474 ext4_msg(sb, KERN_ERR, "insufficient memory");
5475 goto failed_mount6;
5476 }
5477
5478 if (ext4_has_feature_flex_bg(sb))
5479 if (!ext4_fill_flex_info(sb)) {
5480 ext4_msg(sb, KERN_ERR,
5481 "unable to initialize "
5482 "flex_bg meta info!");
5483 ret = -ENOMEM;
5484 goto failed_mount6;
5485 }
5486
5487 err = ext4_register_li_request(sb, first_not_zeroed);
5488 if (err)
5489 goto failed_mount6;
5490
5491 err = ext4_register_sysfs(sb);
5492 if (err)
5493 goto failed_mount7;
5494
5495 err = ext4_init_orphan_info(sb);
5496 if (err)
5497 goto failed_mount8;
5498#ifdef CONFIG_QUOTA
5499 /* Enable quota usage during mount. */
5500 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5501 err = ext4_enable_quotas(sb);
5502 if (err)
5503 goto failed_mount9;
5504 }
5505#endif /* CONFIG_QUOTA */
5506
5507 /*
5508 * Save the original bdev mapping's wb_err value which could be
5509 * used to detect the metadata async write error.
5510 */
5511 spin_lock_init(&sbi->s_bdev_wb_lock);
5512 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5513 &sbi->s_bdev_wb_err);
5514 sb->s_bdev->bd_super = sb;
5515 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5516 ext4_orphan_cleanup(sb, es);
5517 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5518 /*
5519 * Update the checksum after updating free space/inode counters and
5520 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5521 * checksum in the buffer cache until it is written out and
5522 * e2fsprogs programs trying to open a file system immediately
5523 * after it is mounted can fail.
5524 */
5525 ext4_superblock_csum_set(sb);
5526 if (needs_recovery) {
5527 ext4_msg(sb, KERN_INFO, "recovery complete");
5528 err = ext4_mark_recovery_complete(sb, es);
5529 if (err)
5530 goto failed_mount9;
5531 }
5532
5533 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5534 ext4_msg(sb, KERN_WARNING,
5535 "mounting with \"discard\" option, but the device does not support discard");
5536
5537 if (es->s_error_count)
5538 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5539
5540 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5541 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5542 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5543 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5544 atomic_set(&sbi->s_warning_count, 0);
5545 atomic_set(&sbi->s_msg_count, 0);
5546
5547 return 0;
5548
5549failed_mount9:
5550 ext4_release_orphan_info(sb);
5551failed_mount8:
5552 ext4_unregister_sysfs(sb);
5553 kobject_put(&sbi->s_kobj);
5554failed_mount7:
5555 ext4_unregister_li_request(sb);
5556failed_mount6:
5557 ext4_mb_release(sb);
5558 rcu_read_lock();
5559 flex_groups = rcu_dereference(sbi->s_flex_groups);
5560 if (flex_groups) {
5561 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5562 kvfree(flex_groups[i]);
5563 kvfree(flex_groups);
5564 }
5565 rcu_read_unlock();
5566 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5567 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5568 percpu_counter_destroy(&sbi->s_dirs_counter);
5569 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5570 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5571 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5572failed_mount5:
5573 ext4_ext_release(sb);
5574 ext4_release_system_zone(sb);
5575failed_mount4a:
5576 dput(sb->s_root);
5577 sb->s_root = NULL;
5578failed_mount4:
5579 ext4_msg(sb, KERN_ERR, "mount failed");
5580 if (EXT4_SB(sb)->rsv_conversion_wq)
5581 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5582failed_mount_wq:
5583 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5584 sbi->s_ea_inode_cache = NULL;
5585
5586 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5587 sbi->s_ea_block_cache = NULL;
5588
5589 if (sbi->s_journal) {
5590 /* flush s_error_work before journal destroy. */
5591 flush_work(&sbi->s_error_work);
5592 jbd2_journal_destroy(sbi->s_journal);
5593 sbi->s_journal = NULL;
5594 }
5595failed_mount3a:
5596 ext4_es_unregister_shrinker(sbi);
5597failed_mount3:
5598 /* flush s_error_work before sbi destroy */
5599 flush_work(&sbi->s_error_work);
5600 del_timer_sync(&sbi->s_err_report);
5601 ext4_stop_mmpd(sbi);
5602 ext4_group_desc_free(sbi);
5603failed_mount:
5604 if (sbi->s_chksum_driver)
5605 crypto_free_shash(sbi->s_chksum_driver);
5606
5607#if IS_ENABLED(CONFIG_UNICODE)
5608 utf8_unload(sb->s_encoding);
5609#endif
5610
5611#ifdef CONFIG_QUOTA
5612 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5613 kfree(get_qf_name(sb, sbi, i));
5614#endif
5615 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5616 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5617 brelse(sbi->s_sbh);
5618 ext4_blkdev_remove(sbi);
5619out_fail:
5620 sb->s_fs_info = NULL;
5621 return err ? err : ret;
5622}
5623
5624static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5625{
5626 struct ext4_fs_context *ctx = fc->fs_private;
5627 struct ext4_sb_info *sbi;
5628 const char *descr;
5629 int ret;
5630
5631 sbi = ext4_alloc_sbi(sb);
5632 if (!sbi)
5633 return -ENOMEM;
5634
5635 fc->s_fs_info = sbi;
5636
5637 /* Cleanup superblock name */
5638 strreplace(sb->s_id, '/', '!');
5639
5640 sbi->s_sb_block = 1; /* Default super block location */
5641 if (ctx->spec & EXT4_SPEC_s_sb_block)
5642 sbi->s_sb_block = ctx->s_sb_block;
5643
5644 ret = __ext4_fill_super(fc, sb);
5645 if (ret < 0)
5646 goto free_sbi;
5647
5648 if (sbi->s_journal) {
5649 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5650 descr = " journalled data mode";
5651 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5652 descr = " ordered data mode";
5653 else
5654 descr = " writeback data mode";
5655 } else
5656 descr = "out journal";
5657
5658 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5659 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU with%s. "
5660 "Quota mode: %s.", &sb->s_uuid, descr,
5661 ext4_quota_mode(sb));
5662
5663 /* Update the s_overhead_clusters if necessary */
5664 ext4_update_overhead(sb, false);
5665 return 0;
5666
5667free_sbi:
5668 ext4_free_sbi(sbi);
5669 fc->s_fs_info = NULL;
5670 return ret;
5671}
5672
5673static int ext4_get_tree(struct fs_context *fc)
5674{
5675 return get_tree_bdev(fc, ext4_fill_super);
5676}
5677
5678/*
5679 * Setup any per-fs journal parameters now. We'll do this both on
5680 * initial mount, once the journal has been initialised but before we've
5681 * done any recovery; and again on any subsequent remount.
5682 */
5683static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5684{
5685 struct ext4_sb_info *sbi = EXT4_SB(sb);
5686
5687 journal->j_commit_interval = sbi->s_commit_interval;
5688 journal->j_min_batch_time = sbi->s_min_batch_time;
5689 journal->j_max_batch_time = sbi->s_max_batch_time;
5690 ext4_fc_init(sb, journal);
5691
5692 write_lock(&journal->j_state_lock);
5693 if (test_opt(sb, BARRIER))
5694 journal->j_flags |= JBD2_BARRIER;
5695 else
5696 journal->j_flags &= ~JBD2_BARRIER;
5697 if (test_opt(sb, DATA_ERR_ABORT))
5698 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5699 else
5700 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5701 write_unlock(&journal->j_state_lock);
5702}
5703
5704static struct inode *ext4_get_journal_inode(struct super_block *sb,
5705 unsigned int journal_inum)
5706{
5707 struct inode *journal_inode;
5708
5709 /*
5710 * Test for the existence of a valid inode on disk. Bad things
5711 * happen if we iget() an unused inode, as the subsequent iput()
5712 * will try to delete it.
5713 */
5714 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5715 if (IS_ERR(journal_inode)) {
5716 ext4_msg(sb, KERN_ERR, "no journal found");
5717 return NULL;
5718 }
5719 if (!journal_inode->i_nlink) {
5720 make_bad_inode(journal_inode);
5721 iput(journal_inode);
5722 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5723 return NULL;
5724 }
5725
5726 ext4_debug("Journal inode found at %p: %lld bytes\n",
5727 journal_inode, journal_inode->i_size);
5728 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5729 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5730 iput(journal_inode);
5731 return NULL;
5732 }
5733 return journal_inode;
5734}
5735
5736static journal_t *ext4_get_journal(struct super_block *sb,
5737 unsigned int journal_inum)
5738{
5739 struct inode *journal_inode;
5740 journal_t *journal;
5741
5742 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5743 return NULL;
5744
5745 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5746 if (!journal_inode)
5747 return NULL;
5748
5749 journal = jbd2_journal_init_inode(journal_inode);
5750 if (!journal) {
5751 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5752 iput(journal_inode);
5753 return NULL;
5754 }
5755 journal->j_private = sb;
5756 ext4_init_journal_params(sb, journal);
5757 return journal;
5758}
5759
5760static journal_t *ext4_get_dev_journal(struct super_block *sb,
5761 dev_t j_dev)
5762{
5763 struct buffer_head *bh;
5764 journal_t *journal;
5765 ext4_fsblk_t start;
5766 ext4_fsblk_t len;
5767 int hblock, blocksize;
5768 ext4_fsblk_t sb_block;
5769 unsigned long offset;
5770 struct ext4_super_block *es;
5771 struct block_device *bdev;
5772
5773 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5774 return NULL;
5775
5776 bdev = ext4_blkdev_get(j_dev, sb);
5777 if (bdev == NULL)
5778 return NULL;
5779
5780 blocksize = sb->s_blocksize;
5781 hblock = bdev_logical_block_size(bdev);
5782 if (blocksize < hblock) {
5783 ext4_msg(sb, KERN_ERR,
5784 "blocksize too small for journal device");
5785 goto out_bdev;
5786 }
5787
5788 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5789 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5790 set_blocksize(bdev, blocksize);
5791 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5792 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5793 "external journal");
5794 goto out_bdev;
5795 }
5796
5797 es = (struct ext4_super_block *) (bh->b_data + offset);
5798 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5799 !(le32_to_cpu(es->s_feature_incompat) &
5800 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5801 ext4_msg(sb, KERN_ERR, "external journal has "
5802 "bad superblock");
5803 brelse(bh);
5804 goto out_bdev;
5805 }
5806
5807 if ((le32_to_cpu(es->s_feature_ro_compat) &
5808 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5809 es->s_checksum != ext4_superblock_csum(sb, es)) {
5810 ext4_msg(sb, KERN_ERR, "external journal has "
5811 "corrupt superblock");
5812 brelse(bh);
5813 goto out_bdev;
5814 }
5815
5816 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5817 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5818 brelse(bh);
5819 goto out_bdev;
5820 }
5821
5822 len = ext4_blocks_count(es);
5823 start = sb_block + 1;
5824 brelse(bh); /* we're done with the superblock */
5825
5826 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5827 start, len, blocksize);
5828 if (!journal) {
5829 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5830 goto out_bdev;
5831 }
5832 journal->j_private = sb;
5833 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5834 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5835 goto out_journal;
5836 }
5837 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5838 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5839 "user (unsupported) - %d",
5840 be32_to_cpu(journal->j_superblock->s_nr_users));
5841 goto out_journal;
5842 }
5843 EXT4_SB(sb)->s_journal_bdev = bdev;
5844 ext4_init_journal_params(sb, journal);
5845 return journal;
5846
5847out_journal:
5848 jbd2_journal_destroy(journal);
5849out_bdev:
5850 ext4_blkdev_put(bdev);
5851 return NULL;
5852}
5853
5854static int ext4_load_journal(struct super_block *sb,
5855 struct ext4_super_block *es,
5856 unsigned long journal_devnum)
5857{
5858 journal_t *journal;
5859 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5860 dev_t journal_dev;
5861 int err = 0;
5862 int really_read_only;
5863 int journal_dev_ro;
5864
5865 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5866 return -EFSCORRUPTED;
5867
5868 if (journal_devnum &&
5869 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5870 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5871 "numbers have changed");
5872 journal_dev = new_decode_dev(journal_devnum);
5873 } else
5874 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5875
5876 if (journal_inum && journal_dev) {
5877 ext4_msg(sb, KERN_ERR,
5878 "filesystem has both journal inode and journal device!");
5879 return -EINVAL;
5880 }
5881
5882 if (journal_inum) {
5883 journal = ext4_get_journal(sb, journal_inum);
5884 if (!journal)
5885 return -EINVAL;
5886 } else {
5887 journal = ext4_get_dev_journal(sb, journal_dev);
5888 if (!journal)
5889 return -EINVAL;
5890 }
5891
5892 journal_dev_ro = bdev_read_only(journal->j_dev);
5893 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5894
5895 if (journal_dev_ro && !sb_rdonly(sb)) {
5896 ext4_msg(sb, KERN_ERR,
5897 "journal device read-only, try mounting with '-o ro'");
5898 err = -EROFS;
5899 goto err_out;
5900 }
5901
5902 /*
5903 * Are we loading a blank journal or performing recovery after a
5904 * crash? For recovery, we need to check in advance whether we
5905 * can get read-write access to the device.
5906 */
5907 if (ext4_has_feature_journal_needs_recovery(sb)) {
5908 if (sb_rdonly(sb)) {
5909 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5910 "required on readonly filesystem");
5911 if (really_read_only) {
5912 ext4_msg(sb, KERN_ERR, "write access "
5913 "unavailable, cannot proceed "
5914 "(try mounting with noload)");
5915 err = -EROFS;
5916 goto err_out;
5917 }
5918 ext4_msg(sb, KERN_INFO, "write access will "
5919 "be enabled during recovery");
5920 }
5921 }
5922
5923 if (!(journal->j_flags & JBD2_BARRIER))
5924 ext4_msg(sb, KERN_INFO, "barriers disabled");
5925
5926 if (!ext4_has_feature_journal_needs_recovery(sb))
5927 err = jbd2_journal_wipe(journal, !really_read_only);
5928 if (!err) {
5929 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5930 if (save)
5931 memcpy(save, ((char *) es) +
5932 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5933 err = jbd2_journal_load(journal);
5934 if (save)
5935 memcpy(((char *) es) + EXT4_S_ERR_START,
5936 save, EXT4_S_ERR_LEN);
5937 kfree(save);
5938 }
5939
5940 if (err) {
5941 ext4_msg(sb, KERN_ERR, "error loading journal");
5942 goto err_out;
5943 }
5944
5945 EXT4_SB(sb)->s_journal = journal;
5946 err = ext4_clear_journal_err(sb, es);
5947 if (err) {
5948 EXT4_SB(sb)->s_journal = NULL;
5949 jbd2_journal_destroy(journal);
5950 return err;
5951 }
5952
5953 if (!really_read_only && journal_devnum &&
5954 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5955 es->s_journal_dev = cpu_to_le32(journal_devnum);
5956
5957 /* Make sure we flush the recovery flag to disk. */
5958 ext4_commit_super(sb);
5959 }
5960
5961 return 0;
5962
5963err_out:
5964 jbd2_journal_destroy(journal);
5965 return err;
5966}
5967
5968/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5969static void ext4_update_super(struct super_block *sb)
5970{
5971 struct ext4_sb_info *sbi = EXT4_SB(sb);
5972 struct ext4_super_block *es = sbi->s_es;
5973 struct buffer_head *sbh = sbi->s_sbh;
5974
5975 lock_buffer(sbh);
5976 /*
5977 * If the file system is mounted read-only, don't update the
5978 * superblock write time. This avoids updating the superblock
5979 * write time when we are mounting the root file system
5980 * read/only but we need to replay the journal; at that point,
5981 * for people who are east of GMT and who make their clock
5982 * tick in localtime for Windows bug-for-bug compatibility,
5983 * the clock is set in the future, and this will cause e2fsck
5984 * to complain and force a full file system check.
5985 */
5986 if (!(sb->s_flags & SB_RDONLY))
5987 ext4_update_tstamp(es, s_wtime);
5988 es->s_kbytes_written =
5989 cpu_to_le64(sbi->s_kbytes_written +
5990 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5991 sbi->s_sectors_written_start) >> 1));
5992 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5993 ext4_free_blocks_count_set(es,
5994 EXT4_C2B(sbi, percpu_counter_sum_positive(
5995 &sbi->s_freeclusters_counter)));
5996 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5997 es->s_free_inodes_count =
5998 cpu_to_le32(percpu_counter_sum_positive(
5999 &sbi->s_freeinodes_counter));
6000 /* Copy error information to the on-disk superblock */
6001 spin_lock(&sbi->s_error_lock);
6002 if (sbi->s_add_error_count > 0) {
6003 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6004 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6005 __ext4_update_tstamp(&es->s_first_error_time,
6006 &es->s_first_error_time_hi,
6007 sbi->s_first_error_time);
6008 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6009 sizeof(es->s_first_error_func));
6010 es->s_first_error_line =
6011 cpu_to_le32(sbi->s_first_error_line);
6012 es->s_first_error_ino =
6013 cpu_to_le32(sbi->s_first_error_ino);
6014 es->s_first_error_block =
6015 cpu_to_le64(sbi->s_first_error_block);
6016 es->s_first_error_errcode =
6017 ext4_errno_to_code(sbi->s_first_error_code);
6018 }
6019 __ext4_update_tstamp(&es->s_last_error_time,
6020 &es->s_last_error_time_hi,
6021 sbi->s_last_error_time);
6022 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6023 sizeof(es->s_last_error_func));
6024 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6025 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6026 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6027 es->s_last_error_errcode =
6028 ext4_errno_to_code(sbi->s_last_error_code);
6029 /*
6030 * Start the daily error reporting function if it hasn't been
6031 * started already
6032 */
6033 if (!es->s_error_count)
6034 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6035 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6036 sbi->s_add_error_count = 0;
6037 }
6038 spin_unlock(&sbi->s_error_lock);
6039
6040 ext4_superblock_csum_set(sb);
6041 unlock_buffer(sbh);
6042}
6043
6044static int ext4_commit_super(struct super_block *sb)
6045{
6046 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6047
6048 if (!sbh)
6049 return -EINVAL;
6050 if (block_device_ejected(sb))
6051 return -ENODEV;
6052
6053 ext4_update_super(sb);
6054
6055 lock_buffer(sbh);
6056 /* Buffer got discarded which means block device got invalidated */
6057 if (!buffer_mapped(sbh)) {
6058 unlock_buffer(sbh);
6059 return -EIO;
6060 }
6061
6062 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6063 /*
6064 * Oh, dear. A previous attempt to write the
6065 * superblock failed. This could happen because the
6066 * USB device was yanked out. Or it could happen to
6067 * be a transient write error and maybe the block will
6068 * be remapped. Nothing we can do but to retry the
6069 * write and hope for the best.
6070 */
6071 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6072 "superblock detected");
6073 clear_buffer_write_io_error(sbh);
6074 set_buffer_uptodate(sbh);
6075 }
6076 get_bh(sbh);
6077 /* Clear potential dirty bit if it was journalled update */
6078 clear_buffer_dirty(sbh);
6079 sbh->b_end_io = end_buffer_write_sync;
6080 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6081 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6082 wait_on_buffer(sbh);
6083 if (buffer_write_io_error(sbh)) {
6084 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6085 "superblock");
6086 clear_buffer_write_io_error(sbh);
6087 set_buffer_uptodate(sbh);
6088 return -EIO;
6089 }
6090 return 0;
6091}
6092
6093/*
6094 * Have we just finished recovery? If so, and if we are mounting (or
6095 * remounting) the filesystem readonly, then we will end up with a
6096 * consistent fs on disk. Record that fact.
6097 */
6098static int ext4_mark_recovery_complete(struct super_block *sb,
6099 struct ext4_super_block *es)
6100{
6101 int err;
6102 journal_t *journal = EXT4_SB(sb)->s_journal;
6103
6104 if (!ext4_has_feature_journal(sb)) {
6105 if (journal != NULL) {
6106 ext4_error(sb, "Journal got removed while the fs was "
6107 "mounted!");
6108 return -EFSCORRUPTED;
6109 }
6110 return 0;
6111 }
6112 jbd2_journal_lock_updates(journal);
6113 err = jbd2_journal_flush(journal, 0);
6114 if (err < 0)
6115 goto out;
6116
6117 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6118 ext4_has_feature_orphan_present(sb))) {
6119 if (!ext4_orphan_file_empty(sb)) {
6120 ext4_error(sb, "Orphan file not empty on read-only fs.");
6121 err = -EFSCORRUPTED;
6122 goto out;
6123 }
6124 ext4_clear_feature_journal_needs_recovery(sb);
6125 ext4_clear_feature_orphan_present(sb);
6126 ext4_commit_super(sb);
6127 }
6128out:
6129 jbd2_journal_unlock_updates(journal);
6130 return err;
6131}
6132
6133/*
6134 * If we are mounting (or read-write remounting) a filesystem whose journal
6135 * has recorded an error from a previous lifetime, move that error to the
6136 * main filesystem now.
6137 */
6138static int ext4_clear_journal_err(struct super_block *sb,
6139 struct ext4_super_block *es)
6140{
6141 journal_t *journal;
6142 int j_errno;
6143 const char *errstr;
6144
6145 if (!ext4_has_feature_journal(sb)) {
6146 ext4_error(sb, "Journal got removed while the fs was mounted!");
6147 return -EFSCORRUPTED;
6148 }
6149
6150 journal = EXT4_SB(sb)->s_journal;
6151
6152 /*
6153 * Now check for any error status which may have been recorded in the
6154 * journal by a prior ext4_error() or ext4_abort()
6155 */
6156
6157 j_errno = jbd2_journal_errno(journal);
6158 if (j_errno) {
6159 char nbuf[16];
6160
6161 errstr = ext4_decode_error(sb, j_errno, nbuf);
6162 ext4_warning(sb, "Filesystem error recorded "
6163 "from previous mount: %s", errstr);
6164 ext4_warning(sb, "Marking fs in need of filesystem check.");
6165
6166 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6167 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6168 ext4_commit_super(sb);
6169
6170 jbd2_journal_clear_err(journal);
6171 jbd2_journal_update_sb_errno(journal);
6172 }
6173 return 0;
6174}
6175
6176/*
6177 * Force the running and committing transactions to commit,
6178 * and wait on the commit.
6179 */
6180int ext4_force_commit(struct super_block *sb)
6181{
6182 journal_t *journal;
6183
6184 if (sb_rdonly(sb))
6185 return 0;
6186
6187 journal = EXT4_SB(sb)->s_journal;
6188 return ext4_journal_force_commit(journal);
6189}
6190
6191static int ext4_sync_fs(struct super_block *sb, int wait)
6192{
6193 int ret = 0;
6194 tid_t target;
6195 bool needs_barrier = false;
6196 struct ext4_sb_info *sbi = EXT4_SB(sb);
6197
6198 if (unlikely(ext4_forced_shutdown(sbi)))
6199 return 0;
6200
6201 trace_ext4_sync_fs(sb, wait);
6202 flush_workqueue(sbi->rsv_conversion_wq);
6203 /*
6204 * Writeback quota in non-journalled quota case - journalled quota has
6205 * no dirty dquots
6206 */
6207 dquot_writeback_dquots(sb, -1);
6208 /*
6209 * Data writeback is possible w/o journal transaction, so barrier must
6210 * being sent at the end of the function. But we can skip it if
6211 * transaction_commit will do it for us.
6212 */
6213 if (sbi->s_journal) {
6214 target = jbd2_get_latest_transaction(sbi->s_journal);
6215 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6216 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6217 needs_barrier = true;
6218
6219 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6220 if (wait)
6221 ret = jbd2_log_wait_commit(sbi->s_journal,
6222 target);
6223 }
6224 } else if (wait && test_opt(sb, BARRIER))
6225 needs_barrier = true;
6226 if (needs_barrier) {
6227 int err;
6228 err = blkdev_issue_flush(sb->s_bdev);
6229 if (!ret)
6230 ret = err;
6231 }
6232
6233 return ret;
6234}
6235
6236/*
6237 * LVM calls this function before a (read-only) snapshot is created. This
6238 * gives us a chance to flush the journal completely and mark the fs clean.
6239 *
6240 * Note that only this function cannot bring a filesystem to be in a clean
6241 * state independently. It relies on upper layer to stop all data & metadata
6242 * modifications.
6243 */
6244static int ext4_freeze(struct super_block *sb)
6245{
6246 int error = 0;
6247 journal_t *journal;
6248
6249 if (sb_rdonly(sb))
6250 return 0;
6251
6252 journal = EXT4_SB(sb)->s_journal;
6253
6254 if (journal) {
6255 /* Now we set up the journal barrier. */
6256 jbd2_journal_lock_updates(journal);
6257
6258 /*
6259 * Don't clear the needs_recovery flag if we failed to
6260 * flush the journal.
6261 */
6262 error = jbd2_journal_flush(journal, 0);
6263 if (error < 0)
6264 goto out;
6265
6266 /* Journal blocked and flushed, clear needs_recovery flag. */
6267 ext4_clear_feature_journal_needs_recovery(sb);
6268 if (ext4_orphan_file_empty(sb))
6269 ext4_clear_feature_orphan_present(sb);
6270 }
6271
6272 error = ext4_commit_super(sb);
6273out:
6274 if (journal)
6275 /* we rely on upper layer to stop further updates */
6276 jbd2_journal_unlock_updates(journal);
6277 return error;
6278}
6279
6280/*
6281 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6282 * flag here, even though the filesystem is not technically dirty yet.
6283 */
6284static int ext4_unfreeze(struct super_block *sb)
6285{
6286 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6287 return 0;
6288
6289 if (EXT4_SB(sb)->s_journal) {
6290 /* Reset the needs_recovery flag before the fs is unlocked. */
6291 ext4_set_feature_journal_needs_recovery(sb);
6292 if (ext4_has_feature_orphan_file(sb))
6293 ext4_set_feature_orphan_present(sb);
6294 }
6295
6296 ext4_commit_super(sb);
6297 return 0;
6298}
6299
6300/*
6301 * Structure to save mount options for ext4_remount's benefit
6302 */
6303struct ext4_mount_options {
6304 unsigned long s_mount_opt;
6305 unsigned long s_mount_opt2;
6306 kuid_t s_resuid;
6307 kgid_t s_resgid;
6308 unsigned long s_commit_interval;
6309 u32 s_min_batch_time, s_max_batch_time;
6310#ifdef CONFIG_QUOTA
6311 int s_jquota_fmt;
6312 char *s_qf_names[EXT4_MAXQUOTAS];
6313#endif
6314};
6315
6316static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6317{
6318 struct ext4_fs_context *ctx = fc->fs_private;
6319 struct ext4_super_block *es;
6320 struct ext4_sb_info *sbi = EXT4_SB(sb);
6321 unsigned long old_sb_flags;
6322 struct ext4_mount_options old_opts;
6323 ext4_group_t g;
6324 int err = 0;
6325#ifdef CONFIG_QUOTA
6326 int enable_quota = 0;
6327 int i, j;
6328 char *to_free[EXT4_MAXQUOTAS];
6329#endif
6330
6331
6332 /* Store the original options */
6333 old_sb_flags = sb->s_flags;
6334 old_opts.s_mount_opt = sbi->s_mount_opt;
6335 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6336 old_opts.s_resuid = sbi->s_resuid;
6337 old_opts.s_resgid = sbi->s_resgid;
6338 old_opts.s_commit_interval = sbi->s_commit_interval;
6339 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6340 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6341#ifdef CONFIG_QUOTA
6342 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6343 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6344 if (sbi->s_qf_names[i]) {
6345 char *qf_name = get_qf_name(sb, sbi, i);
6346
6347 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6348 if (!old_opts.s_qf_names[i]) {
6349 for (j = 0; j < i; j++)
6350 kfree(old_opts.s_qf_names[j]);
6351 return -ENOMEM;
6352 }
6353 } else
6354 old_opts.s_qf_names[i] = NULL;
6355#endif
6356 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6357 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6358 ctx->journal_ioprio =
6359 sbi->s_journal->j_task->io_context->ioprio;
6360 else
6361 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6362
6363 }
6364
6365 ext4_apply_options(fc, sb);
6366
6367 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6368 test_opt(sb, JOURNAL_CHECKSUM)) {
6369 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6370 "during remount not supported; ignoring");
6371 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6372 }
6373
6374 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6375 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6376 ext4_msg(sb, KERN_ERR, "can't mount with "
6377 "both data=journal and delalloc");
6378 err = -EINVAL;
6379 goto restore_opts;
6380 }
6381 if (test_opt(sb, DIOREAD_NOLOCK)) {
6382 ext4_msg(sb, KERN_ERR, "can't mount with "
6383 "both data=journal and dioread_nolock");
6384 err = -EINVAL;
6385 goto restore_opts;
6386 }
6387 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6388 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6389 ext4_msg(sb, KERN_ERR, "can't mount with "
6390 "journal_async_commit in data=ordered mode");
6391 err = -EINVAL;
6392 goto restore_opts;
6393 }
6394 }
6395
6396 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6397 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6398 err = -EINVAL;
6399 goto restore_opts;
6400 }
6401
6402 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6403 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6404
6405 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6406 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6407
6408 es = sbi->s_es;
6409
6410 if (sbi->s_journal) {
6411 ext4_init_journal_params(sb, sbi->s_journal);
6412 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6413 }
6414
6415 /* Flush outstanding errors before changing fs state */
6416 flush_work(&sbi->s_error_work);
6417
6418 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6419 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6420 err = -EROFS;
6421 goto restore_opts;
6422 }
6423
6424 if (fc->sb_flags & SB_RDONLY) {
6425 err = sync_filesystem(sb);
6426 if (err < 0)
6427 goto restore_opts;
6428 err = dquot_suspend(sb, -1);
6429 if (err < 0)
6430 goto restore_opts;
6431
6432 /*
6433 * First of all, the unconditional stuff we have to do
6434 * to disable replay of the journal when we next remount
6435 */
6436 sb->s_flags |= SB_RDONLY;
6437
6438 /*
6439 * OK, test if we are remounting a valid rw partition
6440 * readonly, and if so set the rdonly flag and then
6441 * mark the partition as valid again.
6442 */
6443 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6444 (sbi->s_mount_state & EXT4_VALID_FS))
6445 es->s_state = cpu_to_le16(sbi->s_mount_state);
6446
6447 if (sbi->s_journal) {
6448 /*
6449 * We let remount-ro finish even if marking fs
6450 * as clean failed...
6451 */
6452 ext4_mark_recovery_complete(sb, es);
6453 }
6454 } else {
6455 /* Make sure we can mount this feature set readwrite */
6456 if (ext4_has_feature_readonly(sb) ||
6457 !ext4_feature_set_ok(sb, 0)) {
6458 err = -EROFS;
6459 goto restore_opts;
6460 }
6461 /*
6462 * Make sure the group descriptor checksums
6463 * are sane. If they aren't, refuse to remount r/w.
6464 */
6465 for (g = 0; g < sbi->s_groups_count; g++) {
6466 struct ext4_group_desc *gdp =
6467 ext4_get_group_desc(sb, g, NULL);
6468
6469 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6470 ext4_msg(sb, KERN_ERR,
6471 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6472 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6473 le16_to_cpu(gdp->bg_checksum));
6474 err = -EFSBADCRC;
6475 goto restore_opts;
6476 }
6477 }
6478
6479 /*
6480 * If we have an unprocessed orphan list hanging
6481 * around from a previously readonly bdev mount,
6482 * require a full umount/remount for now.
6483 */
6484 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6485 ext4_msg(sb, KERN_WARNING, "Couldn't "
6486 "remount RDWR because of unprocessed "
6487 "orphan inode list. Please "
6488 "umount/remount instead");
6489 err = -EINVAL;
6490 goto restore_opts;
6491 }
6492
6493 /*
6494 * Mounting a RDONLY partition read-write, so reread
6495 * and store the current valid flag. (It may have
6496 * been changed by e2fsck since we originally mounted
6497 * the partition.)
6498 */
6499 if (sbi->s_journal) {
6500 err = ext4_clear_journal_err(sb, es);
6501 if (err)
6502 goto restore_opts;
6503 }
6504 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6505 ~EXT4_FC_REPLAY);
6506
6507 err = ext4_setup_super(sb, es, 0);
6508 if (err)
6509 goto restore_opts;
6510
6511 sb->s_flags &= ~SB_RDONLY;
6512 if (ext4_has_feature_mmp(sb))
6513 if (ext4_multi_mount_protect(sb,
6514 le64_to_cpu(es->s_mmp_block))) {
6515 err = -EROFS;
6516 goto restore_opts;
6517 }
6518#ifdef CONFIG_QUOTA
6519 enable_quota = 1;
6520#endif
6521 }
6522 }
6523
6524 /*
6525 * Reinitialize lazy itable initialization thread based on
6526 * current settings
6527 */
6528 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6529 ext4_unregister_li_request(sb);
6530 else {
6531 ext4_group_t first_not_zeroed;
6532 first_not_zeroed = ext4_has_uninit_itable(sb);
6533 ext4_register_li_request(sb, first_not_zeroed);
6534 }
6535
6536 /*
6537 * Handle creation of system zone data early because it can fail.
6538 * Releasing of existing data is done when we are sure remount will
6539 * succeed.
6540 */
6541 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6542 err = ext4_setup_system_zone(sb);
6543 if (err)
6544 goto restore_opts;
6545 }
6546
6547 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6548 err = ext4_commit_super(sb);
6549 if (err)
6550 goto restore_opts;
6551 }
6552
6553#ifdef CONFIG_QUOTA
6554 /* Release old quota file names */
6555 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6556 kfree(old_opts.s_qf_names[i]);
6557 if (enable_quota) {
6558 if (sb_any_quota_suspended(sb))
6559 dquot_resume(sb, -1);
6560 else if (ext4_has_feature_quota(sb)) {
6561 err = ext4_enable_quotas(sb);
6562 if (err)
6563 goto restore_opts;
6564 }
6565 }
6566#endif
6567 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6568 ext4_release_system_zone(sb);
6569
6570 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6571 ext4_stop_mmpd(sbi);
6572
6573 return 0;
6574
6575restore_opts:
6576 sb->s_flags = old_sb_flags;
6577 sbi->s_mount_opt = old_opts.s_mount_opt;
6578 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6579 sbi->s_resuid = old_opts.s_resuid;
6580 sbi->s_resgid = old_opts.s_resgid;
6581 sbi->s_commit_interval = old_opts.s_commit_interval;
6582 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6583 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6584 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6585 ext4_release_system_zone(sb);
6586#ifdef CONFIG_QUOTA
6587 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6588 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6589 to_free[i] = get_qf_name(sb, sbi, i);
6590 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6591 }
6592 synchronize_rcu();
6593 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6594 kfree(to_free[i]);
6595#endif
6596 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6597 ext4_stop_mmpd(sbi);
6598 return err;
6599}
6600
6601static int ext4_reconfigure(struct fs_context *fc)
6602{
6603 struct super_block *sb = fc->root->d_sb;
6604 int ret;
6605
6606 fc->s_fs_info = EXT4_SB(sb);
6607
6608 ret = ext4_check_opt_consistency(fc, sb);
6609 if (ret < 0)
6610 return ret;
6611
6612 ret = __ext4_remount(fc, sb);
6613 if (ret < 0)
6614 return ret;
6615
6616 ext4_msg(sb, KERN_INFO, "re-mounted %pU. Quota mode: %s.",
6617 &sb->s_uuid, ext4_quota_mode(sb));
6618
6619 return 0;
6620}
6621
6622#ifdef CONFIG_QUOTA
6623static int ext4_statfs_project(struct super_block *sb,
6624 kprojid_t projid, struct kstatfs *buf)
6625{
6626 struct kqid qid;
6627 struct dquot *dquot;
6628 u64 limit;
6629 u64 curblock;
6630
6631 qid = make_kqid_projid(projid);
6632 dquot = dqget(sb, qid);
6633 if (IS_ERR(dquot))
6634 return PTR_ERR(dquot);
6635 spin_lock(&dquot->dq_dqb_lock);
6636
6637 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6638 dquot->dq_dqb.dqb_bhardlimit);
6639 limit >>= sb->s_blocksize_bits;
6640
6641 if (limit && buf->f_blocks > limit) {
6642 curblock = (dquot->dq_dqb.dqb_curspace +
6643 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6644 buf->f_blocks = limit;
6645 buf->f_bfree = buf->f_bavail =
6646 (buf->f_blocks > curblock) ?
6647 (buf->f_blocks - curblock) : 0;
6648 }
6649
6650 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6651 dquot->dq_dqb.dqb_ihardlimit);
6652 if (limit && buf->f_files > limit) {
6653 buf->f_files = limit;
6654 buf->f_ffree =
6655 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6656 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6657 }
6658
6659 spin_unlock(&dquot->dq_dqb_lock);
6660 dqput(dquot);
6661 return 0;
6662}
6663#endif
6664
6665static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6666{
6667 struct super_block *sb = dentry->d_sb;
6668 struct ext4_sb_info *sbi = EXT4_SB(sb);
6669 struct ext4_super_block *es = sbi->s_es;
6670 ext4_fsblk_t overhead = 0, resv_blocks;
6671 s64 bfree;
6672 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6673
6674 if (!test_opt(sb, MINIX_DF))
6675 overhead = sbi->s_overhead;
6676
6677 buf->f_type = EXT4_SUPER_MAGIC;
6678 buf->f_bsize = sb->s_blocksize;
6679 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6680 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6681 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6682 /* prevent underflow in case that few free space is available */
6683 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6684 buf->f_bavail = buf->f_bfree -
6685 (ext4_r_blocks_count(es) + resv_blocks);
6686 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6687 buf->f_bavail = 0;
6688 buf->f_files = le32_to_cpu(es->s_inodes_count);
6689 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6690 buf->f_namelen = EXT4_NAME_LEN;
6691 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6692
6693#ifdef CONFIG_QUOTA
6694 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6695 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6696 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6697#endif
6698 return 0;
6699}
6700
6701
6702#ifdef CONFIG_QUOTA
6703
6704/*
6705 * Helper functions so that transaction is started before we acquire dqio_sem
6706 * to keep correct lock ordering of transaction > dqio_sem
6707 */
6708static inline struct inode *dquot_to_inode(struct dquot *dquot)
6709{
6710 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6711}
6712
6713static int ext4_write_dquot(struct dquot *dquot)
6714{
6715 int ret, err;
6716 handle_t *handle;
6717 struct inode *inode;
6718
6719 inode = dquot_to_inode(dquot);
6720 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6721 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6722 if (IS_ERR(handle))
6723 return PTR_ERR(handle);
6724 ret = dquot_commit(dquot);
6725 err = ext4_journal_stop(handle);
6726 if (!ret)
6727 ret = err;
6728 return ret;
6729}
6730
6731static int ext4_acquire_dquot(struct dquot *dquot)
6732{
6733 int ret, err;
6734 handle_t *handle;
6735
6736 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6737 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6738 if (IS_ERR(handle))
6739 return PTR_ERR(handle);
6740 ret = dquot_acquire(dquot);
6741 err = ext4_journal_stop(handle);
6742 if (!ret)
6743 ret = err;
6744 return ret;
6745}
6746
6747static int ext4_release_dquot(struct dquot *dquot)
6748{
6749 int ret, err;
6750 handle_t *handle;
6751
6752 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6753 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6754 if (IS_ERR(handle)) {
6755 /* Release dquot anyway to avoid endless cycle in dqput() */
6756 dquot_release(dquot);
6757 return PTR_ERR(handle);
6758 }
6759 ret = dquot_release(dquot);
6760 err = ext4_journal_stop(handle);
6761 if (!ret)
6762 ret = err;
6763 return ret;
6764}
6765
6766static int ext4_mark_dquot_dirty(struct dquot *dquot)
6767{
6768 struct super_block *sb = dquot->dq_sb;
6769
6770 if (ext4_is_quota_journalled(sb)) {
6771 dquot_mark_dquot_dirty(dquot);
6772 return ext4_write_dquot(dquot);
6773 } else {
6774 return dquot_mark_dquot_dirty(dquot);
6775 }
6776}
6777
6778static int ext4_write_info(struct super_block *sb, int type)
6779{
6780 int ret, err;
6781 handle_t *handle;
6782
6783 /* Data block + inode block */
6784 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6785 if (IS_ERR(handle))
6786 return PTR_ERR(handle);
6787 ret = dquot_commit_info(sb, type);
6788 err = ext4_journal_stop(handle);
6789 if (!ret)
6790 ret = err;
6791 return ret;
6792}
6793
6794static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6795{
6796 struct ext4_inode_info *ei = EXT4_I(inode);
6797
6798 /* The first argument of lockdep_set_subclass has to be
6799 * *exactly* the same as the argument to init_rwsem() --- in
6800 * this case, in init_once() --- or lockdep gets unhappy
6801 * because the name of the lock is set using the
6802 * stringification of the argument to init_rwsem().
6803 */
6804 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6805 lockdep_set_subclass(&ei->i_data_sem, subclass);
6806}
6807
6808/*
6809 * Standard function to be called on quota_on
6810 */
6811static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6812 const struct path *path)
6813{
6814 int err;
6815
6816 if (!test_opt(sb, QUOTA))
6817 return -EINVAL;
6818
6819 /* Quotafile not on the same filesystem? */
6820 if (path->dentry->d_sb != sb)
6821 return -EXDEV;
6822
6823 /* Quota already enabled for this file? */
6824 if (IS_NOQUOTA(d_inode(path->dentry)))
6825 return -EBUSY;
6826
6827 /* Journaling quota? */
6828 if (EXT4_SB(sb)->s_qf_names[type]) {
6829 /* Quotafile not in fs root? */
6830 if (path->dentry->d_parent != sb->s_root)
6831 ext4_msg(sb, KERN_WARNING,
6832 "Quota file not on filesystem root. "
6833 "Journaled quota will not work");
6834 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6835 } else {
6836 /*
6837 * Clear the flag just in case mount options changed since
6838 * last time.
6839 */
6840 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6841 }
6842
6843 /*
6844 * When we journal data on quota file, we have to flush journal to see
6845 * all updates to the file when we bypass pagecache...
6846 */
6847 if (EXT4_SB(sb)->s_journal &&
6848 ext4_should_journal_data(d_inode(path->dentry))) {
6849 /*
6850 * We don't need to lock updates but journal_flush() could
6851 * otherwise be livelocked...
6852 */
6853 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6854 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6855 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6856 if (err)
6857 return err;
6858 }
6859
6860 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6861 err = dquot_quota_on(sb, type, format_id, path);
6862 if (!err) {
6863 struct inode *inode = d_inode(path->dentry);
6864 handle_t *handle;
6865
6866 /*
6867 * Set inode flags to prevent userspace from messing with quota
6868 * files. If this fails, we return success anyway since quotas
6869 * are already enabled and this is not a hard failure.
6870 */
6871 inode_lock(inode);
6872 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6873 if (IS_ERR(handle))
6874 goto unlock_inode;
6875 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6876 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6877 S_NOATIME | S_IMMUTABLE);
6878 err = ext4_mark_inode_dirty(handle, inode);
6879 ext4_journal_stop(handle);
6880 unlock_inode:
6881 inode_unlock(inode);
6882 if (err)
6883 dquot_quota_off(sb, type);
6884 }
6885 if (err)
6886 lockdep_set_quota_inode(path->dentry->d_inode,
6887 I_DATA_SEM_NORMAL);
6888 return err;
6889}
6890
6891static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6892{
6893 switch (type) {
6894 case USRQUOTA:
6895 return qf_inum == EXT4_USR_QUOTA_INO;
6896 case GRPQUOTA:
6897 return qf_inum == EXT4_GRP_QUOTA_INO;
6898 case PRJQUOTA:
6899 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6900 default:
6901 BUG();
6902 }
6903}
6904
6905static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6906 unsigned int flags)
6907{
6908 int err;
6909 struct inode *qf_inode;
6910 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6911 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6912 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6913 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6914 };
6915
6916 BUG_ON(!ext4_has_feature_quota(sb));
6917
6918 if (!qf_inums[type])
6919 return -EPERM;
6920
6921 if (!ext4_check_quota_inum(type, qf_inums[type])) {
6922 ext4_error(sb, "Bad quota inum: %lu, type: %d",
6923 qf_inums[type], type);
6924 return -EUCLEAN;
6925 }
6926
6927 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6928 if (IS_ERR(qf_inode)) {
6929 ext4_error(sb, "Bad quota inode: %lu, type: %d",
6930 qf_inums[type], type);
6931 return PTR_ERR(qf_inode);
6932 }
6933
6934 /* Don't account quota for quota files to avoid recursion */
6935 qf_inode->i_flags |= S_NOQUOTA;
6936 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6937 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6938 if (err)
6939 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6940 iput(qf_inode);
6941
6942 return err;
6943}
6944
6945/* Enable usage tracking for all quota types. */
6946int ext4_enable_quotas(struct super_block *sb)
6947{
6948 int type, err = 0;
6949 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6950 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6951 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6952 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6953 };
6954 bool quota_mopt[EXT4_MAXQUOTAS] = {
6955 test_opt(sb, USRQUOTA),
6956 test_opt(sb, GRPQUOTA),
6957 test_opt(sb, PRJQUOTA),
6958 };
6959
6960 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6961 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6962 if (qf_inums[type]) {
6963 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6964 DQUOT_USAGE_ENABLED |
6965 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6966 if (err) {
6967 ext4_warning(sb,
6968 "Failed to enable quota tracking "
6969 "(type=%d, err=%d, ino=%lu). "
6970 "Please run e2fsck to fix.", type,
6971 err, qf_inums[type]);
6972 for (type--; type >= 0; type--) {
6973 struct inode *inode;
6974
6975 inode = sb_dqopt(sb)->files[type];
6976 if (inode)
6977 inode = igrab(inode);
6978 dquot_quota_off(sb, type);
6979 if (inode) {
6980 lockdep_set_quota_inode(inode,
6981 I_DATA_SEM_NORMAL);
6982 iput(inode);
6983 }
6984 }
6985
6986 return err;
6987 }
6988 }
6989 }
6990 return 0;
6991}
6992
6993static int ext4_quota_off(struct super_block *sb, int type)
6994{
6995 struct inode *inode = sb_dqopt(sb)->files[type];
6996 handle_t *handle;
6997 int err;
6998
6999 /* Force all delayed allocation blocks to be allocated.
7000 * Caller already holds s_umount sem */
7001 if (test_opt(sb, DELALLOC))
7002 sync_filesystem(sb);
7003
7004 if (!inode || !igrab(inode))
7005 goto out;
7006
7007 err = dquot_quota_off(sb, type);
7008 if (err || ext4_has_feature_quota(sb))
7009 goto out_put;
7010
7011 inode_lock(inode);
7012 /*
7013 * Update modification times of quota files when userspace can
7014 * start looking at them. If we fail, we return success anyway since
7015 * this is not a hard failure and quotas are already disabled.
7016 */
7017 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7018 if (IS_ERR(handle)) {
7019 err = PTR_ERR(handle);
7020 goto out_unlock;
7021 }
7022 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7023 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7024 inode->i_mtime = inode->i_ctime = current_time(inode);
7025 err = ext4_mark_inode_dirty(handle, inode);
7026 ext4_journal_stop(handle);
7027out_unlock:
7028 inode_unlock(inode);
7029out_put:
7030 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7031 iput(inode);
7032 return err;
7033out:
7034 return dquot_quota_off(sb, type);
7035}
7036
7037/* Read data from quotafile - avoid pagecache and such because we cannot afford
7038 * acquiring the locks... As quota files are never truncated and quota code
7039 * itself serializes the operations (and no one else should touch the files)
7040 * we don't have to be afraid of races */
7041static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7042 size_t len, loff_t off)
7043{
7044 struct inode *inode = sb_dqopt(sb)->files[type];
7045 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7046 int offset = off & (sb->s_blocksize - 1);
7047 int tocopy;
7048 size_t toread;
7049 struct buffer_head *bh;
7050 loff_t i_size = i_size_read(inode);
7051
7052 if (off > i_size)
7053 return 0;
7054 if (off+len > i_size)
7055 len = i_size-off;
7056 toread = len;
7057 while (toread > 0) {
7058 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7059 bh = ext4_bread(NULL, inode, blk, 0);
7060 if (IS_ERR(bh))
7061 return PTR_ERR(bh);
7062 if (!bh) /* A hole? */
7063 memset(data, 0, tocopy);
7064 else
7065 memcpy(data, bh->b_data+offset, tocopy);
7066 brelse(bh);
7067 offset = 0;
7068 toread -= tocopy;
7069 data += tocopy;
7070 blk++;
7071 }
7072 return len;
7073}
7074
7075/* Write to quotafile (we know the transaction is already started and has
7076 * enough credits) */
7077static ssize_t ext4_quota_write(struct super_block *sb, int type,
7078 const char *data, size_t len, loff_t off)
7079{
7080 struct inode *inode = sb_dqopt(sb)->files[type];
7081 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7082 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7083 int retries = 0;
7084 struct buffer_head *bh;
7085 handle_t *handle = journal_current_handle();
7086
7087 if (!handle) {
7088 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7089 " cancelled because transaction is not started",
7090 (unsigned long long)off, (unsigned long long)len);
7091 return -EIO;
7092 }
7093 /*
7094 * Since we account only one data block in transaction credits,
7095 * then it is impossible to cross a block boundary.
7096 */
7097 if (sb->s_blocksize - offset < len) {
7098 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7099 " cancelled because not block aligned",
7100 (unsigned long long)off, (unsigned long long)len);
7101 return -EIO;
7102 }
7103
7104 do {
7105 bh = ext4_bread(handle, inode, blk,
7106 EXT4_GET_BLOCKS_CREATE |
7107 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7108 } while (PTR_ERR(bh) == -ENOSPC &&
7109 ext4_should_retry_alloc(inode->i_sb, &retries));
7110 if (IS_ERR(bh))
7111 return PTR_ERR(bh);
7112 if (!bh)
7113 goto out;
7114 BUFFER_TRACE(bh, "get write access");
7115 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7116 if (err) {
7117 brelse(bh);
7118 return err;
7119 }
7120 lock_buffer(bh);
7121 memcpy(bh->b_data+offset, data, len);
7122 flush_dcache_page(bh->b_page);
7123 unlock_buffer(bh);
7124 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7125 brelse(bh);
7126out:
7127 if (inode->i_size < off + len) {
7128 i_size_write(inode, off + len);
7129 EXT4_I(inode)->i_disksize = inode->i_size;
7130 err2 = ext4_mark_inode_dirty(handle, inode);
7131 if (unlikely(err2 && !err))
7132 err = err2;
7133 }
7134 return err ? err : len;
7135}
7136#endif
7137
7138#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7139static inline void register_as_ext2(void)
7140{
7141 int err = register_filesystem(&ext2_fs_type);
7142 if (err)
7143 printk(KERN_WARNING
7144 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7145}
7146
7147static inline void unregister_as_ext2(void)
7148{
7149 unregister_filesystem(&ext2_fs_type);
7150}
7151
7152static inline int ext2_feature_set_ok(struct super_block *sb)
7153{
7154 if (ext4_has_unknown_ext2_incompat_features(sb))
7155 return 0;
7156 if (sb_rdonly(sb))
7157 return 1;
7158 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7159 return 0;
7160 return 1;
7161}
7162#else
7163static inline void register_as_ext2(void) { }
7164static inline void unregister_as_ext2(void) { }
7165static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7166#endif
7167
7168static inline void register_as_ext3(void)
7169{
7170 int err = register_filesystem(&ext3_fs_type);
7171 if (err)
7172 printk(KERN_WARNING
7173 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7174}
7175
7176static inline void unregister_as_ext3(void)
7177{
7178 unregister_filesystem(&ext3_fs_type);
7179}
7180
7181static inline int ext3_feature_set_ok(struct super_block *sb)
7182{
7183 if (ext4_has_unknown_ext3_incompat_features(sb))
7184 return 0;
7185 if (!ext4_has_feature_journal(sb))
7186 return 0;
7187 if (sb_rdonly(sb))
7188 return 1;
7189 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7190 return 0;
7191 return 1;
7192}
7193
7194static struct file_system_type ext4_fs_type = {
7195 .owner = THIS_MODULE,
7196 .name = "ext4",
7197 .init_fs_context = ext4_init_fs_context,
7198 .parameters = ext4_param_specs,
7199 .kill_sb = kill_block_super,
7200 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7201};
7202MODULE_ALIAS_FS("ext4");
7203
7204/* Shared across all ext4 file systems */
7205wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7206
7207static int __init ext4_init_fs(void)
7208{
7209 int i, err;
7210
7211 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7212 ext4_li_info = NULL;
7213
7214 /* Build-time check for flags consistency */
7215 ext4_check_flag_values();
7216
7217 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7218 init_waitqueue_head(&ext4__ioend_wq[i]);
7219
7220 err = ext4_init_es();
7221 if (err)
7222 return err;
7223
7224 err = ext4_init_pending();
7225 if (err)
7226 goto out7;
7227
7228 err = ext4_init_post_read_processing();
7229 if (err)
7230 goto out6;
7231
7232 err = ext4_init_pageio();
7233 if (err)
7234 goto out5;
7235
7236 err = ext4_init_system_zone();
7237 if (err)
7238 goto out4;
7239
7240 err = ext4_init_sysfs();
7241 if (err)
7242 goto out3;
7243
7244 err = ext4_init_mballoc();
7245 if (err)
7246 goto out2;
7247 err = init_inodecache();
7248 if (err)
7249 goto out1;
7250
7251 err = ext4_fc_init_dentry_cache();
7252 if (err)
7253 goto out05;
7254
7255 register_as_ext3();
7256 register_as_ext2();
7257 err = register_filesystem(&ext4_fs_type);
7258 if (err)
7259 goto out;
7260
7261 return 0;
7262out:
7263 unregister_as_ext2();
7264 unregister_as_ext3();
7265 ext4_fc_destroy_dentry_cache();
7266out05:
7267 destroy_inodecache();
7268out1:
7269 ext4_exit_mballoc();
7270out2:
7271 ext4_exit_sysfs();
7272out3:
7273 ext4_exit_system_zone();
7274out4:
7275 ext4_exit_pageio();
7276out5:
7277 ext4_exit_post_read_processing();
7278out6:
7279 ext4_exit_pending();
7280out7:
7281 ext4_exit_es();
7282
7283 return err;
7284}
7285
7286static void __exit ext4_exit_fs(void)
7287{
7288 ext4_destroy_lazyinit_thread();
7289 unregister_as_ext2();
7290 unregister_as_ext3();
7291 unregister_filesystem(&ext4_fs_type);
7292 ext4_fc_destroy_dentry_cache();
7293 destroy_inodecache();
7294 ext4_exit_mballoc();
7295 ext4_exit_sysfs();
7296 ext4_exit_system_zone();
7297 ext4_exit_pageio();
7298 ext4_exit_post_read_processing();
7299 ext4_exit_es();
7300 ext4_exit_pending();
7301}
7302
7303MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7304MODULE_DESCRIPTION("Fourth Extended Filesystem");
7305MODULE_LICENSE("GPL");
7306MODULE_SOFTDEP("pre: crc32c");
7307module_init(ext4_init_fs)
7308module_exit(ext4_exit_fs)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/uaccess.h>
43#include <linux/iversion.h>
44#include <linux/unicode.h>
45#include <linux/part_stat.h>
46#include <linux/kthread.h>
47#include <linux/freezer.h>
48#include <linux/fsnotify.h>
49#include <linux/fs_context.h>
50#include <linux/fs_parser.h>
51
52#include "ext4.h"
53#include "ext4_extents.h" /* Needed for trace points definition */
54#include "ext4_jbd2.h"
55#include "xattr.h"
56#include "acl.h"
57#include "mballoc.h"
58#include "fsmap.h"
59
60#define CREATE_TRACE_POINTS
61#include <trace/events/ext4.h>
62
63static struct ext4_lazy_init *ext4_li_info;
64static DEFINE_MUTEX(ext4_li_mtx);
65static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70static void ext4_update_super(struct super_block *sb);
71static int ext4_commit_super(struct super_block *sb);
72static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76static int ext4_sync_fs(struct super_block *sb, int wait);
77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78static int ext4_unfreeze(struct super_block *sb);
79static int ext4_freeze(struct super_block *sb);
80static inline int ext2_feature_set_ok(struct super_block *sb);
81static inline int ext3_feature_set_ok(struct super_block *sb);
82static void ext4_destroy_lazyinit_thread(void);
83static void ext4_unregister_li_request(struct super_block *sb);
84static void ext4_clear_request_list(void);
85static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87static int ext4_validate_options(struct fs_context *fc);
88static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92static int ext4_get_tree(struct fs_context *fc);
93static int ext4_reconfigure(struct fs_context *fc);
94static void ext4_fc_free(struct fs_context *fc);
95static int ext4_init_fs_context(struct fs_context *fc);
96static void ext4_kill_sb(struct super_block *sb);
97static const struct fs_parameter_spec ext4_param_specs[];
98
99/*
100 * Lock ordering
101 *
102 * page fault path:
103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
104 * -> page lock -> i_data_sem (rw)
105 *
106 * buffered write path:
107 * sb_start_write -> i_mutex -> mmap_lock
108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
109 * i_data_sem (rw)
110 *
111 * truncate:
112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
113 * page lock
114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
115 * i_data_sem (rw)
116 *
117 * direct IO:
118 * sb_start_write -> i_mutex -> mmap_lock
119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
120 *
121 * writepages:
122 * transaction start -> page lock(s) -> i_data_sem (rw)
123 */
124
125static const struct fs_context_operations ext4_context_ops = {
126 .parse_param = ext4_parse_param,
127 .get_tree = ext4_get_tree,
128 .reconfigure = ext4_reconfigure,
129 .free = ext4_fc_free,
130};
131
132
133#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
134static struct file_system_type ext2_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext2",
137 .init_fs_context = ext4_init_fs_context,
138 .parameters = ext4_param_specs,
139 .kill_sb = ext4_kill_sb,
140 .fs_flags = FS_REQUIRES_DEV,
141};
142MODULE_ALIAS_FS("ext2");
143MODULE_ALIAS("ext2");
144#define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
145#else
146#define IS_EXT2_SB(sb) (0)
147#endif
148
149
150static struct file_system_type ext3_fs_type = {
151 .owner = THIS_MODULE,
152 .name = "ext3",
153 .init_fs_context = ext4_init_fs_context,
154 .parameters = ext4_param_specs,
155 .kill_sb = ext4_kill_sb,
156 .fs_flags = FS_REQUIRES_DEV,
157};
158MODULE_ALIAS_FS("ext3");
159MODULE_ALIAS("ext3");
160#define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
161
162
163static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
164 bh_end_io_t *end_io, bool simu_fail)
165{
166 if (simu_fail) {
167 clear_buffer_uptodate(bh);
168 unlock_buffer(bh);
169 return;
170 }
171
172 /*
173 * buffer's verified bit is no longer valid after reading from
174 * disk again due to write out error, clear it to make sure we
175 * recheck the buffer contents.
176 */
177 clear_buffer_verified(bh);
178
179 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
180 get_bh(bh);
181 submit_bh(REQ_OP_READ | op_flags, bh);
182}
183
184void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
185 bh_end_io_t *end_io, bool simu_fail)
186{
187 BUG_ON(!buffer_locked(bh));
188
189 if (ext4_buffer_uptodate(bh)) {
190 unlock_buffer(bh);
191 return;
192 }
193 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
194}
195
196int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
197 bh_end_io_t *end_io, bool simu_fail)
198{
199 BUG_ON(!buffer_locked(bh));
200
201 if (ext4_buffer_uptodate(bh)) {
202 unlock_buffer(bh);
203 return 0;
204 }
205
206 __ext4_read_bh(bh, op_flags, end_io, simu_fail);
207
208 wait_on_buffer(bh);
209 if (buffer_uptodate(bh))
210 return 0;
211 return -EIO;
212}
213
214int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
215{
216 lock_buffer(bh);
217 if (!wait) {
218 ext4_read_bh_nowait(bh, op_flags, NULL, false);
219 return 0;
220 }
221 return ext4_read_bh(bh, op_flags, NULL, false);
222}
223
224/*
225 * This works like __bread_gfp() except it uses ERR_PTR for error
226 * returns. Currently with sb_bread it's impossible to distinguish
227 * between ENOMEM and EIO situations (since both result in a NULL
228 * return.
229 */
230static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
231 sector_t block,
232 blk_opf_t op_flags, gfp_t gfp)
233{
234 struct buffer_head *bh;
235 int ret;
236
237 bh = sb_getblk_gfp(sb, block, gfp);
238 if (bh == NULL)
239 return ERR_PTR(-ENOMEM);
240 if (ext4_buffer_uptodate(bh))
241 return bh;
242
243 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
244 if (ret) {
245 put_bh(bh);
246 return ERR_PTR(ret);
247 }
248 return bh;
249}
250
251struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
252 blk_opf_t op_flags)
253{
254 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
255 ~__GFP_FS) | __GFP_MOVABLE;
256
257 return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
258}
259
260struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
261 sector_t block)
262{
263 gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_mapping,
264 ~__GFP_FS);
265
266 return __ext4_sb_bread_gfp(sb, block, 0, gfp);
267}
268
269void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
270{
271 struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
272 sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
273
274 if (likely(bh)) {
275 if (trylock_buffer(bh))
276 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL, false);
277 brelse(bh);
278 }
279}
280
281static int ext4_verify_csum_type(struct super_block *sb,
282 struct ext4_super_block *es)
283{
284 if (!ext4_has_feature_metadata_csum(sb))
285 return 1;
286
287 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
288}
289
290__le32 ext4_superblock_csum(struct super_block *sb,
291 struct ext4_super_block *es)
292{
293 struct ext4_sb_info *sbi = EXT4_SB(sb);
294 int offset = offsetof(struct ext4_super_block, s_checksum);
295 __u32 csum;
296
297 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
298
299 return cpu_to_le32(csum);
300}
301
302static int ext4_superblock_csum_verify(struct super_block *sb,
303 struct ext4_super_block *es)
304{
305 if (!ext4_has_metadata_csum(sb))
306 return 1;
307
308 return es->s_checksum == ext4_superblock_csum(sb, es);
309}
310
311void ext4_superblock_csum_set(struct super_block *sb)
312{
313 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
314
315 if (!ext4_has_metadata_csum(sb))
316 return;
317
318 es->s_checksum = ext4_superblock_csum(sb, es);
319}
320
321ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
322 struct ext4_group_desc *bg)
323{
324 return le32_to_cpu(bg->bg_block_bitmap_lo) |
325 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
326 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
327}
328
329ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
330 struct ext4_group_desc *bg)
331{
332 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
333 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
334 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
335}
336
337ext4_fsblk_t ext4_inode_table(struct super_block *sb,
338 struct ext4_group_desc *bg)
339{
340 return le32_to_cpu(bg->bg_inode_table_lo) |
341 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
342 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
343}
344
345__u32 ext4_free_group_clusters(struct super_block *sb,
346 struct ext4_group_desc *bg)
347{
348 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
349 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
350 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
351}
352
353__u32 ext4_free_inodes_count(struct super_block *sb,
354 struct ext4_group_desc *bg)
355{
356 return le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_lo)) |
357 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
358 (__u32)le16_to_cpu(READ_ONCE(bg->bg_free_inodes_count_hi)) << 16 : 0);
359}
360
361__u32 ext4_used_dirs_count(struct super_block *sb,
362 struct ext4_group_desc *bg)
363{
364 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
365 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
366 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
367}
368
369__u32 ext4_itable_unused_count(struct super_block *sb,
370 struct ext4_group_desc *bg)
371{
372 return le16_to_cpu(bg->bg_itable_unused_lo) |
373 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
374 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
375}
376
377void ext4_block_bitmap_set(struct super_block *sb,
378 struct ext4_group_desc *bg, ext4_fsblk_t blk)
379{
380 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
381 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
382 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
383}
384
385void ext4_inode_bitmap_set(struct super_block *sb,
386 struct ext4_group_desc *bg, ext4_fsblk_t blk)
387{
388 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
389 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
390 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
391}
392
393void ext4_inode_table_set(struct super_block *sb,
394 struct ext4_group_desc *bg, ext4_fsblk_t blk)
395{
396 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
397 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
398 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
399}
400
401void ext4_free_group_clusters_set(struct super_block *sb,
402 struct ext4_group_desc *bg, __u32 count)
403{
404 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
405 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
406 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
407}
408
409void ext4_free_inodes_set(struct super_block *sb,
410 struct ext4_group_desc *bg, __u32 count)
411{
412 WRITE_ONCE(bg->bg_free_inodes_count_lo, cpu_to_le16((__u16)count));
413 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
414 WRITE_ONCE(bg->bg_free_inodes_count_hi, cpu_to_le16(count >> 16));
415}
416
417void ext4_used_dirs_set(struct super_block *sb,
418 struct ext4_group_desc *bg, __u32 count)
419{
420 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
421 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
422 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
423}
424
425void ext4_itable_unused_set(struct super_block *sb,
426 struct ext4_group_desc *bg, __u32 count)
427{
428 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
429 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
430 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
431}
432
433static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
434{
435 now = clamp_val(now, 0, (1ull << 40) - 1);
436
437 *lo = cpu_to_le32(lower_32_bits(now));
438 *hi = upper_32_bits(now);
439}
440
441static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
442{
443 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
444}
445#define ext4_update_tstamp(es, tstamp) \
446 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
447 ktime_get_real_seconds())
448#define ext4_get_tstamp(es, tstamp) \
449 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
450
451#define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
452#define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
453
454/*
455 * The ext4_maybe_update_superblock() function checks and updates the
456 * superblock if needed.
457 *
458 * This function is designed to update the on-disk superblock only under
459 * certain conditions to prevent excessive disk writes and unnecessary
460 * waking of the disk from sleep. The superblock will be updated if:
461 * 1. More than an hour has passed since the last superblock update, and
462 * 2. More than 16MB have been written since the last superblock update.
463 *
464 * @sb: The superblock
465 */
466static void ext4_maybe_update_superblock(struct super_block *sb)
467{
468 struct ext4_sb_info *sbi = EXT4_SB(sb);
469 struct ext4_super_block *es = sbi->s_es;
470 journal_t *journal = sbi->s_journal;
471 time64_t now;
472 __u64 last_update;
473 __u64 lifetime_write_kbytes;
474 __u64 diff_size;
475
476 if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
477 !journal || (journal->j_flags & JBD2_UNMOUNT))
478 return;
479
480 now = ktime_get_real_seconds();
481 last_update = ext4_get_tstamp(es, s_wtime);
482
483 if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
484 return;
485
486 lifetime_write_kbytes = sbi->s_kbytes_written +
487 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
488 sbi->s_sectors_written_start) >> 1);
489
490 /* Get the number of kilobytes not written to disk to account
491 * for statistics and compare with a multiple of 16 MB. This
492 * is used to determine when the next superblock commit should
493 * occur (i.e. not more often than once per 16MB if there was
494 * less written in an hour).
495 */
496 diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
497
498 if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
499 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
500}
501
502static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
503{
504 struct super_block *sb = journal->j_private;
505 struct ext4_sb_info *sbi = EXT4_SB(sb);
506 int error = is_journal_aborted(journal);
507 struct ext4_journal_cb_entry *jce;
508
509 BUG_ON(txn->t_state == T_FINISHED);
510
511 ext4_process_freed_data(sb, txn->t_tid);
512 ext4_maybe_update_superblock(sb);
513
514 spin_lock(&sbi->s_md_lock);
515 while (!list_empty(&txn->t_private_list)) {
516 jce = list_entry(txn->t_private_list.next,
517 struct ext4_journal_cb_entry, jce_list);
518 list_del_init(&jce->jce_list);
519 spin_unlock(&sbi->s_md_lock);
520 jce->jce_func(sb, jce, error);
521 spin_lock(&sbi->s_md_lock);
522 }
523 spin_unlock(&sbi->s_md_lock);
524}
525
526/*
527 * This writepage callback for write_cache_pages()
528 * takes care of a few cases after page cleaning.
529 *
530 * write_cache_pages() already checks for dirty pages
531 * and calls clear_page_dirty_for_io(), which we want,
532 * to write protect the pages.
533 *
534 * However, we may have to redirty a page (see below.)
535 */
536static int ext4_journalled_writepage_callback(struct folio *folio,
537 struct writeback_control *wbc,
538 void *data)
539{
540 transaction_t *transaction = (transaction_t *) data;
541 struct buffer_head *bh, *head;
542 struct journal_head *jh;
543
544 bh = head = folio_buffers(folio);
545 do {
546 /*
547 * We have to redirty a page in these cases:
548 * 1) If buffer is dirty, it means the page was dirty because it
549 * contains a buffer that needs checkpointing. So the dirty bit
550 * needs to be preserved so that checkpointing writes the buffer
551 * properly.
552 * 2) If buffer is not part of the committing transaction
553 * (we may have just accidentally come across this buffer because
554 * inode range tracking is not exact) or if the currently running
555 * transaction already contains this buffer as well, dirty bit
556 * needs to be preserved so that the buffer gets writeprotected
557 * properly on running transaction's commit.
558 */
559 jh = bh2jh(bh);
560 if (buffer_dirty(bh) ||
561 (jh && (jh->b_transaction != transaction ||
562 jh->b_next_transaction))) {
563 folio_redirty_for_writepage(wbc, folio);
564 goto out;
565 }
566 } while ((bh = bh->b_this_page) != head);
567
568out:
569 return AOP_WRITEPAGE_ACTIVATE;
570}
571
572static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
573{
574 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
575 struct writeback_control wbc = {
576 .sync_mode = WB_SYNC_ALL,
577 .nr_to_write = LONG_MAX,
578 .range_start = jinode->i_dirty_start,
579 .range_end = jinode->i_dirty_end,
580 };
581
582 return write_cache_pages(mapping, &wbc,
583 ext4_journalled_writepage_callback,
584 jinode->i_transaction);
585}
586
587static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
588{
589 int ret;
590
591 if (ext4_should_journal_data(jinode->i_vfs_inode))
592 ret = ext4_journalled_submit_inode_data_buffers(jinode);
593 else
594 ret = ext4_normal_submit_inode_data_buffers(jinode);
595 return ret;
596}
597
598static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
599{
600 int ret = 0;
601
602 if (!ext4_should_journal_data(jinode->i_vfs_inode))
603 ret = jbd2_journal_finish_inode_data_buffers(jinode);
604
605 return ret;
606}
607
608static bool system_going_down(void)
609{
610 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
611 || system_state == SYSTEM_RESTART;
612}
613
614struct ext4_err_translation {
615 int code;
616 int errno;
617};
618
619#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
620
621static struct ext4_err_translation err_translation[] = {
622 EXT4_ERR_TRANSLATE(EIO),
623 EXT4_ERR_TRANSLATE(ENOMEM),
624 EXT4_ERR_TRANSLATE(EFSBADCRC),
625 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
626 EXT4_ERR_TRANSLATE(ENOSPC),
627 EXT4_ERR_TRANSLATE(ENOKEY),
628 EXT4_ERR_TRANSLATE(EROFS),
629 EXT4_ERR_TRANSLATE(EFBIG),
630 EXT4_ERR_TRANSLATE(EEXIST),
631 EXT4_ERR_TRANSLATE(ERANGE),
632 EXT4_ERR_TRANSLATE(EOVERFLOW),
633 EXT4_ERR_TRANSLATE(EBUSY),
634 EXT4_ERR_TRANSLATE(ENOTDIR),
635 EXT4_ERR_TRANSLATE(ENOTEMPTY),
636 EXT4_ERR_TRANSLATE(ESHUTDOWN),
637 EXT4_ERR_TRANSLATE(EFAULT),
638};
639
640static int ext4_errno_to_code(int errno)
641{
642 int i;
643
644 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
645 if (err_translation[i].errno == errno)
646 return err_translation[i].code;
647 return EXT4_ERR_UNKNOWN;
648}
649
650static void save_error_info(struct super_block *sb, int error,
651 __u32 ino, __u64 block,
652 const char *func, unsigned int line)
653{
654 struct ext4_sb_info *sbi = EXT4_SB(sb);
655
656 /* We default to EFSCORRUPTED error... */
657 if (error == 0)
658 error = EFSCORRUPTED;
659
660 spin_lock(&sbi->s_error_lock);
661 sbi->s_add_error_count++;
662 sbi->s_last_error_code = error;
663 sbi->s_last_error_line = line;
664 sbi->s_last_error_ino = ino;
665 sbi->s_last_error_block = block;
666 sbi->s_last_error_func = func;
667 sbi->s_last_error_time = ktime_get_real_seconds();
668 if (!sbi->s_first_error_time) {
669 sbi->s_first_error_code = error;
670 sbi->s_first_error_line = line;
671 sbi->s_first_error_ino = ino;
672 sbi->s_first_error_block = block;
673 sbi->s_first_error_func = func;
674 sbi->s_first_error_time = sbi->s_last_error_time;
675 }
676 spin_unlock(&sbi->s_error_lock);
677}
678
679/* Deal with the reporting of failure conditions on a filesystem such as
680 * inconsistencies detected or read IO failures.
681 *
682 * On ext2, we can store the error state of the filesystem in the
683 * superblock. That is not possible on ext4, because we may have other
684 * write ordering constraints on the superblock which prevent us from
685 * writing it out straight away; and given that the journal is about to
686 * be aborted, we can't rely on the current, or future, transactions to
687 * write out the superblock safely.
688 *
689 * We'll just use the jbd2_journal_abort() error code to record an error in
690 * the journal instead. On recovery, the journal will complain about
691 * that error until we've noted it down and cleared it.
692 *
693 * If force_ro is set, we unconditionally force the filesystem into an
694 * ABORT|READONLY state, unless the error response on the fs has been set to
695 * panic in which case we take the easy way out and panic immediately. This is
696 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
697 * at a critical moment in log management.
698 */
699static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
700 __u32 ino, __u64 block,
701 const char *func, unsigned int line)
702{
703 journal_t *journal = EXT4_SB(sb)->s_journal;
704 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
705
706 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
707 if (test_opt(sb, WARN_ON_ERROR))
708 WARN_ON_ONCE(1);
709
710 if (!continue_fs && !sb_rdonly(sb)) {
711 set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
712 if (journal)
713 jbd2_journal_abort(journal, -EIO);
714 }
715
716 if (!bdev_read_only(sb->s_bdev)) {
717 save_error_info(sb, error, ino, block, func, line);
718 /*
719 * In case the fs should keep running, we need to writeout
720 * superblock through the journal. Due to lock ordering
721 * constraints, it may not be safe to do it right here so we
722 * defer superblock flushing to a workqueue.
723 */
724 if (continue_fs && journal)
725 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
726 else
727 ext4_commit_super(sb);
728 }
729
730 /*
731 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
732 * could panic during 'reboot -f' as the underlying device got already
733 * disabled.
734 */
735 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
736 panic("EXT4-fs (device %s): panic forced after error\n",
737 sb->s_id);
738 }
739
740 if (sb_rdonly(sb) || continue_fs)
741 return;
742
743 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
744 /*
745 * EXT4_FLAGS_SHUTDOWN was set which stops all filesystem
746 * modifications. We don't set SB_RDONLY because that requires
747 * sb->s_umount semaphore and setting it without proper remount
748 * procedure is confusing code such as freeze_super() leading to
749 * deadlocks and other problems.
750 */
751}
752
753static void update_super_work(struct work_struct *work)
754{
755 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
756 s_sb_upd_work);
757 journal_t *journal = sbi->s_journal;
758 handle_t *handle;
759
760 /*
761 * If the journal is still running, we have to write out superblock
762 * through the journal to avoid collisions of other journalled sb
763 * updates.
764 *
765 * We use directly jbd2 functions here to avoid recursing back into
766 * ext4 error handling code during handling of previous errors.
767 */
768 if (!sb_rdonly(sbi->s_sb) && journal) {
769 struct buffer_head *sbh = sbi->s_sbh;
770 bool call_notify_err = false;
771
772 handle = jbd2_journal_start(journal, 1);
773 if (IS_ERR(handle))
774 goto write_directly;
775 if (jbd2_journal_get_write_access(handle, sbh)) {
776 jbd2_journal_stop(handle);
777 goto write_directly;
778 }
779
780 if (sbi->s_add_error_count > 0)
781 call_notify_err = true;
782
783 ext4_update_super(sbi->s_sb);
784 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
785 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
786 "superblock detected");
787 clear_buffer_write_io_error(sbh);
788 set_buffer_uptodate(sbh);
789 }
790
791 if (jbd2_journal_dirty_metadata(handle, sbh)) {
792 jbd2_journal_stop(handle);
793 goto write_directly;
794 }
795 jbd2_journal_stop(handle);
796
797 if (call_notify_err)
798 ext4_notify_error_sysfs(sbi);
799
800 return;
801 }
802write_directly:
803 /*
804 * Write through journal failed. Write sb directly to get error info
805 * out and hope for the best.
806 */
807 ext4_commit_super(sbi->s_sb);
808 ext4_notify_error_sysfs(sbi);
809}
810
811#define ext4_error_ratelimit(sb) \
812 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
813 "EXT4-fs error")
814
815void __ext4_error(struct super_block *sb, const char *function,
816 unsigned int line, bool force_ro, int error, __u64 block,
817 const char *fmt, ...)
818{
819 struct va_format vaf;
820 va_list args;
821
822 if (unlikely(ext4_forced_shutdown(sb)))
823 return;
824
825 trace_ext4_error(sb, function, line);
826 if (ext4_error_ratelimit(sb)) {
827 va_start(args, fmt);
828 vaf.fmt = fmt;
829 vaf.va = &args;
830 printk(KERN_CRIT
831 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
832 sb->s_id, function, line, current->comm, &vaf);
833 va_end(args);
834 }
835 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
836
837 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
838}
839
840void __ext4_error_inode(struct inode *inode, const char *function,
841 unsigned int line, ext4_fsblk_t block, int error,
842 const char *fmt, ...)
843{
844 va_list args;
845 struct va_format vaf;
846
847 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
848 return;
849
850 trace_ext4_error(inode->i_sb, function, line);
851 if (ext4_error_ratelimit(inode->i_sb)) {
852 va_start(args, fmt);
853 vaf.fmt = fmt;
854 vaf.va = &args;
855 if (block)
856 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
857 "inode #%lu: block %llu: comm %s: %pV\n",
858 inode->i_sb->s_id, function, line, inode->i_ino,
859 block, current->comm, &vaf);
860 else
861 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
862 "inode #%lu: comm %s: %pV\n",
863 inode->i_sb->s_id, function, line, inode->i_ino,
864 current->comm, &vaf);
865 va_end(args);
866 }
867 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
868
869 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
870 function, line);
871}
872
873void __ext4_error_file(struct file *file, const char *function,
874 unsigned int line, ext4_fsblk_t block,
875 const char *fmt, ...)
876{
877 va_list args;
878 struct va_format vaf;
879 struct inode *inode = file_inode(file);
880 char pathname[80], *path;
881
882 if (unlikely(ext4_forced_shutdown(inode->i_sb)))
883 return;
884
885 trace_ext4_error(inode->i_sb, function, line);
886 if (ext4_error_ratelimit(inode->i_sb)) {
887 path = file_path(file, pathname, sizeof(pathname));
888 if (IS_ERR(path))
889 path = "(unknown)";
890 va_start(args, fmt);
891 vaf.fmt = fmt;
892 vaf.va = &args;
893 if (block)
894 printk(KERN_CRIT
895 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
896 "block %llu: comm %s: path %s: %pV\n",
897 inode->i_sb->s_id, function, line, inode->i_ino,
898 block, current->comm, path, &vaf);
899 else
900 printk(KERN_CRIT
901 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
902 "comm %s: path %s: %pV\n",
903 inode->i_sb->s_id, function, line, inode->i_ino,
904 current->comm, path, &vaf);
905 va_end(args);
906 }
907 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
908
909 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
910 function, line);
911}
912
913const char *ext4_decode_error(struct super_block *sb, int errno,
914 char nbuf[16])
915{
916 char *errstr = NULL;
917
918 switch (errno) {
919 case -EFSCORRUPTED:
920 errstr = "Corrupt filesystem";
921 break;
922 case -EFSBADCRC:
923 errstr = "Filesystem failed CRC";
924 break;
925 case -EIO:
926 errstr = "IO failure";
927 break;
928 case -ENOMEM:
929 errstr = "Out of memory";
930 break;
931 case -EROFS:
932 if (!sb || (EXT4_SB(sb)->s_journal &&
933 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
934 errstr = "Journal has aborted";
935 else
936 errstr = "Readonly filesystem";
937 break;
938 default:
939 /* If the caller passed in an extra buffer for unknown
940 * errors, textualise them now. Else we just return
941 * NULL. */
942 if (nbuf) {
943 /* Check for truncated error codes... */
944 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
945 errstr = nbuf;
946 }
947 break;
948 }
949
950 return errstr;
951}
952
953/* __ext4_std_error decodes expected errors from journaling functions
954 * automatically and invokes the appropriate error response. */
955
956void __ext4_std_error(struct super_block *sb, const char *function,
957 unsigned int line, int errno)
958{
959 char nbuf[16];
960 const char *errstr;
961
962 if (unlikely(ext4_forced_shutdown(sb)))
963 return;
964
965 /* Special case: if the error is EROFS, and we're not already
966 * inside a transaction, then there's really no point in logging
967 * an error. */
968 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
969 return;
970
971 if (ext4_error_ratelimit(sb)) {
972 errstr = ext4_decode_error(sb, errno, nbuf);
973 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
974 sb->s_id, function, line, errstr);
975 }
976 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
977
978 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
979}
980
981void __ext4_msg(struct super_block *sb,
982 const char *prefix, const char *fmt, ...)
983{
984 struct va_format vaf;
985 va_list args;
986
987 if (sb) {
988 atomic_inc(&EXT4_SB(sb)->s_msg_count);
989 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
990 "EXT4-fs"))
991 return;
992 }
993
994 va_start(args, fmt);
995 vaf.fmt = fmt;
996 vaf.va = &args;
997 if (sb)
998 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
999 else
1000 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1001 va_end(args);
1002}
1003
1004static int ext4_warning_ratelimit(struct super_block *sb)
1005{
1006 atomic_inc(&EXT4_SB(sb)->s_warning_count);
1007 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1008 "EXT4-fs warning");
1009}
1010
1011void __ext4_warning(struct super_block *sb, const char *function,
1012 unsigned int line, const char *fmt, ...)
1013{
1014 struct va_format vaf;
1015 va_list args;
1016
1017 if (!ext4_warning_ratelimit(sb))
1018 return;
1019
1020 va_start(args, fmt);
1021 vaf.fmt = fmt;
1022 vaf.va = &args;
1023 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1024 sb->s_id, function, line, &vaf);
1025 va_end(args);
1026}
1027
1028void __ext4_warning_inode(const struct inode *inode, const char *function,
1029 unsigned int line, const char *fmt, ...)
1030{
1031 struct va_format vaf;
1032 va_list args;
1033
1034 if (!ext4_warning_ratelimit(inode->i_sb))
1035 return;
1036
1037 va_start(args, fmt);
1038 vaf.fmt = fmt;
1039 vaf.va = &args;
1040 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1041 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1042 function, line, inode->i_ino, current->comm, &vaf);
1043 va_end(args);
1044}
1045
1046void __ext4_grp_locked_error(const char *function, unsigned int line,
1047 struct super_block *sb, ext4_group_t grp,
1048 unsigned long ino, ext4_fsblk_t block,
1049 const char *fmt, ...)
1050__releases(bitlock)
1051__acquires(bitlock)
1052{
1053 struct va_format vaf;
1054 va_list args;
1055
1056 if (unlikely(ext4_forced_shutdown(sb)))
1057 return;
1058
1059 trace_ext4_error(sb, function, line);
1060 if (ext4_error_ratelimit(sb)) {
1061 va_start(args, fmt);
1062 vaf.fmt = fmt;
1063 vaf.va = &args;
1064 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1065 sb->s_id, function, line, grp);
1066 if (ino)
1067 printk(KERN_CONT "inode %lu: ", ino);
1068 if (block)
1069 printk(KERN_CONT "block %llu:",
1070 (unsigned long long) block);
1071 printk(KERN_CONT "%pV\n", &vaf);
1072 va_end(args);
1073 }
1074
1075 if (test_opt(sb, ERRORS_CONT)) {
1076 if (test_opt(sb, WARN_ON_ERROR))
1077 WARN_ON_ONCE(1);
1078 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1079 if (!bdev_read_only(sb->s_bdev)) {
1080 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1081 line);
1082 schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1083 }
1084 return;
1085 }
1086 ext4_unlock_group(sb, grp);
1087 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1088 /*
1089 * We only get here in the ERRORS_RO case; relocking the group
1090 * may be dangerous, but nothing bad will happen since the
1091 * filesystem will have already been marked read/only and the
1092 * journal has been aborted. We return 1 as a hint to callers
1093 * who might what to use the return value from
1094 * ext4_grp_locked_error() to distinguish between the
1095 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1096 * aggressively from the ext4 function in question, with a
1097 * more appropriate error code.
1098 */
1099 ext4_lock_group(sb, grp);
1100 return;
1101}
1102
1103void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1104 ext4_group_t group,
1105 unsigned int flags)
1106{
1107 struct ext4_sb_info *sbi = EXT4_SB(sb);
1108 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1109 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1110 int ret;
1111
1112 if (!grp || !gdp)
1113 return;
1114 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1115 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1116 &grp->bb_state);
1117 if (!ret)
1118 percpu_counter_sub(&sbi->s_freeclusters_counter,
1119 grp->bb_free);
1120 }
1121
1122 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1123 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1124 &grp->bb_state);
1125 if (!ret && gdp) {
1126 int count;
1127
1128 count = ext4_free_inodes_count(sb, gdp);
1129 percpu_counter_sub(&sbi->s_freeinodes_counter,
1130 count);
1131 }
1132 }
1133}
1134
1135void ext4_update_dynamic_rev(struct super_block *sb)
1136{
1137 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1138
1139 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1140 return;
1141
1142 ext4_warning(sb,
1143 "updating to rev %d because of new feature flag, "
1144 "running e2fsck is recommended",
1145 EXT4_DYNAMIC_REV);
1146
1147 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1148 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1149 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1150 /* leave es->s_feature_*compat flags alone */
1151 /* es->s_uuid will be set by e2fsck if empty */
1152
1153 /*
1154 * The rest of the superblock fields should be zero, and if not it
1155 * means they are likely already in use, so leave them alone. We
1156 * can leave it up to e2fsck to clean up any inconsistencies there.
1157 */
1158}
1159
1160static inline struct inode *orphan_list_entry(struct list_head *l)
1161{
1162 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1163}
1164
1165static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1166{
1167 struct list_head *l;
1168
1169 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1170 le32_to_cpu(sbi->s_es->s_last_orphan));
1171
1172 printk(KERN_ERR "sb_info orphan list:\n");
1173 list_for_each(l, &sbi->s_orphan) {
1174 struct inode *inode = orphan_list_entry(l);
1175 printk(KERN_ERR " "
1176 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1177 inode->i_sb->s_id, inode->i_ino, inode,
1178 inode->i_mode, inode->i_nlink,
1179 NEXT_ORPHAN(inode));
1180 }
1181}
1182
1183#ifdef CONFIG_QUOTA
1184static int ext4_quota_off(struct super_block *sb, int type);
1185
1186static inline void ext4_quotas_off(struct super_block *sb, int type)
1187{
1188 BUG_ON(type > EXT4_MAXQUOTAS);
1189
1190 /* Use our quota_off function to clear inode flags etc. */
1191 for (type--; type >= 0; type--)
1192 ext4_quota_off(sb, type);
1193}
1194
1195/*
1196 * This is a helper function which is used in the mount/remount
1197 * codepaths (which holds s_umount) to fetch the quota file name.
1198 */
1199static inline char *get_qf_name(struct super_block *sb,
1200 struct ext4_sb_info *sbi,
1201 int type)
1202{
1203 return rcu_dereference_protected(sbi->s_qf_names[type],
1204 lockdep_is_held(&sb->s_umount));
1205}
1206#else
1207static inline void ext4_quotas_off(struct super_block *sb, int type)
1208{
1209}
1210#endif
1211
1212static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1213{
1214 ext4_fsblk_t block;
1215 int err;
1216
1217 block = ext4_count_free_clusters(sbi->s_sb);
1218 ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1219 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1220 GFP_KERNEL);
1221 if (!err) {
1222 unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1223 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1224 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1225 GFP_KERNEL);
1226 }
1227 if (!err)
1228 err = percpu_counter_init(&sbi->s_dirs_counter,
1229 ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1230 if (!err)
1231 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1232 GFP_KERNEL);
1233 if (!err)
1234 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1235 GFP_KERNEL);
1236 if (!err)
1237 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1238
1239 if (err)
1240 ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1241
1242 return err;
1243}
1244
1245static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1246{
1247 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1248 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1249 percpu_counter_destroy(&sbi->s_dirs_counter);
1250 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1251 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1252 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1253}
1254
1255static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1256{
1257 struct buffer_head **group_desc;
1258 int i;
1259
1260 rcu_read_lock();
1261 group_desc = rcu_dereference(sbi->s_group_desc);
1262 for (i = 0; i < sbi->s_gdb_count; i++)
1263 brelse(group_desc[i]);
1264 kvfree(group_desc);
1265 rcu_read_unlock();
1266}
1267
1268static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1269{
1270 struct flex_groups **flex_groups;
1271 int i;
1272
1273 rcu_read_lock();
1274 flex_groups = rcu_dereference(sbi->s_flex_groups);
1275 if (flex_groups) {
1276 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1277 kvfree(flex_groups[i]);
1278 kvfree(flex_groups);
1279 }
1280 rcu_read_unlock();
1281}
1282
1283static void ext4_put_super(struct super_block *sb)
1284{
1285 struct ext4_sb_info *sbi = EXT4_SB(sb);
1286 struct ext4_super_block *es = sbi->s_es;
1287 int aborted = 0;
1288 int err;
1289
1290 /*
1291 * Unregister sysfs before destroying jbd2 journal.
1292 * Since we could still access attr_journal_task attribute via sysfs
1293 * path which could have sbi->s_journal->j_task as NULL
1294 * Unregister sysfs before flush sbi->s_sb_upd_work.
1295 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1296 * read metadata verify failed then will queue error work.
1297 * update_super_work will call start_this_handle may trigger
1298 * BUG_ON.
1299 */
1300 ext4_unregister_sysfs(sb);
1301
1302 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1303 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1304 &sb->s_uuid);
1305
1306 ext4_unregister_li_request(sb);
1307 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1308
1309 flush_work(&sbi->s_sb_upd_work);
1310 destroy_workqueue(sbi->rsv_conversion_wq);
1311 ext4_release_orphan_info(sb);
1312
1313 if (sbi->s_journal) {
1314 aborted = is_journal_aborted(sbi->s_journal);
1315 err = jbd2_journal_destroy(sbi->s_journal);
1316 sbi->s_journal = NULL;
1317 if ((err < 0) && !aborted) {
1318 ext4_abort(sb, -err, "Couldn't clean up the journal");
1319 }
1320 }
1321
1322 ext4_es_unregister_shrinker(sbi);
1323 timer_shutdown_sync(&sbi->s_err_report);
1324 ext4_release_system_zone(sb);
1325 ext4_mb_release(sb);
1326 ext4_ext_release(sb);
1327
1328 if (!sb_rdonly(sb) && !aborted) {
1329 ext4_clear_feature_journal_needs_recovery(sb);
1330 ext4_clear_feature_orphan_present(sb);
1331 es->s_state = cpu_to_le16(sbi->s_mount_state);
1332 }
1333 if (!sb_rdonly(sb))
1334 ext4_commit_super(sb);
1335
1336 ext4_group_desc_free(sbi);
1337 ext4_flex_groups_free(sbi);
1338
1339 WARN_ON_ONCE(!(sbi->s_mount_state & EXT4_ERROR_FS) &&
1340 percpu_counter_sum(&sbi->s_dirtyclusters_counter));
1341 ext4_percpu_param_destroy(sbi);
1342#ifdef CONFIG_QUOTA
1343 for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1344 kfree(get_qf_name(sb, sbi, i));
1345#endif
1346
1347 /* Debugging code just in case the in-memory inode orphan list
1348 * isn't empty. The on-disk one can be non-empty if we've
1349 * detected an error and taken the fs readonly, but the
1350 * in-memory list had better be clean by this point. */
1351 if (!list_empty(&sbi->s_orphan))
1352 dump_orphan_list(sb, sbi);
1353 ASSERT(list_empty(&sbi->s_orphan));
1354
1355 sync_blockdev(sb->s_bdev);
1356 invalidate_bdev(sb->s_bdev);
1357 if (sbi->s_journal_bdev_file) {
1358 /*
1359 * Invalidate the journal device's buffers. We don't want them
1360 * floating about in memory - the physical journal device may
1361 * hotswapped, and it breaks the `ro-after' testing code.
1362 */
1363 sync_blockdev(file_bdev(sbi->s_journal_bdev_file));
1364 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
1365 }
1366
1367 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1368 sbi->s_ea_inode_cache = NULL;
1369
1370 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1371 sbi->s_ea_block_cache = NULL;
1372
1373 ext4_stop_mmpd(sbi);
1374
1375 brelse(sbi->s_sbh);
1376 sb->s_fs_info = NULL;
1377 /*
1378 * Now that we are completely done shutting down the
1379 * superblock, we need to actually destroy the kobject.
1380 */
1381 kobject_put(&sbi->s_kobj);
1382 wait_for_completion(&sbi->s_kobj_unregister);
1383 if (sbi->s_chksum_driver)
1384 crypto_free_shash(sbi->s_chksum_driver);
1385 kfree(sbi->s_blockgroup_lock);
1386 fs_put_dax(sbi->s_daxdev, NULL);
1387 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1388#if IS_ENABLED(CONFIG_UNICODE)
1389 utf8_unload(sb->s_encoding);
1390#endif
1391 kfree(sbi);
1392}
1393
1394static struct kmem_cache *ext4_inode_cachep;
1395
1396/*
1397 * Called inside transaction, so use GFP_NOFS
1398 */
1399static struct inode *ext4_alloc_inode(struct super_block *sb)
1400{
1401 struct ext4_inode_info *ei;
1402
1403 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1404 if (!ei)
1405 return NULL;
1406
1407 inode_set_iversion(&ei->vfs_inode, 1);
1408 ei->i_flags = 0;
1409 spin_lock_init(&ei->i_raw_lock);
1410 ei->i_prealloc_node = RB_ROOT;
1411 atomic_set(&ei->i_prealloc_active, 0);
1412 rwlock_init(&ei->i_prealloc_lock);
1413 ext4_es_init_tree(&ei->i_es_tree);
1414 rwlock_init(&ei->i_es_lock);
1415 INIT_LIST_HEAD(&ei->i_es_list);
1416 ei->i_es_all_nr = 0;
1417 ei->i_es_shk_nr = 0;
1418 ei->i_es_shrink_lblk = 0;
1419 ei->i_reserved_data_blocks = 0;
1420 spin_lock_init(&(ei->i_block_reservation_lock));
1421 ext4_init_pending_tree(&ei->i_pending_tree);
1422#ifdef CONFIG_QUOTA
1423 ei->i_reserved_quota = 0;
1424 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1425#endif
1426 ei->jinode = NULL;
1427 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1428 spin_lock_init(&ei->i_completed_io_lock);
1429 ei->i_sync_tid = 0;
1430 ei->i_datasync_tid = 0;
1431 atomic_set(&ei->i_unwritten, 0);
1432 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1433 ext4_fc_init_inode(&ei->vfs_inode);
1434 mutex_init(&ei->i_fc_lock);
1435 return &ei->vfs_inode;
1436}
1437
1438static int ext4_drop_inode(struct inode *inode)
1439{
1440 int drop = generic_drop_inode(inode);
1441
1442 if (!drop)
1443 drop = fscrypt_drop_inode(inode);
1444
1445 trace_ext4_drop_inode(inode, drop);
1446 return drop;
1447}
1448
1449static void ext4_free_in_core_inode(struct inode *inode)
1450{
1451 fscrypt_free_inode(inode);
1452 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1453 pr_warn("%s: inode %ld still in fc list",
1454 __func__, inode->i_ino);
1455 }
1456 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1457}
1458
1459static void ext4_destroy_inode(struct inode *inode)
1460{
1461 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1462 ext4_msg(inode->i_sb, KERN_ERR,
1463 "Inode %lu (%p): orphan list check failed!",
1464 inode->i_ino, EXT4_I(inode));
1465 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1466 EXT4_I(inode), sizeof(struct ext4_inode_info),
1467 true);
1468 dump_stack();
1469 }
1470
1471 if (!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ERROR_FS) &&
1472 WARN_ON_ONCE(EXT4_I(inode)->i_reserved_data_blocks))
1473 ext4_msg(inode->i_sb, KERN_ERR,
1474 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1475 inode->i_ino, EXT4_I(inode),
1476 EXT4_I(inode)->i_reserved_data_blocks);
1477}
1478
1479static void ext4_shutdown(struct super_block *sb)
1480{
1481 ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1482}
1483
1484static void init_once(void *foo)
1485{
1486 struct ext4_inode_info *ei = foo;
1487
1488 INIT_LIST_HEAD(&ei->i_orphan);
1489 init_rwsem(&ei->xattr_sem);
1490 init_rwsem(&ei->i_data_sem);
1491 inode_init_once(&ei->vfs_inode);
1492 ext4_fc_init_inode(&ei->vfs_inode);
1493}
1494
1495static int __init init_inodecache(void)
1496{
1497 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1498 sizeof(struct ext4_inode_info), 0,
1499 SLAB_RECLAIM_ACCOUNT | SLAB_ACCOUNT,
1500 offsetof(struct ext4_inode_info, i_data),
1501 sizeof_field(struct ext4_inode_info, i_data),
1502 init_once);
1503 if (ext4_inode_cachep == NULL)
1504 return -ENOMEM;
1505 return 0;
1506}
1507
1508static void destroy_inodecache(void)
1509{
1510 /*
1511 * Make sure all delayed rcu free inodes are flushed before we
1512 * destroy cache.
1513 */
1514 rcu_barrier();
1515 kmem_cache_destroy(ext4_inode_cachep);
1516}
1517
1518void ext4_clear_inode(struct inode *inode)
1519{
1520 ext4_fc_del(inode);
1521 invalidate_inode_buffers(inode);
1522 clear_inode(inode);
1523 ext4_discard_preallocations(inode);
1524 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1525 dquot_drop(inode);
1526 if (EXT4_I(inode)->jinode) {
1527 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1528 EXT4_I(inode)->jinode);
1529 jbd2_free_inode(EXT4_I(inode)->jinode);
1530 EXT4_I(inode)->jinode = NULL;
1531 }
1532 fscrypt_put_encryption_info(inode);
1533 fsverity_cleanup_inode(inode);
1534}
1535
1536static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1537 u64 ino, u32 generation)
1538{
1539 struct inode *inode;
1540
1541 /*
1542 * Currently we don't know the generation for parent directory, so
1543 * a generation of 0 means "accept any"
1544 */
1545 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1546 if (IS_ERR(inode))
1547 return ERR_CAST(inode);
1548 if (generation && inode->i_generation != generation) {
1549 iput(inode);
1550 return ERR_PTR(-ESTALE);
1551 }
1552
1553 return inode;
1554}
1555
1556static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1557 int fh_len, int fh_type)
1558{
1559 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1560 ext4_nfs_get_inode);
1561}
1562
1563static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1564 int fh_len, int fh_type)
1565{
1566 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1567 ext4_nfs_get_inode);
1568}
1569
1570static int ext4_nfs_commit_metadata(struct inode *inode)
1571{
1572 struct writeback_control wbc = {
1573 .sync_mode = WB_SYNC_ALL
1574 };
1575
1576 trace_ext4_nfs_commit_metadata(inode);
1577 return ext4_write_inode(inode, &wbc);
1578}
1579
1580#ifdef CONFIG_QUOTA
1581static const char * const quotatypes[] = INITQFNAMES;
1582#define QTYPE2NAME(t) (quotatypes[t])
1583
1584static int ext4_write_dquot(struct dquot *dquot);
1585static int ext4_acquire_dquot(struct dquot *dquot);
1586static int ext4_release_dquot(struct dquot *dquot);
1587static int ext4_mark_dquot_dirty(struct dquot *dquot);
1588static int ext4_write_info(struct super_block *sb, int type);
1589static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1590 const struct path *path);
1591static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1592 size_t len, loff_t off);
1593static ssize_t ext4_quota_write(struct super_block *sb, int type,
1594 const char *data, size_t len, loff_t off);
1595static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1596 unsigned int flags);
1597
1598static struct dquot __rcu **ext4_get_dquots(struct inode *inode)
1599{
1600 return EXT4_I(inode)->i_dquot;
1601}
1602
1603static const struct dquot_operations ext4_quota_operations = {
1604 .get_reserved_space = ext4_get_reserved_space,
1605 .write_dquot = ext4_write_dquot,
1606 .acquire_dquot = ext4_acquire_dquot,
1607 .release_dquot = ext4_release_dquot,
1608 .mark_dirty = ext4_mark_dquot_dirty,
1609 .write_info = ext4_write_info,
1610 .alloc_dquot = dquot_alloc,
1611 .destroy_dquot = dquot_destroy,
1612 .get_projid = ext4_get_projid,
1613 .get_inode_usage = ext4_get_inode_usage,
1614 .get_next_id = dquot_get_next_id,
1615};
1616
1617static const struct quotactl_ops ext4_qctl_operations = {
1618 .quota_on = ext4_quota_on,
1619 .quota_off = ext4_quota_off,
1620 .quota_sync = dquot_quota_sync,
1621 .get_state = dquot_get_state,
1622 .set_info = dquot_set_dqinfo,
1623 .get_dqblk = dquot_get_dqblk,
1624 .set_dqblk = dquot_set_dqblk,
1625 .get_nextdqblk = dquot_get_next_dqblk,
1626};
1627#endif
1628
1629static const struct super_operations ext4_sops = {
1630 .alloc_inode = ext4_alloc_inode,
1631 .free_inode = ext4_free_in_core_inode,
1632 .destroy_inode = ext4_destroy_inode,
1633 .write_inode = ext4_write_inode,
1634 .dirty_inode = ext4_dirty_inode,
1635 .drop_inode = ext4_drop_inode,
1636 .evict_inode = ext4_evict_inode,
1637 .put_super = ext4_put_super,
1638 .sync_fs = ext4_sync_fs,
1639 .freeze_fs = ext4_freeze,
1640 .unfreeze_fs = ext4_unfreeze,
1641 .statfs = ext4_statfs,
1642 .show_options = ext4_show_options,
1643 .shutdown = ext4_shutdown,
1644#ifdef CONFIG_QUOTA
1645 .quota_read = ext4_quota_read,
1646 .quota_write = ext4_quota_write,
1647 .get_dquots = ext4_get_dquots,
1648#endif
1649};
1650
1651static const struct export_operations ext4_export_ops = {
1652 .encode_fh = generic_encode_ino32_fh,
1653 .fh_to_dentry = ext4_fh_to_dentry,
1654 .fh_to_parent = ext4_fh_to_parent,
1655 .get_parent = ext4_get_parent,
1656 .commit_metadata = ext4_nfs_commit_metadata,
1657};
1658
1659enum {
1660 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1661 Opt_resgid, Opt_resuid, Opt_sb,
1662 Opt_nouid32, Opt_debug, Opt_removed,
1663 Opt_user_xattr, Opt_acl,
1664 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1665 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1666 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1667 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1668 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1669 Opt_inlinecrypt,
1670 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1671 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1672 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1673 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1674 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1675 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1676 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1677 Opt_inode_readahead_blks, Opt_journal_ioprio,
1678 Opt_dioread_nolock, Opt_dioread_lock,
1679 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1680 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1681 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1682 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1683#ifdef CONFIG_EXT4_DEBUG
1684 Opt_fc_debug_max_replay, Opt_fc_debug_force
1685#endif
1686};
1687
1688static const struct constant_table ext4_param_errors[] = {
1689 {"continue", EXT4_MOUNT_ERRORS_CONT},
1690 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1691 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1692 {}
1693};
1694
1695static const struct constant_table ext4_param_data[] = {
1696 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1697 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1698 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1699 {}
1700};
1701
1702static const struct constant_table ext4_param_data_err[] = {
1703 {"abort", Opt_data_err_abort},
1704 {"ignore", Opt_data_err_ignore},
1705 {}
1706};
1707
1708static const struct constant_table ext4_param_jqfmt[] = {
1709 {"vfsold", QFMT_VFS_OLD},
1710 {"vfsv0", QFMT_VFS_V0},
1711 {"vfsv1", QFMT_VFS_V1},
1712 {}
1713};
1714
1715static const struct constant_table ext4_param_dax[] = {
1716 {"always", Opt_dax_always},
1717 {"inode", Opt_dax_inode},
1718 {"never", Opt_dax_never},
1719 {}
1720};
1721
1722/*
1723 * Mount option specification
1724 * We don't use fsparam_flag_no because of the way we set the
1725 * options and the way we show them in _ext4_show_options(). To
1726 * keep the changes to a minimum, let's keep the negative options
1727 * separate for now.
1728 */
1729static const struct fs_parameter_spec ext4_param_specs[] = {
1730 fsparam_flag ("bsddf", Opt_bsd_df),
1731 fsparam_flag ("minixdf", Opt_minix_df),
1732 fsparam_flag ("grpid", Opt_grpid),
1733 fsparam_flag ("bsdgroups", Opt_grpid),
1734 fsparam_flag ("nogrpid", Opt_nogrpid),
1735 fsparam_flag ("sysvgroups", Opt_nogrpid),
1736 fsparam_gid ("resgid", Opt_resgid),
1737 fsparam_uid ("resuid", Opt_resuid),
1738 fsparam_u32 ("sb", Opt_sb),
1739 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1740 fsparam_flag ("nouid32", Opt_nouid32),
1741 fsparam_flag ("debug", Opt_debug),
1742 fsparam_flag ("oldalloc", Opt_removed),
1743 fsparam_flag ("orlov", Opt_removed),
1744 fsparam_flag ("user_xattr", Opt_user_xattr),
1745 fsparam_flag ("acl", Opt_acl),
1746 fsparam_flag ("norecovery", Opt_noload),
1747 fsparam_flag ("noload", Opt_noload),
1748 fsparam_flag ("bh", Opt_removed),
1749 fsparam_flag ("nobh", Opt_removed),
1750 fsparam_u32 ("commit", Opt_commit),
1751 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1752 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1753 fsparam_u32 ("journal_dev", Opt_journal_dev),
1754 fsparam_bdev ("journal_path", Opt_journal_path),
1755 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1756 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1757 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1758 fsparam_flag ("abort", Opt_abort),
1759 fsparam_enum ("data", Opt_data, ext4_param_data),
1760 fsparam_enum ("data_err", Opt_data_err,
1761 ext4_param_data_err),
1762 fsparam_string_empty
1763 ("usrjquota", Opt_usrjquota),
1764 fsparam_string_empty
1765 ("grpjquota", Opt_grpjquota),
1766 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1767 fsparam_flag ("grpquota", Opt_grpquota),
1768 fsparam_flag ("quota", Opt_quota),
1769 fsparam_flag ("noquota", Opt_noquota),
1770 fsparam_flag ("usrquota", Opt_usrquota),
1771 fsparam_flag ("prjquota", Opt_prjquota),
1772 fsparam_flag ("barrier", Opt_barrier),
1773 fsparam_u32 ("barrier", Opt_barrier),
1774 fsparam_flag ("nobarrier", Opt_nobarrier),
1775 fsparam_flag ("i_version", Opt_removed),
1776 fsparam_flag ("dax", Opt_dax),
1777 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1778 fsparam_u32 ("stripe", Opt_stripe),
1779 fsparam_flag ("delalloc", Opt_delalloc),
1780 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1781 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1782 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1783 fsparam_u32 ("debug_want_extra_isize",
1784 Opt_debug_want_extra_isize),
1785 fsparam_flag ("mblk_io_submit", Opt_removed),
1786 fsparam_flag ("nomblk_io_submit", Opt_removed),
1787 fsparam_flag ("block_validity", Opt_block_validity),
1788 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1789 fsparam_u32 ("inode_readahead_blks",
1790 Opt_inode_readahead_blks),
1791 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1792 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1793 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1794 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1795 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1796 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1797 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1798 fsparam_flag ("discard", Opt_discard),
1799 fsparam_flag ("nodiscard", Opt_nodiscard),
1800 fsparam_u32 ("init_itable", Opt_init_itable),
1801 fsparam_flag ("init_itable", Opt_init_itable),
1802 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1803#ifdef CONFIG_EXT4_DEBUG
1804 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1805 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1806#endif
1807 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1808 fsparam_flag ("test_dummy_encryption",
1809 Opt_test_dummy_encryption),
1810 fsparam_string ("test_dummy_encryption",
1811 Opt_test_dummy_encryption),
1812 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1813 fsparam_flag ("nombcache", Opt_nombcache),
1814 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1815 fsparam_flag ("prefetch_block_bitmaps",
1816 Opt_removed),
1817 fsparam_flag ("no_prefetch_block_bitmaps",
1818 Opt_no_prefetch_block_bitmaps),
1819 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1820 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1821 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1822 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1823 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1824 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1825 {}
1826};
1827
1828#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1829
1830#define MOPT_SET 0x0001
1831#define MOPT_CLEAR 0x0002
1832#define MOPT_NOSUPPORT 0x0004
1833#define MOPT_EXPLICIT 0x0008
1834#ifdef CONFIG_QUOTA
1835#define MOPT_Q 0
1836#define MOPT_QFMT 0x0010
1837#else
1838#define MOPT_Q MOPT_NOSUPPORT
1839#define MOPT_QFMT MOPT_NOSUPPORT
1840#endif
1841#define MOPT_NO_EXT2 0x0020
1842#define MOPT_NO_EXT3 0x0040
1843#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1844#define MOPT_SKIP 0x0080
1845#define MOPT_2 0x0100
1846
1847static const struct mount_opts {
1848 int token;
1849 int mount_opt;
1850 int flags;
1851} ext4_mount_opts[] = {
1852 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1853 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1854 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1855 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1856 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1857 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1858 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1859 MOPT_EXT4_ONLY | MOPT_SET},
1860 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1861 MOPT_EXT4_ONLY | MOPT_CLEAR},
1862 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1863 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1864 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1865 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1866 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1867 MOPT_EXT4_ONLY | MOPT_CLEAR},
1868 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1869 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1870 {Opt_commit, 0, MOPT_NO_EXT2},
1871 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1872 MOPT_EXT4_ONLY | MOPT_CLEAR},
1873 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1874 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1875 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1876 EXT4_MOUNT_JOURNAL_CHECKSUM),
1877 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1878 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1879 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1880 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1881 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1882 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1883 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1884 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1885 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1886 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1887 {Opt_journal_path, 0, MOPT_NO_EXT2},
1888 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1889 {Opt_data, 0, MOPT_NO_EXT2},
1890 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1891#ifdef CONFIG_EXT4_FS_POSIX_ACL
1892 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1893#else
1894 {Opt_acl, 0, MOPT_NOSUPPORT},
1895#endif
1896 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1897 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1898 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1899 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1900 MOPT_SET | MOPT_Q},
1901 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1902 MOPT_SET | MOPT_Q},
1903 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1904 MOPT_SET | MOPT_Q},
1905 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1906 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1907 MOPT_CLEAR | MOPT_Q},
1908 {Opt_usrjquota, 0, MOPT_Q},
1909 {Opt_grpjquota, 0, MOPT_Q},
1910 {Opt_jqfmt, 0, MOPT_QFMT},
1911 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1912 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1913 MOPT_SET},
1914#ifdef CONFIG_EXT4_DEBUG
1915 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1916 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1917#endif
1918 {Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1919 {Opt_err, 0, 0}
1920};
1921
1922#if IS_ENABLED(CONFIG_UNICODE)
1923static const struct ext4_sb_encodings {
1924 __u16 magic;
1925 char *name;
1926 unsigned int version;
1927} ext4_sb_encoding_map[] = {
1928 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1929};
1930
1931static const struct ext4_sb_encodings *
1932ext4_sb_read_encoding(const struct ext4_super_block *es)
1933{
1934 __u16 magic = le16_to_cpu(es->s_encoding);
1935 int i;
1936
1937 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1938 if (magic == ext4_sb_encoding_map[i].magic)
1939 return &ext4_sb_encoding_map[i];
1940
1941 return NULL;
1942}
1943#endif
1944
1945#define EXT4_SPEC_JQUOTA (1 << 0)
1946#define EXT4_SPEC_JQFMT (1 << 1)
1947#define EXT4_SPEC_DATAJ (1 << 2)
1948#define EXT4_SPEC_SB_BLOCK (1 << 3)
1949#define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1950#define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1951#define EXT4_SPEC_s_want_extra_isize (1 << 7)
1952#define EXT4_SPEC_s_max_batch_time (1 << 8)
1953#define EXT4_SPEC_s_min_batch_time (1 << 9)
1954#define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1955#define EXT4_SPEC_s_li_wait_mult (1 << 11)
1956#define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1957#define EXT4_SPEC_s_stripe (1 << 13)
1958#define EXT4_SPEC_s_resuid (1 << 14)
1959#define EXT4_SPEC_s_resgid (1 << 15)
1960#define EXT4_SPEC_s_commit_interval (1 << 16)
1961#define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1962#define EXT4_SPEC_s_sb_block (1 << 18)
1963#define EXT4_SPEC_mb_optimize_scan (1 << 19)
1964
1965struct ext4_fs_context {
1966 char *s_qf_names[EXT4_MAXQUOTAS];
1967 struct fscrypt_dummy_policy dummy_enc_policy;
1968 int s_jquota_fmt; /* Format of quota to use */
1969#ifdef CONFIG_EXT4_DEBUG
1970 int s_fc_debug_max_replay;
1971#endif
1972 unsigned short qname_spec;
1973 unsigned long vals_s_flags; /* Bits to set in s_flags */
1974 unsigned long mask_s_flags; /* Bits changed in s_flags */
1975 unsigned long journal_devnum;
1976 unsigned long s_commit_interval;
1977 unsigned long s_stripe;
1978 unsigned int s_inode_readahead_blks;
1979 unsigned int s_want_extra_isize;
1980 unsigned int s_li_wait_mult;
1981 unsigned int s_max_dir_size_kb;
1982 unsigned int journal_ioprio;
1983 unsigned int vals_s_mount_opt;
1984 unsigned int mask_s_mount_opt;
1985 unsigned int vals_s_mount_opt2;
1986 unsigned int mask_s_mount_opt2;
1987 unsigned int opt_flags; /* MOPT flags */
1988 unsigned int spec;
1989 u32 s_max_batch_time;
1990 u32 s_min_batch_time;
1991 kuid_t s_resuid;
1992 kgid_t s_resgid;
1993 ext4_fsblk_t s_sb_block;
1994};
1995
1996static void ext4_fc_free(struct fs_context *fc)
1997{
1998 struct ext4_fs_context *ctx = fc->fs_private;
1999 int i;
2000
2001 if (!ctx)
2002 return;
2003
2004 for (i = 0; i < EXT4_MAXQUOTAS; i++)
2005 kfree(ctx->s_qf_names[i]);
2006
2007 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2008 kfree(ctx);
2009}
2010
2011int ext4_init_fs_context(struct fs_context *fc)
2012{
2013 struct ext4_fs_context *ctx;
2014
2015 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2016 if (!ctx)
2017 return -ENOMEM;
2018
2019 fc->fs_private = ctx;
2020 fc->ops = &ext4_context_ops;
2021
2022 return 0;
2023}
2024
2025#ifdef CONFIG_QUOTA
2026/*
2027 * Note the name of the specified quota file.
2028 */
2029static int note_qf_name(struct fs_context *fc, int qtype,
2030 struct fs_parameter *param)
2031{
2032 struct ext4_fs_context *ctx = fc->fs_private;
2033 char *qname;
2034
2035 if (param->size < 1) {
2036 ext4_msg(NULL, KERN_ERR, "Missing quota name");
2037 return -EINVAL;
2038 }
2039 if (strchr(param->string, '/')) {
2040 ext4_msg(NULL, KERN_ERR,
2041 "quotafile must be on filesystem root");
2042 return -EINVAL;
2043 }
2044 if (ctx->s_qf_names[qtype]) {
2045 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2046 ext4_msg(NULL, KERN_ERR,
2047 "%s quota file already specified",
2048 QTYPE2NAME(qtype));
2049 return -EINVAL;
2050 }
2051 return 0;
2052 }
2053
2054 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2055 if (!qname) {
2056 ext4_msg(NULL, KERN_ERR,
2057 "Not enough memory for storing quotafile name");
2058 return -ENOMEM;
2059 }
2060 ctx->s_qf_names[qtype] = qname;
2061 ctx->qname_spec |= 1 << qtype;
2062 ctx->spec |= EXT4_SPEC_JQUOTA;
2063 return 0;
2064}
2065
2066/*
2067 * Clear the name of the specified quota file.
2068 */
2069static int unnote_qf_name(struct fs_context *fc, int qtype)
2070{
2071 struct ext4_fs_context *ctx = fc->fs_private;
2072
2073 kfree(ctx->s_qf_names[qtype]);
2074
2075 ctx->s_qf_names[qtype] = NULL;
2076 ctx->qname_spec |= 1 << qtype;
2077 ctx->spec |= EXT4_SPEC_JQUOTA;
2078 return 0;
2079}
2080#endif
2081
2082static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2083 struct ext4_fs_context *ctx)
2084{
2085 int err;
2086
2087 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2088 ext4_msg(NULL, KERN_WARNING,
2089 "test_dummy_encryption option not supported");
2090 return -EINVAL;
2091 }
2092 err = fscrypt_parse_test_dummy_encryption(param,
2093 &ctx->dummy_enc_policy);
2094 if (err == -EINVAL) {
2095 ext4_msg(NULL, KERN_WARNING,
2096 "Value of option \"%s\" is unrecognized", param->key);
2097 } else if (err == -EEXIST) {
2098 ext4_msg(NULL, KERN_WARNING,
2099 "Conflicting test_dummy_encryption options");
2100 return -EINVAL;
2101 }
2102 return err;
2103}
2104
2105#define EXT4_SET_CTX(name) \
2106static inline __maybe_unused \
2107void ctx_set_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2108{ \
2109 ctx->mask_s_##name |= flag; \
2110 ctx->vals_s_##name |= flag; \
2111}
2112
2113#define EXT4_CLEAR_CTX(name) \
2114static inline __maybe_unused \
2115void ctx_clear_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2116{ \
2117 ctx->mask_s_##name |= flag; \
2118 ctx->vals_s_##name &= ~flag; \
2119}
2120
2121#define EXT4_TEST_CTX(name) \
2122static inline unsigned long \
2123ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2124{ \
2125 return (ctx->vals_s_##name & flag); \
2126}
2127
2128EXT4_SET_CTX(flags); /* set only */
2129EXT4_SET_CTX(mount_opt);
2130EXT4_CLEAR_CTX(mount_opt);
2131EXT4_TEST_CTX(mount_opt);
2132EXT4_SET_CTX(mount_opt2);
2133EXT4_CLEAR_CTX(mount_opt2);
2134EXT4_TEST_CTX(mount_opt2);
2135
2136static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2137{
2138 struct ext4_fs_context *ctx = fc->fs_private;
2139 struct fs_parse_result result;
2140 const struct mount_opts *m;
2141 int is_remount;
2142 int token;
2143
2144 token = fs_parse(fc, ext4_param_specs, param, &result);
2145 if (token < 0)
2146 return token;
2147 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2148
2149 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2150 if (token == m->token)
2151 break;
2152
2153 ctx->opt_flags |= m->flags;
2154
2155 if (m->flags & MOPT_EXPLICIT) {
2156 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2157 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2158 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2159 ctx_set_mount_opt2(ctx,
2160 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2161 } else
2162 return -EINVAL;
2163 }
2164
2165 if (m->flags & MOPT_NOSUPPORT) {
2166 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2167 param->key);
2168 return 0;
2169 }
2170
2171 switch (token) {
2172#ifdef CONFIG_QUOTA
2173 case Opt_usrjquota:
2174 if (!*param->string)
2175 return unnote_qf_name(fc, USRQUOTA);
2176 else
2177 return note_qf_name(fc, USRQUOTA, param);
2178 case Opt_grpjquota:
2179 if (!*param->string)
2180 return unnote_qf_name(fc, GRPQUOTA);
2181 else
2182 return note_qf_name(fc, GRPQUOTA, param);
2183#endif
2184 case Opt_sb:
2185 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2186 ext4_msg(NULL, KERN_WARNING,
2187 "Ignoring %s option on remount", param->key);
2188 } else {
2189 ctx->s_sb_block = result.uint_32;
2190 ctx->spec |= EXT4_SPEC_s_sb_block;
2191 }
2192 return 0;
2193 case Opt_removed:
2194 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2195 param->key);
2196 return 0;
2197 case Opt_inlinecrypt:
2198#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2199 ctx_set_flags(ctx, SB_INLINECRYPT);
2200#else
2201 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2202#endif
2203 return 0;
2204 case Opt_errors:
2205 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2206 ctx_set_mount_opt(ctx, result.uint_32);
2207 return 0;
2208#ifdef CONFIG_QUOTA
2209 case Opt_jqfmt:
2210 ctx->s_jquota_fmt = result.uint_32;
2211 ctx->spec |= EXT4_SPEC_JQFMT;
2212 return 0;
2213#endif
2214 case Opt_data:
2215 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2216 ctx_set_mount_opt(ctx, result.uint_32);
2217 ctx->spec |= EXT4_SPEC_DATAJ;
2218 return 0;
2219 case Opt_commit:
2220 if (result.uint_32 == 0)
2221 result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2222 else if (result.uint_32 > INT_MAX / HZ) {
2223 ext4_msg(NULL, KERN_ERR,
2224 "Invalid commit interval %d, "
2225 "must be smaller than %d",
2226 result.uint_32, INT_MAX / HZ);
2227 return -EINVAL;
2228 }
2229 ctx->s_commit_interval = HZ * result.uint_32;
2230 ctx->spec |= EXT4_SPEC_s_commit_interval;
2231 return 0;
2232 case Opt_debug_want_extra_isize:
2233 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2234 ext4_msg(NULL, KERN_ERR,
2235 "Invalid want_extra_isize %d", result.uint_32);
2236 return -EINVAL;
2237 }
2238 ctx->s_want_extra_isize = result.uint_32;
2239 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2240 return 0;
2241 case Opt_max_batch_time:
2242 ctx->s_max_batch_time = result.uint_32;
2243 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2244 return 0;
2245 case Opt_min_batch_time:
2246 ctx->s_min_batch_time = result.uint_32;
2247 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2248 return 0;
2249 case Opt_inode_readahead_blks:
2250 if (result.uint_32 &&
2251 (result.uint_32 > (1 << 30) ||
2252 !is_power_of_2(result.uint_32))) {
2253 ext4_msg(NULL, KERN_ERR,
2254 "EXT4-fs: inode_readahead_blks must be "
2255 "0 or a power of 2 smaller than 2^31");
2256 return -EINVAL;
2257 }
2258 ctx->s_inode_readahead_blks = result.uint_32;
2259 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2260 return 0;
2261 case Opt_init_itable:
2262 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2263 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2264 if (param->type == fs_value_is_string)
2265 ctx->s_li_wait_mult = result.uint_32;
2266 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2267 return 0;
2268 case Opt_max_dir_size_kb:
2269 ctx->s_max_dir_size_kb = result.uint_32;
2270 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2271 return 0;
2272#ifdef CONFIG_EXT4_DEBUG
2273 case Opt_fc_debug_max_replay:
2274 ctx->s_fc_debug_max_replay = result.uint_32;
2275 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2276 return 0;
2277#endif
2278 case Opt_stripe:
2279 ctx->s_stripe = result.uint_32;
2280 ctx->spec |= EXT4_SPEC_s_stripe;
2281 return 0;
2282 case Opt_resuid:
2283 ctx->s_resuid = result.uid;
2284 ctx->spec |= EXT4_SPEC_s_resuid;
2285 return 0;
2286 case Opt_resgid:
2287 ctx->s_resgid = result.gid;
2288 ctx->spec |= EXT4_SPEC_s_resgid;
2289 return 0;
2290 case Opt_journal_dev:
2291 if (is_remount) {
2292 ext4_msg(NULL, KERN_ERR,
2293 "Cannot specify journal on remount");
2294 return -EINVAL;
2295 }
2296 ctx->journal_devnum = result.uint_32;
2297 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2298 return 0;
2299 case Opt_journal_path:
2300 {
2301 struct inode *journal_inode;
2302 struct path path;
2303 int error;
2304
2305 if (is_remount) {
2306 ext4_msg(NULL, KERN_ERR,
2307 "Cannot specify journal on remount");
2308 return -EINVAL;
2309 }
2310
2311 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2312 if (error) {
2313 ext4_msg(NULL, KERN_ERR, "error: could not find "
2314 "journal device path");
2315 return -EINVAL;
2316 }
2317
2318 journal_inode = d_inode(path.dentry);
2319 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2320 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2321 path_put(&path);
2322 return 0;
2323 }
2324 case Opt_journal_ioprio:
2325 if (result.uint_32 > 7) {
2326 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2327 " (must be 0-7)");
2328 return -EINVAL;
2329 }
2330 ctx->journal_ioprio =
2331 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2332 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2333 return 0;
2334 case Opt_test_dummy_encryption:
2335 return ext4_parse_test_dummy_encryption(param, ctx);
2336 case Opt_dax:
2337 case Opt_dax_type:
2338#ifdef CONFIG_FS_DAX
2339 {
2340 int type = (token == Opt_dax) ?
2341 Opt_dax : result.uint_32;
2342
2343 switch (type) {
2344 case Opt_dax:
2345 case Opt_dax_always:
2346 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2347 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2348 break;
2349 case Opt_dax_never:
2350 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2351 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2352 break;
2353 case Opt_dax_inode:
2354 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2355 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2356 /* Strictly for printing options */
2357 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2358 break;
2359 }
2360 return 0;
2361 }
2362#else
2363 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2364 return -EINVAL;
2365#endif
2366 case Opt_data_err:
2367 if (result.uint_32 == Opt_data_err_abort)
2368 ctx_set_mount_opt(ctx, m->mount_opt);
2369 else if (result.uint_32 == Opt_data_err_ignore)
2370 ctx_clear_mount_opt(ctx, m->mount_opt);
2371 return 0;
2372 case Opt_mb_optimize_scan:
2373 if (result.int_32 == 1) {
2374 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2375 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2376 } else if (result.int_32 == 0) {
2377 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2378 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2379 } else {
2380 ext4_msg(NULL, KERN_WARNING,
2381 "mb_optimize_scan should be set to 0 or 1.");
2382 return -EINVAL;
2383 }
2384 return 0;
2385 }
2386
2387 /*
2388 * At this point we should only be getting options requiring MOPT_SET,
2389 * or MOPT_CLEAR. Anything else is a bug
2390 */
2391 if (m->token == Opt_err) {
2392 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2393 param->key);
2394 WARN_ON(1);
2395 return -EINVAL;
2396 }
2397
2398 else {
2399 unsigned int set = 0;
2400
2401 if ((param->type == fs_value_is_flag) ||
2402 result.uint_32 > 0)
2403 set = 1;
2404
2405 if (m->flags & MOPT_CLEAR)
2406 set = !set;
2407 else if (unlikely(!(m->flags & MOPT_SET))) {
2408 ext4_msg(NULL, KERN_WARNING,
2409 "buggy handling of option %s",
2410 param->key);
2411 WARN_ON(1);
2412 return -EINVAL;
2413 }
2414 if (m->flags & MOPT_2) {
2415 if (set != 0)
2416 ctx_set_mount_opt2(ctx, m->mount_opt);
2417 else
2418 ctx_clear_mount_opt2(ctx, m->mount_opt);
2419 } else {
2420 if (set != 0)
2421 ctx_set_mount_opt(ctx, m->mount_opt);
2422 else
2423 ctx_clear_mount_opt(ctx, m->mount_opt);
2424 }
2425 }
2426
2427 return 0;
2428}
2429
2430static int parse_options(struct fs_context *fc, char *options)
2431{
2432 struct fs_parameter param;
2433 int ret;
2434 char *key;
2435
2436 if (!options)
2437 return 0;
2438
2439 while ((key = strsep(&options, ",")) != NULL) {
2440 if (*key) {
2441 size_t v_len = 0;
2442 char *value = strchr(key, '=');
2443
2444 param.type = fs_value_is_flag;
2445 param.string = NULL;
2446
2447 if (value) {
2448 if (value == key)
2449 continue;
2450
2451 *value++ = 0;
2452 v_len = strlen(value);
2453 param.string = kmemdup_nul(value, v_len,
2454 GFP_KERNEL);
2455 if (!param.string)
2456 return -ENOMEM;
2457 param.type = fs_value_is_string;
2458 }
2459
2460 param.key = key;
2461 param.size = v_len;
2462
2463 ret = ext4_parse_param(fc, ¶m);
2464 kfree(param.string);
2465 if (ret < 0)
2466 return ret;
2467 }
2468 }
2469
2470 ret = ext4_validate_options(fc);
2471 if (ret < 0)
2472 return ret;
2473
2474 return 0;
2475}
2476
2477static int parse_apply_sb_mount_options(struct super_block *sb,
2478 struct ext4_fs_context *m_ctx)
2479{
2480 struct ext4_sb_info *sbi = EXT4_SB(sb);
2481 char *s_mount_opts = NULL;
2482 struct ext4_fs_context *s_ctx = NULL;
2483 struct fs_context *fc = NULL;
2484 int ret = -ENOMEM;
2485
2486 if (!sbi->s_es->s_mount_opts[0])
2487 return 0;
2488
2489 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2490 sizeof(sbi->s_es->s_mount_opts),
2491 GFP_KERNEL);
2492 if (!s_mount_opts)
2493 return ret;
2494
2495 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2496 if (!fc)
2497 goto out_free;
2498
2499 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2500 if (!s_ctx)
2501 goto out_free;
2502
2503 fc->fs_private = s_ctx;
2504 fc->s_fs_info = sbi;
2505
2506 ret = parse_options(fc, s_mount_opts);
2507 if (ret < 0)
2508 goto parse_failed;
2509
2510 ret = ext4_check_opt_consistency(fc, sb);
2511 if (ret < 0) {
2512parse_failed:
2513 ext4_msg(sb, KERN_WARNING,
2514 "failed to parse options in superblock: %s",
2515 s_mount_opts);
2516 ret = 0;
2517 goto out_free;
2518 }
2519
2520 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2521 m_ctx->journal_devnum = s_ctx->journal_devnum;
2522 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2523 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2524
2525 ext4_apply_options(fc, sb);
2526 ret = 0;
2527
2528out_free:
2529 if (fc) {
2530 ext4_fc_free(fc);
2531 kfree(fc);
2532 }
2533 kfree(s_mount_opts);
2534 return ret;
2535}
2536
2537static void ext4_apply_quota_options(struct fs_context *fc,
2538 struct super_block *sb)
2539{
2540#ifdef CONFIG_QUOTA
2541 bool quota_feature = ext4_has_feature_quota(sb);
2542 struct ext4_fs_context *ctx = fc->fs_private;
2543 struct ext4_sb_info *sbi = EXT4_SB(sb);
2544 char *qname;
2545 int i;
2546
2547 if (quota_feature)
2548 return;
2549
2550 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2551 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2552 if (!(ctx->qname_spec & (1 << i)))
2553 continue;
2554
2555 qname = ctx->s_qf_names[i]; /* May be NULL */
2556 if (qname)
2557 set_opt(sb, QUOTA);
2558 ctx->s_qf_names[i] = NULL;
2559 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2560 lockdep_is_held(&sb->s_umount));
2561 if (qname)
2562 kfree_rcu_mightsleep(qname);
2563 }
2564 }
2565
2566 if (ctx->spec & EXT4_SPEC_JQFMT)
2567 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2568#endif
2569}
2570
2571/*
2572 * Check quota settings consistency.
2573 */
2574static int ext4_check_quota_consistency(struct fs_context *fc,
2575 struct super_block *sb)
2576{
2577#ifdef CONFIG_QUOTA
2578 struct ext4_fs_context *ctx = fc->fs_private;
2579 struct ext4_sb_info *sbi = EXT4_SB(sb);
2580 bool quota_feature = ext4_has_feature_quota(sb);
2581 bool quota_loaded = sb_any_quota_loaded(sb);
2582 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2583 int quota_flags, i;
2584
2585 /*
2586 * We do the test below only for project quotas. 'usrquota' and
2587 * 'grpquota' mount options are allowed even without quota feature
2588 * to support legacy quotas in quota files.
2589 */
2590 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2591 !ext4_has_feature_project(sb)) {
2592 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2593 "Cannot enable project quota enforcement.");
2594 return -EINVAL;
2595 }
2596
2597 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2598 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2599 if (quota_loaded &&
2600 ctx->mask_s_mount_opt & quota_flags &&
2601 !ctx_test_mount_opt(ctx, quota_flags))
2602 goto err_quota_change;
2603
2604 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2605
2606 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2607 if (!(ctx->qname_spec & (1 << i)))
2608 continue;
2609
2610 if (quota_loaded &&
2611 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2612 goto err_jquota_change;
2613
2614 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2615 strcmp(get_qf_name(sb, sbi, i),
2616 ctx->s_qf_names[i]) != 0)
2617 goto err_jquota_specified;
2618 }
2619
2620 if (quota_feature) {
2621 ext4_msg(NULL, KERN_INFO,
2622 "Journaled quota options ignored when "
2623 "QUOTA feature is enabled");
2624 return 0;
2625 }
2626 }
2627
2628 if (ctx->spec & EXT4_SPEC_JQFMT) {
2629 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2630 goto err_jquota_change;
2631 if (quota_feature) {
2632 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2633 "ignored when QUOTA feature is enabled");
2634 return 0;
2635 }
2636 }
2637
2638 /* Make sure we don't mix old and new quota format */
2639 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2640 ctx->s_qf_names[USRQUOTA]);
2641 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2642 ctx->s_qf_names[GRPQUOTA]);
2643
2644 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2645 test_opt(sb, USRQUOTA));
2646
2647 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2648 test_opt(sb, GRPQUOTA));
2649
2650 if (usr_qf_name) {
2651 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2652 usrquota = false;
2653 }
2654 if (grp_qf_name) {
2655 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2656 grpquota = false;
2657 }
2658
2659 if (usr_qf_name || grp_qf_name) {
2660 if (usrquota || grpquota) {
2661 ext4_msg(NULL, KERN_ERR, "old and new quota "
2662 "format mixing");
2663 return -EINVAL;
2664 }
2665
2666 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2667 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2668 "not specified");
2669 return -EINVAL;
2670 }
2671 }
2672
2673 return 0;
2674
2675err_quota_change:
2676 ext4_msg(NULL, KERN_ERR,
2677 "Cannot change quota options when quota turned on");
2678 return -EINVAL;
2679err_jquota_change:
2680 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2681 "options when quota turned on");
2682 return -EINVAL;
2683err_jquota_specified:
2684 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2685 QTYPE2NAME(i));
2686 return -EINVAL;
2687#else
2688 return 0;
2689#endif
2690}
2691
2692static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2693 struct super_block *sb)
2694{
2695 const struct ext4_fs_context *ctx = fc->fs_private;
2696 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2697
2698 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2699 return 0;
2700
2701 if (!ext4_has_feature_encrypt(sb)) {
2702 ext4_msg(NULL, KERN_WARNING,
2703 "test_dummy_encryption requires encrypt feature");
2704 return -EINVAL;
2705 }
2706 /*
2707 * This mount option is just for testing, and it's not worthwhile to
2708 * implement the extra complexity (e.g. RCU protection) that would be
2709 * needed to allow it to be set or changed during remount. We do allow
2710 * it to be specified during remount, but only if there is no change.
2711 */
2712 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2713 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2714 &ctx->dummy_enc_policy))
2715 return 0;
2716 ext4_msg(NULL, KERN_WARNING,
2717 "Can't set or change test_dummy_encryption on remount");
2718 return -EINVAL;
2719 }
2720 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2721 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2722 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2723 &ctx->dummy_enc_policy))
2724 return 0;
2725 ext4_msg(NULL, KERN_WARNING,
2726 "Conflicting test_dummy_encryption options");
2727 return -EINVAL;
2728 }
2729 return 0;
2730}
2731
2732static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2733 struct super_block *sb)
2734{
2735 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2736 /* if already set, it was already verified to be the same */
2737 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2738 return;
2739 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2740 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2741 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2742}
2743
2744static int ext4_check_opt_consistency(struct fs_context *fc,
2745 struct super_block *sb)
2746{
2747 struct ext4_fs_context *ctx = fc->fs_private;
2748 struct ext4_sb_info *sbi = fc->s_fs_info;
2749 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2750 int err;
2751
2752 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2753 ext4_msg(NULL, KERN_ERR,
2754 "Mount option(s) incompatible with ext2");
2755 return -EINVAL;
2756 }
2757 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2758 ext4_msg(NULL, KERN_ERR,
2759 "Mount option(s) incompatible with ext3");
2760 return -EINVAL;
2761 }
2762
2763 if (ctx->s_want_extra_isize >
2764 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2765 ext4_msg(NULL, KERN_ERR,
2766 "Invalid want_extra_isize %d",
2767 ctx->s_want_extra_isize);
2768 return -EINVAL;
2769 }
2770
2771 err = ext4_check_test_dummy_encryption(fc, sb);
2772 if (err)
2773 return err;
2774
2775 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2776 if (!sbi->s_journal) {
2777 ext4_msg(NULL, KERN_WARNING,
2778 "Remounting file system with no journal "
2779 "so ignoring journalled data option");
2780 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2781 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2782 test_opt(sb, DATA_FLAGS)) {
2783 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2784 "on remount");
2785 return -EINVAL;
2786 }
2787 }
2788
2789 if (is_remount) {
2790 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2791 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2792 ext4_msg(NULL, KERN_ERR, "can't mount with "
2793 "both data=journal and dax");
2794 return -EINVAL;
2795 }
2796
2797 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2798 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2799 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2800fail_dax_change_remount:
2801 ext4_msg(NULL, KERN_ERR, "can't change "
2802 "dax mount option while remounting");
2803 return -EINVAL;
2804 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2805 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2806 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2807 goto fail_dax_change_remount;
2808 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2809 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2810 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2811 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2812 goto fail_dax_change_remount;
2813 }
2814 }
2815
2816 return ext4_check_quota_consistency(fc, sb);
2817}
2818
2819static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2820{
2821 struct ext4_fs_context *ctx = fc->fs_private;
2822 struct ext4_sb_info *sbi = fc->s_fs_info;
2823
2824 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2825 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2826 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2827 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2828 sb->s_flags &= ~ctx->mask_s_flags;
2829 sb->s_flags |= ctx->vals_s_flags;
2830
2831#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2832 APPLY(s_commit_interval);
2833 APPLY(s_stripe);
2834 APPLY(s_max_batch_time);
2835 APPLY(s_min_batch_time);
2836 APPLY(s_want_extra_isize);
2837 APPLY(s_inode_readahead_blks);
2838 APPLY(s_max_dir_size_kb);
2839 APPLY(s_li_wait_mult);
2840 APPLY(s_resgid);
2841 APPLY(s_resuid);
2842
2843#ifdef CONFIG_EXT4_DEBUG
2844 APPLY(s_fc_debug_max_replay);
2845#endif
2846
2847 ext4_apply_quota_options(fc, sb);
2848 ext4_apply_test_dummy_encryption(ctx, sb);
2849}
2850
2851
2852static int ext4_validate_options(struct fs_context *fc)
2853{
2854#ifdef CONFIG_QUOTA
2855 struct ext4_fs_context *ctx = fc->fs_private;
2856 char *usr_qf_name, *grp_qf_name;
2857
2858 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2859 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2860
2861 if (usr_qf_name || grp_qf_name) {
2862 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2863 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2864
2865 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2866 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2867
2868 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2869 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2870 ext4_msg(NULL, KERN_ERR, "old and new quota "
2871 "format mixing");
2872 return -EINVAL;
2873 }
2874 }
2875#endif
2876 return 1;
2877}
2878
2879static inline void ext4_show_quota_options(struct seq_file *seq,
2880 struct super_block *sb)
2881{
2882#if defined(CONFIG_QUOTA)
2883 struct ext4_sb_info *sbi = EXT4_SB(sb);
2884 char *usr_qf_name, *grp_qf_name;
2885
2886 if (sbi->s_jquota_fmt) {
2887 char *fmtname = "";
2888
2889 switch (sbi->s_jquota_fmt) {
2890 case QFMT_VFS_OLD:
2891 fmtname = "vfsold";
2892 break;
2893 case QFMT_VFS_V0:
2894 fmtname = "vfsv0";
2895 break;
2896 case QFMT_VFS_V1:
2897 fmtname = "vfsv1";
2898 break;
2899 }
2900 seq_printf(seq, ",jqfmt=%s", fmtname);
2901 }
2902
2903 rcu_read_lock();
2904 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2905 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2906 if (usr_qf_name)
2907 seq_show_option(seq, "usrjquota", usr_qf_name);
2908 if (grp_qf_name)
2909 seq_show_option(seq, "grpjquota", grp_qf_name);
2910 rcu_read_unlock();
2911#endif
2912}
2913
2914static const char *token2str(int token)
2915{
2916 const struct fs_parameter_spec *spec;
2917
2918 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2919 if (spec->opt == token && !spec->type)
2920 break;
2921 return spec->name;
2922}
2923
2924/*
2925 * Show an option if
2926 * - it's set to a non-default value OR
2927 * - if the per-sb default is different from the global default
2928 */
2929static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2930 int nodefs)
2931{
2932 struct ext4_sb_info *sbi = EXT4_SB(sb);
2933 struct ext4_super_block *es = sbi->s_es;
2934 int def_errors;
2935 const struct mount_opts *m;
2936 char sep = nodefs ? '\n' : ',';
2937
2938#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2939#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2940
2941 if (sbi->s_sb_block != 1)
2942 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2943
2944 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2945 int want_set = m->flags & MOPT_SET;
2946 int opt_2 = m->flags & MOPT_2;
2947 unsigned int mount_opt, def_mount_opt;
2948
2949 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2950 m->flags & MOPT_SKIP)
2951 continue;
2952
2953 if (opt_2) {
2954 mount_opt = sbi->s_mount_opt2;
2955 def_mount_opt = sbi->s_def_mount_opt2;
2956 } else {
2957 mount_opt = sbi->s_mount_opt;
2958 def_mount_opt = sbi->s_def_mount_opt;
2959 }
2960 /* skip if same as the default */
2961 if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2962 continue;
2963 /* select Opt_noFoo vs Opt_Foo */
2964 if ((want_set &&
2965 (mount_opt & m->mount_opt) != m->mount_opt) ||
2966 (!want_set && (mount_opt & m->mount_opt)))
2967 continue;
2968 SEQ_OPTS_PRINT("%s", token2str(m->token));
2969 }
2970
2971 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2972 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2973 SEQ_OPTS_PRINT("resuid=%u",
2974 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2975 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2976 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2977 SEQ_OPTS_PRINT("resgid=%u",
2978 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2979 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2980 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2981 SEQ_OPTS_PUTS("errors=remount-ro");
2982 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2983 SEQ_OPTS_PUTS("errors=continue");
2984 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2985 SEQ_OPTS_PUTS("errors=panic");
2986 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2987 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2988 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2989 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2990 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2991 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2992 if (nodefs || sbi->s_stripe)
2993 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2994 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2995 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
2996 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2997 SEQ_OPTS_PUTS("data=journal");
2998 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2999 SEQ_OPTS_PUTS("data=ordered");
3000 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3001 SEQ_OPTS_PUTS("data=writeback");
3002 }
3003 if (nodefs ||
3004 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3005 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3006 sbi->s_inode_readahead_blks);
3007
3008 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3009 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3010 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3011 if (nodefs || sbi->s_max_dir_size_kb)
3012 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3013 if (test_opt(sb, DATA_ERR_ABORT))
3014 SEQ_OPTS_PUTS("data_err=abort");
3015
3016 fscrypt_show_test_dummy_encryption(seq, sep, sb);
3017
3018 if (sb->s_flags & SB_INLINECRYPT)
3019 SEQ_OPTS_PUTS("inlinecrypt");
3020
3021 if (test_opt(sb, DAX_ALWAYS)) {
3022 if (IS_EXT2_SB(sb))
3023 SEQ_OPTS_PUTS("dax");
3024 else
3025 SEQ_OPTS_PUTS("dax=always");
3026 } else if (test_opt2(sb, DAX_NEVER)) {
3027 SEQ_OPTS_PUTS("dax=never");
3028 } else if (test_opt2(sb, DAX_INODE)) {
3029 SEQ_OPTS_PUTS("dax=inode");
3030 }
3031
3032 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3033 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3034 SEQ_OPTS_PUTS("mb_optimize_scan=0");
3035 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3036 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3037 SEQ_OPTS_PUTS("mb_optimize_scan=1");
3038 }
3039
3040 if (nodefs && !test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS))
3041 SEQ_OPTS_PUTS("prefetch_block_bitmaps");
3042
3043 ext4_show_quota_options(seq, sb);
3044 return 0;
3045}
3046
3047static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3048{
3049 return _ext4_show_options(seq, root->d_sb, 0);
3050}
3051
3052int ext4_seq_options_show(struct seq_file *seq, void *offset)
3053{
3054 struct super_block *sb = seq->private;
3055 int rc;
3056
3057 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3058 rc = _ext4_show_options(seq, sb, 1);
3059 seq_putc(seq, '\n');
3060 return rc;
3061}
3062
3063static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3064 int read_only)
3065{
3066 struct ext4_sb_info *sbi = EXT4_SB(sb);
3067 int err = 0;
3068
3069 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3070 ext4_msg(sb, KERN_ERR, "revision level too high, "
3071 "forcing read-only mode");
3072 err = -EROFS;
3073 goto done;
3074 }
3075 if (read_only)
3076 goto done;
3077 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3078 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3079 "running e2fsck is recommended");
3080 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3081 ext4_msg(sb, KERN_WARNING,
3082 "warning: mounting fs with errors, "
3083 "running e2fsck is recommended");
3084 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3085 le16_to_cpu(es->s_mnt_count) >=
3086 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3087 ext4_msg(sb, KERN_WARNING,
3088 "warning: maximal mount count reached, "
3089 "running e2fsck is recommended");
3090 else if (le32_to_cpu(es->s_checkinterval) &&
3091 (ext4_get_tstamp(es, s_lastcheck) +
3092 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3093 ext4_msg(sb, KERN_WARNING,
3094 "warning: checktime reached, "
3095 "running e2fsck is recommended");
3096 if (!sbi->s_journal)
3097 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3098 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3099 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3100 le16_add_cpu(&es->s_mnt_count, 1);
3101 ext4_update_tstamp(es, s_mtime);
3102 if (sbi->s_journal) {
3103 ext4_set_feature_journal_needs_recovery(sb);
3104 if (ext4_has_feature_orphan_file(sb))
3105 ext4_set_feature_orphan_present(sb);
3106 }
3107
3108 err = ext4_commit_super(sb);
3109done:
3110 if (test_opt(sb, DEBUG))
3111 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3112 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3113 sb->s_blocksize,
3114 sbi->s_groups_count,
3115 EXT4_BLOCKS_PER_GROUP(sb),
3116 EXT4_INODES_PER_GROUP(sb),
3117 sbi->s_mount_opt, sbi->s_mount_opt2);
3118 return err;
3119}
3120
3121int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3122{
3123 struct ext4_sb_info *sbi = EXT4_SB(sb);
3124 struct flex_groups **old_groups, **new_groups;
3125 int size, i, j;
3126
3127 if (!sbi->s_log_groups_per_flex)
3128 return 0;
3129
3130 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3131 if (size <= sbi->s_flex_groups_allocated)
3132 return 0;
3133
3134 new_groups = kvzalloc(roundup_pow_of_two(size *
3135 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3136 if (!new_groups) {
3137 ext4_msg(sb, KERN_ERR,
3138 "not enough memory for %d flex group pointers", size);
3139 return -ENOMEM;
3140 }
3141 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3142 new_groups[i] = kvzalloc(roundup_pow_of_two(
3143 sizeof(struct flex_groups)),
3144 GFP_KERNEL);
3145 if (!new_groups[i]) {
3146 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3147 kvfree(new_groups[j]);
3148 kvfree(new_groups);
3149 ext4_msg(sb, KERN_ERR,
3150 "not enough memory for %d flex groups", size);
3151 return -ENOMEM;
3152 }
3153 }
3154 rcu_read_lock();
3155 old_groups = rcu_dereference(sbi->s_flex_groups);
3156 if (old_groups)
3157 memcpy(new_groups, old_groups,
3158 (sbi->s_flex_groups_allocated *
3159 sizeof(struct flex_groups *)));
3160 rcu_read_unlock();
3161 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3162 sbi->s_flex_groups_allocated = size;
3163 if (old_groups)
3164 ext4_kvfree_array_rcu(old_groups);
3165 return 0;
3166}
3167
3168static int ext4_fill_flex_info(struct super_block *sb)
3169{
3170 struct ext4_sb_info *sbi = EXT4_SB(sb);
3171 struct ext4_group_desc *gdp = NULL;
3172 struct flex_groups *fg;
3173 ext4_group_t flex_group;
3174 int i, err;
3175
3176 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3177 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3178 sbi->s_log_groups_per_flex = 0;
3179 return 1;
3180 }
3181
3182 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3183 if (err)
3184 goto failed;
3185
3186 for (i = 0; i < sbi->s_groups_count; i++) {
3187 gdp = ext4_get_group_desc(sb, i, NULL);
3188
3189 flex_group = ext4_flex_group(sbi, i);
3190 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3191 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3192 atomic64_add(ext4_free_group_clusters(sb, gdp),
3193 &fg->free_clusters);
3194 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3195 }
3196
3197 return 1;
3198failed:
3199 return 0;
3200}
3201
3202static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3203 struct ext4_group_desc *gdp)
3204{
3205 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3206 __u16 crc = 0;
3207 __le32 le_group = cpu_to_le32(block_group);
3208 struct ext4_sb_info *sbi = EXT4_SB(sb);
3209
3210 if (ext4_has_metadata_csum(sbi->s_sb)) {
3211 /* Use new metadata_csum algorithm */
3212 __u32 csum32;
3213 __u16 dummy_csum = 0;
3214
3215 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3216 sizeof(le_group));
3217 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3218 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3219 sizeof(dummy_csum));
3220 offset += sizeof(dummy_csum);
3221 if (offset < sbi->s_desc_size)
3222 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3223 sbi->s_desc_size - offset);
3224
3225 crc = csum32 & 0xFFFF;
3226 goto out;
3227 }
3228
3229 /* old crc16 code */
3230 if (!ext4_has_feature_gdt_csum(sb))
3231 return 0;
3232
3233 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3234 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3235 crc = crc16(crc, (__u8 *)gdp, offset);
3236 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3237 /* for checksum of struct ext4_group_desc do the rest...*/
3238 if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
3239 crc = crc16(crc, (__u8 *)gdp + offset,
3240 sbi->s_desc_size - offset);
3241
3242out:
3243 return cpu_to_le16(crc);
3244}
3245
3246int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3247 struct ext4_group_desc *gdp)
3248{
3249 if (ext4_has_group_desc_csum(sb) &&
3250 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3251 return 0;
3252
3253 return 1;
3254}
3255
3256void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3257 struct ext4_group_desc *gdp)
3258{
3259 if (!ext4_has_group_desc_csum(sb))
3260 return;
3261 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3262}
3263
3264/* Called at mount-time, super-block is locked */
3265static int ext4_check_descriptors(struct super_block *sb,
3266 ext4_fsblk_t sb_block,
3267 ext4_group_t *first_not_zeroed)
3268{
3269 struct ext4_sb_info *sbi = EXT4_SB(sb);
3270 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3271 ext4_fsblk_t last_block;
3272 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3273 ext4_fsblk_t block_bitmap;
3274 ext4_fsblk_t inode_bitmap;
3275 ext4_fsblk_t inode_table;
3276 int flexbg_flag = 0;
3277 ext4_group_t i, grp = sbi->s_groups_count;
3278
3279 if (ext4_has_feature_flex_bg(sb))
3280 flexbg_flag = 1;
3281
3282 ext4_debug("Checking group descriptors");
3283
3284 for (i = 0; i < sbi->s_groups_count; i++) {
3285 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3286
3287 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3288 last_block = ext4_blocks_count(sbi->s_es) - 1;
3289 else
3290 last_block = first_block +
3291 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3292
3293 if ((grp == sbi->s_groups_count) &&
3294 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3295 grp = i;
3296
3297 block_bitmap = ext4_block_bitmap(sb, gdp);
3298 if (block_bitmap == sb_block) {
3299 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3300 "Block bitmap for group %u overlaps "
3301 "superblock", i);
3302 if (!sb_rdonly(sb))
3303 return 0;
3304 }
3305 if (block_bitmap >= sb_block + 1 &&
3306 block_bitmap <= last_bg_block) {
3307 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3308 "Block bitmap for group %u overlaps "
3309 "block group descriptors", i);
3310 if (!sb_rdonly(sb))
3311 return 0;
3312 }
3313 if (block_bitmap < first_block || block_bitmap > last_block) {
3314 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3315 "Block bitmap for group %u not in group "
3316 "(block %llu)!", i, block_bitmap);
3317 return 0;
3318 }
3319 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3320 if (inode_bitmap == sb_block) {
3321 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3322 "Inode bitmap for group %u overlaps "
3323 "superblock", i);
3324 if (!sb_rdonly(sb))
3325 return 0;
3326 }
3327 if (inode_bitmap >= sb_block + 1 &&
3328 inode_bitmap <= last_bg_block) {
3329 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3330 "Inode bitmap for group %u overlaps "
3331 "block group descriptors", i);
3332 if (!sb_rdonly(sb))
3333 return 0;
3334 }
3335 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3336 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3337 "Inode bitmap for group %u not in group "
3338 "(block %llu)!", i, inode_bitmap);
3339 return 0;
3340 }
3341 inode_table = ext4_inode_table(sb, gdp);
3342 if (inode_table == sb_block) {
3343 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3344 "Inode table for group %u overlaps "
3345 "superblock", i);
3346 if (!sb_rdonly(sb))
3347 return 0;
3348 }
3349 if (inode_table >= sb_block + 1 &&
3350 inode_table <= last_bg_block) {
3351 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3352 "Inode table for group %u overlaps "
3353 "block group descriptors", i);
3354 if (!sb_rdonly(sb))
3355 return 0;
3356 }
3357 if (inode_table < first_block ||
3358 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3359 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3360 "Inode table for group %u not in group "
3361 "(block %llu)!", i, inode_table);
3362 return 0;
3363 }
3364 ext4_lock_group(sb, i);
3365 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3366 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3367 "Checksum for group %u failed (%u!=%u)",
3368 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3369 gdp)), le16_to_cpu(gdp->bg_checksum));
3370 if (!sb_rdonly(sb)) {
3371 ext4_unlock_group(sb, i);
3372 return 0;
3373 }
3374 }
3375 ext4_unlock_group(sb, i);
3376 if (!flexbg_flag)
3377 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3378 }
3379 if (NULL != first_not_zeroed)
3380 *first_not_zeroed = grp;
3381 return 1;
3382}
3383
3384/*
3385 * Maximal extent format file size.
3386 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3387 * extent format containers, within a sector_t, and within i_blocks
3388 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3389 * so that won't be a limiting factor.
3390 *
3391 * However there is other limiting factor. We do store extents in the form
3392 * of starting block and length, hence the resulting length of the extent
3393 * covering maximum file size must fit into on-disk format containers as
3394 * well. Given that length is always by 1 unit bigger than max unit (because
3395 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3396 *
3397 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3398 */
3399static loff_t ext4_max_size(int blkbits, int has_huge_files)
3400{
3401 loff_t res;
3402 loff_t upper_limit = MAX_LFS_FILESIZE;
3403
3404 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3405
3406 if (!has_huge_files) {
3407 upper_limit = (1LL << 32) - 1;
3408
3409 /* total blocks in file system block size */
3410 upper_limit >>= (blkbits - 9);
3411 upper_limit <<= blkbits;
3412 }
3413
3414 /*
3415 * 32-bit extent-start container, ee_block. We lower the maxbytes
3416 * by one fs block, so ee_len can cover the extent of maximum file
3417 * size
3418 */
3419 res = (1LL << 32) - 1;
3420 res <<= blkbits;
3421
3422 /* Sanity check against vm- & vfs- imposed limits */
3423 if (res > upper_limit)
3424 res = upper_limit;
3425
3426 return res;
3427}
3428
3429/*
3430 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3431 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3432 * We need to be 1 filesystem block less than the 2^48 sector limit.
3433 */
3434static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3435{
3436 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3437 int meta_blocks;
3438 unsigned int ppb = 1 << (bits - 2);
3439
3440 /*
3441 * This is calculated to be the largest file size for a dense, block
3442 * mapped file such that the file's total number of 512-byte sectors,
3443 * including data and all indirect blocks, does not exceed (2^48 - 1).
3444 *
3445 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3446 * number of 512-byte sectors of the file.
3447 */
3448 if (!has_huge_files) {
3449 /*
3450 * !has_huge_files or implies that the inode i_block field
3451 * represents total file blocks in 2^32 512-byte sectors ==
3452 * size of vfs inode i_blocks * 8
3453 */
3454 upper_limit = (1LL << 32) - 1;
3455
3456 /* total blocks in file system block size */
3457 upper_limit >>= (bits - 9);
3458
3459 } else {
3460 /*
3461 * We use 48 bit ext4_inode i_blocks
3462 * With EXT4_HUGE_FILE_FL set the i_blocks
3463 * represent total number of blocks in
3464 * file system block size
3465 */
3466 upper_limit = (1LL << 48) - 1;
3467
3468 }
3469
3470 /* Compute how many blocks we can address by block tree */
3471 res += ppb;
3472 res += ppb * ppb;
3473 res += ((loff_t)ppb) * ppb * ppb;
3474 /* Compute how many metadata blocks are needed */
3475 meta_blocks = 1;
3476 meta_blocks += 1 + ppb;
3477 meta_blocks += 1 + ppb + ppb * ppb;
3478 /* Does block tree limit file size? */
3479 if (res + meta_blocks <= upper_limit)
3480 goto check_lfs;
3481
3482 res = upper_limit;
3483 /* How many metadata blocks are needed for addressing upper_limit? */
3484 upper_limit -= EXT4_NDIR_BLOCKS;
3485 /* indirect blocks */
3486 meta_blocks = 1;
3487 upper_limit -= ppb;
3488 /* double indirect blocks */
3489 if (upper_limit < ppb * ppb) {
3490 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3491 res -= meta_blocks;
3492 goto check_lfs;
3493 }
3494 meta_blocks += 1 + ppb;
3495 upper_limit -= ppb * ppb;
3496 /* tripple indirect blocks for the rest */
3497 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3498 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3499 res -= meta_blocks;
3500check_lfs:
3501 res <<= bits;
3502 if (res > MAX_LFS_FILESIZE)
3503 res = MAX_LFS_FILESIZE;
3504
3505 return res;
3506}
3507
3508static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3509 ext4_fsblk_t logical_sb_block, int nr)
3510{
3511 struct ext4_sb_info *sbi = EXT4_SB(sb);
3512 ext4_group_t bg, first_meta_bg;
3513 int has_super = 0;
3514
3515 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3516
3517 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3518 return logical_sb_block + nr + 1;
3519 bg = sbi->s_desc_per_block * nr;
3520 if (ext4_bg_has_super(sb, bg))
3521 has_super = 1;
3522
3523 /*
3524 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3525 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3526 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3527 * compensate.
3528 */
3529 if (sb->s_blocksize == 1024 && nr == 0 &&
3530 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3531 has_super++;
3532
3533 return (has_super + ext4_group_first_block_no(sb, bg));
3534}
3535
3536/**
3537 * ext4_get_stripe_size: Get the stripe size.
3538 * @sbi: In memory super block info
3539 *
3540 * If we have specified it via mount option, then
3541 * use the mount option value. If the value specified at mount time is
3542 * greater than the blocks per group use the super block value.
3543 * If the super block value is greater than blocks per group return 0.
3544 * Allocator needs it be less than blocks per group.
3545 *
3546 */
3547static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3548{
3549 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3550 unsigned long stripe_width =
3551 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3552 int ret;
3553
3554 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3555 ret = sbi->s_stripe;
3556 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3557 ret = stripe_width;
3558 else if (stride && stride <= sbi->s_blocks_per_group)
3559 ret = stride;
3560 else
3561 ret = 0;
3562
3563 /*
3564 * If the stripe width is 1, this makes no sense and
3565 * we set it to 0 to turn off stripe handling code.
3566 */
3567 if (ret <= 1)
3568 ret = 0;
3569
3570 return ret;
3571}
3572
3573/*
3574 * Check whether this filesystem can be mounted based on
3575 * the features present and the RDONLY/RDWR mount requested.
3576 * Returns 1 if this filesystem can be mounted as requested,
3577 * 0 if it cannot be.
3578 */
3579int ext4_feature_set_ok(struct super_block *sb, int readonly)
3580{
3581 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3582 ext4_msg(sb, KERN_ERR,
3583 "Couldn't mount because of "
3584 "unsupported optional features (%x)",
3585 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3586 ~EXT4_FEATURE_INCOMPAT_SUPP));
3587 return 0;
3588 }
3589
3590 if (!IS_ENABLED(CONFIG_UNICODE) && ext4_has_feature_casefold(sb)) {
3591 ext4_msg(sb, KERN_ERR,
3592 "Filesystem with casefold feature cannot be "
3593 "mounted without CONFIG_UNICODE");
3594 return 0;
3595 }
3596
3597 if (readonly)
3598 return 1;
3599
3600 if (ext4_has_feature_readonly(sb)) {
3601 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3602 sb->s_flags |= SB_RDONLY;
3603 return 1;
3604 }
3605
3606 /* Check that feature set is OK for a read-write mount */
3607 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3608 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3609 "unsupported optional features (%x)",
3610 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3611 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3612 return 0;
3613 }
3614 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3615 ext4_msg(sb, KERN_ERR,
3616 "Can't support bigalloc feature without "
3617 "extents feature\n");
3618 return 0;
3619 }
3620
3621#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3622 if (!readonly && (ext4_has_feature_quota(sb) ||
3623 ext4_has_feature_project(sb))) {
3624 ext4_msg(sb, KERN_ERR,
3625 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3626 return 0;
3627 }
3628#endif /* CONFIG_QUOTA */
3629 return 1;
3630}
3631
3632/*
3633 * This function is called once a day if we have errors logged
3634 * on the file system
3635 */
3636static void print_daily_error_info(struct timer_list *t)
3637{
3638 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3639 struct super_block *sb = sbi->s_sb;
3640 struct ext4_super_block *es = sbi->s_es;
3641
3642 if (es->s_error_count)
3643 /* fsck newer than v1.41.13 is needed to clean this condition. */
3644 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3645 le32_to_cpu(es->s_error_count));
3646 if (es->s_first_error_time) {
3647 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3648 sb->s_id,
3649 ext4_get_tstamp(es, s_first_error_time),
3650 (int) sizeof(es->s_first_error_func),
3651 es->s_first_error_func,
3652 le32_to_cpu(es->s_first_error_line));
3653 if (es->s_first_error_ino)
3654 printk(KERN_CONT ": inode %u",
3655 le32_to_cpu(es->s_first_error_ino));
3656 if (es->s_first_error_block)
3657 printk(KERN_CONT ": block %llu", (unsigned long long)
3658 le64_to_cpu(es->s_first_error_block));
3659 printk(KERN_CONT "\n");
3660 }
3661 if (es->s_last_error_time) {
3662 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3663 sb->s_id,
3664 ext4_get_tstamp(es, s_last_error_time),
3665 (int) sizeof(es->s_last_error_func),
3666 es->s_last_error_func,
3667 le32_to_cpu(es->s_last_error_line));
3668 if (es->s_last_error_ino)
3669 printk(KERN_CONT ": inode %u",
3670 le32_to_cpu(es->s_last_error_ino));
3671 if (es->s_last_error_block)
3672 printk(KERN_CONT ": block %llu", (unsigned long long)
3673 le64_to_cpu(es->s_last_error_block));
3674 printk(KERN_CONT "\n");
3675 }
3676 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3677}
3678
3679/* Find next suitable group and run ext4_init_inode_table */
3680static int ext4_run_li_request(struct ext4_li_request *elr)
3681{
3682 struct ext4_group_desc *gdp = NULL;
3683 struct super_block *sb = elr->lr_super;
3684 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3685 ext4_group_t group = elr->lr_next_group;
3686 unsigned int prefetch_ios = 0;
3687 int ret = 0;
3688 int nr = EXT4_SB(sb)->s_mb_prefetch;
3689 u64 start_time;
3690
3691 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3692 elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3693 ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3694 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
3695 if (group >= elr->lr_next_group) {
3696 ret = 1;
3697 if (elr->lr_first_not_zeroed != ngroups &&
3698 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3699 elr->lr_next_group = elr->lr_first_not_zeroed;
3700 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3701 ret = 0;
3702 }
3703 }
3704 return ret;
3705 }
3706
3707 for (; group < ngroups; group++) {
3708 gdp = ext4_get_group_desc(sb, group, NULL);
3709 if (!gdp) {
3710 ret = 1;
3711 break;
3712 }
3713
3714 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3715 break;
3716 }
3717
3718 if (group >= ngroups)
3719 ret = 1;
3720
3721 if (!ret) {
3722 start_time = ktime_get_ns();
3723 ret = ext4_init_inode_table(sb, group,
3724 elr->lr_timeout ? 0 : 1);
3725 trace_ext4_lazy_itable_init(sb, group);
3726 if (elr->lr_timeout == 0) {
3727 elr->lr_timeout = nsecs_to_jiffies((ktime_get_ns() - start_time) *
3728 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3729 }
3730 elr->lr_next_sched = jiffies + elr->lr_timeout;
3731 elr->lr_next_group = group + 1;
3732 }
3733 return ret;
3734}
3735
3736/*
3737 * Remove lr_request from the list_request and free the
3738 * request structure. Should be called with li_list_mtx held
3739 */
3740static void ext4_remove_li_request(struct ext4_li_request *elr)
3741{
3742 if (!elr)
3743 return;
3744
3745 list_del(&elr->lr_request);
3746 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3747 kfree(elr);
3748}
3749
3750static void ext4_unregister_li_request(struct super_block *sb)
3751{
3752 mutex_lock(&ext4_li_mtx);
3753 if (!ext4_li_info) {
3754 mutex_unlock(&ext4_li_mtx);
3755 return;
3756 }
3757
3758 mutex_lock(&ext4_li_info->li_list_mtx);
3759 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3760 mutex_unlock(&ext4_li_info->li_list_mtx);
3761 mutex_unlock(&ext4_li_mtx);
3762}
3763
3764static struct task_struct *ext4_lazyinit_task;
3765
3766/*
3767 * This is the function where ext4lazyinit thread lives. It walks
3768 * through the request list searching for next scheduled filesystem.
3769 * When such a fs is found, run the lazy initialization request
3770 * (ext4_rn_li_request) and keep track of the time spend in this
3771 * function. Based on that time we compute next schedule time of
3772 * the request. When walking through the list is complete, compute
3773 * next waking time and put itself into sleep.
3774 */
3775static int ext4_lazyinit_thread(void *arg)
3776{
3777 struct ext4_lazy_init *eli = arg;
3778 struct list_head *pos, *n;
3779 struct ext4_li_request *elr;
3780 unsigned long next_wakeup, cur;
3781
3782 BUG_ON(NULL == eli);
3783 set_freezable();
3784
3785cont_thread:
3786 while (true) {
3787 bool next_wakeup_initialized = false;
3788
3789 next_wakeup = 0;
3790 mutex_lock(&eli->li_list_mtx);
3791 if (list_empty(&eli->li_request_list)) {
3792 mutex_unlock(&eli->li_list_mtx);
3793 goto exit_thread;
3794 }
3795 list_for_each_safe(pos, n, &eli->li_request_list) {
3796 int err = 0;
3797 int progress = 0;
3798 elr = list_entry(pos, struct ext4_li_request,
3799 lr_request);
3800
3801 if (time_before(jiffies, elr->lr_next_sched)) {
3802 if (!next_wakeup_initialized ||
3803 time_before(elr->lr_next_sched, next_wakeup)) {
3804 next_wakeup = elr->lr_next_sched;
3805 next_wakeup_initialized = true;
3806 }
3807 continue;
3808 }
3809 if (down_read_trylock(&elr->lr_super->s_umount)) {
3810 if (sb_start_write_trylock(elr->lr_super)) {
3811 progress = 1;
3812 /*
3813 * We hold sb->s_umount, sb can not
3814 * be removed from the list, it is
3815 * now safe to drop li_list_mtx
3816 */
3817 mutex_unlock(&eli->li_list_mtx);
3818 err = ext4_run_li_request(elr);
3819 sb_end_write(elr->lr_super);
3820 mutex_lock(&eli->li_list_mtx);
3821 n = pos->next;
3822 }
3823 up_read((&elr->lr_super->s_umount));
3824 }
3825 /* error, remove the lazy_init job */
3826 if (err) {
3827 ext4_remove_li_request(elr);
3828 continue;
3829 }
3830 if (!progress) {
3831 elr->lr_next_sched = jiffies +
3832 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3833 }
3834 if (!next_wakeup_initialized ||
3835 time_before(elr->lr_next_sched, next_wakeup)) {
3836 next_wakeup = elr->lr_next_sched;
3837 next_wakeup_initialized = true;
3838 }
3839 }
3840 mutex_unlock(&eli->li_list_mtx);
3841
3842 try_to_freeze();
3843
3844 cur = jiffies;
3845 if (!next_wakeup_initialized || time_after_eq(cur, next_wakeup)) {
3846 cond_resched();
3847 continue;
3848 }
3849
3850 schedule_timeout_interruptible(next_wakeup - cur);
3851
3852 if (kthread_should_stop()) {
3853 ext4_clear_request_list();
3854 goto exit_thread;
3855 }
3856 }
3857
3858exit_thread:
3859 /*
3860 * It looks like the request list is empty, but we need
3861 * to check it under the li_list_mtx lock, to prevent any
3862 * additions into it, and of course we should lock ext4_li_mtx
3863 * to atomically free the list and ext4_li_info, because at
3864 * this point another ext4 filesystem could be registering
3865 * new one.
3866 */
3867 mutex_lock(&ext4_li_mtx);
3868 mutex_lock(&eli->li_list_mtx);
3869 if (!list_empty(&eli->li_request_list)) {
3870 mutex_unlock(&eli->li_list_mtx);
3871 mutex_unlock(&ext4_li_mtx);
3872 goto cont_thread;
3873 }
3874 mutex_unlock(&eli->li_list_mtx);
3875 kfree(ext4_li_info);
3876 ext4_li_info = NULL;
3877 mutex_unlock(&ext4_li_mtx);
3878
3879 return 0;
3880}
3881
3882static void ext4_clear_request_list(void)
3883{
3884 struct list_head *pos, *n;
3885 struct ext4_li_request *elr;
3886
3887 mutex_lock(&ext4_li_info->li_list_mtx);
3888 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3889 elr = list_entry(pos, struct ext4_li_request,
3890 lr_request);
3891 ext4_remove_li_request(elr);
3892 }
3893 mutex_unlock(&ext4_li_info->li_list_mtx);
3894}
3895
3896static int ext4_run_lazyinit_thread(void)
3897{
3898 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3899 ext4_li_info, "ext4lazyinit");
3900 if (IS_ERR(ext4_lazyinit_task)) {
3901 int err = PTR_ERR(ext4_lazyinit_task);
3902 ext4_clear_request_list();
3903 kfree(ext4_li_info);
3904 ext4_li_info = NULL;
3905 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3906 "initialization thread\n",
3907 err);
3908 return err;
3909 }
3910 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3911 return 0;
3912}
3913
3914/*
3915 * Check whether it make sense to run itable init. thread or not.
3916 * If there is at least one uninitialized inode table, return
3917 * corresponding group number, else the loop goes through all
3918 * groups and return total number of groups.
3919 */
3920static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3921{
3922 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3923 struct ext4_group_desc *gdp = NULL;
3924
3925 if (!ext4_has_group_desc_csum(sb))
3926 return ngroups;
3927
3928 for (group = 0; group < ngroups; group++) {
3929 gdp = ext4_get_group_desc(sb, group, NULL);
3930 if (!gdp)
3931 continue;
3932
3933 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3934 break;
3935 }
3936
3937 return group;
3938}
3939
3940static int ext4_li_info_new(void)
3941{
3942 struct ext4_lazy_init *eli = NULL;
3943
3944 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3945 if (!eli)
3946 return -ENOMEM;
3947
3948 INIT_LIST_HEAD(&eli->li_request_list);
3949 mutex_init(&eli->li_list_mtx);
3950
3951 eli->li_state |= EXT4_LAZYINIT_QUIT;
3952
3953 ext4_li_info = eli;
3954
3955 return 0;
3956}
3957
3958static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3959 ext4_group_t start)
3960{
3961 struct ext4_li_request *elr;
3962
3963 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3964 if (!elr)
3965 return NULL;
3966
3967 elr->lr_super = sb;
3968 elr->lr_first_not_zeroed = start;
3969 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3970 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3971 elr->lr_next_group = start;
3972 } else {
3973 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3974 }
3975
3976 /*
3977 * Randomize first schedule time of the request to
3978 * spread the inode table initialization requests
3979 * better.
3980 */
3981 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3982 return elr;
3983}
3984
3985int ext4_register_li_request(struct super_block *sb,
3986 ext4_group_t first_not_zeroed)
3987{
3988 struct ext4_sb_info *sbi = EXT4_SB(sb);
3989 struct ext4_li_request *elr = NULL;
3990 ext4_group_t ngroups = sbi->s_groups_count;
3991 int ret = 0;
3992
3993 mutex_lock(&ext4_li_mtx);
3994 if (sbi->s_li_request != NULL) {
3995 /*
3996 * Reset timeout so it can be computed again, because
3997 * s_li_wait_mult might have changed.
3998 */
3999 sbi->s_li_request->lr_timeout = 0;
4000 goto out;
4001 }
4002
4003 if (sb_rdonly(sb) ||
4004 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4005 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4006 goto out;
4007
4008 elr = ext4_li_request_new(sb, first_not_zeroed);
4009 if (!elr) {
4010 ret = -ENOMEM;
4011 goto out;
4012 }
4013
4014 if (NULL == ext4_li_info) {
4015 ret = ext4_li_info_new();
4016 if (ret)
4017 goto out;
4018 }
4019
4020 mutex_lock(&ext4_li_info->li_list_mtx);
4021 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4022 mutex_unlock(&ext4_li_info->li_list_mtx);
4023
4024 sbi->s_li_request = elr;
4025 /*
4026 * set elr to NULL here since it has been inserted to
4027 * the request_list and the removal and free of it is
4028 * handled by ext4_clear_request_list from now on.
4029 */
4030 elr = NULL;
4031
4032 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4033 ret = ext4_run_lazyinit_thread();
4034 if (ret)
4035 goto out;
4036 }
4037out:
4038 mutex_unlock(&ext4_li_mtx);
4039 if (ret)
4040 kfree(elr);
4041 return ret;
4042}
4043
4044/*
4045 * We do not need to lock anything since this is called on
4046 * module unload.
4047 */
4048static void ext4_destroy_lazyinit_thread(void)
4049{
4050 /*
4051 * If thread exited earlier
4052 * there's nothing to be done.
4053 */
4054 if (!ext4_li_info || !ext4_lazyinit_task)
4055 return;
4056
4057 kthread_stop(ext4_lazyinit_task);
4058}
4059
4060static int set_journal_csum_feature_set(struct super_block *sb)
4061{
4062 int ret = 1;
4063 int compat, incompat;
4064 struct ext4_sb_info *sbi = EXT4_SB(sb);
4065
4066 if (ext4_has_metadata_csum(sb)) {
4067 /* journal checksum v3 */
4068 compat = 0;
4069 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4070 } else {
4071 /* journal checksum v1 */
4072 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4073 incompat = 0;
4074 }
4075
4076 jbd2_journal_clear_features(sbi->s_journal,
4077 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4078 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4079 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4080 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4081 ret = jbd2_journal_set_features(sbi->s_journal,
4082 compat, 0,
4083 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4084 incompat);
4085 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4086 ret = jbd2_journal_set_features(sbi->s_journal,
4087 compat, 0,
4088 incompat);
4089 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4090 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4091 } else {
4092 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4093 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4094 }
4095
4096 return ret;
4097}
4098
4099/*
4100 * Note: calculating the overhead so we can be compatible with
4101 * historical BSD practice is quite difficult in the face of
4102 * clusters/bigalloc. This is because multiple metadata blocks from
4103 * different block group can end up in the same allocation cluster.
4104 * Calculating the exact overhead in the face of clustered allocation
4105 * requires either O(all block bitmaps) in memory or O(number of block
4106 * groups**2) in time. We will still calculate the superblock for
4107 * older file systems --- and if we come across with a bigalloc file
4108 * system with zero in s_overhead_clusters the estimate will be close to
4109 * correct especially for very large cluster sizes --- but for newer
4110 * file systems, it's better to calculate this figure once at mkfs
4111 * time, and store it in the superblock. If the superblock value is
4112 * present (even for non-bigalloc file systems), we will use it.
4113 */
4114static int count_overhead(struct super_block *sb, ext4_group_t grp,
4115 char *buf)
4116{
4117 struct ext4_sb_info *sbi = EXT4_SB(sb);
4118 struct ext4_group_desc *gdp;
4119 ext4_fsblk_t first_block, last_block, b;
4120 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4121 int s, j, count = 0;
4122 int has_super = ext4_bg_has_super(sb, grp);
4123
4124 if (!ext4_has_feature_bigalloc(sb))
4125 return (has_super + ext4_bg_num_gdb(sb, grp) +
4126 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4127 sbi->s_itb_per_group + 2);
4128
4129 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4130 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4131 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4132 for (i = 0; i < ngroups; i++) {
4133 gdp = ext4_get_group_desc(sb, i, NULL);
4134 b = ext4_block_bitmap(sb, gdp);
4135 if (b >= first_block && b <= last_block) {
4136 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4137 count++;
4138 }
4139 b = ext4_inode_bitmap(sb, gdp);
4140 if (b >= first_block && b <= last_block) {
4141 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4142 count++;
4143 }
4144 b = ext4_inode_table(sb, gdp);
4145 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4146 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4147 int c = EXT4_B2C(sbi, b - first_block);
4148 ext4_set_bit(c, buf);
4149 count++;
4150 }
4151 if (i != grp)
4152 continue;
4153 s = 0;
4154 if (ext4_bg_has_super(sb, grp)) {
4155 ext4_set_bit(s++, buf);
4156 count++;
4157 }
4158 j = ext4_bg_num_gdb(sb, grp);
4159 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4160 ext4_error(sb, "Invalid number of block group "
4161 "descriptor blocks: %d", j);
4162 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4163 }
4164 count += j;
4165 for (; j > 0; j--)
4166 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4167 }
4168 if (!count)
4169 return 0;
4170 return EXT4_CLUSTERS_PER_GROUP(sb) -
4171 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4172}
4173
4174/*
4175 * Compute the overhead and stash it in sbi->s_overhead
4176 */
4177int ext4_calculate_overhead(struct super_block *sb)
4178{
4179 struct ext4_sb_info *sbi = EXT4_SB(sb);
4180 struct ext4_super_block *es = sbi->s_es;
4181 struct inode *j_inode;
4182 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4183 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4184 ext4_fsblk_t overhead = 0;
4185 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4186
4187 if (!buf)
4188 return -ENOMEM;
4189
4190 /*
4191 * Compute the overhead (FS structures). This is constant
4192 * for a given filesystem unless the number of block groups
4193 * changes so we cache the previous value until it does.
4194 */
4195
4196 /*
4197 * All of the blocks before first_data_block are overhead
4198 */
4199 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4200
4201 /*
4202 * Add the overhead found in each block group
4203 */
4204 for (i = 0; i < ngroups; i++) {
4205 int blks;
4206
4207 blks = count_overhead(sb, i, buf);
4208 overhead += blks;
4209 if (blks)
4210 memset(buf, 0, PAGE_SIZE);
4211 cond_resched();
4212 }
4213
4214 /*
4215 * Add the internal journal blocks whether the journal has been
4216 * loaded or not
4217 */
4218 if (sbi->s_journal && !sbi->s_journal_bdev_file)
4219 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4220 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4221 /* j_inum for internal journal is non-zero */
4222 j_inode = ext4_get_journal_inode(sb, j_inum);
4223 if (!IS_ERR(j_inode)) {
4224 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4225 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4226 iput(j_inode);
4227 } else {
4228 ext4_msg(sb, KERN_ERR, "can't get journal size");
4229 }
4230 }
4231 sbi->s_overhead = overhead;
4232 smp_wmb();
4233 free_page((unsigned long) buf);
4234 return 0;
4235}
4236
4237static void ext4_set_resv_clusters(struct super_block *sb)
4238{
4239 ext4_fsblk_t resv_clusters;
4240 struct ext4_sb_info *sbi = EXT4_SB(sb);
4241
4242 /*
4243 * There's no need to reserve anything when we aren't using extents.
4244 * The space estimates are exact, there are no unwritten extents,
4245 * hole punching doesn't need new metadata... This is needed especially
4246 * to keep ext2/3 backward compatibility.
4247 */
4248 if (!ext4_has_feature_extents(sb))
4249 return;
4250 /*
4251 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4252 * This should cover the situations where we can not afford to run
4253 * out of space like for example punch hole, or converting
4254 * unwritten extents in delalloc path. In most cases such
4255 * allocation would require 1, or 2 blocks, higher numbers are
4256 * very rare.
4257 */
4258 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4259 sbi->s_cluster_bits);
4260
4261 do_div(resv_clusters, 50);
4262 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4263
4264 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4265}
4266
4267static const char *ext4_quota_mode(struct super_block *sb)
4268{
4269#ifdef CONFIG_QUOTA
4270 if (!ext4_quota_capable(sb))
4271 return "none";
4272
4273 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4274 return "journalled";
4275 else
4276 return "writeback";
4277#else
4278 return "disabled";
4279#endif
4280}
4281
4282static void ext4_setup_csum_trigger(struct super_block *sb,
4283 enum ext4_journal_trigger_type type,
4284 void (*trigger)(
4285 struct jbd2_buffer_trigger_type *type,
4286 struct buffer_head *bh,
4287 void *mapped_data,
4288 size_t size))
4289{
4290 struct ext4_sb_info *sbi = EXT4_SB(sb);
4291
4292 sbi->s_journal_triggers[type].sb = sb;
4293 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4294}
4295
4296static void ext4_free_sbi(struct ext4_sb_info *sbi)
4297{
4298 if (!sbi)
4299 return;
4300
4301 kfree(sbi->s_blockgroup_lock);
4302 fs_put_dax(sbi->s_daxdev, NULL);
4303 kfree(sbi);
4304}
4305
4306static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4307{
4308 struct ext4_sb_info *sbi;
4309
4310 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4311 if (!sbi)
4312 return NULL;
4313
4314 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4315 NULL, NULL);
4316
4317 sbi->s_blockgroup_lock =
4318 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4319
4320 if (!sbi->s_blockgroup_lock)
4321 goto err_out;
4322
4323 sb->s_fs_info = sbi;
4324 sbi->s_sb = sb;
4325 return sbi;
4326err_out:
4327 fs_put_dax(sbi->s_daxdev, NULL);
4328 kfree(sbi);
4329 return NULL;
4330}
4331
4332static void ext4_set_def_opts(struct super_block *sb,
4333 struct ext4_super_block *es)
4334{
4335 unsigned long def_mount_opts;
4336
4337 /* Set defaults before we parse the mount options */
4338 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4339 set_opt(sb, INIT_INODE_TABLE);
4340 if (def_mount_opts & EXT4_DEFM_DEBUG)
4341 set_opt(sb, DEBUG);
4342 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4343 set_opt(sb, GRPID);
4344 if (def_mount_opts & EXT4_DEFM_UID16)
4345 set_opt(sb, NO_UID32);
4346 /* xattr user namespace & acls are now defaulted on */
4347 set_opt(sb, XATTR_USER);
4348#ifdef CONFIG_EXT4_FS_POSIX_ACL
4349 set_opt(sb, POSIX_ACL);
4350#endif
4351 if (ext4_has_feature_fast_commit(sb))
4352 set_opt2(sb, JOURNAL_FAST_COMMIT);
4353 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4354 if (ext4_has_metadata_csum(sb))
4355 set_opt(sb, JOURNAL_CHECKSUM);
4356
4357 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4358 set_opt(sb, JOURNAL_DATA);
4359 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4360 set_opt(sb, ORDERED_DATA);
4361 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4362 set_opt(sb, WRITEBACK_DATA);
4363
4364 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4365 set_opt(sb, ERRORS_PANIC);
4366 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4367 set_opt(sb, ERRORS_CONT);
4368 else
4369 set_opt(sb, ERRORS_RO);
4370 /* block_validity enabled by default; disable with noblock_validity */
4371 set_opt(sb, BLOCK_VALIDITY);
4372 if (def_mount_opts & EXT4_DEFM_DISCARD)
4373 set_opt(sb, DISCARD);
4374
4375 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4376 set_opt(sb, BARRIER);
4377
4378 /*
4379 * enable delayed allocation by default
4380 * Use -o nodelalloc to turn it off
4381 */
4382 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4383 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4384 set_opt(sb, DELALLOC);
4385
4386 if (sb->s_blocksize <= PAGE_SIZE)
4387 set_opt(sb, DIOREAD_NOLOCK);
4388}
4389
4390static int ext4_handle_clustersize(struct super_block *sb)
4391{
4392 struct ext4_sb_info *sbi = EXT4_SB(sb);
4393 struct ext4_super_block *es = sbi->s_es;
4394 int clustersize;
4395
4396 /* Handle clustersize */
4397 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4398 if (ext4_has_feature_bigalloc(sb)) {
4399 if (clustersize < sb->s_blocksize) {
4400 ext4_msg(sb, KERN_ERR,
4401 "cluster size (%d) smaller than "
4402 "block size (%lu)", clustersize, sb->s_blocksize);
4403 return -EINVAL;
4404 }
4405 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4406 le32_to_cpu(es->s_log_block_size);
4407 } else {
4408 if (clustersize != sb->s_blocksize) {
4409 ext4_msg(sb, KERN_ERR,
4410 "fragment/cluster size (%d) != "
4411 "block size (%lu)", clustersize, sb->s_blocksize);
4412 return -EINVAL;
4413 }
4414 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4415 ext4_msg(sb, KERN_ERR,
4416 "#blocks per group too big: %lu",
4417 sbi->s_blocks_per_group);
4418 return -EINVAL;
4419 }
4420 sbi->s_cluster_bits = 0;
4421 }
4422 sbi->s_clusters_per_group = le32_to_cpu(es->s_clusters_per_group);
4423 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4424 ext4_msg(sb, KERN_ERR, "#clusters per group too big: %lu",
4425 sbi->s_clusters_per_group);
4426 return -EINVAL;
4427 }
4428 if (sbi->s_blocks_per_group !=
4429 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4430 ext4_msg(sb, KERN_ERR,
4431 "blocks per group (%lu) and clusters per group (%lu) inconsistent",
4432 sbi->s_blocks_per_group, sbi->s_clusters_per_group);
4433 return -EINVAL;
4434 }
4435 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4436
4437 /* Do we have standard group size of clustersize * 8 blocks ? */
4438 if (sbi->s_blocks_per_group == clustersize << 3)
4439 set_opt2(sb, STD_GROUP_SIZE);
4440
4441 return 0;
4442}
4443
4444/*
4445 * ext4_atomic_write_init: Initializes filesystem min & max atomic write units.
4446 * @sb: super block
4447 * TODO: Later add support for bigalloc
4448 */
4449static void ext4_atomic_write_init(struct super_block *sb)
4450{
4451 struct ext4_sb_info *sbi = EXT4_SB(sb);
4452 struct block_device *bdev = sb->s_bdev;
4453
4454 if (!bdev_can_atomic_write(bdev))
4455 return;
4456
4457 if (!ext4_has_feature_extents(sb))
4458 return;
4459
4460 sbi->s_awu_min = max(sb->s_blocksize,
4461 bdev_atomic_write_unit_min_bytes(bdev));
4462 sbi->s_awu_max = min(sb->s_blocksize,
4463 bdev_atomic_write_unit_max_bytes(bdev));
4464 if (sbi->s_awu_min && sbi->s_awu_max &&
4465 sbi->s_awu_min <= sbi->s_awu_max) {
4466 ext4_msg(sb, KERN_NOTICE, "Supports (experimental) DIO atomic writes awu_min: %u, awu_max: %u",
4467 sbi->s_awu_min, sbi->s_awu_max);
4468 } else {
4469 sbi->s_awu_min = 0;
4470 sbi->s_awu_max = 0;
4471 }
4472}
4473
4474static void ext4_fast_commit_init(struct super_block *sb)
4475{
4476 struct ext4_sb_info *sbi = EXT4_SB(sb);
4477
4478 /* Initialize fast commit stuff */
4479 atomic_set(&sbi->s_fc_subtid, 0);
4480 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4481 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4482 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4483 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4484 sbi->s_fc_bytes = 0;
4485 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4486 sbi->s_fc_ineligible_tid = 0;
4487 spin_lock_init(&sbi->s_fc_lock);
4488 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4489 sbi->s_fc_replay_state.fc_regions = NULL;
4490 sbi->s_fc_replay_state.fc_regions_size = 0;
4491 sbi->s_fc_replay_state.fc_regions_used = 0;
4492 sbi->s_fc_replay_state.fc_regions_valid = 0;
4493 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4494 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4495 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4496}
4497
4498static int ext4_inode_info_init(struct super_block *sb,
4499 struct ext4_super_block *es)
4500{
4501 struct ext4_sb_info *sbi = EXT4_SB(sb);
4502
4503 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4504 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4505 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4506 } else {
4507 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4508 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4509 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4510 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4511 sbi->s_first_ino);
4512 return -EINVAL;
4513 }
4514 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4515 (!is_power_of_2(sbi->s_inode_size)) ||
4516 (sbi->s_inode_size > sb->s_blocksize)) {
4517 ext4_msg(sb, KERN_ERR,
4518 "unsupported inode size: %d",
4519 sbi->s_inode_size);
4520 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4521 return -EINVAL;
4522 }
4523 /*
4524 * i_atime_extra is the last extra field available for
4525 * [acm]times in struct ext4_inode. Checking for that
4526 * field should suffice to ensure we have extra space
4527 * for all three.
4528 */
4529 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4530 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4531 sb->s_time_gran = 1;
4532 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4533 } else {
4534 sb->s_time_gran = NSEC_PER_SEC;
4535 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4536 }
4537 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4538 }
4539
4540 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4541 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4542 EXT4_GOOD_OLD_INODE_SIZE;
4543 if (ext4_has_feature_extra_isize(sb)) {
4544 unsigned v, max = (sbi->s_inode_size -
4545 EXT4_GOOD_OLD_INODE_SIZE);
4546
4547 v = le16_to_cpu(es->s_want_extra_isize);
4548 if (v > max) {
4549 ext4_msg(sb, KERN_ERR,
4550 "bad s_want_extra_isize: %d", v);
4551 return -EINVAL;
4552 }
4553 if (sbi->s_want_extra_isize < v)
4554 sbi->s_want_extra_isize = v;
4555
4556 v = le16_to_cpu(es->s_min_extra_isize);
4557 if (v > max) {
4558 ext4_msg(sb, KERN_ERR,
4559 "bad s_min_extra_isize: %d", v);
4560 return -EINVAL;
4561 }
4562 if (sbi->s_want_extra_isize < v)
4563 sbi->s_want_extra_isize = v;
4564 }
4565 }
4566
4567 return 0;
4568}
4569
4570#if IS_ENABLED(CONFIG_UNICODE)
4571static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4572{
4573 const struct ext4_sb_encodings *encoding_info;
4574 struct unicode_map *encoding;
4575 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4576
4577 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4578 return 0;
4579
4580 encoding_info = ext4_sb_read_encoding(es);
4581 if (!encoding_info) {
4582 ext4_msg(sb, KERN_ERR,
4583 "Encoding requested by superblock is unknown");
4584 return -EINVAL;
4585 }
4586
4587 encoding = utf8_load(encoding_info->version);
4588 if (IS_ERR(encoding)) {
4589 ext4_msg(sb, KERN_ERR,
4590 "can't mount with superblock charset: %s-%u.%u.%u "
4591 "not supported by the kernel. flags: 0x%x.",
4592 encoding_info->name,
4593 unicode_major(encoding_info->version),
4594 unicode_minor(encoding_info->version),
4595 unicode_rev(encoding_info->version),
4596 encoding_flags);
4597 return -EINVAL;
4598 }
4599 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4600 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4601 unicode_major(encoding_info->version),
4602 unicode_minor(encoding_info->version),
4603 unicode_rev(encoding_info->version),
4604 encoding_flags);
4605
4606 sb->s_encoding = encoding;
4607 sb->s_encoding_flags = encoding_flags;
4608
4609 return 0;
4610}
4611#else
4612static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4613{
4614 return 0;
4615}
4616#endif
4617
4618static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4619{
4620 struct ext4_sb_info *sbi = EXT4_SB(sb);
4621
4622 /* Warn if metadata_csum and gdt_csum are both set. */
4623 if (ext4_has_feature_metadata_csum(sb) &&
4624 ext4_has_feature_gdt_csum(sb))
4625 ext4_warning(sb, "metadata_csum and uninit_bg are "
4626 "redundant flags; please run fsck.");
4627
4628 /* Check for a known checksum algorithm */
4629 if (!ext4_verify_csum_type(sb, es)) {
4630 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4631 "unknown checksum algorithm.");
4632 return -EINVAL;
4633 }
4634 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4635 ext4_orphan_file_block_trigger);
4636
4637 /* Load the checksum driver */
4638 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4639 if (IS_ERR(sbi->s_chksum_driver)) {
4640 int ret = PTR_ERR(sbi->s_chksum_driver);
4641 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4642 sbi->s_chksum_driver = NULL;
4643 return ret;
4644 }
4645
4646 /* Check superblock checksum */
4647 if (!ext4_superblock_csum_verify(sb, es)) {
4648 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4649 "invalid superblock checksum. Run e2fsck?");
4650 return -EFSBADCRC;
4651 }
4652
4653 /* Precompute checksum seed for all metadata */
4654 if (ext4_has_feature_csum_seed(sb))
4655 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4656 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4657 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4658 sizeof(es->s_uuid));
4659 return 0;
4660}
4661
4662static int ext4_check_feature_compatibility(struct super_block *sb,
4663 struct ext4_super_block *es,
4664 int silent)
4665{
4666 struct ext4_sb_info *sbi = EXT4_SB(sb);
4667
4668 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4669 (ext4_has_compat_features(sb) ||
4670 ext4_has_ro_compat_features(sb) ||
4671 ext4_has_incompat_features(sb)))
4672 ext4_msg(sb, KERN_WARNING,
4673 "feature flags set on rev 0 fs, "
4674 "running e2fsck is recommended");
4675
4676 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4677 set_opt2(sb, HURD_COMPAT);
4678 if (ext4_has_feature_64bit(sb)) {
4679 ext4_msg(sb, KERN_ERR,
4680 "The Hurd can't support 64-bit file systems");
4681 return -EINVAL;
4682 }
4683
4684 /*
4685 * ea_inode feature uses l_i_version field which is not
4686 * available in HURD_COMPAT mode.
4687 */
4688 if (ext4_has_feature_ea_inode(sb)) {
4689 ext4_msg(sb, KERN_ERR,
4690 "ea_inode feature is not supported for Hurd");
4691 return -EINVAL;
4692 }
4693 }
4694
4695 if (IS_EXT2_SB(sb)) {
4696 if (ext2_feature_set_ok(sb))
4697 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4698 "using the ext4 subsystem");
4699 else {
4700 /*
4701 * If we're probing be silent, if this looks like
4702 * it's actually an ext[34] filesystem.
4703 */
4704 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4705 return -EINVAL;
4706 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4707 "to feature incompatibilities");
4708 return -EINVAL;
4709 }
4710 }
4711
4712 if (IS_EXT3_SB(sb)) {
4713 if (ext3_feature_set_ok(sb))
4714 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4715 "using the ext4 subsystem");
4716 else {
4717 /*
4718 * If we're probing be silent, if this looks like
4719 * it's actually an ext4 filesystem.
4720 */
4721 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4722 return -EINVAL;
4723 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4724 "to feature incompatibilities");
4725 return -EINVAL;
4726 }
4727 }
4728
4729 /*
4730 * Check feature flags regardless of the revision level, since we
4731 * previously didn't change the revision level when setting the flags,
4732 * so there is a chance incompat flags are set on a rev 0 filesystem.
4733 */
4734 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4735 return -EINVAL;
4736
4737 if (sbi->s_daxdev) {
4738 if (sb->s_blocksize == PAGE_SIZE)
4739 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4740 else
4741 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4742 }
4743
4744 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4745 if (ext4_has_feature_inline_data(sb)) {
4746 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4747 " that may contain inline data");
4748 return -EINVAL;
4749 }
4750 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4751 ext4_msg(sb, KERN_ERR,
4752 "DAX unsupported by block device.");
4753 return -EINVAL;
4754 }
4755 }
4756
4757 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4758 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4759 es->s_encryption_level);
4760 return -EINVAL;
4761 }
4762
4763 return 0;
4764}
4765
4766static int ext4_check_geometry(struct super_block *sb,
4767 struct ext4_super_block *es)
4768{
4769 struct ext4_sb_info *sbi = EXT4_SB(sb);
4770 __u64 blocks_count;
4771 int err;
4772
4773 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4774 ext4_msg(sb, KERN_ERR,
4775 "Number of reserved GDT blocks insanely large: %d",
4776 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4777 return -EINVAL;
4778 }
4779 /*
4780 * Test whether we have more sectors than will fit in sector_t,
4781 * and whether the max offset is addressable by the page cache.
4782 */
4783 err = generic_check_addressable(sb->s_blocksize_bits,
4784 ext4_blocks_count(es));
4785 if (err) {
4786 ext4_msg(sb, KERN_ERR, "filesystem"
4787 " too large to mount safely on this system");
4788 return err;
4789 }
4790
4791 /* check blocks count against device size */
4792 blocks_count = sb_bdev_nr_blocks(sb);
4793 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4794 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4795 "exceeds size of device (%llu blocks)",
4796 ext4_blocks_count(es), blocks_count);
4797 return -EINVAL;
4798 }
4799
4800 /*
4801 * It makes no sense for the first data block to be beyond the end
4802 * of the filesystem.
4803 */
4804 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4805 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4806 "block %u is beyond end of filesystem (%llu)",
4807 le32_to_cpu(es->s_first_data_block),
4808 ext4_blocks_count(es));
4809 return -EINVAL;
4810 }
4811 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4812 (sbi->s_cluster_ratio == 1)) {
4813 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4814 "block is 0 with a 1k block and cluster size");
4815 return -EINVAL;
4816 }
4817
4818 blocks_count = (ext4_blocks_count(es) -
4819 le32_to_cpu(es->s_first_data_block) +
4820 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4821 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4822 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4823 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4824 "(block count %llu, first data block %u, "
4825 "blocks per group %lu)", blocks_count,
4826 ext4_blocks_count(es),
4827 le32_to_cpu(es->s_first_data_block),
4828 EXT4_BLOCKS_PER_GROUP(sb));
4829 return -EINVAL;
4830 }
4831 sbi->s_groups_count = blocks_count;
4832 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4833 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4834 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4835 le32_to_cpu(es->s_inodes_count)) {
4836 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4837 le32_to_cpu(es->s_inodes_count),
4838 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4839 return -EINVAL;
4840 }
4841
4842 return 0;
4843}
4844
4845static int ext4_group_desc_init(struct super_block *sb,
4846 struct ext4_super_block *es,
4847 ext4_fsblk_t logical_sb_block,
4848 ext4_group_t *first_not_zeroed)
4849{
4850 struct ext4_sb_info *sbi = EXT4_SB(sb);
4851 unsigned int db_count;
4852 ext4_fsblk_t block;
4853 int i;
4854
4855 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4856 EXT4_DESC_PER_BLOCK(sb);
4857 if (ext4_has_feature_meta_bg(sb)) {
4858 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4859 ext4_msg(sb, KERN_WARNING,
4860 "first meta block group too large: %u "
4861 "(group descriptor block count %u)",
4862 le32_to_cpu(es->s_first_meta_bg), db_count);
4863 return -EINVAL;
4864 }
4865 }
4866 rcu_assign_pointer(sbi->s_group_desc,
4867 kvmalloc_array(db_count,
4868 sizeof(struct buffer_head *),
4869 GFP_KERNEL));
4870 if (sbi->s_group_desc == NULL) {
4871 ext4_msg(sb, KERN_ERR, "not enough memory");
4872 return -ENOMEM;
4873 }
4874
4875 bgl_lock_init(sbi->s_blockgroup_lock);
4876
4877 /* Pre-read the descriptors into the buffer cache */
4878 for (i = 0; i < db_count; i++) {
4879 block = descriptor_loc(sb, logical_sb_block, i);
4880 ext4_sb_breadahead_unmovable(sb, block);
4881 }
4882
4883 for (i = 0; i < db_count; i++) {
4884 struct buffer_head *bh;
4885
4886 block = descriptor_loc(sb, logical_sb_block, i);
4887 bh = ext4_sb_bread_unmovable(sb, block);
4888 if (IS_ERR(bh)) {
4889 ext4_msg(sb, KERN_ERR,
4890 "can't read group descriptor %d", i);
4891 sbi->s_gdb_count = i;
4892 return PTR_ERR(bh);
4893 }
4894 rcu_read_lock();
4895 rcu_dereference(sbi->s_group_desc)[i] = bh;
4896 rcu_read_unlock();
4897 }
4898 sbi->s_gdb_count = db_count;
4899 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4900 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4901 return -EFSCORRUPTED;
4902 }
4903
4904 return 0;
4905}
4906
4907static int ext4_load_and_init_journal(struct super_block *sb,
4908 struct ext4_super_block *es,
4909 struct ext4_fs_context *ctx)
4910{
4911 struct ext4_sb_info *sbi = EXT4_SB(sb);
4912 int err;
4913
4914 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4915 if (err)
4916 return err;
4917
4918 if (ext4_has_feature_64bit(sb) &&
4919 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4920 JBD2_FEATURE_INCOMPAT_64BIT)) {
4921 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4922 goto out;
4923 }
4924
4925 if (!set_journal_csum_feature_set(sb)) {
4926 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4927 "feature set");
4928 goto out;
4929 }
4930
4931 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4932 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4933 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4934 ext4_msg(sb, KERN_ERR,
4935 "Failed to set fast commit journal feature");
4936 goto out;
4937 }
4938
4939 /* We have now updated the journal if required, so we can
4940 * validate the data journaling mode. */
4941 switch (test_opt(sb, DATA_FLAGS)) {
4942 case 0:
4943 /* No mode set, assume a default based on the journal
4944 * capabilities: ORDERED_DATA if the journal can
4945 * cope, else JOURNAL_DATA
4946 */
4947 if (jbd2_journal_check_available_features
4948 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4949 set_opt(sb, ORDERED_DATA);
4950 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4951 } else {
4952 set_opt(sb, JOURNAL_DATA);
4953 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4954 }
4955 break;
4956
4957 case EXT4_MOUNT_ORDERED_DATA:
4958 case EXT4_MOUNT_WRITEBACK_DATA:
4959 if (!jbd2_journal_check_available_features
4960 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4961 ext4_msg(sb, KERN_ERR, "Journal does not support "
4962 "requested data journaling mode");
4963 goto out;
4964 }
4965 break;
4966 default:
4967 break;
4968 }
4969
4970 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4971 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4972 ext4_msg(sb, KERN_ERR, "can't mount with "
4973 "journal_async_commit in data=ordered mode");
4974 goto out;
4975 }
4976
4977 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4978
4979 sbi->s_journal->j_submit_inode_data_buffers =
4980 ext4_journal_submit_inode_data_buffers;
4981 sbi->s_journal->j_finish_inode_data_buffers =
4982 ext4_journal_finish_inode_data_buffers;
4983
4984 return 0;
4985
4986out:
4987 /* flush s_sb_upd_work before destroying the journal. */
4988 flush_work(&sbi->s_sb_upd_work);
4989 jbd2_journal_destroy(sbi->s_journal);
4990 sbi->s_journal = NULL;
4991 return -EINVAL;
4992}
4993
4994static int ext4_check_journal_data_mode(struct super_block *sb)
4995{
4996 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4997 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4998 "data=journal disables delayed allocation, "
4999 "dioread_nolock, O_DIRECT and fast_commit support!\n");
5000 /* can't mount with both data=journal and dioread_nolock. */
5001 clear_opt(sb, DIOREAD_NOLOCK);
5002 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5003 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5004 ext4_msg(sb, KERN_ERR, "can't mount with "
5005 "both data=journal and delalloc");
5006 return -EINVAL;
5007 }
5008 if (test_opt(sb, DAX_ALWAYS)) {
5009 ext4_msg(sb, KERN_ERR, "can't mount with "
5010 "both data=journal and dax");
5011 return -EINVAL;
5012 }
5013 if (ext4_has_feature_encrypt(sb)) {
5014 ext4_msg(sb, KERN_WARNING,
5015 "encrypted files will use data=ordered "
5016 "instead of data journaling mode");
5017 }
5018 if (test_opt(sb, DELALLOC))
5019 clear_opt(sb, DELALLOC);
5020 } else {
5021 sb->s_iflags |= SB_I_CGROUPWB;
5022 }
5023
5024 return 0;
5025}
5026
5027static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5028 int silent)
5029{
5030 struct ext4_sb_info *sbi = EXT4_SB(sb);
5031 struct ext4_super_block *es;
5032 ext4_fsblk_t logical_sb_block;
5033 unsigned long offset = 0;
5034 struct buffer_head *bh;
5035 int ret = -EINVAL;
5036 int blocksize;
5037
5038 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5039 if (!blocksize) {
5040 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5041 return -EINVAL;
5042 }
5043
5044 /*
5045 * The ext4 superblock will not be buffer aligned for other than 1kB
5046 * block sizes. We need to calculate the offset from buffer start.
5047 */
5048 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5049 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5050 offset = do_div(logical_sb_block, blocksize);
5051 } else {
5052 logical_sb_block = sbi->s_sb_block;
5053 }
5054
5055 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5056 if (IS_ERR(bh)) {
5057 ext4_msg(sb, KERN_ERR, "unable to read superblock");
5058 return PTR_ERR(bh);
5059 }
5060 /*
5061 * Note: s_es must be initialized as soon as possible because
5062 * some ext4 macro-instructions depend on its value
5063 */
5064 es = (struct ext4_super_block *) (bh->b_data + offset);
5065 sbi->s_es = es;
5066 sb->s_magic = le16_to_cpu(es->s_magic);
5067 if (sb->s_magic != EXT4_SUPER_MAGIC) {
5068 if (!silent)
5069 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5070 goto out;
5071 }
5072
5073 if (le32_to_cpu(es->s_log_block_size) >
5074 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5075 ext4_msg(sb, KERN_ERR,
5076 "Invalid log block size: %u",
5077 le32_to_cpu(es->s_log_block_size));
5078 goto out;
5079 }
5080 if (le32_to_cpu(es->s_log_cluster_size) >
5081 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5082 ext4_msg(sb, KERN_ERR,
5083 "Invalid log cluster size: %u",
5084 le32_to_cpu(es->s_log_cluster_size));
5085 goto out;
5086 }
5087
5088 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5089
5090 /*
5091 * If the default block size is not the same as the real block size,
5092 * we need to reload it.
5093 */
5094 if (sb->s_blocksize == blocksize) {
5095 *lsb = logical_sb_block;
5096 sbi->s_sbh = bh;
5097 return 0;
5098 }
5099
5100 /*
5101 * bh must be released before kill_bdev(), otherwise
5102 * it won't be freed and its page also. kill_bdev()
5103 * is called by sb_set_blocksize().
5104 */
5105 brelse(bh);
5106 /* Validate the filesystem blocksize */
5107 if (!sb_set_blocksize(sb, blocksize)) {
5108 ext4_msg(sb, KERN_ERR, "bad block size %d",
5109 blocksize);
5110 bh = NULL;
5111 goto out;
5112 }
5113
5114 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5115 offset = do_div(logical_sb_block, blocksize);
5116 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5117 if (IS_ERR(bh)) {
5118 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5119 ret = PTR_ERR(bh);
5120 bh = NULL;
5121 goto out;
5122 }
5123 es = (struct ext4_super_block *)(bh->b_data + offset);
5124 sbi->s_es = es;
5125 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5126 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5127 goto out;
5128 }
5129 *lsb = logical_sb_block;
5130 sbi->s_sbh = bh;
5131 return 0;
5132out:
5133 brelse(bh);
5134 return ret;
5135}
5136
5137static int ext4_hash_info_init(struct super_block *sb)
5138{
5139 struct ext4_sb_info *sbi = EXT4_SB(sb);
5140 struct ext4_super_block *es = sbi->s_es;
5141 unsigned int i;
5142
5143 sbi->s_def_hash_version = es->s_def_hash_version;
5144
5145 if (sbi->s_def_hash_version > DX_HASH_LAST) {
5146 ext4_msg(sb, KERN_ERR,
5147 "Invalid default hash set in the superblock");
5148 return -EINVAL;
5149 } else if (sbi->s_def_hash_version == DX_HASH_SIPHASH) {
5150 ext4_msg(sb, KERN_ERR,
5151 "SIPHASH is not a valid default hash value");
5152 return -EINVAL;
5153 }
5154
5155 for (i = 0; i < 4; i++)
5156 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5157
5158 if (ext4_has_feature_dir_index(sb)) {
5159 i = le32_to_cpu(es->s_flags);
5160 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5161 sbi->s_hash_unsigned = 3;
5162 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5163#ifdef __CHAR_UNSIGNED__
5164 if (!sb_rdonly(sb))
5165 es->s_flags |=
5166 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5167 sbi->s_hash_unsigned = 3;
5168#else
5169 if (!sb_rdonly(sb))
5170 es->s_flags |=
5171 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5172#endif
5173 }
5174 }
5175 return 0;
5176}
5177
5178static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5179{
5180 struct ext4_sb_info *sbi = EXT4_SB(sb);
5181 struct ext4_super_block *es = sbi->s_es;
5182 int has_huge_files;
5183
5184 has_huge_files = ext4_has_feature_huge_file(sb);
5185 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5186 has_huge_files);
5187 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5188
5189 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5190 if (ext4_has_feature_64bit(sb)) {
5191 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5192 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5193 !is_power_of_2(sbi->s_desc_size)) {
5194 ext4_msg(sb, KERN_ERR,
5195 "unsupported descriptor size %lu",
5196 sbi->s_desc_size);
5197 return -EINVAL;
5198 }
5199 } else
5200 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5201
5202 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5203 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5204
5205 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5206 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5207 if (!silent)
5208 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5209 return -EINVAL;
5210 }
5211 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5212 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5213 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5214 sbi->s_inodes_per_group);
5215 return -EINVAL;
5216 }
5217 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5218 sbi->s_inodes_per_block;
5219 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5220 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5221 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5222 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5223
5224 return 0;
5225}
5226
5227/*
5228 * It's hard to get stripe aligned blocks if stripe is not aligned with
5229 * cluster, just disable stripe and alert user to simplify code and avoid
5230 * stripe aligned allocation which will rarely succeed.
5231 */
5232static bool ext4_is_stripe_incompatible(struct super_block *sb, unsigned long stripe)
5233{
5234 struct ext4_sb_info *sbi = EXT4_SB(sb);
5235 return (stripe > 0 && sbi->s_cluster_ratio > 1 &&
5236 stripe % sbi->s_cluster_ratio != 0);
5237}
5238
5239static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5240{
5241 struct ext4_super_block *es = NULL;
5242 struct ext4_sb_info *sbi = EXT4_SB(sb);
5243 ext4_fsblk_t logical_sb_block;
5244 struct inode *root;
5245 int needs_recovery;
5246 int err;
5247 ext4_group_t first_not_zeroed;
5248 struct ext4_fs_context *ctx = fc->fs_private;
5249 int silent = fc->sb_flags & SB_SILENT;
5250
5251 /* Set defaults for the variables that will be set during parsing */
5252 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5253 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5254
5255 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5256 sbi->s_sectors_written_start =
5257 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5258
5259 err = ext4_load_super(sb, &logical_sb_block, silent);
5260 if (err)
5261 goto out_fail;
5262
5263 es = sbi->s_es;
5264 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5265
5266 err = ext4_init_metadata_csum(sb, es);
5267 if (err)
5268 goto failed_mount;
5269
5270 ext4_set_def_opts(sb, es);
5271
5272 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5273 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5274 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5275 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5276 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5277
5278 /*
5279 * set default s_li_wait_mult for lazyinit, for the case there is
5280 * no mount option specified.
5281 */
5282 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5283
5284 err = ext4_inode_info_init(sb, es);
5285 if (err)
5286 goto failed_mount;
5287
5288 err = parse_apply_sb_mount_options(sb, ctx);
5289 if (err < 0)
5290 goto failed_mount;
5291
5292 sbi->s_def_mount_opt = sbi->s_mount_opt;
5293 sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5294
5295 err = ext4_check_opt_consistency(fc, sb);
5296 if (err < 0)
5297 goto failed_mount;
5298
5299 ext4_apply_options(fc, sb);
5300
5301 err = ext4_encoding_init(sb, es);
5302 if (err)
5303 goto failed_mount;
5304
5305 err = ext4_check_journal_data_mode(sb);
5306 if (err)
5307 goto failed_mount;
5308
5309 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5310 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5311
5312 /* i_version is always enabled now */
5313 sb->s_flags |= SB_I_VERSION;
5314
5315 err = ext4_check_feature_compatibility(sb, es, silent);
5316 if (err)
5317 goto failed_mount;
5318
5319 err = ext4_block_group_meta_init(sb, silent);
5320 if (err)
5321 goto failed_mount;
5322
5323 err = ext4_hash_info_init(sb);
5324 if (err)
5325 goto failed_mount;
5326
5327 err = ext4_handle_clustersize(sb);
5328 if (err)
5329 goto failed_mount;
5330
5331 err = ext4_check_geometry(sb, es);
5332 if (err)
5333 goto failed_mount;
5334
5335 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5336 spin_lock_init(&sbi->s_error_lock);
5337 INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5338
5339 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5340 if (err)
5341 goto failed_mount3;
5342
5343 err = ext4_es_register_shrinker(sbi);
5344 if (err)
5345 goto failed_mount3;
5346
5347 sbi->s_stripe = ext4_get_stripe_size(sbi);
5348 if (ext4_is_stripe_incompatible(sb, sbi->s_stripe)) {
5349 ext4_msg(sb, KERN_WARNING,
5350 "stripe (%lu) is not aligned with cluster size (%u), "
5351 "stripe is disabled",
5352 sbi->s_stripe, sbi->s_cluster_ratio);
5353 sbi->s_stripe = 0;
5354 }
5355 sbi->s_extent_max_zeroout_kb = 32;
5356
5357 /*
5358 * set up enough so that it can read an inode
5359 */
5360 sb->s_op = &ext4_sops;
5361 sb->s_export_op = &ext4_export_ops;
5362 sb->s_xattr = ext4_xattr_handlers;
5363#ifdef CONFIG_FS_ENCRYPTION
5364 sb->s_cop = &ext4_cryptops;
5365#endif
5366#ifdef CONFIG_FS_VERITY
5367 sb->s_vop = &ext4_verityops;
5368#endif
5369#ifdef CONFIG_QUOTA
5370 sb->dq_op = &ext4_quota_operations;
5371 if (ext4_has_feature_quota(sb))
5372 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5373 else
5374 sb->s_qcop = &ext4_qctl_operations;
5375 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5376#endif
5377 super_set_uuid(sb, es->s_uuid, sizeof(es->s_uuid));
5378 super_set_sysfs_name_bdev(sb);
5379
5380 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5381 mutex_init(&sbi->s_orphan_lock);
5382
5383 spin_lock_init(&sbi->s_bdev_wb_lock);
5384
5385 ext4_atomic_write_init(sb);
5386 ext4_fast_commit_init(sb);
5387
5388 sb->s_root = NULL;
5389
5390 needs_recovery = (es->s_last_orphan != 0 ||
5391 ext4_has_feature_orphan_present(sb) ||
5392 ext4_has_feature_journal_needs_recovery(sb));
5393
5394 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5395 err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5396 if (err)
5397 goto failed_mount3a;
5398 }
5399
5400 err = -EINVAL;
5401 /*
5402 * The first inode we look at is the journal inode. Don't try
5403 * root first: it may be modified in the journal!
5404 */
5405 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5406 err = ext4_load_and_init_journal(sb, es, ctx);
5407 if (err)
5408 goto failed_mount3a;
5409 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5410 ext4_has_feature_journal_needs_recovery(sb)) {
5411 ext4_msg(sb, KERN_ERR, "required journal recovery "
5412 "suppressed and not mounted read-only");
5413 goto failed_mount3a;
5414 } else {
5415 /* Nojournal mode, all journal mount options are illegal */
5416 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5417 ext4_msg(sb, KERN_ERR, "can't mount with "
5418 "journal_async_commit, fs mounted w/o journal");
5419 goto failed_mount3a;
5420 }
5421
5422 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5423 ext4_msg(sb, KERN_ERR, "can't mount with "
5424 "journal_checksum, fs mounted w/o journal");
5425 goto failed_mount3a;
5426 }
5427 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5428 ext4_msg(sb, KERN_ERR, "can't mount with "
5429 "commit=%lu, fs mounted w/o journal",
5430 sbi->s_commit_interval / HZ);
5431 goto failed_mount3a;
5432 }
5433 if (EXT4_MOUNT_DATA_FLAGS &
5434 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5435 ext4_msg(sb, KERN_ERR, "can't mount with "
5436 "data=, fs mounted w/o journal");
5437 goto failed_mount3a;
5438 }
5439 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5440 clear_opt(sb, JOURNAL_CHECKSUM);
5441 clear_opt(sb, DATA_FLAGS);
5442 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5443 sbi->s_journal = NULL;
5444 needs_recovery = 0;
5445 }
5446
5447 if (!test_opt(sb, NO_MBCACHE)) {
5448 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5449 if (!sbi->s_ea_block_cache) {
5450 ext4_msg(sb, KERN_ERR,
5451 "Failed to create ea_block_cache");
5452 err = -EINVAL;
5453 goto failed_mount_wq;
5454 }
5455
5456 if (ext4_has_feature_ea_inode(sb)) {
5457 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5458 if (!sbi->s_ea_inode_cache) {
5459 ext4_msg(sb, KERN_ERR,
5460 "Failed to create ea_inode_cache");
5461 err = -EINVAL;
5462 goto failed_mount_wq;
5463 }
5464 }
5465 }
5466
5467 /*
5468 * Get the # of file system overhead blocks from the
5469 * superblock if present.
5470 */
5471 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5472 /* ignore the precalculated value if it is ridiculous */
5473 if (sbi->s_overhead > ext4_blocks_count(es))
5474 sbi->s_overhead = 0;
5475 /*
5476 * If the bigalloc feature is not enabled recalculating the
5477 * overhead doesn't take long, so we might as well just redo
5478 * it to make sure we are using the correct value.
5479 */
5480 if (!ext4_has_feature_bigalloc(sb))
5481 sbi->s_overhead = 0;
5482 if (sbi->s_overhead == 0) {
5483 err = ext4_calculate_overhead(sb);
5484 if (err)
5485 goto failed_mount_wq;
5486 }
5487
5488 /*
5489 * The maximum number of concurrent works can be high and
5490 * concurrency isn't really necessary. Limit it to 1.
5491 */
5492 EXT4_SB(sb)->rsv_conversion_wq =
5493 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5494 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5495 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5496 err = -ENOMEM;
5497 goto failed_mount4;
5498 }
5499
5500 /*
5501 * The jbd2_journal_load will have done any necessary log recovery,
5502 * so we can safely mount the rest of the filesystem now.
5503 */
5504
5505 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5506 if (IS_ERR(root)) {
5507 ext4_msg(sb, KERN_ERR, "get root inode failed");
5508 err = PTR_ERR(root);
5509 root = NULL;
5510 goto failed_mount4;
5511 }
5512 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5513 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5514 iput(root);
5515 err = -EFSCORRUPTED;
5516 goto failed_mount4;
5517 }
5518
5519 generic_set_sb_d_ops(sb);
5520 sb->s_root = d_make_root(root);
5521 if (!sb->s_root) {
5522 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5523 err = -ENOMEM;
5524 goto failed_mount4;
5525 }
5526
5527 err = ext4_setup_super(sb, es, sb_rdonly(sb));
5528 if (err == -EROFS) {
5529 sb->s_flags |= SB_RDONLY;
5530 } else if (err)
5531 goto failed_mount4a;
5532
5533 ext4_set_resv_clusters(sb);
5534
5535 if (test_opt(sb, BLOCK_VALIDITY)) {
5536 err = ext4_setup_system_zone(sb);
5537 if (err) {
5538 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5539 "zone (%d)", err);
5540 goto failed_mount4a;
5541 }
5542 }
5543 ext4_fc_replay_cleanup(sb);
5544
5545 ext4_ext_init(sb);
5546
5547 /*
5548 * Enable optimize_scan if number of groups is > threshold. This can be
5549 * turned off by passing "mb_optimize_scan=0". This can also be
5550 * turned on forcefully by passing "mb_optimize_scan=1".
5551 */
5552 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5553 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5554 set_opt2(sb, MB_OPTIMIZE_SCAN);
5555 else
5556 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5557 }
5558
5559 err = ext4_mb_init(sb);
5560 if (err) {
5561 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5562 err);
5563 goto failed_mount5;
5564 }
5565
5566 /*
5567 * We can only set up the journal commit callback once
5568 * mballoc is initialized
5569 */
5570 if (sbi->s_journal)
5571 sbi->s_journal->j_commit_callback =
5572 ext4_journal_commit_callback;
5573
5574 err = ext4_percpu_param_init(sbi);
5575 if (err)
5576 goto failed_mount6;
5577
5578 if (ext4_has_feature_flex_bg(sb))
5579 if (!ext4_fill_flex_info(sb)) {
5580 ext4_msg(sb, KERN_ERR,
5581 "unable to initialize "
5582 "flex_bg meta info!");
5583 err = -ENOMEM;
5584 goto failed_mount6;
5585 }
5586
5587 err = ext4_register_li_request(sb, first_not_zeroed);
5588 if (err)
5589 goto failed_mount6;
5590
5591 err = ext4_init_orphan_info(sb);
5592 if (err)
5593 goto failed_mount7;
5594#ifdef CONFIG_QUOTA
5595 /* Enable quota usage during mount. */
5596 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5597 err = ext4_enable_quotas(sb);
5598 if (err)
5599 goto failed_mount8;
5600 }
5601#endif /* CONFIG_QUOTA */
5602
5603 /*
5604 * Save the original bdev mapping's wb_err value which could be
5605 * used to detect the metadata async write error.
5606 */
5607 errseq_check_and_advance(&sb->s_bdev->bd_mapping->wb_err,
5608 &sbi->s_bdev_wb_err);
5609 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5610 ext4_orphan_cleanup(sb, es);
5611 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5612 /*
5613 * Update the checksum after updating free space/inode counters and
5614 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5615 * checksum in the buffer cache until it is written out and
5616 * e2fsprogs programs trying to open a file system immediately
5617 * after it is mounted can fail.
5618 */
5619 ext4_superblock_csum_set(sb);
5620 if (needs_recovery) {
5621 ext4_msg(sb, KERN_INFO, "recovery complete");
5622 err = ext4_mark_recovery_complete(sb, es);
5623 if (err)
5624 goto failed_mount9;
5625 }
5626
5627 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5628 ext4_msg(sb, KERN_WARNING,
5629 "mounting with \"discard\" option, but the device does not support discard");
5630
5631 if (es->s_error_count)
5632 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5633
5634 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5635 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5636 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5637 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5638 atomic_set(&sbi->s_warning_count, 0);
5639 atomic_set(&sbi->s_msg_count, 0);
5640
5641 /* Register sysfs after all initializations are complete. */
5642 err = ext4_register_sysfs(sb);
5643 if (err)
5644 goto failed_mount9;
5645
5646 return 0;
5647
5648failed_mount9:
5649 ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5650failed_mount8: __maybe_unused
5651 ext4_release_orphan_info(sb);
5652failed_mount7:
5653 ext4_unregister_li_request(sb);
5654failed_mount6:
5655 ext4_mb_release(sb);
5656 ext4_flex_groups_free(sbi);
5657 ext4_percpu_param_destroy(sbi);
5658failed_mount5:
5659 ext4_ext_release(sb);
5660 ext4_release_system_zone(sb);
5661failed_mount4a:
5662 dput(sb->s_root);
5663 sb->s_root = NULL;
5664failed_mount4:
5665 ext4_msg(sb, KERN_ERR, "mount failed");
5666 if (EXT4_SB(sb)->rsv_conversion_wq)
5667 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5668failed_mount_wq:
5669 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5670 sbi->s_ea_inode_cache = NULL;
5671
5672 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5673 sbi->s_ea_block_cache = NULL;
5674
5675 if (sbi->s_journal) {
5676 /* flush s_sb_upd_work before journal destroy. */
5677 flush_work(&sbi->s_sb_upd_work);
5678 jbd2_journal_destroy(sbi->s_journal);
5679 sbi->s_journal = NULL;
5680 }
5681failed_mount3a:
5682 ext4_es_unregister_shrinker(sbi);
5683failed_mount3:
5684 /* flush s_sb_upd_work before sbi destroy */
5685 flush_work(&sbi->s_sb_upd_work);
5686 ext4_stop_mmpd(sbi);
5687 del_timer_sync(&sbi->s_err_report);
5688 ext4_group_desc_free(sbi);
5689failed_mount:
5690 if (sbi->s_chksum_driver)
5691 crypto_free_shash(sbi->s_chksum_driver);
5692
5693#if IS_ENABLED(CONFIG_UNICODE)
5694 utf8_unload(sb->s_encoding);
5695#endif
5696
5697#ifdef CONFIG_QUOTA
5698 for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5699 kfree(get_qf_name(sb, sbi, i));
5700#endif
5701 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5702 brelse(sbi->s_sbh);
5703 if (sbi->s_journal_bdev_file) {
5704 invalidate_bdev(file_bdev(sbi->s_journal_bdev_file));
5705 bdev_fput(sbi->s_journal_bdev_file);
5706 }
5707out_fail:
5708 invalidate_bdev(sb->s_bdev);
5709 sb->s_fs_info = NULL;
5710 return err;
5711}
5712
5713static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5714{
5715 struct ext4_fs_context *ctx = fc->fs_private;
5716 struct ext4_sb_info *sbi;
5717 const char *descr;
5718 int ret;
5719
5720 sbi = ext4_alloc_sbi(sb);
5721 if (!sbi)
5722 return -ENOMEM;
5723
5724 fc->s_fs_info = sbi;
5725
5726 /* Cleanup superblock name */
5727 strreplace(sb->s_id, '/', '!');
5728
5729 sbi->s_sb_block = 1; /* Default super block location */
5730 if (ctx->spec & EXT4_SPEC_s_sb_block)
5731 sbi->s_sb_block = ctx->s_sb_block;
5732
5733 ret = __ext4_fill_super(fc, sb);
5734 if (ret < 0)
5735 goto free_sbi;
5736
5737 if (sbi->s_journal) {
5738 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5739 descr = " journalled data mode";
5740 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5741 descr = " ordered data mode";
5742 else
5743 descr = " writeback data mode";
5744 } else
5745 descr = "out journal";
5746
5747 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5748 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5749 "Quota mode: %s.", &sb->s_uuid,
5750 sb_rdonly(sb) ? "ro" : "r/w", descr,
5751 ext4_quota_mode(sb));
5752
5753 /* Update the s_overhead_clusters if necessary */
5754 ext4_update_overhead(sb, false);
5755 return 0;
5756
5757free_sbi:
5758 ext4_free_sbi(sbi);
5759 fc->s_fs_info = NULL;
5760 return ret;
5761}
5762
5763static int ext4_get_tree(struct fs_context *fc)
5764{
5765 return get_tree_bdev(fc, ext4_fill_super);
5766}
5767
5768/*
5769 * Setup any per-fs journal parameters now. We'll do this both on
5770 * initial mount, once the journal has been initialised but before we've
5771 * done any recovery; and again on any subsequent remount.
5772 */
5773static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5774{
5775 struct ext4_sb_info *sbi = EXT4_SB(sb);
5776
5777 journal->j_commit_interval = sbi->s_commit_interval;
5778 journal->j_min_batch_time = sbi->s_min_batch_time;
5779 journal->j_max_batch_time = sbi->s_max_batch_time;
5780 ext4_fc_init(sb, journal);
5781
5782 write_lock(&journal->j_state_lock);
5783 if (test_opt(sb, BARRIER))
5784 journal->j_flags |= JBD2_BARRIER;
5785 else
5786 journal->j_flags &= ~JBD2_BARRIER;
5787 if (test_opt(sb, DATA_ERR_ABORT))
5788 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5789 else
5790 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5791 /*
5792 * Always enable journal cycle record option, letting the journal
5793 * records log transactions continuously between each mount.
5794 */
5795 journal->j_flags |= JBD2_CYCLE_RECORD;
5796 write_unlock(&journal->j_state_lock);
5797}
5798
5799static struct inode *ext4_get_journal_inode(struct super_block *sb,
5800 unsigned int journal_inum)
5801{
5802 struct inode *journal_inode;
5803
5804 /*
5805 * Test for the existence of a valid inode on disk. Bad things
5806 * happen if we iget() an unused inode, as the subsequent iput()
5807 * will try to delete it.
5808 */
5809 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5810 if (IS_ERR(journal_inode)) {
5811 ext4_msg(sb, KERN_ERR, "no journal found");
5812 return ERR_CAST(journal_inode);
5813 }
5814 if (!journal_inode->i_nlink) {
5815 make_bad_inode(journal_inode);
5816 iput(journal_inode);
5817 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5818 return ERR_PTR(-EFSCORRUPTED);
5819 }
5820 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5821 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5822 iput(journal_inode);
5823 return ERR_PTR(-EFSCORRUPTED);
5824 }
5825
5826 ext4_debug("Journal inode found at %p: %lld bytes\n",
5827 journal_inode, journal_inode->i_size);
5828 return journal_inode;
5829}
5830
5831static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5832{
5833 struct ext4_map_blocks map;
5834 int ret;
5835
5836 if (journal->j_inode == NULL)
5837 return 0;
5838
5839 map.m_lblk = *block;
5840 map.m_len = 1;
5841 ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5842 if (ret <= 0) {
5843 ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5844 "journal bmap failed: block %llu ret %d\n",
5845 *block, ret);
5846 jbd2_journal_abort(journal, ret ? ret : -EIO);
5847 return ret;
5848 }
5849 *block = map.m_pblk;
5850 return 0;
5851}
5852
5853static journal_t *ext4_open_inode_journal(struct super_block *sb,
5854 unsigned int journal_inum)
5855{
5856 struct inode *journal_inode;
5857 journal_t *journal;
5858
5859 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5860 if (IS_ERR(journal_inode))
5861 return ERR_CAST(journal_inode);
5862
5863 journal = jbd2_journal_init_inode(journal_inode);
5864 if (IS_ERR(journal)) {
5865 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5866 iput(journal_inode);
5867 return ERR_CAST(journal);
5868 }
5869 journal->j_private = sb;
5870 journal->j_bmap = ext4_journal_bmap;
5871 ext4_init_journal_params(sb, journal);
5872 return journal;
5873}
5874
5875static struct file *ext4_get_journal_blkdev(struct super_block *sb,
5876 dev_t j_dev, ext4_fsblk_t *j_start,
5877 ext4_fsblk_t *j_len)
5878{
5879 struct buffer_head *bh;
5880 struct block_device *bdev;
5881 struct file *bdev_file;
5882 int hblock, blocksize;
5883 ext4_fsblk_t sb_block;
5884 unsigned long offset;
5885 struct ext4_super_block *es;
5886 int errno;
5887
5888 bdev_file = bdev_file_open_by_dev(j_dev,
5889 BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5890 sb, &fs_holder_ops);
5891 if (IS_ERR(bdev_file)) {
5892 ext4_msg(sb, KERN_ERR,
5893 "failed to open journal device unknown-block(%u,%u) %ld",
5894 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_file));
5895 return bdev_file;
5896 }
5897
5898 bdev = file_bdev(bdev_file);
5899 blocksize = sb->s_blocksize;
5900 hblock = bdev_logical_block_size(bdev);
5901 if (blocksize < hblock) {
5902 ext4_msg(sb, KERN_ERR,
5903 "blocksize too small for journal device");
5904 errno = -EINVAL;
5905 goto out_bdev;
5906 }
5907
5908 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5909 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5910 set_blocksize(bdev_file, blocksize);
5911 bh = __bread(bdev, sb_block, blocksize);
5912 if (!bh) {
5913 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5914 "external journal");
5915 errno = -EINVAL;
5916 goto out_bdev;
5917 }
5918
5919 es = (struct ext4_super_block *) (bh->b_data + offset);
5920 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5921 !(le32_to_cpu(es->s_feature_incompat) &
5922 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5923 ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5924 errno = -EFSCORRUPTED;
5925 goto out_bh;
5926 }
5927
5928 if ((le32_to_cpu(es->s_feature_ro_compat) &
5929 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5930 es->s_checksum != ext4_superblock_csum(sb, es)) {
5931 ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5932 errno = -EFSCORRUPTED;
5933 goto out_bh;
5934 }
5935
5936 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5937 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5938 errno = -EFSCORRUPTED;
5939 goto out_bh;
5940 }
5941
5942 *j_start = sb_block + 1;
5943 *j_len = ext4_blocks_count(es);
5944 brelse(bh);
5945 return bdev_file;
5946
5947out_bh:
5948 brelse(bh);
5949out_bdev:
5950 bdev_fput(bdev_file);
5951 return ERR_PTR(errno);
5952}
5953
5954static journal_t *ext4_open_dev_journal(struct super_block *sb,
5955 dev_t j_dev)
5956{
5957 journal_t *journal;
5958 ext4_fsblk_t j_start;
5959 ext4_fsblk_t j_len;
5960 struct file *bdev_file;
5961 int errno = 0;
5962
5963 bdev_file = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5964 if (IS_ERR(bdev_file))
5965 return ERR_CAST(bdev_file);
5966
5967 journal = jbd2_journal_init_dev(file_bdev(bdev_file), sb->s_bdev, j_start,
5968 j_len, sb->s_blocksize);
5969 if (IS_ERR(journal)) {
5970 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5971 errno = PTR_ERR(journal);
5972 goto out_bdev;
5973 }
5974 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5975 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5976 "user (unsupported) - %d",
5977 be32_to_cpu(journal->j_superblock->s_nr_users));
5978 errno = -EINVAL;
5979 goto out_journal;
5980 }
5981 journal->j_private = sb;
5982 EXT4_SB(sb)->s_journal_bdev_file = bdev_file;
5983 ext4_init_journal_params(sb, journal);
5984 return journal;
5985
5986out_journal:
5987 jbd2_journal_destroy(journal);
5988out_bdev:
5989 bdev_fput(bdev_file);
5990 return ERR_PTR(errno);
5991}
5992
5993static int ext4_load_journal(struct super_block *sb,
5994 struct ext4_super_block *es,
5995 unsigned long journal_devnum)
5996{
5997 journal_t *journal;
5998 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5999 dev_t journal_dev;
6000 int err = 0;
6001 int really_read_only;
6002 int journal_dev_ro;
6003
6004 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
6005 return -EFSCORRUPTED;
6006
6007 if (journal_devnum &&
6008 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6009 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
6010 "numbers have changed");
6011 journal_dev = new_decode_dev(journal_devnum);
6012 } else
6013 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
6014
6015 if (journal_inum && journal_dev) {
6016 ext4_msg(sb, KERN_ERR,
6017 "filesystem has both journal inode and journal device!");
6018 return -EINVAL;
6019 }
6020
6021 if (journal_inum) {
6022 journal = ext4_open_inode_journal(sb, journal_inum);
6023 if (IS_ERR(journal))
6024 return PTR_ERR(journal);
6025 } else {
6026 journal = ext4_open_dev_journal(sb, journal_dev);
6027 if (IS_ERR(journal))
6028 return PTR_ERR(journal);
6029 }
6030
6031 journal_dev_ro = bdev_read_only(journal->j_dev);
6032 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6033
6034 if (journal_dev_ro && !sb_rdonly(sb)) {
6035 ext4_msg(sb, KERN_ERR,
6036 "journal device read-only, try mounting with '-o ro'");
6037 err = -EROFS;
6038 goto err_out;
6039 }
6040
6041 /*
6042 * Are we loading a blank journal or performing recovery after a
6043 * crash? For recovery, we need to check in advance whether we
6044 * can get read-write access to the device.
6045 */
6046 if (ext4_has_feature_journal_needs_recovery(sb)) {
6047 if (sb_rdonly(sb)) {
6048 ext4_msg(sb, KERN_INFO, "INFO: recovery "
6049 "required on readonly filesystem");
6050 if (really_read_only) {
6051 ext4_msg(sb, KERN_ERR, "write access "
6052 "unavailable, cannot proceed "
6053 "(try mounting with noload)");
6054 err = -EROFS;
6055 goto err_out;
6056 }
6057 ext4_msg(sb, KERN_INFO, "write access will "
6058 "be enabled during recovery");
6059 }
6060 }
6061
6062 if (!(journal->j_flags & JBD2_BARRIER))
6063 ext4_msg(sb, KERN_INFO, "barriers disabled");
6064
6065 if (!ext4_has_feature_journal_needs_recovery(sb))
6066 err = jbd2_journal_wipe(journal, !really_read_only);
6067 if (!err) {
6068 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6069 __le16 orig_state;
6070 bool changed = false;
6071
6072 if (save)
6073 memcpy(save, ((char *) es) +
6074 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6075 err = jbd2_journal_load(journal);
6076 if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6077 save, EXT4_S_ERR_LEN)) {
6078 memcpy(((char *) es) + EXT4_S_ERR_START,
6079 save, EXT4_S_ERR_LEN);
6080 changed = true;
6081 }
6082 kfree(save);
6083 orig_state = es->s_state;
6084 es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6085 EXT4_ERROR_FS);
6086 if (orig_state != es->s_state)
6087 changed = true;
6088 /* Write out restored error information to the superblock */
6089 if (changed && !really_read_only) {
6090 int err2;
6091 err2 = ext4_commit_super(sb);
6092 err = err ? : err2;
6093 }
6094 }
6095
6096 if (err) {
6097 ext4_msg(sb, KERN_ERR, "error loading journal");
6098 goto err_out;
6099 }
6100
6101 EXT4_SB(sb)->s_journal = journal;
6102 err = ext4_clear_journal_err(sb, es);
6103 if (err) {
6104 EXT4_SB(sb)->s_journal = NULL;
6105 jbd2_journal_destroy(journal);
6106 return err;
6107 }
6108
6109 if (!really_read_only && journal_devnum &&
6110 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6111 es->s_journal_dev = cpu_to_le32(journal_devnum);
6112 ext4_commit_super(sb);
6113 }
6114 if (!really_read_only && journal_inum &&
6115 journal_inum != le32_to_cpu(es->s_journal_inum)) {
6116 es->s_journal_inum = cpu_to_le32(journal_inum);
6117 ext4_commit_super(sb);
6118 }
6119
6120 return 0;
6121
6122err_out:
6123 jbd2_journal_destroy(journal);
6124 return err;
6125}
6126
6127/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6128static void ext4_update_super(struct super_block *sb)
6129{
6130 struct ext4_sb_info *sbi = EXT4_SB(sb);
6131 struct ext4_super_block *es = sbi->s_es;
6132 struct buffer_head *sbh = sbi->s_sbh;
6133
6134 lock_buffer(sbh);
6135 /*
6136 * If the file system is mounted read-only, don't update the
6137 * superblock write time. This avoids updating the superblock
6138 * write time when we are mounting the root file system
6139 * read/only but we need to replay the journal; at that point,
6140 * for people who are east of GMT and who make their clock
6141 * tick in localtime for Windows bug-for-bug compatibility,
6142 * the clock is set in the future, and this will cause e2fsck
6143 * to complain and force a full file system check.
6144 */
6145 if (!sb_rdonly(sb))
6146 ext4_update_tstamp(es, s_wtime);
6147 es->s_kbytes_written =
6148 cpu_to_le64(sbi->s_kbytes_written +
6149 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6150 sbi->s_sectors_written_start) >> 1));
6151 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6152 ext4_free_blocks_count_set(es,
6153 EXT4_C2B(sbi, percpu_counter_sum_positive(
6154 &sbi->s_freeclusters_counter)));
6155 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6156 es->s_free_inodes_count =
6157 cpu_to_le32(percpu_counter_sum_positive(
6158 &sbi->s_freeinodes_counter));
6159 /* Copy error information to the on-disk superblock */
6160 spin_lock(&sbi->s_error_lock);
6161 if (sbi->s_add_error_count > 0) {
6162 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6163 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6164 __ext4_update_tstamp(&es->s_first_error_time,
6165 &es->s_first_error_time_hi,
6166 sbi->s_first_error_time);
6167 strtomem_pad(es->s_first_error_func,
6168 sbi->s_first_error_func, 0);
6169 es->s_first_error_line =
6170 cpu_to_le32(sbi->s_first_error_line);
6171 es->s_first_error_ino =
6172 cpu_to_le32(sbi->s_first_error_ino);
6173 es->s_first_error_block =
6174 cpu_to_le64(sbi->s_first_error_block);
6175 es->s_first_error_errcode =
6176 ext4_errno_to_code(sbi->s_first_error_code);
6177 }
6178 __ext4_update_tstamp(&es->s_last_error_time,
6179 &es->s_last_error_time_hi,
6180 sbi->s_last_error_time);
6181 strtomem_pad(es->s_last_error_func, sbi->s_last_error_func, 0);
6182 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6183 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6184 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6185 es->s_last_error_errcode =
6186 ext4_errno_to_code(sbi->s_last_error_code);
6187 /*
6188 * Start the daily error reporting function if it hasn't been
6189 * started already
6190 */
6191 if (!es->s_error_count)
6192 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6193 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6194 sbi->s_add_error_count = 0;
6195 }
6196 spin_unlock(&sbi->s_error_lock);
6197
6198 ext4_superblock_csum_set(sb);
6199 unlock_buffer(sbh);
6200}
6201
6202static int ext4_commit_super(struct super_block *sb)
6203{
6204 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6205
6206 if (!sbh)
6207 return -EINVAL;
6208
6209 ext4_update_super(sb);
6210
6211 lock_buffer(sbh);
6212 /* Buffer got discarded which means block device got invalidated */
6213 if (!buffer_mapped(sbh)) {
6214 unlock_buffer(sbh);
6215 return -EIO;
6216 }
6217
6218 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6219 /*
6220 * Oh, dear. A previous attempt to write the
6221 * superblock failed. This could happen because the
6222 * USB device was yanked out. Or it could happen to
6223 * be a transient write error and maybe the block will
6224 * be remapped. Nothing we can do but to retry the
6225 * write and hope for the best.
6226 */
6227 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6228 "superblock detected");
6229 clear_buffer_write_io_error(sbh);
6230 set_buffer_uptodate(sbh);
6231 }
6232 get_bh(sbh);
6233 /* Clear potential dirty bit if it was journalled update */
6234 clear_buffer_dirty(sbh);
6235 sbh->b_end_io = end_buffer_write_sync;
6236 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6237 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6238 wait_on_buffer(sbh);
6239 if (buffer_write_io_error(sbh)) {
6240 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6241 "superblock");
6242 clear_buffer_write_io_error(sbh);
6243 set_buffer_uptodate(sbh);
6244 return -EIO;
6245 }
6246 return 0;
6247}
6248
6249/*
6250 * Have we just finished recovery? If so, and if we are mounting (or
6251 * remounting) the filesystem readonly, then we will end up with a
6252 * consistent fs on disk. Record that fact.
6253 */
6254static int ext4_mark_recovery_complete(struct super_block *sb,
6255 struct ext4_super_block *es)
6256{
6257 int err;
6258 journal_t *journal = EXT4_SB(sb)->s_journal;
6259
6260 if (!ext4_has_feature_journal(sb)) {
6261 if (journal != NULL) {
6262 ext4_error(sb, "Journal got removed while the fs was "
6263 "mounted!");
6264 return -EFSCORRUPTED;
6265 }
6266 return 0;
6267 }
6268 jbd2_journal_lock_updates(journal);
6269 err = jbd2_journal_flush(journal, 0);
6270 if (err < 0)
6271 goto out;
6272
6273 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6274 ext4_has_feature_orphan_present(sb))) {
6275 if (!ext4_orphan_file_empty(sb)) {
6276 ext4_error(sb, "Orphan file not empty on read-only fs.");
6277 err = -EFSCORRUPTED;
6278 goto out;
6279 }
6280 ext4_clear_feature_journal_needs_recovery(sb);
6281 ext4_clear_feature_orphan_present(sb);
6282 ext4_commit_super(sb);
6283 }
6284out:
6285 jbd2_journal_unlock_updates(journal);
6286 return err;
6287}
6288
6289/*
6290 * If we are mounting (or read-write remounting) a filesystem whose journal
6291 * has recorded an error from a previous lifetime, move that error to the
6292 * main filesystem now.
6293 */
6294static int ext4_clear_journal_err(struct super_block *sb,
6295 struct ext4_super_block *es)
6296{
6297 journal_t *journal;
6298 int j_errno;
6299 const char *errstr;
6300
6301 if (!ext4_has_feature_journal(sb)) {
6302 ext4_error(sb, "Journal got removed while the fs was mounted!");
6303 return -EFSCORRUPTED;
6304 }
6305
6306 journal = EXT4_SB(sb)->s_journal;
6307
6308 /*
6309 * Now check for any error status which may have been recorded in the
6310 * journal by a prior ext4_error() or ext4_abort()
6311 */
6312
6313 j_errno = jbd2_journal_errno(journal);
6314 if (j_errno) {
6315 char nbuf[16];
6316
6317 errstr = ext4_decode_error(sb, j_errno, nbuf);
6318 ext4_warning(sb, "Filesystem error recorded "
6319 "from previous mount: %s", errstr);
6320
6321 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6322 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6323 j_errno = ext4_commit_super(sb);
6324 if (j_errno)
6325 return j_errno;
6326 ext4_warning(sb, "Marked fs in need of filesystem check.");
6327
6328 jbd2_journal_clear_err(journal);
6329 jbd2_journal_update_sb_errno(journal);
6330 }
6331 return 0;
6332}
6333
6334/*
6335 * Force the running and committing transactions to commit,
6336 * and wait on the commit.
6337 */
6338int ext4_force_commit(struct super_block *sb)
6339{
6340 return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
6341}
6342
6343static int ext4_sync_fs(struct super_block *sb, int wait)
6344{
6345 int ret = 0;
6346 tid_t target;
6347 bool needs_barrier = false;
6348 struct ext4_sb_info *sbi = EXT4_SB(sb);
6349
6350 if (unlikely(ext4_forced_shutdown(sb)))
6351 return -EIO;
6352
6353 trace_ext4_sync_fs(sb, wait);
6354 flush_workqueue(sbi->rsv_conversion_wq);
6355 /*
6356 * Writeback quota in non-journalled quota case - journalled quota has
6357 * no dirty dquots
6358 */
6359 dquot_writeback_dquots(sb, -1);
6360 /*
6361 * Data writeback is possible w/o journal transaction, so barrier must
6362 * being sent at the end of the function. But we can skip it if
6363 * transaction_commit will do it for us.
6364 */
6365 if (sbi->s_journal) {
6366 target = jbd2_get_latest_transaction(sbi->s_journal);
6367 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6368 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6369 needs_barrier = true;
6370
6371 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6372 if (wait)
6373 ret = jbd2_log_wait_commit(sbi->s_journal,
6374 target);
6375 }
6376 } else if (wait && test_opt(sb, BARRIER))
6377 needs_barrier = true;
6378 if (needs_barrier) {
6379 int err;
6380 err = blkdev_issue_flush(sb->s_bdev);
6381 if (!ret)
6382 ret = err;
6383 }
6384
6385 return ret;
6386}
6387
6388/*
6389 * LVM calls this function before a (read-only) snapshot is created. This
6390 * gives us a chance to flush the journal completely and mark the fs clean.
6391 *
6392 * Note that only this function cannot bring a filesystem to be in a clean
6393 * state independently. It relies on upper layer to stop all data & metadata
6394 * modifications.
6395 */
6396static int ext4_freeze(struct super_block *sb)
6397{
6398 int error = 0;
6399 journal_t *journal = EXT4_SB(sb)->s_journal;
6400
6401 if (journal) {
6402 /* Now we set up the journal barrier. */
6403 jbd2_journal_lock_updates(journal);
6404
6405 /*
6406 * Don't clear the needs_recovery flag if we failed to
6407 * flush the journal.
6408 */
6409 error = jbd2_journal_flush(journal, 0);
6410 if (error < 0)
6411 goto out;
6412
6413 /* Journal blocked and flushed, clear needs_recovery flag. */
6414 ext4_clear_feature_journal_needs_recovery(sb);
6415 if (ext4_orphan_file_empty(sb))
6416 ext4_clear_feature_orphan_present(sb);
6417 }
6418
6419 error = ext4_commit_super(sb);
6420out:
6421 if (journal)
6422 /* we rely on upper layer to stop further updates */
6423 jbd2_journal_unlock_updates(journal);
6424 return error;
6425}
6426
6427/*
6428 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6429 * flag here, even though the filesystem is not technically dirty yet.
6430 */
6431static int ext4_unfreeze(struct super_block *sb)
6432{
6433 if (ext4_forced_shutdown(sb))
6434 return 0;
6435
6436 if (EXT4_SB(sb)->s_journal) {
6437 /* Reset the needs_recovery flag before the fs is unlocked. */
6438 ext4_set_feature_journal_needs_recovery(sb);
6439 if (ext4_has_feature_orphan_file(sb))
6440 ext4_set_feature_orphan_present(sb);
6441 }
6442
6443 ext4_commit_super(sb);
6444 return 0;
6445}
6446
6447/*
6448 * Structure to save mount options for ext4_remount's benefit
6449 */
6450struct ext4_mount_options {
6451 unsigned long s_mount_opt;
6452 unsigned long s_mount_opt2;
6453 kuid_t s_resuid;
6454 kgid_t s_resgid;
6455 unsigned long s_commit_interval;
6456 u32 s_min_batch_time, s_max_batch_time;
6457#ifdef CONFIG_QUOTA
6458 int s_jquota_fmt;
6459 char *s_qf_names[EXT4_MAXQUOTAS];
6460#endif
6461};
6462
6463static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6464{
6465 struct ext4_fs_context *ctx = fc->fs_private;
6466 struct ext4_super_block *es;
6467 struct ext4_sb_info *sbi = EXT4_SB(sb);
6468 unsigned long old_sb_flags;
6469 struct ext4_mount_options old_opts;
6470 ext4_group_t g;
6471 int err = 0;
6472 int alloc_ctx;
6473#ifdef CONFIG_QUOTA
6474 int enable_quota = 0;
6475 int i, j;
6476 char *to_free[EXT4_MAXQUOTAS];
6477#endif
6478
6479
6480 /* Store the original options */
6481 old_sb_flags = sb->s_flags;
6482 old_opts.s_mount_opt = sbi->s_mount_opt;
6483 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6484 old_opts.s_resuid = sbi->s_resuid;
6485 old_opts.s_resgid = sbi->s_resgid;
6486 old_opts.s_commit_interval = sbi->s_commit_interval;
6487 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6488 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6489#ifdef CONFIG_QUOTA
6490 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6491 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6492 if (sbi->s_qf_names[i]) {
6493 char *qf_name = get_qf_name(sb, sbi, i);
6494
6495 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6496 if (!old_opts.s_qf_names[i]) {
6497 for (j = 0; j < i; j++)
6498 kfree(old_opts.s_qf_names[j]);
6499 return -ENOMEM;
6500 }
6501 } else
6502 old_opts.s_qf_names[i] = NULL;
6503#endif
6504 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6505 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6506 ctx->journal_ioprio =
6507 sbi->s_journal->j_task->io_context->ioprio;
6508 else
6509 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6510
6511 }
6512
6513 if ((ctx->spec & EXT4_SPEC_s_stripe) &&
6514 ext4_is_stripe_incompatible(sb, ctx->s_stripe)) {
6515 ext4_msg(sb, KERN_WARNING,
6516 "stripe (%lu) is not aligned with cluster size (%u), "
6517 "stripe is disabled",
6518 ctx->s_stripe, sbi->s_cluster_ratio);
6519 ctx->s_stripe = 0;
6520 }
6521
6522 /*
6523 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6524 * two calls to ext4_should_dioread_nolock() to return inconsistent
6525 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6526 * here s_writepages_rwsem to avoid race between writepages ops and
6527 * remount.
6528 */
6529 alloc_ctx = ext4_writepages_down_write(sb);
6530 ext4_apply_options(fc, sb);
6531 ext4_writepages_up_write(sb, alloc_ctx);
6532
6533 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6534 test_opt(sb, JOURNAL_CHECKSUM)) {
6535 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6536 "during remount not supported; ignoring");
6537 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6538 }
6539
6540 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6541 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6542 ext4_msg(sb, KERN_ERR, "can't mount with "
6543 "both data=journal and delalloc");
6544 err = -EINVAL;
6545 goto restore_opts;
6546 }
6547 if (test_opt(sb, DIOREAD_NOLOCK)) {
6548 ext4_msg(sb, KERN_ERR, "can't mount with "
6549 "both data=journal and dioread_nolock");
6550 err = -EINVAL;
6551 goto restore_opts;
6552 }
6553 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6554 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6555 ext4_msg(sb, KERN_ERR, "can't mount with "
6556 "journal_async_commit in data=ordered mode");
6557 err = -EINVAL;
6558 goto restore_opts;
6559 }
6560 }
6561
6562 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6563 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6564 err = -EINVAL;
6565 goto restore_opts;
6566 }
6567
6568 if ((old_opts.s_mount_opt & EXT4_MOUNT_DELALLOC) &&
6569 !test_opt(sb, DELALLOC)) {
6570 ext4_msg(sb, KERN_ERR, "can't disable delalloc during remount");
6571 err = -EINVAL;
6572 goto restore_opts;
6573 }
6574
6575 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6576 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6577
6578 es = sbi->s_es;
6579
6580 if (sbi->s_journal) {
6581 ext4_init_journal_params(sb, sbi->s_journal);
6582 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6583 }
6584
6585 /* Flush outstanding errors before changing fs state */
6586 flush_work(&sbi->s_sb_upd_work);
6587
6588 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6589 if (ext4_forced_shutdown(sb)) {
6590 err = -EROFS;
6591 goto restore_opts;
6592 }
6593
6594 if (fc->sb_flags & SB_RDONLY) {
6595 err = sync_filesystem(sb);
6596 if (err < 0)
6597 goto restore_opts;
6598 err = dquot_suspend(sb, -1);
6599 if (err < 0)
6600 goto restore_opts;
6601
6602 /*
6603 * First of all, the unconditional stuff we have to do
6604 * to disable replay of the journal when we next remount
6605 */
6606 sb->s_flags |= SB_RDONLY;
6607
6608 /*
6609 * OK, test if we are remounting a valid rw partition
6610 * readonly, and if so set the rdonly flag and then
6611 * mark the partition as valid again.
6612 */
6613 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6614 (sbi->s_mount_state & EXT4_VALID_FS))
6615 es->s_state = cpu_to_le16(sbi->s_mount_state);
6616
6617 if (sbi->s_journal) {
6618 /*
6619 * We let remount-ro finish even if marking fs
6620 * as clean failed...
6621 */
6622 ext4_mark_recovery_complete(sb, es);
6623 }
6624 } else {
6625 /* Make sure we can mount this feature set readwrite */
6626 if (ext4_has_feature_readonly(sb) ||
6627 !ext4_feature_set_ok(sb, 0)) {
6628 err = -EROFS;
6629 goto restore_opts;
6630 }
6631 /*
6632 * Make sure the group descriptor checksums
6633 * are sane. If they aren't, refuse to remount r/w.
6634 */
6635 for (g = 0; g < sbi->s_groups_count; g++) {
6636 struct ext4_group_desc *gdp =
6637 ext4_get_group_desc(sb, g, NULL);
6638
6639 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6640 ext4_msg(sb, KERN_ERR,
6641 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6642 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6643 le16_to_cpu(gdp->bg_checksum));
6644 err = -EFSBADCRC;
6645 goto restore_opts;
6646 }
6647 }
6648
6649 /*
6650 * If we have an unprocessed orphan list hanging
6651 * around from a previously readonly bdev mount,
6652 * require a full umount/remount for now.
6653 */
6654 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6655 ext4_msg(sb, KERN_WARNING, "Couldn't "
6656 "remount RDWR because of unprocessed "
6657 "orphan inode list. Please "
6658 "umount/remount instead");
6659 err = -EINVAL;
6660 goto restore_opts;
6661 }
6662
6663 /*
6664 * Mounting a RDONLY partition read-write, so reread
6665 * and store the current valid flag. (It may have
6666 * been changed by e2fsck since we originally mounted
6667 * the partition.)
6668 */
6669 if (sbi->s_journal) {
6670 err = ext4_clear_journal_err(sb, es);
6671 if (err)
6672 goto restore_opts;
6673 }
6674 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6675 ~EXT4_FC_REPLAY);
6676
6677 err = ext4_setup_super(sb, es, 0);
6678 if (err)
6679 goto restore_opts;
6680
6681 sb->s_flags &= ~SB_RDONLY;
6682 if (ext4_has_feature_mmp(sb)) {
6683 err = ext4_multi_mount_protect(sb,
6684 le64_to_cpu(es->s_mmp_block));
6685 if (err)
6686 goto restore_opts;
6687 }
6688#ifdef CONFIG_QUOTA
6689 enable_quota = 1;
6690#endif
6691 }
6692 }
6693
6694 /*
6695 * Handle creation of system zone data early because it can fail.
6696 * Releasing of existing data is done when we are sure remount will
6697 * succeed.
6698 */
6699 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6700 err = ext4_setup_system_zone(sb);
6701 if (err)
6702 goto restore_opts;
6703 }
6704
6705 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6706 err = ext4_commit_super(sb);
6707 if (err)
6708 goto restore_opts;
6709 }
6710
6711#ifdef CONFIG_QUOTA
6712 if (enable_quota) {
6713 if (sb_any_quota_suspended(sb))
6714 dquot_resume(sb, -1);
6715 else if (ext4_has_feature_quota(sb)) {
6716 err = ext4_enable_quotas(sb);
6717 if (err)
6718 goto restore_opts;
6719 }
6720 }
6721 /* Release old quota file names */
6722 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6723 kfree(old_opts.s_qf_names[i]);
6724#endif
6725 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6726 ext4_release_system_zone(sb);
6727
6728 /*
6729 * Reinitialize lazy itable initialization thread based on
6730 * current settings
6731 */
6732 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6733 ext4_unregister_li_request(sb);
6734 else {
6735 ext4_group_t first_not_zeroed;
6736 first_not_zeroed = ext4_has_uninit_itable(sb);
6737 ext4_register_li_request(sb, first_not_zeroed);
6738 }
6739
6740 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6741 ext4_stop_mmpd(sbi);
6742
6743 /*
6744 * Handle aborting the filesystem as the last thing during remount to
6745 * avoid obsure errors during remount when some option changes fail to
6746 * apply due to shutdown filesystem.
6747 */
6748 if (test_opt2(sb, ABORT))
6749 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6750
6751 return 0;
6752
6753restore_opts:
6754 /*
6755 * If there was a failing r/w to ro transition, we may need to
6756 * re-enable quota
6757 */
6758 if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6759 sb_any_quota_suspended(sb))
6760 dquot_resume(sb, -1);
6761
6762 alloc_ctx = ext4_writepages_down_write(sb);
6763 sb->s_flags = old_sb_flags;
6764 sbi->s_mount_opt = old_opts.s_mount_opt;
6765 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6766 sbi->s_resuid = old_opts.s_resuid;
6767 sbi->s_resgid = old_opts.s_resgid;
6768 sbi->s_commit_interval = old_opts.s_commit_interval;
6769 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6770 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6771 ext4_writepages_up_write(sb, alloc_ctx);
6772
6773 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6774 ext4_release_system_zone(sb);
6775#ifdef CONFIG_QUOTA
6776 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6777 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6778 to_free[i] = get_qf_name(sb, sbi, i);
6779 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6780 }
6781 synchronize_rcu();
6782 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6783 kfree(to_free[i]);
6784#endif
6785 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6786 ext4_stop_mmpd(sbi);
6787 return err;
6788}
6789
6790static int ext4_reconfigure(struct fs_context *fc)
6791{
6792 struct super_block *sb = fc->root->d_sb;
6793 int ret;
6794
6795 fc->s_fs_info = EXT4_SB(sb);
6796
6797 ret = ext4_check_opt_consistency(fc, sb);
6798 if (ret < 0)
6799 return ret;
6800
6801 ret = __ext4_remount(fc, sb);
6802 if (ret < 0)
6803 return ret;
6804
6805 ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6806 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6807 ext4_quota_mode(sb));
6808
6809 return 0;
6810}
6811
6812#ifdef CONFIG_QUOTA
6813static int ext4_statfs_project(struct super_block *sb,
6814 kprojid_t projid, struct kstatfs *buf)
6815{
6816 struct kqid qid;
6817 struct dquot *dquot;
6818 u64 limit;
6819 u64 curblock;
6820
6821 qid = make_kqid_projid(projid);
6822 dquot = dqget(sb, qid);
6823 if (IS_ERR(dquot))
6824 return PTR_ERR(dquot);
6825 spin_lock(&dquot->dq_dqb_lock);
6826
6827 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6828 dquot->dq_dqb.dqb_bhardlimit);
6829 limit >>= sb->s_blocksize_bits;
6830
6831 if (limit && buf->f_blocks > limit) {
6832 curblock = (dquot->dq_dqb.dqb_curspace +
6833 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6834 buf->f_blocks = limit;
6835 buf->f_bfree = buf->f_bavail =
6836 (buf->f_blocks > curblock) ?
6837 (buf->f_blocks - curblock) : 0;
6838 }
6839
6840 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6841 dquot->dq_dqb.dqb_ihardlimit);
6842 if (limit && buf->f_files > limit) {
6843 buf->f_files = limit;
6844 buf->f_ffree =
6845 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6846 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6847 }
6848
6849 spin_unlock(&dquot->dq_dqb_lock);
6850 dqput(dquot);
6851 return 0;
6852}
6853#endif
6854
6855static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6856{
6857 struct super_block *sb = dentry->d_sb;
6858 struct ext4_sb_info *sbi = EXT4_SB(sb);
6859 struct ext4_super_block *es = sbi->s_es;
6860 ext4_fsblk_t overhead = 0, resv_blocks;
6861 s64 bfree;
6862 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6863
6864 if (!test_opt(sb, MINIX_DF))
6865 overhead = sbi->s_overhead;
6866
6867 buf->f_type = EXT4_SUPER_MAGIC;
6868 buf->f_bsize = sb->s_blocksize;
6869 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6870 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6871 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6872 /* prevent underflow in case that few free space is available */
6873 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6874 buf->f_bavail = buf->f_bfree -
6875 (ext4_r_blocks_count(es) + resv_blocks);
6876 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6877 buf->f_bavail = 0;
6878 buf->f_files = le32_to_cpu(es->s_inodes_count);
6879 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6880 buf->f_namelen = EXT4_NAME_LEN;
6881 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6882
6883#ifdef CONFIG_QUOTA
6884 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6885 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6886 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6887#endif
6888 return 0;
6889}
6890
6891
6892#ifdef CONFIG_QUOTA
6893
6894/*
6895 * Helper functions so that transaction is started before we acquire dqio_sem
6896 * to keep correct lock ordering of transaction > dqio_sem
6897 */
6898static inline struct inode *dquot_to_inode(struct dquot *dquot)
6899{
6900 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6901}
6902
6903static int ext4_write_dquot(struct dquot *dquot)
6904{
6905 int ret, err;
6906 handle_t *handle;
6907 struct inode *inode;
6908
6909 inode = dquot_to_inode(dquot);
6910 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6911 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6912 if (IS_ERR(handle))
6913 return PTR_ERR(handle);
6914 ret = dquot_commit(dquot);
6915 if (ret < 0)
6916 ext4_error_err(dquot->dq_sb, -ret,
6917 "Failed to commit dquot type %d",
6918 dquot->dq_id.type);
6919 err = ext4_journal_stop(handle);
6920 if (!ret)
6921 ret = err;
6922 return ret;
6923}
6924
6925static int ext4_acquire_dquot(struct dquot *dquot)
6926{
6927 int ret, err;
6928 handle_t *handle;
6929
6930 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6931 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6932 if (IS_ERR(handle))
6933 return PTR_ERR(handle);
6934 ret = dquot_acquire(dquot);
6935 if (ret < 0)
6936 ext4_error_err(dquot->dq_sb, -ret,
6937 "Failed to acquire dquot type %d",
6938 dquot->dq_id.type);
6939 err = ext4_journal_stop(handle);
6940 if (!ret)
6941 ret = err;
6942 return ret;
6943}
6944
6945static int ext4_release_dquot(struct dquot *dquot)
6946{
6947 int ret, err;
6948 handle_t *handle;
6949
6950 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6951 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6952 if (IS_ERR(handle)) {
6953 /* Release dquot anyway to avoid endless cycle in dqput() */
6954 dquot_release(dquot);
6955 return PTR_ERR(handle);
6956 }
6957 ret = dquot_release(dquot);
6958 if (ret < 0)
6959 ext4_error_err(dquot->dq_sb, -ret,
6960 "Failed to release dquot type %d",
6961 dquot->dq_id.type);
6962 err = ext4_journal_stop(handle);
6963 if (!ret)
6964 ret = err;
6965 return ret;
6966}
6967
6968static int ext4_mark_dquot_dirty(struct dquot *dquot)
6969{
6970 struct super_block *sb = dquot->dq_sb;
6971
6972 if (ext4_is_quota_journalled(sb)) {
6973 dquot_mark_dquot_dirty(dquot);
6974 return ext4_write_dquot(dquot);
6975 } else {
6976 return dquot_mark_dquot_dirty(dquot);
6977 }
6978}
6979
6980static int ext4_write_info(struct super_block *sb, int type)
6981{
6982 int ret, err;
6983 handle_t *handle;
6984
6985 /* Data block + inode block */
6986 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6987 if (IS_ERR(handle))
6988 return PTR_ERR(handle);
6989 ret = dquot_commit_info(sb, type);
6990 err = ext4_journal_stop(handle);
6991 if (!ret)
6992 ret = err;
6993 return ret;
6994}
6995
6996static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6997{
6998 struct ext4_inode_info *ei = EXT4_I(inode);
6999
7000 /* The first argument of lockdep_set_subclass has to be
7001 * *exactly* the same as the argument to init_rwsem() --- in
7002 * this case, in init_once() --- or lockdep gets unhappy
7003 * because the name of the lock is set using the
7004 * stringification of the argument to init_rwsem().
7005 */
7006 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
7007 lockdep_set_subclass(&ei->i_data_sem, subclass);
7008}
7009
7010/*
7011 * Standard function to be called on quota_on
7012 */
7013static int ext4_quota_on(struct super_block *sb, int type, int format_id,
7014 const struct path *path)
7015{
7016 int err;
7017
7018 if (!test_opt(sb, QUOTA))
7019 return -EINVAL;
7020
7021 /* Quotafile not on the same filesystem? */
7022 if (path->dentry->d_sb != sb)
7023 return -EXDEV;
7024
7025 /* Quota already enabled for this file? */
7026 if (IS_NOQUOTA(d_inode(path->dentry)))
7027 return -EBUSY;
7028
7029 /* Journaling quota? */
7030 if (EXT4_SB(sb)->s_qf_names[type]) {
7031 /* Quotafile not in fs root? */
7032 if (path->dentry->d_parent != sb->s_root)
7033 ext4_msg(sb, KERN_WARNING,
7034 "Quota file not on filesystem root. "
7035 "Journaled quota will not work");
7036 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
7037 } else {
7038 /*
7039 * Clear the flag just in case mount options changed since
7040 * last time.
7041 */
7042 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
7043 }
7044
7045 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
7046 err = dquot_quota_on(sb, type, format_id, path);
7047 if (!err) {
7048 struct inode *inode = d_inode(path->dentry);
7049 handle_t *handle;
7050
7051 /*
7052 * Set inode flags to prevent userspace from messing with quota
7053 * files. If this fails, we return success anyway since quotas
7054 * are already enabled and this is not a hard failure.
7055 */
7056 inode_lock(inode);
7057 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7058 if (IS_ERR(handle))
7059 goto unlock_inode;
7060 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7061 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7062 S_NOATIME | S_IMMUTABLE);
7063 err = ext4_mark_inode_dirty(handle, inode);
7064 ext4_journal_stop(handle);
7065 unlock_inode:
7066 inode_unlock(inode);
7067 if (err)
7068 dquot_quota_off(sb, type);
7069 }
7070 if (err)
7071 lockdep_set_quota_inode(path->dentry->d_inode,
7072 I_DATA_SEM_NORMAL);
7073 return err;
7074}
7075
7076static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7077{
7078 switch (type) {
7079 case USRQUOTA:
7080 return qf_inum == EXT4_USR_QUOTA_INO;
7081 case GRPQUOTA:
7082 return qf_inum == EXT4_GRP_QUOTA_INO;
7083 case PRJQUOTA:
7084 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7085 default:
7086 BUG();
7087 }
7088}
7089
7090static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7091 unsigned int flags)
7092{
7093 int err;
7094 struct inode *qf_inode;
7095 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7096 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7097 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7098 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7099 };
7100
7101 BUG_ON(!ext4_has_feature_quota(sb));
7102
7103 if (!qf_inums[type])
7104 return -EPERM;
7105
7106 if (!ext4_check_quota_inum(type, qf_inums[type])) {
7107 ext4_error(sb, "Bad quota inum: %lu, type: %d",
7108 qf_inums[type], type);
7109 return -EUCLEAN;
7110 }
7111
7112 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7113 if (IS_ERR(qf_inode)) {
7114 ext4_error(sb, "Bad quota inode: %lu, type: %d",
7115 qf_inums[type], type);
7116 return PTR_ERR(qf_inode);
7117 }
7118
7119 /* Don't account quota for quota files to avoid recursion */
7120 qf_inode->i_flags |= S_NOQUOTA;
7121 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7122 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7123 if (err)
7124 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7125 iput(qf_inode);
7126
7127 return err;
7128}
7129
7130/* Enable usage tracking for all quota types. */
7131int ext4_enable_quotas(struct super_block *sb)
7132{
7133 int type, err = 0;
7134 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7135 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7136 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7137 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7138 };
7139 bool quota_mopt[EXT4_MAXQUOTAS] = {
7140 test_opt(sb, USRQUOTA),
7141 test_opt(sb, GRPQUOTA),
7142 test_opt(sb, PRJQUOTA),
7143 };
7144
7145 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7146 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7147 if (qf_inums[type]) {
7148 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7149 DQUOT_USAGE_ENABLED |
7150 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7151 if (err) {
7152 ext4_warning(sb,
7153 "Failed to enable quota tracking "
7154 "(type=%d, err=%d, ino=%lu). "
7155 "Please run e2fsck to fix.", type,
7156 err, qf_inums[type]);
7157
7158 ext4_quotas_off(sb, type);
7159 return err;
7160 }
7161 }
7162 }
7163 return 0;
7164}
7165
7166static int ext4_quota_off(struct super_block *sb, int type)
7167{
7168 struct inode *inode = sb_dqopt(sb)->files[type];
7169 handle_t *handle;
7170 int err;
7171
7172 /* Force all delayed allocation blocks to be allocated.
7173 * Caller already holds s_umount sem */
7174 if (test_opt(sb, DELALLOC))
7175 sync_filesystem(sb);
7176
7177 if (!inode || !igrab(inode))
7178 goto out;
7179
7180 err = dquot_quota_off(sb, type);
7181 if (err || ext4_has_feature_quota(sb))
7182 goto out_put;
7183 /*
7184 * When the filesystem was remounted read-only first, we cannot cleanup
7185 * inode flags here. Bad luck but people should be using QUOTA feature
7186 * these days anyway.
7187 */
7188 if (sb_rdonly(sb))
7189 goto out_put;
7190
7191 inode_lock(inode);
7192 /*
7193 * Update modification times of quota files when userspace can
7194 * start looking at them. If we fail, we return success anyway since
7195 * this is not a hard failure and quotas are already disabled.
7196 */
7197 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7198 if (IS_ERR(handle)) {
7199 err = PTR_ERR(handle);
7200 goto out_unlock;
7201 }
7202 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7203 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7204 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7205 err = ext4_mark_inode_dirty(handle, inode);
7206 ext4_journal_stop(handle);
7207out_unlock:
7208 inode_unlock(inode);
7209out_put:
7210 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7211 iput(inode);
7212 return err;
7213out:
7214 return dquot_quota_off(sb, type);
7215}
7216
7217/* Read data from quotafile - avoid pagecache and such because we cannot afford
7218 * acquiring the locks... As quota files are never truncated and quota code
7219 * itself serializes the operations (and no one else should touch the files)
7220 * we don't have to be afraid of races */
7221static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7222 size_t len, loff_t off)
7223{
7224 struct inode *inode = sb_dqopt(sb)->files[type];
7225 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7226 int offset = off & (sb->s_blocksize - 1);
7227 int tocopy;
7228 size_t toread;
7229 struct buffer_head *bh;
7230 loff_t i_size = i_size_read(inode);
7231
7232 if (off > i_size)
7233 return 0;
7234 if (off+len > i_size)
7235 len = i_size-off;
7236 toread = len;
7237 while (toread > 0) {
7238 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7239 bh = ext4_bread(NULL, inode, blk, 0);
7240 if (IS_ERR(bh))
7241 return PTR_ERR(bh);
7242 if (!bh) /* A hole? */
7243 memset(data, 0, tocopy);
7244 else
7245 memcpy(data, bh->b_data+offset, tocopy);
7246 brelse(bh);
7247 offset = 0;
7248 toread -= tocopy;
7249 data += tocopy;
7250 blk++;
7251 }
7252 return len;
7253}
7254
7255/* Write to quotafile (we know the transaction is already started and has
7256 * enough credits) */
7257static ssize_t ext4_quota_write(struct super_block *sb, int type,
7258 const char *data, size_t len, loff_t off)
7259{
7260 struct inode *inode = sb_dqopt(sb)->files[type];
7261 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7262 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7263 int retries = 0;
7264 struct buffer_head *bh;
7265 handle_t *handle = journal_current_handle();
7266
7267 if (!handle) {
7268 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7269 " cancelled because transaction is not started",
7270 (unsigned long long)off, (unsigned long long)len);
7271 return -EIO;
7272 }
7273 /*
7274 * Since we account only one data block in transaction credits,
7275 * then it is impossible to cross a block boundary.
7276 */
7277 if (sb->s_blocksize - offset < len) {
7278 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7279 " cancelled because not block aligned",
7280 (unsigned long long)off, (unsigned long long)len);
7281 return -EIO;
7282 }
7283
7284 do {
7285 bh = ext4_bread(handle, inode, blk,
7286 EXT4_GET_BLOCKS_CREATE |
7287 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7288 } while (PTR_ERR(bh) == -ENOSPC &&
7289 ext4_should_retry_alloc(inode->i_sb, &retries));
7290 if (IS_ERR(bh))
7291 return PTR_ERR(bh);
7292 if (!bh)
7293 goto out;
7294 BUFFER_TRACE(bh, "get write access");
7295 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7296 if (err) {
7297 brelse(bh);
7298 return err;
7299 }
7300 lock_buffer(bh);
7301 memcpy(bh->b_data+offset, data, len);
7302 flush_dcache_page(bh->b_page);
7303 unlock_buffer(bh);
7304 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7305 brelse(bh);
7306out:
7307 if (inode->i_size < off + len) {
7308 i_size_write(inode, off + len);
7309 EXT4_I(inode)->i_disksize = inode->i_size;
7310 err2 = ext4_mark_inode_dirty(handle, inode);
7311 if (unlikely(err2 && !err))
7312 err = err2;
7313 }
7314 return err ? err : len;
7315}
7316#endif
7317
7318#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7319static inline void register_as_ext2(void)
7320{
7321 int err = register_filesystem(&ext2_fs_type);
7322 if (err)
7323 printk(KERN_WARNING
7324 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7325}
7326
7327static inline void unregister_as_ext2(void)
7328{
7329 unregister_filesystem(&ext2_fs_type);
7330}
7331
7332static inline int ext2_feature_set_ok(struct super_block *sb)
7333{
7334 if (ext4_has_unknown_ext2_incompat_features(sb))
7335 return 0;
7336 if (sb_rdonly(sb))
7337 return 1;
7338 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7339 return 0;
7340 return 1;
7341}
7342#else
7343static inline void register_as_ext2(void) { }
7344static inline void unregister_as_ext2(void) { }
7345static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7346#endif
7347
7348static inline void register_as_ext3(void)
7349{
7350 int err = register_filesystem(&ext3_fs_type);
7351 if (err)
7352 printk(KERN_WARNING
7353 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7354}
7355
7356static inline void unregister_as_ext3(void)
7357{
7358 unregister_filesystem(&ext3_fs_type);
7359}
7360
7361static inline int ext3_feature_set_ok(struct super_block *sb)
7362{
7363 if (ext4_has_unknown_ext3_incompat_features(sb))
7364 return 0;
7365 if (!ext4_has_feature_journal(sb))
7366 return 0;
7367 if (sb_rdonly(sb))
7368 return 1;
7369 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7370 return 0;
7371 return 1;
7372}
7373
7374static void ext4_kill_sb(struct super_block *sb)
7375{
7376 struct ext4_sb_info *sbi = EXT4_SB(sb);
7377 struct file *bdev_file = sbi ? sbi->s_journal_bdev_file : NULL;
7378
7379 kill_block_super(sb);
7380
7381 if (bdev_file)
7382 bdev_fput(bdev_file);
7383}
7384
7385static struct file_system_type ext4_fs_type = {
7386 .owner = THIS_MODULE,
7387 .name = "ext4",
7388 .init_fs_context = ext4_init_fs_context,
7389 .parameters = ext4_param_specs,
7390 .kill_sb = ext4_kill_sb,
7391 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP | FS_MGTIME,
7392};
7393MODULE_ALIAS_FS("ext4");
7394
7395/* Shared across all ext4 file systems */
7396wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7397
7398static int __init ext4_init_fs(void)
7399{
7400 int i, err;
7401
7402 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7403 ext4_li_info = NULL;
7404
7405 /* Build-time check for flags consistency */
7406 ext4_check_flag_values();
7407
7408 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7409 init_waitqueue_head(&ext4__ioend_wq[i]);
7410
7411 err = ext4_init_es();
7412 if (err)
7413 return err;
7414
7415 err = ext4_init_pending();
7416 if (err)
7417 goto out7;
7418
7419 err = ext4_init_post_read_processing();
7420 if (err)
7421 goto out6;
7422
7423 err = ext4_init_pageio();
7424 if (err)
7425 goto out5;
7426
7427 err = ext4_init_system_zone();
7428 if (err)
7429 goto out4;
7430
7431 err = ext4_init_sysfs();
7432 if (err)
7433 goto out3;
7434
7435 err = ext4_init_mballoc();
7436 if (err)
7437 goto out2;
7438 err = init_inodecache();
7439 if (err)
7440 goto out1;
7441
7442 err = ext4_fc_init_dentry_cache();
7443 if (err)
7444 goto out05;
7445
7446 register_as_ext3();
7447 register_as_ext2();
7448 err = register_filesystem(&ext4_fs_type);
7449 if (err)
7450 goto out;
7451
7452 return 0;
7453out:
7454 unregister_as_ext2();
7455 unregister_as_ext3();
7456 ext4_fc_destroy_dentry_cache();
7457out05:
7458 destroy_inodecache();
7459out1:
7460 ext4_exit_mballoc();
7461out2:
7462 ext4_exit_sysfs();
7463out3:
7464 ext4_exit_system_zone();
7465out4:
7466 ext4_exit_pageio();
7467out5:
7468 ext4_exit_post_read_processing();
7469out6:
7470 ext4_exit_pending();
7471out7:
7472 ext4_exit_es();
7473
7474 return err;
7475}
7476
7477static void __exit ext4_exit_fs(void)
7478{
7479 ext4_destroy_lazyinit_thread();
7480 unregister_as_ext2();
7481 unregister_as_ext3();
7482 unregister_filesystem(&ext4_fs_type);
7483 ext4_fc_destroy_dentry_cache();
7484 destroy_inodecache();
7485 ext4_exit_mballoc();
7486 ext4_exit_sysfs();
7487 ext4_exit_system_zone();
7488 ext4_exit_pageio();
7489 ext4_exit_post_read_processing();
7490 ext4_exit_es();
7491 ext4_exit_pending();
7492}
7493
7494MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7495MODULE_DESCRIPTION("Fourth Extended Filesystem");
7496MODULE_LICENSE("GPL");
7497MODULE_SOFTDEP("pre: crc32c");
7498module_init(ext4_init_fs)
7499module_exit(ext4_exit_fs)