Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/super.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Big-endian to little-endian byte-swapping/bitmaps by
  17 *        David S. Miller (davem@caip.rutgers.edu), 1995
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/string.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/parser.h>
  30#include <linux/buffer_head.h>
  31#include <linux/exportfs.h>
  32#include <linux/vfs.h>
  33#include <linux/random.h>
  34#include <linux/mount.h>
  35#include <linux/namei.h>
  36#include <linux/quotaops.h>
  37#include <linux/seq_file.h>
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/dax.h>
  42#include <linux/uaccess.h>
  43#include <linux/iversion.h>
  44#include <linux/unicode.h>
  45#include <linux/part_stat.h>
  46#include <linux/kthread.h>
  47#include <linux/freezer.h>
  48#include <linux/fsnotify.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51
  52#include "ext4.h"
  53#include "ext4_extents.h"	/* Needed for trace points definition */
  54#include "ext4_jbd2.h"
  55#include "xattr.h"
  56#include "acl.h"
  57#include "mballoc.h"
  58#include "fsmap.h"
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/ext4.h>
  62
  63static struct ext4_lazy_init *ext4_li_info;
  64static DEFINE_MUTEX(ext4_li_mtx);
  65static struct ratelimit_state ext4_mount_msg_ratelimit;
  66
  67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  68			     unsigned long journal_devnum);
  69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  70static void ext4_update_super(struct super_block *sb);
  71static int ext4_commit_super(struct super_block *sb);
  72static int ext4_mark_recovery_complete(struct super_block *sb,
  73					struct ext4_super_block *es);
  74static int ext4_clear_journal_err(struct super_block *sb,
  75				  struct ext4_super_block *es);
  76static int ext4_sync_fs(struct super_block *sb, int wait);
  77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  78static int ext4_unfreeze(struct super_block *sb);
  79static int ext4_freeze(struct super_block *sb);
  80static inline int ext2_feature_set_ok(struct super_block *sb);
  81static inline int ext3_feature_set_ok(struct super_block *sb);
  82static void ext4_destroy_lazyinit_thread(void);
  83static void ext4_unregister_li_request(struct super_block *sb);
  84static void ext4_clear_request_list(void);
  85static struct inode *ext4_get_journal_inode(struct super_block *sb,
  86					    unsigned int journal_inum);
  87static int ext4_validate_options(struct fs_context *fc);
  88static int ext4_check_opt_consistency(struct fs_context *fc,
  89				      struct super_block *sb);
  90static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
  91static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
  92static int ext4_get_tree(struct fs_context *fc);
  93static int ext4_reconfigure(struct fs_context *fc);
  94static void ext4_fc_free(struct fs_context *fc);
  95static int ext4_init_fs_context(struct fs_context *fc);
 
  96static const struct fs_parameter_spec ext4_param_specs[];
  97
  98/*
  99 * Lock ordering
 100 *
 101 * page fault path:
 102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
 103 *   -> page lock -> i_data_sem (rw)
 104 *
 105 * buffered write path:
 106 * sb_start_write -> i_mutex -> mmap_lock
 107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
 108 *   i_data_sem (rw)
 109 *
 110 * truncate:
 111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
 112 *   page lock
 113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
 114 *   i_data_sem (rw)
 115 *
 116 * direct IO:
 117 * sb_start_write -> i_mutex -> mmap_lock
 118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
 119 *
 120 * writepages:
 121 * transaction start -> page lock(s) -> i_data_sem (rw)
 122 */
 123
 124static const struct fs_context_operations ext4_context_ops = {
 125	.parse_param	= ext4_parse_param,
 126	.get_tree	= ext4_get_tree,
 127	.reconfigure	= ext4_reconfigure,
 128	.free		= ext4_fc_free,
 129};
 130
 131
 132#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 133static struct file_system_type ext2_fs_type = {
 134	.owner			= THIS_MODULE,
 135	.name			= "ext2",
 136	.init_fs_context	= ext4_init_fs_context,
 137	.parameters		= ext4_param_specs,
 138	.kill_sb		= kill_block_super,
 139	.fs_flags		= FS_REQUIRES_DEV,
 140};
 141MODULE_ALIAS_FS("ext2");
 142MODULE_ALIAS("ext2");
 143#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
 144#else
 145#define IS_EXT2_SB(sb) (0)
 146#endif
 147
 148
 149static struct file_system_type ext3_fs_type = {
 150	.owner			= THIS_MODULE,
 151	.name			= "ext3",
 152	.init_fs_context	= ext4_init_fs_context,
 153	.parameters		= ext4_param_specs,
 154	.kill_sb		= kill_block_super,
 155	.fs_flags		= FS_REQUIRES_DEV,
 156};
 157MODULE_ALIAS_FS("ext3");
 158MODULE_ALIAS("ext3");
 159#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
 160
 161
 162static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
 163				  bh_end_io_t *end_io)
 164{
 165	/*
 166	 * buffer's verified bit is no longer valid after reading from
 167	 * disk again due to write out error, clear it to make sure we
 168	 * recheck the buffer contents.
 169	 */
 170	clear_buffer_verified(bh);
 171
 172	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
 173	get_bh(bh);
 174	submit_bh(REQ_OP_READ | op_flags, bh);
 175}
 176
 177void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
 178			 bh_end_io_t *end_io)
 179{
 180	BUG_ON(!buffer_locked(bh));
 181
 182	if (ext4_buffer_uptodate(bh)) {
 183		unlock_buffer(bh);
 184		return;
 185	}
 186	__ext4_read_bh(bh, op_flags, end_io);
 187}
 188
 189int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
 190{
 191	BUG_ON(!buffer_locked(bh));
 192
 193	if (ext4_buffer_uptodate(bh)) {
 194		unlock_buffer(bh);
 195		return 0;
 196	}
 197
 198	__ext4_read_bh(bh, op_flags, end_io);
 199
 200	wait_on_buffer(bh);
 201	if (buffer_uptodate(bh))
 202		return 0;
 203	return -EIO;
 204}
 205
 206int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
 207{
 208	lock_buffer(bh);
 209	if (!wait) {
 210		ext4_read_bh_nowait(bh, op_flags, NULL);
 211		return 0;
 212	}
 213	return ext4_read_bh(bh, op_flags, NULL);
 214}
 215
 216/*
 217 * This works like __bread_gfp() except it uses ERR_PTR for error
 218 * returns.  Currently with sb_bread it's impossible to distinguish
 219 * between ENOMEM and EIO situations (since both result in a NULL
 220 * return.
 221 */
 222static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
 223					       sector_t block,
 224					       blk_opf_t op_flags, gfp_t gfp)
 225{
 226	struct buffer_head *bh;
 227	int ret;
 228
 229	bh = sb_getblk_gfp(sb, block, gfp);
 230	if (bh == NULL)
 231		return ERR_PTR(-ENOMEM);
 232	if (ext4_buffer_uptodate(bh))
 233		return bh;
 234
 235	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
 236	if (ret) {
 237		put_bh(bh);
 238		return ERR_PTR(ret);
 239	}
 240	return bh;
 241}
 242
 243struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
 244				   blk_opf_t op_flags)
 245{
 246	return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
 
 
 
 247}
 248
 249struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
 250					    sector_t block)
 251{
 252	return __ext4_sb_bread_gfp(sb, block, 0, 0);
 
 
 
 253}
 254
 255void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
 256{
 257	struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
 
 258
 259	if (likely(bh)) {
 260		if (trylock_buffer(bh))
 261			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
 262		brelse(bh);
 263	}
 264}
 265
 266static int ext4_verify_csum_type(struct super_block *sb,
 267				 struct ext4_super_block *es)
 268{
 269	if (!ext4_has_feature_metadata_csum(sb))
 270		return 1;
 271
 272	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 273}
 274
 275__le32 ext4_superblock_csum(struct super_block *sb,
 276			    struct ext4_super_block *es)
 277{
 278	struct ext4_sb_info *sbi = EXT4_SB(sb);
 279	int offset = offsetof(struct ext4_super_block, s_checksum);
 280	__u32 csum;
 281
 282	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 283
 284	return cpu_to_le32(csum);
 285}
 286
 287static int ext4_superblock_csum_verify(struct super_block *sb,
 288				       struct ext4_super_block *es)
 289{
 290	if (!ext4_has_metadata_csum(sb))
 291		return 1;
 292
 293	return es->s_checksum == ext4_superblock_csum(sb, es);
 294}
 295
 296void ext4_superblock_csum_set(struct super_block *sb)
 297{
 298	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 299
 300	if (!ext4_has_metadata_csum(sb))
 301		return;
 302
 303	es->s_checksum = ext4_superblock_csum(sb, es);
 304}
 305
 306ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 307			       struct ext4_group_desc *bg)
 308{
 309	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 310		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 311		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 312}
 313
 314ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 315			       struct ext4_group_desc *bg)
 316{
 317	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 318		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 319		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 320}
 321
 322ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 323			      struct ext4_group_desc *bg)
 324{
 325	return le32_to_cpu(bg->bg_inode_table_lo) |
 326		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 327		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 328}
 329
 330__u32 ext4_free_group_clusters(struct super_block *sb,
 331			       struct ext4_group_desc *bg)
 332{
 333	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 334		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 335		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 336}
 337
 338__u32 ext4_free_inodes_count(struct super_block *sb,
 339			      struct ext4_group_desc *bg)
 340{
 341	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 342		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 343		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 344}
 345
 346__u32 ext4_used_dirs_count(struct super_block *sb,
 347			      struct ext4_group_desc *bg)
 348{
 349	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 350		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 351		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 352}
 353
 354__u32 ext4_itable_unused_count(struct super_block *sb,
 355			      struct ext4_group_desc *bg)
 356{
 357	return le16_to_cpu(bg->bg_itable_unused_lo) |
 358		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 359		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 360}
 361
 362void ext4_block_bitmap_set(struct super_block *sb,
 363			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 364{
 365	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 366	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 367		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 368}
 369
 370void ext4_inode_bitmap_set(struct super_block *sb,
 371			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 372{
 373	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 374	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 375		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 376}
 377
 378void ext4_inode_table_set(struct super_block *sb,
 379			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 380{
 381	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 382	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 383		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 384}
 385
 386void ext4_free_group_clusters_set(struct super_block *sb,
 387				  struct ext4_group_desc *bg, __u32 count)
 388{
 389	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 390	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 391		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 392}
 393
 394void ext4_free_inodes_set(struct super_block *sb,
 395			  struct ext4_group_desc *bg, __u32 count)
 396{
 397	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 398	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 399		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 400}
 401
 402void ext4_used_dirs_set(struct super_block *sb,
 403			  struct ext4_group_desc *bg, __u32 count)
 404{
 405	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 406	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 407		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 408}
 409
 410void ext4_itable_unused_set(struct super_block *sb,
 411			  struct ext4_group_desc *bg, __u32 count)
 412{
 413	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 414	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 415		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 416}
 417
 418static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
 419{
 420	now = clamp_val(now, 0, (1ull << 40) - 1);
 421
 422	*lo = cpu_to_le32(lower_32_bits(now));
 423	*hi = upper_32_bits(now);
 424}
 425
 426static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
 427{
 428	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
 429}
 430#define ext4_update_tstamp(es, tstamp) \
 431	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
 432			     ktime_get_real_seconds())
 433#define ext4_get_tstamp(es, tstamp) \
 434	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
 435
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 436/*
 437 * The del_gendisk() function uninitializes the disk-specific data
 438 * structures, including the bdi structure, without telling anyone
 439 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 441 * This is a kludge to prevent these oops until we can put in a proper
 442 * hook in del_gendisk() to inform the VFS and file system layers.
 443 */
 444static int block_device_ejected(struct super_block *sb)
 445{
 446	struct inode *bd_inode = sb->s_bdev->bd_inode;
 447	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 448
 449	return bdi->dev == NULL;
 450}
 451
 452static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 453{
 454	struct super_block		*sb = journal->j_private;
 455	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 456	int				error = is_journal_aborted(journal);
 457	struct ext4_journal_cb_entry	*jce;
 458
 459	BUG_ON(txn->t_state == T_FINISHED);
 460
 461	ext4_process_freed_data(sb, txn->t_tid);
 
 462
 463	spin_lock(&sbi->s_md_lock);
 464	while (!list_empty(&txn->t_private_list)) {
 465		jce = list_entry(txn->t_private_list.next,
 466				 struct ext4_journal_cb_entry, jce_list);
 467		list_del_init(&jce->jce_list);
 468		spin_unlock(&sbi->s_md_lock);
 469		jce->jce_func(sb, jce, error);
 470		spin_lock(&sbi->s_md_lock);
 471	}
 472	spin_unlock(&sbi->s_md_lock);
 473}
 474
 475/*
 476 * This writepage callback for write_cache_pages()
 477 * takes care of a few cases after page cleaning.
 478 *
 479 * write_cache_pages() already checks for dirty pages
 480 * and calls clear_page_dirty_for_io(), which we want,
 481 * to write protect the pages.
 482 *
 483 * However, we may have to redirty a page (see below.)
 484 */
 485static int ext4_journalled_writepage_callback(struct page *page,
 486					      struct writeback_control *wbc,
 487					      void *data)
 488{
 489	transaction_t *transaction = (transaction_t *) data;
 490	struct buffer_head *bh, *head;
 491	struct journal_head *jh;
 492
 493	bh = head = page_buffers(page);
 494	do {
 495		/*
 496		 * We have to redirty a page in these cases:
 497		 * 1) If buffer is dirty, it means the page was dirty because it
 498		 * contains a buffer that needs checkpointing. So the dirty bit
 499		 * needs to be preserved so that checkpointing writes the buffer
 500		 * properly.
 501		 * 2) If buffer is not part of the committing transaction
 502		 * (we may have just accidentally come across this buffer because
 503		 * inode range tracking is not exact) or if the currently running
 504		 * transaction already contains this buffer as well, dirty bit
 505		 * needs to be preserved so that the buffer gets writeprotected
 506		 * properly on running transaction's commit.
 507		 */
 508		jh = bh2jh(bh);
 509		if (buffer_dirty(bh) ||
 510		    (jh && (jh->b_transaction != transaction ||
 511			    jh->b_next_transaction))) {
 512			redirty_page_for_writepage(wbc, page);
 513			goto out;
 514		}
 515	} while ((bh = bh->b_this_page) != head);
 516
 517out:
 518	return AOP_WRITEPAGE_ACTIVATE;
 519}
 520
 521static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
 522{
 523	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
 524	struct writeback_control wbc = {
 525		.sync_mode =  WB_SYNC_ALL,
 526		.nr_to_write = LONG_MAX,
 527		.range_start = jinode->i_dirty_start,
 528		.range_end = jinode->i_dirty_end,
 529        };
 530
 531	return write_cache_pages(mapping, &wbc,
 532				 ext4_journalled_writepage_callback,
 533				 jinode->i_transaction);
 534}
 535
 536static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
 537{
 538	int ret;
 539
 540	if (ext4_should_journal_data(jinode->i_vfs_inode))
 541		ret = ext4_journalled_submit_inode_data_buffers(jinode);
 542	else
 543		ret = ext4_normal_submit_inode_data_buffers(jinode);
 544	return ret;
 545}
 546
 547static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
 548{
 549	int ret = 0;
 550
 551	if (!ext4_should_journal_data(jinode->i_vfs_inode))
 552		ret = jbd2_journal_finish_inode_data_buffers(jinode);
 553
 554	return ret;
 555}
 556
 557static bool system_going_down(void)
 558{
 559	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 560		|| system_state == SYSTEM_RESTART;
 561}
 562
 563struct ext4_err_translation {
 564	int code;
 565	int errno;
 566};
 567
 568#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
 569
 570static struct ext4_err_translation err_translation[] = {
 571	EXT4_ERR_TRANSLATE(EIO),
 572	EXT4_ERR_TRANSLATE(ENOMEM),
 573	EXT4_ERR_TRANSLATE(EFSBADCRC),
 574	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
 575	EXT4_ERR_TRANSLATE(ENOSPC),
 576	EXT4_ERR_TRANSLATE(ENOKEY),
 577	EXT4_ERR_TRANSLATE(EROFS),
 578	EXT4_ERR_TRANSLATE(EFBIG),
 579	EXT4_ERR_TRANSLATE(EEXIST),
 580	EXT4_ERR_TRANSLATE(ERANGE),
 581	EXT4_ERR_TRANSLATE(EOVERFLOW),
 582	EXT4_ERR_TRANSLATE(EBUSY),
 583	EXT4_ERR_TRANSLATE(ENOTDIR),
 584	EXT4_ERR_TRANSLATE(ENOTEMPTY),
 585	EXT4_ERR_TRANSLATE(ESHUTDOWN),
 586	EXT4_ERR_TRANSLATE(EFAULT),
 587};
 588
 589static int ext4_errno_to_code(int errno)
 590{
 591	int i;
 592
 593	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
 594		if (err_translation[i].errno == errno)
 595			return err_translation[i].code;
 596	return EXT4_ERR_UNKNOWN;
 597}
 598
 599static void save_error_info(struct super_block *sb, int error,
 600			    __u32 ino, __u64 block,
 601			    const char *func, unsigned int line)
 602{
 603	struct ext4_sb_info *sbi = EXT4_SB(sb);
 604
 605	/* We default to EFSCORRUPTED error... */
 606	if (error == 0)
 607		error = EFSCORRUPTED;
 608
 609	spin_lock(&sbi->s_error_lock);
 610	sbi->s_add_error_count++;
 611	sbi->s_last_error_code = error;
 612	sbi->s_last_error_line = line;
 613	sbi->s_last_error_ino = ino;
 614	sbi->s_last_error_block = block;
 615	sbi->s_last_error_func = func;
 616	sbi->s_last_error_time = ktime_get_real_seconds();
 617	if (!sbi->s_first_error_time) {
 618		sbi->s_first_error_code = error;
 619		sbi->s_first_error_line = line;
 620		sbi->s_first_error_ino = ino;
 621		sbi->s_first_error_block = block;
 622		sbi->s_first_error_func = func;
 623		sbi->s_first_error_time = sbi->s_last_error_time;
 624	}
 625	spin_unlock(&sbi->s_error_lock);
 626}
 627
 628/* Deal with the reporting of failure conditions on a filesystem such as
 629 * inconsistencies detected or read IO failures.
 630 *
 631 * On ext2, we can store the error state of the filesystem in the
 632 * superblock.  That is not possible on ext4, because we may have other
 633 * write ordering constraints on the superblock which prevent us from
 634 * writing it out straight away; and given that the journal is about to
 635 * be aborted, we can't rely on the current, or future, transactions to
 636 * write out the superblock safely.
 637 *
 638 * We'll just use the jbd2_journal_abort() error code to record an error in
 639 * the journal instead.  On recovery, the journal will complain about
 640 * that error until we've noted it down and cleared it.
 641 *
 642 * If force_ro is set, we unconditionally force the filesystem into an
 643 * ABORT|READONLY state, unless the error response on the fs has been set to
 644 * panic in which case we take the easy way out and panic immediately. This is
 645 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
 646 * at a critical moment in log management.
 647 */
 648static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
 649			      __u32 ino, __u64 block,
 650			      const char *func, unsigned int line)
 651{
 652	journal_t *journal = EXT4_SB(sb)->s_journal;
 653	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
 654
 655	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 656	if (test_opt(sb, WARN_ON_ERROR))
 657		WARN_ON_ONCE(1);
 658
 659	if (!continue_fs && !sb_rdonly(sb)) {
 660		ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
 661		if (journal)
 662			jbd2_journal_abort(journal, -EIO);
 663	}
 664
 665	if (!bdev_read_only(sb->s_bdev)) {
 666		save_error_info(sb, error, ino, block, func, line);
 667		/*
 668		 * In case the fs should keep running, we need to writeout
 669		 * superblock through the journal. Due to lock ordering
 670		 * constraints, it may not be safe to do it right here so we
 671		 * defer superblock flushing to a workqueue.
 672		 */
 673		if (continue_fs && journal)
 674			schedule_work(&EXT4_SB(sb)->s_error_work);
 675		else
 676			ext4_commit_super(sb);
 677	}
 678
 679	/*
 680	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
 681	 * could panic during 'reboot -f' as the underlying device got already
 682	 * disabled.
 683	 */
 684	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
 685		panic("EXT4-fs (device %s): panic forced after error\n",
 686			sb->s_id);
 687	}
 688
 689	if (sb_rdonly(sb) || continue_fs)
 690		return;
 691
 692	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 693	/*
 694	 * Make sure updated value of ->s_mount_flags will be visible before
 695	 * ->s_flags update
 696	 */
 697	smp_wmb();
 698	sb->s_flags |= SB_RDONLY;
 699}
 700
 701static void flush_stashed_error_work(struct work_struct *work)
 702{
 703	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
 704						s_error_work);
 705	journal_t *journal = sbi->s_journal;
 706	handle_t *handle;
 707
 708	/*
 709	 * If the journal is still running, we have to write out superblock
 710	 * through the journal to avoid collisions of other journalled sb
 711	 * updates.
 712	 *
 713	 * We use directly jbd2 functions here to avoid recursing back into
 714	 * ext4 error handling code during handling of previous errors.
 715	 */
 716	if (!sb_rdonly(sbi->s_sb) && journal) {
 717		struct buffer_head *sbh = sbi->s_sbh;
 
 
 718		handle = jbd2_journal_start(journal, 1);
 719		if (IS_ERR(handle))
 720			goto write_directly;
 721		if (jbd2_journal_get_write_access(handle, sbh)) {
 722			jbd2_journal_stop(handle);
 723			goto write_directly;
 724		}
 
 
 
 
 725		ext4_update_super(sbi->s_sb);
 726		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
 727			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
 728				 "superblock detected");
 729			clear_buffer_write_io_error(sbh);
 730			set_buffer_uptodate(sbh);
 731		}
 732
 733		if (jbd2_journal_dirty_metadata(handle, sbh)) {
 734			jbd2_journal_stop(handle);
 735			goto write_directly;
 736		}
 737		jbd2_journal_stop(handle);
 738		ext4_notify_error_sysfs(sbi);
 
 
 
 739		return;
 740	}
 741write_directly:
 742	/*
 743	 * Write through journal failed. Write sb directly to get error info
 744	 * out and hope for the best.
 745	 */
 746	ext4_commit_super(sbi->s_sb);
 747	ext4_notify_error_sysfs(sbi);
 748}
 749
 750#define ext4_error_ratelimit(sb)					\
 751		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 752			     "EXT4-fs error")
 753
 754void __ext4_error(struct super_block *sb, const char *function,
 755		  unsigned int line, bool force_ro, int error, __u64 block,
 756		  const char *fmt, ...)
 757{
 758	struct va_format vaf;
 759	va_list args;
 760
 761	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 762		return;
 763
 764	trace_ext4_error(sb, function, line);
 765	if (ext4_error_ratelimit(sb)) {
 766		va_start(args, fmt);
 767		vaf.fmt = fmt;
 768		vaf.va = &args;
 769		printk(KERN_CRIT
 770		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 771		       sb->s_id, function, line, current->comm, &vaf);
 772		va_end(args);
 773	}
 774	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
 775
 776	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
 777}
 778
 779void __ext4_error_inode(struct inode *inode, const char *function,
 780			unsigned int line, ext4_fsblk_t block, int error,
 781			const char *fmt, ...)
 782{
 783	va_list args;
 784	struct va_format vaf;
 785
 786	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 787		return;
 788
 789	trace_ext4_error(inode->i_sb, function, line);
 790	if (ext4_error_ratelimit(inode->i_sb)) {
 791		va_start(args, fmt);
 792		vaf.fmt = fmt;
 793		vaf.va = &args;
 794		if (block)
 795			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 796			       "inode #%lu: block %llu: comm %s: %pV\n",
 797			       inode->i_sb->s_id, function, line, inode->i_ino,
 798			       block, current->comm, &vaf);
 799		else
 800			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 801			       "inode #%lu: comm %s: %pV\n",
 802			       inode->i_sb->s_id, function, line, inode->i_ino,
 803			       current->comm, &vaf);
 804		va_end(args);
 805	}
 806	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
 807
 808	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
 809			  function, line);
 810}
 811
 812void __ext4_error_file(struct file *file, const char *function,
 813		       unsigned int line, ext4_fsblk_t block,
 814		       const char *fmt, ...)
 815{
 816	va_list args;
 817	struct va_format vaf;
 818	struct inode *inode = file_inode(file);
 819	char pathname[80], *path;
 820
 821	if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
 822		return;
 823
 824	trace_ext4_error(inode->i_sb, function, line);
 825	if (ext4_error_ratelimit(inode->i_sb)) {
 826		path = file_path(file, pathname, sizeof(pathname));
 827		if (IS_ERR(path))
 828			path = "(unknown)";
 829		va_start(args, fmt);
 830		vaf.fmt = fmt;
 831		vaf.va = &args;
 832		if (block)
 833			printk(KERN_CRIT
 834			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 835			       "block %llu: comm %s: path %s: %pV\n",
 836			       inode->i_sb->s_id, function, line, inode->i_ino,
 837			       block, current->comm, path, &vaf);
 838		else
 839			printk(KERN_CRIT
 840			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 841			       "comm %s: path %s: %pV\n",
 842			       inode->i_sb->s_id, function, line, inode->i_ino,
 843			       current->comm, path, &vaf);
 844		va_end(args);
 845	}
 846	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
 847
 848	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
 849			  function, line);
 850}
 851
 852const char *ext4_decode_error(struct super_block *sb, int errno,
 853			      char nbuf[16])
 854{
 855	char *errstr = NULL;
 856
 857	switch (errno) {
 858	case -EFSCORRUPTED:
 859		errstr = "Corrupt filesystem";
 860		break;
 861	case -EFSBADCRC:
 862		errstr = "Filesystem failed CRC";
 863		break;
 864	case -EIO:
 865		errstr = "IO failure";
 866		break;
 867	case -ENOMEM:
 868		errstr = "Out of memory";
 869		break;
 870	case -EROFS:
 871		if (!sb || (EXT4_SB(sb)->s_journal &&
 872			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 873			errstr = "Journal has aborted";
 874		else
 875			errstr = "Readonly filesystem";
 876		break;
 877	default:
 878		/* If the caller passed in an extra buffer for unknown
 879		 * errors, textualise them now.  Else we just return
 880		 * NULL. */
 881		if (nbuf) {
 882			/* Check for truncated error codes... */
 883			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 884				errstr = nbuf;
 885		}
 886		break;
 887	}
 888
 889	return errstr;
 890}
 891
 892/* __ext4_std_error decodes expected errors from journaling functions
 893 * automatically and invokes the appropriate error response.  */
 894
 895void __ext4_std_error(struct super_block *sb, const char *function,
 896		      unsigned int line, int errno)
 897{
 898	char nbuf[16];
 899	const char *errstr;
 900
 901	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 902		return;
 903
 904	/* Special case: if the error is EROFS, and we're not already
 905	 * inside a transaction, then there's really no point in logging
 906	 * an error. */
 907	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 908		return;
 909
 910	if (ext4_error_ratelimit(sb)) {
 911		errstr = ext4_decode_error(sb, errno, nbuf);
 912		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 913		       sb->s_id, function, line, errstr);
 914	}
 915	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
 916
 917	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
 918}
 919
 920void __ext4_msg(struct super_block *sb,
 921		const char *prefix, const char *fmt, ...)
 922{
 923	struct va_format vaf;
 924	va_list args;
 925
 926	if (sb) {
 927		atomic_inc(&EXT4_SB(sb)->s_msg_count);
 928		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
 929				  "EXT4-fs"))
 930			return;
 931	}
 932
 933	va_start(args, fmt);
 934	vaf.fmt = fmt;
 935	vaf.va = &args;
 936	if (sb)
 937		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
 938	else
 939		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
 940	va_end(args);
 941}
 942
 943static int ext4_warning_ratelimit(struct super_block *sb)
 944{
 945	atomic_inc(&EXT4_SB(sb)->s_warning_count);
 946	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
 947			    "EXT4-fs warning");
 948}
 949
 950void __ext4_warning(struct super_block *sb, const char *function,
 951		    unsigned int line, const char *fmt, ...)
 952{
 953	struct va_format vaf;
 954	va_list args;
 955
 956	if (!ext4_warning_ratelimit(sb))
 957		return;
 958
 959	va_start(args, fmt);
 960	vaf.fmt = fmt;
 961	vaf.va = &args;
 962	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
 963	       sb->s_id, function, line, &vaf);
 964	va_end(args);
 965}
 966
 967void __ext4_warning_inode(const struct inode *inode, const char *function,
 968			  unsigned int line, const char *fmt, ...)
 969{
 970	struct va_format vaf;
 971	va_list args;
 972
 973	if (!ext4_warning_ratelimit(inode->i_sb))
 974		return;
 975
 976	va_start(args, fmt);
 977	vaf.fmt = fmt;
 978	vaf.va = &args;
 979	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
 980	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
 981	       function, line, inode->i_ino, current->comm, &vaf);
 982	va_end(args);
 983}
 984
 985void __ext4_grp_locked_error(const char *function, unsigned int line,
 986			     struct super_block *sb, ext4_group_t grp,
 987			     unsigned long ino, ext4_fsblk_t block,
 988			     const char *fmt, ...)
 989__releases(bitlock)
 990__acquires(bitlock)
 991{
 992	struct va_format vaf;
 993	va_list args;
 994
 995	if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
 996		return;
 997
 998	trace_ext4_error(sb, function, line);
 999	if (ext4_error_ratelimit(sb)) {
1000		va_start(args, fmt);
1001		vaf.fmt = fmt;
1002		vaf.va = &args;
1003		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1004		       sb->s_id, function, line, grp);
1005		if (ino)
1006			printk(KERN_CONT "inode %lu: ", ino);
1007		if (block)
1008			printk(KERN_CONT "block %llu:",
1009			       (unsigned long long) block);
1010		printk(KERN_CONT "%pV\n", &vaf);
1011		va_end(args);
1012	}
1013
1014	if (test_opt(sb, ERRORS_CONT)) {
1015		if (test_opt(sb, WARN_ON_ERROR))
1016			WARN_ON_ONCE(1);
1017		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1018		if (!bdev_read_only(sb->s_bdev)) {
1019			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1020					line);
1021			schedule_work(&EXT4_SB(sb)->s_error_work);
1022		}
1023		return;
1024	}
1025	ext4_unlock_group(sb, grp);
1026	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1027	/*
1028	 * We only get here in the ERRORS_RO case; relocking the group
1029	 * may be dangerous, but nothing bad will happen since the
1030	 * filesystem will have already been marked read/only and the
1031	 * journal has been aborted.  We return 1 as a hint to callers
1032	 * who might what to use the return value from
1033	 * ext4_grp_locked_error() to distinguish between the
1034	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1035	 * aggressively from the ext4 function in question, with a
1036	 * more appropriate error code.
1037	 */
1038	ext4_lock_group(sb, grp);
1039	return;
1040}
1041
1042void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1043				     ext4_group_t group,
1044				     unsigned int flags)
1045{
1046	struct ext4_sb_info *sbi = EXT4_SB(sb);
1047	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1048	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1049	int ret;
1050
 
 
1051	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1052		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1053					    &grp->bb_state);
1054		if (!ret)
1055			percpu_counter_sub(&sbi->s_freeclusters_counter,
1056					   grp->bb_free);
1057	}
1058
1059	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1060		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1061					    &grp->bb_state);
1062		if (!ret && gdp) {
1063			int count;
1064
1065			count = ext4_free_inodes_count(sb, gdp);
1066			percpu_counter_sub(&sbi->s_freeinodes_counter,
1067					   count);
1068		}
1069	}
1070}
1071
1072void ext4_update_dynamic_rev(struct super_block *sb)
1073{
1074	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1075
1076	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1077		return;
1078
1079	ext4_warning(sb,
1080		     "updating to rev %d because of new feature flag, "
1081		     "running e2fsck is recommended",
1082		     EXT4_DYNAMIC_REV);
1083
1084	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1085	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1086	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1087	/* leave es->s_feature_*compat flags alone */
1088	/* es->s_uuid will be set by e2fsck if empty */
1089
1090	/*
1091	 * The rest of the superblock fields should be zero, and if not it
1092	 * means they are likely already in use, so leave them alone.  We
1093	 * can leave it up to e2fsck to clean up any inconsistencies there.
1094	 */
1095}
1096
1097/*
1098 * Open the external journal device
1099 */
1100static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1101{
1102	struct block_device *bdev;
1103
1104	bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1105	if (IS_ERR(bdev))
1106		goto fail;
1107	return bdev;
1108
1109fail:
1110	ext4_msg(sb, KERN_ERR,
1111		 "failed to open journal device unknown-block(%u,%u) %ld",
1112		 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1113	return NULL;
1114}
1115
1116/*
1117 * Release the journal device
1118 */
1119static void ext4_blkdev_put(struct block_device *bdev)
1120{
1121	blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1122}
1123
1124static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1125{
1126	struct block_device *bdev;
1127	bdev = sbi->s_journal_bdev;
1128	if (bdev) {
1129		ext4_blkdev_put(bdev);
1130		sbi->s_journal_bdev = NULL;
1131	}
1132}
1133
1134static inline struct inode *orphan_list_entry(struct list_head *l)
1135{
1136	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1137}
1138
1139static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1140{
1141	struct list_head *l;
1142
1143	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1144		 le32_to_cpu(sbi->s_es->s_last_orphan));
1145
1146	printk(KERN_ERR "sb_info orphan list:\n");
1147	list_for_each(l, &sbi->s_orphan) {
1148		struct inode *inode = orphan_list_entry(l);
1149		printk(KERN_ERR "  "
1150		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1151		       inode->i_sb->s_id, inode->i_ino, inode,
1152		       inode->i_mode, inode->i_nlink,
1153		       NEXT_ORPHAN(inode));
1154	}
1155}
1156
1157#ifdef CONFIG_QUOTA
1158static int ext4_quota_off(struct super_block *sb, int type);
1159
1160static inline void ext4_quota_off_umount(struct super_block *sb)
1161{
1162	int type;
1163
1164	/* Use our quota_off function to clear inode flags etc. */
1165	for (type = 0; type < EXT4_MAXQUOTAS; type++)
1166		ext4_quota_off(sb, type);
1167}
1168
1169/*
1170 * This is a helper function which is used in the mount/remount
1171 * codepaths (which holds s_umount) to fetch the quota file name.
1172 */
1173static inline char *get_qf_name(struct super_block *sb,
1174				struct ext4_sb_info *sbi,
1175				int type)
1176{
1177	return rcu_dereference_protected(sbi->s_qf_names[type],
1178					 lockdep_is_held(&sb->s_umount));
1179}
1180#else
1181static inline void ext4_quota_off_umount(struct super_block *sb)
1182{
1183}
1184#endif
1185
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1186static void ext4_put_super(struct super_block *sb)
1187{
1188	struct ext4_sb_info *sbi = EXT4_SB(sb);
1189	struct ext4_super_block *es = sbi->s_es;
1190	struct buffer_head **group_desc;
1191	struct flex_groups **flex_groups;
1192	int aborted = 0;
1193	int i, err;
1194
1195	/*
1196	 * Unregister sysfs before destroying jbd2 journal.
1197	 * Since we could still access attr_journal_task attribute via sysfs
1198	 * path which could have sbi->s_journal->j_task as NULL
1199	 * Unregister sysfs before flush sbi->s_error_work.
1200	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1201	 * read metadata verify failed then will queue error work.
1202	 * flush_stashed_error_work will call start_this_handle may trigger
1203	 * BUG_ON.
1204	 */
1205	ext4_unregister_sysfs(sb);
1206
1207	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1208		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1209			 &sb->s_uuid);
1210
1211	ext4_unregister_li_request(sb);
1212	ext4_quota_off_umount(sb);
1213
1214	flush_work(&sbi->s_error_work);
1215	destroy_workqueue(sbi->rsv_conversion_wq);
1216	ext4_release_orphan_info(sb);
1217
1218	if (sbi->s_journal) {
1219		aborted = is_journal_aborted(sbi->s_journal);
1220		err = jbd2_journal_destroy(sbi->s_journal);
1221		sbi->s_journal = NULL;
1222		if ((err < 0) && !aborted) {
1223			ext4_abort(sb, -err, "Couldn't clean up the journal");
1224		}
1225	}
1226
1227	ext4_es_unregister_shrinker(sbi);
1228	timer_shutdown_sync(&sbi->s_err_report);
1229	ext4_release_system_zone(sb);
1230	ext4_mb_release(sb);
1231	ext4_ext_release(sb);
1232
1233	if (!sb_rdonly(sb) && !aborted) {
1234		ext4_clear_feature_journal_needs_recovery(sb);
1235		ext4_clear_feature_orphan_present(sb);
1236		es->s_state = cpu_to_le16(sbi->s_mount_state);
1237	}
1238	if (!sb_rdonly(sb))
1239		ext4_commit_super(sb);
1240
1241	rcu_read_lock();
1242	group_desc = rcu_dereference(sbi->s_group_desc);
1243	for (i = 0; i < sbi->s_gdb_count; i++)
1244		brelse(group_desc[i]);
1245	kvfree(group_desc);
1246	flex_groups = rcu_dereference(sbi->s_flex_groups);
1247	if (flex_groups) {
1248		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1249			kvfree(flex_groups[i]);
1250		kvfree(flex_groups);
1251	}
1252	rcu_read_unlock();
1253	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1254	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1255	percpu_counter_destroy(&sbi->s_dirs_counter);
1256	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1257	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1258	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1259#ifdef CONFIG_QUOTA
1260	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1261		kfree(get_qf_name(sb, sbi, i));
1262#endif
1263
1264	/* Debugging code just in case the in-memory inode orphan list
1265	 * isn't empty.  The on-disk one can be non-empty if we've
1266	 * detected an error and taken the fs readonly, but the
1267	 * in-memory list had better be clean by this point. */
1268	if (!list_empty(&sbi->s_orphan))
1269		dump_orphan_list(sb, sbi);
1270	ASSERT(list_empty(&sbi->s_orphan));
1271
1272	sync_blockdev(sb->s_bdev);
1273	invalidate_bdev(sb->s_bdev);
1274	if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1275		/*
1276		 * Invalidate the journal device's buffers.  We don't want them
1277		 * floating about in memory - the physical journal device may
1278		 * hotswapped, and it breaks the `ro-after' testing code.
1279		 */
1280		sync_blockdev(sbi->s_journal_bdev);
1281		invalidate_bdev(sbi->s_journal_bdev);
1282		ext4_blkdev_remove(sbi);
1283	}
1284
1285	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1286	sbi->s_ea_inode_cache = NULL;
1287
1288	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1289	sbi->s_ea_block_cache = NULL;
1290
1291	ext4_stop_mmpd(sbi);
1292
1293	brelse(sbi->s_sbh);
1294	sb->s_fs_info = NULL;
1295	/*
1296	 * Now that we are completely done shutting down the
1297	 * superblock, we need to actually destroy the kobject.
1298	 */
1299	kobject_put(&sbi->s_kobj);
1300	wait_for_completion(&sbi->s_kobj_unregister);
1301	if (sbi->s_chksum_driver)
1302		crypto_free_shash(sbi->s_chksum_driver);
1303	kfree(sbi->s_blockgroup_lock);
1304	fs_put_dax(sbi->s_daxdev, NULL);
1305	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1306#if IS_ENABLED(CONFIG_UNICODE)
1307	utf8_unload(sb->s_encoding);
1308#endif
1309	kfree(sbi);
1310}
1311
1312static struct kmem_cache *ext4_inode_cachep;
1313
1314/*
1315 * Called inside transaction, so use GFP_NOFS
1316 */
1317static struct inode *ext4_alloc_inode(struct super_block *sb)
1318{
1319	struct ext4_inode_info *ei;
1320
1321	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1322	if (!ei)
1323		return NULL;
1324
1325	inode_set_iversion(&ei->vfs_inode, 1);
1326	ei->i_flags = 0;
1327	spin_lock_init(&ei->i_raw_lock);
1328	INIT_LIST_HEAD(&ei->i_prealloc_list);
1329	atomic_set(&ei->i_prealloc_active, 0);
1330	spin_lock_init(&ei->i_prealloc_lock);
1331	ext4_es_init_tree(&ei->i_es_tree);
1332	rwlock_init(&ei->i_es_lock);
1333	INIT_LIST_HEAD(&ei->i_es_list);
1334	ei->i_es_all_nr = 0;
1335	ei->i_es_shk_nr = 0;
1336	ei->i_es_shrink_lblk = 0;
1337	ei->i_reserved_data_blocks = 0;
1338	spin_lock_init(&(ei->i_block_reservation_lock));
1339	ext4_init_pending_tree(&ei->i_pending_tree);
1340#ifdef CONFIG_QUOTA
1341	ei->i_reserved_quota = 0;
1342	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1343#endif
1344	ei->jinode = NULL;
1345	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1346	spin_lock_init(&ei->i_completed_io_lock);
1347	ei->i_sync_tid = 0;
1348	ei->i_datasync_tid = 0;
1349	atomic_set(&ei->i_unwritten, 0);
1350	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1351	ext4_fc_init_inode(&ei->vfs_inode);
1352	mutex_init(&ei->i_fc_lock);
1353	return &ei->vfs_inode;
1354}
1355
1356static int ext4_drop_inode(struct inode *inode)
1357{
1358	int drop = generic_drop_inode(inode);
1359
1360	if (!drop)
1361		drop = fscrypt_drop_inode(inode);
1362
1363	trace_ext4_drop_inode(inode, drop);
1364	return drop;
1365}
1366
1367static void ext4_free_in_core_inode(struct inode *inode)
1368{
1369	fscrypt_free_inode(inode);
1370	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1371		pr_warn("%s: inode %ld still in fc list",
1372			__func__, inode->i_ino);
1373	}
1374	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1375}
1376
1377static void ext4_destroy_inode(struct inode *inode)
1378{
1379	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1380		ext4_msg(inode->i_sb, KERN_ERR,
1381			 "Inode %lu (%p): orphan list check failed!",
1382			 inode->i_ino, EXT4_I(inode));
1383		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1384				EXT4_I(inode), sizeof(struct ext4_inode_info),
1385				true);
1386		dump_stack();
1387	}
1388
1389	if (EXT4_I(inode)->i_reserved_data_blocks)
1390		ext4_msg(inode->i_sb, KERN_ERR,
1391			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1392			 inode->i_ino, EXT4_I(inode),
1393			 EXT4_I(inode)->i_reserved_data_blocks);
1394}
1395
 
 
 
 
 
1396static void init_once(void *foo)
1397{
1398	struct ext4_inode_info *ei = foo;
1399
1400	INIT_LIST_HEAD(&ei->i_orphan);
1401	init_rwsem(&ei->xattr_sem);
1402	init_rwsem(&ei->i_data_sem);
1403	inode_init_once(&ei->vfs_inode);
1404	ext4_fc_init_inode(&ei->vfs_inode);
1405}
1406
1407static int __init init_inodecache(void)
1408{
1409	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1410				sizeof(struct ext4_inode_info), 0,
1411				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1412					SLAB_ACCOUNT),
1413				offsetof(struct ext4_inode_info, i_data),
1414				sizeof_field(struct ext4_inode_info, i_data),
1415				init_once);
1416	if (ext4_inode_cachep == NULL)
1417		return -ENOMEM;
1418	return 0;
1419}
1420
1421static void destroy_inodecache(void)
1422{
1423	/*
1424	 * Make sure all delayed rcu free inodes are flushed before we
1425	 * destroy cache.
1426	 */
1427	rcu_barrier();
1428	kmem_cache_destroy(ext4_inode_cachep);
1429}
1430
1431void ext4_clear_inode(struct inode *inode)
1432{
1433	ext4_fc_del(inode);
1434	invalidate_inode_buffers(inode);
1435	clear_inode(inode);
1436	ext4_discard_preallocations(inode, 0);
1437	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1438	dquot_drop(inode);
1439	if (EXT4_I(inode)->jinode) {
1440		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1441					       EXT4_I(inode)->jinode);
1442		jbd2_free_inode(EXT4_I(inode)->jinode);
1443		EXT4_I(inode)->jinode = NULL;
1444	}
1445	fscrypt_put_encryption_info(inode);
1446	fsverity_cleanup_inode(inode);
1447}
1448
1449static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1450					u64 ino, u32 generation)
1451{
1452	struct inode *inode;
1453
1454	/*
1455	 * Currently we don't know the generation for parent directory, so
1456	 * a generation of 0 means "accept any"
1457	 */
1458	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1459	if (IS_ERR(inode))
1460		return ERR_CAST(inode);
1461	if (generation && inode->i_generation != generation) {
1462		iput(inode);
1463		return ERR_PTR(-ESTALE);
1464	}
1465
1466	return inode;
1467}
1468
1469static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1470					int fh_len, int fh_type)
1471{
1472	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1473				    ext4_nfs_get_inode);
1474}
1475
1476static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1477					int fh_len, int fh_type)
1478{
1479	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1480				    ext4_nfs_get_inode);
1481}
1482
1483static int ext4_nfs_commit_metadata(struct inode *inode)
1484{
1485	struct writeback_control wbc = {
1486		.sync_mode = WB_SYNC_ALL
1487	};
1488
1489	trace_ext4_nfs_commit_metadata(inode);
1490	return ext4_write_inode(inode, &wbc);
1491}
1492
1493#ifdef CONFIG_QUOTA
1494static const char * const quotatypes[] = INITQFNAMES;
1495#define QTYPE2NAME(t) (quotatypes[t])
1496
1497static int ext4_write_dquot(struct dquot *dquot);
1498static int ext4_acquire_dquot(struct dquot *dquot);
1499static int ext4_release_dquot(struct dquot *dquot);
1500static int ext4_mark_dquot_dirty(struct dquot *dquot);
1501static int ext4_write_info(struct super_block *sb, int type);
1502static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1503			 const struct path *path);
1504static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1505			       size_t len, loff_t off);
1506static ssize_t ext4_quota_write(struct super_block *sb, int type,
1507				const char *data, size_t len, loff_t off);
1508static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1509			     unsigned int flags);
1510
1511static struct dquot **ext4_get_dquots(struct inode *inode)
1512{
1513	return EXT4_I(inode)->i_dquot;
1514}
1515
1516static const struct dquot_operations ext4_quota_operations = {
1517	.get_reserved_space	= ext4_get_reserved_space,
1518	.write_dquot		= ext4_write_dquot,
1519	.acquire_dquot		= ext4_acquire_dquot,
1520	.release_dquot		= ext4_release_dquot,
1521	.mark_dirty		= ext4_mark_dquot_dirty,
1522	.write_info		= ext4_write_info,
1523	.alloc_dquot		= dquot_alloc,
1524	.destroy_dquot		= dquot_destroy,
1525	.get_projid		= ext4_get_projid,
1526	.get_inode_usage	= ext4_get_inode_usage,
1527	.get_next_id		= dquot_get_next_id,
1528};
1529
1530static const struct quotactl_ops ext4_qctl_operations = {
1531	.quota_on	= ext4_quota_on,
1532	.quota_off	= ext4_quota_off,
1533	.quota_sync	= dquot_quota_sync,
1534	.get_state	= dquot_get_state,
1535	.set_info	= dquot_set_dqinfo,
1536	.get_dqblk	= dquot_get_dqblk,
1537	.set_dqblk	= dquot_set_dqblk,
1538	.get_nextdqblk	= dquot_get_next_dqblk,
1539};
1540#endif
1541
1542static const struct super_operations ext4_sops = {
1543	.alloc_inode	= ext4_alloc_inode,
1544	.free_inode	= ext4_free_in_core_inode,
1545	.destroy_inode	= ext4_destroy_inode,
1546	.write_inode	= ext4_write_inode,
1547	.dirty_inode	= ext4_dirty_inode,
1548	.drop_inode	= ext4_drop_inode,
1549	.evict_inode	= ext4_evict_inode,
1550	.put_super	= ext4_put_super,
1551	.sync_fs	= ext4_sync_fs,
1552	.freeze_fs	= ext4_freeze,
1553	.unfreeze_fs	= ext4_unfreeze,
1554	.statfs		= ext4_statfs,
1555	.show_options	= ext4_show_options,
 
1556#ifdef CONFIG_QUOTA
1557	.quota_read	= ext4_quota_read,
1558	.quota_write	= ext4_quota_write,
1559	.get_dquots	= ext4_get_dquots,
1560#endif
1561};
1562
1563static const struct export_operations ext4_export_ops = {
 
1564	.fh_to_dentry = ext4_fh_to_dentry,
1565	.fh_to_parent = ext4_fh_to_parent,
1566	.get_parent = ext4_get_parent,
1567	.commit_metadata = ext4_nfs_commit_metadata,
1568};
1569
1570enum {
1571	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1572	Opt_resgid, Opt_resuid, Opt_sb,
1573	Opt_nouid32, Opt_debug, Opt_removed,
1574	Opt_user_xattr, Opt_acl,
1575	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1576	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1577	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1578	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1579	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1580	Opt_inlinecrypt,
1581	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1582	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1583	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1584	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1585	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1586	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1587	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1588	Opt_inode_readahead_blks, Opt_journal_ioprio,
1589	Opt_dioread_nolock, Opt_dioread_lock,
1590	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1591	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1592	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1593	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1594#ifdef CONFIG_EXT4_DEBUG
1595	Opt_fc_debug_max_replay, Opt_fc_debug_force
1596#endif
1597};
1598
1599static const struct constant_table ext4_param_errors[] = {
1600	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1601	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1602	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1603	{}
1604};
1605
1606static const struct constant_table ext4_param_data[] = {
1607	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1608	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1609	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1610	{}
1611};
1612
1613static const struct constant_table ext4_param_data_err[] = {
1614	{"abort",	Opt_data_err_abort},
1615	{"ignore",	Opt_data_err_ignore},
1616	{}
1617};
1618
1619static const struct constant_table ext4_param_jqfmt[] = {
1620	{"vfsold",	QFMT_VFS_OLD},
1621	{"vfsv0",	QFMT_VFS_V0},
1622	{"vfsv1",	QFMT_VFS_V1},
1623	{}
1624};
1625
1626static const struct constant_table ext4_param_dax[] = {
1627	{"always",	Opt_dax_always},
1628	{"inode",	Opt_dax_inode},
1629	{"never",	Opt_dax_never},
1630	{}
1631};
1632
1633/* String parameter that allows empty argument */
1634#define fsparam_string_empty(NAME, OPT) \
1635	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1636
1637/*
1638 * Mount option specification
1639 * We don't use fsparam_flag_no because of the way we set the
1640 * options and the way we show them in _ext4_show_options(). To
1641 * keep the changes to a minimum, let's keep the negative options
1642 * separate for now.
1643 */
1644static const struct fs_parameter_spec ext4_param_specs[] = {
1645	fsparam_flag	("bsddf",		Opt_bsd_df),
1646	fsparam_flag	("minixdf",		Opt_minix_df),
1647	fsparam_flag	("grpid",		Opt_grpid),
1648	fsparam_flag	("bsdgroups",		Opt_grpid),
1649	fsparam_flag	("nogrpid",		Opt_nogrpid),
1650	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1651	fsparam_u32	("resgid",		Opt_resgid),
1652	fsparam_u32	("resuid",		Opt_resuid),
1653	fsparam_u32	("sb",			Opt_sb),
1654	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1655	fsparam_flag	("nouid32",		Opt_nouid32),
1656	fsparam_flag	("debug",		Opt_debug),
1657	fsparam_flag	("oldalloc",		Opt_removed),
1658	fsparam_flag	("orlov",		Opt_removed),
1659	fsparam_flag	("user_xattr",		Opt_user_xattr),
1660	fsparam_flag	("acl",			Opt_acl),
1661	fsparam_flag	("norecovery",		Opt_noload),
1662	fsparam_flag	("noload",		Opt_noload),
1663	fsparam_flag	("bh",			Opt_removed),
1664	fsparam_flag	("nobh",		Opt_removed),
1665	fsparam_u32	("commit",		Opt_commit),
1666	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1667	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1668	fsparam_u32	("journal_dev",		Opt_journal_dev),
1669	fsparam_bdev	("journal_path",	Opt_journal_path),
1670	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1671	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1672	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1673	fsparam_flag	("abort",		Opt_abort),
1674	fsparam_enum	("data",		Opt_data, ext4_param_data),
1675	fsparam_enum	("data_err",		Opt_data_err,
1676						ext4_param_data_err),
1677	fsparam_string_empty
1678			("usrjquota",		Opt_usrjquota),
1679	fsparam_string_empty
1680			("grpjquota",		Opt_grpjquota),
1681	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1682	fsparam_flag	("grpquota",		Opt_grpquota),
1683	fsparam_flag	("quota",		Opt_quota),
1684	fsparam_flag	("noquota",		Opt_noquota),
1685	fsparam_flag	("usrquota",		Opt_usrquota),
1686	fsparam_flag	("prjquota",		Opt_prjquota),
1687	fsparam_flag	("barrier",		Opt_barrier),
1688	fsparam_u32	("barrier",		Opt_barrier),
1689	fsparam_flag	("nobarrier",		Opt_nobarrier),
1690	fsparam_flag	("i_version",		Opt_removed),
1691	fsparam_flag	("dax",			Opt_dax),
1692	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1693	fsparam_u32	("stripe",		Opt_stripe),
1694	fsparam_flag	("delalloc",		Opt_delalloc),
1695	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1696	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1697	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1698	fsparam_u32	("debug_want_extra_isize",
1699						Opt_debug_want_extra_isize),
1700	fsparam_flag	("mblk_io_submit",	Opt_removed),
1701	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1702	fsparam_flag	("block_validity",	Opt_block_validity),
1703	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1704	fsparam_u32	("inode_readahead_blks",
1705						Opt_inode_readahead_blks),
1706	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1707	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1708	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1709	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1710	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1711	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1712	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1713	fsparam_flag	("discard",		Opt_discard),
1714	fsparam_flag	("nodiscard",		Opt_nodiscard),
1715	fsparam_u32	("init_itable",		Opt_init_itable),
1716	fsparam_flag	("init_itable",		Opt_init_itable),
1717	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1718#ifdef CONFIG_EXT4_DEBUG
1719	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1720	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1721#endif
1722	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1723	fsparam_flag	("test_dummy_encryption",
1724						Opt_test_dummy_encryption),
1725	fsparam_string	("test_dummy_encryption",
1726						Opt_test_dummy_encryption),
1727	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1728	fsparam_flag	("nombcache",		Opt_nombcache),
1729	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1730	fsparam_flag	("prefetch_block_bitmaps",
1731						Opt_removed),
1732	fsparam_flag	("no_prefetch_block_bitmaps",
1733						Opt_no_prefetch_block_bitmaps),
1734	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1735	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1736	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1737	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1738	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1739	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1740	{}
1741};
1742
1743#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1744
1745#define MOPT_SET	0x0001
1746#define MOPT_CLEAR	0x0002
1747#define MOPT_NOSUPPORT	0x0004
1748#define MOPT_EXPLICIT	0x0008
1749#ifdef CONFIG_QUOTA
1750#define MOPT_Q		0
1751#define MOPT_QFMT	0x0010
1752#else
1753#define MOPT_Q		MOPT_NOSUPPORT
1754#define MOPT_QFMT	MOPT_NOSUPPORT
1755#endif
1756#define MOPT_NO_EXT2	0x0020
1757#define MOPT_NO_EXT3	0x0040
1758#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1759#define MOPT_SKIP	0x0080
1760#define	MOPT_2		0x0100
1761
1762static const struct mount_opts {
1763	int	token;
1764	int	mount_opt;
1765	int	flags;
1766} ext4_mount_opts[] = {
1767	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1768	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1769	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1770	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1771	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1772	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1773	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1774	 MOPT_EXT4_ONLY | MOPT_SET},
1775	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1776	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1777	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1778	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1779	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1780	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1781	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1782	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1783	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1784	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1785	{Opt_commit, 0, MOPT_NO_EXT2},
1786	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1787	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1788	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1789	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1790	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1791				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1792	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1793	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1794	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1795	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1796	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1797	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1798	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1799	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1800	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1801	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1802	{Opt_journal_path, 0, MOPT_NO_EXT2},
1803	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1804	{Opt_data, 0, MOPT_NO_EXT2},
1805	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1806#ifdef CONFIG_EXT4_FS_POSIX_ACL
1807	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1808#else
1809	{Opt_acl, 0, MOPT_NOSUPPORT},
1810#endif
1811	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1812	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1813	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1814	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1815							MOPT_SET | MOPT_Q},
1816	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1817							MOPT_SET | MOPT_Q},
1818	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1819							MOPT_SET | MOPT_Q},
1820	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1821		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1822							MOPT_CLEAR | MOPT_Q},
1823	{Opt_usrjquota, 0, MOPT_Q},
1824	{Opt_grpjquota, 0, MOPT_Q},
1825	{Opt_jqfmt, 0, MOPT_QFMT},
1826	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1827	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1828	 MOPT_SET},
1829#ifdef CONFIG_EXT4_DEBUG
1830	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1831	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1832#endif
 
1833	{Opt_err, 0, 0}
1834};
1835
1836#if IS_ENABLED(CONFIG_UNICODE)
1837static const struct ext4_sb_encodings {
1838	__u16 magic;
1839	char *name;
1840	unsigned int version;
1841} ext4_sb_encoding_map[] = {
1842	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1843};
1844
1845static const struct ext4_sb_encodings *
1846ext4_sb_read_encoding(const struct ext4_super_block *es)
1847{
1848	__u16 magic = le16_to_cpu(es->s_encoding);
1849	int i;
1850
1851	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1852		if (magic == ext4_sb_encoding_map[i].magic)
1853			return &ext4_sb_encoding_map[i];
1854
1855	return NULL;
1856}
1857#endif
1858
1859#define EXT4_SPEC_JQUOTA			(1 <<  0)
1860#define EXT4_SPEC_JQFMT				(1 <<  1)
1861#define EXT4_SPEC_DATAJ				(1 <<  2)
1862#define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1863#define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1864#define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1865#define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1866#define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1867#define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1868#define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1869#define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1870#define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1871#define EXT4_SPEC_s_stripe			(1 << 13)
1872#define EXT4_SPEC_s_resuid			(1 << 14)
1873#define EXT4_SPEC_s_resgid			(1 << 15)
1874#define EXT4_SPEC_s_commit_interval		(1 << 16)
1875#define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1876#define EXT4_SPEC_s_sb_block			(1 << 18)
1877#define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1878
1879struct ext4_fs_context {
1880	char		*s_qf_names[EXT4_MAXQUOTAS];
1881	struct fscrypt_dummy_policy dummy_enc_policy;
1882	int		s_jquota_fmt;	/* Format of quota to use */
1883#ifdef CONFIG_EXT4_DEBUG
1884	int s_fc_debug_max_replay;
1885#endif
1886	unsigned short	qname_spec;
1887	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1888	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1889	unsigned long	journal_devnum;
1890	unsigned long	s_commit_interval;
1891	unsigned long	s_stripe;
1892	unsigned int	s_inode_readahead_blks;
1893	unsigned int	s_want_extra_isize;
1894	unsigned int	s_li_wait_mult;
1895	unsigned int	s_max_dir_size_kb;
1896	unsigned int	journal_ioprio;
1897	unsigned int	vals_s_mount_opt;
1898	unsigned int	mask_s_mount_opt;
1899	unsigned int	vals_s_mount_opt2;
1900	unsigned int	mask_s_mount_opt2;
1901	unsigned long	vals_s_mount_flags;
1902	unsigned long	mask_s_mount_flags;
1903	unsigned int	opt_flags;	/* MOPT flags */
1904	unsigned int	spec;
1905	u32		s_max_batch_time;
1906	u32		s_min_batch_time;
1907	kuid_t		s_resuid;
1908	kgid_t		s_resgid;
1909	ext4_fsblk_t	s_sb_block;
1910};
1911
1912static void ext4_fc_free(struct fs_context *fc)
1913{
1914	struct ext4_fs_context *ctx = fc->fs_private;
1915	int i;
1916
1917	if (!ctx)
1918		return;
1919
1920	for (i = 0; i < EXT4_MAXQUOTAS; i++)
1921		kfree(ctx->s_qf_names[i]);
1922
1923	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1924	kfree(ctx);
1925}
1926
1927int ext4_init_fs_context(struct fs_context *fc)
1928{
1929	struct ext4_fs_context *ctx;
1930
1931	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1932	if (!ctx)
1933		return -ENOMEM;
1934
1935	fc->fs_private = ctx;
1936	fc->ops = &ext4_context_ops;
1937
1938	return 0;
1939}
1940
1941#ifdef CONFIG_QUOTA
1942/*
1943 * Note the name of the specified quota file.
1944 */
1945static int note_qf_name(struct fs_context *fc, int qtype,
1946		       struct fs_parameter *param)
1947{
1948	struct ext4_fs_context *ctx = fc->fs_private;
1949	char *qname;
1950
1951	if (param->size < 1) {
1952		ext4_msg(NULL, KERN_ERR, "Missing quota name");
1953		return -EINVAL;
1954	}
1955	if (strchr(param->string, '/')) {
1956		ext4_msg(NULL, KERN_ERR,
1957			 "quotafile must be on filesystem root");
1958		return -EINVAL;
1959	}
1960	if (ctx->s_qf_names[qtype]) {
1961		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
1962			ext4_msg(NULL, KERN_ERR,
1963				 "%s quota file already specified",
1964				 QTYPE2NAME(qtype));
1965			return -EINVAL;
1966		}
1967		return 0;
1968	}
1969
1970	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
1971	if (!qname) {
1972		ext4_msg(NULL, KERN_ERR,
1973			 "Not enough memory for storing quotafile name");
1974		return -ENOMEM;
1975	}
1976	ctx->s_qf_names[qtype] = qname;
1977	ctx->qname_spec |= 1 << qtype;
1978	ctx->spec |= EXT4_SPEC_JQUOTA;
1979	return 0;
1980}
1981
1982/*
1983 * Clear the name of the specified quota file.
1984 */
1985static int unnote_qf_name(struct fs_context *fc, int qtype)
1986{
1987	struct ext4_fs_context *ctx = fc->fs_private;
1988
1989	if (ctx->s_qf_names[qtype])
1990		kfree(ctx->s_qf_names[qtype]);
1991
1992	ctx->s_qf_names[qtype] = NULL;
1993	ctx->qname_spec |= 1 << qtype;
1994	ctx->spec |= EXT4_SPEC_JQUOTA;
1995	return 0;
1996}
1997#endif
1998
1999static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2000					    struct ext4_fs_context *ctx)
2001{
2002	int err;
2003
2004	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2005		ext4_msg(NULL, KERN_WARNING,
2006			 "test_dummy_encryption option not supported");
2007		return -EINVAL;
2008	}
2009	err = fscrypt_parse_test_dummy_encryption(param,
2010						  &ctx->dummy_enc_policy);
2011	if (err == -EINVAL) {
2012		ext4_msg(NULL, KERN_WARNING,
2013			 "Value of option \"%s\" is unrecognized", param->key);
2014	} else if (err == -EEXIST) {
2015		ext4_msg(NULL, KERN_WARNING,
2016			 "Conflicting test_dummy_encryption options");
2017		return -EINVAL;
2018	}
2019	return err;
2020}
2021
2022#define EXT4_SET_CTX(name)						\
2023static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2024				  unsigned long flag)			\
2025{									\
2026	ctx->mask_s_##name |= flag;					\
2027	ctx->vals_s_##name |= flag;					\
2028}
2029
2030#define EXT4_CLEAR_CTX(name)						\
2031static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2032				    unsigned long flag)			\
2033{									\
2034	ctx->mask_s_##name |= flag;					\
2035	ctx->vals_s_##name &= ~flag;					\
2036}
2037
2038#define EXT4_TEST_CTX(name)						\
2039static inline unsigned long						\
2040ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2041{									\
2042	return (ctx->vals_s_##name & flag);				\
2043}
2044
2045EXT4_SET_CTX(flags); /* set only */
2046EXT4_SET_CTX(mount_opt);
2047EXT4_CLEAR_CTX(mount_opt);
2048EXT4_TEST_CTX(mount_opt);
2049EXT4_SET_CTX(mount_opt2);
2050EXT4_CLEAR_CTX(mount_opt2);
2051EXT4_TEST_CTX(mount_opt2);
2052
2053static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit)
2054{
2055	set_bit(bit, &ctx->mask_s_mount_flags);
2056	set_bit(bit, &ctx->vals_s_mount_flags);
2057}
2058
2059static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2060{
2061	struct ext4_fs_context *ctx = fc->fs_private;
2062	struct fs_parse_result result;
2063	const struct mount_opts *m;
2064	int is_remount;
2065	kuid_t uid;
2066	kgid_t gid;
2067	int token;
2068
2069	token = fs_parse(fc, ext4_param_specs, param, &result);
2070	if (token < 0)
2071		return token;
2072	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2073
2074	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2075		if (token == m->token)
2076			break;
2077
2078	ctx->opt_flags |= m->flags;
2079
2080	if (m->flags & MOPT_EXPLICIT) {
2081		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2082			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2083		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2084			ctx_set_mount_opt2(ctx,
2085				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2086		} else
2087			return -EINVAL;
2088	}
2089
2090	if (m->flags & MOPT_NOSUPPORT) {
2091		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2092			 param->key);
2093		return 0;
2094	}
2095
2096	switch (token) {
2097#ifdef CONFIG_QUOTA
2098	case Opt_usrjquota:
2099		if (!*param->string)
2100			return unnote_qf_name(fc, USRQUOTA);
2101		else
2102			return note_qf_name(fc, USRQUOTA, param);
2103	case Opt_grpjquota:
2104		if (!*param->string)
2105			return unnote_qf_name(fc, GRPQUOTA);
2106		else
2107			return note_qf_name(fc, GRPQUOTA, param);
2108#endif
2109	case Opt_sb:
2110		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2111			ext4_msg(NULL, KERN_WARNING,
2112				 "Ignoring %s option on remount", param->key);
2113		} else {
2114			ctx->s_sb_block = result.uint_32;
2115			ctx->spec |= EXT4_SPEC_s_sb_block;
2116		}
2117		return 0;
2118	case Opt_removed:
2119		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2120			 param->key);
2121		return 0;
2122	case Opt_abort:
2123		ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED);
2124		return 0;
2125	case Opt_inlinecrypt:
2126#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2127		ctx_set_flags(ctx, SB_INLINECRYPT);
2128#else
2129		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2130#endif
2131		return 0;
2132	case Opt_errors:
2133		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2134		ctx_set_mount_opt(ctx, result.uint_32);
2135		return 0;
2136#ifdef CONFIG_QUOTA
2137	case Opt_jqfmt:
2138		ctx->s_jquota_fmt = result.uint_32;
2139		ctx->spec |= EXT4_SPEC_JQFMT;
2140		return 0;
2141#endif
2142	case Opt_data:
2143		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2144		ctx_set_mount_opt(ctx, result.uint_32);
2145		ctx->spec |= EXT4_SPEC_DATAJ;
2146		return 0;
2147	case Opt_commit:
2148		if (result.uint_32 == 0)
2149			ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
2150		else if (result.uint_32 > INT_MAX / HZ) {
2151			ext4_msg(NULL, KERN_ERR,
2152				 "Invalid commit interval %d, "
2153				 "must be smaller than %d",
2154				 result.uint_32, INT_MAX / HZ);
2155			return -EINVAL;
2156		}
2157		ctx->s_commit_interval = HZ * result.uint_32;
2158		ctx->spec |= EXT4_SPEC_s_commit_interval;
2159		return 0;
2160	case Opt_debug_want_extra_isize:
2161		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2162			ext4_msg(NULL, KERN_ERR,
2163				 "Invalid want_extra_isize %d", result.uint_32);
2164			return -EINVAL;
2165		}
2166		ctx->s_want_extra_isize = result.uint_32;
2167		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2168		return 0;
2169	case Opt_max_batch_time:
2170		ctx->s_max_batch_time = result.uint_32;
2171		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2172		return 0;
2173	case Opt_min_batch_time:
2174		ctx->s_min_batch_time = result.uint_32;
2175		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2176		return 0;
2177	case Opt_inode_readahead_blks:
2178		if (result.uint_32 &&
2179		    (result.uint_32 > (1 << 30) ||
2180		     !is_power_of_2(result.uint_32))) {
2181			ext4_msg(NULL, KERN_ERR,
2182				 "EXT4-fs: inode_readahead_blks must be "
2183				 "0 or a power of 2 smaller than 2^31");
2184			return -EINVAL;
2185		}
2186		ctx->s_inode_readahead_blks = result.uint_32;
2187		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2188		return 0;
2189	case Opt_init_itable:
2190		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2191		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2192		if (param->type == fs_value_is_string)
2193			ctx->s_li_wait_mult = result.uint_32;
2194		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2195		return 0;
2196	case Opt_max_dir_size_kb:
2197		ctx->s_max_dir_size_kb = result.uint_32;
2198		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2199		return 0;
2200#ifdef CONFIG_EXT4_DEBUG
2201	case Opt_fc_debug_max_replay:
2202		ctx->s_fc_debug_max_replay = result.uint_32;
2203		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2204		return 0;
2205#endif
2206	case Opt_stripe:
2207		ctx->s_stripe = result.uint_32;
2208		ctx->spec |= EXT4_SPEC_s_stripe;
2209		return 0;
2210	case Opt_resuid:
2211		uid = make_kuid(current_user_ns(), result.uint_32);
2212		if (!uid_valid(uid)) {
2213			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2214				 result.uint_32);
2215			return -EINVAL;
2216		}
2217		ctx->s_resuid = uid;
2218		ctx->spec |= EXT4_SPEC_s_resuid;
2219		return 0;
2220	case Opt_resgid:
2221		gid = make_kgid(current_user_ns(), result.uint_32);
2222		if (!gid_valid(gid)) {
2223			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2224				 result.uint_32);
2225			return -EINVAL;
2226		}
2227		ctx->s_resgid = gid;
2228		ctx->spec |= EXT4_SPEC_s_resgid;
2229		return 0;
2230	case Opt_journal_dev:
2231		if (is_remount) {
2232			ext4_msg(NULL, KERN_ERR,
2233				 "Cannot specify journal on remount");
2234			return -EINVAL;
2235		}
2236		ctx->journal_devnum = result.uint_32;
2237		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2238		return 0;
2239	case Opt_journal_path:
2240	{
2241		struct inode *journal_inode;
2242		struct path path;
2243		int error;
2244
2245		if (is_remount) {
2246			ext4_msg(NULL, KERN_ERR,
2247				 "Cannot specify journal on remount");
2248			return -EINVAL;
2249		}
2250
2251		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2252		if (error) {
2253			ext4_msg(NULL, KERN_ERR, "error: could not find "
2254				 "journal device path");
2255			return -EINVAL;
2256		}
2257
2258		journal_inode = d_inode(path.dentry);
2259		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2260		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2261		path_put(&path);
2262		return 0;
2263	}
2264	case Opt_journal_ioprio:
2265		if (result.uint_32 > 7) {
2266			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2267				 " (must be 0-7)");
2268			return -EINVAL;
2269		}
2270		ctx->journal_ioprio =
2271			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2272		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2273		return 0;
2274	case Opt_test_dummy_encryption:
2275		return ext4_parse_test_dummy_encryption(param, ctx);
2276	case Opt_dax:
2277	case Opt_dax_type:
2278#ifdef CONFIG_FS_DAX
2279	{
2280		int type = (token == Opt_dax) ?
2281			   Opt_dax : result.uint_32;
2282
2283		switch (type) {
2284		case Opt_dax:
2285		case Opt_dax_always:
2286			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2287			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2288			break;
2289		case Opt_dax_never:
2290			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2291			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2292			break;
2293		case Opt_dax_inode:
2294			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2295			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2296			/* Strictly for printing options */
2297			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2298			break;
2299		}
2300		return 0;
2301	}
2302#else
2303		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2304		return -EINVAL;
2305#endif
2306	case Opt_data_err:
2307		if (result.uint_32 == Opt_data_err_abort)
2308			ctx_set_mount_opt(ctx, m->mount_opt);
2309		else if (result.uint_32 == Opt_data_err_ignore)
2310			ctx_clear_mount_opt(ctx, m->mount_opt);
2311		return 0;
2312	case Opt_mb_optimize_scan:
2313		if (result.int_32 == 1) {
2314			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2315			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2316		} else if (result.int_32 == 0) {
2317			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2318			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2319		} else {
2320			ext4_msg(NULL, KERN_WARNING,
2321				 "mb_optimize_scan should be set to 0 or 1.");
2322			return -EINVAL;
2323		}
2324		return 0;
2325	}
2326
2327	/*
2328	 * At this point we should only be getting options requiring MOPT_SET,
2329	 * or MOPT_CLEAR. Anything else is a bug
2330	 */
2331	if (m->token == Opt_err) {
2332		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2333			 param->key);
2334		WARN_ON(1);
2335		return -EINVAL;
2336	}
2337
2338	else {
2339		unsigned int set = 0;
2340
2341		if ((param->type == fs_value_is_flag) ||
2342		    result.uint_32 > 0)
2343			set = 1;
2344
2345		if (m->flags & MOPT_CLEAR)
2346			set = !set;
2347		else if (unlikely(!(m->flags & MOPT_SET))) {
2348			ext4_msg(NULL, KERN_WARNING,
2349				 "buggy handling of option %s",
2350				 param->key);
2351			WARN_ON(1);
2352			return -EINVAL;
2353		}
2354		if (m->flags & MOPT_2) {
2355			if (set != 0)
2356				ctx_set_mount_opt2(ctx, m->mount_opt);
2357			else
2358				ctx_clear_mount_opt2(ctx, m->mount_opt);
2359		} else {
2360			if (set != 0)
2361				ctx_set_mount_opt(ctx, m->mount_opt);
2362			else
2363				ctx_clear_mount_opt(ctx, m->mount_opt);
2364		}
2365	}
2366
2367	return 0;
2368}
2369
2370static int parse_options(struct fs_context *fc, char *options)
2371{
2372	struct fs_parameter param;
2373	int ret;
2374	char *key;
2375
2376	if (!options)
2377		return 0;
2378
2379	while ((key = strsep(&options, ",")) != NULL) {
2380		if (*key) {
2381			size_t v_len = 0;
2382			char *value = strchr(key, '=');
2383
2384			param.type = fs_value_is_flag;
2385			param.string = NULL;
2386
2387			if (value) {
2388				if (value == key)
2389					continue;
2390
2391				*value++ = 0;
2392				v_len = strlen(value);
2393				param.string = kmemdup_nul(value, v_len,
2394							   GFP_KERNEL);
2395				if (!param.string)
2396					return -ENOMEM;
2397				param.type = fs_value_is_string;
2398			}
2399
2400			param.key = key;
2401			param.size = v_len;
2402
2403			ret = ext4_parse_param(fc, &param);
2404			if (param.string)
2405				kfree(param.string);
2406			if (ret < 0)
2407				return ret;
2408		}
2409	}
2410
2411	ret = ext4_validate_options(fc);
2412	if (ret < 0)
2413		return ret;
2414
2415	return 0;
2416}
2417
2418static int parse_apply_sb_mount_options(struct super_block *sb,
2419					struct ext4_fs_context *m_ctx)
2420{
2421	struct ext4_sb_info *sbi = EXT4_SB(sb);
2422	char *s_mount_opts = NULL;
2423	struct ext4_fs_context *s_ctx = NULL;
2424	struct fs_context *fc = NULL;
2425	int ret = -ENOMEM;
2426
2427	if (!sbi->s_es->s_mount_opts[0])
2428		return 0;
2429
2430	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2431				sizeof(sbi->s_es->s_mount_opts),
2432				GFP_KERNEL);
2433	if (!s_mount_opts)
2434		return ret;
2435
2436	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2437	if (!fc)
2438		goto out_free;
2439
2440	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2441	if (!s_ctx)
2442		goto out_free;
2443
2444	fc->fs_private = s_ctx;
2445	fc->s_fs_info = sbi;
2446
2447	ret = parse_options(fc, s_mount_opts);
2448	if (ret < 0)
2449		goto parse_failed;
2450
2451	ret = ext4_check_opt_consistency(fc, sb);
2452	if (ret < 0) {
2453parse_failed:
2454		ext4_msg(sb, KERN_WARNING,
2455			 "failed to parse options in superblock: %s",
2456			 s_mount_opts);
2457		ret = 0;
2458		goto out_free;
2459	}
2460
2461	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2462		m_ctx->journal_devnum = s_ctx->journal_devnum;
2463	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2464		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2465
2466	ext4_apply_options(fc, sb);
2467	ret = 0;
2468
2469out_free:
2470	if (fc) {
2471		ext4_fc_free(fc);
2472		kfree(fc);
2473	}
2474	kfree(s_mount_opts);
2475	return ret;
2476}
2477
2478static void ext4_apply_quota_options(struct fs_context *fc,
2479				     struct super_block *sb)
2480{
2481#ifdef CONFIG_QUOTA
2482	bool quota_feature = ext4_has_feature_quota(sb);
2483	struct ext4_fs_context *ctx = fc->fs_private;
2484	struct ext4_sb_info *sbi = EXT4_SB(sb);
2485	char *qname;
2486	int i;
2487
2488	if (quota_feature)
2489		return;
2490
2491	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2492		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2493			if (!(ctx->qname_spec & (1 << i)))
2494				continue;
2495
2496			qname = ctx->s_qf_names[i]; /* May be NULL */
2497			if (qname)
2498				set_opt(sb, QUOTA);
2499			ctx->s_qf_names[i] = NULL;
2500			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2501						lockdep_is_held(&sb->s_umount));
2502			if (qname)
2503				kfree_rcu(qname);
2504		}
2505	}
2506
2507	if (ctx->spec & EXT4_SPEC_JQFMT)
2508		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2509#endif
2510}
2511
2512/*
2513 * Check quota settings consistency.
2514 */
2515static int ext4_check_quota_consistency(struct fs_context *fc,
2516					struct super_block *sb)
2517{
2518#ifdef CONFIG_QUOTA
2519	struct ext4_fs_context *ctx = fc->fs_private;
2520	struct ext4_sb_info *sbi = EXT4_SB(sb);
2521	bool quota_feature = ext4_has_feature_quota(sb);
2522	bool quota_loaded = sb_any_quota_loaded(sb);
2523	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2524	int quota_flags, i;
2525
2526	/*
2527	 * We do the test below only for project quotas. 'usrquota' and
2528	 * 'grpquota' mount options are allowed even without quota feature
2529	 * to support legacy quotas in quota files.
2530	 */
2531	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2532	    !ext4_has_feature_project(sb)) {
2533		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2534			 "Cannot enable project quota enforcement.");
2535		return -EINVAL;
2536	}
2537
2538	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2539		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2540	if (quota_loaded &&
2541	    ctx->mask_s_mount_opt & quota_flags &&
2542	    !ctx_test_mount_opt(ctx, quota_flags))
2543		goto err_quota_change;
2544
2545	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2546
2547		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548			if (!(ctx->qname_spec & (1 << i)))
2549				continue;
2550
2551			if (quota_loaded &&
2552			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2553				goto err_jquota_change;
2554
2555			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2556			    strcmp(get_qf_name(sb, sbi, i),
2557				   ctx->s_qf_names[i]) != 0)
2558				goto err_jquota_specified;
2559		}
2560
2561		if (quota_feature) {
2562			ext4_msg(NULL, KERN_INFO,
2563				 "Journaled quota options ignored when "
2564				 "QUOTA feature is enabled");
2565			return 0;
2566		}
2567	}
2568
2569	if (ctx->spec & EXT4_SPEC_JQFMT) {
2570		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2571			goto err_jquota_change;
2572		if (quota_feature) {
2573			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2574				 "ignored when QUOTA feature is enabled");
2575			return 0;
2576		}
2577	}
2578
2579	/* Make sure we don't mix old and new quota format */
2580	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2581		       ctx->s_qf_names[USRQUOTA]);
2582	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2583		       ctx->s_qf_names[GRPQUOTA]);
2584
2585	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2586		    test_opt(sb, USRQUOTA));
2587
2588	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2589		    test_opt(sb, GRPQUOTA));
2590
2591	if (usr_qf_name) {
2592		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2593		usrquota = false;
2594	}
2595	if (grp_qf_name) {
2596		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2597		grpquota = false;
2598	}
2599
2600	if (usr_qf_name || grp_qf_name) {
2601		if (usrquota || grpquota) {
2602			ext4_msg(NULL, KERN_ERR, "old and new quota "
2603				 "format mixing");
2604			return -EINVAL;
2605		}
2606
2607		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2608			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2609				 "not specified");
2610			return -EINVAL;
2611		}
2612	}
2613
2614	return 0;
2615
2616err_quota_change:
2617	ext4_msg(NULL, KERN_ERR,
2618		 "Cannot change quota options when quota turned on");
2619	return -EINVAL;
2620err_jquota_change:
2621	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2622		 "options when quota turned on");
2623	return -EINVAL;
2624err_jquota_specified:
2625	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2626		 QTYPE2NAME(i));
2627	return -EINVAL;
2628#else
2629	return 0;
2630#endif
2631}
2632
2633static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2634					    struct super_block *sb)
2635{
2636	const struct ext4_fs_context *ctx = fc->fs_private;
2637	const struct ext4_sb_info *sbi = EXT4_SB(sb);
2638	int err;
2639
2640	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2641		return 0;
2642
2643	if (!ext4_has_feature_encrypt(sb)) {
2644		ext4_msg(NULL, KERN_WARNING,
2645			 "test_dummy_encryption requires encrypt feature");
2646		return -EINVAL;
2647	}
2648	/*
2649	 * This mount option is just for testing, and it's not worthwhile to
2650	 * implement the extra complexity (e.g. RCU protection) that would be
2651	 * needed to allow it to be set or changed during remount.  We do allow
2652	 * it to be specified during remount, but only if there is no change.
2653	 */
2654	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2655		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2656						 &ctx->dummy_enc_policy))
2657			return 0;
2658		ext4_msg(NULL, KERN_WARNING,
2659			 "Can't set or change test_dummy_encryption on remount");
2660		return -EINVAL;
2661	}
2662	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2663	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2664		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2665						 &ctx->dummy_enc_policy))
2666			return 0;
2667		ext4_msg(NULL, KERN_WARNING,
2668			 "Conflicting test_dummy_encryption options");
2669		return -EINVAL;
2670	}
2671	/*
2672	 * fscrypt_add_test_dummy_key() technically changes the super_block, so
2673	 * technically it should be delayed until ext4_apply_options() like the
2674	 * other changes.  But since we never get here for remounts (see above),
2675	 * and this is the last chance to report errors, we do it here.
2676	 */
2677	err = fscrypt_add_test_dummy_key(sb, &ctx->dummy_enc_policy);
2678	if (err)
2679		ext4_msg(NULL, KERN_WARNING,
2680			 "Error adding test dummy encryption key [%d]", err);
2681	return err;
2682}
2683
2684static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2685					     struct super_block *sb)
2686{
2687	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2688	    /* if already set, it was already verified to be the same */
2689	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2690		return;
2691	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2692	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2693	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2694}
2695
2696static int ext4_check_opt_consistency(struct fs_context *fc,
2697				      struct super_block *sb)
2698{
2699	struct ext4_fs_context *ctx = fc->fs_private;
2700	struct ext4_sb_info *sbi = fc->s_fs_info;
2701	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2702	int err;
2703
2704	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2705		ext4_msg(NULL, KERN_ERR,
2706			 "Mount option(s) incompatible with ext2");
2707		return -EINVAL;
2708	}
2709	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2710		ext4_msg(NULL, KERN_ERR,
2711			 "Mount option(s) incompatible with ext3");
2712		return -EINVAL;
2713	}
2714
2715	if (ctx->s_want_extra_isize >
2716	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2717		ext4_msg(NULL, KERN_ERR,
2718			 "Invalid want_extra_isize %d",
2719			 ctx->s_want_extra_isize);
2720		return -EINVAL;
2721	}
2722
2723	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2724		int blocksize =
2725			BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2726		if (blocksize < PAGE_SIZE)
2727			ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2728				 "experimental mount option 'dioread_nolock' "
2729				 "for blocksize < PAGE_SIZE");
2730	}
2731
2732	err = ext4_check_test_dummy_encryption(fc, sb);
2733	if (err)
2734		return err;
2735
2736	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2737		if (!sbi->s_journal) {
2738			ext4_msg(NULL, KERN_WARNING,
2739				 "Remounting file system with no journal "
2740				 "so ignoring journalled data option");
2741			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2742		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2743			   test_opt(sb, DATA_FLAGS)) {
2744			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2745				 "on remount");
2746			return -EINVAL;
2747		}
2748	}
2749
2750	if (is_remount) {
2751		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2752		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2753			ext4_msg(NULL, KERN_ERR, "can't mount with "
2754				 "both data=journal and dax");
2755			return -EINVAL;
2756		}
2757
2758		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2759		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2760		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2761fail_dax_change_remount:
2762			ext4_msg(NULL, KERN_ERR, "can't change "
2763				 "dax mount option while remounting");
2764			return -EINVAL;
2765		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2766			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2767			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2768			goto fail_dax_change_remount;
2769		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2770			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2771			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2772			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2773			goto fail_dax_change_remount;
2774		}
2775	}
2776
2777	return ext4_check_quota_consistency(fc, sb);
2778}
2779
2780static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2781{
2782	struct ext4_fs_context *ctx = fc->fs_private;
2783	struct ext4_sb_info *sbi = fc->s_fs_info;
2784
2785	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2786	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2787	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2788	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2789	sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2790	sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2791	sb->s_flags &= ~ctx->mask_s_flags;
2792	sb->s_flags |= ctx->vals_s_flags;
2793
2794#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2795	APPLY(s_commit_interval);
2796	APPLY(s_stripe);
2797	APPLY(s_max_batch_time);
2798	APPLY(s_min_batch_time);
2799	APPLY(s_want_extra_isize);
2800	APPLY(s_inode_readahead_blks);
2801	APPLY(s_max_dir_size_kb);
2802	APPLY(s_li_wait_mult);
2803	APPLY(s_resgid);
2804	APPLY(s_resuid);
2805
2806#ifdef CONFIG_EXT4_DEBUG
2807	APPLY(s_fc_debug_max_replay);
2808#endif
2809
2810	ext4_apply_quota_options(fc, sb);
2811	ext4_apply_test_dummy_encryption(ctx, sb);
2812}
2813
2814
2815static int ext4_validate_options(struct fs_context *fc)
2816{
2817#ifdef CONFIG_QUOTA
2818	struct ext4_fs_context *ctx = fc->fs_private;
2819	char *usr_qf_name, *grp_qf_name;
2820
2821	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2822	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2823
2824	if (usr_qf_name || grp_qf_name) {
2825		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2826			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2827
2828		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2829			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2830
2831		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2832		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2833			ext4_msg(NULL, KERN_ERR, "old and new quota "
2834				 "format mixing");
2835			return -EINVAL;
2836		}
2837	}
2838#endif
2839	return 1;
2840}
2841
2842static inline void ext4_show_quota_options(struct seq_file *seq,
2843					   struct super_block *sb)
2844{
2845#if defined(CONFIG_QUOTA)
2846	struct ext4_sb_info *sbi = EXT4_SB(sb);
2847	char *usr_qf_name, *grp_qf_name;
2848
2849	if (sbi->s_jquota_fmt) {
2850		char *fmtname = "";
2851
2852		switch (sbi->s_jquota_fmt) {
2853		case QFMT_VFS_OLD:
2854			fmtname = "vfsold";
2855			break;
2856		case QFMT_VFS_V0:
2857			fmtname = "vfsv0";
2858			break;
2859		case QFMT_VFS_V1:
2860			fmtname = "vfsv1";
2861			break;
2862		}
2863		seq_printf(seq, ",jqfmt=%s", fmtname);
2864	}
2865
2866	rcu_read_lock();
2867	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2868	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2869	if (usr_qf_name)
2870		seq_show_option(seq, "usrjquota", usr_qf_name);
2871	if (grp_qf_name)
2872		seq_show_option(seq, "grpjquota", grp_qf_name);
2873	rcu_read_unlock();
2874#endif
2875}
2876
2877static const char *token2str(int token)
2878{
2879	const struct fs_parameter_spec *spec;
2880
2881	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2882		if (spec->opt == token && !spec->type)
2883			break;
2884	return spec->name;
2885}
2886
2887/*
2888 * Show an option if
2889 *  - it's set to a non-default value OR
2890 *  - if the per-sb default is different from the global default
2891 */
2892static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2893			      int nodefs)
2894{
2895	struct ext4_sb_info *sbi = EXT4_SB(sb);
2896	struct ext4_super_block *es = sbi->s_es;
2897	int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2898	const struct mount_opts *m;
2899	char sep = nodefs ? '\n' : ',';
2900
2901#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2902#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2903
2904	if (sbi->s_sb_block != 1)
2905		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2906
2907	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2908		int want_set = m->flags & MOPT_SET;
 
 
 
2909		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2910		    m->flags & MOPT_SKIP)
2911			continue;
2912		if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2913			continue; /* skip if same as the default */
 
 
 
 
 
 
 
 
 
 
2914		if ((want_set &&
2915		     (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2916		    (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2917			continue; /* select Opt_noFoo vs Opt_Foo */
2918		SEQ_OPTS_PRINT("%s", token2str(m->token));
2919	}
2920
2921	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2922	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2923		SEQ_OPTS_PRINT("resuid=%u",
2924				from_kuid_munged(&init_user_ns, sbi->s_resuid));
2925	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2926	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2927		SEQ_OPTS_PRINT("resgid=%u",
2928				from_kgid_munged(&init_user_ns, sbi->s_resgid));
2929	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2930	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2931		SEQ_OPTS_PUTS("errors=remount-ro");
2932	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2933		SEQ_OPTS_PUTS("errors=continue");
2934	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2935		SEQ_OPTS_PUTS("errors=panic");
2936	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2937		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2938	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2939		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2940	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2941		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2942	if (nodefs || sbi->s_stripe)
2943		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2944	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2945			(sbi->s_mount_opt ^ def_mount_opt)) {
2946		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2947			SEQ_OPTS_PUTS("data=journal");
2948		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2949			SEQ_OPTS_PUTS("data=ordered");
2950		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2951			SEQ_OPTS_PUTS("data=writeback");
2952	}
2953	if (nodefs ||
2954	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2955		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2956			       sbi->s_inode_readahead_blks);
2957
2958	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2959		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2960		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2961	if (nodefs || sbi->s_max_dir_size_kb)
2962		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2963	if (test_opt(sb, DATA_ERR_ABORT))
2964		SEQ_OPTS_PUTS("data_err=abort");
2965
2966	fscrypt_show_test_dummy_encryption(seq, sep, sb);
2967
2968	if (sb->s_flags & SB_INLINECRYPT)
2969		SEQ_OPTS_PUTS("inlinecrypt");
2970
2971	if (test_opt(sb, DAX_ALWAYS)) {
2972		if (IS_EXT2_SB(sb))
2973			SEQ_OPTS_PUTS("dax");
2974		else
2975			SEQ_OPTS_PUTS("dax=always");
2976	} else if (test_opt2(sb, DAX_NEVER)) {
2977		SEQ_OPTS_PUTS("dax=never");
2978	} else if (test_opt2(sb, DAX_INODE)) {
2979		SEQ_OPTS_PUTS("dax=inode");
2980	}
2981
2982	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2983			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2984		SEQ_OPTS_PUTS("mb_optimize_scan=0");
2985	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2986			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2987		SEQ_OPTS_PUTS("mb_optimize_scan=1");
2988	}
2989
2990	ext4_show_quota_options(seq, sb);
2991	return 0;
2992}
2993
2994static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2995{
2996	return _ext4_show_options(seq, root->d_sb, 0);
2997}
2998
2999int ext4_seq_options_show(struct seq_file *seq, void *offset)
3000{
3001	struct super_block *sb = seq->private;
3002	int rc;
3003
3004	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3005	rc = _ext4_show_options(seq, sb, 1);
3006	seq_puts(seq, "\n");
3007	return rc;
3008}
3009
3010static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3011			    int read_only)
3012{
3013	struct ext4_sb_info *sbi = EXT4_SB(sb);
3014	int err = 0;
3015
3016	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3017		ext4_msg(sb, KERN_ERR, "revision level too high, "
3018			 "forcing read-only mode");
3019		err = -EROFS;
3020		goto done;
3021	}
3022	if (read_only)
3023		goto done;
3024	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3025		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3026			 "running e2fsck is recommended");
3027	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3028		ext4_msg(sb, KERN_WARNING,
3029			 "warning: mounting fs with errors, "
3030			 "running e2fsck is recommended");
3031	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3032		 le16_to_cpu(es->s_mnt_count) >=
3033		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3034		ext4_msg(sb, KERN_WARNING,
3035			 "warning: maximal mount count reached, "
3036			 "running e2fsck is recommended");
3037	else if (le32_to_cpu(es->s_checkinterval) &&
3038		 (ext4_get_tstamp(es, s_lastcheck) +
3039		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3040		ext4_msg(sb, KERN_WARNING,
3041			 "warning: checktime reached, "
3042			 "running e2fsck is recommended");
3043	if (!sbi->s_journal)
3044		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3045	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3046		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3047	le16_add_cpu(&es->s_mnt_count, 1);
3048	ext4_update_tstamp(es, s_mtime);
3049	if (sbi->s_journal) {
3050		ext4_set_feature_journal_needs_recovery(sb);
3051		if (ext4_has_feature_orphan_file(sb))
3052			ext4_set_feature_orphan_present(sb);
3053	}
3054
3055	err = ext4_commit_super(sb);
3056done:
3057	if (test_opt(sb, DEBUG))
3058		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3059				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3060			sb->s_blocksize,
3061			sbi->s_groups_count,
3062			EXT4_BLOCKS_PER_GROUP(sb),
3063			EXT4_INODES_PER_GROUP(sb),
3064			sbi->s_mount_opt, sbi->s_mount_opt2);
3065	return err;
3066}
3067
3068int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3069{
3070	struct ext4_sb_info *sbi = EXT4_SB(sb);
3071	struct flex_groups **old_groups, **new_groups;
3072	int size, i, j;
3073
3074	if (!sbi->s_log_groups_per_flex)
3075		return 0;
3076
3077	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3078	if (size <= sbi->s_flex_groups_allocated)
3079		return 0;
3080
3081	new_groups = kvzalloc(roundup_pow_of_two(size *
3082			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3083	if (!new_groups) {
3084		ext4_msg(sb, KERN_ERR,
3085			 "not enough memory for %d flex group pointers", size);
3086		return -ENOMEM;
3087	}
3088	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3089		new_groups[i] = kvzalloc(roundup_pow_of_two(
3090					 sizeof(struct flex_groups)),
3091					 GFP_KERNEL);
3092		if (!new_groups[i]) {
3093			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3094				kvfree(new_groups[j]);
3095			kvfree(new_groups);
3096			ext4_msg(sb, KERN_ERR,
3097				 "not enough memory for %d flex groups", size);
3098			return -ENOMEM;
3099		}
3100	}
3101	rcu_read_lock();
3102	old_groups = rcu_dereference(sbi->s_flex_groups);
3103	if (old_groups)
3104		memcpy(new_groups, old_groups,
3105		       (sbi->s_flex_groups_allocated *
3106			sizeof(struct flex_groups *)));
3107	rcu_read_unlock();
3108	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3109	sbi->s_flex_groups_allocated = size;
3110	if (old_groups)
3111		ext4_kvfree_array_rcu(old_groups);
3112	return 0;
3113}
3114
3115static int ext4_fill_flex_info(struct super_block *sb)
3116{
3117	struct ext4_sb_info *sbi = EXT4_SB(sb);
3118	struct ext4_group_desc *gdp = NULL;
3119	struct flex_groups *fg;
3120	ext4_group_t flex_group;
3121	int i, err;
3122
3123	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3124	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3125		sbi->s_log_groups_per_flex = 0;
3126		return 1;
3127	}
3128
3129	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3130	if (err)
3131		goto failed;
3132
3133	for (i = 0; i < sbi->s_groups_count; i++) {
3134		gdp = ext4_get_group_desc(sb, i, NULL);
3135
3136		flex_group = ext4_flex_group(sbi, i);
3137		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3138		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3139		atomic64_add(ext4_free_group_clusters(sb, gdp),
3140			     &fg->free_clusters);
3141		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3142	}
3143
3144	return 1;
3145failed:
3146	return 0;
3147}
3148
3149static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3150				   struct ext4_group_desc *gdp)
3151{
3152	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3153	__u16 crc = 0;
3154	__le32 le_group = cpu_to_le32(block_group);
3155	struct ext4_sb_info *sbi = EXT4_SB(sb);
3156
3157	if (ext4_has_metadata_csum(sbi->s_sb)) {
3158		/* Use new metadata_csum algorithm */
3159		__u32 csum32;
3160		__u16 dummy_csum = 0;
3161
3162		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3163				     sizeof(le_group));
3164		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3165		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3166				     sizeof(dummy_csum));
3167		offset += sizeof(dummy_csum);
3168		if (offset < sbi->s_desc_size)
3169			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3170					     sbi->s_desc_size - offset);
3171
3172		crc = csum32 & 0xFFFF;
3173		goto out;
3174	}
3175
3176	/* old crc16 code */
3177	if (!ext4_has_feature_gdt_csum(sb))
3178		return 0;
3179
3180	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3181	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3182	crc = crc16(crc, (__u8 *)gdp, offset);
3183	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3184	/* for checksum of struct ext4_group_desc do the rest...*/
3185	if (ext4_has_feature_64bit(sb) &&
3186	    offset < le16_to_cpu(sbi->s_es->s_desc_size))
3187		crc = crc16(crc, (__u8 *)gdp + offset,
3188			    le16_to_cpu(sbi->s_es->s_desc_size) -
3189				offset);
3190
3191out:
3192	return cpu_to_le16(crc);
3193}
3194
3195int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3196				struct ext4_group_desc *gdp)
3197{
3198	if (ext4_has_group_desc_csum(sb) &&
3199	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3200		return 0;
3201
3202	return 1;
3203}
3204
3205void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3206			      struct ext4_group_desc *gdp)
3207{
3208	if (!ext4_has_group_desc_csum(sb))
3209		return;
3210	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3211}
3212
3213/* Called at mount-time, super-block is locked */
3214static int ext4_check_descriptors(struct super_block *sb,
3215				  ext4_fsblk_t sb_block,
3216				  ext4_group_t *first_not_zeroed)
3217{
3218	struct ext4_sb_info *sbi = EXT4_SB(sb);
3219	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3220	ext4_fsblk_t last_block;
3221	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3222	ext4_fsblk_t block_bitmap;
3223	ext4_fsblk_t inode_bitmap;
3224	ext4_fsblk_t inode_table;
3225	int flexbg_flag = 0;
3226	ext4_group_t i, grp = sbi->s_groups_count;
3227
3228	if (ext4_has_feature_flex_bg(sb))
3229		flexbg_flag = 1;
3230
3231	ext4_debug("Checking group descriptors");
3232
3233	for (i = 0; i < sbi->s_groups_count; i++) {
3234		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3235
3236		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3237			last_block = ext4_blocks_count(sbi->s_es) - 1;
3238		else
3239			last_block = first_block +
3240				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3241
3242		if ((grp == sbi->s_groups_count) &&
3243		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3244			grp = i;
3245
3246		block_bitmap = ext4_block_bitmap(sb, gdp);
3247		if (block_bitmap == sb_block) {
3248			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3249				 "Block bitmap for group %u overlaps "
3250				 "superblock", i);
3251			if (!sb_rdonly(sb))
3252				return 0;
3253		}
3254		if (block_bitmap >= sb_block + 1 &&
3255		    block_bitmap <= last_bg_block) {
3256			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3257				 "Block bitmap for group %u overlaps "
3258				 "block group descriptors", i);
3259			if (!sb_rdonly(sb))
3260				return 0;
3261		}
3262		if (block_bitmap < first_block || block_bitmap > last_block) {
3263			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3264			       "Block bitmap for group %u not in group "
3265			       "(block %llu)!", i, block_bitmap);
3266			return 0;
3267		}
3268		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3269		if (inode_bitmap == sb_block) {
3270			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3271				 "Inode bitmap for group %u overlaps "
3272				 "superblock", i);
3273			if (!sb_rdonly(sb))
3274				return 0;
3275		}
3276		if (inode_bitmap >= sb_block + 1 &&
3277		    inode_bitmap <= last_bg_block) {
3278			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3279				 "Inode bitmap for group %u overlaps "
3280				 "block group descriptors", i);
3281			if (!sb_rdonly(sb))
3282				return 0;
3283		}
3284		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3285			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3286			       "Inode bitmap for group %u not in group "
3287			       "(block %llu)!", i, inode_bitmap);
3288			return 0;
3289		}
3290		inode_table = ext4_inode_table(sb, gdp);
3291		if (inode_table == sb_block) {
3292			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3293				 "Inode table for group %u overlaps "
3294				 "superblock", i);
3295			if (!sb_rdonly(sb))
3296				return 0;
3297		}
3298		if (inode_table >= sb_block + 1 &&
3299		    inode_table <= last_bg_block) {
3300			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3301				 "Inode table for group %u overlaps "
3302				 "block group descriptors", i);
3303			if (!sb_rdonly(sb))
3304				return 0;
3305		}
3306		if (inode_table < first_block ||
3307		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3308			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3309			       "Inode table for group %u not in group "
3310			       "(block %llu)!", i, inode_table);
3311			return 0;
3312		}
3313		ext4_lock_group(sb, i);
3314		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3315			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3316				 "Checksum for group %u failed (%u!=%u)",
3317				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3318				     gdp)), le16_to_cpu(gdp->bg_checksum));
3319			if (!sb_rdonly(sb)) {
3320				ext4_unlock_group(sb, i);
3321				return 0;
3322			}
3323		}
3324		ext4_unlock_group(sb, i);
3325		if (!flexbg_flag)
3326			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3327	}
3328	if (NULL != first_not_zeroed)
3329		*first_not_zeroed = grp;
3330	return 1;
3331}
3332
3333/*
3334 * Maximal extent format file size.
3335 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3336 * extent format containers, within a sector_t, and within i_blocks
3337 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3338 * so that won't be a limiting factor.
3339 *
3340 * However there is other limiting factor. We do store extents in the form
3341 * of starting block and length, hence the resulting length of the extent
3342 * covering maximum file size must fit into on-disk format containers as
3343 * well. Given that length is always by 1 unit bigger than max unit (because
3344 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3345 *
3346 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3347 */
3348static loff_t ext4_max_size(int blkbits, int has_huge_files)
3349{
3350	loff_t res;
3351	loff_t upper_limit = MAX_LFS_FILESIZE;
3352
3353	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3354
3355	if (!has_huge_files) {
3356		upper_limit = (1LL << 32) - 1;
3357
3358		/* total blocks in file system block size */
3359		upper_limit >>= (blkbits - 9);
3360		upper_limit <<= blkbits;
3361	}
3362
3363	/*
3364	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3365	 * by one fs block, so ee_len can cover the extent of maximum file
3366	 * size
3367	 */
3368	res = (1LL << 32) - 1;
3369	res <<= blkbits;
3370
3371	/* Sanity check against vm- & vfs- imposed limits */
3372	if (res > upper_limit)
3373		res = upper_limit;
3374
3375	return res;
3376}
3377
3378/*
3379 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3380 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3381 * We need to be 1 filesystem block less than the 2^48 sector limit.
3382 */
3383static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3384{
3385	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3386	int meta_blocks;
3387	unsigned int ppb = 1 << (bits - 2);
3388
3389	/*
3390	 * This is calculated to be the largest file size for a dense, block
3391	 * mapped file such that the file's total number of 512-byte sectors,
3392	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3393	 *
3394	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3395	 * number of 512-byte sectors of the file.
3396	 */
3397	if (!has_huge_files) {
3398		/*
3399		 * !has_huge_files or implies that the inode i_block field
3400		 * represents total file blocks in 2^32 512-byte sectors ==
3401		 * size of vfs inode i_blocks * 8
3402		 */
3403		upper_limit = (1LL << 32) - 1;
3404
3405		/* total blocks in file system block size */
3406		upper_limit >>= (bits - 9);
3407
3408	} else {
3409		/*
3410		 * We use 48 bit ext4_inode i_blocks
3411		 * With EXT4_HUGE_FILE_FL set the i_blocks
3412		 * represent total number of blocks in
3413		 * file system block size
3414		 */
3415		upper_limit = (1LL << 48) - 1;
3416
3417	}
3418
3419	/* Compute how many blocks we can address by block tree */
3420	res += ppb;
3421	res += ppb * ppb;
3422	res += ((loff_t)ppb) * ppb * ppb;
3423	/* Compute how many metadata blocks are needed */
3424	meta_blocks = 1;
3425	meta_blocks += 1 + ppb;
3426	meta_blocks += 1 + ppb + ppb * ppb;
3427	/* Does block tree limit file size? */
3428	if (res + meta_blocks <= upper_limit)
3429		goto check_lfs;
3430
3431	res = upper_limit;
3432	/* How many metadata blocks are needed for addressing upper_limit? */
3433	upper_limit -= EXT4_NDIR_BLOCKS;
3434	/* indirect blocks */
3435	meta_blocks = 1;
3436	upper_limit -= ppb;
3437	/* double indirect blocks */
3438	if (upper_limit < ppb * ppb) {
3439		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3440		res -= meta_blocks;
3441		goto check_lfs;
3442	}
3443	meta_blocks += 1 + ppb;
3444	upper_limit -= ppb * ppb;
3445	/* tripple indirect blocks for the rest */
3446	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3447		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3448	res -= meta_blocks;
3449check_lfs:
3450	res <<= bits;
3451	if (res > MAX_LFS_FILESIZE)
3452		res = MAX_LFS_FILESIZE;
3453
3454	return res;
3455}
3456
3457static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3458				   ext4_fsblk_t logical_sb_block, int nr)
3459{
3460	struct ext4_sb_info *sbi = EXT4_SB(sb);
3461	ext4_group_t bg, first_meta_bg;
3462	int has_super = 0;
3463
3464	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3465
3466	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3467		return logical_sb_block + nr + 1;
3468	bg = sbi->s_desc_per_block * nr;
3469	if (ext4_bg_has_super(sb, bg))
3470		has_super = 1;
3471
3472	/*
3473	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3474	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3475	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3476	 * compensate.
3477	 */
3478	if (sb->s_blocksize == 1024 && nr == 0 &&
3479	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3480		has_super++;
3481
3482	return (has_super + ext4_group_first_block_no(sb, bg));
3483}
3484
3485/**
3486 * ext4_get_stripe_size: Get the stripe size.
3487 * @sbi: In memory super block info
3488 *
3489 * If we have specified it via mount option, then
3490 * use the mount option value. If the value specified at mount time is
3491 * greater than the blocks per group use the super block value.
3492 * If the super block value is greater than blocks per group return 0.
3493 * Allocator needs it be less than blocks per group.
3494 *
3495 */
3496static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3497{
3498	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3499	unsigned long stripe_width =
3500			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3501	int ret;
3502
3503	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3504		ret = sbi->s_stripe;
3505	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3506		ret = stripe_width;
3507	else if (stride && stride <= sbi->s_blocks_per_group)
3508		ret = stride;
3509	else
3510		ret = 0;
3511
3512	/*
3513	 * If the stripe width is 1, this makes no sense and
3514	 * we set it to 0 to turn off stripe handling code.
3515	 */
3516	if (ret <= 1)
3517		ret = 0;
3518
3519	return ret;
3520}
3521
3522/*
3523 * Check whether this filesystem can be mounted based on
3524 * the features present and the RDONLY/RDWR mount requested.
3525 * Returns 1 if this filesystem can be mounted as requested,
3526 * 0 if it cannot be.
3527 */
3528int ext4_feature_set_ok(struct super_block *sb, int readonly)
3529{
3530	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3531		ext4_msg(sb, KERN_ERR,
3532			"Couldn't mount because of "
3533			"unsupported optional features (%x)",
3534			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3535			~EXT4_FEATURE_INCOMPAT_SUPP));
3536		return 0;
3537	}
3538
3539#if !IS_ENABLED(CONFIG_UNICODE)
3540	if (ext4_has_feature_casefold(sb)) {
3541		ext4_msg(sb, KERN_ERR,
3542			 "Filesystem with casefold feature cannot be "
3543			 "mounted without CONFIG_UNICODE");
3544		return 0;
3545	}
3546#endif
3547
3548	if (readonly)
3549		return 1;
3550
3551	if (ext4_has_feature_readonly(sb)) {
3552		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3553		sb->s_flags |= SB_RDONLY;
3554		return 1;
3555	}
3556
3557	/* Check that feature set is OK for a read-write mount */
3558	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3559		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3560			 "unsupported optional features (%x)",
3561			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3562				~EXT4_FEATURE_RO_COMPAT_SUPP));
3563		return 0;
3564	}
3565	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3566		ext4_msg(sb, KERN_ERR,
3567			 "Can't support bigalloc feature without "
3568			 "extents feature\n");
3569		return 0;
3570	}
3571
3572#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3573	if (!readonly && (ext4_has_feature_quota(sb) ||
3574			  ext4_has_feature_project(sb))) {
3575		ext4_msg(sb, KERN_ERR,
3576			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3577		return 0;
3578	}
3579#endif  /* CONFIG_QUOTA */
3580	return 1;
3581}
3582
3583/*
3584 * This function is called once a day if we have errors logged
3585 * on the file system
3586 */
3587static void print_daily_error_info(struct timer_list *t)
3588{
3589	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3590	struct super_block *sb = sbi->s_sb;
3591	struct ext4_super_block *es = sbi->s_es;
3592
3593	if (es->s_error_count)
3594		/* fsck newer than v1.41.13 is needed to clean this condition. */
3595		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3596			 le32_to_cpu(es->s_error_count));
3597	if (es->s_first_error_time) {
3598		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3599		       sb->s_id,
3600		       ext4_get_tstamp(es, s_first_error_time),
3601		       (int) sizeof(es->s_first_error_func),
3602		       es->s_first_error_func,
3603		       le32_to_cpu(es->s_first_error_line));
3604		if (es->s_first_error_ino)
3605			printk(KERN_CONT ": inode %u",
3606			       le32_to_cpu(es->s_first_error_ino));
3607		if (es->s_first_error_block)
3608			printk(KERN_CONT ": block %llu", (unsigned long long)
3609			       le64_to_cpu(es->s_first_error_block));
3610		printk(KERN_CONT "\n");
3611	}
3612	if (es->s_last_error_time) {
3613		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3614		       sb->s_id,
3615		       ext4_get_tstamp(es, s_last_error_time),
3616		       (int) sizeof(es->s_last_error_func),
3617		       es->s_last_error_func,
3618		       le32_to_cpu(es->s_last_error_line));
3619		if (es->s_last_error_ino)
3620			printk(KERN_CONT ": inode %u",
3621			       le32_to_cpu(es->s_last_error_ino));
3622		if (es->s_last_error_block)
3623			printk(KERN_CONT ": block %llu", (unsigned long long)
3624			       le64_to_cpu(es->s_last_error_block));
3625		printk(KERN_CONT "\n");
3626	}
3627	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3628}
3629
3630/* Find next suitable group and run ext4_init_inode_table */
3631static int ext4_run_li_request(struct ext4_li_request *elr)
3632{
3633	struct ext4_group_desc *gdp = NULL;
3634	struct super_block *sb = elr->lr_super;
3635	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3636	ext4_group_t group = elr->lr_next_group;
3637	unsigned int prefetch_ios = 0;
3638	int ret = 0;
 
3639	u64 start_time;
3640
3641	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3642		elr->lr_next_group = ext4_mb_prefetch(sb, group,
3643				EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3644		if (prefetch_ios)
3645			ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3646					      prefetch_ios);
3647		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3648					    prefetch_ios);
3649		if (group >= elr->lr_next_group) {
3650			ret = 1;
3651			if (elr->lr_first_not_zeroed != ngroups &&
3652			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3653				elr->lr_next_group = elr->lr_first_not_zeroed;
3654				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3655				ret = 0;
3656			}
3657		}
3658		return ret;
3659	}
3660
3661	for (; group < ngroups; group++) {
3662		gdp = ext4_get_group_desc(sb, group, NULL);
3663		if (!gdp) {
3664			ret = 1;
3665			break;
3666		}
3667
3668		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3669			break;
3670	}
3671
3672	if (group >= ngroups)
3673		ret = 1;
3674
3675	if (!ret) {
3676		start_time = ktime_get_real_ns();
3677		ret = ext4_init_inode_table(sb, group,
3678					    elr->lr_timeout ? 0 : 1);
3679		trace_ext4_lazy_itable_init(sb, group);
3680		if (elr->lr_timeout == 0) {
3681			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3682				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3683		}
3684		elr->lr_next_sched = jiffies + elr->lr_timeout;
3685		elr->lr_next_group = group + 1;
3686	}
3687	return ret;
3688}
3689
3690/*
3691 * Remove lr_request from the list_request and free the
3692 * request structure. Should be called with li_list_mtx held
3693 */
3694static void ext4_remove_li_request(struct ext4_li_request *elr)
3695{
3696	if (!elr)
3697		return;
3698
3699	list_del(&elr->lr_request);
3700	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3701	kfree(elr);
3702}
3703
3704static void ext4_unregister_li_request(struct super_block *sb)
3705{
3706	mutex_lock(&ext4_li_mtx);
3707	if (!ext4_li_info) {
3708		mutex_unlock(&ext4_li_mtx);
3709		return;
3710	}
3711
3712	mutex_lock(&ext4_li_info->li_list_mtx);
3713	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3714	mutex_unlock(&ext4_li_info->li_list_mtx);
3715	mutex_unlock(&ext4_li_mtx);
3716}
3717
3718static struct task_struct *ext4_lazyinit_task;
3719
3720/*
3721 * This is the function where ext4lazyinit thread lives. It walks
3722 * through the request list searching for next scheduled filesystem.
3723 * When such a fs is found, run the lazy initialization request
3724 * (ext4_rn_li_request) and keep track of the time spend in this
3725 * function. Based on that time we compute next schedule time of
3726 * the request. When walking through the list is complete, compute
3727 * next waking time and put itself into sleep.
3728 */
3729static int ext4_lazyinit_thread(void *arg)
3730{
3731	struct ext4_lazy_init *eli = arg;
3732	struct list_head *pos, *n;
3733	struct ext4_li_request *elr;
3734	unsigned long next_wakeup, cur;
3735
3736	BUG_ON(NULL == eli);
3737	set_freezable();
3738
3739cont_thread:
3740	while (true) {
3741		next_wakeup = MAX_JIFFY_OFFSET;
3742
3743		mutex_lock(&eli->li_list_mtx);
3744		if (list_empty(&eli->li_request_list)) {
3745			mutex_unlock(&eli->li_list_mtx);
3746			goto exit_thread;
3747		}
3748		list_for_each_safe(pos, n, &eli->li_request_list) {
3749			int err = 0;
3750			int progress = 0;
3751			elr = list_entry(pos, struct ext4_li_request,
3752					 lr_request);
3753
3754			if (time_before(jiffies, elr->lr_next_sched)) {
3755				if (time_before(elr->lr_next_sched, next_wakeup))
3756					next_wakeup = elr->lr_next_sched;
3757				continue;
3758			}
3759			if (down_read_trylock(&elr->lr_super->s_umount)) {
3760				if (sb_start_write_trylock(elr->lr_super)) {
3761					progress = 1;
3762					/*
3763					 * We hold sb->s_umount, sb can not
3764					 * be removed from the list, it is
3765					 * now safe to drop li_list_mtx
3766					 */
3767					mutex_unlock(&eli->li_list_mtx);
3768					err = ext4_run_li_request(elr);
3769					sb_end_write(elr->lr_super);
3770					mutex_lock(&eli->li_list_mtx);
3771					n = pos->next;
3772				}
3773				up_read((&elr->lr_super->s_umount));
3774			}
3775			/* error, remove the lazy_init job */
3776			if (err) {
3777				ext4_remove_li_request(elr);
3778				continue;
3779			}
3780			if (!progress) {
3781				elr->lr_next_sched = jiffies +
3782					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3783			}
3784			if (time_before(elr->lr_next_sched, next_wakeup))
3785				next_wakeup = elr->lr_next_sched;
3786		}
3787		mutex_unlock(&eli->li_list_mtx);
3788
3789		try_to_freeze();
3790
3791		cur = jiffies;
3792		if ((time_after_eq(cur, next_wakeup)) ||
3793		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3794			cond_resched();
3795			continue;
3796		}
3797
3798		schedule_timeout_interruptible(next_wakeup - cur);
3799
3800		if (kthread_should_stop()) {
3801			ext4_clear_request_list();
3802			goto exit_thread;
3803		}
3804	}
3805
3806exit_thread:
3807	/*
3808	 * It looks like the request list is empty, but we need
3809	 * to check it under the li_list_mtx lock, to prevent any
3810	 * additions into it, and of course we should lock ext4_li_mtx
3811	 * to atomically free the list and ext4_li_info, because at
3812	 * this point another ext4 filesystem could be registering
3813	 * new one.
3814	 */
3815	mutex_lock(&ext4_li_mtx);
3816	mutex_lock(&eli->li_list_mtx);
3817	if (!list_empty(&eli->li_request_list)) {
3818		mutex_unlock(&eli->li_list_mtx);
3819		mutex_unlock(&ext4_li_mtx);
3820		goto cont_thread;
3821	}
3822	mutex_unlock(&eli->li_list_mtx);
3823	kfree(ext4_li_info);
3824	ext4_li_info = NULL;
3825	mutex_unlock(&ext4_li_mtx);
3826
3827	return 0;
3828}
3829
3830static void ext4_clear_request_list(void)
3831{
3832	struct list_head *pos, *n;
3833	struct ext4_li_request *elr;
3834
3835	mutex_lock(&ext4_li_info->li_list_mtx);
3836	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3837		elr = list_entry(pos, struct ext4_li_request,
3838				 lr_request);
3839		ext4_remove_li_request(elr);
3840	}
3841	mutex_unlock(&ext4_li_info->li_list_mtx);
3842}
3843
3844static int ext4_run_lazyinit_thread(void)
3845{
3846	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3847					 ext4_li_info, "ext4lazyinit");
3848	if (IS_ERR(ext4_lazyinit_task)) {
3849		int err = PTR_ERR(ext4_lazyinit_task);
3850		ext4_clear_request_list();
3851		kfree(ext4_li_info);
3852		ext4_li_info = NULL;
3853		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3854				 "initialization thread\n",
3855				 err);
3856		return err;
3857	}
3858	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3859	return 0;
3860}
3861
3862/*
3863 * Check whether it make sense to run itable init. thread or not.
3864 * If there is at least one uninitialized inode table, return
3865 * corresponding group number, else the loop goes through all
3866 * groups and return total number of groups.
3867 */
3868static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3869{
3870	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3871	struct ext4_group_desc *gdp = NULL;
3872
3873	if (!ext4_has_group_desc_csum(sb))
3874		return ngroups;
3875
3876	for (group = 0; group < ngroups; group++) {
3877		gdp = ext4_get_group_desc(sb, group, NULL);
3878		if (!gdp)
3879			continue;
3880
3881		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3882			break;
3883	}
3884
3885	return group;
3886}
3887
3888static int ext4_li_info_new(void)
3889{
3890	struct ext4_lazy_init *eli = NULL;
3891
3892	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3893	if (!eli)
3894		return -ENOMEM;
3895
3896	INIT_LIST_HEAD(&eli->li_request_list);
3897	mutex_init(&eli->li_list_mtx);
3898
3899	eli->li_state |= EXT4_LAZYINIT_QUIT;
3900
3901	ext4_li_info = eli;
3902
3903	return 0;
3904}
3905
3906static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3907					    ext4_group_t start)
3908{
3909	struct ext4_li_request *elr;
3910
3911	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3912	if (!elr)
3913		return NULL;
3914
3915	elr->lr_super = sb;
3916	elr->lr_first_not_zeroed = start;
3917	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3918		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3919		elr->lr_next_group = start;
3920	} else {
3921		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3922	}
3923
3924	/*
3925	 * Randomize first schedule time of the request to
3926	 * spread the inode table initialization requests
3927	 * better.
3928	 */
3929	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3930	return elr;
3931}
3932
3933int ext4_register_li_request(struct super_block *sb,
3934			     ext4_group_t first_not_zeroed)
3935{
3936	struct ext4_sb_info *sbi = EXT4_SB(sb);
3937	struct ext4_li_request *elr = NULL;
3938	ext4_group_t ngroups = sbi->s_groups_count;
3939	int ret = 0;
3940
3941	mutex_lock(&ext4_li_mtx);
3942	if (sbi->s_li_request != NULL) {
3943		/*
3944		 * Reset timeout so it can be computed again, because
3945		 * s_li_wait_mult might have changed.
3946		 */
3947		sbi->s_li_request->lr_timeout = 0;
3948		goto out;
3949	}
3950
3951	if (sb_rdonly(sb) ||
3952	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3953	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3954		goto out;
3955
3956	elr = ext4_li_request_new(sb, first_not_zeroed);
3957	if (!elr) {
3958		ret = -ENOMEM;
3959		goto out;
3960	}
3961
3962	if (NULL == ext4_li_info) {
3963		ret = ext4_li_info_new();
3964		if (ret)
3965			goto out;
3966	}
3967
3968	mutex_lock(&ext4_li_info->li_list_mtx);
3969	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3970	mutex_unlock(&ext4_li_info->li_list_mtx);
3971
3972	sbi->s_li_request = elr;
3973	/*
3974	 * set elr to NULL here since it has been inserted to
3975	 * the request_list and the removal and free of it is
3976	 * handled by ext4_clear_request_list from now on.
3977	 */
3978	elr = NULL;
3979
3980	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3981		ret = ext4_run_lazyinit_thread();
3982		if (ret)
3983			goto out;
3984	}
3985out:
3986	mutex_unlock(&ext4_li_mtx);
3987	if (ret)
3988		kfree(elr);
3989	return ret;
3990}
3991
3992/*
3993 * We do not need to lock anything since this is called on
3994 * module unload.
3995 */
3996static void ext4_destroy_lazyinit_thread(void)
3997{
3998	/*
3999	 * If thread exited earlier
4000	 * there's nothing to be done.
4001	 */
4002	if (!ext4_li_info || !ext4_lazyinit_task)
4003		return;
4004
4005	kthread_stop(ext4_lazyinit_task);
4006}
4007
4008static int set_journal_csum_feature_set(struct super_block *sb)
4009{
4010	int ret = 1;
4011	int compat, incompat;
4012	struct ext4_sb_info *sbi = EXT4_SB(sb);
4013
4014	if (ext4_has_metadata_csum(sb)) {
4015		/* journal checksum v3 */
4016		compat = 0;
4017		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4018	} else {
4019		/* journal checksum v1 */
4020		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4021		incompat = 0;
4022	}
4023
4024	jbd2_journal_clear_features(sbi->s_journal,
4025			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4026			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4027			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4028	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4029		ret = jbd2_journal_set_features(sbi->s_journal,
4030				compat, 0,
4031				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4032				incompat);
4033	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4034		ret = jbd2_journal_set_features(sbi->s_journal,
4035				compat, 0,
4036				incompat);
4037		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4038				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4039	} else {
4040		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4041				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4042	}
4043
4044	return ret;
4045}
4046
4047/*
4048 * Note: calculating the overhead so we can be compatible with
4049 * historical BSD practice is quite difficult in the face of
4050 * clusters/bigalloc.  This is because multiple metadata blocks from
4051 * different block group can end up in the same allocation cluster.
4052 * Calculating the exact overhead in the face of clustered allocation
4053 * requires either O(all block bitmaps) in memory or O(number of block
4054 * groups**2) in time.  We will still calculate the superblock for
4055 * older file systems --- and if we come across with a bigalloc file
4056 * system with zero in s_overhead_clusters the estimate will be close to
4057 * correct especially for very large cluster sizes --- but for newer
4058 * file systems, it's better to calculate this figure once at mkfs
4059 * time, and store it in the superblock.  If the superblock value is
4060 * present (even for non-bigalloc file systems), we will use it.
4061 */
4062static int count_overhead(struct super_block *sb, ext4_group_t grp,
4063			  char *buf)
4064{
4065	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4066	struct ext4_group_desc	*gdp;
4067	ext4_fsblk_t		first_block, last_block, b;
4068	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4069	int			s, j, count = 0;
4070	int			has_super = ext4_bg_has_super(sb, grp);
4071
4072	if (!ext4_has_feature_bigalloc(sb))
4073		return (has_super + ext4_bg_num_gdb(sb, grp) +
4074			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4075			sbi->s_itb_per_group + 2);
4076
4077	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4078		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4079	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4080	for (i = 0; i < ngroups; i++) {
4081		gdp = ext4_get_group_desc(sb, i, NULL);
4082		b = ext4_block_bitmap(sb, gdp);
4083		if (b >= first_block && b <= last_block) {
4084			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4085			count++;
4086		}
4087		b = ext4_inode_bitmap(sb, gdp);
4088		if (b >= first_block && b <= last_block) {
4089			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4090			count++;
4091		}
4092		b = ext4_inode_table(sb, gdp);
4093		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4094			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4095				int c = EXT4_B2C(sbi, b - first_block);
4096				ext4_set_bit(c, buf);
4097				count++;
4098			}
4099		if (i != grp)
4100			continue;
4101		s = 0;
4102		if (ext4_bg_has_super(sb, grp)) {
4103			ext4_set_bit(s++, buf);
4104			count++;
4105		}
4106		j = ext4_bg_num_gdb(sb, grp);
4107		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4108			ext4_error(sb, "Invalid number of block group "
4109				   "descriptor blocks: %d", j);
4110			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4111		}
4112		count += j;
4113		for (; j > 0; j--)
4114			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4115	}
4116	if (!count)
4117		return 0;
4118	return EXT4_CLUSTERS_PER_GROUP(sb) -
4119		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4120}
4121
4122/*
4123 * Compute the overhead and stash it in sbi->s_overhead
4124 */
4125int ext4_calculate_overhead(struct super_block *sb)
4126{
4127	struct ext4_sb_info *sbi = EXT4_SB(sb);
4128	struct ext4_super_block *es = sbi->s_es;
4129	struct inode *j_inode;
4130	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4131	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4132	ext4_fsblk_t overhead = 0;
4133	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4134
4135	if (!buf)
4136		return -ENOMEM;
4137
4138	/*
4139	 * Compute the overhead (FS structures).  This is constant
4140	 * for a given filesystem unless the number of block groups
4141	 * changes so we cache the previous value until it does.
4142	 */
4143
4144	/*
4145	 * All of the blocks before first_data_block are overhead
4146	 */
4147	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4148
4149	/*
4150	 * Add the overhead found in each block group
4151	 */
4152	for (i = 0; i < ngroups; i++) {
4153		int blks;
4154
4155		blks = count_overhead(sb, i, buf);
4156		overhead += blks;
4157		if (blks)
4158			memset(buf, 0, PAGE_SIZE);
4159		cond_resched();
4160	}
4161
4162	/*
4163	 * Add the internal journal blocks whether the journal has been
4164	 * loaded or not
4165	 */
4166	if (sbi->s_journal && !sbi->s_journal_bdev)
4167		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4168	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4169		/* j_inum for internal journal is non-zero */
4170		j_inode = ext4_get_journal_inode(sb, j_inum);
4171		if (j_inode) {
4172			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4173			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4174			iput(j_inode);
4175		} else {
4176			ext4_msg(sb, KERN_ERR, "can't get journal size");
4177		}
4178	}
4179	sbi->s_overhead = overhead;
4180	smp_wmb();
4181	free_page((unsigned long) buf);
4182	return 0;
4183}
4184
4185static void ext4_set_resv_clusters(struct super_block *sb)
4186{
4187	ext4_fsblk_t resv_clusters;
4188	struct ext4_sb_info *sbi = EXT4_SB(sb);
4189
4190	/*
4191	 * There's no need to reserve anything when we aren't using extents.
4192	 * The space estimates are exact, there are no unwritten extents,
4193	 * hole punching doesn't need new metadata... This is needed especially
4194	 * to keep ext2/3 backward compatibility.
4195	 */
4196	if (!ext4_has_feature_extents(sb))
4197		return;
4198	/*
4199	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4200	 * This should cover the situations where we can not afford to run
4201	 * out of space like for example punch hole, or converting
4202	 * unwritten extents in delalloc path. In most cases such
4203	 * allocation would require 1, or 2 blocks, higher numbers are
4204	 * very rare.
4205	 */
4206	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4207			 sbi->s_cluster_bits);
4208
4209	do_div(resv_clusters, 50);
4210	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4211
4212	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4213}
4214
4215static const char *ext4_quota_mode(struct super_block *sb)
4216{
4217#ifdef CONFIG_QUOTA
4218	if (!ext4_quota_capable(sb))
4219		return "none";
4220
4221	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4222		return "journalled";
4223	else
4224		return "writeback";
4225#else
4226	return "disabled";
4227#endif
4228}
4229
4230static void ext4_setup_csum_trigger(struct super_block *sb,
4231				    enum ext4_journal_trigger_type type,
4232				    void (*trigger)(
4233					struct jbd2_buffer_trigger_type *type,
4234					struct buffer_head *bh,
4235					void *mapped_data,
4236					size_t size))
4237{
4238	struct ext4_sb_info *sbi = EXT4_SB(sb);
4239
4240	sbi->s_journal_triggers[type].sb = sb;
4241	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4242}
4243
4244static void ext4_free_sbi(struct ext4_sb_info *sbi)
4245{
4246	if (!sbi)
4247		return;
4248
4249	kfree(sbi->s_blockgroup_lock);
4250	fs_put_dax(sbi->s_daxdev, NULL);
4251	kfree(sbi);
4252}
4253
4254static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4255{
4256	struct ext4_sb_info *sbi;
4257
4258	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4259	if (!sbi)
4260		return NULL;
4261
4262	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4263					   NULL, NULL);
4264
4265	sbi->s_blockgroup_lock =
4266		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4267
4268	if (!sbi->s_blockgroup_lock)
4269		goto err_out;
4270
4271	sb->s_fs_info = sbi;
4272	sbi->s_sb = sb;
4273	return sbi;
4274err_out:
4275	fs_put_dax(sbi->s_daxdev, NULL);
4276	kfree(sbi);
4277	return NULL;
4278}
4279
4280static void ext4_set_def_opts(struct super_block *sb,
4281			      struct ext4_super_block *es)
4282{
4283	unsigned long def_mount_opts;
4284
4285	/* Set defaults before we parse the mount options */
4286	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4287	set_opt(sb, INIT_INODE_TABLE);
4288	if (def_mount_opts & EXT4_DEFM_DEBUG)
4289		set_opt(sb, DEBUG);
4290	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4291		set_opt(sb, GRPID);
4292	if (def_mount_opts & EXT4_DEFM_UID16)
4293		set_opt(sb, NO_UID32);
4294	/* xattr user namespace & acls are now defaulted on */
4295	set_opt(sb, XATTR_USER);
4296#ifdef CONFIG_EXT4_FS_POSIX_ACL
4297	set_opt(sb, POSIX_ACL);
4298#endif
4299	if (ext4_has_feature_fast_commit(sb))
4300		set_opt2(sb, JOURNAL_FAST_COMMIT);
4301	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4302	if (ext4_has_metadata_csum(sb))
4303		set_opt(sb, JOURNAL_CHECKSUM);
4304
4305	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4306		set_opt(sb, JOURNAL_DATA);
4307	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4308		set_opt(sb, ORDERED_DATA);
4309	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4310		set_opt(sb, WRITEBACK_DATA);
4311
4312	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4313		set_opt(sb, ERRORS_PANIC);
4314	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4315		set_opt(sb, ERRORS_CONT);
4316	else
4317		set_opt(sb, ERRORS_RO);
4318	/* block_validity enabled by default; disable with noblock_validity */
4319	set_opt(sb, BLOCK_VALIDITY);
4320	if (def_mount_opts & EXT4_DEFM_DISCARD)
4321		set_opt(sb, DISCARD);
4322
4323	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4324		set_opt(sb, BARRIER);
4325
4326	/*
4327	 * enable delayed allocation by default
4328	 * Use -o nodelalloc to turn it off
4329	 */
4330	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4331	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4332		set_opt(sb, DELALLOC);
4333
4334	if (sb->s_blocksize == PAGE_SIZE)
4335		set_opt(sb, DIOREAD_NOLOCK);
4336}
4337
4338static int ext4_handle_clustersize(struct super_block *sb)
4339{
4340	struct ext4_sb_info *sbi = EXT4_SB(sb);
4341	struct ext4_super_block *es = sbi->s_es;
4342	int clustersize;
4343
4344	/* Handle clustersize */
4345	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4346	if (ext4_has_feature_bigalloc(sb)) {
4347		if (clustersize < sb->s_blocksize) {
4348			ext4_msg(sb, KERN_ERR,
4349				 "cluster size (%d) smaller than "
4350				 "block size (%lu)", clustersize, sb->s_blocksize);
4351			return -EINVAL;
4352		}
4353		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4354			le32_to_cpu(es->s_log_block_size);
4355		sbi->s_clusters_per_group =
4356			le32_to_cpu(es->s_clusters_per_group);
4357		if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4358			ext4_msg(sb, KERN_ERR,
4359				 "#clusters per group too big: %lu",
4360				 sbi->s_clusters_per_group);
4361			return -EINVAL;
4362		}
4363		if (sbi->s_blocks_per_group !=
4364		    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4365			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4366				 "clusters per group (%lu) inconsistent",
4367				 sbi->s_blocks_per_group,
4368				 sbi->s_clusters_per_group);
4369			return -EINVAL;
4370		}
4371	} else {
4372		if (clustersize != sb->s_blocksize) {
4373			ext4_msg(sb, KERN_ERR,
4374				 "fragment/cluster size (%d) != "
4375				 "block size (%lu)", clustersize, sb->s_blocksize);
4376			return -EINVAL;
4377		}
4378		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4379			ext4_msg(sb, KERN_ERR,
4380				 "#blocks per group too big: %lu",
4381				 sbi->s_blocks_per_group);
4382			return -EINVAL;
4383		}
4384		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4385		sbi->s_cluster_bits = 0;
4386	}
4387	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4388
4389	/* Do we have standard group size of clustersize * 8 blocks ? */
4390	if (sbi->s_blocks_per_group == clustersize << 3)
4391		set_opt2(sb, STD_GROUP_SIZE);
4392
4393	return 0;
4394}
4395
4396static void ext4_fast_commit_init(struct super_block *sb)
4397{
4398	struct ext4_sb_info *sbi = EXT4_SB(sb);
4399
4400	/* Initialize fast commit stuff */
4401	atomic_set(&sbi->s_fc_subtid, 0);
4402	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4403	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4404	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4405	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4406	sbi->s_fc_bytes = 0;
4407	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4408	sbi->s_fc_ineligible_tid = 0;
4409	spin_lock_init(&sbi->s_fc_lock);
4410	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4411	sbi->s_fc_replay_state.fc_regions = NULL;
4412	sbi->s_fc_replay_state.fc_regions_size = 0;
4413	sbi->s_fc_replay_state.fc_regions_used = 0;
4414	sbi->s_fc_replay_state.fc_regions_valid = 0;
4415	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4416	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4417	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4418}
4419
4420static int ext4_inode_info_init(struct super_block *sb,
4421				struct ext4_super_block *es)
4422{
4423	struct ext4_sb_info *sbi = EXT4_SB(sb);
4424
4425	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4426		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4427		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4428	} else {
4429		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4430		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4431		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4432			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4433				 sbi->s_first_ino);
4434			return -EINVAL;
4435		}
4436		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4437		    (!is_power_of_2(sbi->s_inode_size)) ||
4438		    (sbi->s_inode_size > sb->s_blocksize)) {
4439			ext4_msg(sb, KERN_ERR,
4440			       "unsupported inode size: %d",
4441			       sbi->s_inode_size);
4442			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4443			return -EINVAL;
4444		}
4445		/*
4446		 * i_atime_extra is the last extra field available for
4447		 * [acm]times in struct ext4_inode. Checking for that
4448		 * field should suffice to ensure we have extra space
4449		 * for all three.
4450		 */
4451		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4452			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4453			sb->s_time_gran = 1;
4454			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4455		} else {
4456			sb->s_time_gran = NSEC_PER_SEC;
4457			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4458		}
4459		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4460	}
4461
4462	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4463		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4464			EXT4_GOOD_OLD_INODE_SIZE;
4465		if (ext4_has_feature_extra_isize(sb)) {
4466			unsigned v, max = (sbi->s_inode_size -
4467					   EXT4_GOOD_OLD_INODE_SIZE);
4468
4469			v = le16_to_cpu(es->s_want_extra_isize);
4470			if (v > max) {
4471				ext4_msg(sb, KERN_ERR,
4472					 "bad s_want_extra_isize: %d", v);
4473				return -EINVAL;
4474			}
4475			if (sbi->s_want_extra_isize < v)
4476				sbi->s_want_extra_isize = v;
4477
4478			v = le16_to_cpu(es->s_min_extra_isize);
4479			if (v > max) {
4480				ext4_msg(sb, KERN_ERR,
4481					 "bad s_min_extra_isize: %d", v);
4482				return -EINVAL;
4483			}
4484			if (sbi->s_want_extra_isize < v)
4485				sbi->s_want_extra_isize = v;
4486		}
4487	}
4488
4489	return 0;
4490}
4491
4492#if IS_ENABLED(CONFIG_UNICODE)
4493static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4494{
4495	const struct ext4_sb_encodings *encoding_info;
4496	struct unicode_map *encoding;
4497	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4498
4499	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4500		return 0;
4501
4502	encoding_info = ext4_sb_read_encoding(es);
4503	if (!encoding_info) {
4504		ext4_msg(sb, KERN_ERR,
4505			"Encoding requested by superblock is unknown");
4506		return -EINVAL;
4507	}
4508
4509	encoding = utf8_load(encoding_info->version);
4510	if (IS_ERR(encoding)) {
4511		ext4_msg(sb, KERN_ERR,
4512			"can't mount with superblock charset: %s-%u.%u.%u "
4513			"not supported by the kernel. flags: 0x%x.",
4514			encoding_info->name,
4515			unicode_major(encoding_info->version),
4516			unicode_minor(encoding_info->version),
4517			unicode_rev(encoding_info->version),
4518			encoding_flags);
4519		return -EINVAL;
4520	}
4521	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4522		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4523		unicode_major(encoding_info->version),
4524		unicode_minor(encoding_info->version),
4525		unicode_rev(encoding_info->version),
4526		encoding_flags);
4527
4528	sb->s_encoding = encoding;
4529	sb->s_encoding_flags = encoding_flags;
4530
4531	return 0;
4532}
4533#else
4534static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4535{
4536	return 0;
4537}
4538#endif
4539
4540static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4541{
4542	struct ext4_sb_info *sbi = EXT4_SB(sb);
4543
4544	/* Warn if metadata_csum and gdt_csum are both set. */
4545	if (ext4_has_feature_metadata_csum(sb) &&
4546	    ext4_has_feature_gdt_csum(sb))
4547		ext4_warning(sb, "metadata_csum and uninit_bg are "
4548			     "redundant flags; please run fsck.");
4549
4550	/* Check for a known checksum algorithm */
4551	if (!ext4_verify_csum_type(sb, es)) {
4552		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4553			 "unknown checksum algorithm.");
4554		return -EINVAL;
4555	}
4556	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4557				ext4_orphan_file_block_trigger);
4558
4559	/* Load the checksum driver */
4560	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4561	if (IS_ERR(sbi->s_chksum_driver)) {
4562		int ret = PTR_ERR(sbi->s_chksum_driver);
4563		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4564		sbi->s_chksum_driver = NULL;
4565		return ret;
4566	}
4567
4568	/* Check superblock checksum */
4569	if (!ext4_superblock_csum_verify(sb, es)) {
4570		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4571			 "invalid superblock checksum.  Run e2fsck?");
4572		return -EFSBADCRC;
4573	}
4574
4575	/* Precompute checksum seed for all metadata */
4576	if (ext4_has_feature_csum_seed(sb))
4577		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4578	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4579		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4580					       sizeof(es->s_uuid));
4581	return 0;
4582}
4583
4584static int ext4_check_feature_compatibility(struct super_block *sb,
4585					    struct ext4_super_block *es,
4586					    int silent)
4587{
 
 
4588	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4589	    (ext4_has_compat_features(sb) ||
4590	     ext4_has_ro_compat_features(sb) ||
4591	     ext4_has_incompat_features(sb)))
4592		ext4_msg(sb, KERN_WARNING,
4593		       "feature flags set on rev 0 fs, "
4594		       "running e2fsck is recommended");
4595
4596	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4597		set_opt2(sb, HURD_COMPAT);
4598		if (ext4_has_feature_64bit(sb)) {
4599			ext4_msg(sb, KERN_ERR,
4600				 "The Hurd can't support 64-bit file systems");
4601			return -EINVAL;
4602		}
4603
4604		/*
4605		 * ea_inode feature uses l_i_version field which is not
4606		 * available in HURD_COMPAT mode.
4607		 */
4608		if (ext4_has_feature_ea_inode(sb)) {
4609			ext4_msg(sb, KERN_ERR,
4610				 "ea_inode feature is not supported for Hurd");
4611			return -EINVAL;
4612		}
4613	}
4614
4615	if (IS_EXT2_SB(sb)) {
4616		if (ext2_feature_set_ok(sb))
4617			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4618				 "using the ext4 subsystem");
4619		else {
4620			/*
4621			 * If we're probing be silent, if this looks like
4622			 * it's actually an ext[34] filesystem.
4623			 */
4624			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4625				return -EINVAL;
4626			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4627				 "to feature incompatibilities");
4628			return -EINVAL;
4629		}
4630	}
4631
4632	if (IS_EXT3_SB(sb)) {
4633		if (ext3_feature_set_ok(sb))
4634			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4635				 "using the ext4 subsystem");
4636		else {
4637			/*
4638			 * If we're probing be silent, if this looks like
4639			 * it's actually an ext4 filesystem.
4640			 */
4641			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4642				return -EINVAL;
4643			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4644				 "to feature incompatibilities");
4645			return -EINVAL;
4646		}
4647	}
4648
4649	/*
4650	 * Check feature flags regardless of the revision level, since we
4651	 * previously didn't change the revision level when setting the flags,
4652	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4653	 */
4654	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4655		return -EINVAL;
4656
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4657	return 0;
4658}
4659
4660static int ext4_geometry_check(struct super_block *sb,
4661			       struct ext4_super_block *es)
4662{
4663	struct ext4_sb_info *sbi = EXT4_SB(sb);
4664	__u64 blocks_count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4665
4666	/* check blocks count against device size */
4667	blocks_count = sb_bdev_nr_blocks(sb);
4668	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4669		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4670		       "exceeds size of device (%llu blocks)",
4671		       ext4_blocks_count(es), blocks_count);
4672		return -EINVAL;
4673	}
4674
4675	/*
4676	 * It makes no sense for the first data block to be beyond the end
4677	 * of the filesystem.
4678	 */
4679	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4680		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4681			 "block %u is beyond end of filesystem (%llu)",
4682			 le32_to_cpu(es->s_first_data_block),
4683			 ext4_blocks_count(es));
4684		return -EINVAL;
4685	}
4686	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4687	    (sbi->s_cluster_ratio == 1)) {
4688		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4689			 "block is 0 with a 1k block and cluster size");
4690		return -EINVAL;
4691	}
4692
4693	blocks_count = (ext4_blocks_count(es) -
4694			le32_to_cpu(es->s_first_data_block) +
4695			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4696	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4697	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4698		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4699		       "(block count %llu, first data block %u, "
4700		       "blocks per group %lu)", blocks_count,
4701		       ext4_blocks_count(es),
4702		       le32_to_cpu(es->s_first_data_block),
4703		       EXT4_BLOCKS_PER_GROUP(sb));
4704		return -EINVAL;
4705	}
4706	sbi->s_groups_count = blocks_count;
4707	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4708			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4709	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4710	    le32_to_cpu(es->s_inodes_count)) {
4711		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4712			 le32_to_cpu(es->s_inodes_count),
4713			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4714		return -EINVAL;
4715	}
4716
4717	return 0;
4718}
4719
4720static void ext4_group_desc_free(struct ext4_sb_info *sbi)
4721{
4722	struct buffer_head **group_desc;
4723	int i;
4724
4725	rcu_read_lock();
4726	group_desc = rcu_dereference(sbi->s_group_desc);
4727	for (i = 0; i < sbi->s_gdb_count; i++)
4728		brelse(group_desc[i]);
4729	kvfree(group_desc);
4730	rcu_read_unlock();
4731}
4732
4733static int ext4_group_desc_init(struct super_block *sb,
4734				struct ext4_super_block *es,
4735				ext4_fsblk_t logical_sb_block,
4736				ext4_group_t *first_not_zeroed)
4737{
4738	struct ext4_sb_info *sbi = EXT4_SB(sb);
4739	unsigned int db_count;
4740	ext4_fsblk_t block;
4741	int ret;
4742	int i;
4743
4744	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4745		   EXT4_DESC_PER_BLOCK(sb);
4746	if (ext4_has_feature_meta_bg(sb)) {
4747		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4748			ext4_msg(sb, KERN_WARNING,
4749				 "first meta block group too large: %u "
4750				 "(group descriptor block count %u)",
4751				 le32_to_cpu(es->s_first_meta_bg), db_count);
4752			return -EINVAL;
4753		}
4754	}
4755	rcu_assign_pointer(sbi->s_group_desc,
4756			   kvmalloc_array(db_count,
4757					  sizeof(struct buffer_head *),
4758					  GFP_KERNEL));
4759	if (sbi->s_group_desc == NULL) {
4760		ext4_msg(sb, KERN_ERR, "not enough memory");
4761		return -ENOMEM;
4762	}
4763
4764	bgl_lock_init(sbi->s_blockgroup_lock);
4765
4766	/* Pre-read the descriptors into the buffer cache */
4767	for (i = 0; i < db_count; i++) {
4768		block = descriptor_loc(sb, logical_sb_block, i);
4769		ext4_sb_breadahead_unmovable(sb, block);
4770	}
4771
4772	for (i = 0; i < db_count; i++) {
4773		struct buffer_head *bh;
4774
4775		block = descriptor_loc(sb, logical_sb_block, i);
4776		bh = ext4_sb_bread_unmovable(sb, block);
4777		if (IS_ERR(bh)) {
4778			ext4_msg(sb, KERN_ERR,
4779			       "can't read group descriptor %d", i);
4780			sbi->s_gdb_count = i;
4781			ret = PTR_ERR(bh);
4782			goto out;
4783		}
4784		rcu_read_lock();
4785		rcu_dereference(sbi->s_group_desc)[i] = bh;
4786		rcu_read_unlock();
4787	}
4788	sbi->s_gdb_count = db_count;
4789	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4790		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4791		ret = -EFSCORRUPTED;
4792		goto out;
4793	}
 
4794	return 0;
4795out:
4796	ext4_group_desc_free(sbi);
4797	return ret;
4798}
4799
4800static int ext4_load_and_init_journal(struct super_block *sb,
4801				      struct ext4_super_block *es,
4802				      struct ext4_fs_context *ctx)
4803{
4804	struct ext4_sb_info *sbi = EXT4_SB(sb);
4805	int err;
4806
4807	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4808	if (err)
4809		return err;
4810
4811	if (ext4_has_feature_64bit(sb) &&
4812	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4813				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4814		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4815		goto out;
4816	}
4817
4818	if (!set_journal_csum_feature_set(sb)) {
4819		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4820			 "feature set");
4821		goto out;
4822	}
4823
4824	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4825		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4826					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4827		ext4_msg(sb, KERN_ERR,
4828			"Failed to set fast commit journal feature");
4829		goto out;
4830	}
4831
4832	/* We have now updated the journal if required, so we can
4833	 * validate the data journaling mode. */
4834	switch (test_opt(sb, DATA_FLAGS)) {
4835	case 0:
4836		/* No mode set, assume a default based on the journal
4837		 * capabilities: ORDERED_DATA if the journal can
4838		 * cope, else JOURNAL_DATA
4839		 */
4840		if (jbd2_journal_check_available_features
4841		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4842			set_opt(sb, ORDERED_DATA);
4843			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4844		} else {
4845			set_opt(sb, JOURNAL_DATA);
4846			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4847		}
4848		break;
4849
4850	case EXT4_MOUNT_ORDERED_DATA:
4851	case EXT4_MOUNT_WRITEBACK_DATA:
4852		if (!jbd2_journal_check_available_features
4853		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4854			ext4_msg(sb, KERN_ERR, "Journal does not support "
4855			       "requested data journaling mode");
4856			goto out;
4857		}
4858		break;
4859	default:
4860		break;
4861	}
4862
4863	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4864	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4865		ext4_msg(sb, KERN_ERR, "can't mount with "
4866			"journal_async_commit in data=ordered mode");
4867		goto out;
4868	}
4869
4870	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4871
4872	sbi->s_journal->j_submit_inode_data_buffers =
4873		ext4_journal_submit_inode_data_buffers;
4874	sbi->s_journal->j_finish_inode_data_buffers =
4875		ext4_journal_finish_inode_data_buffers;
4876
4877	return 0;
4878
4879out:
4880	/* flush s_error_work before journal destroy. */
4881	flush_work(&sbi->s_error_work);
4882	jbd2_journal_destroy(sbi->s_journal);
4883	sbi->s_journal = NULL;
4884	return -EINVAL;
4885}
4886
4887static int ext4_journal_data_mode_check(struct super_block *sb)
4888{
4889	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4890		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4891			    "data=journal disables delayed allocation, "
4892			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4893		/* can't mount with both data=journal and dioread_nolock. */
4894		clear_opt(sb, DIOREAD_NOLOCK);
4895		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4896		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4897			ext4_msg(sb, KERN_ERR, "can't mount with "
4898				 "both data=journal and delalloc");
4899			return -EINVAL;
4900		}
4901		if (test_opt(sb, DAX_ALWAYS)) {
4902			ext4_msg(sb, KERN_ERR, "can't mount with "
4903				 "both data=journal and dax");
4904			return -EINVAL;
4905		}
4906		if (ext4_has_feature_encrypt(sb)) {
4907			ext4_msg(sb, KERN_WARNING,
4908				 "encrypted files will use data=ordered "
4909				 "instead of data journaling mode");
4910		}
4911		if (test_opt(sb, DELALLOC))
4912			clear_opt(sb, DELALLOC);
4913	} else {
4914		sb->s_iflags |= SB_I_CGROUPWB;
4915	}
4916
4917	return 0;
4918}
4919
4920static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
4921			   int silent)
4922{
4923	struct ext4_sb_info *sbi = EXT4_SB(sb);
4924	struct ext4_super_block *es;
4925	ext4_fsblk_t logical_sb_block;
4926	unsigned long offset = 0;
4927	struct buffer_head *bh;
4928	int ret = -EINVAL;
4929	int blocksize;
4930
4931	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4932	if (!blocksize) {
4933		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4934		return -EINVAL;
4935	}
4936
4937	/*
4938	 * The ext4 superblock will not be buffer aligned for other than 1kB
4939	 * block sizes.  We need to calculate the offset from buffer start.
4940	 */
4941	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4942		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4943		offset = do_div(logical_sb_block, blocksize);
4944	} else {
4945		logical_sb_block = sbi->s_sb_block;
4946	}
4947
4948	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4949	if (IS_ERR(bh)) {
4950		ext4_msg(sb, KERN_ERR, "unable to read superblock");
4951		return PTR_ERR(bh);
4952	}
4953	/*
4954	 * Note: s_es must be initialized as soon as possible because
4955	 *       some ext4 macro-instructions depend on its value
4956	 */
4957	es = (struct ext4_super_block *) (bh->b_data + offset);
4958	sbi->s_es = es;
4959	sb->s_magic = le16_to_cpu(es->s_magic);
4960	if (sb->s_magic != EXT4_SUPER_MAGIC) {
4961		if (!silent)
4962			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4963		goto out;
4964	}
4965
4966	if (le32_to_cpu(es->s_log_block_size) >
4967	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4968		ext4_msg(sb, KERN_ERR,
4969			 "Invalid log block size: %u",
4970			 le32_to_cpu(es->s_log_block_size));
4971		goto out;
4972	}
4973	if (le32_to_cpu(es->s_log_cluster_size) >
4974	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4975		ext4_msg(sb, KERN_ERR,
4976			 "Invalid log cluster size: %u",
4977			 le32_to_cpu(es->s_log_cluster_size));
4978		goto out;
4979	}
4980
4981	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4982
4983	/*
4984	 * If the default block size is not the same as the real block size,
4985	 * we need to reload it.
4986	 */
4987	if (sb->s_blocksize == blocksize) {
4988		*lsb = logical_sb_block;
4989		sbi->s_sbh = bh;
4990		return 0;
4991	}
4992
4993	/*
4994	 * bh must be released before kill_bdev(), otherwise
4995	 * it won't be freed and its page also. kill_bdev()
4996	 * is called by sb_set_blocksize().
4997	 */
4998	brelse(bh);
4999	/* Validate the filesystem blocksize */
5000	if (!sb_set_blocksize(sb, blocksize)) {
5001		ext4_msg(sb, KERN_ERR, "bad block size %d",
5002				blocksize);
5003		bh = NULL;
5004		goto out;
5005	}
5006
5007	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5008	offset = do_div(logical_sb_block, blocksize);
5009	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5010	if (IS_ERR(bh)) {
5011		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5012		ret = PTR_ERR(bh);
5013		bh = NULL;
5014		goto out;
5015	}
5016	es = (struct ext4_super_block *)(bh->b_data + offset);
5017	sbi->s_es = es;
5018	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5019		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5020		goto out;
5021	}
5022	*lsb = logical_sb_block;
5023	sbi->s_sbh = bh;
5024	return 0;
5025out:
5026	brelse(bh);
5027	return ret;
5028}
5029
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5030static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5031{
5032	struct ext4_super_block *es = NULL;
5033	struct ext4_sb_info *sbi = EXT4_SB(sb);
5034	struct flex_groups **flex_groups;
5035	ext4_fsblk_t block;
5036	ext4_fsblk_t logical_sb_block;
5037	struct inode *root;
5038	int ret = -ENOMEM;
5039	unsigned int i;
5040	int needs_recovery, has_huge_files;
5041	int err = 0;
5042	ext4_group_t first_not_zeroed;
5043	struct ext4_fs_context *ctx = fc->fs_private;
5044	int silent = fc->sb_flags & SB_SILENT;
5045
5046	/* Set defaults for the variables that will be set during parsing */
5047	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5048		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5049
5050	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5051	sbi->s_sectors_written_start =
5052		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5053
5054	/* -EINVAL is default */
5055	ret = -EINVAL;
5056	err = ext4_load_super(sb, &logical_sb_block, silent);
5057	if (err)
5058		goto out_fail;
5059
5060	es = sbi->s_es;
5061	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5062
5063	err = ext4_init_metadata_csum(sb, es);
5064	if (err)
5065		goto failed_mount;
5066
5067	ext4_set_def_opts(sb, es);
5068
5069	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5070	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5071	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5072	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5073	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5074
5075	/*
5076	 * set default s_li_wait_mult for lazyinit, for the case there is
5077	 * no mount option specified.
5078	 */
5079	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5080
5081	if (ext4_inode_info_init(sb, es))
 
5082		goto failed_mount;
5083
5084	err = parse_apply_sb_mount_options(sb, ctx);
5085	if (err < 0)
5086		goto failed_mount;
5087
5088	sbi->s_def_mount_opt = sbi->s_mount_opt;
 
5089
5090	err = ext4_check_opt_consistency(fc, sb);
5091	if (err < 0)
5092		goto failed_mount;
5093
5094	ext4_apply_options(fc, sb);
5095
5096	if (ext4_encoding_init(sb, es))
 
5097		goto failed_mount;
5098
5099	if (ext4_journal_data_mode_check(sb))
 
5100		goto failed_mount;
5101
5102	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5103		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5104
5105	/* i_version is always enabled now */
5106	sb->s_flags |= SB_I_VERSION;
5107
5108	if (ext4_check_feature_compatibility(sb, es, silent))
5109		goto failed_mount;
5110
5111	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
5112		ext4_msg(sb, KERN_ERR,
5113			 "Number of reserved GDT blocks insanely large: %d",
5114			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
5115		goto failed_mount;
5116	}
5117
5118	if (sbi->s_daxdev) {
5119		if (sb->s_blocksize == PAGE_SIZE)
5120			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
5121		else
5122			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
5123	}
5124
5125	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
5126		if (ext4_has_feature_inline_data(sb)) {
5127			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
5128					" that may contain inline data");
5129			goto failed_mount;
5130		}
5131		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
5132			ext4_msg(sb, KERN_ERR,
5133				"DAX unsupported by block device.");
5134			goto failed_mount;
5135		}
5136	}
5137
5138	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
5139		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
5140			 es->s_encryption_level);
5141		goto failed_mount;
5142	}
5143
5144	has_huge_files = ext4_has_feature_huge_file(sb);
5145	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5146						      has_huge_files);
5147	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5148
5149	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5150	if (ext4_has_feature_64bit(sb)) {
5151		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5152		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5153		    !is_power_of_2(sbi->s_desc_size)) {
5154			ext4_msg(sb, KERN_ERR,
5155			       "unsupported descriptor size %lu",
5156			       sbi->s_desc_size);
5157			goto failed_mount;
5158		}
5159	} else
5160		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5161
5162	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5163	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5164
5165	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5166	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5167		if (!silent)
5168			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5169		goto failed_mount;
5170	}
5171	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5172	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5173		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5174			 sbi->s_inodes_per_group);
5175		goto failed_mount;
5176	}
5177	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5178					sbi->s_inodes_per_block;
5179	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5180	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5181	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5182	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5183
5184	for (i = 0; i < 4; i++)
5185		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5186	sbi->s_def_hash_version = es->s_def_hash_version;
5187	if (ext4_has_feature_dir_index(sb)) {
5188		i = le32_to_cpu(es->s_flags);
5189		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5190			sbi->s_hash_unsigned = 3;
5191		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5192#ifdef __CHAR_UNSIGNED__
5193			if (!sb_rdonly(sb))
5194				es->s_flags |=
5195					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5196			sbi->s_hash_unsigned = 3;
5197#else
5198			if (!sb_rdonly(sb))
5199				es->s_flags |=
5200					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5201#endif
5202		}
5203	}
5204
5205	if (ext4_handle_clustersize(sb))
 
5206		goto failed_mount;
5207
5208	/*
5209	 * Test whether we have more sectors than will fit in sector_t,
5210	 * and whether the max offset is addressable by the page cache.
5211	 */
5212	err = generic_check_addressable(sb->s_blocksize_bits,
5213					ext4_blocks_count(es));
5214	if (err) {
5215		ext4_msg(sb, KERN_ERR, "filesystem"
5216			 " too large to mount safely on this system");
5217		goto failed_mount;
5218	}
5219
5220	if (ext4_geometry_check(sb, es))
 
5221		goto failed_mount;
5222
5223	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5224	if (err)
5225		goto failed_mount;
5226
5227	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5228	spin_lock_init(&sbi->s_error_lock);
5229	INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
5230
5231	/* Register extent status tree shrinker */
5232	if (ext4_es_register_shrinker(sbi))
 
 
 
 
5233		goto failed_mount3;
5234
5235	sbi->s_stripe = ext4_get_stripe_size(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
5236	sbi->s_extent_max_zeroout_kb = 32;
5237
5238	/*
5239	 * set up enough so that it can read an inode
5240	 */
5241	sb->s_op = &ext4_sops;
5242	sb->s_export_op = &ext4_export_ops;
5243	sb->s_xattr = ext4_xattr_handlers;
5244#ifdef CONFIG_FS_ENCRYPTION
5245	sb->s_cop = &ext4_cryptops;
5246#endif
5247#ifdef CONFIG_FS_VERITY
5248	sb->s_vop = &ext4_verityops;
5249#endif
5250#ifdef CONFIG_QUOTA
5251	sb->dq_op = &ext4_quota_operations;
5252	if (ext4_has_feature_quota(sb))
5253		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5254	else
5255		sb->s_qcop = &ext4_qctl_operations;
5256	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5257#endif
5258	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5259
5260	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5261	mutex_init(&sbi->s_orphan_lock);
5262
5263	ext4_fast_commit_init(sb);
5264
5265	sb->s_root = NULL;
5266
5267	needs_recovery = (es->s_last_orphan != 0 ||
5268			  ext4_has_feature_orphan_present(sb) ||
5269			  ext4_has_feature_journal_needs_recovery(sb));
5270
5271	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
5272		if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
 
5273			goto failed_mount3a;
 
5274
 
5275	/*
5276	 * The first inode we look at is the journal inode.  Don't try
5277	 * root first: it may be modified in the journal!
5278	 */
5279	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5280		err = ext4_load_and_init_journal(sb, es, ctx);
5281		if (err)
5282			goto failed_mount3a;
5283	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5284		   ext4_has_feature_journal_needs_recovery(sb)) {
5285		ext4_msg(sb, KERN_ERR, "required journal recovery "
5286		       "suppressed and not mounted read-only");
5287		goto failed_mount3a;
5288	} else {
5289		/* Nojournal mode, all journal mount options are illegal */
5290		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5291			ext4_msg(sb, KERN_ERR, "can't mount with "
5292				 "journal_async_commit, fs mounted w/o journal");
5293			goto failed_mount3a;
5294		}
5295
5296		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5297			ext4_msg(sb, KERN_ERR, "can't mount with "
5298				 "journal_checksum, fs mounted w/o journal");
5299			goto failed_mount3a;
5300		}
5301		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5302			ext4_msg(sb, KERN_ERR, "can't mount with "
5303				 "commit=%lu, fs mounted w/o journal",
5304				 sbi->s_commit_interval / HZ);
5305			goto failed_mount3a;
5306		}
5307		if (EXT4_MOUNT_DATA_FLAGS &
5308		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5309			ext4_msg(sb, KERN_ERR, "can't mount with "
5310				 "data=, fs mounted w/o journal");
5311			goto failed_mount3a;
5312		}
5313		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5314		clear_opt(sb, JOURNAL_CHECKSUM);
5315		clear_opt(sb, DATA_FLAGS);
5316		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5317		sbi->s_journal = NULL;
5318		needs_recovery = 0;
5319	}
5320
5321	if (!test_opt(sb, NO_MBCACHE)) {
5322		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5323		if (!sbi->s_ea_block_cache) {
5324			ext4_msg(sb, KERN_ERR,
5325				 "Failed to create ea_block_cache");
 
5326			goto failed_mount_wq;
5327		}
5328
5329		if (ext4_has_feature_ea_inode(sb)) {
5330			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5331			if (!sbi->s_ea_inode_cache) {
5332				ext4_msg(sb, KERN_ERR,
5333					 "Failed to create ea_inode_cache");
 
5334				goto failed_mount_wq;
5335			}
5336		}
5337	}
5338
5339	if (ext4_has_feature_verity(sb) && sb->s_blocksize != PAGE_SIZE) {
5340		ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
5341		goto failed_mount_wq;
5342	}
5343
5344	/*
5345	 * Get the # of file system overhead blocks from the
5346	 * superblock if present.
5347	 */
5348	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5349	/* ignore the precalculated value if it is ridiculous */
5350	if (sbi->s_overhead > ext4_blocks_count(es))
5351		sbi->s_overhead = 0;
5352	/*
5353	 * If the bigalloc feature is not enabled recalculating the
5354	 * overhead doesn't take long, so we might as well just redo
5355	 * it to make sure we are using the correct value.
5356	 */
5357	if (!ext4_has_feature_bigalloc(sb))
5358		sbi->s_overhead = 0;
5359	if (sbi->s_overhead == 0) {
5360		err = ext4_calculate_overhead(sb);
5361		if (err)
5362			goto failed_mount_wq;
5363	}
5364
5365	/*
5366	 * The maximum number of concurrent works can be high and
5367	 * concurrency isn't really necessary.  Limit it to 1.
5368	 */
5369	EXT4_SB(sb)->rsv_conversion_wq =
5370		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5371	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5372		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5373		ret = -ENOMEM;
5374		goto failed_mount4;
5375	}
5376
5377	/*
5378	 * The jbd2_journal_load will have done any necessary log recovery,
5379	 * so we can safely mount the rest of the filesystem now.
5380	 */
5381
5382	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5383	if (IS_ERR(root)) {
5384		ext4_msg(sb, KERN_ERR, "get root inode failed");
5385		ret = PTR_ERR(root);
5386		root = NULL;
5387		goto failed_mount4;
5388	}
5389	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5390		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5391		iput(root);
 
5392		goto failed_mount4;
5393	}
5394
5395	sb->s_root = d_make_root(root);
5396	if (!sb->s_root) {
5397		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5398		ret = -ENOMEM;
5399		goto failed_mount4;
5400	}
5401
5402	ret = ext4_setup_super(sb, es, sb_rdonly(sb));
5403	if (ret == -EROFS) {
5404		sb->s_flags |= SB_RDONLY;
5405		ret = 0;
5406	} else if (ret)
5407		goto failed_mount4a;
5408
5409	ext4_set_resv_clusters(sb);
5410
5411	if (test_opt(sb, BLOCK_VALIDITY)) {
5412		err = ext4_setup_system_zone(sb);
5413		if (err) {
5414			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5415				 "zone (%d)", err);
5416			goto failed_mount4a;
5417		}
5418	}
5419	ext4_fc_replay_cleanup(sb);
5420
5421	ext4_ext_init(sb);
5422
5423	/*
5424	 * Enable optimize_scan if number of groups is > threshold. This can be
5425	 * turned off by passing "mb_optimize_scan=0". This can also be
5426	 * turned on forcefully by passing "mb_optimize_scan=1".
5427	 */
5428	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5429		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5430			set_opt2(sb, MB_OPTIMIZE_SCAN);
5431		else
5432			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5433	}
5434
5435	err = ext4_mb_init(sb);
5436	if (err) {
5437		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5438			 err);
5439		goto failed_mount5;
5440	}
5441
5442	/*
5443	 * We can only set up the journal commit callback once
5444	 * mballoc is initialized
5445	 */
5446	if (sbi->s_journal)
5447		sbi->s_journal->j_commit_callback =
5448			ext4_journal_commit_callback;
5449
5450	block = ext4_count_free_clusters(sb);
5451	ext4_free_blocks_count_set(sbi->s_es,
5452				   EXT4_C2B(sbi, block));
5453	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5454				  GFP_KERNEL);
5455	if (!err) {
5456		unsigned long freei = ext4_count_free_inodes(sb);
5457		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5458		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5459					  GFP_KERNEL);
5460	}
5461	if (!err)
5462		err = percpu_counter_init(&sbi->s_dirs_counter,
5463					  ext4_count_dirs(sb), GFP_KERNEL);
5464	if (!err)
5465		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5466					  GFP_KERNEL);
5467	if (!err)
5468		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5469					  GFP_KERNEL);
5470	if (!err)
5471		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5472
5473	if (err) {
5474		ext4_msg(sb, KERN_ERR, "insufficient memory");
5475		goto failed_mount6;
5476	}
5477
5478	if (ext4_has_feature_flex_bg(sb))
5479		if (!ext4_fill_flex_info(sb)) {
5480			ext4_msg(sb, KERN_ERR,
5481			       "unable to initialize "
5482			       "flex_bg meta info!");
5483			ret = -ENOMEM;
5484			goto failed_mount6;
5485		}
5486
5487	err = ext4_register_li_request(sb, first_not_zeroed);
5488	if (err)
5489		goto failed_mount6;
5490
5491	err = ext4_register_sysfs(sb);
5492	if (err)
5493		goto failed_mount7;
5494
5495	err = ext4_init_orphan_info(sb);
5496	if (err)
5497		goto failed_mount8;
5498#ifdef CONFIG_QUOTA
5499	/* Enable quota usage during mount. */
5500	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5501		err = ext4_enable_quotas(sb);
5502		if (err)
5503			goto failed_mount9;
5504	}
5505#endif  /* CONFIG_QUOTA */
5506
5507	/*
5508	 * Save the original bdev mapping's wb_err value which could be
5509	 * used to detect the metadata async write error.
5510	 */
5511	spin_lock_init(&sbi->s_bdev_wb_lock);
5512	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5513				 &sbi->s_bdev_wb_err);
5514	sb->s_bdev->bd_super = sb;
5515	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5516	ext4_orphan_cleanup(sb, es);
5517	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5518	/*
5519	 * Update the checksum after updating free space/inode counters and
5520	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5521	 * checksum in the buffer cache until it is written out and
5522	 * e2fsprogs programs trying to open a file system immediately
5523	 * after it is mounted can fail.
5524	 */
5525	ext4_superblock_csum_set(sb);
5526	if (needs_recovery) {
5527		ext4_msg(sb, KERN_INFO, "recovery complete");
5528		err = ext4_mark_recovery_complete(sb, es);
5529		if (err)
5530			goto failed_mount9;
5531	}
5532
5533	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5534		ext4_msg(sb, KERN_WARNING,
5535			 "mounting with \"discard\" option, but the device does not support discard");
5536
5537	if (es->s_error_count)
5538		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5539
5540	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5541	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5542	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5543	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5544	atomic_set(&sbi->s_warning_count, 0);
5545	atomic_set(&sbi->s_msg_count, 0);
5546
5547	return 0;
5548
5549failed_mount9:
 
 
5550	ext4_release_orphan_info(sb);
5551failed_mount8:
5552	ext4_unregister_sysfs(sb);
5553	kobject_put(&sbi->s_kobj);
5554failed_mount7:
5555	ext4_unregister_li_request(sb);
5556failed_mount6:
5557	ext4_mb_release(sb);
5558	rcu_read_lock();
5559	flex_groups = rcu_dereference(sbi->s_flex_groups);
5560	if (flex_groups) {
5561		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5562			kvfree(flex_groups[i]);
5563		kvfree(flex_groups);
5564	}
5565	rcu_read_unlock();
5566	percpu_counter_destroy(&sbi->s_freeclusters_counter);
5567	percpu_counter_destroy(&sbi->s_freeinodes_counter);
5568	percpu_counter_destroy(&sbi->s_dirs_counter);
5569	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5570	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5571	percpu_free_rwsem(&sbi->s_writepages_rwsem);
5572failed_mount5:
5573	ext4_ext_release(sb);
5574	ext4_release_system_zone(sb);
5575failed_mount4a:
5576	dput(sb->s_root);
5577	sb->s_root = NULL;
5578failed_mount4:
5579	ext4_msg(sb, KERN_ERR, "mount failed");
5580	if (EXT4_SB(sb)->rsv_conversion_wq)
5581		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5582failed_mount_wq:
5583	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5584	sbi->s_ea_inode_cache = NULL;
5585
5586	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5587	sbi->s_ea_block_cache = NULL;
5588
5589	if (sbi->s_journal) {
5590		/* flush s_error_work before journal destroy. */
5591		flush_work(&sbi->s_error_work);
5592		jbd2_journal_destroy(sbi->s_journal);
5593		sbi->s_journal = NULL;
5594	}
5595failed_mount3a:
5596	ext4_es_unregister_shrinker(sbi);
5597failed_mount3:
5598	/* flush s_error_work before sbi destroy */
5599	flush_work(&sbi->s_error_work);
5600	del_timer_sync(&sbi->s_err_report);
5601	ext4_stop_mmpd(sbi);
5602	ext4_group_desc_free(sbi);
5603failed_mount:
5604	if (sbi->s_chksum_driver)
5605		crypto_free_shash(sbi->s_chksum_driver);
5606
5607#if IS_ENABLED(CONFIG_UNICODE)
5608	utf8_unload(sb->s_encoding);
5609#endif
5610
5611#ifdef CONFIG_QUOTA
5612	for (i = 0; i < EXT4_MAXQUOTAS; i++)
5613		kfree(get_qf_name(sb, sbi, i));
5614#endif
5615	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5616	/* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5617	brelse(sbi->s_sbh);
5618	ext4_blkdev_remove(sbi);
 
 
 
5619out_fail:
 
5620	sb->s_fs_info = NULL;
5621	return err ? err : ret;
5622}
5623
5624static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5625{
5626	struct ext4_fs_context *ctx = fc->fs_private;
5627	struct ext4_sb_info *sbi;
5628	const char *descr;
5629	int ret;
5630
5631	sbi = ext4_alloc_sbi(sb);
5632	if (!sbi)
5633		return -ENOMEM;
5634
5635	fc->s_fs_info = sbi;
5636
5637	/* Cleanup superblock name */
5638	strreplace(sb->s_id, '/', '!');
5639
5640	sbi->s_sb_block = 1;	/* Default super block location */
5641	if (ctx->spec & EXT4_SPEC_s_sb_block)
5642		sbi->s_sb_block = ctx->s_sb_block;
5643
5644	ret = __ext4_fill_super(fc, sb);
5645	if (ret < 0)
5646		goto free_sbi;
5647
5648	if (sbi->s_journal) {
5649		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5650			descr = " journalled data mode";
5651		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5652			descr = " ordered data mode";
5653		else
5654			descr = " writeback data mode";
5655	} else
5656		descr = "out journal";
5657
5658	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5659		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU with%s. "
5660			 "Quota mode: %s.", &sb->s_uuid, descr,
 
5661			 ext4_quota_mode(sb));
5662
5663	/* Update the s_overhead_clusters if necessary */
5664	ext4_update_overhead(sb, false);
5665	return 0;
5666
5667free_sbi:
5668	ext4_free_sbi(sbi);
5669	fc->s_fs_info = NULL;
5670	return ret;
5671}
5672
5673static int ext4_get_tree(struct fs_context *fc)
5674{
5675	return get_tree_bdev(fc, ext4_fill_super);
5676}
5677
5678/*
5679 * Setup any per-fs journal parameters now.  We'll do this both on
5680 * initial mount, once the journal has been initialised but before we've
5681 * done any recovery; and again on any subsequent remount.
5682 */
5683static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5684{
5685	struct ext4_sb_info *sbi = EXT4_SB(sb);
5686
5687	journal->j_commit_interval = sbi->s_commit_interval;
5688	journal->j_min_batch_time = sbi->s_min_batch_time;
5689	journal->j_max_batch_time = sbi->s_max_batch_time;
5690	ext4_fc_init(sb, journal);
5691
5692	write_lock(&journal->j_state_lock);
5693	if (test_opt(sb, BARRIER))
5694		journal->j_flags |= JBD2_BARRIER;
5695	else
5696		journal->j_flags &= ~JBD2_BARRIER;
5697	if (test_opt(sb, DATA_ERR_ABORT))
5698		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5699	else
5700		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
 
 
 
 
 
5701	write_unlock(&journal->j_state_lock);
5702}
5703
5704static struct inode *ext4_get_journal_inode(struct super_block *sb,
5705					     unsigned int journal_inum)
5706{
5707	struct inode *journal_inode;
5708
5709	/*
5710	 * Test for the existence of a valid inode on disk.  Bad things
5711	 * happen if we iget() an unused inode, as the subsequent iput()
5712	 * will try to delete it.
5713	 */
5714	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5715	if (IS_ERR(journal_inode)) {
5716		ext4_msg(sb, KERN_ERR, "no journal found");
5717		return NULL;
5718	}
5719	if (!journal_inode->i_nlink) {
5720		make_bad_inode(journal_inode);
5721		iput(journal_inode);
5722		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5723		return NULL;
5724	}
5725
5726	ext4_debug("Journal inode found at %p: %lld bytes\n",
5727		  journal_inode, journal_inode->i_size);
5728	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5729		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5730		iput(journal_inode);
5731		return NULL;
5732	}
 
 
 
5733	return journal_inode;
5734}
5735
5736static journal_t *ext4_get_journal(struct super_block *sb,
5737				   unsigned int journal_inum)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5738{
5739	struct inode *journal_inode;
5740	journal_t *journal;
5741
5742	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5743		return NULL;
5744
5745	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5746	if (!journal_inode)
5747		return NULL;
5748
5749	journal = jbd2_journal_init_inode(journal_inode);
5750	if (!journal) {
5751		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5752		iput(journal_inode);
5753		return NULL;
5754	}
5755	journal->j_private = sb;
 
5756	ext4_init_journal_params(sb, journal);
5757	return journal;
5758}
5759
5760static journal_t *ext4_get_dev_journal(struct super_block *sb,
5761				       dev_t j_dev)
 
5762{
5763	struct buffer_head *bh;
5764	journal_t *journal;
5765	ext4_fsblk_t start;
5766	ext4_fsblk_t len;
5767	int hblock, blocksize;
5768	ext4_fsblk_t sb_block;
5769	unsigned long offset;
5770	struct ext4_super_block *es;
5771	struct block_device *bdev;
5772
5773	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5774		return NULL;
5775
5776	bdev = ext4_blkdev_get(j_dev, sb);
5777	if (bdev == NULL)
5778		return NULL;
 
 
 
 
 
 
5779
 
5780	blocksize = sb->s_blocksize;
5781	hblock = bdev_logical_block_size(bdev);
5782	if (blocksize < hblock) {
5783		ext4_msg(sb, KERN_ERR,
5784			"blocksize too small for journal device");
 
5785		goto out_bdev;
5786	}
5787
5788	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5789	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5790	set_blocksize(bdev, blocksize);
5791	if (!(bh = __bread(bdev, sb_block, blocksize))) {
 
5792		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5793		       "external journal");
 
5794		goto out_bdev;
5795	}
5796
5797	es = (struct ext4_super_block *) (bh->b_data + offset);
5798	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5799	    !(le32_to_cpu(es->s_feature_incompat) &
5800	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5801		ext4_msg(sb, KERN_ERR, "external journal has "
5802					"bad superblock");
5803		brelse(bh);
5804		goto out_bdev;
5805	}
5806
5807	if ((le32_to_cpu(es->s_feature_ro_compat) &
5808	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5809	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5810		ext4_msg(sb, KERN_ERR, "external journal has "
5811				       "corrupt superblock");
5812		brelse(bh);
5813		goto out_bdev;
5814	}
5815
5816	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5817		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5818		brelse(bh);
5819		goto out_bdev;
5820	}
5821
5822	len = ext4_blocks_count(es);
5823	start = sb_block + 1;
5824	brelse(bh);	/* we're done with the superblock */
5825
5826	journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5827					start, len, blocksize);
5828	if (!journal) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5829		ext4_msg(sb, KERN_ERR, "failed to create device journal");
 
5830		goto out_bdev;
5831	}
5832	journal->j_private = sb;
5833	if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5834		ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5835		goto out_journal;
5836	}
5837	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5838		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5839					"user (unsupported) - %d",
5840			be32_to_cpu(journal->j_superblock->s_nr_users));
 
5841		goto out_journal;
5842	}
5843	EXT4_SB(sb)->s_journal_bdev = bdev;
 
5844	ext4_init_journal_params(sb, journal);
5845	return journal;
5846
5847out_journal:
5848	jbd2_journal_destroy(journal);
5849out_bdev:
5850	ext4_blkdev_put(bdev);
5851	return NULL;
5852}
5853
5854static int ext4_load_journal(struct super_block *sb,
5855			     struct ext4_super_block *es,
5856			     unsigned long journal_devnum)
5857{
5858	journal_t *journal;
5859	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5860	dev_t journal_dev;
5861	int err = 0;
5862	int really_read_only;
5863	int journal_dev_ro;
5864
5865	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5866		return -EFSCORRUPTED;
5867
5868	if (journal_devnum &&
5869	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5870		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5871			"numbers have changed");
5872		journal_dev = new_decode_dev(journal_devnum);
5873	} else
5874		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5875
5876	if (journal_inum && journal_dev) {
5877		ext4_msg(sb, KERN_ERR,
5878			 "filesystem has both journal inode and journal device!");
5879		return -EINVAL;
5880	}
5881
5882	if (journal_inum) {
5883		journal = ext4_get_journal(sb, journal_inum);
5884		if (!journal)
5885			return -EINVAL;
5886	} else {
5887		journal = ext4_get_dev_journal(sb, journal_dev);
5888		if (!journal)
5889			return -EINVAL;
5890	}
5891
5892	journal_dev_ro = bdev_read_only(journal->j_dev);
5893	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5894
5895	if (journal_dev_ro && !sb_rdonly(sb)) {
5896		ext4_msg(sb, KERN_ERR,
5897			 "journal device read-only, try mounting with '-o ro'");
5898		err = -EROFS;
5899		goto err_out;
5900	}
5901
5902	/*
5903	 * Are we loading a blank journal or performing recovery after a
5904	 * crash?  For recovery, we need to check in advance whether we
5905	 * can get read-write access to the device.
5906	 */
5907	if (ext4_has_feature_journal_needs_recovery(sb)) {
5908		if (sb_rdonly(sb)) {
5909			ext4_msg(sb, KERN_INFO, "INFO: recovery "
5910					"required on readonly filesystem");
5911			if (really_read_only) {
5912				ext4_msg(sb, KERN_ERR, "write access "
5913					"unavailable, cannot proceed "
5914					"(try mounting with noload)");
5915				err = -EROFS;
5916				goto err_out;
5917			}
5918			ext4_msg(sb, KERN_INFO, "write access will "
5919			       "be enabled during recovery");
5920		}
5921	}
5922
5923	if (!(journal->j_flags & JBD2_BARRIER))
5924		ext4_msg(sb, KERN_INFO, "barriers disabled");
5925
5926	if (!ext4_has_feature_journal_needs_recovery(sb))
5927		err = jbd2_journal_wipe(journal, !really_read_only);
5928	if (!err) {
5929		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
 
 
 
5930		if (save)
5931			memcpy(save, ((char *) es) +
5932			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5933		err = jbd2_journal_load(journal);
5934		if (save)
 
5935			memcpy(((char *) es) + EXT4_S_ERR_START,
5936			       save, EXT4_S_ERR_LEN);
 
 
5937		kfree(save);
 
 
 
 
 
 
 
 
 
 
 
5938	}
5939
5940	if (err) {
5941		ext4_msg(sb, KERN_ERR, "error loading journal");
5942		goto err_out;
5943	}
5944
5945	EXT4_SB(sb)->s_journal = journal;
5946	err = ext4_clear_journal_err(sb, es);
5947	if (err) {
5948		EXT4_SB(sb)->s_journal = NULL;
5949		jbd2_journal_destroy(journal);
5950		return err;
5951	}
5952
5953	if (!really_read_only && journal_devnum &&
5954	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5955		es->s_journal_dev = cpu_to_le32(journal_devnum);
5956
5957		/* Make sure we flush the recovery flag to disk. */
 
 
 
5958		ext4_commit_super(sb);
5959	}
5960
5961	return 0;
5962
5963err_out:
5964	jbd2_journal_destroy(journal);
5965	return err;
5966}
5967
5968/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5969static void ext4_update_super(struct super_block *sb)
5970{
5971	struct ext4_sb_info *sbi = EXT4_SB(sb);
5972	struct ext4_super_block *es = sbi->s_es;
5973	struct buffer_head *sbh = sbi->s_sbh;
5974
5975	lock_buffer(sbh);
5976	/*
5977	 * If the file system is mounted read-only, don't update the
5978	 * superblock write time.  This avoids updating the superblock
5979	 * write time when we are mounting the root file system
5980	 * read/only but we need to replay the journal; at that point,
5981	 * for people who are east of GMT and who make their clock
5982	 * tick in localtime for Windows bug-for-bug compatibility,
5983	 * the clock is set in the future, and this will cause e2fsck
5984	 * to complain and force a full file system check.
5985	 */
5986	if (!(sb->s_flags & SB_RDONLY))
5987		ext4_update_tstamp(es, s_wtime);
5988	es->s_kbytes_written =
5989		cpu_to_le64(sbi->s_kbytes_written +
5990		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5991		      sbi->s_sectors_written_start) >> 1));
5992	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5993		ext4_free_blocks_count_set(es,
5994			EXT4_C2B(sbi, percpu_counter_sum_positive(
5995				&sbi->s_freeclusters_counter)));
5996	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5997		es->s_free_inodes_count =
5998			cpu_to_le32(percpu_counter_sum_positive(
5999				&sbi->s_freeinodes_counter));
6000	/* Copy error information to the on-disk superblock */
6001	spin_lock(&sbi->s_error_lock);
6002	if (sbi->s_add_error_count > 0) {
6003		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6004		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6005			__ext4_update_tstamp(&es->s_first_error_time,
6006					     &es->s_first_error_time_hi,
6007					     sbi->s_first_error_time);
6008			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6009				sizeof(es->s_first_error_func));
6010			es->s_first_error_line =
6011				cpu_to_le32(sbi->s_first_error_line);
6012			es->s_first_error_ino =
6013				cpu_to_le32(sbi->s_first_error_ino);
6014			es->s_first_error_block =
6015				cpu_to_le64(sbi->s_first_error_block);
6016			es->s_first_error_errcode =
6017				ext4_errno_to_code(sbi->s_first_error_code);
6018		}
6019		__ext4_update_tstamp(&es->s_last_error_time,
6020				     &es->s_last_error_time_hi,
6021				     sbi->s_last_error_time);
6022		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6023			sizeof(es->s_last_error_func));
6024		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6025		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6026		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6027		es->s_last_error_errcode =
6028				ext4_errno_to_code(sbi->s_last_error_code);
6029		/*
6030		 * Start the daily error reporting function if it hasn't been
6031		 * started already
6032		 */
6033		if (!es->s_error_count)
6034			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6035		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6036		sbi->s_add_error_count = 0;
6037	}
6038	spin_unlock(&sbi->s_error_lock);
6039
6040	ext4_superblock_csum_set(sb);
6041	unlock_buffer(sbh);
6042}
6043
6044static int ext4_commit_super(struct super_block *sb)
6045{
6046	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6047
6048	if (!sbh)
6049		return -EINVAL;
6050	if (block_device_ejected(sb))
6051		return -ENODEV;
6052
6053	ext4_update_super(sb);
6054
6055	lock_buffer(sbh);
6056	/* Buffer got discarded which means block device got invalidated */
6057	if (!buffer_mapped(sbh)) {
6058		unlock_buffer(sbh);
6059		return -EIO;
6060	}
6061
6062	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6063		/*
6064		 * Oh, dear.  A previous attempt to write the
6065		 * superblock failed.  This could happen because the
6066		 * USB device was yanked out.  Or it could happen to
6067		 * be a transient write error and maybe the block will
6068		 * be remapped.  Nothing we can do but to retry the
6069		 * write and hope for the best.
6070		 */
6071		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6072		       "superblock detected");
6073		clear_buffer_write_io_error(sbh);
6074		set_buffer_uptodate(sbh);
6075	}
6076	get_bh(sbh);
6077	/* Clear potential dirty bit if it was journalled update */
6078	clear_buffer_dirty(sbh);
6079	sbh->b_end_io = end_buffer_write_sync;
6080	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6081		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6082	wait_on_buffer(sbh);
6083	if (buffer_write_io_error(sbh)) {
6084		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6085		       "superblock");
6086		clear_buffer_write_io_error(sbh);
6087		set_buffer_uptodate(sbh);
6088		return -EIO;
6089	}
6090	return 0;
6091}
6092
6093/*
6094 * Have we just finished recovery?  If so, and if we are mounting (or
6095 * remounting) the filesystem readonly, then we will end up with a
6096 * consistent fs on disk.  Record that fact.
6097 */
6098static int ext4_mark_recovery_complete(struct super_block *sb,
6099				       struct ext4_super_block *es)
6100{
6101	int err;
6102	journal_t *journal = EXT4_SB(sb)->s_journal;
6103
6104	if (!ext4_has_feature_journal(sb)) {
6105		if (journal != NULL) {
6106			ext4_error(sb, "Journal got removed while the fs was "
6107				   "mounted!");
6108			return -EFSCORRUPTED;
6109		}
6110		return 0;
6111	}
6112	jbd2_journal_lock_updates(journal);
6113	err = jbd2_journal_flush(journal, 0);
6114	if (err < 0)
6115		goto out;
6116
6117	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6118	    ext4_has_feature_orphan_present(sb))) {
6119		if (!ext4_orphan_file_empty(sb)) {
6120			ext4_error(sb, "Orphan file not empty on read-only fs.");
6121			err = -EFSCORRUPTED;
6122			goto out;
6123		}
6124		ext4_clear_feature_journal_needs_recovery(sb);
6125		ext4_clear_feature_orphan_present(sb);
6126		ext4_commit_super(sb);
6127	}
6128out:
6129	jbd2_journal_unlock_updates(journal);
6130	return err;
6131}
6132
6133/*
6134 * If we are mounting (or read-write remounting) a filesystem whose journal
6135 * has recorded an error from a previous lifetime, move that error to the
6136 * main filesystem now.
6137 */
6138static int ext4_clear_journal_err(struct super_block *sb,
6139				   struct ext4_super_block *es)
6140{
6141	journal_t *journal;
6142	int j_errno;
6143	const char *errstr;
6144
6145	if (!ext4_has_feature_journal(sb)) {
6146		ext4_error(sb, "Journal got removed while the fs was mounted!");
6147		return -EFSCORRUPTED;
6148	}
6149
6150	journal = EXT4_SB(sb)->s_journal;
6151
6152	/*
6153	 * Now check for any error status which may have been recorded in the
6154	 * journal by a prior ext4_error() or ext4_abort()
6155	 */
6156
6157	j_errno = jbd2_journal_errno(journal);
6158	if (j_errno) {
6159		char nbuf[16];
6160
6161		errstr = ext4_decode_error(sb, j_errno, nbuf);
6162		ext4_warning(sb, "Filesystem error recorded "
6163			     "from previous mount: %s", errstr);
6164		ext4_warning(sb, "Marking fs in need of filesystem check.");
6165
6166		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6167		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6168		ext4_commit_super(sb);
 
 
 
6169
6170		jbd2_journal_clear_err(journal);
6171		jbd2_journal_update_sb_errno(journal);
6172	}
6173	return 0;
6174}
6175
6176/*
6177 * Force the running and committing transactions to commit,
6178 * and wait on the commit.
6179 */
6180int ext4_force_commit(struct super_block *sb)
6181{
6182	journal_t *journal;
6183
6184	if (sb_rdonly(sb))
6185		return 0;
6186
6187	journal = EXT4_SB(sb)->s_journal;
6188	return ext4_journal_force_commit(journal);
6189}
6190
6191static int ext4_sync_fs(struct super_block *sb, int wait)
6192{
6193	int ret = 0;
6194	tid_t target;
6195	bool needs_barrier = false;
6196	struct ext4_sb_info *sbi = EXT4_SB(sb);
6197
6198	if (unlikely(ext4_forced_shutdown(sbi)))
6199		return 0;
6200
6201	trace_ext4_sync_fs(sb, wait);
6202	flush_workqueue(sbi->rsv_conversion_wq);
6203	/*
6204	 * Writeback quota in non-journalled quota case - journalled quota has
6205	 * no dirty dquots
6206	 */
6207	dquot_writeback_dquots(sb, -1);
6208	/*
6209	 * Data writeback is possible w/o journal transaction, so barrier must
6210	 * being sent at the end of the function. But we can skip it if
6211	 * transaction_commit will do it for us.
6212	 */
6213	if (sbi->s_journal) {
6214		target = jbd2_get_latest_transaction(sbi->s_journal);
6215		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6216		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6217			needs_barrier = true;
6218
6219		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6220			if (wait)
6221				ret = jbd2_log_wait_commit(sbi->s_journal,
6222							   target);
6223		}
6224	} else if (wait && test_opt(sb, BARRIER))
6225		needs_barrier = true;
6226	if (needs_barrier) {
6227		int err;
6228		err = blkdev_issue_flush(sb->s_bdev);
6229		if (!ret)
6230			ret = err;
6231	}
6232
6233	return ret;
6234}
6235
6236/*
6237 * LVM calls this function before a (read-only) snapshot is created.  This
6238 * gives us a chance to flush the journal completely and mark the fs clean.
6239 *
6240 * Note that only this function cannot bring a filesystem to be in a clean
6241 * state independently. It relies on upper layer to stop all data & metadata
6242 * modifications.
6243 */
6244static int ext4_freeze(struct super_block *sb)
6245{
6246	int error = 0;
6247	journal_t *journal;
6248
6249	if (sb_rdonly(sb))
6250		return 0;
6251
6252	journal = EXT4_SB(sb)->s_journal;
6253
6254	if (journal) {
6255		/* Now we set up the journal barrier. */
6256		jbd2_journal_lock_updates(journal);
6257
6258		/*
6259		 * Don't clear the needs_recovery flag if we failed to
6260		 * flush the journal.
6261		 */
6262		error = jbd2_journal_flush(journal, 0);
6263		if (error < 0)
6264			goto out;
6265
6266		/* Journal blocked and flushed, clear needs_recovery flag. */
6267		ext4_clear_feature_journal_needs_recovery(sb);
6268		if (ext4_orphan_file_empty(sb))
6269			ext4_clear_feature_orphan_present(sb);
6270	}
6271
6272	error = ext4_commit_super(sb);
6273out:
6274	if (journal)
6275		/* we rely on upper layer to stop further updates */
6276		jbd2_journal_unlock_updates(journal);
6277	return error;
6278}
6279
6280/*
6281 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6282 * flag here, even though the filesystem is not technically dirty yet.
6283 */
6284static int ext4_unfreeze(struct super_block *sb)
6285{
6286	if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6287		return 0;
6288
6289	if (EXT4_SB(sb)->s_journal) {
6290		/* Reset the needs_recovery flag before the fs is unlocked. */
6291		ext4_set_feature_journal_needs_recovery(sb);
6292		if (ext4_has_feature_orphan_file(sb))
6293			ext4_set_feature_orphan_present(sb);
6294	}
6295
6296	ext4_commit_super(sb);
6297	return 0;
6298}
6299
6300/*
6301 * Structure to save mount options for ext4_remount's benefit
6302 */
6303struct ext4_mount_options {
6304	unsigned long s_mount_opt;
6305	unsigned long s_mount_opt2;
6306	kuid_t s_resuid;
6307	kgid_t s_resgid;
6308	unsigned long s_commit_interval;
6309	u32 s_min_batch_time, s_max_batch_time;
6310#ifdef CONFIG_QUOTA
6311	int s_jquota_fmt;
6312	char *s_qf_names[EXT4_MAXQUOTAS];
6313#endif
6314};
6315
6316static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6317{
6318	struct ext4_fs_context *ctx = fc->fs_private;
6319	struct ext4_super_block *es;
6320	struct ext4_sb_info *sbi = EXT4_SB(sb);
6321	unsigned long old_sb_flags;
6322	struct ext4_mount_options old_opts;
6323	ext4_group_t g;
6324	int err = 0;
 
6325#ifdef CONFIG_QUOTA
6326	int enable_quota = 0;
6327	int i, j;
6328	char *to_free[EXT4_MAXQUOTAS];
6329#endif
6330
6331
6332	/* Store the original options */
6333	old_sb_flags = sb->s_flags;
6334	old_opts.s_mount_opt = sbi->s_mount_opt;
6335	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6336	old_opts.s_resuid = sbi->s_resuid;
6337	old_opts.s_resgid = sbi->s_resgid;
6338	old_opts.s_commit_interval = sbi->s_commit_interval;
6339	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6340	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6341#ifdef CONFIG_QUOTA
6342	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6343	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6344		if (sbi->s_qf_names[i]) {
6345			char *qf_name = get_qf_name(sb, sbi, i);
6346
6347			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6348			if (!old_opts.s_qf_names[i]) {
6349				for (j = 0; j < i; j++)
6350					kfree(old_opts.s_qf_names[j]);
6351				return -ENOMEM;
6352			}
6353		} else
6354			old_opts.s_qf_names[i] = NULL;
6355#endif
6356	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6357		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6358			ctx->journal_ioprio =
6359				sbi->s_journal->j_task->io_context->ioprio;
6360		else
6361			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6362
6363	}
6364
 
 
 
 
 
 
 
 
6365	ext4_apply_options(fc, sb);
 
6366
6367	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6368	    test_opt(sb, JOURNAL_CHECKSUM)) {
6369		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6370			 "during remount not supported; ignoring");
6371		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6372	}
6373
6374	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6375		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6376			ext4_msg(sb, KERN_ERR, "can't mount with "
6377				 "both data=journal and delalloc");
6378			err = -EINVAL;
6379			goto restore_opts;
6380		}
6381		if (test_opt(sb, DIOREAD_NOLOCK)) {
6382			ext4_msg(sb, KERN_ERR, "can't mount with "
6383				 "both data=journal and dioread_nolock");
6384			err = -EINVAL;
6385			goto restore_opts;
6386		}
6387	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6388		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6389			ext4_msg(sb, KERN_ERR, "can't mount with "
6390				"journal_async_commit in data=ordered mode");
6391			err = -EINVAL;
6392			goto restore_opts;
6393		}
6394	}
6395
6396	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6397		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6398		err = -EINVAL;
6399		goto restore_opts;
6400	}
6401
6402	if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6403		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6404
6405	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6406		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6407
6408	es = sbi->s_es;
6409
6410	if (sbi->s_journal) {
6411		ext4_init_journal_params(sb, sbi->s_journal);
6412		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6413	}
6414
6415	/* Flush outstanding errors before changing fs state */
6416	flush_work(&sbi->s_error_work);
6417
6418	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6419		if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6420			err = -EROFS;
6421			goto restore_opts;
6422		}
6423
6424		if (fc->sb_flags & SB_RDONLY) {
6425			err = sync_filesystem(sb);
6426			if (err < 0)
6427				goto restore_opts;
6428			err = dquot_suspend(sb, -1);
6429			if (err < 0)
6430				goto restore_opts;
6431
6432			/*
6433			 * First of all, the unconditional stuff we have to do
6434			 * to disable replay of the journal when we next remount
6435			 */
6436			sb->s_flags |= SB_RDONLY;
6437
6438			/*
6439			 * OK, test if we are remounting a valid rw partition
6440			 * readonly, and if so set the rdonly flag and then
6441			 * mark the partition as valid again.
6442			 */
6443			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6444			    (sbi->s_mount_state & EXT4_VALID_FS))
6445				es->s_state = cpu_to_le16(sbi->s_mount_state);
6446
6447			if (sbi->s_journal) {
6448				/*
6449				 * We let remount-ro finish even if marking fs
6450				 * as clean failed...
6451				 */
6452				ext4_mark_recovery_complete(sb, es);
6453			}
6454		} else {
6455			/* Make sure we can mount this feature set readwrite */
6456			if (ext4_has_feature_readonly(sb) ||
6457			    !ext4_feature_set_ok(sb, 0)) {
6458				err = -EROFS;
6459				goto restore_opts;
6460			}
6461			/*
6462			 * Make sure the group descriptor checksums
6463			 * are sane.  If they aren't, refuse to remount r/w.
6464			 */
6465			for (g = 0; g < sbi->s_groups_count; g++) {
6466				struct ext4_group_desc *gdp =
6467					ext4_get_group_desc(sb, g, NULL);
6468
6469				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6470					ext4_msg(sb, KERN_ERR,
6471	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6472		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6473					       le16_to_cpu(gdp->bg_checksum));
6474					err = -EFSBADCRC;
6475					goto restore_opts;
6476				}
6477			}
6478
6479			/*
6480			 * If we have an unprocessed orphan list hanging
6481			 * around from a previously readonly bdev mount,
6482			 * require a full umount/remount for now.
6483			 */
6484			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6485				ext4_msg(sb, KERN_WARNING, "Couldn't "
6486				       "remount RDWR because of unprocessed "
6487				       "orphan inode list.  Please "
6488				       "umount/remount instead");
6489				err = -EINVAL;
6490				goto restore_opts;
6491			}
6492
6493			/*
6494			 * Mounting a RDONLY partition read-write, so reread
6495			 * and store the current valid flag.  (It may have
6496			 * been changed by e2fsck since we originally mounted
6497			 * the partition.)
6498			 */
6499			if (sbi->s_journal) {
6500				err = ext4_clear_journal_err(sb, es);
6501				if (err)
6502					goto restore_opts;
6503			}
6504			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6505					      ~EXT4_FC_REPLAY);
6506
6507			err = ext4_setup_super(sb, es, 0);
6508			if (err)
6509				goto restore_opts;
6510
6511			sb->s_flags &= ~SB_RDONLY;
6512			if (ext4_has_feature_mmp(sb))
6513				if (ext4_multi_mount_protect(sb,
6514						le64_to_cpu(es->s_mmp_block))) {
6515					err = -EROFS;
6516					goto restore_opts;
6517				}
6518#ifdef CONFIG_QUOTA
6519			enable_quota = 1;
6520#endif
6521		}
6522	}
6523
6524	/*
6525	 * Reinitialize lazy itable initialization thread based on
6526	 * current settings
6527	 */
6528	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6529		ext4_unregister_li_request(sb);
6530	else {
6531		ext4_group_t first_not_zeroed;
6532		first_not_zeroed = ext4_has_uninit_itable(sb);
6533		ext4_register_li_request(sb, first_not_zeroed);
6534	}
6535
6536	/*
6537	 * Handle creation of system zone data early because it can fail.
6538	 * Releasing of existing data is done when we are sure remount will
6539	 * succeed.
6540	 */
6541	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6542		err = ext4_setup_system_zone(sb);
6543		if (err)
6544			goto restore_opts;
6545	}
6546
6547	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6548		err = ext4_commit_super(sb);
6549		if (err)
6550			goto restore_opts;
6551	}
6552
6553#ifdef CONFIG_QUOTA
6554	/* Release old quota file names */
6555	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6556		kfree(old_opts.s_qf_names[i]);
6557	if (enable_quota) {
6558		if (sb_any_quota_suspended(sb))
6559			dquot_resume(sb, -1);
6560		else if (ext4_has_feature_quota(sb)) {
6561			err = ext4_enable_quotas(sb);
6562			if (err)
6563				goto restore_opts;
6564		}
6565	}
 
 
 
6566#endif
6567	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6568		ext4_release_system_zone(sb);
6569
 
 
 
 
 
 
 
 
 
 
 
 
6570	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6571		ext4_stop_mmpd(sbi);
6572
6573	return 0;
6574
6575restore_opts:
 
 
 
 
 
 
 
 
 
6576	sb->s_flags = old_sb_flags;
6577	sbi->s_mount_opt = old_opts.s_mount_opt;
6578	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6579	sbi->s_resuid = old_opts.s_resuid;
6580	sbi->s_resgid = old_opts.s_resgid;
6581	sbi->s_commit_interval = old_opts.s_commit_interval;
6582	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6583	sbi->s_max_batch_time = old_opts.s_max_batch_time;
 
 
6584	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6585		ext4_release_system_zone(sb);
6586#ifdef CONFIG_QUOTA
6587	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6588	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6589		to_free[i] = get_qf_name(sb, sbi, i);
6590		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6591	}
6592	synchronize_rcu();
6593	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6594		kfree(to_free[i]);
6595#endif
6596	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6597		ext4_stop_mmpd(sbi);
6598	return err;
6599}
6600
6601static int ext4_reconfigure(struct fs_context *fc)
6602{
6603	struct super_block *sb = fc->root->d_sb;
6604	int ret;
6605
6606	fc->s_fs_info = EXT4_SB(sb);
6607
6608	ret = ext4_check_opt_consistency(fc, sb);
6609	if (ret < 0)
6610		return ret;
6611
6612	ret = __ext4_remount(fc, sb);
6613	if (ret < 0)
6614		return ret;
6615
6616	ext4_msg(sb, KERN_INFO, "re-mounted %pU. Quota mode: %s.",
6617		 &sb->s_uuid, ext4_quota_mode(sb));
 
6618
6619	return 0;
6620}
6621
6622#ifdef CONFIG_QUOTA
6623static int ext4_statfs_project(struct super_block *sb,
6624			       kprojid_t projid, struct kstatfs *buf)
6625{
6626	struct kqid qid;
6627	struct dquot *dquot;
6628	u64 limit;
6629	u64 curblock;
6630
6631	qid = make_kqid_projid(projid);
6632	dquot = dqget(sb, qid);
6633	if (IS_ERR(dquot))
6634		return PTR_ERR(dquot);
6635	spin_lock(&dquot->dq_dqb_lock);
6636
6637	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6638			     dquot->dq_dqb.dqb_bhardlimit);
6639	limit >>= sb->s_blocksize_bits;
6640
6641	if (limit && buf->f_blocks > limit) {
6642		curblock = (dquot->dq_dqb.dqb_curspace +
6643			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6644		buf->f_blocks = limit;
6645		buf->f_bfree = buf->f_bavail =
6646			(buf->f_blocks > curblock) ?
6647			 (buf->f_blocks - curblock) : 0;
6648	}
6649
6650	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6651			     dquot->dq_dqb.dqb_ihardlimit);
6652	if (limit && buf->f_files > limit) {
6653		buf->f_files = limit;
6654		buf->f_ffree =
6655			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6656			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6657	}
6658
6659	spin_unlock(&dquot->dq_dqb_lock);
6660	dqput(dquot);
6661	return 0;
6662}
6663#endif
6664
6665static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6666{
6667	struct super_block *sb = dentry->d_sb;
6668	struct ext4_sb_info *sbi = EXT4_SB(sb);
6669	struct ext4_super_block *es = sbi->s_es;
6670	ext4_fsblk_t overhead = 0, resv_blocks;
6671	s64 bfree;
6672	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6673
6674	if (!test_opt(sb, MINIX_DF))
6675		overhead = sbi->s_overhead;
6676
6677	buf->f_type = EXT4_SUPER_MAGIC;
6678	buf->f_bsize = sb->s_blocksize;
6679	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6680	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6681		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6682	/* prevent underflow in case that few free space is available */
6683	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6684	buf->f_bavail = buf->f_bfree -
6685			(ext4_r_blocks_count(es) + resv_blocks);
6686	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6687		buf->f_bavail = 0;
6688	buf->f_files = le32_to_cpu(es->s_inodes_count);
6689	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6690	buf->f_namelen = EXT4_NAME_LEN;
6691	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6692
6693#ifdef CONFIG_QUOTA
6694	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6695	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6696		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6697#endif
6698	return 0;
6699}
6700
6701
6702#ifdef CONFIG_QUOTA
6703
6704/*
6705 * Helper functions so that transaction is started before we acquire dqio_sem
6706 * to keep correct lock ordering of transaction > dqio_sem
6707 */
6708static inline struct inode *dquot_to_inode(struct dquot *dquot)
6709{
6710	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6711}
6712
6713static int ext4_write_dquot(struct dquot *dquot)
6714{
6715	int ret, err;
6716	handle_t *handle;
6717	struct inode *inode;
6718
6719	inode = dquot_to_inode(dquot);
6720	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6721				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6722	if (IS_ERR(handle))
6723		return PTR_ERR(handle);
6724	ret = dquot_commit(dquot);
6725	err = ext4_journal_stop(handle);
6726	if (!ret)
6727		ret = err;
6728	return ret;
6729}
6730
6731static int ext4_acquire_dquot(struct dquot *dquot)
6732{
6733	int ret, err;
6734	handle_t *handle;
6735
6736	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6737				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6738	if (IS_ERR(handle))
6739		return PTR_ERR(handle);
6740	ret = dquot_acquire(dquot);
6741	err = ext4_journal_stop(handle);
6742	if (!ret)
6743		ret = err;
6744	return ret;
6745}
6746
6747static int ext4_release_dquot(struct dquot *dquot)
6748{
6749	int ret, err;
6750	handle_t *handle;
6751
6752	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6753				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6754	if (IS_ERR(handle)) {
6755		/* Release dquot anyway to avoid endless cycle in dqput() */
6756		dquot_release(dquot);
6757		return PTR_ERR(handle);
6758	}
6759	ret = dquot_release(dquot);
6760	err = ext4_journal_stop(handle);
6761	if (!ret)
6762		ret = err;
6763	return ret;
6764}
6765
6766static int ext4_mark_dquot_dirty(struct dquot *dquot)
6767{
6768	struct super_block *sb = dquot->dq_sb;
6769
6770	if (ext4_is_quota_journalled(sb)) {
6771		dquot_mark_dquot_dirty(dquot);
6772		return ext4_write_dquot(dquot);
6773	} else {
6774		return dquot_mark_dquot_dirty(dquot);
6775	}
6776}
6777
6778static int ext4_write_info(struct super_block *sb, int type)
6779{
6780	int ret, err;
6781	handle_t *handle;
6782
6783	/* Data block + inode block */
6784	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6785	if (IS_ERR(handle))
6786		return PTR_ERR(handle);
6787	ret = dquot_commit_info(sb, type);
6788	err = ext4_journal_stop(handle);
6789	if (!ret)
6790		ret = err;
6791	return ret;
6792}
6793
6794static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6795{
6796	struct ext4_inode_info *ei = EXT4_I(inode);
6797
6798	/* The first argument of lockdep_set_subclass has to be
6799	 * *exactly* the same as the argument to init_rwsem() --- in
6800	 * this case, in init_once() --- or lockdep gets unhappy
6801	 * because the name of the lock is set using the
6802	 * stringification of the argument to init_rwsem().
6803	 */
6804	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6805	lockdep_set_subclass(&ei->i_data_sem, subclass);
6806}
6807
6808/*
6809 * Standard function to be called on quota_on
6810 */
6811static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6812			 const struct path *path)
6813{
6814	int err;
6815
6816	if (!test_opt(sb, QUOTA))
6817		return -EINVAL;
6818
6819	/* Quotafile not on the same filesystem? */
6820	if (path->dentry->d_sb != sb)
6821		return -EXDEV;
6822
6823	/* Quota already enabled for this file? */
6824	if (IS_NOQUOTA(d_inode(path->dentry)))
6825		return -EBUSY;
6826
6827	/* Journaling quota? */
6828	if (EXT4_SB(sb)->s_qf_names[type]) {
6829		/* Quotafile not in fs root? */
6830		if (path->dentry->d_parent != sb->s_root)
6831			ext4_msg(sb, KERN_WARNING,
6832				"Quota file not on filesystem root. "
6833				"Journaled quota will not work");
6834		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6835	} else {
6836		/*
6837		 * Clear the flag just in case mount options changed since
6838		 * last time.
6839		 */
6840		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6841	}
6842
6843	/*
6844	 * When we journal data on quota file, we have to flush journal to see
6845	 * all updates to the file when we bypass pagecache...
6846	 */
6847	if (EXT4_SB(sb)->s_journal &&
6848	    ext4_should_journal_data(d_inode(path->dentry))) {
6849		/*
6850		 * We don't need to lock updates but journal_flush() could
6851		 * otherwise be livelocked...
6852		 */
6853		jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6854		err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6855		jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6856		if (err)
6857			return err;
6858	}
6859
6860	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6861	err = dquot_quota_on(sb, type, format_id, path);
6862	if (!err) {
6863		struct inode *inode = d_inode(path->dentry);
6864		handle_t *handle;
6865
6866		/*
6867		 * Set inode flags to prevent userspace from messing with quota
6868		 * files. If this fails, we return success anyway since quotas
6869		 * are already enabled and this is not a hard failure.
6870		 */
6871		inode_lock(inode);
6872		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6873		if (IS_ERR(handle))
6874			goto unlock_inode;
6875		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6876		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6877				S_NOATIME | S_IMMUTABLE);
6878		err = ext4_mark_inode_dirty(handle, inode);
6879		ext4_journal_stop(handle);
6880	unlock_inode:
6881		inode_unlock(inode);
6882		if (err)
6883			dquot_quota_off(sb, type);
6884	}
6885	if (err)
6886		lockdep_set_quota_inode(path->dentry->d_inode,
6887					     I_DATA_SEM_NORMAL);
6888	return err;
6889}
6890
6891static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6892{
6893	switch (type) {
6894	case USRQUOTA:
6895		return qf_inum == EXT4_USR_QUOTA_INO;
6896	case GRPQUOTA:
6897		return qf_inum == EXT4_GRP_QUOTA_INO;
6898	case PRJQUOTA:
6899		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6900	default:
6901		BUG();
6902	}
6903}
6904
6905static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6906			     unsigned int flags)
6907{
6908	int err;
6909	struct inode *qf_inode;
6910	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6911		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6912		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6913		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6914	};
6915
6916	BUG_ON(!ext4_has_feature_quota(sb));
6917
6918	if (!qf_inums[type])
6919		return -EPERM;
6920
6921	if (!ext4_check_quota_inum(type, qf_inums[type])) {
6922		ext4_error(sb, "Bad quota inum: %lu, type: %d",
6923				qf_inums[type], type);
6924		return -EUCLEAN;
6925	}
6926
6927	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6928	if (IS_ERR(qf_inode)) {
6929		ext4_error(sb, "Bad quota inode: %lu, type: %d",
6930				qf_inums[type], type);
6931		return PTR_ERR(qf_inode);
6932	}
6933
6934	/* Don't account quota for quota files to avoid recursion */
6935	qf_inode->i_flags |= S_NOQUOTA;
6936	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6937	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6938	if (err)
6939		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6940	iput(qf_inode);
6941
6942	return err;
6943}
6944
6945/* Enable usage tracking for all quota types. */
6946int ext4_enable_quotas(struct super_block *sb)
6947{
6948	int type, err = 0;
6949	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6950		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6951		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6952		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6953	};
6954	bool quota_mopt[EXT4_MAXQUOTAS] = {
6955		test_opt(sb, USRQUOTA),
6956		test_opt(sb, GRPQUOTA),
6957		test_opt(sb, PRJQUOTA),
6958	};
6959
6960	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6961	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6962		if (qf_inums[type]) {
6963			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6964				DQUOT_USAGE_ENABLED |
6965				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6966			if (err) {
6967				ext4_warning(sb,
6968					"Failed to enable quota tracking "
6969					"(type=%d, err=%d, ino=%lu). "
6970					"Please run e2fsck to fix.", type,
6971					err, qf_inums[type]);
6972				for (type--; type >= 0; type--) {
6973					struct inode *inode;
6974
6975					inode = sb_dqopt(sb)->files[type];
6976					if (inode)
6977						inode = igrab(inode);
6978					dquot_quota_off(sb, type);
6979					if (inode) {
6980						lockdep_set_quota_inode(inode,
6981							I_DATA_SEM_NORMAL);
6982						iput(inode);
6983					}
6984				}
6985
 
6986				return err;
6987			}
6988		}
6989	}
6990	return 0;
6991}
6992
6993static int ext4_quota_off(struct super_block *sb, int type)
6994{
6995	struct inode *inode = sb_dqopt(sb)->files[type];
6996	handle_t *handle;
6997	int err;
6998
6999	/* Force all delayed allocation blocks to be allocated.
7000	 * Caller already holds s_umount sem */
7001	if (test_opt(sb, DELALLOC))
7002		sync_filesystem(sb);
7003
7004	if (!inode || !igrab(inode))
7005		goto out;
7006
7007	err = dquot_quota_off(sb, type);
7008	if (err || ext4_has_feature_quota(sb))
7009		goto out_put;
 
 
 
 
 
 
 
7010
7011	inode_lock(inode);
7012	/*
7013	 * Update modification times of quota files when userspace can
7014	 * start looking at them. If we fail, we return success anyway since
7015	 * this is not a hard failure and quotas are already disabled.
7016	 */
7017	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7018	if (IS_ERR(handle)) {
7019		err = PTR_ERR(handle);
7020		goto out_unlock;
7021	}
7022	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7023	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7024	inode->i_mtime = inode->i_ctime = current_time(inode);
7025	err = ext4_mark_inode_dirty(handle, inode);
7026	ext4_journal_stop(handle);
7027out_unlock:
7028	inode_unlock(inode);
7029out_put:
7030	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7031	iput(inode);
7032	return err;
7033out:
7034	return dquot_quota_off(sb, type);
7035}
7036
7037/* Read data from quotafile - avoid pagecache and such because we cannot afford
7038 * acquiring the locks... As quota files are never truncated and quota code
7039 * itself serializes the operations (and no one else should touch the files)
7040 * we don't have to be afraid of races */
7041static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7042			       size_t len, loff_t off)
7043{
7044	struct inode *inode = sb_dqopt(sb)->files[type];
7045	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7046	int offset = off & (sb->s_blocksize - 1);
7047	int tocopy;
7048	size_t toread;
7049	struct buffer_head *bh;
7050	loff_t i_size = i_size_read(inode);
7051
7052	if (off > i_size)
7053		return 0;
7054	if (off+len > i_size)
7055		len = i_size-off;
7056	toread = len;
7057	while (toread > 0) {
7058		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7059		bh = ext4_bread(NULL, inode, blk, 0);
7060		if (IS_ERR(bh))
7061			return PTR_ERR(bh);
7062		if (!bh)	/* A hole? */
7063			memset(data, 0, tocopy);
7064		else
7065			memcpy(data, bh->b_data+offset, tocopy);
7066		brelse(bh);
7067		offset = 0;
7068		toread -= tocopy;
7069		data += tocopy;
7070		blk++;
7071	}
7072	return len;
7073}
7074
7075/* Write to quotafile (we know the transaction is already started and has
7076 * enough credits) */
7077static ssize_t ext4_quota_write(struct super_block *sb, int type,
7078				const char *data, size_t len, loff_t off)
7079{
7080	struct inode *inode = sb_dqopt(sb)->files[type];
7081	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7082	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7083	int retries = 0;
7084	struct buffer_head *bh;
7085	handle_t *handle = journal_current_handle();
7086
7087	if (!handle) {
7088		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7089			" cancelled because transaction is not started",
7090			(unsigned long long)off, (unsigned long long)len);
7091		return -EIO;
7092	}
7093	/*
7094	 * Since we account only one data block in transaction credits,
7095	 * then it is impossible to cross a block boundary.
7096	 */
7097	if (sb->s_blocksize - offset < len) {
7098		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7099			" cancelled because not block aligned",
7100			(unsigned long long)off, (unsigned long long)len);
7101		return -EIO;
7102	}
7103
7104	do {
7105		bh = ext4_bread(handle, inode, blk,
7106				EXT4_GET_BLOCKS_CREATE |
7107				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7108	} while (PTR_ERR(bh) == -ENOSPC &&
7109		 ext4_should_retry_alloc(inode->i_sb, &retries));
7110	if (IS_ERR(bh))
7111		return PTR_ERR(bh);
7112	if (!bh)
7113		goto out;
7114	BUFFER_TRACE(bh, "get write access");
7115	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7116	if (err) {
7117		brelse(bh);
7118		return err;
7119	}
7120	lock_buffer(bh);
7121	memcpy(bh->b_data+offset, data, len);
7122	flush_dcache_page(bh->b_page);
7123	unlock_buffer(bh);
7124	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7125	brelse(bh);
7126out:
7127	if (inode->i_size < off + len) {
7128		i_size_write(inode, off + len);
7129		EXT4_I(inode)->i_disksize = inode->i_size;
7130		err2 = ext4_mark_inode_dirty(handle, inode);
7131		if (unlikely(err2 && !err))
7132			err = err2;
7133	}
7134	return err ? err : len;
7135}
7136#endif
7137
7138#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7139static inline void register_as_ext2(void)
7140{
7141	int err = register_filesystem(&ext2_fs_type);
7142	if (err)
7143		printk(KERN_WARNING
7144		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7145}
7146
7147static inline void unregister_as_ext2(void)
7148{
7149	unregister_filesystem(&ext2_fs_type);
7150}
7151
7152static inline int ext2_feature_set_ok(struct super_block *sb)
7153{
7154	if (ext4_has_unknown_ext2_incompat_features(sb))
7155		return 0;
7156	if (sb_rdonly(sb))
7157		return 1;
7158	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7159		return 0;
7160	return 1;
7161}
7162#else
7163static inline void register_as_ext2(void) { }
7164static inline void unregister_as_ext2(void) { }
7165static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7166#endif
7167
7168static inline void register_as_ext3(void)
7169{
7170	int err = register_filesystem(&ext3_fs_type);
7171	if (err)
7172		printk(KERN_WARNING
7173		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7174}
7175
7176static inline void unregister_as_ext3(void)
7177{
7178	unregister_filesystem(&ext3_fs_type);
7179}
7180
7181static inline int ext3_feature_set_ok(struct super_block *sb)
7182{
7183	if (ext4_has_unknown_ext3_incompat_features(sb))
7184		return 0;
7185	if (!ext4_has_feature_journal(sb))
7186		return 0;
7187	if (sb_rdonly(sb))
7188		return 1;
7189	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7190		return 0;
7191	return 1;
7192}
7193
 
 
 
 
 
 
 
 
 
 
 
7194static struct file_system_type ext4_fs_type = {
7195	.owner			= THIS_MODULE,
7196	.name			= "ext4",
7197	.init_fs_context	= ext4_init_fs_context,
7198	.parameters		= ext4_param_specs,
7199	.kill_sb		= kill_block_super,
7200	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7201};
7202MODULE_ALIAS_FS("ext4");
7203
7204/* Shared across all ext4 file systems */
7205wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7206
7207static int __init ext4_init_fs(void)
7208{
7209	int i, err;
7210
7211	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7212	ext4_li_info = NULL;
7213
7214	/* Build-time check for flags consistency */
7215	ext4_check_flag_values();
7216
7217	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7218		init_waitqueue_head(&ext4__ioend_wq[i]);
7219
7220	err = ext4_init_es();
7221	if (err)
7222		return err;
7223
7224	err = ext4_init_pending();
7225	if (err)
7226		goto out7;
7227
7228	err = ext4_init_post_read_processing();
7229	if (err)
7230		goto out6;
7231
7232	err = ext4_init_pageio();
7233	if (err)
7234		goto out5;
7235
7236	err = ext4_init_system_zone();
7237	if (err)
7238		goto out4;
7239
7240	err = ext4_init_sysfs();
7241	if (err)
7242		goto out3;
7243
7244	err = ext4_init_mballoc();
7245	if (err)
7246		goto out2;
7247	err = init_inodecache();
7248	if (err)
7249		goto out1;
7250
7251	err = ext4_fc_init_dentry_cache();
7252	if (err)
7253		goto out05;
7254
7255	register_as_ext3();
7256	register_as_ext2();
7257	err = register_filesystem(&ext4_fs_type);
7258	if (err)
7259		goto out;
7260
7261	return 0;
7262out:
7263	unregister_as_ext2();
7264	unregister_as_ext3();
7265	ext4_fc_destroy_dentry_cache();
7266out05:
7267	destroy_inodecache();
7268out1:
7269	ext4_exit_mballoc();
7270out2:
7271	ext4_exit_sysfs();
7272out3:
7273	ext4_exit_system_zone();
7274out4:
7275	ext4_exit_pageio();
7276out5:
7277	ext4_exit_post_read_processing();
7278out6:
7279	ext4_exit_pending();
7280out7:
7281	ext4_exit_es();
7282
7283	return err;
7284}
7285
7286static void __exit ext4_exit_fs(void)
7287{
7288	ext4_destroy_lazyinit_thread();
7289	unregister_as_ext2();
7290	unregister_as_ext3();
7291	unregister_filesystem(&ext4_fs_type);
7292	ext4_fc_destroy_dentry_cache();
7293	destroy_inodecache();
7294	ext4_exit_mballoc();
7295	ext4_exit_sysfs();
7296	ext4_exit_system_zone();
7297	ext4_exit_pageio();
7298	ext4_exit_post_read_processing();
7299	ext4_exit_es();
7300	ext4_exit_pending();
7301}
7302
7303MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7304MODULE_DESCRIPTION("Fourth Extended Filesystem");
7305MODULE_LICENSE("GPL");
7306MODULE_SOFTDEP("pre: crc32c");
7307module_init(ext4_init_fs)
7308module_exit(ext4_exit_fs)
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 *  linux/fs/ext4/super.c
   4 *
   5 * Copyright (C) 1992, 1993, 1994, 1995
   6 * Remy Card (card@masi.ibp.fr)
   7 * Laboratoire MASI - Institut Blaise Pascal
   8 * Universite Pierre et Marie Curie (Paris VI)
   9 *
  10 *  from
  11 *
  12 *  linux/fs/minix/inode.c
  13 *
  14 *  Copyright (C) 1991, 1992  Linus Torvalds
  15 *
  16 *  Big-endian to little-endian byte-swapping/bitmaps by
  17 *        David S. Miller (davem@caip.rutgers.edu), 1995
  18 */
  19
  20#include <linux/module.h>
  21#include <linux/string.h>
  22#include <linux/fs.h>
  23#include <linux/time.h>
  24#include <linux/vmalloc.h>
  25#include <linux/slab.h>
  26#include <linux/init.h>
  27#include <linux/blkdev.h>
  28#include <linux/backing-dev.h>
  29#include <linux/parser.h>
  30#include <linux/buffer_head.h>
  31#include <linux/exportfs.h>
  32#include <linux/vfs.h>
  33#include <linux/random.h>
  34#include <linux/mount.h>
  35#include <linux/namei.h>
  36#include <linux/quotaops.h>
  37#include <linux/seq_file.h>
  38#include <linux/ctype.h>
  39#include <linux/log2.h>
  40#include <linux/crc16.h>
  41#include <linux/dax.h>
  42#include <linux/uaccess.h>
  43#include <linux/iversion.h>
  44#include <linux/unicode.h>
  45#include <linux/part_stat.h>
  46#include <linux/kthread.h>
  47#include <linux/freezer.h>
  48#include <linux/fsnotify.h>
  49#include <linux/fs_context.h>
  50#include <linux/fs_parser.h>
  51
  52#include "ext4.h"
  53#include "ext4_extents.h"	/* Needed for trace points definition */
  54#include "ext4_jbd2.h"
  55#include "xattr.h"
  56#include "acl.h"
  57#include "mballoc.h"
  58#include "fsmap.h"
  59
  60#define CREATE_TRACE_POINTS
  61#include <trace/events/ext4.h>
  62
  63static struct ext4_lazy_init *ext4_li_info;
  64static DEFINE_MUTEX(ext4_li_mtx);
  65static struct ratelimit_state ext4_mount_msg_ratelimit;
  66
  67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
  68			     unsigned long journal_devnum);
  69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
  70static void ext4_update_super(struct super_block *sb);
  71static int ext4_commit_super(struct super_block *sb);
  72static int ext4_mark_recovery_complete(struct super_block *sb,
  73					struct ext4_super_block *es);
  74static int ext4_clear_journal_err(struct super_block *sb,
  75				  struct ext4_super_block *es);
  76static int ext4_sync_fs(struct super_block *sb, int wait);
  77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
  78static int ext4_unfreeze(struct super_block *sb);
  79static int ext4_freeze(struct super_block *sb);
  80static inline int ext2_feature_set_ok(struct super_block *sb);
  81static inline int ext3_feature_set_ok(struct super_block *sb);
  82static void ext4_destroy_lazyinit_thread(void);
  83static void ext4_unregister_li_request(struct super_block *sb);
  84static void ext4_clear_request_list(void);
  85static struct inode *ext4_get_journal_inode(struct super_block *sb,
  86					    unsigned int journal_inum);
  87static int ext4_validate_options(struct fs_context *fc);
  88static int ext4_check_opt_consistency(struct fs_context *fc,
  89				      struct super_block *sb);
  90static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
  91static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
  92static int ext4_get_tree(struct fs_context *fc);
  93static int ext4_reconfigure(struct fs_context *fc);
  94static void ext4_fc_free(struct fs_context *fc);
  95static int ext4_init_fs_context(struct fs_context *fc);
  96static void ext4_kill_sb(struct super_block *sb);
  97static const struct fs_parameter_spec ext4_param_specs[];
  98
  99/*
 100 * Lock ordering
 101 *
 102 * page fault path:
 103 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
 104 *   -> page lock -> i_data_sem (rw)
 105 *
 106 * buffered write path:
 107 * sb_start_write -> i_mutex -> mmap_lock
 108 * sb_start_write -> i_mutex -> transaction start -> page lock ->
 109 *   i_data_sem (rw)
 110 *
 111 * truncate:
 112 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
 113 *   page lock
 114 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
 115 *   i_data_sem (rw)
 116 *
 117 * direct IO:
 118 * sb_start_write -> i_mutex -> mmap_lock
 119 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
 120 *
 121 * writepages:
 122 * transaction start -> page lock(s) -> i_data_sem (rw)
 123 */
 124
 125static const struct fs_context_operations ext4_context_ops = {
 126	.parse_param	= ext4_parse_param,
 127	.get_tree	= ext4_get_tree,
 128	.reconfigure	= ext4_reconfigure,
 129	.free		= ext4_fc_free,
 130};
 131
 132
 133#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
 134static struct file_system_type ext2_fs_type = {
 135	.owner			= THIS_MODULE,
 136	.name			= "ext2",
 137	.init_fs_context	= ext4_init_fs_context,
 138	.parameters		= ext4_param_specs,
 139	.kill_sb		= ext4_kill_sb,
 140	.fs_flags		= FS_REQUIRES_DEV,
 141};
 142MODULE_ALIAS_FS("ext2");
 143MODULE_ALIAS("ext2");
 144#define IS_EXT2_SB(sb) ((sb)->s_type == &ext2_fs_type)
 145#else
 146#define IS_EXT2_SB(sb) (0)
 147#endif
 148
 149
 150static struct file_system_type ext3_fs_type = {
 151	.owner			= THIS_MODULE,
 152	.name			= "ext3",
 153	.init_fs_context	= ext4_init_fs_context,
 154	.parameters		= ext4_param_specs,
 155	.kill_sb		= ext4_kill_sb,
 156	.fs_flags		= FS_REQUIRES_DEV,
 157};
 158MODULE_ALIAS_FS("ext3");
 159MODULE_ALIAS("ext3");
 160#define IS_EXT3_SB(sb) ((sb)->s_type == &ext3_fs_type)
 161
 162
 163static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
 164				  bh_end_io_t *end_io)
 165{
 166	/*
 167	 * buffer's verified bit is no longer valid after reading from
 168	 * disk again due to write out error, clear it to make sure we
 169	 * recheck the buffer contents.
 170	 */
 171	clear_buffer_verified(bh);
 172
 173	bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
 174	get_bh(bh);
 175	submit_bh(REQ_OP_READ | op_flags, bh);
 176}
 177
 178void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
 179			 bh_end_io_t *end_io)
 180{
 181	BUG_ON(!buffer_locked(bh));
 182
 183	if (ext4_buffer_uptodate(bh)) {
 184		unlock_buffer(bh);
 185		return;
 186	}
 187	__ext4_read_bh(bh, op_flags, end_io);
 188}
 189
 190int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
 191{
 192	BUG_ON(!buffer_locked(bh));
 193
 194	if (ext4_buffer_uptodate(bh)) {
 195		unlock_buffer(bh);
 196		return 0;
 197	}
 198
 199	__ext4_read_bh(bh, op_flags, end_io);
 200
 201	wait_on_buffer(bh);
 202	if (buffer_uptodate(bh))
 203		return 0;
 204	return -EIO;
 205}
 206
 207int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
 208{
 209	lock_buffer(bh);
 210	if (!wait) {
 211		ext4_read_bh_nowait(bh, op_flags, NULL);
 212		return 0;
 213	}
 214	return ext4_read_bh(bh, op_flags, NULL);
 215}
 216
 217/*
 218 * This works like __bread_gfp() except it uses ERR_PTR for error
 219 * returns.  Currently with sb_bread it's impossible to distinguish
 220 * between ENOMEM and EIO situations (since both result in a NULL
 221 * return.
 222 */
 223static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
 224					       sector_t block,
 225					       blk_opf_t op_flags, gfp_t gfp)
 226{
 227	struct buffer_head *bh;
 228	int ret;
 229
 230	bh = sb_getblk_gfp(sb, block, gfp);
 231	if (bh == NULL)
 232		return ERR_PTR(-ENOMEM);
 233	if (ext4_buffer_uptodate(bh))
 234		return bh;
 235
 236	ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
 237	if (ret) {
 238		put_bh(bh);
 239		return ERR_PTR(ret);
 240	}
 241	return bh;
 242}
 243
 244struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
 245				   blk_opf_t op_flags)
 246{
 247	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
 248			~__GFP_FS) | __GFP_MOVABLE;
 249
 250	return __ext4_sb_bread_gfp(sb, block, op_flags, gfp);
 251}
 252
 253struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
 254					    sector_t block)
 255{
 256	gfp_t gfp = mapping_gfp_constraint(sb->s_bdev->bd_inode->i_mapping,
 257			~__GFP_FS);
 258
 259	return __ext4_sb_bread_gfp(sb, block, 0, gfp);
 260}
 261
 262void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
 263{
 264	struct buffer_head *bh = bdev_getblk(sb->s_bdev, block,
 265			sb->s_blocksize, GFP_NOWAIT | __GFP_NOWARN);
 266
 267	if (likely(bh)) {
 268		if (trylock_buffer(bh))
 269			ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
 270		brelse(bh);
 271	}
 272}
 273
 274static int ext4_verify_csum_type(struct super_block *sb,
 275				 struct ext4_super_block *es)
 276{
 277	if (!ext4_has_feature_metadata_csum(sb))
 278		return 1;
 279
 280	return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
 281}
 282
 283__le32 ext4_superblock_csum(struct super_block *sb,
 284			    struct ext4_super_block *es)
 285{
 286	struct ext4_sb_info *sbi = EXT4_SB(sb);
 287	int offset = offsetof(struct ext4_super_block, s_checksum);
 288	__u32 csum;
 289
 290	csum = ext4_chksum(sbi, ~0, (char *)es, offset);
 291
 292	return cpu_to_le32(csum);
 293}
 294
 295static int ext4_superblock_csum_verify(struct super_block *sb,
 296				       struct ext4_super_block *es)
 297{
 298	if (!ext4_has_metadata_csum(sb))
 299		return 1;
 300
 301	return es->s_checksum == ext4_superblock_csum(sb, es);
 302}
 303
 304void ext4_superblock_csum_set(struct super_block *sb)
 305{
 306	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
 307
 308	if (!ext4_has_metadata_csum(sb))
 309		return;
 310
 311	es->s_checksum = ext4_superblock_csum(sb, es);
 312}
 313
 314ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
 315			       struct ext4_group_desc *bg)
 316{
 317	return le32_to_cpu(bg->bg_block_bitmap_lo) |
 318		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 319		 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
 320}
 321
 322ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
 323			       struct ext4_group_desc *bg)
 324{
 325	return le32_to_cpu(bg->bg_inode_bitmap_lo) |
 326		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 327		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
 328}
 329
 330ext4_fsblk_t ext4_inode_table(struct super_block *sb,
 331			      struct ext4_group_desc *bg)
 332{
 333	return le32_to_cpu(bg->bg_inode_table_lo) |
 334		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 335		 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
 336}
 337
 338__u32 ext4_free_group_clusters(struct super_block *sb,
 339			       struct ext4_group_desc *bg)
 340{
 341	return le16_to_cpu(bg->bg_free_blocks_count_lo) |
 342		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 343		 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
 344}
 345
 346__u32 ext4_free_inodes_count(struct super_block *sb,
 347			      struct ext4_group_desc *bg)
 348{
 349	return le16_to_cpu(bg->bg_free_inodes_count_lo) |
 350		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 351		 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
 352}
 353
 354__u32 ext4_used_dirs_count(struct super_block *sb,
 355			      struct ext4_group_desc *bg)
 356{
 357	return le16_to_cpu(bg->bg_used_dirs_count_lo) |
 358		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 359		 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
 360}
 361
 362__u32 ext4_itable_unused_count(struct super_block *sb,
 363			      struct ext4_group_desc *bg)
 364{
 365	return le16_to_cpu(bg->bg_itable_unused_lo) |
 366		(EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
 367		 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
 368}
 369
 370void ext4_block_bitmap_set(struct super_block *sb,
 371			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 372{
 373	bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
 374	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 375		bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
 376}
 377
 378void ext4_inode_bitmap_set(struct super_block *sb,
 379			   struct ext4_group_desc *bg, ext4_fsblk_t blk)
 380{
 381	bg->bg_inode_bitmap_lo  = cpu_to_le32((u32)blk);
 382	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 383		bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
 384}
 385
 386void ext4_inode_table_set(struct super_block *sb,
 387			  struct ext4_group_desc *bg, ext4_fsblk_t blk)
 388{
 389	bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
 390	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 391		bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
 392}
 393
 394void ext4_free_group_clusters_set(struct super_block *sb,
 395				  struct ext4_group_desc *bg, __u32 count)
 396{
 397	bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
 398	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 399		bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
 400}
 401
 402void ext4_free_inodes_set(struct super_block *sb,
 403			  struct ext4_group_desc *bg, __u32 count)
 404{
 405	bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
 406	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 407		bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
 408}
 409
 410void ext4_used_dirs_set(struct super_block *sb,
 411			  struct ext4_group_desc *bg, __u32 count)
 412{
 413	bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
 414	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 415		bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
 416}
 417
 418void ext4_itable_unused_set(struct super_block *sb,
 419			  struct ext4_group_desc *bg, __u32 count)
 420{
 421	bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
 422	if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
 423		bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
 424}
 425
 426static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
 427{
 428	now = clamp_val(now, 0, (1ull << 40) - 1);
 429
 430	*lo = cpu_to_le32(lower_32_bits(now));
 431	*hi = upper_32_bits(now);
 432}
 433
 434static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
 435{
 436	return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
 437}
 438#define ext4_update_tstamp(es, tstamp) \
 439	__ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
 440			     ktime_get_real_seconds())
 441#define ext4_get_tstamp(es, tstamp) \
 442	__ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
 443
 444#define EXT4_SB_REFRESH_INTERVAL_SEC (3600) /* seconds (1 hour) */
 445#define EXT4_SB_REFRESH_INTERVAL_KB (16384) /* kilobytes (16MB) */
 446
 447/*
 448 * The ext4_maybe_update_superblock() function checks and updates the
 449 * superblock if needed.
 450 *
 451 * This function is designed to update the on-disk superblock only under
 452 * certain conditions to prevent excessive disk writes and unnecessary
 453 * waking of the disk from sleep. The superblock will be updated if:
 454 * 1. More than an hour has passed since the last superblock update, and
 455 * 2. More than 16MB have been written since the last superblock update.
 456 *
 457 * @sb: The superblock
 458 */
 459static void ext4_maybe_update_superblock(struct super_block *sb)
 460{
 461	struct ext4_sb_info *sbi = EXT4_SB(sb);
 462	struct ext4_super_block *es = sbi->s_es;
 463	journal_t *journal = sbi->s_journal;
 464	time64_t now;
 465	__u64 last_update;
 466	__u64 lifetime_write_kbytes;
 467	__u64 diff_size;
 468
 469	if (sb_rdonly(sb) || !(sb->s_flags & SB_ACTIVE) ||
 470	    !journal || (journal->j_flags & JBD2_UNMOUNT))
 471		return;
 472
 473	now = ktime_get_real_seconds();
 474	last_update = ext4_get_tstamp(es, s_wtime);
 475
 476	if (likely(now - last_update < EXT4_SB_REFRESH_INTERVAL_SEC))
 477		return;
 478
 479	lifetime_write_kbytes = sbi->s_kbytes_written +
 480		((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
 481		  sbi->s_sectors_written_start) >> 1);
 482
 483	/* Get the number of kilobytes not written to disk to account
 484	 * for statistics and compare with a multiple of 16 MB. This
 485	 * is used to determine when the next superblock commit should
 486	 * occur (i.e. not more often than once per 16MB if there was
 487	 * less written in an hour).
 488	 */
 489	diff_size = lifetime_write_kbytes - le64_to_cpu(es->s_kbytes_written);
 490
 491	if (diff_size > EXT4_SB_REFRESH_INTERVAL_KB)
 492		schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
 493}
 494
 495/*
 496 * The del_gendisk() function uninitializes the disk-specific data
 497 * structures, including the bdi structure, without telling anyone
 498 * else.  Once this happens, any attempt to call mark_buffer_dirty()
 499 * (for example, by ext4_commit_super), will cause a kernel OOPS.
 500 * This is a kludge to prevent these oops until we can put in a proper
 501 * hook in del_gendisk() to inform the VFS and file system layers.
 502 */
 503static int block_device_ejected(struct super_block *sb)
 504{
 505	struct inode *bd_inode = sb->s_bdev->bd_inode;
 506	struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
 507
 508	return bdi->dev == NULL;
 509}
 510
 511static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
 512{
 513	struct super_block		*sb = journal->j_private;
 514	struct ext4_sb_info		*sbi = EXT4_SB(sb);
 515	int				error = is_journal_aborted(journal);
 516	struct ext4_journal_cb_entry	*jce;
 517
 518	BUG_ON(txn->t_state == T_FINISHED);
 519
 520	ext4_process_freed_data(sb, txn->t_tid);
 521	ext4_maybe_update_superblock(sb);
 522
 523	spin_lock(&sbi->s_md_lock);
 524	while (!list_empty(&txn->t_private_list)) {
 525		jce = list_entry(txn->t_private_list.next,
 526				 struct ext4_journal_cb_entry, jce_list);
 527		list_del_init(&jce->jce_list);
 528		spin_unlock(&sbi->s_md_lock);
 529		jce->jce_func(sb, jce, error);
 530		spin_lock(&sbi->s_md_lock);
 531	}
 532	spin_unlock(&sbi->s_md_lock);
 533}
 534
 535/*
 536 * This writepage callback for write_cache_pages()
 537 * takes care of a few cases after page cleaning.
 538 *
 539 * write_cache_pages() already checks for dirty pages
 540 * and calls clear_page_dirty_for_io(), which we want,
 541 * to write protect the pages.
 542 *
 543 * However, we may have to redirty a page (see below.)
 544 */
 545static int ext4_journalled_writepage_callback(struct folio *folio,
 546					      struct writeback_control *wbc,
 547					      void *data)
 548{
 549	transaction_t *transaction = (transaction_t *) data;
 550	struct buffer_head *bh, *head;
 551	struct journal_head *jh;
 552
 553	bh = head = folio_buffers(folio);
 554	do {
 555		/*
 556		 * We have to redirty a page in these cases:
 557		 * 1) If buffer is dirty, it means the page was dirty because it
 558		 * contains a buffer that needs checkpointing. So the dirty bit
 559		 * needs to be preserved so that checkpointing writes the buffer
 560		 * properly.
 561		 * 2) If buffer is not part of the committing transaction
 562		 * (we may have just accidentally come across this buffer because
 563		 * inode range tracking is not exact) or if the currently running
 564		 * transaction already contains this buffer as well, dirty bit
 565		 * needs to be preserved so that the buffer gets writeprotected
 566		 * properly on running transaction's commit.
 567		 */
 568		jh = bh2jh(bh);
 569		if (buffer_dirty(bh) ||
 570		    (jh && (jh->b_transaction != transaction ||
 571			    jh->b_next_transaction))) {
 572			folio_redirty_for_writepage(wbc, folio);
 573			goto out;
 574		}
 575	} while ((bh = bh->b_this_page) != head);
 576
 577out:
 578	return AOP_WRITEPAGE_ACTIVATE;
 579}
 580
 581static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
 582{
 583	struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
 584	struct writeback_control wbc = {
 585		.sync_mode =  WB_SYNC_ALL,
 586		.nr_to_write = LONG_MAX,
 587		.range_start = jinode->i_dirty_start,
 588		.range_end = jinode->i_dirty_end,
 589        };
 590
 591	return write_cache_pages(mapping, &wbc,
 592				 ext4_journalled_writepage_callback,
 593				 jinode->i_transaction);
 594}
 595
 596static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
 597{
 598	int ret;
 599
 600	if (ext4_should_journal_data(jinode->i_vfs_inode))
 601		ret = ext4_journalled_submit_inode_data_buffers(jinode);
 602	else
 603		ret = ext4_normal_submit_inode_data_buffers(jinode);
 604	return ret;
 605}
 606
 607static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
 608{
 609	int ret = 0;
 610
 611	if (!ext4_should_journal_data(jinode->i_vfs_inode))
 612		ret = jbd2_journal_finish_inode_data_buffers(jinode);
 613
 614	return ret;
 615}
 616
 617static bool system_going_down(void)
 618{
 619	return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
 620		|| system_state == SYSTEM_RESTART;
 621}
 622
 623struct ext4_err_translation {
 624	int code;
 625	int errno;
 626};
 627
 628#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
 629
 630static struct ext4_err_translation err_translation[] = {
 631	EXT4_ERR_TRANSLATE(EIO),
 632	EXT4_ERR_TRANSLATE(ENOMEM),
 633	EXT4_ERR_TRANSLATE(EFSBADCRC),
 634	EXT4_ERR_TRANSLATE(EFSCORRUPTED),
 635	EXT4_ERR_TRANSLATE(ENOSPC),
 636	EXT4_ERR_TRANSLATE(ENOKEY),
 637	EXT4_ERR_TRANSLATE(EROFS),
 638	EXT4_ERR_TRANSLATE(EFBIG),
 639	EXT4_ERR_TRANSLATE(EEXIST),
 640	EXT4_ERR_TRANSLATE(ERANGE),
 641	EXT4_ERR_TRANSLATE(EOVERFLOW),
 642	EXT4_ERR_TRANSLATE(EBUSY),
 643	EXT4_ERR_TRANSLATE(ENOTDIR),
 644	EXT4_ERR_TRANSLATE(ENOTEMPTY),
 645	EXT4_ERR_TRANSLATE(ESHUTDOWN),
 646	EXT4_ERR_TRANSLATE(EFAULT),
 647};
 648
 649static int ext4_errno_to_code(int errno)
 650{
 651	int i;
 652
 653	for (i = 0; i < ARRAY_SIZE(err_translation); i++)
 654		if (err_translation[i].errno == errno)
 655			return err_translation[i].code;
 656	return EXT4_ERR_UNKNOWN;
 657}
 658
 659static void save_error_info(struct super_block *sb, int error,
 660			    __u32 ino, __u64 block,
 661			    const char *func, unsigned int line)
 662{
 663	struct ext4_sb_info *sbi = EXT4_SB(sb);
 664
 665	/* We default to EFSCORRUPTED error... */
 666	if (error == 0)
 667		error = EFSCORRUPTED;
 668
 669	spin_lock(&sbi->s_error_lock);
 670	sbi->s_add_error_count++;
 671	sbi->s_last_error_code = error;
 672	sbi->s_last_error_line = line;
 673	sbi->s_last_error_ino = ino;
 674	sbi->s_last_error_block = block;
 675	sbi->s_last_error_func = func;
 676	sbi->s_last_error_time = ktime_get_real_seconds();
 677	if (!sbi->s_first_error_time) {
 678		sbi->s_first_error_code = error;
 679		sbi->s_first_error_line = line;
 680		sbi->s_first_error_ino = ino;
 681		sbi->s_first_error_block = block;
 682		sbi->s_first_error_func = func;
 683		sbi->s_first_error_time = sbi->s_last_error_time;
 684	}
 685	spin_unlock(&sbi->s_error_lock);
 686}
 687
 688/* Deal with the reporting of failure conditions on a filesystem such as
 689 * inconsistencies detected or read IO failures.
 690 *
 691 * On ext2, we can store the error state of the filesystem in the
 692 * superblock.  That is not possible on ext4, because we may have other
 693 * write ordering constraints on the superblock which prevent us from
 694 * writing it out straight away; and given that the journal is about to
 695 * be aborted, we can't rely on the current, or future, transactions to
 696 * write out the superblock safely.
 697 *
 698 * We'll just use the jbd2_journal_abort() error code to record an error in
 699 * the journal instead.  On recovery, the journal will complain about
 700 * that error until we've noted it down and cleared it.
 701 *
 702 * If force_ro is set, we unconditionally force the filesystem into an
 703 * ABORT|READONLY state, unless the error response on the fs has been set to
 704 * panic in which case we take the easy way out and panic immediately. This is
 705 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
 706 * at a critical moment in log management.
 707 */
 708static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
 709			      __u32 ino, __u64 block,
 710			      const char *func, unsigned int line)
 711{
 712	journal_t *journal = EXT4_SB(sb)->s_journal;
 713	bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
 714
 715	EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
 716	if (test_opt(sb, WARN_ON_ERROR))
 717		WARN_ON_ONCE(1);
 718
 719	if (!continue_fs && !sb_rdonly(sb)) {
 720		set_bit(EXT4_FLAGS_SHUTDOWN, &EXT4_SB(sb)->s_ext4_flags);
 721		if (journal)
 722			jbd2_journal_abort(journal, -EIO);
 723	}
 724
 725	if (!bdev_read_only(sb->s_bdev)) {
 726		save_error_info(sb, error, ino, block, func, line);
 727		/*
 728		 * In case the fs should keep running, we need to writeout
 729		 * superblock through the journal. Due to lock ordering
 730		 * constraints, it may not be safe to do it right here so we
 731		 * defer superblock flushing to a workqueue.
 732		 */
 733		if (continue_fs && journal)
 734			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
 735		else
 736			ext4_commit_super(sb);
 737	}
 738
 739	/*
 740	 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
 741	 * could panic during 'reboot -f' as the underlying device got already
 742	 * disabled.
 743	 */
 744	if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
 745		panic("EXT4-fs (device %s): panic forced after error\n",
 746			sb->s_id);
 747	}
 748
 749	if (sb_rdonly(sb) || continue_fs)
 750		return;
 751
 752	ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
 753	/*
 754	 * Make sure updated value of ->s_mount_flags will be visible before
 755	 * ->s_flags update
 756	 */
 757	smp_wmb();
 758	sb->s_flags |= SB_RDONLY;
 759}
 760
 761static void update_super_work(struct work_struct *work)
 762{
 763	struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
 764						s_sb_upd_work);
 765	journal_t *journal = sbi->s_journal;
 766	handle_t *handle;
 767
 768	/*
 769	 * If the journal is still running, we have to write out superblock
 770	 * through the journal to avoid collisions of other journalled sb
 771	 * updates.
 772	 *
 773	 * We use directly jbd2 functions here to avoid recursing back into
 774	 * ext4 error handling code during handling of previous errors.
 775	 */
 776	if (!sb_rdonly(sbi->s_sb) && journal) {
 777		struct buffer_head *sbh = sbi->s_sbh;
 778		bool call_notify_err = false;
 779
 780		handle = jbd2_journal_start(journal, 1);
 781		if (IS_ERR(handle))
 782			goto write_directly;
 783		if (jbd2_journal_get_write_access(handle, sbh)) {
 784			jbd2_journal_stop(handle);
 785			goto write_directly;
 786		}
 787
 788		if (sbi->s_add_error_count > 0)
 789			call_notify_err = true;
 790
 791		ext4_update_super(sbi->s_sb);
 792		if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
 793			ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
 794				 "superblock detected");
 795			clear_buffer_write_io_error(sbh);
 796			set_buffer_uptodate(sbh);
 797		}
 798
 799		if (jbd2_journal_dirty_metadata(handle, sbh)) {
 800			jbd2_journal_stop(handle);
 801			goto write_directly;
 802		}
 803		jbd2_journal_stop(handle);
 804
 805		if (call_notify_err)
 806			ext4_notify_error_sysfs(sbi);
 807
 808		return;
 809	}
 810write_directly:
 811	/*
 812	 * Write through journal failed. Write sb directly to get error info
 813	 * out and hope for the best.
 814	 */
 815	ext4_commit_super(sbi->s_sb);
 816	ext4_notify_error_sysfs(sbi);
 817}
 818
 819#define ext4_error_ratelimit(sb)					\
 820		___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state),	\
 821			     "EXT4-fs error")
 822
 823void __ext4_error(struct super_block *sb, const char *function,
 824		  unsigned int line, bool force_ro, int error, __u64 block,
 825		  const char *fmt, ...)
 826{
 827	struct va_format vaf;
 828	va_list args;
 829
 830	if (unlikely(ext4_forced_shutdown(sb)))
 831		return;
 832
 833	trace_ext4_error(sb, function, line);
 834	if (ext4_error_ratelimit(sb)) {
 835		va_start(args, fmt);
 836		vaf.fmt = fmt;
 837		vaf.va = &args;
 838		printk(KERN_CRIT
 839		       "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
 840		       sb->s_id, function, line, current->comm, &vaf);
 841		va_end(args);
 842	}
 843	fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
 844
 845	ext4_handle_error(sb, force_ro, error, 0, block, function, line);
 846}
 847
 848void __ext4_error_inode(struct inode *inode, const char *function,
 849			unsigned int line, ext4_fsblk_t block, int error,
 850			const char *fmt, ...)
 851{
 852	va_list args;
 853	struct va_format vaf;
 854
 855	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 856		return;
 857
 858	trace_ext4_error(inode->i_sb, function, line);
 859	if (ext4_error_ratelimit(inode->i_sb)) {
 860		va_start(args, fmt);
 861		vaf.fmt = fmt;
 862		vaf.va = &args;
 863		if (block)
 864			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 865			       "inode #%lu: block %llu: comm %s: %pV\n",
 866			       inode->i_sb->s_id, function, line, inode->i_ino,
 867			       block, current->comm, &vaf);
 868		else
 869			printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
 870			       "inode #%lu: comm %s: %pV\n",
 871			       inode->i_sb->s_id, function, line, inode->i_ino,
 872			       current->comm, &vaf);
 873		va_end(args);
 874	}
 875	fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
 876
 877	ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
 878			  function, line);
 879}
 880
 881void __ext4_error_file(struct file *file, const char *function,
 882		       unsigned int line, ext4_fsblk_t block,
 883		       const char *fmt, ...)
 884{
 885	va_list args;
 886	struct va_format vaf;
 887	struct inode *inode = file_inode(file);
 888	char pathname[80], *path;
 889
 890	if (unlikely(ext4_forced_shutdown(inode->i_sb)))
 891		return;
 892
 893	trace_ext4_error(inode->i_sb, function, line);
 894	if (ext4_error_ratelimit(inode->i_sb)) {
 895		path = file_path(file, pathname, sizeof(pathname));
 896		if (IS_ERR(path))
 897			path = "(unknown)";
 898		va_start(args, fmt);
 899		vaf.fmt = fmt;
 900		vaf.va = &args;
 901		if (block)
 902			printk(KERN_CRIT
 903			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 904			       "block %llu: comm %s: path %s: %pV\n",
 905			       inode->i_sb->s_id, function, line, inode->i_ino,
 906			       block, current->comm, path, &vaf);
 907		else
 908			printk(KERN_CRIT
 909			       "EXT4-fs error (device %s): %s:%d: inode #%lu: "
 910			       "comm %s: path %s: %pV\n",
 911			       inode->i_sb->s_id, function, line, inode->i_ino,
 912			       current->comm, path, &vaf);
 913		va_end(args);
 914	}
 915	fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
 916
 917	ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
 918			  function, line);
 919}
 920
 921const char *ext4_decode_error(struct super_block *sb, int errno,
 922			      char nbuf[16])
 923{
 924	char *errstr = NULL;
 925
 926	switch (errno) {
 927	case -EFSCORRUPTED:
 928		errstr = "Corrupt filesystem";
 929		break;
 930	case -EFSBADCRC:
 931		errstr = "Filesystem failed CRC";
 932		break;
 933	case -EIO:
 934		errstr = "IO failure";
 935		break;
 936	case -ENOMEM:
 937		errstr = "Out of memory";
 938		break;
 939	case -EROFS:
 940		if (!sb || (EXT4_SB(sb)->s_journal &&
 941			    EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
 942			errstr = "Journal has aborted";
 943		else
 944			errstr = "Readonly filesystem";
 945		break;
 946	default:
 947		/* If the caller passed in an extra buffer for unknown
 948		 * errors, textualise them now.  Else we just return
 949		 * NULL. */
 950		if (nbuf) {
 951			/* Check for truncated error codes... */
 952			if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
 953				errstr = nbuf;
 954		}
 955		break;
 956	}
 957
 958	return errstr;
 959}
 960
 961/* __ext4_std_error decodes expected errors from journaling functions
 962 * automatically and invokes the appropriate error response.  */
 963
 964void __ext4_std_error(struct super_block *sb, const char *function,
 965		      unsigned int line, int errno)
 966{
 967	char nbuf[16];
 968	const char *errstr;
 969
 970	if (unlikely(ext4_forced_shutdown(sb)))
 971		return;
 972
 973	/* Special case: if the error is EROFS, and we're not already
 974	 * inside a transaction, then there's really no point in logging
 975	 * an error. */
 976	if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
 977		return;
 978
 979	if (ext4_error_ratelimit(sb)) {
 980		errstr = ext4_decode_error(sb, errno, nbuf);
 981		printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
 982		       sb->s_id, function, line, errstr);
 983	}
 984	fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
 985
 986	ext4_handle_error(sb, false, -errno, 0, 0, function, line);
 987}
 988
 989void __ext4_msg(struct super_block *sb,
 990		const char *prefix, const char *fmt, ...)
 991{
 992	struct va_format vaf;
 993	va_list args;
 994
 995	if (sb) {
 996		atomic_inc(&EXT4_SB(sb)->s_msg_count);
 997		if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
 998				  "EXT4-fs"))
 999			return;
1000	}
1001
1002	va_start(args, fmt);
1003	vaf.fmt = fmt;
1004	vaf.va = &args;
1005	if (sb)
1006		printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
1007	else
1008		printk("%sEXT4-fs: %pV\n", prefix, &vaf);
1009	va_end(args);
1010}
1011
1012static int ext4_warning_ratelimit(struct super_block *sb)
1013{
1014	atomic_inc(&EXT4_SB(sb)->s_warning_count);
1015	return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
1016			    "EXT4-fs warning");
1017}
1018
1019void __ext4_warning(struct super_block *sb, const char *function,
1020		    unsigned int line, const char *fmt, ...)
1021{
1022	struct va_format vaf;
1023	va_list args;
1024
1025	if (!ext4_warning_ratelimit(sb))
1026		return;
1027
1028	va_start(args, fmt);
1029	vaf.fmt = fmt;
1030	vaf.va = &args;
1031	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
1032	       sb->s_id, function, line, &vaf);
1033	va_end(args);
1034}
1035
1036void __ext4_warning_inode(const struct inode *inode, const char *function,
1037			  unsigned int line, const char *fmt, ...)
1038{
1039	struct va_format vaf;
1040	va_list args;
1041
1042	if (!ext4_warning_ratelimit(inode->i_sb))
1043		return;
1044
1045	va_start(args, fmt);
1046	vaf.fmt = fmt;
1047	vaf.va = &args;
1048	printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
1049	       "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
1050	       function, line, inode->i_ino, current->comm, &vaf);
1051	va_end(args);
1052}
1053
1054void __ext4_grp_locked_error(const char *function, unsigned int line,
1055			     struct super_block *sb, ext4_group_t grp,
1056			     unsigned long ino, ext4_fsblk_t block,
1057			     const char *fmt, ...)
1058__releases(bitlock)
1059__acquires(bitlock)
1060{
1061	struct va_format vaf;
1062	va_list args;
1063
1064	if (unlikely(ext4_forced_shutdown(sb)))
1065		return;
1066
1067	trace_ext4_error(sb, function, line);
1068	if (ext4_error_ratelimit(sb)) {
1069		va_start(args, fmt);
1070		vaf.fmt = fmt;
1071		vaf.va = &args;
1072		printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1073		       sb->s_id, function, line, grp);
1074		if (ino)
1075			printk(KERN_CONT "inode %lu: ", ino);
1076		if (block)
1077			printk(KERN_CONT "block %llu:",
1078			       (unsigned long long) block);
1079		printk(KERN_CONT "%pV\n", &vaf);
1080		va_end(args);
1081	}
1082
1083	if (test_opt(sb, ERRORS_CONT)) {
1084		if (test_opt(sb, WARN_ON_ERROR))
1085			WARN_ON_ONCE(1);
1086		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1087		if (!bdev_read_only(sb->s_bdev)) {
1088			save_error_info(sb, EFSCORRUPTED, ino, block, function,
1089					line);
1090			schedule_work(&EXT4_SB(sb)->s_sb_upd_work);
1091		}
1092		return;
1093	}
1094	ext4_unlock_group(sb, grp);
1095	ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1096	/*
1097	 * We only get here in the ERRORS_RO case; relocking the group
1098	 * may be dangerous, but nothing bad will happen since the
1099	 * filesystem will have already been marked read/only and the
1100	 * journal has been aborted.  We return 1 as a hint to callers
1101	 * who might what to use the return value from
1102	 * ext4_grp_locked_error() to distinguish between the
1103	 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1104	 * aggressively from the ext4 function in question, with a
1105	 * more appropriate error code.
1106	 */
1107	ext4_lock_group(sb, grp);
1108	return;
1109}
1110
1111void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1112				     ext4_group_t group,
1113				     unsigned int flags)
1114{
1115	struct ext4_sb_info *sbi = EXT4_SB(sb);
1116	struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1117	struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1118	int ret;
1119
1120	if (!grp || !gdp)
1121		return;
1122	if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1123		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1124					    &grp->bb_state);
1125		if (!ret)
1126			percpu_counter_sub(&sbi->s_freeclusters_counter,
1127					   grp->bb_free);
1128	}
1129
1130	if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1131		ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1132					    &grp->bb_state);
1133		if (!ret && gdp) {
1134			int count;
1135
1136			count = ext4_free_inodes_count(sb, gdp);
1137			percpu_counter_sub(&sbi->s_freeinodes_counter,
1138					   count);
1139		}
1140	}
1141}
1142
1143void ext4_update_dynamic_rev(struct super_block *sb)
1144{
1145	struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1146
1147	if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1148		return;
1149
1150	ext4_warning(sb,
1151		     "updating to rev %d because of new feature flag, "
1152		     "running e2fsck is recommended",
1153		     EXT4_DYNAMIC_REV);
1154
1155	es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1156	es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1157	es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1158	/* leave es->s_feature_*compat flags alone */
1159	/* es->s_uuid will be set by e2fsck if empty */
1160
1161	/*
1162	 * The rest of the superblock fields should be zero, and if not it
1163	 * means they are likely already in use, so leave them alone.  We
1164	 * can leave it up to e2fsck to clean up any inconsistencies there.
1165	 */
1166}
1167
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1168static inline struct inode *orphan_list_entry(struct list_head *l)
1169{
1170	return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1171}
1172
1173static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1174{
1175	struct list_head *l;
1176
1177	ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1178		 le32_to_cpu(sbi->s_es->s_last_orphan));
1179
1180	printk(KERN_ERR "sb_info orphan list:\n");
1181	list_for_each(l, &sbi->s_orphan) {
1182		struct inode *inode = orphan_list_entry(l);
1183		printk(KERN_ERR "  "
1184		       "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1185		       inode->i_sb->s_id, inode->i_ino, inode,
1186		       inode->i_mode, inode->i_nlink,
1187		       NEXT_ORPHAN(inode));
1188	}
1189}
1190
1191#ifdef CONFIG_QUOTA
1192static int ext4_quota_off(struct super_block *sb, int type);
1193
1194static inline void ext4_quotas_off(struct super_block *sb, int type)
1195{
1196	BUG_ON(type > EXT4_MAXQUOTAS);
1197
1198	/* Use our quota_off function to clear inode flags etc. */
1199	for (type--; type >= 0; type--)
1200		ext4_quota_off(sb, type);
1201}
1202
1203/*
1204 * This is a helper function which is used in the mount/remount
1205 * codepaths (which holds s_umount) to fetch the quota file name.
1206 */
1207static inline char *get_qf_name(struct super_block *sb,
1208				struct ext4_sb_info *sbi,
1209				int type)
1210{
1211	return rcu_dereference_protected(sbi->s_qf_names[type],
1212					 lockdep_is_held(&sb->s_umount));
1213}
1214#else
1215static inline void ext4_quotas_off(struct super_block *sb, int type)
1216{
1217}
1218#endif
1219
1220static int ext4_percpu_param_init(struct ext4_sb_info *sbi)
1221{
1222	ext4_fsblk_t block;
1223	int err;
1224
1225	block = ext4_count_free_clusters(sbi->s_sb);
1226	ext4_free_blocks_count_set(sbi->s_es, EXT4_C2B(sbi, block));
1227	err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
1228				  GFP_KERNEL);
1229	if (!err) {
1230		unsigned long freei = ext4_count_free_inodes(sbi->s_sb);
1231		sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
1232		err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
1233					  GFP_KERNEL);
1234	}
1235	if (!err)
1236		err = percpu_counter_init(&sbi->s_dirs_counter,
1237					  ext4_count_dirs(sbi->s_sb), GFP_KERNEL);
1238	if (!err)
1239		err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
1240					  GFP_KERNEL);
1241	if (!err)
1242		err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
1243					  GFP_KERNEL);
1244	if (!err)
1245		err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
1246
1247	if (err)
1248		ext4_msg(sbi->s_sb, KERN_ERR, "insufficient memory");
1249
1250	return err;
1251}
1252
1253static void ext4_percpu_param_destroy(struct ext4_sb_info *sbi)
1254{
1255	percpu_counter_destroy(&sbi->s_freeclusters_counter);
1256	percpu_counter_destroy(&sbi->s_freeinodes_counter);
1257	percpu_counter_destroy(&sbi->s_dirs_counter);
1258	percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1259	percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1260	percpu_free_rwsem(&sbi->s_writepages_rwsem);
1261}
1262
1263static void ext4_group_desc_free(struct ext4_sb_info *sbi)
1264{
1265	struct buffer_head **group_desc;
1266	int i;
1267
1268	rcu_read_lock();
1269	group_desc = rcu_dereference(sbi->s_group_desc);
1270	for (i = 0; i < sbi->s_gdb_count; i++)
1271		brelse(group_desc[i]);
1272	kvfree(group_desc);
1273	rcu_read_unlock();
1274}
1275
1276static void ext4_flex_groups_free(struct ext4_sb_info *sbi)
1277{
1278	struct flex_groups **flex_groups;
1279	int i;
1280
1281	rcu_read_lock();
1282	flex_groups = rcu_dereference(sbi->s_flex_groups);
1283	if (flex_groups) {
1284		for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1285			kvfree(flex_groups[i]);
1286		kvfree(flex_groups);
1287	}
1288	rcu_read_unlock();
1289}
1290
1291static void ext4_put_super(struct super_block *sb)
1292{
1293	struct ext4_sb_info *sbi = EXT4_SB(sb);
1294	struct ext4_super_block *es = sbi->s_es;
 
 
1295	int aborted = 0;
1296	int err;
1297
1298	/*
1299	 * Unregister sysfs before destroying jbd2 journal.
1300	 * Since we could still access attr_journal_task attribute via sysfs
1301	 * path which could have sbi->s_journal->j_task as NULL
1302	 * Unregister sysfs before flush sbi->s_sb_upd_work.
1303	 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1304	 * read metadata verify failed then will queue error work.
1305	 * update_super_work will call start_this_handle may trigger
1306	 * BUG_ON.
1307	 */
1308	ext4_unregister_sysfs(sb);
1309
1310	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1311		ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1312			 &sb->s_uuid);
1313
1314	ext4_unregister_li_request(sb);
1315	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
1316
1317	flush_work(&sbi->s_sb_upd_work);
1318	destroy_workqueue(sbi->rsv_conversion_wq);
1319	ext4_release_orphan_info(sb);
1320
1321	if (sbi->s_journal) {
1322		aborted = is_journal_aborted(sbi->s_journal);
1323		err = jbd2_journal_destroy(sbi->s_journal);
1324		sbi->s_journal = NULL;
1325		if ((err < 0) && !aborted) {
1326			ext4_abort(sb, -err, "Couldn't clean up the journal");
1327		}
1328	}
1329
1330	ext4_es_unregister_shrinker(sbi);
1331	timer_shutdown_sync(&sbi->s_err_report);
1332	ext4_release_system_zone(sb);
1333	ext4_mb_release(sb);
1334	ext4_ext_release(sb);
1335
1336	if (!sb_rdonly(sb) && !aborted) {
1337		ext4_clear_feature_journal_needs_recovery(sb);
1338		ext4_clear_feature_orphan_present(sb);
1339		es->s_state = cpu_to_le16(sbi->s_mount_state);
1340	}
1341	if (!sb_rdonly(sb))
1342		ext4_commit_super(sb);
1343
1344	ext4_group_desc_free(sbi);
1345	ext4_flex_groups_free(sbi);
1346	ext4_percpu_param_destroy(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1347#ifdef CONFIG_QUOTA
1348	for (int i = 0; i < EXT4_MAXQUOTAS; i++)
1349		kfree(get_qf_name(sb, sbi, i));
1350#endif
1351
1352	/* Debugging code just in case the in-memory inode orphan list
1353	 * isn't empty.  The on-disk one can be non-empty if we've
1354	 * detected an error and taken the fs readonly, but the
1355	 * in-memory list had better be clean by this point. */
1356	if (!list_empty(&sbi->s_orphan))
1357		dump_orphan_list(sb, sbi);
1358	ASSERT(list_empty(&sbi->s_orphan));
1359
1360	sync_blockdev(sb->s_bdev);
1361	invalidate_bdev(sb->s_bdev);
1362	if (sbi->s_journal_bdev_handle) {
1363		/*
1364		 * Invalidate the journal device's buffers.  We don't want them
1365		 * floating about in memory - the physical journal device may
1366		 * hotswapped, and it breaks the `ro-after' testing code.
1367		 */
1368		sync_blockdev(sbi->s_journal_bdev_handle->bdev);
1369		invalidate_bdev(sbi->s_journal_bdev_handle->bdev);
 
1370	}
1371
1372	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1373	sbi->s_ea_inode_cache = NULL;
1374
1375	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1376	sbi->s_ea_block_cache = NULL;
1377
1378	ext4_stop_mmpd(sbi);
1379
1380	brelse(sbi->s_sbh);
1381	sb->s_fs_info = NULL;
1382	/*
1383	 * Now that we are completely done shutting down the
1384	 * superblock, we need to actually destroy the kobject.
1385	 */
1386	kobject_put(&sbi->s_kobj);
1387	wait_for_completion(&sbi->s_kobj_unregister);
1388	if (sbi->s_chksum_driver)
1389		crypto_free_shash(sbi->s_chksum_driver);
1390	kfree(sbi->s_blockgroup_lock);
1391	fs_put_dax(sbi->s_daxdev, NULL);
1392	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1393#if IS_ENABLED(CONFIG_UNICODE)
1394	utf8_unload(sb->s_encoding);
1395#endif
1396	kfree(sbi);
1397}
1398
1399static struct kmem_cache *ext4_inode_cachep;
1400
1401/*
1402 * Called inside transaction, so use GFP_NOFS
1403 */
1404static struct inode *ext4_alloc_inode(struct super_block *sb)
1405{
1406	struct ext4_inode_info *ei;
1407
1408	ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1409	if (!ei)
1410		return NULL;
1411
1412	inode_set_iversion(&ei->vfs_inode, 1);
1413	ei->i_flags = 0;
1414	spin_lock_init(&ei->i_raw_lock);
1415	ei->i_prealloc_node = RB_ROOT;
1416	atomic_set(&ei->i_prealloc_active, 0);
1417	rwlock_init(&ei->i_prealloc_lock);
1418	ext4_es_init_tree(&ei->i_es_tree);
1419	rwlock_init(&ei->i_es_lock);
1420	INIT_LIST_HEAD(&ei->i_es_list);
1421	ei->i_es_all_nr = 0;
1422	ei->i_es_shk_nr = 0;
1423	ei->i_es_shrink_lblk = 0;
1424	ei->i_reserved_data_blocks = 0;
1425	spin_lock_init(&(ei->i_block_reservation_lock));
1426	ext4_init_pending_tree(&ei->i_pending_tree);
1427#ifdef CONFIG_QUOTA
1428	ei->i_reserved_quota = 0;
1429	memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1430#endif
1431	ei->jinode = NULL;
1432	INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1433	spin_lock_init(&ei->i_completed_io_lock);
1434	ei->i_sync_tid = 0;
1435	ei->i_datasync_tid = 0;
1436	atomic_set(&ei->i_unwritten, 0);
1437	INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1438	ext4_fc_init_inode(&ei->vfs_inode);
1439	mutex_init(&ei->i_fc_lock);
1440	return &ei->vfs_inode;
1441}
1442
1443static int ext4_drop_inode(struct inode *inode)
1444{
1445	int drop = generic_drop_inode(inode);
1446
1447	if (!drop)
1448		drop = fscrypt_drop_inode(inode);
1449
1450	trace_ext4_drop_inode(inode, drop);
1451	return drop;
1452}
1453
1454static void ext4_free_in_core_inode(struct inode *inode)
1455{
1456	fscrypt_free_inode(inode);
1457	if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1458		pr_warn("%s: inode %ld still in fc list",
1459			__func__, inode->i_ino);
1460	}
1461	kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1462}
1463
1464static void ext4_destroy_inode(struct inode *inode)
1465{
1466	if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1467		ext4_msg(inode->i_sb, KERN_ERR,
1468			 "Inode %lu (%p): orphan list check failed!",
1469			 inode->i_ino, EXT4_I(inode));
1470		print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1471				EXT4_I(inode), sizeof(struct ext4_inode_info),
1472				true);
1473		dump_stack();
1474	}
1475
1476	if (EXT4_I(inode)->i_reserved_data_blocks)
1477		ext4_msg(inode->i_sb, KERN_ERR,
1478			 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1479			 inode->i_ino, EXT4_I(inode),
1480			 EXT4_I(inode)->i_reserved_data_blocks);
1481}
1482
1483static void ext4_shutdown(struct super_block *sb)
1484{
1485       ext4_force_shutdown(sb, EXT4_GOING_FLAGS_NOLOGFLUSH);
1486}
1487
1488static void init_once(void *foo)
1489{
1490	struct ext4_inode_info *ei = foo;
1491
1492	INIT_LIST_HEAD(&ei->i_orphan);
1493	init_rwsem(&ei->xattr_sem);
1494	init_rwsem(&ei->i_data_sem);
1495	inode_init_once(&ei->vfs_inode);
1496	ext4_fc_init_inode(&ei->vfs_inode);
1497}
1498
1499static int __init init_inodecache(void)
1500{
1501	ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1502				sizeof(struct ext4_inode_info), 0,
1503				(SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1504					SLAB_ACCOUNT),
1505				offsetof(struct ext4_inode_info, i_data),
1506				sizeof_field(struct ext4_inode_info, i_data),
1507				init_once);
1508	if (ext4_inode_cachep == NULL)
1509		return -ENOMEM;
1510	return 0;
1511}
1512
1513static void destroy_inodecache(void)
1514{
1515	/*
1516	 * Make sure all delayed rcu free inodes are flushed before we
1517	 * destroy cache.
1518	 */
1519	rcu_barrier();
1520	kmem_cache_destroy(ext4_inode_cachep);
1521}
1522
1523void ext4_clear_inode(struct inode *inode)
1524{
1525	ext4_fc_del(inode);
1526	invalidate_inode_buffers(inode);
1527	clear_inode(inode);
1528	ext4_discard_preallocations(inode);
1529	ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1530	dquot_drop(inode);
1531	if (EXT4_I(inode)->jinode) {
1532		jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1533					       EXT4_I(inode)->jinode);
1534		jbd2_free_inode(EXT4_I(inode)->jinode);
1535		EXT4_I(inode)->jinode = NULL;
1536	}
1537	fscrypt_put_encryption_info(inode);
1538	fsverity_cleanup_inode(inode);
1539}
1540
1541static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1542					u64 ino, u32 generation)
1543{
1544	struct inode *inode;
1545
1546	/*
1547	 * Currently we don't know the generation for parent directory, so
1548	 * a generation of 0 means "accept any"
1549	 */
1550	inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1551	if (IS_ERR(inode))
1552		return ERR_CAST(inode);
1553	if (generation && inode->i_generation != generation) {
1554		iput(inode);
1555		return ERR_PTR(-ESTALE);
1556	}
1557
1558	return inode;
1559}
1560
1561static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1562					int fh_len, int fh_type)
1563{
1564	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1565				    ext4_nfs_get_inode);
1566}
1567
1568static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1569					int fh_len, int fh_type)
1570{
1571	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1572				    ext4_nfs_get_inode);
1573}
1574
1575static int ext4_nfs_commit_metadata(struct inode *inode)
1576{
1577	struct writeback_control wbc = {
1578		.sync_mode = WB_SYNC_ALL
1579	};
1580
1581	trace_ext4_nfs_commit_metadata(inode);
1582	return ext4_write_inode(inode, &wbc);
1583}
1584
1585#ifdef CONFIG_QUOTA
1586static const char * const quotatypes[] = INITQFNAMES;
1587#define QTYPE2NAME(t) (quotatypes[t])
1588
1589static int ext4_write_dquot(struct dquot *dquot);
1590static int ext4_acquire_dquot(struct dquot *dquot);
1591static int ext4_release_dquot(struct dquot *dquot);
1592static int ext4_mark_dquot_dirty(struct dquot *dquot);
1593static int ext4_write_info(struct super_block *sb, int type);
1594static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1595			 const struct path *path);
1596static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1597			       size_t len, loff_t off);
1598static ssize_t ext4_quota_write(struct super_block *sb, int type,
1599				const char *data, size_t len, loff_t off);
1600static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1601			     unsigned int flags);
1602
1603static struct dquot **ext4_get_dquots(struct inode *inode)
1604{
1605	return EXT4_I(inode)->i_dquot;
1606}
1607
1608static const struct dquot_operations ext4_quota_operations = {
1609	.get_reserved_space	= ext4_get_reserved_space,
1610	.write_dquot		= ext4_write_dquot,
1611	.acquire_dquot		= ext4_acquire_dquot,
1612	.release_dquot		= ext4_release_dquot,
1613	.mark_dirty		= ext4_mark_dquot_dirty,
1614	.write_info		= ext4_write_info,
1615	.alloc_dquot		= dquot_alloc,
1616	.destroy_dquot		= dquot_destroy,
1617	.get_projid		= ext4_get_projid,
1618	.get_inode_usage	= ext4_get_inode_usage,
1619	.get_next_id		= dquot_get_next_id,
1620};
1621
1622static const struct quotactl_ops ext4_qctl_operations = {
1623	.quota_on	= ext4_quota_on,
1624	.quota_off	= ext4_quota_off,
1625	.quota_sync	= dquot_quota_sync,
1626	.get_state	= dquot_get_state,
1627	.set_info	= dquot_set_dqinfo,
1628	.get_dqblk	= dquot_get_dqblk,
1629	.set_dqblk	= dquot_set_dqblk,
1630	.get_nextdqblk	= dquot_get_next_dqblk,
1631};
1632#endif
1633
1634static const struct super_operations ext4_sops = {
1635	.alloc_inode	= ext4_alloc_inode,
1636	.free_inode	= ext4_free_in_core_inode,
1637	.destroy_inode	= ext4_destroy_inode,
1638	.write_inode	= ext4_write_inode,
1639	.dirty_inode	= ext4_dirty_inode,
1640	.drop_inode	= ext4_drop_inode,
1641	.evict_inode	= ext4_evict_inode,
1642	.put_super	= ext4_put_super,
1643	.sync_fs	= ext4_sync_fs,
1644	.freeze_fs	= ext4_freeze,
1645	.unfreeze_fs	= ext4_unfreeze,
1646	.statfs		= ext4_statfs,
1647	.show_options	= ext4_show_options,
1648	.shutdown	= ext4_shutdown,
1649#ifdef CONFIG_QUOTA
1650	.quota_read	= ext4_quota_read,
1651	.quota_write	= ext4_quota_write,
1652	.get_dquots	= ext4_get_dquots,
1653#endif
1654};
1655
1656static const struct export_operations ext4_export_ops = {
1657	.encode_fh = generic_encode_ino32_fh,
1658	.fh_to_dentry = ext4_fh_to_dentry,
1659	.fh_to_parent = ext4_fh_to_parent,
1660	.get_parent = ext4_get_parent,
1661	.commit_metadata = ext4_nfs_commit_metadata,
1662};
1663
1664enum {
1665	Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1666	Opt_resgid, Opt_resuid, Opt_sb,
1667	Opt_nouid32, Opt_debug, Opt_removed,
1668	Opt_user_xattr, Opt_acl,
1669	Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1670	Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1671	Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1672	Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1673	Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1674	Opt_inlinecrypt,
1675	Opt_usrjquota, Opt_grpjquota, Opt_quota,
1676	Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1677	Opt_usrquota, Opt_grpquota, Opt_prjquota,
1678	Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1679	Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1680	Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1681	Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1682	Opt_inode_readahead_blks, Opt_journal_ioprio,
1683	Opt_dioread_nolock, Opt_dioread_lock,
1684	Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1685	Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1686	Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1687	Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1688#ifdef CONFIG_EXT4_DEBUG
1689	Opt_fc_debug_max_replay, Opt_fc_debug_force
1690#endif
1691};
1692
1693static const struct constant_table ext4_param_errors[] = {
1694	{"continue",	EXT4_MOUNT_ERRORS_CONT},
1695	{"panic",	EXT4_MOUNT_ERRORS_PANIC},
1696	{"remount-ro",	EXT4_MOUNT_ERRORS_RO},
1697	{}
1698};
1699
1700static const struct constant_table ext4_param_data[] = {
1701	{"journal",	EXT4_MOUNT_JOURNAL_DATA},
1702	{"ordered",	EXT4_MOUNT_ORDERED_DATA},
1703	{"writeback",	EXT4_MOUNT_WRITEBACK_DATA},
1704	{}
1705};
1706
1707static const struct constant_table ext4_param_data_err[] = {
1708	{"abort",	Opt_data_err_abort},
1709	{"ignore",	Opt_data_err_ignore},
1710	{}
1711};
1712
1713static const struct constant_table ext4_param_jqfmt[] = {
1714	{"vfsold",	QFMT_VFS_OLD},
1715	{"vfsv0",	QFMT_VFS_V0},
1716	{"vfsv1",	QFMT_VFS_V1},
1717	{}
1718};
1719
1720static const struct constant_table ext4_param_dax[] = {
1721	{"always",	Opt_dax_always},
1722	{"inode",	Opt_dax_inode},
1723	{"never",	Opt_dax_never},
1724	{}
1725};
1726
1727/* String parameter that allows empty argument */
1728#define fsparam_string_empty(NAME, OPT) \
1729	__fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1730
1731/*
1732 * Mount option specification
1733 * We don't use fsparam_flag_no because of the way we set the
1734 * options and the way we show them in _ext4_show_options(). To
1735 * keep the changes to a minimum, let's keep the negative options
1736 * separate for now.
1737 */
1738static const struct fs_parameter_spec ext4_param_specs[] = {
1739	fsparam_flag	("bsddf",		Opt_bsd_df),
1740	fsparam_flag	("minixdf",		Opt_minix_df),
1741	fsparam_flag	("grpid",		Opt_grpid),
1742	fsparam_flag	("bsdgroups",		Opt_grpid),
1743	fsparam_flag	("nogrpid",		Opt_nogrpid),
1744	fsparam_flag	("sysvgroups",		Opt_nogrpid),
1745	fsparam_u32	("resgid",		Opt_resgid),
1746	fsparam_u32	("resuid",		Opt_resuid),
1747	fsparam_u32	("sb",			Opt_sb),
1748	fsparam_enum	("errors",		Opt_errors, ext4_param_errors),
1749	fsparam_flag	("nouid32",		Opt_nouid32),
1750	fsparam_flag	("debug",		Opt_debug),
1751	fsparam_flag	("oldalloc",		Opt_removed),
1752	fsparam_flag	("orlov",		Opt_removed),
1753	fsparam_flag	("user_xattr",		Opt_user_xattr),
1754	fsparam_flag	("acl",			Opt_acl),
1755	fsparam_flag	("norecovery",		Opt_noload),
1756	fsparam_flag	("noload",		Opt_noload),
1757	fsparam_flag	("bh",			Opt_removed),
1758	fsparam_flag	("nobh",		Opt_removed),
1759	fsparam_u32	("commit",		Opt_commit),
1760	fsparam_u32	("min_batch_time",	Opt_min_batch_time),
1761	fsparam_u32	("max_batch_time",	Opt_max_batch_time),
1762	fsparam_u32	("journal_dev",		Opt_journal_dev),
1763	fsparam_bdev	("journal_path",	Opt_journal_path),
1764	fsparam_flag	("journal_checksum",	Opt_journal_checksum),
1765	fsparam_flag	("nojournal_checksum",	Opt_nojournal_checksum),
1766	fsparam_flag	("journal_async_commit",Opt_journal_async_commit),
1767	fsparam_flag	("abort",		Opt_abort),
1768	fsparam_enum	("data",		Opt_data, ext4_param_data),
1769	fsparam_enum	("data_err",		Opt_data_err,
1770						ext4_param_data_err),
1771	fsparam_string_empty
1772			("usrjquota",		Opt_usrjquota),
1773	fsparam_string_empty
1774			("grpjquota",		Opt_grpjquota),
1775	fsparam_enum	("jqfmt",		Opt_jqfmt, ext4_param_jqfmt),
1776	fsparam_flag	("grpquota",		Opt_grpquota),
1777	fsparam_flag	("quota",		Opt_quota),
1778	fsparam_flag	("noquota",		Opt_noquota),
1779	fsparam_flag	("usrquota",		Opt_usrquota),
1780	fsparam_flag	("prjquota",		Opt_prjquota),
1781	fsparam_flag	("barrier",		Opt_barrier),
1782	fsparam_u32	("barrier",		Opt_barrier),
1783	fsparam_flag	("nobarrier",		Opt_nobarrier),
1784	fsparam_flag	("i_version",		Opt_removed),
1785	fsparam_flag	("dax",			Opt_dax),
1786	fsparam_enum	("dax",			Opt_dax_type, ext4_param_dax),
1787	fsparam_u32	("stripe",		Opt_stripe),
1788	fsparam_flag	("delalloc",		Opt_delalloc),
1789	fsparam_flag	("nodelalloc",		Opt_nodelalloc),
1790	fsparam_flag	("warn_on_error",	Opt_warn_on_error),
1791	fsparam_flag	("nowarn_on_error",	Opt_nowarn_on_error),
1792	fsparam_u32	("debug_want_extra_isize",
1793						Opt_debug_want_extra_isize),
1794	fsparam_flag	("mblk_io_submit",	Opt_removed),
1795	fsparam_flag	("nomblk_io_submit",	Opt_removed),
1796	fsparam_flag	("block_validity",	Opt_block_validity),
1797	fsparam_flag	("noblock_validity",	Opt_noblock_validity),
1798	fsparam_u32	("inode_readahead_blks",
1799						Opt_inode_readahead_blks),
1800	fsparam_u32	("journal_ioprio",	Opt_journal_ioprio),
1801	fsparam_u32	("auto_da_alloc",	Opt_auto_da_alloc),
1802	fsparam_flag	("auto_da_alloc",	Opt_auto_da_alloc),
1803	fsparam_flag	("noauto_da_alloc",	Opt_noauto_da_alloc),
1804	fsparam_flag	("dioread_nolock",	Opt_dioread_nolock),
1805	fsparam_flag	("nodioread_nolock",	Opt_dioread_lock),
1806	fsparam_flag	("dioread_lock",	Opt_dioread_lock),
1807	fsparam_flag	("discard",		Opt_discard),
1808	fsparam_flag	("nodiscard",		Opt_nodiscard),
1809	fsparam_u32	("init_itable",		Opt_init_itable),
1810	fsparam_flag	("init_itable",		Opt_init_itable),
1811	fsparam_flag	("noinit_itable",	Opt_noinit_itable),
1812#ifdef CONFIG_EXT4_DEBUG
1813	fsparam_flag	("fc_debug_force",	Opt_fc_debug_force),
1814	fsparam_u32	("fc_debug_max_replay",	Opt_fc_debug_max_replay),
1815#endif
1816	fsparam_u32	("max_dir_size_kb",	Opt_max_dir_size_kb),
1817	fsparam_flag	("test_dummy_encryption",
1818						Opt_test_dummy_encryption),
1819	fsparam_string	("test_dummy_encryption",
1820						Opt_test_dummy_encryption),
1821	fsparam_flag	("inlinecrypt",		Opt_inlinecrypt),
1822	fsparam_flag	("nombcache",		Opt_nombcache),
1823	fsparam_flag	("no_mbcache",		Opt_nombcache),	/* for backward compatibility */
1824	fsparam_flag	("prefetch_block_bitmaps",
1825						Opt_removed),
1826	fsparam_flag	("no_prefetch_block_bitmaps",
1827						Opt_no_prefetch_block_bitmaps),
1828	fsparam_s32	("mb_optimize_scan",	Opt_mb_optimize_scan),
1829	fsparam_string	("check",		Opt_removed),	/* mount option from ext2/3 */
1830	fsparam_flag	("nocheck",		Opt_removed),	/* mount option from ext2/3 */
1831	fsparam_flag	("reservation",		Opt_removed),	/* mount option from ext2/3 */
1832	fsparam_flag	("noreservation",	Opt_removed),	/* mount option from ext2/3 */
1833	fsparam_u32	("journal",		Opt_removed),	/* mount option from ext2/3 */
1834	{}
1835};
1836
1837#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1838
1839#define MOPT_SET	0x0001
1840#define MOPT_CLEAR	0x0002
1841#define MOPT_NOSUPPORT	0x0004
1842#define MOPT_EXPLICIT	0x0008
1843#ifdef CONFIG_QUOTA
1844#define MOPT_Q		0
1845#define MOPT_QFMT	0x0010
1846#else
1847#define MOPT_Q		MOPT_NOSUPPORT
1848#define MOPT_QFMT	MOPT_NOSUPPORT
1849#endif
1850#define MOPT_NO_EXT2	0x0020
1851#define MOPT_NO_EXT3	0x0040
1852#define MOPT_EXT4_ONLY	(MOPT_NO_EXT2 | MOPT_NO_EXT3)
1853#define MOPT_SKIP	0x0080
1854#define	MOPT_2		0x0100
1855
1856static const struct mount_opts {
1857	int	token;
1858	int	mount_opt;
1859	int	flags;
1860} ext4_mount_opts[] = {
1861	{Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1862	{Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1863	{Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1864	{Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1865	{Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1866	{Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1867	{Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1868	 MOPT_EXT4_ONLY | MOPT_SET},
1869	{Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1870	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1871	{Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1872	{Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1873	{Opt_delalloc, EXT4_MOUNT_DELALLOC,
1874	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1875	{Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1876	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1877	{Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1878	{Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1879	{Opt_commit, 0, MOPT_NO_EXT2},
1880	{Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1881	 MOPT_EXT4_ONLY | MOPT_CLEAR},
1882	{Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1883	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1884	{Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1885				    EXT4_MOUNT_JOURNAL_CHECKSUM),
1886	 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1887	{Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1888	{Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1889	{Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1890	{Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1891	{Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1892	{Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1893	{Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1894	{Opt_dax_type, 0, MOPT_EXT4_ONLY},
1895	{Opt_journal_dev, 0, MOPT_NO_EXT2},
1896	{Opt_journal_path, 0, MOPT_NO_EXT2},
1897	{Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1898	{Opt_data, 0, MOPT_NO_EXT2},
1899	{Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1900#ifdef CONFIG_EXT4_FS_POSIX_ACL
1901	{Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1902#else
1903	{Opt_acl, 0, MOPT_NOSUPPORT},
1904#endif
1905	{Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1906	{Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1907	{Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1908	{Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1909							MOPT_SET | MOPT_Q},
1910	{Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1911							MOPT_SET | MOPT_Q},
1912	{Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1913							MOPT_SET | MOPT_Q},
1914	{Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1915		       EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1916							MOPT_CLEAR | MOPT_Q},
1917	{Opt_usrjquota, 0, MOPT_Q},
1918	{Opt_grpjquota, 0, MOPT_Q},
1919	{Opt_jqfmt, 0, MOPT_QFMT},
1920	{Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1921	{Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1922	 MOPT_SET},
1923#ifdef CONFIG_EXT4_DEBUG
1924	{Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1925	 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1926#endif
1927	{Opt_abort, EXT4_MOUNT2_ABORT, MOPT_SET | MOPT_2},
1928	{Opt_err, 0, 0}
1929};
1930
1931#if IS_ENABLED(CONFIG_UNICODE)
1932static const struct ext4_sb_encodings {
1933	__u16 magic;
1934	char *name;
1935	unsigned int version;
1936} ext4_sb_encoding_map[] = {
1937	{EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1938};
1939
1940static const struct ext4_sb_encodings *
1941ext4_sb_read_encoding(const struct ext4_super_block *es)
1942{
1943	__u16 magic = le16_to_cpu(es->s_encoding);
1944	int i;
1945
1946	for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1947		if (magic == ext4_sb_encoding_map[i].magic)
1948			return &ext4_sb_encoding_map[i];
1949
1950	return NULL;
1951}
1952#endif
1953
1954#define EXT4_SPEC_JQUOTA			(1 <<  0)
1955#define EXT4_SPEC_JQFMT				(1 <<  1)
1956#define EXT4_SPEC_DATAJ				(1 <<  2)
1957#define EXT4_SPEC_SB_BLOCK			(1 <<  3)
1958#define EXT4_SPEC_JOURNAL_DEV			(1 <<  4)
1959#define EXT4_SPEC_JOURNAL_IOPRIO		(1 <<  5)
1960#define EXT4_SPEC_s_want_extra_isize		(1 <<  7)
1961#define EXT4_SPEC_s_max_batch_time		(1 <<  8)
1962#define EXT4_SPEC_s_min_batch_time		(1 <<  9)
1963#define EXT4_SPEC_s_inode_readahead_blks	(1 << 10)
1964#define EXT4_SPEC_s_li_wait_mult		(1 << 11)
1965#define EXT4_SPEC_s_max_dir_size_kb		(1 << 12)
1966#define EXT4_SPEC_s_stripe			(1 << 13)
1967#define EXT4_SPEC_s_resuid			(1 << 14)
1968#define EXT4_SPEC_s_resgid			(1 << 15)
1969#define EXT4_SPEC_s_commit_interval		(1 << 16)
1970#define EXT4_SPEC_s_fc_debug_max_replay		(1 << 17)
1971#define EXT4_SPEC_s_sb_block			(1 << 18)
1972#define EXT4_SPEC_mb_optimize_scan		(1 << 19)
1973
1974struct ext4_fs_context {
1975	char		*s_qf_names[EXT4_MAXQUOTAS];
1976	struct fscrypt_dummy_policy dummy_enc_policy;
1977	int		s_jquota_fmt;	/* Format of quota to use */
1978#ifdef CONFIG_EXT4_DEBUG
1979	int s_fc_debug_max_replay;
1980#endif
1981	unsigned short	qname_spec;
1982	unsigned long	vals_s_flags;	/* Bits to set in s_flags */
1983	unsigned long	mask_s_flags;	/* Bits changed in s_flags */
1984	unsigned long	journal_devnum;
1985	unsigned long	s_commit_interval;
1986	unsigned long	s_stripe;
1987	unsigned int	s_inode_readahead_blks;
1988	unsigned int	s_want_extra_isize;
1989	unsigned int	s_li_wait_mult;
1990	unsigned int	s_max_dir_size_kb;
1991	unsigned int	journal_ioprio;
1992	unsigned int	vals_s_mount_opt;
1993	unsigned int	mask_s_mount_opt;
1994	unsigned int	vals_s_mount_opt2;
1995	unsigned int	mask_s_mount_opt2;
 
 
1996	unsigned int	opt_flags;	/* MOPT flags */
1997	unsigned int	spec;
1998	u32		s_max_batch_time;
1999	u32		s_min_batch_time;
2000	kuid_t		s_resuid;
2001	kgid_t		s_resgid;
2002	ext4_fsblk_t	s_sb_block;
2003};
2004
2005static void ext4_fc_free(struct fs_context *fc)
2006{
2007	struct ext4_fs_context *ctx = fc->fs_private;
2008	int i;
2009
2010	if (!ctx)
2011		return;
2012
2013	for (i = 0; i < EXT4_MAXQUOTAS; i++)
2014		kfree(ctx->s_qf_names[i]);
2015
2016	fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
2017	kfree(ctx);
2018}
2019
2020int ext4_init_fs_context(struct fs_context *fc)
2021{
2022	struct ext4_fs_context *ctx;
2023
2024	ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2025	if (!ctx)
2026		return -ENOMEM;
2027
2028	fc->fs_private = ctx;
2029	fc->ops = &ext4_context_ops;
2030
2031	return 0;
2032}
2033
2034#ifdef CONFIG_QUOTA
2035/*
2036 * Note the name of the specified quota file.
2037 */
2038static int note_qf_name(struct fs_context *fc, int qtype,
2039		       struct fs_parameter *param)
2040{
2041	struct ext4_fs_context *ctx = fc->fs_private;
2042	char *qname;
2043
2044	if (param->size < 1) {
2045		ext4_msg(NULL, KERN_ERR, "Missing quota name");
2046		return -EINVAL;
2047	}
2048	if (strchr(param->string, '/')) {
2049		ext4_msg(NULL, KERN_ERR,
2050			 "quotafile must be on filesystem root");
2051		return -EINVAL;
2052	}
2053	if (ctx->s_qf_names[qtype]) {
2054		if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
2055			ext4_msg(NULL, KERN_ERR,
2056				 "%s quota file already specified",
2057				 QTYPE2NAME(qtype));
2058			return -EINVAL;
2059		}
2060		return 0;
2061	}
2062
2063	qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
2064	if (!qname) {
2065		ext4_msg(NULL, KERN_ERR,
2066			 "Not enough memory for storing quotafile name");
2067		return -ENOMEM;
2068	}
2069	ctx->s_qf_names[qtype] = qname;
2070	ctx->qname_spec |= 1 << qtype;
2071	ctx->spec |= EXT4_SPEC_JQUOTA;
2072	return 0;
2073}
2074
2075/*
2076 * Clear the name of the specified quota file.
2077 */
2078static int unnote_qf_name(struct fs_context *fc, int qtype)
2079{
2080	struct ext4_fs_context *ctx = fc->fs_private;
2081
2082	if (ctx->s_qf_names[qtype])
2083		kfree(ctx->s_qf_names[qtype]);
2084
2085	ctx->s_qf_names[qtype] = NULL;
2086	ctx->qname_spec |= 1 << qtype;
2087	ctx->spec |= EXT4_SPEC_JQUOTA;
2088	return 0;
2089}
2090#endif
2091
2092static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2093					    struct ext4_fs_context *ctx)
2094{
2095	int err;
2096
2097	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2098		ext4_msg(NULL, KERN_WARNING,
2099			 "test_dummy_encryption option not supported");
2100		return -EINVAL;
2101	}
2102	err = fscrypt_parse_test_dummy_encryption(param,
2103						  &ctx->dummy_enc_policy);
2104	if (err == -EINVAL) {
2105		ext4_msg(NULL, KERN_WARNING,
2106			 "Value of option \"%s\" is unrecognized", param->key);
2107	} else if (err == -EEXIST) {
2108		ext4_msg(NULL, KERN_WARNING,
2109			 "Conflicting test_dummy_encryption options");
2110		return -EINVAL;
2111	}
2112	return err;
2113}
2114
2115#define EXT4_SET_CTX(name)						\
2116static inline void ctx_set_##name(struct ext4_fs_context *ctx,		\
2117				  unsigned long flag)			\
2118{									\
2119	ctx->mask_s_##name |= flag;					\
2120	ctx->vals_s_##name |= flag;					\
2121}
2122
2123#define EXT4_CLEAR_CTX(name)						\
2124static inline void ctx_clear_##name(struct ext4_fs_context *ctx,	\
2125				    unsigned long flag)			\
2126{									\
2127	ctx->mask_s_##name |= flag;					\
2128	ctx->vals_s_##name &= ~flag;					\
2129}
2130
2131#define EXT4_TEST_CTX(name)						\
2132static inline unsigned long						\
2133ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag)	\
2134{									\
2135	return (ctx->vals_s_##name & flag);				\
2136}
2137
2138EXT4_SET_CTX(flags); /* set only */
2139EXT4_SET_CTX(mount_opt);
2140EXT4_CLEAR_CTX(mount_opt);
2141EXT4_TEST_CTX(mount_opt);
2142EXT4_SET_CTX(mount_opt2);
2143EXT4_CLEAR_CTX(mount_opt2);
2144EXT4_TEST_CTX(mount_opt2);
2145
 
 
 
 
 
 
2146static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2147{
2148	struct ext4_fs_context *ctx = fc->fs_private;
2149	struct fs_parse_result result;
2150	const struct mount_opts *m;
2151	int is_remount;
2152	kuid_t uid;
2153	kgid_t gid;
2154	int token;
2155
2156	token = fs_parse(fc, ext4_param_specs, param, &result);
2157	if (token < 0)
2158		return token;
2159	is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2160
2161	for (m = ext4_mount_opts; m->token != Opt_err; m++)
2162		if (token == m->token)
2163			break;
2164
2165	ctx->opt_flags |= m->flags;
2166
2167	if (m->flags & MOPT_EXPLICIT) {
2168		if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2169			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2170		} else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2171			ctx_set_mount_opt2(ctx,
2172				       EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2173		} else
2174			return -EINVAL;
2175	}
2176
2177	if (m->flags & MOPT_NOSUPPORT) {
2178		ext4_msg(NULL, KERN_ERR, "%s option not supported",
2179			 param->key);
2180		return 0;
2181	}
2182
2183	switch (token) {
2184#ifdef CONFIG_QUOTA
2185	case Opt_usrjquota:
2186		if (!*param->string)
2187			return unnote_qf_name(fc, USRQUOTA);
2188		else
2189			return note_qf_name(fc, USRQUOTA, param);
2190	case Opt_grpjquota:
2191		if (!*param->string)
2192			return unnote_qf_name(fc, GRPQUOTA);
2193		else
2194			return note_qf_name(fc, GRPQUOTA, param);
2195#endif
2196	case Opt_sb:
2197		if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2198			ext4_msg(NULL, KERN_WARNING,
2199				 "Ignoring %s option on remount", param->key);
2200		} else {
2201			ctx->s_sb_block = result.uint_32;
2202			ctx->spec |= EXT4_SPEC_s_sb_block;
2203		}
2204		return 0;
2205	case Opt_removed:
2206		ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2207			 param->key);
2208		return 0;
 
 
 
2209	case Opt_inlinecrypt:
2210#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2211		ctx_set_flags(ctx, SB_INLINECRYPT);
2212#else
2213		ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2214#endif
2215		return 0;
2216	case Opt_errors:
2217		ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2218		ctx_set_mount_opt(ctx, result.uint_32);
2219		return 0;
2220#ifdef CONFIG_QUOTA
2221	case Opt_jqfmt:
2222		ctx->s_jquota_fmt = result.uint_32;
2223		ctx->spec |= EXT4_SPEC_JQFMT;
2224		return 0;
2225#endif
2226	case Opt_data:
2227		ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2228		ctx_set_mount_opt(ctx, result.uint_32);
2229		ctx->spec |= EXT4_SPEC_DATAJ;
2230		return 0;
2231	case Opt_commit:
2232		if (result.uint_32 == 0)
2233			result.uint_32 = JBD2_DEFAULT_MAX_COMMIT_AGE;
2234		else if (result.uint_32 > INT_MAX / HZ) {
2235			ext4_msg(NULL, KERN_ERR,
2236				 "Invalid commit interval %d, "
2237				 "must be smaller than %d",
2238				 result.uint_32, INT_MAX / HZ);
2239			return -EINVAL;
2240		}
2241		ctx->s_commit_interval = HZ * result.uint_32;
2242		ctx->spec |= EXT4_SPEC_s_commit_interval;
2243		return 0;
2244	case Opt_debug_want_extra_isize:
2245		if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2246			ext4_msg(NULL, KERN_ERR,
2247				 "Invalid want_extra_isize %d", result.uint_32);
2248			return -EINVAL;
2249		}
2250		ctx->s_want_extra_isize = result.uint_32;
2251		ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2252		return 0;
2253	case Opt_max_batch_time:
2254		ctx->s_max_batch_time = result.uint_32;
2255		ctx->spec |= EXT4_SPEC_s_max_batch_time;
2256		return 0;
2257	case Opt_min_batch_time:
2258		ctx->s_min_batch_time = result.uint_32;
2259		ctx->spec |= EXT4_SPEC_s_min_batch_time;
2260		return 0;
2261	case Opt_inode_readahead_blks:
2262		if (result.uint_32 &&
2263		    (result.uint_32 > (1 << 30) ||
2264		     !is_power_of_2(result.uint_32))) {
2265			ext4_msg(NULL, KERN_ERR,
2266				 "EXT4-fs: inode_readahead_blks must be "
2267				 "0 or a power of 2 smaller than 2^31");
2268			return -EINVAL;
2269		}
2270		ctx->s_inode_readahead_blks = result.uint_32;
2271		ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2272		return 0;
2273	case Opt_init_itable:
2274		ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2275		ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2276		if (param->type == fs_value_is_string)
2277			ctx->s_li_wait_mult = result.uint_32;
2278		ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2279		return 0;
2280	case Opt_max_dir_size_kb:
2281		ctx->s_max_dir_size_kb = result.uint_32;
2282		ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2283		return 0;
2284#ifdef CONFIG_EXT4_DEBUG
2285	case Opt_fc_debug_max_replay:
2286		ctx->s_fc_debug_max_replay = result.uint_32;
2287		ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2288		return 0;
2289#endif
2290	case Opt_stripe:
2291		ctx->s_stripe = result.uint_32;
2292		ctx->spec |= EXT4_SPEC_s_stripe;
2293		return 0;
2294	case Opt_resuid:
2295		uid = make_kuid(current_user_ns(), result.uint_32);
2296		if (!uid_valid(uid)) {
2297			ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2298				 result.uint_32);
2299			return -EINVAL;
2300		}
2301		ctx->s_resuid = uid;
2302		ctx->spec |= EXT4_SPEC_s_resuid;
2303		return 0;
2304	case Opt_resgid:
2305		gid = make_kgid(current_user_ns(), result.uint_32);
2306		if (!gid_valid(gid)) {
2307			ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2308				 result.uint_32);
2309			return -EINVAL;
2310		}
2311		ctx->s_resgid = gid;
2312		ctx->spec |= EXT4_SPEC_s_resgid;
2313		return 0;
2314	case Opt_journal_dev:
2315		if (is_remount) {
2316			ext4_msg(NULL, KERN_ERR,
2317				 "Cannot specify journal on remount");
2318			return -EINVAL;
2319		}
2320		ctx->journal_devnum = result.uint_32;
2321		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2322		return 0;
2323	case Opt_journal_path:
2324	{
2325		struct inode *journal_inode;
2326		struct path path;
2327		int error;
2328
2329		if (is_remount) {
2330			ext4_msg(NULL, KERN_ERR,
2331				 "Cannot specify journal on remount");
2332			return -EINVAL;
2333		}
2334
2335		error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2336		if (error) {
2337			ext4_msg(NULL, KERN_ERR, "error: could not find "
2338				 "journal device path");
2339			return -EINVAL;
2340		}
2341
2342		journal_inode = d_inode(path.dentry);
2343		ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2344		ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2345		path_put(&path);
2346		return 0;
2347	}
2348	case Opt_journal_ioprio:
2349		if (result.uint_32 > 7) {
2350			ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2351				 " (must be 0-7)");
2352			return -EINVAL;
2353		}
2354		ctx->journal_ioprio =
2355			IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2356		ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2357		return 0;
2358	case Opt_test_dummy_encryption:
2359		return ext4_parse_test_dummy_encryption(param, ctx);
2360	case Opt_dax:
2361	case Opt_dax_type:
2362#ifdef CONFIG_FS_DAX
2363	{
2364		int type = (token == Opt_dax) ?
2365			   Opt_dax : result.uint_32;
2366
2367		switch (type) {
2368		case Opt_dax:
2369		case Opt_dax_always:
2370			ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2371			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2372			break;
2373		case Opt_dax_never:
2374			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2375			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2376			break;
2377		case Opt_dax_inode:
2378			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2379			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2380			/* Strictly for printing options */
2381			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2382			break;
2383		}
2384		return 0;
2385	}
2386#else
2387		ext4_msg(NULL, KERN_INFO, "dax option not supported");
2388		return -EINVAL;
2389#endif
2390	case Opt_data_err:
2391		if (result.uint_32 == Opt_data_err_abort)
2392			ctx_set_mount_opt(ctx, m->mount_opt);
2393		else if (result.uint_32 == Opt_data_err_ignore)
2394			ctx_clear_mount_opt(ctx, m->mount_opt);
2395		return 0;
2396	case Opt_mb_optimize_scan:
2397		if (result.int_32 == 1) {
2398			ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2399			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2400		} else if (result.int_32 == 0) {
2401			ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2402			ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2403		} else {
2404			ext4_msg(NULL, KERN_WARNING,
2405				 "mb_optimize_scan should be set to 0 or 1.");
2406			return -EINVAL;
2407		}
2408		return 0;
2409	}
2410
2411	/*
2412	 * At this point we should only be getting options requiring MOPT_SET,
2413	 * or MOPT_CLEAR. Anything else is a bug
2414	 */
2415	if (m->token == Opt_err) {
2416		ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2417			 param->key);
2418		WARN_ON(1);
2419		return -EINVAL;
2420	}
2421
2422	else {
2423		unsigned int set = 0;
2424
2425		if ((param->type == fs_value_is_flag) ||
2426		    result.uint_32 > 0)
2427			set = 1;
2428
2429		if (m->flags & MOPT_CLEAR)
2430			set = !set;
2431		else if (unlikely(!(m->flags & MOPT_SET))) {
2432			ext4_msg(NULL, KERN_WARNING,
2433				 "buggy handling of option %s",
2434				 param->key);
2435			WARN_ON(1);
2436			return -EINVAL;
2437		}
2438		if (m->flags & MOPT_2) {
2439			if (set != 0)
2440				ctx_set_mount_opt2(ctx, m->mount_opt);
2441			else
2442				ctx_clear_mount_opt2(ctx, m->mount_opt);
2443		} else {
2444			if (set != 0)
2445				ctx_set_mount_opt(ctx, m->mount_opt);
2446			else
2447				ctx_clear_mount_opt(ctx, m->mount_opt);
2448		}
2449	}
2450
2451	return 0;
2452}
2453
2454static int parse_options(struct fs_context *fc, char *options)
2455{
2456	struct fs_parameter param;
2457	int ret;
2458	char *key;
2459
2460	if (!options)
2461		return 0;
2462
2463	while ((key = strsep(&options, ",")) != NULL) {
2464		if (*key) {
2465			size_t v_len = 0;
2466			char *value = strchr(key, '=');
2467
2468			param.type = fs_value_is_flag;
2469			param.string = NULL;
2470
2471			if (value) {
2472				if (value == key)
2473					continue;
2474
2475				*value++ = 0;
2476				v_len = strlen(value);
2477				param.string = kmemdup_nul(value, v_len,
2478							   GFP_KERNEL);
2479				if (!param.string)
2480					return -ENOMEM;
2481				param.type = fs_value_is_string;
2482			}
2483
2484			param.key = key;
2485			param.size = v_len;
2486
2487			ret = ext4_parse_param(fc, &param);
2488			if (param.string)
2489				kfree(param.string);
2490			if (ret < 0)
2491				return ret;
2492		}
2493	}
2494
2495	ret = ext4_validate_options(fc);
2496	if (ret < 0)
2497		return ret;
2498
2499	return 0;
2500}
2501
2502static int parse_apply_sb_mount_options(struct super_block *sb,
2503					struct ext4_fs_context *m_ctx)
2504{
2505	struct ext4_sb_info *sbi = EXT4_SB(sb);
2506	char *s_mount_opts = NULL;
2507	struct ext4_fs_context *s_ctx = NULL;
2508	struct fs_context *fc = NULL;
2509	int ret = -ENOMEM;
2510
2511	if (!sbi->s_es->s_mount_opts[0])
2512		return 0;
2513
2514	s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2515				sizeof(sbi->s_es->s_mount_opts),
2516				GFP_KERNEL);
2517	if (!s_mount_opts)
2518		return ret;
2519
2520	fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2521	if (!fc)
2522		goto out_free;
2523
2524	s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2525	if (!s_ctx)
2526		goto out_free;
2527
2528	fc->fs_private = s_ctx;
2529	fc->s_fs_info = sbi;
2530
2531	ret = parse_options(fc, s_mount_opts);
2532	if (ret < 0)
2533		goto parse_failed;
2534
2535	ret = ext4_check_opt_consistency(fc, sb);
2536	if (ret < 0) {
2537parse_failed:
2538		ext4_msg(sb, KERN_WARNING,
2539			 "failed to parse options in superblock: %s",
2540			 s_mount_opts);
2541		ret = 0;
2542		goto out_free;
2543	}
2544
2545	if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2546		m_ctx->journal_devnum = s_ctx->journal_devnum;
2547	if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2548		m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2549
2550	ext4_apply_options(fc, sb);
2551	ret = 0;
2552
2553out_free:
2554	if (fc) {
2555		ext4_fc_free(fc);
2556		kfree(fc);
2557	}
2558	kfree(s_mount_opts);
2559	return ret;
2560}
2561
2562static void ext4_apply_quota_options(struct fs_context *fc,
2563				     struct super_block *sb)
2564{
2565#ifdef CONFIG_QUOTA
2566	bool quota_feature = ext4_has_feature_quota(sb);
2567	struct ext4_fs_context *ctx = fc->fs_private;
2568	struct ext4_sb_info *sbi = EXT4_SB(sb);
2569	char *qname;
2570	int i;
2571
2572	if (quota_feature)
2573		return;
2574
2575	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2576		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2577			if (!(ctx->qname_spec & (1 << i)))
2578				continue;
2579
2580			qname = ctx->s_qf_names[i]; /* May be NULL */
2581			if (qname)
2582				set_opt(sb, QUOTA);
2583			ctx->s_qf_names[i] = NULL;
2584			qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2585						lockdep_is_held(&sb->s_umount));
2586			if (qname)
2587				kfree_rcu_mightsleep(qname);
2588		}
2589	}
2590
2591	if (ctx->spec & EXT4_SPEC_JQFMT)
2592		sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2593#endif
2594}
2595
2596/*
2597 * Check quota settings consistency.
2598 */
2599static int ext4_check_quota_consistency(struct fs_context *fc,
2600					struct super_block *sb)
2601{
2602#ifdef CONFIG_QUOTA
2603	struct ext4_fs_context *ctx = fc->fs_private;
2604	struct ext4_sb_info *sbi = EXT4_SB(sb);
2605	bool quota_feature = ext4_has_feature_quota(sb);
2606	bool quota_loaded = sb_any_quota_loaded(sb);
2607	bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2608	int quota_flags, i;
2609
2610	/*
2611	 * We do the test below only for project quotas. 'usrquota' and
2612	 * 'grpquota' mount options are allowed even without quota feature
2613	 * to support legacy quotas in quota files.
2614	 */
2615	if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2616	    !ext4_has_feature_project(sb)) {
2617		ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2618			 "Cannot enable project quota enforcement.");
2619		return -EINVAL;
2620	}
2621
2622	quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2623		      EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2624	if (quota_loaded &&
2625	    ctx->mask_s_mount_opt & quota_flags &&
2626	    !ctx_test_mount_opt(ctx, quota_flags))
2627		goto err_quota_change;
2628
2629	if (ctx->spec & EXT4_SPEC_JQUOTA) {
2630
2631		for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2632			if (!(ctx->qname_spec & (1 << i)))
2633				continue;
2634
2635			if (quota_loaded &&
2636			    !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2637				goto err_jquota_change;
2638
2639			if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2640			    strcmp(get_qf_name(sb, sbi, i),
2641				   ctx->s_qf_names[i]) != 0)
2642				goto err_jquota_specified;
2643		}
2644
2645		if (quota_feature) {
2646			ext4_msg(NULL, KERN_INFO,
2647				 "Journaled quota options ignored when "
2648				 "QUOTA feature is enabled");
2649			return 0;
2650		}
2651	}
2652
2653	if (ctx->spec & EXT4_SPEC_JQFMT) {
2654		if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2655			goto err_jquota_change;
2656		if (quota_feature) {
2657			ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2658				 "ignored when QUOTA feature is enabled");
2659			return 0;
2660		}
2661	}
2662
2663	/* Make sure we don't mix old and new quota format */
2664	usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2665		       ctx->s_qf_names[USRQUOTA]);
2666	grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2667		       ctx->s_qf_names[GRPQUOTA]);
2668
2669	usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2670		    test_opt(sb, USRQUOTA));
2671
2672	grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2673		    test_opt(sb, GRPQUOTA));
2674
2675	if (usr_qf_name) {
2676		ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2677		usrquota = false;
2678	}
2679	if (grp_qf_name) {
2680		ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2681		grpquota = false;
2682	}
2683
2684	if (usr_qf_name || grp_qf_name) {
2685		if (usrquota || grpquota) {
2686			ext4_msg(NULL, KERN_ERR, "old and new quota "
2687				 "format mixing");
2688			return -EINVAL;
2689		}
2690
2691		if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2692			ext4_msg(NULL, KERN_ERR, "journaled quota format "
2693				 "not specified");
2694			return -EINVAL;
2695		}
2696	}
2697
2698	return 0;
2699
2700err_quota_change:
2701	ext4_msg(NULL, KERN_ERR,
2702		 "Cannot change quota options when quota turned on");
2703	return -EINVAL;
2704err_jquota_change:
2705	ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2706		 "options when quota turned on");
2707	return -EINVAL;
2708err_jquota_specified:
2709	ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2710		 QTYPE2NAME(i));
2711	return -EINVAL;
2712#else
2713	return 0;
2714#endif
2715}
2716
2717static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2718					    struct super_block *sb)
2719{
2720	const struct ext4_fs_context *ctx = fc->fs_private;
2721	const struct ext4_sb_info *sbi = EXT4_SB(sb);
 
2722
2723	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2724		return 0;
2725
2726	if (!ext4_has_feature_encrypt(sb)) {
2727		ext4_msg(NULL, KERN_WARNING,
2728			 "test_dummy_encryption requires encrypt feature");
2729		return -EINVAL;
2730	}
2731	/*
2732	 * This mount option is just for testing, and it's not worthwhile to
2733	 * implement the extra complexity (e.g. RCU protection) that would be
2734	 * needed to allow it to be set or changed during remount.  We do allow
2735	 * it to be specified during remount, but only if there is no change.
2736	 */
2737	if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2738		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2739						 &ctx->dummy_enc_policy))
2740			return 0;
2741		ext4_msg(NULL, KERN_WARNING,
2742			 "Can't set or change test_dummy_encryption on remount");
2743		return -EINVAL;
2744	}
2745	/* Also make sure s_mount_opts didn't contain a conflicting value. */
2746	if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2747		if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2748						 &ctx->dummy_enc_policy))
2749			return 0;
2750		ext4_msg(NULL, KERN_WARNING,
2751			 "Conflicting test_dummy_encryption options");
2752		return -EINVAL;
2753	}
2754	return 0;
 
 
 
 
 
 
 
 
 
 
2755}
2756
2757static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2758					     struct super_block *sb)
2759{
2760	if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2761	    /* if already set, it was already verified to be the same */
2762	    fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2763		return;
2764	EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2765	memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2766	ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2767}
2768
2769static int ext4_check_opt_consistency(struct fs_context *fc,
2770				      struct super_block *sb)
2771{
2772	struct ext4_fs_context *ctx = fc->fs_private;
2773	struct ext4_sb_info *sbi = fc->s_fs_info;
2774	int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2775	int err;
2776
2777	if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2778		ext4_msg(NULL, KERN_ERR,
2779			 "Mount option(s) incompatible with ext2");
2780		return -EINVAL;
2781	}
2782	if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2783		ext4_msg(NULL, KERN_ERR,
2784			 "Mount option(s) incompatible with ext3");
2785		return -EINVAL;
2786	}
2787
2788	if (ctx->s_want_extra_isize >
2789	    (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2790		ext4_msg(NULL, KERN_ERR,
2791			 "Invalid want_extra_isize %d",
2792			 ctx->s_want_extra_isize);
2793		return -EINVAL;
2794	}
2795
 
 
 
 
 
 
 
 
 
2796	err = ext4_check_test_dummy_encryption(fc, sb);
2797	if (err)
2798		return err;
2799
2800	if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2801		if (!sbi->s_journal) {
2802			ext4_msg(NULL, KERN_WARNING,
2803				 "Remounting file system with no journal "
2804				 "so ignoring journalled data option");
2805			ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2806		} else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2807			   test_opt(sb, DATA_FLAGS)) {
2808			ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2809				 "on remount");
2810			return -EINVAL;
2811		}
2812	}
2813
2814	if (is_remount) {
2815		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2816		    (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2817			ext4_msg(NULL, KERN_ERR, "can't mount with "
2818				 "both data=journal and dax");
2819			return -EINVAL;
2820		}
2821
2822		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2823		    (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2824		     (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2825fail_dax_change_remount:
2826			ext4_msg(NULL, KERN_ERR, "can't change "
2827				 "dax mount option while remounting");
2828			return -EINVAL;
2829		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2830			 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2831			  (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2832			goto fail_dax_change_remount;
2833		} else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2834			   ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2835			    (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2836			    !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2837			goto fail_dax_change_remount;
2838		}
2839	}
2840
2841	return ext4_check_quota_consistency(fc, sb);
2842}
2843
2844static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2845{
2846	struct ext4_fs_context *ctx = fc->fs_private;
2847	struct ext4_sb_info *sbi = fc->s_fs_info;
2848
2849	sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2850	sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2851	sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2852	sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
 
 
2853	sb->s_flags &= ~ctx->mask_s_flags;
2854	sb->s_flags |= ctx->vals_s_flags;
2855
2856#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2857	APPLY(s_commit_interval);
2858	APPLY(s_stripe);
2859	APPLY(s_max_batch_time);
2860	APPLY(s_min_batch_time);
2861	APPLY(s_want_extra_isize);
2862	APPLY(s_inode_readahead_blks);
2863	APPLY(s_max_dir_size_kb);
2864	APPLY(s_li_wait_mult);
2865	APPLY(s_resgid);
2866	APPLY(s_resuid);
2867
2868#ifdef CONFIG_EXT4_DEBUG
2869	APPLY(s_fc_debug_max_replay);
2870#endif
2871
2872	ext4_apply_quota_options(fc, sb);
2873	ext4_apply_test_dummy_encryption(ctx, sb);
2874}
2875
2876
2877static int ext4_validate_options(struct fs_context *fc)
2878{
2879#ifdef CONFIG_QUOTA
2880	struct ext4_fs_context *ctx = fc->fs_private;
2881	char *usr_qf_name, *grp_qf_name;
2882
2883	usr_qf_name = ctx->s_qf_names[USRQUOTA];
2884	grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2885
2886	if (usr_qf_name || grp_qf_name) {
2887		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2888			ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2889
2890		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2891			ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2892
2893		if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2894		    ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2895			ext4_msg(NULL, KERN_ERR, "old and new quota "
2896				 "format mixing");
2897			return -EINVAL;
2898		}
2899	}
2900#endif
2901	return 1;
2902}
2903
2904static inline void ext4_show_quota_options(struct seq_file *seq,
2905					   struct super_block *sb)
2906{
2907#if defined(CONFIG_QUOTA)
2908	struct ext4_sb_info *sbi = EXT4_SB(sb);
2909	char *usr_qf_name, *grp_qf_name;
2910
2911	if (sbi->s_jquota_fmt) {
2912		char *fmtname = "";
2913
2914		switch (sbi->s_jquota_fmt) {
2915		case QFMT_VFS_OLD:
2916			fmtname = "vfsold";
2917			break;
2918		case QFMT_VFS_V0:
2919			fmtname = "vfsv0";
2920			break;
2921		case QFMT_VFS_V1:
2922			fmtname = "vfsv1";
2923			break;
2924		}
2925		seq_printf(seq, ",jqfmt=%s", fmtname);
2926	}
2927
2928	rcu_read_lock();
2929	usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2930	grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2931	if (usr_qf_name)
2932		seq_show_option(seq, "usrjquota", usr_qf_name);
2933	if (grp_qf_name)
2934		seq_show_option(seq, "grpjquota", grp_qf_name);
2935	rcu_read_unlock();
2936#endif
2937}
2938
2939static const char *token2str(int token)
2940{
2941	const struct fs_parameter_spec *spec;
2942
2943	for (spec = ext4_param_specs; spec->name != NULL; spec++)
2944		if (spec->opt == token && !spec->type)
2945			break;
2946	return spec->name;
2947}
2948
2949/*
2950 * Show an option if
2951 *  - it's set to a non-default value OR
2952 *  - if the per-sb default is different from the global default
2953 */
2954static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2955			      int nodefs)
2956{
2957	struct ext4_sb_info *sbi = EXT4_SB(sb);
2958	struct ext4_super_block *es = sbi->s_es;
2959	int def_errors;
2960	const struct mount_opts *m;
2961	char sep = nodefs ? '\n' : ',';
2962
2963#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2964#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2965
2966	if (sbi->s_sb_block != 1)
2967		SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2968
2969	for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2970		int want_set = m->flags & MOPT_SET;
2971		int opt_2 = m->flags & MOPT_2;
2972		unsigned int mount_opt, def_mount_opt;
2973
2974		if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2975		    m->flags & MOPT_SKIP)
2976			continue;
2977
2978		if (opt_2) {
2979			mount_opt = sbi->s_mount_opt2;
2980			def_mount_opt = sbi->s_def_mount_opt2;
2981		} else {
2982			mount_opt = sbi->s_mount_opt;
2983			def_mount_opt = sbi->s_def_mount_opt;
2984		}
2985		/* skip if same as the default */
2986		if (!nodefs && !(m->mount_opt & (mount_opt ^ def_mount_opt)))
2987			continue;
2988		/* select Opt_noFoo vs Opt_Foo */
2989		if ((want_set &&
2990		     (mount_opt & m->mount_opt) != m->mount_opt) ||
2991		    (!want_set && (mount_opt & m->mount_opt)))
2992			continue;
2993		SEQ_OPTS_PRINT("%s", token2str(m->token));
2994	}
2995
2996	if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2997	    le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2998		SEQ_OPTS_PRINT("resuid=%u",
2999				from_kuid_munged(&init_user_ns, sbi->s_resuid));
3000	if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
3001	    le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
3002		SEQ_OPTS_PRINT("resgid=%u",
3003				from_kgid_munged(&init_user_ns, sbi->s_resgid));
3004	def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
3005	if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
3006		SEQ_OPTS_PUTS("errors=remount-ro");
3007	if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
3008		SEQ_OPTS_PUTS("errors=continue");
3009	if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
3010		SEQ_OPTS_PUTS("errors=panic");
3011	if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
3012		SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
3013	if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
3014		SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
3015	if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
3016		SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
3017	if (nodefs || sbi->s_stripe)
3018		SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
3019	if (nodefs || EXT4_MOUNT_DATA_FLAGS &
3020			(sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
3021		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
3022			SEQ_OPTS_PUTS("data=journal");
3023		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
3024			SEQ_OPTS_PUTS("data=ordered");
3025		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
3026			SEQ_OPTS_PUTS("data=writeback");
3027	}
3028	if (nodefs ||
3029	    sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
3030		SEQ_OPTS_PRINT("inode_readahead_blks=%u",
3031			       sbi->s_inode_readahead_blks);
3032
3033	if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
3034		       (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
3035		SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
3036	if (nodefs || sbi->s_max_dir_size_kb)
3037		SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
3038	if (test_opt(sb, DATA_ERR_ABORT))
3039		SEQ_OPTS_PUTS("data_err=abort");
3040
3041	fscrypt_show_test_dummy_encryption(seq, sep, sb);
3042
3043	if (sb->s_flags & SB_INLINECRYPT)
3044		SEQ_OPTS_PUTS("inlinecrypt");
3045
3046	if (test_opt(sb, DAX_ALWAYS)) {
3047		if (IS_EXT2_SB(sb))
3048			SEQ_OPTS_PUTS("dax");
3049		else
3050			SEQ_OPTS_PUTS("dax=always");
3051	} else if (test_opt2(sb, DAX_NEVER)) {
3052		SEQ_OPTS_PUTS("dax=never");
3053	} else if (test_opt2(sb, DAX_INODE)) {
3054		SEQ_OPTS_PUTS("dax=inode");
3055	}
3056
3057	if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3058			!test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3059		SEQ_OPTS_PUTS("mb_optimize_scan=0");
3060	} else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
3061			test_opt2(sb, MB_OPTIMIZE_SCAN)) {
3062		SEQ_OPTS_PUTS("mb_optimize_scan=1");
3063	}
3064
3065	ext4_show_quota_options(seq, sb);
3066	return 0;
3067}
3068
3069static int ext4_show_options(struct seq_file *seq, struct dentry *root)
3070{
3071	return _ext4_show_options(seq, root->d_sb, 0);
3072}
3073
3074int ext4_seq_options_show(struct seq_file *seq, void *offset)
3075{
3076	struct super_block *sb = seq->private;
3077	int rc;
3078
3079	seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3080	rc = _ext4_show_options(seq, sb, 1);
3081	seq_puts(seq, "\n");
3082	return rc;
3083}
3084
3085static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3086			    int read_only)
3087{
3088	struct ext4_sb_info *sbi = EXT4_SB(sb);
3089	int err = 0;
3090
3091	if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3092		ext4_msg(sb, KERN_ERR, "revision level too high, "
3093			 "forcing read-only mode");
3094		err = -EROFS;
3095		goto done;
3096	}
3097	if (read_only)
3098		goto done;
3099	if (!(sbi->s_mount_state & EXT4_VALID_FS))
3100		ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3101			 "running e2fsck is recommended");
3102	else if (sbi->s_mount_state & EXT4_ERROR_FS)
3103		ext4_msg(sb, KERN_WARNING,
3104			 "warning: mounting fs with errors, "
3105			 "running e2fsck is recommended");
3106	else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3107		 le16_to_cpu(es->s_mnt_count) >=
3108		 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3109		ext4_msg(sb, KERN_WARNING,
3110			 "warning: maximal mount count reached, "
3111			 "running e2fsck is recommended");
3112	else if (le32_to_cpu(es->s_checkinterval) &&
3113		 (ext4_get_tstamp(es, s_lastcheck) +
3114		  le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3115		ext4_msg(sb, KERN_WARNING,
3116			 "warning: checktime reached, "
3117			 "running e2fsck is recommended");
3118	if (!sbi->s_journal)
3119		es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3120	if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3121		es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3122	le16_add_cpu(&es->s_mnt_count, 1);
3123	ext4_update_tstamp(es, s_mtime);
3124	if (sbi->s_journal) {
3125		ext4_set_feature_journal_needs_recovery(sb);
3126		if (ext4_has_feature_orphan_file(sb))
3127			ext4_set_feature_orphan_present(sb);
3128	}
3129
3130	err = ext4_commit_super(sb);
3131done:
3132	if (test_opt(sb, DEBUG))
3133		printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3134				"bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3135			sb->s_blocksize,
3136			sbi->s_groups_count,
3137			EXT4_BLOCKS_PER_GROUP(sb),
3138			EXT4_INODES_PER_GROUP(sb),
3139			sbi->s_mount_opt, sbi->s_mount_opt2);
3140	return err;
3141}
3142
3143int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3144{
3145	struct ext4_sb_info *sbi = EXT4_SB(sb);
3146	struct flex_groups **old_groups, **new_groups;
3147	int size, i, j;
3148
3149	if (!sbi->s_log_groups_per_flex)
3150		return 0;
3151
3152	size = ext4_flex_group(sbi, ngroup - 1) + 1;
3153	if (size <= sbi->s_flex_groups_allocated)
3154		return 0;
3155
3156	new_groups = kvzalloc(roundup_pow_of_two(size *
3157			      sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3158	if (!new_groups) {
3159		ext4_msg(sb, KERN_ERR,
3160			 "not enough memory for %d flex group pointers", size);
3161		return -ENOMEM;
3162	}
3163	for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3164		new_groups[i] = kvzalloc(roundup_pow_of_two(
3165					 sizeof(struct flex_groups)),
3166					 GFP_KERNEL);
3167		if (!new_groups[i]) {
3168			for (j = sbi->s_flex_groups_allocated; j < i; j++)
3169				kvfree(new_groups[j]);
3170			kvfree(new_groups);
3171			ext4_msg(sb, KERN_ERR,
3172				 "not enough memory for %d flex groups", size);
3173			return -ENOMEM;
3174		}
3175	}
3176	rcu_read_lock();
3177	old_groups = rcu_dereference(sbi->s_flex_groups);
3178	if (old_groups)
3179		memcpy(new_groups, old_groups,
3180		       (sbi->s_flex_groups_allocated *
3181			sizeof(struct flex_groups *)));
3182	rcu_read_unlock();
3183	rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3184	sbi->s_flex_groups_allocated = size;
3185	if (old_groups)
3186		ext4_kvfree_array_rcu(old_groups);
3187	return 0;
3188}
3189
3190static int ext4_fill_flex_info(struct super_block *sb)
3191{
3192	struct ext4_sb_info *sbi = EXT4_SB(sb);
3193	struct ext4_group_desc *gdp = NULL;
3194	struct flex_groups *fg;
3195	ext4_group_t flex_group;
3196	int i, err;
3197
3198	sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3199	if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3200		sbi->s_log_groups_per_flex = 0;
3201		return 1;
3202	}
3203
3204	err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3205	if (err)
3206		goto failed;
3207
3208	for (i = 0; i < sbi->s_groups_count; i++) {
3209		gdp = ext4_get_group_desc(sb, i, NULL);
3210
3211		flex_group = ext4_flex_group(sbi, i);
3212		fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3213		atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3214		atomic64_add(ext4_free_group_clusters(sb, gdp),
3215			     &fg->free_clusters);
3216		atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3217	}
3218
3219	return 1;
3220failed:
3221	return 0;
3222}
3223
3224static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3225				   struct ext4_group_desc *gdp)
3226{
3227	int offset = offsetof(struct ext4_group_desc, bg_checksum);
3228	__u16 crc = 0;
3229	__le32 le_group = cpu_to_le32(block_group);
3230	struct ext4_sb_info *sbi = EXT4_SB(sb);
3231
3232	if (ext4_has_metadata_csum(sbi->s_sb)) {
3233		/* Use new metadata_csum algorithm */
3234		__u32 csum32;
3235		__u16 dummy_csum = 0;
3236
3237		csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3238				     sizeof(le_group));
3239		csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3240		csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3241				     sizeof(dummy_csum));
3242		offset += sizeof(dummy_csum);
3243		if (offset < sbi->s_desc_size)
3244			csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3245					     sbi->s_desc_size - offset);
3246
3247		crc = csum32 & 0xFFFF;
3248		goto out;
3249	}
3250
3251	/* old crc16 code */
3252	if (!ext4_has_feature_gdt_csum(sb))
3253		return 0;
3254
3255	crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3256	crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3257	crc = crc16(crc, (__u8 *)gdp, offset);
3258	offset += sizeof(gdp->bg_checksum); /* skip checksum */
3259	/* for checksum of struct ext4_group_desc do the rest...*/
3260	if (ext4_has_feature_64bit(sb) && offset < sbi->s_desc_size)
 
3261		crc = crc16(crc, (__u8 *)gdp + offset,
3262			    sbi->s_desc_size - offset);
 
3263
3264out:
3265	return cpu_to_le16(crc);
3266}
3267
3268int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3269				struct ext4_group_desc *gdp)
3270{
3271	if (ext4_has_group_desc_csum(sb) &&
3272	    (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3273		return 0;
3274
3275	return 1;
3276}
3277
3278void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3279			      struct ext4_group_desc *gdp)
3280{
3281	if (!ext4_has_group_desc_csum(sb))
3282		return;
3283	gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3284}
3285
3286/* Called at mount-time, super-block is locked */
3287static int ext4_check_descriptors(struct super_block *sb,
3288				  ext4_fsblk_t sb_block,
3289				  ext4_group_t *first_not_zeroed)
3290{
3291	struct ext4_sb_info *sbi = EXT4_SB(sb);
3292	ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3293	ext4_fsblk_t last_block;
3294	ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3295	ext4_fsblk_t block_bitmap;
3296	ext4_fsblk_t inode_bitmap;
3297	ext4_fsblk_t inode_table;
3298	int flexbg_flag = 0;
3299	ext4_group_t i, grp = sbi->s_groups_count;
3300
3301	if (ext4_has_feature_flex_bg(sb))
3302		flexbg_flag = 1;
3303
3304	ext4_debug("Checking group descriptors");
3305
3306	for (i = 0; i < sbi->s_groups_count; i++) {
3307		struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3308
3309		if (i == sbi->s_groups_count - 1 || flexbg_flag)
3310			last_block = ext4_blocks_count(sbi->s_es) - 1;
3311		else
3312			last_block = first_block +
3313				(EXT4_BLOCKS_PER_GROUP(sb) - 1);
3314
3315		if ((grp == sbi->s_groups_count) &&
3316		   !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3317			grp = i;
3318
3319		block_bitmap = ext4_block_bitmap(sb, gdp);
3320		if (block_bitmap == sb_block) {
3321			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3322				 "Block bitmap for group %u overlaps "
3323				 "superblock", i);
3324			if (!sb_rdonly(sb))
3325				return 0;
3326		}
3327		if (block_bitmap >= sb_block + 1 &&
3328		    block_bitmap <= last_bg_block) {
3329			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3330				 "Block bitmap for group %u overlaps "
3331				 "block group descriptors", i);
3332			if (!sb_rdonly(sb))
3333				return 0;
3334		}
3335		if (block_bitmap < first_block || block_bitmap > last_block) {
3336			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3337			       "Block bitmap for group %u not in group "
3338			       "(block %llu)!", i, block_bitmap);
3339			return 0;
3340		}
3341		inode_bitmap = ext4_inode_bitmap(sb, gdp);
3342		if (inode_bitmap == sb_block) {
3343			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3344				 "Inode bitmap for group %u overlaps "
3345				 "superblock", i);
3346			if (!sb_rdonly(sb))
3347				return 0;
3348		}
3349		if (inode_bitmap >= sb_block + 1 &&
3350		    inode_bitmap <= last_bg_block) {
3351			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3352				 "Inode bitmap for group %u overlaps "
3353				 "block group descriptors", i);
3354			if (!sb_rdonly(sb))
3355				return 0;
3356		}
3357		if (inode_bitmap < first_block || inode_bitmap > last_block) {
3358			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3359			       "Inode bitmap for group %u not in group "
3360			       "(block %llu)!", i, inode_bitmap);
3361			return 0;
3362		}
3363		inode_table = ext4_inode_table(sb, gdp);
3364		if (inode_table == sb_block) {
3365			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3366				 "Inode table for group %u overlaps "
3367				 "superblock", i);
3368			if (!sb_rdonly(sb))
3369				return 0;
3370		}
3371		if (inode_table >= sb_block + 1 &&
3372		    inode_table <= last_bg_block) {
3373			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3374				 "Inode table for group %u overlaps "
3375				 "block group descriptors", i);
3376			if (!sb_rdonly(sb))
3377				return 0;
3378		}
3379		if (inode_table < first_block ||
3380		    inode_table + sbi->s_itb_per_group - 1 > last_block) {
3381			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3382			       "Inode table for group %u not in group "
3383			       "(block %llu)!", i, inode_table);
3384			return 0;
3385		}
3386		ext4_lock_group(sb, i);
3387		if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3388			ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3389				 "Checksum for group %u failed (%u!=%u)",
3390				 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3391				     gdp)), le16_to_cpu(gdp->bg_checksum));
3392			if (!sb_rdonly(sb)) {
3393				ext4_unlock_group(sb, i);
3394				return 0;
3395			}
3396		}
3397		ext4_unlock_group(sb, i);
3398		if (!flexbg_flag)
3399			first_block += EXT4_BLOCKS_PER_GROUP(sb);
3400	}
3401	if (NULL != first_not_zeroed)
3402		*first_not_zeroed = grp;
3403	return 1;
3404}
3405
3406/*
3407 * Maximal extent format file size.
3408 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3409 * extent format containers, within a sector_t, and within i_blocks
3410 * in the vfs.  ext4 inode has 48 bits of i_block in fsblock units,
3411 * so that won't be a limiting factor.
3412 *
3413 * However there is other limiting factor. We do store extents in the form
3414 * of starting block and length, hence the resulting length of the extent
3415 * covering maximum file size must fit into on-disk format containers as
3416 * well. Given that length is always by 1 unit bigger than max unit (because
3417 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3418 *
3419 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3420 */
3421static loff_t ext4_max_size(int blkbits, int has_huge_files)
3422{
3423	loff_t res;
3424	loff_t upper_limit = MAX_LFS_FILESIZE;
3425
3426	BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3427
3428	if (!has_huge_files) {
3429		upper_limit = (1LL << 32) - 1;
3430
3431		/* total blocks in file system block size */
3432		upper_limit >>= (blkbits - 9);
3433		upper_limit <<= blkbits;
3434	}
3435
3436	/*
3437	 * 32-bit extent-start container, ee_block. We lower the maxbytes
3438	 * by one fs block, so ee_len can cover the extent of maximum file
3439	 * size
3440	 */
3441	res = (1LL << 32) - 1;
3442	res <<= blkbits;
3443
3444	/* Sanity check against vm- & vfs- imposed limits */
3445	if (res > upper_limit)
3446		res = upper_limit;
3447
3448	return res;
3449}
3450
3451/*
3452 * Maximal bitmap file size.  There is a direct, and {,double-,triple-}indirect
3453 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3454 * We need to be 1 filesystem block less than the 2^48 sector limit.
3455 */
3456static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3457{
3458	loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3459	int meta_blocks;
3460	unsigned int ppb = 1 << (bits - 2);
3461
3462	/*
3463	 * This is calculated to be the largest file size for a dense, block
3464	 * mapped file such that the file's total number of 512-byte sectors,
3465	 * including data and all indirect blocks, does not exceed (2^48 - 1).
3466	 *
3467	 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3468	 * number of 512-byte sectors of the file.
3469	 */
3470	if (!has_huge_files) {
3471		/*
3472		 * !has_huge_files or implies that the inode i_block field
3473		 * represents total file blocks in 2^32 512-byte sectors ==
3474		 * size of vfs inode i_blocks * 8
3475		 */
3476		upper_limit = (1LL << 32) - 1;
3477
3478		/* total blocks in file system block size */
3479		upper_limit >>= (bits - 9);
3480
3481	} else {
3482		/*
3483		 * We use 48 bit ext4_inode i_blocks
3484		 * With EXT4_HUGE_FILE_FL set the i_blocks
3485		 * represent total number of blocks in
3486		 * file system block size
3487		 */
3488		upper_limit = (1LL << 48) - 1;
3489
3490	}
3491
3492	/* Compute how many blocks we can address by block tree */
3493	res += ppb;
3494	res += ppb * ppb;
3495	res += ((loff_t)ppb) * ppb * ppb;
3496	/* Compute how many metadata blocks are needed */
3497	meta_blocks = 1;
3498	meta_blocks += 1 + ppb;
3499	meta_blocks += 1 + ppb + ppb * ppb;
3500	/* Does block tree limit file size? */
3501	if (res + meta_blocks <= upper_limit)
3502		goto check_lfs;
3503
3504	res = upper_limit;
3505	/* How many metadata blocks are needed for addressing upper_limit? */
3506	upper_limit -= EXT4_NDIR_BLOCKS;
3507	/* indirect blocks */
3508	meta_blocks = 1;
3509	upper_limit -= ppb;
3510	/* double indirect blocks */
3511	if (upper_limit < ppb * ppb) {
3512		meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3513		res -= meta_blocks;
3514		goto check_lfs;
3515	}
3516	meta_blocks += 1 + ppb;
3517	upper_limit -= ppb * ppb;
3518	/* tripple indirect blocks for the rest */
3519	meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3520		DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3521	res -= meta_blocks;
3522check_lfs:
3523	res <<= bits;
3524	if (res > MAX_LFS_FILESIZE)
3525		res = MAX_LFS_FILESIZE;
3526
3527	return res;
3528}
3529
3530static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3531				   ext4_fsblk_t logical_sb_block, int nr)
3532{
3533	struct ext4_sb_info *sbi = EXT4_SB(sb);
3534	ext4_group_t bg, first_meta_bg;
3535	int has_super = 0;
3536
3537	first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3538
3539	if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3540		return logical_sb_block + nr + 1;
3541	bg = sbi->s_desc_per_block * nr;
3542	if (ext4_bg_has_super(sb, bg))
3543		has_super = 1;
3544
3545	/*
3546	 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3547	 * block 2, not 1.  If s_first_data_block == 0 (bigalloc is enabled
3548	 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3549	 * compensate.
3550	 */
3551	if (sb->s_blocksize == 1024 && nr == 0 &&
3552	    le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3553		has_super++;
3554
3555	return (has_super + ext4_group_first_block_no(sb, bg));
3556}
3557
3558/**
3559 * ext4_get_stripe_size: Get the stripe size.
3560 * @sbi: In memory super block info
3561 *
3562 * If we have specified it via mount option, then
3563 * use the mount option value. If the value specified at mount time is
3564 * greater than the blocks per group use the super block value.
3565 * If the super block value is greater than blocks per group return 0.
3566 * Allocator needs it be less than blocks per group.
3567 *
3568 */
3569static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3570{
3571	unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3572	unsigned long stripe_width =
3573			le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3574	int ret;
3575
3576	if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3577		ret = sbi->s_stripe;
3578	else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3579		ret = stripe_width;
3580	else if (stride && stride <= sbi->s_blocks_per_group)
3581		ret = stride;
3582	else
3583		ret = 0;
3584
3585	/*
3586	 * If the stripe width is 1, this makes no sense and
3587	 * we set it to 0 to turn off stripe handling code.
3588	 */
3589	if (ret <= 1)
3590		ret = 0;
3591
3592	return ret;
3593}
3594
3595/*
3596 * Check whether this filesystem can be mounted based on
3597 * the features present and the RDONLY/RDWR mount requested.
3598 * Returns 1 if this filesystem can be mounted as requested,
3599 * 0 if it cannot be.
3600 */
3601int ext4_feature_set_ok(struct super_block *sb, int readonly)
3602{
3603	if (ext4_has_unknown_ext4_incompat_features(sb)) {
3604		ext4_msg(sb, KERN_ERR,
3605			"Couldn't mount because of "
3606			"unsupported optional features (%x)",
3607			(le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3608			~EXT4_FEATURE_INCOMPAT_SUPP));
3609		return 0;
3610	}
3611
3612#if !IS_ENABLED(CONFIG_UNICODE)
3613	if (ext4_has_feature_casefold(sb)) {
3614		ext4_msg(sb, KERN_ERR,
3615			 "Filesystem with casefold feature cannot be "
3616			 "mounted without CONFIG_UNICODE");
3617		return 0;
3618	}
3619#endif
3620
3621	if (readonly)
3622		return 1;
3623
3624	if (ext4_has_feature_readonly(sb)) {
3625		ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3626		sb->s_flags |= SB_RDONLY;
3627		return 1;
3628	}
3629
3630	/* Check that feature set is OK for a read-write mount */
3631	if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3632		ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3633			 "unsupported optional features (%x)",
3634			 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3635				~EXT4_FEATURE_RO_COMPAT_SUPP));
3636		return 0;
3637	}
3638	if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3639		ext4_msg(sb, KERN_ERR,
3640			 "Can't support bigalloc feature without "
3641			 "extents feature\n");
3642		return 0;
3643	}
3644
3645#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3646	if (!readonly && (ext4_has_feature_quota(sb) ||
3647			  ext4_has_feature_project(sb))) {
3648		ext4_msg(sb, KERN_ERR,
3649			 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3650		return 0;
3651	}
3652#endif  /* CONFIG_QUOTA */
3653	return 1;
3654}
3655
3656/*
3657 * This function is called once a day if we have errors logged
3658 * on the file system
3659 */
3660static void print_daily_error_info(struct timer_list *t)
3661{
3662	struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3663	struct super_block *sb = sbi->s_sb;
3664	struct ext4_super_block *es = sbi->s_es;
3665
3666	if (es->s_error_count)
3667		/* fsck newer than v1.41.13 is needed to clean this condition. */
3668		ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3669			 le32_to_cpu(es->s_error_count));
3670	if (es->s_first_error_time) {
3671		printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3672		       sb->s_id,
3673		       ext4_get_tstamp(es, s_first_error_time),
3674		       (int) sizeof(es->s_first_error_func),
3675		       es->s_first_error_func,
3676		       le32_to_cpu(es->s_first_error_line));
3677		if (es->s_first_error_ino)
3678			printk(KERN_CONT ": inode %u",
3679			       le32_to_cpu(es->s_first_error_ino));
3680		if (es->s_first_error_block)
3681			printk(KERN_CONT ": block %llu", (unsigned long long)
3682			       le64_to_cpu(es->s_first_error_block));
3683		printk(KERN_CONT "\n");
3684	}
3685	if (es->s_last_error_time) {
3686		printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3687		       sb->s_id,
3688		       ext4_get_tstamp(es, s_last_error_time),
3689		       (int) sizeof(es->s_last_error_func),
3690		       es->s_last_error_func,
3691		       le32_to_cpu(es->s_last_error_line));
3692		if (es->s_last_error_ino)
3693			printk(KERN_CONT ": inode %u",
3694			       le32_to_cpu(es->s_last_error_ino));
3695		if (es->s_last_error_block)
3696			printk(KERN_CONT ": block %llu", (unsigned long long)
3697			       le64_to_cpu(es->s_last_error_block));
3698		printk(KERN_CONT "\n");
3699	}
3700	mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);  /* Once a day */
3701}
3702
3703/* Find next suitable group and run ext4_init_inode_table */
3704static int ext4_run_li_request(struct ext4_li_request *elr)
3705{
3706	struct ext4_group_desc *gdp = NULL;
3707	struct super_block *sb = elr->lr_super;
3708	ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3709	ext4_group_t group = elr->lr_next_group;
3710	unsigned int prefetch_ios = 0;
3711	int ret = 0;
3712	int nr = EXT4_SB(sb)->s_mb_prefetch;
3713	u64 start_time;
3714
3715	if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3716		elr->lr_next_group = ext4_mb_prefetch(sb, group, nr, &prefetch_ios);
3717		ext4_mb_prefetch_fini(sb, elr->lr_next_group, nr);
3718		trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group, nr);
 
 
 
 
3719		if (group >= elr->lr_next_group) {
3720			ret = 1;
3721			if (elr->lr_first_not_zeroed != ngroups &&
3722			    !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3723				elr->lr_next_group = elr->lr_first_not_zeroed;
3724				elr->lr_mode = EXT4_LI_MODE_ITABLE;
3725				ret = 0;
3726			}
3727		}
3728		return ret;
3729	}
3730
3731	for (; group < ngroups; group++) {
3732		gdp = ext4_get_group_desc(sb, group, NULL);
3733		if (!gdp) {
3734			ret = 1;
3735			break;
3736		}
3737
3738		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3739			break;
3740	}
3741
3742	if (group >= ngroups)
3743		ret = 1;
3744
3745	if (!ret) {
3746		start_time = ktime_get_real_ns();
3747		ret = ext4_init_inode_table(sb, group,
3748					    elr->lr_timeout ? 0 : 1);
3749		trace_ext4_lazy_itable_init(sb, group);
3750		if (elr->lr_timeout == 0) {
3751			elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3752				EXT4_SB(elr->lr_super)->s_li_wait_mult);
3753		}
3754		elr->lr_next_sched = jiffies + elr->lr_timeout;
3755		elr->lr_next_group = group + 1;
3756	}
3757	return ret;
3758}
3759
3760/*
3761 * Remove lr_request from the list_request and free the
3762 * request structure. Should be called with li_list_mtx held
3763 */
3764static void ext4_remove_li_request(struct ext4_li_request *elr)
3765{
3766	if (!elr)
3767		return;
3768
3769	list_del(&elr->lr_request);
3770	EXT4_SB(elr->lr_super)->s_li_request = NULL;
3771	kfree(elr);
3772}
3773
3774static void ext4_unregister_li_request(struct super_block *sb)
3775{
3776	mutex_lock(&ext4_li_mtx);
3777	if (!ext4_li_info) {
3778		mutex_unlock(&ext4_li_mtx);
3779		return;
3780	}
3781
3782	mutex_lock(&ext4_li_info->li_list_mtx);
3783	ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3784	mutex_unlock(&ext4_li_info->li_list_mtx);
3785	mutex_unlock(&ext4_li_mtx);
3786}
3787
3788static struct task_struct *ext4_lazyinit_task;
3789
3790/*
3791 * This is the function where ext4lazyinit thread lives. It walks
3792 * through the request list searching for next scheduled filesystem.
3793 * When such a fs is found, run the lazy initialization request
3794 * (ext4_rn_li_request) and keep track of the time spend in this
3795 * function. Based on that time we compute next schedule time of
3796 * the request. When walking through the list is complete, compute
3797 * next waking time and put itself into sleep.
3798 */
3799static int ext4_lazyinit_thread(void *arg)
3800{
3801	struct ext4_lazy_init *eli = arg;
3802	struct list_head *pos, *n;
3803	struct ext4_li_request *elr;
3804	unsigned long next_wakeup, cur;
3805
3806	BUG_ON(NULL == eli);
3807	set_freezable();
3808
3809cont_thread:
3810	while (true) {
3811		next_wakeup = MAX_JIFFY_OFFSET;
3812
3813		mutex_lock(&eli->li_list_mtx);
3814		if (list_empty(&eli->li_request_list)) {
3815			mutex_unlock(&eli->li_list_mtx);
3816			goto exit_thread;
3817		}
3818		list_for_each_safe(pos, n, &eli->li_request_list) {
3819			int err = 0;
3820			int progress = 0;
3821			elr = list_entry(pos, struct ext4_li_request,
3822					 lr_request);
3823
3824			if (time_before(jiffies, elr->lr_next_sched)) {
3825				if (time_before(elr->lr_next_sched, next_wakeup))
3826					next_wakeup = elr->lr_next_sched;
3827				continue;
3828			}
3829			if (down_read_trylock(&elr->lr_super->s_umount)) {
3830				if (sb_start_write_trylock(elr->lr_super)) {
3831					progress = 1;
3832					/*
3833					 * We hold sb->s_umount, sb can not
3834					 * be removed from the list, it is
3835					 * now safe to drop li_list_mtx
3836					 */
3837					mutex_unlock(&eli->li_list_mtx);
3838					err = ext4_run_li_request(elr);
3839					sb_end_write(elr->lr_super);
3840					mutex_lock(&eli->li_list_mtx);
3841					n = pos->next;
3842				}
3843				up_read((&elr->lr_super->s_umount));
3844			}
3845			/* error, remove the lazy_init job */
3846			if (err) {
3847				ext4_remove_li_request(elr);
3848				continue;
3849			}
3850			if (!progress) {
3851				elr->lr_next_sched = jiffies +
3852					get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3853			}
3854			if (time_before(elr->lr_next_sched, next_wakeup))
3855				next_wakeup = elr->lr_next_sched;
3856		}
3857		mutex_unlock(&eli->li_list_mtx);
3858
3859		try_to_freeze();
3860
3861		cur = jiffies;
3862		if ((time_after_eq(cur, next_wakeup)) ||
3863		    (MAX_JIFFY_OFFSET == next_wakeup)) {
3864			cond_resched();
3865			continue;
3866		}
3867
3868		schedule_timeout_interruptible(next_wakeup - cur);
3869
3870		if (kthread_should_stop()) {
3871			ext4_clear_request_list();
3872			goto exit_thread;
3873		}
3874	}
3875
3876exit_thread:
3877	/*
3878	 * It looks like the request list is empty, but we need
3879	 * to check it under the li_list_mtx lock, to prevent any
3880	 * additions into it, and of course we should lock ext4_li_mtx
3881	 * to atomically free the list and ext4_li_info, because at
3882	 * this point another ext4 filesystem could be registering
3883	 * new one.
3884	 */
3885	mutex_lock(&ext4_li_mtx);
3886	mutex_lock(&eli->li_list_mtx);
3887	if (!list_empty(&eli->li_request_list)) {
3888		mutex_unlock(&eli->li_list_mtx);
3889		mutex_unlock(&ext4_li_mtx);
3890		goto cont_thread;
3891	}
3892	mutex_unlock(&eli->li_list_mtx);
3893	kfree(ext4_li_info);
3894	ext4_li_info = NULL;
3895	mutex_unlock(&ext4_li_mtx);
3896
3897	return 0;
3898}
3899
3900static void ext4_clear_request_list(void)
3901{
3902	struct list_head *pos, *n;
3903	struct ext4_li_request *elr;
3904
3905	mutex_lock(&ext4_li_info->li_list_mtx);
3906	list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3907		elr = list_entry(pos, struct ext4_li_request,
3908				 lr_request);
3909		ext4_remove_li_request(elr);
3910	}
3911	mutex_unlock(&ext4_li_info->li_list_mtx);
3912}
3913
3914static int ext4_run_lazyinit_thread(void)
3915{
3916	ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3917					 ext4_li_info, "ext4lazyinit");
3918	if (IS_ERR(ext4_lazyinit_task)) {
3919		int err = PTR_ERR(ext4_lazyinit_task);
3920		ext4_clear_request_list();
3921		kfree(ext4_li_info);
3922		ext4_li_info = NULL;
3923		printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3924				 "initialization thread\n",
3925				 err);
3926		return err;
3927	}
3928	ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3929	return 0;
3930}
3931
3932/*
3933 * Check whether it make sense to run itable init. thread or not.
3934 * If there is at least one uninitialized inode table, return
3935 * corresponding group number, else the loop goes through all
3936 * groups and return total number of groups.
3937 */
3938static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3939{
3940	ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3941	struct ext4_group_desc *gdp = NULL;
3942
3943	if (!ext4_has_group_desc_csum(sb))
3944		return ngroups;
3945
3946	for (group = 0; group < ngroups; group++) {
3947		gdp = ext4_get_group_desc(sb, group, NULL);
3948		if (!gdp)
3949			continue;
3950
3951		if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3952			break;
3953	}
3954
3955	return group;
3956}
3957
3958static int ext4_li_info_new(void)
3959{
3960	struct ext4_lazy_init *eli = NULL;
3961
3962	eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3963	if (!eli)
3964		return -ENOMEM;
3965
3966	INIT_LIST_HEAD(&eli->li_request_list);
3967	mutex_init(&eli->li_list_mtx);
3968
3969	eli->li_state |= EXT4_LAZYINIT_QUIT;
3970
3971	ext4_li_info = eli;
3972
3973	return 0;
3974}
3975
3976static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3977					    ext4_group_t start)
3978{
3979	struct ext4_li_request *elr;
3980
3981	elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3982	if (!elr)
3983		return NULL;
3984
3985	elr->lr_super = sb;
3986	elr->lr_first_not_zeroed = start;
3987	if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3988		elr->lr_mode = EXT4_LI_MODE_ITABLE;
3989		elr->lr_next_group = start;
3990	} else {
3991		elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3992	}
3993
3994	/*
3995	 * Randomize first schedule time of the request to
3996	 * spread the inode table initialization requests
3997	 * better.
3998	 */
3999	elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
4000	return elr;
4001}
4002
4003int ext4_register_li_request(struct super_block *sb,
4004			     ext4_group_t first_not_zeroed)
4005{
4006	struct ext4_sb_info *sbi = EXT4_SB(sb);
4007	struct ext4_li_request *elr = NULL;
4008	ext4_group_t ngroups = sbi->s_groups_count;
4009	int ret = 0;
4010
4011	mutex_lock(&ext4_li_mtx);
4012	if (sbi->s_li_request != NULL) {
4013		/*
4014		 * Reset timeout so it can be computed again, because
4015		 * s_li_wait_mult might have changed.
4016		 */
4017		sbi->s_li_request->lr_timeout = 0;
4018		goto out;
4019	}
4020
4021	if (sb_rdonly(sb) ||
4022	    (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
4023	     (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
4024		goto out;
4025
4026	elr = ext4_li_request_new(sb, first_not_zeroed);
4027	if (!elr) {
4028		ret = -ENOMEM;
4029		goto out;
4030	}
4031
4032	if (NULL == ext4_li_info) {
4033		ret = ext4_li_info_new();
4034		if (ret)
4035			goto out;
4036	}
4037
4038	mutex_lock(&ext4_li_info->li_list_mtx);
4039	list_add(&elr->lr_request, &ext4_li_info->li_request_list);
4040	mutex_unlock(&ext4_li_info->li_list_mtx);
4041
4042	sbi->s_li_request = elr;
4043	/*
4044	 * set elr to NULL here since it has been inserted to
4045	 * the request_list and the removal and free of it is
4046	 * handled by ext4_clear_request_list from now on.
4047	 */
4048	elr = NULL;
4049
4050	if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
4051		ret = ext4_run_lazyinit_thread();
4052		if (ret)
4053			goto out;
4054	}
4055out:
4056	mutex_unlock(&ext4_li_mtx);
4057	if (ret)
4058		kfree(elr);
4059	return ret;
4060}
4061
4062/*
4063 * We do not need to lock anything since this is called on
4064 * module unload.
4065 */
4066static void ext4_destroy_lazyinit_thread(void)
4067{
4068	/*
4069	 * If thread exited earlier
4070	 * there's nothing to be done.
4071	 */
4072	if (!ext4_li_info || !ext4_lazyinit_task)
4073		return;
4074
4075	kthread_stop(ext4_lazyinit_task);
4076}
4077
4078static int set_journal_csum_feature_set(struct super_block *sb)
4079{
4080	int ret = 1;
4081	int compat, incompat;
4082	struct ext4_sb_info *sbi = EXT4_SB(sb);
4083
4084	if (ext4_has_metadata_csum(sb)) {
4085		/* journal checksum v3 */
4086		compat = 0;
4087		incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4088	} else {
4089		/* journal checksum v1 */
4090		compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4091		incompat = 0;
4092	}
4093
4094	jbd2_journal_clear_features(sbi->s_journal,
4095			JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4096			JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4097			JBD2_FEATURE_INCOMPAT_CSUM_V2);
4098	if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4099		ret = jbd2_journal_set_features(sbi->s_journal,
4100				compat, 0,
4101				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4102				incompat);
4103	} else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4104		ret = jbd2_journal_set_features(sbi->s_journal,
4105				compat, 0,
4106				incompat);
4107		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4108				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4109	} else {
4110		jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4111				JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4112	}
4113
4114	return ret;
4115}
4116
4117/*
4118 * Note: calculating the overhead so we can be compatible with
4119 * historical BSD practice is quite difficult in the face of
4120 * clusters/bigalloc.  This is because multiple metadata blocks from
4121 * different block group can end up in the same allocation cluster.
4122 * Calculating the exact overhead in the face of clustered allocation
4123 * requires either O(all block bitmaps) in memory or O(number of block
4124 * groups**2) in time.  We will still calculate the superblock for
4125 * older file systems --- and if we come across with a bigalloc file
4126 * system with zero in s_overhead_clusters the estimate will be close to
4127 * correct especially for very large cluster sizes --- but for newer
4128 * file systems, it's better to calculate this figure once at mkfs
4129 * time, and store it in the superblock.  If the superblock value is
4130 * present (even for non-bigalloc file systems), we will use it.
4131 */
4132static int count_overhead(struct super_block *sb, ext4_group_t grp,
4133			  char *buf)
4134{
4135	struct ext4_sb_info	*sbi = EXT4_SB(sb);
4136	struct ext4_group_desc	*gdp;
4137	ext4_fsblk_t		first_block, last_block, b;
4138	ext4_group_t		i, ngroups = ext4_get_groups_count(sb);
4139	int			s, j, count = 0;
4140	int			has_super = ext4_bg_has_super(sb, grp);
4141
4142	if (!ext4_has_feature_bigalloc(sb))
4143		return (has_super + ext4_bg_num_gdb(sb, grp) +
4144			(has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4145			sbi->s_itb_per_group + 2);
4146
4147	first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4148		(grp * EXT4_BLOCKS_PER_GROUP(sb));
4149	last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4150	for (i = 0; i < ngroups; i++) {
4151		gdp = ext4_get_group_desc(sb, i, NULL);
4152		b = ext4_block_bitmap(sb, gdp);
4153		if (b >= first_block && b <= last_block) {
4154			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4155			count++;
4156		}
4157		b = ext4_inode_bitmap(sb, gdp);
4158		if (b >= first_block && b <= last_block) {
4159			ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4160			count++;
4161		}
4162		b = ext4_inode_table(sb, gdp);
4163		if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4164			for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4165				int c = EXT4_B2C(sbi, b - first_block);
4166				ext4_set_bit(c, buf);
4167				count++;
4168			}
4169		if (i != grp)
4170			continue;
4171		s = 0;
4172		if (ext4_bg_has_super(sb, grp)) {
4173			ext4_set_bit(s++, buf);
4174			count++;
4175		}
4176		j = ext4_bg_num_gdb(sb, grp);
4177		if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4178			ext4_error(sb, "Invalid number of block group "
4179				   "descriptor blocks: %d", j);
4180			j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4181		}
4182		count += j;
4183		for (; j > 0; j--)
4184			ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4185	}
4186	if (!count)
4187		return 0;
4188	return EXT4_CLUSTERS_PER_GROUP(sb) -
4189		ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4190}
4191
4192/*
4193 * Compute the overhead and stash it in sbi->s_overhead
4194 */
4195int ext4_calculate_overhead(struct super_block *sb)
4196{
4197	struct ext4_sb_info *sbi = EXT4_SB(sb);
4198	struct ext4_super_block *es = sbi->s_es;
4199	struct inode *j_inode;
4200	unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4201	ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4202	ext4_fsblk_t overhead = 0;
4203	char *buf = (char *) get_zeroed_page(GFP_NOFS);
4204
4205	if (!buf)
4206		return -ENOMEM;
4207
4208	/*
4209	 * Compute the overhead (FS structures).  This is constant
4210	 * for a given filesystem unless the number of block groups
4211	 * changes so we cache the previous value until it does.
4212	 */
4213
4214	/*
4215	 * All of the blocks before first_data_block are overhead
4216	 */
4217	overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4218
4219	/*
4220	 * Add the overhead found in each block group
4221	 */
4222	for (i = 0; i < ngroups; i++) {
4223		int blks;
4224
4225		blks = count_overhead(sb, i, buf);
4226		overhead += blks;
4227		if (blks)
4228			memset(buf, 0, PAGE_SIZE);
4229		cond_resched();
4230	}
4231
4232	/*
4233	 * Add the internal journal blocks whether the journal has been
4234	 * loaded or not
4235	 */
4236	if (sbi->s_journal && !sbi->s_journal_bdev_handle)
4237		overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4238	else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4239		/* j_inum for internal journal is non-zero */
4240		j_inode = ext4_get_journal_inode(sb, j_inum);
4241		if (!IS_ERR(j_inode)) {
4242			j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4243			overhead += EXT4_NUM_B2C(sbi, j_blocks);
4244			iput(j_inode);
4245		} else {
4246			ext4_msg(sb, KERN_ERR, "can't get journal size");
4247		}
4248	}
4249	sbi->s_overhead = overhead;
4250	smp_wmb();
4251	free_page((unsigned long) buf);
4252	return 0;
4253}
4254
4255static void ext4_set_resv_clusters(struct super_block *sb)
4256{
4257	ext4_fsblk_t resv_clusters;
4258	struct ext4_sb_info *sbi = EXT4_SB(sb);
4259
4260	/*
4261	 * There's no need to reserve anything when we aren't using extents.
4262	 * The space estimates are exact, there are no unwritten extents,
4263	 * hole punching doesn't need new metadata... This is needed especially
4264	 * to keep ext2/3 backward compatibility.
4265	 */
4266	if (!ext4_has_feature_extents(sb))
4267		return;
4268	/*
4269	 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4270	 * This should cover the situations where we can not afford to run
4271	 * out of space like for example punch hole, or converting
4272	 * unwritten extents in delalloc path. In most cases such
4273	 * allocation would require 1, or 2 blocks, higher numbers are
4274	 * very rare.
4275	 */
4276	resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4277			 sbi->s_cluster_bits);
4278
4279	do_div(resv_clusters, 50);
4280	resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4281
4282	atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4283}
4284
4285static const char *ext4_quota_mode(struct super_block *sb)
4286{
4287#ifdef CONFIG_QUOTA
4288	if (!ext4_quota_capable(sb))
4289		return "none";
4290
4291	if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4292		return "journalled";
4293	else
4294		return "writeback";
4295#else
4296	return "disabled";
4297#endif
4298}
4299
4300static void ext4_setup_csum_trigger(struct super_block *sb,
4301				    enum ext4_journal_trigger_type type,
4302				    void (*trigger)(
4303					struct jbd2_buffer_trigger_type *type,
4304					struct buffer_head *bh,
4305					void *mapped_data,
4306					size_t size))
4307{
4308	struct ext4_sb_info *sbi = EXT4_SB(sb);
4309
4310	sbi->s_journal_triggers[type].sb = sb;
4311	sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4312}
4313
4314static void ext4_free_sbi(struct ext4_sb_info *sbi)
4315{
4316	if (!sbi)
4317		return;
4318
4319	kfree(sbi->s_blockgroup_lock);
4320	fs_put_dax(sbi->s_daxdev, NULL);
4321	kfree(sbi);
4322}
4323
4324static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4325{
4326	struct ext4_sb_info *sbi;
4327
4328	sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4329	if (!sbi)
4330		return NULL;
4331
4332	sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4333					   NULL, NULL);
4334
4335	sbi->s_blockgroup_lock =
4336		kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4337
4338	if (!sbi->s_blockgroup_lock)
4339		goto err_out;
4340
4341	sb->s_fs_info = sbi;
4342	sbi->s_sb = sb;
4343	return sbi;
4344err_out:
4345	fs_put_dax(sbi->s_daxdev, NULL);
4346	kfree(sbi);
4347	return NULL;
4348}
4349
4350static void ext4_set_def_opts(struct super_block *sb,
4351			      struct ext4_super_block *es)
4352{
4353	unsigned long def_mount_opts;
4354
4355	/* Set defaults before we parse the mount options */
4356	def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4357	set_opt(sb, INIT_INODE_TABLE);
4358	if (def_mount_opts & EXT4_DEFM_DEBUG)
4359		set_opt(sb, DEBUG);
4360	if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4361		set_opt(sb, GRPID);
4362	if (def_mount_opts & EXT4_DEFM_UID16)
4363		set_opt(sb, NO_UID32);
4364	/* xattr user namespace & acls are now defaulted on */
4365	set_opt(sb, XATTR_USER);
4366#ifdef CONFIG_EXT4_FS_POSIX_ACL
4367	set_opt(sb, POSIX_ACL);
4368#endif
4369	if (ext4_has_feature_fast_commit(sb))
4370		set_opt2(sb, JOURNAL_FAST_COMMIT);
4371	/* don't forget to enable journal_csum when metadata_csum is enabled. */
4372	if (ext4_has_metadata_csum(sb))
4373		set_opt(sb, JOURNAL_CHECKSUM);
4374
4375	if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4376		set_opt(sb, JOURNAL_DATA);
4377	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4378		set_opt(sb, ORDERED_DATA);
4379	else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4380		set_opt(sb, WRITEBACK_DATA);
4381
4382	if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4383		set_opt(sb, ERRORS_PANIC);
4384	else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4385		set_opt(sb, ERRORS_CONT);
4386	else
4387		set_opt(sb, ERRORS_RO);
4388	/* block_validity enabled by default; disable with noblock_validity */
4389	set_opt(sb, BLOCK_VALIDITY);
4390	if (def_mount_opts & EXT4_DEFM_DISCARD)
4391		set_opt(sb, DISCARD);
4392
4393	if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4394		set_opt(sb, BARRIER);
4395
4396	/*
4397	 * enable delayed allocation by default
4398	 * Use -o nodelalloc to turn it off
4399	 */
4400	if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4401	    ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4402		set_opt(sb, DELALLOC);
4403
4404	if (sb->s_blocksize <= PAGE_SIZE)
4405		set_opt(sb, DIOREAD_NOLOCK);
4406}
4407
4408static int ext4_handle_clustersize(struct super_block *sb)
4409{
4410	struct ext4_sb_info *sbi = EXT4_SB(sb);
4411	struct ext4_super_block *es = sbi->s_es;
4412	int clustersize;
4413
4414	/* Handle clustersize */
4415	clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4416	if (ext4_has_feature_bigalloc(sb)) {
4417		if (clustersize < sb->s_blocksize) {
4418			ext4_msg(sb, KERN_ERR,
4419				 "cluster size (%d) smaller than "
4420				 "block size (%lu)", clustersize, sb->s_blocksize);
4421			return -EINVAL;
4422		}
4423		sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4424			le32_to_cpu(es->s_log_block_size);
4425		sbi->s_clusters_per_group =
4426			le32_to_cpu(es->s_clusters_per_group);
4427		if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4428			ext4_msg(sb, KERN_ERR,
4429				 "#clusters per group too big: %lu",
4430				 sbi->s_clusters_per_group);
4431			return -EINVAL;
4432		}
4433		if (sbi->s_blocks_per_group !=
4434		    (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4435			ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4436				 "clusters per group (%lu) inconsistent",
4437				 sbi->s_blocks_per_group,
4438				 sbi->s_clusters_per_group);
4439			return -EINVAL;
4440		}
4441	} else {
4442		if (clustersize != sb->s_blocksize) {
4443			ext4_msg(sb, KERN_ERR,
4444				 "fragment/cluster size (%d) != "
4445				 "block size (%lu)", clustersize, sb->s_blocksize);
4446			return -EINVAL;
4447		}
4448		if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4449			ext4_msg(sb, KERN_ERR,
4450				 "#blocks per group too big: %lu",
4451				 sbi->s_blocks_per_group);
4452			return -EINVAL;
4453		}
4454		sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4455		sbi->s_cluster_bits = 0;
4456	}
4457	sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4458
4459	/* Do we have standard group size of clustersize * 8 blocks ? */
4460	if (sbi->s_blocks_per_group == clustersize << 3)
4461		set_opt2(sb, STD_GROUP_SIZE);
4462
4463	return 0;
4464}
4465
4466static void ext4_fast_commit_init(struct super_block *sb)
4467{
4468	struct ext4_sb_info *sbi = EXT4_SB(sb);
4469
4470	/* Initialize fast commit stuff */
4471	atomic_set(&sbi->s_fc_subtid, 0);
4472	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4473	INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4474	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4475	INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4476	sbi->s_fc_bytes = 0;
4477	ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4478	sbi->s_fc_ineligible_tid = 0;
4479	spin_lock_init(&sbi->s_fc_lock);
4480	memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4481	sbi->s_fc_replay_state.fc_regions = NULL;
4482	sbi->s_fc_replay_state.fc_regions_size = 0;
4483	sbi->s_fc_replay_state.fc_regions_used = 0;
4484	sbi->s_fc_replay_state.fc_regions_valid = 0;
4485	sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4486	sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4487	sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4488}
4489
4490static int ext4_inode_info_init(struct super_block *sb,
4491				struct ext4_super_block *es)
4492{
4493	struct ext4_sb_info *sbi = EXT4_SB(sb);
4494
4495	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4496		sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4497		sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4498	} else {
4499		sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4500		sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4501		if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4502			ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4503				 sbi->s_first_ino);
4504			return -EINVAL;
4505		}
4506		if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4507		    (!is_power_of_2(sbi->s_inode_size)) ||
4508		    (sbi->s_inode_size > sb->s_blocksize)) {
4509			ext4_msg(sb, KERN_ERR,
4510			       "unsupported inode size: %d",
4511			       sbi->s_inode_size);
4512			ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4513			return -EINVAL;
4514		}
4515		/*
4516		 * i_atime_extra is the last extra field available for
4517		 * [acm]times in struct ext4_inode. Checking for that
4518		 * field should suffice to ensure we have extra space
4519		 * for all three.
4520		 */
4521		if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4522			sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4523			sb->s_time_gran = 1;
4524			sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4525		} else {
4526			sb->s_time_gran = NSEC_PER_SEC;
4527			sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4528		}
4529		sb->s_time_min = EXT4_TIMESTAMP_MIN;
4530	}
4531
4532	if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4533		sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4534			EXT4_GOOD_OLD_INODE_SIZE;
4535		if (ext4_has_feature_extra_isize(sb)) {
4536			unsigned v, max = (sbi->s_inode_size -
4537					   EXT4_GOOD_OLD_INODE_SIZE);
4538
4539			v = le16_to_cpu(es->s_want_extra_isize);
4540			if (v > max) {
4541				ext4_msg(sb, KERN_ERR,
4542					 "bad s_want_extra_isize: %d", v);
4543				return -EINVAL;
4544			}
4545			if (sbi->s_want_extra_isize < v)
4546				sbi->s_want_extra_isize = v;
4547
4548			v = le16_to_cpu(es->s_min_extra_isize);
4549			if (v > max) {
4550				ext4_msg(sb, KERN_ERR,
4551					 "bad s_min_extra_isize: %d", v);
4552				return -EINVAL;
4553			}
4554			if (sbi->s_want_extra_isize < v)
4555				sbi->s_want_extra_isize = v;
4556		}
4557	}
4558
4559	return 0;
4560}
4561
4562#if IS_ENABLED(CONFIG_UNICODE)
4563static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4564{
4565	const struct ext4_sb_encodings *encoding_info;
4566	struct unicode_map *encoding;
4567	__u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4568
4569	if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4570		return 0;
4571
4572	encoding_info = ext4_sb_read_encoding(es);
4573	if (!encoding_info) {
4574		ext4_msg(sb, KERN_ERR,
4575			"Encoding requested by superblock is unknown");
4576		return -EINVAL;
4577	}
4578
4579	encoding = utf8_load(encoding_info->version);
4580	if (IS_ERR(encoding)) {
4581		ext4_msg(sb, KERN_ERR,
4582			"can't mount with superblock charset: %s-%u.%u.%u "
4583			"not supported by the kernel. flags: 0x%x.",
4584			encoding_info->name,
4585			unicode_major(encoding_info->version),
4586			unicode_minor(encoding_info->version),
4587			unicode_rev(encoding_info->version),
4588			encoding_flags);
4589		return -EINVAL;
4590	}
4591	ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4592		"%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4593		unicode_major(encoding_info->version),
4594		unicode_minor(encoding_info->version),
4595		unicode_rev(encoding_info->version),
4596		encoding_flags);
4597
4598	sb->s_encoding = encoding;
4599	sb->s_encoding_flags = encoding_flags;
4600
4601	return 0;
4602}
4603#else
4604static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4605{
4606	return 0;
4607}
4608#endif
4609
4610static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4611{
4612	struct ext4_sb_info *sbi = EXT4_SB(sb);
4613
4614	/* Warn if metadata_csum and gdt_csum are both set. */
4615	if (ext4_has_feature_metadata_csum(sb) &&
4616	    ext4_has_feature_gdt_csum(sb))
4617		ext4_warning(sb, "metadata_csum and uninit_bg are "
4618			     "redundant flags; please run fsck.");
4619
4620	/* Check for a known checksum algorithm */
4621	if (!ext4_verify_csum_type(sb, es)) {
4622		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4623			 "unknown checksum algorithm.");
4624		return -EINVAL;
4625	}
4626	ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4627				ext4_orphan_file_block_trigger);
4628
4629	/* Load the checksum driver */
4630	sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4631	if (IS_ERR(sbi->s_chksum_driver)) {
4632		int ret = PTR_ERR(sbi->s_chksum_driver);
4633		ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4634		sbi->s_chksum_driver = NULL;
4635		return ret;
4636	}
4637
4638	/* Check superblock checksum */
4639	if (!ext4_superblock_csum_verify(sb, es)) {
4640		ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4641			 "invalid superblock checksum.  Run e2fsck?");
4642		return -EFSBADCRC;
4643	}
4644
4645	/* Precompute checksum seed for all metadata */
4646	if (ext4_has_feature_csum_seed(sb))
4647		sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4648	else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4649		sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4650					       sizeof(es->s_uuid));
4651	return 0;
4652}
4653
4654static int ext4_check_feature_compatibility(struct super_block *sb,
4655					    struct ext4_super_block *es,
4656					    int silent)
4657{
4658	struct ext4_sb_info *sbi = EXT4_SB(sb);
4659
4660	if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4661	    (ext4_has_compat_features(sb) ||
4662	     ext4_has_ro_compat_features(sb) ||
4663	     ext4_has_incompat_features(sb)))
4664		ext4_msg(sb, KERN_WARNING,
4665		       "feature flags set on rev 0 fs, "
4666		       "running e2fsck is recommended");
4667
4668	if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4669		set_opt2(sb, HURD_COMPAT);
4670		if (ext4_has_feature_64bit(sb)) {
4671			ext4_msg(sb, KERN_ERR,
4672				 "The Hurd can't support 64-bit file systems");
4673			return -EINVAL;
4674		}
4675
4676		/*
4677		 * ea_inode feature uses l_i_version field which is not
4678		 * available in HURD_COMPAT mode.
4679		 */
4680		if (ext4_has_feature_ea_inode(sb)) {
4681			ext4_msg(sb, KERN_ERR,
4682				 "ea_inode feature is not supported for Hurd");
4683			return -EINVAL;
4684		}
4685	}
4686
4687	if (IS_EXT2_SB(sb)) {
4688		if (ext2_feature_set_ok(sb))
4689			ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4690				 "using the ext4 subsystem");
4691		else {
4692			/*
4693			 * If we're probing be silent, if this looks like
4694			 * it's actually an ext[34] filesystem.
4695			 */
4696			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4697				return -EINVAL;
4698			ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4699				 "to feature incompatibilities");
4700			return -EINVAL;
4701		}
4702	}
4703
4704	if (IS_EXT3_SB(sb)) {
4705		if (ext3_feature_set_ok(sb))
4706			ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4707				 "using the ext4 subsystem");
4708		else {
4709			/*
4710			 * If we're probing be silent, if this looks like
4711			 * it's actually an ext4 filesystem.
4712			 */
4713			if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4714				return -EINVAL;
4715			ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4716				 "to feature incompatibilities");
4717			return -EINVAL;
4718		}
4719	}
4720
4721	/*
4722	 * Check feature flags regardless of the revision level, since we
4723	 * previously didn't change the revision level when setting the flags,
4724	 * so there is a chance incompat flags are set on a rev 0 filesystem.
4725	 */
4726	if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4727		return -EINVAL;
4728
4729	if (sbi->s_daxdev) {
4730		if (sb->s_blocksize == PAGE_SIZE)
4731			set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4732		else
4733			ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
4734	}
4735
4736	if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4737		if (ext4_has_feature_inline_data(sb)) {
4738			ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4739					" that may contain inline data");
4740			return -EINVAL;
4741		}
4742		if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4743			ext4_msg(sb, KERN_ERR,
4744				"DAX unsupported by block device.");
4745			return -EINVAL;
4746		}
4747	}
4748
4749	if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4750		ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4751			 es->s_encryption_level);
4752		return -EINVAL;
4753	}
4754
4755	return 0;
4756}
4757
4758static int ext4_check_geometry(struct super_block *sb,
4759			       struct ext4_super_block *es)
4760{
4761	struct ext4_sb_info *sbi = EXT4_SB(sb);
4762	__u64 blocks_count;
4763	int err;
4764
4765	if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
4766		ext4_msg(sb, KERN_ERR,
4767			 "Number of reserved GDT blocks insanely large: %d",
4768			 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4769		return -EINVAL;
4770	}
4771	/*
4772	 * Test whether we have more sectors than will fit in sector_t,
4773	 * and whether the max offset is addressable by the page cache.
4774	 */
4775	err = generic_check_addressable(sb->s_blocksize_bits,
4776					ext4_blocks_count(es));
4777	if (err) {
4778		ext4_msg(sb, KERN_ERR, "filesystem"
4779			 " too large to mount safely on this system");
4780		return err;
4781	}
4782
4783	/* check blocks count against device size */
4784	blocks_count = sb_bdev_nr_blocks(sb);
4785	if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4786		ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4787		       "exceeds size of device (%llu blocks)",
4788		       ext4_blocks_count(es), blocks_count);
4789		return -EINVAL;
4790	}
4791
4792	/*
4793	 * It makes no sense for the first data block to be beyond the end
4794	 * of the filesystem.
4795	 */
4796	if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4797		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4798			 "block %u is beyond end of filesystem (%llu)",
4799			 le32_to_cpu(es->s_first_data_block),
4800			 ext4_blocks_count(es));
4801		return -EINVAL;
4802	}
4803	if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4804	    (sbi->s_cluster_ratio == 1)) {
4805		ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4806			 "block is 0 with a 1k block and cluster size");
4807		return -EINVAL;
4808	}
4809
4810	blocks_count = (ext4_blocks_count(es) -
4811			le32_to_cpu(es->s_first_data_block) +
4812			EXT4_BLOCKS_PER_GROUP(sb) - 1);
4813	do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4814	if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4815		ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4816		       "(block count %llu, first data block %u, "
4817		       "blocks per group %lu)", blocks_count,
4818		       ext4_blocks_count(es),
4819		       le32_to_cpu(es->s_first_data_block),
4820		       EXT4_BLOCKS_PER_GROUP(sb));
4821		return -EINVAL;
4822	}
4823	sbi->s_groups_count = blocks_count;
4824	sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4825			(EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4826	if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4827	    le32_to_cpu(es->s_inodes_count)) {
4828		ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4829			 le32_to_cpu(es->s_inodes_count),
4830			 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4831		return -EINVAL;
4832	}
4833
4834	return 0;
4835}
4836
 
 
 
 
 
 
 
 
 
 
 
 
 
4837static int ext4_group_desc_init(struct super_block *sb,
4838				struct ext4_super_block *es,
4839				ext4_fsblk_t logical_sb_block,
4840				ext4_group_t *first_not_zeroed)
4841{
4842	struct ext4_sb_info *sbi = EXT4_SB(sb);
4843	unsigned int db_count;
4844	ext4_fsblk_t block;
 
4845	int i;
4846
4847	db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4848		   EXT4_DESC_PER_BLOCK(sb);
4849	if (ext4_has_feature_meta_bg(sb)) {
4850		if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4851			ext4_msg(sb, KERN_WARNING,
4852				 "first meta block group too large: %u "
4853				 "(group descriptor block count %u)",
4854				 le32_to_cpu(es->s_first_meta_bg), db_count);
4855			return -EINVAL;
4856		}
4857	}
4858	rcu_assign_pointer(sbi->s_group_desc,
4859			   kvmalloc_array(db_count,
4860					  sizeof(struct buffer_head *),
4861					  GFP_KERNEL));
4862	if (sbi->s_group_desc == NULL) {
4863		ext4_msg(sb, KERN_ERR, "not enough memory");
4864		return -ENOMEM;
4865	}
4866
4867	bgl_lock_init(sbi->s_blockgroup_lock);
4868
4869	/* Pre-read the descriptors into the buffer cache */
4870	for (i = 0; i < db_count; i++) {
4871		block = descriptor_loc(sb, logical_sb_block, i);
4872		ext4_sb_breadahead_unmovable(sb, block);
4873	}
4874
4875	for (i = 0; i < db_count; i++) {
4876		struct buffer_head *bh;
4877
4878		block = descriptor_loc(sb, logical_sb_block, i);
4879		bh = ext4_sb_bread_unmovable(sb, block);
4880		if (IS_ERR(bh)) {
4881			ext4_msg(sb, KERN_ERR,
4882			       "can't read group descriptor %d", i);
4883			sbi->s_gdb_count = i;
4884			return PTR_ERR(bh);
 
4885		}
4886		rcu_read_lock();
4887		rcu_dereference(sbi->s_group_desc)[i] = bh;
4888		rcu_read_unlock();
4889	}
4890	sbi->s_gdb_count = db_count;
4891	if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4892		ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4893		return -EFSCORRUPTED;
 
4894	}
4895
4896	return 0;
 
 
 
4897}
4898
4899static int ext4_load_and_init_journal(struct super_block *sb,
4900				      struct ext4_super_block *es,
4901				      struct ext4_fs_context *ctx)
4902{
4903	struct ext4_sb_info *sbi = EXT4_SB(sb);
4904	int err;
4905
4906	err = ext4_load_journal(sb, es, ctx->journal_devnum);
4907	if (err)
4908		return err;
4909
4910	if (ext4_has_feature_64bit(sb) &&
4911	    !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4912				       JBD2_FEATURE_INCOMPAT_64BIT)) {
4913		ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4914		goto out;
4915	}
4916
4917	if (!set_journal_csum_feature_set(sb)) {
4918		ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4919			 "feature set");
4920		goto out;
4921	}
4922
4923	if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4924		!jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4925					  JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4926		ext4_msg(sb, KERN_ERR,
4927			"Failed to set fast commit journal feature");
4928		goto out;
4929	}
4930
4931	/* We have now updated the journal if required, so we can
4932	 * validate the data journaling mode. */
4933	switch (test_opt(sb, DATA_FLAGS)) {
4934	case 0:
4935		/* No mode set, assume a default based on the journal
4936		 * capabilities: ORDERED_DATA if the journal can
4937		 * cope, else JOURNAL_DATA
4938		 */
4939		if (jbd2_journal_check_available_features
4940		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4941			set_opt(sb, ORDERED_DATA);
4942			sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4943		} else {
4944			set_opt(sb, JOURNAL_DATA);
4945			sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4946		}
4947		break;
4948
4949	case EXT4_MOUNT_ORDERED_DATA:
4950	case EXT4_MOUNT_WRITEBACK_DATA:
4951		if (!jbd2_journal_check_available_features
4952		    (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4953			ext4_msg(sb, KERN_ERR, "Journal does not support "
4954			       "requested data journaling mode");
4955			goto out;
4956		}
4957		break;
4958	default:
4959		break;
4960	}
4961
4962	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4963	    test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4964		ext4_msg(sb, KERN_ERR, "can't mount with "
4965			"journal_async_commit in data=ordered mode");
4966		goto out;
4967	}
4968
4969	set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4970
4971	sbi->s_journal->j_submit_inode_data_buffers =
4972		ext4_journal_submit_inode_data_buffers;
4973	sbi->s_journal->j_finish_inode_data_buffers =
4974		ext4_journal_finish_inode_data_buffers;
4975
4976	return 0;
4977
4978out:
4979	/* flush s_sb_upd_work before destroying the journal. */
4980	flush_work(&sbi->s_sb_upd_work);
4981	jbd2_journal_destroy(sbi->s_journal);
4982	sbi->s_journal = NULL;
4983	return -EINVAL;
4984}
4985
4986static int ext4_check_journal_data_mode(struct super_block *sb)
4987{
4988	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4989		printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4990			    "data=journal disables delayed allocation, "
4991			    "dioread_nolock, O_DIRECT and fast_commit support!\n");
4992		/* can't mount with both data=journal and dioread_nolock. */
4993		clear_opt(sb, DIOREAD_NOLOCK);
4994		clear_opt2(sb, JOURNAL_FAST_COMMIT);
4995		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4996			ext4_msg(sb, KERN_ERR, "can't mount with "
4997				 "both data=journal and delalloc");
4998			return -EINVAL;
4999		}
5000		if (test_opt(sb, DAX_ALWAYS)) {
5001			ext4_msg(sb, KERN_ERR, "can't mount with "
5002				 "both data=journal and dax");
5003			return -EINVAL;
5004		}
5005		if (ext4_has_feature_encrypt(sb)) {
5006			ext4_msg(sb, KERN_WARNING,
5007				 "encrypted files will use data=ordered "
5008				 "instead of data journaling mode");
5009		}
5010		if (test_opt(sb, DELALLOC))
5011			clear_opt(sb, DELALLOC);
5012	} else {
5013		sb->s_iflags |= SB_I_CGROUPWB;
5014	}
5015
5016	return 0;
5017}
5018
5019static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
5020			   int silent)
5021{
5022	struct ext4_sb_info *sbi = EXT4_SB(sb);
5023	struct ext4_super_block *es;
5024	ext4_fsblk_t logical_sb_block;
5025	unsigned long offset = 0;
5026	struct buffer_head *bh;
5027	int ret = -EINVAL;
5028	int blocksize;
5029
5030	blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
5031	if (!blocksize) {
5032		ext4_msg(sb, KERN_ERR, "unable to set blocksize");
5033		return -EINVAL;
5034	}
5035
5036	/*
5037	 * The ext4 superblock will not be buffer aligned for other than 1kB
5038	 * block sizes.  We need to calculate the offset from buffer start.
5039	 */
5040	if (blocksize != EXT4_MIN_BLOCK_SIZE) {
5041		logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5042		offset = do_div(logical_sb_block, blocksize);
5043	} else {
5044		logical_sb_block = sbi->s_sb_block;
5045	}
5046
5047	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5048	if (IS_ERR(bh)) {
5049		ext4_msg(sb, KERN_ERR, "unable to read superblock");
5050		return PTR_ERR(bh);
5051	}
5052	/*
5053	 * Note: s_es must be initialized as soon as possible because
5054	 *       some ext4 macro-instructions depend on its value
5055	 */
5056	es = (struct ext4_super_block *) (bh->b_data + offset);
5057	sbi->s_es = es;
5058	sb->s_magic = le16_to_cpu(es->s_magic);
5059	if (sb->s_magic != EXT4_SUPER_MAGIC) {
5060		if (!silent)
5061			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5062		goto out;
5063	}
5064
5065	if (le32_to_cpu(es->s_log_block_size) >
5066	    (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5067		ext4_msg(sb, KERN_ERR,
5068			 "Invalid log block size: %u",
5069			 le32_to_cpu(es->s_log_block_size));
5070		goto out;
5071	}
5072	if (le32_to_cpu(es->s_log_cluster_size) >
5073	    (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
5074		ext4_msg(sb, KERN_ERR,
5075			 "Invalid log cluster size: %u",
5076			 le32_to_cpu(es->s_log_cluster_size));
5077		goto out;
5078	}
5079
5080	blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
5081
5082	/*
5083	 * If the default block size is not the same as the real block size,
5084	 * we need to reload it.
5085	 */
5086	if (sb->s_blocksize == blocksize) {
5087		*lsb = logical_sb_block;
5088		sbi->s_sbh = bh;
5089		return 0;
5090	}
5091
5092	/*
5093	 * bh must be released before kill_bdev(), otherwise
5094	 * it won't be freed and its page also. kill_bdev()
5095	 * is called by sb_set_blocksize().
5096	 */
5097	brelse(bh);
5098	/* Validate the filesystem blocksize */
5099	if (!sb_set_blocksize(sb, blocksize)) {
5100		ext4_msg(sb, KERN_ERR, "bad block size %d",
5101				blocksize);
5102		bh = NULL;
5103		goto out;
5104	}
5105
5106	logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5107	offset = do_div(logical_sb_block, blocksize);
5108	bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5109	if (IS_ERR(bh)) {
5110		ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5111		ret = PTR_ERR(bh);
5112		bh = NULL;
5113		goto out;
5114	}
5115	es = (struct ext4_super_block *)(bh->b_data + offset);
5116	sbi->s_es = es;
5117	if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5118		ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5119		goto out;
5120	}
5121	*lsb = logical_sb_block;
5122	sbi->s_sbh = bh;
5123	return 0;
5124out:
5125	brelse(bh);
5126	return ret;
5127}
5128
5129static void ext4_hash_info_init(struct super_block *sb)
5130{
5131	struct ext4_sb_info *sbi = EXT4_SB(sb);
5132	struct ext4_super_block *es = sbi->s_es;
5133	unsigned int i;
5134
5135	for (i = 0; i < 4; i++)
5136		sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5137
5138	sbi->s_def_hash_version = es->s_def_hash_version;
5139	if (ext4_has_feature_dir_index(sb)) {
5140		i = le32_to_cpu(es->s_flags);
5141		if (i & EXT2_FLAGS_UNSIGNED_HASH)
5142			sbi->s_hash_unsigned = 3;
5143		else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5144#ifdef __CHAR_UNSIGNED__
5145			if (!sb_rdonly(sb))
5146				es->s_flags |=
5147					cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5148			sbi->s_hash_unsigned = 3;
5149#else
5150			if (!sb_rdonly(sb))
5151				es->s_flags |=
5152					cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5153#endif
5154		}
5155	}
5156}
5157
5158static int ext4_block_group_meta_init(struct super_block *sb, int silent)
5159{
5160	struct ext4_sb_info *sbi = EXT4_SB(sb);
5161	struct ext4_super_block *es = sbi->s_es;
5162	int has_huge_files;
5163
5164	has_huge_files = ext4_has_feature_huge_file(sb);
5165	sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5166						      has_huge_files);
5167	sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5168
5169	sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5170	if (ext4_has_feature_64bit(sb)) {
5171		if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5172		    sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5173		    !is_power_of_2(sbi->s_desc_size)) {
5174			ext4_msg(sb, KERN_ERR,
5175			       "unsupported descriptor size %lu",
5176			       sbi->s_desc_size);
5177			return -EINVAL;
5178		}
5179	} else
5180		sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5181
5182	sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5183	sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5184
5185	sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5186	if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5187		if (!silent)
5188			ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5189		return -EINVAL;
5190	}
5191	if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5192	    sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5193		ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5194			 sbi->s_inodes_per_group);
5195		return -EINVAL;
5196	}
5197	sbi->s_itb_per_group = sbi->s_inodes_per_group /
5198					sbi->s_inodes_per_block;
5199	sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5200	sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5201	sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5202	sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5203
5204	return 0;
5205}
5206
5207static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5208{
5209	struct ext4_super_block *es = NULL;
5210	struct ext4_sb_info *sbi = EXT4_SB(sb);
 
 
5211	ext4_fsblk_t logical_sb_block;
5212	struct inode *root;
5213	int needs_recovery;
5214	int err;
 
 
5215	ext4_group_t first_not_zeroed;
5216	struct ext4_fs_context *ctx = fc->fs_private;
5217	int silent = fc->sb_flags & SB_SILENT;
5218
5219	/* Set defaults for the variables that will be set during parsing */
5220	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5221		ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5222
5223	sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5224	sbi->s_sectors_written_start =
5225		part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5226
 
 
5227	err = ext4_load_super(sb, &logical_sb_block, silent);
5228	if (err)
5229		goto out_fail;
5230
5231	es = sbi->s_es;
5232	sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5233
5234	err = ext4_init_metadata_csum(sb, es);
5235	if (err)
5236		goto failed_mount;
5237
5238	ext4_set_def_opts(sb, es);
5239
5240	sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5241	sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5242	sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5243	sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5244	sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5245
5246	/*
5247	 * set default s_li_wait_mult for lazyinit, for the case there is
5248	 * no mount option specified.
5249	 */
5250	sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5251
5252	err = ext4_inode_info_init(sb, es);
5253	if (err)
5254		goto failed_mount;
5255
5256	err = parse_apply_sb_mount_options(sb, ctx);
5257	if (err < 0)
5258		goto failed_mount;
5259
5260	sbi->s_def_mount_opt = sbi->s_mount_opt;
5261	sbi->s_def_mount_opt2 = sbi->s_mount_opt2;
5262
5263	err = ext4_check_opt_consistency(fc, sb);
5264	if (err < 0)
5265		goto failed_mount;
5266
5267	ext4_apply_options(fc, sb);
5268
5269	err = ext4_encoding_init(sb, es);
5270	if (err)
5271		goto failed_mount;
5272
5273	err = ext4_check_journal_data_mode(sb);
5274	if (err)
5275		goto failed_mount;
5276
5277	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5278		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5279
5280	/* i_version is always enabled now */
5281	sb->s_flags |= SB_I_VERSION;
5282
5283	err = ext4_check_feature_compatibility(sb, es, silent);
5284	if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5285		goto failed_mount;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5286
5287	err = ext4_block_group_meta_init(sb, silent);
5288	if (err)
5289		goto failed_mount;
5290
5291	ext4_hash_info_init(sb);
 
 
 
 
 
 
 
 
 
 
5292
5293	err = ext4_handle_clustersize(sb);
5294	if (err)
5295		goto failed_mount;
5296
5297	err = ext4_check_geometry(sb, es);
5298	if (err)
5299		goto failed_mount;
5300
5301	timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5302	spin_lock_init(&sbi->s_error_lock);
5303	INIT_WORK(&sbi->s_sb_upd_work, update_super_work);
5304
5305	err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5306	if (err)
5307		goto failed_mount3;
5308
5309	err = ext4_es_register_shrinker(sbi);
5310	if (err)
5311		goto failed_mount3;
5312
5313	sbi->s_stripe = ext4_get_stripe_size(sbi);
5314	/*
5315	 * It's hard to get stripe aligned blocks if stripe is not aligned with
5316	 * cluster, just disable stripe and alert user to simpfy code and avoid
5317	 * stripe aligned allocation which will rarely successes.
5318	 */
5319	if (sbi->s_stripe > 0 && sbi->s_cluster_ratio > 1 &&
5320	    sbi->s_stripe % sbi->s_cluster_ratio != 0) {
5321		ext4_msg(sb, KERN_WARNING,
5322			 "stripe (%lu) is not aligned with cluster size (%u), "
5323			 "stripe is disabled",
5324			 sbi->s_stripe, sbi->s_cluster_ratio);
5325		sbi->s_stripe = 0;
5326	}
5327	sbi->s_extent_max_zeroout_kb = 32;
5328
5329	/*
5330	 * set up enough so that it can read an inode
5331	 */
5332	sb->s_op = &ext4_sops;
5333	sb->s_export_op = &ext4_export_ops;
5334	sb->s_xattr = ext4_xattr_handlers;
5335#ifdef CONFIG_FS_ENCRYPTION
5336	sb->s_cop = &ext4_cryptops;
5337#endif
5338#ifdef CONFIG_FS_VERITY
5339	sb->s_vop = &ext4_verityops;
5340#endif
5341#ifdef CONFIG_QUOTA
5342	sb->dq_op = &ext4_quota_operations;
5343	if (ext4_has_feature_quota(sb))
5344		sb->s_qcop = &dquot_quotactl_sysfile_ops;
5345	else
5346		sb->s_qcop = &ext4_qctl_operations;
5347	sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5348#endif
5349	memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5350
5351	INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5352	mutex_init(&sbi->s_orphan_lock);
5353
5354	ext4_fast_commit_init(sb);
5355
5356	sb->s_root = NULL;
5357
5358	needs_recovery = (es->s_last_orphan != 0 ||
5359			  ext4_has_feature_orphan_present(sb) ||
5360			  ext4_has_feature_journal_needs_recovery(sb));
5361
5362	if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb)) {
5363		err = ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block));
5364		if (err)
5365			goto failed_mount3a;
5366	}
5367
5368	err = -EINVAL;
5369	/*
5370	 * The first inode we look at is the journal inode.  Don't try
5371	 * root first: it may be modified in the journal!
5372	 */
5373	if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5374		err = ext4_load_and_init_journal(sb, es, ctx);
5375		if (err)
5376			goto failed_mount3a;
5377	} else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5378		   ext4_has_feature_journal_needs_recovery(sb)) {
5379		ext4_msg(sb, KERN_ERR, "required journal recovery "
5380		       "suppressed and not mounted read-only");
5381		goto failed_mount3a;
5382	} else {
5383		/* Nojournal mode, all journal mount options are illegal */
5384		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5385			ext4_msg(sb, KERN_ERR, "can't mount with "
5386				 "journal_async_commit, fs mounted w/o journal");
5387			goto failed_mount3a;
5388		}
5389
5390		if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5391			ext4_msg(sb, KERN_ERR, "can't mount with "
5392				 "journal_checksum, fs mounted w/o journal");
5393			goto failed_mount3a;
5394		}
5395		if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5396			ext4_msg(sb, KERN_ERR, "can't mount with "
5397				 "commit=%lu, fs mounted w/o journal",
5398				 sbi->s_commit_interval / HZ);
5399			goto failed_mount3a;
5400		}
5401		if (EXT4_MOUNT_DATA_FLAGS &
5402		    (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5403			ext4_msg(sb, KERN_ERR, "can't mount with "
5404				 "data=, fs mounted w/o journal");
5405			goto failed_mount3a;
5406		}
5407		sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5408		clear_opt(sb, JOURNAL_CHECKSUM);
5409		clear_opt(sb, DATA_FLAGS);
5410		clear_opt2(sb, JOURNAL_FAST_COMMIT);
5411		sbi->s_journal = NULL;
5412		needs_recovery = 0;
5413	}
5414
5415	if (!test_opt(sb, NO_MBCACHE)) {
5416		sbi->s_ea_block_cache = ext4_xattr_create_cache();
5417		if (!sbi->s_ea_block_cache) {
5418			ext4_msg(sb, KERN_ERR,
5419				 "Failed to create ea_block_cache");
5420			err = -EINVAL;
5421			goto failed_mount_wq;
5422		}
5423
5424		if (ext4_has_feature_ea_inode(sb)) {
5425			sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5426			if (!sbi->s_ea_inode_cache) {
5427				ext4_msg(sb, KERN_ERR,
5428					 "Failed to create ea_inode_cache");
5429				err = -EINVAL;
5430				goto failed_mount_wq;
5431			}
5432		}
5433	}
5434
 
 
 
 
 
5435	/*
5436	 * Get the # of file system overhead blocks from the
5437	 * superblock if present.
5438	 */
5439	sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5440	/* ignore the precalculated value if it is ridiculous */
5441	if (sbi->s_overhead > ext4_blocks_count(es))
5442		sbi->s_overhead = 0;
5443	/*
5444	 * If the bigalloc feature is not enabled recalculating the
5445	 * overhead doesn't take long, so we might as well just redo
5446	 * it to make sure we are using the correct value.
5447	 */
5448	if (!ext4_has_feature_bigalloc(sb))
5449		sbi->s_overhead = 0;
5450	if (sbi->s_overhead == 0) {
5451		err = ext4_calculate_overhead(sb);
5452		if (err)
5453			goto failed_mount_wq;
5454	}
5455
5456	/*
5457	 * The maximum number of concurrent works can be high and
5458	 * concurrency isn't really necessary.  Limit it to 1.
5459	 */
5460	EXT4_SB(sb)->rsv_conversion_wq =
5461		alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5462	if (!EXT4_SB(sb)->rsv_conversion_wq) {
5463		printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5464		err = -ENOMEM;
5465		goto failed_mount4;
5466	}
5467
5468	/*
5469	 * The jbd2_journal_load will have done any necessary log recovery,
5470	 * so we can safely mount the rest of the filesystem now.
5471	 */
5472
5473	root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5474	if (IS_ERR(root)) {
5475		ext4_msg(sb, KERN_ERR, "get root inode failed");
5476		err = PTR_ERR(root);
5477		root = NULL;
5478		goto failed_mount4;
5479	}
5480	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5481		ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5482		iput(root);
5483		err = -EFSCORRUPTED;
5484		goto failed_mount4;
5485	}
5486
5487	sb->s_root = d_make_root(root);
5488	if (!sb->s_root) {
5489		ext4_msg(sb, KERN_ERR, "get root dentry failed");
5490		err = -ENOMEM;
5491		goto failed_mount4;
5492	}
5493
5494	err = ext4_setup_super(sb, es, sb_rdonly(sb));
5495	if (err == -EROFS) {
5496		sb->s_flags |= SB_RDONLY;
5497	} else if (err)
 
5498		goto failed_mount4a;
5499
5500	ext4_set_resv_clusters(sb);
5501
5502	if (test_opt(sb, BLOCK_VALIDITY)) {
5503		err = ext4_setup_system_zone(sb);
5504		if (err) {
5505			ext4_msg(sb, KERN_ERR, "failed to initialize system "
5506				 "zone (%d)", err);
5507			goto failed_mount4a;
5508		}
5509	}
5510	ext4_fc_replay_cleanup(sb);
5511
5512	ext4_ext_init(sb);
5513
5514	/*
5515	 * Enable optimize_scan if number of groups is > threshold. This can be
5516	 * turned off by passing "mb_optimize_scan=0". This can also be
5517	 * turned on forcefully by passing "mb_optimize_scan=1".
5518	 */
5519	if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5520		if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5521			set_opt2(sb, MB_OPTIMIZE_SCAN);
5522		else
5523			clear_opt2(sb, MB_OPTIMIZE_SCAN);
5524	}
5525
5526	err = ext4_mb_init(sb);
5527	if (err) {
5528		ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5529			 err);
5530		goto failed_mount5;
5531	}
5532
5533	/*
5534	 * We can only set up the journal commit callback once
5535	 * mballoc is initialized
5536	 */
5537	if (sbi->s_journal)
5538		sbi->s_journal->j_commit_callback =
5539			ext4_journal_commit_callback;
5540
5541	err = ext4_percpu_param_init(sbi);
5542	if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5543		goto failed_mount6;
 
5544
5545	if (ext4_has_feature_flex_bg(sb))
5546		if (!ext4_fill_flex_info(sb)) {
5547			ext4_msg(sb, KERN_ERR,
5548			       "unable to initialize "
5549			       "flex_bg meta info!");
5550			err = -ENOMEM;
5551			goto failed_mount6;
5552		}
5553
5554	err = ext4_register_li_request(sb, first_not_zeroed);
5555	if (err)
5556		goto failed_mount6;
5557
5558	err = ext4_register_sysfs(sb);
5559	if (err)
5560		goto failed_mount7;
5561
5562	err = ext4_init_orphan_info(sb);
5563	if (err)
5564		goto failed_mount8;
5565#ifdef CONFIG_QUOTA
5566	/* Enable quota usage during mount. */
5567	if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5568		err = ext4_enable_quotas(sb);
5569		if (err)
5570			goto failed_mount9;
5571	}
5572#endif  /* CONFIG_QUOTA */
5573
5574	/*
5575	 * Save the original bdev mapping's wb_err value which could be
5576	 * used to detect the metadata async write error.
5577	 */
5578	spin_lock_init(&sbi->s_bdev_wb_lock);
5579	errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5580				 &sbi->s_bdev_wb_err);
 
5581	EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5582	ext4_orphan_cleanup(sb, es);
5583	EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5584	/*
5585	 * Update the checksum after updating free space/inode counters and
5586	 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5587	 * checksum in the buffer cache until it is written out and
5588	 * e2fsprogs programs trying to open a file system immediately
5589	 * after it is mounted can fail.
5590	 */
5591	ext4_superblock_csum_set(sb);
5592	if (needs_recovery) {
5593		ext4_msg(sb, KERN_INFO, "recovery complete");
5594		err = ext4_mark_recovery_complete(sb, es);
5595		if (err)
5596			goto failed_mount10;
5597	}
5598
5599	if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5600		ext4_msg(sb, KERN_WARNING,
5601			 "mounting with \"discard\" option, but the device does not support discard");
5602
5603	if (es->s_error_count)
5604		mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5605
5606	/* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5607	ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5608	ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5609	ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5610	atomic_set(&sbi->s_warning_count, 0);
5611	atomic_set(&sbi->s_msg_count, 0);
5612
5613	return 0;
5614
5615failed_mount10:
5616	ext4_quotas_off(sb, EXT4_MAXQUOTAS);
5617failed_mount9: __maybe_unused
5618	ext4_release_orphan_info(sb);
5619failed_mount8:
5620	ext4_unregister_sysfs(sb);
5621	kobject_put(&sbi->s_kobj);
5622failed_mount7:
5623	ext4_unregister_li_request(sb);
5624failed_mount6:
5625	ext4_mb_release(sb);
5626	ext4_flex_groups_free(sbi);
5627	ext4_percpu_param_destroy(sbi);
 
 
 
 
 
 
 
 
 
 
 
 
5628failed_mount5:
5629	ext4_ext_release(sb);
5630	ext4_release_system_zone(sb);
5631failed_mount4a:
5632	dput(sb->s_root);
5633	sb->s_root = NULL;
5634failed_mount4:
5635	ext4_msg(sb, KERN_ERR, "mount failed");
5636	if (EXT4_SB(sb)->rsv_conversion_wq)
5637		destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5638failed_mount_wq:
5639	ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5640	sbi->s_ea_inode_cache = NULL;
5641
5642	ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5643	sbi->s_ea_block_cache = NULL;
5644
5645	if (sbi->s_journal) {
5646		/* flush s_sb_upd_work before journal destroy. */
5647		flush_work(&sbi->s_sb_upd_work);
5648		jbd2_journal_destroy(sbi->s_journal);
5649		sbi->s_journal = NULL;
5650	}
5651failed_mount3a:
5652	ext4_es_unregister_shrinker(sbi);
5653failed_mount3:
5654	/* flush s_sb_upd_work before sbi destroy */
5655	flush_work(&sbi->s_sb_upd_work);
5656	del_timer_sync(&sbi->s_err_report);
5657	ext4_stop_mmpd(sbi);
5658	ext4_group_desc_free(sbi);
5659failed_mount:
5660	if (sbi->s_chksum_driver)
5661		crypto_free_shash(sbi->s_chksum_driver);
5662
5663#if IS_ENABLED(CONFIG_UNICODE)
5664	utf8_unload(sb->s_encoding);
5665#endif
5666
5667#ifdef CONFIG_QUOTA
5668	for (unsigned int i = 0; i < EXT4_MAXQUOTAS; i++)
5669		kfree(get_qf_name(sb, sbi, i));
5670#endif
5671	fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
 
5672	brelse(sbi->s_sbh);
5673	if (sbi->s_journal_bdev_handle) {
5674		invalidate_bdev(sbi->s_journal_bdev_handle->bdev);
5675		bdev_release(sbi->s_journal_bdev_handle);
5676	}
5677out_fail:
5678	invalidate_bdev(sb->s_bdev);
5679	sb->s_fs_info = NULL;
5680	return err;
5681}
5682
5683static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5684{
5685	struct ext4_fs_context *ctx = fc->fs_private;
5686	struct ext4_sb_info *sbi;
5687	const char *descr;
5688	int ret;
5689
5690	sbi = ext4_alloc_sbi(sb);
5691	if (!sbi)
5692		return -ENOMEM;
5693
5694	fc->s_fs_info = sbi;
5695
5696	/* Cleanup superblock name */
5697	strreplace(sb->s_id, '/', '!');
5698
5699	sbi->s_sb_block = 1;	/* Default super block location */
5700	if (ctx->spec & EXT4_SPEC_s_sb_block)
5701		sbi->s_sb_block = ctx->s_sb_block;
5702
5703	ret = __ext4_fill_super(fc, sb);
5704	if (ret < 0)
5705		goto free_sbi;
5706
5707	if (sbi->s_journal) {
5708		if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5709			descr = " journalled data mode";
5710		else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5711			descr = " ordered data mode";
5712		else
5713			descr = " writeback data mode";
5714	} else
5715		descr = "out journal";
5716
5717	if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5718		ext4_msg(sb, KERN_INFO, "mounted filesystem %pU %s with%s. "
5719			 "Quota mode: %s.", &sb->s_uuid,
5720			 sb_rdonly(sb) ? "ro" : "r/w", descr,
5721			 ext4_quota_mode(sb));
5722
5723	/* Update the s_overhead_clusters if necessary */
5724	ext4_update_overhead(sb, false);
5725	return 0;
5726
5727free_sbi:
5728	ext4_free_sbi(sbi);
5729	fc->s_fs_info = NULL;
5730	return ret;
5731}
5732
5733static int ext4_get_tree(struct fs_context *fc)
5734{
5735	return get_tree_bdev(fc, ext4_fill_super);
5736}
5737
5738/*
5739 * Setup any per-fs journal parameters now.  We'll do this both on
5740 * initial mount, once the journal has been initialised but before we've
5741 * done any recovery; and again on any subsequent remount.
5742 */
5743static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5744{
5745	struct ext4_sb_info *sbi = EXT4_SB(sb);
5746
5747	journal->j_commit_interval = sbi->s_commit_interval;
5748	journal->j_min_batch_time = sbi->s_min_batch_time;
5749	journal->j_max_batch_time = sbi->s_max_batch_time;
5750	ext4_fc_init(sb, journal);
5751
5752	write_lock(&journal->j_state_lock);
5753	if (test_opt(sb, BARRIER))
5754		journal->j_flags |= JBD2_BARRIER;
5755	else
5756		journal->j_flags &= ~JBD2_BARRIER;
5757	if (test_opt(sb, DATA_ERR_ABORT))
5758		journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5759	else
5760		journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5761	/*
5762	 * Always enable journal cycle record option, letting the journal
5763	 * records log transactions continuously between each mount.
5764	 */
5765	journal->j_flags |= JBD2_CYCLE_RECORD;
5766	write_unlock(&journal->j_state_lock);
5767}
5768
5769static struct inode *ext4_get_journal_inode(struct super_block *sb,
5770					     unsigned int journal_inum)
5771{
5772	struct inode *journal_inode;
5773
5774	/*
5775	 * Test for the existence of a valid inode on disk.  Bad things
5776	 * happen if we iget() an unused inode, as the subsequent iput()
5777	 * will try to delete it.
5778	 */
5779	journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5780	if (IS_ERR(journal_inode)) {
5781		ext4_msg(sb, KERN_ERR, "no journal found");
5782		return ERR_CAST(journal_inode);
5783	}
5784	if (!journal_inode->i_nlink) {
5785		make_bad_inode(journal_inode);
5786		iput(journal_inode);
5787		ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5788		return ERR_PTR(-EFSCORRUPTED);
5789	}
 
 
 
5790	if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5791		ext4_msg(sb, KERN_ERR, "invalid journal inode");
5792		iput(journal_inode);
5793		return ERR_PTR(-EFSCORRUPTED);
5794	}
5795
5796	ext4_debug("Journal inode found at %p: %lld bytes\n",
5797		  journal_inode, journal_inode->i_size);
5798	return journal_inode;
5799}
5800
5801static int ext4_journal_bmap(journal_t *journal, sector_t *block)
5802{
5803	struct ext4_map_blocks map;
5804	int ret;
5805
5806	if (journal->j_inode == NULL)
5807		return 0;
5808
5809	map.m_lblk = *block;
5810	map.m_len = 1;
5811	ret = ext4_map_blocks(NULL, journal->j_inode, &map, 0);
5812	if (ret <= 0) {
5813		ext4_msg(journal->j_inode->i_sb, KERN_CRIT,
5814			 "journal bmap failed: block %llu ret %d\n",
5815			 *block, ret);
5816		jbd2_journal_abort(journal, ret ? ret : -EIO);
5817		return ret;
5818	}
5819	*block = map.m_pblk;
5820	return 0;
5821}
5822
5823static journal_t *ext4_open_inode_journal(struct super_block *sb,
5824					  unsigned int journal_inum)
5825{
5826	struct inode *journal_inode;
5827	journal_t *journal;
5828
 
 
 
5829	journal_inode = ext4_get_journal_inode(sb, journal_inum);
5830	if (IS_ERR(journal_inode))
5831		return ERR_CAST(journal_inode);
5832
5833	journal = jbd2_journal_init_inode(journal_inode);
5834	if (IS_ERR(journal)) {
5835		ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5836		iput(journal_inode);
5837		return ERR_CAST(journal);
5838	}
5839	journal->j_private = sb;
5840	journal->j_bmap = ext4_journal_bmap;
5841	ext4_init_journal_params(sb, journal);
5842	return journal;
5843}
5844
5845static struct bdev_handle *ext4_get_journal_blkdev(struct super_block *sb,
5846					dev_t j_dev, ext4_fsblk_t *j_start,
5847					ext4_fsblk_t *j_len)
5848{
5849	struct buffer_head *bh;
5850	struct block_device *bdev;
5851	struct bdev_handle *bdev_handle;
 
5852	int hblock, blocksize;
5853	ext4_fsblk_t sb_block;
5854	unsigned long offset;
5855	struct ext4_super_block *es;
5856	int errno;
 
 
 
5857
5858	bdev_handle = bdev_open_by_dev(j_dev,
5859		BLK_OPEN_READ | BLK_OPEN_WRITE | BLK_OPEN_RESTRICT_WRITES,
5860		sb, &fs_holder_ops);
5861	if (IS_ERR(bdev_handle)) {
5862		ext4_msg(sb, KERN_ERR,
5863			 "failed to open journal device unknown-block(%u,%u) %ld",
5864			 MAJOR(j_dev), MINOR(j_dev), PTR_ERR(bdev_handle));
5865		return bdev_handle;
5866	}
5867
5868	bdev = bdev_handle->bdev;
5869	blocksize = sb->s_blocksize;
5870	hblock = bdev_logical_block_size(bdev);
5871	if (blocksize < hblock) {
5872		ext4_msg(sb, KERN_ERR,
5873			"blocksize too small for journal device");
5874		errno = -EINVAL;
5875		goto out_bdev;
5876	}
5877
5878	sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5879	offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5880	set_blocksize(bdev, blocksize);
5881	bh = __bread(bdev, sb_block, blocksize);
5882	if (!bh) {
5883		ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5884		       "external journal");
5885		errno = -EINVAL;
5886		goto out_bdev;
5887	}
5888
5889	es = (struct ext4_super_block *) (bh->b_data + offset);
5890	if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5891	    !(le32_to_cpu(es->s_feature_incompat) &
5892	      EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5893		ext4_msg(sb, KERN_ERR, "external journal has bad superblock");
5894		errno = -EFSCORRUPTED;
5895		goto out_bh;
 
5896	}
5897
5898	if ((le32_to_cpu(es->s_feature_ro_compat) &
5899	     EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5900	    es->s_checksum != ext4_superblock_csum(sb, es)) {
5901		ext4_msg(sb, KERN_ERR, "external journal has corrupt superblock");
5902		errno = -EFSCORRUPTED;
5903		goto out_bh;
 
5904	}
5905
5906	if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5907		ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5908		errno = -EFSCORRUPTED;
5909		goto out_bh;
5910	}
5911
5912	*j_start = sb_block + 1;
5913	*j_len = ext4_blocks_count(es);
5914	brelse(bh);
5915	return bdev_handle;
5916
5917out_bh:
5918	brelse(bh);
5919out_bdev:
5920	bdev_release(bdev_handle);
5921	return ERR_PTR(errno);
5922}
5923
5924static journal_t *ext4_open_dev_journal(struct super_block *sb,
5925					dev_t j_dev)
5926{
5927	journal_t *journal;
5928	ext4_fsblk_t j_start;
5929	ext4_fsblk_t j_len;
5930	struct bdev_handle *bdev_handle;
5931	int errno = 0;
5932
5933	bdev_handle = ext4_get_journal_blkdev(sb, j_dev, &j_start, &j_len);
5934	if (IS_ERR(bdev_handle))
5935		return ERR_CAST(bdev_handle);
5936
5937	journal = jbd2_journal_init_dev(bdev_handle->bdev, sb->s_bdev, j_start,
5938					j_len, sb->s_blocksize);
5939	if (IS_ERR(journal)) {
5940		ext4_msg(sb, KERN_ERR, "failed to create device journal");
5941		errno = PTR_ERR(journal);
5942		goto out_bdev;
5943	}
 
 
 
 
 
5944	if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5945		ext4_msg(sb, KERN_ERR, "External journal has more than one "
5946					"user (unsupported) - %d",
5947			be32_to_cpu(journal->j_superblock->s_nr_users));
5948		errno = -EINVAL;
5949		goto out_journal;
5950	}
5951	journal->j_private = sb;
5952	EXT4_SB(sb)->s_journal_bdev_handle = bdev_handle;
5953	ext4_init_journal_params(sb, journal);
5954	return journal;
5955
5956out_journal:
5957	jbd2_journal_destroy(journal);
5958out_bdev:
5959	bdev_release(bdev_handle);
5960	return ERR_PTR(errno);
5961}
5962
5963static int ext4_load_journal(struct super_block *sb,
5964			     struct ext4_super_block *es,
5965			     unsigned long journal_devnum)
5966{
5967	journal_t *journal;
5968	unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5969	dev_t journal_dev;
5970	int err = 0;
5971	int really_read_only;
5972	int journal_dev_ro;
5973
5974	if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5975		return -EFSCORRUPTED;
5976
5977	if (journal_devnum &&
5978	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5979		ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5980			"numbers have changed");
5981		journal_dev = new_decode_dev(journal_devnum);
5982	} else
5983		journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5984
5985	if (journal_inum && journal_dev) {
5986		ext4_msg(sb, KERN_ERR,
5987			 "filesystem has both journal inode and journal device!");
5988		return -EINVAL;
5989	}
5990
5991	if (journal_inum) {
5992		journal = ext4_open_inode_journal(sb, journal_inum);
5993		if (IS_ERR(journal))
5994			return PTR_ERR(journal);
5995	} else {
5996		journal = ext4_open_dev_journal(sb, journal_dev);
5997		if (IS_ERR(journal))
5998			return PTR_ERR(journal);
5999	}
6000
6001	journal_dev_ro = bdev_read_only(journal->j_dev);
6002	really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
6003
6004	if (journal_dev_ro && !sb_rdonly(sb)) {
6005		ext4_msg(sb, KERN_ERR,
6006			 "journal device read-only, try mounting with '-o ro'");
6007		err = -EROFS;
6008		goto err_out;
6009	}
6010
6011	/*
6012	 * Are we loading a blank journal or performing recovery after a
6013	 * crash?  For recovery, we need to check in advance whether we
6014	 * can get read-write access to the device.
6015	 */
6016	if (ext4_has_feature_journal_needs_recovery(sb)) {
6017		if (sb_rdonly(sb)) {
6018			ext4_msg(sb, KERN_INFO, "INFO: recovery "
6019					"required on readonly filesystem");
6020			if (really_read_only) {
6021				ext4_msg(sb, KERN_ERR, "write access "
6022					"unavailable, cannot proceed "
6023					"(try mounting with noload)");
6024				err = -EROFS;
6025				goto err_out;
6026			}
6027			ext4_msg(sb, KERN_INFO, "write access will "
6028			       "be enabled during recovery");
6029		}
6030	}
6031
6032	if (!(journal->j_flags & JBD2_BARRIER))
6033		ext4_msg(sb, KERN_INFO, "barriers disabled");
6034
6035	if (!ext4_has_feature_journal_needs_recovery(sb))
6036		err = jbd2_journal_wipe(journal, !really_read_only);
6037	if (!err) {
6038		char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
6039		__le16 orig_state;
6040		bool changed = false;
6041
6042		if (save)
6043			memcpy(save, ((char *) es) +
6044			       EXT4_S_ERR_START, EXT4_S_ERR_LEN);
6045		err = jbd2_journal_load(journal);
6046		if (save && memcmp(((char *) es) + EXT4_S_ERR_START,
6047				   save, EXT4_S_ERR_LEN)) {
6048			memcpy(((char *) es) + EXT4_S_ERR_START,
6049			       save, EXT4_S_ERR_LEN);
6050			changed = true;
6051		}
6052		kfree(save);
6053		orig_state = es->s_state;
6054		es->s_state |= cpu_to_le16(EXT4_SB(sb)->s_mount_state &
6055					   EXT4_ERROR_FS);
6056		if (orig_state != es->s_state)
6057			changed = true;
6058		/* Write out restored error information to the superblock */
6059		if (changed && !really_read_only) {
6060			int err2;
6061			err2 = ext4_commit_super(sb);
6062			err = err ? : err2;
6063		}
6064	}
6065
6066	if (err) {
6067		ext4_msg(sb, KERN_ERR, "error loading journal");
6068		goto err_out;
6069	}
6070
6071	EXT4_SB(sb)->s_journal = journal;
6072	err = ext4_clear_journal_err(sb, es);
6073	if (err) {
6074		EXT4_SB(sb)->s_journal = NULL;
6075		jbd2_journal_destroy(journal);
6076		return err;
6077	}
6078
6079	if (!really_read_only && journal_devnum &&
6080	    journal_devnum != le32_to_cpu(es->s_journal_dev)) {
6081		es->s_journal_dev = cpu_to_le32(journal_devnum);
6082		ext4_commit_super(sb);
6083	}
6084	if (!really_read_only && journal_inum &&
6085	    journal_inum != le32_to_cpu(es->s_journal_inum)) {
6086		es->s_journal_inum = cpu_to_le32(journal_inum);
6087		ext4_commit_super(sb);
6088	}
6089
6090	return 0;
6091
6092err_out:
6093	jbd2_journal_destroy(journal);
6094	return err;
6095}
6096
6097/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
6098static void ext4_update_super(struct super_block *sb)
6099{
6100	struct ext4_sb_info *sbi = EXT4_SB(sb);
6101	struct ext4_super_block *es = sbi->s_es;
6102	struct buffer_head *sbh = sbi->s_sbh;
6103
6104	lock_buffer(sbh);
6105	/*
6106	 * If the file system is mounted read-only, don't update the
6107	 * superblock write time.  This avoids updating the superblock
6108	 * write time when we are mounting the root file system
6109	 * read/only but we need to replay the journal; at that point,
6110	 * for people who are east of GMT and who make their clock
6111	 * tick in localtime for Windows bug-for-bug compatibility,
6112	 * the clock is set in the future, and this will cause e2fsck
6113	 * to complain and force a full file system check.
6114	 */
6115	if (!sb_rdonly(sb))
6116		ext4_update_tstamp(es, s_wtime);
6117	es->s_kbytes_written =
6118		cpu_to_le64(sbi->s_kbytes_written +
6119		    ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
6120		      sbi->s_sectors_written_start) >> 1));
6121	if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
6122		ext4_free_blocks_count_set(es,
6123			EXT4_C2B(sbi, percpu_counter_sum_positive(
6124				&sbi->s_freeclusters_counter)));
6125	if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
6126		es->s_free_inodes_count =
6127			cpu_to_le32(percpu_counter_sum_positive(
6128				&sbi->s_freeinodes_counter));
6129	/* Copy error information to the on-disk superblock */
6130	spin_lock(&sbi->s_error_lock);
6131	if (sbi->s_add_error_count > 0) {
6132		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6133		if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6134			__ext4_update_tstamp(&es->s_first_error_time,
6135					     &es->s_first_error_time_hi,
6136					     sbi->s_first_error_time);
6137			strncpy(es->s_first_error_func, sbi->s_first_error_func,
6138				sizeof(es->s_first_error_func));
6139			es->s_first_error_line =
6140				cpu_to_le32(sbi->s_first_error_line);
6141			es->s_first_error_ino =
6142				cpu_to_le32(sbi->s_first_error_ino);
6143			es->s_first_error_block =
6144				cpu_to_le64(sbi->s_first_error_block);
6145			es->s_first_error_errcode =
6146				ext4_errno_to_code(sbi->s_first_error_code);
6147		}
6148		__ext4_update_tstamp(&es->s_last_error_time,
6149				     &es->s_last_error_time_hi,
6150				     sbi->s_last_error_time);
6151		strncpy(es->s_last_error_func, sbi->s_last_error_func,
6152			sizeof(es->s_last_error_func));
6153		es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6154		es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6155		es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6156		es->s_last_error_errcode =
6157				ext4_errno_to_code(sbi->s_last_error_code);
6158		/*
6159		 * Start the daily error reporting function if it hasn't been
6160		 * started already
6161		 */
6162		if (!es->s_error_count)
6163			mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6164		le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6165		sbi->s_add_error_count = 0;
6166	}
6167	spin_unlock(&sbi->s_error_lock);
6168
6169	ext4_superblock_csum_set(sb);
6170	unlock_buffer(sbh);
6171}
6172
6173static int ext4_commit_super(struct super_block *sb)
6174{
6175	struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6176
6177	if (!sbh)
6178		return -EINVAL;
6179	if (block_device_ejected(sb))
6180		return -ENODEV;
6181
6182	ext4_update_super(sb);
6183
6184	lock_buffer(sbh);
6185	/* Buffer got discarded which means block device got invalidated */
6186	if (!buffer_mapped(sbh)) {
6187		unlock_buffer(sbh);
6188		return -EIO;
6189	}
6190
6191	if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6192		/*
6193		 * Oh, dear.  A previous attempt to write the
6194		 * superblock failed.  This could happen because the
6195		 * USB device was yanked out.  Or it could happen to
6196		 * be a transient write error and maybe the block will
6197		 * be remapped.  Nothing we can do but to retry the
6198		 * write and hope for the best.
6199		 */
6200		ext4_msg(sb, KERN_ERR, "previous I/O error to "
6201		       "superblock detected");
6202		clear_buffer_write_io_error(sbh);
6203		set_buffer_uptodate(sbh);
6204	}
6205	get_bh(sbh);
6206	/* Clear potential dirty bit if it was journalled update */
6207	clear_buffer_dirty(sbh);
6208	sbh->b_end_io = end_buffer_write_sync;
6209	submit_bh(REQ_OP_WRITE | REQ_SYNC |
6210		  (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6211	wait_on_buffer(sbh);
6212	if (buffer_write_io_error(sbh)) {
6213		ext4_msg(sb, KERN_ERR, "I/O error while writing "
6214		       "superblock");
6215		clear_buffer_write_io_error(sbh);
6216		set_buffer_uptodate(sbh);
6217		return -EIO;
6218	}
6219	return 0;
6220}
6221
6222/*
6223 * Have we just finished recovery?  If so, and if we are mounting (or
6224 * remounting) the filesystem readonly, then we will end up with a
6225 * consistent fs on disk.  Record that fact.
6226 */
6227static int ext4_mark_recovery_complete(struct super_block *sb,
6228				       struct ext4_super_block *es)
6229{
6230	int err;
6231	journal_t *journal = EXT4_SB(sb)->s_journal;
6232
6233	if (!ext4_has_feature_journal(sb)) {
6234		if (journal != NULL) {
6235			ext4_error(sb, "Journal got removed while the fs was "
6236				   "mounted!");
6237			return -EFSCORRUPTED;
6238		}
6239		return 0;
6240	}
6241	jbd2_journal_lock_updates(journal);
6242	err = jbd2_journal_flush(journal, 0);
6243	if (err < 0)
6244		goto out;
6245
6246	if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6247	    ext4_has_feature_orphan_present(sb))) {
6248		if (!ext4_orphan_file_empty(sb)) {
6249			ext4_error(sb, "Orphan file not empty on read-only fs.");
6250			err = -EFSCORRUPTED;
6251			goto out;
6252		}
6253		ext4_clear_feature_journal_needs_recovery(sb);
6254		ext4_clear_feature_orphan_present(sb);
6255		ext4_commit_super(sb);
6256	}
6257out:
6258	jbd2_journal_unlock_updates(journal);
6259	return err;
6260}
6261
6262/*
6263 * If we are mounting (or read-write remounting) a filesystem whose journal
6264 * has recorded an error from a previous lifetime, move that error to the
6265 * main filesystem now.
6266 */
6267static int ext4_clear_journal_err(struct super_block *sb,
6268				   struct ext4_super_block *es)
6269{
6270	journal_t *journal;
6271	int j_errno;
6272	const char *errstr;
6273
6274	if (!ext4_has_feature_journal(sb)) {
6275		ext4_error(sb, "Journal got removed while the fs was mounted!");
6276		return -EFSCORRUPTED;
6277	}
6278
6279	journal = EXT4_SB(sb)->s_journal;
6280
6281	/*
6282	 * Now check for any error status which may have been recorded in the
6283	 * journal by a prior ext4_error() or ext4_abort()
6284	 */
6285
6286	j_errno = jbd2_journal_errno(journal);
6287	if (j_errno) {
6288		char nbuf[16];
6289
6290		errstr = ext4_decode_error(sb, j_errno, nbuf);
6291		ext4_warning(sb, "Filesystem error recorded "
6292			     "from previous mount: %s", errstr);
 
6293
6294		EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6295		es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6296		j_errno = ext4_commit_super(sb);
6297		if (j_errno)
6298			return j_errno;
6299		ext4_warning(sb, "Marked fs in need of filesystem check.");
6300
6301		jbd2_journal_clear_err(journal);
6302		jbd2_journal_update_sb_errno(journal);
6303	}
6304	return 0;
6305}
6306
6307/*
6308 * Force the running and committing transactions to commit,
6309 * and wait on the commit.
6310 */
6311int ext4_force_commit(struct super_block *sb)
6312{
6313	return ext4_journal_force_commit(EXT4_SB(sb)->s_journal);
 
 
 
 
 
 
6314}
6315
6316static int ext4_sync_fs(struct super_block *sb, int wait)
6317{
6318	int ret = 0;
6319	tid_t target;
6320	bool needs_barrier = false;
6321	struct ext4_sb_info *sbi = EXT4_SB(sb);
6322
6323	if (unlikely(ext4_forced_shutdown(sb)))
6324		return 0;
6325
6326	trace_ext4_sync_fs(sb, wait);
6327	flush_workqueue(sbi->rsv_conversion_wq);
6328	/*
6329	 * Writeback quota in non-journalled quota case - journalled quota has
6330	 * no dirty dquots
6331	 */
6332	dquot_writeback_dquots(sb, -1);
6333	/*
6334	 * Data writeback is possible w/o journal transaction, so barrier must
6335	 * being sent at the end of the function. But we can skip it if
6336	 * transaction_commit will do it for us.
6337	 */
6338	if (sbi->s_journal) {
6339		target = jbd2_get_latest_transaction(sbi->s_journal);
6340		if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6341		    !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6342			needs_barrier = true;
6343
6344		if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6345			if (wait)
6346				ret = jbd2_log_wait_commit(sbi->s_journal,
6347							   target);
6348		}
6349	} else if (wait && test_opt(sb, BARRIER))
6350		needs_barrier = true;
6351	if (needs_barrier) {
6352		int err;
6353		err = blkdev_issue_flush(sb->s_bdev);
6354		if (!ret)
6355			ret = err;
6356	}
6357
6358	return ret;
6359}
6360
6361/*
6362 * LVM calls this function before a (read-only) snapshot is created.  This
6363 * gives us a chance to flush the journal completely and mark the fs clean.
6364 *
6365 * Note that only this function cannot bring a filesystem to be in a clean
6366 * state independently. It relies on upper layer to stop all data & metadata
6367 * modifications.
6368 */
6369static int ext4_freeze(struct super_block *sb)
6370{
6371	int error = 0;
6372	journal_t *journal = EXT4_SB(sb)->s_journal;
 
 
 
 
 
6373
6374	if (journal) {
6375		/* Now we set up the journal barrier. */
6376		jbd2_journal_lock_updates(journal);
6377
6378		/*
6379		 * Don't clear the needs_recovery flag if we failed to
6380		 * flush the journal.
6381		 */
6382		error = jbd2_journal_flush(journal, 0);
6383		if (error < 0)
6384			goto out;
6385
6386		/* Journal blocked and flushed, clear needs_recovery flag. */
6387		ext4_clear_feature_journal_needs_recovery(sb);
6388		if (ext4_orphan_file_empty(sb))
6389			ext4_clear_feature_orphan_present(sb);
6390	}
6391
6392	error = ext4_commit_super(sb);
6393out:
6394	if (journal)
6395		/* we rely on upper layer to stop further updates */
6396		jbd2_journal_unlock_updates(journal);
6397	return error;
6398}
6399
6400/*
6401 * Called by LVM after the snapshot is done.  We need to reset the RECOVER
6402 * flag here, even though the filesystem is not technically dirty yet.
6403 */
6404static int ext4_unfreeze(struct super_block *sb)
6405{
6406	if (ext4_forced_shutdown(sb))
6407		return 0;
6408
6409	if (EXT4_SB(sb)->s_journal) {
6410		/* Reset the needs_recovery flag before the fs is unlocked. */
6411		ext4_set_feature_journal_needs_recovery(sb);
6412		if (ext4_has_feature_orphan_file(sb))
6413			ext4_set_feature_orphan_present(sb);
6414	}
6415
6416	ext4_commit_super(sb);
6417	return 0;
6418}
6419
6420/*
6421 * Structure to save mount options for ext4_remount's benefit
6422 */
6423struct ext4_mount_options {
6424	unsigned long s_mount_opt;
6425	unsigned long s_mount_opt2;
6426	kuid_t s_resuid;
6427	kgid_t s_resgid;
6428	unsigned long s_commit_interval;
6429	u32 s_min_batch_time, s_max_batch_time;
6430#ifdef CONFIG_QUOTA
6431	int s_jquota_fmt;
6432	char *s_qf_names[EXT4_MAXQUOTAS];
6433#endif
6434};
6435
6436static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6437{
6438	struct ext4_fs_context *ctx = fc->fs_private;
6439	struct ext4_super_block *es;
6440	struct ext4_sb_info *sbi = EXT4_SB(sb);
6441	unsigned long old_sb_flags;
6442	struct ext4_mount_options old_opts;
6443	ext4_group_t g;
6444	int err = 0;
6445	int alloc_ctx;
6446#ifdef CONFIG_QUOTA
6447	int enable_quota = 0;
6448	int i, j;
6449	char *to_free[EXT4_MAXQUOTAS];
6450#endif
6451
6452
6453	/* Store the original options */
6454	old_sb_flags = sb->s_flags;
6455	old_opts.s_mount_opt = sbi->s_mount_opt;
6456	old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6457	old_opts.s_resuid = sbi->s_resuid;
6458	old_opts.s_resgid = sbi->s_resgid;
6459	old_opts.s_commit_interval = sbi->s_commit_interval;
6460	old_opts.s_min_batch_time = sbi->s_min_batch_time;
6461	old_opts.s_max_batch_time = sbi->s_max_batch_time;
6462#ifdef CONFIG_QUOTA
6463	old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6464	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6465		if (sbi->s_qf_names[i]) {
6466			char *qf_name = get_qf_name(sb, sbi, i);
6467
6468			old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6469			if (!old_opts.s_qf_names[i]) {
6470				for (j = 0; j < i; j++)
6471					kfree(old_opts.s_qf_names[j]);
6472				return -ENOMEM;
6473			}
6474		} else
6475			old_opts.s_qf_names[i] = NULL;
6476#endif
6477	if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6478		if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6479			ctx->journal_ioprio =
6480				sbi->s_journal->j_task->io_context->ioprio;
6481		else
6482			ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6483
6484	}
6485
6486	/*
6487	 * Changing the DIOREAD_NOLOCK or DELALLOC mount options may cause
6488	 * two calls to ext4_should_dioread_nolock() to return inconsistent
6489	 * values, triggering WARN_ON in ext4_add_complete_io(). we grab
6490	 * here s_writepages_rwsem to avoid race between writepages ops and
6491	 * remount.
6492	 */
6493	alloc_ctx = ext4_writepages_down_write(sb);
6494	ext4_apply_options(fc, sb);
6495	ext4_writepages_up_write(sb, alloc_ctx);
6496
6497	if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6498	    test_opt(sb, JOURNAL_CHECKSUM)) {
6499		ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6500			 "during remount not supported; ignoring");
6501		sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6502	}
6503
6504	if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6505		if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6506			ext4_msg(sb, KERN_ERR, "can't mount with "
6507				 "both data=journal and delalloc");
6508			err = -EINVAL;
6509			goto restore_opts;
6510		}
6511		if (test_opt(sb, DIOREAD_NOLOCK)) {
6512			ext4_msg(sb, KERN_ERR, "can't mount with "
6513				 "both data=journal and dioread_nolock");
6514			err = -EINVAL;
6515			goto restore_opts;
6516		}
6517	} else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6518		if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6519			ext4_msg(sb, KERN_ERR, "can't mount with "
6520				"journal_async_commit in data=ordered mode");
6521			err = -EINVAL;
6522			goto restore_opts;
6523		}
6524	}
6525
6526	if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6527		ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6528		err = -EINVAL;
6529		goto restore_opts;
6530	}
6531
6532	if (test_opt2(sb, ABORT))
6533		ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6534
6535	sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6536		(test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6537
6538	es = sbi->s_es;
6539
6540	if (sbi->s_journal) {
6541		ext4_init_journal_params(sb, sbi->s_journal);
6542		set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6543	}
6544
6545	/* Flush outstanding errors before changing fs state */
6546	flush_work(&sbi->s_sb_upd_work);
6547
6548	if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6549		if (ext4_forced_shutdown(sb)) {
6550			err = -EROFS;
6551			goto restore_opts;
6552		}
6553
6554		if (fc->sb_flags & SB_RDONLY) {
6555			err = sync_filesystem(sb);
6556			if (err < 0)
6557				goto restore_opts;
6558			err = dquot_suspend(sb, -1);
6559			if (err < 0)
6560				goto restore_opts;
6561
6562			/*
6563			 * First of all, the unconditional stuff we have to do
6564			 * to disable replay of the journal when we next remount
6565			 */
6566			sb->s_flags |= SB_RDONLY;
6567
6568			/*
6569			 * OK, test if we are remounting a valid rw partition
6570			 * readonly, and if so set the rdonly flag and then
6571			 * mark the partition as valid again.
6572			 */
6573			if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6574			    (sbi->s_mount_state & EXT4_VALID_FS))
6575				es->s_state = cpu_to_le16(sbi->s_mount_state);
6576
6577			if (sbi->s_journal) {
6578				/*
6579				 * We let remount-ro finish even if marking fs
6580				 * as clean failed...
6581				 */
6582				ext4_mark_recovery_complete(sb, es);
6583			}
6584		} else {
6585			/* Make sure we can mount this feature set readwrite */
6586			if (ext4_has_feature_readonly(sb) ||
6587			    !ext4_feature_set_ok(sb, 0)) {
6588				err = -EROFS;
6589				goto restore_opts;
6590			}
6591			/*
6592			 * Make sure the group descriptor checksums
6593			 * are sane.  If they aren't, refuse to remount r/w.
6594			 */
6595			for (g = 0; g < sbi->s_groups_count; g++) {
6596				struct ext4_group_desc *gdp =
6597					ext4_get_group_desc(sb, g, NULL);
6598
6599				if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6600					ext4_msg(sb, KERN_ERR,
6601	       "ext4_remount: Checksum for group %u failed (%u!=%u)",
6602		g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6603					       le16_to_cpu(gdp->bg_checksum));
6604					err = -EFSBADCRC;
6605					goto restore_opts;
6606				}
6607			}
6608
6609			/*
6610			 * If we have an unprocessed orphan list hanging
6611			 * around from a previously readonly bdev mount,
6612			 * require a full umount/remount for now.
6613			 */
6614			if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6615				ext4_msg(sb, KERN_WARNING, "Couldn't "
6616				       "remount RDWR because of unprocessed "
6617				       "orphan inode list.  Please "
6618				       "umount/remount instead");
6619				err = -EINVAL;
6620				goto restore_opts;
6621			}
6622
6623			/*
6624			 * Mounting a RDONLY partition read-write, so reread
6625			 * and store the current valid flag.  (It may have
6626			 * been changed by e2fsck since we originally mounted
6627			 * the partition.)
6628			 */
6629			if (sbi->s_journal) {
6630				err = ext4_clear_journal_err(sb, es);
6631				if (err)
6632					goto restore_opts;
6633			}
6634			sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6635					      ~EXT4_FC_REPLAY);
6636
6637			err = ext4_setup_super(sb, es, 0);
6638			if (err)
6639				goto restore_opts;
6640
6641			sb->s_flags &= ~SB_RDONLY;
6642			if (ext4_has_feature_mmp(sb)) {
6643				err = ext4_multi_mount_protect(sb,
6644						le64_to_cpu(es->s_mmp_block));
6645				if (err)
6646					goto restore_opts;
6647			}
6648#ifdef CONFIG_QUOTA
6649			enable_quota = 1;
6650#endif
6651		}
6652	}
6653
6654	/*
 
 
 
 
 
 
 
 
 
 
 
 
6655	 * Handle creation of system zone data early because it can fail.
6656	 * Releasing of existing data is done when we are sure remount will
6657	 * succeed.
6658	 */
6659	if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6660		err = ext4_setup_system_zone(sb);
6661		if (err)
6662			goto restore_opts;
6663	}
6664
6665	if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6666		err = ext4_commit_super(sb);
6667		if (err)
6668			goto restore_opts;
6669	}
6670
6671#ifdef CONFIG_QUOTA
 
 
 
6672	if (enable_quota) {
6673		if (sb_any_quota_suspended(sb))
6674			dquot_resume(sb, -1);
6675		else if (ext4_has_feature_quota(sb)) {
6676			err = ext4_enable_quotas(sb);
6677			if (err)
6678				goto restore_opts;
6679		}
6680	}
6681	/* Release old quota file names */
6682	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6683		kfree(old_opts.s_qf_names[i]);
6684#endif
6685	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6686		ext4_release_system_zone(sb);
6687
6688	/*
6689	 * Reinitialize lazy itable initialization thread based on
6690	 * current settings
6691	 */
6692	if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6693		ext4_unregister_li_request(sb);
6694	else {
6695		ext4_group_t first_not_zeroed;
6696		first_not_zeroed = ext4_has_uninit_itable(sb);
6697		ext4_register_li_request(sb, first_not_zeroed);
6698	}
6699
6700	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6701		ext4_stop_mmpd(sbi);
6702
6703	return 0;
6704
6705restore_opts:
6706	/*
6707	 * If there was a failing r/w to ro transition, we may need to
6708	 * re-enable quota
6709	 */
6710	if (sb_rdonly(sb) && !(old_sb_flags & SB_RDONLY) &&
6711	    sb_any_quota_suspended(sb))
6712		dquot_resume(sb, -1);
6713
6714	alloc_ctx = ext4_writepages_down_write(sb);
6715	sb->s_flags = old_sb_flags;
6716	sbi->s_mount_opt = old_opts.s_mount_opt;
6717	sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6718	sbi->s_resuid = old_opts.s_resuid;
6719	sbi->s_resgid = old_opts.s_resgid;
6720	sbi->s_commit_interval = old_opts.s_commit_interval;
6721	sbi->s_min_batch_time = old_opts.s_min_batch_time;
6722	sbi->s_max_batch_time = old_opts.s_max_batch_time;
6723	ext4_writepages_up_write(sb, alloc_ctx);
6724
6725	if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6726		ext4_release_system_zone(sb);
6727#ifdef CONFIG_QUOTA
6728	sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6729	for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6730		to_free[i] = get_qf_name(sb, sbi, i);
6731		rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6732	}
6733	synchronize_rcu();
6734	for (i = 0; i < EXT4_MAXQUOTAS; i++)
6735		kfree(to_free[i]);
6736#endif
6737	if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6738		ext4_stop_mmpd(sbi);
6739	return err;
6740}
6741
6742static int ext4_reconfigure(struct fs_context *fc)
6743{
6744	struct super_block *sb = fc->root->d_sb;
6745	int ret;
6746
6747	fc->s_fs_info = EXT4_SB(sb);
6748
6749	ret = ext4_check_opt_consistency(fc, sb);
6750	if (ret < 0)
6751		return ret;
6752
6753	ret = __ext4_remount(fc, sb);
6754	if (ret < 0)
6755		return ret;
6756
6757	ext4_msg(sb, KERN_INFO, "re-mounted %pU %s. Quota mode: %s.",
6758		 &sb->s_uuid, sb_rdonly(sb) ? "ro" : "r/w",
6759		 ext4_quota_mode(sb));
6760
6761	return 0;
6762}
6763
6764#ifdef CONFIG_QUOTA
6765static int ext4_statfs_project(struct super_block *sb,
6766			       kprojid_t projid, struct kstatfs *buf)
6767{
6768	struct kqid qid;
6769	struct dquot *dquot;
6770	u64 limit;
6771	u64 curblock;
6772
6773	qid = make_kqid_projid(projid);
6774	dquot = dqget(sb, qid);
6775	if (IS_ERR(dquot))
6776		return PTR_ERR(dquot);
6777	spin_lock(&dquot->dq_dqb_lock);
6778
6779	limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6780			     dquot->dq_dqb.dqb_bhardlimit);
6781	limit >>= sb->s_blocksize_bits;
6782
6783	if (limit && buf->f_blocks > limit) {
6784		curblock = (dquot->dq_dqb.dqb_curspace +
6785			    dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6786		buf->f_blocks = limit;
6787		buf->f_bfree = buf->f_bavail =
6788			(buf->f_blocks > curblock) ?
6789			 (buf->f_blocks - curblock) : 0;
6790	}
6791
6792	limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6793			     dquot->dq_dqb.dqb_ihardlimit);
6794	if (limit && buf->f_files > limit) {
6795		buf->f_files = limit;
6796		buf->f_ffree =
6797			(buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6798			 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6799	}
6800
6801	spin_unlock(&dquot->dq_dqb_lock);
6802	dqput(dquot);
6803	return 0;
6804}
6805#endif
6806
6807static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6808{
6809	struct super_block *sb = dentry->d_sb;
6810	struct ext4_sb_info *sbi = EXT4_SB(sb);
6811	struct ext4_super_block *es = sbi->s_es;
6812	ext4_fsblk_t overhead = 0, resv_blocks;
6813	s64 bfree;
6814	resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6815
6816	if (!test_opt(sb, MINIX_DF))
6817		overhead = sbi->s_overhead;
6818
6819	buf->f_type = EXT4_SUPER_MAGIC;
6820	buf->f_bsize = sb->s_blocksize;
6821	buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6822	bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6823		percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6824	/* prevent underflow in case that few free space is available */
6825	buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6826	buf->f_bavail = buf->f_bfree -
6827			(ext4_r_blocks_count(es) + resv_blocks);
6828	if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6829		buf->f_bavail = 0;
6830	buf->f_files = le32_to_cpu(es->s_inodes_count);
6831	buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6832	buf->f_namelen = EXT4_NAME_LEN;
6833	buf->f_fsid = uuid_to_fsid(es->s_uuid);
6834
6835#ifdef CONFIG_QUOTA
6836	if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6837	    sb_has_quota_limits_enabled(sb, PRJQUOTA))
6838		ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6839#endif
6840	return 0;
6841}
6842
6843
6844#ifdef CONFIG_QUOTA
6845
6846/*
6847 * Helper functions so that transaction is started before we acquire dqio_sem
6848 * to keep correct lock ordering of transaction > dqio_sem
6849 */
6850static inline struct inode *dquot_to_inode(struct dquot *dquot)
6851{
6852	return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6853}
6854
6855static int ext4_write_dquot(struct dquot *dquot)
6856{
6857	int ret, err;
6858	handle_t *handle;
6859	struct inode *inode;
6860
6861	inode = dquot_to_inode(dquot);
6862	handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6863				    EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6864	if (IS_ERR(handle))
6865		return PTR_ERR(handle);
6866	ret = dquot_commit(dquot);
6867	err = ext4_journal_stop(handle);
6868	if (!ret)
6869		ret = err;
6870	return ret;
6871}
6872
6873static int ext4_acquire_dquot(struct dquot *dquot)
6874{
6875	int ret, err;
6876	handle_t *handle;
6877
6878	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6879				    EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6880	if (IS_ERR(handle))
6881		return PTR_ERR(handle);
6882	ret = dquot_acquire(dquot);
6883	err = ext4_journal_stop(handle);
6884	if (!ret)
6885		ret = err;
6886	return ret;
6887}
6888
6889static int ext4_release_dquot(struct dquot *dquot)
6890{
6891	int ret, err;
6892	handle_t *handle;
6893
6894	handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6895				    EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6896	if (IS_ERR(handle)) {
6897		/* Release dquot anyway to avoid endless cycle in dqput() */
6898		dquot_release(dquot);
6899		return PTR_ERR(handle);
6900	}
6901	ret = dquot_release(dquot);
6902	err = ext4_journal_stop(handle);
6903	if (!ret)
6904		ret = err;
6905	return ret;
6906}
6907
6908static int ext4_mark_dquot_dirty(struct dquot *dquot)
6909{
6910	struct super_block *sb = dquot->dq_sb;
6911
6912	if (ext4_is_quota_journalled(sb)) {
6913		dquot_mark_dquot_dirty(dquot);
6914		return ext4_write_dquot(dquot);
6915	} else {
6916		return dquot_mark_dquot_dirty(dquot);
6917	}
6918}
6919
6920static int ext4_write_info(struct super_block *sb, int type)
6921{
6922	int ret, err;
6923	handle_t *handle;
6924
6925	/* Data block + inode block */
6926	handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6927	if (IS_ERR(handle))
6928		return PTR_ERR(handle);
6929	ret = dquot_commit_info(sb, type);
6930	err = ext4_journal_stop(handle);
6931	if (!ret)
6932		ret = err;
6933	return ret;
6934}
6935
6936static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6937{
6938	struct ext4_inode_info *ei = EXT4_I(inode);
6939
6940	/* The first argument of lockdep_set_subclass has to be
6941	 * *exactly* the same as the argument to init_rwsem() --- in
6942	 * this case, in init_once() --- or lockdep gets unhappy
6943	 * because the name of the lock is set using the
6944	 * stringification of the argument to init_rwsem().
6945	 */
6946	(void) ei;	/* shut up clang warning if !CONFIG_LOCKDEP */
6947	lockdep_set_subclass(&ei->i_data_sem, subclass);
6948}
6949
6950/*
6951 * Standard function to be called on quota_on
6952 */
6953static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6954			 const struct path *path)
6955{
6956	int err;
6957
6958	if (!test_opt(sb, QUOTA))
6959		return -EINVAL;
6960
6961	/* Quotafile not on the same filesystem? */
6962	if (path->dentry->d_sb != sb)
6963		return -EXDEV;
6964
6965	/* Quota already enabled for this file? */
6966	if (IS_NOQUOTA(d_inode(path->dentry)))
6967		return -EBUSY;
6968
6969	/* Journaling quota? */
6970	if (EXT4_SB(sb)->s_qf_names[type]) {
6971		/* Quotafile not in fs root? */
6972		if (path->dentry->d_parent != sb->s_root)
6973			ext4_msg(sb, KERN_WARNING,
6974				"Quota file not on filesystem root. "
6975				"Journaled quota will not work");
6976		sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6977	} else {
6978		/*
6979		 * Clear the flag just in case mount options changed since
6980		 * last time.
6981		 */
6982		sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6983	}
6984
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6985	lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6986	err = dquot_quota_on(sb, type, format_id, path);
6987	if (!err) {
6988		struct inode *inode = d_inode(path->dentry);
6989		handle_t *handle;
6990
6991		/*
6992		 * Set inode flags to prevent userspace from messing with quota
6993		 * files. If this fails, we return success anyway since quotas
6994		 * are already enabled and this is not a hard failure.
6995		 */
6996		inode_lock(inode);
6997		handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6998		if (IS_ERR(handle))
6999			goto unlock_inode;
7000		EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
7001		inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
7002				S_NOATIME | S_IMMUTABLE);
7003		err = ext4_mark_inode_dirty(handle, inode);
7004		ext4_journal_stop(handle);
7005	unlock_inode:
7006		inode_unlock(inode);
7007		if (err)
7008			dquot_quota_off(sb, type);
7009	}
7010	if (err)
7011		lockdep_set_quota_inode(path->dentry->d_inode,
7012					     I_DATA_SEM_NORMAL);
7013	return err;
7014}
7015
7016static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
7017{
7018	switch (type) {
7019	case USRQUOTA:
7020		return qf_inum == EXT4_USR_QUOTA_INO;
7021	case GRPQUOTA:
7022		return qf_inum == EXT4_GRP_QUOTA_INO;
7023	case PRJQUOTA:
7024		return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
7025	default:
7026		BUG();
7027	}
7028}
7029
7030static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
7031			     unsigned int flags)
7032{
7033	int err;
7034	struct inode *qf_inode;
7035	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7036		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7037		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7038		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7039	};
7040
7041	BUG_ON(!ext4_has_feature_quota(sb));
7042
7043	if (!qf_inums[type])
7044		return -EPERM;
7045
7046	if (!ext4_check_quota_inum(type, qf_inums[type])) {
7047		ext4_error(sb, "Bad quota inum: %lu, type: %d",
7048				qf_inums[type], type);
7049		return -EUCLEAN;
7050	}
7051
7052	qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
7053	if (IS_ERR(qf_inode)) {
7054		ext4_error(sb, "Bad quota inode: %lu, type: %d",
7055				qf_inums[type], type);
7056		return PTR_ERR(qf_inode);
7057	}
7058
7059	/* Don't account quota for quota files to avoid recursion */
7060	qf_inode->i_flags |= S_NOQUOTA;
7061	lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
7062	err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
7063	if (err)
7064		lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
7065	iput(qf_inode);
7066
7067	return err;
7068}
7069
7070/* Enable usage tracking for all quota types. */
7071int ext4_enable_quotas(struct super_block *sb)
7072{
7073	int type, err = 0;
7074	unsigned long qf_inums[EXT4_MAXQUOTAS] = {
7075		le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
7076		le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
7077		le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
7078	};
7079	bool quota_mopt[EXT4_MAXQUOTAS] = {
7080		test_opt(sb, USRQUOTA),
7081		test_opt(sb, GRPQUOTA),
7082		test_opt(sb, PRJQUOTA),
7083	};
7084
7085	sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
7086	for (type = 0; type < EXT4_MAXQUOTAS; type++) {
7087		if (qf_inums[type]) {
7088			err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
7089				DQUOT_USAGE_ENABLED |
7090				(quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
7091			if (err) {
7092				ext4_warning(sb,
7093					"Failed to enable quota tracking "
7094					"(type=%d, err=%d, ino=%lu). "
7095					"Please run e2fsck to fix.", type,
7096					err, qf_inums[type]);
 
 
 
 
 
 
 
 
 
 
 
 
 
7097
7098				ext4_quotas_off(sb, type);
7099				return err;
7100			}
7101		}
7102	}
7103	return 0;
7104}
7105
7106static int ext4_quota_off(struct super_block *sb, int type)
7107{
7108	struct inode *inode = sb_dqopt(sb)->files[type];
7109	handle_t *handle;
7110	int err;
7111
7112	/* Force all delayed allocation blocks to be allocated.
7113	 * Caller already holds s_umount sem */
7114	if (test_opt(sb, DELALLOC))
7115		sync_filesystem(sb);
7116
7117	if (!inode || !igrab(inode))
7118		goto out;
7119
7120	err = dquot_quota_off(sb, type);
7121	if (err || ext4_has_feature_quota(sb))
7122		goto out_put;
7123	/*
7124	 * When the filesystem was remounted read-only first, we cannot cleanup
7125	 * inode flags here. Bad luck but people should be using QUOTA feature
7126	 * these days anyway.
7127	 */
7128	if (sb_rdonly(sb))
7129		goto out_put;
7130
7131	inode_lock(inode);
7132	/*
7133	 * Update modification times of quota files when userspace can
7134	 * start looking at them. If we fail, we return success anyway since
7135	 * this is not a hard failure and quotas are already disabled.
7136	 */
7137	handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7138	if (IS_ERR(handle)) {
7139		err = PTR_ERR(handle);
7140		goto out_unlock;
7141	}
7142	EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7143	inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7144	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
7145	err = ext4_mark_inode_dirty(handle, inode);
7146	ext4_journal_stop(handle);
7147out_unlock:
7148	inode_unlock(inode);
7149out_put:
7150	lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7151	iput(inode);
7152	return err;
7153out:
7154	return dquot_quota_off(sb, type);
7155}
7156
7157/* Read data from quotafile - avoid pagecache and such because we cannot afford
7158 * acquiring the locks... As quota files are never truncated and quota code
7159 * itself serializes the operations (and no one else should touch the files)
7160 * we don't have to be afraid of races */
7161static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7162			       size_t len, loff_t off)
7163{
7164	struct inode *inode = sb_dqopt(sb)->files[type];
7165	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7166	int offset = off & (sb->s_blocksize - 1);
7167	int tocopy;
7168	size_t toread;
7169	struct buffer_head *bh;
7170	loff_t i_size = i_size_read(inode);
7171
7172	if (off > i_size)
7173		return 0;
7174	if (off+len > i_size)
7175		len = i_size-off;
7176	toread = len;
7177	while (toread > 0) {
7178		tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7179		bh = ext4_bread(NULL, inode, blk, 0);
7180		if (IS_ERR(bh))
7181			return PTR_ERR(bh);
7182		if (!bh)	/* A hole? */
7183			memset(data, 0, tocopy);
7184		else
7185			memcpy(data, bh->b_data+offset, tocopy);
7186		brelse(bh);
7187		offset = 0;
7188		toread -= tocopy;
7189		data += tocopy;
7190		blk++;
7191	}
7192	return len;
7193}
7194
7195/* Write to quotafile (we know the transaction is already started and has
7196 * enough credits) */
7197static ssize_t ext4_quota_write(struct super_block *sb, int type,
7198				const char *data, size_t len, loff_t off)
7199{
7200	struct inode *inode = sb_dqopt(sb)->files[type];
7201	ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7202	int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7203	int retries = 0;
7204	struct buffer_head *bh;
7205	handle_t *handle = journal_current_handle();
7206
7207	if (!handle) {
7208		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7209			" cancelled because transaction is not started",
7210			(unsigned long long)off, (unsigned long long)len);
7211		return -EIO;
7212	}
7213	/*
7214	 * Since we account only one data block in transaction credits,
7215	 * then it is impossible to cross a block boundary.
7216	 */
7217	if (sb->s_blocksize - offset < len) {
7218		ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7219			" cancelled because not block aligned",
7220			(unsigned long long)off, (unsigned long long)len);
7221		return -EIO;
7222	}
7223
7224	do {
7225		bh = ext4_bread(handle, inode, blk,
7226				EXT4_GET_BLOCKS_CREATE |
7227				EXT4_GET_BLOCKS_METADATA_NOFAIL);
7228	} while (PTR_ERR(bh) == -ENOSPC &&
7229		 ext4_should_retry_alloc(inode->i_sb, &retries));
7230	if (IS_ERR(bh))
7231		return PTR_ERR(bh);
7232	if (!bh)
7233		goto out;
7234	BUFFER_TRACE(bh, "get write access");
7235	err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7236	if (err) {
7237		brelse(bh);
7238		return err;
7239	}
7240	lock_buffer(bh);
7241	memcpy(bh->b_data+offset, data, len);
7242	flush_dcache_page(bh->b_page);
7243	unlock_buffer(bh);
7244	err = ext4_handle_dirty_metadata(handle, NULL, bh);
7245	brelse(bh);
7246out:
7247	if (inode->i_size < off + len) {
7248		i_size_write(inode, off + len);
7249		EXT4_I(inode)->i_disksize = inode->i_size;
7250		err2 = ext4_mark_inode_dirty(handle, inode);
7251		if (unlikely(err2 && !err))
7252			err = err2;
7253	}
7254	return err ? err : len;
7255}
7256#endif
7257
7258#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7259static inline void register_as_ext2(void)
7260{
7261	int err = register_filesystem(&ext2_fs_type);
7262	if (err)
7263		printk(KERN_WARNING
7264		       "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7265}
7266
7267static inline void unregister_as_ext2(void)
7268{
7269	unregister_filesystem(&ext2_fs_type);
7270}
7271
7272static inline int ext2_feature_set_ok(struct super_block *sb)
7273{
7274	if (ext4_has_unknown_ext2_incompat_features(sb))
7275		return 0;
7276	if (sb_rdonly(sb))
7277		return 1;
7278	if (ext4_has_unknown_ext2_ro_compat_features(sb))
7279		return 0;
7280	return 1;
7281}
7282#else
7283static inline void register_as_ext2(void) { }
7284static inline void unregister_as_ext2(void) { }
7285static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7286#endif
7287
7288static inline void register_as_ext3(void)
7289{
7290	int err = register_filesystem(&ext3_fs_type);
7291	if (err)
7292		printk(KERN_WARNING
7293		       "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7294}
7295
7296static inline void unregister_as_ext3(void)
7297{
7298	unregister_filesystem(&ext3_fs_type);
7299}
7300
7301static inline int ext3_feature_set_ok(struct super_block *sb)
7302{
7303	if (ext4_has_unknown_ext3_incompat_features(sb))
7304		return 0;
7305	if (!ext4_has_feature_journal(sb))
7306		return 0;
7307	if (sb_rdonly(sb))
7308		return 1;
7309	if (ext4_has_unknown_ext3_ro_compat_features(sb))
7310		return 0;
7311	return 1;
7312}
7313
7314static void ext4_kill_sb(struct super_block *sb)
7315{
7316	struct ext4_sb_info *sbi = EXT4_SB(sb);
7317	struct bdev_handle *handle = sbi ? sbi->s_journal_bdev_handle : NULL;
7318
7319	kill_block_super(sb);
7320
7321	if (handle)
7322		bdev_release(handle);
7323}
7324
7325static struct file_system_type ext4_fs_type = {
7326	.owner			= THIS_MODULE,
7327	.name			= "ext4",
7328	.init_fs_context	= ext4_init_fs_context,
7329	.parameters		= ext4_param_specs,
7330	.kill_sb		= ext4_kill_sb,
7331	.fs_flags		= FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7332};
7333MODULE_ALIAS_FS("ext4");
7334
7335/* Shared across all ext4 file systems */
7336wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7337
7338static int __init ext4_init_fs(void)
7339{
7340	int i, err;
7341
7342	ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7343	ext4_li_info = NULL;
7344
7345	/* Build-time check for flags consistency */
7346	ext4_check_flag_values();
7347
7348	for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7349		init_waitqueue_head(&ext4__ioend_wq[i]);
7350
7351	err = ext4_init_es();
7352	if (err)
7353		return err;
7354
7355	err = ext4_init_pending();
7356	if (err)
7357		goto out7;
7358
7359	err = ext4_init_post_read_processing();
7360	if (err)
7361		goto out6;
7362
7363	err = ext4_init_pageio();
7364	if (err)
7365		goto out5;
7366
7367	err = ext4_init_system_zone();
7368	if (err)
7369		goto out4;
7370
7371	err = ext4_init_sysfs();
7372	if (err)
7373		goto out3;
7374
7375	err = ext4_init_mballoc();
7376	if (err)
7377		goto out2;
7378	err = init_inodecache();
7379	if (err)
7380		goto out1;
7381
7382	err = ext4_fc_init_dentry_cache();
7383	if (err)
7384		goto out05;
7385
7386	register_as_ext3();
7387	register_as_ext2();
7388	err = register_filesystem(&ext4_fs_type);
7389	if (err)
7390		goto out;
7391
7392	return 0;
7393out:
7394	unregister_as_ext2();
7395	unregister_as_ext3();
7396	ext4_fc_destroy_dentry_cache();
7397out05:
7398	destroy_inodecache();
7399out1:
7400	ext4_exit_mballoc();
7401out2:
7402	ext4_exit_sysfs();
7403out3:
7404	ext4_exit_system_zone();
7405out4:
7406	ext4_exit_pageio();
7407out5:
7408	ext4_exit_post_read_processing();
7409out6:
7410	ext4_exit_pending();
7411out7:
7412	ext4_exit_es();
7413
7414	return err;
7415}
7416
7417static void __exit ext4_exit_fs(void)
7418{
7419	ext4_destroy_lazyinit_thread();
7420	unregister_as_ext2();
7421	unregister_as_ext3();
7422	unregister_filesystem(&ext4_fs_type);
7423	ext4_fc_destroy_dentry_cache();
7424	destroy_inodecache();
7425	ext4_exit_mballoc();
7426	ext4_exit_sysfs();
7427	ext4_exit_system_zone();
7428	ext4_exit_pageio();
7429	ext4_exit_post_read_processing();
7430	ext4_exit_es();
7431	ext4_exit_pending();
7432}
7433
7434MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7435MODULE_DESCRIPTION("Fourth Extended Filesystem");
7436MODULE_LICENSE("GPL");
7437MODULE_SOFTDEP("pre: crc32c");
7438module_init(ext4_init_fs)
7439module_exit(ext4_exit_fs)