Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/uaccess.h>
43#include <linux/iversion.h>
44#include <linux/unicode.h>
45#include <linux/part_stat.h>
46#include <linux/kthread.h>
47#include <linux/freezer.h>
48#include <linux/fsnotify.h>
49#include <linux/fs_context.h>
50#include <linux/fs_parser.h>
51
52#include "ext4.h"
53#include "ext4_extents.h" /* Needed for trace points definition */
54#include "ext4_jbd2.h"
55#include "xattr.h"
56#include "acl.h"
57#include "mballoc.h"
58#include "fsmap.h"
59
60#define CREATE_TRACE_POINTS
61#include <trace/events/ext4.h>
62
63static struct ext4_lazy_init *ext4_li_info;
64static DEFINE_MUTEX(ext4_li_mtx);
65static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70static void ext4_update_super(struct super_block *sb);
71static int ext4_commit_super(struct super_block *sb);
72static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76static int ext4_sync_fs(struct super_block *sb, int wait);
77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78static int ext4_unfreeze(struct super_block *sb);
79static int ext4_freeze(struct super_block *sb);
80static inline int ext2_feature_set_ok(struct super_block *sb);
81static inline int ext3_feature_set_ok(struct super_block *sb);
82static void ext4_destroy_lazyinit_thread(void);
83static void ext4_unregister_li_request(struct super_block *sb);
84static void ext4_clear_request_list(void);
85static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87static int ext4_validate_options(struct fs_context *fc);
88static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92static int ext4_get_tree(struct fs_context *fc);
93static int ext4_reconfigure(struct fs_context *fc);
94static void ext4_fc_free(struct fs_context *fc);
95static int ext4_init_fs_context(struct fs_context *fc);
96static const struct fs_parameter_spec ext4_param_specs[];
97
98/*
99 * Lock ordering
100 *
101 * page fault path:
102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103 * -> page lock -> i_data_sem (rw)
104 *
105 * buffered write path:
106 * sb_start_write -> i_mutex -> mmap_lock
107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
108 * i_data_sem (rw)
109 *
110 * truncate:
111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112 * page lock
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114 * i_data_sem (rw)
115 *
116 * direct IO:
117 * sb_start_write -> i_mutex -> mmap_lock
118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119 *
120 * writepages:
121 * transaction start -> page lock(s) -> i_data_sem (rw)
122 */
123
124static const struct fs_context_operations ext4_context_ops = {
125 .parse_param = ext4_parse_param,
126 .get_tree = ext4_get_tree,
127 .reconfigure = ext4_reconfigure,
128 .free = ext4_fc_free,
129};
130
131
132#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133static struct file_system_type ext2_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext2",
136 .init_fs_context = ext4_init_fs_context,
137 .parameters = ext4_param_specs,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140};
141MODULE_ALIAS_FS("ext2");
142MODULE_ALIAS("ext2");
143#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
144#else
145#define IS_EXT2_SB(sb) (0)
146#endif
147
148
149static struct file_system_type ext3_fs_type = {
150 .owner = THIS_MODULE,
151 .name = "ext3",
152 .init_fs_context = ext4_init_fs_context,
153 .parameters = ext4_param_specs,
154 .kill_sb = kill_block_super,
155 .fs_flags = FS_REQUIRES_DEV,
156};
157MODULE_ALIAS_FS("ext3");
158MODULE_ALIAS("ext3");
159#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
160
161
162static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 bh_end_io_t *end_io)
164{
165 /*
166 * buffer's verified bit is no longer valid after reading from
167 * disk again due to write out error, clear it to make sure we
168 * recheck the buffer contents.
169 */
170 clear_buffer_verified(bh);
171
172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
173 get_bh(bh);
174 submit_bh(REQ_OP_READ | op_flags, bh);
175}
176
177void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
178 bh_end_io_t *end_io)
179{
180 BUG_ON(!buffer_locked(bh));
181
182 if (ext4_buffer_uptodate(bh)) {
183 unlock_buffer(bh);
184 return;
185 }
186 __ext4_read_bh(bh, op_flags, end_io);
187}
188
189int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
190{
191 BUG_ON(!buffer_locked(bh));
192
193 if (ext4_buffer_uptodate(bh)) {
194 unlock_buffer(bh);
195 return 0;
196 }
197
198 __ext4_read_bh(bh, op_flags, end_io);
199
200 wait_on_buffer(bh);
201 if (buffer_uptodate(bh))
202 return 0;
203 return -EIO;
204}
205
206int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
207{
208 lock_buffer(bh);
209 if (!wait) {
210 ext4_read_bh_nowait(bh, op_flags, NULL);
211 return 0;
212 }
213 return ext4_read_bh(bh, op_flags, NULL);
214}
215
216/*
217 * This works like __bread_gfp() except it uses ERR_PTR for error
218 * returns. Currently with sb_bread it's impossible to distinguish
219 * between ENOMEM and EIO situations (since both result in a NULL
220 * return.
221 */
222static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
223 sector_t block,
224 blk_opf_t op_flags, gfp_t gfp)
225{
226 struct buffer_head *bh;
227 int ret;
228
229 bh = sb_getblk_gfp(sb, block, gfp);
230 if (bh == NULL)
231 return ERR_PTR(-ENOMEM);
232 if (ext4_buffer_uptodate(bh))
233 return bh;
234
235 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
236 if (ret) {
237 put_bh(bh);
238 return ERR_PTR(ret);
239 }
240 return bh;
241}
242
243struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
244 blk_opf_t op_flags)
245{
246 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
247}
248
249struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
250 sector_t block)
251{
252 return __ext4_sb_bread_gfp(sb, block, 0, 0);
253}
254
255void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
256{
257 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
258
259 if (likely(bh)) {
260 if (trylock_buffer(bh))
261 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
262 brelse(bh);
263 }
264}
265
266static int ext4_verify_csum_type(struct super_block *sb,
267 struct ext4_super_block *es)
268{
269 if (!ext4_has_feature_metadata_csum(sb))
270 return 1;
271
272 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
273}
274
275__le32 ext4_superblock_csum(struct super_block *sb,
276 struct ext4_super_block *es)
277{
278 struct ext4_sb_info *sbi = EXT4_SB(sb);
279 int offset = offsetof(struct ext4_super_block, s_checksum);
280 __u32 csum;
281
282 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
283
284 return cpu_to_le32(csum);
285}
286
287static int ext4_superblock_csum_verify(struct super_block *sb,
288 struct ext4_super_block *es)
289{
290 if (!ext4_has_metadata_csum(sb))
291 return 1;
292
293 return es->s_checksum == ext4_superblock_csum(sb, es);
294}
295
296void ext4_superblock_csum_set(struct super_block *sb)
297{
298 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
299
300 if (!ext4_has_metadata_csum(sb))
301 return;
302
303 es->s_checksum = ext4_superblock_csum(sb, es);
304}
305
306ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
307 struct ext4_group_desc *bg)
308{
309 return le32_to_cpu(bg->bg_block_bitmap_lo) |
310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
312}
313
314ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
315 struct ext4_group_desc *bg)
316{
317 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
320}
321
322ext4_fsblk_t ext4_inode_table(struct super_block *sb,
323 struct ext4_group_desc *bg)
324{
325 return le32_to_cpu(bg->bg_inode_table_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
328}
329
330__u32 ext4_free_group_clusters(struct super_block *sb,
331 struct ext4_group_desc *bg)
332{
333 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
336}
337
338__u32 ext4_free_inodes_count(struct super_block *sb,
339 struct ext4_group_desc *bg)
340{
341 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
344}
345
346__u32 ext4_used_dirs_count(struct super_block *sb,
347 struct ext4_group_desc *bg)
348{
349 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
352}
353
354__u32 ext4_itable_unused_count(struct super_block *sb,
355 struct ext4_group_desc *bg)
356{
357 return le16_to_cpu(bg->bg_itable_unused_lo) |
358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
360}
361
362void ext4_block_bitmap_set(struct super_block *sb,
363 struct ext4_group_desc *bg, ext4_fsblk_t blk)
364{
365 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
368}
369
370void ext4_inode_bitmap_set(struct super_block *sb,
371 struct ext4_group_desc *bg, ext4_fsblk_t blk)
372{
373 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
376}
377
378void ext4_inode_table_set(struct super_block *sb,
379 struct ext4_group_desc *bg, ext4_fsblk_t blk)
380{
381 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
384}
385
386void ext4_free_group_clusters_set(struct super_block *sb,
387 struct ext4_group_desc *bg, __u32 count)
388{
389 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
392}
393
394void ext4_free_inodes_set(struct super_block *sb,
395 struct ext4_group_desc *bg, __u32 count)
396{
397 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
400}
401
402void ext4_used_dirs_set(struct super_block *sb,
403 struct ext4_group_desc *bg, __u32 count)
404{
405 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
408}
409
410void ext4_itable_unused_set(struct super_block *sb,
411 struct ext4_group_desc *bg, __u32 count)
412{
413 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
416}
417
418static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
419{
420 now = clamp_val(now, 0, (1ull << 40) - 1);
421
422 *lo = cpu_to_le32(lower_32_bits(now));
423 *hi = upper_32_bits(now);
424}
425
426static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
427{
428 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
429}
430#define ext4_update_tstamp(es, tstamp) \
431 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
432 ktime_get_real_seconds())
433#define ext4_get_tstamp(es, tstamp) \
434 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
435
436/*
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
443 */
444static int block_device_ejected(struct super_block *sb)
445{
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
448
449 return bdi->dev == NULL;
450}
451
452static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
453{
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
458
459 BUG_ON(txn->t_state == T_FINISHED);
460
461 ext4_process_freed_data(sb, txn->t_tid);
462
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
471 }
472 spin_unlock(&sbi->s_md_lock);
473}
474
475/*
476 * This writepage callback for write_cache_pages()
477 * takes care of a few cases after page cleaning.
478 *
479 * write_cache_pages() already checks for dirty pages
480 * and calls clear_page_dirty_for_io(), which we want,
481 * to write protect the pages.
482 *
483 * However, we may have to redirty a page (see below.)
484 */
485static int ext4_journalled_writepage_callback(struct page *page,
486 struct writeback_control *wbc,
487 void *data)
488{
489 transaction_t *transaction = (transaction_t *) data;
490 struct buffer_head *bh, *head;
491 struct journal_head *jh;
492
493 bh = head = page_buffers(page);
494 do {
495 /*
496 * We have to redirty a page in these cases:
497 * 1) If buffer is dirty, it means the page was dirty because it
498 * contains a buffer that needs checkpointing. So the dirty bit
499 * needs to be preserved so that checkpointing writes the buffer
500 * properly.
501 * 2) If buffer is not part of the committing transaction
502 * (we may have just accidentally come across this buffer because
503 * inode range tracking is not exact) or if the currently running
504 * transaction already contains this buffer as well, dirty bit
505 * needs to be preserved so that the buffer gets writeprotected
506 * properly on running transaction's commit.
507 */
508 jh = bh2jh(bh);
509 if (buffer_dirty(bh) ||
510 (jh && (jh->b_transaction != transaction ||
511 jh->b_next_transaction))) {
512 redirty_page_for_writepage(wbc, page);
513 goto out;
514 }
515 } while ((bh = bh->b_this_page) != head);
516
517out:
518 return AOP_WRITEPAGE_ACTIVATE;
519}
520
521static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
522{
523 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
524 struct writeback_control wbc = {
525 .sync_mode = WB_SYNC_ALL,
526 .nr_to_write = LONG_MAX,
527 .range_start = jinode->i_dirty_start,
528 .range_end = jinode->i_dirty_end,
529 };
530
531 return write_cache_pages(mapping, &wbc,
532 ext4_journalled_writepage_callback,
533 jinode->i_transaction);
534}
535
536static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
537{
538 int ret;
539
540 if (ext4_should_journal_data(jinode->i_vfs_inode))
541 ret = ext4_journalled_submit_inode_data_buffers(jinode);
542 else
543 ret = ext4_normal_submit_inode_data_buffers(jinode);
544 return ret;
545}
546
547static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
548{
549 int ret = 0;
550
551 if (!ext4_should_journal_data(jinode->i_vfs_inode))
552 ret = jbd2_journal_finish_inode_data_buffers(jinode);
553
554 return ret;
555}
556
557static bool system_going_down(void)
558{
559 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
560 || system_state == SYSTEM_RESTART;
561}
562
563struct ext4_err_translation {
564 int code;
565 int errno;
566};
567
568#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
569
570static struct ext4_err_translation err_translation[] = {
571 EXT4_ERR_TRANSLATE(EIO),
572 EXT4_ERR_TRANSLATE(ENOMEM),
573 EXT4_ERR_TRANSLATE(EFSBADCRC),
574 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
575 EXT4_ERR_TRANSLATE(ENOSPC),
576 EXT4_ERR_TRANSLATE(ENOKEY),
577 EXT4_ERR_TRANSLATE(EROFS),
578 EXT4_ERR_TRANSLATE(EFBIG),
579 EXT4_ERR_TRANSLATE(EEXIST),
580 EXT4_ERR_TRANSLATE(ERANGE),
581 EXT4_ERR_TRANSLATE(EOVERFLOW),
582 EXT4_ERR_TRANSLATE(EBUSY),
583 EXT4_ERR_TRANSLATE(ENOTDIR),
584 EXT4_ERR_TRANSLATE(ENOTEMPTY),
585 EXT4_ERR_TRANSLATE(ESHUTDOWN),
586 EXT4_ERR_TRANSLATE(EFAULT),
587};
588
589static int ext4_errno_to_code(int errno)
590{
591 int i;
592
593 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
594 if (err_translation[i].errno == errno)
595 return err_translation[i].code;
596 return EXT4_ERR_UNKNOWN;
597}
598
599static void save_error_info(struct super_block *sb, int error,
600 __u32 ino, __u64 block,
601 const char *func, unsigned int line)
602{
603 struct ext4_sb_info *sbi = EXT4_SB(sb);
604
605 /* We default to EFSCORRUPTED error... */
606 if (error == 0)
607 error = EFSCORRUPTED;
608
609 spin_lock(&sbi->s_error_lock);
610 sbi->s_add_error_count++;
611 sbi->s_last_error_code = error;
612 sbi->s_last_error_line = line;
613 sbi->s_last_error_ino = ino;
614 sbi->s_last_error_block = block;
615 sbi->s_last_error_func = func;
616 sbi->s_last_error_time = ktime_get_real_seconds();
617 if (!sbi->s_first_error_time) {
618 sbi->s_first_error_code = error;
619 sbi->s_first_error_line = line;
620 sbi->s_first_error_ino = ino;
621 sbi->s_first_error_block = block;
622 sbi->s_first_error_func = func;
623 sbi->s_first_error_time = sbi->s_last_error_time;
624 }
625 spin_unlock(&sbi->s_error_lock);
626}
627
628/* Deal with the reporting of failure conditions on a filesystem such as
629 * inconsistencies detected or read IO failures.
630 *
631 * On ext2, we can store the error state of the filesystem in the
632 * superblock. That is not possible on ext4, because we may have other
633 * write ordering constraints on the superblock which prevent us from
634 * writing it out straight away; and given that the journal is about to
635 * be aborted, we can't rely on the current, or future, transactions to
636 * write out the superblock safely.
637 *
638 * We'll just use the jbd2_journal_abort() error code to record an error in
639 * the journal instead. On recovery, the journal will complain about
640 * that error until we've noted it down and cleared it.
641 *
642 * If force_ro is set, we unconditionally force the filesystem into an
643 * ABORT|READONLY state, unless the error response on the fs has been set to
644 * panic in which case we take the easy way out and panic immediately. This is
645 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
646 * at a critical moment in log management.
647 */
648static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
649 __u32 ino, __u64 block,
650 const char *func, unsigned int line)
651{
652 journal_t *journal = EXT4_SB(sb)->s_journal;
653 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
654
655 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
656 if (test_opt(sb, WARN_ON_ERROR))
657 WARN_ON_ONCE(1);
658
659 if (!continue_fs && !sb_rdonly(sb)) {
660 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
661 if (journal)
662 jbd2_journal_abort(journal, -EIO);
663 }
664
665 if (!bdev_read_only(sb->s_bdev)) {
666 save_error_info(sb, error, ino, block, func, line);
667 /*
668 * In case the fs should keep running, we need to writeout
669 * superblock through the journal. Due to lock ordering
670 * constraints, it may not be safe to do it right here so we
671 * defer superblock flushing to a workqueue.
672 */
673 if (continue_fs && journal)
674 schedule_work(&EXT4_SB(sb)->s_error_work);
675 else
676 ext4_commit_super(sb);
677 }
678
679 /*
680 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
681 * could panic during 'reboot -f' as the underlying device got already
682 * disabled.
683 */
684 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
685 panic("EXT4-fs (device %s): panic forced after error\n",
686 sb->s_id);
687 }
688
689 if (sb_rdonly(sb) || continue_fs)
690 return;
691
692 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
693 /*
694 * Make sure updated value of ->s_mount_flags will be visible before
695 * ->s_flags update
696 */
697 smp_wmb();
698 sb->s_flags |= SB_RDONLY;
699}
700
701static void flush_stashed_error_work(struct work_struct *work)
702{
703 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
704 s_error_work);
705 journal_t *journal = sbi->s_journal;
706 handle_t *handle;
707
708 /*
709 * If the journal is still running, we have to write out superblock
710 * through the journal to avoid collisions of other journalled sb
711 * updates.
712 *
713 * We use directly jbd2 functions here to avoid recursing back into
714 * ext4 error handling code during handling of previous errors.
715 */
716 if (!sb_rdonly(sbi->s_sb) && journal) {
717 struct buffer_head *sbh = sbi->s_sbh;
718 handle = jbd2_journal_start(journal, 1);
719 if (IS_ERR(handle))
720 goto write_directly;
721 if (jbd2_journal_get_write_access(handle, sbh)) {
722 jbd2_journal_stop(handle);
723 goto write_directly;
724 }
725 ext4_update_super(sbi->s_sb);
726 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
727 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
728 "superblock detected");
729 clear_buffer_write_io_error(sbh);
730 set_buffer_uptodate(sbh);
731 }
732
733 if (jbd2_journal_dirty_metadata(handle, sbh)) {
734 jbd2_journal_stop(handle);
735 goto write_directly;
736 }
737 jbd2_journal_stop(handle);
738 ext4_notify_error_sysfs(sbi);
739 return;
740 }
741write_directly:
742 /*
743 * Write through journal failed. Write sb directly to get error info
744 * out and hope for the best.
745 */
746 ext4_commit_super(sbi->s_sb);
747 ext4_notify_error_sysfs(sbi);
748}
749
750#define ext4_error_ratelimit(sb) \
751 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
752 "EXT4-fs error")
753
754void __ext4_error(struct super_block *sb, const char *function,
755 unsigned int line, bool force_ro, int error, __u64 block,
756 const char *fmt, ...)
757{
758 struct va_format vaf;
759 va_list args;
760
761 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
762 return;
763
764 trace_ext4_error(sb, function, line);
765 if (ext4_error_ratelimit(sb)) {
766 va_start(args, fmt);
767 vaf.fmt = fmt;
768 vaf.va = &args;
769 printk(KERN_CRIT
770 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
771 sb->s_id, function, line, current->comm, &vaf);
772 va_end(args);
773 }
774 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
775
776 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
777}
778
779void __ext4_error_inode(struct inode *inode, const char *function,
780 unsigned int line, ext4_fsblk_t block, int error,
781 const char *fmt, ...)
782{
783 va_list args;
784 struct va_format vaf;
785
786 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
787 return;
788
789 trace_ext4_error(inode->i_sb, function, line);
790 if (ext4_error_ratelimit(inode->i_sb)) {
791 va_start(args, fmt);
792 vaf.fmt = fmt;
793 vaf.va = &args;
794 if (block)
795 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
796 "inode #%lu: block %llu: comm %s: %pV\n",
797 inode->i_sb->s_id, function, line, inode->i_ino,
798 block, current->comm, &vaf);
799 else
800 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
801 "inode #%lu: comm %s: %pV\n",
802 inode->i_sb->s_id, function, line, inode->i_ino,
803 current->comm, &vaf);
804 va_end(args);
805 }
806 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
807
808 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
809 function, line);
810}
811
812void __ext4_error_file(struct file *file, const char *function,
813 unsigned int line, ext4_fsblk_t block,
814 const char *fmt, ...)
815{
816 va_list args;
817 struct va_format vaf;
818 struct inode *inode = file_inode(file);
819 char pathname[80], *path;
820
821 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
822 return;
823
824 trace_ext4_error(inode->i_sb, function, line);
825 if (ext4_error_ratelimit(inode->i_sb)) {
826 path = file_path(file, pathname, sizeof(pathname));
827 if (IS_ERR(path))
828 path = "(unknown)";
829 va_start(args, fmt);
830 vaf.fmt = fmt;
831 vaf.va = &args;
832 if (block)
833 printk(KERN_CRIT
834 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
835 "block %llu: comm %s: path %s: %pV\n",
836 inode->i_sb->s_id, function, line, inode->i_ino,
837 block, current->comm, path, &vaf);
838 else
839 printk(KERN_CRIT
840 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
841 "comm %s: path %s: %pV\n",
842 inode->i_sb->s_id, function, line, inode->i_ino,
843 current->comm, path, &vaf);
844 va_end(args);
845 }
846 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
847
848 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
849 function, line);
850}
851
852const char *ext4_decode_error(struct super_block *sb, int errno,
853 char nbuf[16])
854{
855 char *errstr = NULL;
856
857 switch (errno) {
858 case -EFSCORRUPTED:
859 errstr = "Corrupt filesystem";
860 break;
861 case -EFSBADCRC:
862 errstr = "Filesystem failed CRC";
863 break;
864 case -EIO:
865 errstr = "IO failure";
866 break;
867 case -ENOMEM:
868 errstr = "Out of memory";
869 break;
870 case -EROFS:
871 if (!sb || (EXT4_SB(sb)->s_journal &&
872 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
873 errstr = "Journal has aborted";
874 else
875 errstr = "Readonly filesystem";
876 break;
877 default:
878 /* If the caller passed in an extra buffer for unknown
879 * errors, textualise them now. Else we just return
880 * NULL. */
881 if (nbuf) {
882 /* Check for truncated error codes... */
883 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
884 errstr = nbuf;
885 }
886 break;
887 }
888
889 return errstr;
890}
891
892/* __ext4_std_error decodes expected errors from journaling functions
893 * automatically and invokes the appropriate error response. */
894
895void __ext4_std_error(struct super_block *sb, const char *function,
896 unsigned int line, int errno)
897{
898 char nbuf[16];
899 const char *errstr;
900
901 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
902 return;
903
904 /* Special case: if the error is EROFS, and we're not already
905 * inside a transaction, then there's really no point in logging
906 * an error. */
907 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
908 return;
909
910 if (ext4_error_ratelimit(sb)) {
911 errstr = ext4_decode_error(sb, errno, nbuf);
912 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
913 sb->s_id, function, line, errstr);
914 }
915 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
916
917 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
918}
919
920void __ext4_msg(struct super_block *sb,
921 const char *prefix, const char *fmt, ...)
922{
923 struct va_format vaf;
924 va_list args;
925
926 if (sb) {
927 atomic_inc(&EXT4_SB(sb)->s_msg_count);
928 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
929 "EXT4-fs"))
930 return;
931 }
932
933 va_start(args, fmt);
934 vaf.fmt = fmt;
935 vaf.va = &args;
936 if (sb)
937 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
938 else
939 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
940 va_end(args);
941}
942
943static int ext4_warning_ratelimit(struct super_block *sb)
944{
945 atomic_inc(&EXT4_SB(sb)->s_warning_count);
946 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
947 "EXT4-fs warning");
948}
949
950void __ext4_warning(struct super_block *sb, const char *function,
951 unsigned int line, const char *fmt, ...)
952{
953 struct va_format vaf;
954 va_list args;
955
956 if (!ext4_warning_ratelimit(sb))
957 return;
958
959 va_start(args, fmt);
960 vaf.fmt = fmt;
961 vaf.va = &args;
962 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
963 sb->s_id, function, line, &vaf);
964 va_end(args);
965}
966
967void __ext4_warning_inode(const struct inode *inode, const char *function,
968 unsigned int line, const char *fmt, ...)
969{
970 struct va_format vaf;
971 va_list args;
972
973 if (!ext4_warning_ratelimit(inode->i_sb))
974 return;
975
976 va_start(args, fmt);
977 vaf.fmt = fmt;
978 vaf.va = &args;
979 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
980 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
981 function, line, inode->i_ino, current->comm, &vaf);
982 va_end(args);
983}
984
985void __ext4_grp_locked_error(const char *function, unsigned int line,
986 struct super_block *sb, ext4_group_t grp,
987 unsigned long ino, ext4_fsblk_t block,
988 const char *fmt, ...)
989__releases(bitlock)
990__acquires(bitlock)
991{
992 struct va_format vaf;
993 va_list args;
994
995 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
996 return;
997
998 trace_ext4_error(sb, function, line);
999 if (ext4_error_ratelimit(sb)) {
1000 va_start(args, fmt);
1001 vaf.fmt = fmt;
1002 vaf.va = &args;
1003 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1004 sb->s_id, function, line, grp);
1005 if (ino)
1006 printk(KERN_CONT "inode %lu: ", ino);
1007 if (block)
1008 printk(KERN_CONT "block %llu:",
1009 (unsigned long long) block);
1010 printk(KERN_CONT "%pV\n", &vaf);
1011 va_end(args);
1012 }
1013
1014 if (test_opt(sb, ERRORS_CONT)) {
1015 if (test_opt(sb, WARN_ON_ERROR))
1016 WARN_ON_ONCE(1);
1017 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1018 if (!bdev_read_only(sb->s_bdev)) {
1019 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1020 line);
1021 schedule_work(&EXT4_SB(sb)->s_error_work);
1022 }
1023 return;
1024 }
1025 ext4_unlock_group(sb, grp);
1026 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1027 /*
1028 * We only get here in the ERRORS_RO case; relocking the group
1029 * may be dangerous, but nothing bad will happen since the
1030 * filesystem will have already been marked read/only and the
1031 * journal has been aborted. We return 1 as a hint to callers
1032 * who might what to use the return value from
1033 * ext4_grp_locked_error() to distinguish between the
1034 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1035 * aggressively from the ext4 function in question, with a
1036 * more appropriate error code.
1037 */
1038 ext4_lock_group(sb, grp);
1039 return;
1040}
1041
1042void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1043 ext4_group_t group,
1044 unsigned int flags)
1045{
1046 struct ext4_sb_info *sbi = EXT4_SB(sb);
1047 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1048 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1049 int ret;
1050
1051 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1052 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1053 &grp->bb_state);
1054 if (!ret)
1055 percpu_counter_sub(&sbi->s_freeclusters_counter,
1056 grp->bb_free);
1057 }
1058
1059 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1060 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1061 &grp->bb_state);
1062 if (!ret && gdp) {
1063 int count;
1064
1065 count = ext4_free_inodes_count(sb, gdp);
1066 percpu_counter_sub(&sbi->s_freeinodes_counter,
1067 count);
1068 }
1069 }
1070}
1071
1072void ext4_update_dynamic_rev(struct super_block *sb)
1073{
1074 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1075
1076 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1077 return;
1078
1079 ext4_warning(sb,
1080 "updating to rev %d because of new feature flag, "
1081 "running e2fsck is recommended",
1082 EXT4_DYNAMIC_REV);
1083
1084 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1085 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1086 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1087 /* leave es->s_feature_*compat flags alone */
1088 /* es->s_uuid will be set by e2fsck if empty */
1089
1090 /*
1091 * The rest of the superblock fields should be zero, and if not it
1092 * means they are likely already in use, so leave them alone. We
1093 * can leave it up to e2fsck to clean up any inconsistencies there.
1094 */
1095}
1096
1097/*
1098 * Open the external journal device
1099 */
1100static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1101{
1102 struct block_device *bdev;
1103
1104 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1105 if (IS_ERR(bdev))
1106 goto fail;
1107 return bdev;
1108
1109fail:
1110 ext4_msg(sb, KERN_ERR,
1111 "failed to open journal device unknown-block(%u,%u) %ld",
1112 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1113 return NULL;
1114}
1115
1116/*
1117 * Release the journal device
1118 */
1119static void ext4_blkdev_put(struct block_device *bdev)
1120{
1121 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1122}
1123
1124static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1125{
1126 struct block_device *bdev;
1127 bdev = sbi->s_journal_bdev;
1128 if (bdev) {
1129 ext4_blkdev_put(bdev);
1130 sbi->s_journal_bdev = NULL;
1131 }
1132}
1133
1134static inline struct inode *orphan_list_entry(struct list_head *l)
1135{
1136 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1137}
1138
1139static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1140{
1141 struct list_head *l;
1142
1143 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1144 le32_to_cpu(sbi->s_es->s_last_orphan));
1145
1146 printk(KERN_ERR "sb_info orphan list:\n");
1147 list_for_each(l, &sbi->s_orphan) {
1148 struct inode *inode = orphan_list_entry(l);
1149 printk(KERN_ERR " "
1150 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1151 inode->i_sb->s_id, inode->i_ino, inode,
1152 inode->i_mode, inode->i_nlink,
1153 NEXT_ORPHAN(inode));
1154 }
1155}
1156
1157#ifdef CONFIG_QUOTA
1158static int ext4_quota_off(struct super_block *sb, int type);
1159
1160static inline void ext4_quota_off_umount(struct super_block *sb)
1161{
1162 int type;
1163
1164 /* Use our quota_off function to clear inode flags etc. */
1165 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1166 ext4_quota_off(sb, type);
1167}
1168
1169/*
1170 * This is a helper function which is used in the mount/remount
1171 * codepaths (which holds s_umount) to fetch the quota file name.
1172 */
1173static inline char *get_qf_name(struct super_block *sb,
1174 struct ext4_sb_info *sbi,
1175 int type)
1176{
1177 return rcu_dereference_protected(sbi->s_qf_names[type],
1178 lockdep_is_held(&sb->s_umount));
1179}
1180#else
1181static inline void ext4_quota_off_umount(struct super_block *sb)
1182{
1183}
1184#endif
1185
1186static void ext4_put_super(struct super_block *sb)
1187{
1188 struct ext4_sb_info *sbi = EXT4_SB(sb);
1189 struct ext4_super_block *es = sbi->s_es;
1190 struct buffer_head **group_desc;
1191 struct flex_groups **flex_groups;
1192 int aborted = 0;
1193 int i, err;
1194
1195 /*
1196 * Unregister sysfs before destroying jbd2 journal.
1197 * Since we could still access attr_journal_task attribute via sysfs
1198 * path which could have sbi->s_journal->j_task as NULL
1199 * Unregister sysfs before flush sbi->s_error_work.
1200 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1201 * read metadata verify failed then will queue error work.
1202 * flush_stashed_error_work will call start_this_handle may trigger
1203 * BUG_ON.
1204 */
1205 ext4_unregister_sysfs(sb);
1206
1207 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1208 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1209 &sb->s_uuid);
1210
1211 ext4_unregister_li_request(sb);
1212 ext4_quota_off_umount(sb);
1213
1214 flush_work(&sbi->s_error_work);
1215 destroy_workqueue(sbi->rsv_conversion_wq);
1216 ext4_release_orphan_info(sb);
1217
1218 if (sbi->s_journal) {
1219 aborted = is_journal_aborted(sbi->s_journal);
1220 err = jbd2_journal_destroy(sbi->s_journal);
1221 sbi->s_journal = NULL;
1222 if ((err < 0) && !aborted) {
1223 ext4_abort(sb, -err, "Couldn't clean up the journal");
1224 }
1225 }
1226
1227 ext4_es_unregister_shrinker(sbi);
1228 timer_shutdown_sync(&sbi->s_err_report);
1229 ext4_release_system_zone(sb);
1230 ext4_mb_release(sb);
1231 ext4_ext_release(sb);
1232
1233 if (!sb_rdonly(sb) && !aborted) {
1234 ext4_clear_feature_journal_needs_recovery(sb);
1235 ext4_clear_feature_orphan_present(sb);
1236 es->s_state = cpu_to_le16(sbi->s_mount_state);
1237 }
1238 if (!sb_rdonly(sb))
1239 ext4_commit_super(sb);
1240
1241 rcu_read_lock();
1242 group_desc = rcu_dereference(sbi->s_group_desc);
1243 for (i = 0; i < sbi->s_gdb_count; i++)
1244 brelse(group_desc[i]);
1245 kvfree(group_desc);
1246 flex_groups = rcu_dereference(sbi->s_flex_groups);
1247 if (flex_groups) {
1248 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1249 kvfree(flex_groups[i]);
1250 kvfree(flex_groups);
1251 }
1252 rcu_read_unlock();
1253 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1254 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1255 percpu_counter_destroy(&sbi->s_dirs_counter);
1256 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1257 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1258 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1259#ifdef CONFIG_QUOTA
1260 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1261 kfree(get_qf_name(sb, sbi, i));
1262#endif
1263
1264 /* Debugging code just in case the in-memory inode orphan list
1265 * isn't empty. The on-disk one can be non-empty if we've
1266 * detected an error and taken the fs readonly, but the
1267 * in-memory list had better be clean by this point. */
1268 if (!list_empty(&sbi->s_orphan))
1269 dump_orphan_list(sb, sbi);
1270 ASSERT(list_empty(&sbi->s_orphan));
1271
1272 sync_blockdev(sb->s_bdev);
1273 invalidate_bdev(sb->s_bdev);
1274 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1275 /*
1276 * Invalidate the journal device's buffers. We don't want them
1277 * floating about in memory - the physical journal device may
1278 * hotswapped, and it breaks the `ro-after' testing code.
1279 */
1280 sync_blockdev(sbi->s_journal_bdev);
1281 invalidate_bdev(sbi->s_journal_bdev);
1282 ext4_blkdev_remove(sbi);
1283 }
1284
1285 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1286 sbi->s_ea_inode_cache = NULL;
1287
1288 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1289 sbi->s_ea_block_cache = NULL;
1290
1291 ext4_stop_mmpd(sbi);
1292
1293 brelse(sbi->s_sbh);
1294 sb->s_fs_info = NULL;
1295 /*
1296 * Now that we are completely done shutting down the
1297 * superblock, we need to actually destroy the kobject.
1298 */
1299 kobject_put(&sbi->s_kobj);
1300 wait_for_completion(&sbi->s_kobj_unregister);
1301 if (sbi->s_chksum_driver)
1302 crypto_free_shash(sbi->s_chksum_driver);
1303 kfree(sbi->s_blockgroup_lock);
1304 fs_put_dax(sbi->s_daxdev, NULL);
1305 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1306#if IS_ENABLED(CONFIG_UNICODE)
1307 utf8_unload(sb->s_encoding);
1308#endif
1309 kfree(sbi);
1310}
1311
1312static struct kmem_cache *ext4_inode_cachep;
1313
1314/*
1315 * Called inside transaction, so use GFP_NOFS
1316 */
1317static struct inode *ext4_alloc_inode(struct super_block *sb)
1318{
1319 struct ext4_inode_info *ei;
1320
1321 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1322 if (!ei)
1323 return NULL;
1324
1325 inode_set_iversion(&ei->vfs_inode, 1);
1326 ei->i_flags = 0;
1327 spin_lock_init(&ei->i_raw_lock);
1328 INIT_LIST_HEAD(&ei->i_prealloc_list);
1329 atomic_set(&ei->i_prealloc_active, 0);
1330 spin_lock_init(&ei->i_prealloc_lock);
1331 ext4_es_init_tree(&ei->i_es_tree);
1332 rwlock_init(&ei->i_es_lock);
1333 INIT_LIST_HEAD(&ei->i_es_list);
1334 ei->i_es_all_nr = 0;
1335 ei->i_es_shk_nr = 0;
1336 ei->i_es_shrink_lblk = 0;
1337 ei->i_reserved_data_blocks = 0;
1338 spin_lock_init(&(ei->i_block_reservation_lock));
1339 ext4_init_pending_tree(&ei->i_pending_tree);
1340#ifdef CONFIG_QUOTA
1341 ei->i_reserved_quota = 0;
1342 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1343#endif
1344 ei->jinode = NULL;
1345 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1346 spin_lock_init(&ei->i_completed_io_lock);
1347 ei->i_sync_tid = 0;
1348 ei->i_datasync_tid = 0;
1349 atomic_set(&ei->i_unwritten, 0);
1350 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1351 ext4_fc_init_inode(&ei->vfs_inode);
1352 mutex_init(&ei->i_fc_lock);
1353 return &ei->vfs_inode;
1354}
1355
1356static int ext4_drop_inode(struct inode *inode)
1357{
1358 int drop = generic_drop_inode(inode);
1359
1360 if (!drop)
1361 drop = fscrypt_drop_inode(inode);
1362
1363 trace_ext4_drop_inode(inode, drop);
1364 return drop;
1365}
1366
1367static void ext4_free_in_core_inode(struct inode *inode)
1368{
1369 fscrypt_free_inode(inode);
1370 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1371 pr_warn("%s: inode %ld still in fc list",
1372 __func__, inode->i_ino);
1373 }
1374 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1375}
1376
1377static void ext4_destroy_inode(struct inode *inode)
1378{
1379 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1380 ext4_msg(inode->i_sb, KERN_ERR,
1381 "Inode %lu (%p): orphan list check failed!",
1382 inode->i_ino, EXT4_I(inode));
1383 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1384 EXT4_I(inode), sizeof(struct ext4_inode_info),
1385 true);
1386 dump_stack();
1387 }
1388
1389 if (EXT4_I(inode)->i_reserved_data_blocks)
1390 ext4_msg(inode->i_sb, KERN_ERR,
1391 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1392 inode->i_ino, EXT4_I(inode),
1393 EXT4_I(inode)->i_reserved_data_blocks);
1394}
1395
1396static void init_once(void *foo)
1397{
1398 struct ext4_inode_info *ei = foo;
1399
1400 INIT_LIST_HEAD(&ei->i_orphan);
1401 init_rwsem(&ei->xattr_sem);
1402 init_rwsem(&ei->i_data_sem);
1403 inode_init_once(&ei->vfs_inode);
1404 ext4_fc_init_inode(&ei->vfs_inode);
1405}
1406
1407static int __init init_inodecache(void)
1408{
1409 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1410 sizeof(struct ext4_inode_info), 0,
1411 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1412 SLAB_ACCOUNT),
1413 offsetof(struct ext4_inode_info, i_data),
1414 sizeof_field(struct ext4_inode_info, i_data),
1415 init_once);
1416 if (ext4_inode_cachep == NULL)
1417 return -ENOMEM;
1418 return 0;
1419}
1420
1421static void destroy_inodecache(void)
1422{
1423 /*
1424 * Make sure all delayed rcu free inodes are flushed before we
1425 * destroy cache.
1426 */
1427 rcu_barrier();
1428 kmem_cache_destroy(ext4_inode_cachep);
1429}
1430
1431void ext4_clear_inode(struct inode *inode)
1432{
1433 ext4_fc_del(inode);
1434 invalidate_inode_buffers(inode);
1435 clear_inode(inode);
1436 ext4_discard_preallocations(inode, 0);
1437 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1438 dquot_drop(inode);
1439 if (EXT4_I(inode)->jinode) {
1440 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1441 EXT4_I(inode)->jinode);
1442 jbd2_free_inode(EXT4_I(inode)->jinode);
1443 EXT4_I(inode)->jinode = NULL;
1444 }
1445 fscrypt_put_encryption_info(inode);
1446 fsverity_cleanup_inode(inode);
1447}
1448
1449static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1450 u64 ino, u32 generation)
1451{
1452 struct inode *inode;
1453
1454 /*
1455 * Currently we don't know the generation for parent directory, so
1456 * a generation of 0 means "accept any"
1457 */
1458 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1459 if (IS_ERR(inode))
1460 return ERR_CAST(inode);
1461 if (generation && inode->i_generation != generation) {
1462 iput(inode);
1463 return ERR_PTR(-ESTALE);
1464 }
1465
1466 return inode;
1467}
1468
1469static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1470 int fh_len, int fh_type)
1471{
1472 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1473 ext4_nfs_get_inode);
1474}
1475
1476static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1477 int fh_len, int fh_type)
1478{
1479 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1480 ext4_nfs_get_inode);
1481}
1482
1483static int ext4_nfs_commit_metadata(struct inode *inode)
1484{
1485 struct writeback_control wbc = {
1486 .sync_mode = WB_SYNC_ALL
1487 };
1488
1489 trace_ext4_nfs_commit_metadata(inode);
1490 return ext4_write_inode(inode, &wbc);
1491}
1492
1493#ifdef CONFIG_QUOTA
1494static const char * const quotatypes[] = INITQFNAMES;
1495#define QTYPE2NAME(t) (quotatypes[t])
1496
1497static int ext4_write_dquot(struct dquot *dquot);
1498static int ext4_acquire_dquot(struct dquot *dquot);
1499static int ext4_release_dquot(struct dquot *dquot);
1500static int ext4_mark_dquot_dirty(struct dquot *dquot);
1501static int ext4_write_info(struct super_block *sb, int type);
1502static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1503 const struct path *path);
1504static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1505 size_t len, loff_t off);
1506static ssize_t ext4_quota_write(struct super_block *sb, int type,
1507 const char *data, size_t len, loff_t off);
1508static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1509 unsigned int flags);
1510
1511static struct dquot **ext4_get_dquots(struct inode *inode)
1512{
1513 return EXT4_I(inode)->i_dquot;
1514}
1515
1516static const struct dquot_operations ext4_quota_operations = {
1517 .get_reserved_space = ext4_get_reserved_space,
1518 .write_dquot = ext4_write_dquot,
1519 .acquire_dquot = ext4_acquire_dquot,
1520 .release_dquot = ext4_release_dquot,
1521 .mark_dirty = ext4_mark_dquot_dirty,
1522 .write_info = ext4_write_info,
1523 .alloc_dquot = dquot_alloc,
1524 .destroy_dquot = dquot_destroy,
1525 .get_projid = ext4_get_projid,
1526 .get_inode_usage = ext4_get_inode_usage,
1527 .get_next_id = dquot_get_next_id,
1528};
1529
1530static const struct quotactl_ops ext4_qctl_operations = {
1531 .quota_on = ext4_quota_on,
1532 .quota_off = ext4_quota_off,
1533 .quota_sync = dquot_quota_sync,
1534 .get_state = dquot_get_state,
1535 .set_info = dquot_set_dqinfo,
1536 .get_dqblk = dquot_get_dqblk,
1537 .set_dqblk = dquot_set_dqblk,
1538 .get_nextdqblk = dquot_get_next_dqblk,
1539};
1540#endif
1541
1542static const struct super_operations ext4_sops = {
1543 .alloc_inode = ext4_alloc_inode,
1544 .free_inode = ext4_free_in_core_inode,
1545 .destroy_inode = ext4_destroy_inode,
1546 .write_inode = ext4_write_inode,
1547 .dirty_inode = ext4_dirty_inode,
1548 .drop_inode = ext4_drop_inode,
1549 .evict_inode = ext4_evict_inode,
1550 .put_super = ext4_put_super,
1551 .sync_fs = ext4_sync_fs,
1552 .freeze_fs = ext4_freeze,
1553 .unfreeze_fs = ext4_unfreeze,
1554 .statfs = ext4_statfs,
1555 .show_options = ext4_show_options,
1556#ifdef CONFIG_QUOTA
1557 .quota_read = ext4_quota_read,
1558 .quota_write = ext4_quota_write,
1559 .get_dquots = ext4_get_dquots,
1560#endif
1561};
1562
1563static const struct export_operations ext4_export_ops = {
1564 .fh_to_dentry = ext4_fh_to_dentry,
1565 .fh_to_parent = ext4_fh_to_parent,
1566 .get_parent = ext4_get_parent,
1567 .commit_metadata = ext4_nfs_commit_metadata,
1568};
1569
1570enum {
1571 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1572 Opt_resgid, Opt_resuid, Opt_sb,
1573 Opt_nouid32, Opt_debug, Opt_removed,
1574 Opt_user_xattr, Opt_acl,
1575 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1576 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1577 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1578 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1579 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1580 Opt_inlinecrypt,
1581 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1582 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1583 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1584 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1585 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1586 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1587 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1588 Opt_inode_readahead_blks, Opt_journal_ioprio,
1589 Opt_dioread_nolock, Opt_dioread_lock,
1590 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1591 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1592 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1593 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1594#ifdef CONFIG_EXT4_DEBUG
1595 Opt_fc_debug_max_replay, Opt_fc_debug_force
1596#endif
1597};
1598
1599static const struct constant_table ext4_param_errors[] = {
1600 {"continue", EXT4_MOUNT_ERRORS_CONT},
1601 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1602 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1603 {}
1604};
1605
1606static const struct constant_table ext4_param_data[] = {
1607 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1608 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1609 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1610 {}
1611};
1612
1613static const struct constant_table ext4_param_data_err[] = {
1614 {"abort", Opt_data_err_abort},
1615 {"ignore", Opt_data_err_ignore},
1616 {}
1617};
1618
1619static const struct constant_table ext4_param_jqfmt[] = {
1620 {"vfsold", QFMT_VFS_OLD},
1621 {"vfsv0", QFMT_VFS_V0},
1622 {"vfsv1", QFMT_VFS_V1},
1623 {}
1624};
1625
1626static const struct constant_table ext4_param_dax[] = {
1627 {"always", Opt_dax_always},
1628 {"inode", Opt_dax_inode},
1629 {"never", Opt_dax_never},
1630 {}
1631};
1632
1633/* String parameter that allows empty argument */
1634#define fsparam_string_empty(NAME, OPT) \
1635 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1636
1637/*
1638 * Mount option specification
1639 * We don't use fsparam_flag_no because of the way we set the
1640 * options and the way we show them in _ext4_show_options(). To
1641 * keep the changes to a minimum, let's keep the negative options
1642 * separate for now.
1643 */
1644static const struct fs_parameter_spec ext4_param_specs[] = {
1645 fsparam_flag ("bsddf", Opt_bsd_df),
1646 fsparam_flag ("minixdf", Opt_minix_df),
1647 fsparam_flag ("grpid", Opt_grpid),
1648 fsparam_flag ("bsdgroups", Opt_grpid),
1649 fsparam_flag ("nogrpid", Opt_nogrpid),
1650 fsparam_flag ("sysvgroups", Opt_nogrpid),
1651 fsparam_u32 ("resgid", Opt_resgid),
1652 fsparam_u32 ("resuid", Opt_resuid),
1653 fsparam_u32 ("sb", Opt_sb),
1654 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1655 fsparam_flag ("nouid32", Opt_nouid32),
1656 fsparam_flag ("debug", Opt_debug),
1657 fsparam_flag ("oldalloc", Opt_removed),
1658 fsparam_flag ("orlov", Opt_removed),
1659 fsparam_flag ("user_xattr", Opt_user_xattr),
1660 fsparam_flag ("acl", Opt_acl),
1661 fsparam_flag ("norecovery", Opt_noload),
1662 fsparam_flag ("noload", Opt_noload),
1663 fsparam_flag ("bh", Opt_removed),
1664 fsparam_flag ("nobh", Opt_removed),
1665 fsparam_u32 ("commit", Opt_commit),
1666 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1667 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1668 fsparam_u32 ("journal_dev", Opt_journal_dev),
1669 fsparam_bdev ("journal_path", Opt_journal_path),
1670 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1671 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1672 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1673 fsparam_flag ("abort", Opt_abort),
1674 fsparam_enum ("data", Opt_data, ext4_param_data),
1675 fsparam_enum ("data_err", Opt_data_err,
1676 ext4_param_data_err),
1677 fsparam_string_empty
1678 ("usrjquota", Opt_usrjquota),
1679 fsparam_string_empty
1680 ("grpjquota", Opt_grpjquota),
1681 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1682 fsparam_flag ("grpquota", Opt_grpquota),
1683 fsparam_flag ("quota", Opt_quota),
1684 fsparam_flag ("noquota", Opt_noquota),
1685 fsparam_flag ("usrquota", Opt_usrquota),
1686 fsparam_flag ("prjquota", Opt_prjquota),
1687 fsparam_flag ("barrier", Opt_barrier),
1688 fsparam_u32 ("barrier", Opt_barrier),
1689 fsparam_flag ("nobarrier", Opt_nobarrier),
1690 fsparam_flag ("i_version", Opt_removed),
1691 fsparam_flag ("dax", Opt_dax),
1692 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1693 fsparam_u32 ("stripe", Opt_stripe),
1694 fsparam_flag ("delalloc", Opt_delalloc),
1695 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1696 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1697 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1698 fsparam_u32 ("debug_want_extra_isize",
1699 Opt_debug_want_extra_isize),
1700 fsparam_flag ("mblk_io_submit", Opt_removed),
1701 fsparam_flag ("nomblk_io_submit", Opt_removed),
1702 fsparam_flag ("block_validity", Opt_block_validity),
1703 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1704 fsparam_u32 ("inode_readahead_blks",
1705 Opt_inode_readahead_blks),
1706 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1707 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1708 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1709 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1710 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1711 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1712 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1713 fsparam_flag ("discard", Opt_discard),
1714 fsparam_flag ("nodiscard", Opt_nodiscard),
1715 fsparam_u32 ("init_itable", Opt_init_itable),
1716 fsparam_flag ("init_itable", Opt_init_itable),
1717 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1718#ifdef CONFIG_EXT4_DEBUG
1719 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1720 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1721#endif
1722 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1723 fsparam_flag ("test_dummy_encryption",
1724 Opt_test_dummy_encryption),
1725 fsparam_string ("test_dummy_encryption",
1726 Opt_test_dummy_encryption),
1727 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1728 fsparam_flag ("nombcache", Opt_nombcache),
1729 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1730 fsparam_flag ("prefetch_block_bitmaps",
1731 Opt_removed),
1732 fsparam_flag ("no_prefetch_block_bitmaps",
1733 Opt_no_prefetch_block_bitmaps),
1734 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1735 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1736 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1737 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1738 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1739 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1740 {}
1741};
1742
1743#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1744
1745#define MOPT_SET 0x0001
1746#define MOPT_CLEAR 0x0002
1747#define MOPT_NOSUPPORT 0x0004
1748#define MOPT_EXPLICIT 0x0008
1749#ifdef CONFIG_QUOTA
1750#define MOPT_Q 0
1751#define MOPT_QFMT 0x0010
1752#else
1753#define MOPT_Q MOPT_NOSUPPORT
1754#define MOPT_QFMT MOPT_NOSUPPORT
1755#endif
1756#define MOPT_NO_EXT2 0x0020
1757#define MOPT_NO_EXT3 0x0040
1758#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1759#define MOPT_SKIP 0x0080
1760#define MOPT_2 0x0100
1761
1762static const struct mount_opts {
1763 int token;
1764 int mount_opt;
1765 int flags;
1766} ext4_mount_opts[] = {
1767 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1768 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1769 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1770 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1771 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1772 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1773 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1774 MOPT_EXT4_ONLY | MOPT_SET},
1775 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1776 MOPT_EXT4_ONLY | MOPT_CLEAR},
1777 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1778 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1779 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1780 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1781 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1782 MOPT_EXT4_ONLY | MOPT_CLEAR},
1783 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1784 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1785 {Opt_commit, 0, MOPT_NO_EXT2},
1786 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1787 MOPT_EXT4_ONLY | MOPT_CLEAR},
1788 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1789 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1790 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1791 EXT4_MOUNT_JOURNAL_CHECKSUM),
1792 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1793 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1794 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1795 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1796 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1797 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1798 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1799 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1800 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1801 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1802 {Opt_journal_path, 0, MOPT_NO_EXT2},
1803 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1804 {Opt_data, 0, MOPT_NO_EXT2},
1805 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1806#ifdef CONFIG_EXT4_FS_POSIX_ACL
1807 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1808#else
1809 {Opt_acl, 0, MOPT_NOSUPPORT},
1810#endif
1811 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1812 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1813 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1814 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1815 MOPT_SET | MOPT_Q},
1816 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1817 MOPT_SET | MOPT_Q},
1818 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1819 MOPT_SET | MOPT_Q},
1820 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1821 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1822 MOPT_CLEAR | MOPT_Q},
1823 {Opt_usrjquota, 0, MOPT_Q},
1824 {Opt_grpjquota, 0, MOPT_Q},
1825 {Opt_jqfmt, 0, MOPT_QFMT},
1826 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1827 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1828 MOPT_SET},
1829#ifdef CONFIG_EXT4_DEBUG
1830 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1831 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1832#endif
1833 {Opt_err, 0, 0}
1834};
1835
1836#if IS_ENABLED(CONFIG_UNICODE)
1837static const struct ext4_sb_encodings {
1838 __u16 magic;
1839 char *name;
1840 unsigned int version;
1841} ext4_sb_encoding_map[] = {
1842 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1843};
1844
1845static const struct ext4_sb_encodings *
1846ext4_sb_read_encoding(const struct ext4_super_block *es)
1847{
1848 __u16 magic = le16_to_cpu(es->s_encoding);
1849 int i;
1850
1851 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1852 if (magic == ext4_sb_encoding_map[i].magic)
1853 return &ext4_sb_encoding_map[i];
1854
1855 return NULL;
1856}
1857#endif
1858
1859#define EXT4_SPEC_JQUOTA (1 << 0)
1860#define EXT4_SPEC_JQFMT (1 << 1)
1861#define EXT4_SPEC_DATAJ (1 << 2)
1862#define EXT4_SPEC_SB_BLOCK (1 << 3)
1863#define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1864#define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1865#define EXT4_SPEC_s_want_extra_isize (1 << 7)
1866#define EXT4_SPEC_s_max_batch_time (1 << 8)
1867#define EXT4_SPEC_s_min_batch_time (1 << 9)
1868#define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1869#define EXT4_SPEC_s_li_wait_mult (1 << 11)
1870#define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1871#define EXT4_SPEC_s_stripe (1 << 13)
1872#define EXT4_SPEC_s_resuid (1 << 14)
1873#define EXT4_SPEC_s_resgid (1 << 15)
1874#define EXT4_SPEC_s_commit_interval (1 << 16)
1875#define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1876#define EXT4_SPEC_s_sb_block (1 << 18)
1877#define EXT4_SPEC_mb_optimize_scan (1 << 19)
1878
1879struct ext4_fs_context {
1880 char *s_qf_names[EXT4_MAXQUOTAS];
1881 struct fscrypt_dummy_policy dummy_enc_policy;
1882 int s_jquota_fmt; /* Format of quota to use */
1883#ifdef CONFIG_EXT4_DEBUG
1884 int s_fc_debug_max_replay;
1885#endif
1886 unsigned short qname_spec;
1887 unsigned long vals_s_flags; /* Bits to set in s_flags */
1888 unsigned long mask_s_flags; /* Bits changed in s_flags */
1889 unsigned long journal_devnum;
1890 unsigned long s_commit_interval;
1891 unsigned long s_stripe;
1892 unsigned int s_inode_readahead_blks;
1893 unsigned int s_want_extra_isize;
1894 unsigned int s_li_wait_mult;
1895 unsigned int s_max_dir_size_kb;
1896 unsigned int journal_ioprio;
1897 unsigned int vals_s_mount_opt;
1898 unsigned int mask_s_mount_opt;
1899 unsigned int vals_s_mount_opt2;
1900 unsigned int mask_s_mount_opt2;
1901 unsigned long vals_s_mount_flags;
1902 unsigned long mask_s_mount_flags;
1903 unsigned int opt_flags; /* MOPT flags */
1904 unsigned int spec;
1905 u32 s_max_batch_time;
1906 u32 s_min_batch_time;
1907 kuid_t s_resuid;
1908 kgid_t s_resgid;
1909 ext4_fsblk_t s_sb_block;
1910};
1911
1912static void ext4_fc_free(struct fs_context *fc)
1913{
1914 struct ext4_fs_context *ctx = fc->fs_private;
1915 int i;
1916
1917 if (!ctx)
1918 return;
1919
1920 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1921 kfree(ctx->s_qf_names[i]);
1922
1923 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1924 kfree(ctx);
1925}
1926
1927int ext4_init_fs_context(struct fs_context *fc)
1928{
1929 struct ext4_fs_context *ctx;
1930
1931 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1932 if (!ctx)
1933 return -ENOMEM;
1934
1935 fc->fs_private = ctx;
1936 fc->ops = &ext4_context_ops;
1937
1938 return 0;
1939}
1940
1941#ifdef CONFIG_QUOTA
1942/*
1943 * Note the name of the specified quota file.
1944 */
1945static int note_qf_name(struct fs_context *fc, int qtype,
1946 struct fs_parameter *param)
1947{
1948 struct ext4_fs_context *ctx = fc->fs_private;
1949 char *qname;
1950
1951 if (param->size < 1) {
1952 ext4_msg(NULL, KERN_ERR, "Missing quota name");
1953 return -EINVAL;
1954 }
1955 if (strchr(param->string, '/')) {
1956 ext4_msg(NULL, KERN_ERR,
1957 "quotafile must be on filesystem root");
1958 return -EINVAL;
1959 }
1960 if (ctx->s_qf_names[qtype]) {
1961 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
1962 ext4_msg(NULL, KERN_ERR,
1963 "%s quota file already specified",
1964 QTYPE2NAME(qtype));
1965 return -EINVAL;
1966 }
1967 return 0;
1968 }
1969
1970 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
1971 if (!qname) {
1972 ext4_msg(NULL, KERN_ERR,
1973 "Not enough memory for storing quotafile name");
1974 return -ENOMEM;
1975 }
1976 ctx->s_qf_names[qtype] = qname;
1977 ctx->qname_spec |= 1 << qtype;
1978 ctx->spec |= EXT4_SPEC_JQUOTA;
1979 return 0;
1980}
1981
1982/*
1983 * Clear the name of the specified quota file.
1984 */
1985static int unnote_qf_name(struct fs_context *fc, int qtype)
1986{
1987 struct ext4_fs_context *ctx = fc->fs_private;
1988
1989 if (ctx->s_qf_names[qtype])
1990 kfree(ctx->s_qf_names[qtype]);
1991
1992 ctx->s_qf_names[qtype] = NULL;
1993 ctx->qname_spec |= 1 << qtype;
1994 ctx->spec |= EXT4_SPEC_JQUOTA;
1995 return 0;
1996}
1997#endif
1998
1999static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2000 struct ext4_fs_context *ctx)
2001{
2002 int err;
2003
2004 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2005 ext4_msg(NULL, KERN_WARNING,
2006 "test_dummy_encryption option not supported");
2007 return -EINVAL;
2008 }
2009 err = fscrypt_parse_test_dummy_encryption(param,
2010 &ctx->dummy_enc_policy);
2011 if (err == -EINVAL) {
2012 ext4_msg(NULL, KERN_WARNING,
2013 "Value of option \"%s\" is unrecognized", param->key);
2014 } else if (err == -EEXIST) {
2015 ext4_msg(NULL, KERN_WARNING,
2016 "Conflicting test_dummy_encryption options");
2017 return -EINVAL;
2018 }
2019 return err;
2020}
2021
2022#define EXT4_SET_CTX(name) \
2023static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2024 unsigned long flag) \
2025{ \
2026 ctx->mask_s_##name |= flag; \
2027 ctx->vals_s_##name |= flag; \
2028}
2029
2030#define EXT4_CLEAR_CTX(name) \
2031static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2032 unsigned long flag) \
2033{ \
2034 ctx->mask_s_##name |= flag; \
2035 ctx->vals_s_##name &= ~flag; \
2036}
2037
2038#define EXT4_TEST_CTX(name) \
2039static inline unsigned long \
2040ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2041{ \
2042 return (ctx->vals_s_##name & flag); \
2043}
2044
2045EXT4_SET_CTX(flags); /* set only */
2046EXT4_SET_CTX(mount_opt);
2047EXT4_CLEAR_CTX(mount_opt);
2048EXT4_TEST_CTX(mount_opt);
2049EXT4_SET_CTX(mount_opt2);
2050EXT4_CLEAR_CTX(mount_opt2);
2051EXT4_TEST_CTX(mount_opt2);
2052
2053static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit)
2054{
2055 set_bit(bit, &ctx->mask_s_mount_flags);
2056 set_bit(bit, &ctx->vals_s_mount_flags);
2057}
2058
2059static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2060{
2061 struct ext4_fs_context *ctx = fc->fs_private;
2062 struct fs_parse_result result;
2063 const struct mount_opts *m;
2064 int is_remount;
2065 kuid_t uid;
2066 kgid_t gid;
2067 int token;
2068
2069 token = fs_parse(fc, ext4_param_specs, param, &result);
2070 if (token < 0)
2071 return token;
2072 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2073
2074 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2075 if (token == m->token)
2076 break;
2077
2078 ctx->opt_flags |= m->flags;
2079
2080 if (m->flags & MOPT_EXPLICIT) {
2081 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2082 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2083 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2084 ctx_set_mount_opt2(ctx,
2085 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2086 } else
2087 return -EINVAL;
2088 }
2089
2090 if (m->flags & MOPT_NOSUPPORT) {
2091 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2092 param->key);
2093 return 0;
2094 }
2095
2096 switch (token) {
2097#ifdef CONFIG_QUOTA
2098 case Opt_usrjquota:
2099 if (!*param->string)
2100 return unnote_qf_name(fc, USRQUOTA);
2101 else
2102 return note_qf_name(fc, USRQUOTA, param);
2103 case Opt_grpjquota:
2104 if (!*param->string)
2105 return unnote_qf_name(fc, GRPQUOTA);
2106 else
2107 return note_qf_name(fc, GRPQUOTA, param);
2108#endif
2109 case Opt_sb:
2110 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2111 ext4_msg(NULL, KERN_WARNING,
2112 "Ignoring %s option on remount", param->key);
2113 } else {
2114 ctx->s_sb_block = result.uint_32;
2115 ctx->spec |= EXT4_SPEC_s_sb_block;
2116 }
2117 return 0;
2118 case Opt_removed:
2119 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2120 param->key);
2121 return 0;
2122 case Opt_abort:
2123 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED);
2124 return 0;
2125 case Opt_inlinecrypt:
2126#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2127 ctx_set_flags(ctx, SB_INLINECRYPT);
2128#else
2129 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2130#endif
2131 return 0;
2132 case Opt_errors:
2133 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2134 ctx_set_mount_opt(ctx, result.uint_32);
2135 return 0;
2136#ifdef CONFIG_QUOTA
2137 case Opt_jqfmt:
2138 ctx->s_jquota_fmt = result.uint_32;
2139 ctx->spec |= EXT4_SPEC_JQFMT;
2140 return 0;
2141#endif
2142 case Opt_data:
2143 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2144 ctx_set_mount_opt(ctx, result.uint_32);
2145 ctx->spec |= EXT4_SPEC_DATAJ;
2146 return 0;
2147 case Opt_commit:
2148 if (result.uint_32 == 0)
2149 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
2150 else if (result.uint_32 > INT_MAX / HZ) {
2151 ext4_msg(NULL, KERN_ERR,
2152 "Invalid commit interval %d, "
2153 "must be smaller than %d",
2154 result.uint_32, INT_MAX / HZ);
2155 return -EINVAL;
2156 }
2157 ctx->s_commit_interval = HZ * result.uint_32;
2158 ctx->spec |= EXT4_SPEC_s_commit_interval;
2159 return 0;
2160 case Opt_debug_want_extra_isize:
2161 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2162 ext4_msg(NULL, KERN_ERR,
2163 "Invalid want_extra_isize %d", result.uint_32);
2164 return -EINVAL;
2165 }
2166 ctx->s_want_extra_isize = result.uint_32;
2167 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2168 return 0;
2169 case Opt_max_batch_time:
2170 ctx->s_max_batch_time = result.uint_32;
2171 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2172 return 0;
2173 case Opt_min_batch_time:
2174 ctx->s_min_batch_time = result.uint_32;
2175 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2176 return 0;
2177 case Opt_inode_readahead_blks:
2178 if (result.uint_32 &&
2179 (result.uint_32 > (1 << 30) ||
2180 !is_power_of_2(result.uint_32))) {
2181 ext4_msg(NULL, KERN_ERR,
2182 "EXT4-fs: inode_readahead_blks must be "
2183 "0 or a power of 2 smaller than 2^31");
2184 return -EINVAL;
2185 }
2186 ctx->s_inode_readahead_blks = result.uint_32;
2187 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2188 return 0;
2189 case Opt_init_itable:
2190 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2191 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2192 if (param->type == fs_value_is_string)
2193 ctx->s_li_wait_mult = result.uint_32;
2194 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2195 return 0;
2196 case Opt_max_dir_size_kb:
2197 ctx->s_max_dir_size_kb = result.uint_32;
2198 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2199 return 0;
2200#ifdef CONFIG_EXT4_DEBUG
2201 case Opt_fc_debug_max_replay:
2202 ctx->s_fc_debug_max_replay = result.uint_32;
2203 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2204 return 0;
2205#endif
2206 case Opt_stripe:
2207 ctx->s_stripe = result.uint_32;
2208 ctx->spec |= EXT4_SPEC_s_stripe;
2209 return 0;
2210 case Opt_resuid:
2211 uid = make_kuid(current_user_ns(), result.uint_32);
2212 if (!uid_valid(uid)) {
2213 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2214 result.uint_32);
2215 return -EINVAL;
2216 }
2217 ctx->s_resuid = uid;
2218 ctx->spec |= EXT4_SPEC_s_resuid;
2219 return 0;
2220 case Opt_resgid:
2221 gid = make_kgid(current_user_ns(), result.uint_32);
2222 if (!gid_valid(gid)) {
2223 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2224 result.uint_32);
2225 return -EINVAL;
2226 }
2227 ctx->s_resgid = gid;
2228 ctx->spec |= EXT4_SPEC_s_resgid;
2229 return 0;
2230 case Opt_journal_dev:
2231 if (is_remount) {
2232 ext4_msg(NULL, KERN_ERR,
2233 "Cannot specify journal on remount");
2234 return -EINVAL;
2235 }
2236 ctx->journal_devnum = result.uint_32;
2237 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2238 return 0;
2239 case Opt_journal_path:
2240 {
2241 struct inode *journal_inode;
2242 struct path path;
2243 int error;
2244
2245 if (is_remount) {
2246 ext4_msg(NULL, KERN_ERR,
2247 "Cannot specify journal on remount");
2248 return -EINVAL;
2249 }
2250
2251 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2252 if (error) {
2253 ext4_msg(NULL, KERN_ERR, "error: could not find "
2254 "journal device path");
2255 return -EINVAL;
2256 }
2257
2258 journal_inode = d_inode(path.dentry);
2259 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2260 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2261 path_put(&path);
2262 return 0;
2263 }
2264 case Opt_journal_ioprio:
2265 if (result.uint_32 > 7) {
2266 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2267 " (must be 0-7)");
2268 return -EINVAL;
2269 }
2270 ctx->journal_ioprio =
2271 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2272 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2273 return 0;
2274 case Opt_test_dummy_encryption:
2275 return ext4_parse_test_dummy_encryption(param, ctx);
2276 case Opt_dax:
2277 case Opt_dax_type:
2278#ifdef CONFIG_FS_DAX
2279 {
2280 int type = (token == Opt_dax) ?
2281 Opt_dax : result.uint_32;
2282
2283 switch (type) {
2284 case Opt_dax:
2285 case Opt_dax_always:
2286 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2287 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2288 break;
2289 case Opt_dax_never:
2290 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2291 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2292 break;
2293 case Opt_dax_inode:
2294 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2295 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2296 /* Strictly for printing options */
2297 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2298 break;
2299 }
2300 return 0;
2301 }
2302#else
2303 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2304 return -EINVAL;
2305#endif
2306 case Opt_data_err:
2307 if (result.uint_32 == Opt_data_err_abort)
2308 ctx_set_mount_opt(ctx, m->mount_opt);
2309 else if (result.uint_32 == Opt_data_err_ignore)
2310 ctx_clear_mount_opt(ctx, m->mount_opt);
2311 return 0;
2312 case Opt_mb_optimize_scan:
2313 if (result.int_32 == 1) {
2314 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2315 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2316 } else if (result.int_32 == 0) {
2317 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2318 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2319 } else {
2320 ext4_msg(NULL, KERN_WARNING,
2321 "mb_optimize_scan should be set to 0 or 1.");
2322 return -EINVAL;
2323 }
2324 return 0;
2325 }
2326
2327 /*
2328 * At this point we should only be getting options requiring MOPT_SET,
2329 * or MOPT_CLEAR. Anything else is a bug
2330 */
2331 if (m->token == Opt_err) {
2332 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2333 param->key);
2334 WARN_ON(1);
2335 return -EINVAL;
2336 }
2337
2338 else {
2339 unsigned int set = 0;
2340
2341 if ((param->type == fs_value_is_flag) ||
2342 result.uint_32 > 0)
2343 set = 1;
2344
2345 if (m->flags & MOPT_CLEAR)
2346 set = !set;
2347 else if (unlikely(!(m->flags & MOPT_SET))) {
2348 ext4_msg(NULL, KERN_WARNING,
2349 "buggy handling of option %s",
2350 param->key);
2351 WARN_ON(1);
2352 return -EINVAL;
2353 }
2354 if (m->flags & MOPT_2) {
2355 if (set != 0)
2356 ctx_set_mount_opt2(ctx, m->mount_opt);
2357 else
2358 ctx_clear_mount_opt2(ctx, m->mount_opt);
2359 } else {
2360 if (set != 0)
2361 ctx_set_mount_opt(ctx, m->mount_opt);
2362 else
2363 ctx_clear_mount_opt(ctx, m->mount_opt);
2364 }
2365 }
2366
2367 return 0;
2368}
2369
2370static int parse_options(struct fs_context *fc, char *options)
2371{
2372 struct fs_parameter param;
2373 int ret;
2374 char *key;
2375
2376 if (!options)
2377 return 0;
2378
2379 while ((key = strsep(&options, ",")) != NULL) {
2380 if (*key) {
2381 size_t v_len = 0;
2382 char *value = strchr(key, '=');
2383
2384 param.type = fs_value_is_flag;
2385 param.string = NULL;
2386
2387 if (value) {
2388 if (value == key)
2389 continue;
2390
2391 *value++ = 0;
2392 v_len = strlen(value);
2393 param.string = kmemdup_nul(value, v_len,
2394 GFP_KERNEL);
2395 if (!param.string)
2396 return -ENOMEM;
2397 param.type = fs_value_is_string;
2398 }
2399
2400 param.key = key;
2401 param.size = v_len;
2402
2403 ret = ext4_parse_param(fc, ¶m);
2404 if (param.string)
2405 kfree(param.string);
2406 if (ret < 0)
2407 return ret;
2408 }
2409 }
2410
2411 ret = ext4_validate_options(fc);
2412 if (ret < 0)
2413 return ret;
2414
2415 return 0;
2416}
2417
2418static int parse_apply_sb_mount_options(struct super_block *sb,
2419 struct ext4_fs_context *m_ctx)
2420{
2421 struct ext4_sb_info *sbi = EXT4_SB(sb);
2422 char *s_mount_opts = NULL;
2423 struct ext4_fs_context *s_ctx = NULL;
2424 struct fs_context *fc = NULL;
2425 int ret = -ENOMEM;
2426
2427 if (!sbi->s_es->s_mount_opts[0])
2428 return 0;
2429
2430 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2431 sizeof(sbi->s_es->s_mount_opts),
2432 GFP_KERNEL);
2433 if (!s_mount_opts)
2434 return ret;
2435
2436 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2437 if (!fc)
2438 goto out_free;
2439
2440 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2441 if (!s_ctx)
2442 goto out_free;
2443
2444 fc->fs_private = s_ctx;
2445 fc->s_fs_info = sbi;
2446
2447 ret = parse_options(fc, s_mount_opts);
2448 if (ret < 0)
2449 goto parse_failed;
2450
2451 ret = ext4_check_opt_consistency(fc, sb);
2452 if (ret < 0) {
2453parse_failed:
2454 ext4_msg(sb, KERN_WARNING,
2455 "failed to parse options in superblock: %s",
2456 s_mount_opts);
2457 ret = 0;
2458 goto out_free;
2459 }
2460
2461 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2462 m_ctx->journal_devnum = s_ctx->journal_devnum;
2463 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2464 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2465
2466 ext4_apply_options(fc, sb);
2467 ret = 0;
2468
2469out_free:
2470 if (fc) {
2471 ext4_fc_free(fc);
2472 kfree(fc);
2473 }
2474 kfree(s_mount_opts);
2475 return ret;
2476}
2477
2478static void ext4_apply_quota_options(struct fs_context *fc,
2479 struct super_block *sb)
2480{
2481#ifdef CONFIG_QUOTA
2482 bool quota_feature = ext4_has_feature_quota(sb);
2483 struct ext4_fs_context *ctx = fc->fs_private;
2484 struct ext4_sb_info *sbi = EXT4_SB(sb);
2485 char *qname;
2486 int i;
2487
2488 if (quota_feature)
2489 return;
2490
2491 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2492 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2493 if (!(ctx->qname_spec & (1 << i)))
2494 continue;
2495
2496 qname = ctx->s_qf_names[i]; /* May be NULL */
2497 if (qname)
2498 set_opt(sb, QUOTA);
2499 ctx->s_qf_names[i] = NULL;
2500 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2501 lockdep_is_held(&sb->s_umount));
2502 if (qname)
2503 kfree_rcu(qname);
2504 }
2505 }
2506
2507 if (ctx->spec & EXT4_SPEC_JQFMT)
2508 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2509#endif
2510}
2511
2512/*
2513 * Check quota settings consistency.
2514 */
2515static int ext4_check_quota_consistency(struct fs_context *fc,
2516 struct super_block *sb)
2517{
2518#ifdef CONFIG_QUOTA
2519 struct ext4_fs_context *ctx = fc->fs_private;
2520 struct ext4_sb_info *sbi = EXT4_SB(sb);
2521 bool quota_feature = ext4_has_feature_quota(sb);
2522 bool quota_loaded = sb_any_quota_loaded(sb);
2523 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2524 int quota_flags, i;
2525
2526 /*
2527 * We do the test below only for project quotas. 'usrquota' and
2528 * 'grpquota' mount options are allowed even without quota feature
2529 * to support legacy quotas in quota files.
2530 */
2531 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2532 !ext4_has_feature_project(sb)) {
2533 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2534 "Cannot enable project quota enforcement.");
2535 return -EINVAL;
2536 }
2537
2538 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2539 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2540 if (quota_loaded &&
2541 ctx->mask_s_mount_opt & quota_flags &&
2542 !ctx_test_mount_opt(ctx, quota_flags))
2543 goto err_quota_change;
2544
2545 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2546
2547 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548 if (!(ctx->qname_spec & (1 << i)))
2549 continue;
2550
2551 if (quota_loaded &&
2552 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2553 goto err_jquota_change;
2554
2555 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2556 strcmp(get_qf_name(sb, sbi, i),
2557 ctx->s_qf_names[i]) != 0)
2558 goto err_jquota_specified;
2559 }
2560
2561 if (quota_feature) {
2562 ext4_msg(NULL, KERN_INFO,
2563 "Journaled quota options ignored when "
2564 "QUOTA feature is enabled");
2565 return 0;
2566 }
2567 }
2568
2569 if (ctx->spec & EXT4_SPEC_JQFMT) {
2570 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2571 goto err_jquota_change;
2572 if (quota_feature) {
2573 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2574 "ignored when QUOTA feature is enabled");
2575 return 0;
2576 }
2577 }
2578
2579 /* Make sure we don't mix old and new quota format */
2580 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2581 ctx->s_qf_names[USRQUOTA]);
2582 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2583 ctx->s_qf_names[GRPQUOTA]);
2584
2585 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2586 test_opt(sb, USRQUOTA));
2587
2588 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2589 test_opt(sb, GRPQUOTA));
2590
2591 if (usr_qf_name) {
2592 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2593 usrquota = false;
2594 }
2595 if (grp_qf_name) {
2596 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2597 grpquota = false;
2598 }
2599
2600 if (usr_qf_name || grp_qf_name) {
2601 if (usrquota || grpquota) {
2602 ext4_msg(NULL, KERN_ERR, "old and new quota "
2603 "format mixing");
2604 return -EINVAL;
2605 }
2606
2607 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2608 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2609 "not specified");
2610 return -EINVAL;
2611 }
2612 }
2613
2614 return 0;
2615
2616err_quota_change:
2617 ext4_msg(NULL, KERN_ERR,
2618 "Cannot change quota options when quota turned on");
2619 return -EINVAL;
2620err_jquota_change:
2621 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2622 "options when quota turned on");
2623 return -EINVAL;
2624err_jquota_specified:
2625 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2626 QTYPE2NAME(i));
2627 return -EINVAL;
2628#else
2629 return 0;
2630#endif
2631}
2632
2633static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2634 struct super_block *sb)
2635{
2636 const struct ext4_fs_context *ctx = fc->fs_private;
2637 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2638 int err;
2639
2640 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2641 return 0;
2642
2643 if (!ext4_has_feature_encrypt(sb)) {
2644 ext4_msg(NULL, KERN_WARNING,
2645 "test_dummy_encryption requires encrypt feature");
2646 return -EINVAL;
2647 }
2648 /*
2649 * This mount option is just for testing, and it's not worthwhile to
2650 * implement the extra complexity (e.g. RCU protection) that would be
2651 * needed to allow it to be set or changed during remount. We do allow
2652 * it to be specified during remount, but only if there is no change.
2653 */
2654 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2655 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2656 &ctx->dummy_enc_policy))
2657 return 0;
2658 ext4_msg(NULL, KERN_WARNING,
2659 "Can't set or change test_dummy_encryption on remount");
2660 return -EINVAL;
2661 }
2662 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2663 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2664 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2665 &ctx->dummy_enc_policy))
2666 return 0;
2667 ext4_msg(NULL, KERN_WARNING,
2668 "Conflicting test_dummy_encryption options");
2669 return -EINVAL;
2670 }
2671 /*
2672 * fscrypt_add_test_dummy_key() technically changes the super_block, so
2673 * technically it should be delayed until ext4_apply_options() like the
2674 * other changes. But since we never get here for remounts (see above),
2675 * and this is the last chance to report errors, we do it here.
2676 */
2677 err = fscrypt_add_test_dummy_key(sb, &ctx->dummy_enc_policy);
2678 if (err)
2679 ext4_msg(NULL, KERN_WARNING,
2680 "Error adding test dummy encryption key [%d]", err);
2681 return err;
2682}
2683
2684static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2685 struct super_block *sb)
2686{
2687 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2688 /* if already set, it was already verified to be the same */
2689 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2690 return;
2691 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2692 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2693 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2694}
2695
2696static int ext4_check_opt_consistency(struct fs_context *fc,
2697 struct super_block *sb)
2698{
2699 struct ext4_fs_context *ctx = fc->fs_private;
2700 struct ext4_sb_info *sbi = fc->s_fs_info;
2701 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2702 int err;
2703
2704 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2705 ext4_msg(NULL, KERN_ERR,
2706 "Mount option(s) incompatible with ext2");
2707 return -EINVAL;
2708 }
2709 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2710 ext4_msg(NULL, KERN_ERR,
2711 "Mount option(s) incompatible with ext3");
2712 return -EINVAL;
2713 }
2714
2715 if (ctx->s_want_extra_isize >
2716 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2717 ext4_msg(NULL, KERN_ERR,
2718 "Invalid want_extra_isize %d",
2719 ctx->s_want_extra_isize);
2720 return -EINVAL;
2721 }
2722
2723 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2724 int blocksize =
2725 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2726 if (blocksize < PAGE_SIZE)
2727 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2728 "experimental mount option 'dioread_nolock' "
2729 "for blocksize < PAGE_SIZE");
2730 }
2731
2732 err = ext4_check_test_dummy_encryption(fc, sb);
2733 if (err)
2734 return err;
2735
2736 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2737 if (!sbi->s_journal) {
2738 ext4_msg(NULL, KERN_WARNING,
2739 "Remounting file system with no journal "
2740 "so ignoring journalled data option");
2741 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2742 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2743 test_opt(sb, DATA_FLAGS)) {
2744 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2745 "on remount");
2746 return -EINVAL;
2747 }
2748 }
2749
2750 if (is_remount) {
2751 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2752 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2753 ext4_msg(NULL, KERN_ERR, "can't mount with "
2754 "both data=journal and dax");
2755 return -EINVAL;
2756 }
2757
2758 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2759 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2760 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2761fail_dax_change_remount:
2762 ext4_msg(NULL, KERN_ERR, "can't change "
2763 "dax mount option while remounting");
2764 return -EINVAL;
2765 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2766 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2767 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2768 goto fail_dax_change_remount;
2769 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2770 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2771 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2772 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2773 goto fail_dax_change_remount;
2774 }
2775 }
2776
2777 return ext4_check_quota_consistency(fc, sb);
2778}
2779
2780static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2781{
2782 struct ext4_fs_context *ctx = fc->fs_private;
2783 struct ext4_sb_info *sbi = fc->s_fs_info;
2784
2785 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2786 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2787 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2788 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2789 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2790 sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2791 sb->s_flags &= ~ctx->mask_s_flags;
2792 sb->s_flags |= ctx->vals_s_flags;
2793
2794#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2795 APPLY(s_commit_interval);
2796 APPLY(s_stripe);
2797 APPLY(s_max_batch_time);
2798 APPLY(s_min_batch_time);
2799 APPLY(s_want_extra_isize);
2800 APPLY(s_inode_readahead_blks);
2801 APPLY(s_max_dir_size_kb);
2802 APPLY(s_li_wait_mult);
2803 APPLY(s_resgid);
2804 APPLY(s_resuid);
2805
2806#ifdef CONFIG_EXT4_DEBUG
2807 APPLY(s_fc_debug_max_replay);
2808#endif
2809
2810 ext4_apply_quota_options(fc, sb);
2811 ext4_apply_test_dummy_encryption(ctx, sb);
2812}
2813
2814
2815static int ext4_validate_options(struct fs_context *fc)
2816{
2817#ifdef CONFIG_QUOTA
2818 struct ext4_fs_context *ctx = fc->fs_private;
2819 char *usr_qf_name, *grp_qf_name;
2820
2821 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2822 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2823
2824 if (usr_qf_name || grp_qf_name) {
2825 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2826 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2827
2828 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2829 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2830
2831 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2832 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2833 ext4_msg(NULL, KERN_ERR, "old and new quota "
2834 "format mixing");
2835 return -EINVAL;
2836 }
2837 }
2838#endif
2839 return 1;
2840}
2841
2842static inline void ext4_show_quota_options(struct seq_file *seq,
2843 struct super_block *sb)
2844{
2845#if defined(CONFIG_QUOTA)
2846 struct ext4_sb_info *sbi = EXT4_SB(sb);
2847 char *usr_qf_name, *grp_qf_name;
2848
2849 if (sbi->s_jquota_fmt) {
2850 char *fmtname = "";
2851
2852 switch (sbi->s_jquota_fmt) {
2853 case QFMT_VFS_OLD:
2854 fmtname = "vfsold";
2855 break;
2856 case QFMT_VFS_V0:
2857 fmtname = "vfsv0";
2858 break;
2859 case QFMT_VFS_V1:
2860 fmtname = "vfsv1";
2861 break;
2862 }
2863 seq_printf(seq, ",jqfmt=%s", fmtname);
2864 }
2865
2866 rcu_read_lock();
2867 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2868 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2869 if (usr_qf_name)
2870 seq_show_option(seq, "usrjquota", usr_qf_name);
2871 if (grp_qf_name)
2872 seq_show_option(seq, "grpjquota", grp_qf_name);
2873 rcu_read_unlock();
2874#endif
2875}
2876
2877static const char *token2str(int token)
2878{
2879 const struct fs_parameter_spec *spec;
2880
2881 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2882 if (spec->opt == token && !spec->type)
2883 break;
2884 return spec->name;
2885}
2886
2887/*
2888 * Show an option if
2889 * - it's set to a non-default value OR
2890 * - if the per-sb default is different from the global default
2891 */
2892static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2893 int nodefs)
2894{
2895 struct ext4_sb_info *sbi = EXT4_SB(sb);
2896 struct ext4_super_block *es = sbi->s_es;
2897 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2898 const struct mount_opts *m;
2899 char sep = nodefs ? '\n' : ',';
2900
2901#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2902#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2903
2904 if (sbi->s_sb_block != 1)
2905 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2906
2907 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2908 int want_set = m->flags & MOPT_SET;
2909 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2910 m->flags & MOPT_SKIP)
2911 continue;
2912 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2913 continue; /* skip if same as the default */
2914 if ((want_set &&
2915 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2916 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2917 continue; /* select Opt_noFoo vs Opt_Foo */
2918 SEQ_OPTS_PRINT("%s", token2str(m->token));
2919 }
2920
2921 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2922 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2923 SEQ_OPTS_PRINT("resuid=%u",
2924 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2925 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2926 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2927 SEQ_OPTS_PRINT("resgid=%u",
2928 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2929 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2930 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2931 SEQ_OPTS_PUTS("errors=remount-ro");
2932 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2933 SEQ_OPTS_PUTS("errors=continue");
2934 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2935 SEQ_OPTS_PUTS("errors=panic");
2936 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2937 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2938 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2939 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2940 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2941 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2942 if (nodefs || sbi->s_stripe)
2943 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2944 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2945 (sbi->s_mount_opt ^ def_mount_opt)) {
2946 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2947 SEQ_OPTS_PUTS("data=journal");
2948 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2949 SEQ_OPTS_PUTS("data=ordered");
2950 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2951 SEQ_OPTS_PUTS("data=writeback");
2952 }
2953 if (nodefs ||
2954 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2955 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2956 sbi->s_inode_readahead_blks);
2957
2958 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2959 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2960 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2961 if (nodefs || sbi->s_max_dir_size_kb)
2962 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2963 if (test_opt(sb, DATA_ERR_ABORT))
2964 SEQ_OPTS_PUTS("data_err=abort");
2965
2966 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2967
2968 if (sb->s_flags & SB_INLINECRYPT)
2969 SEQ_OPTS_PUTS("inlinecrypt");
2970
2971 if (test_opt(sb, DAX_ALWAYS)) {
2972 if (IS_EXT2_SB(sb))
2973 SEQ_OPTS_PUTS("dax");
2974 else
2975 SEQ_OPTS_PUTS("dax=always");
2976 } else if (test_opt2(sb, DAX_NEVER)) {
2977 SEQ_OPTS_PUTS("dax=never");
2978 } else if (test_opt2(sb, DAX_INODE)) {
2979 SEQ_OPTS_PUTS("dax=inode");
2980 }
2981
2982 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2983 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2984 SEQ_OPTS_PUTS("mb_optimize_scan=0");
2985 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2986 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2987 SEQ_OPTS_PUTS("mb_optimize_scan=1");
2988 }
2989
2990 ext4_show_quota_options(seq, sb);
2991 return 0;
2992}
2993
2994static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2995{
2996 return _ext4_show_options(seq, root->d_sb, 0);
2997}
2998
2999int ext4_seq_options_show(struct seq_file *seq, void *offset)
3000{
3001 struct super_block *sb = seq->private;
3002 int rc;
3003
3004 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3005 rc = _ext4_show_options(seq, sb, 1);
3006 seq_puts(seq, "\n");
3007 return rc;
3008}
3009
3010static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3011 int read_only)
3012{
3013 struct ext4_sb_info *sbi = EXT4_SB(sb);
3014 int err = 0;
3015
3016 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3017 ext4_msg(sb, KERN_ERR, "revision level too high, "
3018 "forcing read-only mode");
3019 err = -EROFS;
3020 goto done;
3021 }
3022 if (read_only)
3023 goto done;
3024 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3025 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3026 "running e2fsck is recommended");
3027 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3028 ext4_msg(sb, KERN_WARNING,
3029 "warning: mounting fs with errors, "
3030 "running e2fsck is recommended");
3031 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3032 le16_to_cpu(es->s_mnt_count) >=
3033 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3034 ext4_msg(sb, KERN_WARNING,
3035 "warning: maximal mount count reached, "
3036 "running e2fsck is recommended");
3037 else if (le32_to_cpu(es->s_checkinterval) &&
3038 (ext4_get_tstamp(es, s_lastcheck) +
3039 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3040 ext4_msg(sb, KERN_WARNING,
3041 "warning: checktime reached, "
3042 "running e2fsck is recommended");
3043 if (!sbi->s_journal)
3044 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3045 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3046 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3047 le16_add_cpu(&es->s_mnt_count, 1);
3048 ext4_update_tstamp(es, s_mtime);
3049 if (sbi->s_journal) {
3050 ext4_set_feature_journal_needs_recovery(sb);
3051 if (ext4_has_feature_orphan_file(sb))
3052 ext4_set_feature_orphan_present(sb);
3053 }
3054
3055 err = ext4_commit_super(sb);
3056done:
3057 if (test_opt(sb, DEBUG))
3058 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3059 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3060 sb->s_blocksize,
3061 sbi->s_groups_count,
3062 EXT4_BLOCKS_PER_GROUP(sb),
3063 EXT4_INODES_PER_GROUP(sb),
3064 sbi->s_mount_opt, sbi->s_mount_opt2);
3065 return err;
3066}
3067
3068int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3069{
3070 struct ext4_sb_info *sbi = EXT4_SB(sb);
3071 struct flex_groups **old_groups, **new_groups;
3072 int size, i, j;
3073
3074 if (!sbi->s_log_groups_per_flex)
3075 return 0;
3076
3077 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3078 if (size <= sbi->s_flex_groups_allocated)
3079 return 0;
3080
3081 new_groups = kvzalloc(roundup_pow_of_two(size *
3082 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3083 if (!new_groups) {
3084 ext4_msg(sb, KERN_ERR,
3085 "not enough memory for %d flex group pointers", size);
3086 return -ENOMEM;
3087 }
3088 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3089 new_groups[i] = kvzalloc(roundup_pow_of_two(
3090 sizeof(struct flex_groups)),
3091 GFP_KERNEL);
3092 if (!new_groups[i]) {
3093 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3094 kvfree(new_groups[j]);
3095 kvfree(new_groups);
3096 ext4_msg(sb, KERN_ERR,
3097 "not enough memory for %d flex groups", size);
3098 return -ENOMEM;
3099 }
3100 }
3101 rcu_read_lock();
3102 old_groups = rcu_dereference(sbi->s_flex_groups);
3103 if (old_groups)
3104 memcpy(new_groups, old_groups,
3105 (sbi->s_flex_groups_allocated *
3106 sizeof(struct flex_groups *)));
3107 rcu_read_unlock();
3108 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3109 sbi->s_flex_groups_allocated = size;
3110 if (old_groups)
3111 ext4_kvfree_array_rcu(old_groups);
3112 return 0;
3113}
3114
3115static int ext4_fill_flex_info(struct super_block *sb)
3116{
3117 struct ext4_sb_info *sbi = EXT4_SB(sb);
3118 struct ext4_group_desc *gdp = NULL;
3119 struct flex_groups *fg;
3120 ext4_group_t flex_group;
3121 int i, err;
3122
3123 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3124 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3125 sbi->s_log_groups_per_flex = 0;
3126 return 1;
3127 }
3128
3129 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3130 if (err)
3131 goto failed;
3132
3133 for (i = 0; i < sbi->s_groups_count; i++) {
3134 gdp = ext4_get_group_desc(sb, i, NULL);
3135
3136 flex_group = ext4_flex_group(sbi, i);
3137 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3138 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3139 atomic64_add(ext4_free_group_clusters(sb, gdp),
3140 &fg->free_clusters);
3141 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3142 }
3143
3144 return 1;
3145failed:
3146 return 0;
3147}
3148
3149static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3150 struct ext4_group_desc *gdp)
3151{
3152 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3153 __u16 crc = 0;
3154 __le32 le_group = cpu_to_le32(block_group);
3155 struct ext4_sb_info *sbi = EXT4_SB(sb);
3156
3157 if (ext4_has_metadata_csum(sbi->s_sb)) {
3158 /* Use new metadata_csum algorithm */
3159 __u32 csum32;
3160 __u16 dummy_csum = 0;
3161
3162 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3163 sizeof(le_group));
3164 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3165 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3166 sizeof(dummy_csum));
3167 offset += sizeof(dummy_csum);
3168 if (offset < sbi->s_desc_size)
3169 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3170 sbi->s_desc_size - offset);
3171
3172 crc = csum32 & 0xFFFF;
3173 goto out;
3174 }
3175
3176 /* old crc16 code */
3177 if (!ext4_has_feature_gdt_csum(sb))
3178 return 0;
3179
3180 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3181 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3182 crc = crc16(crc, (__u8 *)gdp, offset);
3183 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3184 /* for checksum of struct ext4_group_desc do the rest...*/
3185 if (ext4_has_feature_64bit(sb) &&
3186 offset < le16_to_cpu(sbi->s_es->s_desc_size))
3187 crc = crc16(crc, (__u8 *)gdp + offset,
3188 le16_to_cpu(sbi->s_es->s_desc_size) -
3189 offset);
3190
3191out:
3192 return cpu_to_le16(crc);
3193}
3194
3195int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3196 struct ext4_group_desc *gdp)
3197{
3198 if (ext4_has_group_desc_csum(sb) &&
3199 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3200 return 0;
3201
3202 return 1;
3203}
3204
3205void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3206 struct ext4_group_desc *gdp)
3207{
3208 if (!ext4_has_group_desc_csum(sb))
3209 return;
3210 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3211}
3212
3213/* Called at mount-time, super-block is locked */
3214static int ext4_check_descriptors(struct super_block *sb,
3215 ext4_fsblk_t sb_block,
3216 ext4_group_t *first_not_zeroed)
3217{
3218 struct ext4_sb_info *sbi = EXT4_SB(sb);
3219 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3220 ext4_fsblk_t last_block;
3221 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3222 ext4_fsblk_t block_bitmap;
3223 ext4_fsblk_t inode_bitmap;
3224 ext4_fsblk_t inode_table;
3225 int flexbg_flag = 0;
3226 ext4_group_t i, grp = sbi->s_groups_count;
3227
3228 if (ext4_has_feature_flex_bg(sb))
3229 flexbg_flag = 1;
3230
3231 ext4_debug("Checking group descriptors");
3232
3233 for (i = 0; i < sbi->s_groups_count; i++) {
3234 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3235
3236 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3237 last_block = ext4_blocks_count(sbi->s_es) - 1;
3238 else
3239 last_block = first_block +
3240 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3241
3242 if ((grp == sbi->s_groups_count) &&
3243 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3244 grp = i;
3245
3246 block_bitmap = ext4_block_bitmap(sb, gdp);
3247 if (block_bitmap == sb_block) {
3248 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3249 "Block bitmap for group %u overlaps "
3250 "superblock", i);
3251 if (!sb_rdonly(sb))
3252 return 0;
3253 }
3254 if (block_bitmap >= sb_block + 1 &&
3255 block_bitmap <= last_bg_block) {
3256 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3257 "Block bitmap for group %u overlaps "
3258 "block group descriptors", i);
3259 if (!sb_rdonly(sb))
3260 return 0;
3261 }
3262 if (block_bitmap < first_block || block_bitmap > last_block) {
3263 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3264 "Block bitmap for group %u not in group "
3265 "(block %llu)!", i, block_bitmap);
3266 return 0;
3267 }
3268 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3269 if (inode_bitmap == sb_block) {
3270 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3271 "Inode bitmap for group %u overlaps "
3272 "superblock", i);
3273 if (!sb_rdonly(sb))
3274 return 0;
3275 }
3276 if (inode_bitmap >= sb_block + 1 &&
3277 inode_bitmap <= last_bg_block) {
3278 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3279 "Inode bitmap for group %u overlaps "
3280 "block group descriptors", i);
3281 if (!sb_rdonly(sb))
3282 return 0;
3283 }
3284 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3285 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3286 "Inode bitmap for group %u not in group "
3287 "(block %llu)!", i, inode_bitmap);
3288 return 0;
3289 }
3290 inode_table = ext4_inode_table(sb, gdp);
3291 if (inode_table == sb_block) {
3292 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3293 "Inode table for group %u overlaps "
3294 "superblock", i);
3295 if (!sb_rdonly(sb))
3296 return 0;
3297 }
3298 if (inode_table >= sb_block + 1 &&
3299 inode_table <= last_bg_block) {
3300 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3301 "Inode table for group %u overlaps "
3302 "block group descriptors", i);
3303 if (!sb_rdonly(sb))
3304 return 0;
3305 }
3306 if (inode_table < first_block ||
3307 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3308 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3309 "Inode table for group %u not in group "
3310 "(block %llu)!", i, inode_table);
3311 return 0;
3312 }
3313 ext4_lock_group(sb, i);
3314 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3315 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3316 "Checksum for group %u failed (%u!=%u)",
3317 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3318 gdp)), le16_to_cpu(gdp->bg_checksum));
3319 if (!sb_rdonly(sb)) {
3320 ext4_unlock_group(sb, i);
3321 return 0;
3322 }
3323 }
3324 ext4_unlock_group(sb, i);
3325 if (!flexbg_flag)
3326 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3327 }
3328 if (NULL != first_not_zeroed)
3329 *first_not_zeroed = grp;
3330 return 1;
3331}
3332
3333/*
3334 * Maximal extent format file size.
3335 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3336 * extent format containers, within a sector_t, and within i_blocks
3337 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3338 * so that won't be a limiting factor.
3339 *
3340 * However there is other limiting factor. We do store extents in the form
3341 * of starting block and length, hence the resulting length of the extent
3342 * covering maximum file size must fit into on-disk format containers as
3343 * well. Given that length is always by 1 unit bigger than max unit (because
3344 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3345 *
3346 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3347 */
3348static loff_t ext4_max_size(int blkbits, int has_huge_files)
3349{
3350 loff_t res;
3351 loff_t upper_limit = MAX_LFS_FILESIZE;
3352
3353 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3354
3355 if (!has_huge_files) {
3356 upper_limit = (1LL << 32) - 1;
3357
3358 /* total blocks in file system block size */
3359 upper_limit >>= (blkbits - 9);
3360 upper_limit <<= blkbits;
3361 }
3362
3363 /*
3364 * 32-bit extent-start container, ee_block. We lower the maxbytes
3365 * by one fs block, so ee_len can cover the extent of maximum file
3366 * size
3367 */
3368 res = (1LL << 32) - 1;
3369 res <<= blkbits;
3370
3371 /* Sanity check against vm- & vfs- imposed limits */
3372 if (res > upper_limit)
3373 res = upper_limit;
3374
3375 return res;
3376}
3377
3378/*
3379 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3380 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3381 * We need to be 1 filesystem block less than the 2^48 sector limit.
3382 */
3383static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3384{
3385 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3386 int meta_blocks;
3387 unsigned int ppb = 1 << (bits - 2);
3388
3389 /*
3390 * This is calculated to be the largest file size for a dense, block
3391 * mapped file such that the file's total number of 512-byte sectors,
3392 * including data and all indirect blocks, does not exceed (2^48 - 1).
3393 *
3394 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3395 * number of 512-byte sectors of the file.
3396 */
3397 if (!has_huge_files) {
3398 /*
3399 * !has_huge_files or implies that the inode i_block field
3400 * represents total file blocks in 2^32 512-byte sectors ==
3401 * size of vfs inode i_blocks * 8
3402 */
3403 upper_limit = (1LL << 32) - 1;
3404
3405 /* total blocks in file system block size */
3406 upper_limit >>= (bits - 9);
3407
3408 } else {
3409 /*
3410 * We use 48 bit ext4_inode i_blocks
3411 * With EXT4_HUGE_FILE_FL set the i_blocks
3412 * represent total number of blocks in
3413 * file system block size
3414 */
3415 upper_limit = (1LL << 48) - 1;
3416
3417 }
3418
3419 /* Compute how many blocks we can address by block tree */
3420 res += ppb;
3421 res += ppb * ppb;
3422 res += ((loff_t)ppb) * ppb * ppb;
3423 /* Compute how many metadata blocks are needed */
3424 meta_blocks = 1;
3425 meta_blocks += 1 + ppb;
3426 meta_blocks += 1 + ppb + ppb * ppb;
3427 /* Does block tree limit file size? */
3428 if (res + meta_blocks <= upper_limit)
3429 goto check_lfs;
3430
3431 res = upper_limit;
3432 /* How many metadata blocks are needed for addressing upper_limit? */
3433 upper_limit -= EXT4_NDIR_BLOCKS;
3434 /* indirect blocks */
3435 meta_blocks = 1;
3436 upper_limit -= ppb;
3437 /* double indirect blocks */
3438 if (upper_limit < ppb * ppb) {
3439 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3440 res -= meta_blocks;
3441 goto check_lfs;
3442 }
3443 meta_blocks += 1 + ppb;
3444 upper_limit -= ppb * ppb;
3445 /* tripple indirect blocks for the rest */
3446 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3447 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3448 res -= meta_blocks;
3449check_lfs:
3450 res <<= bits;
3451 if (res > MAX_LFS_FILESIZE)
3452 res = MAX_LFS_FILESIZE;
3453
3454 return res;
3455}
3456
3457static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3458 ext4_fsblk_t logical_sb_block, int nr)
3459{
3460 struct ext4_sb_info *sbi = EXT4_SB(sb);
3461 ext4_group_t bg, first_meta_bg;
3462 int has_super = 0;
3463
3464 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3465
3466 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3467 return logical_sb_block + nr + 1;
3468 bg = sbi->s_desc_per_block * nr;
3469 if (ext4_bg_has_super(sb, bg))
3470 has_super = 1;
3471
3472 /*
3473 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3474 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3475 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3476 * compensate.
3477 */
3478 if (sb->s_blocksize == 1024 && nr == 0 &&
3479 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3480 has_super++;
3481
3482 return (has_super + ext4_group_first_block_no(sb, bg));
3483}
3484
3485/**
3486 * ext4_get_stripe_size: Get the stripe size.
3487 * @sbi: In memory super block info
3488 *
3489 * If we have specified it via mount option, then
3490 * use the mount option value. If the value specified at mount time is
3491 * greater than the blocks per group use the super block value.
3492 * If the super block value is greater than blocks per group return 0.
3493 * Allocator needs it be less than blocks per group.
3494 *
3495 */
3496static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3497{
3498 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3499 unsigned long stripe_width =
3500 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3501 int ret;
3502
3503 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3504 ret = sbi->s_stripe;
3505 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3506 ret = stripe_width;
3507 else if (stride && stride <= sbi->s_blocks_per_group)
3508 ret = stride;
3509 else
3510 ret = 0;
3511
3512 /*
3513 * If the stripe width is 1, this makes no sense and
3514 * we set it to 0 to turn off stripe handling code.
3515 */
3516 if (ret <= 1)
3517 ret = 0;
3518
3519 return ret;
3520}
3521
3522/*
3523 * Check whether this filesystem can be mounted based on
3524 * the features present and the RDONLY/RDWR mount requested.
3525 * Returns 1 if this filesystem can be mounted as requested,
3526 * 0 if it cannot be.
3527 */
3528int ext4_feature_set_ok(struct super_block *sb, int readonly)
3529{
3530 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3531 ext4_msg(sb, KERN_ERR,
3532 "Couldn't mount because of "
3533 "unsupported optional features (%x)",
3534 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3535 ~EXT4_FEATURE_INCOMPAT_SUPP));
3536 return 0;
3537 }
3538
3539#if !IS_ENABLED(CONFIG_UNICODE)
3540 if (ext4_has_feature_casefold(sb)) {
3541 ext4_msg(sb, KERN_ERR,
3542 "Filesystem with casefold feature cannot be "
3543 "mounted without CONFIG_UNICODE");
3544 return 0;
3545 }
3546#endif
3547
3548 if (readonly)
3549 return 1;
3550
3551 if (ext4_has_feature_readonly(sb)) {
3552 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3553 sb->s_flags |= SB_RDONLY;
3554 return 1;
3555 }
3556
3557 /* Check that feature set is OK for a read-write mount */
3558 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3559 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3560 "unsupported optional features (%x)",
3561 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3562 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3563 return 0;
3564 }
3565 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3566 ext4_msg(sb, KERN_ERR,
3567 "Can't support bigalloc feature without "
3568 "extents feature\n");
3569 return 0;
3570 }
3571
3572#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3573 if (!readonly && (ext4_has_feature_quota(sb) ||
3574 ext4_has_feature_project(sb))) {
3575 ext4_msg(sb, KERN_ERR,
3576 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3577 return 0;
3578 }
3579#endif /* CONFIG_QUOTA */
3580 return 1;
3581}
3582
3583/*
3584 * This function is called once a day if we have errors logged
3585 * on the file system
3586 */
3587static void print_daily_error_info(struct timer_list *t)
3588{
3589 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3590 struct super_block *sb = sbi->s_sb;
3591 struct ext4_super_block *es = sbi->s_es;
3592
3593 if (es->s_error_count)
3594 /* fsck newer than v1.41.13 is needed to clean this condition. */
3595 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3596 le32_to_cpu(es->s_error_count));
3597 if (es->s_first_error_time) {
3598 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3599 sb->s_id,
3600 ext4_get_tstamp(es, s_first_error_time),
3601 (int) sizeof(es->s_first_error_func),
3602 es->s_first_error_func,
3603 le32_to_cpu(es->s_first_error_line));
3604 if (es->s_first_error_ino)
3605 printk(KERN_CONT ": inode %u",
3606 le32_to_cpu(es->s_first_error_ino));
3607 if (es->s_first_error_block)
3608 printk(KERN_CONT ": block %llu", (unsigned long long)
3609 le64_to_cpu(es->s_first_error_block));
3610 printk(KERN_CONT "\n");
3611 }
3612 if (es->s_last_error_time) {
3613 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3614 sb->s_id,
3615 ext4_get_tstamp(es, s_last_error_time),
3616 (int) sizeof(es->s_last_error_func),
3617 es->s_last_error_func,
3618 le32_to_cpu(es->s_last_error_line));
3619 if (es->s_last_error_ino)
3620 printk(KERN_CONT ": inode %u",
3621 le32_to_cpu(es->s_last_error_ino));
3622 if (es->s_last_error_block)
3623 printk(KERN_CONT ": block %llu", (unsigned long long)
3624 le64_to_cpu(es->s_last_error_block));
3625 printk(KERN_CONT "\n");
3626 }
3627 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3628}
3629
3630/* Find next suitable group and run ext4_init_inode_table */
3631static int ext4_run_li_request(struct ext4_li_request *elr)
3632{
3633 struct ext4_group_desc *gdp = NULL;
3634 struct super_block *sb = elr->lr_super;
3635 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3636 ext4_group_t group = elr->lr_next_group;
3637 unsigned int prefetch_ios = 0;
3638 int ret = 0;
3639 u64 start_time;
3640
3641 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3642 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3643 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3644 if (prefetch_ios)
3645 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3646 prefetch_ios);
3647 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3648 prefetch_ios);
3649 if (group >= elr->lr_next_group) {
3650 ret = 1;
3651 if (elr->lr_first_not_zeroed != ngroups &&
3652 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3653 elr->lr_next_group = elr->lr_first_not_zeroed;
3654 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3655 ret = 0;
3656 }
3657 }
3658 return ret;
3659 }
3660
3661 for (; group < ngroups; group++) {
3662 gdp = ext4_get_group_desc(sb, group, NULL);
3663 if (!gdp) {
3664 ret = 1;
3665 break;
3666 }
3667
3668 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3669 break;
3670 }
3671
3672 if (group >= ngroups)
3673 ret = 1;
3674
3675 if (!ret) {
3676 start_time = ktime_get_real_ns();
3677 ret = ext4_init_inode_table(sb, group,
3678 elr->lr_timeout ? 0 : 1);
3679 trace_ext4_lazy_itable_init(sb, group);
3680 if (elr->lr_timeout == 0) {
3681 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3682 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3683 }
3684 elr->lr_next_sched = jiffies + elr->lr_timeout;
3685 elr->lr_next_group = group + 1;
3686 }
3687 return ret;
3688}
3689
3690/*
3691 * Remove lr_request from the list_request and free the
3692 * request structure. Should be called with li_list_mtx held
3693 */
3694static void ext4_remove_li_request(struct ext4_li_request *elr)
3695{
3696 if (!elr)
3697 return;
3698
3699 list_del(&elr->lr_request);
3700 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3701 kfree(elr);
3702}
3703
3704static void ext4_unregister_li_request(struct super_block *sb)
3705{
3706 mutex_lock(&ext4_li_mtx);
3707 if (!ext4_li_info) {
3708 mutex_unlock(&ext4_li_mtx);
3709 return;
3710 }
3711
3712 mutex_lock(&ext4_li_info->li_list_mtx);
3713 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3714 mutex_unlock(&ext4_li_info->li_list_mtx);
3715 mutex_unlock(&ext4_li_mtx);
3716}
3717
3718static struct task_struct *ext4_lazyinit_task;
3719
3720/*
3721 * This is the function where ext4lazyinit thread lives. It walks
3722 * through the request list searching for next scheduled filesystem.
3723 * When such a fs is found, run the lazy initialization request
3724 * (ext4_rn_li_request) and keep track of the time spend in this
3725 * function. Based on that time we compute next schedule time of
3726 * the request. When walking through the list is complete, compute
3727 * next waking time and put itself into sleep.
3728 */
3729static int ext4_lazyinit_thread(void *arg)
3730{
3731 struct ext4_lazy_init *eli = arg;
3732 struct list_head *pos, *n;
3733 struct ext4_li_request *elr;
3734 unsigned long next_wakeup, cur;
3735
3736 BUG_ON(NULL == eli);
3737 set_freezable();
3738
3739cont_thread:
3740 while (true) {
3741 next_wakeup = MAX_JIFFY_OFFSET;
3742
3743 mutex_lock(&eli->li_list_mtx);
3744 if (list_empty(&eli->li_request_list)) {
3745 mutex_unlock(&eli->li_list_mtx);
3746 goto exit_thread;
3747 }
3748 list_for_each_safe(pos, n, &eli->li_request_list) {
3749 int err = 0;
3750 int progress = 0;
3751 elr = list_entry(pos, struct ext4_li_request,
3752 lr_request);
3753
3754 if (time_before(jiffies, elr->lr_next_sched)) {
3755 if (time_before(elr->lr_next_sched, next_wakeup))
3756 next_wakeup = elr->lr_next_sched;
3757 continue;
3758 }
3759 if (down_read_trylock(&elr->lr_super->s_umount)) {
3760 if (sb_start_write_trylock(elr->lr_super)) {
3761 progress = 1;
3762 /*
3763 * We hold sb->s_umount, sb can not
3764 * be removed from the list, it is
3765 * now safe to drop li_list_mtx
3766 */
3767 mutex_unlock(&eli->li_list_mtx);
3768 err = ext4_run_li_request(elr);
3769 sb_end_write(elr->lr_super);
3770 mutex_lock(&eli->li_list_mtx);
3771 n = pos->next;
3772 }
3773 up_read((&elr->lr_super->s_umount));
3774 }
3775 /* error, remove the lazy_init job */
3776 if (err) {
3777 ext4_remove_li_request(elr);
3778 continue;
3779 }
3780 if (!progress) {
3781 elr->lr_next_sched = jiffies +
3782 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3783 }
3784 if (time_before(elr->lr_next_sched, next_wakeup))
3785 next_wakeup = elr->lr_next_sched;
3786 }
3787 mutex_unlock(&eli->li_list_mtx);
3788
3789 try_to_freeze();
3790
3791 cur = jiffies;
3792 if ((time_after_eq(cur, next_wakeup)) ||
3793 (MAX_JIFFY_OFFSET == next_wakeup)) {
3794 cond_resched();
3795 continue;
3796 }
3797
3798 schedule_timeout_interruptible(next_wakeup - cur);
3799
3800 if (kthread_should_stop()) {
3801 ext4_clear_request_list();
3802 goto exit_thread;
3803 }
3804 }
3805
3806exit_thread:
3807 /*
3808 * It looks like the request list is empty, but we need
3809 * to check it under the li_list_mtx lock, to prevent any
3810 * additions into it, and of course we should lock ext4_li_mtx
3811 * to atomically free the list and ext4_li_info, because at
3812 * this point another ext4 filesystem could be registering
3813 * new one.
3814 */
3815 mutex_lock(&ext4_li_mtx);
3816 mutex_lock(&eli->li_list_mtx);
3817 if (!list_empty(&eli->li_request_list)) {
3818 mutex_unlock(&eli->li_list_mtx);
3819 mutex_unlock(&ext4_li_mtx);
3820 goto cont_thread;
3821 }
3822 mutex_unlock(&eli->li_list_mtx);
3823 kfree(ext4_li_info);
3824 ext4_li_info = NULL;
3825 mutex_unlock(&ext4_li_mtx);
3826
3827 return 0;
3828}
3829
3830static void ext4_clear_request_list(void)
3831{
3832 struct list_head *pos, *n;
3833 struct ext4_li_request *elr;
3834
3835 mutex_lock(&ext4_li_info->li_list_mtx);
3836 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3837 elr = list_entry(pos, struct ext4_li_request,
3838 lr_request);
3839 ext4_remove_li_request(elr);
3840 }
3841 mutex_unlock(&ext4_li_info->li_list_mtx);
3842}
3843
3844static int ext4_run_lazyinit_thread(void)
3845{
3846 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3847 ext4_li_info, "ext4lazyinit");
3848 if (IS_ERR(ext4_lazyinit_task)) {
3849 int err = PTR_ERR(ext4_lazyinit_task);
3850 ext4_clear_request_list();
3851 kfree(ext4_li_info);
3852 ext4_li_info = NULL;
3853 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3854 "initialization thread\n",
3855 err);
3856 return err;
3857 }
3858 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3859 return 0;
3860}
3861
3862/*
3863 * Check whether it make sense to run itable init. thread or not.
3864 * If there is at least one uninitialized inode table, return
3865 * corresponding group number, else the loop goes through all
3866 * groups and return total number of groups.
3867 */
3868static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3869{
3870 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3871 struct ext4_group_desc *gdp = NULL;
3872
3873 if (!ext4_has_group_desc_csum(sb))
3874 return ngroups;
3875
3876 for (group = 0; group < ngroups; group++) {
3877 gdp = ext4_get_group_desc(sb, group, NULL);
3878 if (!gdp)
3879 continue;
3880
3881 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3882 break;
3883 }
3884
3885 return group;
3886}
3887
3888static int ext4_li_info_new(void)
3889{
3890 struct ext4_lazy_init *eli = NULL;
3891
3892 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3893 if (!eli)
3894 return -ENOMEM;
3895
3896 INIT_LIST_HEAD(&eli->li_request_list);
3897 mutex_init(&eli->li_list_mtx);
3898
3899 eli->li_state |= EXT4_LAZYINIT_QUIT;
3900
3901 ext4_li_info = eli;
3902
3903 return 0;
3904}
3905
3906static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3907 ext4_group_t start)
3908{
3909 struct ext4_li_request *elr;
3910
3911 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3912 if (!elr)
3913 return NULL;
3914
3915 elr->lr_super = sb;
3916 elr->lr_first_not_zeroed = start;
3917 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3918 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3919 elr->lr_next_group = start;
3920 } else {
3921 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3922 }
3923
3924 /*
3925 * Randomize first schedule time of the request to
3926 * spread the inode table initialization requests
3927 * better.
3928 */
3929 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3930 return elr;
3931}
3932
3933int ext4_register_li_request(struct super_block *sb,
3934 ext4_group_t first_not_zeroed)
3935{
3936 struct ext4_sb_info *sbi = EXT4_SB(sb);
3937 struct ext4_li_request *elr = NULL;
3938 ext4_group_t ngroups = sbi->s_groups_count;
3939 int ret = 0;
3940
3941 mutex_lock(&ext4_li_mtx);
3942 if (sbi->s_li_request != NULL) {
3943 /*
3944 * Reset timeout so it can be computed again, because
3945 * s_li_wait_mult might have changed.
3946 */
3947 sbi->s_li_request->lr_timeout = 0;
3948 goto out;
3949 }
3950
3951 if (sb_rdonly(sb) ||
3952 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3953 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3954 goto out;
3955
3956 elr = ext4_li_request_new(sb, first_not_zeroed);
3957 if (!elr) {
3958 ret = -ENOMEM;
3959 goto out;
3960 }
3961
3962 if (NULL == ext4_li_info) {
3963 ret = ext4_li_info_new();
3964 if (ret)
3965 goto out;
3966 }
3967
3968 mutex_lock(&ext4_li_info->li_list_mtx);
3969 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3970 mutex_unlock(&ext4_li_info->li_list_mtx);
3971
3972 sbi->s_li_request = elr;
3973 /*
3974 * set elr to NULL here since it has been inserted to
3975 * the request_list and the removal and free of it is
3976 * handled by ext4_clear_request_list from now on.
3977 */
3978 elr = NULL;
3979
3980 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3981 ret = ext4_run_lazyinit_thread();
3982 if (ret)
3983 goto out;
3984 }
3985out:
3986 mutex_unlock(&ext4_li_mtx);
3987 if (ret)
3988 kfree(elr);
3989 return ret;
3990}
3991
3992/*
3993 * We do not need to lock anything since this is called on
3994 * module unload.
3995 */
3996static void ext4_destroy_lazyinit_thread(void)
3997{
3998 /*
3999 * If thread exited earlier
4000 * there's nothing to be done.
4001 */
4002 if (!ext4_li_info || !ext4_lazyinit_task)
4003 return;
4004
4005 kthread_stop(ext4_lazyinit_task);
4006}
4007
4008static int set_journal_csum_feature_set(struct super_block *sb)
4009{
4010 int ret = 1;
4011 int compat, incompat;
4012 struct ext4_sb_info *sbi = EXT4_SB(sb);
4013
4014 if (ext4_has_metadata_csum(sb)) {
4015 /* journal checksum v3 */
4016 compat = 0;
4017 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4018 } else {
4019 /* journal checksum v1 */
4020 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4021 incompat = 0;
4022 }
4023
4024 jbd2_journal_clear_features(sbi->s_journal,
4025 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4026 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4027 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4028 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4029 ret = jbd2_journal_set_features(sbi->s_journal,
4030 compat, 0,
4031 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4032 incompat);
4033 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4034 ret = jbd2_journal_set_features(sbi->s_journal,
4035 compat, 0,
4036 incompat);
4037 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4038 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4039 } else {
4040 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4041 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4042 }
4043
4044 return ret;
4045}
4046
4047/*
4048 * Note: calculating the overhead so we can be compatible with
4049 * historical BSD practice is quite difficult in the face of
4050 * clusters/bigalloc. This is because multiple metadata blocks from
4051 * different block group can end up in the same allocation cluster.
4052 * Calculating the exact overhead in the face of clustered allocation
4053 * requires either O(all block bitmaps) in memory or O(number of block
4054 * groups**2) in time. We will still calculate the superblock for
4055 * older file systems --- and if we come across with a bigalloc file
4056 * system with zero in s_overhead_clusters the estimate will be close to
4057 * correct especially for very large cluster sizes --- but for newer
4058 * file systems, it's better to calculate this figure once at mkfs
4059 * time, and store it in the superblock. If the superblock value is
4060 * present (even for non-bigalloc file systems), we will use it.
4061 */
4062static int count_overhead(struct super_block *sb, ext4_group_t grp,
4063 char *buf)
4064{
4065 struct ext4_sb_info *sbi = EXT4_SB(sb);
4066 struct ext4_group_desc *gdp;
4067 ext4_fsblk_t first_block, last_block, b;
4068 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4069 int s, j, count = 0;
4070 int has_super = ext4_bg_has_super(sb, grp);
4071
4072 if (!ext4_has_feature_bigalloc(sb))
4073 return (has_super + ext4_bg_num_gdb(sb, grp) +
4074 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4075 sbi->s_itb_per_group + 2);
4076
4077 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4078 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4079 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4080 for (i = 0; i < ngroups; i++) {
4081 gdp = ext4_get_group_desc(sb, i, NULL);
4082 b = ext4_block_bitmap(sb, gdp);
4083 if (b >= first_block && b <= last_block) {
4084 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4085 count++;
4086 }
4087 b = ext4_inode_bitmap(sb, gdp);
4088 if (b >= first_block && b <= last_block) {
4089 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4090 count++;
4091 }
4092 b = ext4_inode_table(sb, gdp);
4093 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4094 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4095 int c = EXT4_B2C(sbi, b - first_block);
4096 ext4_set_bit(c, buf);
4097 count++;
4098 }
4099 if (i != grp)
4100 continue;
4101 s = 0;
4102 if (ext4_bg_has_super(sb, grp)) {
4103 ext4_set_bit(s++, buf);
4104 count++;
4105 }
4106 j = ext4_bg_num_gdb(sb, grp);
4107 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4108 ext4_error(sb, "Invalid number of block group "
4109 "descriptor blocks: %d", j);
4110 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4111 }
4112 count += j;
4113 for (; j > 0; j--)
4114 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4115 }
4116 if (!count)
4117 return 0;
4118 return EXT4_CLUSTERS_PER_GROUP(sb) -
4119 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4120}
4121
4122/*
4123 * Compute the overhead and stash it in sbi->s_overhead
4124 */
4125int ext4_calculate_overhead(struct super_block *sb)
4126{
4127 struct ext4_sb_info *sbi = EXT4_SB(sb);
4128 struct ext4_super_block *es = sbi->s_es;
4129 struct inode *j_inode;
4130 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4131 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4132 ext4_fsblk_t overhead = 0;
4133 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4134
4135 if (!buf)
4136 return -ENOMEM;
4137
4138 /*
4139 * Compute the overhead (FS structures). This is constant
4140 * for a given filesystem unless the number of block groups
4141 * changes so we cache the previous value until it does.
4142 */
4143
4144 /*
4145 * All of the blocks before first_data_block are overhead
4146 */
4147 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4148
4149 /*
4150 * Add the overhead found in each block group
4151 */
4152 for (i = 0; i < ngroups; i++) {
4153 int blks;
4154
4155 blks = count_overhead(sb, i, buf);
4156 overhead += blks;
4157 if (blks)
4158 memset(buf, 0, PAGE_SIZE);
4159 cond_resched();
4160 }
4161
4162 /*
4163 * Add the internal journal blocks whether the journal has been
4164 * loaded or not
4165 */
4166 if (sbi->s_journal && !sbi->s_journal_bdev)
4167 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4168 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4169 /* j_inum for internal journal is non-zero */
4170 j_inode = ext4_get_journal_inode(sb, j_inum);
4171 if (j_inode) {
4172 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4173 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4174 iput(j_inode);
4175 } else {
4176 ext4_msg(sb, KERN_ERR, "can't get journal size");
4177 }
4178 }
4179 sbi->s_overhead = overhead;
4180 smp_wmb();
4181 free_page((unsigned long) buf);
4182 return 0;
4183}
4184
4185static void ext4_set_resv_clusters(struct super_block *sb)
4186{
4187 ext4_fsblk_t resv_clusters;
4188 struct ext4_sb_info *sbi = EXT4_SB(sb);
4189
4190 /*
4191 * There's no need to reserve anything when we aren't using extents.
4192 * The space estimates are exact, there are no unwritten extents,
4193 * hole punching doesn't need new metadata... This is needed especially
4194 * to keep ext2/3 backward compatibility.
4195 */
4196 if (!ext4_has_feature_extents(sb))
4197 return;
4198 /*
4199 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4200 * This should cover the situations where we can not afford to run
4201 * out of space like for example punch hole, or converting
4202 * unwritten extents in delalloc path. In most cases such
4203 * allocation would require 1, or 2 blocks, higher numbers are
4204 * very rare.
4205 */
4206 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4207 sbi->s_cluster_bits);
4208
4209 do_div(resv_clusters, 50);
4210 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4211
4212 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4213}
4214
4215static const char *ext4_quota_mode(struct super_block *sb)
4216{
4217#ifdef CONFIG_QUOTA
4218 if (!ext4_quota_capable(sb))
4219 return "none";
4220
4221 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4222 return "journalled";
4223 else
4224 return "writeback";
4225#else
4226 return "disabled";
4227#endif
4228}
4229
4230static void ext4_setup_csum_trigger(struct super_block *sb,
4231 enum ext4_journal_trigger_type type,
4232 void (*trigger)(
4233 struct jbd2_buffer_trigger_type *type,
4234 struct buffer_head *bh,
4235 void *mapped_data,
4236 size_t size))
4237{
4238 struct ext4_sb_info *sbi = EXT4_SB(sb);
4239
4240 sbi->s_journal_triggers[type].sb = sb;
4241 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4242}
4243
4244static void ext4_free_sbi(struct ext4_sb_info *sbi)
4245{
4246 if (!sbi)
4247 return;
4248
4249 kfree(sbi->s_blockgroup_lock);
4250 fs_put_dax(sbi->s_daxdev, NULL);
4251 kfree(sbi);
4252}
4253
4254static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4255{
4256 struct ext4_sb_info *sbi;
4257
4258 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4259 if (!sbi)
4260 return NULL;
4261
4262 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4263 NULL, NULL);
4264
4265 sbi->s_blockgroup_lock =
4266 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4267
4268 if (!sbi->s_blockgroup_lock)
4269 goto err_out;
4270
4271 sb->s_fs_info = sbi;
4272 sbi->s_sb = sb;
4273 return sbi;
4274err_out:
4275 fs_put_dax(sbi->s_daxdev, NULL);
4276 kfree(sbi);
4277 return NULL;
4278}
4279
4280static void ext4_set_def_opts(struct super_block *sb,
4281 struct ext4_super_block *es)
4282{
4283 unsigned long def_mount_opts;
4284
4285 /* Set defaults before we parse the mount options */
4286 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4287 set_opt(sb, INIT_INODE_TABLE);
4288 if (def_mount_opts & EXT4_DEFM_DEBUG)
4289 set_opt(sb, DEBUG);
4290 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4291 set_opt(sb, GRPID);
4292 if (def_mount_opts & EXT4_DEFM_UID16)
4293 set_opt(sb, NO_UID32);
4294 /* xattr user namespace & acls are now defaulted on */
4295 set_opt(sb, XATTR_USER);
4296#ifdef CONFIG_EXT4_FS_POSIX_ACL
4297 set_opt(sb, POSIX_ACL);
4298#endif
4299 if (ext4_has_feature_fast_commit(sb))
4300 set_opt2(sb, JOURNAL_FAST_COMMIT);
4301 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4302 if (ext4_has_metadata_csum(sb))
4303 set_opt(sb, JOURNAL_CHECKSUM);
4304
4305 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4306 set_opt(sb, JOURNAL_DATA);
4307 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4308 set_opt(sb, ORDERED_DATA);
4309 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4310 set_opt(sb, WRITEBACK_DATA);
4311
4312 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4313 set_opt(sb, ERRORS_PANIC);
4314 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4315 set_opt(sb, ERRORS_CONT);
4316 else
4317 set_opt(sb, ERRORS_RO);
4318 /* block_validity enabled by default; disable with noblock_validity */
4319 set_opt(sb, BLOCK_VALIDITY);
4320 if (def_mount_opts & EXT4_DEFM_DISCARD)
4321 set_opt(sb, DISCARD);
4322
4323 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4324 set_opt(sb, BARRIER);
4325
4326 /*
4327 * enable delayed allocation by default
4328 * Use -o nodelalloc to turn it off
4329 */
4330 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4331 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4332 set_opt(sb, DELALLOC);
4333
4334 if (sb->s_blocksize == PAGE_SIZE)
4335 set_opt(sb, DIOREAD_NOLOCK);
4336}
4337
4338static int ext4_handle_clustersize(struct super_block *sb)
4339{
4340 struct ext4_sb_info *sbi = EXT4_SB(sb);
4341 struct ext4_super_block *es = sbi->s_es;
4342 int clustersize;
4343
4344 /* Handle clustersize */
4345 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4346 if (ext4_has_feature_bigalloc(sb)) {
4347 if (clustersize < sb->s_blocksize) {
4348 ext4_msg(sb, KERN_ERR,
4349 "cluster size (%d) smaller than "
4350 "block size (%lu)", clustersize, sb->s_blocksize);
4351 return -EINVAL;
4352 }
4353 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4354 le32_to_cpu(es->s_log_block_size);
4355 sbi->s_clusters_per_group =
4356 le32_to_cpu(es->s_clusters_per_group);
4357 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4358 ext4_msg(sb, KERN_ERR,
4359 "#clusters per group too big: %lu",
4360 sbi->s_clusters_per_group);
4361 return -EINVAL;
4362 }
4363 if (sbi->s_blocks_per_group !=
4364 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4365 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4366 "clusters per group (%lu) inconsistent",
4367 sbi->s_blocks_per_group,
4368 sbi->s_clusters_per_group);
4369 return -EINVAL;
4370 }
4371 } else {
4372 if (clustersize != sb->s_blocksize) {
4373 ext4_msg(sb, KERN_ERR,
4374 "fragment/cluster size (%d) != "
4375 "block size (%lu)", clustersize, sb->s_blocksize);
4376 return -EINVAL;
4377 }
4378 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4379 ext4_msg(sb, KERN_ERR,
4380 "#blocks per group too big: %lu",
4381 sbi->s_blocks_per_group);
4382 return -EINVAL;
4383 }
4384 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4385 sbi->s_cluster_bits = 0;
4386 }
4387 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4388
4389 /* Do we have standard group size of clustersize * 8 blocks ? */
4390 if (sbi->s_blocks_per_group == clustersize << 3)
4391 set_opt2(sb, STD_GROUP_SIZE);
4392
4393 return 0;
4394}
4395
4396static void ext4_fast_commit_init(struct super_block *sb)
4397{
4398 struct ext4_sb_info *sbi = EXT4_SB(sb);
4399
4400 /* Initialize fast commit stuff */
4401 atomic_set(&sbi->s_fc_subtid, 0);
4402 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4403 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4404 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4405 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4406 sbi->s_fc_bytes = 0;
4407 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4408 sbi->s_fc_ineligible_tid = 0;
4409 spin_lock_init(&sbi->s_fc_lock);
4410 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4411 sbi->s_fc_replay_state.fc_regions = NULL;
4412 sbi->s_fc_replay_state.fc_regions_size = 0;
4413 sbi->s_fc_replay_state.fc_regions_used = 0;
4414 sbi->s_fc_replay_state.fc_regions_valid = 0;
4415 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4416 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4417 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4418}
4419
4420static int ext4_inode_info_init(struct super_block *sb,
4421 struct ext4_super_block *es)
4422{
4423 struct ext4_sb_info *sbi = EXT4_SB(sb);
4424
4425 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4426 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4427 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4428 } else {
4429 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4430 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4431 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4432 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4433 sbi->s_first_ino);
4434 return -EINVAL;
4435 }
4436 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4437 (!is_power_of_2(sbi->s_inode_size)) ||
4438 (sbi->s_inode_size > sb->s_blocksize)) {
4439 ext4_msg(sb, KERN_ERR,
4440 "unsupported inode size: %d",
4441 sbi->s_inode_size);
4442 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4443 return -EINVAL;
4444 }
4445 /*
4446 * i_atime_extra is the last extra field available for
4447 * [acm]times in struct ext4_inode. Checking for that
4448 * field should suffice to ensure we have extra space
4449 * for all three.
4450 */
4451 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4452 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4453 sb->s_time_gran = 1;
4454 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4455 } else {
4456 sb->s_time_gran = NSEC_PER_SEC;
4457 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4458 }
4459 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4460 }
4461
4462 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4463 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4464 EXT4_GOOD_OLD_INODE_SIZE;
4465 if (ext4_has_feature_extra_isize(sb)) {
4466 unsigned v, max = (sbi->s_inode_size -
4467 EXT4_GOOD_OLD_INODE_SIZE);
4468
4469 v = le16_to_cpu(es->s_want_extra_isize);
4470 if (v > max) {
4471 ext4_msg(sb, KERN_ERR,
4472 "bad s_want_extra_isize: %d", v);
4473 return -EINVAL;
4474 }
4475 if (sbi->s_want_extra_isize < v)
4476 sbi->s_want_extra_isize = v;
4477
4478 v = le16_to_cpu(es->s_min_extra_isize);
4479 if (v > max) {
4480 ext4_msg(sb, KERN_ERR,
4481 "bad s_min_extra_isize: %d", v);
4482 return -EINVAL;
4483 }
4484 if (sbi->s_want_extra_isize < v)
4485 sbi->s_want_extra_isize = v;
4486 }
4487 }
4488
4489 return 0;
4490}
4491
4492#if IS_ENABLED(CONFIG_UNICODE)
4493static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4494{
4495 const struct ext4_sb_encodings *encoding_info;
4496 struct unicode_map *encoding;
4497 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4498
4499 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4500 return 0;
4501
4502 encoding_info = ext4_sb_read_encoding(es);
4503 if (!encoding_info) {
4504 ext4_msg(sb, KERN_ERR,
4505 "Encoding requested by superblock is unknown");
4506 return -EINVAL;
4507 }
4508
4509 encoding = utf8_load(encoding_info->version);
4510 if (IS_ERR(encoding)) {
4511 ext4_msg(sb, KERN_ERR,
4512 "can't mount with superblock charset: %s-%u.%u.%u "
4513 "not supported by the kernel. flags: 0x%x.",
4514 encoding_info->name,
4515 unicode_major(encoding_info->version),
4516 unicode_minor(encoding_info->version),
4517 unicode_rev(encoding_info->version),
4518 encoding_flags);
4519 return -EINVAL;
4520 }
4521 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4522 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4523 unicode_major(encoding_info->version),
4524 unicode_minor(encoding_info->version),
4525 unicode_rev(encoding_info->version),
4526 encoding_flags);
4527
4528 sb->s_encoding = encoding;
4529 sb->s_encoding_flags = encoding_flags;
4530
4531 return 0;
4532}
4533#else
4534static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4535{
4536 return 0;
4537}
4538#endif
4539
4540static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4541{
4542 struct ext4_sb_info *sbi = EXT4_SB(sb);
4543
4544 /* Warn if metadata_csum and gdt_csum are both set. */
4545 if (ext4_has_feature_metadata_csum(sb) &&
4546 ext4_has_feature_gdt_csum(sb))
4547 ext4_warning(sb, "metadata_csum and uninit_bg are "
4548 "redundant flags; please run fsck.");
4549
4550 /* Check for a known checksum algorithm */
4551 if (!ext4_verify_csum_type(sb, es)) {
4552 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4553 "unknown checksum algorithm.");
4554 return -EINVAL;
4555 }
4556 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4557 ext4_orphan_file_block_trigger);
4558
4559 /* Load the checksum driver */
4560 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4561 if (IS_ERR(sbi->s_chksum_driver)) {
4562 int ret = PTR_ERR(sbi->s_chksum_driver);
4563 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4564 sbi->s_chksum_driver = NULL;
4565 return ret;
4566 }
4567
4568 /* Check superblock checksum */
4569 if (!ext4_superblock_csum_verify(sb, es)) {
4570 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4571 "invalid superblock checksum. Run e2fsck?");
4572 return -EFSBADCRC;
4573 }
4574
4575 /* Precompute checksum seed for all metadata */
4576 if (ext4_has_feature_csum_seed(sb))
4577 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4578 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4579 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4580 sizeof(es->s_uuid));
4581 return 0;
4582}
4583
4584static int ext4_check_feature_compatibility(struct super_block *sb,
4585 struct ext4_super_block *es,
4586 int silent)
4587{
4588 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4589 (ext4_has_compat_features(sb) ||
4590 ext4_has_ro_compat_features(sb) ||
4591 ext4_has_incompat_features(sb)))
4592 ext4_msg(sb, KERN_WARNING,
4593 "feature flags set on rev 0 fs, "
4594 "running e2fsck is recommended");
4595
4596 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4597 set_opt2(sb, HURD_COMPAT);
4598 if (ext4_has_feature_64bit(sb)) {
4599 ext4_msg(sb, KERN_ERR,
4600 "The Hurd can't support 64-bit file systems");
4601 return -EINVAL;
4602 }
4603
4604 /*
4605 * ea_inode feature uses l_i_version field which is not
4606 * available in HURD_COMPAT mode.
4607 */
4608 if (ext4_has_feature_ea_inode(sb)) {
4609 ext4_msg(sb, KERN_ERR,
4610 "ea_inode feature is not supported for Hurd");
4611 return -EINVAL;
4612 }
4613 }
4614
4615 if (IS_EXT2_SB(sb)) {
4616 if (ext2_feature_set_ok(sb))
4617 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4618 "using the ext4 subsystem");
4619 else {
4620 /*
4621 * If we're probing be silent, if this looks like
4622 * it's actually an ext[34] filesystem.
4623 */
4624 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4625 return -EINVAL;
4626 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4627 "to feature incompatibilities");
4628 return -EINVAL;
4629 }
4630 }
4631
4632 if (IS_EXT3_SB(sb)) {
4633 if (ext3_feature_set_ok(sb))
4634 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4635 "using the ext4 subsystem");
4636 else {
4637 /*
4638 * If we're probing be silent, if this looks like
4639 * it's actually an ext4 filesystem.
4640 */
4641 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4642 return -EINVAL;
4643 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4644 "to feature incompatibilities");
4645 return -EINVAL;
4646 }
4647 }
4648
4649 /*
4650 * Check feature flags regardless of the revision level, since we
4651 * previously didn't change the revision level when setting the flags,
4652 * so there is a chance incompat flags are set on a rev 0 filesystem.
4653 */
4654 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4655 return -EINVAL;
4656
4657 return 0;
4658}
4659
4660static int ext4_geometry_check(struct super_block *sb,
4661 struct ext4_super_block *es)
4662{
4663 struct ext4_sb_info *sbi = EXT4_SB(sb);
4664 __u64 blocks_count;
4665
4666 /* check blocks count against device size */
4667 blocks_count = sb_bdev_nr_blocks(sb);
4668 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4669 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4670 "exceeds size of device (%llu blocks)",
4671 ext4_blocks_count(es), blocks_count);
4672 return -EINVAL;
4673 }
4674
4675 /*
4676 * It makes no sense for the first data block to be beyond the end
4677 * of the filesystem.
4678 */
4679 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4680 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4681 "block %u is beyond end of filesystem (%llu)",
4682 le32_to_cpu(es->s_first_data_block),
4683 ext4_blocks_count(es));
4684 return -EINVAL;
4685 }
4686 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4687 (sbi->s_cluster_ratio == 1)) {
4688 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4689 "block is 0 with a 1k block and cluster size");
4690 return -EINVAL;
4691 }
4692
4693 blocks_count = (ext4_blocks_count(es) -
4694 le32_to_cpu(es->s_first_data_block) +
4695 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4696 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4697 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4698 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4699 "(block count %llu, first data block %u, "
4700 "blocks per group %lu)", blocks_count,
4701 ext4_blocks_count(es),
4702 le32_to_cpu(es->s_first_data_block),
4703 EXT4_BLOCKS_PER_GROUP(sb));
4704 return -EINVAL;
4705 }
4706 sbi->s_groups_count = blocks_count;
4707 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4708 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4709 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4710 le32_to_cpu(es->s_inodes_count)) {
4711 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4712 le32_to_cpu(es->s_inodes_count),
4713 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4714 return -EINVAL;
4715 }
4716
4717 return 0;
4718}
4719
4720static void ext4_group_desc_free(struct ext4_sb_info *sbi)
4721{
4722 struct buffer_head **group_desc;
4723 int i;
4724
4725 rcu_read_lock();
4726 group_desc = rcu_dereference(sbi->s_group_desc);
4727 for (i = 0; i < sbi->s_gdb_count; i++)
4728 brelse(group_desc[i]);
4729 kvfree(group_desc);
4730 rcu_read_unlock();
4731}
4732
4733static int ext4_group_desc_init(struct super_block *sb,
4734 struct ext4_super_block *es,
4735 ext4_fsblk_t logical_sb_block,
4736 ext4_group_t *first_not_zeroed)
4737{
4738 struct ext4_sb_info *sbi = EXT4_SB(sb);
4739 unsigned int db_count;
4740 ext4_fsblk_t block;
4741 int ret;
4742 int i;
4743
4744 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4745 EXT4_DESC_PER_BLOCK(sb);
4746 if (ext4_has_feature_meta_bg(sb)) {
4747 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4748 ext4_msg(sb, KERN_WARNING,
4749 "first meta block group too large: %u "
4750 "(group descriptor block count %u)",
4751 le32_to_cpu(es->s_first_meta_bg), db_count);
4752 return -EINVAL;
4753 }
4754 }
4755 rcu_assign_pointer(sbi->s_group_desc,
4756 kvmalloc_array(db_count,
4757 sizeof(struct buffer_head *),
4758 GFP_KERNEL));
4759 if (sbi->s_group_desc == NULL) {
4760 ext4_msg(sb, KERN_ERR, "not enough memory");
4761 return -ENOMEM;
4762 }
4763
4764 bgl_lock_init(sbi->s_blockgroup_lock);
4765
4766 /* Pre-read the descriptors into the buffer cache */
4767 for (i = 0; i < db_count; i++) {
4768 block = descriptor_loc(sb, logical_sb_block, i);
4769 ext4_sb_breadahead_unmovable(sb, block);
4770 }
4771
4772 for (i = 0; i < db_count; i++) {
4773 struct buffer_head *bh;
4774
4775 block = descriptor_loc(sb, logical_sb_block, i);
4776 bh = ext4_sb_bread_unmovable(sb, block);
4777 if (IS_ERR(bh)) {
4778 ext4_msg(sb, KERN_ERR,
4779 "can't read group descriptor %d", i);
4780 sbi->s_gdb_count = i;
4781 ret = PTR_ERR(bh);
4782 goto out;
4783 }
4784 rcu_read_lock();
4785 rcu_dereference(sbi->s_group_desc)[i] = bh;
4786 rcu_read_unlock();
4787 }
4788 sbi->s_gdb_count = db_count;
4789 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4790 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4791 ret = -EFSCORRUPTED;
4792 goto out;
4793 }
4794 return 0;
4795out:
4796 ext4_group_desc_free(sbi);
4797 return ret;
4798}
4799
4800static int ext4_load_and_init_journal(struct super_block *sb,
4801 struct ext4_super_block *es,
4802 struct ext4_fs_context *ctx)
4803{
4804 struct ext4_sb_info *sbi = EXT4_SB(sb);
4805 int err;
4806
4807 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4808 if (err)
4809 return err;
4810
4811 if (ext4_has_feature_64bit(sb) &&
4812 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4813 JBD2_FEATURE_INCOMPAT_64BIT)) {
4814 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4815 goto out;
4816 }
4817
4818 if (!set_journal_csum_feature_set(sb)) {
4819 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4820 "feature set");
4821 goto out;
4822 }
4823
4824 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4825 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4826 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4827 ext4_msg(sb, KERN_ERR,
4828 "Failed to set fast commit journal feature");
4829 goto out;
4830 }
4831
4832 /* We have now updated the journal if required, so we can
4833 * validate the data journaling mode. */
4834 switch (test_opt(sb, DATA_FLAGS)) {
4835 case 0:
4836 /* No mode set, assume a default based on the journal
4837 * capabilities: ORDERED_DATA if the journal can
4838 * cope, else JOURNAL_DATA
4839 */
4840 if (jbd2_journal_check_available_features
4841 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4842 set_opt(sb, ORDERED_DATA);
4843 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4844 } else {
4845 set_opt(sb, JOURNAL_DATA);
4846 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4847 }
4848 break;
4849
4850 case EXT4_MOUNT_ORDERED_DATA:
4851 case EXT4_MOUNT_WRITEBACK_DATA:
4852 if (!jbd2_journal_check_available_features
4853 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4854 ext4_msg(sb, KERN_ERR, "Journal does not support "
4855 "requested data journaling mode");
4856 goto out;
4857 }
4858 break;
4859 default:
4860 break;
4861 }
4862
4863 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4864 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4865 ext4_msg(sb, KERN_ERR, "can't mount with "
4866 "journal_async_commit in data=ordered mode");
4867 goto out;
4868 }
4869
4870 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4871
4872 sbi->s_journal->j_submit_inode_data_buffers =
4873 ext4_journal_submit_inode_data_buffers;
4874 sbi->s_journal->j_finish_inode_data_buffers =
4875 ext4_journal_finish_inode_data_buffers;
4876
4877 return 0;
4878
4879out:
4880 /* flush s_error_work before journal destroy. */
4881 flush_work(&sbi->s_error_work);
4882 jbd2_journal_destroy(sbi->s_journal);
4883 sbi->s_journal = NULL;
4884 return -EINVAL;
4885}
4886
4887static int ext4_journal_data_mode_check(struct super_block *sb)
4888{
4889 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4890 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4891 "data=journal disables delayed allocation, "
4892 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4893 /* can't mount with both data=journal and dioread_nolock. */
4894 clear_opt(sb, DIOREAD_NOLOCK);
4895 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4896 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4897 ext4_msg(sb, KERN_ERR, "can't mount with "
4898 "both data=journal and delalloc");
4899 return -EINVAL;
4900 }
4901 if (test_opt(sb, DAX_ALWAYS)) {
4902 ext4_msg(sb, KERN_ERR, "can't mount with "
4903 "both data=journal and dax");
4904 return -EINVAL;
4905 }
4906 if (ext4_has_feature_encrypt(sb)) {
4907 ext4_msg(sb, KERN_WARNING,
4908 "encrypted files will use data=ordered "
4909 "instead of data journaling mode");
4910 }
4911 if (test_opt(sb, DELALLOC))
4912 clear_opt(sb, DELALLOC);
4913 } else {
4914 sb->s_iflags |= SB_I_CGROUPWB;
4915 }
4916
4917 return 0;
4918}
4919
4920static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
4921 int silent)
4922{
4923 struct ext4_sb_info *sbi = EXT4_SB(sb);
4924 struct ext4_super_block *es;
4925 ext4_fsblk_t logical_sb_block;
4926 unsigned long offset = 0;
4927 struct buffer_head *bh;
4928 int ret = -EINVAL;
4929 int blocksize;
4930
4931 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4932 if (!blocksize) {
4933 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4934 return -EINVAL;
4935 }
4936
4937 /*
4938 * The ext4 superblock will not be buffer aligned for other than 1kB
4939 * block sizes. We need to calculate the offset from buffer start.
4940 */
4941 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4942 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4943 offset = do_div(logical_sb_block, blocksize);
4944 } else {
4945 logical_sb_block = sbi->s_sb_block;
4946 }
4947
4948 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4949 if (IS_ERR(bh)) {
4950 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4951 return PTR_ERR(bh);
4952 }
4953 /*
4954 * Note: s_es must be initialized as soon as possible because
4955 * some ext4 macro-instructions depend on its value
4956 */
4957 es = (struct ext4_super_block *) (bh->b_data + offset);
4958 sbi->s_es = es;
4959 sb->s_magic = le16_to_cpu(es->s_magic);
4960 if (sb->s_magic != EXT4_SUPER_MAGIC) {
4961 if (!silent)
4962 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4963 goto out;
4964 }
4965
4966 if (le32_to_cpu(es->s_log_block_size) >
4967 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4968 ext4_msg(sb, KERN_ERR,
4969 "Invalid log block size: %u",
4970 le32_to_cpu(es->s_log_block_size));
4971 goto out;
4972 }
4973 if (le32_to_cpu(es->s_log_cluster_size) >
4974 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4975 ext4_msg(sb, KERN_ERR,
4976 "Invalid log cluster size: %u",
4977 le32_to_cpu(es->s_log_cluster_size));
4978 goto out;
4979 }
4980
4981 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4982
4983 /*
4984 * If the default block size is not the same as the real block size,
4985 * we need to reload it.
4986 */
4987 if (sb->s_blocksize == blocksize) {
4988 *lsb = logical_sb_block;
4989 sbi->s_sbh = bh;
4990 return 0;
4991 }
4992
4993 /*
4994 * bh must be released before kill_bdev(), otherwise
4995 * it won't be freed and its page also. kill_bdev()
4996 * is called by sb_set_blocksize().
4997 */
4998 brelse(bh);
4999 /* Validate the filesystem blocksize */
5000 if (!sb_set_blocksize(sb, blocksize)) {
5001 ext4_msg(sb, KERN_ERR, "bad block size %d",
5002 blocksize);
5003 bh = NULL;
5004 goto out;
5005 }
5006
5007 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5008 offset = do_div(logical_sb_block, blocksize);
5009 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5010 if (IS_ERR(bh)) {
5011 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5012 ret = PTR_ERR(bh);
5013 bh = NULL;
5014 goto out;
5015 }
5016 es = (struct ext4_super_block *)(bh->b_data + offset);
5017 sbi->s_es = es;
5018 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5019 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5020 goto out;
5021 }
5022 *lsb = logical_sb_block;
5023 sbi->s_sbh = bh;
5024 return 0;
5025out:
5026 brelse(bh);
5027 return ret;
5028}
5029
5030static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5031{
5032 struct ext4_super_block *es = NULL;
5033 struct ext4_sb_info *sbi = EXT4_SB(sb);
5034 struct flex_groups **flex_groups;
5035 ext4_fsblk_t block;
5036 ext4_fsblk_t logical_sb_block;
5037 struct inode *root;
5038 int ret = -ENOMEM;
5039 unsigned int i;
5040 int needs_recovery, has_huge_files;
5041 int err = 0;
5042 ext4_group_t first_not_zeroed;
5043 struct ext4_fs_context *ctx = fc->fs_private;
5044 int silent = fc->sb_flags & SB_SILENT;
5045
5046 /* Set defaults for the variables that will be set during parsing */
5047 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5048 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5049
5050 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5051 sbi->s_sectors_written_start =
5052 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5053
5054 /* -EINVAL is default */
5055 ret = -EINVAL;
5056 err = ext4_load_super(sb, &logical_sb_block, silent);
5057 if (err)
5058 goto out_fail;
5059
5060 es = sbi->s_es;
5061 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5062
5063 err = ext4_init_metadata_csum(sb, es);
5064 if (err)
5065 goto failed_mount;
5066
5067 ext4_set_def_opts(sb, es);
5068
5069 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5070 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5071 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5072 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5073 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5074
5075 /*
5076 * set default s_li_wait_mult for lazyinit, for the case there is
5077 * no mount option specified.
5078 */
5079 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5080
5081 if (ext4_inode_info_init(sb, es))
5082 goto failed_mount;
5083
5084 err = parse_apply_sb_mount_options(sb, ctx);
5085 if (err < 0)
5086 goto failed_mount;
5087
5088 sbi->s_def_mount_opt = sbi->s_mount_opt;
5089
5090 err = ext4_check_opt_consistency(fc, sb);
5091 if (err < 0)
5092 goto failed_mount;
5093
5094 ext4_apply_options(fc, sb);
5095
5096 if (ext4_encoding_init(sb, es))
5097 goto failed_mount;
5098
5099 if (ext4_journal_data_mode_check(sb))
5100 goto failed_mount;
5101
5102 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5103 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5104
5105 /* i_version is always enabled now */
5106 sb->s_flags |= SB_I_VERSION;
5107
5108 if (ext4_check_feature_compatibility(sb, es, silent))
5109 goto failed_mount;
5110
5111 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
5112 ext4_msg(sb, KERN_ERR,
5113 "Number of reserved GDT blocks insanely large: %d",
5114 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
5115 goto failed_mount;
5116 }
5117
5118 if (sbi->s_daxdev) {
5119 if (sb->s_blocksize == PAGE_SIZE)
5120 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
5121 else
5122 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
5123 }
5124
5125 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
5126 if (ext4_has_feature_inline_data(sb)) {
5127 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
5128 " that may contain inline data");
5129 goto failed_mount;
5130 }
5131 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
5132 ext4_msg(sb, KERN_ERR,
5133 "DAX unsupported by block device.");
5134 goto failed_mount;
5135 }
5136 }
5137
5138 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
5139 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
5140 es->s_encryption_level);
5141 goto failed_mount;
5142 }
5143
5144 has_huge_files = ext4_has_feature_huge_file(sb);
5145 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5146 has_huge_files);
5147 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5148
5149 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5150 if (ext4_has_feature_64bit(sb)) {
5151 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5152 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5153 !is_power_of_2(sbi->s_desc_size)) {
5154 ext4_msg(sb, KERN_ERR,
5155 "unsupported descriptor size %lu",
5156 sbi->s_desc_size);
5157 goto failed_mount;
5158 }
5159 } else
5160 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5161
5162 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5163 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5164
5165 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5166 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5167 if (!silent)
5168 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5169 goto failed_mount;
5170 }
5171 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5172 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5173 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5174 sbi->s_inodes_per_group);
5175 goto failed_mount;
5176 }
5177 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5178 sbi->s_inodes_per_block;
5179 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5180 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5181 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5182 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5183
5184 for (i = 0; i < 4; i++)
5185 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5186 sbi->s_def_hash_version = es->s_def_hash_version;
5187 if (ext4_has_feature_dir_index(sb)) {
5188 i = le32_to_cpu(es->s_flags);
5189 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5190 sbi->s_hash_unsigned = 3;
5191 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5192#ifdef __CHAR_UNSIGNED__
5193 if (!sb_rdonly(sb))
5194 es->s_flags |=
5195 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5196 sbi->s_hash_unsigned = 3;
5197#else
5198 if (!sb_rdonly(sb))
5199 es->s_flags |=
5200 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5201#endif
5202 }
5203 }
5204
5205 if (ext4_handle_clustersize(sb))
5206 goto failed_mount;
5207
5208 /*
5209 * Test whether we have more sectors than will fit in sector_t,
5210 * and whether the max offset is addressable by the page cache.
5211 */
5212 err = generic_check_addressable(sb->s_blocksize_bits,
5213 ext4_blocks_count(es));
5214 if (err) {
5215 ext4_msg(sb, KERN_ERR, "filesystem"
5216 " too large to mount safely on this system");
5217 goto failed_mount;
5218 }
5219
5220 if (ext4_geometry_check(sb, es))
5221 goto failed_mount;
5222
5223 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5224 if (err)
5225 goto failed_mount;
5226
5227 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5228 spin_lock_init(&sbi->s_error_lock);
5229 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
5230
5231 /* Register extent status tree shrinker */
5232 if (ext4_es_register_shrinker(sbi))
5233 goto failed_mount3;
5234
5235 sbi->s_stripe = ext4_get_stripe_size(sbi);
5236 sbi->s_extent_max_zeroout_kb = 32;
5237
5238 /*
5239 * set up enough so that it can read an inode
5240 */
5241 sb->s_op = &ext4_sops;
5242 sb->s_export_op = &ext4_export_ops;
5243 sb->s_xattr = ext4_xattr_handlers;
5244#ifdef CONFIG_FS_ENCRYPTION
5245 sb->s_cop = &ext4_cryptops;
5246#endif
5247#ifdef CONFIG_FS_VERITY
5248 sb->s_vop = &ext4_verityops;
5249#endif
5250#ifdef CONFIG_QUOTA
5251 sb->dq_op = &ext4_quota_operations;
5252 if (ext4_has_feature_quota(sb))
5253 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5254 else
5255 sb->s_qcop = &ext4_qctl_operations;
5256 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5257#endif
5258 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5259
5260 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5261 mutex_init(&sbi->s_orphan_lock);
5262
5263 ext4_fast_commit_init(sb);
5264
5265 sb->s_root = NULL;
5266
5267 needs_recovery = (es->s_last_orphan != 0 ||
5268 ext4_has_feature_orphan_present(sb) ||
5269 ext4_has_feature_journal_needs_recovery(sb));
5270
5271 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
5272 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
5273 goto failed_mount3a;
5274
5275 /*
5276 * The first inode we look at is the journal inode. Don't try
5277 * root first: it may be modified in the journal!
5278 */
5279 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5280 err = ext4_load_and_init_journal(sb, es, ctx);
5281 if (err)
5282 goto failed_mount3a;
5283 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5284 ext4_has_feature_journal_needs_recovery(sb)) {
5285 ext4_msg(sb, KERN_ERR, "required journal recovery "
5286 "suppressed and not mounted read-only");
5287 goto failed_mount3a;
5288 } else {
5289 /* Nojournal mode, all journal mount options are illegal */
5290 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5291 ext4_msg(sb, KERN_ERR, "can't mount with "
5292 "journal_async_commit, fs mounted w/o journal");
5293 goto failed_mount3a;
5294 }
5295
5296 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5297 ext4_msg(sb, KERN_ERR, "can't mount with "
5298 "journal_checksum, fs mounted w/o journal");
5299 goto failed_mount3a;
5300 }
5301 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5302 ext4_msg(sb, KERN_ERR, "can't mount with "
5303 "commit=%lu, fs mounted w/o journal",
5304 sbi->s_commit_interval / HZ);
5305 goto failed_mount3a;
5306 }
5307 if (EXT4_MOUNT_DATA_FLAGS &
5308 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5309 ext4_msg(sb, KERN_ERR, "can't mount with "
5310 "data=, fs mounted w/o journal");
5311 goto failed_mount3a;
5312 }
5313 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5314 clear_opt(sb, JOURNAL_CHECKSUM);
5315 clear_opt(sb, DATA_FLAGS);
5316 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5317 sbi->s_journal = NULL;
5318 needs_recovery = 0;
5319 }
5320
5321 if (!test_opt(sb, NO_MBCACHE)) {
5322 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5323 if (!sbi->s_ea_block_cache) {
5324 ext4_msg(sb, KERN_ERR,
5325 "Failed to create ea_block_cache");
5326 goto failed_mount_wq;
5327 }
5328
5329 if (ext4_has_feature_ea_inode(sb)) {
5330 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5331 if (!sbi->s_ea_inode_cache) {
5332 ext4_msg(sb, KERN_ERR,
5333 "Failed to create ea_inode_cache");
5334 goto failed_mount_wq;
5335 }
5336 }
5337 }
5338
5339 if (ext4_has_feature_verity(sb) && sb->s_blocksize != PAGE_SIZE) {
5340 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
5341 goto failed_mount_wq;
5342 }
5343
5344 /*
5345 * Get the # of file system overhead blocks from the
5346 * superblock if present.
5347 */
5348 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5349 /* ignore the precalculated value if it is ridiculous */
5350 if (sbi->s_overhead > ext4_blocks_count(es))
5351 sbi->s_overhead = 0;
5352 /*
5353 * If the bigalloc feature is not enabled recalculating the
5354 * overhead doesn't take long, so we might as well just redo
5355 * it to make sure we are using the correct value.
5356 */
5357 if (!ext4_has_feature_bigalloc(sb))
5358 sbi->s_overhead = 0;
5359 if (sbi->s_overhead == 0) {
5360 err = ext4_calculate_overhead(sb);
5361 if (err)
5362 goto failed_mount_wq;
5363 }
5364
5365 /*
5366 * The maximum number of concurrent works can be high and
5367 * concurrency isn't really necessary. Limit it to 1.
5368 */
5369 EXT4_SB(sb)->rsv_conversion_wq =
5370 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5371 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5372 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5373 ret = -ENOMEM;
5374 goto failed_mount4;
5375 }
5376
5377 /*
5378 * The jbd2_journal_load will have done any necessary log recovery,
5379 * so we can safely mount the rest of the filesystem now.
5380 */
5381
5382 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5383 if (IS_ERR(root)) {
5384 ext4_msg(sb, KERN_ERR, "get root inode failed");
5385 ret = PTR_ERR(root);
5386 root = NULL;
5387 goto failed_mount4;
5388 }
5389 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5390 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5391 iput(root);
5392 goto failed_mount4;
5393 }
5394
5395 sb->s_root = d_make_root(root);
5396 if (!sb->s_root) {
5397 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5398 ret = -ENOMEM;
5399 goto failed_mount4;
5400 }
5401
5402 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
5403 if (ret == -EROFS) {
5404 sb->s_flags |= SB_RDONLY;
5405 ret = 0;
5406 } else if (ret)
5407 goto failed_mount4a;
5408
5409 ext4_set_resv_clusters(sb);
5410
5411 if (test_opt(sb, BLOCK_VALIDITY)) {
5412 err = ext4_setup_system_zone(sb);
5413 if (err) {
5414 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5415 "zone (%d)", err);
5416 goto failed_mount4a;
5417 }
5418 }
5419 ext4_fc_replay_cleanup(sb);
5420
5421 ext4_ext_init(sb);
5422
5423 /*
5424 * Enable optimize_scan if number of groups is > threshold. This can be
5425 * turned off by passing "mb_optimize_scan=0". This can also be
5426 * turned on forcefully by passing "mb_optimize_scan=1".
5427 */
5428 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5429 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5430 set_opt2(sb, MB_OPTIMIZE_SCAN);
5431 else
5432 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5433 }
5434
5435 err = ext4_mb_init(sb);
5436 if (err) {
5437 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5438 err);
5439 goto failed_mount5;
5440 }
5441
5442 /*
5443 * We can only set up the journal commit callback once
5444 * mballoc is initialized
5445 */
5446 if (sbi->s_journal)
5447 sbi->s_journal->j_commit_callback =
5448 ext4_journal_commit_callback;
5449
5450 block = ext4_count_free_clusters(sb);
5451 ext4_free_blocks_count_set(sbi->s_es,
5452 EXT4_C2B(sbi, block));
5453 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5454 GFP_KERNEL);
5455 if (!err) {
5456 unsigned long freei = ext4_count_free_inodes(sb);
5457 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5458 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5459 GFP_KERNEL);
5460 }
5461 if (!err)
5462 err = percpu_counter_init(&sbi->s_dirs_counter,
5463 ext4_count_dirs(sb), GFP_KERNEL);
5464 if (!err)
5465 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5466 GFP_KERNEL);
5467 if (!err)
5468 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5469 GFP_KERNEL);
5470 if (!err)
5471 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5472
5473 if (err) {
5474 ext4_msg(sb, KERN_ERR, "insufficient memory");
5475 goto failed_mount6;
5476 }
5477
5478 if (ext4_has_feature_flex_bg(sb))
5479 if (!ext4_fill_flex_info(sb)) {
5480 ext4_msg(sb, KERN_ERR,
5481 "unable to initialize "
5482 "flex_bg meta info!");
5483 ret = -ENOMEM;
5484 goto failed_mount6;
5485 }
5486
5487 err = ext4_register_li_request(sb, first_not_zeroed);
5488 if (err)
5489 goto failed_mount6;
5490
5491 err = ext4_register_sysfs(sb);
5492 if (err)
5493 goto failed_mount7;
5494
5495 err = ext4_init_orphan_info(sb);
5496 if (err)
5497 goto failed_mount8;
5498#ifdef CONFIG_QUOTA
5499 /* Enable quota usage during mount. */
5500 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5501 err = ext4_enable_quotas(sb);
5502 if (err)
5503 goto failed_mount9;
5504 }
5505#endif /* CONFIG_QUOTA */
5506
5507 /*
5508 * Save the original bdev mapping's wb_err value which could be
5509 * used to detect the metadata async write error.
5510 */
5511 spin_lock_init(&sbi->s_bdev_wb_lock);
5512 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5513 &sbi->s_bdev_wb_err);
5514 sb->s_bdev->bd_super = sb;
5515 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5516 ext4_orphan_cleanup(sb, es);
5517 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5518 /*
5519 * Update the checksum after updating free space/inode counters and
5520 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5521 * checksum in the buffer cache until it is written out and
5522 * e2fsprogs programs trying to open a file system immediately
5523 * after it is mounted can fail.
5524 */
5525 ext4_superblock_csum_set(sb);
5526 if (needs_recovery) {
5527 ext4_msg(sb, KERN_INFO, "recovery complete");
5528 err = ext4_mark_recovery_complete(sb, es);
5529 if (err)
5530 goto failed_mount9;
5531 }
5532
5533 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5534 ext4_msg(sb, KERN_WARNING,
5535 "mounting with \"discard\" option, but the device does not support discard");
5536
5537 if (es->s_error_count)
5538 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5539
5540 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5541 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5542 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5543 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5544 atomic_set(&sbi->s_warning_count, 0);
5545 atomic_set(&sbi->s_msg_count, 0);
5546
5547 return 0;
5548
5549failed_mount9:
5550 ext4_release_orphan_info(sb);
5551failed_mount8:
5552 ext4_unregister_sysfs(sb);
5553 kobject_put(&sbi->s_kobj);
5554failed_mount7:
5555 ext4_unregister_li_request(sb);
5556failed_mount6:
5557 ext4_mb_release(sb);
5558 rcu_read_lock();
5559 flex_groups = rcu_dereference(sbi->s_flex_groups);
5560 if (flex_groups) {
5561 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5562 kvfree(flex_groups[i]);
5563 kvfree(flex_groups);
5564 }
5565 rcu_read_unlock();
5566 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5567 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5568 percpu_counter_destroy(&sbi->s_dirs_counter);
5569 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5570 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5571 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5572failed_mount5:
5573 ext4_ext_release(sb);
5574 ext4_release_system_zone(sb);
5575failed_mount4a:
5576 dput(sb->s_root);
5577 sb->s_root = NULL;
5578failed_mount4:
5579 ext4_msg(sb, KERN_ERR, "mount failed");
5580 if (EXT4_SB(sb)->rsv_conversion_wq)
5581 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5582failed_mount_wq:
5583 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5584 sbi->s_ea_inode_cache = NULL;
5585
5586 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5587 sbi->s_ea_block_cache = NULL;
5588
5589 if (sbi->s_journal) {
5590 /* flush s_error_work before journal destroy. */
5591 flush_work(&sbi->s_error_work);
5592 jbd2_journal_destroy(sbi->s_journal);
5593 sbi->s_journal = NULL;
5594 }
5595failed_mount3a:
5596 ext4_es_unregister_shrinker(sbi);
5597failed_mount3:
5598 /* flush s_error_work before sbi destroy */
5599 flush_work(&sbi->s_error_work);
5600 del_timer_sync(&sbi->s_err_report);
5601 ext4_stop_mmpd(sbi);
5602 ext4_group_desc_free(sbi);
5603failed_mount:
5604 if (sbi->s_chksum_driver)
5605 crypto_free_shash(sbi->s_chksum_driver);
5606
5607#if IS_ENABLED(CONFIG_UNICODE)
5608 utf8_unload(sb->s_encoding);
5609#endif
5610
5611#ifdef CONFIG_QUOTA
5612 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5613 kfree(get_qf_name(sb, sbi, i));
5614#endif
5615 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5616 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5617 brelse(sbi->s_sbh);
5618 ext4_blkdev_remove(sbi);
5619out_fail:
5620 sb->s_fs_info = NULL;
5621 return err ? err : ret;
5622}
5623
5624static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5625{
5626 struct ext4_fs_context *ctx = fc->fs_private;
5627 struct ext4_sb_info *sbi;
5628 const char *descr;
5629 int ret;
5630
5631 sbi = ext4_alloc_sbi(sb);
5632 if (!sbi)
5633 return -ENOMEM;
5634
5635 fc->s_fs_info = sbi;
5636
5637 /* Cleanup superblock name */
5638 strreplace(sb->s_id, '/', '!');
5639
5640 sbi->s_sb_block = 1; /* Default super block location */
5641 if (ctx->spec & EXT4_SPEC_s_sb_block)
5642 sbi->s_sb_block = ctx->s_sb_block;
5643
5644 ret = __ext4_fill_super(fc, sb);
5645 if (ret < 0)
5646 goto free_sbi;
5647
5648 if (sbi->s_journal) {
5649 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5650 descr = " journalled data mode";
5651 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5652 descr = " ordered data mode";
5653 else
5654 descr = " writeback data mode";
5655 } else
5656 descr = "out journal";
5657
5658 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5659 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU with%s. "
5660 "Quota mode: %s.", &sb->s_uuid, descr,
5661 ext4_quota_mode(sb));
5662
5663 /* Update the s_overhead_clusters if necessary */
5664 ext4_update_overhead(sb, false);
5665 return 0;
5666
5667free_sbi:
5668 ext4_free_sbi(sbi);
5669 fc->s_fs_info = NULL;
5670 return ret;
5671}
5672
5673static int ext4_get_tree(struct fs_context *fc)
5674{
5675 return get_tree_bdev(fc, ext4_fill_super);
5676}
5677
5678/*
5679 * Setup any per-fs journal parameters now. We'll do this both on
5680 * initial mount, once the journal has been initialised but before we've
5681 * done any recovery; and again on any subsequent remount.
5682 */
5683static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5684{
5685 struct ext4_sb_info *sbi = EXT4_SB(sb);
5686
5687 journal->j_commit_interval = sbi->s_commit_interval;
5688 journal->j_min_batch_time = sbi->s_min_batch_time;
5689 journal->j_max_batch_time = sbi->s_max_batch_time;
5690 ext4_fc_init(sb, journal);
5691
5692 write_lock(&journal->j_state_lock);
5693 if (test_opt(sb, BARRIER))
5694 journal->j_flags |= JBD2_BARRIER;
5695 else
5696 journal->j_flags &= ~JBD2_BARRIER;
5697 if (test_opt(sb, DATA_ERR_ABORT))
5698 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5699 else
5700 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5701 write_unlock(&journal->j_state_lock);
5702}
5703
5704static struct inode *ext4_get_journal_inode(struct super_block *sb,
5705 unsigned int journal_inum)
5706{
5707 struct inode *journal_inode;
5708
5709 /*
5710 * Test for the existence of a valid inode on disk. Bad things
5711 * happen if we iget() an unused inode, as the subsequent iput()
5712 * will try to delete it.
5713 */
5714 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5715 if (IS_ERR(journal_inode)) {
5716 ext4_msg(sb, KERN_ERR, "no journal found");
5717 return NULL;
5718 }
5719 if (!journal_inode->i_nlink) {
5720 make_bad_inode(journal_inode);
5721 iput(journal_inode);
5722 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5723 return NULL;
5724 }
5725
5726 ext4_debug("Journal inode found at %p: %lld bytes\n",
5727 journal_inode, journal_inode->i_size);
5728 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5729 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5730 iput(journal_inode);
5731 return NULL;
5732 }
5733 return journal_inode;
5734}
5735
5736static journal_t *ext4_get_journal(struct super_block *sb,
5737 unsigned int journal_inum)
5738{
5739 struct inode *journal_inode;
5740 journal_t *journal;
5741
5742 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5743 return NULL;
5744
5745 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5746 if (!journal_inode)
5747 return NULL;
5748
5749 journal = jbd2_journal_init_inode(journal_inode);
5750 if (!journal) {
5751 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5752 iput(journal_inode);
5753 return NULL;
5754 }
5755 journal->j_private = sb;
5756 ext4_init_journal_params(sb, journal);
5757 return journal;
5758}
5759
5760static journal_t *ext4_get_dev_journal(struct super_block *sb,
5761 dev_t j_dev)
5762{
5763 struct buffer_head *bh;
5764 journal_t *journal;
5765 ext4_fsblk_t start;
5766 ext4_fsblk_t len;
5767 int hblock, blocksize;
5768 ext4_fsblk_t sb_block;
5769 unsigned long offset;
5770 struct ext4_super_block *es;
5771 struct block_device *bdev;
5772
5773 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5774 return NULL;
5775
5776 bdev = ext4_blkdev_get(j_dev, sb);
5777 if (bdev == NULL)
5778 return NULL;
5779
5780 blocksize = sb->s_blocksize;
5781 hblock = bdev_logical_block_size(bdev);
5782 if (blocksize < hblock) {
5783 ext4_msg(sb, KERN_ERR,
5784 "blocksize too small for journal device");
5785 goto out_bdev;
5786 }
5787
5788 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5789 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5790 set_blocksize(bdev, blocksize);
5791 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5792 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5793 "external journal");
5794 goto out_bdev;
5795 }
5796
5797 es = (struct ext4_super_block *) (bh->b_data + offset);
5798 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5799 !(le32_to_cpu(es->s_feature_incompat) &
5800 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5801 ext4_msg(sb, KERN_ERR, "external journal has "
5802 "bad superblock");
5803 brelse(bh);
5804 goto out_bdev;
5805 }
5806
5807 if ((le32_to_cpu(es->s_feature_ro_compat) &
5808 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5809 es->s_checksum != ext4_superblock_csum(sb, es)) {
5810 ext4_msg(sb, KERN_ERR, "external journal has "
5811 "corrupt superblock");
5812 brelse(bh);
5813 goto out_bdev;
5814 }
5815
5816 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5817 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5818 brelse(bh);
5819 goto out_bdev;
5820 }
5821
5822 len = ext4_blocks_count(es);
5823 start = sb_block + 1;
5824 brelse(bh); /* we're done with the superblock */
5825
5826 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5827 start, len, blocksize);
5828 if (!journal) {
5829 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5830 goto out_bdev;
5831 }
5832 journal->j_private = sb;
5833 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5834 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5835 goto out_journal;
5836 }
5837 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5838 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5839 "user (unsupported) - %d",
5840 be32_to_cpu(journal->j_superblock->s_nr_users));
5841 goto out_journal;
5842 }
5843 EXT4_SB(sb)->s_journal_bdev = bdev;
5844 ext4_init_journal_params(sb, journal);
5845 return journal;
5846
5847out_journal:
5848 jbd2_journal_destroy(journal);
5849out_bdev:
5850 ext4_blkdev_put(bdev);
5851 return NULL;
5852}
5853
5854static int ext4_load_journal(struct super_block *sb,
5855 struct ext4_super_block *es,
5856 unsigned long journal_devnum)
5857{
5858 journal_t *journal;
5859 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5860 dev_t journal_dev;
5861 int err = 0;
5862 int really_read_only;
5863 int journal_dev_ro;
5864
5865 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5866 return -EFSCORRUPTED;
5867
5868 if (journal_devnum &&
5869 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5870 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5871 "numbers have changed");
5872 journal_dev = new_decode_dev(journal_devnum);
5873 } else
5874 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5875
5876 if (journal_inum && journal_dev) {
5877 ext4_msg(sb, KERN_ERR,
5878 "filesystem has both journal inode and journal device!");
5879 return -EINVAL;
5880 }
5881
5882 if (journal_inum) {
5883 journal = ext4_get_journal(sb, journal_inum);
5884 if (!journal)
5885 return -EINVAL;
5886 } else {
5887 journal = ext4_get_dev_journal(sb, journal_dev);
5888 if (!journal)
5889 return -EINVAL;
5890 }
5891
5892 journal_dev_ro = bdev_read_only(journal->j_dev);
5893 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5894
5895 if (journal_dev_ro && !sb_rdonly(sb)) {
5896 ext4_msg(sb, KERN_ERR,
5897 "journal device read-only, try mounting with '-o ro'");
5898 err = -EROFS;
5899 goto err_out;
5900 }
5901
5902 /*
5903 * Are we loading a blank journal or performing recovery after a
5904 * crash? For recovery, we need to check in advance whether we
5905 * can get read-write access to the device.
5906 */
5907 if (ext4_has_feature_journal_needs_recovery(sb)) {
5908 if (sb_rdonly(sb)) {
5909 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5910 "required on readonly filesystem");
5911 if (really_read_only) {
5912 ext4_msg(sb, KERN_ERR, "write access "
5913 "unavailable, cannot proceed "
5914 "(try mounting with noload)");
5915 err = -EROFS;
5916 goto err_out;
5917 }
5918 ext4_msg(sb, KERN_INFO, "write access will "
5919 "be enabled during recovery");
5920 }
5921 }
5922
5923 if (!(journal->j_flags & JBD2_BARRIER))
5924 ext4_msg(sb, KERN_INFO, "barriers disabled");
5925
5926 if (!ext4_has_feature_journal_needs_recovery(sb))
5927 err = jbd2_journal_wipe(journal, !really_read_only);
5928 if (!err) {
5929 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5930 if (save)
5931 memcpy(save, ((char *) es) +
5932 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5933 err = jbd2_journal_load(journal);
5934 if (save)
5935 memcpy(((char *) es) + EXT4_S_ERR_START,
5936 save, EXT4_S_ERR_LEN);
5937 kfree(save);
5938 }
5939
5940 if (err) {
5941 ext4_msg(sb, KERN_ERR, "error loading journal");
5942 goto err_out;
5943 }
5944
5945 EXT4_SB(sb)->s_journal = journal;
5946 err = ext4_clear_journal_err(sb, es);
5947 if (err) {
5948 EXT4_SB(sb)->s_journal = NULL;
5949 jbd2_journal_destroy(journal);
5950 return err;
5951 }
5952
5953 if (!really_read_only && journal_devnum &&
5954 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5955 es->s_journal_dev = cpu_to_le32(journal_devnum);
5956
5957 /* Make sure we flush the recovery flag to disk. */
5958 ext4_commit_super(sb);
5959 }
5960
5961 return 0;
5962
5963err_out:
5964 jbd2_journal_destroy(journal);
5965 return err;
5966}
5967
5968/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5969static void ext4_update_super(struct super_block *sb)
5970{
5971 struct ext4_sb_info *sbi = EXT4_SB(sb);
5972 struct ext4_super_block *es = sbi->s_es;
5973 struct buffer_head *sbh = sbi->s_sbh;
5974
5975 lock_buffer(sbh);
5976 /*
5977 * If the file system is mounted read-only, don't update the
5978 * superblock write time. This avoids updating the superblock
5979 * write time when we are mounting the root file system
5980 * read/only but we need to replay the journal; at that point,
5981 * for people who are east of GMT and who make their clock
5982 * tick in localtime for Windows bug-for-bug compatibility,
5983 * the clock is set in the future, and this will cause e2fsck
5984 * to complain and force a full file system check.
5985 */
5986 if (!(sb->s_flags & SB_RDONLY))
5987 ext4_update_tstamp(es, s_wtime);
5988 es->s_kbytes_written =
5989 cpu_to_le64(sbi->s_kbytes_written +
5990 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5991 sbi->s_sectors_written_start) >> 1));
5992 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5993 ext4_free_blocks_count_set(es,
5994 EXT4_C2B(sbi, percpu_counter_sum_positive(
5995 &sbi->s_freeclusters_counter)));
5996 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5997 es->s_free_inodes_count =
5998 cpu_to_le32(percpu_counter_sum_positive(
5999 &sbi->s_freeinodes_counter));
6000 /* Copy error information to the on-disk superblock */
6001 spin_lock(&sbi->s_error_lock);
6002 if (sbi->s_add_error_count > 0) {
6003 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6004 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6005 __ext4_update_tstamp(&es->s_first_error_time,
6006 &es->s_first_error_time_hi,
6007 sbi->s_first_error_time);
6008 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6009 sizeof(es->s_first_error_func));
6010 es->s_first_error_line =
6011 cpu_to_le32(sbi->s_first_error_line);
6012 es->s_first_error_ino =
6013 cpu_to_le32(sbi->s_first_error_ino);
6014 es->s_first_error_block =
6015 cpu_to_le64(sbi->s_first_error_block);
6016 es->s_first_error_errcode =
6017 ext4_errno_to_code(sbi->s_first_error_code);
6018 }
6019 __ext4_update_tstamp(&es->s_last_error_time,
6020 &es->s_last_error_time_hi,
6021 sbi->s_last_error_time);
6022 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6023 sizeof(es->s_last_error_func));
6024 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6025 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6026 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6027 es->s_last_error_errcode =
6028 ext4_errno_to_code(sbi->s_last_error_code);
6029 /*
6030 * Start the daily error reporting function if it hasn't been
6031 * started already
6032 */
6033 if (!es->s_error_count)
6034 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6035 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6036 sbi->s_add_error_count = 0;
6037 }
6038 spin_unlock(&sbi->s_error_lock);
6039
6040 ext4_superblock_csum_set(sb);
6041 unlock_buffer(sbh);
6042}
6043
6044static int ext4_commit_super(struct super_block *sb)
6045{
6046 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6047
6048 if (!sbh)
6049 return -EINVAL;
6050 if (block_device_ejected(sb))
6051 return -ENODEV;
6052
6053 ext4_update_super(sb);
6054
6055 lock_buffer(sbh);
6056 /* Buffer got discarded which means block device got invalidated */
6057 if (!buffer_mapped(sbh)) {
6058 unlock_buffer(sbh);
6059 return -EIO;
6060 }
6061
6062 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6063 /*
6064 * Oh, dear. A previous attempt to write the
6065 * superblock failed. This could happen because the
6066 * USB device was yanked out. Or it could happen to
6067 * be a transient write error and maybe the block will
6068 * be remapped. Nothing we can do but to retry the
6069 * write and hope for the best.
6070 */
6071 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6072 "superblock detected");
6073 clear_buffer_write_io_error(sbh);
6074 set_buffer_uptodate(sbh);
6075 }
6076 get_bh(sbh);
6077 /* Clear potential dirty bit if it was journalled update */
6078 clear_buffer_dirty(sbh);
6079 sbh->b_end_io = end_buffer_write_sync;
6080 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6081 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6082 wait_on_buffer(sbh);
6083 if (buffer_write_io_error(sbh)) {
6084 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6085 "superblock");
6086 clear_buffer_write_io_error(sbh);
6087 set_buffer_uptodate(sbh);
6088 return -EIO;
6089 }
6090 return 0;
6091}
6092
6093/*
6094 * Have we just finished recovery? If so, and if we are mounting (or
6095 * remounting) the filesystem readonly, then we will end up with a
6096 * consistent fs on disk. Record that fact.
6097 */
6098static int ext4_mark_recovery_complete(struct super_block *sb,
6099 struct ext4_super_block *es)
6100{
6101 int err;
6102 journal_t *journal = EXT4_SB(sb)->s_journal;
6103
6104 if (!ext4_has_feature_journal(sb)) {
6105 if (journal != NULL) {
6106 ext4_error(sb, "Journal got removed while the fs was "
6107 "mounted!");
6108 return -EFSCORRUPTED;
6109 }
6110 return 0;
6111 }
6112 jbd2_journal_lock_updates(journal);
6113 err = jbd2_journal_flush(journal, 0);
6114 if (err < 0)
6115 goto out;
6116
6117 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6118 ext4_has_feature_orphan_present(sb))) {
6119 if (!ext4_orphan_file_empty(sb)) {
6120 ext4_error(sb, "Orphan file not empty on read-only fs.");
6121 err = -EFSCORRUPTED;
6122 goto out;
6123 }
6124 ext4_clear_feature_journal_needs_recovery(sb);
6125 ext4_clear_feature_orphan_present(sb);
6126 ext4_commit_super(sb);
6127 }
6128out:
6129 jbd2_journal_unlock_updates(journal);
6130 return err;
6131}
6132
6133/*
6134 * If we are mounting (or read-write remounting) a filesystem whose journal
6135 * has recorded an error from a previous lifetime, move that error to the
6136 * main filesystem now.
6137 */
6138static int ext4_clear_journal_err(struct super_block *sb,
6139 struct ext4_super_block *es)
6140{
6141 journal_t *journal;
6142 int j_errno;
6143 const char *errstr;
6144
6145 if (!ext4_has_feature_journal(sb)) {
6146 ext4_error(sb, "Journal got removed while the fs was mounted!");
6147 return -EFSCORRUPTED;
6148 }
6149
6150 journal = EXT4_SB(sb)->s_journal;
6151
6152 /*
6153 * Now check for any error status which may have been recorded in the
6154 * journal by a prior ext4_error() or ext4_abort()
6155 */
6156
6157 j_errno = jbd2_journal_errno(journal);
6158 if (j_errno) {
6159 char nbuf[16];
6160
6161 errstr = ext4_decode_error(sb, j_errno, nbuf);
6162 ext4_warning(sb, "Filesystem error recorded "
6163 "from previous mount: %s", errstr);
6164 ext4_warning(sb, "Marking fs in need of filesystem check.");
6165
6166 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6167 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6168 ext4_commit_super(sb);
6169
6170 jbd2_journal_clear_err(journal);
6171 jbd2_journal_update_sb_errno(journal);
6172 }
6173 return 0;
6174}
6175
6176/*
6177 * Force the running and committing transactions to commit,
6178 * and wait on the commit.
6179 */
6180int ext4_force_commit(struct super_block *sb)
6181{
6182 journal_t *journal;
6183
6184 if (sb_rdonly(sb))
6185 return 0;
6186
6187 journal = EXT4_SB(sb)->s_journal;
6188 return ext4_journal_force_commit(journal);
6189}
6190
6191static int ext4_sync_fs(struct super_block *sb, int wait)
6192{
6193 int ret = 0;
6194 tid_t target;
6195 bool needs_barrier = false;
6196 struct ext4_sb_info *sbi = EXT4_SB(sb);
6197
6198 if (unlikely(ext4_forced_shutdown(sbi)))
6199 return 0;
6200
6201 trace_ext4_sync_fs(sb, wait);
6202 flush_workqueue(sbi->rsv_conversion_wq);
6203 /*
6204 * Writeback quota in non-journalled quota case - journalled quota has
6205 * no dirty dquots
6206 */
6207 dquot_writeback_dquots(sb, -1);
6208 /*
6209 * Data writeback is possible w/o journal transaction, so barrier must
6210 * being sent at the end of the function. But we can skip it if
6211 * transaction_commit will do it for us.
6212 */
6213 if (sbi->s_journal) {
6214 target = jbd2_get_latest_transaction(sbi->s_journal);
6215 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6216 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6217 needs_barrier = true;
6218
6219 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6220 if (wait)
6221 ret = jbd2_log_wait_commit(sbi->s_journal,
6222 target);
6223 }
6224 } else if (wait && test_opt(sb, BARRIER))
6225 needs_barrier = true;
6226 if (needs_barrier) {
6227 int err;
6228 err = blkdev_issue_flush(sb->s_bdev);
6229 if (!ret)
6230 ret = err;
6231 }
6232
6233 return ret;
6234}
6235
6236/*
6237 * LVM calls this function before a (read-only) snapshot is created. This
6238 * gives us a chance to flush the journal completely and mark the fs clean.
6239 *
6240 * Note that only this function cannot bring a filesystem to be in a clean
6241 * state independently. It relies on upper layer to stop all data & metadata
6242 * modifications.
6243 */
6244static int ext4_freeze(struct super_block *sb)
6245{
6246 int error = 0;
6247 journal_t *journal;
6248
6249 if (sb_rdonly(sb))
6250 return 0;
6251
6252 journal = EXT4_SB(sb)->s_journal;
6253
6254 if (journal) {
6255 /* Now we set up the journal barrier. */
6256 jbd2_journal_lock_updates(journal);
6257
6258 /*
6259 * Don't clear the needs_recovery flag if we failed to
6260 * flush the journal.
6261 */
6262 error = jbd2_journal_flush(journal, 0);
6263 if (error < 0)
6264 goto out;
6265
6266 /* Journal blocked and flushed, clear needs_recovery flag. */
6267 ext4_clear_feature_journal_needs_recovery(sb);
6268 if (ext4_orphan_file_empty(sb))
6269 ext4_clear_feature_orphan_present(sb);
6270 }
6271
6272 error = ext4_commit_super(sb);
6273out:
6274 if (journal)
6275 /* we rely on upper layer to stop further updates */
6276 jbd2_journal_unlock_updates(journal);
6277 return error;
6278}
6279
6280/*
6281 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6282 * flag here, even though the filesystem is not technically dirty yet.
6283 */
6284static int ext4_unfreeze(struct super_block *sb)
6285{
6286 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6287 return 0;
6288
6289 if (EXT4_SB(sb)->s_journal) {
6290 /* Reset the needs_recovery flag before the fs is unlocked. */
6291 ext4_set_feature_journal_needs_recovery(sb);
6292 if (ext4_has_feature_orphan_file(sb))
6293 ext4_set_feature_orphan_present(sb);
6294 }
6295
6296 ext4_commit_super(sb);
6297 return 0;
6298}
6299
6300/*
6301 * Structure to save mount options for ext4_remount's benefit
6302 */
6303struct ext4_mount_options {
6304 unsigned long s_mount_opt;
6305 unsigned long s_mount_opt2;
6306 kuid_t s_resuid;
6307 kgid_t s_resgid;
6308 unsigned long s_commit_interval;
6309 u32 s_min_batch_time, s_max_batch_time;
6310#ifdef CONFIG_QUOTA
6311 int s_jquota_fmt;
6312 char *s_qf_names[EXT4_MAXQUOTAS];
6313#endif
6314};
6315
6316static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6317{
6318 struct ext4_fs_context *ctx = fc->fs_private;
6319 struct ext4_super_block *es;
6320 struct ext4_sb_info *sbi = EXT4_SB(sb);
6321 unsigned long old_sb_flags;
6322 struct ext4_mount_options old_opts;
6323 ext4_group_t g;
6324 int err = 0;
6325#ifdef CONFIG_QUOTA
6326 int enable_quota = 0;
6327 int i, j;
6328 char *to_free[EXT4_MAXQUOTAS];
6329#endif
6330
6331
6332 /* Store the original options */
6333 old_sb_flags = sb->s_flags;
6334 old_opts.s_mount_opt = sbi->s_mount_opt;
6335 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6336 old_opts.s_resuid = sbi->s_resuid;
6337 old_opts.s_resgid = sbi->s_resgid;
6338 old_opts.s_commit_interval = sbi->s_commit_interval;
6339 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6340 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6341#ifdef CONFIG_QUOTA
6342 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6343 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6344 if (sbi->s_qf_names[i]) {
6345 char *qf_name = get_qf_name(sb, sbi, i);
6346
6347 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6348 if (!old_opts.s_qf_names[i]) {
6349 for (j = 0; j < i; j++)
6350 kfree(old_opts.s_qf_names[j]);
6351 return -ENOMEM;
6352 }
6353 } else
6354 old_opts.s_qf_names[i] = NULL;
6355#endif
6356 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6357 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6358 ctx->journal_ioprio =
6359 sbi->s_journal->j_task->io_context->ioprio;
6360 else
6361 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6362
6363 }
6364
6365 ext4_apply_options(fc, sb);
6366
6367 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6368 test_opt(sb, JOURNAL_CHECKSUM)) {
6369 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6370 "during remount not supported; ignoring");
6371 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6372 }
6373
6374 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6375 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6376 ext4_msg(sb, KERN_ERR, "can't mount with "
6377 "both data=journal and delalloc");
6378 err = -EINVAL;
6379 goto restore_opts;
6380 }
6381 if (test_opt(sb, DIOREAD_NOLOCK)) {
6382 ext4_msg(sb, KERN_ERR, "can't mount with "
6383 "both data=journal and dioread_nolock");
6384 err = -EINVAL;
6385 goto restore_opts;
6386 }
6387 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6388 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6389 ext4_msg(sb, KERN_ERR, "can't mount with "
6390 "journal_async_commit in data=ordered mode");
6391 err = -EINVAL;
6392 goto restore_opts;
6393 }
6394 }
6395
6396 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6397 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6398 err = -EINVAL;
6399 goto restore_opts;
6400 }
6401
6402 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6403 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6404
6405 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6406 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6407
6408 es = sbi->s_es;
6409
6410 if (sbi->s_journal) {
6411 ext4_init_journal_params(sb, sbi->s_journal);
6412 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6413 }
6414
6415 /* Flush outstanding errors before changing fs state */
6416 flush_work(&sbi->s_error_work);
6417
6418 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6419 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6420 err = -EROFS;
6421 goto restore_opts;
6422 }
6423
6424 if (fc->sb_flags & SB_RDONLY) {
6425 err = sync_filesystem(sb);
6426 if (err < 0)
6427 goto restore_opts;
6428 err = dquot_suspend(sb, -1);
6429 if (err < 0)
6430 goto restore_opts;
6431
6432 /*
6433 * First of all, the unconditional stuff we have to do
6434 * to disable replay of the journal when we next remount
6435 */
6436 sb->s_flags |= SB_RDONLY;
6437
6438 /*
6439 * OK, test if we are remounting a valid rw partition
6440 * readonly, and if so set the rdonly flag and then
6441 * mark the partition as valid again.
6442 */
6443 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6444 (sbi->s_mount_state & EXT4_VALID_FS))
6445 es->s_state = cpu_to_le16(sbi->s_mount_state);
6446
6447 if (sbi->s_journal) {
6448 /*
6449 * We let remount-ro finish even if marking fs
6450 * as clean failed...
6451 */
6452 ext4_mark_recovery_complete(sb, es);
6453 }
6454 } else {
6455 /* Make sure we can mount this feature set readwrite */
6456 if (ext4_has_feature_readonly(sb) ||
6457 !ext4_feature_set_ok(sb, 0)) {
6458 err = -EROFS;
6459 goto restore_opts;
6460 }
6461 /*
6462 * Make sure the group descriptor checksums
6463 * are sane. If they aren't, refuse to remount r/w.
6464 */
6465 for (g = 0; g < sbi->s_groups_count; g++) {
6466 struct ext4_group_desc *gdp =
6467 ext4_get_group_desc(sb, g, NULL);
6468
6469 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6470 ext4_msg(sb, KERN_ERR,
6471 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6472 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6473 le16_to_cpu(gdp->bg_checksum));
6474 err = -EFSBADCRC;
6475 goto restore_opts;
6476 }
6477 }
6478
6479 /*
6480 * If we have an unprocessed orphan list hanging
6481 * around from a previously readonly bdev mount,
6482 * require a full umount/remount for now.
6483 */
6484 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6485 ext4_msg(sb, KERN_WARNING, "Couldn't "
6486 "remount RDWR because of unprocessed "
6487 "orphan inode list. Please "
6488 "umount/remount instead");
6489 err = -EINVAL;
6490 goto restore_opts;
6491 }
6492
6493 /*
6494 * Mounting a RDONLY partition read-write, so reread
6495 * and store the current valid flag. (It may have
6496 * been changed by e2fsck since we originally mounted
6497 * the partition.)
6498 */
6499 if (sbi->s_journal) {
6500 err = ext4_clear_journal_err(sb, es);
6501 if (err)
6502 goto restore_opts;
6503 }
6504 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6505 ~EXT4_FC_REPLAY);
6506
6507 err = ext4_setup_super(sb, es, 0);
6508 if (err)
6509 goto restore_opts;
6510
6511 sb->s_flags &= ~SB_RDONLY;
6512 if (ext4_has_feature_mmp(sb))
6513 if (ext4_multi_mount_protect(sb,
6514 le64_to_cpu(es->s_mmp_block))) {
6515 err = -EROFS;
6516 goto restore_opts;
6517 }
6518#ifdef CONFIG_QUOTA
6519 enable_quota = 1;
6520#endif
6521 }
6522 }
6523
6524 /*
6525 * Reinitialize lazy itable initialization thread based on
6526 * current settings
6527 */
6528 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6529 ext4_unregister_li_request(sb);
6530 else {
6531 ext4_group_t first_not_zeroed;
6532 first_not_zeroed = ext4_has_uninit_itable(sb);
6533 ext4_register_li_request(sb, first_not_zeroed);
6534 }
6535
6536 /*
6537 * Handle creation of system zone data early because it can fail.
6538 * Releasing of existing data is done when we are sure remount will
6539 * succeed.
6540 */
6541 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6542 err = ext4_setup_system_zone(sb);
6543 if (err)
6544 goto restore_opts;
6545 }
6546
6547 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6548 err = ext4_commit_super(sb);
6549 if (err)
6550 goto restore_opts;
6551 }
6552
6553#ifdef CONFIG_QUOTA
6554 /* Release old quota file names */
6555 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6556 kfree(old_opts.s_qf_names[i]);
6557 if (enable_quota) {
6558 if (sb_any_quota_suspended(sb))
6559 dquot_resume(sb, -1);
6560 else if (ext4_has_feature_quota(sb)) {
6561 err = ext4_enable_quotas(sb);
6562 if (err)
6563 goto restore_opts;
6564 }
6565 }
6566#endif
6567 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6568 ext4_release_system_zone(sb);
6569
6570 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6571 ext4_stop_mmpd(sbi);
6572
6573 return 0;
6574
6575restore_opts:
6576 sb->s_flags = old_sb_flags;
6577 sbi->s_mount_opt = old_opts.s_mount_opt;
6578 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6579 sbi->s_resuid = old_opts.s_resuid;
6580 sbi->s_resgid = old_opts.s_resgid;
6581 sbi->s_commit_interval = old_opts.s_commit_interval;
6582 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6583 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6584 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6585 ext4_release_system_zone(sb);
6586#ifdef CONFIG_QUOTA
6587 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6588 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6589 to_free[i] = get_qf_name(sb, sbi, i);
6590 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6591 }
6592 synchronize_rcu();
6593 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6594 kfree(to_free[i]);
6595#endif
6596 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6597 ext4_stop_mmpd(sbi);
6598 return err;
6599}
6600
6601static int ext4_reconfigure(struct fs_context *fc)
6602{
6603 struct super_block *sb = fc->root->d_sb;
6604 int ret;
6605
6606 fc->s_fs_info = EXT4_SB(sb);
6607
6608 ret = ext4_check_opt_consistency(fc, sb);
6609 if (ret < 0)
6610 return ret;
6611
6612 ret = __ext4_remount(fc, sb);
6613 if (ret < 0)
6614 return ret;
6615
6616 ext4_msg(sb, KERN_INFO, "re-mounted %pU. Quota mode: %s.",
6617 &sb->s_uuid, ext4_quota_mode(sb));
6618
6619 return 0;
6620}
6621
6622#ifdef CONFIG_QUOTA
6623static int ext4_statfs_project(struct super_block *sb,
6624 kprojid_t projid, struct kstatfs *buf)
6625{
6626 struct kqid qid;
6627 struct dquot *dquot;
6628 u64 limit;
6629 u64 curblock;
6630
6631 qid = make_kqid_projid(projid);
6632 dquot = dqget(sb, qid);
6633 if (IS_ERR(dquot))
6634 return PTR_ERR(dquot);
6635 spin_lock(&dquot->dq_dqb_lock);
6636
6637 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6638 dquot->dq_dqb.dqb_bhardlimit);
6639 limit >>= sb->s_blocksize_bits;
6640
6641 if (limit && buf->f_blocks > limit) {
6642 curblock = (dquot->dq_dqb.dqb_curspace +
6643 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6644 buf->f_blocks = limit;
6645 buf->f_bfree = buf->f_bavail =
6646 (buf->f_blocks > curblock) ?
6647 (buf->f_blocks - curblock) : 0;
6648 }
6649
6650 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6651 dquot->dq_dqb.dqb_ihardlimit);
6652 if (limit && buf->f_files > limit) {
6653 buf->f_files = limit;
6654 buf->f_ffree =
6655 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6656 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6657 }
6658
6659 spin_unlock(&dquot->dq_dqb_lock);
6660 dqput(dquot);
6661 return 0;
6662}
6663#endif
6664
6665static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6666{
6667 struct super_block *sb = dentry->d_sb;
6668 struct ext4_sb_info *sbi = EXT4_SB(sb);
6669 struct ext4_super_block *es = sbi->s_es;
6670 ext4_fsblk_t overhead = 0, resv_blocks;
6671 s64 bfree;
6672 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6673
6674 if (!test_opt(sb, MINIX_DF))
6675 overhead = sbi->s_overhead;
6676
6677 buf->f_type = EXT4_SUPER_MAGIC;
6678 buf->f_bsize = sb->s_blocksize;
6679 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6680 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6681 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6682 /* prevent underflow in case that few free space is available */
6683 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6684 buf->f_bavail = buf->f_bfree -
6685 (ext4_r_blocks_count(es) + resv_blocks);
6686 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6687 buf->f_bavail = 0;
6688 buf->f_files = le32_to_cpu(es->s_inodes_count);
6689 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6690 buf->f_namelen = EXT4_NAME_LEN;
6691 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6692
6693#ifdef CONFIG_QUOTA
6694 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6695 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6696 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6697#endif
6698 return 0;
6699}
6700
6701
6702#ifdef CONFIG_QUOTA
6703
6704/*
6705 * Helper functions so that transaction is started before we acquire dqio_sem
6706 * to keep correct lock ordering of transaction > dqio_sem
6707 */
6708static inline struct inode *dquot_to_inode(struct dquot *dquot)
6709{
6710 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6711}
6712
6713static int ext4_write_dquot(struct dquot *dquot)
6714{
6715 int ret, err;
6716 handle_t *handle;
6717 struct inode *inode;
6718
6719 inode = dquot_to_inode(dquot);
6720 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6721 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6722 if (IS_ERR(handle))
6723 return PTR_ERR(handle);
6724 ret = dquot_commit(dquot);
6725 err = ext4_journal_stop(handle);
6726 if (!ret)
6727 ret = err;
6728 return ret;
6729}
6730
6731static int ext4_acquire_dquot(struct dquot *dquot)
6732{
6733 int ret, err;
6734 handle_t *handle;
6735
6736 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6737 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6738 if (IS_ERR(handle))
6739 return PTR_ERR(handle);
6740 ret = dquot_acquire(dquot);
6741 err = ext4_journal_stop(handle);
6742 if (!ret)
6743 ret = err;
6744 return ret;
6745}
6746
6747static int ext4_release_dquot(struct dquot *dquot)
6748{
6749 int ret, err;
6750 handle_t *handle;
6751
6752 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6753 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6754 if (IS_ERR(handle)) {
6755 /* Release dquot anyway to avoid endless cycle in dqput() */
6756 dquot_release(dquot);
6757 return PTR_ERR(handle);
6758 }
6759 ret = dquot_release(dquot);
6760 err = ext4_journal_stop(handle);
6761 if (!ret)
6762 ret = err;
6763 return ret;
6764}
6765
6766static int ext4_mark_dquot_dirty(struct dquot *dquot)
6767{
6768 struct super_block *sb = dquot->dq_sb;
6769
6770 if (ext4_is_quota_journalled(sb)) {
6771 dquot_mark_dquot_dirty(dquot);
6772 return ext4_write_dquot(dquot);
6773 } else {
6774 return dquot_mark_dquot_dirty(dquot);
6775 }
6776}
6777
6778static int ext4_write_info(struct super_block *sb, int type)
6779{
6780 int ret, err;
6781 handle_t *handle;
6782
6783 /* Data block + inode block */
6784 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6785 if (IS_ERR(handle))
6786 return PTR_ERR(handle);
6787 ret = dquot_commit_info(sb, type);
6788 err = ext4_journal_stop(handle);
6789 if (!ret)
6790 ret = err;
6791 return ret;
6792}
6793
6794static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6795{
6796 struct ext4_inode_info *ei = EXT4_I(inode);
6797
6798 /* The first argument of lockdep_set_subclass has to be
6799 * *exactly* the same as the argument to init_rwsem() --- in
6800 * this case, in init_once() --- or lockdep gets unhappy
6801 * because the name of the lock is set using the
6802 * stringification of the argument to init_rwsem().
6803 */
6804 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6805 lockdep_set_subclass(&ei->i_data_sem, subclass);
6806}
6807
6808/*
6809 * Standard function to be called on quota_on
6810 */
6811static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6812 const struct path *path)
6813{
6814 int err;
6815
6816 if (!test_opt(sb, QUOTA))
6817 return -EINVAL;
6818
6819 /* Quotafile not on the same filesystem? */
6820 if (path->dentry->d_sb != sb)
6821 return -EXDEV;
6822
6823 /* Quota already enabled for this file? */
6824 if (IS_NOQUOTA(d_inode(path->dentry)))
6825 return -EBUSY;
6826
6827 /* Journaling quota? */
6828 if (EXT4_SB(sb)->s_qf_names[type]) {
6829 /* Quotafile not in fs root? */
6830 if (path->dentry->d_parent != sb->s_root)
6831 ext4_msg(sb, KERN_WARNING,
6832 "Quota file not on filesystem root. "
6833 "Journaled quota will not work");
6834 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6835 } else {
6836 /*
6837 * Clear the flag just in case mount options changed since
6838 * last time.
6839 */
6840 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6841 }
6842
6843 /*
6844 * When we journal data on quota file, we have to flush journal to see
6845 * all updates to the file when we bypass pagecache...
6846 */
6847 if (EXT4_SB(sb)->s_journal &&
6848 ext4_should_journal_data(d_inode(path->dentry))) {
6849 /*
6850 * We don't need to lock updates but journal_flush() could
6851 * otherwise be livelocked...
6852 */
6853 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6854 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6855 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6856 if (err)
6857 return err;
6858 }
6859
6860 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6861 err = dquot_quota_on(sb, type, format_id, path);
6862 if (!err) {
6863 struct inode *inode = d_inode(path->dentry);
6864 handle_t *handle;
6865
6866 /*
6867 * Set inode flags to prevent userspace from messing with quota
6868 * files. If this fails, we return success anyway since quotas
6869 * are already enabled and this is not a hard failure.
6870 */
6871 inode_lock(inode);
6872 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6873 if (IS_ERR(handle))
6874 goto unlock_inode;
6875 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6876 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6877 S_NOATIME | S_IMMUTABLE);
6878 err = ext4_mark_inode_dirty(handle, inode);
6879 ext4_journal_stop(handle);
6880 unlock_inode:
6881 inode_unlock(inode);
6882 if (err)
6883 dquot_quota_off(sb, type);
6884 }
6885 if (err)
6886 lockdep_set_quota_inode(path->dentry->d_inode,
6887 I_DATA_SEM_NORMAL);
6888 return err;
6889}
6890
6891static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6892{
6893 switch (type) {
6894 case USRQUOTA:
6895 return qf_inum == EXT4_USR_QUOTA_INO;
6896 case GRPQUOTA:
6897 return qf_inum == EXT4_GRP_QUOTA_INO;
6898 case PRJQUOTA:
6899 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6900 default:
6901 BUG();
6902 }
6903}
6904
6905static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6906 unsigned int flags)
6907{
6908 int err;
6909 struct inode *qf_inode;
6910 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6911 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6912 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6913 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6914 };
6915
6916 BUG_ON(!ext4_has_feature_quota(sb));
6917
6918 if (!qf_inums[type])
6919 return -EPERM;
6920
6921 if (!ext4_check_quota_inum(type, qf_inums[type])) {
6922 ext4_error(sb, "Bad quota inum: %lu, type: %d",
6923 qf_inums[type], type);
6924 return -EUCLEAN;
6925 }
6926
6927 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6928 if (IS_ERR(qf_inode)) {
6929 ext4_error(sb, "Bad quota inode: %lu, type: %d",
6930 qf_inums[type], type);
6931 return PTR_ERR(qf_inode);
6932 }
6933
6934 /* Don't account quota for quota files to avoid recursion */
6935 qf_inode->i_flags |= S_NOQUOTA;
6936 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6937 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6938 if (err)
6939 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6940 iput(qf_inode);
6941
6942 return err;
6943}
6944
6945/* Enable usage tracking for all quota types. */
6946int ext4_enable_quotas(struct super_block *sb)
6947{
6948 int type, err = 0;
6949 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6950 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6951 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6952 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6953 };
6954 bool quota_mopt[EXT4_MAXQUOTAS] = {
6955 test_opt(sb, USRQUOTA),
6956 test_opt(sb, GRPQUOTA),
6957 test_opt(sb, PRJQUOTA),
6958 };
6959
6960 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6961 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6962 if (qf_inums[type]) {
6963 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6964 DQUOT_USAGE_ENABLED |
6965 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6966 if (err) {
6967 ext4_warning(sb,
6968 "Failed to enable quota tracking "
6969 "(type=%d, err=%d, ino=%lu). "
6970 "Please run e2fsck to fix.", type,
6971 err, qf_inums[type]);
6972 for (type--; type >= 0; type--) {
6973 struct inode *inode;
6974
6975 inode = sb_dqopt(sb)->files[type];
6976 if (inode)
6977 inode = igrab(inode);
6978 dquot_quota_off(sb, type);
6979 if (inode) {
6980 lockdep_set_quota_inode(inode,
6981 I_DATA_SEM_NORMAL);
6982 iput(inode);
6983 }
6984 }
6985
6986 return err;
6987 }
6988 }
6989 }
6990 return 0;
6991}
6992
6993static int ext4_quota_off(struct super_block *sb, int type)
6994{
6995 struct inode *inode = sb_dqopt(sb)->files[type];
6996 handle_t *handle;
6997 int err;
6998
6999 /* Force all delayed allocation blocks to be allocated.
7000 * Caller already holds s_umount sem */
7001 if (test_opt(sb, DELALLOC))
7002 sync_filesystem(sb);
7003
7004 if (!inode || !igrab(inode))
7005 goto out;
7006
7007 err = dquot_quota_off(sb, type);
7008 if (err || ext4_has_feature_quota(sb))
7009 goto out_put;
7010
7011 inode_lock(inode);
7012 /*
7013 * Update modification times of quota files when userspace can
7014 * start looking at them. If we fail, we return success anyway since
7015 * this is not a hard failure and quotas are already disabled.
7016 */
7017 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7018 if (IS_ERR(handle)) {
7019 err = PTR_ERR(handle);
7020 goto out_unlock;
7021 }
7022 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7023 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7024 inode->i_mtime = inode->i_ctime = current_time(inode);
7025 err = ext4_mark_inode_dirty(handle, inode);
7026 ext4_journal_stop(handle);
7027out_unlock:
7028 inode_unlock(inode);
7029out_put:
7030 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7031 iput(inode);
7032 return err;
7033out:
7034 return dquot_quota_off(sb, type);
7035}
7036
7037/* Read data from quotafile - avoid pagecache and such because we cannot afford
7038 * acquiring the locks... As quota files are never truncated and quota code
7039 * itself serializes the operations (and no one else should touch the files)
7040 * we don't have to be afraid of races */
7041static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7042 size_t len, loff_t off)
7043{
7044 struct inode *inode = sb_dqopt(sb)->files[type];
7045 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7046 int offset = off & (sb->s_blocksize - 1);
7047 int tocopy;
7048 size_t toread;
7049 struct buffer_head *bh;
7050 loff_t i_size = i_size_read(inode);
7051
7052 if (off > i_size)
7053 return 0;
7054 if (off+len > i_size)
7055 len = i_size-off;
7056 toread = len;
7057 while (toread > 0) {
7058 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7059 bh = ext4_bread(NULL, inode, blk, 0);
7060 if (IS_ERR(bh))
7061 return PTR_ERR(bh);
7062 if (!bh) /* A hole? */
7063 memset(data, 0, tocopy);
7064 else
7065 memcpy(data, bh->b_data+offset, tocopy);
7066 brelse(bh);
7067 offset = 0;
7068 toread -= tocopy;
7069 data += tocopy;
7070 blk++;
7071 }
7072 return len;
7073}
7074
7075/* Write to quotafile (we know the transaction is already started and has
7076 * enough credits) */
7077static ssize_t ext4_quota_write(struct super_block *sb, int type,
7078 const char *data, size_t len, loff_t off)
7079{
7080 struct inode *inode = sb_dqopt(sb)->files[type];
7081 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7082 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7083 int retries = 0;
7084 struct buffer_head *bh;
7085 handle_t *handle = journal_current_handle();
7086
7087 if (!handle) {
7088 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7089 " cancelled because transaction is not started",
7090 (unsigned long long)off, (unsigned long long)len);
7091 return -EIO;
7092 }
7093 /*
7094 * Since we account only one data block in transaction credits,
7095 * then it is impossible to cross a block boundary.
7096 */
7097 if (sb->s_blocksize - offset < len) {
7098 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7099 " cancelled because not block aligned",
7100 (unsigned long long)off, (unsigned long long)len);
7101 return -EIO;
7102 }
7103
7104 do {
7105 bh = ext4_bread(handle, inode, blk,
7106 EXT4_GET_BLOCKS_CREATE |
7107 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7108 } while (PTR_ERR(bh) == -ENOSPC &&
7109 ext4_should_retry_alloc(inode->i_sb, &retries));
7110 if (IS_ERR(bh))
7111 return PTR_ERR(bh);
7112 if (!bh)
7113 goto out;
7114 BUFFER_TRACE(bh, "get write access");
7115 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7116 if (err) {
7117 brelse(bh);
7118 return err;
7119 }
7120 lock_buffer(bh);
7121 memcpy(bh->b_data+offset, data, len);
7122 flush_dcache_page(bh->b_page);
7123 unlock_buffer(bh);
7124 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7125 brelse(bh);
7126out:
7127 if (inode->i_size < off + len) {
7128 i_size_write(inode, off + len);
7129 EXT4_I(inode)->i_disksize = inode->i_size;
7130 err2 = ext4_mark_inode_dirty(handle, inode);
7131 if (unlikely(err2 && !err))
7132 err = err2;
7133 }
7134 return err ? err : len;
7135}
7136#endif
7137
7138#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7139static inline void register_as_ext2(void)
7140{
7141 int err = register_filesystem(&ext2_fs_type);
7142 if (err)
7143 printk(KERN_WARNING
7144 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7145}
7146
7147static inline void unregister_as_ext2(void)
7148{
7149 unregister_filesystem(&ext2_fs_type);
7150}
7151
7152static inline int ext2_feature_set_ok(struct super_block *sb)
7153{
7154 if (ext4_has_unknown_ext2_incompat_features(sb))
7155 return 0;
7156 if (sb_rdonly(sb))
7157 return 1;
7158 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7159 return 0;
7160 return 1;
7161}
7162#else
7163static inline void register_as_ext2(void) { }
7164static inline void unregister_as_ext2(void) { }
7165static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7166#endif
7167
7168static inline void register_as_ext3(void)
7169{
7170 int err = register_filesystem(&ext3_fs_type);
7171 if (err)
7172 printk(KERN_WARNING
7173 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7174}
7175
7176static inline void unregister_as_ext3(void)
7177{
7178 unregister_filesystem(&ext3_fs_type);
7179}
7180
7181static inline int ext3_feature_set_ok(struct super_block *sb)
7182{
7183 if (ext4_has_unknown_ext3_incompat_features(sb))
7184 return 0;
7185 if (!ext4_has_feature_journal(sb))
7186 return 0;
7187 if (sb_rdonly(sb))
7188 return 1;
7189 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7190 return 0;
7191 return 1;
7192}
7193
7194static struct file_system_type ext4_fs_type = {
7195 .owner = THIS_MODULE,
7196 .name = "ext4",
7197 .init_fs_context = ext4_init_fs_context,
7198 .parameters = ext4_param_specs,
7199 .kill_sb = kill_block_super,
7200 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7201};
7202MODULE_ALIAS_FS("ext4");
7203
7204/* Shared across all ext4 file systems */
7205wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7206
7207static int __init ext4_init_fs(void)
7208{
7209 int i, err;
7210
7211 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7212 ext4_li_info = NULL;
7213
7214 /* Build-time check for flags consistency */
7215 ext4_check_flag_values();
7216
7217 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7218 init_waitqueue_head(&ext4__ioend_wq[i]);
7219
7220 err = ext4_init_es();
7221 if (err)
7222 return err;
7223
7224 err = ext4_init_pending();
7225 if (err)
7226 goto out7;
7227
7228 err = ext4_init_post_read_processing();
7229 if (err)
7230 goto out6;
7231
7232 err = ext4_init_pageio();
7233 if (err)
7234 goto out5;
7235
7236 err = ext4_init_system_zone();
7237 if (err)
7238 goto out4;
7239
7240 err = ext4_init_sysfs();
7241 if (err)
7242 goto out3;
7243
7244 err = ext4_init_mballoc();
7245 if (err)
7246 goto out2;
7247 err = init_inodecache();
7248 if (err)
7249 goto out1;
7250
7251 err = ext4_fc_init_dentry_cache();
7252 if (err)
7253 goto out05;
7254
7255 register_as_ext3();
7256 register_as_ext2();
7257 err = register_filesystem(&ext4_fs_type);
7258 if (err)
7259 goto out;
7260
7261 return 0;
7262out:
7263 unregister_as_ext2();
7264 unregister_as_ext3();
7265 ext4_fc_destroy_dentry_cache();
7266out05:
7267 destroy_inodecache();
7268out1:
7269 ext4_exit_mballoc();
7270out2:
7271 ext4_exit_sysfs();
7272out3:
7273 ext4_exit_system_zone();
7274out4:
7275 ext4_exit_pageio();
7276out5:
7277 ext4_exit_post_read_processing();
7278out6:
7279 ext4_exit_pending();
7280out7:
7281 ext4_exit_es();
7282
7283 return err;
7284}
7285
7286static void __exit ext4_exit_fs(void)
7287{
7288 ext4_destroy_lazyinit_thread();
7289 unregister_as_ext2();
7290 unregister_as_ext3();
7291 unregister_filesystem(&ext4_fs_type);
7292 ext4_fc_destroy_dentry_cache();
7293 destroy_inodecache();
7294 ext4_exit_mballoc();
7295 ext4_exit_sysfs();
7296 ext4_exit_system_zone();
7297 ext4_exit_pageio();
7298 ext4_exit_post_read_processing();
7299 ext4_exit_es();
7300 ext4_exit_pending();
7301}
7302
7303MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7304MODULE_DESCRIPTION("Fourth Extended Filesystem");
7305MODULE_LICENSE("GPL");
7306MODULE_SOFTDEP("pre: crc32c");
7307module_init(ext4_init_fs)
7308module_exit(ext4_exit_fs)
1/*
2 * linux/fs/ext4/super.c
3 *
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
8 *
9 * from
10 *
11 * linux/fs/minix/inode.c
12 *
13 * Copyright (C) 1991, 1992 Linus Torvalds
14 *
15 * Big-endian to little-endian byte-swapping/bitmaps by
16 * David S. Miller (davem@caip.rutgers.edu), 1995
17 */
18
19#include <linux/module.h>
20#include <linux/string.h>
21#include <linux/fs.h>
22#include <linux/time.h>
23#include <linux/vmalloc.h>
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/blkdev.h>
27#include <linux/backing-dev.h>
28#include <linux/parser.h>
29#include <linux/buffer_head.h>
30#include <linux/exportfs.h>
31#include <linux/vfs.h>
32#include <linux/random.h>
33#include <linux/mount.h>
34#include <linux/namei.h>
35#include <linux/quotaops.h>
36#include <linux/seq_file.h>
37#include <linux/ctype.h>
38#include <linux/log2.h>
39#include <linux/crc16.h>
40#include <linux/cleancache.h>
41#include <linux/uaccess.h>
42
43#include <linux/kthread.h>
44#include <linux/freezer.h>
45
46#include "ext4.h"
47#include "ext4_extents.h" /* Needed for trace points definition */
48#include "ext4_jbd2.h"
49#include "xattr.h"
50#include "acl.h"
51#include "mballoc.h"
52
53#define CREATE_TRACE_POINTS
54#include <trace/events/ext4.h>
55
56static struct ext4_lazy_init *ext4_li_info;
57static struct mutex ext4_li_mtx;
58static struct ratelimit_state ext4_mount_msg_ratelimit;
59
60static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
61 unsigned long journal_devnum);
62static int ext4_show_options(struct seq_file *seq, struct dentry *root);
63static int ext4_commit_super(struct super_block *sb, int sync);
64static void ext4_mark_recovery_complete(struct super_block *sb,
65 struct ext4_super_block *es);
66static void ext4_clear_journal_err(struct super_block *sb,
67 struct ext4_super_block *es);
68static int ext4_sync_fs(struct super_block *sb, int wait);
69static int ext4_remount(struct super_block *sb, int *flags, char *data);
70static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
71static int ext4_unfreeze(struct super_block *sb);
72static int ext4_freeze(struct super_block *sb);
73static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
74 const char *dev_name, void *data);
75static inline int ext2_feature_set_ok(struct super_block *sb);
76static inline int ext3_feature_set_ok(struct super_block *sb);
77static int ext4_feature_set_ok(struct super_block *sb, int readonly);
78static void ext4_destroy_lazyinit_thread(void);
79static void ext4_unregister_li_request(struct super_block *sb);
80static void ext4_clear_request_list(void);
81static struct inode *ext4_get_journal_inode(struct super_block *sb,
82 unsigned int journal_inum);
83
84/*
85 * Lock ordering
86 *
87 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
88 * i_mmap_rwsem (inode->i_mmap_rwsem)!
89 *
90 * page fault path:
91 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
92 * page lock -> i_data_sem (rw)
93 *
94 * buffered write path:
95 * sb_start_write -> i_mutex -> mmap_sem
96 * sb_start_write -> i_mutex -> transaction start -> page lock ->
97 * i_data_sem (rw)
98 *
99 * truncate:
100 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
101 * i_mmap_rwsem (w) -> page lock
102 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (w) -> i_mmap_sem (w) ->
103 * transaction start -> i_data_sem (rw)
104 *
105 * direct IO:
106 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) -> mmap_sem
107 * sb_start_write -> i_mutex -> EXT4_STATE_DIOREAD_LOCK (r) ->
108 * transaction start -> i_data_sem (rw)
109 *
110 * writepages:
111 * transaction start -> page lock(s) -> i_data_sem (rw)
112 */
113
114#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
115static struct file_system_type ext2_fs_type = {
116 .owner = THIS_MODULE,
117 .name = "ext2",
118 .mount = ext4_mount,
119 .kill_sb = kill_block_super,
120 .fs_flags = FS_REQUIRES_DEV,
121};
122MODULE_ALIAS_FS("ext2");
123MODULE_ALIAS("ext2");
124#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
125#else
126#define IS_EXT2_SB(sb) (0)
127#endif
128
129
130static struct file_system_type ext3_fs_type = {
131 .owner = THIS_MODULE,
132 .name = "ext3",
133 .mount = ext4_mount,
134 .kill_sb = kill_block_super,
135 .fs_flags = FS_REQUIRES_DEV,
136};
137MODULE_ALIAS_FS("ext3");
138MODULE_ALIAS("ext3");
139#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
140
141static int ext4_verify_csum_type(struct super_block *sb,
142 struct ext4_super_block *es)
143{
144 if (!ext4_has_feature_metadata_csum(sb))
145 return 1;
146
147 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
148}
149
150static __le32 ext4_superblock_csum(struct super_block *sb,
151 struct ext4_super_block *es)
152{
153 struct ext4_sb_info *sbi = EXT4_SB(sb);
154 int offset = offsetof(struct ext4_super_block, s_checksum);
155 __u32 csum;
156
157 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
158
159 return cpu_to_le32(csum);
160}
161
162static int ext4_superblock_csum_verify(struct super_block *sb,
163 struct ext4_super_block *es)
164{
165 if (!ext4_has_metadata_csum(sb))
166 return 1;
167
168 return es->s_checksum == ext4_superblock_csum(sb, es);
169}
170
171void ext4_superblock_csum_set(struct super_block *sb)
172{
173 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
174
175 if (!ext4_has_metadata_csum(sb))
176 return;
177
178 es->s_checksum = ext4_superblock_csum(sb, es);
179}
180
181void *ext4_kvmalloc(size_t size, gfp_t flags)
182{
183 void *ret;
184
185 ret = kmalloc(size, flags | __GFP_NOWARN);
186 if (!ret)
187 ret = __vmalloc(size, flags, PAGE_KERNEL);
188 return ret;
189}
190
191void *ext4_kvzalloc(size_t size, gfp_t flags)
192{
193 void *ret;
194
195 ret = kzalloc(size, flags | __GFP_NOWARN);
196 if (!ret)
197 ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
198 return ret;
199}
200
201ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
202 struct ext4_group_desc *bg)
203{
204 return le32_to_cpu(bg->bg_block_bitmap_lo) |
205 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
206 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
207}
208
209ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
210 struct ext4_group_desc *bg)
211{
212 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
213 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
214 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
215}
216
217ext4_fsblk_t ext4_inode_table(struct super_block *sb,
218 struct ext4_group_desc *bg)
219{
220 return le32_to_cpu(bg->bg_inode_table_lo) |
221 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
222 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
223}
224
225__u32 ext4_free_group_clusters(struct super_block *sb,
226 struct ext4_group_desc *bg)
227{
228 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
229 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
230 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
231}
232
233__u32 ext4_free_inodes_count(struct super_block *sb,
234 struct ext4_group_desc *bg)
235{
236 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
237 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
238 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
239}
240
241__u32 ext4_used_dirs_count(struct super_block *sb,
242 struct ext4_group_desc *bg)
243{
244 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
245 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
246 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
247}
248
249__u32 ext4_itable_unused_count(struct super_block *sb,
250 struct ext4_group_desc *bg)
251{
252 return le16_to_cpu(bg->bg_itable_unused_lo) |
253 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
254 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
255}
256
257void ext4_block_bitmap_set(struct super_block *sb,
258 struct ext4_group_desc *bg, ext4_fsblk_t blk)
259{
260 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
261 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
262 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
263}
264
265void ext4_inode_bitmap_set(struct super_block *sb,
266 struct ext4_group_desc *bg, ext4_fsblk_t blk)
267{
268 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
269 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
270 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
271}
272
273void ext4_inode_table_set(struct super_block *sb,
274 struct ext4_group_desc *bg, ext4_fsblk_t blk)
275{
276 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
277 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
278 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
279}
280
281void ext4_free_group_clusters_set(struct super_block *sb,
282 struct ext4_group_desc *bg, __u32 count)
283{
284 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
285 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
286 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
287}
288
289void ext4_free_inodes_set(struct super_block *sb,
290 struct ext4_group_desc *bg, __u32 count)
291{
292 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
293 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
294 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
295}
296
297void ext4_used_dirs_set(struct super_block *sb,
298 struct ext4_group_desc *bg, __u32 count)
299{
300 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
301 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
302 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
303}
304
305void ext4_itable_unused_set(struct super_block *sb,
306 struct ext4_group_desc *bg, __u32 count)
307{
308 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
309 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
310 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
311}
312
313
314static void __save_error_info(struct super_block *sb, const char *func,
315 unsigned int line)
316{
317 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
318
319 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
320 if (bdev_read_only(sb->s_bdev))
321 return;
322 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
323 es->s_last_error_time = cpu_to_le32(get_seconds());
324 strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
325 es->s_last_error_line = cpu_to_le32(line);
326 if (!es->s_first_error_time) {
327 es->s_first_error_time = es->s_last_error_time;
328 strncpy(es->s_first_error_func, func,
329 sizeof(es->s_first_error_func));
330 es->s_first_error_line = cpu_to_le32(line);
331 es->s_first_error_ino = es->s_last_error_ino;
332 es->s_first_error_block = es->s_last_error_block;
333 }
334 /*
335 * Start the daily error reporting function if it hasn't been
336 * started already
337 */
338 if (!es->s_error_count)
339 mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
340 le32_add_cpu(&es->s_error_count, 1);
341}
342
343static void save_error_info(struct super_block *sb, const char *func,
344 unsigned int line)
345{
346 __save_error_info(sb, func, line);
347 ext4_commit_super(sb, 1);
348}
349
350/*
351 * The del_gendisk() function uninitializes the disk-specific data
352 * structures, including the bdi structure, without telling anyone
353 * else. Once this happens, any attempt to call mark_buffer_dirty()
354 * (for example, by ext4_commit_super), will cause a kernel OOPS.
355 * This is a kludge to prevent these oops until we can put in a proper
356 * hook in del_gendisk() to inform the VFS and file system layers.
357 */
358static int block_device_ejected(struct super_block *sb)
359{
360 struct inode *bd_inode = sb->s_bdev->bd_inode;
361 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
362
363 return bdi->dev == NULL;
364}
365
366static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
367{
368 struct super_block *sb = journal->j_private;
369 struct ext4_sb_info *sbi = EXT4_SB(sb);
370 int error = is_journal_aborted(journal);
371 struct ext4_journal_cb_entry *jce;
372
373 BUG_ON(txn->t_state == T_FINISHED);
374 spin_lock(&sbi->s_md_lock);
375 while (!list_empty(&txn->t_private_list)) {
376 jce = list_entry(txn->t_private_list.next,
377 struct ext4_journal_cb_entry, jce_list);
378 list_del_init(&jce->jce_list);
379 spin_unlock(&sbi->s_md_lock);
380 jce->jce_func(sb, jce, error);
381 spin_lock(&sbi->s_md_lock);
382 }
383 spin_unlock(&sbi->s_md_lock);
384}
385
386/* Deal with the reporting of failure conditions on a filesystem such as
387 * inconsistencies detected or read IO failures.
388 *
389 * On ext2, we can store the error state of the filesystem in the
390 * superblock. That is not possible on ext4, because we may have other
391 * write ordering constraints on the superblock which prevent us from
392 * writing it out straight away; and given that the journal is about to
393 * be aborted, we can't rely on the current, or future, transactions to
394 * write out the superblock safely.
395 *
396 * We'll just use the jbd2_journal_abort() error code to record an error in
397 * the journal instead. On recovery, the journal will complain about
398 * that error until we've noted it down and cleared it.
399 */
400
401static void ext4_handle_error(struct super_block *sb)
402{
403 if (sb->s_flags & MS_RDONLY)
404 return;
405
406 if (!test_opt(sb, ERRORS_CONT)) {
407 journal_t *journal = EXT4_SB(sb)->s_journal;
408
409 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
410 if (journal)
411 jbd2_journal_abort(journal, -EIO);
412 }
413 if (test_opt(sb, ERRORS_RO)) {
414 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
415 /*
416 * Make sure updated value of ->s_mount_flags will be visible
417 * before ->s_flags update
418 */
419 smp_wmb();
420 sb->s_flags |= MS_RDONLY;
421 }
422 if (test_opt(sb, ERRORS_PANIC)) {
423 if (EXT4_SB(sb)->s_journal &&
424 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
425 return;
426 panic("EXT4-fs (device %s): panic forced after error\n",
427 sb->s_id);
428 }
429}
430
431#define ext4_error_ratelimit(sb) \
432 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
433 "EXT4-fs error")
434
435void __ext4_error(struct super_block *sb, const char *function,
436 unsigned int line, const char *fmt, ...)
437{
438 struct va_format vaf;
439 va_list args;
440
441 if (ext4_error_ratelimit(sb)) {
442 va_start(args, fmt);
443 vaf.fmt = fmt;
444 vaf.va = &args;
445 printk(KERN_CRIT
446 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
447 sb->s_id, function, line, current->comm, &vaf);
448 va_end(args);
449 }
450 save_error_info(sb, function, line);
451 ext4_handle_error(sb);
452}
453
454void __ext4_error_inode(struct inode *inode, const char *function,
455 unsigned int line, ext4_fsblk_t block,
456 const char *fmt, ...)
457{
458 va_list args;
459 struct va_format vaf;
460 struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
461
462 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
463 es->s_last_error_block = cpu_to_le64(block);
464 if (ext4_error_ratelimit(inode->i_sb)) {
465 va_start(args, fmt);
466 vaf.fmt = fmt;
467 vaf.va = &args;
468 if (block)
469 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
470 "inode #%lu: block %llu: comm %s: %pV\n",
471 inode->i_sb->s_id, function, line, inode->i_ino,
472 block, current->comm, &vaf);
473 else
474 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
475 "inode #%lu: comm %s: %pV\n",
476 inode->i_sb->s_id, function, line, inode->i_ino,
477 current->comm, &vaf);
478 va_end(args);
479 }
480 save_error_info(inode->i_sb, function, line);
481 ext4_handle_error(inode->i_sb);
482}
483
484void __ext4_error_file(struct file *file, const char *function,
485 unsigned int line, ext4_fsblk_t block,
486 const char *fmt, ...)
487{
488 va_list args;
489 struct va_format vaf;
490 struct ext4_super_block *es;
491 struct inode *inode = file_inode(file);
492 char pathname[80], *path;
493
494 es = EXT4_SB(inode->i_sb)->s_es;
495 es->s_last_error_ino = cpu_to_le32(inode->i_ino);
496 if (ext4_error_ratelimit(inode->i_sb)) {
497 path = file_path(file, pathname, sizeof(pathname));
498 if (IS_ERR(path))
499 path = "(unknown)";
500 va_start(args, fmt);
501 vaf.fmt = fmt;
502 vaf.va = &args;
503 if (block)
504 printk(KERN_CRIT
505 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
506 "block %llu: comm %s: path %s: %pV\n",
507 inode->i_sb->s_id, function, line, inode->i_ino,
508 block, current->comm, path, &vaf);
509 else
510 printk(KERN_CRIT
511 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
512 "comm %s: path %s: %pV\n",
513 inode->i_sb->s_id, function, line, inode->i_ino,
514 current->comm, path, &vaf);
515 va_end(args);
516 }
517 save_error_info(inode->i_sb, function, line);
518 ext4_handle_error(inode->i_sb);
519}
520
521const char *ext4_decode_error(struct super_block *sb, int errno,
522 char nbuf[16])
523{
524 char *errstr = NULL;
525
526 switch (errno) {
527 case -EFSCORRUPTED:
528 errstr = "Corrupt filesystem";
529 break;
530 case -EFSBADCRC:
531 errstr = "Filesystem failed CRC";
532 break;
533 case -EIO:
534 errstr = "IO failure";
535 break;
536 case -ENOMEM:
537 errstr = "Out of memory";
538 break;
539 case -EROFS:
540 if (!sb || (EXT4_SB(sb)->s_journal &&
541 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
542 errstr = "Journal has aborted";
543 else
544 errstr = "Readonly filesystem";
545 break;
546 default:
547 /* If the caller passed in an extra buffer for unknown
548 * errors, textualise them now. Else we just return
549 * NULL. */
550 if (nbuf) {
551 /* Check for truncated error codes... */
552 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
553 errstr = nbuf;
554 }
555 break;
556 }
557
558 return errstr;
559}
560
561/* __ext4_std_error decodes expected errors from journaling functions
562 * automatically and invokes the appropriate error response. */
563
564void __ext4_std_error(struct super_block *sb, const char *function,
565 unsigned int line, int errno)
566{
567 char nbuf[16];
568 const char *errstr;
569
570 /* Special case: if the error is EROFS, and we're not already
571 * inside a transaction, then there's really no point in logging
572 * an error. */
573 if (errno == -EROFS && journal_current_handle() == NULL &&
574 (sb->s_flags & MS_RDONLY))
575 return;
576
577 if (ext4_error_ratelimit(sb)) {
578 errstr = ext4_decode_error(sb, errno, nbuf);
579 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
580 sb->s_id, function, line, errstr);
581 }
582
583 save_error_info(sb, function, line);
584 ext4_handle_error(sb);
585}
586
587/*
588 * ext4_abort is a much stronger failure handler than ext4_error. The
589 * abort function may be used to deal with unrecoverable failures such
590 * as journal IO errors or ENOMEM at a critical moment in log management.
591 *
592 * We unconditionally force the filesystem into an ABORT|READONLY state,
593 * unless the error response on the fs has been set to panic in which
594 * case we take the easy way out and panic immediately.
595 */
596
597void __ext4_abort(struct super_block *sb, const char *function,
598 unsigned int line, const char *fmt, ...)
599{
600 struct va_format vaf;
601 va_list args;
602
603 save_error_info(sb, function, line);
604 va_start(args, fmt);
605 vaf.fmt = fmt;
606 vaf.va = &args;
607 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
608 sb->s_id, function, line, &vaf);
609 va_end(args);
610
611 if ((sb->s_flags & MS_RDONLY) == 0) {
612 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
613 EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
614 /*
615 * Make sure updated value of ->s_mount_flags will be visible
616 * before ->s_flags update
617 */
618 smp_wmb();
619 sb->s_flags |= MS_RDONLY;
620 if (EXT4_SB(sb)->s_journal)
621 jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
622 save_error_info(sb, function, line);
623 }
624 if (test_opt(sb, ERRORS_PANIC)) {
625 if (EXT4_SB(sb)->s_journal &&
626 !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
627 return;
628 panic("EXT4-fs panic from previous error\n");
629 }
630}
631
632void __ext4_msg(struct super_block *sb,
633 const char *prefix, const char *fmt, ...)
634{
635 struct va_format vaf;
636 va_list args;
637
638 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
639 return;
640
641 va_start(args, fmt);
642 vaf.fmt = fmt;
643 vaf.va = &args;
644 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
645 va_end(args);
646}
647
648#define ext4_warning_ratelimit(sb) \
649 ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state), \
650 "EXT4-fs warning")
651
652void __ext4_warning(struct super_block *sb, const char *function,
653 unsigned int line, const char *fmt, ...)
654{
655 struct va_format vaf;
656 va_list args;
657
658 if (!ext4_warning_ratelimit(sb))
659 return;
660
661 va_start(args, fmt);
662 vaf.fmt = fmt;
663 vaf.va = &args;
664 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
665 sb->s_id, function, line, &vaf);
666 va_end(args);
667}
668
669void __ext4_warning_inode(const struct inode *inode, const char *function,
670 unsigned int line, const char *fmt, ...)
671{
672 struct va_format vaf;
673 va_list args;
674
675 if (!ext4_warning_ratelimit(inode->i_sb))
676 return;
677
678 va_start(args, fmt);
679 vaf.fmt = fmt;
680 vaf.va = &args;
681 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
682 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
683 function, line, inode->i_ino, current->comm, &vaf);
684 va_end(args);
685}
686
687void __ext4_grp_locked_error(const char *function, unsigned int line,
688 struct super_block *sb, ext4_group_t grp,
689 unsigned long ino, ext4_fsblk_t block,
690 const char *fmt, ...)
691__releases(bitlock)
692__acquires(bitlock)
693{
694 struct va_format vaf;
695 va_list args;
696 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
697
698 es->s_last_error_ino = cpu_to_le32(ino);
699 es->s_last_error_block = cpu_to_le64(block);
700 __save_error_info(sb, function, line);
701
702 if (ext4_error_ratelimit(sb)) {
703 va_start(args, fmt);
704 vaf.fmt = fmt;
705 vaf.va = &args;
706 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
707 sb->s_id, function, line, grp);
708 if (ino)
709 printk(KERN_CONT "inode %lu: ", ino);
710 if (block)
711 printk(KERN_CONT "block %llu:",
712 (unsigned long long) block);
713 printk(KERN_CONT "%pV\n", &vaf);
714 va_end(args);
715 }
716
717 if (test_opt(sb, ERRORS_CONT)) {
718 ext4_commit_super(sb, 0);
719 return;
720 }
721
722 ext4_unlock_group(sb, grp);
723 ext4_handle_error(sb);
724 /*
725 * We only get here in the ERRORS_RO case; relocking the group
726 * may be dangerous, but nothing bad will happen since the
727 * filesystem will have already been marked read/only and the
728 * journal has been aborted. We return 1 as a hint to callers
729 * who might what to use the return value from
730 * ext4_grp_locked_error() to distinguish between the
731 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
732 * aggressively from the ext4 function in question, with a
733 * more appropriate error code.
734 */
735 ext4_lock_group(sb, grp);
736 return;
737}
738
739void ext4_update_dynamic_rev(struct super_block *sb)
740{
741 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
742
743 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
744 return;
745
746 ext4_warning(sb,
747 "updating to rev %d because of new feature flag, "
748 "running e2fsck is recommended",
749 EXT4_DYNAMIC_REV);
750
751 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
752 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
753 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
754 /* leave es->s_feature_*compat flags alone */
755 /* es->s_uuid will be set by e2fsck if empty */
756
757 /*
758 * The rest of the superblock fields should be zero, and if not it
759 * means they are likely already in use, so leave them alone. We
760 * can leave it up to e2fsck to clean up any inconsistencies there.
761 */
762}
763
764/*
765 * Open the external journal device
766 */
767static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
768{
769 struct block_device *bdev;
770 char b[BDEVNAME_SIZE];
771
772 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
773 if (IS_ERR(bdev))
774 goto fail;
775 return bdev;
776
777fail:
778 ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
779 __bdevname(dev, b), PTR_ERR(bdev));
780 return NULL;
781}
782
783/*
784 * Release the journal device
785 */
786static void ext4_blkdev_put(struct block_device *bdev)
787{
788 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
789}
790
791static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
792{
793 struct block_device *bdev;
794 bdev = sbi->journal_bdev;
795 if (bdev) {
796 ext4_blkdev_put(bdev);
797 sbi->journal_bdev = NULL;
798 }
799}
800
801static inline struct inode *orphan_list_entry(struct list_head *l)
802{
803 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
804}
805
806static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
807{
808 struct list_head *l;
809
810 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
811 le32_to_cpu(sbi->s_es->s_last_orphan));
812
813 printk(KERN_ERR "sb_info orphan list:\n");
814 list_for_each(l, &sbi->s_orphan) {
815 struct inode *inode = orphan_list_entry(l);
816 printk(KERN_ERR " "
817 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
818 inode->i_sb->s_id, inode->i_ino, inode,
819 inode->i_mode, inode->i_nlink,
820 NEXT_ORPHAN(inode));
821 }
822}
823
824static void ext4_put_super(struct super_block *sb)
825{
826 struct ext4_sb_info *sbi = EXT4_SB(sb);
827 struct ext4_super_block *es = sbi->s_es;
828 int aborted = 0;
829 int i, err;
830
831 ext4_unregister_li_request(sb);
832 dquot_disable(sb, -1, DQUOT_USAGE_ENABLED | DQUOT_LIMITS_ENABLED);
833
834 flush_workqueue(sbi->rsv_conversion_wq);
835 destroy_workqueue(sbi->rsv_conversion_wq);
836
837 if (sbi->s_journal) {
838 aborted = is_journal_aborted(sbi->s_journal);
839 err = jbd2_journal_destroy(sbi->s_journal);
840 sbi->s_journal = NULL;
841 if ((err < 0) && !aborted)
842 ext4_abort(sb, "Couldn't clean up the journal");
843 }
844
845 ext4_unregister_sysfs(sb);
846 ext4_es_unregister_shrinker(sbi);
847 del_timer_sync(&sbi->s_err_report);
848 ext4_release_system_zone(sb);
849 ext4_mb_release(sb);
850 ext4_ext_release(sb);
851
852 if (!(sb->s_flags & MS_RDONLY) && !aborted) {
853 ext4_clear_feature_journal_needs_recovery(sb);
854 es->s_state = cpu_to_le16(sbi->s_mount_state);
855 }
856 if (!(sb->s_flags & MS_RDONLY))
857 ext4_commit_super(sb, 1);
858
859 for (i = 0; i < sbi->s_gdb_count; i++)
860 brelse(sbi->s_group_desc[i]);
861 kvfree(sbi->s_group_desc);
862 kvfree(sbi->s_flex_groups);
863 percpu_counter_destroy(&sbi->s_freeclusters_counter);
864 percpu_counter_destroy(&sbi->s_freeinodes_counter);
865 percpu_counter_destroy(&sbi->s_dirs_counter);
866 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
867 percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
868#ifdef CONFIG_QUOTA
869 for (i = 0; i < EXT4_MAXQUOTAS; i++)
870 kfree(sbi->s_qf_names[i]);
871#endif
872
873 /* Debugging code just in case the in-memory inode orphan list
874 * isn't empty. The on-disk one can be non-empty if we've
875 * detected an error and taken the fs readonly, but the
876 * in-memory list had better be clean by this point. */
877 if (!list_empty(&sbi->s_orphan))
878 dump_orphan_list(sb, sbi);
879 J_ASSERT(list_empty(&sbi->s_orphan));
880
881 sync_blockdev(sb->s_bdev);
882 invalidate_bdev(sb->s_bdev);
883 if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
884 /*
885 * Invalidate the journal device's buffers. We don't want them
886 * floating about in memory - the physical journal device may
887 * hotswapped, and it breaks the `ro-after' testing code.
888 */
889 sync_blockdev(sbi->journal_bdev);
890 invalidate_bdev(sbi->journal_bdev);
891 ext4_blkdev_remove(sbi);
892 }
893 if (sbi->s_mb_cache) {
894 ext4_xattr_destroy_cache(sbi->s_mb_cache);
895 sbi->s_mb_cache = NULL;
896 }
897 if (sbi->s_mmp_tsk)
898 kthread_stop(sbi->s_mmp_tsk);
899 brelse(sbi->s_sbh);
900 sb->s_fs_info = NULL;
901 /*
902 * Now that we are completely done shutting down the
903 * superblock, we need to actually destroy the kobject.
904 */
905 kobject_put(&sbi->s_kobj);
906 wait_for_completion(&sbi->s_kobj_unregister);
907 if (sbi->s_chksum_driver)
908 crypto_free_shash(sbi->s_chksum_driver);
909 kfree(sbi->s_blockgroup_lock);
910 kfree(sbi);
911}
912
913static struct kmem_cache *ext4_inode_cachep;
914
915/*
916 * Called inside transaction, so use GFP_NOFS
917 */
918static struct inode *ext4_alloc_inode(struct super_block *sb)
919{
920 struct ext4_inode_info *ei;
921
922 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
923 if (!ei)
924 return NULL;
925
926 ei->vfs_inode.i_version = 1;
927 spin_lock_init(&ei->i_raw_lock);
928 INIT_LIST_HEAD(&ei->i_prealloc_list);
929 spin_lock_init(&ei->i_prealloc_lock);
930 ext4_es_init_tree(&ei->i_es_tree);
931 rwlock_init(&ei->i_es_lock);
932 INIT_LIST_HEAD(&ei->i_es_list);
933 ei->i_es_all_nr = 0;
934 ei->i_es_shk_nr = 0;
935 ei->i_es_shrink_lblk = 0;
936 ei->i_reserved_data_blocks = 0;
937 ei->i_reserved_meta_blocks = 0;
938 ei->i_allocated_meta_blocks = 0;
939 ei->i_da_metadata_calc_len = 0;
940 ei->i_da_metadata_calc_last_lblock = 0;
941 spin_lock_init(&(ei->i_block_reservation_lock));
942#ifdef CONFIG_QUOTA
943 ei->i_reserved_quota = 0;
944 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
945#endif
946 ei->jinode = NULL;
947 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
948 spin_lock_init(&ei->i_completed_io_lock);
949 ei->i_sync_tid = 0;
950 ei->i_datasync_tid = 0;
951 atomic_set(&ei->i_unwritten, 0);
952 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
953 return &ei->vfs_inode;
954}
955
956static int ext4_drop_inode(struct inode *inode)
957{
958 int drop = generic_drop_inode(inode);
959
960 trace_ext4_drop_inode(inode, drop);
961 return drop;
962}
963
964static void ext4_i_callback(struct rcu_head *head)
965{
966 struct inode *inode = container_of(head, struct inode, i_rcu);
967 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
968}
969
970static void ext4_destroy_inode(struct inode *inode)
971{
972 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
973 ext4_msg(inode->i_sb, KERN_ERR,
974 "Inode %lu (%p): orphan list check failed!",
975 inode->i_ino, EXT4_I(inode));
976 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
977 EXT4_I(inode), sizeof(struct ext4_inode_info),
978 true);
979 dump_stack();
980 }
981 call_rcu(&inode->i_rcu, ext4_i_callback);
982}
983
984static void init_once(void *foo)
985{
986 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
987
988 INIT_LIST_HEAD(&ei->i_orphan);
989 init_rwsem(&ei->xattr_sem);
990 init_rwsem(&ei->i_data_sem);
991 init_rwsem(&ei->i_mmap_sem);
992 inode_init_once(&ei->vfs_inode);
993}
994
995static int __init init_inodecache(void)
996{
997 ext4_inode_cachep = kmem_cache_create("ext4_inode_cache",
998 sizeof(struct ext4_inode_info),
999 0, (SLAB_RECLAIM_ACCOUNT|
1000 SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1001 init_once);
1002 if (ext4_inode_cachep == NULL)
1003 return -ENOMEM;
1004 return 0;
1005}
1006
1007static void destroy_inodecache(void)
1008{
1009 /*
1010 * Make sure all delayed rcu free inodes are flushed before we
1011 * destroy cache.
1012 */
1013 rcu_barrier();
1014 kmem_cache_destroy(ext4_inode_cachep);
1015}
1016
1017void ext4_clear_inode(struct inode *inode)
1018{
1019 invalidate_inode_buffers(inode);
1020 clear_inode(inode);
1021 dquot_drop(inode);
1022 ext4_discard_preallocations(inode);
1023 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1024 if (EXT4_I(inode)->jinode) {
1025 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1026 EXT4_I(inode)->jinode);
1027 jbd2_free_inode(EXT4_I(inode)->jinode);
1028 EXT4_I(inode)->jinode = NULL;
1029 }
1030#ifdef CONFIG_EXT4_FS_ENCRYPTION
1031 fscrypt_put_encryption_info(inode, NULL);
1032#endif
1033}
1034
1035static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1036 u64 ino, u32 generation)
1037{
1038 struct inode *inode;
1039
1040 if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1041 return ERR_PTR(-ESTALE);
1042 if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1043 return ERR_PTR(-ESTALE);
1044
1045 /* iget isn't really right if the inode is currently unallocated!!
1046 *
1047 * ext4_read_inode will return a bad_inode if the inode had been
1048 * deleted, so we should be safe.
1049 *
1050 * Currently we don't know the generation for parent directory, so
1051 * a generation of 0 means "accept any"
1052 */
1053 inode = ext4_iget_normal(sb, ino);
1054 if (IS_ERR(inode))
1055 return ERR_CAST(inode);
1056 if (generation && inode->i_generation != generation) {
1057 iput(inode);
1058 return ERR_PTR(-ESTALE);
1059 }
1060
1061 return inode;
1062}
1063
1064static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1065 int fh_len, int fh_type)
1066{
1067 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1068 ext4_nfs_get_inode);
1069}
1070
1071static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1072 int fh_len, int fh_type)
1073{
1074 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1075 ext4_nfs_get_inode);
1076}
1077
1078/*
1079 * Try to release metadata pages (indirect blocks, directories) which are
1080 * mapped via the block device. Since these pages could have journal heads
1081 * which would prevent try_to_free_buffers() from freeing them, we must use
1082 * jbd2 layer's try_to_free_buffers() function to release them.
1083 */
1084static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1085 gfp_t wait)
1086{
1087 journal_t *journal = EXT4_SB(sb)->s_journal;
1088
1089 WARN_ON(PageChecked(page));
1090 if (!page_has_buffers(page))
1091 return 0;
1092 if (journal)
1093 return jbd2_journal_try_to_free_buffers(journal, page,
1094 wait & ~__GFP_DIRECT_RECLAIM);
1095 return try_to_free_buffers(page);
1096}
1097
1098#ifdef CONFIG_EXT4_FS_ENCRYPTION
1099static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1100{
1101 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1102 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1103}
1104
1105static int ext4_key_prefix(struct inode *inode, u8 **key)
1106{
1107 *key = EXT4_SB(inode->i_sb)->key_prefix;
1108 return EXT4_SB(inode->i_sb)->key_prefix_size;
1109}
1110
1111static int ext4_prepare_context(struct inode *inode)
1112{
1113 return ext4_convert_inline_data(inode);
1114}
1115
1116static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1117 void *fs_data)
1118{
1119 handle_t *handle = fs_data;
1120 int res, res2, retries = 0;
1121
1122 /*
1123 * If a journal handle was specified, then the encryption context is
1124 * being set on a new inode via inheritance and is part of a larger
1125 * transaction to create the inode. Otherwise the encryption context is
1126 * being set on an existing inode in its own transaction. Only in the
1127 * latter case should the "retry on ENOSPC" logic be used.
1128 */
1129
1130 if (handle) {
1131 res = ext4_xattr_set_handle(handle, inode,
1132 EXT4_XATTR_INDEX_ENCRYPTION,
1133 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1134 ctx, len, 0);
1135 if (!res) {
1136 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1137 ext4_clear_inode_state(inode,
1138 EXT4_STATE_MAY_INLINE_DATA);
1139 /*
1140 * Update inode->i_flags - e.g. S_DAX may get disabled
1141 */
1142 ext4_set_inode_flags(inode);
1143 }
1144 return res;
1145 }
1146
1147retry:
1148 handle = ext4_journal_start(inode, EXT4_HT_MISC,
1149 ext4_jbd2_credits_xattr(inode));
1150 if (IS_ERR(handle))
1151 return PTR_ERR(handle);
1152
1153 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1154 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1155 ctx, len, 0);
1156 if (!res) {
1157 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1158 /* Update inode->i_flags - e.g. S_DAX may get disabled */
1159 ext4_set_inode_flags(inode);
1160 res = ext4_mark_inode_dirty(handle, inode);
1161 if (res)
1162 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1163 }
1164 res2 = ext4_journal_stop(handle);
1165
1166 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1167 goto retry;
1168 if (!res)
1169 res = res2;
1170 return res;
1171}
1172
1173static int ext4_dummy_context(struct inode *inode)
1174{
1175 return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1176}
1177
1178static unsigned ext4_max_namelen(struct inode *inode)
1179{
1180 return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1181 EXT4_NAME_LEN;
1182}
1183
1184static struct fscrypt_operations ext4_cryptops = {
1185 .get_context = ext4_get_context,
1186 .key_prefix = ext4_key_prefix,
1187 .prepare_context = ext4_prepare_context,
1188 .set_context = ext4_set_context,
1189 .dummy_context = ext4_dummy_context,
1190 .is_encrypted = ext4_encrypted_inode,
1191 .empty_dir = ext4_empty_dir,
1192 .max_namelen = ext4_max_namelen,
1193};
1194#else
1195static struct fscrypt_operations ext4_cryptops = {
1196 .is_encrypted = ext4_encrypted_inode,
1197};
1198#endif
1199
1200#ifdef CONFIG_QUOTA
1201static char *quotatypes[] = INITQFNAMES;
1202#define QTYPE2NAME(t) (quotatypes[t])
1203
1204static int ext4_write_dquot(struct dquot *dquot);
1205static int ext4_acquire_dquot(struct dquot *dquot);
1206static int ext4_release_dquot(struct dquot *dquot);
1207static int ext4_mark_dquot_dirty(struct dquot *dquot);
1208static int ext4_write_info(struct super_block *sb, int type);
1209static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1210 const struct path *path);
1211static int ext4_quota_off(struct super_block *sb, int type);
1212static int ext4_quota_on_mount(struct super_block *sb, int type);
1213static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1214 size_t len, loff_t off);
1215static ssize_t ext4_quota_write(struct super_block *sb, int type,
1216 const char *data, size_t len, loff_t off);
1217static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1218 unsigned int flags);
1219static int ext4_enable_quotas(struct super_block *sb);
1220static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1221
1222static struct dquot **ext4_get_dquots(struct inode *inode)
1223{
1224 return EXT4_I(inode)->i_dquot;
1225}
1226
1227static const struct dquot_operations ext4_quota_operations = {
1228 .get_reserved_space = ext4_get_reserved_space,
1229 .write_dquot = ext4_write_dquot,
1230 .acquire_dquot = ext4_acquire_dquot,
1231 .release_dquot = ext4_release_dquot,
1232 .mark_dirty = ext4_mark_dquot_dirty,
1233 .write_info = ext4_write_info,
1234 .alloc_dquot = dquot_alloc,
1235 .destroy_dquot = dquot_destroy,
1236 .get_projid = ext4_get_projid,
1237 .get_next_id = ext4_get_next_id,
1238};
1239
1240static const struct quotactl_ops ext4_qctl_operations = {
1241 .quota_on = ext4_quota_on,
1242 .quota_off = ext4_quota_off,
1243 .quota_sync = dquot_quota_sync,
1244 .get_state = dquot_get_state,
1245 .set_info = dquot_set_dqinfo,
1246 .get_dqblk = dquot_get_dqblk,
1247 .set_dqblk = dquot_set_dqblk,
1248 .get_nextdqblk = dquot_get_next_dqblk,
1249};
1250#endif
1251
1252static const struct super_operations ext4_sops = {
1253 .alloc_inode = ext4_alloc_inode,
1254 .destroy_inode = ext4_destroy_inode,
1255 .write_inode = ext4_write_inode,
1256 .dirty_inode = ext4_dirty_inode,
1257 .drop_inode = ext4_drop_inode,
1258 .evict_inode = ext4_evict_inode,
1259 .put_super = ext4_put_super,
1260 .sync_fs = ext4_sync_fs,
1261 .freeze_fs = ext4_freeze,
1262 .unfreeze_fs = ext4_unfreeze,
1263 .statfs = ext4_statfs,
1264 .remount_fs = ext4_remount,
1265 .show_options = ext4_show_options,
1266#ifdef CONFIG_QUOTA
1267 .quota_read = ext4_quota_read,
1268 .quota_write = ext4_quota_write,
1269 .get_dquots = ext4_get_dquots,
1270#endif
1271 .bdev_try_to_free_page = bdev_try_to_free_page,
1272};
1273
1274static const struct export_operations ext4_export_ops = {
1275 .fh_to_dentry = ext4_fh_to_dentry,
1276 .fh_to_parent = ext4_fh_to_parent,
1277 .get_parent = ext4_get_parent,
1278};
1279
1280enum {
1281 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1282 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1283 Opt_nouid32, Opt_debug, Opt_removed,
1284 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1285 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1286 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1287 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1288 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1289 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1290 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1291 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1292 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1293 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1294 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1295 Opt_lazytime, Opt_nolazytime,
1296 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1297 Opt_inode_readahead_blks, Opt_journal_ioprio,
1298 Opt_dioread_nolock, Opt_dioread_lock,
1299 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1300 Opt_max_dir_size_kb, Opt_nojournal_checksum,
1301};
1302
1303static const match_table_t tokens = {
1304 {Opt_bsd_df, "bsddf"},
1305 {Opt_minix_df, "minixdf"},
1306 {Opt_grpid, "grpid"},
1307 {Opt_grpid, "bsdgroups"},
1308 {Opt_nogrpid, "nogrpid"},
1309 {Opt_nogrpid, "sysvgroups"},
1310 {Opt_resgid, "resgid=%u"},
1311 {Opt_resuid, "resuid=%u"},
1312 {Opt_sb, "sb=%u"},
1313 {Opt_err_cont, "errors=continue"},
1314 {Opt_err_panic, "errors=panic"},
1315 {Opt_err_ro, "errors=remount-ro"},
1316 {Opt_nouid32, "nouid32"},
1317 {Opt_debug, "debug"},
1318 {Opt_removed, "oldalloc"},
1319 {Opt_removed, "orlov"},
1320 {Opt_user_xattr, "user_xattr"},
1321 {Opt_nouser_xattr, "nouser_xattr"},
1322 {Opt_acl, "acl"},
1323 {Opt_noacl, "noacl"},
1324 {Opt_noload, "norecovery"},
1325 {Opt_noload, "noload"},
1326 {Opt_removed, "nobh"},
1327 {Opt_removed, "bh"},
1328 {Opt_commit, "commit=%u"},
1329 {Opt_min_batch_time, "min_batch_time=%u"},
1330 {Opt_max_batch_time, "max_batch_time=%u"},
1331 {Opt_journal_dev, "journal_dev=%u"},
1332 {Opt_journal_path, "journal_path=%s"},
1333 {Opt_journal_checksum, "journal_checksum"},
1334 {Opt_nojournal_checksum, "nojournal_checksum"},
1335 {Opt_journal_async_commit, "journal_async_commit"},
1336 {Opt_abort, "abort"},
1337 {Opt_data_journal, "data=journal"},
1338 {Opt_data_ordered, "data=ordered"},
1339 {Opt_data_writeback, "data=writeback"},
1340 {Opt_data_err_abort, "data_err=abort"},
1341 {Opt_data_err_ignore, "data_err=ignore"},
1342 {Opt_offusrjquota, "usrjquota="},
1343 {Opt_usrjquota, "usrjquota=%s"},
1344 {Opt_offgrpjquota, "grpjquota="},
1345 {Opt_grpjquota, "grpjquota=%s"},
1346 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1347 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1348 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1349 {Opt_grpquota, "grpquota"},
1350 {Opt_noquota, "noquota"},
1351 {Opt_quota, "quota"},
1352 {Opt_usrquota, "usrquota"},
1353 {Opt_prjquota, "prjquota"},
1354 {Opt_barrier, "barrier=%u"},
1355 {Opt_barrier, "barrier"},
1356 {Opt_nobarrier, "nobarrier"},
1357 {Opt_i_version, "i_version"},
1358 {Opt_dax, "dax"},
1359 {Opt_stripe, "stripe=%u"},
1360 {Opt_delalloc, "delalloc"},
1361 {Opt_lazytime, "lazytime"},
1362 {Opt_nolazytime, "nolazytime"},
1363 {Opt_nodelalloc, "nodelalloc"},
1364 {Opt_removed, "mblk_io_submit"},
1365 {Opt_removed, "nomblk_io_submit"},
1366 {Opt_block_validity, "block_validity"},
1367 {Opt_noblock_validity, "noblock_validity"},
1368 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1369 {Opt_journal_ioprio, "journal_ioprio=%u"},
1370 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1371 {Opt_auto_da_alloc, "auto_da_alloc"},
1372 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1373 {Opt_dioread_nolock, "dioread_nolock"},
1374 {Opt_dioread_lock, "dioread_lock"},
1375 {Opt_discard, "discard"},
1376 {Opt_nodiscard, "nodiscard"},
1377 {Opt_init_itable, "init_itable=%u"},
1378 {Opt_init_itable, "init_itable"},
1379 {Opt_noinit_itable, "noinit_itable"},
1380 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1381 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1382 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1383 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1384 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1385 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1386 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1387 {Opt_err, NULL},
1388};
1389
1390static ext4_fsblk_t get_sb_block(void **data)
1391{
1392 ext4_fsblk_t sb_block;
1393 char *options = (char *) *data;
1394
1395 if (!options || strncmp(options, "sb=", 3) != 0)
1396 return 1; /* Default location */
1397
1398 options += 3;
1399 /* TODO: use simple_strtoll with >32bit ext4 */
1400 sb_block = simple_strtoul(options, &options, 0);
1401 if (*options && *options != ',') {
1402 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1403 (char *) *data);
1404 return 1;
1405 }
1406 if (*options == ',')
1407 options++;
1408 *data = (void *) options;
1409
1410 return sb_block;
1411}
1412
1413#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1414static char deprecated_msg[] = "Mount option \"%s\" will be removed by %s\n"
1415 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1416
1417#ifdef CONFIG_QUOTA
1418static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1419{
1420 struct ext4_sb_info *sbi = EXT4_SB(sb);
1421 char *qname;
1422 int ret = -1;
1423
1424 if (sb_any_quota_loaded(sb) &&
1425 !sbi->s_qf_names[qtype]) {
1426 ext4_msg(sb, KERN_ERR,
1427 "Cannot change journaled "
1428 "quota options when quota turned on");
1429 return -1;
1430 }
1431 if (ext4_has_feature_quota(sb)) {
1432 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1433 "ignored when QUOTA feature is enabled");
1434 return 1;
1435 }
1436 qname = match_strdup(args);
1437 if (!qname) {
1438 ext4_msg(sb, KERN_ERR,
1439 "Not enough memory for storing quotafile name");
1440 return -1;
1441 }
1442 if (sbi->s_qf_names[qtype]) {
1443 if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1444 ret = 1;
1445 else
1446 ext4_msg(sb, KERN_ERR,
1447 "%s quota file already specified",
1448 QTYPE2NAME(qtype));
1449 goto errout;
1450 }
1451 if (strchr(qname, '/')) {
1452 ext4_msg(sb, KERN_ERR,
1453 "quotafile must be on filesystem root");
1454 goto errout;
1455 }
1456 sbi->s_qf_names[qtype] = qname;
1457 set_opt(sb, QUOTA);
1458 return 1;
1459errout:
1460 kfree(qname);
1461 return ret;
1462}
1463
1464static int clear_qf_name(struct super_block *sb, int qtype)
1465{
1466
1467 struct ext4_sb_info *sbi = EXT4_SB(sb);
1468
1469 if (sb_any_quota_loaded(sb) &&
1470 sbi->s_qf_names[qtype]) {
1471 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1472 " when quota turned on");
1473 return -1;
1474 }
1475 kfree(sbi->s_qf_names[qtype]);
1476 sbi->s_qf_names[qtype] = NULL;
1477 return 1;
1478}
1479#endif
1480
1481#define MOPT_SET 0x0001
1482#define MOPT_CLEAR 0x0002
1483#define MOPT_NOSUPPORT 0x0004
1484#define MOPT_EXPLICIT 0x0008
1485#define MOPT_CLEAR_ERR 0x0010
1486#define MOPT_GTE0 0x0020
1487#ifdef CONFIG_QUOTA
1488#define MOPT_Q 0
1489#define MOPT_QFMT 0x0040
1490#else
1491#define MOPT_Q MOPT_NOSUPPORT
1492#define MOPT_QFMT MOPT_NOSUPPORT
1493#endif
1494#define MOPT_DATAJ 0x0080
1495#define MOPT_NO_EXT2 0x0100
1496#define MOPT_NO_EXT3 0x0200
1497#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1498#define MOPT_STRING 0x0400
1499
1500static const struct mount_opts {
1501 int token;
1502 int mount_opt;
1503 int flags;
1504} ext4_mount_opts[] = {
1505 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1506 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1507 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1508 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1509 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1510 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1511 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1512 MOPT_EXT4_ONLY | MOPT_SET},
1513 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1514 MOPT_EXT4_ONLY | MOPT_CLEAR},
1515 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1516 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1517 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1518 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1519 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1520 MOPT_EXT4_ONLY | MOPT_CLEAR},
1521 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1522 MOPT_EXT4_ONLY | MOPT_CLEAR},
1523 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1524 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1525 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1526 EXT4_MOUNT_JOURNAL_CHECKSUM),
1527 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1528 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1529 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1530 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1531 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1532 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1533 MOPT_NO_EXT2},
1534 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1535 MOPT_NO_EXT2},
1536 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1537 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1538 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1539 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1540 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1541 {Opt_commit, 0, MOPT_GTE0},
1542 {Opt_max_batch_time, 0, MOPT_GTE0},
1543 {Opt_min_batch_time, 0, MOPT_GTE0},
1544 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1545 {Opt_init_itable, 0, MOPT_GTE0},
1546 {Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1547 {Opt_stripe, 0, MOPT_GTE0},
1548 {Opt_resuid, 0, MOPT_GTE0},
1549 {Opt_resgid, 0, MOPT_GTE0},
1550 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1551 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1552 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1553 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1554 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1555 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1556 MOPT_NO_EXT2 | MOPT_DATAJ},
1557 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1558 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1559#ifdef CONFIG_EXT4_FS_POSIX_ACL
1560 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1561 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1562#else
1563 {Opt_acl, 0, MOPT_NOSUPPORT},
1564 {Opt_noacl, 0, MOPT_NOSUPPORT},
1565#endif
1566 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1567 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1568 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1569 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1570 MOPT_SET | MOPT_Q},
1571 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1572 MOPT_SET | MOPT_Q},
1573 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1574 MOPT_SET | MOPT_Q},
1575 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1576 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1577 MOPT_CLEAR | MOPT_Q},
1578 {Opt_usrjquota, 0, MOPT_Q},
1579 {Opt_grpjquota, 0, MOPT_Q},
1580 {Opt_offusrjquota, 0, MOPT_Q},
1581 {Opt_offgrpjquota, 0, MOPT_Q},
1582 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1583 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1584 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1585 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
1586 {Opt_test_dummy_encryption, 0, MOPT_GTE0},
1587 {Opt_err, 0, 0}
1588};
1589
1590static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1591 substring_t *args, unsigned long *journal_devnum,
1592 unsigned int *journal_ioprio, int is_remount)
1593{
1594 struct ext4_sb_info *sbi = EXT4_SB(sb);
1595 const struct mount_opts *m;
1596 kuid_t uid;
1597 kgid_t gid;
1598 int arg = 0;
1599
1600#ifdef CONFIG_QUOTA
1601 if (token == Opt_usrjquota)
1602 return set_qf_name(sb, USRQUOTA, &args[0]);
1603 else if (token == Opt_grpjquota)
1604 return set_qf_name(sb, GRPQUOTA, &args[0]);
1605 else if (token == Opt_offusrjquota)
1606 return clear_qf_name(sb, USRQUOTA);
1607 else if (token == Opt_offgrpjquota)
1608 return clear_qf_name(sb, GRPQUOTA);
1609#endif
1610 switch (token) {
1611 case Opt_noacl:
1612 case Opt_nouser_xattr:
1613 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1614 break;
1615 case Opt_sb:
1616 return 1; /* handled by get_sb_block() */
1617 case Opt_removed:
1618 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1619 return 1;
1620 case Opt_abort:
1621 sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1622 return 1;
1623 case Opt_i_version:
1624 sb->s_flags |= MS_I_VERSION;
1625 return 1;
1626 case Opt_lazytime:
1627 sb->s_flags |= MS_LAZYTIME;
1628 return 1;
1629 case Opt_nolazytime:
1630 sb->s_flags &= ~MS_LAZYTIME;
1631 return 1;
1632 }
1633
1634 for (m = ext4_mount_opts; m->token != Opt_err; m++)
1635 if (token == m->token)
1636 break;
1637
1638 if (m->token == Opt_err) {
1639 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1640 "or missing value", opt);
1641 return -1;
1642 }
1643
1644 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1645 ext4_msg(sb, KERN_ERR,
1646 "Mount option \"%s\" incompatible with ext2", opt);
1647 return -1;
1648 }
1649 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1650 ext4_msg(sb, KERN_ERR,
1651 "Mount option \"%s\" incompatible with ext3", opt);
1652 return -1;
1653 }
1654
1655 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1656 return -1;
1657 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1658 return -1;
1659 if (m->flags & MOPT_EXPLICIT) {
1660 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1661 set_opt2(sb, EXPLICIT_DELALLOC);
1662 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1663 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
1664 } else
1665 return -1;
1666 }
1667 if (m->flags & MOPT_CLEAR_ERR)
1668 clear_opt(sb, ERRORS_MASK);
1669 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1670 ext4_msg(sb, KERN_ERR, "Cannot change quota "
1671 "options when quota turned on");
1672 return -1;
1673 }
1674
1675 if (m->flags & MOPT_NOSUPPORT) {
1676 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1677 } else if (token == Opt_commit) {
1678 if (arg == 0)
1679 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1680 sbi->s_commit_interval = HZ * arg;
1681 } else if (token == Opt_max_batch_time) {
1682 sbi->s_max_batch_time = arg;
1683 } else if (token == Opt_min_batch_time) {
1684 sbi->s_min_batch_time = arg;
1685 } else if (token == Opt_inode_readahead_blks) {
1686 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1687 ext4_msg(sb, KERN_ERR,
1688 "EXT4-fs: inode_readahead_blks must be "
1689 "0 or a power of 2 smaller than 2^31");
1690 return -1;
1691 }
1692 sbi->s_inode_readahead_blks = arg;
1693 } else if (token == Opt_init_itable) {
1694 set_opt(sb, INIT_INODE_TABLE);
1695 if (!args->from)
1696 arg = EXT4_DEF_LI_WAIT_MULT;
1697 sbi->s_li_wait_mult = arg;
1698 } else if (token == Opt_max_dir_size_kb) {
1699 sbi->s_max_dir_size_kb = arg;
1700 } else if (token == Opt_stripe) {
1701 sbi->s_stripe = arg;
1702 } else if (token == Opt_resuid) {
1703 uid = make_kuid(current_user_ns(), arg);
1704 if (!uid_valid(uid)) {
1705 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1706 return -1;
1707 }
1708 sbi->s_resuid = uid;
1709 } else if (token == Opt_resgid) {
1710 gid = make_kgid(current_user_ns(), arg);
1711 if (!gid_valid(gid)) {
1712 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1713 return -1;
1714 }
1715 sbi->s_resgid = gid;
1716 } else if (token == Opt_journal_dev) {
1717 if (is_remount) {
1718 ext4_msg(sb, KERN_ERR,
1719 "Cannot specify journal on remount");
1720 return -1;
1721 }
1722 *journal_devnum = arg;
1723 } else if (token == Opt_journal_path) {
1724 char *journal_path;
1725 struct inode *journal_inode;
1726 struct path path;
1727 int error;
1728
1729 if (is_remount) {
1730 ext4_msg(sb, KERN_ERR,
1731 "Cannot specify journal on remount");
1732 return -1;
1733 }
1734 journal_path = match_strdup(&args[0]);
1735 if (!journal_path) {
1736 ext4_msg(sb, KERN_ERR, "error: could not dup "
1737 "journal device string");
1738 return -1;
1739 }
1740
1741 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1742 if (error) {
1743 ext4_msg(sb, KERN_ERR, "error: could not find "
1744 "journal device path: error %d", error);
1745 kfree(journal_path);
1746 return -1;
1747 }
1748
1749 journal_inode = d_inode(path.dentry);
1750 if (!S_ISBLK(journal_inode->i_mode)) {
1751 ext4_msg(sb, KERN_ERR, "error: journal path %s "
1752 "is not a block device", journal_path);
1753 path_put(&path);
1754 kfree(journal_path);
1755 return -1;
1756 }
1757
1758 *journal_devnum = new_encode_dev(journal_inode->i_rdev);
1759 path_put(&path);
1760 kfree(journal_path);
1761 } else if (token == Opt_journal_ioprio) {
1762 if (arg > 7) {
1763 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
1764 " (must be 0-7)");
1765 return -1;
1766 }
1767 *journal_ioprio =
1768 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1769 } else if (token == Opt_test_dummy_encryption) {
1770#ifdef CONFIG_EXT4_FS_ENCRYPTION
1771 sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1772 ext4_msg(sb, KERN_WARNING,
1773 "Test dummy encryption mode enabled");
1774#else
1775 ext4_msg(sb, KERN_WARNING,
1776 "Test dummy encryption mount option ignored");
1777#endif
1778 } else if (m->flags & MOPT_DATAJ) {
1779 if (is_remount) {
1780 if (!sbi->s_journal)
1781 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1782 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1783 ext4_msg(sb, KERN_ERR,
1784 "Cannot change data mode on remount");
1785 return -1;
1786 }
1787 } else {
1788 clear_opt(sb, DATA_FLAGS);
1789 sbi->s_mount_opt |= m->mount_opt;
1790 }
1791#ifdef CONFIG_QUOTA
1792 } else if (m->flags & MOPT_QFMT) {
1793 if (sb_any_quota_loaded(sb) &&
1794 sbi->s_jquota_fmt != m->mount_opt) {
1795 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1796 "quota options when quota turned on");
1797 return -1;
1798 }
1799 if (ext4_has_feature_quota(sb)) {
1800 ext4_msg(sb, KERN_INFO,
1801 "Quota format mount options ignored "
1802 "when QUOTA feature is enabled");
1803 return 1;
1804 }
1805 sbi->s_jquota_fmt = m->mount_opt;
1806#endif
1807 } else if (token == Opt_dax) {
1808#ifdef CONFIG_FS_DAX
1809 ext4_msg(sb, KERN_WARNING,
1810 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1811 sbi->s_mount_opt |= m->mount_opt;
1812#else
1813 ext4_msg(sb, KERN_INFO, "dax option not supported");
1814 return -1;
1815#endif
1816 } else if (token == Opt_data_err_abort) {
1817 sbi->s_mount_opt |= m->mount_opt;
1818 } else if (token == Opt_data_err_ignore) {
1819 sbi->s_mount_opt &= ~m->mount_opt;
1820 } else {
1821 if (!args->from)
1822 arg = 1;
1823 if (m->flags & MOPT_CLEAR)
1824 arg = !arg;
1825 else if (unlikely(!(m->flags & MOPT_SET))) {
1826 ext4_msg(sb, KERN_WARNING,
1827 "buggy handling of option %s", opt);
1828 WARN_ON(1);
1829 return -1;
1830 }
1831 if (arg != 0)
1832 sbi->s_mount_opt |= m->mount_opt;
1833 else
1834 sbi->s_mount_opt &= ~m->mount_opt;
1835 }
1836 return 1;
1837}
1838
1839static int parse_options(char *options, struct super_block *sb,
1840 unsigned long *journal_devnum,
1841 unsigned int *journal_ioprio,
1842 int is_remount)
1843{
1844 struct ext4_sb_info *sbi = EXT4_SB(sb);
1845 char *p;
1846 substring_t args[MAX_OPT_ARGS];
1847 int token;
1848
1849 if (!options)
1850 return 1;
1851
1852 while ((p = strsep(&options, ",")) != NULL) {
1853 if (!*p)
1854 continue;
1855 /*
1856 * Initialize args struct so we know whether arg was
1857 * found; some options take optional arguments.
1858 */
1859 args[0].to = args[0].from = NULL;
1860 token = match_token(p, tokens, args);
1861 if (handle_mount_opt(sb, p, token, args, journal_devnum,
1862 journal_ioprio, is_remount) < 0)
1863 return 0;
1864 }
1865#ifdef CONFIG_QUOTA
1866 /*
1867 * We do the test below only for project quotas. 'usrquota' and
1868 * 'grpquota' mount options are allowed even without quota feature
1869 * to support legacy quotas in quota files.
1870 */
1871 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1872 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
1873 "Cannot enable project quota enforcement.");
1874 return 0;
1875 }
1876 if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1877 if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1878 clear_opt(sb, USRQUOTA);
1879
1880 if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1881 clear_opt(sb, GRPQUOTA);
1882
1883 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1884 ext4_msg(sb, KERN_ERR, "old and new quota "
1885 "format mixing");
1886 return 0;
1887 }
1888
1889 if (!sbi->s_jquota_fmt) {
1890 ext4_msg(sb, KERN_ERR, "journaled quota format "
1891 "not specified");
1892 return 0;
1893 }
1894 }
1895#endif
1896 if (test_opt(sb, DIOREAD_NOLOCK)) {
1897 int blocksize =
1898 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
1899
1900 if (blocksize < PAGE_SIZE) {
1901 ext4_msg(sb, KERN_ERR, "can't mount with "
1902 "dioread_nolock if block size != PAGE_SIZE");
1903 return 0;
1904 }
1905 }
1906 return 1;
1907}
1908
1909static inline void ext4_show_quota_options(struct seq_file *seq,
1910 struct super_block *sb)
1911{
1912#if defined(CONFIG_QUOTA)
1913 struct ext4_sb_info *sbi = EXT4_SB(sb);
1914
1915 if (sbi->s_jquota_fmt) {
1916 char *fmtname = "";
1917
1918 switch (sbi->s_jquota_fmt) {
1919 case QFMT_VFS_OLD:
1920 fmtname = "vfsold";
1921 break;
1922 case QFMT_VFS_V0:
1923 fmtname = "vfsv0";
1924 break;
1925 case QFMT_VFS_V1:
1926 fmtname = "vfsv1";
1927 break;
1928 }
1929 seq_printf(seq, ",jqfmt=%s", fmtname);
1930 }
1931
1932 if (sbi->s_qf_names[USRQUOTA])
1933 seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1934
1935 if (sbi->s_qf_names[GRPQUOTA])
1936 seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
1937#endif
1938}
1939
1940static const char *token2str(int token)
1941{
1942 const struct match_token *t;
1943
1944 for (t = tokens; t->token != Opt_err; t++)
1945 if (t->token == token && !strchr(t->pattern, '='))
1946 break;
1947 return t->pattern;
1948}
1949
1950/*
1951 * Show an option if
1952 * - it's set to a non-default value OR
1953 * - if the per-sb default is different from the global default
1954 */
1955static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
1956 int nodefs)
1957{
1958 struct ext4_sb_info *sbi = EXT4_SB(sb);
1959 struct ext4_super_block *es = sbi->s_es;
1960 int def_errors, def_mount_opt = nodefs ? 0 : sbi->s_def_mount_opt;
1961 const struct mount_opts *m;
1962 char sep = nodefs ? '\n' : ',';
1963
1964#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
1965#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
1966
1967 if (sbi->s_sb_block != 1)
1968 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
1969
1970 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
1971 int want_set = m->flags & MOPT_SET;
1972 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
1973 (m->flags & MOPT_CLEAR_ERR))
1974 continue;
1975 if (!(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
1976 continue; /* skip if same as the default */
1977 if ((want_set &&
1978 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
1979 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
1980 continue; /* select Opt_noFoo vs Opt_Foo */
1981 SEQ_OPTS_PRINT("%s", token2str(m->token));
1982 }
1983
1984 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
1985 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
1986 SEQ_OPTS_PRINT("resuid=%u",
1987 from_kuid_munged(&init_user_ns, sbi->s_resuid));
1988 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
1989 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
1990 SEQ_OPTS_PRINT("resgid=%u",
1991 from_kgid_munged(&init_user_ns, sbi->s_resgid));
1992 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
1993 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
1994 SEQ_OPTS_PUTS("errors=remount-ro");
1995 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
1996 SEQ_OPTS_PUTS("errors=continue");
1997 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
1998 SEQ_OPTS_PUTS("errors=panic");
1999 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2000 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2001 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2002 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2003 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2004 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2005 if (sb->s_flags & MS_I_VERSION)
2006 SEQ_OPTS_PUTS("i_version");
2007 if (nodefs || sbi->s_stripe)
2008 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2009 if (EXT4_MOUNT_DATA_FLAGS & (sbi->s_mount_opt ^ def_mount_opt)) {
2010 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2011 SEQ_OPTS_PUTS("data=journal");
2012 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2013 SEQ_OPTS_PUTS("data=ordered");
2014 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2015 SEQ_OPTS_PUTS("data=writeback");
2016 }
2017 if (nodefs ||
2018 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2019 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2020 sbi->s_inode_readahead_blks);
2021
2022 if (nodefs || (test_opt(sb, INIT_INODE_TABLE) &&
2023 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2024 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2025 if (nodefs || sbi->s_max_dir_size_kb)
2026 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2027 if (test_opt(sb, DATA_ERR_ABORT))
2028 SEQ_OPTS_PUTS("data_err=abort");
2029
2030 ext4_show_quota_options(seq, sb);
2031 return 0;
2032}
2033
2034static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2035{
2036 return _ext4_show_options(seq, root->d_sb, 0);
2037}
2038
2039int ext4_seq_options_show(struct seq_file *seq, void *offset)
2040{
2041 struct super_block *sb = seq->private;
2042 int rc;
2043
2044 seq_puts(seq, (sb->s_flags & MS_RDONLY) ? "ro" : "rw");
2045 rc = _ext4_show_options(seq, sb, 1);
2046 seq_puts(seq, "\n");
2047 return rc;
2048}
2049
2050static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2051 int read_only)
2052{
2053 struct ext4_sb_info *sbi = EXT4_SB(sb);
2054 int res = 0;
2055
2056 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2057 ext4_msg(sb, KERN_ERR, "revision level too high, "
2058 "forcing read-only mode");
2059 res = MS_RDONLY;
2060 }
2061 if (read_only)
2062 goto done;
2063 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2064 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2065 "running e2fsck is recommended");
2066 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2067 ext4_msg(sb, KERN_WARNING,
2068 "warning: mounting fs with errors, "
2069 "running e2fsck is recommended");
2070 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2071 le16_to_cpu(es->s_mnt_count) >=
2072 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2073 ext4_msg(sb, KERN_WARNING,
2074 "warning: maximal mount count reached, "
2075 "running e2fsck is recommended");
2076 else if (le32_to_cpu(es->s_checkinterval) &&
2077 (le32_to_cpu(es->s_lastcheck) +
2078 le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2079 ext4_msg(sb, KERN_WARNING,
2080 "warning: checktime reached, "
2081 "running e2fsck is recommended");
2082 if (!sbi->s_journal)
2083 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2084 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2085 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2086 le16_add_cpu(&es->s_mnt_count, 1);
2087 es->s_mtime = cpu_to_le32(get_seconds());
2088 ext4_update_dynamic_rev(sb);
2089 if (sbi->s_journal)
2090 ext4_set_feature_journal_needs_recovery(sb);
2091
2092 ext4_commit_super(sb, 1);
2093done:
2094 if (test_opt(sb, DEBUG))
2095 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2096 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2097 sb->s_blocksize,
2098 sbi->s_groups_count,
2099 EXT4_BLOCKS_PER_GROUP(sb),
2100 EXT4_INODES_PER_GROUP(sb),
2101 sbi->s_mount_opt, sbi->s_mount_opt2);
2102
2103 cleancache_init_fs(sb);
2104 return res;
2105}
2106
2107int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2108{
2109 struct ext4_sb_info *sbi = EXT4_SB(sb);
2110 struct flex_groups *new_groups;
2111 int size;
2112
2113 if (!sbi->s_log_groups_per_flex)
2114 return 0;
2115
2116 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2117 if (size <= sbi->s_flex_groups_allocated)
2118 return 0;
2119
2120 size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2121 new_groups = ext4_kvzalloc(size, GFP_KERNEL);
2122 if (!new_groups) {
2123 ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2124 size / (int) sizeof(struct flex_groups));
2125 return -ENOMEM;
2126 }
2127
2128 if (sbi->s_flex_groups) {
2129 memcpy(new_groups, sbi->s_flex_groups,
2130 (sbi->s_flex_groups_allocated *
2131 sizeof(struct flex_groups)));
2132 kvfree(sbi->s_flex_groups);
2133 }
2134 sbi->s_flex_groups = new_groups;
2135 sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
2136 return 0;
2137}
2138
2139static int ext4_fill_flex_info(struct super_block *sb)
2140{
2141 struct ext4_sb_info *sbi = EXT4_SB(sb);
2142 struct ext4_group_desc *gdp = NULL;
2143 ext4_group_t flex_group;
2144 int i, err;
2145
2146 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2147 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2148 sbi->s_log_groups_per_flex = 0;
2149 return 1;
2150 }
2151
2152 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2153 if (err)
2154 goto failed;
2155
2156 for (i = 0; i < sbi->s_groups_count; i++) {
2157 gdp = ext4_get_group_desc(sb, i, NULL);
2158
2159 flex_group = ext4_flex_group(sbi, i);
2160 atomic_add(ext4_free_inodes_count(sb, gdp),
2161 &sbi->s_flex_groups[flex_group].free_inodes);
2162 atomic64_add(ext4_free_group_clusters(sb, gdp),
2163 &sbi->s_flex_groups[flex_group].free_clusters);
2164 atomic_add(ext4_used_dirs_count(sb, gdp),
2165 &sbi->s_flex_groups[flex_group].used_dirs);
2166 }
2167
2168 return 1;
2169failed:
2170 return 0;
2171}
2172
2173static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2174 struct ext4_group_desc *gdp)
2175{
2176 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2177 __u16 crc = 0;
2178 __le32 le_group = cpu_to_le32(block_group);
2179 struct ext4_sb_info *sbi = EXT4_SB(sb);
2180
2181 if (ext4_has_metadata_csum(sbi->s_sb)) {
2182 /* Use new metadata_csum algorithm */
2183 __u32 csum32;
2184 __u16 dummy_csum = 0;
2185
2186 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2187 sizeof(le_group));
2188 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2189 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2190 sizeof(dummy_csum));
2191 offset += sizeof(dummy_csum);
2192 if (offset < sbi->s_desc_size)
2193 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2194 sbi->s_desc_size - offset);
2195
2196 crc = csum32 & 0xFFFF;
2197 goto out;
2198 }
2199
2200 /* old crc16 code */
2201 if (!ext4_has_feature_gdt_csum(sb))
2202 return 0;
2203
2204 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2205 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2206 crc = crc16(crc, (__u8 *)gdp, offset);
2207 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2208 /* for checksum of struct ext4_group_desc do the rest...*/
2209 if (ext4_has_feature_64bit(sb) &&
2210 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2211 crc = crc16(crc, (__u8 *)gdp + offset,
2212 le16_to_cpu(sbi->s_es->s_desc_size) -
2213 offset);
2214
2215out:
2216 return cpu_to_le16(crc);
2217}
2218
2219int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2220 struct ext4_group_desc *gdp)
2221{
2222 if (ext4_has_group_desc_csum(sb) &&
2223 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2224 return 0;
2225
2226 return 1;
2227}
2228
2229void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2230 struct ext4_group_desc *gdp)
2231{
2232 if (!ext4_has_group_desc_csum(sb))
2233 return;
2234 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2235}
2236
2237/* Called at mount-time, super-block is locked */
2238static int ext4_check_descriptors(struct super_block *sb,
2239 ext4_fsblk_t sb_block,
2240 ext4_group_t *first_not_zeroed)
2241{
2242 struct ext4_sb_info *sbi = EXT4_SB(sb);
2243 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2244 ext4_fsblk_t last_block;
2245 ext4_fsblk_t block_bitmap;
2246 ext4_fsblk_t inode_bitmap;
2247 ext4_fsblk_t inode_table;
2248 int flexbg_flag = 0;
2249 ext4_group_t i, grp = sbi->s_groups_count;
2250
2251 if (ext4_has_feature_flex_bg(sb))
2252 flexbg_flag = 1;
2253
2254 ext4_debug("Checking group descriptors");
2255
2256 for (i = 0; i < sbi->s_groups_count; i++) {
2257 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2258
2259 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2260 last_block = ext4_blocks_count(sbi->s_es) - 1;
2261 else
2262 last_block = first_block +
2263 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2264
2265 if ((grp == sbi->s_groups_count) &&
2266 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2267 grp = i;
2268
2269 block_bitmap = ext4_block_bitmap(sb, gdp);
2270 if (block_bitmap == sb_block) {
2271 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2272 "Block bitmap for group %u overlaps "
2273 "superblock", i);
2274 }
2275 if (block_bitmap < first_block || block_bitmap > last_block) {
2276 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2277 "Block bitmap for group %u not in group "
2278 "(block %llu)!", i, block_bitmap);
2279 return 0;
2280 }
2281 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2282 if (inode_bitmap == sb_block) {
2283 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2284 "Inode bitmap for group %u overlaps "
2285 "superblock", i);
2286 }
2287 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2288 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2289 "Inode bitmap for group %u not in group "
2290 "(block %llu)!", i, inode_bitmap);
2291 return 0;
2292 }
2293 inode_table = ext4_inode_table(sb, gdp);
2294 if (inode_table == sb_block) {
2295 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2296 "Inode table for group %u overlaps "
2297 "superblock", i);
2298 }
2299 if (inode_table < first_block ||
2300 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2301 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2302 "Inode table for group %u not in group "
2303 "(block %llu)!", i, inode_table);
2304 return 0;
2305 }
2306 ext4_lock_group(sb, i);
2307 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2308 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2309 "Checksum for group %u failed (%u!=%u)",
2310 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2311 gdp)), le16_to_cpu(gdp->bg_checksum));
2312 if (!(sb->s_flags & MS_RDONLY)) {
2313 ext4_unlock_group(sb, i);
2314 return 0;
2315 }
2316 }
2317 ext4_unlock_group(sb, i);
2318 if (!flexbg_flag)
2319 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2320 }
2321 if (NULL != first_not_zeroed)
2322 *first_not_zeroed = grp;
2323 return 1;
2324}
2325
2326/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2327 * the superblock) which were deleted from all directories, but held open by
2328 * a process at the time of a crash. We walk the list and try to delete these
2329 * inodes at recovery time (only with a read-write filesystem).
2330 *
2331 * In order to keep the orphan inode chain consistent during traversal (in
2332 * case of crash during recovery), we link each inode into the superblock
2333 * orphan list_head and handle it the same way as an inode deletion during
2334 * normal operation (which journals the operations for us).
2335 *
2336 * We only do an iget() and an iput() on each inode, which is very safe if we
2337 * accidentally point at an in-use or already deleted inode. The worst that
2338 * can happen in this case is that we get a "bit already cleared" message from
2339 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2340 * e2fsck was run on this filesystem, and it must have already done the orphan
2341 * inode cleanup for us, so we can safely abort without any further action.
2342 */
2343static void ext4_orphan_cleanup(struct super_block *sb,
2344 struct ext4_super_block *es)
2345{
2346 unsigned int s_flags = sb->s_flags;
2347 int ret, nr_orphans = 0, nr_truncates = 0;
2348#ifdef CONFIG_QUOTA
2349 int i;
2350#endif
2351 if (!es->s_last_orphan) {
2352 jbd_debug(4, "no orphan inodes to clean up\n");
2353 return;
2354 }
2355
2356 if (bdev_read_only(sb->s_bdev)) {
2357 ext4_msg(sb, KERN_ERR, "write access "
2358 "unavailable, skipping orphan cleanup");
2359 return;
2360 }
2361
2362 /* Check if feature set would not allow a r/w mount */
2363 if (!ext4_feature_set_ok(sb, 0)) {
2364 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2365 "unknown ROCOMPAT features");
2366 return;
2367 }
2368
2369 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2370 /* don't clear list on RO mount w/ errors */
2371 if (es->s_last_orphan && !(s_flags & MS_RDONLY)) {
2372 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2373 "clearing orphan list.\n");
2374 es->s_last_orphan = 0;
2375 }
2376 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2377 return;
2378 }
2379
2380 if (s_flags & MS_RDONLY) {
2381 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2382 sb->s_flags &= ~MS_RDONLY;
2383 }
2384#ifdef CONFIG_QUOTA
2385 /* Needed for iput() to work correctly and not trash data */
2386 sb->s_flags |= MS_ACTIVE;
2387 /* Turn on quotas so that they are updated correctly */
2388 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2389 if (EXT4_SB(sb)->s_qf_names[i]) {
2390 int ret = ext4_quota_on_mount(sb, i);
2391 if (ret < 0)
2392 ext4_msg(sb, KERN_ERR,
2393 "Cannot turn on journaled "
2394 "quota: error %d", ret);
2395 }
2396 }
2397#endif
2398
2399 while (es->s_last_orphan) {
2400 struct inode *inode;
2401
2402 /*
2403 * We may have encountered an error during cleanup; if
2404 * so, skip the rest.
2405 */
2406 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2407 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2408 es->s_last_orphan = 0;
2409 break;
2410 }
2411
2412 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2413 if (IS_ERR(inode)) {
2414 es->s_last_orphan = 0;
2415 break;
2416 }
2417
2418 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2419 dquot_initialize(inode);
2420 if (inode->i_nlink) {
2421 if (test_opt(sb, DEBUG))
2422 ext4_msg(sb, KERN_DEBUG,
2423 "%s: truncating inode %lu to %lld bytes",
2424 __func__, inode->i_ino, inode->i_size);
2425 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2426 inode->i_ino, inode->i_size);
2427 inode_lock(inode);
2428 truncate_inode_pages(inode->i_mapping, inode->i_size);
2429 ret = ext4_truncate(inode);
2430 if (ret)
2431 ext4_std_error(inode->i_sb, ret);
2432 inode_unlock(inode);
2433 nr_truncates++;
2434 } else {
2435 if (test_opt(sb, DEBUG))
2436 ext4_msg(sb, KERN_DEBUG,
2437 "%s: deleting unreferenced inode %lu",
2438 __func__, inode->i_ino);
2439 jbd_debug(2, "deleting unreferenced inode %lu\n",
2440 inode->i_ino);
2441 nr_orphans++;
2442 }
2443 iput(inode); /* The delete magic happens here! */
2444 }
2445
2446#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2447
2448 if (nr_orphans)
2449 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2450 PLURAL(nr_orphans));
2451 if (nr_truncates)
2452 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2453 PLURAL(nr_truncates));
2454#ifdef CONFIG_QUOTA
2455 /* Turn quotas off */
2456 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2457 if (sb_dqopt(sb)->files[i])
2458 dquot_quota_off(sb, i);
2459 }
2460#endif
2461 sb->s_flags = s_flags; /* Restore MS_RDONLY status */
2462}
2463
2464/*
2465 * Maximal extent format file size.
2466 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2467 * extent format containers, within a sector_t, and within i_blocks
2468 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
2469 * so that won't be a limiting factor.
2470 *
2471 * However there is other limiting factor. We do store extents in the form
2472 * of starting block and length, hence the resulting length of the extent
2473 * covering maximum file size must fit into on-disk format containers as
2474 * well. Given that length is always by 1 unit bigger than max unit (because
2475 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2476 *
2477 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2478 */
2479static loff_t ext4_max_size(int blkbits, int has_huge_files)
2480{
2481 loff_t res;
2482 loff_t upper_limit = MAX_LFS_FILESIZE;
2483
2484 /* small i_blocks in vfs inode? */
2485 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2486 /*
2487 * CONFIG_LBDAF is not enabled implies the inode
2488 * i_block represent total blocks in 512 bytes
2489 * 32 == size of vfs inode i_blocks * 8
2490 */
2491 upper_limit = (1LL << 32) - 1;
2492
2493 /* total blocks in file system block size */
2494 upper_limit >>= (blkbits - 9);
2495 upper_limit <<= blkbits;
2496 }
2497
2498 /*
2499 * 32-bit extent-start container, ee_block. We lower the maxbytes
2500 * by one fs block, so ee_len can cover the extent of maximum file
2501 * size
2502 */
2503 res = (1LL << 32) - 1;
2504 res <<= blkbits;
2505
2506 /* Sanity check against vm- & vfs- imposed limits */
2507 if (res > upper_limit)
2508 res = upper_limit;
2509
2510 return res;
2511}
2512
2513/*
2514 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
2515 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2516 * We need to be 1 filesystem block less than the 2^48 sector limit.
2517 */
2518static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2519{
2520 loff_t res = EXT4_NDIR_BLOCKS;
2521 int meta_blocks;
2522 loff_t upper_limit;
2523 /* This is calculated to be the largest file size for a dense, block
2524 * mapped file such that the file's total number of 512-byte sectors,
2525 * including data and all indirect blocks, does not exceed (2^48 - 1).
2526 *
2527 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2528 * number of 512-byte sectors of the file.
2529 */
2530
2531 if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2532 /*
2533 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2534 * the inode i_block field represents total file blocks in
2535 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2536 */
2537 upper_limit = (1LL << 32) - 1;
2538
2539 /* total blocks in file system block size */
2540 upper_limit >>= (bits - 9);
2541
2542 } else {
2543 /*
2544 * We use 48 bit ext4_inode i_blocks
2545 * With EXT4_HUGE_FILE_FL set the i_blocks
2546 * represent total number of blocks in
2547 * file system block size
2548 */
2549 upper_limit = (1LL << 48) - 1;
2550
2551 }
2552
2553 /* indirect blocks */
2554 meta_blocks = 1;
2555 /* double indirect blocks */
2556 meta_blocks += 1 + (1LL << (bits-2));
2557 /* tripple indirect blocks */
2558 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2559
2560 upper_limit -= meta_blocks;
2561 upper_limit <<= bits;
2562
2563 res += 1LL << (bits-2);
2564 res += 1LL << (2*(bits-2));
2565 res += 1LL << (3*(bits-2));
2566 res <<= bits;
2567 if (res > upper_limit)
2568 res = upper_limit;
2569
2570 if (res > MAX_LFS_FILESIZE)
2571 res = MAX_LFS_FILESIZE;
2572
2573 return res;
2574}
2575
2576static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2577 ext4_fsblk_t logical_sb_block, int nr)
2578{
2579 struct ext4_sb_info *sbi = EXT4_SB(sb);
2580 ext4_group_t bg, first_meta_bg;
2581 int has_super = 0;
2582
2583 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2584
2585 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2586 return logical_sb_block + nr + 1;
2587 bg = sbi->s_desc_per_block * nr;
2588 if (ext4_bg_has_super(sb, bg))
2589 has_super = 1;
2590
2591 /*
2592 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2593 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
2594 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2595 * compensate.
2596 */
2597 if (sb->s_blocksize == 1024 && nr == 0 &&
2598 le32_to_cpu(EXT4_SB(sb)->s_es->s_first_data_block) == 0)
2599 has_super++;
2600
2601 return (has_super + ext4_group_first_block_no(sb, bg));
2602}
2603
2604/**
2605 * ext4_get_stripe_size: Get the stripe size.
2606 * @sbi: In memory super block info
2607 *
2608 * If we have specified it via mount option, then
2609 * use the mount option value. If the value specified at mount time is
2610 * greater than the blocks per group use the super block value.
2611 * If the super block value is greater than blocks per group return 0.
2612 * Allocator needs it be less than blocks per group.
2613 *
2614 */
2615static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2616{
2617 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2618 unsigned long stripe_width =
2619 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2620 int ret;
2621
2622 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2623 ret = sbi->s_stripe;
2624 else if (stripe_width <= sbi->s_blocks_per_group)
2625 ret = stripe_width;
2626 else if (stride <= sbi->s_blocks_per_group)
2627 ret = stride;
2628 else
2629 ret = 0;
2630
2631 /*
2632 * If the stripe width is 1, this makes no sense and
2633 * we set it to 0 to turn off stripe handling code.
2634 */
2635 if (ret <= 1)
2636 ret = 0;
2637
2638 return ret;
2639}
2640
2641/*
2642 * Check whether this filesystem can be mounted based on
2643 * the features present and the RDONLY/RDWR mount requested.
2644 * Returns 1 if this filesystem can be mounted as requested,
2645 * 0 if it cannot be.
2646 */
2647static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2648{
2649 if (ext4_has_unknown_ext4_incompat_features(sb)) {
2650 ext4_msg(sb, KERN_ERR,
2651 "Couldn't mount because of "
2652 "unsupported optional features (%x)",
2653 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2654 ~EXT4_FEATURE_INCOMPAT_SUPP));
2655 return 0;
2656 }
2657
2658 if (readonly)
2659 return 1;
2660
2661 if (ext4_has_feature_readonly(sb)) {
2662 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2663 sb->s_flags |= MS_RDONLY;
2664 return 1;
2665 }
2666
2667 /* Check that feature set is OK for a read-write mount */
2668 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2669 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2670 "unsupported optional features (%x)",
2671 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2672 ~EXT4_FEATURE_RO_COMPAT_SUPP));
2673 return 0;
2674 }
2675 /*
2676 * Large file size enabled file system can only be mounted
2677 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2678 */
2679 if (ext4_has_feature_huge_file(sb)) {
2680 if (sizeof(blkcnt_t) < sizeof(u64)) {
2681 ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2682 "cannot be mounted RDWR without "
2683 "CONFIG_LBDAF");
2684 return 0;
2685 }
2686 }
2687 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2688 ext4_msg(sb, KERN_ERR,
2689 "Can't support bigalloc feature without "
2690 "extents feature\n");
2691 return 0;
2692 }
2693
2694#ifndef CONFIG_QUOTA
2695 if (ext4_has_feature_quota(sb) && !readonly) {
2696 ext4_msg(sb, KERN_ERR,
2697 "Filesystem with quota feature cannot be mounted RDWR "
2698 "without CONFIG_QUOTA");
2699 return 0;
2700 }
2701 if (ext4_has_feature_project(sb) && !readonly) {
2702 ext4_msg(sb, KERN_ERR,
2703 "Filesystem with project quota feature cannot be mounted RDWR "
2704 "without CONFIG_QUOTA");
2705 return 0;
2706 }
2707#endif /* CONFIG_QUOTA */
2708 return 1;
2709}
2710
2711/*
2712 * This function is called once a day if we have errors logged
2713 * on the file system
2714 */
2715static void print_daily_error_info(unsigned long arg)
2716{
2717 struct super_block *sb = (struct super_block *) arg;
2718 struct ext4_sb_info *sbi;
2719 struct ext4_super_block *es;
2720
2721 sbi = EXT4_SB(sb);
2722 es = sbi->s_es;
2723
2724 if (es->s_error_count)
2725 /* fsck newer than v1.41.13 is needed to clean this condition. */
2726 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2727 le32_to_cpu(es->s_error_count));
2728 if (es->s_first_error_time) {
2729 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2730 sb->s_id, le32_to_cpu(es->s_first_error_time),
2731 (int) sizeof(es->s_first_error_func),
2732 es->s_first_error_func,
2733 le32_to_cpu(es->s_first_error_line));
2734 if (es->s_first_error_ino)
2735 printk(KERN_CONT ": inode %u",
2736 le32_to_cpu(es->s_first_error_ino));
2737 if (es->s_first_error_block)
2738 printk(KERN_CONT ": block %llu", (unsigned long long)
2739 le64_to_cpu(es->s_first_error_block));
2740 printk(KERN_CONT "\n");
2741 }
2742 if (es->s_last_error_time) {
2743 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2744 sb->s_id, le32_to_cpu(es->s_last_error_time),
2745 (int) sizeof(es->s_last_error_func),
2746 es->s_last_error_func,
2747 le32_to_cpu(es->s_last_error_line));
2748 if (es->s_last_error_ino)
2749 printk(KERN_CONT ": inode %u",
2750 le32_to_cpu(es->s_last_error_ino));
2751 if (es->s_last_error_block)
2752 printk(KERN_CONT ": block %llu", (unsigned long long)
2753 le64_to_cpu(es->s_last_error_block));
2754 printk(KERN_CONT "\n");
2755 }
2756 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
2757}
2758
2759/* Find next suitable group and run ext4_init_inode_table */
2760static int ext4_run_li_request(struct ext4_li_request *elr)
2761{
2762 struct ext4_group_desc *gdp = NULL;
2763 ext4_group_t group, ngroups;
2764 struct super_block *sb;
2765 unsigned long timeout = 0;
2766 int ret = 0;
2767
2768 sb = elr->lr_super;
2769 ngroups = EXT4_SB(sb)->s_groups_count;
2770
2771 for (group = elr->lr_next_group; group < ngroups; group++) {
2772 gdp = ext4_get_group_desc(sb, group, NULL);
2773 if (!gdp) {
2774 ret = 1;
2775 break;
2776 }
2777
2778 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2779 break;
2780 }
2781
2782 if (group >= ngroups)
2783 ret = 1;
2784
2785 if (!ret) {
2786 timeout = jiffies;
2787 ret = ext4_init_inode_table(sb, group,
2788 elr->lr_timeout ? 0 : 1);
2789 if (elr->lr_timeout == 0) {
2790 timeout = (jiffies - timeout) *
2791 elr->lr_sbi->s_li_wait_mult;
2792 elr->lr_timeout = timeout;
2793 }
2794 elr->lr_next_sched = jiffies + elr->lr_timeout;
2795 elr->lr_next_group = group + 1;
2796 }
2797 return ret;
2798}
2799
2800/*
2801 * Remove lr_request from the list_request and free the
2802 * request structure. Should be called with li_list_mtx held
2803 */
2804static void ext4_remove_li_request(struct ext4_li_request *elr)
2805{
2806 struct ext4_sb_info *sbi;
2807
2808 if (!elr)
2809 return;
2810
2811 sbi = elr->lr_sbi;
2812
2813 list_del(&elr->lr_request);
2814 sbi->s_li_request = NULL;
2815 kfree(elr);
2816}
2817
2818static void ext4_unregister_li_request(struct super_block *sb)
2819{
2820 mutex_lock(&ext4_li_mtx);
2821 if (!ext4_li_info) {
2822 mutex_unlock(&ext4_li_mtx);
2823 return;
2824 }
2825
2826 mutex_lock(&ext4_li_info->li_list_mtx);
2827 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2828 mutex_unlock(&ext4_li_info->li_list_mtx);
2829 mutex_unlock(&ext4_li_mtx);
2830}
2831
2832static struct task_struct *ext4_lazyinit_task;
2833
2834/*
2835 * This is the function where ext4lazyinit thread lives. It walks
2836 * through the request list searching for next scheduled filesystem.
2837 * When such a fs is found, run the lazy initialization request
2838 * (ext4_rn_li_request) and keep track of the time spend in this
2839 * function. Based on that time we compute next schedule time of
2840 * the request. When walking through the list is complete, compute
2841 * next waking time and put itself into sleep.
2842 */
2843static int ext4_lazyinit_thread(void *arg)
2844{
2845 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2846 struct list_head *pos, *n;
2847 struct ext4_li_request *elr;
2848 unsigned long next_wakeup, cur;
2849
2850 BUG_ON(NULL == eli);
2851
2852cont_thread:
2853 while (true) {
2854 next_wakeup = MAX_JIFFY_OFFSET;
2855
2856 mutex_lock(&eli->li_list_mtx);
2857 if (list_empty(&eli->li_request_list)) {
2858 mutex_unlock(&eli->li_list_mtx);
2859 goto exit_thread;
2860 }
2861 list_for_each_safe(pos, n, &eli->li_request_list) {
2862 int err = 0;
2863 int progress = 0;
2864 elr = list_entry(pos, struct ext4_li_request,
2865 lr_request);
2866
2867 if (time_before(jiffies, elr->lr_next_sched)) {
2868 if (time_before(elr->lr_next_sched, next_wakeup))
2869 next_wakeup = elr->lr_next_sched;
2870 continue;
2871 }
2872 if (down_read_trylock(&elr->lr_super->s_umount)) {
2873 if (sb_start_write_trylock(elr->lr_super)) {
2874 progress = 1;
2875 /*
2876 * We hold sb->s_umount, sb can not
2877 * be removed from the list, it is
2878 * now safe to drop li_list_mtx
2879 */
2880 mutex_unlock(&eli->li_list_mtx);
2881 err = ext4_run_li_request(elr);
2882 sb_end_write(elr->lr_super);
2883 mutex_lock(&eli->li_list_mtx);
2884 n = pos->next;
2885 }
2886 up_read((&elr->lr_super->s_umount));
2887 }
2888 /* error, remove the lazy_init job */
2889 if (err) {
2890 ext4_remove_li_request(elr);
2891 continue;
2892 }
2893 if (!progress) {
2894 elr->lr_next_sched = jiffies +
2895 (prandom_u32()
2896 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2897 }
2898 if (time_before(elr->lr_next_sched, next_wakeup))
2899 next_wakeup = elr->lr_next_sched;
2900 }
2901 mutex_unlock(&eli->li_list_mtx);
2902
2903 try_to_freeze();
2904
2905 cur = jiffies;
2906 if ((time_after_eq(cur, next_wakeup)) ||
2907 (MAX_JIFFY_OFFSET == next_wakeup)) {
2908 cond_resched();
2909 continue;
2910 }
2911
2912 schedule_timeout_interruptible(next_wakeup - cur);
2913
2914 if (kthread_should_stop()) {
2915 ext4_clear_request_list();
2916 goto exit_thread;
2917 }
2918 }
2919
2920exit_thread:
2921 /*
2922 * It looks like the request list is empty, but we need
2923 * to check it under the li_list_mtx lock, to prevent any
2924 * additions into it, and of course we should lock ext4_li_mtx
2925 * to atomically free the list and ext4_li_info, because at
2926 * this point another ext4 filesystem could be registering
2927 * new one.
2928 */
2929 mutex_lock(&ext4_li_mtx);
2930 mutex_lock(&eli->li_list_mtx);
2931 if (!list_empty(&eli->li_request_list)) {
2932 mutex_unlock(&eli->li_list_mtx);
2933 mutex_unlock(&ext4_li_mtx);
2934 goto cont_thread;
2935 }
2936 mutex_unlock(&eli->li_list_mtx);
2937 kfree(ext4_li_info);
2938 ext4_li_info = NULL;
2939 mutex_unlock(&ext4_li_mtx);
2940
2941 return 0;
2942}
2943
2944static void ext4_clear_request_list(void)
2945{
2946 struct list_head *pos, *n;
2947 struct ext4_li_request *elr;
2948
2949 mutex_lock(&ext4_li_info->li_list_mtx);
2950 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
2951 elr = list_entry(pos, struct ext4_li_request,
2952 lr_request);
2953 ext4_remove_li_request(elr);
2954 }
2955 mutex_unlock(&ext4_li_info->li_list_mtx);
2956}
2957
2958static int ext4_run_lazyinit_thread(void)
2959{
2960 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
2961 ext4_li_info, "ext4lazyinit");
2962 if (IS_ERR(ext4_lazyinit_task)) {
2963 int err = PTR_ERR(ext4_lazyinit_task);
2964 ext4_clear_request_list();
2965 kfree(ext4_li_info);
2966 ext4_li_info = NULL;
2967 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
2968 "initialization thread\n",
2969 err);
2970 return err;
2971 }
2972 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
2973 return 0;
2974}
2975
2976/*
2977 * Check whether it make sense to run itable init. thread or not.
2978 * If there is at least one uninitialized inode table, return
2979 * corresponding group number, else the loop goes through all
2980 * groups and return total number of groups.
2981 */
2982static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
2983{
2984 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
2985 struct ext4_group_desc *gdp = NULL;
2986
2987 for (group = 0; group < ngroups; group++) {
2988 gdp = ext4_get_group_desc(sb, group, NULL);
2989 if (!gdp)
2990 continue;
2991
2992 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2993 break;
2994 }
2995
2996 return group;
2997}
2998
2999static int ext4_li_info_new(void)
3000{
3001 struct ext4_lazy_init *eli = NULL;
3002
3003 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3004 if (!eli)
3005 return -ENOMEM;
3006
3007 INIT_LIST_HEAD(&eli->li_request_list);
3008 mutex_init(&eli->li_list_mtx);
3009
3010 eli->li_state |= EXT4_LAZYINIT_QUIT;
3011
3012 ext4_li_info = eli;
3013
3014 return 0;
3015}
3016
3017static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3018 ext4_group_t start)
3019{
3020 struct ext4_sb_info *sbi = EXT4_SB(sb);
3021 struct ext4_li_request *elr;
3022
3023 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3024 if (!elr)
3025 return NULL;
3026
3027 elr->lr_super = sb;
3028 elr->lr_sbi = sbi;
3029 elr->lr_next_group = start;
3030
3031 /*
3032 * Randomize first schedule time of the request to
3033 * spread the inode table initialization requests
3034 * better.
3035 */
3036 elr->lr_next_sched = jiffies + (prandom_u32() %
3037 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3038 return elr;
3039}
3040
3041int ext4_register_li_request(struct super_block *sb,
3042 ext4_group_t first_not_zeroed)
3043{
3044 struct ext4_sb_info *sbi = EXT4_SB(sb);
3045 struct ext4_li_request *elr = NULL;
3046 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3047 int ret = 0;
3048
3049 mutex_lock(&ext4_li_mtx);
3050 if (sbi->s_li_request != NULL) {
3051 /*
3052 * Reset timeout so it can be computed again, because
3053 * s_li_wait_mult might have changed.
3054 */
3055 sbi->s_li_request->lr_timeout = 0;
3056 goto out;
3057 }
3058
3059 if (first_not_zeroed == ngroups ||
3060 (sb->s_flags & MS_RDONLY) ||
3061 !test_opt(sb, INIT_INODE_TABLE))
3062 goto out;
3063
3064 elr = ext4_li_request_new(sb, first_not_zeroed);
3065 if (!elr) {
3066 ret = -ENOMEM;
3067 goto out;
3068 }
3069
3070 if (NULL == ext4_li_info) {
3071 ret = ext4_li_info_new();
3072 if (ret)
3073 goto out;
3074 }
3075
3076 mutex_lock(&ext4_li_info->li_list_mtx);
3077 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3078 mutex_unlock(&ext4_li_info->li_list_mtx);
3079
3080 sbi->s_li_request = elr;
3081 /*
3082 * set elr to NULL here since it has been inserted to
3083 * the request_list and the removal and free of it is
3084 * handled by ext4_clear_request_list from now on.
3085 */
3086 elr = NULL;
3087
3088 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3089 ret = ext4_run_lazyinit_thread();
3090 if (ret)
3091 goto out;
3092 }
3093out:
3094 mutex_unlock(&ext4_li_mtx);
3095 if (ret)
3096 kfree(elr);
3097 return ret;
3098}
3099
3100/*
3101 * We do not need to lock anything since this is called on
3102 * module unload.
3103 */
3104static void ext4_destroy_lazyinit_thread(void)
3105{
3106 /*
3107 * If thread exited earlier
3108 * there's nothing to be done.
3109 */
3110 if (!ext4_li_info || !ext4_lazyinit_task)
3111 return;
3112
3113 kthread_stop(ext4_lazyinit_task);
3114}
3115
3116static int set_journal_csum_feature_set(struct super_block *sb)
3117{
3118 int ret = 1;
3119 int compat, incompat;
3120 struct ext4_sb_info *sbi = EXT4_SB(sb);
3121
3122 if (ext4_has_metadata_csum(sb)) {
3123 /* journal checksum v3 */
3124 compat = 0;
3125 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3126 } else {
3127 /* journal checksum v1 */
3128 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3129 incompat = 0;
3130 }
3131
3132 jbd2_journal_clear_features(sbi->s_journal,
3133 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3134 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3135 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3136 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3137 ret = jbd2_journal_set_features(sbi->s_journal,
3138 compat, 0,
3139 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3140 incompat);
3141 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3142 ret = jbd2_journal_set_features(sbi->s_journal,
3143 compat, 0,
3144 incompat);
3145 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3146 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3147 } else {
3148 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3149 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3150 }
3151
3152 return ret;
3153}
3154
3155/*
3156 * Note: calculating the overhead so we can be compatible with
3157 * historical BSD practice is quite difficult in the face of
3158 * clusters/bigalloc. This is because multiple metadata blocks from
3159 * different block group can end up in the same allocation cluster.
3160 * Calculating the exact overhead in the face of clustered allocation
3161 * requires either O(all block bitmaps) in memory or O(number of block
3162 * groups**2) in time. We will still calculate the superblock for
3163 * older file systems --- and if we come across with a bigalloc file
3164 * system with zero in s_overhead_clusters the estimate will be close to
3165 * correct especially for very large cluster sizes --- but for newer
3166 * file systems, it's better to calculate this figure once at mkfs
3167 * time, and store it in the superblock. If the superblock value is
3168 * present (even for non-bigalloc file systems), we will use it.
3169 */
3170static int count_overhead(struct super_block *sb, ext4_group_t grp,
3171 char *buf)
3172{
3173 struct ext4_sb_info *sbi = EXT4_SB(sb);
3174 struct ext4_group_desc *gdp;
3175 ext4_fsblk_t first_block, last_block, b;
3176 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3177 int s, j, count = 0;
3178
3179 if (!ext4_has_feature_bigalloc(sb))
3180 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3181 sbi->s_itb_per_group + 2);
3182
3183 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3184 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3185 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3186 for (i = 0; i < ngroups; i++) {
3187 gdp = ext4_get_group_desc(sb, i, NULL);
3188 b = ext4_block_bitmap(sb, gdp);
3189 if (b >= first_block && b <= last_block) {
3190 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3191 count++;
3192 }
3193 b = ext4_inode_bitmap(sb, gdp);
3194 if (b >= first_block && b <= last_block) {
3195 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3196 count++;
3197 }
3198 b = ext4_inode_table(sb, gdp);
3199 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3200 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3201 int c = EXT4_B2C(sbi, b - first_block);
3202 ext4_set_bit(c, buf);
3203 count++;
3204 }
3205 if (i != grp)
3206 continue;
3207 s = 0;
3208 if (ext4_bg_has_super(sb, grp)) {
3209 ext4_set_bit(s++, buf);
3210 count++;
3211 }
3212 j = ext4_bg_num_gdb(sb, grp);
3213 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3214 ext4_error(sb, "Invalid number of block group "
3215 "descriptor blocks: %d", j);
3216 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3217 }
3218 count += j;
3219 for (; j > 0; j--)
3220 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3221 }
3222 if (!count)
3223 return 0;
3224 return EXT4_CLUSTERS_PER_GROUP(sb) -
3225 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3226}
3227
3228/*
3229 * Compute the overhead and stash it in sbi->s_overhead
3230 */
3231int ext4_calculate_overhead(struct super_block *sb)
3232{
3233 struct ext4_sb_info *sbi = EXT4_SB(sb);
3234 struct ext4_super_block *es = sbi->s_es;
3235 struct inode *j_inode;
3236 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3237 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3238 ext4_fsblk_t overhead = 0;
3239 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3240
3241 if (!buf)
3242 return -ENOMEM;
3243
3244 /*
3245 * Compute the overhead (FS structures). This is constant
3246 * for a given filesystem unless the number of block groups
3247 * changes so we cache the previous value until it does.
3248 */
3249
3250 /*
3251 * All of the blocks before first_data_block are overhead
3252 */
3253 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3254
3255 /*
3256 * Add the overhead found in each block group
3257 */
3258 for (i = 0; i < ngroups; i++) {
3259 int blks;
3260
3261 blks = count_overhead(sb, i, buf);
3262 overhead += blks;
3263 if (blks)
3264 memset(buf, 0, PAGE_SIZE);
3265 cond_resched();
3266 }
3267
3268 /*
3269 * Add the internal journal blocks whether the journal has been
3270 * loaded or not
3271 */
3272 if (sbi->s_journal && !sbi->journal_bdev)
3273 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3274 else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
3275 j_inode = ext4_get_journal_inode(sb, j_inum);
3276 if (j_inode) {
3277 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3278 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3279 iput(j_inode);
3280 } else {
3281 ext4_msg(sb, KERN_ERR, "can't get journal size");
3282 }
3283 }
3284 sbi->s_overhead = overhead;
3285 smp_wmb();
3286 free_page((unsigned long) buf);
3287 return 0;
3288}
3289
3290static void ext4_set_resv_clusters(struct super_block *sb)
3291{
3292 ext4_fsblk_t resv_clusters;
3293 struct ext4_sb_info *sbi = EXT4_SB(sb);
3294
3295 /*
3296 * There's no need to reserve anything when we aren't using extents.
3297 * The space estimates are exact, there are no unwritten extents,
3298 * hole punching doesn't need new metadata... This is needed especially
3299 * to keep ext2/3 backward compatibility.
3300 */
3301 if (!ext4_has_feature_extents(sb))
3302 return;
3303 /*
3304 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3305 * This should cover the situations where we can not afford to run
3306 * out of space like for example punch hole, or converting
3307 * unwritten extents in delalloc path. In most cases such
3308 * allocation would require 1, or 2 blocks, higher numbers are
3309 * very rare.
3310 */
3311 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3312 sbi->s_cluster_bits);
3313
3314 do_div(resv_clusters, 50);
3315 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3316
3317 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3318}
3319
3320static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3321{
3322 char *orig_data = kstrdup(data, GFP_KERNEL);
3323 struct buffer_head *bh;
3324 struct ext4_super_block *es = NULL;
3325 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3326 ext4_fsblk_t block;
3327 ext4_fsblk_t sb_block = get_sb_block(&data);
3328 ext4_fsblk_t logical_sb_block;
3329 unsigned long offset = 0;
3330 unsigned long journal_devnum = 0;
3331 unsigned long def_mount_opts;
3332 struct inode *root;
3333 const char *descr;
3334 int ret = -ENOMEM;
3335 int blocksize, clustersize;
3336 unsigned int db_count;
3337 unsigned int i;
3338 int needs_recovery, has_huge_files, has_bigalloc;
3339 __u64 blocks_count;
3340 int err = 0;
3341 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3342 ext4_group_t first_not_zeroed;
3343
3344 if ((data && !orig_data) || !sbi)
3345 goto out_free_base;
3346
3347 sbi->s_blockgroup_lock =
3348 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3349 if (!sbi->s_blockgroup_lock)
3350 goto out_free_base;
3351
3352 sb->s_fs_info = sbi;
3353 sbi->s_sb = sb;
3354 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3355 sbi->s_sb_block = sb_block;
3356 if (sb->s_bdev->bd_part)
3357 sbi->s_sectors_written_start =
3358 part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3359
3360 /* Cleanup superblock name */
3361 strreplace(sb->s_id, '/', '!');
3362
3363 /* -EINVAL is default */
3364 ret = -EINVAL;
3365 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3366 if (!blocksize) {
3367 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3368 goto out_fail;
3369 }
3370
3371 /*
3372 * The ext4 superblock will not be buffer aligned for other than 1kB
3373 * block sizes. We need to calculate the offset from buffer start.
3374 */
3375 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3376 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3377 offset = do_div(logical_sb_block, blocksize);
3378 } else {
3379 logical_sb_block = sb_block;
3380 }
3381
3382 if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3383 ext4_msg(sb, KERN_ERR, "unable to read superblock");
3384 goto out_fail;
3385 }
3386 /*
3387 * Note: s_es must be initialized as soon as possible because
3388 * some ext4 macro-instructions depend on its value
3389 */
3390 es = (struct ext4_super_block *) (bh->b_data + offset);
3391 sbi->s_es = es;
3392 sb->s_magic = le16_to_cpu(es->s_magic);
3393 if (sb->s_magic != EXT4_SUPER_MAGIC)
3394 goto cantfind_ext4;
3395 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3396
3397 /* Warn if metadata_csum and gdt_csum are both set. */
3398 if (ext4_has_feature_metadata_csum(sb) &&
3399 ext4_has_feature_gdt_csum(sb))
3400 ext4_warning(sb, "metadata_csum and uninit_bg are "
3401 "redundant flags; please run fsck.");
3402
3403 /* Check for a known checksum algorithm */
3404 if (!ext4_verify_csum_type(sb, es)) {
3405 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3406 "unknown checksum algorithm.");
3407 silent = 1;
3408 goto cantfind_ext4;
3409 }
3410
3411 /* Load the checksum driver */
3412 if (ext4_has_feature_metadata_csum(sb)) {
3413 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3414 if (IS_ERR(sbi->s_chksum_driver)) {
3415 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3416 ret = PTR_ERR(sbi->s_chksum_driver);
3417 sbi->s_chksum_driver = NULL;
3418 goto failed_mount;
3419 }
3420 }
3421
3422 /* Check superblock checksum */
3423 if (!ext4_superblock_csum_verify(sb, es)) {
3424 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3425 "invalid superblock checksum. Run e2fsck?");
3426 silent = 1;
3427 ret = -EFSBADCRC;
3428 goto cantfind_ext4;
3429 }
3430
3431 /* Precompute checksum seed for all metadata */
3432 if (ext4_has_feature_csum_seed(sb))
3433 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3434 else if (ext4_has_metadata_csum(sb))
3435 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3436 sizeof(es->s_uuid));
3437
3438 /* Set defaults before we parse the mount options */
3439 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3440 set_opt(sb, INIT_INODE_TABLE);
3441 if (def_mount_opts & EXT4_DEFM_DEBUG)
3442 set_opt(sb, DEBUG);
3443 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3444 set_opt(sb, GRPID);
3445 if (def_mount_opts & EXT4_DEFM_UID16)
3446 set_opt(sb, NO_UID32);
3447 /* xattr user namespace & acls are now defaulted on */
3448 set_opt(sb, XATTR_USER);
3449#ifdef CONFIG_EXT4_FS_POSIX_ACL
3450 set_opt(sb, POSIX_ACL);
3451#endif
3452 /* don't forget to enable journal_csum when metadata_csum is enabled. */
3453 if (ext4_has_metadata_csum(sb))
3454 set_opt(sb, JOURNAL_CHECKSUM);
3455
3456 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3457 set_opt(sb, JOURNAL_DATA);
3458 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3459 set_opt(sb, ORDERED_DATA);
3460 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3461 set_opt(sb, WRITEBACK_DATA);
3462
3463 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3464 set_opt(sb, ERRORS_PANIC);
3465 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3466 set_opt(sb, ERRORS_CONT);
3467 else
3468 set_opt(sb, ERRORS_RO);
3469 /* block_validity enabled by default; disable with noblock_validity */
3470 set_opt(sb, BLOCK_VALIDITY);
3471 if (def_mount_opts & EXT4_DEFM_DISCARD)
3472 set_opt(sb, DISCARD);
3473
3474 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3475 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3476 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3477 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3478 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3479
3480 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3481 set_opt(sb, BARRIER);
3482
3483 /*
3484 * enable delayed allocation by default
3485 * Use -o nodelalloc to turn it off
3486 */
3487 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3488 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3489 set_opt(sb, DELALLOC);
3490
3491 /*
3492 * set default s_li_wait_mult for lazyinit, for the case there is
3493 * no mount option specified.
3494 */
3495 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
3496
3497 if (sbi->s_es->s_mount_opts[0]) {
3498 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3499 sizeof(sbi->s_es->s_mount_opts),
3500 GFP_KERNEL);
3501 if (!s_mount_opts)
3502 goto failed_mount;
3503 if (!parse_options(s_mount_opts, sb, &journal_devnum,
3504 &journal_ioprio, 0)) {
3505 ext4_msg(sb, KERN_WARNING,
3506 "failed to parse options in superblock: %s",
3507 s_mount_opts);
3508 }
3509 kfree(s_mount_opts);
3510 }
3511 sbi->s_def_mount_opt = sbi->s_mount_opt;
3512 if (!parse_options((char *) data, sb, &journal_devnum,
3513 &journal_ioprio, 0))
3514 goto failed_mount;
3515
3516 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3517 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3518 "with data=journal disables delayed "
3519 "allocation and O_DIRECT support!\n");
3520 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3521 ext4_msg(sb, KERN_ERR, "can't mount with "
3522 "both data=journal and delalloc");
3523 goto failed_mount;
3524 }
3525 if (test_opt(sb, DIOREAD_NOLOCK)) {
3526 ext4_msg(sb, KERN_ERR, "can't mount with "
3527 "both data=journal and dioread_nolock");
3528 goto failed_mount;
3529 }
3530 if (test_opt(sb, DAX)) {
3531 ext4_msg(sb, KERN_ERR, "can't mount with "
3532 "both data=journal and dax");
3533 goto failed_mount;
3534 }
3535 if (ext4_has_feature_encrypt(sb)) {
3536 ext4_msg(sb, KERN_WARNING,
3537 "encrypted files will use data=ordered "
3538 "instead of data journaling mode");
3539 }
3540 if (test_opt(sb, DELALLOC))
3541 clear_opt(sb, DELALLOC);
3542 } else {
3543 sb->s_iflags |= SB_I_CGROUPWB;
3544 }
3545
3546 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
3547 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
3548
3549 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3550 (ext4_has_compat_features(sb) ||
3551 ext4_has_ro_compat_features(sb) ||
3552 ext4_has_incompat_features(sb)))
3553 ext4_msg(sb, KERN_WARNING,
3554 "feature flags set on rev 0 fs, "
3555 "running e2fsck is recommended");
3556
3557 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3558 set_opt2(sb, HURD_COMPAT);
3559 if (ext4_has_feature_64bit(sb)) {
3560 ext4_msg(sb, KERN_ERR,
3561 "The Hurd can't support 64-bit file systems");
3562 goto failed_mount;
3563 }
3564 }
3565
3566 if (IS_EXT2_SB(sb)) {
3567 if (ext2_feature_set_ok(sb))
3568 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3569 "using the ext4 subsystem");
3570 else {
3571 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3572 "to feature incompatibilities");
3573 goto failed_mount;
3574 }
3575 }
3576
3577 if (IS_EXT3_SB(sb)) {
3578 if (ext3_feature_set_ok(sb))
3579 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3580 "using the ext4 subsystem");
3581 else {
3582 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3583 "to feature incompatibilities");
3584 goto failed_mount;
3585 }
3586 }
3587
3588 /*
3589 * Check feature flags regardless of the revision level, since we
3590 * previously didn't change the revision level when setting the flags,
3591 * so there is a chance incompat flags are set on a rev 0 filesystem.
3592 */
3593 if (!ext4_feature_set_ok(sb, (sb->s_flags & MS_RDONLY)))
3594 goto failed_mount;
3595
3596 blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3597 if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3598 blocksize > EXT4_MAX_BLOCK_SIZE) {
3599 ext4_msg(sb, KERN_ERR,
3600 "Unsupported filesystem blocksize %d (%d log_block_size)",
3601 blocksize, le32_to_cpu(es->s_log_block_size));
3602 goto failed_mount;
3603 }
3604 if (le32_to_cpu(es->s_log_block_size) >
3605 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3606 ext4_msg(sb, KERN_ERR,
3607 "Invalid log block size: %u",
3608 le32_to_cpu(es->s_log_block_size));
3609 goto failed_mount;
3610 }
3611
3612 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3613 ext4_msg(sb, KERN_ERR,
3614 "Number of reserved GDT blocks insanely large: %d",
3615 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3616 goto failed_mount;
3617 }
3618
3619 if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
3620 err = bdev_dax_supported(sb, blocksize);
3621 if (err)
3622 goto failed_mount;
3623 }
3624
3625 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3626 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3627 es->s_encryption_level);
3628 goto failed_mount;
3629 }
3630
3631 if (sb->s_blocksize != blocksize) {
3632 /* Validate the filesystem blocksize */
3633 if (!sb_set_blocksize(sb, blocksize)) {
3634 ext4_msg(sb, KERN_ERR, "bad block size %d",
3635 blocksize);
3636 goto failed_mount;
3637 }
3638
3639 brelse(bh);
3640 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3641 offset = do_div(logical_sb_block, blocksize);
3642 bh = sb_bread_unmovable(sb, logical_sb_block);
3643 if (!bh) {
3644 ext4_msg(sb, KERN_ERR,
3645 "Can't read superblock on 2nd try");
3646 goto failed_mount;
3647 }
3648 es = (struct ext4_super_block *)(bh->b_data + offset);
3649 sbi->s_es = es;
3650 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3651 ext4_msg(sb, KERN_ERR,
3652 "Magic mismatch, very weird!");
3653 goto failed_mount;
3654 }
3655 }
3656
3657 has_huge_files = ext4_has_feature_huge_file(sb);
3658 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3659 has_huge_files);
3660 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3661
3662 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3663 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3664 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3665 } else {
3666 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3667 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3668 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3669 (!is_power_of_2(sbi->s_inode_size)) ||
3670 (sbi->s_inode_size > blocksize)) {
3671 ext4_msg(sb, KERN_ERR,
3672 "unsupported inode size: %d",
3673 sbi->s_inode_size);
3674 goto failed_mount;
3675 }
3676 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3677 sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3678 }
3679
3680 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3681 if (ext4_has_feature_64bit(sb)) {
3682 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3683 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3684 !is_power_of_2(sbi->s_desc_size)) {
3685 ext4_msg(sb, KERN_ERR,
3686 "unsupported descriptor size %lu",
3687 sbi->s_desc_size);
3688 goto failed_mount;
3689 }
3690 } else
3691 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3692
3693 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3694 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3695
3696 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3697 if (sbi->s_inodes_per_block == 0)
3698 goto cantfind_ext4;
3699 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3700 sbi->s_inodes_per_group > blocksize * 8) {
3701 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3702 sbi->s_blocks_per_group);
3703 goto failed_mount;
3704 }
3705 sbi->s_itb_per_group = sbi->s_inodes_per_group /
3706 sbi->s_inodes_per_block;
3707 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3708 sbi->s_sbh = bh;
3709 sbi->s_mount_state = le16_to_cpu(es->s_state);
3710 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3711 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3712
3713 for (i = 0; i < 4; i++)
3714 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3715 sbi->s_def_hash_version = es->s_def_hash_version;
3716 if (ext4_has_feature_dir_index(sb)) {
3717 i = le32_to_cpu(es->s_flags);
3718 if (i & EXT2_FLAGS_UNSIGNED_HASH)
3719 sbi->s_hash_unsigned = 3;
3720 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3721#ifdef __CHAR_UNSIGNED__
3722 if (!(sb->s_flags & MS_RDONLY))
3723 es->s_flags |=
3724 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3725 sbi->s_hash_unsigned = 3;
3726#else
3727 if (!(sb->s_flags & MS_RDONLY))
3728 es->s_flags |=
3729 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3730#endif
3731 }
3732 }
3733
3734 /* Handle clustersize */
3735 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3736 has_bigalloc = ext4_has_feature_bigalloc(sb);
3737 if (has_bigalloc) {
3738 if (clustersize < blocksize) {
3739 ext4_msg(sb, KERN_ERR,
3740 "cluster size (%d) smaller than "
3741 "block size (%d)", clustersize, blocksize);
3742 goto failed_mount;
3743 }
3744 if (le32_to_cpu(es->s_log_cluster_size) >
3745 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3746 ext4_msg(sb, KERN_ERR,
3747 "Invalid log cluster size: %u",
3748 le32_to_cpu(es->s_log_cluster_size));
3749 goto failed_mount;
3750 }
3751 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3752 le32_to_cpu(es->s_log_block_size);
3753 sbi->s_clusters_per_group =
3754 le32_to_cpu(es->s_clusters_per_group);
3755 if (sbi->s_clusters_per_group > blocksize * 8) {
3756 ext4_msg(sb, KERN_ERR,
3757 "#clusters per group too big: %lu",
3758 sbi->s_clusters_per_group);
3759 goto failed_mount;
3760 }
3761 if (sbi->s_blocks_per_group !=
3762 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3763 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3764 "clusters per group (%lu) inconsistent",
3765 sbi->s_blocks_per_group,
3766 sbi->s_clusters_per_group);
3767 goto failed_mount;
3768 }
3769 } else {
3770 if (clustersize != blocksize) {
3771 ext4_warning(sb, "fragment/cluster size (%d) != "
3772 "block size (%d)", clustersize,
3773 blocksize);
3774 clustersize = blocksize;
3775 }
3776 if (sbi->s_blocks_per_group > blocksize * 8) {
3777 ext4_msg(sb, KERN_ERR,
3778 "#blocks per group too big: %lu",
3779 sbi->s_blocks_per_group);
3780 goto failed_mount;
3781 }
3782 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3783 sbi->s_cluster_bits = 0;
3784 }
3785 sbi->s_cluster_ratio = clustersize / blocksize;
3786
3787 /* Do we have standard group size of clustersize * 8 blocks ? */
3788 if (sbi->s_blocks_per_group == clustersize << 3)
3789 set_opt2(sb, STD_GROUP_SIZE);
3790
3791 /*
3792 * Test whether we have more sectors than will fit in sector_t,
3793 * and whether the max offset is addressable by the page cache.
3794 */
3795 err = generic_check_addressable(sb->s_blocksize_bits,
3796 ext4_blocks_count(es));
3797 if (err) {
3798 ext4_msg(sb, KERN_ERR, "filesystem"
3799 " too large to mount safely on this system");
3800 if (sizeof(sector_t) < 8)
3801 ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3802 goto failed_mount;
3803 }
3804
3805 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3806 goto cantfind_ext4;
3807
3808 /* check blocks count against device size */
3809 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3810 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3811 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3812 "exceeds size of device (%llu blocks)",
3813 ext4_blocks_count(es), blocks_count);
3814 goto failed_mount;
3815 }
3816
3817 /*
3818 * It makes no sense for the first data block to be beyond the end
3819 * of the filesystem.
3820 */
3821 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3822 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3823 "block %u is beyond end of filesystem (%llu)",
3824 le32_to_cpu(es->s_first_data_block),
3825 ext4_blocks_count(es));
3826 goto failed_mount;
3827 }
3828 blocks_count = (ext4_blocks_count(es) -
3829 le32_to_cpu(es->s_first_data_block) +
3830 EXT4_BLOCKS_PER_GROUP(sb) - 1);
3831 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3832 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3833 ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3834 "(block count %llu, first data block %u, "
3835 "blocks per group %lu)", sbi->s_groups_count,
3836 ext4_blocks_count(es),
3837 le32_to_cpu(es->s_first_data_block),
3838 EXT4_BLOCKS_PER_GROUP(sb));
3839 goto failed_mount;
3840 }
3841 sbi->s_groups_count = blocks_count;
3842 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3843 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3844 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3845 EXT4_DESC_PER_BLOCK(sb);
3846 if (ext4_has_feature_meta_bg(sb)) {
3847 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3848 ext4_msg(sb, KERN_WARNING,
3849 "first meta block group too large: %u "
3850 "(group descriptor block count %u)",
3851 le32_to_cpu(es->s_first_meta_bg), db_count);
3852 goto failed_mount;
3853 }
3854 }
3855 sbi->s_group_desc = ext4_kvmalloc(db_count *
3856 sizeof(struct buffer_head *),
3857 GFP_KERNEL);
3858 if (sbi->s_group_desc == NULL) {
3859 ext4_msg(sb, KERN_ERR, "not enough memory");
3860 ret = -ENOMEM;
3861 goto failed_mount;
3862 }
3863
3864 bgl_lock_init(sbi->s_blockgroup_lock);
3865
3866 for (i = 0; i < db_count; i++) {
3867 block = descriptor_loc(sb, logical_sb_block, i);
3868 sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3869 if (!sbi->s_group_desc[i]) {
3870 ext4_msg(sb, KERN_ERR,
3871 "can't read group descriptor %d", i);
3872 db_count = i;
3873 goto failed_mount2;
3874 }
3875 }
3876 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
3877 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
3878 ret = -EFSCORRUPTED;
3879 goto failed_mount2;
3880 }
3881
3882 sbi->s_gdb_count = db_count;
3883 get_random_bytes(&sbi->s_next_generation, sizeof(u32));
3884 spin_lock_init(&sbi->s_next_gen_lock);
3885
3886 setup_timer(&sbi->s_err_report, print_daily_error_info,
3887 (unsigned long) sb);
3888
3889 /* Register extent status tree shrinker */
3890 if (ext4_es_register_shrinker(sbi))
3891 goto failed_mount3;
3892
3893 sbi->s_stripe = ext4_get_stripe_size(sbi);
3894 sbi->s_extent_max_zeroout_kb = 32;
3895
3896 /*
3897 * set up enough so that it can read an inode
3898 */
3899 sb->s_op = &ext4_sops;
3900 sb->s_export_op = &ext4_export_ops;
3901 sb->s_xattr = ext4_xattr_handlers;
3902 sb->s_cop = &ext4_cryptops;
3903#ifdef CONFIG_QUOTA
3904 sb->dq_op = &ext4_quota_operations;
3905 if (ext4_has_feature_quota(sb))
3906 sb->s_qcop = &dquot_quotactl_sysfile_ops;
3907 else
3908 sb->s_qcop = &ext4_qctl_operations;
3909 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
3910#endif
3911 memcpy(sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
3912
3913 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
3914 mutex_init(&sbi->s_orphan_lock);
3915
3916 sb->s_root = NULL;
3917
3918 needs_recovery = (es->s_last_orphan != 0 ||
3919 ext4_has_feature_journal_needs_recovery(sb));
3920
3921 if (ext4_has_feature_mmp(sb) && !(sb->s_flags & MS_RDONLY))
3922 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
3923 goto failed_mount3a;
3924
3925 /*
3926 * The first inode we look at is the journal inode. Don't try
3927 * root first: it may be modified in the journal!
3928 */
3929 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
3930 err = ext4_load_journal(sb, es, journal_devnum);
3931 if (err)
3932 goto failed_mount3a;
3933 } else if (test_opt(sb, NOLOAD) && !(sb->s_flags & MS_RDONLY) &&
3934 ext4_has_feature_journal_needs_recovery(sb)) {
3935 ext4_msg(sb, KERN_ERR, "required journal recovery "
3936 "suppressed and not mounted read-only");
3937 goto failed_mount_wq;
3938 } else {
3939 /* Nojournal mode, all journal mount options are illegal */
3940 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
3941 ext4_msg(sb, KERN_ERR, "can't mount with "
3942 "journal_checksum, fs mounted w/o journal");
3943 goto failed_mount_wq;
3944 }
3945 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3946 ext4_msg(sb, KERN_ERR, "can't mount with "
3947 "journal_async_commit, fs mounted w/o journal");
3948 goto failed_mount_wq;
3949 }
3950 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
3951 ext4_msg(sb, KERN_ERR, "can't mount with "
3952 "commit=%lu, fs mounted w/o journal",
3953 sbi->s_commit_interval / HZ);
3954 goto failed_mount_wq;
3955 }
3956 if (EXT4_MOUNT_DATA_FLAGS &
3957 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3958 ext4_msg(sb, KERN_ERR, "can't mount with "
3959 "data=, fs mounted w/o journal");
3960 goto failed_mount_wq;
3961 }
3962 sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
3963 clear_opt(sb, JOURNAL_CHECKSUM);
3964 clear_opt(sb, DATA_FLAGS);
3965 sbi->s_journal = NULL;
3966 needs_recovery = 0;
3967 goto no_journal;
3968 }
3969
3970 if (ext4_has_feature_64bit(sb) &&
3971 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
3972 JBD2_FEATURE_INCOMPAT_64BIT)) {
3973 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
3974 goto failed_mount_wq;
3975 }
3976
3977 if (!set_journal_csum_feature_set(sb)) {
3978 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
3979 "feature set");
3980 goto failed_mount_wq;
3981 }
3982
3983 /* We have now updated the journal if required, so we can
3984 * validate the data journaling mode. */
3985 switch (test_opt(sb, DATA_FLAGS)) {
3986 case 0:
3987 /* No mode set, assume a default based on the journal
3988 * capabilities: ORDERED_DATA if the journal can
3989 * cope, else JOURNAL_DATA
3990 */
3991 if (jbd2_journal_check_available_features
3992 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE))
3993 set_opt(sb, ORDERED_DATA);
3994 else
3995 set_opt(sb, JOURNAL_DATA);
3996 break;
3997
3998 case EXT4_MOUNT_ORDERED_DATA:
3999 case EXT4_MOUNT_WRITEBACK_DATA:
4000 if (!jbd2_journal_check_available_features
4001 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4002 ext4_msg(sb, KERN_ERR, "Journal does not support "
4003 "requested data journaling mode");
4004 goto failed_mount_wq;
4005 }
4006 default:
4007 break;
4008 }
4009
4010 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4011 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4012 ext4_msg(sb, KERN_ERR, "can't mount with "
4013 "journal_async_commit in data=ordered mode");
4014 goto failed_mount_wq;
4015 }
4016
4017 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4018
4019 sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4020
4021no_journal:
4022 sbi->s_mb_cache = ext4_xattr_create_cache();
4023 if (!sbi->s_mb_cache) {
4024 ext4_msg(sb, KERN_ERR, "Failed to create an mb_cache");
4025 goto failed_mount_wq;
4026 }
4027
4028 if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4029 (blocksize != PAGE_SIZE)) {
4030 ext4_msg(sb, KERN_ERR,
4031 "Unsupported blocksize for fs encryption");
4032 goto failed_mount_wq;
4033 }
4034
4035 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !(sb->s_flags & MS_RDONLY) &&
4036 !ext4_has_feature_encrypt(sb)) {
4037 ext4_set_feature_encrypt(sb);
4038 ext4_commit_super(sb, 1);
4039 }
4040
4041 /*
4042 * Get the # of file system overhead blocks from the
4043 * superblock if present.
4044 */
4045 if (es->s_overhead_clusters)
4046 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4047 else {
4048 err = ext4_calculate_overhead(sb);
4049 if (err)
4050 goto failed_mount_wq;
4051 }
4052
4053 /*
4054 * The maximum number of concurrent works can be high and
4055 * concurrency isn't really necessary. Limit it to 1.
4056 */
4057 EXT4_SB(sb)->rsv_conversion_wq =
4058 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4059 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4060 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4061 ret = -ENOMEM;
4062 goto failed_mount4;
4063 }
4064
4065 /*
4066 * The jbd2_journal_load will have done any necessary log recovery,
4067 * so we can safely mount the rest of the filesystem now.
4068 */
4069
4070 root = ext4_iget(sb, EXT4_ROOT_INO);
4071 if (IS_ERR(root)) {
4072 ext4_msg(sb, KERN_ERR, "get root inode failed");
4073 ret = PTR_ERR(root);
4074 root = NULL;
4075 goto failed_mount4;
4076 }
4077 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4078 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4079 iput(root);
4080 goto failed_mount4;
4081 }
4082 sb->s_root = d_make_root(root);
4083 if (!sb->s_root) {
4084 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4085 ret = -ENOMEM;
4086 goto failed_mount4;
4087 }
4088
4089 if (ext4_setup_super(sb, es, sb->s_flags & MS_RDONLY))
4090 sb->s_flags |= MS_RDONLY;
4091
4092 /* determine the minimum size of new large inodes, if present */
4093 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4094 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4095 EXT4_GOOD_OLD_INODE_SIZE;
4096 if (ext4_has_feature_extra_isize(sb)) {
4097 if (sbi->s_want_extra_isize <
4098 le16_to_cpu(es->s_want_extra_isize))
4099 sbi->s_want_extra_isize =
4100 le16_to_cpu(es->s_want_extra_isize);
4101 if (sbi->s_want_extra_isize <
4102 le16_to_cpu(es->s_min_extra_isize))
4103 sbi->s_want_extra_isize =
4104 le16_to_cpu(es->s_min_extra_isize);
4105 }
4106 }
4107 /* Check if enough inode space is available */
4108 if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4109 sbi->s_inode_size) {
4110 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4111 EXT4_GOOD_OLD_INODE_SIZE;
4112 ext4_msg(sb, KERN_INFO, "required extra inode space not"
4113 "available");
4114 }
4115
4116 ext4_set_resv_clusters(sb);
4117
4118 err = ext4_setup_system_zone(sb);
4119 if (err) {
4120 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4121 "zone (%d)", err);
4122 goto failed_mount4a;
4123 }
4124
4125 ext4_ext_init(sb);
4126 err = ext4_mb_init(sb);
4127 if (err) {
4128 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4129 err);
4130 goto failed_mount5;
4131 }
4132
4133 block = ext4_count_free_clusters(sb);
4134 ext4_free_blocks_count_set(sbi->s_es,
4135 EXT4_C2B(sbi, block));
4136 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4137 GFP_KERNEL);
4138 if (!err) {
4139 unsigned long freei = ext4_count_free_inodes(sb);
4140 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4141 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4142 GFP_KERNEL);
4143 }
4144 if (!err)
4145 err = percpu_counter_init(&sbi->s_dirs_counter,
4146 ext4_count_dirs(sb), GFP_KERNEL);
4147 if (!err)
4148 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4149 GFP_KERNEL);
4150 if (!err)
4151 err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
4152
4153 if (err) {
4154 ext4_msg(sb, KERN_ERR, "insufficient memory");
4155 goto failed_mount6;
4156 }
4157
4158 if (ext4_has_feature_flex_bg(sb))
4159 if (!ext4_fill_flex_info(sb)) {
4160 ext4_msg(sb, KERN_ERR,
4161 "unable to initialize "
4162 "flex_bg meta info!");
4163 goto failed_mount6;
4164 }
4165
4166 err = ext4_register_li_request(sb, first_not_zeroed);
4167 if (err)
4168 goto failed_mount6;
4169
4170 err = ext4_register_sysfs(sb);
4171 if (err)
4172 goto failed_mount7;
4173
4174#ifdef CONFIG_QUOTA
4175 /* Enable quota usage during mount. */
4176 if (ext4_has_feature_quota(sb) && !(sb->s_flags & MS_RDONLY)) {
4177 err = ext4_enable_quotas(sb);
4178 if (err)
4179 goto failed_mount8;
4180 }
4181#endif /* CONFIG_QUOTA */
4182
4183 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4184 ext4_orphan_cleanup(sb, es);
4185 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
4186 if (needs_recovery) {
4187 ext4_msg(sb, KERN_INFO, "recovery complete");
4188 ext4_mark_recovery_complete(sb, es);
4189 }
4190 if (EXT4_SB(sb)->s_journal) {
4191 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4192 descr = " journalled data mode";
4193 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4194 descr = " ordered data mode";
4195 else
4196 descr = " writeback data mode";
4197 } else
4198 descr = "out journal";
4199
4200 if (test_opt(sb, DISCARD)) {
4201 struct request_queue *q = bdev_get_queue(sb->s_bdev);
4202 if (!blk_queue_discard(q))
4203 ext4_msg(sb, KERN_WARNING,
4204 "mounting with \"discard\" option, but "
4205 "the device does not support discard");
4206 }
4207
4208 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4209 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4210 "Opts: %.*s%s%s", descr,
4211 (int) sizeof(sbi->s_es->s_mount_opts),
4212 sbi->s_es->s_mount_opts,
4213 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4214
4215 if (es->s_error_count)
4216 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4217
4218 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4219 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4220 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4221 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
4222
4223 kfree(orig_data);
4224#ifdef CONFIG_EXT4_FS_ENCRYPTION
4225 memcpy(sbi->key_prefix, EXT4_KEY_DESC_PREFIX,
4226 EXT4_KEY_DESC_PREFIX_SIZE);
4227 sbi->key_prefix_size = EXT4_KEY_DESC_PREFIX_SIZE;
4228#endif
4229 return 0;
4230
4231cantfind_ext4:
4232 if (!silent)
4233 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4234 goto failed_mount;
4235
4236#ifdef CONFIG_QUOTA
4237failed_mount8:
4238 ext4_unregister_sysfs(sb);
4239#endif
4240failed_mount7:
4241 ext4_unregister_li_request(sb);
4242failed_mount6:
4243 ext4_mb_release(sb);
4244 if (sbi->s_flex_groups)
4245 kvfree(sbi->s_flex_groups);
4246 percpu_counter_destroy(&sbi->s_freeclusters_counter);
4247 percpu_counter_destroy(&sbi->s_freeinodes_counter);
4248 percpu_counter_destroy(&sbi->s_dirs_counter);
4249 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
4250failed_mount5:
4251 ext4_ext_release(sb);
4252 ext4_release_system_zone(sb);
4253failed_mount4a:
4254 dput(sb->s_root);
4255 sb->s_root = NULL;
4256failed_mount4:
4257 ext4_msg(sb, KERN_ERR, "mount failed");
4258 if (EXT4_SB(sb)->rsv_conversion_wq)
4259 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4260failed_mount_wq:
4261 if (sbi->s_mb_cache) {
4262 ext4_xattr_destroy_cache(sbi->s_mb_cache);
4263 sbi->s_mb_cache = NULL;
4264 }
4265 if (sbi->s_journal) {
4266 jbd2_journal_destroy(sbi->s_journal);
4267 sbi->s_journal = NULL;
4268 }
4269failed_mount3a:
4270 ext4_es_unregister_shrinker(sbi);
4271failed_mount3:
4272 del_timer_sync(&sbi->s_err_report);
4273 if (sbi->s_mmp_tsk)
4274 kthread_stop(sbi->s_mmp_tsk);
4275failed_mount2:
4276 for (i = 0; i < db_count; i++)
4277 brelse(sbi->s_group_desc[i]);
4278 kvfree(sbi->s_group_desc);
4279failed_mount:
4280 if (sbi->s_chksum_driver)
4281 crypto_free_shash(sbi->s_chksum_driver);
4282#ifdef CONFIG_QUOTA
4283 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4284 kfree(sbi->s_qf_names[i]);
4285#endif
4286 ext4_blkdev_remove(sbi);
4287 brelse(bh);
4288out_fail:
4289 sb->s_fs_info = NULL;
4290 kfree(sbi->s_blockgroup_lock);
4291out_free_base:
4292 kfree(sbi);
4293 kfree(orig_data);
4294 return err ? err : ret;
4295}
4296
4297/*
4298 * Setup any per-fs journal parameters now. We'll do this both on
4299 * initial mount, once the journal has been initialised but before we've
4300 * done any recovery; and again on any subsequent remount.
4301 */
4302static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4303{
4304 struct ext4_sb_info *sbi = EXT4_SB(sb);
4305
4306 journal->j_commit_interval = sbi->s_commit_interval;
4307 journal->j_min_batch_time = sbi->s_min_batch_time;
4308 journal->j_max_batch_time = sbi->s_max_batch_time;
4309
4310 write_lock(&journal->j_state_lock);
4311 if (test_opt(sb, BARRIER))
4312 journal->j_flags |= JBD2_BARRIER;
4313 else
4314 journal->j_flags &= ~JBD2_BARRIER;
4315 if (test_opt(sb, DATA_ERR_ABORT))
4316 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4317 else
4318 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4319 write_unlock(&journal->j_state_lock);
4320}
4321
4322static struct inode *ext4_get_journal_inode(struct super_block *sb,
4323 unsigned int journal_inum)
4324{
4325 struct inode *journal_inode;
4326
4327 /*
4328 * Test for the existence of a valid inode on disk. Bad things
4329 * happen if we iget() an unused inode, as the subsequent iput()
4330 * will try to delete it.
4331 */
4332 journal_inode = ext4_iget(sb, journal_inum);
4333 if (IS_ERR(journal_inode)) {
4334 ext4_msg(sb, KERN_ERR, "no journal found");
4335 return NULL;
4336 }
4337 if (!journal_inode->i_nlink) {
4338 make_bad_inode(journal_inode);
4339 iput(journal_inode);
4340 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4341 return NULL;
4342 }
4343
4344 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4345 journal_inode, journal_inode->i_size);
4346 if (!S_ISREG(journal_inode->i_mode)) {
4347 ext4_msg(sb, KERN_ERR, "invalid journal inode");
4348 iput(journal_inode);
4349 return NULL;
4350 }
4351 return journal_inode;
4352}
4353
4354static journal_t *ext4_get_journal(struct super_block *sb,
4355 unsigned int journal_inum)
4356{
4357 struct inode *journal_inode;
4358 journal_t *journal;
4359
4360 BUG_ON(!ext4_has_feature_journal(sb));
4361
4362 journal_inode = ext4_get_journal_inode(sb, journal_inum);
4363 if (!journal_inode)
4364 return NULL;
4365
4366 journal = jbd2_journal_init_inode(journal_inode);
4367 if (!journal) {
4368 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4369 iput(journal_inode);
4370 return NULL;
4371 }
4372 journal->j_private = sb;
4373 ext4_init_journal_params(sb, journal);
4374 return journal;
4375}
4376
4377static journal_t *ext4_get_dev_journal(struct super_block *sb,
4378 dev_t j_dev)
4379{
4380 struct buffer_head *bh;
4381 journal_t *journal;
4382 ext4_fsblk_t start;
4383 ext4_fsblk_t len;
4384 int hblock, blocksize;
4385 ext4_fsblk_t sb_block;
4386 unsigned long offset;
4387 struct ext4_super_block *es;
4388 struct block_device *bdev;
4389
4390 BUG_ON(!ext4_has_feature_journal(sb));
4391
4392 bdev = ext4_blkdev_get(j_dev, sb);
4393 if (bdev == NULL)
4394 return NULL;
4395
4396 blocksize = sb->s_blocksize;
4397 hblock = bdev_logical_block_size(bdev);
4398 if (blocksize < hblock) {
4399 ext4_msg(sb, KERN_ERR,
4400 "blocksize too small for journal device");
4401 goto out_bdev;
4402 }
4403
4404 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4405 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4406 set_blocksize(bdev, blocksize);
4407 if (!(bh = __bread(bdev, sb_block, blocksize))) {
4408 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4409 "external journal");
4410 goto out_bdev;
4411 }
4412
4413 es = (struct ext4_super_block *) (bh->b_data + offset);
4414 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4415 !(le32_to_cpu(es->s_feature_incompat) &
4416 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4417 ext4_msg(sb, KERN_ERR, "external journal has "
4418 "bad superblock");
4419 brelse(bh);
4420 goto out_bdev;
4421 }
4422
4423 if ((le32_to_cpu(es->s_feature_ro_compat) &
4424 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4425 es->s_checksum != ext4_superblock_csum(sb, es)) {
4426 ext4_msg(sb, KERN_ERR, "external journal has "
4427 "corrupt superblock");
4428 brelse(bh);
4429 goto out_bdev;
4430 }
4431
4432 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4433 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4434 brelse(bh);
4435 goto out_bdev;
4436 }
4437
4438 len = ext4_blocks_count(es);
4439 start = sb_block + 1;
4440 brelse(bh); /* we're done with the superblock */
4441
4442 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4443 start, len, blocksize);
4444 if (!journal) {
4445 ext4_msg(sb, KERN_ERR, "failed to create device journal");
4446 goto out_bdev;
4447 }
4448 journal->j_private = sb;
4449 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4450 wait_on_buffer(journal->j_sb_buffer);
4451 if (!buffer_uptodate(journal->j_sb_buffer)) {
4452 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4453 goto out_journal;
4454 }
4455 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4456 ext4_msg(sb, KERN_ERR, "External journal has more than one "
4457 "user (unsupported) - %d",
4458 be32_to_cpu(journal->j_superblock->s_nr_users));
4459 goto out_journal;
4460 }
4461 EXT4_SB(sb)->journal_bdev = bdev;
4462 ext4_init_journal_params(sb, journal);
4463 return journal;
4464
4465out_journal:
4466 jbd2_journal_destroy(journal);
4467out_bdev:
4468 ext4_blkdev_put(bdev);
4469 return NULL;
4470}
4471
4472static int ext4_load_journal(struct super_block *sb,
4473 struct ext4_super_block *es,
4474 unsigned long journal_devnum)
4475{
4476 journal_t *journal;
4477 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4478 dev_t journal_dev;
4479 int err = 0;
4480 int really_read_only;
4481
4482 BUG_ON(!ext4_has_feature_journal(sb));
4483
4484 if (journal_devnum &&
4485 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4486 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4487 "numbers have changed");
4488 journal_dev = new_decode_dev(journal_devnum);
4489 } else
4490 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4491
4492 really_read_only = bdev_read_only(sb->s_bdev);
4493
4494 /*
4495 * Are we loading a blank journal or performing recovery after a
4496 * crash? For recovery, we need to check in advance whether we
4497 * can get read-write access to the device.
4498 */
4499 if (ext4_has_feature_journal_needs_recovery(sb)) {
4500 if (sb->s_flags & MS_RDONLY) {
4501 ext4_msg(sb, KERN_INFO, "INFO: recovery "
4502 "required on readonly filesystem");
4503 if (really_read_only) {
4504 ext4_msg(sb, KERN_ERR, "write access "
4505 "unavailable, cannot proceed");
4506 return -EROFS;
4507 }
4508 ext4_msg(sb, KERN_INFO, "write access will "
4509 "be enabled during recovery");
4510 }
4511 }
4512
4513 if (journal_inum && journal_dev) {
4514 ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4515 "and inode journals!");
4516 return -EINVAL;
4517 }
4518
4519 if (journal_inum) {
4520 if (!(journal = ext4_get_journal(sb, journal_inum)))
4521 return -EINVAL;
4522 } else {
4523 if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4524 return -EINVAL;
4525 }
4526
4527 if (!(journal->j_flags & JBD2_BARRIER))
4528 ext4_msg(sb, KERN_INFO, "barriers disabled");
4529
4530 if (!ext4_has_feature_journal_needs_recovery(sb))
4531 err = jbd2_journal_wipe(journal, !really_read_only);
4532 if (!err) {
4533 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4534 if (save)
4535 memcpy(save, ((char *) es) +
4536 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4537 err = jbd2_journal_load(journal);
4538 if (save)
4539 memcpy(((char *) es) + EXT4_S_ERR_START,
4540 save, EXT4_S_ERR_LEN);
4541 kfree(save);
4542 }
4543
4544 if (err) {
4545 ext4_msg(sb, KERN_ERR, "error loading journal");
4546 jbd2_journal_destroy(journal);
4547 return err;
4548 }
4549
4550 EXT4_SB(sb)->s_journal = journal;
4551 ext4_clear_journal_err(sb, es);
4552
4553 if (!really_read_only && journal_devnum &&
4554 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4555 es->s_journal_dev = cpu_to_le32(journal_devnum);
4556
4557 /* Make sure we flush the recovery flag to disk. */
4558 ext4_commit_super(sb, 1);
4559 }
4560
4561 return 0;
4562}
4563
4564static int ext4_commit_super(struct super_block *sb, int sync)
4565{
4566 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4567 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4568 int error = 0;
4569
4570 if (!sbh || block_device_ejected(sb))
4571 return error;
4572 /*
4573 * If the file system is mounted read-only, don't update the
4574 * superblock write time. This avoids updating the superblock
4575 * write time when we are mounting the root file system
4576 * read/only but we need to replay the journal; at that point,
4577 * for people who are east of GMT and who make their clock
4578 * tick in localtime for Windows bug-for-bug compatibility,
4579 * the clock is set in the future, and this will cause e2fsck
4580 * to complain and force a full file system check.
4581 */
4582 if (!(sb->s_flags & MS_RDONLY))
4583 es->s_wtime = cpu_to_le32(get_seconds());
4584 if (sb->s_bdev->bd_part)
4585 es->s_kbytes_written =
4586 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4587 ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4588 EXT4_SB(sb)->s_sectors_written_start) >> 1));
4589 else
4590 es->s_kbytes_written =
4591 cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4592 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4593 ext4_free_blocks_count_set(es,
4594 EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4595 &EXT4_SB(sb)->s_freeclusters_counter)));
4596 if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4597 es->s_free_inodes_count =
4598 cpu_to_le32(percpu_counter_sum_positive(
4599 &EXT4_SB(sb)->s_freeinodes_counter));
4600 BUFFER_TRACE(sbh, "marking dirty");
4601 ext4_superblock_csum_set(sb);
4602 if (sync)
4603 lock_buffer(sbh);
4604 if (buffer_write_io_error(sbh)) {
4605 /*
4606 * Oh, dear. A previous attempt to write the
4607 * superblock failed. This could happen because the
4608 * USB device was yanked out. Or it could happen to
4609 * be a transient write error and maybe the block will
4610 * be remapped. Nothing we can do but to retry the
4611 * write and hope for the best.
4612 */
4613 ext4_msg(sb, KERN_ERR, "previous I/O error to "
4614 "superblock detected");
4615 clear_buffer_write_io_error(sbh);
4616 set_buffer_uptodate(sbh);
4617 }
4618 mark_buffer_dirty(sbh);
4619 if (sync) {
4620 unlock_buffer(sbh);
4621 error = __sync_dirty_buffer(sbh,
4622 test_opt(sb, BARRIER) ? REQ_FUA : REQ_SYNC);
4623 if (error)
4624 return error;
4625
4626 error = buffer_write_io_error(sbh);
4627 if (error) {
4628 ext4_msg(sb, KERN_ERR, "I/O error while writing "
4629 "superblock");
4630 clear_buffer_write_io_error(sbh);
4631 set_buffer_uptodate(sbh);
4632 }
4633 }
4634 return error;
4635}
4636
4637/*
4638 * Have we just finished recovery? If so, and if we are mounting (or
4639 * remounting) the filesystem readonly, then we will end up with a
4640 * consistent fs on disk. Record that fact.
4641 */
4642static void ext4_mark_recovery_complete(struct super_block *sb,
4643 struct ext4_super_block *es)
4644{
4645 journal_t *journal = EXT4_SB(sb)->s_journal;
4646
4647 if (!ext4_has_feature_journal(sb)) {
4648 BUG_ON(journal != NULL);
4649 return;
4650 }
4651 jbd2_journal_lock_updates(journal);
4652 if (jbd2_journal_flush(journal) < 0)
4653 goto out;
4654
4655 if (ext4_has_feature_journal_needs_recovery(sb) &&
4656 sb->s_flags & MS_RDONLY) {
4657 ext4_clear_feature_journal_needs_recovery(sb);
4658 ext4_commit_super(sb, 1);
4659 }
4660
4661out:
4662 jbd2_journal_unlock_updates(journal);
4663}
4664
4665/*
4666 * If we are mounting (or read-write remounting) a filesystem whose journal
4667 * has recorded an error from a previous lifetime, move that error to the
4668 * main filesystem now.
4669 */
4670static void ext4_clear_journal_err(struct super_block *sb,
4671 struct ext4_super_block *es)
4672{
4673 journal_t *journal;
4674 int j_errno;
4675 const char *errstr;
4676
4677 BUG_ON(!ext4_has_feature_journal(sb));
4678
4679 journal = EXT4_SB(sb)->s_journal;
4680
4681 /*
4682 * Now check for any error status which may have been recorded in the
4683 * journal by a prior ext4_error() or ext4_abort()
4684 */
4685
4686 j_errno = jbd2_journal_errno(journal);
4687 if (j_errno) {
4688 char nbuf[16];
4689
4690 errstr = ext4_decode_error(sb, j_errno, nbuf);
4691 ext4_warning(sb, "Filesystem error recorded "
4692 "from previous mount: %s", errstr);
4693 ext4_warning(sb, "Marking fs in need of filesystem check.");
4694
4695 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4696 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4697 ext4_commit_super(sb, 1);
4698
4699 jbd2_journal_clear_err(journal);
4700 jbd2_journal_update_sb_errno(journal);
4701 }
4702}
4703
4704/*
4705 * Force the running and committing transactions to commit,
4706 * and wait on the commit.
4707 */
4708int ext4_force_commit(struct super_block *sb)
4709{
4710 journal_t *journal;
4711
4712 if (sb->s_flags & MS_RDONLY)
4713 return 0;
4714
4715 journal = EXT4_SB(sb)->s_journal;
4716 return ext4_journal_force_commit(journal);
4717}
4718
4719static int ext4_sync_fs(struct super_block *sb, int wait)
4720{
4721 int ret = 0;
4722 tid_t target;
4723 bool needs_barrier = false;
4724 struct ext4_sb_info *sbi = EXT4_SB(sb);
4725
4726 trace_ext4_sync_fs(sb, wait);
4727 flush_workqueue(sbi->rsv_conversion_wq);
4728 /*
4729 * Writeback quota in non-journalled quota case - journalled quota has
4730 * no dirty dquots
4731 */
4732 dquot_writeback_dquots(sb, -1);
4733 /*
4734 * Data writeback is possible w/o journal transaction, so barrier must
4735 * being sent at the end of the function. But we can skip it if
4736 * transaction_commit will do it for us.
4737 */
4738 if (sbi->s_journal) {
4739 target = jbd2_get_latest_transaction(sbi->s_journal);
4740 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4741 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4742 needs_barrier = true;
4743
4744 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4745 if (wait)
4746 ret = jbd2_log_wait_commit(sbi->s_journal,
4747 target);
4748 }
4749 } else if (wait && test_opt(sb, BARRIER))
4750 needs_barrier = true;
4751 if (needs_barrier) {
4752 int err;
4753 err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4754 if (!ret)
4755 ret = err;
4756 }
4757
4758 return ret;
4759}
4760
4761/*
4762 * LVM calls this function before a (read-only) snapshot is created. This
4763 * gives us a chance to flush the journal completely and mark the fs clean.
4764 *
4765 * Note that only this function cannot bring a filesystem to be in a clean
4766 * state independently. It relies on upper layer to stop all data & metadata
4767 * modifications.
4768 */
4769static int ext4_freeze(struct super_block *sb)
4770{
4771 int error = 0;
4772 journal_t *journal;
4773
4774 if (sb->s_flags & MS_RDONLY)
4775 return 0;
4776
4777 journal = EXT4_SB(sb)->s_journal;
4778
4779 if (journal) {
4780 /* Now we set up the journal barrier. */
4781 jbd2_journal_lock_updates(journal);
4782
4783 /*
4784 * Don't clear the needs_recovery flag if we failed to
4785 * flush the journal.
4786 */
4787 error = jbd2_journal_flush(journal);
4788 if (error < 0)
4789 goto out;
4790
4791 /* Journal blocked and flushed, clear needs_recovery flag. */
4792 ext4_clear_feature_journal_needs_recovery(sb);
4793 }
4794
4795 error = ext4_commit_super(sb, 1);
4796out:
4797 if (journal)
4798 /* we rely on upper layer to stop further updates */
4799 jbd2_journal_unlock_updates(journal);
4800 return error;
4801}
4802
4803/*
4804 * Called by LVM after the snapshot is done. We need to reset the RECOVER
4805 * flag here, even though the filesystem is not technically dirty yet.
4806 */
4807static int ext4_unfreeze(struct super_block *sb)
4808{
4809 if (sb->s_flags & MS_RDONLY)
4810 return 0;
4811
4812 if (EXT4_SB(sb)->s_journal) {
4813 /* Reset the needs_recovery flag before the fs is unlocked. */
4814 ext4_set_feature_journal_needs_recovery(sb);
4815 }
4816
4817 ext4_commit_super(sb, 1);
4818 return 0;
4819}
4820
4821/*
4822 * Structure to save mount options for ext4_remount's benefit
4823 */
4824struct ext4_mount_options {
4825 unsigned long s_mount_opt;
4826 unsigned long s_mount_opt2;
4827 kuid_t s_resuid;
4828 kgid_t s_resgid;
4829 unsigned long s_commit_interval;
4830 u32 s_min_batch_time, s_max_batch_time;
4831#ifdef CONFIG_QUOTA
4832 int s_jquota_fmt;
4833 char *s_qf_names[EXT4_MAXQUOTAS];
4834#endif
4835};
4836
4837static int ext4_remount(struct super_block *sb, int *flags, char *data)
4838{
4839 struct ext4_super_block *es;
4840 struct ext4_sb_info *sbi = EXT4_SB(sb);
4841 unsigned long old_sb_flags;
4842 struct ext4_mount_options old_opts;
4843 int enable_quota = 0;
4844 ext4_group_t g;
4845 unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4846 int err = 0;
4847#ifdef CONFIG_QUOTA
4848 int i, j;
4849#endif
4850 char *orig_data = kstrdup(data, GFP_KERNEL);
4851
4852 /* Store the original options */
4853 old_sb_flags = sb->s_flags;
4854 old_opts.s_mount_opt = sbi->s_mount_opt;
4855 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4856 old_opts.s_resuid = sbi->s_resuid;
4857 old_opts.s_resgid = sbi->s_resgid;
4858 old_opts.s_commit_interval = sbi->s_commit_interval;
4859 old_opts.s_min_batch_time = sbi->s_min_batch_time;
4860 old_opts.s_max_batch_time = sbi->s_max_batch_time;
4861#ifdef CONFIG_QUOTA
4862 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
4863 for (i = 0; i < EXT4_MAXQUOTAS; i++)
4864 if (sbi->s_qf_names[i]) {
4865 old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
4866 GFP_KERNEL);
4867 if (!old_opts.s_qf_names[i]) {
4868 for (j = 0; j < i; j++)
4869 kfree(old_opts.s_qf_names[j]);
4870 kfree(orig_data);
4871 return -ENOMEM;
4872 }
4873 } else
4874 old_opts.s_qf_names[i] = NULL;
4875#endif
4876 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
4877 journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
4878
4879 if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
4880 err = -EINVAL;
4881 goto restore_opts;
4882 }
4883
4884 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
4885 test_opt(sb, JOURNAL_CHECKSUM)) {
4886 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
4887 "during remount not supported; ignoring");
4888 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
4889 }
4890
4891 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4892 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4893 ext4_msg(sb, KERN_ERR, "can't mount with "
4894 "both data=journal and delalloc");
4895 err = -EINVAL;
4896 goto restore_opts;
4897 }
4898 if (test_opt(sb, DIOREAD_NOLOCK)) {
4899 ext4_msg(sb, KERN_ERR, "can't mount with "
4900 "both data=journal and dioread_nolock");
4901 err = -EINVAL;
4902 goto restore_opts;
4903 }
4904 if (test_opt(sb, DAX)) {
4905 ext4_msg(sb, KERN_ERR, "can't mount with "
4906 "both data=journal and dax");
4907 err = -EINVAL;
4908 goto restore_opts;
4909 }
4910 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
4911 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4912 ext4_msg(sb, KERN_ERR, "can't mount with "
4913 "journal_async_commit in data=ordered mode");
4914 err = -EINVAL;
4915 goto restore_opts;
4916 }
4917 }
4918
4919 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
4920 ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
4921 "dax flag with busy inodes while remounting");
4922 sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
4923 }
4924
4925 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
4926 ext4_abort(sb, "Abort forced by user");
4927
4928 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
4929 (test_opt(sb, POSIX_ACL) ? MS_POSIXACL : 0);
4930
4931 es = sbi->s_es;
4932
4933 if (sbi->s_journal) {
4934 ext4_init_journal_params(sb, sbi->s_journal);
4935 set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4936 }
4937
4938 if (*flags & MS_LAZYTIME)
4939 sb->s_flags |= MS_LAZYTIME;
4940
4941 if ((*flags & MS_RDONLY) != (sb->s_flags & MS_RDONLY)) {
4942 if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
4943 err = -EROFS;
4944 goto restore_opts;
4945 }
4946
4947 if (*flags & MS_RDONLY) {
4948 err = sync_filesystem(sb);
4949 if (err < 0)
4950 goto restore_opts;
4951 err = dquot_suspend(sb, -1);
4952 if (err < 0)
4953 goto restore_opts;
4954
4955 /*
4956 * First of all, the unconditional stuff we have to do
4957 * to disable replay of the journal when we next remount
4958 */
4959 sb->s_flags |= MS_RDONLY;
4960
4961 /*
4962 * OK, test if we are remounting a valid rw partition
4963 * readonly, and if so set the rdonly flag and then
4964 * mark the partition as valid again.
4965 */
4966 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
4967 (sbi->s_mount_state & EXT4_VALID_FS))
4968 es->s_state = cpu_to_le16(sbi->s_mount_state);
4969
4970 if (sbi->s_journal)
4971 ext4_mark_recovery_complete(sb, es);
4972 } else {
4973 /* Make sure we can mount this feature set readwrite */
4974 if (ext4_has_feature_readonly(sb) ||
4975 !ext4_feature_set_ok(sb, 0)) {
4976 err = -EROFS;
4977 goto restore_opts;
4978 }
4979 /*
4980 * Make sure the group descriptor checksums
4981 * are sane. If they aren't, refuse to remount r/w.
4982 */
4983 for (g = 0; g < sbi->s_groups_count; g++) {
4984 struct ext4_group_desc *gdp =
4985 ext4_get_group_desc(sb, g, NULL);
4986
4987 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
4988 ext4_msg(sb, KERN_ERR,
4989 "ext4_remount: Checksum for group %u failed (%u!=%u)",
4990 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
4991 le16_to_cpu(gdp->bg_checksum));
4992 err = -EFSBADCRC;
4993 goto restore_opts;
4994 }
4995 }
4996
4997 /*
4998 * If we have an unprocessed orphan list hanging
4999 * around from a previously readonly bdev mount,
5000 * require a full umount/remount for now.
5001 */
5002 if (es->s_last_orphan) {
5003 ext4_msg(sb, KERN_WARNING, "Couldn't "
5004 "remount RDWR because of unprocessed "
5005 "orphan inode list. Please "
5006 "umount/remount instead");
5007 err = -EINVAL;
5008 goto restore_opts;
5009 }
5010
5011 /*
5012 * Mounting a RDONLY partition read-write, so reread
5013 * and store the current valid flag. (It may have
5014 * been changed by e2fsck since we originally mounted
5015 * the partition.)
5016 */
5017 if (sbi->s_journal)
5018 ext4_clear_journal_err(sb, es);
5019 sbi->s_mount_state = le16_to_cpu(es->s_state);
5020 if (!ext4_setup_super(sb, es, 0))
5021 sb->s_flags &= ~MS_RDONLY;
5022 if (ext4_has_feature_mmp(sb))
5023 if (ext4_multi_mount_protect(sb,
5024 le64_to_cpu(es->s_mmp_block))) {
5025 err = -EROFS;
5026 goto restore_opts;
5027 }
5028 enable_quota = 1;
5029 }
5030 }
5031
5032 /*
5033 * Reinitialize lazy itable initialization thread based on
5034 * current settings
5035 */
5036 if ((sb->s_flags & MS_RDONLY) || !test_opt(sb, INIT_INODE_TABLE))
5037 ext4_unregister_li_request(sb);
5038 else {
5039 ext4_group_t first_not_zeroed;
5040 first_not_zeroed = ext4_has_uninit_itable(sb);
5041 ext4_register_li_request(sb, first_not_zeroed);
5042 }
5043
5044 ext4_setup_system_zone(sb);
5045 if (sbi->s_journal == NULL && !(old_sb_flags & MS_RDONLY))
5046 ext4_commit_super(sb, 1);
5047
5048#ifdef CONFIG_QUOTA
5049 /* Release old quota file names */
5050 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5051 kfree(old_opts.s_qf_names[i]);
5052 if (enable_quota) {
5053 if (sb_any_quota_suspended(sb))
5054 dquot_resume(sb, -1);
5055 else if (ext4_has_feature_quota(sb)) {
5056 err = ext4_enable_quotas(sb);
5057 if (err)
5058 goto restore_opts;
5059 }
5060 }
5061#endif
5062
5063 *flags = (*flags & ~MS_LAZYTIME) | (sb->s_flags & MS_LAZYTIME);
5064 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5065 kfree(orig_data);
5066 return 0;
5067
5068restore_opts:
5069 sb->s_flags = old_sb_flags;
5070 sbi->s_mount_opt = old_opts.s_mount_opt;
5071 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5072 sbi->s_resuid = old_opts.s_resuid;
5073 sbi->s_resgid = old_opts.s_resgid;
5074 sbi->s_commit_interval = old_opts.s_commit_interval;
5075 sbi->s_min_batch_time = old_opts.s_min_batch_time;
5076 sbi->s_max_batch_time = old_opts.s_max_batch_time;
5077#ifdef CONFIG_QUOTA
5078 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5079 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5080 kfree(sbi->s_qf_names[i]);
5081 sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5082 }
5083#endif
5084 kfree(orig_data);
5085 return err;
5086}
5087
5088#ifdef CONFIG_QUOTA
5089static int ext4_statfs_project(struct super_block *sb,
5090 kprojid_t projid, struct kstatfs *buf)
5091{
5092 struct kqid qid;
5093 struct dquot *dquot;
5094 u64 limit;
5095 u64 curblock;
5096
5097 qid = make_kqid_projid(projid);
5098 dquot = dqget(sb, qid);
5099 if (IS_ERR(dquot))
5100 return PTR_ERR(dquot);
5101 spin_lock(&dq_data_lock);
5102
5103 limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5104 dquot->dq_dqb.dqb_bsoftlimit :
5105 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
5106 if (limit && buf->f_blocks > limit) {
5107 curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
5108 buf->f_blocks = limit;
5109 buf->f_bfree = buf->f_bavail =
5110 (buf->f_blocks > curblock) ?
5111 (buf->f_blocks - curblock) : 0;
5112 }
5113
5114 limit = dquot->dq_dqb.dqb_isoftlimit ?
5115 dquot->dq_dqb.dqb_isoftlimit :
5116 dquot->dq_dqb.dqb_ihardlimit;
5117 if (limit && buf->f_files > limit) {
5118 buf->f_files = limit;
5119 buf->f_ffree =
5120 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5121 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5122 }
5123
5124 spin_unlock(&dq_data_lock);
5125 dqput(dquot);
5126 return 0;
5127}
5128#endif
5129
5130static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5131{
5132 struct super_block *sb = dentry->d_sb;
5133 struct ext4_sb_info *sbi = EXT4_SB(sb);
5134 struct ext4_super_block *es = sbi->s_es;
5135 ext4_fsblk_t overhead = 0, resv_blocks;
5136 u64 fsid;
5137 s64 bfree;
5138 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5139
5140 if (!test_opt(sb, MINIX_DF))
5141 overhead = sbi->s_overhead;
5142
5143 buf->f_type = EXT4_SUPER_MAGIC;
5144 buf->f_bsize = sb->s_blocksize;
5145 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5146 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5147 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5148 /* prevent underflow in case that few free space is available */
5149 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5150 buf->f_bavail = buf->f_bfree -
5151 (ext4_r_blocks_count(es) + resv_blocks);
5152 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5153 buf->f_bavail = 0;
5154 buf->f_files = le32_to_cpu(es->s_inodes_count);
5155 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5156 buf->f_namelen = EXT4_NAME_LEN;
5157 fsid = le64_to_cpup((void *)es->s_uuid) ^
5158 le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5159 buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5160 buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5161
5162#ifdef CONFIG_QUOTA
5163 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5164 sb_has_quota_limits_enabled(sb, PRJQUOTA))
5165 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5166#endif
5167 return 0;
5168}
5169
5170/* Helper function for writing quotas on sync - we need to start transaction
5171 * before quota file is locked for write. Otherwise the are possible deadlocks:
5172 * Process 1 Process 2
5173 * ext4_create() quota_sync()
5174 * jbd2_journal_start() write_dquot()
5175 * dquot_initialize() down(dqio_mutex)
5176 * down(dqio_mutex) jbd2_journal_start()
5177 *
5178 */
5179
5180#ifdef CONFIG_QUOTA
5181
5182static inline struct inode *dquot_to_inode(struct dquot *dquot)
5183{
5184 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5185}
5186
5187static int ext4_write_dquot(struct dquot *dquot)
5188{
5189 int ret, err;
5190 handle_t *handle;
5191 struct inode *inode;
5192
5193 inode = dquot_to_inode(dquot);
5194 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5195 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5196 if (IS_ERR(handle))
5197 return PTR_ERR(handle);
5198 ret = dquot_commit(dquot);
5199 err = ext4_journal_stop(handle);
5200 if (!ret)
5201 ret = err;
5202 return ret;
5203}
5204
5205static int ext4_acquire_dquot(struct dquot *dquot)
5206{
5207 int ret, err;
5208 handle_t *handle;
5209
5210 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5211 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5212 if (IS_ERR(handle))
5213 return PTR_ERR(handle);
5214 ret = dquot_acquire(dquot);
5215 err = ext4_journal_stop(handle);
5216 if (!ret)
5217 ret = err;
5218 return ret;
5219}
5220
5221static int ext4_release_dquot(struct dquot *dquot)
5222{
5223 int ret, err;
5224 handle_t *handle;
5225
5226 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5227 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5228 if (IS_ERR(handle)) {
5229 /* Release dquot anyway to avoid endless cycle in dqput() */
5230 dquot_release(dquot);
5231 return PTR_ERR(handle);
5232 }
5233 ret = dquot_release(dquot);
5234 err = ext4_journal_stop(handle);
5235 if (!ret)
5236 ret = err;
5237 return ret;
5238}
5239
5240static int ext4_mark_dquot_dirty(struct dquot *dquot)
5241{
5242 struct super_block *sb = dquot->dq_sb;
5243 struct ext4_sb_info *sbi = EXT4_SB(sb);
5244
5245 /* Are we journaling quotas? */
5246 if (ext4_has_feature_quota(sb) ||
5247 sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5248 dquot_mark_dquot_dirty(dquot);
5249 return ext4_write_dquot(dquot);
5250 } else {
5251 return dquot_mark_dquot_dirty(dquot);
5252 }
5253}
5254
5255static int ext4_write_info(struct super_block *sb, int type)
5256{
5257 int ret, err;
5258 handle_t *handle;
5259
5260 /* Data block + inode block */
5261 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5262 if (IS_ERR(handle))
5263 return PTR_ERR(handle);
5264 ret = dquot_commit_info(sb, type);
5265 err = ext4_journal_stop(handle);
5266 if (!ret)
5267 ret = err;
5268 return ret;
5269}
5270
5271/*
5272 * Turn on quotas during mount time - we need to find
5273 * the quota file and such...
5274 */
5275static int ext4_quota_on_mount(struct super_block *sb, int type)
5276{
5277 return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5278 EXT4_SB(sb)->s_jquota_fmt, type);
5279}
5280
5281static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5282{
5283 struct ext4_inode_info *ei = EXT4_I(inode);
5284
5285 /* The first argument of lockdep_set_subclass has to be
5286 * *exactly* the same as the argument to init_rwsem() --- in
5287 * this case, in init_once() --- or lockdep gets unhappy
5288 * because the name of the lock is set using the
5289 * stringification of the argument to init_rwsem().
5290 */
5291 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
5292 lockdep_set_subclass(&ei->i_data_sem, subclass);
5293}
5294
5295/*
5296 * Standard function to be called on quota_on
5297 */
5298static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5299 const struct path *path)
5300{
5301 int err;
5302
5303 if (!test_opt(sb, QUOTA))
5304 return -EINVAL;
5305
5306 /* Quotafile not on the same filesystem? */
5307 if (path->dentry->d_sb != sb)
5308 return -EXDEV;
5309 /* Journaling quota? */
5310 if (EXT4_SB(sb)->s_qf_names[type]) {
5311 /* Quotafile not in fs root? */
5312 if (path->dentry->d_parent != sb->s_root)
5313 ext4_msg(sb, KERN_WARNING,
5314 "Quota file not on filesystem root. "
5315 "Journaled quota will not work");
5316 }
5317
5318 /*
5319 * When we journal data on quota file, we have to flush journal to see
5320 * all updates to the file when we bypass pagecache...
5321 */
5322 if (EXT4_SB(sb)->s_journal &&
5323 ext4_should_journal_data(d_inode(path->dentry))) {
5324 /*
5325 * We don't need to lock updates but journal_flush() could
5326 * otherwise be livelocked...
5327 */
5328 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5329 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5330 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5331 if (err)
5332 return err;
5333 }
5334 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5335 err = dquot_quota_on(sb, type, format_id, path);
5336 if (err)
5337 lockdep_set_quota_inode(path->dentry->d_inode,
5338 I_DATA_SEM_NORMAL);
5339 return err;
5340}
5341
5342static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5343 unsigned int flags)
5344{
5345 int err;
5346 struct inode *qf_inode;
5347 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5348 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5349 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5350 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5351 };
5352
5353 BUG_ON(!ext4_has_feature_quota(sb));
5354
5355 if (!qf_inums[type])
5356 return -EPERM;
5357
5358 qf_inode = ext4_iget(sb, qf_inums[type]);
5359 if (IS_ERR(qf_inode)) {
5360 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
5361 return PTR_ERR(qf_inode);
5362 }
5363
5364 /* Don't account quota for quota files to avoid recursion */
5365 qf_inode->i_flags |= S_NOQUOTA;
5366 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5367 err = dquot_enable(qf_inode, type, format_id, flags);
5368 iput(qf_inode);
5369 if (err)
5370 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
5371
5372 return err;
5373}
5374
5375/* Enable usage tracking for all quota types. */
5376static int ext4_enable_quotas(struct super_block *sb)
5377{
5378 int type, err = 0;
5379 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5380 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5381 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5382 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5383 };
5384 bool quota_mopt[EXT4_MAXQUOTAS] = {
5385 test_opt(sb, USRQUOTA),
5386 test_opt(sb, GRPQUOTA),
5387 test_opt(sb, PRJQUOTA),
5388 };
5389
5390 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE;
5391 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5392 if (qf_inums[type]) {
5393 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5394 DQUOT_USAGE_ENABLED |
5395 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5396 if (err) {
5397 ext4_warning(sb,
5398 "Failed to enable quota tracking "
5399 "(type=%d, err=%d). Please run "
5400 "e2fsck to fix.", type, err);
5401 return err;
5402 }
5403 }
5404 }
5405 return 0;
5406}
5407
5408static int ext4_quota_off(struct super_block *sb, int type)
5409{
5410 struct inode *inode = sb_dqopt(sb)->files[type];
5411 handle_t *handle;
5412
5413 /* Force all delayed allocation blocks to be allocated.
5414 * Caller already holds s_umount sem */
5415 if (test_opt(sb, DELALLOC))
5416 sync_filesystem(sb);
5417
5418 if (!inode)
5419 goto out;
5420
5421 /* Update modification times of quota files when userspace can
5422 * start looking at them */
5423 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5424 if (IS_ERR(handle))
5425 goto out;
5426 inode->i_mtime = inode->i_ctime = current_time(inode);
5427 ext4_mark_inode_dirty(handle, inode);
5428 ext4_journal_stop(handle);
5429
5430out:
5431 return dquot_quota_off(sb, type);
5432}
5433
5434/* Read data from quotafile - avoid pagecache and such because we cannot afford
5435 * acquiring the locks... As quota files are never truncated and quota code
5436 * itself serializes the operations (and no one else should touch the files)
5437 * we don't have to be afraid of races */
5438static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5439 size_t len, loff_t off)
5440{
5441 struct inode *inode = sb_dqopt(sb)->files[type];
5442 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5443 int offset = off & (sb->s_blocksize - 1);
5444 int tocopy;
5445 size_t toread;
5446 struct buffer_head *bh;
5447 loff_t i_size = i_size_read(inode);
5448
5449 if (off > i_size)
5450 return 0;
5451 if (off+len > i_size)
5452 len = i_size-off;
5453 toread = len;
5454 while (toread > 0) {
5455 tocopy = sb->s_blocksize - offset < toread ?
5456 sb->s_blocksize - offset : toread;
5457 bh = ext4_bread(NULL, inode, blk, 0);
5458 if (IS_ERR(bh))
5459 return PTR_ERR(bh);
5460 if (!bh) /* A hole? */
5461 memset(data, 0, tocopy);
5462 else
5463 memcpy(data, bh->b_data+offset, tocopy);
5464 brelse(bh);
5465 offset = 0;
5466 toread -= tocopy;
5467 data += tocopy;
5468 blk++;
5469 }
5470 return len;
5471}
5472
5473/* Write to quotafile (we know the transaction is already started and has
5474 * enough credits) */
5475static ssize_t ext4_quota_write(struct super_block *sb, int type,
5476 const char *data, size_t len, loff_t off)
5477{
5478 struct inode *inode = sb_dqopt(sb)->files[type];
5479 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5480 int err, offset = off & (sb->s_blocksize - 1);
5481 int retries = 0;
5482 struct buffer_head *bh;
5483 handle_t *handle = journal_current_handle();
5484
5485 if (EXT4_SB(sb)->s_journal && !handle) {
5486 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5487 " cancelled because transaction is not started",
5488 (unsigned long long)off, (unsigned long long)len);
5489 return -EIO;
5490 }
5491 /*
5492 * Since we account only one data block in transaction credits,
5493 * then it is impossible to cross a block boundary.
5494 */
5495 if (sb->s_blocksize - offset < len) {
5496 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5497 " cancelled because not block aligned",
5498 (unsigned long long)off, (unsigned long long)len);
5499 return -EIO;
5500 }
5501
5502 do {
5503 bh = ext4_bread(handle, inode, blk,
5504 EXT4_GET_BLOCKS_CREATE |
5505 EXT4_GET_BLOCKS_METADATA_NOFAIL);
5506 } while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5507 ext4_should_retry_alloc(inode->i_sb, &retries));
5508 if (IS_ERR(bh))
5509 return PTR_ERR(bh);
5510 if (!bh)
5511 goto out;
5512 BUFFER_TRACE(bh, "get write access");
5513 err = ext4_journal_get_write_access(handle, bh);
5514 if (err) {
5515 brelse(bh);
5516 return err;
5517 }
5518 lock_buffer(bh);
5519 memcpy(bh->b_data+offset, data, len);
5520 flush_dcache_page(bh->b_page);
5521 unlock_buffer(bh);
5522 err = ext4_handle_dirty_metadata(handle, NULL, bh);
5523 brelse(bh);
5524out:
5525 if (inode->i_size < off + len) {
5526 i_size_write(inode, off + len);
5527 EXT4_I(inode)->i_disksize = inode->i_size;
5528 ext4_mark_inode_dirty(handle, inode);
5529 }
5530 return len;
5531}
5532
5533static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5534{
5535 const struct quota_format_ops *ops;
5536
5537 if (!sb_has_quota_loaded(sb, qid->type))
5538 return -ESRCH;
5539 ops = sb_dqopt(sb)->ops[qid->type];
5540 if (!ops || !ops->get_next_id)
5541 return -ENOSYS;
5542 return dquot_get_next_id(sb, qid);
5543}
5544#endif
5545
5546static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5547 const char *dev_name, void *data)
5548{
5549 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5550}
5551
5552#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5553static inline void register_as_ext2(void)
5554{
5555 int err = register_filesystem(&ext2_fs_type);
5556 if (err)
5557 printk(KERN_WARNING
5558 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5559}
5560
5561static inline void unregister_as_ext2(void)
5562{
5563 unregister_filesystem(&ext2_fs_type);
5564}
5565
5566static inline int ext2_feature_set_ok(struct super_block *sb)
5567{
5568 if (ext4_has_unknown_ext2_incompat_features(sb))
5569 return 0;
5570 if (sb->s_flags & MS_RDONLY)
5571 return 1;
5572 if (ext4_has_unknown_ext2_ro_compat_features(sb))
5573 return 0;
5574 return 1;
5575}
5576#else
5577static inline void register_as_ext2(void) { }
5578static inline void unregister_as_ext2(void) { }
5579static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5580#endif
5581
5582static inline void register_as_ext3(void)
5583{
5584 int err = register_filesystem(&ext3_fs_type);
5585 if (err)
5586 printk(KERN_WARNING
5587 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5588}
5589
5590static inline void unregister_as_ext3(void)
5591{
5592 unregister_filesystem(&ext3_fs_type);
5593}
5594
5595static inline int ext3_feature_set_ok(struct super_block *sb)
5596{
5597 if (ext4_has_unknown_ext3_incompat_features(sb))
5598 return 0;
5599 if (!ext4_has_feature_journal(sb))
5600 return 0;
5601 if (sb->s_flags & MS_RDONLY)
5602 return 1;
5603 if (ext4_has_unknown_ext3_ro_compat_features(sb))
5604 return 0;
5605 return 1;
5606}
5607
5608static struct file_system_type ext4_fs_type = {
5609 .owner = THIS_MODULE,
5610 .name = "ext4",
5611 .mount = ext4_mount,
5612 .kill_sb = kill_block_super,
5613 .fs_flags = FS_REQUIRES_DEV,
5614};
5615MODULE_ALIAS_FS("ext4");
5616
5617/* Shared across all ext4 file systems */
5618wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5619
5620static int __init ext4_init_fs(void)
5621{
5622 int i, err;
5623
5624 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5625 ext4_li_info = NULL;
5626 mutex_init(&ext4_li_mtx);
5627
5628 /* Build-time check for flags consistency */
5629 ext4_check_flag_values();
5630
5631 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5632 init_waitqueue_head(&ext4__ioend_wq[i]);
5633
5634 err = ext4_init_es();
5635 if (err)
5636 return err;
5637
5638 err = ext4_init_pageio();
5639 if (err)
5640 goto out5;
5641
5642 err = ext4_init_system_zone();
5643 if (err)
5644 goto out4;
5645
5646 err = ext4_init_sysfs();
5647 if (err)
5648 goto out3;
5649
5650 err = ext4_init_mballoc();
5651 if (err)
5652 goto out2;
5653 err = init_inodecache();
5654 if (err)
5655 goto out1;
5656 register_as_ext3();
5657 register_as_ext2();
5658 err = register_filesystem(&ext4_fs_type);
5659 if (err)
5660 goto out;
5661
5662 return 0;
5663out:
5664 unregister_as_ext2();
5665 unregister_as_ext3();
5666 destroy_inodecache();
5667out1:
5668 ext4_exit_mballoc();
5669out2:
5670 ext4_exit_sysfs();
5671out3:
5672 ext4_exit_system_zone();
5673out4:
5674 ext4_exit_pageio();
5675out5:
5676 ext4_exit_es();
5677
5678 return err;
5679}
5680
5681static void __exit ext4_exit_fs(void)
5682{
5683 ext4_destroy_lazyinit_thread();
5684 unregister_as_ext2();
5685 unregister_as_ext3();
5686 unregister_filesystem(&ext4_fs_type);
5687 destroy_inodecache();
5688 ext4_exit_mballoc();
5689 ext4_exit_sysfs();
5690 ext4_exit_system_zone();
5691 ext4_exit_pageio();
5692 ext4_exit_es();
5693}
5694
5695MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5696MODULE_DESCRIPTION("Fourth Extended Filesystem");
5697MODULE_LICENSE("GPL");
5698module_init(ext4_init_fs)
5699module_exit(ext4_exit_fs)