Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/super.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Big-endian to little-endian byte-swapping/bitmaps by
  17 *        David S. Miller (davem@caip.rutgers.edu), 1995
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/string.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/parser.h>
  30#include <linux/buffer_head.h>
  31#include <linux/exportfs.h>
  32#include <linux/vfs.h>
  33#include <linux/random.h>
  34#include <linux/mount.h>
  35#include <linux/namei.h>
  36#include <linux/quotaops.h>
  37#include <linux/seq_file.h>
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/dax.h>
 
  42#include <linux/uaccess.h>
  43#include <linux/iversion.h>
  44#include <linux/unicode.h>
  45#include <linux/part_stat.h>
  46#include <linux/kthread.h>
  47#include <linux/freezer.h>
  48#include <linux/fsnotify.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51
  52#include "ext4.h"
  53#include "ext4_extents.h"	/* Needed for trace points definition */
  54#include "ext4_jbd2.h"
  55#include "xattr.h"
  56#include "acl.h"
  57#include "mballoc.h"
  58#include "fsmap.h"
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/ext4.h>
  62
  63static struct ext4_lazy_init *ext4_li_info;
  64static DEFINE_MUTEX(ext4_li_mtx);
  65static struct ratelimit_state ext4_mount_msg_ratelimit;
  66
  67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  68			     unsigned long journal_devnum);
  69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  70static void ext4_update_super(struct super_block *sb);
  71static int ext4_commit_super(struct super_block *sb);
  72static int ext4_mark_recovery_complete(struct super_block *sb,
  73					struct ext4_super_block *es);
  74static int ext4_clear_journal_err(struct super_block *sb,
  75				  struct ext4_super_block *es);
  76static int ext4_sync_fs(struct super_block *sb, int wait);
 
  77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  78static int ext4_unfreeze(struct super_block *sb);
  79static int ext4_freeze(struct super_block *sb);
 
 
  80static inline int ext2_feature_set_ok(struct super_block *sb);
  81static inline int ext3_feature_set_ok(struct super_block *sb);
 
  82static void ext4_destroy_lazyinit_thread(void);
  83static void ext4_unregister_li_request(struct super_block *sb);
  84static void ext4_clear_request_list(void);
  85static struct inode *ext4_get_journal_inode(struct super_block *sb,
  86					    unsigned int journal_inum);
  87static int ext4_validate_options(struct fs_context *fc);
  88static int ext4_check_opt_consistency(struct fs_context *fc,
  89				      struct super_block *sb);
  90static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
  91static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
  92static int ext4_get_tree(struct fs_context *fc);
  93static int ext4_reconfigure(struct fs_context *fc);
  94static void ext4_fc_free(struct fs_context *fc);
  95static int ext4_init_fs_context(struct fs_context *fc);
  96static const struct fs_parameter_spec ext4_param_specs[];
  97
  98/*
  99 * Lock ordering
 100 *
 
 
 
 101 * page fault path:
 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
 103 *   -> page lock -> i_data_sem (rw)
 104 *
 105 * buffered write path:
 106 * sb_start_write -> i_mutex -> mmap_lock
 107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
 108 *   i_data_sem (rw)
 109 *
 110 * truncate:
 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
 112 *   page lock
 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
 114 *   i_data_sem (rw)
 115 *
 116 * direct IO:
 117 * sb_start_write -> i_mutex -> mmap_lock
 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
 119 *
 120 * writepages:
 121 * transaction start -> page lock(s) -> i_data_sem (rw)
 122 */
 123
 124static const struct fs_context_operations ext4_context_ops = {
 125	.parse_param	= ext4_parse_param,
 126	.get_tree	= ext4_get_tree,
 127	.reconfigure	= ext4_reconfigure,
 128	.free		= ext4_fc_free,
 129};
 130
 131
 132#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 133static struct file_system_type ext2_fs_type = {
 134	.owner			= THIS_MODULE,
 135	.name			= "ext2",
 136	.init_fs_context	= ext4_init_fs_context,
 137	.parameters		= ext4_param_specs,
 138	.kill_sb		= kill_block_super,
 139	.fs_flags		= FS_REQUIRES_DEV,
 140};
 141MODULE_ALIAS_FS("ext2");
 142MODULE_ALIAS("ext2");
 143#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
 144#else
 145#define IS_EXT2_SB(sb) (0)
 146#endif
 147
 148
 149static struct file_system_type ext3_fs_type = {
 150	.owner			= THIS_MODULE,
 151	.name			= "ext3",
 152	.init_fs_context	= ext4_init_fs_context,
 153	.parameters		= ext4_param_specs,
 154	.kill_sb		= kill_block_super,
 155	.fs_flags		= FS_REQUIRES_DEV,
 156};
 157MODULE_ALIAS_FS("ext3");
 158MODULE_ALIAS("ext3");
 159#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
 160
 161
 162static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
 163				  bh_end_io_t *end_io)
 164{
 165	/*
 166	 * buffer's verified bit is no longer valid after reading from
 167	 * disk again due to write out error, clear it to make sure we
 168	 * recheck the buffer contents.
 169	 */
 170	clear_buffer_verified(bh);
 171
 172	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
 173	get_bh(bh);
 174	submit_bh(REQ_OP_READ | op_flags, bh);
 175}
 176
 177void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
 178			 bh_end_io_t *end_io)
 179{
 180	BUG_ON(!buffer_locked(bh));
 181
 182	if (ext4_buffer_uptodate(bh)) {
 183		unlock_buffer(bh);
 184		return;
 185	}
 186	__ext4_read_bh(bh, op_flags, end_io);
 187}
 188
 189int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
 190{
 191	BUG_ON(!buffer_locked(bh));
 192
 193	if (ext4_buffer_uptodate(bh)) {
 194		unlock_buffer(bh);
 195		return 0;
 196	}
 197
 198	__ext4_read_bh(bh, op_flags, end_io);
 199
 200	wait_on_buffer(bh);
 201	if (buffer_uptodate(bh))
 202		return 0;
 203	return -EIO;
 204}
 205
 206int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
 207{
 208	lock_buffer(bh);
 209	if (!wait) {
 210		ext4_read_bh_nowait(bh, op_flags, NULL);
 211		return 0;
 212	}
 213	return ext4_read_bh(bh, op_flags, NULL);
 214}
 215
 216/*
 217 * This works like __bread_gfp() except it uses ERR_PTR for error
 218 * returns.  Currently with sb_bread it's impossible to distinguish
 219 * between ENOMEM and EIO situations (since both result in a NULL
 220 * return.
 221 */
 222static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
 223					       sector_t block,
 224					       blk_opf_t op_flags, gfp_t gfp)
 225{
 226	struct buffer_head *bh;
 227	int ret;
 228
 229	bh = sb_getblk_gfp(sb, block, gfp);
 230	if (bh == NULL)
 231		return ERR_PTR(-ENOMEM);
 232	if (ext4_buffer_uptodate(bh))
 233		return bh;
 234
 235	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
 236	if (ret) {
 237		put_bh(bh);
 238		return ERR_PTR(ret);
 239	}
 240	return bh;
 241}
 242
 243struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
 244				   blk_opf_t op_flags)
 245{
 246	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
 247}
 248
 249struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
 250					    sector_t block)
 251{
 252	return __ext4_sb_bread_gfp(sb, block, 0, 0);
 253}
 254
 255void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
 256{
 257	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
 258
 259	if (likely(bh)) {
 260		if (trylock_buffer(bh))
 261			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
 262		brelse(bh);
 263	}
 264}
 265
 266static int ext4_verify_csum_type(struct super_block *sb,
 267				 struct ext4_super_block *es)
 268{
 269	if (!ext4_has_feature_metadata_csum(sb))
 270		return 1;
 271
 272	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 273}
 274
 275__le32 ext4_superblock_csum(struct super_block *sb,
 276			    struct ext4_super_block *es)
 277{
 278	struct ext4_sb_info *sbi = EXT4_SB(sb);
 279	int offset = offsetof(struct ext4_super_block, s_checksum);
 280	__u32 csum;
 281
 282	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 283
 284	return cpu_to_le32(csum);
 285}
 286
 287static int ext4_superblock_csum_verify(struct super_block *sb,
 288				       struct ext4_super_block *es)
 289{
 290	if (!ext4_has_metadata_csum(sb))
 291		return 1;
 292
 293	return es->s_checksum == ext4_superblock_csum(sb, es);
 294}
 295
 296void ext4_superblock_csum_set(struct super_block *sb)
 297{
 298	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 299
 300	if (!ext4_has_metadata_csum(sb))
 301		return;
 302
 303	es->s_checksum = ext4_superblock_csum(sb, es);
 304}
 305
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 307			       struct ext4_group_desc *bg)
 308{
 309	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 310		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 311		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 312}
 313
 314ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 315			       struct ext4_group_desc *bg)
 316{
 317	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 318		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 319		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 320}
 321
 322ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 323			      struct ext4_group_desc *bg)
 324{
 325	return le32_to_cpu(bg->bg_inode_table_lo) |
 326		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 327		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 328}
 329
 330__u32 ext4_free_group_clusters(struct super_block *sb,
 331			       struct ext4_group_desc *bg)
 332{
 333	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 334		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 335		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 336}
 337
 338__u32 ext4_free_inodes_count(struct super_block *sb,
 339			      struct ext4_group_desc *bg)
 340{
 341	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 342		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 343		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 344}
 345
 346__u32 ext4_used_dirs_count(struct super_block *sb,
 347			      struct ext4_group_desc *bg)
 348{
 349	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 350		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 351		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 352}
 353
 354__u32 ext4_itable_unused_count(struct super_block *sb,
 355			      struct ext4_group_desc *bg)
 356{
 357	return le16_to_cpu(bg->bg_itable_unused_lo) |
 358		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 359		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 360}
 361
 362void ext4_block_bitmap_set(struct super_block *sb,
 363			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 364{
 365	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 366	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 367		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 368}
 369
 370void ext4_inode_bitmap_set(struct super_block *sb,
 371			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 372{
 373	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 374	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 375		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 376}
 377
 378void ext4_inode_table_set(struct super_block *sb,
 379			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 380{
 381	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 382	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 383		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 384}
 385
 386void ext4_free_group_clusters_set(struct super_block *sb,
 387				  struct ext4_group_desc *bg, __u32 count)
 388{
 389	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 390	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 391		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 392}
 393
 394void ext4_free_inodes_set(struct super_block *sb,
 395			  struct ext4_group_desc *bg, __u32 count)
 396{
 397	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 398	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 399		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 400}
 401
 402void ext4_used_dirs_set(struct super_block *sb,
 403			  struct ext4_group_desc *bg, __u32 count)
 404{
 405	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 406	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 407		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 408}
 409
 410void ext4_itable_unused_set(struct super_block *sb,
 411			  struct ext4_group_desc *bg, __u32 count)
 412{
 413	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 414	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 415		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 416}
 417
 418static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
 
 
 419{
 420	now = clamp_val(now, 0, (1ull << 40) - 1);
 421
 422	*lo = cpu_to_le32(lower_32_bits(now));
 423	*hi = upper_32_bits(now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 424}
 425
 426static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
 
 427{
 428	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
 
 429}
 430#define ext4_update_tstamp(es, tstamp) \
 431	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
 432			     ktime_get_real_seconds())
 433#define ext4_get_tstamp(es, tstamp) \
 434	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
 435
 436/*
 437 * The del_gendisk() function uninitializes the disk-specific data
 438 * structures, including the bdi structure, without telling anyone
 439 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 441 * This is a kludge to prevent these oops until we can put in a proper
 442 * hook in del_gendisk() to inform the VFS and file system layers.
 443 */
 444static int block_device_ejected(struct super_block *sb)
 445{
 446	struct inode *bd_inode = sb->s_bdev->bd_inode;
 447	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 448
 449	return bdi->dev == NULL;
 450}
 451
 452static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 453{
 454	struct super_block		*sb = journal->j_private;
 455	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 456	int				error = is_journal_aborted(journal);
 457	struct ext4_journal_cb_entry	*jce;
 458
 459	BUG_ON(txn->t_state == T_FINISHED);
 460
 461	ext4_process_freed_data(sb, txn->t_tid);
 462
 463	spin_lock(&sbi->s_md_lock);
 464	while (!list_empty(&txn->t_private_list)) {
 465		jce = list_entry(txn->t_private_list.next,
 466				 struct ext4_journal_cb_entry, jce_list);
 467		list_del_init(&jce->jce_list);
 468		spin_unlock(&sbi->s_md_lock);
 469		jce->jce_func(sb, jce, error);
 470		spin_lock(&sbi->s_md_lock);
 471	}
 472	spin_unlock(&sbi->s_md_lock);
 473}
 474
 475/*
 476 * This writepage callback for write_cache_pages()
 477 * takes care of a few cases after page cleaning.
 478 *
 479 * write_cache_pages() already checks for dirty pages
 480 * and calls clear_page_dirty_for_io(), which we want,
 481 * to write protect the pages.
 482 *
 483 * However, we may have to redirty a page (see below.)
 484 */
 485static int ext4_journalled_writepage_callback(struct page *page,
 486					      struct writeback_control *wbc,
 487					      void *data)
 488{
 489	transaction_t *transaction = (transaction_t *) data;
 490	struct buffer_head *bh, *head;
 491	struct journal_head *jh;
 492
 493	bh = head = page_buffers(page);
 494	do {
 495		/*
 496		 * We have to redirty a page in these cases:
 497		 * 1) If buffer is dirty, it means the page was dirty because it
 498		 * contains a buffer that needs checkpointing. So the dirty bit
 499		 * needs to be preserved so that checkpointing writes the buffer
 500		 * properly.
 501		 * 2) If buffer is not part of the committing transaction
 502		 * (we may have just accidentally come across this buffer because
 503		 * inode range tracking is not exact) or if the currently running
 504		 * transaction already contains this buffer as well, dirty bit
 505		 * needs to be preserved so that the buffer gets writeprotected
 506		 * properly on running transaction's commit.
 507		 */
 508		jh = bh2jh(bh);
 509		if (buffer_dirty(bh) ||
 510		    (jh && (jh->b_transaction != transaction ||
 511			    jh->b_next_transaction))) {
 512			redirty_page_for_writepage(wbc, page);
 513			goto out;
 514		}
 515	} while ((bh = bh->b_this_page) != head);
 516
 517out:
 518	return AOP_WRITEPAGE_ACTIVATE;
 519}
 520
 521static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
 522{
 523	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
 524	struct writeback_control wbc = {
 525		.sync_mode =  WB_SYNC_ALL,
 526		.nr_to_write = LONG_MAX,
 527		.range_start = jinode->i_dirty_start,
 528		.range_end = jinode->i_dirty_end,
 529        };
 530
 531	return write_cache_pages(mapping, &wbc,
 532				 ext4_journalled_writepage_callback,
 533				 jinode->i_transaction);
 534}
 535
 536static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
 537{
 538	int ret;
 539
 540	if (ext4_should_journal_data(jinode->i_vfs_inode))
 541		ret = ext4_journalled_submit_inode_data_buffers(jinode);
 542	else
 543		ret = ext4_normal_submit_inode_data_buffers(jinode);
 544	return ret;
 545}
 546
 547static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
 548{
 549	int ret = 0;
 550
 551	if (!ext4_should_journal_data(jinode->i_vfs_inode))
 552		ret = jbd2_journal_finish_inode_data_buffers(jinode);
 553
 554	return ret;
 555}
 556
 557static bool system_going_down(void)
 558{
 559	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 560		|| system_state == SYSTEM_RESTART;
 561}
 562
 563struct ext4_err_translation {
 564	int code;
 565	int errno;
 566};
 567
 568#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
 569
 570static struct ext4_err_translation err_translation[] = {
 571	EXT4_ERR_TRANSLATE(EIO),
 572	EXT4_ERR_TRANSLATE(ENOMEM),
 573	EXT4_ERR_TRANSLATE(EFSBADCRC),
 574	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
 575	EXT4_ERR_TRANSLATE(ENOSPC),
 576	EXT4_ERR_TRANSLATE(ENOKEY),
 577	EXT4_ERR_TRANSLATE(EROFS),
 578	EXT4_ERR_TRANSLATE(EFBIG),
 579	EXT4_ERR_TRANSLATE(EEXIST),
 580	EXT4_ERR_TRANSLATE(ERANGE),
 581	EXT4_ERR_TRANSLATE(EOVERFLOW),
 582	EXT4_ERR_TRANSLATE(EBUSY),
 583	EXT4_ERR_TRANSLATE(ENOTDIR),
 584	EXT4_ERR_TRANSLATE(ENOTEMPTY),
 585	EXT4_ERR_TRANSLATE(ESHUTDOWN),
 586	EXT4_ERR_TRANSLATE(EFAULT),
 587};
 588
 589static int ext4_errno_to_code(int errno)
 590{
 591	int i;
 592
 593	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
 594		if (err_translation[i].errno == errno)
 595			return err_translation[i].code;
 596	return EXT4_ERR_UNKNOWN;
 597}
 598
 599static void save_error_info(struct super_block *sb, int error,
 600			    __u32 ino, __u64 block,
 601			    const char *func, unsigned int line)
 602{
 603	struct ext4_sb_info *sbi = EXT4_SB(sb);
 604
 605	/* We default to EFSCORRUPTED error... */
 606	if (error == 0)
 607		error = EFSCORRUPTED;
 608
 609	spin_lock(&sbi->s_error_lock);
 610	sbi->s_add_error_count++;
 611	sbi->s_last_error_code = error;
 612	sbi->s_last_error_line = line;
 613	sbi->s_last_error_ino = ino;
 614	sbi->s_last_error_block = block;
 615	sbi->s_last_error_func = func;
 616	sbi->s_last_error_time = ktime_get_real_seconds();
 617	if (!sbi->s_first_error_time) {
 618		sbi->s_first_error_code = error;
 619		sbi->s_first_error_line = line;
 620		sbi->s_first_error_ino = ino;
 621		sbi->s_first_error_block = block;
 622		sbi->s_first_error_func = func;
 623		sbi->s_first_error_time = sbi->s_last_error_time;
 624	}
 625	spin_unlock(&sbi->s_error_lock);
 626}
 627
 628/* Deal with the reporting of failure conditions on a filesystem such as
 629 * inconsistencies detected or read IO failures.
 630 *
 631 * On ext2, we can store the error state of the filesystem in the
 632 * superblock.  That is not possible on ext4, because we may have other
 633 * write ordering constraints on the superblock which prevent us from
 634 * writing it out straight away; and given that the journal is about to
 635 * be aborted, we can't rely on the current, or future, transactions to
 636 * write out the superblock safely.
 637 *
 638 * We'll just use the jbd2_journal_abort() error code to record an error in
 639 * the journal instead.  On recovery, the journal will complain about
 640 * that error until we've noted it down and cleared it.
 641 *
 642 * If force_ro is set, we unconditionally force the filesystem into an
 643 * ABORT|READONLY state, unless the error response on the fs has been set to
 644 * panic in which case we take the easy way out and panic immediately. This is
 645 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
 646 * at a critical moment in log management.
 647 */
 648static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
 649			      __u32 ino, __u64 block,
 650			      const char *func, unsigned int line)
 651{
 652	journal_t *journal = EXT4_SB(sb)->s_journal;
 653	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
 654
 655	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 656	if (test_opt(sb, WARN_ON_ERROR))
 657		WARN_ON_ONCE(1);
 658
 659	if (!continue_fs && !sb_rdonly(sb)) {
 660		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
 661		if (journal)
 662			jbd2_journal_abort(journal, -EIO);
 663	}
 664
 665	if (!bdev_read_only(sb->s_bdev)) {
 666		save_error_info(sb, error, ino, block, func, line);
 667		/*
 668		 * In case the fs should keep running, we need to writeout
 669		 * superblock through the journal. Due to lock ordering
 670		 * constraints, it may not be safe to do it right here so we
 671		 * defer superblock flushing to a workqueue.
 672		 */
 673		if (continue_fs && journal)
 674			schedule_work(&EXT4_SB(sb)->s_error_work);
 675		else
 676			ext4_commit_super(sb);
 677	}
 678
 679	/*
 680	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
 681	 * could panic during 'reboot -f' as the underlying device got already
 682	 * disabled.
 683	 */
 684	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
 685		panic("EXT4-fs (device %s): panic forced after error\n",
 686			sb->s_id);
 687	}
 688
 689	if (sb_rdonly(sb) || continue_fs)
 690		return;
 691
 692	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 693	/*
 694	 * Make sure updated value of ->s_mount_flags will be visible before
 695	 * ->s_flags update
 696	 */
 697	smp_wmb();
 698	sb->s_flags |= SB_RDONLY;
 699}
 700
 701static void flush_stashed_error_work(struct work_struct *work)
 702{
 703	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
 704						s_error_work);
 705	journal_t *journal = sbi->s_journal;
 706	handle_t *handle;
 707
 708	/*
 709	 * If the journal is still running, we have to write out superblock
 710	 * through the journal to avoid collisions of other journalled sb
 711	 * updates.
 712	 *
 713	 * We use directly jbd2 functions here to avoid recursing back into
 714	 * ext4 error handling code during handling of previous errors.
 715	 */
 716	if (!sb_rdonly(sbi->s_sb) && journal) {
 717		struct buffer_head *sbh = sbi->s_sbh;
 718		handle = jbd2_journal_start(journal, 1);
 719		if (IS_ERR(handle))
 720			goto write_directly;
 721		if (jbd2_journal_get_write_access(handle, sbh)) {
 722			jbd2_journal_stop(handle);
 723			goto write_directly;
 724		}
 725		ext4_update_super(sbi->s_sb);
 726		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
 727			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
 728				 "superblock detected");
 729			clear_buffer_write_io_error(sbh);
 730			set_buffer_uptodate(sbh);
 731		}
 732
 733		if (jbd2_journal_dirty_metadata(handle, sbh)) {
 734			jbd2_journal_stop(handle);
 735			goto write_directly;
 736		}
 737		jbd2_journal_stop(handle);
 738		ext4_notify_error_sysfs(sbi);
 739		return;
 740	}
 741write_directly:
 742	/*
 743	 * Write through journal failed. Write sb directly to get error info
 744	 * out and hope for the best.
 745	 */
 746	ext4_commit_super(sbi->s_sb);
 747	ext4_notify_error_sysfs(sbi);
 748}
 749
 750#define ext4_error_ratelimit(sb)					\
 751		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 752			     "EXT4-fs error")
 753
 754void __ext4_error(struct super_block *sb, const char *function,
 755		  unsigned int line, bool force_ro, int error, __u64 block,
 756		  const char *fmt, ...)
 757{
 758	struct va_format vaf;
 759	va_list args;
 760
 761	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 762		return;
 763
 764	trace_ext4_error(sb, function, line);
 765	if (ext4_error_ratelimit(sb)) {
 766		va_start(args, fmt);
 767		vaf.fmt = fmt;
 768		vaf.va = &args;
 769		printk(KERN_CRIT
 770		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 771		       sb->s_id, function, line, current->comm, &vaf);
 772		va_end(args);
 773	}
 774	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
 775
 776	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
 777}
 778
 779void __ext4_error_inode(struct inode *inode, const char *function,
 780			unsigned int line, ext4_fsblk_t block, int error,
 781			const char *fmt, ...)
 782{
 783	va_list args;
 784	struct va_format vaf;
 
 785
 786	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 787		return;
 788
 789	trace_ext4_error(inode->i_sb, function, line);
 
 
 790	if (ext4_error_ratelimit(inode->i_sb)) {
 791		va_start(args, fmt);
 792		vaf.fmt = fmt;
 793		vaf.va = &args;
 794		if (block)
 795			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 796			       "inode #%lu: block %llu: comm %s: %pV\n",
 797			       inode->i_sb->s_id, function, line, inode->i_ino,
 798			       block, current->comm, &vaf);
 799		else
 800			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 801			       "inode #%lu: comm %s: %pV\n",
 802			       inode->i_sb->s_id, function, line, inode->i_ino,
 803			       current->comm, &vaf);
 804		va_end(args);
 805	}
 806	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
 807
 808	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
 809			  function, line);
 810}
 811
 812void __ext4_error_file(struct file *file, const char *function,
 813		       unsigned int line, ext4_fsblk_t block,
 814		       const char *fmt, ...)
 815{
 816	va_list args;
 817	struct va_format vaf;
 
 818	struct inode *inode = file_inode(file);
 819	char pathname[80], *path;
 820
 821	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 822		return;
 823
 824	trace_ext4_error(inode->i_sb, function, line);
 
 
 825	if (ext4_error_ratelimit(inode->i_sb)) {
 826		path = file_path(file, pathname, sizeof(pathname));
 827		if (IS_ERR(path))
 828			path = "(unknown)";
 829		va_start(args, fmt);
 830		vaf.fmt = fmt;
 831		vaf.va = &args;
 832		if (block)
 833			printk(KERN_CRIT
 834			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 835			       "block %llu: comm %s: path %s: %pV\n",
 836			       inode->i_sb->s_id, function, line, inode->i_ino,
 837			       block, current->comm, path, &vaf);
 838		else
 839			printk(KERN_CRIT
 840			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 841			       "comm %s: path %s: %pV\n",
 842			       inode->i_sb->s_id, function, line, inode->i_ino,
 843			       current->comm, path, &vaf);
 844		va_end(args);
 845	}
 846	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
 847
 848	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
 849			  function, line);
 850}
 851
 852const char *ext4_decode_error(struct super_block *sb, int errno,
 853			      char nbuf[16])
 854{
 855	char *errstr = NULL;
 856
 857	switch (errno) {
 858	case -EFSCORRUPTED:
 859		errstr = "Corrupt filesystem";
 860		break;
 861	case -EFSBADCRC:
 862		errstr = "Filesystem failed CRC";
 863		break;
 864	case -EIO:
 865		errstr = "IO failure";
 866		break;
 867	case -ENOMEM:
 868		errstr = "Out of memory";
 869		break;
 870	case -EROFS:
 871		if (!sb || (EXT4_SB(sb)->s_journal &&
 872			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 873			errstr = "Journal has aborted";
 874		else
 875			errstr = "Readonly filesystem";
 876		break;
 877	default:
 878		/* If the caller passed in an extra buffer for unknown
 879		 * errors, textualise them now.  Else we just return
 880		 * NULL. */
 881		if (nbuf) {
 882			/* Check for truncated error codes... */
 883			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 884				errstr = nbuf;
 885		}
 886		break;
 887	}
 888
 889	return errstr;
 890}
 891
 892/* __ext4_std_error decodes expected errors from journaling functions
 893 * automatically and invokes the appropriate error response.  */
 894
 895void __ext4_std_error(struct super_block *sb, const char *function,
 896		      unsigned int line, int errno)
 897{
 898	char nbuf[16];
 899	const char *errstr;
 900
 901	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 902		return;
 903
 904	/* Special case: if the error is EROFS, and we're not already
 905	 * inside a transaction, then there's really no point in logging
 906	 * an error. */
 907	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 908		return;
 909
 910	if (ext4_error_ratelimit(sb)) {
 911		errstr = ext4_decode_error(sb, errno, nbuf);
 912		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 913		       sb->s_id, function, line, errstr);
 914	}
 915	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
 916
 917	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
 
 918}
 919
 920void __ext4_msg(struct super_block *sb,
 921		const char *prefix, const char *fmt, ...)
 
 
 
 
 
 
 
 
 
 
 922{
 923	struct va_format vaf;
 924	va_list args;
 925
 926	if (sb) {
 927		atomic_inc(&EXT4_SB(sb)->s_msg_count);
 928		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
 929				  "EXT4-fs"))
 930			return;
 931	}
 932
 
 933	va_start(args, fmt);
 934	vaf.fmt = fmt;
 935	vaf.va = &args;
 936	if (sb)
 937		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
 938	else
 939		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
 940	va_end(args);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 941}
 942
 943static int ext4_warning_ratelimit(struct super_block *sb)
 
 944{
 945	atomic_inc(&EXT4_SB(sb)->s_warning_count);
 946	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
 947			    "EXT4-fs warning");
 
 
 
 
 
 
 
 
 948}
 949
 
 
 
 
 950void __ext4_warning(struct super_block *sb, const char *function,
 951		    unsigned int line, const char *fmt, ...)
 952{
 953	struct va_format vaf;
 954	va_list args;
 955
 956	if (!ext4_warning_ratelimit(sb))
 957		return;
 958
 959	va_start(args, fmt);
 960	vaf.fmt = fmt;
 961	vaf.va = &args;
 962	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
 963	       sb->s_id, function, line, &vaf);
 964	va_end(args);
 965}
 966
 967void __ext4_warning_inode(const struct inode *inode, const char *function,
 968			  unsigned int line, const char *fmt, ...)
 969{
 970	struct va_format vaf;
 971	va_list args;
 972
 973	if (!ext4_warning_ratelimit(inode->i_sb))
 974		return;
 975
 976	va_start(args, fmt);
 977	vaf.fmt = fmt;
 978	vaf.va = &args;
 979	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
 980	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
 981	       function, line, inode->i_ino, current->comm, &vaf);
 982	va_end(args);
 983}
 984
 985void __ext4_grp_locked_error(const char *function, unsigned int line,
 986			     struct super_block *sb, ext4_group_t grp,
 987			     unsigned long ino, ext4_fsblk_t block,
 988			     const char *fmt, ...)
 989__releases(bitlock)
 990__acquires(bitlock)
 991{
 992	struct va_format vaf;
 993	va_list args;
 
 994
 995	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 996		return;
 997
 998	trace_ext4_error(sb, function, line);
 
 
 
 
 999	if (ext4_error_ratelimit(sb)) {
1000		va_start(args, fmt);
1001		vaf.fmt = fmt;
1002		vaf.va = &args;
1003		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1004		       sb->s_id, function, line, grp);
1005		if (ino)
1006			printk(KERN_CONT "inode %lu: ", ino);
1007		if (block)
1008			printk(KERN_CONT "block %llu:",
1009			       (unsigned long long) block);
1010		printk(KERN_CONT "%pV\n", &vaf);
1011		va_end(args);
1012	}
1013
1014	if (test_opt(sb, ERRORS_CONT)) {
1015		if (test_opt(sb, WARN_ON_ERROR))
1016			WARN_ON_ONCE(1);
1017		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1018		if (!bdev_read_only(sb->s_bdev)) {
1019			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1020					line);
1021			schedule_work(&EXT4_SB(sb)->s_error_work);
1022		}
1023		return;
1024	}
 
1025	ext4_unlock_group(sb, grp);
1026	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
 
1027	/*
1028	 * We only get here in the ERRORS_RO case; relocking the group
1029	 * may be dangerous, but nothing bad will happen since the
1030	 * filesystem will have already been marked read/only and the
1031	 * journal has been aborted.  We return 1 as a hint to callers
1032	 * who might what to use the return value from
1033	 * ext4_grp_locked_error() to distinguish between the
1034	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1035	 * aggressively from the ext4 function in question, with a
1036	 * more appropriate error code.
1037	 */
1038	ext4_lock_group(sb, grp);
1039	return;
1040}
1041
1042void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1043				     ext4_group_t group,
1044				     unsigned int flags)
1045{
1046	struct ext4_sb_info *sbi = EXT4_SB(sb);
1047	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1048	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1049	int ret;
1050
1051	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1052		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1053					    &grp->bb_state);
1054		if (!ret)
1055			percpu_counter_sub(&sbi->s_freeclusters_counter,
1056					   grp->bb_free);
1057	}
1058
1059	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1060		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1061					    &grp->bb_state);
1062		if (!ret && gdp) {
1063			int count;
1064
1065			count = ext4_free_inodes_count(sb, gdp);
1066			percpu_counter_sub(&sbi->s_freeinodes_counter,
1067					   count);
1068		}
1069	}
1070}
1071
1072void ext4_update_dynamic_rev(struct super_block *sb)
1073{
1074	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1075
1076	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1077		return;
1078
1079	ext4_warning(sb,
1080		     "updating to rev %d because of new feature flag, "
1081		     "running e2fsck is recommended",
1082		     EXT4_DYNAMIC_REV);
1083
1084	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1085	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1086	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1087	/* leave es->s_feature_*compat flags alone */
1088	/* es->s_uuid will be set by e2fsck if empty */
1089
1090	/*
1091	 * The rest of the superblock fields should be zero, and if not it
1092	 * means they are likely already in use, so leave them alone.  We
1093	 * can leave it up to e2fsck to clean up any inconsistencies there.
1094	 */
1095}
1096
1097/*
1098 * Open the external journal device
1099 */
1100static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1101{
1102	struct block_device *bdev;
 
1103
1104	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1105	if (IS_ERR(bdev))
1106		goto fail;
1107	return bdev;
1108
1109fail:
1110	ext4_msg(sb, KERN_ERR,
1111		 "failed to open journal device unknown-block(%u,%u) %ld",
1112		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1113	return NULL;
1114}
1115
1116/*
1117 * Release the journal device
1118 */
1119static void ext4_blkdev_put(struct block_device *bdev)
1120{
1121	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1122}
1123
1124static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1125{
1126	struct block_device *bdev;
1127	bdev = sbi->s_journal_bdev;
1128	if (bdev) {
1129		ext4_blkdev_put(bdev);
1130		sbi->s_journal_bdev = NULL;
1131	}
1132}
1133
1134static inline struct inode *orphan_list_entry(struct list_head *l)
1135{
1136	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1137}
1138
1139static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1140{
1141	struct list_head *l;
1142
1143	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1144		 le32_to_cpu(sbi->s_es->s_last_orphan));
1145
1146	printk(KERN_ERR "sb_info orphan list:\n");
1147	list_for_each(l, &sbi->s_orphan) {
1148		struct inode *inode = orphan_list_entry(l);
1149		printk(KERN_ERR "  "
1150		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1151		       inode->i_sb->s_id, inode->i_ino, inode,
1152		       inode->i_mode, inode->i_nlink,
1153		       NEXT_ORPHAN(inode));
1154	}
1155}
1156
1157#ifdef CONFIG_QUOTA
1158static int ext4_quota_off(struct super_block *sb, int type);
1159
1160static inline void ext4_quota_off_umount(struct super_block *sb)
1161{
1162	int type;
1163
1164	/* Use our quota_off function to clear inode flags etc. */
1165	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1166		ext4_quota_off(sb, type);
1167}
1168
1169/*
1170 * This is a helper function which is used in the mount/remount
1171 * codepaths (which holds s_umount) to fetch the quota file name.
1172 */
1173static inline char *get_qf_name(struct super_block *sb,
1174				struct ext4_sb_info *sbi,
1175				int type)
1176{
1177	return rcu_dereference_protected(sbi->s_qf_names[type],
1178					 lockdep_is_held(&sb->s_umount));
1179}
1180#else
1181static inline void ext4_quota_off_umount(struct super_block *sb)
1182{
1183}
1184#endif
1185
1186static void ext4_put_super(struct super_block *sb)
1187{
1188	struct ext4_sb_info *sbi = EXT4_SB(sb);
1189	struct ext4_super_block *es = sbi->s_es;
1190	struct buffer_head **group_desc;
1191	struct flex_groups **flex_groups;
1192	int aborted = 0;
1193	int i, err;
1194
1195	/*
1196	 * Unregister sysfs before destroying jbd2 journal.
1197	 * Since we could still access attr_journal_task attribute via sysfs
1198	 * path which could have sbi->s_journal->j_task as NULL
1199	 * Unregister sysfs before flush sbi->s_error_work.
1200	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1201	 * read metadata verify failed then will queue error work.
1202	 * flush_stashed_error_work will call start_this_handle may trigger
1203	 * BUG_ON.
1204	 */
1205	ext4_unregister_sysfs(sb);
1206
1207	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1208		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1209			 &sb->s_uuid);
1210
1211	ext4_unregister_li_request(sb);
1212	ext4_quota_off_umount(sb);
1213
1214	flush_work(&sbi->s_error_work);
1215	destroy_workqueue(sbi->rsv_conversion_wq);
1216	ext4_release_orphan_info(sb);
1217
1218	if (sbi->s_journal) {
1219		aborted = is_journal_aborted(sbi->s_journal);
1220		err = jbd2_journal_destroy(sbi->s_journal);
1221		sbi->s_journal = NULL;
1222		if ((err < 0) && !aborted) {
1223			ext4_abort(sb, -err, "Couldn't clean up the journal");
1224		}
1225	}
1226
 
1227	ext4_es_unregister_shrinker(sbi);
1228	timer_shutdown_sync(&sbi->s_err_report);
1229	ext4_release_system_zone(sb);
1230	ext4_mb_release(sb);
1231	ext4_ext_release(sb);
1232
1233	if (!sb_rdonly(sb) && !aborted) {
1234		ext4_clear_feature_journal_needs_recovery(sb);
1235		ext4_clear_feature_orphan_present(sb);
1236		es->s_state = cpu_to_le16(sbi->s_mount_state);
1237	}
1238	if (!sb_rdonly(sb))
1239		ext4_commit_super(sb);
1240
1241	rcu_read_lock();
1242	group_desc = rcu_dereference(sbi->s_group_desc);
1243	for (i = 0; i < sbi->s_gdb_count; i++)
1244		brelse(group_desc[i]);
1245	kvfree(group_desc);
1246	flex_groups = rcu_dereference(sbi->s_flex_groups);
1247	if (flex_groups) {
1248		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1249			kvfree(flex_groups[i]);
1250		kvfree(flex_groups);
1251	}
1252	rcu_read_unlock();
1253	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1254	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1255	percpu_counter_destroy(&sbi->s_dirs_counter);
1256	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1257	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1258	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1259#ifdef CONFIG_QUOTA
1260	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1261		kfree(get_qf_name(sb, sbi, i));
1262#endif
1263
1264	/* Debugging code just in case the in-memory inode orphan list
1265	 * isn't empty.  The on-disk one can be non-empty if we've
1266	 * detected an error and taken the fs readonly, but the
1267	 * in-memory list had better be clean by this point. */
1268	if (!list_empty(&sbi->s_orphan))
1269		dump_orphan_list(sb, sbi);
1270	ASSERT(list_empty(&sbi->s_orphan));
1271
1272	sync_blockdev(sb->s_bdev);
1273	invalidate_bdev(sb->s_bdev);
1274	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1275		/*
1276		 * Invalidate the journal device's buffers.  We don't want them
1277		 * floating about in memory - the physical journal device may
1278		 * hotswapped, and it breaks the `ro-after' testing code.
1279		 */
1280		sync_blockdev(sbi->s_journal_bdev);
1281		invalidate_bdev(sbi->s_journal_bdev);
1282		ext4_blkdev_remove(sbi);
1283	}
1284
1285	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1286	sbi->s_ea_inode_cache = NULL;
1287
1288	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1289	sbi->s_ea_block_cache = NULL;
1290
1291	ext4_stop_mmpd(sbi);
1292
 
1293	brelse(sbi->s_sbh);
1294	sb->s_fs_info = NULL;
1295	/*
1296	 * Now that we are completely done shutting down the
1297	 * superblock, we need to actually destroy the kobject.
1298	 */
1299	kobject_put(&sbi->s_kobj);
1300	wait_for_completion(&sbi->s_kobj_unregister);
1301	if (sbi->s_chksum_driver)
1302		crypto_free_shash(sbi->s_chksum_driver);
1303	kfree(sbi->s_blockgroup_lock);
1304	fs_put_dax(sbi->s_daxdev, NULL);
1305	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1306#if IS_ENABLED(CONFIG_UNICODE)
1307	utf8_unload(sb->s_encoding);
1308#endif
1309	kfree(sbi);
1310}
1311
1312static struct kmem_cache *ext4_inode_cachep;
1313
1314/*
1315 * Called inside transaction, so use GFP_NOFS
1316 */
1317static struct inode *ext4_alloc_inode(struct super_block *sb)
1318{
1319	struct ext4_inode_info *ei;
1320
1321	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1322	if (!ei)
1323		return NULL;
1324
1325	inode_set_iversion(&ei->vfs_inode, 1);
1326	ei->i_flags = 0;
1327	spin_lock_init(&ei->i_raw_lock);
1328	INIT_LIST_HEAD(&ei->i_prealloc_list);
1329	atomic_set(&ei->i_prealloc_active, 0);
1330	spin_lock_init(&ei->i_prealloc_lock);
1331	ext4_es_init_tree(&ei->i_es_tree);
1332	rwlock_init(&ei->i_es_lock);
1333	INIT_LIST_HEAD(&ei->i_es_list);
1334	ei->i_es_all_nr = 0;
1335	ei->i_es_shk_nr = 0;
1336	ei->i_es_shrink_lblk = 0;
1337	ei->i_reserved_data_blocks = 0;
 
 
1338	spin_lock_init(&(ei->i_block_reservation_lock));
1339	ext4_init_pending_tree(&ei->i_pending_tree);
1340#ifdef CONFIG_QUOTA
1341	ei->i_reserved_quota = 0;
1342	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1343#endif
1344	ei->jinode = NULL;
1345	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1346	spin_lock_init(&ei->i_completed_io_lock);
1347	ei->i_sync_tid = 0;
1348	ei->i_datasync_tid = 0;
1349	atomic_set(&ei->i_unwritten, 0);
1350	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1351	ext4_fc_init_inode(&ei->vfs_inode);
1352	mutex_init(&ei->i_fc_lock);
1353	return &ei->vfs_inode;
1354}
1355
1356static int ext4_drop_inode(struct inode *inode)
1357{
1358	int drop = generic_drop_inode(inode);
1359
1360	if (!drop)
1361		drop = fscrypt_drop_inode(inode);
1362
1363	trace_ext4_drop_inode(inode, drop);
1364	return drop;
1365}
1366
1367static void ext4_free_in_core_inode(struct inode *inode)
1368{
1369	fscrypt_free_inode(inode);
1370	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1371		pr_warn("%s: inode %ld still in fc list",
1372			__func__, inode->i_ino);
1373	}
1374	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1375}
1376
1377static void ext4_destroy_inode(struct inode *inode)
1378{
1379	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1380		ext4_msg(inode->i_sb, KERN_ERR,
1381			 "Inode %lu (%p): orphan list check failed!",
1382			 inode->i_ino, EXT4_I(inode));
1383		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1384				EXT4_I(inode), sizeof(struct ext4_inode_info),
1385				true);
1386		dump_stack();
1387	}
1388
1389	if (EXT4_I(inode)->i_reserved_data_blocks)
1390		ext4_msg(inode->i_sb, KERN_ERR,
1391			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1392			 inode->i_ino, EXT4_I(inode),
1393			 EXT4_I(inode)->i_reserved_data_blocks);
1394}
1395
1396static void init_once(void *foo)
1397{
1398	struct ext4_inode_info *ei = foo;
1399
1400	INIT_LIST_HEAD(&ei->i_orphan);
1401	init_rwsem(&ei->xattr_sem);
1402	init_rwsem(&ei->i_data_sem);
 
1403	inode_init_once(&ei->vfs_inode);
1404	ext4_fc_init_inode(&ei->vfs_inode);
1405}
1406
1407static int __init init_inodecache(void)
1408{
1409	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1410				sizeof(struct ext4_inode_info), 0,
1411				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1412					SLAB_ACCOUNT),
1413				offsetof(struct ext4_inode_info, i_data),
1414				sizeof_field(struct ext4_inode_info, i_data),
1415				init_once);
1416	if (ext4_inode_cachep == NULL)
1417		return -ENOMEM;
1418	return 0;
1419}
1420
1421static void destroy_inodecache(void)
1422{
1423	/*
1424	 * Make sure all delayed rcu free inodes are flushed before we
1425	 * destroy cache.
1426	 */
1427	rcu_barrier();
1428	kmem_cache_destroy(ext4_inode_cachep);
1429}
1430
1431void ext4_clear_inode(struct inode *inode)
1432{
1433	ext4_fc_del(inode);
1434	invalidate_inode_buffers(inode);
1435	clear_inode(inode);
1436	ext4_discard_preallocations(inode, 0);
1437	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1438	dquot_drop(inode);
 
 
1439	if (EXT4_I(inode)->jinode) {
1440		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1441					       EXT4_I(inode)->jinode);
1442		jbd2_free_inode(EXT4_I(inode)->jinode);
1443		EXT4_I(inode)->jinode = NULL;
1444	}
1445	fscrypt_put_encryption_info(inode);
1446	fsverity_cleanup_inode(inode);
1447}
1448
1449static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1450					u64 ino, u32 generation)
1451{
1452	struct inode *inode;
1453
1454	/*
 
 
 
 
 
 
 
 
 
1455	 * Currently we don't know the generation for parent directory, so
1456	 * a generation of 0 means "accept any"
1457	 */
1458	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1459	if (IS_ERR(inode))
1460		return ERR_CAST(inode);
1461	if (generation && inode->i_generation != generation) {
1462		iput(inode);
1463		return ERR_PTR(-ESTALE);
1464	}
1465
1466	return inode;
1467}
1468
1469static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1470					int fh_len, int fh_type)
1471{
1472	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1473				    ext4_nfs_get_inode);
1474}
1475
1476static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1477					int fh_len, int fh_type)
1478{
1479	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1480				    ext4_nfs_get_inode);
1481}
1482
1483static int ext4_nfs_commit_metadata(struct inode *inode)
 
 
 
 
 
 
 
1484{
1485	struct writeback_control wbc = {
1486		.sync_mode = WB_SYNC_ALL
1487	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488
1489	trace_ext4_nfs_commit_metadata(inode);
1490	return ext4_write_inode(inode, &wbc);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491}
1492
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1493#ifdef CONFIG_QUOTA
1494static const char * const quotatypes[] = INITQFNAMES;
1495#define QTYPE2NAME(t) (quotatypes[t])
1496
1497static int ext4_write_dquot(struct dquot *dquot);
1498static int ext4_acquire_dquot(struct dquot *dquot);
1499static int ext4_release_dquot(struct dquot *dquot);
1500static int ext4_mark_dquot_dirty(struct dquot *dquot);
1501static int ext4_write_info(struct super_block *sb, int type);
1502static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1503			 const struct path *path);
 
1504static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1505			       size_t len, loff_t off);
1506static ssize_t ext4_quota_write(struct super_block *sb, int type,
1507				const char *data, size_t len, loff_t off);
1508static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1509			     unsigned int flags);
 
 
1510
1511static struct dquot **ext4_get_dquots(struct inode *inode)
1512{
1513	return EXT4_I(inode)->i_dquot;
1514}
1515
1516static const struct dquot_operations ext4_quota_operations = {
1517	.get_reserved_space	= ext4_get_reserved_space,
1518	.write_dquot		= ext4_write_dquot,
1519	.acquire_dquot		= ext4_acquire_dquot,
1520	.release_dquot		= ext4_release_dquot,
1521	.mark_dirty		= ext4_mark_dquot_dirty,
1522	.write_info		= ext4_write_info,
1523	.alloc_dquot		= dquot_alloc,
1524	.destroy_dquot		= dquot_destroy,
1525	.get_projid		= ext4_get_projid,
1526	.get_inode_usage	= ext4_get_inode_usage,
1527	.get_next_id		= dquot_get_next_id,
1528};
1529
1530static const struct quotactl_ops ext4_qctl_operations = {
1531	.quota_on	= ext4_quota_on,
1532	.quota_off	= ext4_quota_off,
1533	.quota_sync	= dquot_quota_sync,
1534	.get_state	= dquot_get_state,
1535	.set_info	= dquot_set_dqinfo,
1536	.get_dqblk	= dquot_get_dqblk,
1537	.set_dqblk	= dquot_set_dqblk,
1538	.get_nextdqblk	= dquot_get_next_dqblk,
1539};
1540#endif
1541
1542static const struct super_operations ext4_sops = {
1543	.alloc_inode	= ext4_alloc_inode,
1544	.free_inode	= ext4_free_in_core_inode,
1545	.destroy_inode	= ext4_destroy_inode,
1546	.write_inode	= ext4_write_inode,
1547	.dirty_inode	= ext4_dirty_inode,
1548	.drop_inode	= ext4_drop_inode,
1549	.evict_inode	= ext4_evict_inode,
1550	.put_super	= ext4_put_super,
1551	.sync_fs	= ext4_sync_fs,
1552	.freeze_fs	= ext4_freeze,
1553	.unfreeze_fs	= ext4_unfreeze,
1554	.statfs		= ext4_statfs,
 
1555	.show_options	= ext4_show_options,
1556#ifdef CONFIG_QUOTA
1557	.quota_read	= ext4_quota_read,
1558	.quota_write	= ext4_quota_write,
1559	.get_dquots	= ext4_get_dquots,
1560#endif
 
1561};
1562
1563static const struct export_operations ext4_export_ops = {
1564	.fh_to_dentry = ext4_fh_to_dentry,
1565	.fh_to_parent = ext4_fh_to_parent,
1566	.get_parent = ext4_get_parent,
1567	.commit_metadata = ext4_nfs_commit_metadata,
1568};
1569
1570enum {
1571	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1572	Opt_resgid, Opt_resuid, Opt_sb,
1573	Opt_nouid32, Opt_debug, Opt_removed,
1574	Opt_user_xattr, Opt_acl,
1575	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1576	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1577	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1578	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1579	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1580	Opt_inlinecrypt,
1581	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1582	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1583	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1584	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1585	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1586	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1587	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1588	Opt_inode_readahead_blks, Opt_journal_ioprio,
1589	Opt_dioread_nolock, Opt_dioread_lock,
1590	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1591	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1592	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1593	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1594#ifdef CONFIG_EXT4_DEBUG
1595	Opt_fc_debug_max_replay, Opt_fc_debug_force
1596#endif
1597};
1598
1599static const struct constant_table ext4_param_errors[] = {
1600	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1601	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1602	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1603	{}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604};
1605
1606static const struct constant_table ext4_param_data[] = {
1607	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1608	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1609	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1610	{}
1611};
1612
1613static const struct constant_table ext4_param_data_err[] = {
1614	{"abort",	Opt_data_err_abort},
1615	{"ignore",	Opt_data_err_ignore},
1616	{}
1617};
1618
1619static const struct constant_table ext4_param_jqfmt[] = {
1620	{"vfsold",	QFMT_VFS_OLD},
1621	{"vfsv0",	QFMT_VFS_V0},
1622	{"vfsv1",	QFMT_VFS_V1},
1623	{}
1624};
 
 
 
 
 
1625
1626static const struct constant_table ext4_param_dax[] = {
1627	{"always",	Opt_dax_always},
1628	{"inode",	Opt_dax_inode},
1629	{"never",	Opt_dax_never},
1630	{}
1631};
1632
1633/* String parameter that allows empty argument */
1634#define fsparam_string_empty(NAME, OPT) \
1635	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
 
1636
1637/*
1638 * Mount option specification
1639 * We don't use fsparam_flag_no because of the way we set the
1640 * options and the way we show them in _ext4_show_options(). To
1641 * keep the changes to a minimum, let's keep the negative options
1642 * separate for now.
1643 */
1644static const struct fs_parameter_spec ext4_param_specs[] = {
1645	fsparam_flag	("bsddf",		Opt_bsd_df),
1646	fsparam_flag	("minixdf",		Opt_minix_df),
1647	fsparam_flag	("grpid",		Opt_grpid),
1648	fsparam_flag	("bsdgroups",		Opt_grpid),
1649	fsparam_flag	("nogrpid",		Opt_nogrpid),
1650	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1651	fsparam_u32	("resgid",		Opt_resgid),
1652	fsparam_u32	("resuid",		Opt_resuid),
1653	fsparam_u32	("sb",			Opt_sb),
1654	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1655	fsparam_flag	("nouid32",		Opt_nouid32),
1656	fsparam_flag	("debug",		Opt_debug),
1657	fsparam_flag	("oldalloc",		Opt_removed),
1658	fsparam_flag	("orlov",		Opt_removed),
1659	fsparam_flag	("user_xattr",		Opt_user_xattr),
1660	fsparam_flag	("acl",			Opt_acl),
1661	fsparam_flag	("norecovery",		Opt_noload),
1662	fsparam_flag	("noload",		Opt_noload),
1663	fsparam_flag	("bh",			Opt_removed),
1664	fsparam_flag	("nobh",		Opt_removed),
1665	fsparam_u32	("commit",		Opt_commit),
1666	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1667	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1668	fsparam_u32	("journal_dev",		Opt_journal_dev),
1669	fsparam_bdev	("journal_path",	Opt_journal_path),
1670	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1671	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1672	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1673	fsparam_flag	("abort",		Opt_abort),
1674	fsparam_enum	("data",		Opt_data, ext4_param_data),
1675	fsparam_enum	("data_err",		Opt_data_err,
1676						ext4_param_data_err),
1677	fsparam_string_empty
1678			("usrjquota",		Opt_usrjquota),
1679	fsparam_string_empty
1680			("grpjquota",		Opt_grpjquota),
1681	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1682	fsparam_flag	("grpquota",		Opt_grpquota),
1683	fsparam_flag	("quota",		Opt_quota),
1684	fsparam_flag	("noquota",		Opt_noquota),
1685	fsparam_flag	("usrquota",		Opt_usrquota),
1686	fsparam_flag	("prjquota",		Opt_prjquota),
1687	fsparam_flag	("barrier",		Opt_barrier),
1688	fsparam_u32	("barrier",		Opt_barrier),
1689	fsparam_flag	("nobarrier",		Opt_nobarrier),
1690	fsparam_flag	("i_version",		Opt_removed),
1691	fsparam_flag	("dax",			Opt_dax),
1692	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1693	fsparam_u32	("stripe",		Opt_stripe),
1694	fsparam_flag	("delalloc",		Opt_delalloc),
1695	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1696	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1697	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1698	fsparam_u32	("debug_want_extra_isize",
1699						Opt_debug_want_extra_isize),
1700	fsparam_flag	("mblk_io_submit",	Opt_removed),
1701	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1702	fsparam_flag	("block_validity",	Opt_block_validity),
1703	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1704	fsparam_u32	("inode_readahead_blks",
1705						Opt_inode_readahead_blks),
1706	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1707	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1708	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1709	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1710	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1711	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1712	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1713	fsparam_flag	("discard",		Opt_discard),
1714	fsparam_flag	("nodiscard",		Opt_nodiscard),
1715	fsparam_u32	("init_itable",		Opt_init_itable),
1716	fsparam_flag	("init_itable",		Opt_init_itable),
1717	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1718#ifdef CONFIG_EXT4_DEBUG
1719	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1720	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1721#endif
1722	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1723	fsparam_flag	("test_dummy_encryption",
1724						Opt_test_dummy_encryption),
1725	fsparam_string	("test_dummy_encryption",
1726						Opt_test_dummy_encryption),
1727	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1728	fsparam_flag	("nombcache",		Opt_nombcache),
1729	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1730	fsparam_flag	("prefetch_block_bitmaps",
1731						Opt_removed),
1732	fsparam_flag	("no_prefetch_block_bitmaps",
1733						Opt_no_prefetch_block_bitmaps),
1734	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1735	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1736	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1737	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1738	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1739	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1740	{}
1741};
1742
1743#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744
1745#define MOPT_SET	0x0001
1746#define MOPT_CLEAR	0x0002
1747#define MOPT_NOSUPPORT	0x0004
1748#define MOPT_EXPLICIT	0x0008
 
 
1749#ifdef CONFIG_QUOTA
1750#define MOPT_Q		0
1751#define MOPT_QFMT	0x0010
1752#else
1753#define MOPT_Q		MOPT_NOSUPPORT
1754#define MOPT_QFMT	MOPT_NOSUPPORT
1755#endif
1756#define MOPT_NO_EXT2	0x0020
1757#define MOPT_NO_EXT3	0x0040
 
1758#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1759#define MOPT_SKIP	0x0080
1760#define	MOPT_2		0x0100
1761
1762static const struct mount_opts {
1763	int	token;
1764	int	mount_opt;
1765	int	flags;
1766} ext4_mount_opts[] = {
1767	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1768	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1769	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1770	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1771	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1772	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1773	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1774	 MOPT_EXT4_ONLY | MOPT_SET},
1775	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1776	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1777	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1778	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1779	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1780	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1781	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1782	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1783	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1784	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1785	{Opt_commit, 0, MOPT_NO_EXT2},
1786	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1787	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1788	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1789	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1790	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1791				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1792	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1793	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1794	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
 
 
 
 
 
 
1795	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1796	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1797	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1798	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1799	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1800	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1801	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1802	{Opt_journal_path, 0, MOPT_NO_EXT2},
1803	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1804	{Opt_data, 0, MOPT_NO_EXT2},
 
 
 
 
 
 
 
 
 
 
 
1805	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
 
1806#ifdef CONFIG_EXT4_FS_POSIX_ACL
1807	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
 
1808#else
1809	{Opt_acl, 0, MOPT_NOSUPPORT},
 
1810#endif
1811	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1812	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
 
1813	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1814	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1815							MOPT_SET | MOPT_Q},
1816	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1817							MOPT_SET | MOPT_Q},
1818	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1819							MOPT_SET | MOPT_Q},
1820	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1821		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1822							MOPT_CLEAR | MOPT_Q},
1823	{Opt_usrjquota, 0, MOPT_Q},
1824	{Opt_grpjquota, 0, MOPT_Q},
1825	{Opt_jqfmt, 0, MOPT_QFMT},
 
 
 
 
 
 
1826	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1827	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1828	 MOPT_SET},
1829#ifdef CONFIG_EXT4_DEBUG
1830	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1831	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1832#endif
1833	{Opt_err, 0, 0}
1834};
1835
1836#if IS_ENABLED(CONFIG_UNICODE)
1837static const struct ext4_sb_encodings {
1838	__u16 magic;
1839	char *name;
1840	unsigned int version;
1841} ext4_sb_encoding_map[] = {
1842	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1843};
1844
1845static const struct ext4_sb_encodings *
1846ext4_sb_read_encoding(const struct ext4_super_block *es)
1847{
1848	__u16 magic = le16_to_cpu(es->s_encoding);
1849	int i;
1850
1851	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1852		if (magic == ext4_sb_encoding_map[i].magic)
1853			return &ext4_sb_encoding_map[i];
1854
1855	return NULL;
1856}
1857#endif
1858
1859#define EXT4_SPEC_JQUOTA			(1 <<  0)
1860#define EXT4_SPEC_JQFMT				(1 <<  1)
1861#define EXT4_SPEC_DATAJ				(1 <<  2)
1862#define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1863#define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1864#define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1865#define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1866#define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1867#define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1868#define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1869#define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1870#define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1871#define EXT4_SPEC_s_stripe			(1 << 13)
1872#define EXT4_SPEC_s_resuid			(1 << 14)
1873#define EXT4_SPEC_s_resgid			(1 << 15)
1874#define EXT4_SPEC_s_commit_interval		(1 << 16)
1875#define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1876#define EXT4_SPEC_s_sb_block			(1 << 18)
1877#define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1878
1879struct ext4_fs_context {
1880	char		*s_qf_names[EXT4_MAXQUOTAS];
1881	struct fscrypt_dummy_policy dummy_enc_policy;
1882	int		s_jquota_fmt;	/* Format of quota to use */
1883#ifdef CONFIG_EXT4_DEBUG
1884	int s_fc_debug_max_replay;
1885#endif
1886	unsigned short	qname_spec;
1887	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1888	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1889	unsigned long	journal_devnum;
1890	unsigned long	s_commit_interval;
1891	unsigned long	s_stripe;
1892	unsigned int	s_inode_readahead_blks;
1893	unsigned int	s_want_extra_isize;
1894	unsigned int	s_li_wait_mult;
1895	unsigned int	s_max_dir_size_kb;
1896	unsigned int	journal_ioprio;
1897	unsigned int	vals_s_mount_opt;
1898	unsigned int	mask_s_mount_opt;
1899	unsigned int	vals_s_mount_opt2;
1900	unsigned int	mask_s_mount_opt2;
1901	unsigned long	vals_s_mount_flags;
1902	unsigned long	mask_s_mount_flags;
1903	unsigned int	opt_flags;	/* MOPT flags */
1904	unsigned int	spec;
1905	u32		s_max_batch_time;
1906	u32		s_min_batch_time;
1907	kuid_t		s_resuid;
1908	kgid_t		s_resgid;
1909	ext4_fsblk_t	s_sb_block;
1910};
1911
1912static void ext4_fc_free(struct fs_context *fc)
1913{
1914	struct ext4_fs_context *ctx = fc->fs_private;
1915	int i;
1916
1917	if (!ctx)
1918		return;
1919
1920	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1921		kfree(ctx->s_qf_names[i]);
1922
1923	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1924	kfree(ctx);
1925}
1926
1927int ext4_init_fs_context(struct fs_context *fc)
1928{
1929	struct ext4_fs_context *ctx;
1930
1931	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1932	if (!ctx)
1933		return -ENOMEM;
1934
1935	fc->fs_private = ctx;
1936	fc->ops = &ext4_context_ops;
1937
1938	return 0;
1939}
1940
1941#ifdef CONFIG_QUOTA
1942/*
1943 * Note the name of the specified quota file.
1944 */
1945static int note_qf_name(struct fs_context *fc, int qtype,
1946		       struct fs_parameter *param)
1947{
1948	struct ext4_fs_context *ctx = fc->fs_private;
1949	char *qname;
1950
1951	if (param->size < 1) {
1952		ext4_msg(NULL, KERN_ERR, "Missing quota name");
1953		return -EINVAL;
1954	}
1955	if (strchr(param->string, '/')) {
1956		ext4_msg(NULL, KERN_ERR,
1957			 "quotafile must be on filesystem root");
1958		return -EINVAL;
1959	}
1960	if (ctx->s_qf_names[qtype]) {
1961		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
1962			ext4_msg(NULL, KERN_ERR,
1963				 "%s quota file already specified",
1964				 QTYPE2NAME(qtype));
1965			return -EINVAL;
1966		}
1967		return 0;
1968	}
1969
1970	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
1971	if (!qname) {
1972		ext4_msg(NULL, KERN_ERR,
1973			 "Not enough memory for storing quotafile name");
1974		return -ENOMEM;
1975	}
1976	ctx->s_qf_names[qtype] = qname;
1977	ctx->qname_spec |= 1 << qtype;
1978	ctx->spec |= EXT4_SPEC_JQUOTA;
1979	return 0;
1980}
1981
1982/*
1983 * Clear the name of the specified quota file.
1984 */
1985static int unnote_qf_name(struct fs_context *fc, int qtype)
1986{
1987	struct ext4_fs_context *ctx = fc->fs_private;
1988
1989	if (ctx->s_qf_names[qtype])
1990		kfree(ctx->s_qf_names[qtype]);
1991
1992	ctx->s_qf_names[qtype] = NULL;
1993	ctx->qname_spec |= 1 << qtype;
1994	ctx->spec |= EXT4_SPEC_JQUOTA;
1995	return 0;
1996}
1997#endif
1998
1999static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2000					    struct ext4_fs_context *ctx)
2001{
2002	int err;
2003
2004	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2005		ext4_msg(NULL, KERN_WARNING,
2006			 "test_dummy_encryption option not supported");
2007		return -EINVAL;
2008	}
2009	err = fscrypt_parse_test_dummy_encryption(param,
2010						  &ctx->dummy_enc_policy);
2011	if (err == -EINVAL) {
2012		ext4_msg(NULL, KERN_WARNING,
2013			 "Value of option \"%s\" is unrecognized", param->key);
2014	} else if (err == -EEXIST) {
2015		ext4_msg(NULL, KERN_WARNING,
2016			 "Conflicting test_dummy_encryption options");
2017		return -EINVAL;
2018	}
2019	return err;
2020}
2021
2022#define EXT4_SET_CTX(name)						\
2023static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2024				  unsigned long flag)			\
2025{									\
2026	ctx->mask_s_##name |= flag;					\
2027	ctx->vals_s_##name |= flag;					\
2028}
2029
2030#define EXT4_CLEAR_CTX(name)						\
2031static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2032				    unsigned long flag)			\
2033{									\
2034	ctx->mask_s_##name |= flag;					\
2035	ctx->vals_s_##name &= ~flag;					\
2036}
2037
2038#define EXT4_TEST_CTX(name)						\
2039static inline unsigned long						\
2040ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2041{									\
2042	return (ctx->vals_s_##name & flag);				\
2043}
2044
2045EXT4_SET_CTX(flags); /* set only */
2046EXT4_SET_CTX(mount_opt);
2047EXT4_CLEAR_CTX(mount_opt);
2048EXT4_TEST_CTX(mount_opt);
2049EXT4_SET_CTX(mount_opt2);
2050EXT4_CLEAR_CTX(mount_opt2);
2051EXT4_TEST_CTX(mount_opt2);
2052
2053static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit)
2054{
2055	set_bit(bit, &ctx->mask_s_mount_flags);
2056	set_bit(bit, &ctx->vals_s_mount_flags);
2057}
2058
2059static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2060{
2061	struct ext4_fs_context *ctx = fc->fs_private;
2062	struct fs_parse_result result;
2063	const struct mount_opts *m;
2064	int is_remount;
2065	kuid_t uid;
2066	kgid_t gid;
2067	int token;
2068
2069	token = fs_parse(fc, ext4_param_specs, param, &result);
2070	if (token < 0)
2071		return token;
2072	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2073
2074	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2075		if (token == m->token)
2076			break;
2077
2078	ctx->opt_flags |= m->flags;
 
 
 
 
2079
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2080	if (m->flags & MOPT_EXPLICIT) {
2081		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2082			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2083		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2084			ctx_set_mount_opt2(ctx,
2085				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2086		} else
2087			return -EINVAL;
2088	}
2089
2090	if (m->flags & MOPT_NOSUPPORT) {
2091		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2092			 param->key);
2093		return 0;
 
2094	}
2095
2096	switch (token) {
2097#ifdef CONFIG_QUOTA
2098	case Opt_usrjquota:
2099		if (!*param->string)
2100			return unnote_qf_name(fc, USRQUOTA);
2101		else
2102			return note_qf_name(fc, USRQUOTA, param);
2103	case Opt_grpjquota:
2104		if (!*param->string)
2105			return unnote_qf_name(fc, GRPQUOTA);
2106		else
2107			return note_qf_name(fc, GRPQUOTA, param);
2108#endif
2109	case Opt_sb:
2110		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2111			ext4_msg(NULL, KERN_WARNING,
2112				 "Ignoring %s option on remount", param->key);
2113		} else {
2114			ctx->s_sb_block = result.uint_32;
2115			ctx->spec |= EXT4_SPEC_s_sb_block;
2116		}
2117		return 0;
2118	case Opt_removed:
2119		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2120			 param->key);
2121		return 0;
2122	case Opt_abort:
2123		ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED);
2124		return 0;
2125	case Opt_inlinecrypt:
2126#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2127		ctx_set_flags(ctx, SB_INLINECRYPT);
2128#else
2129		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2130#endif
2131		return 0;
2132	case Opt_errors:
2133		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2134		ctx_set_mount_opt(ctx, result.uint_32);
2135		return 0;
2136#ifdef CONFIG_QUOTA
2137	case Opt_jqfmt:
2138		ctx->s_jquota_fmt = result.uint_32;
2139		ctx->spec |= EXT4_SPEC_JQFMT;
2140		return 0;
2141#endif
2142	case Opt_data:
2143		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2144		ctx_set_mount_opt(ctx, result.uint_32);
2145		ctx->spec |= EXT4_SPEC_DATAJ;
2146		return 0;
2147	case Opt_commit:
2148		if (result.uint_32 == 0)
2149			ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
2150		else if (result.uint_32 > INT_MAX / HZ) {
2151			ext4_msg(NULL, KERN_ERR,
2152				 "Invalid commit interval %d, "
2153				 "must be smaller than %d",
2154				 result.uint_32, INT_MAX / HZ);
2155			return -EINVAL;
2156		}
2157		ctx->s_commit_interval = HZ * result.uint_32;
2158		ctx->spec |= EXT4_SPEC_s_commit_interval;
2159		return 0;
2160	case Opt_debug_want_extra_isize:
2161		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2162			ext4_msg(NULL, KERN_ERR,
2163				 "Invalid want_extra_isize %d", result.uint_32);
2164			return -EINVAL;
2165		}
2166		ctx->s_want_extra_isize = result.uint_32;
2167		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2168		return 0;
2169	case Opt_max_batch_time:
2170		ctx->s_max_batch_time = result.uint_32;
2171		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2172		return 0;
2173	case Opt_min_batch_time:
2174		ctx->s_min_batch_time = result.uint_32;
2175		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2176		return 0;
2177	case Opt_inode_readahead_blks:
2178		if (result.uint_32 &&
2179		    (result.uint_32 > (1 << 30) ||
2180		     !is_power_of_2(result.uint_32))) {
2181			ext4_msg(NULL, KERN_ERR,
2182				 "EXT4-fs: inode_readahead_blks must be "
2183				 "0 or a power of 2 smaller than 2^31");
2184			return -EINVAL;
2185		}
2186		ctx->s_inode_readahead_blks = result.uint_32;
2187		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2188		return 0;
2189	case Opt_init_itable:
2190		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2191		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2192		if (param->type == fs_value_is_string)
2193			ctx->s_li_wait_mult = result.uint_32;
2194		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2195		return 0;
2196	case Opt_max_dir_size_kb:
2197		ctx->s_max_dir_size_kb = result.uint_32;
2198		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2199		return 0;
2200#ifdef CONFIG_EXT4_DEBUG
2201	case Opt_fc_debug_max_replay:
2202		ctx->s_fc_debug_max_replay = result.uint_32;
2203		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2204		return 0;
2205#endif
2206	case Opt_stripe:
2207		ctx->s_stripe = result.uint_32;
2208		ctx->spec |= EXT4_SPEC_s_stripe;
2209		return 0;
2210	case Opt_resuid:
2211		uid = make_kuid(current_user_ns(), result.uint_32);
2212		if (!uid_valid(uid)) {
2213			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2214				 result.uint_32);
2215			return -EINVAL;
2216		}
2217		ctx->s_resuid = uid;
2218		ctx->spec |= EXT4_SPEC_s_resuid;
2219		return 0;
2220	case Opt_resgid:
2221		gid = make_kgid(current_user_ns(), result.uint_32);
2222		if (!gid_valid(gid)) {
2223			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2224				 result.uint_32);
2225			return -EINVAL;
2226		}
2227		ctx->s_resgid = gid;
2228		ctx->spec |= EXT4_SPEC_s_resgid;
2229		return 0;
2230	case Opt_journal_dev:
2231		if (is_remount) {
2232			ext4_msg(NULL, KERN_ERR,
2233				 "Cannot specify journal on remount");
2234			return -EINVAL;
2235		}
2236		ctx->journal_devnum = result.uint_32;
2237		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2238		return 0;
2239	case Opt_journal_path:
2240	{
2241		struct inode *journal_inode;
2242		struct path path;
2243		int error;
2244
2245		if (is_remount) {
2246			ext4_msg(NULL, KERN_ERR,
2247				 "Cannot specify journal on remount");
2248			return -EINVAL;
 
 
 
 
 
 
2249		}
2250
2251		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2252		if (error) {
2253			ext4_msg(NULL, KERN_ERR, "error: could not find "
2254				 "journal device path");
2255			return -EINVAL;
 
2256		}
2257
2258		journal_inode = d_inode(path.dentry);
2259		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2260		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
 
 
 
 
 
 
 
2261		path_put(&path);
2262		return 0;
2263	}
2264	case Opt_journal_ioprio:
2265		if (result.uint_32 > 7) {
2266			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2267				 " (must be 0-7)");
2268			return -EINVAL;
2269		}
2270		ctx->journal_ioprio =
2271			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2272		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2273		return 0;
2274	case Opt_test_dummy_encryption:
2275		return ext4_parse_test_dummy_encryption(param, ctx);
2276	case Opt_dax:
2277	case Opt_dax_type:
2278#ifdef CONFIG_FS_DAX
2279	{
2280		int type = (token == Opt_dax) ?
2281			   Opt_dax : result.uint_32;
2282
2283		switch (type) {
2284		case Opt_dax:
2285		case Opt_dax_always:
2286			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2287			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2288			break;
2289		case Opt_dax_never:
2290			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2291			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2292			break;
2293		case Opt_dax_inode:
2294			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2295			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2296			/* Strictly for printing options */
2297			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2298			break;
2299		}
2300		return 0;
2301	}
 
 
 
 
 
2302#else
2303		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2304		return -EINVAL;
2305#endif
2306	case Opt_data_err:
2307		if (result.uint_32 == Opt_data_err_abort)
2308			ctx_set_mount_opt(ctx, m->mount_opt);
2309		else if (result.uint_32 == Opt_data_err_ignore)
2310			ctx_clear_mount_opt(ctx, m->mount_opt);
2311		return 0;
2312	case Opt_mb_optimize_scan:
2313		if (result.int_32 == 1) {
2314			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2315			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2316		} else if (result.int_32 == 0) {
2317			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2318			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2319		} else {
2320			ext4_msg(NULL, KERN_WARNING,
2321				 "mb_optimize_scan should be set to 0 or 1.");
2322			return -EINVAL;
2323		}
2324		return 0;
2325	}
2326
2327	/*
2328	 * At this point we should only be getting options requiring MOPT_SET,
2329	 * or MOPT_CLEAR. Anything else is a bug
2330	 */
2331	if (m->token == Opt_err) {
2332		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2333			 param->key);
2334		WARN_ON(1);
2335		return -EINVAL;
2336	}
2337
2338	else {
2339		unsigned int set = 0;
2340
2341		if ((param->type == fs_value_is_flag) ||
2342		    result.uint_32 > 0)
2343			set = 1;
2344
 
 
 
 
 
 
 
 
 
 
 
2345		if (m->flags & MOPT_CLEAR)
2346			set = !set;
2347		else if (unlikely(!(m->flags & MOPT_SET))) {
2348			ext4_msg(NULL, KERN_WARNING,
2349				 "buggy handling of option %s",
2350				 param->key);
2351			WARN_ON(1);
2352			return -EINVAL;
2353		}
2354		if (m->flags & MOPT_2) {
2355			if (set != 0)
2356				ctx_set_mount_opt2(ctx, m->mount_opt);
2357			else
2358				ctx_clear_mount_opt2(ctx, m->mount_opt);
2359		} else {
2360			if (set != 0)
2361				ctx_set_mount_opt(ctx, m->mount_opt);
2362			else
2363				ctx_clear_mount_opt(ctx, m->mount_opt);
2364		}
2365	}
2366
2367	return 0;
2368}
2369
2370static int parse_options(struct fs_context *fc, char *options)
2371{
2372	struct fs_parameter param;
2373	int ret;
2374	char *key;
2375
2376	if (!options)
2377		return 0;
2378
2379	while ((key = strsep(&options, ",")) != NULL) {
2380		if (*key) {
2381			size_t v_len = 0;
2382			char *value = strchr(key, '=');
2383
2384			param.type = fs_value_is_flag;
2385			param.string = NULL;
2386
2387			if (value) {
2388				if (value == key)
2389					continue;
2390
2391				*value++ = 0;
2392				v_len = strlen(value);
2393				param.string = kmemdup_nul(value, v_len,
2394							   GFP_KERNEL);
2395				if (!param.string)
2396					return -ENOMEM;
2397				param.type = fs_value_is_string;
2398			}
2399
2400			param.key = key;
2401			param.size = v_len;
2402
2403			ret = ext4_parse_param(fc, &param);
2404			if (param.string)
2405				kfree(param.string);
2406			if (ret < 0)
2407				return ret;
2408		}
 
 
 
 
2409	}
2410
2411	ret = ext4_validate_options(fc);
2412	if (ret < 0)
2413		return ret;
2414
2415	return 0;
2416}
2417
2418static int parse_apply_sb_mount_options(struct super_block *sb,
2419					struct ext4_fs_context *m_ctx)
2420{
2421	struct ext4_sb_info *sbi = EXT4_SB(sb);
2422	char *s_mount_opts = NULL;
2423	struct ext4_fs_context *s_ctx = NULL;
2424	struct fs_context *fc = NULL;
2425	int ret = -ENOMEM;
2426
2427	if (!sbi->s_es->s_mount_opts[0])
2428		return 0;
2429
2430	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2431				sizeof(sbi->s_es->s_mount_opts),
2432				GFP_KERNEL);
2433	if (!s_mount_opts)
2434		return ret;
2435
2436	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2437	if (!fc)
2438		goto out_free;
2439
2440	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2441	if (!s_ctx)
2442		goto out_free;
2443
2444	fc->fs_private = s_ctx;
2445	fc->s_fs_info = sbi;
2446
2447	ret = parse_options(fc, s_mount_opts);
2448	if (ret < 0)
2449		goto parse_failed;
2450
2451	ret = ext4_check_opt_consistency(fc, sb);
2452	if (ret < 0) {
2453parse_failed:
2454		ext4_msg(sb, KERN_WARNING,
2455			 "failed to parse options in superblock: %s",
2456			 s_mount_opts);
2457		ret = 0;
2458		goto out_free;
2459	}
2460
2461	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2462		m_ctx->journal_devnum = s_ctx->journal_devnum;
2463	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2464		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2465
2466	ext4_apply_options(fc, sb);
2467	ret = 0;
2468
2469out_free:
2470	if (fc) {
2471		ext4_fc_free(fc);
2472		kfree(fc);
2473	}
2474	kfree(s_mount_opts);
2475	return ret;
2476}
2477
2478static void ext4_apply_quota_options(struct fs_context *fc,
2479				     struct super_block *sb)
 
 
2480{
2481#ifdef CONFIG_QUOTA
2482	bool quota_feature = ext4_has_feature_quota(sb);
2483	struct ext4_fs_context *ctx = fc->fs_private;
2484	struct ext4_sb_info *sbi = EXT4_SB(sb);
2485	char *qname;
2486	int i;
2487
2488	if (quota_feature)
2489		return;
2490
2491	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2492		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2493			if (!(ctx->qname_spec & (1 << i)))
2494				continue;
2495
2496			qname = ctx->s_qf_names[i]; /* May be NULL */
2497			if (qname)
2498				set_opt(sb, QUOTA);
2499			ctx->s_qf_names[i] = NULL;
2500			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2501						lockdep_is_held(&sb->s_umount));
2502			if (qname)
2503				kfree_rcu(qname);
2504		}
 
 
 
2505	}
2506
2507	if (ctx->spec & EXT4_SPEC_JQFMT)
2508		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2509#endif
2510}
2511
2512/*
2513 * Check quota settings consistency.
2514 */
2515static int ext4_check_quota_consistency(struct fs_context *fc,
2516					struct super_block *sb)
2517{
2518#ifdef CONFIG_QUOTA
2519	struct ext4_fs_context *ctx = fc->fs_private;
2520	struct ext4_sb_info *sbi = EXT4_SB(sb);
2521	bool quota_feature = ext4_has_feature_quota(sb);
2522	bool quota_loaded = sb_any_quota_loaded(sb);
2523	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2524	int quota_flags, i;
2525
2526	/*
2527	 * We do the test below only for project quotas. 'usrquota' and
2528	 * 'grpquota' mount options are allowed even without quota feature
2529	 * to support legacy quotas in quota files.
2530	 */
2531	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2532	    !ext4_has_feature_project(sb)) {
2533		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2534			 "Cannot enable project quota enforcement.");
2535		return -EINVAL;
2536	}
2537
2538	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2539		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2540	if (quota_loaded &&
2541	    ctx->mask_s_mount_opt & quota_flags &&
2542	    !ctx_test_mount_opt(ctx, quota_flags))
2543		goto err_quota_change;
2544
2545	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2546
2547		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548			if (!(ctx->qname_spec & (1 << i)))
2549				continue;
2550
2551			if (quota_loaded &&
2552			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2553				goto err_jquota_change;
2554
2555			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2556			    strcmp(get_qf_name(sb, sbi, i),
2557				   ctx->s_qf_names[i]) != 0)
2558				goto err_jquota_specified;
2559		}
2560
2561		if (quota_feature) {
2562			ext4_msg(NULL, KERN_INFO,
2563				 "Journaled quota options ignored when "
2564				 "QUOTA feature is enabled");
2565			return 0;
2566		}
2567	}
2568
2569	if (ctx->spec & EXT4_SPEC_JQFMT) {
2570		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2571			goto err_jquota_change;
2572		if (quota_feature) {
2573			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2574				 "ignored when QUOTA feature is enabled");
2575			return 0;
2576		}
2577	}
2578
2579	/* Make sure we don't mix old and new quota format */
2580	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2581		       ctx->s_qf_names[USRQUOTA]);
2582	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2583		       ctx->s_qf_names[GRPQUOTA]);
2584
2585	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2586		    test_opt(sb, USRQUOTA));
2587
2588	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2589		    test_opt(sb, GRPQUOTA));
2590
2591	if (usr_qf_name) {
2592		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2593		usrquota = false;
2594	}
2595	if (grp_qf_name) {
2596		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2597		grpquota = false;
2598	}
2599
2600	if (usr_qf_name || grp_qf_name) {
2601		if (usrquota || grpquota) {
2602			ext4_msg(NULL, KERN_ERR, "old and new quota "
2603				 "format mixing");
2604			return -EINVAL;
2605		}
2606
2607		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2608			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2609				 "not specified");
2610			return -EINVAL;
2611		}
2612	}
2613
2614	return 0;
2615
2616err_quota_change:
2617	ext4_msg(NULL, KERN_ERR,
2618		 "Cannot change quota options when quota turned on");
2619	return -EINVAL;
2620err_jquota_change:
2621	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2622		 "options when quota turned on");
2623	return -EINVAL;
2624err_jquota_specified:
2625	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2626		 QTYPE2NAME(i));
2627	return -EINVAL;
2628#else
2629	return 0;
2630#endif
2631}
2632
2633static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2634					    struct super_block *sb)
2635{
2636	const struct ext4_fs_context *ctx = fc->fs_private;
2637	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2638	int err;
2639
2640	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2641		return 0;
2642
2643	if (!ext4_has_feature_encrypt(sb)) {
2644		ext4_msg(NULL, KERN_WARNING,
2645			 "test_dummy_encryption requires encrypt feature");
2646		return -EINVAL;
2647	}
2648	/*
2649	 * This mount option is just for testing, and it's not worthwhile to
2650	 * implement the extra complexity (e.g. RCU protection) that would be
2651	 * needed to allow it to be set or changed during remount.  We do allow
2652	 * it to be specified during remount, but only if there is no change.
2653	 */
2654	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2655		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2656						 &ctx->dummy_enc_policy))
2657			return 0;
2658		ext4_msg(NULL, KERN_WARNING,
2659			 "Can't set or change test_dummy_encryption on remount");
2660		return -EINVAL;
2661	}
2662	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2663	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2664		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2665						 &ctx->dummy_enc_policy))
2666			return 0;
2667		ext4_msg(NULL, KERN_WARNING,
2668			 "Conflicting test_dummy_encryption options");
2669		return -EINVAL;
2670	}
2671	/*
2672	 * fscrypt_add_test_dummy_key() technically changes the super_block, so
2673	 * technically it should be delayed until ext4_apply_options() like the
2674	 * other changes.  But since we never get here for remounts (see above),
2675	 * and this is the last chance to report errors, we do it here.
2676	 */
2677	err = fscrypt_add_test_dummy_key(sb, &ctx->dummy_enc_policy);
2678	if (err)
2679		ext4_msg(NULL, KERN_WARNING,
2680			 "Error adding test dummy encryption key [%d]", err);
2681	return err;
2682}
2683
2684static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2685					     struct super_block *sb)
2686{
2687	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2688	    /* if already set, it was already verified to be the same */
2689	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2690		return;
2691	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2692	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2693	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2694}
2695
2696static int ext4_check_opt_consistency(struct fs_context *fc,
2697				      struct super_block *sb)
2698{
2699	struct ext4_fs_context *ctx = fc->fs_private;
2700	struct ext4_sb_info *sbi = fc->s_fs_info;
2701	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2702	int err;
2703
2704	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2705		ext4_msg(NULL, KERN_ERR,
2706			 "Mount option(s) incompatible with ext2");
2707		return -EINVAL;
2708	}
2709	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2710		ext4_msg(NULL, KERN_ERR,
2711			 "Mount option(s) incompatible with ext3");
2712		return -EINVAL;
2713	}
2714
2715	if (ctx->s_want_extra_isize >
2716	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2717		ext4_msg(NULL, KERN_ERR,
2718			 "Invalid want_extra_isize %d",
2719			 ctx->s_want_extra_isize);
2720		return -EINVAL;
2721	}
2722
2723	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2724		int blocksize =
2725			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2726		if (blocksize < PAGE_SIZE)
2727			ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2728				 "experimental mount option 'dioread_nolock' "
2729				 "for blocksize < PAGE_SIZE");
2730	}
2731
2732	err = ext4_check_test_dummy_encryption(fc, sb);
2733	if (err)
2734		return err;
2735
2736	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2737		if (!sbi->s_journal) {
2738			ext4_msg(NULL, KERN_WARNING,
2739				 "Remounting file system with no journal "
2740				 "so ignoring journalled data option");
2741			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2742		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2743			   test_opt(sb, DATA_FLAGS)) {
2744			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2745				 "on remount");
2746			return -EINVAL;
2747		}
2748	}
2749
2750	if (is_remount) {
2751		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2752		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2753			ext4_msg(NULL, KERN_ERR, "can't mount with "
2754				 "both data=journal and dax");
2755			return -EINVAL;
2756		}
2757
2758		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2759		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2760		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2761fail_dax_change_remount:
2762			ext4_msg(NULL, KERN_ERR, "can't change "
2763				 "dax mount option while remounting");
2764			return -EINVAL;
2765		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2766			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2767			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2768			goto fail_dax_change_remount;
2769		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2770			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2771			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2772			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2773			goto fail_dax_change_remount;
2774		}
2775	}
2776
2777	return ext4_check_quota_consistency(fc, sb);
2778}
2779
2780static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2781{
2782	struct ext4_fs_context *ctx = fc->fs_private;
2783	struct ext4_sb_info *sbi = fc->s_fs_info;
2784
2785	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2786	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2787	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2788	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2789	sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2790	sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2791	sb->s_flags &= ~ctx->mask_s_flags;
2792	sb->s_flags |= ctx->vals_s_flags;
2793
2794#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2795	APPLY(s_commit_interval);
2796	APPLY(s_stripe);
2797	APPLY(s_max_batch_time);
2798	APPLY(s_min_batch_time);
2799	APPLY(s_want_extra_isize);
2800	APPLY(s_inode_readahead_blks);
2801	APPLY(s_max_dir_size_kb);
2802	APPLY(s_li_wait_mult);
2803	APPLY(s_resgid);
2804	APPLY(s_resuid);
2805
2806#ifdef CONFIG_EXT4_DEBUG
2807	APPLY(s_fc_debug_max_replay);
2808#endif
2809
2810	ext4_apply_quota_options(fc, sb);
2811	ext4_apply_test_dummy_encryption(ctx, sb);
2812}
2813
2814
2815static int ext4_validate_options(struct fs_context *fc)
2816{
2817#ifdef CONFIG_QUOTA
2818	struct ext4_fs_context *ctx = fc->fs_private;
2819	char *usr_qf_name, *grp_qf_name;
2820
2821	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2822	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2823
2824	if (usr_qf_name || grp_qf_name) {
2825		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2826			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2827
2828		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2829			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2830
2831		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2832		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2833			ext4_msg(NULL, KERN_ERR, "old and new quota "
2834				 "format mixing");
2835			return -EINVAL;
2836		}
2837	}
2838#endif
2839	return 1;
2840}
2841
2842static inline void ext4_show_quota_options(struct seq_file *seq,
2843					   struct super_block *sb)
2844{
2845#if defined(CONFIG_QUOTA)
2846	struct ext4_sb_info *sbi = EXT4_SB(sb);
2847	char *usr_qf_name, *grp_qf_name;
2848
2849	if (sbi->s_jquota_fmt) {
2850		char *fmtname = "";
2851
2852		switch (sbi->s_jquota_fmt) {
2853		case QFMT_VFS_OLD:
2854			fmtname = "vfsold";
2855			break;
2856		case QFMT_VFS_V0:
2857			fmtname = "vfsv0";
2858			break;
2859		case QFMT_VFS_V1:
2860			fmtname = "vfsv1";
2861			break;
2862		}
2863		seq_printf(seq, ",jqfmt=%s", fmtname);
2864	}
2865
2866	rcu_read_lock();
2867	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2868	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2869	if (usr_qf_name)
2870		seq_show_option(seq, "usrjquota", usr_qf_name);
2871	if (grp_qf_name)
2872		seq_show_option(seq, "grpjquota", grp_qf_name);
2873	rcu_read_unlock();
2874#endif
2875}
2876
2877static const char *token2str(int token)
2878{
2879	const struct fs_parameter_spec *spec;
2880
2881	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2882		if (spec->opt == token && !spec->type)
2883			break;
2884	return spec->name;
2885}
2886
2887/*
2888 * Show an option if
2889 *  - it's set to a non-default value OR
2890 *  - if the per-sb default is different from the global default
2891 */
2892static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2893			      int nodefs)
2894{
2895	struct ext4_sb_info *sbi = EXT4_SB(sb);
2896	struct ext4_super_block *es = sbi->s_es;
2897	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2898	const struct mount_opts *m;
2899	char sep = nodefs ? '\n' : ',';
2900
2901#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2902#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2903
2904	if (sbi->s_sb_block != 1)
2905		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2906
2907	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2908		int want_set = m->flags & MOPT_SET;
2909		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2910		    m->flags & MOPT_SKIP)
2911			continue;
2912		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2913			continue; /* skip if same as the default */
2914		if ((want_set &&
2915		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2916		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2917			continue; /* select Opt_noFoo vs Opt_Foo */
2918		SEQ_OPTS_PRINT("%s", token2str(m->token));
2919	}
2920
2921	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2922	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2923		SEQ_OPTS_PRINT("resuid=%u",
2924				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2925	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2926	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2927		SEQ_OPTS_PRINT("resgid=%u",
2928				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2929	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2930	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2931		SEQ_OPTS_PUTS("errors=remount-ro");
2932	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2933		SEQ_OPTS_PUTS("errors=continue");
2934	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2935		SEQ_OPTS_PUTS("errors=panic");
2936	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2937		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2938	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2939		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2940	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2941		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
 
 
2942	if (nodefs || sbi->s_stripe)
2943		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2944	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2945			(sbi->s_mount_opt ^ def_mount_opt)) {
2946		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2947			SEQ_OPTS_PUTS("data=journal");
2948		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2949			SEQ_OPTS_PUTS("data=ordered");
2950		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2951			SEQ_OPTS_PUTS("data=writeback");
2952	}
2953	if (nodefs ||
2954	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2955		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2956			       sbi->s_inode_readahead_blks);
2957
2958	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2959		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2960		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2961	if (nodefs || sbi->s_max_dir_size_kb)
2962		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2963	if (test_opt(sb, DATA_ERR_ABORT))
2964		SEQ_OPTS_PUTS("data_err=abort");
2965
2966	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2967
2968	if (sb->s_flags & SB_INLINECRYPT)
2969		SEQ_OPTS_PUTS("inlinecrypt");
2970
2971	if (test_opt(sb, DAX_ALWAYS)) {
2972		if (IS_EXT2_SB(sb))
2973			SEQ_OPTS_PUTS("dax");
2974		else
2975			SEQ_OPTS_PUTS("dax=always");
2976	} else if (test_opt2(sb, DAX_NEVER)) {
2977		SEQ_OPTS_PUTS("dax=never");
2978	} else if (test_opt2(sb, DAX_INODE)) {
2979		SEQ_OPTS_PUTS("dax=inode");
2980	}
2981
2982	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2983			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2984		SEQ_OPTS_PUTS("mb_optimize_scan=0");
2985	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2986			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2987		SEQ_OPTS_PUTS("mb_optimize_scan=1");
2988	}
2989
2990	ext4_show_quota_options(seq, sb);
2991	return 0;
2992}
2993
2994static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2995{
2996	return _ext4_show_options(seq, root->d_sb, 0);
2997}
2998
2999int ext4_seq_options_show(struct seq_file *seq, void *offset)
3000{
3001	struct super_block *sb = seq->private;
3002	int rc;
3003
3004	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3005	rc = _ext4_show_options(seq, sb, 1);
3006	seq_puts(seq, "\n");
3007	return rc;
3008}
3009
3010static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3011			    int read_only)
3012{
3013	struct ext4_sb_info *sbi = EXT4_SB(sb);
3014	int err = 0;
3015
3016	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3017		ext4_msg(sb, KERN_ERR, "revision level too high, "
3018			 "forcing read-only mode");
3019		err = -EROFS;
3020		goto done;
3021	}
3022	if (read_only)
3023		goto done;
3024	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3025		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3026			 "running e2fsck is recommended");
3027	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3028		ext4_msg(sb, KERN_WARNING,
3029			 "warning: mounting fs with errors, "
3030			 "running e2fsck is recommended");
3031	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3032		 le16_to_cpu(es->s_mnt_count) >=
3033		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3034		ext4_msg(sb, KERN_WARNING,
3035			 "warning: maximal mount count reached, "
3036			 "running e2fsck is recommended");
3037	else if (le32_to_cpu(es->s_checkinterval) &&
3038		 (ext4_get_tstamp(es, s_lastcheck) +
3039		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3040		ext4_msg(sb, KERN_WARNING,
3041			 "warning: checktime reached, "
3042			 "running e2fsck is recommended");
3043	if (!sbi->s_journal)
3044		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3045	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3046		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3047	le16_add_cpu(&es->s_mnt_count, 1);
3048	ext4_update_tstamp(es, s_mtime);
3049	if (sbi->s_journal) {
 
3050		ext4_set_feature_journal_needs_recovery(sb);
3051		if (ext4_has_feature_orphan_file(sb))
3052			ext4_set_feature_orphan_present(sb);
3053	}
3054
3055	err = ext4_commit_super(sb);
3056done:
3057	if (test_opt(sb, DEBUG))
3058		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3059				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3060			sb->s_blocksize,
3061			sbi->s_groups_count,
3062			EXT4_BLOCKS_PER_GROUP(sb),
3063			EXT4_INODES_PER_GROUP(sb),
3064			sbi->s_mount_opt, sbi->s_mount_opt2);
3065	return err;
 
 
3066}
3067
3068int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3069{
3070	struct ext4_sb_info *sbi = EXT4_SB(sb);
3071	struct flex_groups **old_groups, **new_groups;
3072	int size, i, j;
3073
3074	if (!sbi->s_log_groups_per_flex)
3075		return 0;
3076
3077	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3078	if (size <= sbi->s_flex_groups_allocated)
3079		return 0;
3080
3081	new_groups = kvzalloc(roundup_pow_of_two(size *
3082			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3083	if (!new_groups) {
3084		ext4_msg(sb, KERN_ERR,
3085			 "not enough memory for %d flex group pointers", size);
3086		return -ENOMEM;
3087	}
3088	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3089		new_groups[i] = kvzalloc(roundup_pow_of_two(
3090					 sizeof(struct flex_groups)),
3091					 GFP_KERNEL);
3092		if (!new_groups[i]) {
3093			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3094				kvfree(new_groups[j]);
3095			kvfree(new_groups);
3096			ext4_msg(sb, KERN_ERR,
3097				 "not enough memory for %d flex groups", size);
3098			return -ENOMEM;
3099		}
3100	}
3101	rcu_read_lock();
3102	old_groups = rcu_dereference(sbi->s_flex_groups);
3103	if (old_groups)
3104		memcpy(new_groups, old_groups,
3105		       (sbi->s_flex_groups_allocated *
3106			sizeof(struct flex_groups *)));
3107	rcu_read_unlock();
3108	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3109	sbi->s_flex_groups_allocated = size;
3110	if (old_groups)
3111		ext4_kvfree_array_rcu(old_groups);
3112	return 0;
3113}
3114
3115static int ext4_fill_flex_info(struct super_block *sb)
3116{
3117	struct ext4_sb_info *sbi = EXT4_SB(sb);
3118	struct ext4_group_desc *gdp = NULL;
3119	struct flex_groups *fg;
3120	ext4_group_t flex_group;
3121	int i, err;
3122
3123	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3124	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3125		sbi->s_log_groups_per_flex = 0;
3126		return 1;
3127	}
3128
3129	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3130	if (err)
3131		goto failed;
3132
3133	for (i = 0; i < sbi->s_groups_count; i++) {
3134		gdp = ext4_get_group_desc(sb, i, NULL);
3135
3136		flex_group = ext4_flex_group(sbi, i);
3137		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3138		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3139		atomic64_add(ext4_free_group_clusters(sb, gdp),
3140			     &fg->free_clusters);
3141		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
 
3142	}
3143
3144	return 1;
3145failed:
3146	return 0;
3147}
3148
3149static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3150				   struct ext4_group_desc *gdp)
3151{
3152	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3153	__u16 crc = 0;
3154	__le32 le_group = cpu_to_le32(block_group);
3155	struct ext4_sb_info *sbi = EXT4_SB(sb);
3156
3157	if (ext4_has_metadata_csum(sbi->s_sb)) {
3158		/* Use new metadata_csum algorithm */
3159		__u32 csum32;
3160		__u16 dummy_csum = 0;
3161
3162		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3163				     sizeof(le_group));
3164		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3165		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3166				     sizeof(dummy_csum));
3167		offset += sizeof(dummy_csum);
3168		if (offset < sbi->s_desc_size)
3169			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3170					     sbi->s_desc_size - offset);
3171
3172		crc = csum32 & 0xFFFF;
3173		goto out;
3174	}
3175
3176	/* old crc16 code */
3177	if (!ext4_has_feature_gdt_csum(sb))
3178		return 0;
3179
3180	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3181	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3182	crc = crc16(crc, (__u8 *)gdp, offset);
3183	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3184	/* for checksum of struct ext4_group_desc do the rest...*/
3185	if (ext4_has_feature_64bit(sb) &&
3186	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
3187		crc = crc16(crc, (__u8 *)gdp + offset,
3188			    le16_to_cpu(sbi->s_es->s_desc_size) -
3189				offset);
3190
3191out:
3192	return cpu_to_le16(crc);
3193}
3194
3195int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3196				struct ext4_group_desc *gdp)
3197{
3198	if (ext4_has_group_desc_csum(sb) &&
3199	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3200		return 0;
3201
3202	return 1;
3203}
3204
3205void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3206			      struct ext4_group_desc *gdp)
3207{
3208	if (!ext4_has_group_desc_csum(sb))
3209		return;
3210	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3211}
3212
3213/* Called at mount-time, super-block is locked */
3214static int ext4_check_descriptors(struct super_block *sb,
3215				  ext4_fsblk_t sb_block,
3216				  ext4_group_t *first_not_zeroed)
3217{
3218	struct ext4_sb_info *sbi = EXT4_SB(sb);
3219	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3220	ext4_fsblk_t last_block;
3221	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3222	ext4_fsblk_t block_bitmap;
3223	ext4_fsblk_t inode_bitmap;
3224	ext4_fsblk_t inode_table;
3225	int flexbg_flag = 0;
3226	ext4_group_t i, grp = sbi->s_groups_count;
3227
3228	if (ext4_has_feature_flex_bg(sb))
3229		flexbg_flag = 1;
3230
3231	ext4_debug("Checking group descriptors");
3232
3233	for (i = 0; i < sbi->s_groups_count; i++) {
3234		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3235
3236		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3237			last_block = ext4_blocks_count(sbi->s_es) - 1;
3238		else
3239			last_block = first_block +
3240				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3241
3242		if ((grp == sbi->s_groups_count) &&
3243		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3244			grp = i;
3245
3246		block_bitmap = ext4_block_bitmap(sb, gdp);
3247		if (block_bitmap == sb_block) {
3248			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3249				 "Block bitmap for group %u overlaps "
3250				 "superblock", i);
3251			if (!sb_rdonly(sb))
3252				return 0;
3253		}
3254		if (block_bitmap >= sb_block + 1 &&
3255		    block_bitmap <= last_bg_block) {
3256			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3257				 "Block bitmap for group %u overlaps "
3258				 "block group descriptors", i);
3259			if (!sb_rdonly(sb))
3260				return 0;
3261		}
3262		if (block_bitmap < first_block || block_bitmap > last_block) {
3263			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3264			       "Block bitmap for group %u not in group "
3265			       "(block %llu)!", i, block_bitmap);
3266			return 0;
3267		}
3268		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3269		if (inode_bitmap == sb_block) {
3270			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3271				 "Inode bitmap for group %u overlaps "
3272				 "superblock", i);
3273			if (!sb_rdonly(sb))
3274				return 0;
3275		}
3276		if (inode_bitmap >= sb_block + 1 &&
3277		    inode_bitmap <= last_bg_block) {
3278			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3279				 "Inode bitmap for group %u overlaps "
3280				 "block group descriptors", i);
3281			if (!sb_rdonly(sb))
3282				return 0;
3283		}
3284		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3285			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3286			       "Inode bitmap for group %u not in group "
3287			       "(block %llu)!", i, inode_bitmap);
3288			return 0;
3289		}
3290		inode_table = ext4_inode_table(sb, gdp);
3291		if (inode_table == sb_block) {
3292			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3293				 "Inode table for group %u overlaps "
3294				 "superblock", i);
3295			if (!sb_rdonly(sb))
3296				return 0;
3297		}
3298		if (inode_table >= sb_block + 1 &&
3299		    inode_table <= last_bg_block) {
3300			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3301				 "Inode table for group %u overlaps "
3302				 "block group descriptors", i);
3303			if (!sb_rdonly(sb))
3304				return 0;
3305		}
3306		if (inode_table < first_block ||
3307		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3308			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3309			       "Inode table for group %u not in group "
3310			       "(block %llu)!", i, inode_table);
3311			return 0;
3312		}
3313		ext4_lock_group(sb, i);
3314		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3315			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3316				 "Checksum for group %u failed (%u!=%u)",
3317				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3318				     gdp)), le16_to_cpu(gdp->bg_checksum));
3319			if (!sb_rdonly(sb)) {
3320				ext4_unlock_group(sb, i);
3321				return 0;
3322			}
3323		}
3324		ext4_unlock_group(sb, i);
3325		if (!flexbg_flag)
3326			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3327	}
3328	if (NULL != first_not_zeroed)
3329		*first_not_zeroed = grp;
3330	return 1;
3331}
3332
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3333/*
3334 * Maximal extent format file size.
3335 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3336 * extent format containers, within a sector_t, and within i_blocks
3337 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3338 * so that won't be a limiting factor.
3339 *
3340 * However there is other limiting factor. We do store extents in the form
3341 * of starting block and length, hence the resulting length of the extent
3342 * covering maximum file size must fit into on-disk format containers as
3343 * well. Given that length is always by 1 unit bigger than max unit (because
3344 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3345 *
3346 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3347 */
3348static loff_t ext4_max_size(int blkbits, int has_huge_files)
3349{
3350	loff_t res;
3351	loff_t upper_limit = MAX_LFS_FILESIZE;
3352
3353	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3354
3355	if (!has_huge_files) {
 
 
 
 
3356		upper_limit = (1LL << 32) - 1;
3357
3358		/* total blocks in file system block size */
3359		upper_limit >>= (blkbits - 9);
3360		upper_limit <<= blkbits;
3361	}
3362
3363	/*
3364	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3365	 * by one fs block, so ee_len can cover the extent of maximum file
3366	 * size
3367	 */
3368	res = (1LL << 32) - 1;
3369	res <<= blkbits;
3370
3371	/* Sanity check against vm- & vfs- imposed limits */
3372	if (res > upper_limit)
3373		res = upper_limit;
3374
3375	return res;
3376}
3377
3378/*
3379 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3380 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3381 * We need to be 1 filesystem block less than the 2^48 sector limit.
3382 */
3383static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3384{
3385	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3386	int meta_blocks;
3387	unsigned int ppb = 1 << (bits - 2);
3388
3389	/*
3390	 * This is calculated to be the largest file size for a dense, block
3391	 * mapped file such that the file's total number of 512-byte sectors,
3392	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3393	 *
3394	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3395	 * number of 512-byte sectors of the file.
3396	 */
3397	if (!has_huge_files) {
 
3398		/*
3399		 * !has_huge_files or implies that the inode i_block field
3400		 * represents total file blocks in 2^32 512-byte sectors ==
3401		 * size of vfs inode i_blocks * 8
3402		 */
3403		upper_limit = (1LL << 32) - 1;
3404
3405		/* total blocks in file system block size */
3406		upper_limit >>= (bits - 9);
3407
3408	} else {
3409		/*
3410		 * We use 48 bit ext4_inode i_blocks
3411		 * With EXT4_HUGE_FILE_FL set the i_blocks
3412		 * represent total number of blocks in
3413		 * file system block size
3414		 */
3415		upper_limit = (1LL << 48) - 1;
3416
3417	}
3418
3419	/* Compute how many blocks we can address by block tree */
3420	res += ppb;
3421	res += ppb * ppb;
3422	res += ((loff_t)ppb) * ppb * ppb;
3423	/* Compute how many metadata blocks are needed */
3424	meta_blocks = 1;
3425	meta_blocks += 1 + ppb;
3426	meta_blocks += 1 + ppb + ppb * ppb;
3427	/* Does block tree limit file size? */
3428	if (res + meta_blocks <= upper_limit)
3429		goto check_lfs;
3430
3431	res = upper_limit;
3432	/* How many metadata blocks are needed for addressing upper_limit? */
3433	upper_limit -= EXT4_NDIR_BLOCKS;
3434	/* indirect blocks */
3435	meta_blocks = 1;
3436	upper_limit -= ppb;
3437	/* double indirect blocks */
3438	if (upper_limit < ppb * ppb) {
3439		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3440		res -= meta_blocks;
3441		goto check_lfs;
3442	}
3443	meta_blocks += 1 + ppb;
3444	upper_limit -= ppb * ppb;
3445	/* tripple indirect blocks for the rest */
3446	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3447		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3448	res -= meta_blocks;
3449check_lfs:
3450	res <<= bits;
 
 
 
3451	if (res > MAX_LFS_FILESIZE)
3452		res = MAX_LFS_FILESIZE;
3453
3454	return res;
3455}
3456
3457static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3458				   ext4_fsblk_t logical_sb_block, int nr)
3459{
3460	struct ext4_sb_info *sbi = EXT4_SB(sb);
3461	ext4_group_t bg, first_meta_bg;
3462	int has_super = 0;
3463
3464	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3465
3466	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3467		return logical_sb_block + nr + 1;
3468	bg = sbi->s_desc_per_block * nr;
3469	if (ext4_bg_has_super(sb, bg))
3470		has_super = 1;
3471
3472	/*
3473	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3474	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3475	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3476	 * compensate.
3477	 */
3478	if (sb->s_blocksize == 1024 && nr == 0 &&
3479	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3480		has_super++;
3481
3482	return (has_super + ext4_group_first_block_no(sb, bg));
3483}
3484
3485/**
3486 * ext4_get_stripe_size: Get the stripe size.
3487 * @sbi: In memory super block info
3488 *
3489 * If we have specified it via mount option, then
3490 * use the mount option value. If the value specified at mount time is
3491 * greater than the blocks per group use the super block value.
3492 * If the super block value is greater than blocks per group return 0.
3493 * Allocator needs it be less than blocks per group.
3494 *
3495 */
3496static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3497{
3498	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3499	unsigned long stripe_width =
3500			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3501	int ret;
3502
3503	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3504		ret = sbi->s_stripe;
3505	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3506		ret = stripe_width;
3507	else if (stride && stride <= sbi->s_blocks_per_group)
3508		ret = stride;
3509	else
3510		ret = 0;
3511
3512	/*
3513	 * If the stripe width is 1, this makes no sense and
3514	 * we set it to 0 to turn off stripe handling code.
3515	 */
3516	if (ret <= 1)
3517		ret = 0;
3518
3519	return ret;
3520}
3521
3522/*
3523 * Check whether this filesystem can be mounted based on
3524 * the features present and the RDONLY/RDWR mount requested.
3525 * Returns 1 if this filesystem can be mounted as requested,
3526 * 0 if it cannot be.
3527 */
3528int ext4_feature_set_ok(struct super_block *sb, int readonly)
3529{
3530	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3531		ext4_msg(sb, KERN_ERR,
3532			"Couldn't mount because of "
3533			"unsupported optional features (%x)",
3534			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3535			~EXT4_FEATURE_INCOMPAT_SUPP));
3536		return 0;
3537	}
3538
3539#if !IS_ENABLED(CONFIG_UNICODE)
3540	if (ext4_has_feature_casefold(sb)) {
3541		ext4_msg(sb, KERN_ERR,
3542			 "Filesystem with casefold feature cannot be "
3543			 "mounted without CONFIG_UNICODE");
3544		return 0;
3545	}
3546#endif
3547
3548	if (readonly)
3549		return 1;
3550
3551	if (ext4_has_feature_readonly(sb)) {
3552		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3553		sb->s_flags |= SB_RDONLY;
3554		return 1;
3555	}
3556
3557	/* Check that feature set is OK for a read-write mount */
3558	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3559		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3560			 "unsupported optional features (%x)",
3561			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3562				~EXT4_FEATURE_RO_COMPAT_SUPP));
3563		return 0;
3564	}
 
 
 
 
 
 
 
 
 
 
 
 
3565	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3566		ext4_msg(sb, KERN_ERR,
3567			 "Can't support bigalloc feature without "
3568			 "extents feature\n");
3569		return 0;
3570	}
3571
3572#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3573	if (!readonly && (ext4_has_feature_quota(sb) ||
3574			  ext4_has_feature_project(sb))) {
 
 
 
 
 
3575		ext4_msg(sb, KERN_ERR,
3576			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
 
3577		return 0;
3578	}
3579#endif  /* CONFIG_QUOTA */
3580	return 1;
3581}
3582
3583/*
3584 * This function is called once a day if we have errors logged
3585 * on the file system
3586 */
3587static void print_daily_error_info(struct timer_list *t)
3588{
3589	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3590	struct super_block *sb = sbi->s_sb;
3591	struct ext4_super_block *es = sbi->s_es;
3592
3593	if (es->s_error_count)
3594		/* fsck newer than v1.41.13 is needed to clean this condition. */
3595		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3596			 le32_to_cpu(es->s_error_count));
3597	if (es->s_first_error_time) {
3598		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3599		       sb->s_id,
3600		       ext4_get_tstamp(es, s_first_error_time),
3601		       (int) sizeof(es->s_first_error_func),
3602		       es->s_first_error_func,
3603		       le32_to_cpu(es->s_first_error_line));
3604		if (es->s_first_error_ino)
3605			printk(KERN_CONT ": inode %u",
3606			       le32_to_cpu(es->s_first_error_ino));
3607		if (es->s_first_error_block)
3608			printk(KERN_CONT ": block %llu", (unsigned long long)
3609			       le64_to_cpu(es->s_first_error_block));
3610		printk(KERN_CONT "\n");
3611	}
3612	if (es->s_last_error_time) {
3613		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3614		       sb->s_id,
3615		       ext4_get_tstamp(es, s_last_error_time),
3616		       (int) sizeof(es->s_last_error_func),
3617		       es->s_last_error_func,
3618		       le32_to_cpu(es->s_last_error_line));
3619		if (es->s_last_error_ino)
3620			printk(KERN_CONT ": inode %u",
3621			       le32_to_cpu(es->s_last_error_ino));
3622		if (es->s_last_error_block)
3623			printk(KERN_CONT ": block %llu", (unsigned long long)
3624			       le64_to_cpu(es->s_last_error_block));
3625		printk(KERN_CONT "\n");
3626	}
3627	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3628}
3629
3630/* Find next suitable group and run ext4_init_inode_table */
3631static int ext4_run_li_request(struct ext4_li_request *elr)
3632{
3633	struct ext4_group_desc *gdp = NULL;
3634	struct super_block *sb = elr->lr_super;
3635	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3636	ext4_group_t group = elr->lr_next_group;
3637	unsigned int prefetch_ios = 0;
3638	int ret = 0;
3639	u64 start_time;
3640
3641	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3642		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3643				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3644		if (prefetch_ios)
3645			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3646					      prefetch_ios);
3647		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3648					    prefetch_ios);
3649		if (group >= elr->lr_next_group) {
3650			ret = 1;
3651			if (elr->lr_first_not_zeroed != ngroups &&
3652			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3653				elr->lr_next_group = elr->lr_first_not_zeroed;
3654				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3655				ret = 0;
3656			}
3657		}
3658		return ret;
3659	}
3660
3661	for (; group < ngroups; group++) {
3662		gdp = ext4_get_group_desc(sb, group, NULL);
3663		if (!gdp) {
3664			ret = 1;
3665			break;
3666		}
3667
3668		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3669			break;
3670	}
3671
3672	if (group >= ngroups)
3673		ret = 1;
3674
3675	if (!ret) {
3676		start_time = ktime_get_real_ns();
3677		ret = ext4_init_inode_table(sb, group,
3678					    elr->lr_timeout ? 0 : 1);
3679		trace_ext4_lazy_itable_init(sb, group);
3680		if (elr->lr_timeout == 0) {
3681			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3682				EXT4_SB(elr->lr_super)->s_li_wait_mult);
 
3683		}
3684		elr->lr_next_sched = jiffies + elr->lr_timeout;
3685		elr->lr_next_group = group + 1;
3686	}
3687	return ret;
3688}
3689
3690/*
3691 * Remove lr_request from the list_request and free the
3692 * request structure. Should be called with li_list_mtx held
3693 */
3694static void ext4_remove_li_request(struct ext4_li_request *elr)
3695{
 
 
3696	if (!elr)
3697		return;
3698
 
 
3699	list_del(&elr->lr_request);
3700	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3701	kfree(elr);
3702}
3703
3704static void ext4_unregister_li_request(struct super_block *sb)
3705{
3706	mutex_lock(&ext4_li_mtx);
3707	if (!ext4_li_info) {
3708		mutex_unlock(&ext4_li_mtx);
3709		return;
3710	}
3711
3712	mutex_lock(&ext4_li_info->li_list_mtx);
3713	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3714	mutex_unlock(&ext4_li_info->li_list_mtx);
3715	mutex_unlock(&ext4_li_mtx);
3716}
3717
3718static struct task_struct *ext4_lazyinit_task;
3719
3720/*
3721 * This is the function where ext4lazyinit thread lives. It walks
3722 * through the request list searching for next scheduled filesystem.
3723 * When such a fs is found, run the lazy initialization request
3724 * (ext4_rn_li_request) and keep track of the time spend in this
3725 * function. Based on that time we compute next schedule time of
3726 * the request. When walking through the list is complete, compute
3727 * next waking time and put itself into sleep.
3728 */
3729static int ext4_lazyinit_thread(void *arg)
3730{
3731	struct ext4_lazy_init *eli = arg;
3732	struct list_head *pos, *n;
3733	struct ext4_li_request *elr;
3734	unsigned long next_wakeup, cur;
3735
3736	BUG_ON(NULL == eli);
3737	set_freezable();
3738
3739cont_thread:
3740	while (true) {
3741		next_wakeup = MAX_JIFFY_OFFSET;
3742
3743		mutex_lock(&eli->li_list_mtx);
3744		if (list_empty(&eli->li_request_list)) {
3745			mutex_unlock(&eli->li_list_mtx);
3746			goto exit_thread;
3747		}
3748		list_for_each_safe(pos, n, &eli->li_request_list) {
3749			int err = 0;
3750			int progress = 0;
3751			elr = list_entry(pos, struct ext4_li_request,
3752					 lr_request);
3753
3754			if (time_before(jiffies, elr->lr_next_sched)) {
3755				if (time_before(elr->lr_next_sched, next_wakeup))
3756					next_wakeup = elr->lr_next_sched;
3757				continue;
3758			}
3759			if (down_read_trylock(&elr->lr_super->s_umount)) {
3760				if (sb_start_write_trylock(elr->lr_super)) {
3761					progress = 1;
3762					/*
3763					 * We hold sb->s_umount, sb can not
3764					 * be removed from the list, it is
3765					 * now safe to drop li_list_mtx
3766					 */
3767					mutex_unlock(&eli->li_list_mtx);
3768					err = ext4_run_li_request(elr);
3769					sb_end_write(elr->lr_super);
3770					mutex_lock(&eli->li_list_mtx);
3771					n = pos->next;
3772				}
3773				up_read((&elr->lr_super->s_umount));
3774			}
3775			/* error, remove the lazy_init job */
3776			if (err) {
3777				ext4_remove_li_request(elr);
3778				continue;
3779			}
3780			if (!progress) {
3781				elr->lr_next_sched = jiffies +
3782					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
 
3783			}
3784			if (time_before(elr->lr_next_sched, next_wakeup))
3785				next_wakeup = elr->lr_next_sched;
3786		}
3787		mutex_unlock(&eli->li_list_mtx);
3788
3789		try_to_freeze();
3790
3791		cur = jiffies;
3792		if ((time_after_eq(cur, next_wakeup)) ||
3793		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3794			cond_resched();
3795			continue;
3796		}
3797
3798		schedule_timeout_interruptible(next_wakeup - cur);
3799
3800		if (kthread_should_stop()) {
3801			ext4_clear_request_list();
3802			goto exit_thread;
3803		}
3804	}
3805
3806exit_thread:
3807	/*
3808	 * It looks like the request list is empty, but we need
3809	 * to check it under the li_list_mtx lock, to prevent any
3810	 * additions into it, and of course we should lock ext4_li_mtx
3811	 * to atomically free the list and ext4_li_info, because at
3812	 * this point another ext4 filesystem could be registering
3813	 * new one.
3814	 */
3815	mutex_lock(&ext4_li_mtx);
3816	mutex_lock(&eli->li_list_mtx);
3817	if (!list_empty(&eli->li_request_list)) {
3818		mutex_unlock(&eli->li_list_mtx);
3819		mutex_unlock(&ext4_li_mtx);
3820		goto cont_thread;
3821	}
3822	mutex_unlock(&eli->li_list_mtx);
3823	kfree(ext4_li_info);
3824	ext4_li_info = NULL;
3825	mutex_unlock(&ext4_li_mtx);
3826
3827	return 0;
3828}
3829
3830static void ext4_clear_request_list(void)
3831{
3832	struct list_head *pos, *n;
3833	struct ext4_li_request *elr;
3834
3835	mutex_lock(&ext4_li_info->li_list_mtx);
3836	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3837		elr = list_entry(pos, struct ext4_li_request,
3838				 lr_request);
3839		ext4_remove_li_request(elr);
3840	}
3841	mutex_unlock(&ext4_li_info->li_list_mtx);
3842}
3843
3844static int ext4_run_lazyinit_thread(void)
3845{
3846	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3847					 ext4_li_info, "ext4lazyinit");
3848	if (IS_ERR(ext4_lazyinit_task)) {
3849		int err = PTR_ERR(ext4_lazyinit_task);
3850		ext4_clear_request_list();
3851		kfree(ext4_li_info);
3852		ext4_li_info = NULL;
3853		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3854				 "initialization thread\n",
3855				 err);
3856		return err;
3857	}
3858	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3859	return 0;
3860}
3861
3862/*
3863 * Check whether it make sense to run itable init. thread or not.
3864 * If there is at least one uninitialized inode table, return
3865 * corresponding group number, else the loop goes through all
3866 * groups and return total number of groups.
3867 */
3868static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3869{
3870	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3871	struct ext4_group_desc *gdp = NULL;
3872
3873	if (!ext4_has_group_desc_csum(sb))
3874		return ngroups;
3875
3876	for (group = 0; group < ngroups; group++) {
3877		gdp = ext4_get_group_desc(sb, group, NULL);
3878		if (!gdp)
3879			continue;
3880
3881		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3882			break;
3883	}
3884
3885	return group;
3886}
3887
3888static int ext4_li_info_new(void)
3889{
3890	struct ext4_lazy_init *eli = NULL;
3891
3892	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3893	if (!eli)
3894		return -ENOMEM;
3895
3896	INIT_LIST_HEAD(&eli->li_request_list);
3897	mutex_init(&eli->li_list_mtx);
3898
3899	eli->li_state |= EXT4_LAZYINIT_QUIT;
3900
3901	ext4_li_info = eli;
3902
3903	return 0;
3904}
3905
3906static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3907					    ext4_group_t start)
3908{
 
3909	struct ext4_li_request *elr;
3910
3911	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3912	if (!elr)
3913		return NULL;
3914
3915	elr->lr_super = sb;
3916	elr->lr_first_not_zeroed = start;
3917	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3918		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3919		elr->lr_next_group = start;
3920	} else {
3921		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3922	}
3923
3924	/*
3925	 * Randomize first schedule time of the request to
3926	 * spread the inode table initialization requests
3927	 * better.
3928	 */
3929	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
 
3930	return elr;
3931}
3932
3933int ext4_register_li_request(struct super_block *sb,
3934			     ext4_group_t first_not_zeroed)
3935{
3936	struct ext4_sb_info *sbi = EXT4_SB(sb);
3937	struct ext4_li_request *elr = NULL;
3938	ext4_group_t ngroups = sbi->s_groups_count;
3939	int ret = 0;
3940
3941	mutex_lock(&ext4_li_mtx);
3942	if (sbi->s_li_request != NULL) {
3943		/*
3944		 * Reset timeout so it can be computed again, because
3945		 * s_li_wait_mult might have changed.
3946		 */
3947		sbi->s_li_request->lr_timeout = 0;
3948		goto out;
3949	}
3950
3951	if (sb_rdonly(sb) ||
3952	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3953	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3954		goto out;
3955
3956	elr = ext4_li_request_new(sb, first_not_zeroed);
3957	if (!elr) {
3958		ret = -ENOMEM;
3959		goto out;
3960	}
3961
3962	if (NULL == ext4_li_info) {
3963		ret = ext4_li_info_new();
3964		if (ret)
3965			goto out;
3966	}
3967
3968	mutex_lock(&ext4_li_info->li_list_mtx);
3969	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3970	mutex_unlock(&ext4_li_info->li_list_mtx);
3971
3972	sbi->s_li_request = elr;
3973	/*
3974	 * set elr to NULL here since it has been inserted to
3975	 * the request_list and the removal and free of it is
3976	 * handled by ext4_clear_request_list from now on.
3977	 */
3978	elr = NULL;
3979
3980	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3981		ret = ext4_run_lazyinit_thread();
3982		if (ret)
3983			goto out;
3984	}
3985out:
3986	mutex_unlock(&ext4_li_mtx);
3987	if (ret)
3988		kfree(elr);
3989	return ret;
3990}
3991
3992/*
3993 * We do not need to lock anything since this is called on
3994 * module unload.
3995 */
3996static void ext4_destroy_lazyinit_thread(void)
3997{
3998	/*
3999	 * If thread exited earlier
4000	 * there's nothing to be done.
4001	 */
4002	if (!ext4_li_info || !ext4_lazyinit_task)
4003		return;
4004
4005	kthread_stop(ext4_lazyinit_task);
4006}
4007
4008static int set_journal_csum_feature_set(struct super_block *sb)
4009{
4010	int ret = 1;
4011	int compat, incompat;
4012	struct ext4_sb_info *sbi = EXT4_SB(sb);
4013
4014	if (ext4_has_metadata_csum(sb)) {
4015		/* journal checksum v3 */
4016		compat = 0;
4017		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4018	} else {
4019		/* journal checksum v1 */
4020		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4021		incompat = 0;
4022	}
4023
4024	jbd2_journal_clear_features(sbi->s_journal,
4025			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4026			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4027			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4028	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4029		ret = jbd2_journal_set_features(sbi->s_journal,
4030				compat, 0,
4031				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4032				incompat);
4033	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4034		ret = jbd2_journal_set_features(sbi->s_journal,
4035				compat, 0,
4036				incompat);
4037		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4038				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4039	} else {
4040		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4041				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4042	}
4043
4044	return ret;
4045}
4046
4047/*
4048 * Note: calculating the overhead so we can be compatible with
4049 * historical BSD practice is quite difficult in the face of
4050 * clusters/bigalloc.  This is because multiple metadata blocks from
4051 * different block group can end up in the same allocation cluster.
4052 * Calculating the exact overhead in the face of clustered allocation
4053 * requires either O(all block bitmaps) in memory or O(number of block
4054 * groups**2) in time.  We will still calculate the superblock for
4055 * older file systems --- and if we come across with a bigalloc file
4056 * system with zero in s_overhead_clusters the estimate will be close to
4057 * correct especially for very large cluster sizes --- but for newer
4058 * file systems, it's better to calculate this figure once at mkfs
4059 * time, and store it in the superblock.  If the superblock value is
4060 * present (even for non-bigalloc file systems), we will use it.
4061 */
4062static int count_overhead(struct super_block *sb, ext4_group_t grp,
4063			  char *buf)
4064{
4065	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4066	struct ext4_group_desc	*gdp;
4067	ext4_fsblk_t		first_block, last_block, b;
4068	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4069	int			s, j, count = 0;
4070	int			has_super = ext4_bg_has_super(sb, grp);
4071
4072	if (!ext4_has_feature_bigalloc(sb))
4073		return (has_super + ext4_bg_num_gdb(sb, grp) +
4074			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4075			sbi->s_itb_per_group + 2);
4076
4077	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4078		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4079	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4080	for (i = 0; i < ngroups; i++) {
4081		gdp = ext4_get_group_desc(sb, i, NULL);
4082		b = ext4_block_bitmap(sb, gdp);
4083		if (b >= first_block && b <= last_block) {
4084			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4085			count++;
4086		}
4087		b = ext4_inode_bitmap(sb, gdp);
4088		if (b >= first_block && b <= last_block) {
4089			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4090			count++;
4091		}
4092		b = ext4_inode_table(sb, gdp);
4093		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4094			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4095				int c = EXT4_B2C(sbi, b - first_block);
4096				ext4_set_bit(c, buf);
4097				count++;
4098			}
4099		if (i != grp)
4100			continue;
4101		s = 0;
4102		if (ext4_bg_has_super(sb, grp)) {
4103			ext4_set_bit(s++, buf);
4104			count++;
4105		}
4106		j = ext4_bg_num_gdb(sb, grp);
4107		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4108			ext4_error(sb, "Invalid number of block group "
4109				   "descriptor blocks: %d", j);
4110			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4111		}
4112		count += j;
4113		for (; j > 0; j--)
4114			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4115	}
4116	if (!count)
4117		return 0;
4118	return EXT4_CLUSTERS_PER_GROUP(sb) -
4119		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4120}
4121
4122/*
4123 * Compute the overhead and stash it in sbi->s_overhead
4124 */
4125int ext4_calculate_overhead(struct super_block *sb)
4126{
4127	struct ext4_sb_info *sbi = EXT4_SB(sb);
4128	struct ext4_super_block *es = sbi->s_es;
4129	struct inode *j_inode;
4130	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4131	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4132	ext4_fsblk_t overhead = 0;
4133	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4134
4135	if (!buf)
4136		return -ENOMEM;
4137
4138	/*
4139	 * Compute the overhead (FS structures).  This is constant
4140	 * for a given filesystem unless the number of block groups
4141	 * changes so we cache the previous value until it does.
4142	 */
4143
4144	/*
4145	 * All of the blocks before first_data_block are overhead
4146	 */
4147	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4148
4149	/*
4150	 * Add the overhead found in each block group
4151	 */
4152	for (i = 0; i < ngroups; i++) {
4153		int blks;
4154
4155		blks = count_overhead(sb, i, buf);
4156		overhead += blks;
4157		if (blks)
4158			memset(buf, 0, PAGE_SIZE);
4159		cond_resched();
4160	}
4161
4162	/*
4163	 * Add the internal journal blocks whether the journal has been
4164	 * loaded or not
4165	 */
4166	if (sbi->s_journal && !sbi->s_journal_bdev)
4167		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4168	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4169		/* j_inum for internal journal is non-zero */
4170		j_inode = ext4_get_journal_inode(sb, j_inum);
4171		if (j_inode) {
4172			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4173			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4174			iput(j_inode);
4175		} else {
4176			ext4_msg(sb, KERN_ERR, "can't get journal size");
4177		}
4178	}
4179	sbi->s_overhead = overhead;
4180	smp_wmb();
4181	free_page((unsigned long) buf);
4182	return 0;
4183}
4184
4185static void ext4_set_resv_clusters(struct super_block *sb)
4186{
4187	ext4_fsblk_t resv_clusters;
4188	struct ext4_sb_info *sbi = EXT4_SB(sb);
4189
4190	/*
4191	 * There's no need to reserve anything when we aren't using extents.
4192	 * The space estimates are exact, there are no unwritten extents,
4193	 * hole punching doesn't need new metadata... This is needed especially
4194	 * to keep ext2/3 backward compatibility.
4195	 */
4196	if (!ext4_has_feature_extents(sb))
4197		return;
4198	/*
4199	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4200	 * This should cover the situations where we can not afford to run
4201	 * out of space like for example punch hole, or converting
4202	 * unwritten extents in delalloc path. In most cases such
4203	 * allocation would require 1, or 2 blocks, higher numbers are
4204	 * very rare.
4205	 */
4206	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4207			 sbi->s_cluster_bits);
4208
4209	do_div(resv_clusters, 50);
4210	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4211
4212	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4213}
4214
4215static const char *ext4_quota_mode(struct super_block *sb)
4216{
4217#ifdef CONFIG_QUOTA
4218	if (!ext4_quota_capable(sb))
4219		return "none";
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4220
4221	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4222		return "journalled";
4223	else
4224		return "writeback";
4225#else
4226	return "disabled";
4227#endif
4228}
4229
4230static void ext4_setup_csum_trigger(struct super_block *sb,
4231				    enum ext4_journal_trigger_type type,
4232				    void (*trigger)(
4233					struct jbd2_buffer_trigger_type *type,
4234					struct buffer_head *bh,
4235					void *mapped_data,
4236					size_t size))
4237{
4238	struct ext4_sb_info *sbi = EXT4_SB(sb);
4239
4240	sbi->s_journal_triggers[type].sb = sb;
4241	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4242}
 
 
 
 
4243
4244static void ext4_free_sbi(struct ext4_sb_info *sbi)
4245{
4246	if (!sbi)
4247		return;
4248
4249	kfree(sbi->s_blockgroup_lock);
4250	fs_put_dax(sbi->s_daxdev, NULL);
4251	kfree(sbi);
4252}
 
 
 
4253
4254static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4255{
4256	struct ext4_sb_info *sbi;
 
 
 
 
 
 
 
4257
4258	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4259	if (!sbi)
4260		return NULL;
 
 
 
 
 
 
 
 
 
 
 
4261
4262	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4263					   NULL, NULL);
 
 
 
4264
4265	sbi->s_blockgroup_lock =
4266		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
 
 
 
 
 
4267
4268	if (!sbi->s_blockgroup_lock)
4269		goto err_out;
 
 
 
 
 
 
4270
4271	sb->s_fs_info = sbi;
4272	sbi->s_sb = sb;
4273	return sbi;
4274err_out:
4275	fs_put_dax(sbi->s_daxdev, NULL);
4276	kfree(sbi);
4277	return NULL;
4278}
4279
4280static void ext4_set_def_opts(struct super_block *sb,
4281			      struct ext4_super_block *es)
4282{
4283	unsigned long def_mount_opts;
 
 
4284
4285	/* Set defaults before we parse the mount options */
4286	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4287	set_opt(sb, INIT_INODE_TABLE);
4288	if (def_mount_opts & EXT4_DEFM_DEBUG)
4289		set_opt(sb, DEBUG);
4290	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4291		set_opt(sb, GRPID);
4292	if (def_mount_opts & EXT4_DEFM_UID16)
4293		set_opt(sb, NO_UID32);
4294	/* xattr user namespace & acls are now defaulted on */
4295	set_opt(sb, XATTR_USER);
4296#ifdef CONFIG_EXT4_FS_POSIX_ACL
4297	set_opt(sb, POSIX_ACL);
4298#endif
4299	if (ext4_has_feature_fast_commit(sb))
4300		set_opt2(sb, JOURNAL_FAST_COMMIT);
4301	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4302	if (ext4_has_metadata_csum(sb))
4303		set_opt(sb, JOURNAL_CHECKSUM);
4304
4305	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4306		set_opt(sb, JOURNAL_DATA);
4307	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4308		set_opt(sb, ORDERED_DATA);
4309	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4310		set_opt(sb, WRITEBACK_DATA);
4311
4312	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4313		set_opt(sb, ERRORS_PANIC);
4314	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4315		set_opt(sb, ERRORS_CONT);
4316	else
4317		set_opt(sb, ERRORS_RO);
4318	/* block_validity enabled by default; disable with noblock_validity */
4319	set_opt(sb, BLOCK_VALIDITY);
4320	if (def_mount_opts & EXT4_DEFM_DISCARD)
4321		set_opt(sb, DISCARD);
4322
 
 
 
 
 
 
4323	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4324		set_opt(sb, BARRIER);
4325
4326	/*
4327	 * enable delayed allocation by default
4328	 * Use -o nodelalloc to turn it off
4329	 */
4330	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4331	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4332		set_opt(sb, DELALLOC);
4333
4334	if (sb->s_blocksize == PAGE_SIZE)
4335		set_opt(sb, DIOREAD_NOLOCK);
4336}
4337
4338static int ext4_handle_clustersize(struct super_block *sb)
4339{
4340	struct ext4_sb_info *sbi = EXT4_SB(sb);
4341	struct ext4_super_block *es = sbi->s_es;
4342	int clustersize;
4343
4344	/* Handle clustersize */
4345	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4346	if (ext4_has_feature_bigalloc(sb)) {
4347		if (clustersize < sb->s_blocksize) {
4348			ext4_msg(sb, KERN_ERR,
4349				 "cluster size (%d) smaller than "
4350				 "block size (%lu)", clustersize, sb->s_blocksize);
4351			return -EINVAL;
4352		}
4353		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4354			le32_to_cpu(es->s_log_block_size);
4355		sbi->s_clusters_per_group =
4356			le32_to_cpu(es->s_clusters_per_group);
4357		if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4358			ext4_msg(sb, KERN_ERR,
4359				 "#clusters per group too big: %lu",
4360				 sbi->s_clusters_per_group);
4361			return -EINVAL;
4362		}
4363		if (sbi->s_blocks_per_group !=
4364		    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4365			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4366				 "clusters per group (%lu) inconsistent",
4367				 sbi->s_blocks_per_group,
4368				 sbi->s_clusters_per_group);
4369			return -EINVAL;
4370		}
4371	} else {
4372		if (clustersize != sb->s_blocksize) {
4373			ext4_msg(sb, KERN_ERR,
4374				 "fragment/cluster size (%d) != "
4375				 "block size (%lu)", clustersize, sb->s_blocksize);
4376			return -EINVAL;
4377		}
4378		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4379			ext4_msg(sb, KERN_ERR,
4380				 "#blocks per group too big: %lu",
4381				 sbi->s_blocks_per_group);
4382			return -EINVAL;
4383		}
4384		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4385		sbi->s_cluster_bits = 0;
4386	}
4387	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4388
4389	/* Do we have standard group size of clustersize * 8 blocks ? */
4390	if (sbi->s_blocks_per_group == clustersize << 3)
4391		set_opt2(sb, STD_GROUP_SIZE);
4392
4393	return 0;
4394}
4395
4396static void ext4_fast_commit_init(struct super_block *sb)
4397{
4398	struct ext4_sb_info *sbi = EXT4_SB(sb);
4399
4400	/* Initialize fast commit stuff */
4401	atomic_set(&sbi->s_fc_subtid, 0);
4402	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4403	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4404	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4405	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4406	sbi->s_fc_bytes = 0;
4407	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4408	sbi->s_fc_ineligible_tid = 0;
4409	spin_lock_init(&sbi->s_fc_lock);
4410	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4411	sbi->s_fc_replay_state.fc_regions = NULL;
4412	sbi->s_fc_replay_state.fc_regions_size = 0;
4413	sbi->s_fc_replay_state.fc_regions_used = 0;
4414	sbi->s_fc_replay_state.fc_regions_valid = 0;
4415	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4416	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4417	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4418}
4419
4420static int ext4_inode_info_init(struct super_block *sb,
4421				struct ext4_super_block *es)
4422{
4423	struct ext4_sb_info *sbi = EXT4_SB(sb);
4424
4425	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4426		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4427		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4428	} else {
4429		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4430		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4431		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4432			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4433				 sbi->s_first_ino);
4434			return -EINVAL;
4435		}
4436		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4437		    (!is_power_of_2(sbi->s_inode_size)) ||
4438		    (sbi->s_inode_size > sb->s_blocksize)) {
4439			ext4_msg(sb, KERN_ERR,
4440			       "unsupported inode size: %d",
4441			       sbi->s_inode_size);
4442			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4443			return -EINVAL;
4444		}
4445		/*
4446		 * i_atime_extra is the last extra field available for
4447		 * [acm]times in struct ext4_inode. Checking for that
4448		 * field should suffice to ensure we have extra space
4449		 * for all three.
4450		 */
4451		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4452			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4453			sb->s_time_gran = 1;
4454			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4455		} else {
4456			sb->s_time_gran = NSEC_PER_SEC;
4457			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4458		}
4459		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4460	}
4461
4462	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4463		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4464			EXT4_GOOD_OLD_INODE_SIZE;
4465		if (ext4_has_feature_extra_isize(sb)) {
4466			unsigned v, max = (sbi->s_inode_size -
4467					   EXT4_GOOD_OLD_INODE_SIZE);
4468
4469			v = le16_to_cpu(es->s_want_extra_isize);
4470			if (v > max) {
4471				ext4_msg(sb, KERN_ERR,
4472					 "bad s_want_extra_isize: %d", v);
4473				return -EINVAL;
4474			}
4475			if (sbi->s_want_extra_isize < v)
4476				sbi->s_want_extra_isize = v;
4477
4478			v = le16_to_cpu(es->s_min_extra_isize);
4479			if (v > max) {
4480				ext4_msg(sb, KERN_ERR,
4481					 "bad s_min_extra_isize: %d", v);
4482				return -EINVAL;
4483			}
4484			if (sbi->s_want_extra_isize < v)
4485				sbi->s_want_extra_isize = v;
4486		}
 
 
 
 
4487	}
4488
4489	return 0;
4490}
4491
4492#if IS_ENABLED(CONFIG_UNICODE)
4493static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4494{
4495	const struct ext4_sb_encodings *encoding_info;
4496	struct unicode_map *encoding;
4497	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4498
4499	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4500		return 0;
4501
4502	encoding_info = ext4_sb_read_encoding(es);
4503	if (!encoding_info) {
4504		ext4_msg(sb, KERN_ERR,
4505			"Encoding requested by superblock is unknown");
4506		return -EINVAL;
4507	}
4508
4509	encoding = utf8_load(encoding_info->version);
4510	if (IS_ERR(encoding)) {
4511		ext4_msg(sb, KERN_ERR,
4512			"can't mount with superblock charset: %s-%u.%u.%u "
4513			"not supported by the kernel. flags: 0x%x.",
4514			encoding_info->name,
4515			unicode_major(encoding_info->version),
4516			unicode_minor(encoding_info->version),
4517			unicode_rev(encoding_info->version),
4518			encoding_flags);
4519		return -EINVAL;
4520	}
4521	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4522		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4523		unicode_major(encoding_info->version),
4524		unicode_minor(encoding_info->version),
4525		unicode_rev(encoding_info->version),
4526		encoding_flags);
4527
4528	sb->s_encoding = encoding;
4529	sb->s_encoding_flags = encoding_flags;
4530
4531	return 0;
4532}
4533#else
4534static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4535{
4536	return 0;
4537}
4538#endif
4539
4540static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4541{
4542	struct ext4_sb_info *sbi = EXT4_SB(sb);
4543
4544	/* Warn if metadata_csum and gdt_csum are both set. */
4545	if (ext4_has_feature_metadata_csum(sb) &&
4546	    ext4_has_feature_gdt_csum(sb))
4547		ext4_warning(sb, "metadata_csum and uninit_bg are "
4548			     "redundant flags; please run fsck.");
4549
4550	/* Check for a known checksum algorithm */
4551	if (!ext4_verify_csum_type(sb, es)) {
4552		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4553			 "unknown checksum algorithm.");
4554		return -EINVAL;
4555	}
4556	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4557				ext4_orphan_file_block_trigger);
4558
4559	/* Load the checksum driver */
4560	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4561	if (IS_ERR(sbi->s_chksum_driver)) {
4562		int ret = PTR_ERR(sbi->s_chksum_driver);
4563		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4564		sbi->s_chksum_driver = NULL;
4565		return ret;
4566	}
4567
4568	/* Check superblock checksum */
4569	if (!ext4_superblock_csum_verify(sb, es)) {
4570		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4571			 "invalid superblock checksum.  Run e2fsck?");
4572		return -EFSBADCRC;
4573	}
4574
4575	/* Precompute checksum seed for all metadata */
4576	if (ext4_has_feature_csum_seed(sb))
4577		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4578	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4579		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4580					       sizeof(es->s_uuid));
4581	return 0;
4582}
4583
4584static int ext4_check_feature_compatibility(struct super_block *sb,
4585					    struct ext4_super_block *es,
4586					    int silent)
4587{
4588	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4589	    (ext4_has_compat_features(sb) ||
4590	     ext4_has_ro_compat_features(sb) ||
4591	     ext4_has_incompat_features(sb)))
4592		ext4_msg(sb, KERN_WARNING,
4593		       "feature flags set on rev 0 fs, "
4594		       "running e2fsck is recommended");
4595
4596	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4597		set_opt2(sb, HURD_COMPAT);
4598		if (ext4_has_feature_64bit(sb)) {
4599			ext4_msg(sb, KERN_ERR,
4600				 "The Hurd can't support 64-bit file systems");
4601			return -EINVAL;
4602		}
4603
4604		/*
4605		 * ea_inode feature uses l_i_version field which is not
4606		 * available in HURD_COMPAT mode.
4607		 */
4608		if (ext4_has_feature_ea_inode(sb)) {
4609			ext4_msg(sb, KERN_ERR,
4610				 "ea_inode feature is not supported for Hurd");
4611			return -EINVAL;
4612		}
4613	}
4614
4615	if (IS_EXT2_SB(sb)) {
4616		if (ext2_feature_set_ok(sb))
4617			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4618				 "using the ext4 subsystem");
4619		else {
4620			/*
4621			 * If we're probing be silent, if this looks like
4622			 * it's actually an ext[34] filesystem.
4623			 */
4624			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4625				return -EINVAL;
4626			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4627				 "to feature incompatibilities");
4628			return -EINVAL;
4629		}
4630	}
4631
4632	if (IS_EXT3_SB(sb)) {
4633		if (ext3_feature_set_ok(sb))
4634			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4635				 "using the ext4 subsystem");
4636		else {
4637			/*
4638			 * If we're probing be silent, if this looks like
4639			 * it's actually an ext4 filesystem.
4640			 */
4641			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4642				return -EINVAL;
4643			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4644				 "to feature incompatibilities");
4645			return -EINVAL;
4646		}
4647	}
4648
4649	/*
4650	 * Check feature flags regardless of the revision level, since we
4651	 * previously didn't change the revision level when setting the flags,
4652	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4653	 */
4654	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4655		return -EINVAL;
4656
4657	return 0;
4658}
4659
4660static int ext4_geometry_check(struct super_block *sb,
4661			       struct ext4_super_block *es)
4662{
4663	struct ext4_sb_info *sbi = EXT4_SB(sb);
4664	__u64 blocks_count;
4665
4666	/* check blocks count against device size */
4667	blocks_count = sb_bdev_nr_blocks(sb);
4668	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4669		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4670		       "exceeds size of device (%llu blocks)",
4671		       ext4_blocks_count(es), blocks_count);
4672		return -EINVAL;
4673	}
4674
4675	/*
4676	 * It makes no sense for the first data block to be beyond the end
4677	 * of the filesystem.
4678	 */
4679	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4680		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4681			 "block %u is beyond end of filesystem (%llu)",
4682			 le32_to_cpu(es->s_first_data_block),
4683			 ext4_blocks_count(es));
4684		return -EINVAL;
4685	}
4686	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4687	    (sbi->s_cluster_ratio == 1)) {
4688		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4689			 "block is 0 with a 1k block and cluster size");
4690		return -EINVAL;
4691	}
4692
4693	blocks_count = (ext4_blocks_count(es) -
4694			le32_to_cpu(es->s_first_data_block) +
4695			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4696	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4697	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4698		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4699		       "(block count %llu, first data block %u, "
4700		       "blocks per group %lu)", blocks_count,
4701		       ext4_blocks_count(es),
4702		       le32_to_cpu(es->s_first_data_block),
4703		       EXT4_BLOCKS_PER_GROUP(sb));
4704		return -EINVAL;
4705	}
4706	sbi->s_groups_count = blocks_count;
4707	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4708			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4709	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4710	    le32_to_cpu(es->s_inodes_count)) {
4711		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4712			 le32_to_cpu(es->s_inodes_count),
4713			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4714		return -EINVAL;
4715	}
4716
4717	return 0;
4718}
4719
4720static void ext4_group_desc_free(struct ext4_sb_info *sbi)
4721{
4722	struct buffer_head **group_desc;
4723	int i;
4724
4725	rcu_read_lock();
4726	group_desc = rcu_dereference(sbi->s_group_desc);
4727	for (i = 0; i < sbi->s_gdb_count; i++)
4728		brelse(group_desc[i]);
4729	kvfree(group_desc);
4730	rcu_read_unlock();
4731}
4732
4733static int ext4_group_desc_init(struct super_block *sb,
4734				struct ext4_super_block *es,
4735				ext4_fsblk_t logical_sb_block,
4736				ext4_group_t *first_not_zeroed)
4737{
4738	struct ext4_sb_info *sbi = EXT4_SB(sb);
4739	unsigned int db_count;
4740	ext4_fsblk_t block;
4741	int ret;
4742	int i;
4743
4744	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4745		   EXT4_DESC_PER_BLOCK(sb);
4746	if (ext4_has_feature_meta_bg(sb)) {
4747		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4748			ext4_msg(sb, KERN_WARNING,
4749				 "first meta block group too large: %u "
4750				 "(group descriptor block count %u)",
4751				 le32_to_cpu(es->s_first_meta_bg), db_count);
4752			return -EINVAL;
4753		}
4754	}
4755	rcu_assign_pointer(sbi->s_group_desc,
4756			   kvmalloc_array(db_count,
4757					  sizeof(struct buffer_head *),
4758					  GFP_KERNEL));
4759	if (sbi->s_group_desc == NULL) {
4760		ext4_msg(sb, KERN_ERR, "not enough memory");
4761		return -ENOMEM;
4762	}
4763
4764	bgl_lock_init(sbi->s_blockgroup_lock);
4765
4766	/* Pre-read the descriptors into the buffer cache */
4767	for (i = 0; i < db_count; i++) {
4768		block = descriptor_loc(sb, logical_sb_block, i);
4769		ext4_sb_breadahead_unmovable(sb, block);
4770	}
4771
4772	for (i = 0; i < db_count; i++) {
4773		struct buffer_head *bh;
4774
4775		block = descriptor_loc(sb, logical_sb_block, i);
4776		bh = ext4_sb_bread_unmovable(sb, block);
4777		if (IS_ERR(bh)) {
4778			ext4_msg(sb, KERN_ERR,
4779			       "can't read group descriptor %d", i);
4780			sbi->s_gdb_count = i;
4781			ret = PTR_ERR(bh);
4782			goto out;
4783		}
4784		rcu_read_lock();
4785		rcu_dereference(sbi->s_group_desc)[i] = bh;
4786		rcu_read_unlock();
4787	}
4788	sbi->s_gdb_count = db_count;
4789	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4790		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4791		ret = -EFSCORRUPTED;
4792		goto out;
4793	}
4794	return 0;
4795out:
4796	ext4_group_desc_free(sbi);
4797	return ret;
4798}
4799
4800static int ext4_load_and_init_journal(struct super_block *sb,
4801				      struct ext4_super_block *es,
4802				      struct ext4_fs_context *ctx)
4803{
4804	struct ext4_sb_info *sbi = EXT4_SB(sb);
4805	int err;
4806
4807	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4808	if (err)
4809		return err;
4810
4811	if (ext4_has_feature_64bit(sb) &&
4812	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4813				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4814		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4815		goto out;
4816	}
4817
4818	if (!set_journal_csum_feature_set(sb)) {
4819		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4820			 "feature set");
4821		goto out;
4822	}
4823
4824	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4825		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4826					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4827		ext4_msg(sb, KERN_ERR,
4828			"Failed to set fast commit journal feature");
4829		goto out;
4830	}
4831
4832	/* We have now updated the journal if required, so we can
4833	 * validate the data journaling mode. */
4834	switch (test_opt(sb, DATA_FLAGS)) {
4835	case 0:
4836		/* No mode set, assume a default based on the journal
4837		 * capabilities: ORDERED_DATA if the journal can
4838		 * cope, else JOURNAL_DATA
4839		 */
4840		if (jbd2_journal_check_available_features
4841		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4842			set_opt(sb, ORDERED_DATA);
4843			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4844		} else {
4845			set_opt(sb, JOURNAL_DATA);
4846			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4847		}
4848		break;
4849
4850	case EXT4_MOUNT_ORDERED_DATA:
4851	case EXT4_MOUNT_WRITEBACK_DATA:
4852		if (!jbd2_journal_check_available_features
4853		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4854			ext4_msg(sb, KERN_ERR, "Journal does not support "
4855			       "requested data journaling mode");
4856			goto out;
4857		}
4858		break;
4859	default:
4860		break;
4861	}
4862
4863	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4864	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4865		ext4_msg(sb, KERN_ERR, "can't mount with "
4866			"journal_async_commit in data=ordered mode");
4867		goto out;
4868	}
4869
4870	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4871
4872	sbi->s_journal->j_submit_inode_data_buffers =
4873		ext4_journal_submit_inode_data_buffers;
4874	sbi->s_journal->j_finish_inode_data_buffers =
4875		ext4_journal_finish_inode_data_buffers;
4876
4877	return 0;
4878
4879out:
4880	/* flush s_error_work before journal destroy. */
4881	flush_work(&sbi->s_error_work);
4882	jbd2_journal_destroy(sbi->s_journal);
4883	sbi->s_journal = NULL;
4884	return -EINVAL;
4885}
4886
4887static int ext4_journal_data_mode_check(struct super_block *sb)
4888{
4889	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4890		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4891			    "data=journal disables delayed allocation, "
4892			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4893		/* can't mount with both data=journal and dioread_nolock. */
4894		clear_opt(sb, DIOREAD_NOLOCK);
4895		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4896		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4897			ext4_msg(sb, KERN_ERR, "can't mount with "
4898				 "both data=journal and delalloc");
4899			return -EINVAL;
4900		}
4901		if (test_opt(sb, DAX_ALWAYS)) {
4902			ext4_msg(sb, KERN_ERR, "can't mount with "
4903				 "both data=journal and dax");
4904			return -EINVAL;
4905		}
4906		if (ext4_has_feature_encrypt(sb)) {
4907			ext4_msg(sb, KERN_WARNING,
4908				 "encrypted files will use data=ordered "
4909				 "instead of data journaling mode");
4910		}
4911		if (test_opt(sb, DELALLOC))
4912			clear_opt(sb, DELALLOC);
4913	} else {
4914		sb->s_iflags |= SB_I_CGROUPWB;
4915	}
4916
4917	return 0;
4918}
4919
4920static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
4921			   int silent)
4922{
4923	struct ext4_sb_info *sbi = EXT4_SB(sb);
4924	struct ext4_super_block *es;
4925	ext4_fsblk_t logical_sb_block;
4926	unsigned long offset = 0;
4927	struct buffer_head *bh;
4928	int ret = -EINVAL;
4929	int blocksize;
4930
4931	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4932	if (!blocksize) {
4933		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4934		return -EINVAL;
4935	}
4936
4937	/*
4938	 * The ext4 superblock will not be buffer aligned for other than 1kB
4939	 * block sizes.  We need to calculate the offset from buffer start.
4940	 */
4941	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4942		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4943		offset = do_div(logical_sb_block, blocksize);
4944	} else {
4945		logical_sb_block = sbi->s_sb_block;
4946	}
4947
4948	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4949	if (IS_ERR(bh)) {
4950		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4951		return PTR_ERR(bh);
4952	}
4953	/*
4954	 * Note: s_es must be initialized as soon as possible because
4955	 *       some ext4 macro-instructions depend on its value
4956	 */
4957	es = (struct ext4_super_block *) (bh->b_data + offset);
4958	sbi->s_es = es;
4959	sb->s_magic = le16_to_cpu(es->s_magic);
4960	if (sb->s_magic != EXT4_SUPER_MAGIC) {
4961		if (!silent)
4962			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4963		goto out;
4964	}
4965
4966	if (le32_to_cpu(es->s_log_block_size) >
4967	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4968		ext4_msg(sb, KERN_ERR,
4969			 "Invalid log block size: %u",
4970			 le32_to_cpu(es->s_log_block_size));
4971		goto out;
4972	}
4973	if (le32_to_cpu(es->s_log_cluster_size) >
4974	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4975		ext4_msg(sb, KERN_ERR,
4976			 "Invalid log cluster size: %u",
4977			 le32_to_cpu(es->s_log_cluster_size));
4978		goto out;
4979	}
4980
4981	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4982
4983	/*
4984	 * If the default block size is not the same as the real block size,
4985	 * we need to reload it.
4986	 */
4987	if (sb->s_blocksize == blocksize) {
4988		*lsb = logical_sb_block;
4989		sbi->s_sbh = bh;
4990		return 0;
4991	}
4992
4993	/*
4994	 * bh must be released before kill_bdev(), otherwise
4995	 * it won't be freed and its page also. kill_bdev()
4996	 * is called by sb_set_blocksize().
4997	 */
4998	brelse(bh);
4999	/* Validate the filesystem blocksize */
5000	if (!sb_set_blocksize(sb, blocksize)) {
5001		ext4_msg(sb, KERN_ERR, "bad block size %d",
5002				blocksize);
5003		bh = NULL;
5004		goto out;
5005	}
5006
5007	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5008	offset = do_div(logical_sb_block, blocksize);
5009	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5010	if (IS_ERR(bh)) {
5011		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5012		ret = PTR_ERR(bh);
5013		bh = NULL;
5014		goto out;
5015	}
5016	es = (struct ext4_super_block *)(bh->b_data + offset);
5017	sbi->s_es = es;
5018	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5019		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5020		goto out;
5021	}
5022	*lsb = logical_sb_block;
5023	sbi->s_sbh = bh;
5024	return 0;
5025out:
5026	brelse(bh);
5027	return ret;
5028}
5029
5030static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5031{
5032	struct ext4_super_block *es = NULL;
5033	struct ext4_sb_info *sbi = EXT4_SB(sb);
5034	struct flex_groups **flex_groups;
5035	ext4_fsblk_t block;
5036	ext4_fsblk_t logical_sb_block;
5037	struct inode *root;
5038	int ret = -ENOMEM;
5039	unsigned int i;
5040	int needs_recovery, has_huge_files;
5041	int err = 0;
5042	ext4_group_t first_not_zeroed;
5043	struct ext4_fs_context *ctx = fc->fs_private;
5044	int silent = fc->sb_flags & SB_SILENT;
5045
5046	/* Set defaults for the variables that will be set during parsing */
5047	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5048		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5049
5050	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5051	sbi->s_sectors_written_start =
5052		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5053
5054	/* -EINVAL is default */
5055	ret = -EINVAL;
5056	err = ext4_load_super(sb, &logical_sb_block, silent);
5057	if (err)
5058		goto out_fail;
5059
5060	es = sbi->s_es;
5061	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5062
5063	err = ext4_init_metadata_csum(sb, es);
5064	if (err)
5065		goto failed_mount;
5066
5067	ext4_set_def_opts(sb, es);
5068
5069	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5070	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5071	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5072	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5073	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5074
5075	/*
5076	 * set default s_li_wait_mult for lazyinit, for the case there is
5077	 * no mount option specified.
5078	 */
5079	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5080
5081	if (ext4_inode_info_init(sb, es))
5082		goto failed_mount;
5083
5084	err = parse_apply_sb_mount_options(sb, ctx);
5085	if (err < 0)
5086		goto failed_mount;
5087
5088	sbi->s_def_mount_opt = sbi->s_mount_opt;
5089
5090	err = ext4_check_opt_consistency(fc, sb);
5091	if (err < 0)
5092		goto failed_mount;
5093
5094	ext4_apply_options(fc, sb);
5095
5096	if (ext4_encoding_init(sb, es))
5097		goto failed_mount;
5098
5099	if (ext4_journal_data_mode_check(sb))
5100		goto failed_mount;
5101
5102	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5103		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5104
5105	/* i_version is always enabled now */
5106	sb->s_flags |= SB_I_VERSION;
5107
5108	if (ext4_check_feature_compatibility(sb, es, silent))
5109		goto failed_mount;
 
5110
5111	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
5112		ext4_msg(sb, KERN_ERR,
5113			 "Number of reserved GDT blocks insanely large: %d",
5114			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
5115		goto failed_mount;
5116	}
5117
5118	if (sbi->s_daxdev) {
5119		if (sb->s_blocksize == PAGE_SIZE)
5120			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
5121		else
5122			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
5123	}
5124
5125	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
5126		if (ext4_has_feature_inline_data(sb)) {
5127			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
5128					" that may contain inline data");
5129			goto failed_mount;
5130		}
5131		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
 
5132			ext4_msg(sb, KERN_ERR,
5133				"DAX unsupported by block device.");
5134			goto failed_mount;
5135		}
5136	}
5137
5138	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
5139		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
5140			 es->s_encryption_level);
5141		goto failed_mount;
5142	}
5143
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5144	has_huge_files = ext4_has_feature_huge_file(sb);
5145	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5146						      has_huge_files);
5147	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5149	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5150	if (ext4_has_feature_64bit(sb)) {
5151		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5152		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5153		    !is_power_of_2(sbi->s_desc_size)) {
5154			ext4_msg(sb, KERN_ERR,
5155			       "unsupported descriptor size %lu",
5156			       sbi->s_desc_size);
5157			goto failed_mount;
5158		}
5159	} else
5160		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5161
5162	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5163	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5164
5165	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5166	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5167		if (!silent)
5168			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5169		goto failed_mount;
5170	}
5171	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5172	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5173		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5174			 sbi->s_inodes_per_group);
5175		goto failed_mount;
5176	}
5177	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5178					sbi->s_inodes_per_block;
5179	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5180	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
 
5181	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5182	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5183
5184	for (i = 0; i < 4; i++)
5185		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5186	sbi->s_def_hash_version = es->s_def_hash_version;
5187	if (ext4_has_feature_dir_index(sb)) {
5188		i = le32_to_cpu(es->s_flags);
5189		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5190			sbi->s_hash_unsigned = 3;
5191		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5192#ifdef __CHAR_UNSIGNED__
5193			if (!sb_rdonly(sb))
5194				es->s_flags |=
5195					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5196			sbi->s_hash_unsigned = 3;
5197#else
5198			if (!sb_rdonly(sb))
5199				es->s_flags |=
5200					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5201#endif
5202		}
5203	}
5204
5205	if (ext4_handle_clustersize(sb))
5206		goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5207
5208	/*
5209	 * Test whether we have more sectors than will fit in sector_t,
5210	 * and whether the max offset is addressable by the page cache.
5211	 */
5212	err = generic_check_addressable(sb->s_blocksize_bits,
5213					ext4_blocks_count(es));
5214	if (err) {
5215		ext4_msg(sb, KERN_ERR, "filesystem"
5216			 " too large to mount safely on this system");
 
 
5217		goto failed_mount;
5218	}
5219
5220	if (ext4_geometry_check(sb, es))
 
 
 
 
 
 
 
 
5221		goto failed_mount;
 
5222
5223	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5224	if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5225		goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5226
5227	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5228	spin_lock_init(&sbi->s_error_lock);
5229	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
5230
5231	/* Register extent status tree shrinker */
5232	if (ext4_es_register_shrinker(sbi))
5233		goto failed_mount3;
5234
5235	sbi->s_stripe = ext4_get_stripe_size(sbi);
5236	sbi->s_extent_max_zeroout_kb = 32;
5237
5238	/*
5239	 * set up enough so that it can read an inode
5240	 */
5241	sb->s_op = &ext4_sops;
5242	sb->s_export_op = &ext4_export_ops;
5243	sb->s_xattr = ext4_xattr_handlers;
5244#ifdef CONFIG_FS_ENCRYPTION
5245	sb->s_cop = &ext4_cryptops;
5246#endif
5247#ifdef CONFIG_FS_VERITY
5248	sb->s_vop = &ext4_verityops;
5249#endif
5250#ifdef CONFIG_QUOTA
5251	sb->dq_op = &ext4_quota_operations;
5252	if (ext4_has_feature_quota(sb))
5253		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5254	else
5255		sb->s_qcop = &ext4_qctl_operations;
5256	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5257#endif
5258	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5259
5260	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5261	mutex_init(&sbi->s_orphan_lock);
5262
5263	ext4_fast_commit_init(sb);
5264
5265	sb->s_root = NULL;
5266
5267	needs_recovery = (es->s_last_orphan != 0 ||
5268			  ext4_has_feature_orphan_present(sb) ||
5269			  ext4_has_feature_journal_needs_recovery(sb));
5270
5271	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
5272		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
5273			goto failed_mount3a;
5274
5275	/*
5276	 * The first inode we look at is the journal inode.  Don't try
5277	 * root first: it may be modified in the journal!
5278	 */
5279	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5280		err = ext4_load_and_init_journal(sb, es, ctx);
5281		if (err)
5282			goto failed_mount3a;
5283	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5284		   ext4_has_feature_journal_needs_recovery(sb)) {
5285		ext4_msg(sb, KERN_ERR, "required journal recovery "
5286		       "suppressed and not mounted read-only");
5287		goto failed_mount3a;
5288	} else {
5289		/* Nojournal mode, all journal mount options are illegal */
5290		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5291			ext4_msg(sb, KERN_ERR, "can't mount with "
5292				 "journal_async_commit, fs mounted w/o journal");
5293			goto failed_mount3a;
5294		}
5295
5296		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5297			ext4_msg(sb, KERN_ERR, "can't mount with "
5298				 "journal_checksum, fs mounted w/o journal");
5299			goto failed_mount3a;
 
 
 
 
 
5300		}
5301		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5302			ext4_msg(sb, KERN_ERR, "can't mount with "
5303				 "commit=%lu, fs mounted w/o journal",
5304				 sbi->s_commit_interval / HZ);
5305			goto failed_mount3a;
5306		}
5307		if (EXT4_MOUNT_DATA_FLAGS &
5308		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5309			ext4_msg(sb, KERN_ERR, "can't mount with "
5310				 "data=, fs mounted w/o journal");
5311			goto failed_mount3a;
5312		}
5313		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5314		clear_opt(sb, JOURNAL_CHECKSUM);
5315		clear_opt(sb, DATA_FLAGS);
5316		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5317		sbi->s_journal = NULL;
5318		needs_recovery = 0;
 
 
 
 
 
 
 
 
5319	}
5320
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5321	if (!test_opt(sb, NO_MBCACHE)) {
5322		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5323		if (!sbi->s_ea_block_cache) {
5324			ext4_msg(sb, KERN_ERR,
5325				 "Failed to create ea_block_cache");
5326			goto failed_mount_wq;
5327		}
5328
5329		if (ext4_has_feature_ea_inode(sb)) {
5330			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5331			if (!sbi->s_ea_inode_cache) {
5332				ext4_msg(sb, KERN_ERR,
5333					 "Failed to create ea_inode_cache");
5334				goto failed_mount_wq;
5335			}
5336		}
5337	}
5338
5339	if (ext4_has_feature_verity(sb) && sb->s_blocksize != PAGE_SIZE) {
5340		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
 
 
5341		goto failed_mount_wq;
5342	}
5343
 
 
 
 
 
 
5344	/*
5345	 * Get the # of file system overhead blocks from the
5346	 * superblock if present.
5347	 */
5348	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5349	/* ignore the precalculated value if it is ridiculous */
5350	if (sbi->s_overhead > ext4_blocks_count(es))
5351		sbi->s_overhead = 0;
5352	/*
5353	 * If the bigalloc feature is not enabled recalculating the
5354	 * overhead doesn't take long, so we might as well just redo
5355	 * it to make sure we are using the correct value.
5356	 */
5357	if (!ext4_has_feature_bigalloc(sb))
5358		sbi->s_overhead = 0;
5359	if (sbi->s_overhead == 0) {
5360		err = ext4_calculate_overhead(sb);
5361		if (err)
5362			goto failed_mount_wq;
5363	}
5364
5365	/*
5366	 * The maximum number of concurrent works can be high and
5367	 * concurrency isn't really necessary.  Limit it to 1.
5368	 */
5369	EXT4_SB(sb)->rsv_conversion_wq =
5370		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5371	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5372		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5373		ret = -ENOMEM;
5374		goto failed_mount4;
5375	}
5376
5377	/*
5378	 * The jbd2_journal_load will have done any necessary log recovery,
5379	 * so we can safely mount the rest of the filesystem now.
5380	 */
5381
5382	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5383	if (IS_ERR(root)) {
5384		ext4_msg(sb, KERN_ERR, "get root inode failed");
5385		ret = PTR_ERR(root);
5386		root = NULL;
5387		goto failed_mount4;
5388	}
5389	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5390		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5391		iput(root);
5392		goto failed_mount4;
5393	}
5394
5395	sb->s_root = d_make_root(root);
5396	if (!sb->s_root) {
5397		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5398		ret = -ENOMEM;
5399		goto failed_mount4;
5400	}
5401
5402	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
5403	if (ret == -EROFS) {
5404		sb->s_flags |= SB_RDONLY;
5405		ret = 0;
5406	} else if (ret)
5407		goto failed_mount4a;
5408
5409	ext4_set_resv_clusters(sb);
5410
5411	if (test_opt(sb, BLOCK_VALIDITY)) {
5412		err = ext4_setup_system_zone(sb);
5413		if (err) {
5414			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5415				 "zone (%d)", err);
5416			goto failed_mount4a;
 
 
 
 
 
 
 
 
5417		}
5418	}
5419	ext4_fc_replay_cleanup(sb);
 
 
 
 
 
 
 
5420
5421	ext4_ext_init(sb);
5422
5423	/*
5424	 * Enable optimize_scan if number of groups is > threshold. This can be
5425	 * turned off by passing "mb_optimize_scan=0". This can also be
5426	 * turned on forcefully by passing "mb_optimize_scan=1".
5427	 */
5428	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5429		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5430			set_opt2(sb, MB_OPTIMIZE_SCAN);
5431		else
5432			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5433	}
5434
 
5435	err = ext4_mb_init(sb);
5436	if (err) {
5437		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5438			 err);
5439		goto failed_mount5;
5440	}
5441
5442	/*
5443	 * We can only set up the journal commit callback once
5444	 * mballoc is initialized
5445	 */
5446	if (sbi->s_journal)
5447		sbi->s_journal->j_commit_callback =
5448			ext4_journal_commit_callback;
5449
5450	block = ext4_count_free_clusters(sb);
5451	ext4_free_blocks_count_set(sbi->s_es,
5452				   EXT4_C2B(sbi, block));
5453	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5454				  GFP_KERNEL);
5455	if (!err) {
5456		unsigned long freei = ext4_count_free_inodes(sb);
5457		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5458		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5459					  GFP_KERNEL);
5460	}
5461	if (!err)
5462		err = percpu_counter_init(&sbi->s_dirs_counter,
5463					  ext4_count_dirs(sb), GFP_KERNEL);
5464	if (!err)
5465		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5466					  GFP_KERNEL);
5467	if (!err)
5468		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5469					  GFP_KERNEL);
5470	if (!err)
5471		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5472
5473	if (err) {
5474		ext4_msg(sb, KERN_ERR, "insufficient memory");
5475		goto failed_mount6;
5476	}
5477
5478	if (ext4_has_feature_flex_bg(sb))
5479		if (!ext4_fill_flex_info(sb)) {
5480			ext4_msg(sb, KERN_ERR,
5481			       "unable to initialize "
5482			       "flex_bg meta info!");
5483			ret = -ENOMEM;
5484			goto failed_mount6;
5485		}
5486
5487	err = ext4_register_li_request(sb, first_not_zeroed);
5488	if (err)
5489		goto failed_mount6;
5490
5491	err = ext4_register_sysfs(sb);
5492	if (err)
5493		goto failed_mount7;
5494
5495	err = ext4_init_orphan_info(sb);
5496	if (err)
5497		goto failed_mount8;
5498#ifdef CONFIG_QUOTA
5499	/* Enable quota usage during mount. */
5500	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5501		err = ext4_enable_quotas(sb);
5502		if (err)
5503			goto failed_mount9;
5504	}
5505#endif  /* CONFIG_QUOTA */
5506
5507	/*
5508	 * Save the original bdev mapping's wb_err value which could be
5509	 * used to detect the metadata async write error.
5510	 */
5511	spin_lock_init(&sbi->s_bdev_wb_lock);
5512	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5513				 &sbi->s_bdev_wb_err);
5514	sb->s_bdev->bd_super = sb;
5515	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5516	ext4_orphan_cleanup(sb, es);
5517	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5518	/*
5519	 * Update the checksum after updating free space/inode counters and
5520	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5521	 * checksum in the buffer cache until it is written out and
5522	 * e2fsprogs programs trying to open a file system immediately
5523	 * after it is mounted can fail.
5524	 */
5525	ext4_superblock_csum_set(sb);
5526	if (needs_recovery) {
5527		ext4_msg(sb, KERN_INFO, "recovery complete");
5528		err = ext4_mark_recovery_complete(sb, es);
5529		if (err)
5530			goto failed_mount9;
5531	}
 
 
 
 
 
 
 
 
 
5532
5533	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5534		ext4_msg(sb, KERN_WARNING,
5535			 "mounting with \"discard\" option, but the device does not support discard");
 
 
 
 
 
 
 
 
 
 
 
5536
5537	if (es->s_error_count)
5538		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5539
5540	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5541	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5542	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5543	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5544	atomic_set(&sbi->s_warning_count, 0);
5545	atomic_set(&sbi->s_msg_count, 0);
5546
 
5547	return 0;
5548
5549failed_mount9:
5550	ext4_release_orphan_info(sb);
 
 
 
 
5551failed_mount8:
5552	ext4_unregister_sysfs(sb);
5553	kobject_put(&sbi->s_kobj);
5554failed_mount7:
5555	ext4_unregister_li_request(sb);
5556failed_mount6:
5557	ext4_mb_release(sb);
5558	rcu_read_lock();
5559	flex_groups = rcu_dereference(sbi->s_flex_groups);
5560	if (flex_groups) {
5561		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5562			kvfree(flex_groups[i]);
5563		kvfree(flex_groups);
5564	}
5565	rcu_read_unlock();
5566	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5567	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5568	percpu_counter_destroy(&sbi->s_dirs_counter);
5569	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5570	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5571	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5572failed_mount5:
5573	ext4_ext_release(sb);
5574	ext4_release_system_zone(sb);
5575failed_mount4a:
5576	dput(sb->s_root);
5577	sb->s_root = NULL;
5578failed_mount4:
5579	ext4_msg(sb, KERN_ERR, "mount failed");
5580	if (EXT4_SB(sb)->rsv_conversion_wq)
5581		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5582failed_mount_wq:
5583	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5584	sbi->s_ea_inode_cache = NULL;
5585
5586	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5587	sbi->s_ea_block_cache = NULL;
5588
 
 
5589	if (sbi->s_journal) {
5590		/* flush s_error_work before journal destroy. */
5591		flush_work(&sbi->s_error_work);
5592		jbd2_journal_destroy(sbi->s_journal);
5593		sbi->s_journal = NULL;
5594	}
5595failed_mount3a:
5596	ext4_es_unregister_shrinker(sbi);
5597failed_mount3:
5598	/* flush s_error_work before sbi destroy */
5599	flush_work(&sbi->s_error_work);
5600	del_timer_sync(&sbi->s_err_report);
5601	ext4_stop_mmpd(sbi);
5602	ext4_group_desc_free(sbi);
 
 
 
 
5603failed_mount:
5604	if (sbi->s_chksum_driver)
5605		crypto_free_shash(sbi->s_chksum_driver);
5606
5607#if IS_ENABLED(CONFIG_UNICODE)
5608	utf8_unload(sb->s_encoding);
5609#endif
5610
5611#ifdef CONFIG_QUOTA
5612	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5613		kfree(get_qf_name(sb, sbi, i));
5614#endif
5615	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5616	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5617	brelse(sbi->s_sbh);
5618	ext4_blkdev_remove(sbi);
 
5619out_fail:
5620	sb->s_fs_info = NULL;
 
 
 
 
 
5621	return err ? err : ret;
5622}
5623
5624static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5625{
5626	struct ext4_fs_context *ctx = fc->fs_private;
5627	struct ext4_sb_info *sbi;
5628	const char *descr;
5629	int ret;
5630
5631	sbi = ext4_alloc_sbi(sb);
5632	if (!sbi)
5633		return -ENOMEM;
5634
5635	fc->s_fs_info = sbi;
5636
5637	/* Cleanup superblock name */
5638	strreplace(sb->s_id, '/', '!');
5639
5640	sbi->s_sb_block = 1;	/* Default super block location */
5641	if (ctx->spec & EXT4_SPEC_s_sb_block)
5642		sbi->s_sb_block = ctx->s_sb_block;
5643
5644	ret = __ext4_fill_super(fc, sb);
5645	if (ret < 0)
5646		goto free_sbi;
5647
5648	if (sbi->s_journal) {
5649		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5650			descr = " journalled data mode";
5651		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5652			descr = " ordered data mode";
5653		else
5654			descr = " writeback data mode";
5655	} else
5656		descr = "out journal";
5657
5658	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5659		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU with%s. "
5660			 "Quota mode: %s.", &sb->s_uuid, descr,
5661			 ext4_quota_mode(sb));
5662
5663	/* Update the s_overhead_clusters if necessary */
5664	ext4_update_overhead(sb, false);
5665	return 0;
5666
5667free_sbi:
5668	ext4_free_sbi(sbi);
5669	fc->s_fs_info = NULL;
5670	return ret;
5671}
5672
5673static int ext4_get_tree(struct fs_context *fc)
5674{
5675	return get_tree_bdev(fc, ext4_fill_super);
5676}
5677
5678/*
5679 * Setup any per-fs journal parameters now.  We'll do this both on
5680 * initial mount, once the journal has been initialised but before we've
5681 * done any recovery; and again on any subsequent remount.
5682 */
5683static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5684{
5685	struct ext4_sb_info *sbi = EXT4_SB(sb);
5686
5687	journal->j_commit_interval = sbi->s_commit_interval;
5688	journal->j_min_batch_time = sbi->s_min_batch_time;
5689	journal->j_max_batch_time = sbi->s_max_batch_time;
5690	ext4_fc_init(sb, journal);
5691
5692	write_lock(&journal->j_state_lock);
5693	if (test_opt(sb, BARRIER))
5694		journal->j_flags |= JBD2_BARRIER;
5695	else
5696		journal->j_flags &= ~JBD2_BARRIER;
5697	if (test_opt(sb, DATA_ERR_ABORT))
5698		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5699	else
5700		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5701	write_unlock(&journal->j_state_lock);
5702}
5703
5704static struct inode *ext4_get_journal_inode(struct super_block *sb,
5705					     unsigned int journal_inum)
5706{
5707	struct inode *journal_inode;
5708
5709	/*
5710	 * Test for the existence of a valid inode on disk.  Bad things
5711	 * happen if we iget() an unused inode, as the subsequent iput()
5712	 * will try to delete it.
5713	 */
5714	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5715	if (IS_ERR(journal_inode)) {
5716		ext4_msg(sb, KERN_ERR, "no journal found");
5717		return NULL;
5718	}
5719	if (!journal_inode->i_nlink) {
5720		make_bad_inode(journal_inode);
5721		iput(journal_inode);
5722		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5723		return NULL;
5724	}
5725
5726	ext4_debug("Journal inode found at %p: %lld bytes\n",
5727		  journal_inode, journal_inode->i_size);
5728	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5729		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5730		iput(journal_inode);
5731		return NULL;
5732	}
5733	return journal_inode;
5734}
5735
5736static journal_t *ext4_get_journal(struct super_block *sb,
5737				   unsigned int journal_inum)
5738{
5739	struct inode *journal_inode;
5740	journal_t *journal;
5741
5742	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5743		return NULL;
5744
5745	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5746	if (!journal_inode)
5747		return NULL;
5748
5749	journal = jbd2_journal_init_inode(journal_inode);
5750	if (!journal) {
5751		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5752		iput(journal_inode);
5753		return NULL;
5754	}
5755	journal->j_private = sb;
5756	ext4_init_journal_params(sb, journal);
5757	return journal;
5758}
5759
5760static journal_t *ext4_get_dev_journal(struct super_block *sb,
5761				       dev_t j_dev)
5762{
5763	struct buffer_head *bh;
5764	journal_t *journal;
5765	ext4_fsblk_t start;
5766	ext4_fsblk_t len;
5767	int hblock, blocksize;
5768	ext4_fsblk_t sb_block;
5769	unsigned long offset;
5770	struct ext4_super_block *es;
5771	struct block_device *bdev;
5772
5773	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5774		return NULL;
5775
5776	bdev = ext4_blkdev_get(j_dev, sb);
5777	if (bdev == NULL)
5778		return NULL;
5779
5780	blocksize = sb->s_blocksize;
5781	hblock = bdev_logical_block_size(bdev);
5782	if (blocksize < hblock) {
5783		ext4_msg(sb, KERN_ERR,
5784			"blocksize too small for journal device");
5785		goto out_bdev;
5786	}
5787
5788	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5789	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5790	set_blocksize(bdev, blocksize);
5791	if (!(bh = __bread(bdev, sb_block, blocksize))) {
5792		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5793		       "external journal");
5794		goto out_bdev;
5795	}
5796
5797	es = (struct ext4_super_block *) (bh->b_data + offset);
5798	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5799	    !(le32_to_cpu(es->s_feature_incompat) &
5800	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5801		ext4_msg(sb, KERN_ERR, "external journal has "
5802					"bad superblock");
5803		brelse(bh);
5804		goto out_bdev;
5805	}
5806
5807	if ((le32_to_cpu(es->s_feature_ro_compat) &
5808	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5809	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5810		ext4_msg(sb, KERN_ERR, "external journal has "
5811				       "corrupt superblock");
5812		brelse(bh);
5813		goto out_bdev;
5814	}
5815
5816	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5817		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5818		brelse(bh);
5819		goto out_bdev;
5820	}
5821
5822	len = ext4_blocks_count(es);
5823	start = sb_block + 1;
5824	brelse(bh);	/* we're done with the superblock */
5825
5826	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5827					start, len, blocksize);
5828	if (!journal) {
5829		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5830		goto out_bdev;
5831	}
5832	journal->j_private = sb;
5833	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
 
 
5834		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5835		goto out_journal;
5836	}
5837	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5838		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5839					"user (unsupported) - %d",
5840			be32_to_cpu(journal->j_superblock->s_nr_users));
5841		goto out_journal;
5842	}
5843	EXT4_SB(sb)->s_journal_bdev = bdev;
5844	ext4_init_journal_params(sb, journal);
5845	return journal;
5846
5847out_journal:
5848	jbd2_journal_destroy(journal);
5849out_bdev:
5850	ext4_blkdev_put(bdev);
5851	return NULL;
5852}
5853
5854static int ext4_load_journal(struct super_block *sb,
5855			     struct ext4_super_block *es,
5856			     unsigned long journal_devnum)
5857{
5858	journal_t *journal;
5859	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5860	dev_t journal_dev;
5861	int err = 0;
5862	int really_read_only;
5863	int journal_dev_ro;
5864
5865	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5866		return -EFSCORRUPTED;
5867
5868	if (journal_devnum &&
5869	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5870		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5871			"numbers have changed");
5872		journal_dev = new_decode_dev(journal_devnum);
5873	} else
5874		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5875
5876	if (journal_inum && journal_dev) {
5877		ext4_msg(sb, KERN_ERR,
5878			 "filesystem has both journal inode and journal device!");
5879		return -EINVAL;
5880	}
5881
5882	if (journal_inum) {
5883		journal = ext4_get_journal(sb, journal_inum);
5884		if (!journal)
5885			return -EINVAL;
5886	} else {
5887		journal = ext4_get_dev_journal(sb, journal_dev);
5888		if (!journal)
5889			return -EINVAL;
5890	}
5891
5892	journal_dev_ro = bdev_read_only(journal->j_dev);
5893	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5894
5895	if (journal_dev_ro && !sb_rdonly(sb)) {
5896		ext4_msg(sb, KERN_ERR,
5897			 "journal device read-only, try mounting with '-o ro'");
5898		err = -EROFS;
5899		goto err_out;
5900	}
5901
5902	/*
5903	 * Are we loading a blank journal or performing recovery after a
5904	 * crash?  For recovery, we need to check in advance whether we
5905	 * can get read-write access to the device.
5906	 */
5907	if (ext4_has_feature_journal_needs_recovery(sb)) {
5908		if (sb_rdonly(sb)) {
5909			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5910					"required on readonly filesystem");
5911			if (really_read_only) {
5912				ext4_msg(sb, KERN_ERR, "write access "
5913					"unavailable, cannot proceed "
5914					"(try mounting with noload)");
5915				err = -EROFS;
5916				goto err_out;
5917			}
5918			ext4_msg(sb, KERN_INFO, "write access will "
5919			       "be enabled during recovery");
5920		}
5921	}
5922
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5923	if (!(journal->j_flags & JBD2_BARRIER))
5924		ext4_msg(sb, KERN_INFO, "barriers disabled");
5925
5926	if (!ext4_has_feature_journal_needs_recovery(sb))
5927		err = jbd2_journal_wipe(journal, !really_read_only);
5928	if (!err) {
5929		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5930		if (save)
5931			memcpy(save, ((char *) es) +
5932			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5933		err = jbd2_journal_load(journal);
5934		if (save)
5935			memcpy(((char *) es) + EXT4_S_ERR_START,
5936			       save, EXT4_S_ERR_LEN);
5937		kfree(save);
5938	}
5939
5940	if (err) {
5941		ext4_msg(sb, KERN_ERR, "error loading journal");
5942		goto err_out;
5943	}
5944
5945	EXT4_SB(sb)->s_journal = journal;
5946	err = ext4_clear_journal_err(sb, es);
5947	if (err) {
5948		EXT4_SB(sb)->s_journal = NULL;
5949		jbd2_journal_destroy(journal);
5950		return err;
5951	}
5952
 
 
 
5953	if (!really_read_only && journal_devnum &&
5954	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5955		es->s_journal_dev = cpu_to_le32(journal_devnum);
5956
5957		/* Make sure we flush the recovery flag to disk. */
5958		ext4_commit_super(sb);
5959	}
5960
5961	return 0;
5962
5963err_out:
5964	jbd2_journal_destroy(journal);
5965	return err;
5966}
5967
5968/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5969static void ext4_update_super(struct super_block *sb)
5970{
5971	struct ext4_sb_info *sbi = EXT4_SB(sb);
5972	struct ext4_super_block *es = sbi->s_es;
5973	struct buffer_head *sbh = sbi->s_sbh;
5974
5975	lock_buffer(sbh);
 
5976	/*
5977	 * If the file system is mounted read-only, don't update the
5978	 * superblock write time.  This avoids updating the superblock
5979	 * write time when we are mounting the root file system
5980	 * read/only but we need to replay the journal; at that point,
5981	 * for people who are east of GMT and who make their clock
5982	 * tick in localtime for Windows bug-for-bug compatibility,
5983	 * the clock is set in the future, and this will cause e2fsck
5984	 * to complain and force a full file system check.
5985	 */
5986	if (!(sb->s_flags & SB_RDONLY))
5987		ext4_update_tstamp(es, s_wtime);
5988	es->s_kbytes_written =
5989		cpu_to_le64(sbi->s_kbytes_written +
5990		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5991		      sbi->s_sectors_written_start) >> 1));
5992	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
 
 
 
 
5993		ext4_free_blocks_count_set(es,
5994			EXT4_C2B(sbi, percpu_counter_sum_positive(
5995				&sbi->s_freeclusters_counter)));
5996	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5997		es->s_free_inodes_count =
5998			cpu_to_le32(percpu_counter_sum_positive(
5999				&sbi->s_freeinodes_counter));
6000	/* Copy error information to the on-disk superblock */
6001	spin_lock(&sbi->s_error_lock);
6002	if (sbi->s_add_error_count > 0) {
6003		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6004		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6005			__ext4_update_tstamp(&es->s_first_error_time,
6006					     &es->s_first_error_time_hi,
6007					     sbi->s_first_error_time);
6008			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6009				sizeof(es->s_first_error_func));
6010			es->s_first_error_line =
6011				cpu_to_le32(sbi->s_first_error_line);
6012			es->s_first_error_ino =
6013				cpu_to_le32(sbi->s_first_error_ino);
6014			es->s_first_error_block =
6015				cpu_to_le64(sbi->s_first_error_block);
6016			es->s_first_error_errcode =
6017				ext4_errno_to_code(sbi->s_first_error_code);
6018		}
6019		__ext4_update_tstamp(&es->s_last_error_time,
6020				     &es->s_last_error_time_hi,
6021				     sbi->s_last_error_time);
6022		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6023			sizeof(es->s_last_error_func));
6024		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6025		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6026		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6027		es->s_last_error_errcode =
6028				ext4_errno_to_code(sbi->s_last_error_code);
6029		/*
6030		 * Start the daily error reporting function if it hasn't been
6031		 * started already
6032		 */
6033		if (!es->s_error_count)
6034			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6035		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6036		sbi->s_add_error_count = 0;
6037	}
6038	spin_unlock(&sbi->s_error_lock);
6039
6040	ext4_superblock_csum_set(sb);
6041	unlock_buffer(sbh);
6042}
6043
6044static int ext4_commit_super(struct super_block *sb)
6045{
6046	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6047
6048	if (!sbh)
6049		return -EINVAL;
6050	if (block_device_ejected(sb))
6051		return -ENODEV;
6052
6053	ext4_update_super(sb);
6054
6055	lock_buffer(sbh);
6056	/* Buffer got discarded which means block device got invalidated */
6057	if (!buffer_mapped(sbh)) {
6058		unlock_buffer(sbh);
6059		return -EIO;
6060	}
6061
6062	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6063		/*
6064		 * Oh, dear.  A previous attempt to write the
6065		 * superblock failed.  This could happen because the
6066		 * USB device was yanked out.  Or it could happen to
6067		 * be a transient write error and maybe the block will
6068		 * be remapped.  Nothing we can do but to retry the
6069		 * write and hope for the best.
6070		 */
6071		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6072		       "superblock detected");
6073		clear_buffer_write_io_error(sbh);
6074		set_buffer_uptodate(sbh);
6075	}
6076	get_bh(sbh);
6077	/* Clear potential dirty bit if it was journalled update */
6078	clear_buffer_dirty(sbh);
6079	sbh->b_end_io = end_buffer_write_sync;
6080	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6081		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6082	wait_on_buffer(sbh);
6083	if (buffer_write_io_error(sbh)) {
6084		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6085		       "superblock");
6086		clear_buffer_write_io_error(sbh);
6087		set_buffer_uptodate(sbh);
6088		return -EIO;
 
 
6089	}
6090	return 0;
6091}
6092
6093/*
6094 * Have we just finished recovery?  If so, and if we are mounting (or
6095 * remounting) the filesystem readonly, then we will end up with a
6096 * consistent fs on disk.  Record that fact.
6097 */
6098static int ext4_mark_recovery_complete(struct super_block *sb,
6099				       struct ext4_super_block *es)
6100{
6101	int err;
6102	journal_t *journal = EXT4_SB(sb)->s_journal;
6103
6104	if (!ext4_has_feature_journal(sb)) {
6105		if (journal != NULL) {
6106			ext4_error(sb, "Journal got removed while the fs was "
6107				   "mounted!");
6108			return -EFSCORRUPTED;
6109		}
6110		return 0;
6111	}
6112	jbd2_journal_lock_updates(journal);
6113	err = jbd2_journal_flush(journal, 0);
6114	if (err < 0)
6115		goto out;
6116
6117	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6118	    ext4_has_feature_orphan_present(sb))) {
6119		if (!ext4_orphan_file_empty(sb)) {
6120			ext4_error(sb, "Orphan file not empty on read-only fs.");
6121			err = -EFSCORRUPTED;
6122			goto out;
6123		}
6124		ext4_clear_feature_journal_needs_recovery(sb);
6125		ext4_clear_feature_orphan_present(sb);
6126		ext4_commit_super(sb);
6127	}
 
6128out:
6129	jbd2_journal_unlock_updates(journal);
6130	return err;
6131}
6132
6133/*
6134 * If we are mounting (or read-write remounting) a filesystem whose journal
6135 * has recorded an error from a previous lifetime, move that error to the
6136 * main filesystem now.
6137 */
6138static int ext4_clear_journal_err(struct super_block *sb,
6139				   struct ext4_super_block *es)
6140{
6141	journal_t *journal;
6142	int j_errno;
6143	const char *errstr;
6144
6145	if (!ext4_has_feature_journal(sb)) {
6146		ext4_error(sb, "Journal got removed while the fs was mounted!");
6147		return -EFSCORRUPTED;
6148	}
6149
6150	journal = EXT4_SB(sb)->s_journal;
6151
6152	/*
6153	 * Now check for any error status which may have been recorded in the
6154	 * journal by a prior ext4_error() or ext4_abort()
6155	 */
6156
6157	j_errno = jbd2_journal_errno(journal);
6158	if (j_errno) {
6159		char nbuf[16];
6160
6161		errstr = ext4_decode_error(sb, j_errno, nbuf);
6162		ext4_warning(sb, "Filesystem error recorded "
6163			     "from previous mount: %s", errstr);
6164		ext4_warning(sb, "Marking fs in need of filesystem check.");
6165
6166		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6167		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6168		ext4_commit_super(sb);
6169
6170		jbd2_journal_clear_err(journal);
6171		jbd2_journal_update_sb_errno(journal);
6172	}
6173	return 0;
6174}
6175
6176/*
6177 * Force the running and committing transactions to commit,
6178 * and wait on the commit.
6179 */
6180int ext4_force_commit(struct super_block *sb)
6181{
6182	journal_t *journal;
6183
6184	if (sb_rdonly(sb))
6185		return 0;
6186
6187	journal = EXT4_SB(sb)->s_journal;
6188	return ext4_journal_force_commit(journal);
6189}
6190
6191static int ext4_sync_fs(struct super_block *sb, int wait)
6192{
6193	int ret = 0;
6194	tid_t target;
6195	bool needs_barrier = false;
6196	struct ext4_sb_info *sbi = EXT4_SB(sb);
6197
6198	if (unlikely(ext4_forced_shutdown(sbi)))
6199		return 0;
6200
6201	trace_ext4_sync_fs(sb, wait);
6202	flush_workqueue(sbi->rsv_conversion_wq);
6203	/*
6204	 * Writeback quota in non-journalled quota case - journalled quota has
6205	 * no dirty dquots
6206	 */
6207	dquot_writeback_dquots(sb, -1);
6208	/*
6209	 * Data writeback is possible w/o journal transaction, so barrier must
6210	 * being sent at the end of the function. But we can skip it if
6211	 * transaction_commit will do it for us.
6212	 */
6213	if (sbi->s_journal) {
6214		target = jbd2_get_latest_transaction(sbi->s_journal);
6215		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6216		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6217			needs_barrier = true;
6218
6219		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6220			if (wait)
6221				ret = jbd2_log_wait_commit(sbi->s_journal,
6222							   target);
6223		}
6224	} else if (wait && test_opt(sb, BARRIER))
6225		needs_barrier = true;
6226	if (needs_barrier) {
6227		int err;
6228		err = blkdev_issue_flush(sb->s_bdev);
6229		if (!ret)
6230			ret = err;
6231	}
6232
6233	return ret;
6234}
6235
6236/*
6237 * LVM calls this function before a (read-only) snapshot is created.  This
6238 * gives us a chance to flush the journal completely and mark the fs clean.
6239 *
6240 * Note that only this function cannot bring a filesystem to be in a clean
6241 * state independently. It relies on upper layer to stop all data & metadata
6242 * modifications.
6243 */
6244static int ext4_freeze(struct super_block *sb)
6245{
6246	int error = 0;
6247	journal_t *journal;
6248
6249	if (sb_rdonly(sb))
6250		return 0;
6251
6252	journal = EXT4_SB(sb)->s_journal;
6253
6254	if (journal) {
6255		/* Now we set up the journal barrier. */
6256		jbd2_journal_lock_updates(journal);
6257
6258		/*
6259		 * Don't clear the needs_recovery flag if we failed to
6260		 * flush the journal.
6261		 */
6262		error = jbd2_journal_flush(journal, 0);
6263		if (error < 0)
6264			goto out;
6265
6266		/* Journal blocked and flushed, clear needs_recovery flag. */
6267		ext4_clear_feature_journal_needs_recovery(sb);
6268		if (ext4_orphan_file_empty(sb))
6269			ext4_clear_feature_orphan_present(sb);
6270	}
6271
6272	error = ext4_commit_super(sb);
6273out:
6274	if (journal)
6275		/* we rely on upper layer to stop further updates */
6276		jbd2_journal_unlock_updates(journal);
6277	return error;
6278}
6279
6280/*
6281 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6282 * flag here, even though the filesystem is not technically dirty yet.
6283 */
6284static int ext4_unfreeze(struct super_block *sb)
6285{
6286	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6287		return 0;
6288
6289	if (EXT4_SB(sb)->s_journal) {
6290		/* Reset the needs_recovery flag before the fs is unlocked. */
6291		ext4_set_feature_journal_needs_recovery(sb);
6292		if (ext4_has_feature_orphan_file(sb))
6293			ext4_set_feature_orphan_present(sb);
6294	}
6295
6296	ext4_commit_super(sb);
6297	return 0;
6298}
6299
6300/*
6301 * Structure to save mount options for ext4_remount's benefit
6302 */
6303struct ext4_mount_options {
6304	unsigned long s_mount_opt;
6305	unsigned long s_mount_opt2;
6306	kuid_t s_resuid;
6307	kgid_t s_resgid;
6308	unsigned long s_commit_interval;
6309	u32 s_min_batch_time, s_max_batch_time;
6310#ifdef CONFIG_QUOTA
6311	int s_jquota_fmt;
6312	char *s_qf_names[EXT4_MAXQUOTAS];
6313#endif
6314};
6315
6316static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6317{
6318	struct ext4_fs_context *ctx = fc->fs_private;
6319	struct ext4_super_block *es;
6320	struct ext4_sb_info *sbi = EXT4_SB(sb);
6321	unsigned long old_sb_flags;
6322	struct ext4_mount_options old_opts;
 
6323	ext4_group_t g;
 
6324	int err = 0;
6325#ifdef CONFIG_QUOTA
6326	int enable_quota = 0;
6327	int i, j;
6328	char *to_free[EXT4_MAXQUOTAS];
6329#endif
6330
6331
6332	/* Store the original options */
6333	old_sb_flags = sb->s_flags;
6334	old_opts.s_mount_opt = sbi->s_mount_opt;
6335	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6336	old_opts.s_resuid = sbi->s_resuid;
6337	old_opts.s_resgid = sbi->s_resgid;
6338	old_opts.s_commit_interval = sbi->s_commit_interval;
6339	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6340	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6341#ifdef CONFIG_QUOTA
6342	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6343	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6344		if (sbi->s_qf_names[i]) {
6345			char *qf_name = get_qf_name(sb, sbi, i);
6346
6347			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6348			if (!old_opts.s_qf_names[i]) {
6349				for (j = 0; j < i; j++)
6350					kfree(old_opts.s_qf_names[j]);
 
6351				return -ENOMEM;
6352			}
6353		} else
6354			old_opts.s_qf_names[i] = NULL;
6355#endif
6356	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6357		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6358			ctx->journal_ioprio =
6359				sbi->s_journal->j_task->io_context->ioprio;
6360		else
6361			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6362
 
 
 
6363	}
6364
6365	ext4_apply_options(fc, sb);
6366
6367	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6368	    test_opt(sb, JOURNAL_CHECKSUM)) {
6369		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6370			 "during remount not supported; ignoring");
6371		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6372	}
6373
6374	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6375		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6376			ext4_msg(sb, KERN_ERR, "can't mount with "
6377				 "both data=journal and delalloc");
6378			err = -EINVAL;
6379			goto restore_opts;
6380		}
6381		if (test_opt(sb, DIOREAD_NOLOCK)) {
6382			ext4_msg(sb, KERN_ERR, "can't mount with "
6383				 "both data=journal and dioread_nolock");
6384			err = -EINVAL;
6385			goto restore_opts;
6386		}
 
 
 
 
 
 
6387	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6388		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6389			ext4_msg(sb, KERN_ERR, "can't mount with "
6390				"journal_async_commit in data=ordered mode");
6391			err = -EINVAL;
6392			goto restore_opts;
6393		}
6394	}
6395
6396	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6397		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6398		err = -EINVAL;
6399		goto restore_opts;
6400	}
6401
6402	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6403		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
 
 
 
 
 
 
6404
6405	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6406		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6407
6408	es = sbi->s_es;
6409
6410	if (sbi->s_journal) {
6411		ext4_init_journal_params(sb, sbi->s_journal);
6412		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6413	}
6414
6415	/* Flush outstanding errors before changing fs state */
6416	flush_work(&sbi->s_error_work);
6417
6418	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6419		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6420			err = -EROFS;
6421			goto restore_opts;
6422		}
6423
6424		if (fc->sb_flags & SB_RDONLY) {
6425			err = sync_filesystem(sb);
6426			if (err < 0)
6427				goto restore_opts;
6428			err = dquot_suspend(sb, -1);
6429			if (err < 0)
6430				goto restore_opts;
6431
6432			/*
6433			 * First of all, the unconditional stuff we have to do
6434			 * to disable replay of the journal when we next remount
6435			 */
6436			sb->s_flags |= SB_RDONLY;
6437
6438			/*
6439			 * OK, test if we are remounting a valid rw partition
6440			 * readonly, and if so set the rdonly flag and then
6441			 * mark the partition as valid again.
6442			 */
6443			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6444			    (sbi->s_mount_state & EXT4_VALID_FS))
6445				es->s_state = cpu_to_le16(sbi->s_mount_state);
6446
6447			if (sbi->s_journal) {
6448				/*
6449				 * We let remount-ro finish even if marking fs
6450				 * as clean failed...
6451				 */
6452				ext4_mark_recovery_complete(sb, es);
6453			}
6454		} else {
6455			/* Make sure we can mount this feature set readwrite */
6456			if (ext4_has_feature_readonly(sb) ||
6457			    !ext4_feature_set_ok(sb, 0)) {
6458				err = -EROFS;
6459				goto restore_opts;
6460			}
6461			/*
6462			 * Make sure the group descriptor checksums
6463			 * are sane.  If they aren't, refuse to remount r/w.
6464			 */
6465			for (g = 0; g < sbi->s_groups_count; g++) {
6466				struct ext4_group_desc *gdp =
6467					ext4_get_group_desc(sb, g, NULL);
6468
6469				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6470					ext4_msg(sb, KERN_ERR,
6471	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6472		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6473					       le16_to_cpu(gdp->bg_checksum));
6474					err = -EFSBADCRC;
6475					goto restore_opts;
6476				}
6477			}
6478
6479			/*
6480			 * If we have an unprocessed orphan list hanging
6481			 * around from a previously readonly bdev mount,
6482			 * require a full umount/remount for now.
6483			 */
6484			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6485				ext4_msg(sb, KERN_WARNING, "Couldn't "
6486				       "remount RDWR because of unprocessed "
6487				       "orphan inode list.  Please "
6488				       "umount/remount instead");
6489				err = -EINVAL;
6490				goto restore_opts;
6491			}
6492
6493			/*
6494			 * Mounting a RDONLY partition read-write, so reread
6495			 * and store the current valid flag.  (It may have
6496			 * been changed by e2fsck since we originally mounted
6497			 * the partition.)
6498			 */
6499			if (sbi->s_journal) {
6500				err = ext4_clear_journal_err(sb, es);
6501				if (err)
6502					goto restore_opts;
6503			}
6504			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6505					      ~EXT4_FC_REPLAY);
6506
6507			err = ext4_setup_super(sb, es, 0);
6508			if (err)
6509				goto restore_opts;
6510
6511			sb->s_flags &= ~SB_RDONLY;
6512			if (ext4_has_feature_mmp(sb))
6513				if (ext4_multi_mount_protect(sb,
6514						le64_to_cpu(es->s_mmp_block))) {
6515					err = -EROFS;
6516					goto restore_opts;
6517				}
6518#ifdef CONFIG_QUOTA
6519			enable_quota = 1;
6520#endif
6521		}
6522	}
6523
6524	/*
6525	 * Reinitialize lazy itable initialization thread based on
6526	 * current settings
6527	 */
6528	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6529		ext4_unregister_li_request(sb);
6530	else {
6531		ext4_group_t first_not_zeroed;
6532		first_not_zeroed = ext4_has_uninit_itable(sb);
6533		ext4_register_li_request(sb, first_not_zeroed);
6534	}
6535
6536	/*
6537	 * Handle creation of system zone data early because it can fail.
6538	 * Releasing of existing data is done when we are sure remount will
6539	 * succeed.
6540	 */
6541	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6542		err = ext4_setup_system_zone(sb);
6543		if (err)
6544			goto restore_opts;
6545	}
6546
6547	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6548		err = ext4_commit_super(sb);
6549		if (err)
6550			goto restore_opts;
6551	}
6552
6553#ifdef CONFIG_QUOTA
6554	/* Release old quota file names */
6555	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6556		kfree(old_opts.s_qf_names[i]);
6557	if (enable_quota) {
6558		if (sb_any_quota_suspended(sb))
6559			dquot_resume(sb, -1);
6560		else if (ext4_has_feature_quota(sb)) {
6561			err = ext4_enable_quotas(sb);
6562			if (err)
6563				goto restore_opts;
6564		}
6565	}
6566#endif
6567	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6568		ext4_release_system_zone(sb);
6569
6570	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6571		ext4_stop_mmpd(sbi);
6572
 
 
 
6573	return 0;
6574
6575restore_opts:
6576	sb->s_flags = old_sb_flags;
6577	sbi->s_mount_opt = old_opts.s_mount_opt;
6578	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6579	sbi->s_resuid = old_opts.s_resuid;
6580	sbi->s_resgid = old_opts.s_resgid;
6581	sbi->s_commit_interval = old_opts.s_commit_interval;
6582	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6583	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6584	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6585		ext4_release_system_zone(sb);
6586#ifdef CONFIG_QUOTA
6587	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6588	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6589		to_free[i] = get_qf_name(sb, sbi, i);
6590		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6591	}
6592	synchronize_rcu();
6593	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6594		kfree(to_free[i]);
6595#endif
6596	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6597		ext4_stop_mmpd(sbi);
6598	return err;
6599}
6600
6601static int ext4_reconfigure(struct fs_context *fc)
6602{
6603	struct super_block *sb = fc->root->d_sb;
6604	int ret;
6605
6606	fc->s_fs_info = EXT4_SB(sb);
6607
6608	ret = ext4_check_opt_consistency(fc, sb);
6609	if (ret < 0)
6610		return ret;
6611
6612	ret = __ext4_remount(fc, sb);
6613	if (ret < 0)
6614		return ret;
6615
6616	ext4_msg(sb, KERN_INFO, "re-mounted %pU. Quota mode: %s.",
6617		 &sb->s_uuid, ext4_quota_mode(sb));
6618
6619	return 0;
6620}
6621
6622#ifdef CONFIG_QUOTA
6623static int ext4_statfs_project(struct super_block *sb,
6624			       kprojid_t projid, struct kstatfs *buf)
6625{
6626	struct kqid qid;
6627	struct dquot *dquot;
6628	u64 limit;
6629	u64 curblock;
6630
6631	qid = make_kqid_projid(projid);
6632	dquot = dqget(sb, qid);
6633	if (IS_ERR(dquot))
6634		return PTR_ERR(dquot);
6635	spin_lock(&dquot->dq_dqb_lock);
6636
6637	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6638			     dquot->dq_dqb.dqb_bhardlimit);
6639	limit >>= sb->s_blocksize_bits;
6640
6641	if (limit && buf->f_blocks > limit) {
6642		curblock = (dquot->dq_dqb.dqb_curspace +
6643			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6644		buf->f_blocks = limit;
6645		buf->f_bfree = buf->f_bavail =
6646			(buf->f_blocks > curblock) ?
6647			 (buf->f_blocks - curblock) : 0;
6648	}
6649
6650	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6651			     dquot->dq_dqb.dqb_ihardlimit);
 
6652	if (limit && buf->f_files > limit) {
6653		buf->f_files = limit;
6654		buf->f_ffree =
6655			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6656			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6657	}
6658
6659	spin_unlock(&dquot->dq_dqb_lock);
6660	dqput(dquot);
6661	return 0;
6662}
6663#endif
6664
6665static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6666{
6667	struct super_block *sb = dentry->d_sb;
6668	struct ext4_sb_info *sbi = EXT4_SB(sb);
6669	struct ext4_super_block *es = sbi->s_es;
6670	ext4_fsblk_t overhead = 0, resv_blocks;
 
6671	s64 bfree;
6672	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6673
6674	if (!test_opt(sb, MINIX_DF))
6675		overhead = sbi->s_overhead;
6676
6677	buf->f_type = EXT4_SUPER_MAGIC;
6678	buf->f_bsize = sb->s_blocksize;
6679	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6680	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6681		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6682	/* prevent underflow in case that few free space is available */
6683	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6684	buf->f_bavail = buf->f_bfree -
6685			(ext4_r_blocks_count(es) + resv_blocks);
6686	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6687		buf->f_bavail = 0;
6688	buf->f_files = le32_to_cpu(es->s_inodes_count);
6689	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6690	buf->f_namelen = EXT4_NAME_LEN;
6691	buf->f_fsid = uuid_to_fsid(es->s_uuid);
 
 
 
6692
6693#ifdef CONFIG_QUOTA
6694	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6695	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6696		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6697#endif
6698	return 0;
6699}
6700
6701
6702#ifdef CONFIG_QUOTA
6703
6704/*
6705 * Helper functions so that transaction is started before we acquire dqio_sem
6706 * to keep correct lock ordering of transaction > dqio_sem
6707 */
6708static inline struct inode *dquot_to_inode(struct dquot *dquot)
6709{
6710	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6711}
6712
6713static int ext4_write_dquot(struct dquot *dquot)
6714{
6715	int ret, err;
6716	handle_t *handle;
6717	struct inode *inode;
6718
6719	inode = dquot_to_inode(dquot);
6720	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6721				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6722	if (IS_ERR(handle))
6723		return PTR_ERR(handle);
6724	ret = dquot_commit(dquot);
6725	err = ext4_journal_stop(handle);
6726	if (!ret)
6727		ret = err;
6728	return ret;
6729}
6730
6731static int ext4_acquire_dquot(struct dquot *dquot)
6732{
6733	int ret, err;
6734	handle_t *handle;
6735
6736	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6737				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6738	if (IS_ERR(handle))
6739		return PTR_ERR(handle);
6740	ret = dquot_acquire(dquot);
6741	err = ext4_journal_stop(handle);
6742	if (!ret)
6743		ret = err;
6744	return ret;
6745}
6746
6747static int ext4_release_dquot(struct dquot *dquot)
6748{
6749	int ret, err;
6750	handle_t *handle;
6751
6752	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6753				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6754	if (IS_ERR(handle)) {
6755		/* Release dquot anyway to avoid endless cycle in dqput() */
6756		dquot_release(dquot);
6757		return PTR_ERR(handle);
6758	}
6759	ret = dquot_release(dquot);
6760	err = ext4_journal_stop(handle);
6761	if (!ret)
6762		ret = err;
6763	return ret;
6764}
6765
6766static int ext4_mark_dquot_dirty(struct dquot *dquot)
6767{
6768	struct super_block *sb = dquot->dq_sb;
 
6769
6770	if (ext4_is_quota_journalled(sb)) {
 
 
6771		dquot_mark_dquot_dirty(dquot);
6772		return ext4_write_dquot(dquot);
6773	} else {
6774		return dquot_mark_dquot_dirty(dquot);
6775	}
6776}
6777
6778static int ext4_write_info(struct super_block *sb, int type)
6779{
6780	int ret, err;
6781	handle_t *handle;
6782
6783	/* Data block + inode block */
6784	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6785	if (IS_ERR(handle))
6786		return PTR_ERR(handle);
6787	ret = dquot_commit_info(sb, type);
6788	err = ext4_journal_stop(handle);
6789	if (!ret)
6790		ret = err;
6791	return ret;
6792}
6793
 
 
 
 
 
 
 
 
 
 
6794static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6795{
6796	struct ext4_inode_info *ei = EXT4_I(inode);
6797
6798	/* The first argument of lockdep_set_subclass has to be
6799	 * *exactly* the same as the argument to init_rwsem() --- in
6800	 * this case, in init_once() --- or lockdep gets unhappy
6801	 * because the name of the lock is set using the
6802	 * stringification of the argument to init_rwsem().
6803	 */
6804	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6805	lockdep_set_subclass(&ei->i_data_sem, subclass);
6806}
6807
6808/*
6809 * Standard function to be called on quota_on
6810 */
6811static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6812			 const struct path *path)
6813{
6814	int err;
6815
6816	if (!test_opt(sb, QUOTA))
6817		return -EINVAL;
6818
6819	/* Quotafile not on the same filesystem? */
6820	if (path->dentry->d_sb != sb)
6821		return -EXDEV;
6822
6823	/* Quota already enabled for this file? */
6824	if (IS_NOQUOTA(d_inode(path->dentry)))
6825		return -EBUSY;
6826
6827	/* Journaling quota? */
6828	if (EXT4_SB(sb)->s_qf_names[type]) {
6829		/* Quotafile not in fs root? */
6830		if (path->dentry->d_parent != sb->s_root)
6831			ext4_msg(sb, KERN_WARNING,
6832				"Quota file not on filesystem root. "
6833				"Journaled quota will not work");
6834		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6835	} else {
6836		/*
6837		 * Clear the flag just in case mount options changed since
6838		 * last time.
6839		 */
6840		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6841	}
6842
6843	/*
6844	 * When we journal data on quota file, we have to flush journal to see
6845	 * all updates to the file when we bypass pagecache...
6846	 */
6847	if (EXT4_SB(sb)->s_journal &&
6848	    ext4_should_journal_data(d_inode(path->dentry))) {
6849		/*
6850		 * We don't need to lock updates but journal_flush() could
6851		 * otherwise be livelocked...
6852		 */
6853		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6854		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6855		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6856		if (err)
6857			return err;
6858	}
6859
6860	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6861	err = dquot_quota_on(sb, type, format_id, path);
6862	if (!err) {
 
 
 
6863		struct inode *inode = d_inode(path->dentry);
6864		handle_t *handle;
6865
6866		/*
6867		 * Set inode flags to prevent userspace from messing with quota
6868		 * files. If this fails, we return success anyway since quotas
6869		 * are already enabled and this is not a hard failure.
6870		 */
6871		inode_lock(inode);
6872		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6873		if (IS_ERR(handle))
6874			goto unlock_inode;
6875		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6876		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6877				S_NOATIME | S_IMMUTABLE);
6878		err = ext4_mark_inode_dirty(handle, inode);
6879		ext4_journal_stop(handle);
6880	unlock_inode:
6881		inode_unlock(inode);
6882		if (err)
6883			dquot_quota_off(sb, type);
6884	}
6885	if (err)
6886		lockdep_set_quota_inode(path->dentry->d_inode,
6887					     I_DATA_SEM_NORMAL);
6888	return err;
6889}
6890
6891static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6892{
6893	switch (type) {
6894	case USRQUOTA:
6895		return qf_inum == EXT4_USR_QUOTA_INO;
6896	case GRPQUOTA:
6897		return qf_inum == EXT4_GRP_QUOTA_INO;
6898	case PRJQUOTA:
6899		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6900	default:
6901		BUG();
6902	}
6903}
6904
6905static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6906			     unsigned int flags)
6907{
6908	int err;
6909	struct inode *qf_inode;
6910	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6911		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6912		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6913		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6914	};
6915
6916	BUG_ON(!ext4_has_feature_quota(sb));
6917
6918	if (!qf_inums[type])
6919		return -EPERM;
6920
6921	if (!ext4_check_quota_inum(type, qf_inums[type])) {
6922		ext4_error(sb, "Bad quota inum: %lu, type: %d",
6923				qf_inums[type], type);
6924		return -EUCLEAN;
6925	}
6926
6927	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6928	if (IS_ERR(qf_inode)) {
6929		ext4_error(sb, "Bad quota inode: %lu, type: %d",
6930				qf_inums[type], type);
6931		return PTR_ERR(qf_inode);
6932	}
6933
6934	/* Don't account quota for quota files to avoid recursion */
6935	qf_inode->i_flags |= S_NOQUOTA;
6936	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6937	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
 
6938	if (err)
6939		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6940	iput(qf_inode);
6941
6942	return err;
6943}
6944
6945/* Enable usage tracking for all quota types. */
6946int ext4_enable_quotas(struct super_block *sb)
6947{
6948	int type, err = 0;
6949	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6950		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6951		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6952		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6953	};
6954	bool quota_mopt[EXT4_MAXQUOTAS] = {
6955		test_opt(sb, USRQUOTA),
6956		test_opt(sb, GRPQUOTA),
6957		test_opt(sb, PRJQUOTA),
6958	};
6959
6960	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6961	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6962		if (qf_inums[type]) {
6963			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6964				DQUOT_USAGE_ENABLED |
6965				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6966			if (err) {
6967				ext4_warning(sb,
6968					"Failed to enable quota tracking "
6969					"(type=%d, err=%d, ino=%lu). "
6970					"Please run e2fsck to fix.", type,
6971					err, qf_inums[type]);
6972				for (type--; type >= 0; type--) {
6973					struct inode *inode;
6974
6975					inode = sb_dqopt(sb)->files[type];
6976					if (inode)
6977						inode = igrab(inode);
6978					dquot_quota_off(sb, type);
6979					if (inode) {
6980						lockdep_set_quota_inode(inode,
6981							I_DATA_SEM_NORMAL);
6982						iput(inode);
6983					}
6984				}
6985
 
 
 
 
6986				return err;
6987			}
6988		}
6989	}
6990	return 0;
6991}
6992
6993static int ext4_quota_off(struct super_block *sb, int type)
6994{
6995	struct inode *inode = sb_dqopt(sb)->files[type];
6996	handle_t *handle;
6997	int err;
6998
6999	/* Force all delayed allocation blocks to be allocated.
7000	 * Caller already holds s_umount sem */
7001	if (test_opt(sb, DELALLOC))
7002		sync_filesystem(sb);
7003
7004	if (!inode || !igrab(inode))
7005		goto out;
7006
7007	err = dquot_quota_off(sb, type);
7008	if (err || ext4_has_feature_quota(sb))
7009		goto out_put;
7010
7011	inode_lock(inode);
7012	/*
7013	 * Update modification times of quota files when userspace can
7014	 * start looking at them. If we fail, we return success anyway since
7015	 * this is not a hard failure and quotas are already disabled.
7016	 */
7017	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7018	if (IS_ERR(handle)) {
7019		err = PTR_ERR(handle);
7020		goto out_unlock;
7021	}
7022	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7023	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7024	inode->i_mtime = inode->i_ctime = current_time(inode);
7025	err = ext4_mark_inode_dirty(handle, inode);
7026	ext4_journal_stop(handle);
7027out_unlock:
7028	inode_unlock(inode);
7029out_put:
7030	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7031	iput(inode);
7032	return err;
7033out:
7034	return dquot_quota_off(sb, type);
7035}
7036
7037/* Read data from quotafile - avoid pagecache and such because we cannot afford
7038 * acquiring the locks... As quota files are never truncated and quota code
7039 * itself serializes the operations (and no one else should touch the files)
7040 * we don't have to be afraid of races */
7041static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7042			       size_t len, loff_t off)
7043{
7044	struct inode *inode = sb_dqopt(sb)->files[type];
7045	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7046	int offset = off & (sb->s_blocksize - 1);
7047	int tocopy;
7048	size_t toread;
7049	struct buffer_head *bh;
7050	loff_t i_size = i_size_read(inode);
7051
7052	if (off > i_size)
7053		return 0;
7054	if (off+len > i_size)
7055		len = i_size-off;
7056	toread = len;
7057	while (toread > 0) {
7058		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
 
7059		bh = ext4_bread(NULL, inode, blk, 0);
7060		if (IS_ERR(bh))
7061			return PTR_ERR(bh);
7062		if (!bh)	/* A hole? */
7063			memset(data, 0, tocopy);
7064		else
7065			memcpy(data, bh->b_data+offset, tocopy);
7066		brelse(bh);
7067		offset = 0;
7068		toread -= tocopy;
7069		data += tocopy;
7070		blk++;
7071	}
7072	return len;
7073}
7074
7075/* Write to quotafile (we know the transaction is already started and has
7076 * enough credits) */
7077static ssize_t ext4_quota_write(struct super_block *sb, int type,
7078				const char *data, size_t len, loff_t off)
7079{
7080	struct inode *inode = sb_dqopt(sb)->files[type];
7081	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7082	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7083	int retries = 0;
7084	struct buffer_head *bh;
7085	handle_t *handle = journal_current_handle();
7086
7087	if (!handle) {
7088		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7089			" cancelled because transaction is not started",
7090			(unsigned long long)off, (unsigned long long)len);
7091		return -EIO;
7092	}
7093	/*
7094	 * Since we account only one data block in transaction credits,
7095	 * then it is impossible to cross a block boundary.
7096	 */
7097	if (sb->s_blocksize - offset < len) {
7098		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7099			" cancelled because not block aligned",
7100			(unsigned long long)off, (unsigned long long)len);
7101		return -EIO;
7102	}
7103
7104	do {
7105		bh = ext4_bread(handle, inode, blk,
7106				EXT4_GET_BLOCKS_CREATE |
7107				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7108	} while (PTR_ERR(bh) == -ENOSPC &&
7109		 ext4_should_retry_alloc(inode->i_sb, &retries));
7110	if (IS_ERR(bh))
7111		return PTR_ERR(bh);
7112	if (!bh)
7113		goto out;
7114	BUFFER_TRACE(bh, "get write access");
7115	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7116	if (err) {
7117		brelse(bh);
7118		return err;
7119	}
7120	lock_buffer(bh);
7121	memcpy(bh->b_data+offset, data, len);
7122	flush_dcache_page(bh->b_page);
7123	unlock_buffer(bh);
7124	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7125	brelse(bh);
7126out:
7127	if (inode->i_size < off + len) {
7128		i_size_write(inode, off + len);
7129		EXT4_I(inode)->i_disksize = inode->i_size;
7130		err2 = ext4_mark_inode_dirty(handle, inode);
7131		if (unlikely(err2 && !err))
7132			err = err2;
7133	}
7134	return err ? err : len;
 
 
 
 
 
 
 
 
 
 
 
 
7135}
7136#endif
7137
 
 
 
 
 
 
7138#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7139static inline void register_as_ext2(void)
7140{
7141	int err = register_filesystem(&ext2_fs_type);
7142	if (err)
7143		printk(KERN_WARNING
7144		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7145}
7146
7147static inline void unregister_as_ext2(void)
7148{
7149	unregister_filesystem(&ext2_fs_type);
7150}
7151
7152static inline int ext2_feature_set_ok(struct super_block *sb)
7153{
7154	if (ext4_has_unknown_ext2_incompat_features(sb))
7155		return 0;
7156	if (sb_rdonly(sb))
7157		return 1;
7158	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7159		return 0;
7160	return 1;
7161}
7162#else
7163static inline void register_as_ext2(void) { }
7164static inline void unregister_as_ext2(void) { }
7165static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7166#endif
7167
7168static inline void register_as_ext3(void)
7169{
7170	int err = register_filesystem(&ext3_fs_type);
7171	if (err)
7172		printk(KERN_WARNING
7173		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7174}
7175
7176static inline void unregister_as_ext3(void)
7177{
7178	unregister_filesystem(&ext3_fs_type);
7179}
7180
7181static inline int ext3_feature_set_ok(struct super_block *sb)
7182{
7183	if (ext4_has_unknown_ext3_incompat_features(sb))
7184		return 0;
7185	if (!ext4_has_feature_journal(sb))
7186		return 0;
7187	if (sb_rdonly(sb))
7188		return 1;
7189	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7190		return 0;
7191	return 1;
7192}
7193
7194static struct file_system_type ext4_fs_type = {
7195	.owner			= THIS_MODULE,
7196	.name			= "ext4",
7197	.init_fs_context	= ext4_init_fs_context,
7198	.parameters		= ext4_param_specs,
7199	.kill_sb		= kill_block_super,
7200	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7201};
7202MODULE_ALIAS_FS("ext4");
7203
7204/* Shared across all ext4 file systems */
7205wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7206
7207static int __init ext4_init_fs(void)
7208{
7209	int i, err;
7210
7211	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7212	ext4_li_info = NULL;
 
7213
7214	/* Build-time check for flags consistency */
7215	ext4_check_flag_values();
7216
7217	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7218		init_waitqueue_head(&ext4__ioend_wq[i]);
7219
7220	err = ext4_init_es();
7221	if (err)
7222		return err;
7223
7224	err = ext4_init_pending();
7225	if (err)
7226		goto out7;
7227
7228	err = ext4_init_post_read_processing();
7229	if (err)
7230		goto out6;
7231
7232	err = ext4_init_pageio();
7233	if (err)
7234		goto out5;
7235
7236	err = ext4_init_system_zone();
7237	if (err)
7238		goto out4;
7239
7240	err = ext4_init_sysfs();
7241	if (err)
7242		goto out3;
7243
7244	err = ext4_init_mballoc();
7245	if (err)
7246		goto out2;
7247	err = init_inodecache();
7248	if (err)
7249		goto out1;
7250
7251	err = ext4_fc_init_dentry_cache();
7252	if (err)
7253		goto out05;
7254
7255	register_as_ext3();
7256	register_as_ext2();
7257	err = register_filesystem(&ext4_fs_type);
7258	if (err)
7259		goto out;
7260
7261	return 0;
7262out:
7263	unregister_as_ext2();
7264	unregister_as_ext3();
7265	ext4_fc_destroy_dentry_cache();
7266out05:
7267	destroy_inodecache();
7268out1:
7269	ext4_exit_mballoc();
7270out2:
7271	ext4_exit_sysfs();
7272out3:
7273	ext4_exit_system_zone();
7274out4:
7275	ext4_exit_pageio();
7276out5:
7277	ext4_exit_post_read_processing();
7278out6:
7279	ext4_exit_pending();
7280out7:
7281	ext4_exit_es();
7282
7283	return err;
7284}
7285
7286static void __exit ext4_exit_fs(void)
7287{
7288	ext4_destroy_lazyinit_thread();
7289	unregister_as_ext2();
7290	unregister_as_ext3();
7291	unregister_filesystem(&ext4_fs_type);
7292	ext4_fc_destroy_dentry_cache();
7293	destroy_inodecache();
7294	ext4_exit_mballoc();
7295	ext4_exit_sysfs();
7296	ext4_exit_system_zone();
7297	ext4_exit_pageio();
7298	ext4_exit_post_read_processing();
7299	ext4_exit_es();
7300	ext4_exit_pending();
7301}
7302
7303MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7304MODULE_DESCRIPTION("Fourth Extended Filesystem");
7305MODULE_LICENSE("GPL");
7306MODULE_SOFTDEP("pre: crc32c");
7307module_init(ext4_init_fs)
7308module_exit(ext4_exit_fs)
v4.17
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/super.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Big-endian to little-endian byte-swapping/bitmaps by
  17 *        David S. Miller (davem@caip.rutgers.edu), 1995
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/string.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/parser.h>
  30#include <linux/buffer_head.h>
  31#include <linux/exportfs.h>
  32#include <linux/vfs.h>
  33#include <linux/random.h>
  34#include <linux/mount.h>
  35#include <linux/namei.h>
  36#include <linux/quotaops.h>
  37#include <linux/seq_file.h>
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/dax.h>
  42#include <linux/cleancache.h>
  43#include <linux/uaccess.h>
  44#include <linux/iversion.h>
  45
 
  46#include <linux/kthread.h>
  47#include <linux/freezer.h>
 
 
 
  48
  49#include "ext4.h"
  50#include "ext4_extents.h"	/* Needed for trace points definition */
  51#include "ext4_jbd2.h"
  52#include "xattr.h"
  53#include "acl.h"
  54#include "mballoc.h"
  55#include "fsmap.h"
  56
  57#define CREATE_TRACE_POINTS
  58#include <trace/events/ext4.h>
  59
  60static struct ext4_lazy_init *ext4_li_info;
  61static struct mutex ext4_li_mtx;
  62static struct ratelimit_state ext4_mount_msg_ratelimit;
  63
  64static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  65			     unsigned long journal_devnum);
  66static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  67static int ext4_commit_super(struct super_block *sb, int sync);
  68static void ext4_mark_recovery_complete(struct super_block *sb,
 
  69					struct ext4_super_block *es);
  70static void ext4_clear_journal_err(struct super_block *sb,
  71				   struct ext4_super_block *es);
  72static int ext4_sync_fs(struct super_block *sb, int wait);
  73static int ext4_remount(struct super_block *sb, int *flags, char *data);
  74static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  75static int ext4_unfreeze(struct super_block *sb);
  76static int ext4_freeze(struct super_block *sb);
  77static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
  78		       const char *dev_name, void *data);
  79static inline int ext2_feature_set_ok(struct super_block *sb);
  80static inline int ext3_feature_set_ok(struct super_block *sb);
  81static int ext4_feature_set_ok(struct super_block *sb, int readonly);
  82static void ext4_destroy_lazyinit_thread(void);
  83static void ext4_unregister_li_request(struct super_block *sb);
  84static void ext4_clear_request_list(void);
  85static struct inode *ext4_get_journal_inode(struct super_block *sb,
  86					    unsigned int journal_inum);
 
 
 
 
 
 
 
 
 
 
  87
  88/*
  89 * Lock ordering
  90 *
  91 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
  92 * i_mmap_rwsem (inode->i_mmap_rwsem)!
  93 *
  94 * page fault path:
  95 * mmap_sem -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
  96 *   page lock -> i_data_sem (rw)
  97 *
  98 * buffered write path:
  99 * sb_start_write -> i_mutex -> mmap_sem
 100 * sb_start_write -> i_mutex -> transaction start -> page lock ->
 101 *   i_data_sem (rw)
 102 *
 103 * truncate:
 104 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
 105 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
 
 106 *   i_data_sem (rw)
 107 *
 108 * direct IO:
 109 * sb_start_write -> i_mutex -> mmap_sem
 110 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
 111 *
 112 * writepages:
 113 * transaction start -> page lock(s) -> i_data_sem (rw)
 114 */
 115
 
 
 
 
 
 
 
 
 116#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 117static struct file_system_type ext2_fs_type = {
 118	.owner		= THIS_MODULE,
 119	.name		= "ext2",
 120	.mount		= ext4_mount,
 121	.kill_sb	= kill_block_super,
 122	.fs_flags	= FS_REQUIRES_DEV,
 
 123};
 124MODULE_ALIAS_FS("ext2");
 125MODULE_ALIAS("ext2");
 126#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
 127#else
 128#define IS_EXT2_SB(sb) (0)
 129#endif
 130
 131
 132static struct file_system_type ext3_fs_type = {
 133	.owner		= THIS_MODULE,
 134	.name		= "ext3",
 135	.mount		= ext4_mount,
 136	.kill_sb	= kill_block_super,
 137	.fs_flags	= FS_REQUIRES_DEV,
 
 138};
 139MODULE_ALIAS_FS("ext3");
 140MODULE_ALIAS("ext3");
 141#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
 142
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 143static int ext4_verify_csum_type(struct super_block *sb,
 144				 struct ext4_super_block *es)
 145{
 146	if (!ext4_has_feature_metadata_csum(sb))
 147		return 1;
 148
 149	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 150}
 151
 152static __le32 ext4_superblock_csum(struct super_block *sb,
 153				   struct ext4_super_block *es)
 154{
 155	struct ext4_sb_info *sbi = EXT4_SB(sb);
 156	int offset = offsetof(struct ext4_super_block, s_checksum);
 157	__u32 csum;
 158
 159	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 160
 161	return cpu_to_le32(csum);
 162}
 163
 164static int ext4_superblock_csum_verify(struct super_block *sb,
 165				       struct ext4_super_block *es)
 166{
 167	if (!ext4_has_metadata_csum(sb))
 168		return 1;
 169
 170	return es->s_checksum == ext4_superblock_csum(sb, es);
 171}
 172
 173void ext4_superblock_csum_set(struct super_block *sb)
 174{
 175	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 176
 177	if (!ext4_has_metadata_csum(sb))
 178		return;
 179
 180	es->s_checksum = ext4_superblock_csum(sb, es);
 181}
 182
 183void *ext4_kvmalloc(size_t size, gfp_t flags)
 184{
 185	void *ret;
 186
 187	ret = kmalloc(size, flags | __GFP_NOWARN);
 188	if (!ret)
 189		ret = __vmalloc(size, flags, PAGE_KERNEL);
 190	return ret;
 191}
 192
 193void *ext4_kvzalloc(size_t size, gfp_t flags)
 194{
 195	void *ret;
 196
 197	ret = kzalloc(size, flags | __GFP_NOWARN);
 198	if (!ret)
 199		ret = __vmalloc(size, flags | __GFP_ZERO, PAGE_KERNEL);
 200	return ret;
 201}
 202
 203ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 204			       struct ext4_group_desc *bg)
 205{
 206	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 207		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 208		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 209}
 210
 211ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 212			       struct ext4_group_desc *bg)
 213{
 214	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 215		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 216		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 217}
 218
 219ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 220			      struct ext4_group_desc *bg)
 221{
 222	return le32_to_cpu(bg->bg_inode_table_lo) |
 223		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 224		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 225}
 226
 227__u32 ext4_free_group_clusters(struct super_block *sb,
 228			       struct ext4_group_desc *bg)
 229{
 230	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 231		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 232		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 233}
 234
 235__u32 ext4_free_inodes_count(struct super_block *sb,
 236			      struct ext4_group_desc *bg)
 237{
 238	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 239		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 240		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 241}
 242
 243__u32 ext4_used_dirs_count(struct super_block *sb,
 244			      struct ext4_group_desc *bg)
 245{
 246	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 247		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 248		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 249}
 250
 251__u32 ext4_itable_unused_count(struct super_block *sb,
 252			      struct ext4_group_desc *bg)
 253{
 254	return le16_to_cpu(bg->bg_itable_unused_lo) |
 255		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 256		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 257}
 258
 259void ext4_block_bitmap_set(struct super_block *sb,
 260			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 261{
 262	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 263	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 264		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 265}
 266
 267void ext4_inode_bitmap_set(struct super_block *sb,
 268			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 269{
 270	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 271	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 272		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 273}
 274
 275void ext4_inode_table_set(struct super_block *sb,
 276			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 277{
 278	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 279	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 280		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 281}
 282
 283void ext4_free_group_clusters_set(struct super_block *sb,
 284				  struct ext4_group_desc *bg, __u32 count)
 285{
 286	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 287	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 288		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 289}
 290
 291void ext4_free_inodes_set(struct super_block *sb,
 292			  struct ext4_group_desc *bg, __u32 count)
 293{
 294	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 295	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 296		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 297}
 298
 299void ext4_used_dirs_set(struct super_block *sb,
 300			  struct ext4_group_desc *bg, __u32 count)
 301{
 302	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 303	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 304		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 305}
 306
 307void ext4_itable_unused_set(struct super_block *sb,
 308			  struct ext4_group_desc *bg, __u32 count)
 309{
 310	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 311	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 312		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 313}
 314
 315
 316static void __save_error_info(struct super_block *sb, const char *func,
 317			    unsigned int line)
 318{
 319	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 320
 321	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 322	if (bdev_read_only(sb->s_bdev))
 323		return;
 324	es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
 325	es->s_last_error_time = cpu_to_le32(get_seconds());
 326	strncpy(es->s_last_error_func, func, sizeof(es->s_last_error_func));
 327	es->s_last_error_line = cpu_to_le32(line);
 328	if (!es->s_first_error_time) {
 329		es->s_first_error_time = es->s_last_error_time;
 330		strncpy(es->s_first_error_func, func,
 331			sizeof(es->s_first_error_func));
 332		es->s_first_error_line = cpu_to_le32(line);
 333		es->s_first_error_ino = es->s_last_error_ino;
 334		es->s_first_error_block = es->s_last_error_block;
 335	}
 336	/*
 337	 * Start the daily error reporting function if it hasn't been
 338	 * started already
 339	 */
 340	if (!es->s_error_count)
 341		mod_timer(&EXT4_SB(sb)->s_err_report, jiffies + 24*60*60*HZ);
 342	le32_add_cpu(&es->s_error_count, 1);
 343}
 344
 345static void save_error_info(struct super_block *sb, const char *func,
 346			    unsigned int line)
 347{
 348	__save_error_info(sb, func, line);
 349	ext4_commit_super(sb, 1);
 350}
 
 
 
 
 
 351
 352/*
 353 * The del_gendisk() function uninitializes the disk-specific data
 354 * structures, including the bdi structure, without telling anyone
 355 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 356 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 357 * This is a kludge to prevent these oops until we can put in a proper
 358 * hook in del_gendisk() to inform the VFS and file system layers.
 359 */
 360static int block_device_ejected(struct super_block *sb)
 361{
 362	struct inode *bd_inode = sb->s_bdev->bd_inode;
 363	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 364
 365	return bdi->dev == NULL;
 366}
 367
 368static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 369{
 370	struct super_block		*sb = journal->j_private;
 371	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 372	int				error = is_journal_aborted(journal);
 373	struct ext4_journal_cb_entry	*jce;
 374
 375	BUG_ON(txn->t_state == T_FINISHED);
 376
 377	ext4_process_freed_data(sb, txn->t_tid);
 378
 379	spin_lock(&sbi->s_md_lock);
 380	while (!list_empty(&txn->t_private_list)) {
 381		jce = list_entry(txn->t_private_list.next,
 382				 struct ext4_journal_cb_entry, jce_list);
 383		list_del_init(&jce->jce_list);
 384		spin_unlock(&sbi->s_md_lock);
 385		jce->jce_func(sb, jce, error);
 386		spin_lock(&sbi->s_md_lock);
 387	}
 388	spin_unlock(&sbi->s_md_lock);
 389}
 390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391/* Deal with the reporting of failure conditions on a filesystem such as
 392 * inconsistencies detected or read IO failures.
 393 *
 394 * On ext2, we can store the error state of the filesystem in the
 395 * superblock.  That is not possible on ext4, because we may have other
 396 * write ordering constraints on the superblock which prevent us from
 397 * writing it out straight away; and given that the journal is about to
 398 * be aborted, we can't rely on the current, or future, transactions to
 399 * write out the superblock safely.
 400 *
 401 * We'll just use the jbd2_journal_abort() error code to record an error in
 402 * the journal instead.  On recovery, the journal will complain about
 403 * that error until we've noted it down and cleared it.
 
 
 
 
 
 
 404 */
 405
 406static void ext4_handle_error(struct super_block *sb)
 
 407{
 408	if (sb_rdonly(sb))
 409		return;
 410
 411	if (!test_opt(sb, ERRORS_CONT)) {
 412		journal_t *journal = EXT4_SB(sb)->s_journal;
 
 413
 414		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 
 415		if (journal)
 416			jbd2_journal_abort(journal, -EIO);
 417	}
 418	if (test_opt(sb, ERRORS_RO)) {
 419		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 
 420		/*
 421		 * Make sure updated value of ->s_mount_flags will be visible
 422		 * before ->s_flags update
 
 
 423		 */
 424		smp_wmb();
 425		sb->s_flags |= SB_RDONLY;
 
 
 426	}
 427	if (test_opt(sb, ERRORS_PANIC)) {
 428		if (EXT4_SB(sb)->s_journal &&
 429		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
 430			return;
 
 
 
 431		panic("EXT4-fs (device %s): panic forced after error\n",
 432			sb->s_id);
 433	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 434}
 435
 436#define ext4_error_ratelimit(sb)					\
 437		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 438			     "EXT4-fs error")
 439
 440void __ext4_error(struct super_block *sb, const char *function,
 441		  unsigned int line, const char *fmt, ...)
 
 442{
 443	struct va_format vaf;
 444	va_list args;
 445
 446	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 447		return;
 448
 449	trace_ext4_error(sb, function, line);
 450	if (ext4_error_ratelimit(sb)) {
 451		va_start(args, fmt);
 452		vaf.fmt = fmt;
 453		vaf.va = &args;
 454		printk(KERN_CRIT
 455		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 456		       sb->s_id, function, line, current->comm, &vaf);
 457		va_end(args);
 458	}
 459	save_error_info(sb, function, line);
 460	ext4_handle_error(sb);
 
 461}
 462
 463void __ext4_error_inode(struct inode *inode, const char *function,
 464			unsigned int line, ext4_fsblk_t block,
 465			const char *fmt, ...)
 466{
 467	va_list args;
 468	struct va_format vaf;
 469	struct ext4_super_block *es = EXT4_SB(inode->i_sb)->s_es;
 470
 471	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 472		return;
 473
 474	trace_ext4_error(inode->i_sb, function, line);
 475	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 476	es->s_last_error_block = cpu_to_le64(block);
 477	if (ext4_error_ratelimit(inode->i_sb)) {
 478		va_start(args, fmt);
 479		vaf.fmt = fmt;
 480		vaf.va = &args;
 481		if (block)
 482			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 483			       "inode #%lu: block %llu: comm %s: %pV\n",
 484			       inode->i_sb->s_id, function, line, inode->i_ino,
 485			       block, current->comm, &vaf);
 486		else
 487			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 488			       "inode #%lu: comm %s: %pV\n",
 489			       inode->i_sb->s_id, function, line, inode->i_ino,
 490			       current->comm, &vaf);
 491		va_end(args);
 492	}
 493	save_error_info(inode->i_sb, function, line);
 494	ext4_handle_error(inode->i_sb);
 
 
 495}
 496
 497void __ext4_error_file(struct file *file, const char *function,
 498		       unsigned int line, ext4_fsblk_t block,
 499		       const char *fmt, ...)
 500{
 501	va_list args;
 502	struct va_format vaf;
 503	struct ext4_super_block *es;
 504	struct inode *inode = file_inode(file);
 505	char pathname[80], *path;
 506
 507	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 508		return;
 509
 510	trace_ext4_error(inode->i_sb, function, line);
 511	es = EXT4_SB(inode->i_sb)->s_es;
 512	es->s_last_error_ino = cpu_to_le32(inode->i_ino);
 513	if (ext4_error_ratelimit(inode->i_sb)) {
 514		path = file_path(file, pathname, sizeof(pathname));
 515		if (IS_ERR(path))
 516			path = "(unknown)";
 517		va_start(args, fmt);
 518		vaf.fmt = fmt;
 519		vaf.va = &args;
 520		if (block)
 521			printk(KERN_CRIT
 522			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 523			       "block %llu: comm %s: path %s: %pV\n",
 524			       inode->i_sb->s_id, function, line, inode->i_ino,
 525			       block, current->comm, path, &vaf);
 526		else
 527			printk(KERN_CRIT
 528			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 529			       "comm %s: path %s: %pV\n",
 530			       inode->i_sb->s_id, function, line, inode->i_ino,
 531			       current->comm, path, &vaf);
 532		va_end(args);
 533	}
 534	save_error_info(inode->i_sb, function, line);
 535	ext4_handle_error(inode->i_sb);
 
 
 536}
 537
 538const char *ext4_decode_error(struct super_block *sb, int errno,
 539			      char nbuf[16])
 540{
 541	char *errstr = NULL;
 542
 543	switch (errno) {
 544	case -EFSCORRUPTED:
 545		errstr = "Corrupt filesystem";
 546		break;
 547	case -EFSBADCRC:
 548		errstr = "Filesystem failed CRC";
 549		break;
 550	case -EIO:
 551		errstr = "IO failure";
 552		break;
 553	case -ENOMEM:
 554		errstr = "Out of memory";
 555		break;
 556	case -EROFS:
 557		if (!sb || (EXT4_SB(sb)->s_journal &&
 558			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 559			errstr = "Journal has aborted";
 560		else
 561			errstr = "Readonly filesystem";
 562		break;
 563	default:
 564		/* If the caller passed in an extra buffer for unknown
 565		 * errors, textualise them now.  Else we just return
 566		 * NULL. */
 567		if (nbuf) {
 568			/* Check for truncated error codes... */
 569			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 570				errstr = nbuf;
 571		}
 572		break;
 573	}
 574
 575	return errstr;
 576}
 577
 578/* __ext4_std_error decodes expected errors from journaling functions
 579 * automatically and invokes the appropriate error response.  */
 580
 581void __ext4_std_error(struct super_block *sb, const char *function,
 582		      unsigned int line, int errno)
 583{
 584	char nbuf[16];
 585	const char *errstr;
 586
 587	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 588		return;
 589
 590	/* Special case: if the error is EROFS, and we're not already
 591	 * inside a transaction, then there's really no point in logging
 592	 * an error. */
 593	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 594		return;
 595
 596	if (ext4_error_ratelimit(sb)) {
 597		errstr = ext4_decode_error(sb, errno, nbuf);
 598		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 599		       sb->s_id, function, line, errstr);
 600	}
 
 601
 602	save_error_info(sb, function, line);
 603	ext4_handle_error(sb);
 604}
 605
 606/*
 607 * ext4_abort is a much stronger failure handler than ext4_error.  The
 608 * abort function may be used to deal with unrecoverable failures such
 609 * as journal IO errors or ENOMEM at a critical moment in log management.
 610 *
 611 * We unconditionally force the filesystem into an ABORT|READONLY state,
 612 * unless the error response on the fs has been set to panic in which
 613 * case we take the easy way out and panic immediately.
 614 */
 615
 616void __ext4_abort(struct super_block *sb, const char *function,
 617		unsigned int line, const char *fmt, ...)
 618{
 619	struct va_format vaf;
 620	va_list args;
 621
 622	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 623		return;
 
 
 
 
 624
 625	save_error_info(sb, function, line);
 626	va_start(args, fmt);
 627	vaf.fmt = fmt;
 628	vaf.va = &args;
 629	printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: %pV\n",
 630	       sb->s_id, function, line, &vaf);
 
 
 631	va_end(args);
 632
 633	if (sb_rdonly(sb) == 0) {
 634		ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 635		EXT4_SB(sb)->s_mount_flags |= EXT4_MF_FS_ABORTED;
 636		/*
 637		 * Make sure updated value of ->s_mount_flags will be visible
 638		 * before ->s_flags update
 639		 */
 640		smp_wmb();
 641		sb->s_flags |= SB_RDONLY;
 642		if (EXT4_SB(sb)->s_journal)
 643			jbd2_journal_abort(EXT4_SB(sb)->s_journal, -EIO);
 644		save_error_info(sb, function, line);
 645	}
 646	if (test_opt(sb, ERRORS_PANIC)) {
 647		if (EXT4_SB(sb)->s_journal &&
 648		  !(EXT4_SB(sb)->s_journal->j_flags & JBD2_REC_ERR))
 649			return;
 650		panic("EXT4-fs panic from previous error\n");
 651	}
 652}
 653
 654void __ext4_msg(struct super_block *sb,
 655		const char *prefix, const char *fmt, ...)
 656{
 657	struct va_format vaf;
 658	va_list args;
 659
 660	if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
 661		return;
 662
 663	va_start(args, fmt);
 664	vaf.fmt = fmt;
 665	vaf.va = &args;
 666	printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
 667	va_end(args);
 668}
 669
 670#define ext4_warning_ratelimit(sb)					\
 671		___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),	\
 672			     "EXT4-fs warning")
 673
 674void __ext4_warning(struct super_block *sb, const char *function,
 675		    unsigned int line, const char *fmt, ...)
 676{
 677	struct va_format vaf;
 678	va_list args;
 679
 680	if (!ext4_warning_ratelimit(sb))
 681		return;
 682
 683	va_start(args, fmt);
 684	vaf.fmt = fmt;
 685	vaf.va = &args;
 686	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
 687	       sb->s_id, function, line, &vaf);
 688	va_end(args);
 689}
 690
 691void __ext4_warning_inode(const struct inode *inode, const char *function,
 692			  unsigned int line, const char *fmt, ...)
 693{
 694	struct va_format vaf;
 695	va_list args;
 696
 697	if (!ext4_warning_ratelimit(inode->i_sb))
 698		return;
 699
 700	va_start(args, fmt);
 701	vaf.fmt = fmt;
 702	vaf.va = &args;
 703	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
 704	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
 705	       function, line, inode->i_ino, current->comm, &vaf);
 706	va_end(args);
 707}
 708
 709void __ext4_grp_locked_error(const char *function, unsigned int line,
 710			     struct super_block *sb, ext4_group_t grp,
 711			     unsigned long ino, ext4_fsblk_t block,
 712			     const char *fmt, ...)
 713__releases(bitlock)
 714__acquires(bitlock)
 715{
 716	struct va_format vaf;
 717	va_list args;
 718	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 719
 720	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 721		return;
 722
 723	trace_ext4_error(sb, function, line);
 724	es->s_last_error_ino = cpu_to_le32(ino);
 725	es->s_last_error_block = cpu_to_le64(block);
 726	__save_error_info(sb, function, line);
 727
 728	if (ext4_error_ratelimit(sb)) {
 729		va_start(args, fmt);
 730		vaf.fmt = fmt;
 731		vaf.va = &args;
 732		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
 733		       sb->s_id, function, line, grp);
 734		if (ino)
 735			printk(KERN_CONT "inode %lu: ", ino);
 736		if (block)
 737			printk(KERN_CONT "block %llu:",
 738			       (unsigned long long) block);
 739		printk(KERN_CONT "%pV\n", &vaf);
 740		va_end(args);
 741	}
 742
 743	if (test_opt(sb, ERRORS_CONT)) {
 744		ext4_commit_super(sb, 0);
 
 
 
 
 
 
 
 745		return;
 746	}
 747
 748	ext4_unlock_group(sb, grp);
 749	ext4_commit_super(sb, 1);
 750	ext4_handle_error(sb);
 751	/*
 752	 * We only get here in the ERRORS_RO case; relocking the group
 753	 * may be dangerous, but nothing bad will happen since the
 754	 * filesystem will have already been marked read/only and the
 755	 * journal has been aborted.  We return 1 as a hint to callers
 756	 * who might what to use the return value from
 757	 * ext4_grp_locked_error() to distinguish between the
 758	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
 759	 * aggressively from the ext4 function in question, with a
 760	 * more appropriate error code.
 761	 */
 762	ext4_lock_group(sb, grp);
 763	return;
 764}
 765
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766void ext4_update_dynamic_rev(struct super_block *sb)
 767{
 768	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 769
 770	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
 771		return;
 772
 773	ext4_warning(sb,
 774		     "updating to rev %d because of new feature flag, "
 775		     "running e2fsck is recommended",
 776		     EXT4_DYNAMIC_REV);
 777
 778	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
 779	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
 780	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
 781	/* leave es->s_feature_*compat flags alone */
 782	/* es->s_uuid will be set by e2fsck if empty */
 783
 784	/*
 785	 * The rest of the superblock fields should be zero, and if not it
 786	 * means they are likely already in use, so leave them alone.  We
 787	 * can leave it up to e2fsck to clean up any inconsistencies there.
 788	 */
 789}
 790
 791/*
 792 * Open the external journal device
 793 */
 794static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
 795{
 796	struct block_device *bdev;
 797	char b[BDEVNAME_SIZE];
 798
 799	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
 800	if (IS_ERR(bdev))
 801		goto fail;
 802	return bdev;
 803
 804fail:
 805	ext4_msg(sb, KERN_ERR, "failed to open journal device %s: %ld",
 806			__bdevname(dev, b), PTR_ERR(bdev));
 
 807	return NULL;
 808}
 809
 810/*
 811 * Release the journal device
 812 */
 813static void ext4_blkdev_put(struct block_device *bdev)
 814{
 815	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
 816}
 817
 818static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
 819{
 820	struct block_device *bdev;
 821	bdev = sbi->journal_bdev;
 822	if (bdev) {
 823		ext4_blkdev_put(bdev);
 824		sbi->journal_bdev = NULL;
 825	}
 826}
 827
 828static inline struct inode *orphan_list_entry(struct list_head *l)
 829{
 830	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
 831}
 832
 833static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
 834{
 835	struct list_head *l;
 836
 837	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
 838		 le32_to_cpu(sbi->s_es->s_last_orphan));
 839
 840	printk(KERN_ERR "sb_info orphan list:\n");
 841	list_for_each(l, &sbi->s_orphan) {
 842		struct inode *inode = orphan_list_entry(l);
 843		printk(KERN_ERR "  "
 844		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
 845		       inode->i_sb->s_id, inode->i_ino, inode,
 846		       inode->i_mode, inode->i_nlink,
 847		       NEXT_ORPHAN(inode));
 848	}
 849}
 850
 851#ifdef CONFIG_QUOTA
 852static int ext4_quota_off(struct super_block *sb, int type);
 853
 854static inline void ext4_quota_off_umount(struct super_block *sb)
 855{
 856	int type;
 857
 858	/* Use our quota_off function to clear inode flags etc. */
 859	for (type = 0; type < EXT4_MAXQUOTAS; type++)
 860		ext4_quota_off(sb, type);
 861}
 
 
 
 
 
 
 
 
 
 
 
 
 862#else
 863static inline void ext4_quota_off_umount(struct super_block *sb)
 864{
 865}
 866#endif
 867
 868static void ext4_put_super(struct super_block *sb)
 869{
 870	struct ext4_sb_info *sbi = EXT4_SB(sb);
 871	struct ext4_super_block *es = sbi->s_es;
 
 
 872	int aborted = 0;
 873	int i, err;
 874
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 875	ext4_unregister_li_request(sb);
 876	ext4_quota_off_umount(sb);
 877
 
 878	destroy_workqueue(sbi->rsv_conversion_wq);
 
 879
 880	if (sbi->s_journal) {
 881		aborted = is_journal_aborted(sbi->s_journal);
 882		err = jbd2_journal_destroy(sbi->s_journal);
 883		sbi->s_journal = NULL;
 884		if ((err < 0) && !aborted)
 885			ext4_abort(sb, "Couldn't clean up the journal");
 
 886	}
 887
 888	ext4_unregister_sysfs(sb);
 889	ext4_es_unregister_shrinker(sbi);
 890	del_timer_sync(&sbi->s_err_report);
 891	ext4_release_system_zone(sb);
 892	ext4_mb_release(sb);
 893	ext4_ext_release(sb);
 894
 895	if (!sb_rdonly(sb) && !aborted) {
 896		ext4_clear_feature_journal_needs_recovery(sb);
 
 897		es->s_state = cpu_to_le16(sbi->s_mount_state);
 898	}
 899	if (!sb_rdonly(sb))
 900		ext4_commit_super(sb, 1);
 901
 
 
 902	for (i = 0; i < sbi->s_gdb_count; i++)
 903		brelse(sbi->s_group_desc[i]);
 904	kvfree(sbi->s_group_desc);
 905	kvfree(sbi->s_flex_groups);
 
 
 
 
 
 
 906	percpu_counter_destroy(&sbi->s_freeclusters_counter);
 907	percpu_counter_destroy(&sbi->s_freeinodes_counter);
 908	percpu_counter_destroy(&sbi->s_dirs_counter);
 909	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
 910	percpu_free_rwsem(&sbi->s_journal_flag_rwsem);
 
 911#ifdef CONFIG_QUOTA
 912	for (i = 0; i < EXT4_MAXQUOTAS; i++)
 913		kfree(sbi->s_qf_names[i]);
 914#endif
 915
 916	/* Debugging code just in case the in-memory inode orphan list
 917	 * isn't empty.  The on-disk one can be non-empty if we've
 918	 * detected an error and taken the fs readonly, but the
 919	 * in-memory list had better be clean by this point. */
 920	if (!list_empty(&sbi->s_orphan))
 921		dump_orphan_list(sb, sbi);
 922	J_ASSERT(list_empty(&sbi->s_orphan));
 923
 924	sync_blockdev(sb->s_bdev);
 925	invalidate_bdev(sb->s_bdev);
 926	if (sbi->journal_bdev && sbi->journal_bdev != sb->s_bdev) {
 927		/*
 928		 * Invalidate the journal device's buffers.  We don't want them
 929		 * floating about in memory - the physical journal device may
 930		 * hotswapped, and it breaks the `ro-after' testing code.
 931		 */
 932		sync_blockdev(sbi->journal_bdev);
 933		invalidate_bdev(sbi->journal_bdev);
 934		ext4_blkdev_remove(sbi);
 935	}
 936	if (sbi->s_ea_inode_cache) {
 937		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
 938		sbi->s_ea_inode_cache = NULL;
 939	}
 940	if (sbi->s_ea_block_cache) {
 941		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
 942		sbi->s_ea_block_cache = NULL;
 943	}
 944	if (sbi->s_mmp_tsk)
 945		kthread_stop(sbi->s_mmp_tsk);
 946	brelse(sbi->s_sbh);
 947	sb->s_fs_info = NULL;
 948	/*
 949	 * Now that we are completely done shutting down the
 950	 * superblock, we need to actually destroy the kobject.
 951	 */
 952	kobject_put(&sbi->s_kobj);
 953	wait_for_completion(&sbi->s_kobj_unregister);
 954	if (sbi->s_chksum_driver)
 955		crypto_free_shash(sbi->s_chksum_driver);
 956	kfree(sbi->s_blockgroup_lock);
 957	fs_put_dax(sbi->s_daxdev);
 
 
 
 
 958	kfree(sbi);
 959}
 960
 961static struct kmem_cache *ext4_inode_cachep;
 962
 963/*
 964 * Called inside transaction, so use GFP_NOFS
 965 */
 966static struct inode *ext4_alloc_inode(struct super_block *sb)
 967{
 968	struct ext4_inode_info *ei;
 969
 970	ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
 971	if (!ei)
 972		return NULL;
 973
 974	inode_set_iversion(&ei->vfs_inode, 1);
 
 975	spin_lock_init(&ei->i_raw_lock);
 976	INIT_LIST_HEAD(&ei->i_prealloc_list);
 
 977	spin_lock_init(&ei->i_prealloc_lock);
 978	ext4_es_init_tree(&ei->i_es_tree);
 979	rwlock_init(&ei->i_es_lock);
 980	INIT_LIST_HEAD(&ei->i_es_list);
 981	ei->i_es_all_nr = 0;
 982	ei->i_es_shk_nr = 0;
 983	ei->i_es_shrink_lblk = 0;
 984	ei->i_reserved_data_blocks = 0;
 985	ei->i_da_metadata_calc_len = 0;
 986	ei->i_da_metadata_calc_last_lblock = 0;
 987	spin_lock_init(&(ei->i_block_reservation_lock));
 
 988#ifdef CONFIG_QUOTA
 989	ei->i_reserved_quota = 0;
 990	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
 991#endif
 992	ei->jinode = NULL;
 993	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
 994	spin_lock_init(&ei->i_completed_io_lock);
 995	ei->i_sync_tid = 0;
 996	ei->i_datasync_tid = 0;
 997	atomic_set(&ei->i_unwritten, 0);
 998	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
 
 
 999	return &ei->vfs_inode;
1000}
1001
1002static int ext4_drop_inode(struct inode *inode)
1003{
1004	int drop = generic_drop_inode(inode);
1005
 
 
 
1006	trace_ext4_drop_inode(inode, drop);
1007	return drop;
1008}
1009
1010static void ext4_i_callback(struct rcu_head *head)
1011{
1012	struct inode *inode = container_of(head, struct inode, i_rcu);
 
 
 
 
1013	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1014}
1015
1016static void ext4_destroy_inode(struct inode *inode)
1017{
1018	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1019		ext4_msg(inode->i_sb, KERN_ERR,
1020			 "Inode %lu (%p): orphan list check failed!",
1021			 inode->i_ino, EXT4_I(inode));
1022		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1023				EXT4_I(inode), sizeof(struct ext4_inode_info),
1024				true);
1025		dump_stack();
1026	}
1027	call_rcu(&inode->i_rcu, ext4_i_callback);
 
 
 
 
 
1028}
1029
1030static void init_once(void *foo)
1031{
1032	struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1033
1034	INIT_LIST_HEAD(&ei->i_orphan);
1035	init_rwsem(&ei->xattr_sem);
1036	init_rwsem(&ei->i_data_sem);
1037	init_rwsem(&ei->i_mmap_sem);
1038	inode_init_once(&ei->vfs_inode);
 
1039}
1040
1041static int __init init_inodecache(void)
1042{
1043	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1044				sizeof(struct ext4_inode_info), 0,
1045				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1046					SLAB_ACCOUNT),
1047				offsetof(struct ext4_inode_info, i_data),
1048				sizeof_field(struct ext4_inode_info, i_data),
1049				init_once);
1050	if (ext4_inode_cachep == NULL)
1051		return -ENOMEM;
1052	return 0;
1053}
1054
1055static void destroy_inodecache(void)
1056{
1057	/*
1058	 * Make sure all delayed rcu free inodes are flushed before we
1059	 * destroy cache.
1060	 */
1061	rcu_barrier();
1062	kmem_cache_destroy(ext4_inode_cachep);
1063}
1064
1065void ext4_clear_inode(struct inode *inode)
1066{
 
1067	invalidate_inode_buffers(inode);
1068	clear_inode(inode);
 
 
1069	dquot_drop(inode);
1070	ext4_discard_preallocations(inode);
1071	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1072	if (EXT4_I(inode)->jinode) {
1073		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1074					       EXT4_I(inode)->jinode);
1075		jbd2_free_inode(EXT4_I(inode)->jinode);
1076		EXT4_I(inode)->jinode = NULL;
1077	}
1078	fscrypt_put_encryption_info(inode);
 
1079}
1080
1081static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1082					u64 ino, u32 generation)
1083{
1084	struct inode *inode;
1085
1086	if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
1087		return ERR_PTR(-ESTALE);
1088	if (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
1089		return ERR_PTR(-ESTALE);
1090
1091	/* iget isn't really right if the inode is currently unallocated!!
1092	 *
1093	 * ext4_read_inode will return a bad_inode if the inode had been
1094	 * deleted, so we should be safe.
1095	 *
1096	 * Currently we don't know the generation for parent directory, so
1097	 * a generation of 0 means "accept any"
1098	 */
1099	inode = ext4_iget_normal(sb, ino);
1100	if (IS_ERR(inode))
1101		return ERR_CAST(inode);
1102	if (generation && inode->i_generation != generation) {
1103		iput(inode);
1104		return ERR_PTR(-ESTALE);
1105	}
1106
1107	return inode;
1108}
1109
1110static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1111					int fh_len, int fh_type)
1112{
1113	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1114				    ext4_nfs_get_inode);
1115}
1116
1117static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1118					int fh_len, int fh_type)
1119{
1120	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1121				    ext4_nfs_get_inode);
1122}
1123
1124/*
1125 * Try to release metadata pages (indirect blocks, directories) which are
1126 * mapped via the block device.  Since these pages could have journal heads
1127 * which would prevent try_to_free_buffers() from freeing them, we must use
1128 * jbd2 layer's try_to_free_buffers() function to release them.
1129 */
1130static int bdev_try_to_free_page(struct super_block *sb, struct page *page,
1131				 gfp_t wait)
1132{
1133	journal_t *journal = EXT4_SB(sb)->s_journal;
1134
1135	WARN_ON(PageChecked(page));
1136	if (!page_has_buffers(page))
1137		return 0;
1138	if (journal)
1139		return jbd2_journal_try_to_free_buffers(journal, page,
1140						wait & ~__GFP_DIRECT_RECLAIM);
1141	return try_to_free_buffers(page);
1142}
1143
1144#ifdef CONFIG_EXT4_FS_ENCRYPTION
1145static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1146{
1147	return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1148				 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1149}
1150
1151static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1152							void *fs_data)
1153{
1154	handle_t *handle = fs_data;
1155	int res, res2, credits, retries = 0;
1156
1157	/*
1158	 * Encrypting the root directory is not allowed because e2fsck expects
1159	 * lost+found to exist and be unencrypted, and encrypting the root
1160	 * directory would imply encrypting the lost+found directory as well as
1161	 * the filename "lost+found" itself.
1162	 */
1163	if (inode->i_ino == EXT4_ROOT_INO)
1164		return -EPERM;
1165
1166	if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1167		return -EINVAL;
1168
1169	res = ext4_convert_inline_data(inode);
1170	if (res)
1171		return res;
1172
1173	/*
1174	 * If a journal handle was specified, then the encryption context is
1175	 * being set on a new inode via inheritance and is part of a larger
1176	 * transaction to create the inode.  Otherwise the encryption context is
1177	 * being set on an existing inode in its own transaction.  Only in the
1178	 * latter case should the "retry on ENOSPC" logic be used.
1179	 */
1180
1181	if (handle) {
1182		res = ext4_xattr_set_handle(handle, inode,
1183					    EXT4_XATTR_INDEX_ENCRYPTION,
1184					    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1185					    ctx, len, 0);
1186		if (!res) {
1187			ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1188			ext4_clear_inode_state(inode,
1189					EXT4_STATE_MAY_INLINE_DATA);
1190			/*
1191			 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1192			 * S_DAX may be disabled
1193			 */
1194			ext4_set_inode_flags(inode);
1195		}
1196		return res;
1197	}
1198
1199	res = dquot_initialize(inode);
1200	if (res)
1201		return res;
1202retry:
1203	res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1204				     &credits);
1205	if (res)
1206		return res;
1207
1208	handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1209	if (IS_ERR(handle))
1210		return PTR_ERR(handle);
1211
1212	res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1213				    EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1214				    ctx, len, 0);
1215	if (!res) {
1216		ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1217		/*
1218		 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1219		 * S_DAX may be disabled
1220		 */
1221		ext4_set_inode_flags(inode);
1222		res = ext4_mark_inode_dirty(handle, inode);
1223		if (res)
1224			EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1225	}
1226	res2 = ext4_journal_stop(handle);
1227
1228	if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1229		goto retry;
1230	if (!res)
1231		res = res2;
1232	return res;
1233}
1234
1235static bool ext4_dummy_context(struct inode *inode)
1236{
1237	return DUMMY_ENCRYPTION_ENABLED(EXT4_SB(inode->i_sb));
1238}
1239
1240static unsigned ext4_max_namelen(struct inode *inode)
1241{
1242	return S_ISLNK(inode->i_mode) ? inode->i_sb->s_blocksize :
1243		EXT4_NAME_LEN;
1244}
1245
1246static const struct fscrypt_operations ext4_cryptops = {
1247	.key_prefix		= "ext4:",
1248	.get_context		= ext4_get_context,
1249	.set_context		= ext4_set_context,
1250	.dummy_context		= ext4_dummy_context,
1251	.empty_dir		= ext4_empty_dir,
1252	.max_namelen		= ext4_max_namelen,
1253};
1254#endif
1255
1256#ifdef CONFIG_QUOTA
1257static const char * const quotatypes[] = INITQFNAMES;
1258#define QTYPE2NAME(t) (quotatypes[t])
1259
1260static int ext4_write_dquot(struct dquot *dquot);
1261static int ext4_acquire_dquot(struct dquot *dquot);
1262static int ext4_release_dquot(struct dquot *dquot);
1263static int ext4_mark_dquot_dirty(struct dquot *dquot);
1264static int ext4_write_info(struct super_block *sb, int type);
1265static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1266			 const struct path *path);
1267static int ext4_quota_on_mount(struct super_block *sb, int type);
1268static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1269			       size_t len, loff_t off);
1270static ssize_t ext4_quota_write(struct super_block *sb, int type,
1271				const char *data, size_t len, loff_t off);
1272static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1273			     unsigned int flags);
1274static int ext4_enable_quotas(struct super_block *sb);
1275static int ext4_get_next_id(struct super_block *sb, struct kqid *qid);
1276
1277static struct dquot **ext4_get_dquots(struct inode *inode)
1278{
1279	return EXT4_I(inode)->i_dquot;
1280}
1281
1282static const struct dquot_operations ext4_quota_operations = {
1283	.get_reserved_space	= ext4_get_reserved_space,
1284	.write_dquot		= ext4_write_dquot,
1285	.acquire_dquot		= ext4_acquire_dquot,
1286	.release_dquot		= ext4_release_dquot,
1287	.mark_dirty		= ext4_mark_dquot_dirty,
1288	.write_info		= ext4_write_info,
1289	.alloc_dquot		= dquot_alloc,
1290	.destroy_dquot		= dquot_destroy,
1291	.get_projid		= ext4_get_projid,
1292	.get_inode_usage	= ext4_get_inode_usage,
1293	.get_next_id		= ext4_get_next_id,
1294};
1295
1296static const struct quotactl_ops ext4_qctl_operations = {
1297	.quota_on	= ext4_quota_on,
1298	.quota_off	= ext4_quota_off,
1299	.quota_sync	= dquot_quota_sync,
1300	.get_state	= dquot_get_state,
1301	.set_info	= dquot_set_dqinfo,
1302	.get_dqblk	= dquot_get_dqblk,
1303	.set_dqblk	= dquot_set_dqblk,
1304	.get_nextdqblk	= dquot_get_next_dqblk,
1305};
1306#endif
1307
1308static const struct super_operations ext4_sops = {
1309	.alloc_inode	= ext4_alloc_inode,
 
1310	.destroy_inode	= ext4_destroy_inode,
1311	.write_inode	= ext4_write_inode,
1312	.dirty_inode	= ext4_dirty_inode,
1313	.drop_inode	= ext4_drop_inode,
1314	.evict_inode	= ext4_evict_inode,
1315	.put_super	= ext4_put_super,
1316	.sync_fs	= ext4_sync_fs,
1317	.freeze_fs	= ext4_freeze,
1318	.unfreeze_fs	= ext4_unfreeze,
1319	.statfs		= ext4_statfs,
1320	.remount_fs	= ext4_remount,
1321	.show_options	= ext4_show_options,
1322#ifdef CONFIG_QUOTA
1323	.quota_read	= ext4_quota_read,
1324	.quota_write	= ext4_quota_write,
1325	.get_dquots	= ext4_get_dquots,
1326#endif
1327	.bdev_try_to_free_page = bdev_try_to_free_page,
1328};
1329
1330static const struct export_operations ext4_export_ops = {
1331	.fh_to_dentry = ext4_fh_to_dentry,
1332	.fh_to_parent = ext4_fh_to_parent,
1333	.get_parent = ext4_get_parent,
 
1334};
1335
1336enum {
1337	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1338	Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1339	Opt_nouid32, Opt_debug, Opt_removed,
1340	Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1341	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1342	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1343	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1344	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1345	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1346	Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1347	Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1348	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1349	Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version, Opt_dax,
1350	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_mblk_io_submit,
1351	Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
 
1352	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1353	Opt_inode_readahead_blks, Opt_journal_ioprio,
1354	Opt_dioread_nolock, Opt_dioread_lock,
1355	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1356	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
 
 
 
 
 
1357};
1358
1359static const match_table_t tokens = {
1360	{Opt_bsd_df, "bsddf"},
1361	{Opt_minix_df, "minixdf"},
1362	{Opt_grpid, "grpid"},
1363	{Opt_grpid, "bsdgroups"},
1364	{Opt_nogrpid, "nogrpid"},
1365	{Opt_nogrpid, "sysvgroups"},
1366	{Opt_resgid, "resgid=%u"},
1367	{Opt_resuid, "resuid=%u"},
1368	{Opt_sb, "sb=%u"},
1369	{Opt_err_cont, "errors=continue"},
1370	{Opt_err_panic, "errors=panic"},
1371	{Opt_err_ro, "errors=remount-ro"},
1372	{Opt_nouid32, "nouid32"},
1373	{Opt_debug, "debug"},
1374	{Opt_removed, "oldalloc"},
1375	{Opt_removed, "orlov"},
1376	{Opt_user_xattr, "user_xattr"},
1377	{Opt_nouser_xattr, "nouser_xattr"},
1378	{Opt_acl, "acl"},
1379	{Opt_noacl, "noacl"},
1380	{Opt_noload, "norecovery"},
1381	{Opt_noload, "noload"},
1382	{Opt_removed, "nobh"},
1383	{Opt_removed, "bh"},
1384	{Opt_commit, "commit=%u"},
1385	{Opt_min_batch_time, "min_batch_time=%u"},
1386	{Opt_max_batch_time, "max_batch_time=%u"},
1387	{Opt_journal_dev, "journal_dev=%u"},
1388	{Opt_journal_path, "journal_path=%s"},
1389	{Opt_journal_checksum, "journal_checksum"},
1390	{Opt_nojournal_checksum, "nojournal_checksum"},
1391	{Opt_journal_async_commit, "journal_async_commit"},
1392	{Opt_abort, "abort"},
1393	{Opt_data_journal, "data=journal"},
1394	{Opt_data_ordered, "data=ordered"},
1395	{Opt_data_writeback, "data=writeback"},
1396	{Opt_data_err_abort, "data_err=abort"},
1397	{Opt_data_err_ignore, "data_err=ignore"},
1398	{Opt_offusrjquota, "usrjquota="},
1399	{Opt_usrjquota, "usrjquota=%s"},
1400	{Opt_offgrpjquota, "grpjquota="},
1401	{Opt_grpjquota, "grpjquota=%s"},
1402	{Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1403	{Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1404	{Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1405	{Opt_grpquota, "grpquota"},
1406	{Opt_noquota, "noquota"},
1407	{Opt_quota, "quota"},
1408	{Opt_usrquota, "usrquota"},
1409	{Opt_prjquota, "prjquota"},
1410	{Opt_barrier, "barrier=%u"},
1411	{Opt_barrier, "barrier"},
1412	{Opt_nobarrier, "nobarrier"},
1413	{Opt_i_version, "i_version"},
1414	{Opt_dax, "dax"},
1415	{Opt_stripe, "stripe=%u"},
1416	{Opt_delalloc, "delalloc"},
1417	{Opt_lazytime, "lazytime"},
1418	{Opt_nolazytime, "nolazytime"},
1419	{Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1420	{Opt_nodelalloc, "nodelalloc"},
1421	{Opt_removed, "mblk_io_submit"},
1422	{Opt_removed, "nomblk_io_submit"},
1423	{Opt_block_validity, "block_validity"},
1424	{Opt_noblock_validity, "noblock_validity"},
1425	{Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1426	{Opt_journal_ioprio, "journal_ioprio=%u"},
1427	{Opt_auto_da_alloc, "auto_da_alloc=%u"},
1428	{Opt_auto_da_alloc, "auto_da_alloc"},
1429	{Opt_noauto_da_alloc, "noauto_da_alloc"},
1430	{Opt_dioread_nolock, "dioread_nolock"},
1431	{Opt_dioread_lock, "dioread_lock"},
1432	{Opt_discard, "discard"},
1433	{Opt_nodiscard, "nodiscard"},
1434	{Opt_init_itable, "init_itable=%u"},
1435	{Opt_init_itable, "init_itable"},
1436	{Opt_noinit_itable, "noinit_itable"},
1437	{Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1438	{Opt_test_dummy_encryption, "test_dummy_encryption"},
1439	{Opt_nombcache, "nombcache"},
1440	{Opt_nombcache, "no_mbcache"},	/* for backward compatibility */
1441	{Opt_removed, "check=none"},	/* mount option from ext2/3 */
1442	{Opt_removed, "nocheck"},	/* mount option from ext2/3 */
1443	{Opt_removed, "reservation"},	/* mount option from ext2/3 */
1444	{Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1445	{Opt_removed, "journal=%u"},	/* mount option from ext2/3 */
1446	{Opt_err, NULL},
1447};
1448
1449static ext4_fsblk_t get_sb_block(void **data)
1450{
1451	ext4_fsblk_t	sb_block;
1452	char		*options = (char *) *data;
 
 
1453
1454	if (!options || strncmp(options, "sb=", 3) != 0)
1455		return 1;	/* Default location */
 
 
 
1456
1457	options += 3;
1458	/* TODO: use simple_strtoll with >32bit ext4 */
1459	sb_block = simple_strtoul(options, &options, 0);
1460	if (*options && *options != ',') {
1461		printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1462		       (char *) *data);
1463		return 1;
1464	}
1465	if (*options == ',')
1466		options++;
1467	*data = (void *) options;
1468
1469	return sb_block;
1470}
 
 
 
 
1471
1472#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1473static const char deprecated_msg[] =
1474	"Mount option \"%s\" will be removed by %s\n"
1475	"Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1476
1477#ifdef CONFIG_QUOTA
1478static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1479{
1480	struct ext4_sb_info *sbi = EXT4_SB(sb);
1481	char *qname;
1482	int ret = -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483
1484	if (sb_any_quota_loaded(sb) &&
1485		!sbi->s_qf_names[qtype]) {
1486		ext4_msg(sb, KERN_ERR,
1487			"Cannot change journaled "
1488			"quota options when quota turned on");
1489		return -1;
1490	}
1491	if (ext4_has_feature_quota(sb)) {
1492		ext4_msg(sb, KERN_INFO, "Journaled quota options "
1493			 "ignored when QUOTA feature is enabled");
1494		return 1;
1495	}
1496	qname = match_strdup(args);
1497	if (!qname) {
1498		ext4_msg(sb, KERN_ERR,
1499			"Not enough memory for storing quotafile name");
1500		return -1;
1501	}
1502	if (sbi->s_qf_names[qtype]) {
1503		if (strcmp(sbi->s_qf_names[qtype], qname) == 0)
1504			ret = 1;
1505		else
1506			ext4_msg(sb, KERN_ERR,
1507				 "%s quota file already specified",
1508				 QTYPE2NAME(qtype));
1509		goto errout;
1510	}
1511	if (strchr(qname, '/')) {
1512		ext4_msg(sb, KERN_ERR,
1513			"quotafile must be on filesystem root");
1514		goto errout;
1515	}
1516	sbi->s_qf_names[qtype] = qname;
1517	set_opt(sb, QUOTA);
1518	return 1;
1519errout:
1520	kfree(qname);
1521	return ret;
1522}
1523
1524static int clear_qf_name(struct super_block *sb, int qtype)
1525{
1526
1527	struct ext4_sb_info *sbi = EXT4_SB(sb);
1528
1529	if (sb_any_quota_loaded(sb) &&
1530		sbi->s_qf_names[qtype]) {
1531		ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1532			" when quota turned on");
1533		return -1;
1534	}
1535	kfree(sbi->s_qf_names[qtype]);
1536	sbi->s_qf_names[qtype] = NULL;
1537	return 1;
1538}
1539#endif
1540
1541#define MOPT_SET	0x0001
1542#define MOPT_CLEAR	0x0002
1543#define MOPT_NOSUPPORT	0x0004
1544#define MOPT_EXPLICIT	0x0008
1545#define MOPT_CLEAR_ERR	0x0010
1546#define MOPT_GTE0	0x0020
1547#ifdef CONFIG_QUOTA
1548#define MOPT_Q		0
1549#define MOPT_QFMT	0x0040
1550#else
1551#define MOPT_Q		MOPT_NOSUPPORT
1552#define MOPT_QFMT	MOPT_NOSUPPORT
1553#endif
1554#define MOPT_DATAJ	0x0080
1555#define MOPT_NO_EXT2	0x0100
1556#define MOPT_NO_EXT3	0x0200
1557#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1558#define MOPT_STRING	0x0400
 
1559
1560static const struct mount_opts {
1561	int	token;
1562	int	mount_opt;
1563	int	flags;
1564} ext4_mount_opts[] = {
1565	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1566	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1567	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1568	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1569	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1570	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1571	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1572	 MOPT_EXT4_ONLY | MOPT_SET},
1573	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1574	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1575	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1576	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1577	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1578	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1579	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1580	 MOPT_EXT4_ONLY | MOPT_CLEAR},
 
 
 
1581	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1582	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1583	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1584	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1585	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1586				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1587	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1588	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1589	{Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1590	{Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1591	{Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1592	{Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1593	 MOPT_NO_EXT2},
1594	{Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1595	 MOPT_NO_EXT2},
1596	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1597	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1598	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1599	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1600	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1601	{Opt_commit, 0, MOPT_GTE0},
1602	{Opt_max_batch_time, 0, MOPT_GTE0},
1603	{Opt_min_batch_time, 0, MOPT_GTE0},
1604	{Opt_inode_readahead_blks, 0, MOPT_GTE0},
1605	{Opt_init_itable, 0, MOPT_GTE0},
1606	{Opt_dax, EXT4_MOUNT_DAX, MOPT_SET},
1607	{Opt_stripe, 0, MOPT_GTE0},
1608	{Opt_resuid, 0, MOPT_GTE0},
1609	{Opt_resgid, 0, MOPT_GTE0},
1610	{Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1611	{Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1612	{Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1613	{Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1614	{Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1615	{Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1616	 MOPT_NO_EXT2 | MOPT_DATAJ},
1617	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1618	{Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1619#ifdef CONFIG_EXT4_FS_POSIX_ACL
1620	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1621	{Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1622#else
1623	{Opt_acl, 0, MOPT_NOSUPPORT},
1624	{Opt_noacl, 0, MOPT_NOSUPPORT},
1625#endif
1626	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1627	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1628	{Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1629	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1630	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1631							MOPT_SET | MOPT_Q},
1632	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1633							MOPT_SET | MOPT_Q},
1634	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1635							MOPT_SET | MOPT_Q},
1636	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1637		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1638							MOPT_CLEAR | MOPT_Q},
1639	{Opt_usrjquota, 0, MOPT_Q},
1640	{Opt_grpjquota, 0, MOPT_Q},
1641	{Opt_offusrjquota, 0, MOPT_Q},
1642	{Opt_offgrpjquota, 0, MOPT_Q},
1643	{Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
1644	{Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
1645	{Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
1646	{Opt_max_dir_size_kb, 0, MOPT_GTE0},
1647	{Opt_test_dummy_encryption, 0, MOPT_GTE0},
1648	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
 
 
 
 
 
 
1649	{Opt_err, 0, 0}
1650};
1651
1652static int handle_mount_opt(struct super_block *sb, char *opt, int token,
1653			    substring_t *args, unsigned long *journal_devnum,
1654			    unsigned int *journal_ioprio, int is_remount)
 
 
 
 
 
 
 
 
1655{
1656	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1657	const struct mount_opts *m;
 
1658	kuid_t uid;
1659	kgid_t gid;
1660	int arg = 0;
1661
1662#ifdef CONFIG_QUOTA
1663	if (token == Opt_usrjquota)
1664		return set_qf_name(sb, USRQUOTA, &args[0]);
1665	else if (token == Opt_grpjquota)
1666		return set_qf_name(sb, GRPQUOTA, &args[0]);
1667	else if (token == Opt_offusrjquota)
1668		return clear_qf_name(sb, USRQUOTA);
1669	else if (token == Opt_offgrpjquota)
1670		return clear_qf_name(sb, GRPQUOTA);
1671#endif
1672	switch (token) {
1673	case Opt_noacl:
1674	case Opt_nouser_xattr:
1675		ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
1676		break;
1677	case Opt_sb:
1678		return 1;	/* handled by get_sb_block() */
1679	case Opt_removed:
1680		ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
1681		return 1;
1682	case Opt_abort:
1683		sbi->s_mount_flags |= EXT4_MF_FS_ABORTED;
1684		return 1;
1685	case Opt_i_version:
1686		sb->s_flags |= SB_I_VERSION;
1687		return 1;
1688	case Opt_lazytime:
1689		sb->s_flags |= SB_LAZYTIME;
1690		return 1;
1691	case Opt_nolazytime:
1692		sb->s_flags &= ~SB_LAZYTIME;
1693		return 1;
1694	}
1695
1696	for (m = ext4_mount_opts; m->token != Opt_err; m++)
1697		if (token == m->token)
1698			break;
1699
1700	if (m->token == Opt_err) {
1701		ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
1702			 "or missing value", opt);
1703		return -1;
1704	}
1705
1706	if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
1707		ext4_msg(sb, KERN_ERR,
1708			 "Mount option \"%s\" incompatible with ext2", opt);
1709		return -1;
1710	}
1711	if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
1712		ext4_msg(sb, KERN_ERR,
1713			 "Mount option \"%s\" incompatible with ext3", opt);
1714		return -1;
1715	}
1716
1717	if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
1718		return -1;
1719	if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
1720		return -1;
1721	if (m->flags & MOPT_EXPLICIT) {
1722		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
1723			set_opt2(sb, EXPLICIT_DELALLOC);
1724		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
1725			set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
 
1726		} else
1727			return -1;
1728	}
1729	if (m->flags & MOPT_CLEAR_ERR)
1730		clear_opt(sb, ERRORS_MASK);
1731	if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
1732		ext4_msg(sb, KERN_ERR, "Cannot change quota "
1733			 "options when quota turned on");
1734		return -1;
1735	}
1736
1737	if (m->flags & MOPT_NOSUPPORT) {
1738		ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
1739	} else if (token == Opt_commit) {
1740		if (arg == 0)
1741			arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
1742		sbi->s_commit_interval = HZ * arg;
1743	} else if (token == Opt_debug_want_extra_isize) {
1744		sbi->s_want_extra_isize = arg;
1745	} else if (token == Opt_max_batch_time) {
1746		sbi->s_max_batch_time = arg;
1747	} else if (token == Opt_min_batch_time) {
1748		sbi->s_min_batch_time = arg;
1749	} else if (token == Opt_inode_readahead_blks) {
1750		if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
1751			ext4_msg(sb, KERN_ERR,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1752				 "EXT4-fs: inode_readahead_blks must be "
1753				 "0 or a power of 2 smaller than 2^31");
1754			return -1;
1755		}
1756		sbi->s_inode_readahead_blks = arg;
1757	} else if (token == Opt_init_itable) {
1758		set_opt(sb, INIT_INODE_TABLE);
1759		if (!args->from)
1760			arg = EXT4_DEF_LI_WAIT_MULT;
1761		sbi->s_li_wait_mult = arg;
1762	} else if (token == Opt_max_dir_size_kb) {
1763		sbi->s_max_dir_size_kb = arg;
1764	} else if (token == Opt_stripe) {
1765		sbi->s_stripe = arg;
1766	} else if (token == Opt_resuid) {
1767		uid = make_kuid(current_user_ns(), arg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1768		if (!uid_valid(uid)) {
1769			ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
1770			return -1;
 
1771		}
1772		sbi->s_resuid = uid;
1773	} else if (token == Opt_resgid) {
1774		gid = make_kgid(current_user_ns(), arg);
 
 
1775		if (!gid_valid(gid)) {
1776			ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
1777			return -1;
 
1778		}
1779		sbi->s_resgid = gid;
1780	} else if (token == Opt_journal_dev) {
 
 
1781		if (is_remount) {
1782			ext4_msg(sb, KERN_ERR,
1783				 "Cannot specify journal on remount");
1784			return -1;
1785		}
1786		*journal_devnum = arg;
1787	} else if (token == Opt_journal_path) {
1788		char *journal_path;
 
 
1789		struct inode *journal_inode;
1790		struct path path;
1791		int error;
1792
1793		if (is_remount) {
1794			ext4_msg(sb, KERN_ERR,
1795				 "Cannot specify journal on remount");
1796			return -1;
1797		}
1798		journal_path = match_strdup(&args[0]);
1799		if (!journal_path) {
1800			ext4_msg(sb, KERN_ERR, "error: could not dup "
1801				"journal device string");
1802			return -1;
1803		}
1804
1805		error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
1806		if (error) {
1807			ext4_msg(sb, KERN_ERR, "error: could not find "
1808				"journal device path: error %d", error);
1809			kfree(journal_path);
1810			return -1;
1811		}
1812
1813		journal_inode = d_inode(path.dentry);
1814		if (!S_ISBLK(journal_inode->i_mode)) {
1815			ext4_msg(sb, KERN_ERR, "error: journal path %s "
1816				"is not a block device", journal_path);
1817			path_put(&path);
1818			kfree(journal_path);
1819			return -1;
1820		}
1821
1822		*journal_devnum = new_encode_dev(journal_inode->i_rdev);
1823		path_put(&path);
1824		kfree(journal_path);
1825	} else if (token == Opt_journal_ioprio) {
1826		if (arg > 7) {
1827			ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
 
1828				 " (must be 0-7)");
1829			return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1830		}
1831		*journal_ioprio =
1832			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
1833	} else if (token == Opt_test_dummy_encryption) {
1834#ifdef CONFIG_EXT4_FS_ENCRYPTION
1835		sbi->s_mount_flags |= EXT4_MF_TEST_DUMMY_ENCRYPTION;
1836		ext4_msg(sb, KERN_WARNING,
1837			 "Test dummy encryption mode enabled");
1838#else
1839		ext4_msg(sb, KERN_WARNING,
1840			 "Test dummy encryption mount option ignored");
1841#endif
1842	} else if (m->flags & MOPT_DATAJ) {
1843		if (is_remount) {
1844			if (!sbi->s_journal)
1845				ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
1846			else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
1847				ext4_msg(sb, KERN_ERR,
1848					 "Cannot change data mode on remount");
1849				return -1;
1850			}
 
 
 
 
1851		} else {
1852			clear_opt(sb, DATA_FLAGS);
1853			sbi->s_mount_opt |= m->mount_opt;
 
1854		}
1855#ifdef CONFIG_QUOTA
1856	} else if (m->flags & MOPT_QFMT) {
1857		if (sb_any_quota_loaded(sb) &&
1858		    sbi->s_jquota_fmt != m->mount_opt) {
1859			ext4_msg(sb, KERN_ERR, "Cannot change journaled "
1860				 "quota options when quota turned on");
1861			return -1;
1862		}
1863		if (ext4_has_feature_quota(sb)) {
1864			ext4_msg(sb, KERN_INFO,
1865				 "Quota format mount options ignored "
1866				 "when QUOTA feature is enabled");
1867			return 1;
1868		}
1869		sbi->s_jquota_fmt = m->mount_opt;
1870#endif
1871	} else if (token == Opt_dax) {
1872#ifdef CONFIG_FS_DAX
1873		ext4_msg(sb, KERN_WARNING,
1874		"DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
1875			sbi->s_mount_opt |= m->mount_opt;
1876#else
1877		ext4_msg(sb, KERN_INFO, "dax option not supported");
1878		return -1;
1879#endif
1880	} else if (token == Opt_data_err_abort) {
1881		sbi->s_mount_opt |= m->mount_opt;
1882	} else if (token == Opt_data_err_ignore) {
1883		sbi->s_mount_opt &= ~m->mount_opt;
1884	} else {
1885		if (!args->from)
1886			arg = 1;
1887		if (m->flags & MOPT_CLEAR)
1888			arg = !arg;
1889		else if (unlikely(!(m->flags & MOPT_SET))) {
1890			ext4_msg(sb, KERN_WARNING,
1891				 "buggy handling of option %s", opt);
 
1892			WARN_ON(1);
1893			return -1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1894		}
1895		if (arg != 0)
1896			sbi->s_mount_opt |= m->mount_opt;
1897		else
1898			sbi->s_mount_opt &= ~m->mount_opt;
1899	}
1900	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1901}
1902
1903static int parse_options(char *options, struct super_block *sb,
1904			 unsigned long *journal_devnum,
1905			 unsigned int *journal_ioprio,
1906			 int is_remount)
1907{
 
 
 
1908	struct ext4_sb_info *sbi = EXT4_SB(sb);
1909	char *p;
1910	substring_t args[MAX_OPT_ARGS];
1911	int token;
 
 
1912
1913	if (!options)
1914		return 1;
 
 
1915
1916	while ((p = strsep(&options, ",")) != NULL) {
1917		if (!*p)
1918			continue;
1919		/*
1920		 * Initialize args struct so we know whether arg was
1921		 * found; some options take optional arguments.
1922		 */
1923		args[0].to = args[0].from = NULL;
1924		token = match_token(p, tokens, args);
1925		if (handle_mount_opt(sb, p, token, args, journal_devnum,
1926				     journal_ioprio, is_remount) < 0)
1927			return 0;
1928	}
 
 
 
 
 
 
 
 
 
 
 
 
1929#ifdef CONFIG_QUOTA
 
 
 
 
 
 
 
1930	/*
1931	 * We do the test below only for project quotas. 'usrquota' and
1932	 * 'grpquota' mount options are allowed even without quota feature
1933	 * to support legacy quotas in quota files.
1934	 */
1935	if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
1936		ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
 
1937			 "Cannot enable project quota enforcement.");
1938		return 0;
1939	}
1940	if (sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
1941		if (test_opt(sb, USRQUOTA) && sbi->s_qf_names[USRQUOTA])
1942			clear_opt(sb, USRQUOTA);
1943
1944		if (test_opt(sb, GRPQUOTA) && sbi->s_qf_names[GRPQUOTA])
1945			clear_opt(sb, GRPQUOTA);
1946
1947		if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
1948			ext4_msg(sb, KERN_ERR, "old and new quota "
1949					"format mixing");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1950			return 0;
1951		}
 
1952
1953		if (!sbi->s_jquota_fmt) {
1954			ext4_msg(sb, KERN_ERR, "journaled quota format "
1955					"not specified");
 
 
 
1956			return 0;
1957		}
1958	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1959#endif
1960	if (test_opt(sb, DIOREAD_NOLOCK)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1961		int blocksize =
1962			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
 
 
 
 
 
 
 
 
 
1963
1964		if (blocksize < PAGE_SIZE) {
1965			ext4_msg(sb, KERN_ERR, "can't mount with "
1966				 "dioread_nolock if block size != PAGE_SIZE");
1967			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1968		}
1969	}
 
1970	return 1;
1971}
1972
1973static inline void ext4_show_quota_options(struct seq_file *seq,
1974					   struct super_block *sb)
1975{
1976#if defined(CONFIG_QUOTA)
1977	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
1978
1979	if (sbi->s_jquota_fmt) {
1980		char *fmtname = "";
1981
1982		switch (sbi->s_jquota_fmt) {
1983		case QFMT_VFS_OLD:
1984			fmtname = "vfsold";
1985			break;
1986		case QFMT_VFS_V0:
1987			fmtname = "vfsv0";
1988			break;
1989		case QFMT_VFS_V1:
1990			fmtname = "vfsv1";
1991			break;
1992		}
1993		seq_printf(seq, ",jqfmt=%s", fmtname);
1994	}
1995
1996	if (sbi->s_qf_names[USRQUOTA])
1997		seq_show_option(seq, "usrjquota", sbi->s_qf_names[USRQUOTA]);
1998
1999	if (sbi->s_qf_names[GRPQUOTA])
2000		seq_show_option(seq, "grpjquota", sbi->s_qf_names[GRPQUOTA]);
 
 
 
2001#endif
2002}
2003
2004static const char *token2str(int token)
2005{
2006	const struct match_token *t;
2007
2008	for (t = tokens; t->token != Opt_err; t++)
2009		if (t->token == token && !strchr(t->pattern, '='))
2010			break;
2011	return t->pattern;
2012}
2013
2014/*
2015 * Show an option if
2016 *  - it's set to a non-default value OR
2017 *  - if the per-sb default is different from the global default
2018 */
2019static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2020			      int nodefs)
2021{
2022	struct ext4_sb_info *sbi = EXT4_SB(sb);
2023	struct ext4_super_block *es = sbi->s_es;
2024	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2025	const struct mount_opts *m;
2026	char sep = nodefs ? '\n' : ',';
2027
2028#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2029#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2030
2031	if (sbi->s_sb_block != 1)
2032		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2033
2034	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2035		int want_set = m->flags & MOPT_SET;
2036		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2037		    (m->flags & MOPT_CLEAR_ERR))
2038			continue;
2039		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2040			continue; /* skip if same as the default */
2041		if ((want_set &&
2042		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2043		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2044			continue; /* select Opt_noFoo vs Opt_Foo */
2045		SEQ_OPTS_PRINT("%s", token2str(m->token));
2046	}
2047
2048	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2049	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2050		SEQ_OPTS_PRINT("resuid=%u",
2051				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2052	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2053	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2054		SEQ_OPTS_PRINT("resgid=%u",
2055				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2056	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2057	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2058		SEQ_OPTS_PUTS("errors=remount-ro");
2059	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2060		SEQ_OPTS_PUTS("errors=continue");
2061	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2062		SEQ_OPTS_PUTS("errors=panic");
2063	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2064		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2065	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2066		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2067	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2068		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2069	if (sb->s_flags & SB_I_VERSION)
2070		SEQ_OPTS_PUTS("i_version");
2071	if (nodefs || sbi->s_stripe)
2072		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2073	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2074			(sbi->s_mount_opt ^ def_mount_opt)) {
2075		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2076			SEQ_OPTS_PUTS("data=journal");
2077		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2078			SEQ_OPTS_PUTS("data=ordered");
2079		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2080			SEQ_OPTS_PUTS("data=writeback");
2081	}
2082	if (nodefs ||
2083	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2084		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2085			       sbi->s_inode_readahead_blks);
2086
2087	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2088		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2089		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2090	if (nodefs || sbi->s_max_dir_size_kb)
2091		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2092	if (test_opt(sb, DATA_ERR_ABORT))
2093		SEQ_OPTS_PUTS("data_err=abort");
2094
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2095	ext4_show_quota_options(seq, sb);
2096	return 0;
2097}
2098
2099static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2100{
2101	return _ext4_show_options(seq, root->d_sb, 0);
2102}
2103
2104int ext4_seq_options_show(struct seq_file *seq, void *offset)
2105{
2106	struct super_block *sb = seq->private;
2107	int rc;
2108
2109	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2110	rc = _ext4_show_options(seq, sb, 1);
2111	seq_puts(seq, "\n");
2112	return rc;
2113}
2114
2115static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2116			    int read_only)
2117{
2118	struct ext4_sb_info *sbi = EXT4_SB(sb);
2119	int res = 0;
2120
2121	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2122		ext4_msg(sb, KERN_ERR, "revision level too high, "
2123			 "forcing read-only mode");
2124		res = SB_RDONLY;
 
2125	}
2126	if (read_only)
2127		goto done;
2128	if (!(sbi->s_mount_state & EXT4_VALID_FS))
2129		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2130			 "running e2fsck is recommended");
2131	else if (sbi->s_mount_state & EXT4_ERROR_FS)
2132		ext4_msg(sb, KERN_WARNING,
2133			 "warning: mounting fs with errors, "
2134			 "running e2fsck is recommended");
2135	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2136		 le16_to_cpu(es->s_mnt_count) >=
2137		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2138		ext4_msg(sb, KERN_WARNING,
2139			 "warning: maximal mount count reached, "
2140			 "running e2fsck is recommended");
2141	else if (le32_to_cpu(es->s_checkinterval) &&
2142		(le32_to_cpu(es->s_lastcheck) +
2143			le32_to_cpu(es->s_checkinterval) <= get_seconds()))
2144		ext4_msg(sb, KERN_WARNING,
2145			 "warning: checktime reached, "
2146			 "running e2fsck is recommended");
2147	if (!sbi->s_journal)
2148		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2149	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2150		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2151	le16_add_cpu(&es->s_mnt_count, 1);
2152	es->s_mtime = cpu_to_le32(get_seconds());
2153	ext4_update_dynamic_rev(sb);
2154	if (sbi->s_journal)
2155		ext4_set_feature_journal_needs_recovery(sb);
 
 
 
2156
2157	ext4_commit_super(sb, 1);
2158done:
2159	if (test_opt(sb, DEBUG))
2160		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2161				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2162			sb->s_blocksize,
2163			sbi->s_groups_count,
2164			EXT4_BLOCKS_PER_GROUP(sb),
2165			EXT4_INODES_PER_GROUP(sb),
2166			sbi->s_mount_opt, sbi->s_mount_opt2);
2167
2168	cleancache_init_fs(sb);
2169	return res;
2170}
2171
2172int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2173{
2174	struct ext4_sb_info *sbi = EXT4_SB(sb);
2175	struct flex_groups *new_groups;
2176	int size;
2177
2178	if (!sbi->s_log_groups_per_flex)
2179		return 0;
2180
2181	size = ext4_flex_group(sbi, ngroup - 1) + 1;
2182	if (size <= sbi->s_flex_groups_allocated)
2183		return 0;
2184
2185	size = roundup_pow_of_two(size * sizeof(struct flex_groups));
2186	new_groups = kvzalloc(size, GFP_KERNEL);
2187	if (!new_groups) {
2188		ext4_msg(sb, KERN_ERR, "not enough memory for %d flex groups",
2189			 size / (int) sizeof(struct flex_groups));
2190		return -ENOMEM;
2191	}
2192
2193	if (sbi->s_flex_groups) {
2194		memcpy(new_groups, sbi->s_flex_groups,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2195		       (sbi->s_flex_groups_allocated *
2196			sizeof(struct flex_groups)));
2197		kvfree(sbi->s_flex_groups);
2198	}
2199	sbi->s_flex_groups = new_groups;
2200	sbi->s_flex_groups_allocated = size / sizeof(struct flex_groups);
 
2201	return 0;
2202}
2203
2204static int ext4_fill_flex_info(struct super_block *sb)
2205{
2206	struct ext4_sb_info *sbi = EXT4_SB(sb);
2207	struct ext4_group_desc *gdp = NULL;
 
2208	ext4_group_t flex_group;
2209	int i, err;
2210
2211	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2212	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2213		sbi->s_log_groups_per_flex = 0;
2214		return 1;
2215	}
2216
2217	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2218	if (err)
2219		goto failed;
2220
2221	for (i = 0; i < sbi->s_groups_count; i++) {
2222		gdp = ext4_get_group_desc(sb, i, NULL);
2223
2224		flex_group = ext4_flex_group(sbi, i);
2225		atomic_add(ext4_free_inodes_count(sb, gdp),
2226			   &sbi->s_flex_groups[flex_group].free_inodes);
2227		atomic64_add(ext4_free_group_clusters(sb, gdp),
2228			     &sbi->s_flex_groups[flex_group].free_clusters);
2229		atomic_add(ext4_used_dirs_count(sb, gdp),
2230			   &sbi->s_flex_groups[flex_group].used_dirs);
2231	}
2232
2233	return 1;
2234failed:
2235	return 0;
2236}
2237
2238static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2239				   struct ext4_group_desc *gdp)
2240{
2241	int offset = offsetof(struct ext4_group_desc, bg_checksum);
2242	__u16 crc = 0;
2243	__le32 le_group = cpu_to_le32(block_group);
2244	struct ext4_sb_info *sbi = EXT4_SB(sb);
2245
2246	if (ext4_has_metadata_csum(sbi->s_sb)) {
2247		/* Use new metadata_csum algorithm */
2248		__u32 csum32;
2249		__u16 dummy_csum = 0;
2250
2251		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2252				     sizeof(le_group));
2253		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2254		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2255				     sizeof(dummy_csum));
2256		offset += sizeof(dummy_csum);
2257		if (offset < sbi->s_desc_size)
2258			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2259					     sbi->s_desc_size - offset);
2260
2261		crc = csum32 & 0xFFFF;
2262		goto out;
2263	}
2264
2265	/* old crc16 code */
2266	if (!ext4_has_feature_gdt_csum(sb))
2267		return 0;
2268
2269	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2270	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2271	crc = crc16(crc, (__u8 *)gdp, offset);
2272	offset += sizeof(gdp->bg_checksum); /* skip checksum */
2273	/* for checksum of struct ext4_group_desc do the rest...*/
2274	if (ext4_has_feature_64bit(sb) &&
2275	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
2276		crc = crc16(crc, (__u8 *)gdp + offset,
2277			    le16_to_cpu(sbi->s_es->s_desc_size) -
2278				offset);
2279
2280out:
2281	return cpu_to_le16(crc);
2282}
2283
2284int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2285				struct ext4_group_desc *gdp)
2286{
2287	if (ext4_has_group_desc_csum(sb) &&
2288	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2289		return 0;
2290
2291	return 1;
2292}
2293
2294void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2295			      struct ext4_group_desc *gdp)
2296{
2297	if (!ext4_has_group_desc_csum(sb))
2298		return;
2299	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2300}
2301
2302/* Called at mount-time, super-block is locked */
2303static int ext4_check_descriptors(struct super_block *sb,
2304				  ext4_fsblk_t sb_block,
2305				  ext4_group_t *first_not_zeroed)
2306{
2307	struct ext4_sb_info *sbi = EXT4_SB(sb);
2308	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2309	ext4_fsblk_t last_block;
 
2310	ext4_fsblk_t block_bitmap;
2311	ext4_fsblk_t inode_bitmap;
2312	ext4_fsblk_t inode_table;
2313	int flexbg_flag = 0;
2314	ext4_group_t i, grp = sbi->s_groups_count;
2315
2316	if (ext4_has_feature_flex_bg(sb))
2317		flexbg_flag = 1;
2318
2319	ext4_debug("Checking group descriptors");
2320
2321	for (i = 0; i < sbi->s_groups_count; i++) {
2322		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2323
2324		if (i == sbi->s_groups_count - 1 || flexbg_flag)
2325			last_block = ext4_blocks_count(sbi->s_es) - 1;
2326		else
2327			last_block = first_block +
2328				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
2329
2330		if ((grp == sbi->s_groups_count) &&
2331		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2332			grp = i;
2333
2334		block_bitmap = ext4_block_bitmap(sb, gdp);
2335		if (block_bitmap == sb_block) {
2336			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2337				 "Block bitmap for group %u overlaps "
2338				 "superblock", i);
2339			if (!sb_rdonly(sb))
2340				return 0;
2341		}
 
 
 
 
 
 
 
 
2342		if (block_bitmap < first_block || block_bitmap > last_block) {
2343			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2344			       "Block bitmap for group %u not in group "
2345			       "(block %llu)!", i, block_bitmap);
2346			return 0;
2347		}
2348		inode_bitmap = ext4_inode_bitmap(sb, gdp);
2349		if (inode_bitmap == sb_block) {
2350			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2351				 "Inode bitmap for group %u overlaps "
2352				 "superblock", i);
2353			if (!sb_rdonly(sb))
2354				return 0;
2355		}
 
 
 
 
 
 
 
 
2356		if (inode_bitmap < first_block || inode_bitmap > last_block) {
2357			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2358			       "Inode bitmap for group %u not in group "
2359			       "(block %llu)!", i, inode_bitmap);
2360			return 0;
2361		}
2362		inode_table = ext4_inode_table(sb, gdp);
2363		if (inode_table == sb_block) {
2364			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2365				 "Inode table for group %u overlaps "
2366				 "superblock", i);
2367			if (!sb_rdonly(sb))
2368				return 0;
2369		}
 
 
 
 
 
 
 
 
2370		if (inode_table < first_block ||
2371		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
2372			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2373			       "Inode table for group %u not in group "
2374			       "(block %llu)!", i, inode_table);
2375			return 0;
2376		}
2377		ext4_lock_group(sb, i);
2378		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2379			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2380				 "Checksum for group %u failed (%u!=%u)",
2381				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2382				     gdp)), le16_to_cpu(gdp->bg_checksum));
2383			if (!sb_rdonly(sb)) {
2384				ext4_unlock_group(sb, i);
2385				return 0;
2386			}
2387		}
2388		ext4_unlock_group(sb, i);
2389		if (!flexbg_flag)
2390			first_block += EXT4_BLOCKS_PER_GROUP(sb);
2391	}
2392	if (NULL != first_not_zeroed)
2393		*first_not_zeroed = grp;
2394	return 1;
2395}
2396
2397/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2398 * the superblock) which were deleted from all directories, but held open by
2399 * a process at the time of a crash.  We walk the list and try to delete these
2400 * inodes at recovery time (only with a read-write filesystem).
2401 *
2402 * In order to keep the orphan inode chain consistent during traversal (in
2403 * case of crash during recovery), we link each inode into the superblock
2404 * orphan list_head and handle it the same way as an inode deletion during
2405 * normal operation (which journals the operations for us).
2406 *
2407 * We only do an iget() and an iput() on each inode, which is very safe if we
2408 * accidentally point at an in-use or already deleted inode.  The worst that
2409 * can happen in this case is that we get a "bit already cleared" message from
2410 * ext4_free_inode().  The only reason we would point at a wrong inode is if
2411 * e2fsck was run on this filesystem, and it must have already done the orphan
2412 * inode cleanup for us, so we can safely abort without any further action.
2413 */
2414static void ext4_orphan_cleanup(struct super_block *sb,
2415				struct ext4_super_block *es)
2416{
2417	unsigned int s_flags = sb->s_flags;
2418	int ret, nr_orphans = 0, nr_truncates = 0;
2419#ifdef CONFIG_QUOTA
2420	int quota_update = 0;
2421	int i;
2422#endif
2423	if (!es->s_last_orphan) {
2424		jbd_debug(4, "no orphan inodes to clean up\n");
2425		return;
2426	}
2427
2428	if (bdev_read_only(sb->s_bdev)) {
2429		ext4_msg(sb, KERN_ERR, "write access "
2430			"unavailable, skipping orphan cleanup");
2431		return;
2432	}
2433
2434	/* Check if feature set would not allow a r/w mount */
2435	if (!ext4_feature_set_ok(sb, 0)) {
2436		ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
2437			 "unknown ROCOMPAT features");
2438		return;
2439	}
2440
2441	if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2442		/* don't clear list on RO mount w/ errors */
2443		if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
2444			ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
2445				  "clearing orphan list.\n");
2446			es->s_last_orphan = 0;
2447		}
2448		jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2449		return;
2450	}
2451
2452	if (s_flags & SB_RDONLY) {
2453		ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
2454		sb->s_flags &= ~SB_RDONLY;
2455	}
2456#ifdef CONFIG_QUOTA
2457	/* Needed for iput() to work correctly and not trash data */
2458	sb->s_flags |= SB_ACTIVE;
2459
2460	/*
2461	 * Turn on quotas which were not enabled for read-only mounts if
2462	 * filesystem has quota feature, so that they are updated correctly.
2463	 */
2464	if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
2465		int ret = ext4_enable_quotas(sb);
2466
2467		if (!ret)
2468			quota_update = 1;
2469		else
2470			ext4_msg(sb, KERN_ERR,
2471				"Cannot turn on quotas: error %d", ret);
2472	}
2473
2474	/* Turn on journaled quotas used for old sytle */
2475	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2476		if (EXT4_SB(sb)->s_qf_names[i]) {
2477			int ret = ext4_quota_on_mount(sb, i);
2478
2479			if (!ret)
2480				quota_update = 1;
2481			else
2482				ext4_msg(sb, KERN_ERR,
2483					"Cannot turn on journaled "
2484					"quota: type %d: error %d", i, ret);
2485		}
2486	}
2487#endif
2488
2489	while (es->s_last_orphan) {
2490		struct inode *inode;
2491
2492		/*
2493		 * We may have encountered an error during cleanup; if
2494		 * so, skip the rest.
2495		 */
2496		if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
2497			jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
2498			es->s_last_orphan = 0;
2499			break;
2500		}
2501
2502		inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
2503		if (IS_ERR(inode)) {
2504			es->s_last_orphan = 0;
2505			break;
2506		}
2507
2508		list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
2509		dquot_initialize(inode);
2510		if (inode->i_nlink) {
2511			if (test_opt(sb, DEBUG))
2512				ext4_msg(sb, KERN_DEBUG,
2513					"%s: truncating inode %lu to %lld bytes",
2514					__func__, inode->i_ino, inode->i_size);
2515			jbd_debug(2, "truncating inode %lu to %lld bytes\n",
2516				  inode->i_ino, inode->i_size);
2517			inode_lock(inode);
2518			truncate_inode_pages(inode->i_mapping, inode->i_size);
2519			ret = ext4_truncate(inode);
2520			if (ret)
2521				ext4_std_error(inode->i_sb, ret);
2522			inode_unlock(inode);
2523			nr_truncates++;
2524		} else {
2525			if (test_opt(sb, DEBUG))
2526				ext4_msg(sb, KERN_DEBUG,
2527					"%s: deleting unreferenced inode %lu",
2528					__func__, inode->i_ino);
2529			jbd_debug(2, "deleting unreferenced inode %lu\n",
2530				  inode->i_ino);
2531			nr_orphans++;
2532		}
2533		iput(inode);  /* The delete magic happens here! */
2534	}
2535
2536#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
2537
2538	if (nr_orphans)
2539		ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
2540		       PLURAL(nr_orphans));
2541	if (nr_truncates)
2542		ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
2543		       PLURAL(nr_truncates));
2544#ifdef CONFIG_QUOTA
2545	/* Turn off quotas if they were enabled for orphan cleanup */
2546	if (quota_update) {
2547		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548			if (sb_dqopt(sb)->files[i])
2549				dquot_quota_off(sb, i);
2550		}
2551	}
2552#endif
2553	sb->s_flags = s_flags; /* Restore SB_RDONLY status */
2554}
2555
2556/*
2557 * Maximal extent format file size.
2558 * Resulting logical blkno at s_maxbytes must fit in our on-disk
2559 * extent format containers, within a sector_t, and within i_blocks
2560 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
2561 * so that won't be a limiting factor.
2562 *
2563 * However there is other limiting factor. We do store extents in the form
2564 * of starting block and length, hence the resulting length of the extent
2565 * covering maximum file size must fit into on-disk format containers as
2566 * well. Given that length is always by 1 unit bigger than max unit (because
2567 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
2568 *
2569 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
2570 */
2571static loff_t ext4_max_size(int blkbits, int has_huge_files)
2572{
2573	loff_t res;
2574	loff_t upper_limit = MAX_LFS_FILESIZE;
2575
2576	/* small i_blocks in vfs inode? */
2577	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2578		/*
2579		 * CONFIG_LBDAF is not enabled implies the inode
2580		 * i_block represent total blocks in 512 bytes
2581		 * 32 == size of vfs inode i_blocks * 8
2582		 */
2583		upper_limit = (1LL << 32) - 1;
2584
2585		/* total blocks in file system block size */
2586		upper_limit >>= (blkbits - 9);
2587		upper_limit <<= blkbits;
2588	}
2589
2590	/*
2591	 * 32-bit extent-start container, ee_block. We lower the maxbytes
2592	 * by one fs block, so ee_len can cover the extent of maximum file
2593	 * size
2594	 */
2595	res = (1LL << 32) - 1;
2596	res <<= blkbits;
2597
2598	/* Sanity check against vm- & vfs- imposed limits */
2599	if (res > upper_limit)
2600		res = upper_limit;
2601
2602	return res;
2603}
2604
2605/*
2606 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
2607 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
2608 * We need to be 1 filesystem block less than the 2^48 sector limit.
2609 */
2610static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
2611{
2612	loff_t res = EXT4_NDIR_BLOCKS;
2613	int meta_blocks;
2614	loff_t upper_limit;
2615	/* This is calculated to be the largest file size for a dense, block
 
 
2616	 * mapped file such that the file's total number of 512-byte sectors,
2617	 * including data and all indirect blocks, does not exceed (2^48 - 1).
2618	 *
2619	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
2620	 * number of 512-byte sectors of the file.
2621	 */
2622
2623	if (!has_huge_files || sizeof(blkcnt_t) < sizeof(u64)) {
2624		/*
2625		 * !has_huge_files or CONFIG_LBDAF not enabled implies that
2626		 * the inode i_block field represents total file blocks in
2627		 * 2^32 512-byte sectors == size of vfs inode i_blocks * 8
2628		 */
2629		upper_limit = (1LL << 32) - 1;
2630
2631		/* total blocks in file system block size */
2632		upper_limit >>= (bits - 9);
2633
2634	} else {
2635		/*
2636		 * We use 48 bit ext4_inode i_blocks
2637		 * With EXT4_HUGE_FILE_FL set the i_blocks
2638		 * represent total number of blocks in
2639		 * file system block size
2640		 */
2641		upper_limit = (1LL << 48) - 1;
2642
2643	}
2644
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2645	/* indirect blocks */
2646	meta_blocks = 1;
 
2647	/* double indirect blocks */
2648	meta_blocks += 1 + (1LL << (bits-2));
2649	/* tripple indirect blocks */
2650	meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
2651
2652	upper_limit -= meta_blocks;
2653	upper_limit <<= bits;
2654
2655	res += 1LL << (bits-2);
2656	res += 1LL << (2*(bits-2));
2657	res += 1LL << (3*(bits-2));
 
 
2658	res <<= bits;
2659	if (res > upper_limit)
2660		res = upper_limit;
2661
2662	if (res > MAX_LFS_FILESIZE)
2663		res = MAX_LFS_FILESIZE;
2664
2665	return res;
2666}
2667
2668static ext4_fsblk_t descriptor_loc(struct super_block *sb,
2669				   ext4_fsblk_t logical_sb_block, int nr)
2670{
2671	struct ext4_sb_info *sbi = EXT4_SB(sb);
2672	ext4_group_t bg, first_meta_bg;
2673	int has_super = 0;
2674
2675	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
2676
2677	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
2678		return logical_sb_block + nr + 1;
2679	bg = sbi->s_desc_per_block * nr;
2680	if (ext4_bg_has_super(sb, bg))
2681		has_super = 1;
2682
2683	/*
2684	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
2685	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
2686	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
2687	 * compensate.
2688	 */
2689	if (sb->s_blocksize == 1024 && nr == 0 &&
2690	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
2691		has_super++;
2692
2693	return (has_super + ext4_group_first_block_no(sb, bg));
2694}
2695
2696/**
2697 * ext4_get_stripe_size: Get the stripe size.
2698 * @sbi: In memory super block info
2699 *
2700 * If we have specified it via mount option, then
2701 * use the mount option value. If the value specified at mount time is
2702 * greater than the blocks per group use the super block value.
2703 * If the super block value is greater than blocks per group return 0.
2704 * Allocator needs it be less than blocks per group.
2705 *
2706 */
2707static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
2708{
2709	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
2710	unsigned long stripe_width =
2711			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
2712	int ret;
2713
2714	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
2715		ret = sbi->s_stripe;
2716	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
2717		ret = stripe_width;
2718	else if (stride && stride <= sbi->s_blocks_per_group)
2719		ret = stride;
2720	else
2721		ret = 0;
2722
2723	/*
2724	 * If the stripe width is 1, this makes no sense and
2725	 * we set it to 0 to turn off stripe handling code.
2726	 */
2727	if (ret <= 1)
2728		ret = 0;
2729
2730	return ret;
2731}
2732
2733/*
2734 * Check whether this filesystem can be mounted based on
2735 * the features present and the RDONLY/RDWR mount requested.
2736 * Returns 1 if this filesystem can be mounted as requested,
2737 * 0 if it cannot be.
2738 */
2739static int ext4_feature_set_ok(struct super_block *sb, int readonly)
2740{
2741	if (ext4_has_unknown_ext4_incompat_features(sb)) {
2742		ext4_msg(sb, KERN_ERR,
2743			"Couldn't mount because of "
2744			"unsupported optional features (%x)",
2745			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
2746			~EXT4_FEATURE_INCOMPAT_SUPP));
2747		return 0;
2748	}
2749
 
 
 
 
 
 
 
 
 
2750	if (readonly)
2751		return 1;
2752
2753	if (ext4_has_feature_readonly(sb)) {
2754		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
2755		sb->s_flags |= SB_RDONLY;
2756		return 1;
2757	}
2758
2759	/* Check that feature set is OK for a read-write mount */
2760	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
2761		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
2762			 "unsupported optional features (%x)",
2763			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
2764				~EXT4_FEATURE_RO_COMPAT_SUPP));
2765		return 0;
2766	}
2767	/*
2768	 * Large file size enabled file system can only be mounted
2769	 * read-write on 32-bit systems if kernel is built with CONFIG_LBDAF
2770	 */
2771	if (ext4_has_feature_huge_file(sb)) {
2772		if (sizeof(blkcnt_t) < sizeof(u64)) {
2773			ext4_msg(sb, KERN_ERR, "Filesystem with huge files "
2774				 "cannot be mounted RDWR without "
2775				 "CONFIG_LBDAF");
2776			return 0;
2777		}
2778	}
2779	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
2780		ext4_msg(sb, KERN_ERR,
2781			 "Can't support bigalloc feature without "
2782			 "extents feature\n");
2783		return 0;
2784	}
2785
2786#ifndef CONFIG_QUOTA
2787	if (ext4_has_feature_quota(sb) && !readonly) {
2788		ext4_msg(sb, KERN_ERR,
2789			 "Filesystem with quota feature cannot be mounted RDWR "
2790			 "without CONFIG_QUOTA");
2791		return 0;
2792	}
2793	if (ext4_has_feature_project(sb) && !readonly) {
2794		ext4_msg(sb, KERN_ERR,
2795			 "Filesystem with project quota feature cannot be mounted RDWR "
2796			 "without CONFIG_QUOTA");
2797		return 0;
2798	}
2799#endif  /* CONFIG_QUOTA */
2800	return 1;
2801}
2802
2803/*
2804 * This function is called once a day if we have errors logged
2805 * on the file system
2806 */
2807static void print_daily_error_info(struct timer_list *t)
2808{
2809	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
2810	struct super_block *sb = sbi->s_sb;
2811	struct ext4_super_block *es = sbi->s_es;
2812
2813	if (es->s_error_count)
2814		/* fsck newer than v1.41.13 is needed to clean this condition. */
2815		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
2816			 le32_to_cpu(es->s_error_count));
2817	if (es->s_first_error_time) {
2818		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %u: %.*s:%d",
2819		       sb->s_id, le32_to_cpu(es->s_first_error_time),
 
2820		       (int) sizeof(es->s_first_error_func),
2821		       es->s_first_error_func,
2822		       le32_to_cpu(es->s_first_error_line));
2823		if (es->s_first_error_ino)
2824			printk(KERN_CONT ": inode %u",
2825			       le32_to_cpu(es->s_first_error_ino));
2826		if (es->s_first_error_block)
2827			printk(KERN_CONT ": block %llu", (unsigned long long)
2828			       le64_to_cpu(es->s_first_error_block));
2829		printk(KERN_CONT "\n");
2830	}
2831	if (es->s_last_error_time) {
2832		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %u: %.*s:%d",
2833		       sb->s_id, le32_to_cpu(es->s_last_error_time),
 
2834		       (int) sizeof(es->s_last_error_func),
2835		       es->s_last_error_func,
2836		       le32_to_cpu(es->s_last_error_line));
2837		if (es->s_last_error_ino)
2838			printk(KERN_CONT ": inode %u",
2839			       le32_to_cpu(es->s_last_error_ino));
2840		if (es->s_last_error_block)
2841			printk(KERN_CONT ": block %llu", (unsigned long long)
2842			       le64_to_cpu(es->s_last_error_block));
2843		printk(KERN_CONT "\n");
2844	}
2845	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
2846}
2847
2848/* Find next suitable group and run ext4_init_inode_table */
2849static int ext4_run_li_request(struct ext4_li_request *elr)
2850{
2851	struct ext4_group_desc *gdp = NULL;
2852	ext4_group_t group, ngroups;
2853	struct super_block *sb;
2854	unsigned long timeout = 0;
 
2855	int ret = 0;
 
2856
2857	sb = elr->lr_super;
2858	ngroups = EXT4_SB(sb)->s_groups_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2859
2860	for (group = elr->lr_next_group; group < ngroups; group++) {
2861		gdp = ext4_get_group_desc(sb, group, NULL);
2862		if (!gdp) {
2863			ret = 1;
2864			break;
2865		}
2866
2867		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2868			break;
2869	}
2870
2871	if (group >= ngroups)
2872		ret = 1;
2873
2874	if (!ret) {
2875		timeout = jiffies;
2876		ret = ext4_init_inode_table(sb, group,
2877					    elr->lr_timeout ? 0 : 1);
 
2878		if (elr->lr_timeout == 0) {
2879			timeout = (jiffies - timeout) *
2880				  elr->lr_sbi->s_li_wait_mult;
2881			elr->lr_timeout = timeout;
2882		}
2883		elr->lr_next_sched = jiffies + elr->lr_timeout;
2884		elr->lr_next_group = group + 1;
2885	}
2886	return ret;
2887}
2888
2889/*
2890 * Remove lr_request from the list_request and free the
2891 * request structure. Should be called with li_list_mtx held
2892 */
2893static void ext4_remove_li_request(struct ext4_li_request *elr)
2894{
2895	struct ext4_sb_info *sbi;
2896
2897	if (!elr)
2898		return;
2899
2900	sbi = elr->lr_sbi;
2901
2902	list_del(&elr->lr_request);
2903	sbi->s_li_request = NULL;
2904	kfree(elr);
2905}
2906
2907static void ext4_unregister_li_request(struct super_block *sb)
2908{
2909	mutex_lock(&ext4_li_mtx);
2910	if (!ext4_li_info) {
2911		mutex_unlock(&ext4_li_mtx);
2912		return;
2913	}
2914
2915	mutex_lock(&ext4_li_info->li_list_mtx);
2916	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
2917	mutex_unlock(&ext4_li_info->li_list_mtx);
2918	mutex_unlock(&ext4_li_mtx);
2919}
2920
2921static struct task_struct *ext4_lazyinit_task;
2922
2923/*
2924 * This is the function where ext4lazyinit thread lives. It walks
2925 * through the request list searching for next scheduled filesystem.
2926 * When such a fs is found, run the lazy initialization request
2927 * (ext4_rn_li_request) and keep track of the time spend in this
2928 * function. Based on that time we compute next schedule time of
2929 * the request. When walking through the list is complete, compute
2930 * next waking time and put itself into sleep.
2931 */
2932static int ext4_lazyinit_thread(void *arg)
2933{
2934	struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
2935	struct list_head *pos, *n;
2936	struct ext4_li_request *elr;
2937	unsigned long next_wakeup, cur;
2938
2939	BUG_ON(NULL == eli);
 
2940
2941cont_thread:
2942	while (true) {
2943		next_wakeup = MAX_JIFFY_OFFSET;
2944
2945		mutex_lock(&eli->li_list_mtx);
2946		if (list_empty(&eli->li_request_list)) {
2947			mutex_unlock(&eli->li_list_mtx);
2948			goto exit_thread;
2949		}
2950		list_for_each_safe(pos, n, &eli->li_request_list) {
2951			int err = 0;
2952			int progress = 0;
2953			elr = list_entry(pos, struct ext4_li_request,
2954					 lr_request);
2955
2956			if (time_before(jiffies, elr->lr_next_sched)) {
2957				if (time_before(elr->lr_next_sched, next_wakeup))
2958					next_wakeup = elr->lr_next_sched;
2959				continue;
2960			}
2961			if (down_read_trylock(&elr->lr_super->s_umount)) {
2962				if (sb_start_write_trylock(elr->lr_super)) {
2963					progress = 1;
2964					/*
2965					 * We hold sb->s_umount, sb can not
2966					 * be removed from the list, it is
2967					 * now safe to drop li_list_mtx
2968					 */
2969					mutex_unlock(&eli->li_list_mtx);
2970					err = ext4_run_li_request(elr);
2971					sb_end_write(elr->lr_super);
2972					mutex_lock(&eli->li_list_mtx);
2973					n = pos->next;
2974				}
2975				up_read((&elr->lr_super->s_umount));
2976			}
2977			/* error, remove the lazy_init job */
2978			if (err) {
2979				ext4_remove_li_request(elr);
2980				continue;
2981			}
2982			if (!progress) {
2983				elr->lr_next_sched = jiffies +
2984					(prandom_u32()
2985					 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
2986			}
2987			if (time_before(elr->lr_next_sched, next_wakeup))
2988				next_wakeup = elr->lr_next_sched;
2989		}
2990		mutex_unlock(&eli->li_list_mtx);
2991
2992		try_to_freeze();
2993
2994		cur = jiffies;
2995		if ((time_after_eq(cur, next_wakeup)) ||
2996		    (MAX_JIFFY_OFFSET == next_wakeup)) {
2997			cond_resched();
2998			continue;
2999		}
3000
3001		schedule_timeout_interruptible(next_wakeup - cur);
3002
3003		if (kthread_should_stop()) {
3004			ext4_clear_request_list();
3005			goto exit_thread;
3006		}
3007	}
3008
3009exit_thread:
3010	/*
3011	 * It looks like the request list is empty, but we need
3012	 * to check it under the li_list_mtx lock, to prevent any
3013	 * additions into it, and of course we should lock ext4_li_mtx
3014	 * to atomically free the list and ext4_li_info, because at
3015	 * this point another ext4 filesystem could be registering
3016	 * new one.
3017	 */
3018	mutex_lock(&ext4_li_mtx);
3019	mutex_lock(&eli->li_list_mtx);
3020	if (!list_empty(&eli->li_request_list)) {
3021		mutex_unlock(&eli->li_list_mtx);
3022		mutex_unlock(&ext4_li_mtx);
3023		goto cont_thread;
3024	}
3025	mutex_unlock(&eli->li_list_mtx);
3026	kfree(ext4_li_info);
3027	ext4_li_info = NULL;
3028	mutex_unlock(&ext4_li_mtx);
3029
3030	return 0;
3031}
3032
3033static void ext4_clear_request_list(void)
3034{
3035	struct list_head *pos, *n;
3036	struct ext4_li_request *elr;
3037
3038	mutex_lock(&ext4_li_info->li_list_mtx);
3039	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3040		elr = list_entry(pos, struct ext4_li_request,
3041				 lr_request);
3042		ext4_remove_li_request(elr);
3043	}
3044	mutex_unlock(&ext4_li_info->li_list_mtx);
3045}
3046
3047static int ext4_run_lazyinit_thread(void)
3048{
3049	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3050					 ext4_li_info, "ext4lazyinit");
3051	if (IS_ERR(ext4_lazyinit_task)) {
3052		int err = PTR_ERR(ext4_lazyinit_task);
3053		ext4_clear_request_list();
3054		kfree(ext4_li_info);
3055		ext4_li_info = NULL;
3056		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3057				 "initialization thread\n",
3058				 err);
3059		return err;
3060	}
3061	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3062	return 0;
3063}
3064
3065/*
3066 * Check whether it make sense to run itable init. thread or not.
3067 * If there is at least one uninitialized inode table, return
3068 * corresponding group number, else the loop goes through all
3069 * groups and return total number of groups.
3070 */
3071static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3072{
3073	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3074	struct ext4_group_desc *gdp = NULL;
3075
 
 
 
3076	for (group = 0; group < ngroups; group++) {
3077		gdp = ext4_get_group_desc(sb, group, NULL);
3078		if (!gdp)
3079			continue;
3080
3081		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3082			break;
3083	}
3084
3085	return group;
3086}
3087
3088static int ext4_li_info_new(void)
3089{
3090	struct ext4_lazy_init *eli = NULL;
3091
3092	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3093	if (!eli)
3094		return -ENOMEM;
3095
3096	INIT_LIST_HEAD(&eli->li_request_list);
3097	mutex_init(&eli->li_list_mtx);
3098
3099	eli->li_state |= EXT4_LAZYINIT_QUIT;
3100
3101	ext4_li_info = eli;
3102
3103	return 0;
3104}
3105
3106static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3107					    ext4_group_t start)
3108{
3109	struct ext4_sb_info *sbi = EXT4_SB(sb);
3110	struct ext4_li_request *elr;
3111
3112	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3113	if (!elr)
3114		return NULL;
3115
3116	elr->lr_super = sb;
3117	elr->lr_sbi = sbi;
3118	elr->lr_next_group = start;
 
 
 
 
 
3119
3120	/*
3121	 * Randomize first schedule time of the request to
3122	 * spread the inode table initialization requests
3123	 * better.
3124	 */
3125	elr->lr_next_sched = jiffies + (prandom_u32() %
3126				(EXT4_DEF_LI_MAX_START_DELAY * HZ));
3127	return elr;
3128}
3129
3130int ext4_register_li_request(struct super_block *sb,
3131			     ext4_group_t first_not_zeroed)
3132{
3133	struct ext4_sb_info *sbi = EXT4_SB(sb);
3134	struct ext4_li_request *elr = NULL;
3135	ext4_group_t ngroups = sbi->s_groups_count;
3136	int ret = 0;
3137
3138	mutex_lock(&ext4_li_mtx);
3139	if (sbi->s_li_request != NULL) {
3140		/*
3141		 * Reset timeout so it can be computed again, because
3142		 * s_li_wait_mult might have changed.
3143		 */
3144		sbi->s_li_request->lr_timeout = 0;
3145		goto out;
3146	}
3147
3148	if (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3149	    !test_opt(sb, INIT_INODE_TABLE))
 
3150		goto out;
3151
3152	elr = ext4_li_request_new(sb, first_not_zeroed);
3153	if (!elr) {
3154		ret = -ENOMEM;
3155		goto out;
3156	}
3157
3158	if (NULL == ext4_li_info) {
3159		ret = ext4_li_info_new();
3160		if (ret)
3161			goto out;
3162	}
3163
3164	mutex_lock(&ext4_li_info->li_list_mtx);
3165	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3166	mutex_unlock(&ext4_li_info->li_list_mtx);
3167
3168	sbi->s_li_request = elr;
3169	/*
3170	 * set elr to NULL here since it has been inserted to
3171	 * the request_list and the removal and free of it is
3172	 * handled by ext4_clear_request_list from now on.
3173	 */
3174	elr = NULL;
3175
3176	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3177		ret = ext4_run_lazyinit_thread();
3178		if (ret)
3179			goto out;
3180	}
3181out:
3182	mutex_unlock(&ext4_li_mtx);
3183	if (ret)
3184		kfree(elr);
3185	return ret;
3186}
3187
3188/*
3189 * We do not need to lock anything since this is called on
3190 * module unload.
3191 */
3192static void ext4_destroy_lazyinit_thread(void)
3193{
3194	/*
3195	 * If thread exited earlier
3196	 * there's nothing to be done.
3197	 */
3198	if (!ext4_li_info || !ext4_lazyinit_task)
3199		return;
3200
3201	kthread_stop(ext4_lazyinit_task);
3202}
3203
3204static int set_journal_csum_feature_set(struct super_block *sb)
3205{
3206	int ret = 1;
3207	int compat, incompat;
3208	struct ext4_sb_info *sbi = EXT4_SB(sb);
3209
3210	if (ext4_has_metadata_csum(sb)) {
3211		/* journal checksum v3 */
3212		compat = 0;
3213		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3214	} else {
3215		/* journal checksum v1 */
3216		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3217		incompat = 0;
3218	}
3219
3220	jbd2_journal_clear_features(sbi->s_journal,
3221			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3222			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3223			JBD2_FEATURE_INCOMPAT_CSUM_V2);
3224	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3225		ret = jbd2_journal_set_features(sbi->s_journal,
3226				compat, 0,
3227				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3228				incompat);
3229	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3230		ret = jbd2_journal_set_features(sbi->s_journal,
3231				compat, 0,
3232				incompat);
3233		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3234				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3235	} else {
3236		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3237				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3238	}
3239
3240	return ret;
3241}
3242
3243/*
3244 * Note: calculating the overhead so we can be compatible with
3245 * historical BSD practice is quite difficult in the face of
3246 * clusters/bigalloc.  This is because multiple metadata blocks from
3247 * different block group can end up in the same allocation cluster.
3248 * Calculating the exact overhead in the face of clustered allocation
3249 * requires either O(all block bitmaps) in memory or O(number of block
3250 * groups**2) in time.  We will still calculate the superblock for
3251 * older file systems --- and if we come across with a bigalloc file
3252 * system with zero in s_overhead_clusters the estimate will be close to
3253 * correct especially for very large cluster sizes --- but for newer
3254 * file systems, it's better to calculate this figure once at mkfs
3255 * time, and store it in the superblock.  If the superblock value is
3256 * present (even for non-bigalloc file systems), we will use it.
3257 */
3258static int count_overhead(struct super_block *sb, ext4_group_t grp,
3259			  char *buf)
3260{
3261	struct ext4_sb_info	*sbi = EXT4_SB(sb);
3262	struct ext4_group_desc	*gdp;
3263	ext4_fsblk_t		first_block, last_block, b;
3264	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
3265	int			s, j, count = 0;
 
3266
3267	if (!ext4_has_feature_bigalloc(sb))
3268		return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
 
3269			sbi->s_itb_per_group + 2);
3270
3271	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3272		(grp * EXT4_BLOCKS_PER_GROUP(sb));
3273	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3274	for (i = 0; i < ngroups; i++) {
3275		gdp = ext4_get_group_desc(sb, i, NULL);
3276		b = ext4_block_bitmap(sb, gdp);
3277		if (b >= first_block && b <= last_block) {
3278			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3279			count++;
3280		}
3281		b = ext4_inode_bitmap(sb, gdp);
3282		if (b >= first_block && b <= last_block) {
3283			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3284			count++;
3285		}
3286		b = ext4_inode_table(sb, gdp);
3287		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3288			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3289				int c = EXT4_B2C(sbi, b - first_block);
3290				ext4_set_bit(c, buf);
3291				count++;
3292			}
3293		if (i != grp)
3294			continue;
3295		s = 0;
3296		if (ext4_bg_has_super(sb, grp)) {
3297			ext4_set_bit(s++, buf);
3298			count++;
3299		}
3300		j = ext4_bg_num_gdb(sb, grp);
3301		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3302			ext4_error(sb, "Invalid number of block group "
3303				   "descriptor blocks: %d", j);
3304			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3305		}
3306		count += j;
3307		for (; j > 0; j--)
3308			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3309	}
3310	if (!count)
3311		return 0;
3312	return EXT4_CLUSTERS_PER_GROUP(sb) -
3313		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3314}
3315
3316/*
3317 * Compute the overhead and stash it in sbi->s_overhead
3318 */
3319int ext4_calculate_overhead(struct super_block *sb)
3320{
3321	struct ext4_sb_info *sbi = EXT4_SB(sb);
3322	struct ext4_super_block *es = sbi->s_es;
3323	struct inode *j_inode;
3324	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3325	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3326	ext4_fsblk_t overhead = 0;
3327	char *buf = (char *) get_zeroed_page(GFP_NOFS);
3328
3329	if (!buf)
3330		return -ENOMEM;
3331
3332	/*
3333	 * Compute the overhead (FS structures).  This is constant
3334	 * for a given filesystem unless the number of block groups
3335	 * changes so we cache the previous value until it does.
3336	 */
3337
3338	/*
3339	 * All of the blocks before first_data_block are overhead
3340	 */
3341	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3342
3343	/*
3344	 * Add the overhead found in each block group
3345	 */
3346	for (i = 0; i < ngroups; i++) {
3347		int blks;
3348
3349		blks = count_overhead(sb, i, buf);
3350		overhead += blks;
3351		if (blks)
3352			memset(buf, 0, PAGE_SIZE);
3353		cond_resched();
3354	}
3355
3356	/*
3357	 * Add the internal journal blocks whether the journal has been
3358	 * loaded or not
3359	 */
3360	if (sbi->s_journal && !sbi->journal_bdev)
3361		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_maxlen);
3362	else if (ext4_has_feature_journal(sb) && !sbi->s_journal) {
 
3363		j_inode = ext4_get_journal_inode(sb, j_inum);
3364		if (j_inode) {
3365			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3366			overhead += EXT4_NUM_B2C(sbi, j_blocks);
3367			iput(j_inode);
3368		} else {
3369			ext4_msg(sb, KERN_ERR, "can't get journal size");
3370		}
3371	}
3372	sbi->s_overhead = overhead;
3373	smp_wmb();
3374	free_page((unsigned long) buf);
3375	return 0;
3376}
3377
3378static void ext4_set_resv_clusters(struct super_block *sb)
3379{
3380	ext4_fsblk_t resv_clusters;
3381	struct ext4_sb_info *sbi = EXT4_SB(sb);
3382
3383	/*
3384	 * There's no need to reserve anything when we aren't using extents.
3385	 * The space estimates are exact, there are no unwritten extents,
3386	 * hole punching doesn't need new metadata... This is needed especially
3387	 * to keep ext2/3 backward compatibility.
3388	 */
3389	if (!ext4_has_feature_extents(sb))
3390		return;
3391	/*
3392	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3393	 * This should cover the situations where we can not afford to run
3394	 * out of space like for example punch hole, or converting
3395	 * unwritten extents in delalloc path. In most cases such
3396	 * allocation would require 1, or 2 blocks, higher numbers are
3397	 * very rare.
3398	 */
3399	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
3400			 sbi->s_cluster_bits);
3401
3402	do_div(resv_clusters, 50);
3403	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
3404
3405	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
3406}
3407
3408static int ext4_fill_super(struct super_block *sb, void *data, int silent)
3409{
3410	struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
3411	char *orig_data = kstrdup(data, GFP_KERNEL);
3412	struct buffer_head *bh;
3413	struct ext4_super_block *es = NULL;
3414	struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
3415	ext4_fsblk_t block;
3416	ext4_fsblk_t sb_block = get_sb_block(&data);
3417	ext4_fsblk_t logical_sb_block;
3418	unsigned long offset = 0;
3419	unsigned long journal_devnum = 0;
3420	unsigned long def_mount_opts;
3421	struct inode *root;
3422	const char *descr;
3423	int ret = -ENOMEM;
3424	int blocksize, clustersize;
3425	unsigned int db_count;
3426	unsigned int i;
3427	int needs_recovery, has_huge_files, has_bigalloc;
3428	__u64 blocks_count;
3429	int err = 0;
3430	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
3431	ext4_group_t first_not_zeroed;
3432
3433	if ((data && !orig_data) || !sbi)
3434		goto out_free_base;
 
 
 
 
 
 
3435
3436	sbi->s_daxdev = dax_dev;
3437	sbi->s_blockgroup_lock =
3438		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
3439	if (!sbi->s_blockgroup_lock)
3440		goto out_free_base;
 
 
 
 
3441
3442	sb->s_fs_info = sbi;
3443	sbi->s_sb = sb;
3444	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
3445	sbi->s_sb_block = sb_block;
3446	if (sb->s_bdev->bd_part)
3447		sbi->s_sectors_written_start =
3448			part_stat_read(sb->s_bdev->bd_part, sectors[1]);
3449
3450	/* Cleanup superblock name */
3451	strreplace(sb->s_id, '/', '!');
 
 
3452
3453	/* -EINVAL is default */
3454	ret = -EINVAL;
3455	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
3456	if (!blocksize) {
3457		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
3458		goto out_fail;
3459	}
3460
3461	/*
3462	 * The ext4 superblock will not be buffer aligned for other than 1kB
3463	 * block sizes.  We need to calculate the offset from buffer start.
3464	 */
3465	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
3466		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3467		offset = do_div(logical_sb_block, blocksize);
3468	} else {
3469		logical_sb_block = sb_block;
3470	}
3471
3472	if (!(bh = sb_bread_unmovable(sb, logical_sb_block))) {
3473		ext4_msg(sb, KERN_ERR, "unable to read superblock");
3474		goto out_fail;
3475	}
3476	/*
3477	 * Note: s_es must be initialized as soon as possible because
3478	 *       some ext4 macro-instructions depend on its value
3479	 */
3480	es = (struct ext4_super_block *) (bh->b_data + offset);
3481	sbi->s_es = es;
3482	sb->s_magic = le16_to_cpu(es->s_magic);
3483	if (sb->s_magic != EXT4_SUPER_MAGIC)
3484		goto cantfind_ext4;
3485	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
3486
3487	/* Warn if metadata_csum and gdt_csum are both set. */
3488	if (ext4_has_feature_metadata_csum(sb) &&
3489	    ext4_has_feature_gdt_csum(sb))
3490		ext4_warning(sb, "metadata_csum and uninit_bg are "
3491			     "redundant flags; please run fsck.");
3492
3493	/* Check for a known checksum algorithm */
3494	if (!ext4_verify_csum_type(sb, es)) {
3495		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3496			 "unknown checksum algorithm.");
3497		silent = 1;
3498		goto cantfind_ext4;
3499	}
3500
3501	/* Load the checksum driver */
3502	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
3503	if (IS_ERR(sbi->s_chksum_driver)) {
3504		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
3505		ret = PTR_ERR(sbi->s_chksum_driver);
3506		sbi->s_chksum_driver = NULL;
3507		goto failed_mount;
3508	}
3509
3510	/* Check superblock checksum */
3511	if (!ext4_superblock_csum_verify(sb, es)) {
3512		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
3513			 "invalid superblock checksum.  Run e2fsck?");
3514		silent = 1;
3515		ret = -EFSBADCRC;
3516		goto cantfind_ext4;
3517	}
3518
3519	/* Precompute checksum seed for all metadata */
3520	if (ext4_has_feature_csum_seed(sb))
3521		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
3522	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
3523		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
3524					       sizeof(es->s_uuid));
3525
3526	/* Set defaults before we parse the mount options */
3527	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
3528	set_opt(sb, INIT_INODE_TABLE);
3529	if (def_mount_opts & EXT4_DEFM_DEBUG)
3530		set_opt(sb, DEBUG);
3531	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
3532		set_opt(sb, GRPID);
3533	if (def_mount_opts & EXT4_DEFM_UID16)
3534		set_opt(sb, NO_UID32);
3535	/* xattr user namespace & acls are now defaulted on */
3536	set_opt(sb, XATTR_USER);
3537#ifdef CONFIG_EXT4_FS_POSIX_ACL
3538	set_opt(sb, POSIX_ACL);
3539#endif
 
 
3540	/* don't forget to enable journal_csum when metadata_csum is enabled. */
3541	if (ext4_has_metadata_csum(sb))
3542		set_opt(sb, JOURNAL_CHECKSUM);
3543
3544	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
3545		set_opt(sb, JOURNAL_DATA);
3546	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
3547		set_opt(sb, ORDERED_DATA);
3548	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
3549		set_opt(sb, WRITEBACK_DATA);
3550
3551	if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
3552		set_opt(sb, ERRORS_PANIC);
3553	else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
3554		set_opt(sb, ERRORS_CONT);
3555	else
3556		set_opt(sb, ERRORS_RO);
3557	/* block_validity enabled by default; disable with noblock_validity */
3558	set_opt(sb, BLOCK_VALIDITY);
3559	if (def_mount_opts & EXT4_DEFM_DISCARD)
3560		set_opt(sb, DISCARD);
3561
3562	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
3563	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
3564	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
3565	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
3566	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
3567
3568	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
3569		set_opt(sb, BARRIER);
3570
3571	/*
3572	 * enable delayed allocation by default
3573	 * Use -o nodelalloc to turn it off
3574	 */
3575	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
3576	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
3577		set_opt(sb, DELALLOC);
3578
3579	/*
3580	 * set default s_li_wait_mult for lazyinit, for the case there is
3581	 * no mount option specified.
3582	 */
3583	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
 
 
 
 
3584
3585	if (sbi->s_es->s_mount_opts[0]) {
3586		char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
3587					      sizeof(sbi->s_es->s_mount_opts),
3588					      GFP_KERNEL);
3589		if (!s_mount_opts)
3590			goto failed_mount;
3591		if (!parse_options(s_mount_opts, sb, &journal_devnum,
3592				   &journal_ioprio, 0)) {
3593			ext4_msg(sb, KERN_WARNING,
3594				 "failed to parse options in superblock: %s",
3595				 s_mount_opts);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3596		}
3597		kfree(s_mount_opts);
 
3598	}
3599	sbi->s_def_mount_opt = sbi->s_mount_opt;
3600	if (!parse_options((char *) data, sb, &journal_devnum,
3601			   &journal_ioprio, 0))
3602		goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3603
3604	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
3605		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting "
3606			    "with data=journal disables delayed "
3607			    "allocation and O_DIRECT support!\n");
3608		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
3609			ext4_msg(sb, KERN_ERR, "can't mount with "
3610				 "both data=journal and delalloc");
3611			goto failed_mount;
 
 
3612		}
3613		if (test_opt(sb, DIOREAD_NOLOCK)) {
3614			ext4_msg(sb, KERN_ERR, "can't mount with "
3615				 "both data=journal and dioread_nolock");
3616			goto failed_mount;
 
 
 
 
3617		}
3618		if (test_opt(sb, DAX)) {
3619			ext4_msg(sb, KERN_ERR, "can't mount with "
3620				 "both data=journal and dax");
3621			goto failed_mount;
 
 
 
 
 
 
 
 
 
3622		}
3623		if (ext4_has_feature_encrypt(sb)) {
3624			ext4_msg(sb, KERN_WARNING,
3625				 "encrypted files will use data=ordered "
3626				 "instead of data journaling mode");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3627		}
3628		if (test_opt(sb, DELALLOC))
3629			clear_opt(sb, DELALLOC);
3630	} else {
3631		sb->s_iflags |= SB_I_CGROUPWB;
3632	}
3633
3634	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
3635		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3636
 
 
 
 
3637	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
3638	    (ext4_has_compat_features(sb) ||
3639	     ext4_has_ro_compat_features(sb) ||
3640	     ext4_has_incompat_features(sb)))
3641		ext4_msg(sb, KERN_WARNING,
3642		       "feature flags set on rev 0 fs, "
3643		       "running e2fsck is recommended");
3644
3645	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
3646		set_opt2(sb, HURD_COMPAT);
3647		if (ext4_has_feature_64bit(sb)) {
3648			ext4_msg(sb, KERN_ERR,
3649				 "The Hurd can't support 64-bit file systems");
3650			goto failed_mount;
3651		}
3652
3653		/*
3654		 * ea_inode feature uses l_i_version field which is not
3655		 * available in HURD_COMPAT mode.
3656		 */
3657		if (ext4_has_feature_ea_inode(sb)) {
3658			ext4_msg(sb, KERN_ERR,
3659				 "ea_inode feature is not supported for Hurd");
3660			goto failed_mount;
3661		}
3662	}
3663
3664	if (IS_EXT2_SB(sb)) {
3665		if (ext2_feature_set_ok(sb))
3666			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
3667				 "using the ext4 subsystem");
3668		else {
3669			/*
3670			 * If we're probing be silent, if this looks like
3671			 * it's actually an ext[34] filesystem.
3672			 */
3673			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3674				goto failed_mount;
3675			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
3676				 "to feature incompatibilities");
3677			goto failed_mount;
3678		}
3679	}
3680
3681	if (IS_EXT3_SB(sb)) {
3682		if (ext3_feature_set_ok(sb))
3683			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
3684				 "using the ext4 subsystem");
3685		else {
3686			/*
3687			 * If we're probing be silent, if this looks like
3688			 * it's actually an ext4 filesystem.
3689			 */
3690			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
3691				goto failed_mount;
3692			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
3693				 "to feature incompatibilities");
3694			goto failed_mount;
3695		}
3696	}
3697
3698	/*
3699	 * Check feature flags regardless of the revision level, since we
3700	 * previously didn't change the revision level when setting the flags,
3701	 * so there is a chance incompat flags are set on a rev 0 filesystem.
3702	 */
3703	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
3704		goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3705
3706	blocksize = BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
3707	if (blocksize < EXT4_MIN_BLOCK_SIZE ||
3708	    blocksize > EXT4_MAX_BLOCK_SIZE) {
3709		ext4_msg(sb, KERN_ERR,
3710		       "Unsupported filesystem blocksize %d (%d log_block_size)",
3711			 blocksize, le32_to_cpu(es->s_log_block_size));
3712		goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3713	}
 
3714	if (le32_to_cpu(es->s_log_block_size) >
3715	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3716		ext4_msg(sb, KERN_ERR,
3717			 "Invalid log block size: %u",
3718			 le32_to_cpu(es->s_log_block_size));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3719		goto failed_mount;
3720	}
3721
3722	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
3723		ext4_msg(sb, KERN_ERR,
3724			 "Number of reserved GDT blocks insanely large: %d",
3725			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
3726		goto failed_mount;
3727	}
3728
3729	if (sbi->s_mount_opt & EXT4_MOUNT_DAX) {
 
 
 
 
 
 
 
3730		if (ext4_has_feature_inline_data(sb)) {
3731			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
3732					" that may contain inline data");
3733			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3734		}
3735		err = bdev_dax_supported(sb, blocksize);
3736		if (err) {
3737			ext4_msg(sb, KERN_ERR,
3738				"DAX unsupported by block device. Turning off DAX.");
3739			sbi->s_mount_opt &= ~EXT4_MOUNT_DAX;
3740		}
3741	}
3742
3743	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
3744		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
3745			 es->s_encryption_level);
3746		goto failed_mount;
3747	}
3748
3749	if (sb->s_blocksize != blocksize) {
3750		/* Validate the filesystem blocksize */
3751		if (!sb_set_blocksize(sb, blocksize)) {
3752			ext4_msg(sb, KERN_ERR, "bad block size %d",
3753					blocksize);
3754			goto failed_mount;
3755		}
3756
3757		brelse(bh);
3758		logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
3759		offset = do_div(logical_sb_block, blocksize);
3760		bh = sb_bread_unmovable(sb, logical_sb_block);
3761		if (!bh) {
3762			ext4_msg(sb, KERN_ERR,
3763			       "Can't read superblock on 2nd try");
3764			goto failed_mount;
3765		}
3766		es = (struct ext4_super_block *)(bh->b_data + offset);
3767		sbi->s_es = es;
3768		if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
3769			ext4_msg(sb, KERN_ERR,
3770			       "Magic mismatch, very weird!");
3771			goto failed_mount;
3772		}
3773	}
3774
3775	has_huge_files = ext4_has_feature_huge_file(sb);
3776	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
3777						      has_huge_files);
3778	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
3779
3780	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
3781		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
3782		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
3783	} else {
3784		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
3785		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
3786		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
3787		    (!is_power_of_2(sbi->s_inode_size)) ||
3788		    (sbi->s_inode_size > blocksize)) {
3789			ext4_msg(sb, KERN_ERR,
3790			       "unsupported inode size: %d",
3791			       sbi->s_inode_size);
3792			goto failed_mount;
3793		}
3794		if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE)
3795			sb->s_time_gran = 1 << (EXT4_EPOCH_BITS - 2);
3796	}
3797
3798	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
3799	if (ext4_has_feature_64bit(sb)) {
3800		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
3801		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
3802		    !is_power_of_2(sbi->s_desc_size)) {
3803			ext4_msg(sb, KERN_ERR,
3804			       "unsupported descriptor size %lu",
3805			       sbi->s_desc_size);
3806			goto failed_mount;
3807		}
3808	} else
3809		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
3810
3811	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
3812	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
3813
3814	sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
3815	if (sbi->s_inodes_per_block == 0)
3816		goto cantfind_ext4;
 
 
 
3817	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
3818	    sbi->s_inodes_per_group > blocksize * 8) {
3819		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
3820			 sbi->s_blocks_per_group);
3821		goto failed_mount;
3822	}
3823	sbi->s_itb_per_group = sbi->s_inodes_per_group /
3824					sbi->s_inodes_per_block;
3825	sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
3826	sbi->s_sbh = bh;
3827	sbi->s_mount_state = le16_to_cpu(es->s_state);
3828	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
3829	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
3830
3831	for (i = 0; i < 4; i++)
3832		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
3833	sbi->s_def_hash_version = es->s_def_hash_version;
3834	if (ext4_has_feature_dir_index(sb)) {
3835		i = le32_to_cpu(es->s_flags);
3836		if (i & EXT2_FLAGS_UNSIGNED_HASH)
3837			sbi->s_hash_unsigned = 3;
3838		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
3839#ifdef __CHAR_UNSIGNED__
3840			if (!sb_rdonly(sb))
3841				es->s_flags |=
3842					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
3843			sbi->s_hash_unsigned = 3;
3844#else
3845			if (!sb_rdonly(sb))
3846				es->s_flags |=
3847					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
3848#endif
3849		}
3850	}
3851
3852	/* Handle clustersize */
3853	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
3854	has_bigalloc = ext4_has_feature_bigalloc(sb);
3855	if (has_bigalloc) {
3856		if (clustersize < blocksize) {
3857			ext4_msg(sb, KERN_ERR,
3858				 "cluster size (%d) smaller than "
3859				 "block size (%d)", clustersize, blocksize);
3860			goto failed_mount;
3861		}
3862		if (le32_to_cpu(es->s_log_cluster_size) >
3863		    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
3864			ext4_msg(sb, KERN_ERR,
3865				 "Invalid log cluster size: %u",
3866				 le32_to_cpu(es->s_log_cluster_size));
3867			goto failed_mount;
3868		}
3869		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
3870			le32_to_cpu(es->s_log_block_size);
3871		sbi->s_clusters_per_group =
3872			le32_to_cpu(es->s_clusters_per_group);
3873		if (sbi->s_clusters_per_group > blocksize * 8) {
3874			ext4_msg(sb, KERN_ERR,
3875				 "#clusters per group too big: %lu",
3876				 sbi->s_clusters_per_group);
3877			goto failed_mount;
3878		}
3879		if (sbi->s_blocks_per_group !=
3880		    (sbi->s_clusters_per_group * (clustersize / blocksize))) {
3881			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
3882				 "clusters per group (%lu) inconsistent",
3883				 sbi->s_blocks_per_group,
3884				 sbi->s_clusters_per_group);
3885			goto failed_mount;
3886		}
3887	} else {
3888		if (clustersize != blocksize) {
3889			ext4_warning(sb, "fragment/cluster size (%d) != "
3890				     "block size (%d)", clustersize,
3891				     blocksize);
3892			clustersize = blocksize;
3893		}
3894		if (sbi->s_blocks_per_group > blocksize * 8) {
3895			ext4_msg(sb, KERN_ERR,
3896				 "#blocks per group too big: %lu",
3897				 sbi->s_blocks_per_group);
3898			goto failed_mount;
3899		}
3900		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
3901		sbi->s_cluster_bits = 0;
3902	}
3903	sbi->s_cluster_ratio = clustersize / blocksize;
3904
3905	/* Do we have standard group size of clustersize * 8 blocks ? */
3906	if (sbi->s_blocks_per_group == clustersize << 3)
3907		set_opt2(sb, STD_GROUP_SIZE);
3908
3909	/*
3910	 * Test whether we have more sectors than will fit in sector_t,
3911	 * and whether the max offset is addressable by the page cache.
3912	 */
3913	err = generic_check_addressable(sb->s_blocksize_bits,
3914					ext4_blocks_count(es));
3915	if (err) {
3916		ext4_msg(sb, KERN_ERR, "filesystem"
3917			 " too large to mount safely on this system");
3918		if (sizeof(sector_t) < 8)
3919			ext4_msg(sb, KERN_WARNING, "CONFIG_LBDAF not enabled");
3920		goto failed_mount;
3921	}
3922
3923	if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
3924		goto cantfind_ext4;
3925
3926	/* check blocks count against device size */
3927	blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
3928	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
3929		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
3930		       "exceeds size of device (%llu blocks)",
3931		       ext4_blocks_count(es), blocks_count);
3932		goto failed_mount;
3933	}
3934
3935	/*
3936	 * It makes no sense for the first data block to be beyond the end
3937	 * of the filesystem.
3938	 */
3939	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
3940		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
3941			 "block %u is beyond end of filesystem (%llu)",
3942			 le32_to_cpu(es->s_first_data_block),
3943			 ext4_blocks_count(es));
3944		goto failed_mount;
3945	}
3946	blocks_count = (ext4_blocks_count(es) -
3947			le32_to_cpu(es->s_first_data_block) +
3948			EXT4_BLOCKS_PER_GROUP(sb) - 1);
3949	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
3950	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
3951		ext4_msg(sb, KERN_WARNING, "groups count too large: %u "
3952		       "(block count %llu, first data block %u, "
3953		       "blocks per group %lu)", sbi->s_groups_count,
3954		       ext4_blocks_count(es),
3955		       le32_to_cpu(es->s_first_data_block),
3956		       EXT4_BLOCKS_PER_GROUP(sb));
3957		goto failed_mount;
3958	}
3959	sbi->s_groups_count = blocks_count;
3960	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
3961			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
3962	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
3963		   EXT4_DESC_PER_BLOCK(sb);
3964	if (ext4_has_feature_meta_bg(sb)) {
3965		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
3966			ext4_msg(sb, KERN_WARNING,
3967				 "first meta block group too large: %u "
3968				 "(group descriptor block count %u)",
3969				 le32_to_cpu(es->s_first_meta_bg), db_count);
3970			goto failed_mount;
3971		}
3972	}
3973	sbi->s_group_desc = kvmalloc(db_count *
3974					  sizeof(struct buffer_head *),
3975					  GFP_KERNEL);
3976	if (sbi->s_group_desc == NULL) {
3977		ext4_msg(sb, KERN_ERR, "not enough memory");
3978		ret = -ENOMEM;
3979		goto failed_mount;
3980	}
3981
3982	bgl_lock_init(sbi->s_blockgroup_lock);
3983
3984	/* Pre-read the descriptors into the buffer cache */
3985	for (i = 0; i < db_count; i++) {
3986		block = descriptor_loc(sb, logical_sb_block, i);
3987		sb_breadahead(sb, block);
3988	}
3989
3990	for (i = 0; i < db_count; i++) {
3991		block = descriptor_loc(sb, logical_sb_block, i);
3992		sbi->s_group_desc[i] = sb_bread_unmovable(sb, block);
3993		if (!sbi->s_group_desc[i]) {
3994			ext4_msg(sb, KERN_ERR,
3995			       "can't read group descriptor %d", i);
3996			db_count = i;
3997			goto failed_mount2;
3998		}
3999	}
4000	if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4001		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4002		ret = -EFSCORRUPTED;
4003		goto failed_mount2;
4004	}
4005
4006	sbi->s_gdb_count = db_count;
4007
4008	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
 
 
4009
4010	/* Register extent status tree shrinker */
4011	if (ext4_es_register_shrinker(sbi))
4012		goto failed_mount3;
4013
4014	sbi->s_stripe = ext4_get_stripe_size(sbi);
4015	sbi->s_extent_max_zeroout_kb = 32;
4016
4017	/*
4018	 * set up enough so that it can read an inode
4019	 */
4020	sb->s_op = &ext4_sops;
4021	sb->s_export_op = &ext4_export_ops;
4022	sb->s_xattr = ext4_xattr_handlers;
4023#ifdef CONFIG_EXT4_FS_ENCRYPTION
4024	sb->s_cop = &ext4_cryptops;
4025#endif
 
 
 
4026#ifdef CONFIG_QUOTA
4027	sb->dq_op = &ext4_quota_operations;
4028	if (ext4_has_feature_quota(sb))
4029		sb->s_qcop = &dquot_quotactl_sysfile_ops;
4030	else
4031		sb->s_qcop = &ext4_qctl_operations;
4032	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4033#endif
4034	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4035
4036	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4037	mutex_init(&sbi->s_orphan_lock);
4038
 
 
4039	sb->s_root = NULL;
4040
4041	needs_recovery = (es->s_last_orphan != 0 ||
 
4042			  ext4_has_feature_journal_needs_recovery(sb));
4043
4044	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4045		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4046			goto failed_mount3a;
4047
4048	/*
4049	 * The first inode we look at is the journal inode.  Don't try
4050	 * root first: it may be modified in the journal!
4051	 */
4052	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4053		err = ext4_load_journal(sb, es, journal_devnum);
4054		if (err)
4055			goto failed_mount3a;
4056	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4057		   ext4_has_feature_journal_needs_recovery(sb)) {
4058		ext4_msg(sb, KERN_ERR, "required journal recovery "
4059		       "suppressed and not mounted read-only");
4060		goto failed_mount_wq;
4061	} else {
4062		/* Nojournal mode, all journal mount options are illegal */
 
 
 
 
 
 
4063		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4064			ext4_msg(sb, KERN_ERR, "can't mount with "
4065				 "journal_checksum, fs mounted w/o journal");
4066			goto failed_mount_wq;
4067		}
4068		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4069			ext4_msg(sb, KERN_ERR, "can't mount with "
4070				 "journal_async_commit, fs mounted w/o journal");
4071			goto failed_mount_wq;
4072		}
4073		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4074			ext4_msg(sb, KERN_ERR, "can't mount with "
4075				 "commit=%lu, fs mounted w/o journal",
4076				 sbi->s_commit_interval / HZ);
4077			goto failed_mount_wq;
4078		}
4079		if (EXT4_MOUNT_DATA_FLAGS &
4080		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4081			ext4_msg(sb, KERN_ERR, "can't mount with "
4082				 "data=, fs mounted w/o journal");
4083			goto failed_mount_wq;
4084		}
4085		sbi->s_def_mount_opt &= EXT4_MOUNT_JOURNAL_CHECKSUM;
4086		clear_opt(sb, JOURNAL_CHECKSUM);
4087		clear_opt(sb, DATA_FLAGS);
 
4088		sbi->s_journal = NULL;
4089		needs_recovery = 0;
4090		goto no_journal;
4091	}
4092
4093	if (ext4_has_feature_64bit(sb) &&
4094	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4095				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4096		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4097		goto failed_mount_wq;
4098	}
4099
4100	if (!set_journal_csum_feature_set(sb)) {
4101		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4102			 "feature set");
4103		goto failed_mount_wq;
4104	}
4105
4106	/* We have now updated the journal if required, so we can
4107	 * validate the data journaling mode. */
4108	switch (test_opt(sb, DATA_FLAGS)) {
4109	case 0:
4110		/* No mode set, assume a default based on the journal
4111		 * capabilities: ORDERED_DATA if the journal can
4112		 * cope, else JOURNAL_DATA
4113		 */
4114		if (jbd2_journal_check_available_features
4115		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4116			set_opt(sb, ORDERED_DATA);
4117			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4118		} else {
4119			set_opt(sb, JOURNAL_DATA);
4120			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4121		}
4122		break;
4123
4124	case EXT4_MOUNT_ORDERED_DATA:
4125	case EXT4_MOUNT_WRITEBACK_DATA:
4126		if (!jbd2_journal_check_available_features
4127		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4128			ext4_msg(sb, KERN_ERR, "Journal does not support "
4129			       "requested data journaling mode");
4130			goto failed_mount_wq;
4131		}
4132	default:
4133		break;
4134	}
4135
4136	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4137	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4138		ext4_msg(sb, KERN_ERR, "can't mount with "
4139			"journal_async_commit in data=ordered mode");
4140		goto failed_mount_wq;
4141	}
4142
4143	set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
4144
4145	sbi->s_journal->j_commit_callback = ext4_journal_commit_callback;
4146
4147no_journal:
4148	if (!test_opt(sb, NO_MBCACHE)) {
4149		sbi->s_ea_block_cache = ext4_xattr_create_cache();
4150		if (!sbi->s_ea_block_cache) {
4151			ext4_msg(sb, KERN_ERR,
4152				 "Failed to create ea_block_cache");
4153			goto failed_mount_wq;
4154		}
4155
4156		if (ext4_has_feature_ea_inode(sb)) {
4157			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4158			if (!sbi->s_ea_inode_cache) {
4159				ext4_msg(sb, KERN_ERR,
4160					 "Failed to create ea_inode_cache");
4161				goto failed_mount_wq;
4162			}
4163		}
4164	}
4165
4166	if ((DUMMY_ENCRYPTION_ENABLED(sbi) || ext4_has_feature_encrypt(sb)) &&
4167	    (blocksize != PAGE_SIZE)) {
4168		ext4_msg(sb, KERN_ERR,
4169			 "Unsupported blocksize for fs encryption");
4170		goto failed_mount_wq;
4171	}
4172
4173	if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4174	    !ext4_has_feature_encrypt(sb)) {
4175		ext4_set_feature_encrypt(sb);
4176		ext4_commit_super(sb, 1);
4177	}
4178
4179	/*
4180	 * Get the # of file system overhead blocks from the
4181	 * superblock if present.
4182	 */
4183	if (es->s_overhead_clusters)
4184		sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4185	else {
 
 
 
 
 
 
 
 
 
4186		err = ext4_calculate_overhead(sb);
4187		if (err)
4188			goto failed_mount_wq;
4189	}
4190
4191	/*
4192	 * The maximum number of concurrent works can be high and
4193	 * concurrency isn't really necessary.  Limit it to 1.
4194	 */
4195	EXT4_SB(sb)->rsv_conversion_wq =
4196		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4197	if (!EXT4_SB(sb)->rsv_conversion_wq) {
4198		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4199		ret = -ENOMEM;
4200		goto failed_mount4;
4201	}
4202
4203	/*
4204	 * The jbd2_journal_load will have done any necessary log recovery,
4205	 * so we can safely mount the rest of the filesystem now.
4206	 */
4207
4208	root = ext4_iget(sb, EXT4_ROOT_INO);
4209	if (IS_ERR(root)) {
4210		ext4_msg(sb, KERN_ERR, "get root inode failed");
4211		ret = PTR_ERR(root);
4212		root = NULL;
4213		goto failed_mount4;
4214	}
4215	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4216		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4217		iput(root);
4218		goto failed_mount4;
4219	}
 
4220	sb->s_root = d_make_root(root);
4221	if (!sb->s_root) {
4222		ext4_msg(sb, KERN_ERR, "get root dentry failed");
4223		ret = -ENOMEM;
4224		goto failed_mount4;
4225	}
4226
4227	if (ext4_setup_super(sb, es, sb_rdonly(sb)))
 
4228		sb->s_flags |= SB_RDONLY;
 
 
 
 
 
4229
4230	/* determine the minimum size of new large inodes, if present */
4231	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE &&
4232	    sbi->s_want_extra_isize == 0) {
4233		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4234						     EXT4_GOOD_OLD_INODE_SIZE;
4235		if (ext4_has_feature_extra_isize(sb)) {
4236			if (sbi->s_want_extra_isize <
4237			    le16_to_cpu(es->s_want_extra_isize))
4238				sbi->s_want_extra_isize =
4239					le16_to_cpu(es->s_want_extra_isize);
4240			if (sbi->s_want_extra_isize <
4241			    le16_to_cpu(es->s_min_extra_isize))
4242				sbi->s_want_extra_isize =
4243					le16_to_cpu(es->s_min_extra_isize);
4244		}
4245	}
4246	/* Check if enough inode space is available */
4247	if (EXT4_GOOD_OLD_INODE_SIZE + sbi->s_want_extra_isize >
4248							sbi->s_inode_size) {
4249		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4250						       EXT4_GOOD_OLD_INODE_SIZE;
4251		ext4_msg(sb, KERN_INFO, "required extra inode space not"
4252			 "available");
4253	}
4254
4255	ext4_set_resv_clusters(sb);
4256
4257	err = ext4_setup_system_zone(sb);
4258	if (err) {
4259		ext4_msg(sb, KERN_ERR, "failed to initialize system "
4260			 "zone (%d)", err);
4261		goto failed_mount4a;
 
 
 
 
 
4262	}
4263
4264	ext4_ext_init(sb);
4265	err = ext4_mb_init(sb);
4266	if (err) {
4267		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
4268			 err);
4269		goto failed_mount5;
4270	}
4271
 
 
 
 
 
 
 
 
4272	block = ext4_count_free_clusters(sb);
4273	ext4_free_blocks_count_set(sbi->s_es, 
4274				   EXT4_C2B(sbi, block));
4275	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
4276				  GFP_KERNEL);
4277	if (!err) {
4278		unsigned long freei = ext4_count_free_inodes(sb);
4279		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
4280		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
4281					  GFP_KERNEL);
4282	}
4283	if (!err)
4284		err = percpu_counter_init(&sbi->s_dirs_counter,
4285					  ext4_count_dirs(sb), GFP_KERNEL);
4286	if (!err)
4287		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
4288					  GFP_KERNEL);
4289	if (!err)
4290		err = percpu_init_rwsem(&sbi->s_journal_flag_rwsem);
 
 
 
4291
4292	if (err) {
4293		ext4_msg(sb, KERN_ERR, "insufficient memory");
4294		goto failed_mount6;
4295	}
4296
4297	if (ext4_has_feature_flex_bg(sb))
4298		if (!ext4_fill_flex_info(sb)) {
4299			ext4_msg(sb, KERN_ERR,
4300			       "unable to initialize "
4301			       "flex_bg meta info!");
 
4302			goto failed_mount6;
4303		}
4304
4305	err = ext4_register_li_request(sb, first_not_zeroed);
4306	if (err)
4307		goto failed_mount6;
4308
4309	err = ext4_register_sysfs(sb);
4310	if (err)
4311		goto failed_mount7;
4312
 
 
 
4313#ifdef CONFIG_QUOTA
4314	/* Enable quota usage during mount. */
4315	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
4316		err = ext4_enable_quotas(sb);
4317		if (err)
4318			goto failed_mount8;
4319	}
4320#endif  /* CONFIG_QUOTA */
4321
 
 
 
 
 
 
 
 
4322	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
4323	ext4_orphan_cleanup(sb, es);
4324	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
 
 
 
 
 
 
 
 
4325	if (needs_recovery) {
4326		ext4_msg(sb, KERN_INFO, "recovery complete");
4327		ext4_mark_recovery_complete(sb, es);
 
 
4328	}
4329	if (EXT4_SB(sb)->s_journal) {
4330		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
4331			descr = " journalled data mode";
4332		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
4333			descr = " ordered data mode";
4334		else
4335			descr = " writeback data mode";
4336	} else
4337		descr = "out journal";
4338
4339	if (test_opt(sb, DISCARD)) {
4340		struct request_queue *q = bdev_get_queue(sb->s_bdev);
4341		if (!blk_queue_discard(q))
4342			ext4_msg(sb, KERN_WARNING,
4343				 "mounting with \"discard\" option, but "
4344				 "the device does not support discard");
4345	}
4346
4347	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
4348		ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
4349			 "Opts: %.*s%s%s", descr,
4350			 (int) sizeof(sbi->s_es->s_mount_opts),
4351			 sbi->s_es->s_mount_opts,
4352			 *sbi->s_es->s_mount_opts ? "; " : "", orig_data);
4353
4354	if (es->s_error_count)
4355		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
4356
4357	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
4358	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
4359	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
4360	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
 
 
4361
4362	kfree(orig_data);
4363	return 0;
4364
4365cantfind_ext4:
4366	if (!silent)
4367		ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4368	goto failed_mount;
4369
4370#ifdef CONFIG_QUOTA
4371failed_mount8:
4372	ext4_unregister_sysfs(sb);
4373#endif
4374failed_mount7:
4375	ext4_unregister_li_request(sb);
4376failed_mount6:
4377	ext4_mb_release(sb);
4378	if (sbi->s_flex_groups)
4379		kvfree(sbi->s_flex_groups);
 
 
 
 
 
 
4380	percpu_counter_destroy(&sbi->s_freeclusters_counter);
4381	percpu_counter_destroy(&sbi->s_freeinodes_counter);
4382	percpu_counter_destroy(&sbi->s_dirs_counter);
4383	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
 
 
4384failed_mount5:
4385	ext4_ext_release(sb);
4386	ext4_release_system_zone(sb);
4387failed_mount4a:
4388	dput(sb->s_root);
4389	sb->s_root = NULL;
4390failed_mount4:
4391	ext4_msg(sb, KERN_ERR, "mount failed");
4392	if (EXT4_SB(sb)->rsv_conversion_wq)
4393		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
4394failed_mount_wq:
4395	if (sbi->s_ea_inode_cache) {
4396		ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
4397		sbi->s_ea_inode_cache = NULL;
4398	}
4399	if (sbi->s_ea_block_cache) {
4400		ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
4401		sbi->s_ea_block_cache = NULL;
4402	}
4403	if (sbi->s_journal) {
 
 
4404		jbd2_journal_destroy(sbi->s_journal);
4405		sbi->s_journal = NULL;
4406	}
4407failed_mount3a:
4408	ext4_es_unregister_shrinker(sbi);
4409failed_mount3:
 
 
4410	del_timer_sync(&sbi->s_err_report);
4411	if (sbi->s_mmp_tsk)
4412		kthread_stop(sbi->s_mmp_tsk);
4413failed_mount2:
4414	for (i = 0; i < db_count; i++)
4415		brelse(sbi->s_group_desc[i]);
4416	kvfree(sbi->s_group_desc);
4417failed_mount:
4418	if (sbi->s_chksum_driver)
4419		crypto_free_shash(sbi->s_chksum_driver);
 
 
 
 
 
4420#ifdef CONFIG_QUOTA
4421	for (i = 0; i < EXT4_MAXQUOTAS; i++)
4422		kfree(sbi->s_qf_names[i]);
4423#endif
 
 
 
4424	ext4_blkdev_remove(sbi);
4425	brelse(bh);
4426out_fail:
4427	sb->s_fs_info = NULL;
4428	kfree(sbi->s_blockgroup_lock);
4429out_free_base:
4430	kfree(sbi);
4431	kfree(orig_data);
4432	fs_put_dax(dax_dev);
4433	return err ? err : ret;
4434}
4435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4436/*
4437 * Setup any per-fs journal parameters now.  We'll do this both on
4438 * initial mount, once the journal has been initialised but before we've
4439 * done any recovery; and again on any subsequent remount.
4440 */
4441static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
4442{
4443	struct ext4_sb_info *sbi = EXT4_SB(sb);
4444
4445	journal->j_commit_interval = sbi->s_commit_interval;
4446	journal->j_min_batch_time = sbi->s_min_batch_time;
4447	journal->j_max_batch_time = sbi->s_max_batch_time;
 
4448
4449	write_lock(&journal->j_state_lock);
4450	if (test_opt(sb, BARRIER))
4451		journal->j_flags |= JBD2_BARRIER;
4452	else
4453		journal->j_flags &= ~JBD2_BARRIER;
4454	if (test_opt(sb, DATA_ERR_ABORT))
4455		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
4456	else
4457		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
4458	write_unlock(&journal->j_state_lock);
4459}
4460
4461static struct inode *ext4_get_journal_inode(struct super_block *sb,
4462					     unsigned int journal_inum)
4463{
4464	struct inode *journal_inode;
4465
4466	/*
4467	 * Test for the existence of a valid inode on disk.  Bad things
4468	 * happen if we iget() an unused inode, as the subsequent iput()
4469	 * will try to delete it.
4470	 */
4471	journal_inode = ext4_iget(sb, journal_inum);
4472	if (IS_ERR(journal_inode)) {
4473		ext4_msg(sb, KERN_ERR, "no journal found");
4474		return NULL;
4475	}
4476	if (!journal_inode->i_nlink) {
4477		make_bad_inode(journal_inode);
4478		iput(journal_inode);
4479		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
4480		return NULL;
4481	}
4482
4483	jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
4484		  journal_inode, journal_inode->i_size);
4485	if (!S_ISREG(journal_inode->i_mode)) {
4486		ext4_msg(sb, KERN_ERR, "invalid journal inode");
4487		iput(journal_inode);
4488		return NULL;
4489	}
4490	return journal_inode;
4491}
4492
4493static journal_t *ext4_get_journal(struct super_block *sb,
4494				   unsigned int journal_inum)
4495{
4496	struct inode *journal_inode;
4497	journal_t *journal;
4498
4499	BUG_ON(!ext4_has_feature_journal(sb));
 
4500
4501	journal_inode = ext4_get_journal_inode(sb, journal_inum);
4502	if (!journal_inode)
4503		return NULL;
4504
4505	journal = jbd2_journal_init_inode(journal_inode);
4506	if (!journal) {
4507		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
4508		iput(journal_inode);
4509		return NULL;
4510	}
4511	journal->j_private = sb;
4512	ext4_init_journal_params(sb, journal);
4513	return journal;
4514}
4515
4516static journal_t *ext4_get_dev_journal(struct super_block *sb,
4517				       dev_t j_dev)
4518{
4519	struct buffer_head *bh;
4520	journal_t *journal;
4521	ext4_fsblk_t start;
4522	ext4_fsblk_t len;
4523	int hblock, blocksize;
4524	ext4_fsblk_t sb_block;
4525	unsigned long offset;
4526	struct ext4_super_block *es;
4527	struct block_device *bdev;
4528
4529	BUG_ON(!ext4_has_feature_journal(sb));
 
4530
4531	bdev = ext4_blkdev_get(j_dev, sb);
4532	if (bdev == NULL)
4533		return NULL;
4534
4535	blocksize = sb->s_blocksize;
4536	hblock = bdev_logical_block_size(bdev);
4537	if (blocksize < hblock) {
4538		ext4_msg(sb, KERN_ERR,
4539			"blocksize too small for journal device");
4540		goto out_bdev;
4541	}
4542
4543	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
4544	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
4545	set_blocksize(bdev, blocksize);
4546	if (!(bh = __bread(bdev, sb_block, blocksize))) {
4547		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
4548		       "external journal");
4549		goto out_bdev;
4550	}
4551
4552	es = (struct ext4_super_block *) (bh->b_data + offset);
4553	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
4554	    !(le32_to_cpu(es->s_feature_incompat) &
4555	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
4556		ext4_msg(sb, KERN_ERR, "external journal has "
4557					"bad superblock");
4558		brelse(bh);
4559		goto out_bdev;
4560	}
4561
4562	if ((le32_to_cpu(es->s_feature_ro_compat) &
4563	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
4564	    es->s_checksum != ext4_superblock_csum(sb, es)) {
4565		ext4_msg(sb, KERN_ERR, "external journal has "
4566				       "corrupt superblock");
4567		brelse(bh);
4568		goto out_bdev;
4569	}
4570
4571	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
4572		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
4573		brelse(bh);
4574		goto out_bdev;
4575	}
4576
4577	len = ext4_blocks_count(es);
4578	start = sb_block + 1;
4579	brelse(bh);	/* we're done with the superblock */
4580
4581	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
4582					start, len, blocksize);
4583	if (!journal) {
4584		ext4_msg(sb, KERN_ERR, "failed to create device journal");
4585		goto out_bdev;
4586	}
4587	journal->j_private = sb;
4588	ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &journal->j_sb_buffer);
4589	wait_on_buffer(journal->j_sb_buffer);
4590	if (!buffer_uptodate(journal->j_sb_buffer)) {
4591		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
4592		goto out_journal;
4593	}
4594	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
4595		ext4_msg(sb, KERN_ERR, "External journal has more than one "
4596					"user (unsupported) - %d",
4597			be32_to_cpu(journal->j_superblock->s_nr_users));
4598		goto out_journal;
4599	}
4600	EXT4_SB(sb)->journal_bdev = bdev;
4601	ext4_init_journal_params(sb, journal);
4602	return journal;
4603
4604out_journal:
4605	jbd2_journal_destroy(journal);
4606out_bdev:
4607	ext4_blkdev_put(bdev);
4608	return NULL;
4609}
4610
4611static int ext4_load_journal(struct super_block *sb,
4612			     struct ext4_super_block *es,
4613			     unsigned long journal_devnum)
4614{
4615	journal_t *journal;
4616	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
4617	dev_t journal_dev;
4618	int err = 0;
4619	int really_read_only;
 
4620
4621	BUG_ON(!ext4_has_feature_journal(sb));
 
4622
4623	if (journal_devnum &&
4624	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4625		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
4626			"numbers have changed");
4627		journal_dev = new_decode_dev(journal_devnum);
4628	} else
4629		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
4630
4631	really_read_only = bdev_read_only(sb->s_bdev);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4632
4633	/*
4634	 * Are we loading a blank journal or performing recovery after a
4635	 * crash?  For recovery, we need to check in advance whether we
4636	 * can get read-write access to the device.
4637	 */
4638	if (ext4_has_feature_journal_needs_recovery(sb)) {
4639		if (sb_rdonly(sb)) {
4640			ext4_msg(sb, KERN_INFO, "INFO: recovery "
4641					"required on readonly filesystem");
4642			if (really_read_only) {
4643				ext4_msg(sb, KERN_ERR, "write access "
4644					"unavailable, cannot proceed "
4645					"(try mounting with noload)");
4646				return -EROFS;
 
4647			}
4648			ext4_msg(sb, KERN_INFO, "write access will "
4649			       "be enabled during recovery");
4650		}
4651	}
4652
4653	if (journal_inum && journal_dev) {
4654		ext4_msg(sb, KERN_ERR, "filesystem has both journal "
4655		       "and inode journals!");
4656		return -EINVAL;
4657	}
4658
4659	if (journal_inum) {
4660		if (!(journal = ext4_get_journal(sb, journal_inum)))
4661			return -EINVAL;
4662	} else {
4663		if (!(journal = ext4_get_dev_journal(sb, journal_dev)))
4664			return -EINVAL;
4665	}
4666
4667	if (!(journal->j_flags & JBD2_BARRIER))
4668		ext4_msg(sb, KERN_INFO, "barriers disabled");
4669
4670	if (!ext4_has_feature_journal_needs_recovery(sb))
4671		err = jbd2_journal_wipe(journal, !really_read_only);
4672	if (!err) {
4673		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
4674		if (save)
4675			memcpy(save, ((char *) es) +
4676			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
4677		err = jbd2_journal_load(journal);
4678		if (save)
4679			memcpy(((char *) es) + EXT4_S_ERR_START,
4680			       save, EXT4_S_ERR_LEN);
4681		kfree(save);
4682	}
4683
4684	if (err) {
4685		ext4_msg(sb, KERN_ERR, "error loading journal");
 
 
 
 
 
 
 
4686		jbd2_journal_destroy(journal);
4687		return err;
4688	}
4689
4690	EXT4_SB(sb)->s_journal = journal;
4691	ext4_clear_journal_err(sb, es);
4692
4693	if (!really_read_only && journal_devnum &&
4694	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
4695		es->s_journal_dev = cpu_to_le32(journal_devnum);
4696
4697		/* Make sure we flush the recovery flag to disk. */
4698		ext4_commit_super(sb, 1);
4699	}
4700
4701	return 0;
 
 
 
 
4702}
4703
4704static int ext4_commit_super(struct super_block *sb, int sync)
 
4705{
4706	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
4707	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
4708	int error = 0;
4709
4710	if (!sbh || block_device_ejected(sb))
4711		return error;
4712	/*
4713	 * If the file system is mounted read-only, don't update the
4714	 * superblock write time.  This avoids updating the superblock
4715	 * write time when we are mounting the root file system
4716	 * read/only but we need to replay the journal; at that point,
4717	 * for people who are east of GMT and who make their clock
4718	 * tick in localtime for Windows bug-for-bug compatibility,
4719	 * the clock is set in the future, and this will cause e2fsck
4720	 * to complain and force a full file system check.
4721	 */
4722	if (!(sb->s_flags & SB_RDONLY))
4723		es->s_wtime = cpu_to_le32(get_seconds());
4724	if (sb->s_bdev->bd_part)
4725		es->s_kbytes_written =
4726			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written +
4727			    ((part_stat_read(sb->s_bdev->bd_part, sectors[1]) -
4728			      EXT4_SB(sb)->s_sectors_written_start) >> 1));
4729	else
4730		es->s_kbytes_written =
4731			cpu_to_le64(EXT4_SB(sb)->s_kbytes_written);
4732	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeclusters_counter))
4733		ext4_free_blocks_count_set(es,
4734			EXT4_C2B(EXT4_SB(sb), percpu_counter_sum_positive(
4735				&EXT4_SB(sb)->s_freeclusters_counter)));
4736	if (percpu_counter_initialized(&EXT4_SB(sb)->s_freeinodes_counter))
4737		es->s_free_inodes_count =
4738			cpu_to_le32(percpu_counter_sum_positive(
4739				&EXT4_SB(sb)->s_freeinodes_counter));
4740	BUFFER_TRACE(sbh, "marking dirty");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4741	ext4_superblock_csum_set(sb);
4742	if (sync)
4743		lock_buffer(sbh);
4744	if (buffer_write_io_error(sbh)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4745		/*
4746		 * Oh, dear.  A previous attempt to write the
4747		 * superblock failed.  This could happen because the
4748		 * USB device was yanked out.  Or it could happen to
4749		 * be a transient write error and maybe the block will
4750		 * be remapped.  Nothing we can do but to retry the
4751		 * write and hope for the best.
4752		 */
4753		ext4_msg(sb, KERN_ERR, "previous I/O error to "
4754		       "superblock detected");
4755		clear_buffer_write_io_error(sbh);
4756		set_buffer_uptodate(sbh);
4757	}
4758	mark_buffer_dirty(sbh);
4759	if (sync) {
4760		unlock_buffer(sbh);
4761		error = __sync_dirty_buffer(sbh,
4762			REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
4763		if (error)
4764			return error;
4765
4766		error = buffer_write_io_error(sbh);
4767		if (error) {
4768			ext4_msg(sb, KERN_ERR, "I/O error while writing "
4769			       "superblock");
4770			clear_buffer_write_io_error(sbh);
4771			set_buffer_uptodate(sbh);
4772		}
4773	}
4774	return error;
4775}
4776
4777/*
4778 * Have we just finished recovery?  If so, and if we are mounting (or
4779 * remounting) the filesystem readonly, then we will end up with a
4780 * consistent fs on disk.  Record that fact.
4781 */
4782static void ext4_mark_recovery_complete(struct super_block *sb,
4783					struct ext4_super_block *es)
4784{
 
4785	journal_t *journal = EXT4_SB(sb)->s_journal;
4786
4787	if (!ext4_has_feature_journal(sb)) {
4788		BUG_ON(journal != NULL);
4789		return;
 
 
 
 
4790	}
4791	jbd2_journal_lock_updates(journal);
4792	if (jbd2_journal_flush(journal) < 0)
 
4793		goto out;
4794
4795	if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
 
 
 
 
 
 
4796		ext4_clear_feature_journal_needs_recovery(sb);
4797		ext4_commit_super(sb, 1);
 
4798	}
4799
4800out:
4801	jbd2_journal_unlock_updates(journal);
 
4802}
4803
4804/*
4805 * If we are mounting (or read-write remounting) a filesystem whose journal
4806 * has recorded an error from a previous lifetime, move that error to the
4807 * main filesystem now.
4808 */
4809static void ext4_clear_journal_err(struct super_block *sb,
4810				   struct ext4_super_block *es)
4811{
4812	journal_t *journal;
4813	int j_errno;
4814	const char *errstr;
4815
4816	BUG_ON(!ext4_has_feature_journal(sb));
 
 
 
4817
4818	journal = EXT4_SB(sb)->s_journal;
4819
4820	/*
4821	 * Now check for any error status which may have been recorded in the
4822	 * journal by a prior ext4_error() or ext4_abort()
4823	 */
4824
4825	j_errno = jbd2_journal_errno(journal);
4826	if (j_errno) {
4827		char nbuf[16];
4828
4829		errstr = ext4_decode_error(sb, j_errno, nbuf);
4830		ext4_warning(sb, "Filesystem error recorded "
4831			     "from previous mount: %s", errstr);
4832		ext4_warning(sb, "Marking fs in need of filesystem check.");
4833
4834		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
4835		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
4836		ext4_commit_super(sb, 1);
4837
4838		jbd2_journal_clear_err(journal);
4839		jbd2_journal_update_sb_errno(journal);
4840	}
 
4841}
4842
4843/*
4844 * Force the running and committing transactions to commit,
4845 * and wait on the commit.
4846 */
4847int ext4_force_commit(struct super_block *sb)
4848{
4849	journal_t *journal;
4850
4851	if (sb_rdonly(sb))
4852		return 0;
4853
4854	journal = EXT4_SB(sb)->s_journal;
4855	return ext4_journal_force_commit(journal);
4856}
4857
4858static int ext4_sync_fs(struct super_block *sb, int wait)
4859{
4860	int ret = 0;
4861	tid_t target;
4862	bool needs_barrier = false;
4863	struct ext4_sb_info *sbi = EXT4_SB(sb);
4864
4865	if (unlikely(ext4_forced_shutdown(sbi)))
4866		return 0;
4867
4868	trace_ext4_sync_fs(sb, wait);
4869	flush_workqueue(sbi->rsv_conversion_wq);
4870	/*
4871	 * Writeback quota in non-journalled quota case - journalled quota has
4872	 * no dirty dquots
4873	 */
4874	dquot_writeback_dquots(sb, -1);
4875	/*
4876	 * Data writeback is possible w/o journal transaction, so barrier must
4877	 * being sent at the end of the function. But we can skip it if
4878	 * transaction_commit will do it for us.
4879	 */
4880	if (sbi->s_journal) {
4881		target = jbd2_get_latest_transaction(sbi->s_journal);
4882		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
4883		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
4884			needs_barrier = true;
4885
4886		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
4887			if (wait)
4888				ret = jbd2_log_wait_commit(sbi->s_journal,
4889							   target);
4890		}
4891	} else if (wait && test_opt(sb, BARRIER))
4892		needs_barrier = true;
4893	if (needs_barrier) {
4894		int err;
4895		err = blkdev_issue_flush(sb->s_bdev, GFP_KERNEL, NULL);
4896		if (!ret)
4897			ret = err;
4898	}
4899
4900	return ret;
4901}
4902
4903/*
4904 * LVM calls this function before a (read-only) snapshot is created.  This
4905 * gives us a chance to flush the journal completely and mark the fs clean.
4906 *
4907 * Note that only this function cannot bring a filesystem to be in a clean
4908 * state independently. It relies on upper layer to stop all data & metadata
4909 * modifications.
4910 */
4911static int ext4_freeze(struct super_block *sb)
4912{
4913	int error = 0;
4914	journal_t *journal;
4915
4916	if (sb_rdonly(sb))
4917		return 0;
4918
4919	journal = EXT4_SB(sb)->s_journal;
4920
4921	if (journal) {
4922		/* Now we set up the journal barrier. */
4923		jbd2_journal_lock_updates(journal);
4924
4925		/*
4926		 * Don't clear the needs_recovery flag if we failed to
4927		 * flush the journal.
4928		 */
4929		error = jbd2_journal_flush(journal);
4930		if (error < 0)
4931			goto out;
4932
4933		/* Journal blocked and flushed, clear needs_recovery flag. */
4934		ext4_clear_feature_journal_needs_recovery(sb);
 
 
4935	}
4936
4937	error = ext4_commit_super(sb, 1);
4938out:
4939	if (journal)
4940		/* we rely on upper layer to stop further updates */
4941		jbd2_journal_unlock_updates(journal);
4942	return error;
4943}
4944
4945/*
4946 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
4947 * flag here, even though the filesystem is not technically dirty yet.
4948 */
4949static int ext4_unfreeze(struct super_block *sb)
4950{
4951	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
4952		return 0;
4953
4954	if (EXT4_SB(sb)->s_journal) {
4955		/* Reset the needs_recovery flag before the fs is unlocked. */
4956		ext4_set_feature_journal_needs_recovery(sb);
 
 
4957	}
4958
4959	ext4_commit_super(sb, 1);
4960	return 0;
4961}
4962
4963/*
4964 * Structure to save mount options for ext4_remount's benefit
4965 */
4966struct ext4_mount_options {
4967	unsigned long s_mount_opt;
4968	unsigned long s_mount_opt2;
4969	kuid_t s_resuid;
4970	kgid_t s_resgid;
4971	unsigned long s_commit_interval;
4972	u32 s_min_batch_time, s_max_batch_time;
4973#ifdef CONFIG_QUOTA
4974	int s_jquota_fmt;
4975	char *s_qf_names[EXT4_MAXQUOTAS];
4976#endif
4977};
4978
4979static int ext4_remount(struct super_block *sb, int *flags, char *data)
4980{
 
4981	struct ext4_super_block *es;
4982	struct ext4_sb_info *sbi = EXT4_SB(sb);
4983	unsigned long old_sb_flags;
4984	struct ext4_mount_options old_opts;
4985	int enable_quota = 0;
4986	ext4_group_t g;
4987	unsigned int journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4988	int err = 0;
4989#ifdef CONFIG_QUOTA
 
4990	int i, j;
 
4991#endif
4992	char *orig_data = kstrdup(data, GFP_KERNEL);
4993
4994	/* Store the original options */
4995	old_sb_flags = sb->s_flags;
4996	old_opts.s_mount_opt = sbi->s_mount_opt;
4997	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
4998	old_opts.s_resuid = sbi->s_resuid;
4999	old_opts.s_resgid = sbi->s_resgid;
5000	old_opts.s_commit_interval = sbi->s_commit_interval;
5001	old_opts.s_min_batch_time = sbi->s_min_batch_time;
5002	old_opts.s_max_batch_time = sbi->s_max_batch_time;
5003#ifdef CONFIG_QUOTA
5004	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5005	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5006		if (sbi->s_qf_names[i]) {
5007			old_opts.s_qf_names[i] = kstrdup(sbi->s_qf_names[i],
5008							 GFP_KERNEL);
 
5009			if (!old_opts.s_qf_names[i]) {
5010				for (j = 0; j < i; j++)
5011					kfree(old_opts.s_qf_names[j]);
5012				kfree(orig_data);
5013				return -ENOMEM;
5014			}
5015		} else
5016			old_opts.s_qf_names[i] = NULL;
5017#endif
5018	if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5019		journal_ioprio = sbi->s_journal->j_task->io_context->ioprio;
 
 
 
 
5020
5021	if (!parse_options(data, sb, NULL, &journal_ioprio, 1)) {
5022		err = -EINVAL;
5023		goto restore_opts;
5024	}
5025
 
 
5026	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5027	    test_opt(sb, JOURNAL_CHECKSUM)) {
5028		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5029			 "during remount not supported; ignoring");
5030		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5031	}
5032
5033	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5034		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5035			ext4_msg(sb, KERN_ERR, "can't mount with "
5036				 "both data=journal and delalloc");
5037			err = -EINVAL;
5038			goto restore_opts;
5039		}
5040		if (test_opt(sb, DIOREAD_NOLOCK)) {
5041			ext4_msg(sb, KERN_ERR, "can't mount with "
5042				 "both data=journal and dioread_nolock");
5043			err = -EINVAL;
5044			goto restore_opts;
5045		}
5046		if (test_opt(sb, DAX)) {
5047			ext4_msg(sb, KERN_ERR, "can't mount with "
5048				 "both data=journal and dax");
5049			err = -EINVAL;
5050			goto restore_opts;
5051		}
5052	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5053		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5054			ext4_msg(sb, KERN_ERR, "can't mount with "
5055				"journal_async_commit in data=ordered mode");
5056			err = -EINVAL;
5057			goto restore_opts;
5058		}
5059	}
5060
5061	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5062		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5063		err = -EINVAL;
5064		goto restore_opts;
5065	}
5066
5067	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_DAX) {
5068		ext4_msg(sb, KERN_WARNING, "warning: refusing change of "
5069			"dax flag with busy inodes while remounting");
5070		sbi->s_mount_opt ^= EXT4_MOUNT_DAX;
5071	}
5072
5073	if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED)
5074		ext4_abort(sb, "Abort forced by user");
5075
5076	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5077		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5078
5079	es = sbi->s_es;
5080
5081	if (sbi->s_journal) {
5082		ext4_init_journal_params(sb, sbi->s_journal);
5083		set_task_ioprio(sbi->s_journal->j_task, journal_ioprio);
5084	}
5085
5086	if (*flags & SB_LAZYTIME)
5087		sb->s_flags |= SB_LAZYTIME;
5088
5089	if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5090		if (sbi->s_mount_flags & EXT4_MF_FS_ABORTED) {
5091			err = -EROFS;
5092			goto restore_opts;
5093		}
5094
5095		if (*flags & SB_RDONLY) {
5096			err = sync_filesystem(sb);
5097			if (err < 0)
5098				goto restore_opts;
5099			err = dquot_suspend(sb, -1);
5100			if (err < 0)
5101				goto restore_opts;
5102
5103			/*
5104			 * First of all, the unconditional stuff we have to do
5105			 * to disable replay of the journal when we next remount
5106			 */
5107			sb->s_flags |= SB_RDONLY;
5108
5109			/*
5110			 * OK, test if we are remounting a valid rw partition
5111			 * readonly, and if so set the rdonly flag and then
5112			 * mark the partition as valid again.
5113			 */
5114			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5115			    (sbi->s_mount_state & EXT4_VALID_FS))
5116				es->s_state = cpu_to_le16(sbi->s_mount_state);
5117
5118			if (sbi->s_journal)
 
 
 
 
5119				ext4_mark_recovery_complete(sb, es);
 
5120		} else {
5121			/* Make sure we can mount this feature set readwrite */
5122			if (ext4_has_feature_readonly(sb) ||
5123			    !ext4_feature_set_ok(sb, 0)) {
5124				err = -EROFS;
5125				goto restore_opts;
5126			}
5127			/*
5128			 * Make sure the group descriptor checksums
5129			 * are sane.  If they aren't, refuse to remount r/w.
5130			 */
5131			for (g = 0; g < sbi->s_groups_count; g++) {
5132				struct ext4_group_desc *gdp =
5133					ext4_get_group_desc(sb, g, NULL);
5134
5135				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
5136					ext4_msg(sb, KERN_ERR,
5137	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
5138		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
5139					       le16_to_cpu(gdp->bg_checksum));
5140					err = -EFSBADCRC;
5141					goto restore_opts;
5142				}
5143			}
5144
5145			/*
5146			 * If we have an unprocessed orphan list hanging
5147			 * around from a previously readonly bdev mount,
5148			 * require a full umount/remount for now.
5149			 */
5150			if (es->s_last_orphan) {
5151				ext4_msg(sb, KERN_WARNING, "Couldn't "
5152				       "remount RDWR because of unprocessed "
5153				       "orphan inode list.  Please "
5154				       "umount/remount instead");
5155				err = -EINVAL;
5156				goto restore_opts;
5157			}
5158
5159			/*
5160			 * Mounting a RDONLY partition read-write, so reread
5161			 * and store the current valid flag.  (It may have
5162			 * been changed by e2fsck since we originally mounted
5163			 * the partition.)
5164			 */
5165			if (sbi->s_journal)
5166				ext4_clear_journal_err(sb, es);
5167			sbi->s_mount_state = le16_to_cpu(es->s_state);
5168			if (!ext4_setup_super(sb, es, 0))
5169				sb->s_flags &= ~SB_RDONLY;
 
 
 
 
 
 
 
 
5170			if (ext4_has_feature_mmp(sb))
5171				if (ext4_multi_mount_protect(sb,
5172						le64_to_cpu(es->s_mmp_block))) {
5173					err = -EROFS;
5174					goto restore_opts;
5175				}
 
5176			enable_quota = 1;
 
5177		}
5178	}
5179
5180	/*
5181	 * Reinitialize lazy itable initialization thread based on
5182	 * current settings
5183	 */
5184	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
5185		ext4_unregister_li_request(sb);
5186	else {
5187		ext4_group_t first_not_zeroed;
5188		first_not_zeroed = ext4_has_uninit_itable(sb);
5189		ext4_register_li_request(sb, first_not_zeroed);
5190	}
5191
5192	ext4_setup_system_zone(sb);
5193	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY))
5194		ext4_commit_super(sb, 1);
 
 
 
 
 
 
 
 
 
 
 
 
 
5195
5196#ifdef CONFIG_QUOTA
5197	/* Release old quota file names */
5198	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5199		kfree(old_opts.s_qf_names[i]);
5200	if (enable_quota) {
5201		if (sb_any_quota_suspended(sb))
5202			dquot_resume(sb, -1);
5203		else if (ext4_has_feature_quota(sb)) {
5204			err = ext4_enable_quotas(sb);
5205			if (err)
5206				goto restore_opts;
5207		}
5208	}
5209#endif
 
 
 
 
 
5210
5211	*flags = (*flags & ~SB_LAZYTIME) | (sb->s_flags & SB_LAZYTIME);
5212	ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s", orig_data);
5213	kfree(orig_data);
5214	return 0;
5215
5216restore_opts:
5217	sb->s_flags = old_sb_flags;
5218	sbi->s_mount_opt = old_opts.s_mount_opt;
5219	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
5220	sbi->s_resuid = old_opts.s_resuid;
5221	sbi->s_resgid = old_opts.s_resgid;
5222	sbi->s_commit_interval = old_opts.s_commit_interval;
5223	sbi->s_min_batch_time = old_opts.s_min_batch_time;
5224	sbi->s_max_batch_time = old_opts.s_max_batch_time;
 
 
5225#ifdef CONFIG_QUOTA
5226	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
5227	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
5228		kfree(sbi->s_qf_names[i]);
5229		sbi->s_qf_names[i] = old_opts.s_qf_names[i];
5230	}
 
 
 
5231#endif
5232	kfree(orig_data);
 
5233	return err;
5234}
5235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5236#ifdef CONFIG_QUOTA
5237static int ext4_statfs_project(struct super_block *sb,
5238			       kprojid_t projid, struct kstatfs *buf)
5239{
5240	struct kqid qid;
5241	struct dquot *dquot;
5242	u64 limit;
5243	u64 curblock;
5244
5245	qid = make_kqid_projid(projid);
5246	dquot = dqget(sb, qid);
5247	if (IS_ERR(dquot))
5248		return PTR_ERR(dquot);
5249	spin_lock(&dquot->dq_dqb_lock);
5250
5251	limit = (dquot->dq_dqb.dqb_bsoftlimit ?
5252		 dquot->dq_dqb.dqb_bsoftlimit :
5253		 dquot->dq_dqb.dqb_bhardlimit) >> sb->s_blocksize_bits;
 
5254	if (limit && buf->f_blocks > limit) {
5255		curblock = dquot->dq_dqb.dqb_curspace >> sb->s_blocksize_bits;
 
5256		buf->f_blocks = limit;
5257		buf->f_bfree = buf->f_bavail =
5258			(buf->f_blocks > curblock) ?
5259			 (buf->f_blocks - curblock) : 0;
5260	}
5261
5262	limit = dquot->dq_dqb.dqb_isoftlimit ?
5263		dquot->dq_dqb.dqb_isoftlimit :
5264		dquot->dq_dqb.dqb_ihardlimit;
5265	if (limit && buf->f_files > limit) {
5266		buf->f_files = limit;
5267		buf->f_ffree =
5268			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
5269			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
5270	}
5271
5272	spin_unlock(&dquot->dq_dqb_lock);
5273	dqput(dquot);
5274	return 0;
5275}
5276#endif
5277
5278static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
5279{
5280	struct super_block *sb = dentry->d_sb;
5281	struct ext4_sb_info *sbi = EXT4_SB(sb);
5282	struct ext4_super_block *es = sbi->s_es;
5283	ext4_fsblk_t overhead = 0, resv_blocks;
5284	u64 fsid;
5285	s64 bfree;
5286	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
5287
5288	if (!test_opt(sb, MINIX_DF))
5289		overhead = sbi->s_overhead;
5290
5291	buf->f_type = EXT4_SUPER_MAGIC;
5292	buf->f_bsize = sb->s_blocksize;
5293	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
5294	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
5295		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
5296	/* prevent underflow in case that few free space is available */
5297	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
5298	buf->f_bavail = buf->f_bfree -
5299			(ext4_r_blocks_count(es) + resv_blocks);
5300	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
5301		buf->f_bavail = 0;
5302	buf->f_files = le32_to_cpu(es->s_inodes_count);
5303	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
5304	buf->f_namelen = EXT4_NAME_LEN;
5305	fsid = le64_to_cpup((void *)es->s_uuid) ^
5306	       le64_to_cpup((void *)es->s_uuid + sizeof(u64));
5307	buf->f_fsid.val[0] = fsid & 0xFFFFFFFFUL;
5308	buf->f_fsid.val[1] = (fsid >> 32) & 0xFFFFFFFFUL;
5309
5310#ifdef CONFIG_QUOTA
5311	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
5312	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
5313		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
5314#endif
5315	return 0;
5316}
5317
5318
5319#ifdef CONFIG_QUOTA
5320
5321/*
5322 * Helper functions so that transaction is started before we acquire dqio_sem
5323 * to keep correct lock ordering of transaction > dqio_sem
5324 */
5325static inline struct inode *dquot_to_inode(struct dquot *dquot)
5326{
5327	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
5328}
5329
5330static int ext4_write_dquot(struct dquot *dquot)
5331{
5332	int ret, err;
5333	handle_t *handle;
5334	struct inode *inode;
5335
5336	inode = dquot_to_inode(dquot);
5337	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5338				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
5339	if (IS_ERR(handle))
5340		return PTR_ERR(handle);
5341	ret = dquot_commit(dquot);
5342	err = ext4_journal_stop(handle);
5343	if (!ret)
5344		ret = err;
5345	return ret;
5346}
5347
5348static int ext4_acquire_dquot(struct dquot *dquot)
5349{
5350	int ret, err;
5351	handle_t *handle;
5352
5353	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5354				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
5355	if (IS_ERR(handle))
5356		return PTR_ERR(handle);
5357	ret = dquot_acquire(dquot);
5358	err = ext4_journal_stop(handle);
5359	if (!ret)
5360		ret = err;
5361	return ret;
5362}
5363
5364static int ext4_release_dquot(struct dquot *dquot)
5365{
5366	int ret, err;
5367	handle_t *handle;
5368
5369	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
5370				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
5371	if (IS_ERR(handle)) {
5372		/* Release dquot anyway to avoid endless cycle in dqput() */
5373		dquot_release(dquot);
5374		return PTR_ERR(handle);
5375	}
5376	ret = dquot_release(dquot);
5377	err = ext4_journal_stop(handle);
5378	if (!ret)
5379		ret = err;
5380	return ret;
5381}
5382
5383static int ext4_mark_dquot_dirty(struct dquot *dquot)
5384{
5385	struct super_block *sb = dquot->dq_sb;
5386	struct ext4_sb_info *sbi = EXT4_SB(sb);
5387
5388	/* Are we journaling quotas? */
5389	if (ext4_has_feature_quota(sb) ||
5390	    sbi->s_qf_names[USRQUOTA] || sbi->s_qf_names[GRPQUOTA]) {
5391		dquot_mark_dquot_dirty(dquot);
5392		return ext4_write_dquot(dquot);
5393	} else {
5394		return dquot_mark_dquot_dirty(dquot);
5395	}
5396}
5397
5398static int ext4_write_info(struct super_block *sb, int type)
5399{
5400	int ret, err;
5401	handle_t *handle;
5402
5403	/* Data block + inode block */
5404	handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
5405	if (IS_ERR(handle))
5406		return PTR_ERR(handle);
5407	ret = dquot_commit_info(sb, type);
5408	err = ext4_journal_stop(handle);
5409	if (!ret)
5410		ret = err;
5411	return ret;
5412}
5413
5414/*
5415 * Turn on quotas during mount time - we need to find
5416 * the quota file and such...
5417 */
5418static int ext4_quota_on_mount(struct super_block *sb, int type)
5419{
5420	return dquot_quota_on_mount(sb, EXT4_SB(sb)->s_qf_names[type],
5421					EXT4_SB(sb)->s_jquota_fmt, type);
5422}
5423
5424static void lockdep_set_quota_inode(struct inode *inode, int subclass)
5425{
5426	struct ext4_inode_info *ei = EXT4_I(inode);
5427
5428	/* The first argument of lockdep_set_subclass has to be
5429	 * *exactly* the same as the argument to init_rwsem() --- in
5430	 * this case, in init_once() --- or lockdep gets unhappy
5431	 * because the name of the lock is set using the
5432	 * stringification of the argument to init_rwsem().
5433	 */
5434	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
5435	lockdep_set_subclass(&ei->i_data_sem, subclass);
5436}
5437
5438/*
5439 * Standard function to be called on quota_on
5440 */
5441static int ext4_quota_on(struct super_block *sb, int type, int format_id,
5442			 const struct path *path)
5443{
5444	int err;
5445
5446	if (!test_opt(sb, QUOTA))
5447		return -EINVAL;
5448
5449	/* Quotafile not on the same filesystem? */
5450	if (path->dentry->d_sb != sb)
5451		return -EXDEV;
 
 
 
 
 
5452	/* Journaling quota? */
5453	if (EXT4_SB(sb)->s_qf_names[type]) {
5454		/* Quotafile not in fs root? */
5455		if (path->dentry->d_parent != sb->s_root)
5456			ext4_msg(sb, KERN_WARNING,
5457				"Quota file not on filesystem root. "
5458				"Journaled quota will not work");
5459		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
5460	} else {
5461		/*
5462		 * Clear the flag just in case mount options changed since
5463		 * last time.
5464		 */
5465		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
5466	}
5467
5468	/*
5469	 * When we journal data on quota file, we have to flush journal to see
5470	 * all updates to the file when we bypass pagecache...
5471	 */
5472	if (EXT4_SB(sb)->s_journal &&
5473	    ext4_should_journal_data(d_inode(path->dentry))) {
5474		/*
5475		 * We don't need to lock updates but journal_flush() could
5476		 * otherwise be livelocked...
5477		 */
5478		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
5479		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal);
5480		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
5481		if (err)
5482			return err;
5483	}
5484
5485	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
5486	err = dquot_quota_on(sb, type, format_id, path);
5487	if (err) {
5488		lockdep_set_quota_inode(path->dentry->d_inode,
5489					     I_DATA_SEM_NORMAL);
5490	} else {
5491		struct inode *inode = d_inode(path->dentry);
5492		handle_t *handle;
5493
5494		/*
5495		 * Set inode flags to prevent userspace from messing with quota
5496		 * files. If this fails, we return success anyway since quotas
5497		 * are already enabled and this is not a hard failure.
5498		 */
5499		inode_lock(inode);
5500		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5501		if (IS_ERR(handle))
5502			goto unlock_inode;
5503		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
5504		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
5505				S_NOATIME | S_IMMUTABLE);
5506		ext4_mark_inode_dirty(handle, inode);
5507		ext4_journal_stop(handle);
5508	unlock_inode:
5509		inode_unlock(inode);
 
 
5510	}
 
 
 
5511	return err;
5512}
5513
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5514static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
5515			     unsigned int flags)
5516{
5517	int err;
5518	struct inode *qf_inode;
5519	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5520		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5521		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5522		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5523	};
5524
5525	BUG_ON(!ext4_has_feature_quota(sb));
5526
5527	if (!qf_inums[type])
5528		return -EPERM;
5529
5530	qf_inode = ext4_iget(sb, qf_inums[type]);
 
 
 
 
 
 
5531	if (IS_ERR(qf_inode)) {
5532		ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
 
5533		return PTR_ERR(qf_inode);
5534	}
5535
5536	/* Don't account quota for quota files to avoid recursion */
5537	qf_inode->i_flags |= S_NOQUOTA;
5538	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
5539	err = dquot_enable(qf_inode, type, format_id, flags);
5540	iput(qf_inode);
5541	if (err)
5542		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
 
5543
5544	return err;
5545}
5546
5547/* Enable usage tracking for all quota types. */
5548static int ext4_enable_quotas(struct super_block *sb)
5549{
5550	int type, err = 0;
5551	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
5552		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
5553		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
5554		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
5555	};
5556	bool quota_mopt[EXT4_MAXQUOTAS] = {
5557		test_opt(sb, USRQUOTA),
5558		test_opt(sb, GRPQUOTA),
5559		test_opt(sb, PRJQUOTA),
5560	};
5561
5562	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
5563	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
5564		if (qf_inums[type]) {
5565			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
5566				DQUOT_USAGE_ENABLED |
5567				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
5568			if (err) {
5569				for (type--; type >= 0; type--)
 
 
 
 
 
 
 
 
 
 
5570					dquot_quota_off(sb, type);
 
 
 
 
 
 
5571
5572				ext4_warning(sb,
5573					"Failed to enable quota tracking "
5574					"(type=%d, err=%d). Please run "
5575					"e2fsck to fix.", type, err);
5576				return err;
5577			}
5578		}
5579	}
5580	return 0;
5581}
5582
5583static int ext4_quota_off(struct super_block *sb, int type)
5584{
5585	struct inode *inode = sb_dqopt(sb)->files[type];
5586	handle_t *handle;
5587	int err;
5588
5589	/* Force all delayed allocation blocks to be allocated.
5590	 * Caller already holds s_umount sem */
5591	if (test_opt(sb, DELALLOC))
5592		sync_filesystem(sb);
5593
5594	if (!inode || !igrab(inode))
5595		goto out;
5596
5597	err = dquot_quota_off(sb, type);
5598	if (err || ext4_has_feature_quota(sb))
5599		goto out_put;
5600
5601	inode_lock(inode);
5602	/*
5603	 * Update modification times of quota files when userspace can
5604	 * start looking at them. If we fail, we return success anyway since
5605	 * this is not a hard failure and quotas are already disabled.
5606	 */
5607	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
5608	if (IS_ERR(handle))
 
5609		goto out_unlock;
 
5610	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
5611	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
5612	inode->i_mtime = inode->i_ctime = current_time(inode);
5613	ext4_mark_inode_dirty(handle, inode);
5614	ext4_journal_stop(handle);
5615out_unlock:
5616	inode_unlock(inode);
5617out_put:
5618	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
5619	iput(inode);
5620	return err;
5621out:
5622	return dquot_quota_off(sb, type);
5623}
5624
5625/* Read data from quotafile - avoid pagecache and such because we cannot afford
5626 * acquiring the locks... As quota files are never truncated and quota code
5627 * itself serializes the operations (and no one else should touch the files)
5628 * we don't have to be afraid of races */
5629static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
5630			       size_t len, loff_t off)
5631{
5632	struct inode *inode = sb_dqopt(sb)->files[type];
5633	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5634	int offset = off & (sb->s_blocksize - 1);
5635	int tocopy;
5636	size_t toread;
5637	struct buffer_head *bh;
5638	loff_t i_size = i_size_read(inode);
5639
5640	if (off > i_size)
5641		return 0;
5642	if (off+len > i_size)
5643		len = i_size-off;
5644	toread = len;
5645	while (toread > 0) {
5646		tocopy = sb->s_blocksize - offset < toread ?
5647				sb->s_blocksize - offset : toread;
5648		bh = ext4_bread(NULL, inode, blk, 0);
5649		if (IS_ERR(bh))
5650			return PTR_ERR(bh);
5651		if (!bh)	/* A hole? */
5652			memset(data, 0, tocopy);
5653		else
5654			memcpy(data, bh->b_data+offset, tocopy);
5655		brelse(bh);
5656		offset = 0;
5657		toread -= tocopy;
5658		data += tocopy;
5659		blk++;
5660	}
5661	return len;
5662}
5663
5664/* Write to quotafile (we know the transaction is already started and has
5665 * enough credits) */
5666static ssize_t ext4_quota_write(struct super_block *sb, int type,
5667				const char *data, size_t len, loff_t off)
5668{
5669	struct inode *inode = sb_dqopt(sb)->files[type];
5670	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
5671	int err, offset = off & (sb->s_blocksize - 1);
5672	int retries = 0;
5673	struct buffer_head *bh;
5674	handle_t *handle = journal_current_handle();
5675
5676	if (EXT4_SB(sb)->s_journal && !handle) {
5677		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5678			" cancelled because transaction is not started",
5679			(unsigned long long)off, (unsigned long long)len);
5680		return -EIO;
5681	}
5682	/*
5683	 * Since we account only one data block in transaction credits,
5684	 * then it is impossible to cross a block boundary.
5685	 */
5686	if (sb->s_blocksize - offset < len) {
5687		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
5688			" cancelled because not block aligned",
5689			(unsigned long long)off, (unsigned long long)len);
5690		return -EIO;
5691	}
5692
5693	do {
5694		bh = ext4_bread(handle, inode, blk,
5695				EXT4_GET_BLOCKS_CREATE |
5696				EXT4_GET_BLOCKS_METADATA_NOFAIL);
5697	} while (IS_ERR(bh) && (PTR_ERR(bh) == -ENOSPC) &&
5698		 ext4_should_retry_alloc(inode->i_sb, &retries));
5699	if (IS_ERR(bh))
5700		return PTR_ERR(bh);
5701	if (!bh)
5702		goto out;
5703	BUFFER_TRACE(bh, "get write access");
5704	err = ext4_journal_get_write_access(handle, bh);
5705	if (err) {
5706		brelse(bh);
5707		return err;
5708	}
5709	lock_buffer(bh);
5710	memcpy(bh->b_data+offset, data, len);
5711	flush_dcache_page(bh->b_page);
5712	unlock_buffer(bh);
5713	err = ext4_handle_dirty_metadata(handle, NULL, bh);
5714	brelse(bh);
5715out:
5716	if (inode->i_size < off + len) {
5717		i_size_write(inode, off + len);
5718		EXT4_I(inode)->i_disksize = inode->i_size;
5719		ext4_mark_inode_dirty(handle, inode);
 
 
5720	}
5721	return len;
5722}
5723
5724static int ext4_get_next_id(struct super_block *sb, struct kqid *qid)
5725{
5726	const struct quota_format_ops	*ops;
5727
5728	if (!sb_has_quota_loaded(sb, qid->type))
5729		return -ESRCH;
5730	ops = sb_dqopt(sb)->ops[qid->type];
5731	if (!ops || !ops->get_next_id)
5732		return -ENOSYS;
5733	return dquot_get_next_id(sb, qid);
5734}
5735#endif
5736
5737static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
5738		       const char *dev_name, void *data)
5739{
5740	return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
5741}
5742
5743#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
5744static inline void register_as_ext2(void)
5745{
5746	int err = register_filesystem(&ext2_fs_type);
5747	if (err)
5748		printk(KERN_WARNING
5749		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
5750}
5751
5752static inline void unregister_as_ext2(void)
5753{
5754	unregister_filesystem(&ext2_fs_type);
5755}
5756
5757static inline int ext2_feature_set_ok(struct super_block *sb)
5758{
5759	if (ext4_has_unknown_ext2_incompat_features(sb))
5760		return 0;
5761	if (sb_rdonly(sb))
5762		return 1;
5763	if (ext4_has_unknown_ext2_ro_compat_features(sb))
5764		return 0;
5765	return 1;
5766}
5767#else
5768static inline void register_as_ext2(void) { }
5769static inline void unregister_as_ext2(void) { }
5770static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
5771#endif
5772
5773static inline void register_as_ext3(void)
5774{
5775	int err = register_filesystem(&ext3_fs_type);
5776	if (err)
5777		printk(KERN_WARNING
5778		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
5779}
5780
5781static inline void unregister_as_ext3(void)
5782{
5783	unregister_filesystem(&ext3_fs_type);
5784}
5785
5786static inline int ext3_feature_set_ok(struct super_block *sb)
5787{
5788	if (ext4_has_unknown_ext3_incompat_features(sb))
5789		return 0;
5790	if (!ext4_has_feature_journal(sb))
5791		return 0;
5792	if (sb_rdonly(sb))
5793		return 1;
5794	if (ext4_has_unknown_ext3_ro_compat_features(sb))
5795		return 0;
5796	return 1;
5797}
5798
5799static struct file_system_type ext4_fs_type = {
5800	.owner		= THIS_MODULE,
5801	.name		= "ext4",
5802	.mount		= ext4_mount,
5803	.kill_sb	= kill_block_super,
5804	.fs_flags	= FS_REQUIRES_DEV,
 
5805};
5806MODULE_ALIAS_FS("ext4");
5807
5808/* Shared across all ext4 file systems */
5809wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
5810
5811static int __init ext4_init_fs(void)
5812{
5813	int i, err;
5814
5815	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
5816	ext4_li_info = NULL;
5817	mutex_init(&ext4_li_mtx);
5818
5819	/* Build-time check for flags consistency */
5820	ext4_check_flag_values();
5821
5822	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
5823		init_waitqueue_head(&ext4__ioend_wq[i]);
5824
5825	err = ext4_init_es();
5826	if (err)
5827		return err;
5828
 
 
 
 
 
 
 
 
5829	err = ext4_init_pageio();
5830	if (err)
5831		goto out5;
5832
5833	err = ext4_init_system_zone();
5834	if (err)
5835		goto out4;
5836
5837	err = ext4_init_sysfs();
5838	if (err)
5839		goto out3;
5840
5841	err = ext4_init_mballoc();
5842	if (err)
5843		goto out2;
5844	err = init_inodecache();
5845	if (err)
5846		goto out1;
 
 
 
 
 
5847	register_as_ext3();
5848	register_as_ext2();
5849	err = register_filesystem(&ext4_fs_type);
5850	if (err)
5851		goto out;
5852
5853	return 0;
5854out:
5855	unregister_as_ext2();
5856	unregister_as_ext3();
 
 
5857	destroy_inodecache();
5858out1:
5859	ext4_exit_mballoc();
5860out2:
5861	ext4_exit_sysfs();
5862out3:
5863	ext4_exit_system_zone();
5864out4:
5865	ext4_exit_pageio();
5866out5:
 
 
 
 
5867	ext4_exit_es();
5868
5869	return err;
5870}
5871
5872static void __exit ext4_exit_fs(void)
5873{
5874	ext4_destroy_lazyinit_thread();
5875	unregister_as_ext2();
5876	unregister_as_ext3();
5877	unregister_filesystem(&ext4_fs_type);
 
5878	destroy_inodecache();
5879	ext4_exit_mballoc();
5880	ext4_exit_sysfs();
5881	ext4_exit_system_zone();
5882	ext4_exit_pageio();
 
5883	ext4_exit_es();
 
5884}
5885
5886MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
5887MODULE_DESCRIPTION("Fourth Extended Filesystem");
5888MODULE_LICENSE("GPL");
5889MODULE_SOFTDEP("pre: crc32c");
5890module_init(ext4_init_fs)
5891module_exit(ext4_exit_fs)