Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/uaccess.h>
43#include <linux/iversion.h>
44#include <linux/unicode.h>
45#include <linux/part_stat.h>
46#include <linux/kthread.h>
47#include <linux/freezer.h>
48#include <linux/fsnotify.h>
49#include <linux/fs_context.h>
50#include <linux/fs_parser.h>
51
52#include "ext4.h"
53#include "ext4_extents.h" /* Needed for trace points definition */
54#include "ext4_jbd2.h"
55#include "xattr.h"
56#include "acl.h"
57#include "mballoc.h"
58#include "fsmap.h"
59
60#define CREATE_TRACE_POINTS
61#include <trace/events/ext4.h>
62
63static struct ext4_lazy_init *ext4_li_info;
64static DEFINE_MUTEX(ext4_li_mtx);
65static struct ratelimit_state ext4_mount_msg_ratelimit;
66
67static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
68 unsigned long journal_devnum);
69static int ext4_show_options(struct seq_file *seq, struct dentry *root);
70static void ext4_update_super(struct super_block *sb);
71static int ext4_commit_super(struct super_block *sb);
72static int ext4_mark_recovery_complete(struct super_block *sb,
73 struct ext4_super_block *es);
74static int ext4_clear_journal_err(struct super_block *sb,
75 struct ext4_super_block *es);
76static int ext4_sync_fs(struct super_block *sb, int wait);
77static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
78static int ext4_unfreeze(struct super_block *sb);
79static int ext4_freeze(struct super_block *sb);
80static inline int ext2_feature_set_ok(struct super_block *sb);
81static inline int ext3_feature_set_ok(struct super_block *sb);
82static void ext4_destroy_lazyinit_thread(void);
83static void ext4_unregister_li_request(struct super_block *sb);
84static void ext4_clear_request_list(void);
85static struct inode *ext4_get_journal_inode(struct super_block *sb,
86 unsigned int journal_inum);
87static int ext4_validate_options(struct fs_context *fc);
88static int ext4_check_opt_consistency(struct fs_context *fc,
89 struct super_block *sb);
90static void ext4_apply_options(struct fs_context *fc, struct super_block *sb);
91static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param);
92static int ext4_get_tree(struct fs_context *fc);
93static int ext4_reconfigure(struct fs_context *fc);
94static void ext4_fc_free(struct fs_context *fc);
95static int ext4_init_fs_context(struct fs_context *fc);
96static const struct fs_parameter_spec ext4_param_specs[];
97
98/*
99 * Lock ordering
100 *
101 * page fault path:
102 * mmap_lock -> sb_start_pagefault -> invalidate_lock (r) -> transaction start
103 * -> page lock -> i_data_sem (rw)
104 *
105 * buffered write path:
106 * sb_start_write -> i_mutex -> mmap_lock
107 * sb_start_write -> i_mutex -> transaction start -> page lock ->
108 * i_data_sem (rw)
109 *
110 * truncate:
111 * sb_start_write -> i_mutex -> invalidate_lock (w) -> i_mmap_rwsem (w) ->
112 * page lock
113 * sb_start_write -> i_mutex -> invalidate_lock (w) -> transaction start ->
114 * i_data_sem (rw)
115 *
116 * direct IO:
117 * sb_start_write -> i_mutex -> mmap_lock
118 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
119 *
120 * writepages:
121 * transaction start -> page lock(s) -> i_data_sem (rw)
122 */
123
124static const struct fs_context_operations ext4_context_ops = {
125 .parse_param = ext4_parse_param,
126 .get_tree = ext4_get_tree,
127 .reconfigure = ext4_reconfigure,
128 .free = ext4_fc_free,
129};
130
131
132#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
133static struct file_system_type ext2_fs_type = {
134 .owner = THIS_MODULE,
135 .name = "ext2",
136 .init_fs_context = ext4_init_fs_context,
137 .parameters = ext4_param_specs,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140};
141MODULE_ALIAS_FS("ext2");
142MODULE_ALIAS("ext2");
143#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
144#else
145#define IS_EXT2_SB(sb) (0)
146#endif
147
148
149static struct file_system_type ext3_fs_type = {
150 .owner = THIS_MODULE,
151 .name = "ext3",
152 .init_fs_context = ext4_init_fs_context,
153 .parameters = ext4_param_specs,
154 .kill_sb = kill_block_super,
155 .fs_flags = FS_REQUIRES_DEV,
156};
157MODULE_ALIAS_FS("ext3");
158MODULE_ALIAS("ext3");
159#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
160
161
162static inline void __ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags,
163 bh_end_io_t *end_io)
164{
165 /*
166 * buffer's verified bit is no longer valid after reading from
167 * disk again due to write out error, clear it to make sure we
168 * recheck the buffer contents.
169 */
170 clear_buffer_verified(bh);
171
172 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
173 get_bh(bh);
174 submit_bh(REQ_OP_READ | op_flags, bh);
175}
176
177void ext4_read_bh_nowait(struct buffer_head *bh, blk_opf_t op_flags,
178 bh_end_io_t *end_io)
179{
180 BUG_ON(!buffer_locked(bh));
181
182 if (ext4_buffer_uptodate(bh)) {
183 unlock_buffer(bh);
184 return;
185 }
186 __ext4_read_bh(bh, op_flags, end_io);
187}
188
189int ext4_read_bh(struct buffer_head *bh, blk_opf_t op_flags, bh_end_io_t *end_io)
190{
191 BUG_ON(!buffer_locked(bh));
192
193 if (ext4_buffer_uptodate(bh)) {
194 unlock_buffer(bh);
195 return 0;
196 }
197
198 __ext4_read_bh(bh, op_flags, end_io);
199
200 wait_on_buffer(bh);
201 if (buffer_uptodate(bh))
202 return 0;
203 return -EIO;
204}
205
206int ext4_read_bh_lock(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
207{
208 lock_buffer(bh);
209 if (!wait) {
210 ext4_read_bh_nowait(bh, op_flags, NULL);
211 return 0;
212 }
213 return ext4_read_bh(bh, op_flags, NULL);
214}
215
216/*
217 * This works like __bread_gfp() except it uses ERR_PTR for error
218 * returns. Currently with sb_bread it's impossible to distinguish
219 * between ENOMEM and EIO situations (since both result in a NULL
220 * return.
221 */
222static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
223 sector_t block,
224 blk_opf_t op_flags, gfp_t gfp)
225{
226 struct buffer_head *bh;
227 int ret;
228
229 bh = sb_getblk_gfp(sb, block, gfp);
230 if (bh == NULL)
231 return ERR_PTR(-ENOMEM);
232 if (ext4_buffer_uptodate(bh))
233 return bh;
234
235 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
236 if (ret) {
237 put_bh(bh);
238 return ERR_PTR(ret);
239 }
240 return bh;
241}
242
243struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
244 blk_opf_t op_flags)
245{
246 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
247}
248
249struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
250 sector_t block)
251{
252 return __ext4_sb_bread_gfp(sb, block, 0, 0);
253}
254
255void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
256{
257 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
258
259 if (likely(bh)) {
260 if (trylock_buffer(bh))
261 ext4_read_bh_nowait(bh, REQ_RAHEAD, NULL);
262 brelse(bh);
263 }
264}
265
266static int ext4_verify_csum_type(struct super_block *sb,
267 struct ext4_super_block *es)
268{
269 if (!ext4_has_feature_metadata_csum(sb))
270 return 1;
271
272 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
273}
274
275__le32 ext4_superblock_csum(struct super_block *sb,
276 struct ext4_super_block *es)
277{
278 struct ext4_sb_info *sbi = EXT4_SB(sb);
279 int offset = offsetof(struct ext4_super_block, s_checksum);
280 __u32 csum;
281
282 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
283
284 return cpu_to_le32(csum);
285}
286
287static int ext4_superblock_csum_verify(struct super_block *sb,
288 struct ext4_super_block *es)
289{
290 if (!ext4_has_metadata_csum(sb))
291 return 1;
292
293 return es->s_checksum == ext4_superblock_csum(sb, es);
294}
295
296void ext4_superblock_csum_set(struct super_block *sb)
297{
298 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
299
300 if (!ext4_has_metadata_csum(sb))
301 return;
302
303 es->s_checksum = ext4_superblock_csum(sb, es);
304}
305
306ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
307 struct ext4_group_desc *bg)
308{
309 return le32_to_cpu(bg->bg_block_bitmap_lo) |
310 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
311 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
312}
313
314ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
315 struct ext4_group_desc *bg)
316{
317 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
318 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
319 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
320}
321
322ext4_fsblk_t ext4_inode_table(struct super_block *sb,
323 struct ext4_group_desc *bg)
324{
325 return le32_to_cpu(bg->bg_inode_table_lo) |
326 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
327 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
328}
329
330__u32 ext4_free_group_clusters(struct super_block *sb,
331 struct ext4_group_desc *bg)
332{
333 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
334 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
335 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
336}
337
338__u32 ext4_free_inodes_count(struct super_block *sb,
339 struct ext4_group_desc *bg)
340{
341 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
342 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
343 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
344}
345
346__u32 ext4_used_dirs_count(struct super_block *sb,
347 struct ext4_group_desc *bg)
348{
349 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
350 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
351 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
352}
353
354__u32 ext4_itable_unused_count(struct super_block *sb,
355 struct ext4_group_desc *bg)
356{
357 return le16_to_cpu(bg->bg_itable_unused_lo) |
358 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
359 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
360}
361
362void ext4_block_bitmap_set(struct super_block *sb,
363 struct ext4_group_desc *bg, ext4_fsblk_t blk)
364{
365 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
366 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
367 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
368}
369
370void ext4_inode_bitmap_set(struct super_block *sb,
371 struct ext4_group_desc *bg, ext4_fsblk_t blk)
372{
373 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
374 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
375 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
376}
377
378void ext4_inode_table_set(struct super_block *sb,
379 struct ext4_group_desc *bg, ext4_fsblk_t blk)
380{
381 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
382 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
383 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
384}
385
386void ext4_free_group_clusters_set(struct super_block *sb,
387 struct ext4_group_desc *bg, __u32 count)
388{
389 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
390 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
391 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
392}
393
394void ext4_free_inodes_set(struct super_block *sb,
395 struct ext4_group_desc *bg, __u32 count)
396{
397 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
398 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
399 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
400}
401
402void ext4_used_dirs_set(struct super_block *sb,
403 struct ext4_group_desc *bg, __u32 count)
404{
405 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
406 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
407 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
408}
409
410void ext4_itable_unused_set(struct super_block *sb,
411 struct ext4_group_desc *bg, __u32 count)
412{
413 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
414 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
415 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
416}
417
418static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
419{
420 now = clamp_val(now, 0, (1ull << 40) - 1);
421
422 *lo = cpu_to_le32(lower_32_bits(now));
423 *hi = upper_32_bits(now);
424}
425
426static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
427{
428 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
429}
430#define ext4_update_tstamp(es, tstamp) \
431 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
432 ktime_get_real_seconds())
433#define ext4_get_tstamp(es, tstamp) \
434 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
435
436/*
437 * The del_gendisk() function uninitializes the disk-specific data
438 * structures, including the bdi structure, without telling anyone
439 * else. Once this happens, any attempt to call mark_buffer_dirty()
440 * (for example, by ext4_commit_super), will cause a kernel OOPS.
441 * This is a kludge to prevent these oops until we can put in a proper
442 * hook in del_gendisk() to inform the VFS and file system layers.
443 */
444static int block_device_ejected(struct super_block *sb)
445{
446 struct inode *bd_inode = sb->s_bdev->bd_inode;
447 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
448
449 return bdi->dev == NULL;
450}
451
452static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
453{
454 struct super_block *sb = journal->j_private;
455 struct ext4_sb_info *sbi = EXT4_SB(sb);
456 int error = is_journal_aborted(journal);
457 struct ext4_journal_cb_entry *jce;
458
459 BUG_ON(txn->t_state == T_FINISHED);
460
461 ext4_process_freed_data(sb, txn->t_tid);
462
463 spin_lock(&sbi->s_md_lock);
464 while (!list_empty(&txn->t_private_list)) {
465 jce = list_entry(txn->t_private_list.next,
466 struct ext4_journal_cb_entry, jce_list);
467 list_del_init(&jce->jce_list);
468 spin_unlock(&sbi->s_md_lock);
469 jce->jce_func(sb, jce, error);
470 spin_lock(&sbi->s_md_lock);
471 }
472 spin_unlock(&sbi->s_md_lock);
473}
474
475/*
476 * This writepage callback for write_cache_pages()
477 * takes care of a few cases after page cleaning.
478 *
479 * write_cache_pages() already checks for dirty pages
480 * and calls clear_page_dirty_for_io(), which we want,
481 * to write protect the pages.
482 *
483 * However, we may have to redirty a page (see below.)
484 */
485static int ext4_journalled_writepage_callback(struct page *page,
486 struct writeback_control *wbc,
487 void *data)
488{
489 transaction_t *transaction = (transaction_t *) data;
490 struct buffer_head *bh, *head;
491 struct journal_head *jh;
492
493 bh = head = page_buffers(page);
494 do {
495 /*
496 * We have to redirty a page in these cases:
497 * 1) If buffer is dirty, it means the page was dirty because it
498 * contains a buffer that needs checkpointing. So the dirty bit
499 * needs to be preserved so that checkpointing writes the buffer
500 * properly.
501 * 2) If buffer is not part of the committing transaction
502 * (we may have just accidentally come across this buffer because
503 * inode range tracking is not exact) or if the currently running
504 * transaction already contains this buffer as well, dirty bit
505 * needs to be preserved so that the buffer gets writeprotected
506 * properly on running transaction's commit.
507 */
508 jh = bh2jh(bh);
509 if (buffer_dirty(bh) ||
510 (jh && (jh->b_transaction != transaction ||
511 jh->b_next_transaction))) {
512 redirty_page_for_writepage(wbc, page);
513 goto out;
514 }
515 } while ((bh = bh->b_this_page) != head);
516
517out:
518 return AOP_WRITEPAGE_ACTIVATE;
519}
520
521static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
522{
523 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
524 struct writeback_control wbc = {
525 .sync_mode = WB_SYNC_ALL,
526 .nr_to_write = LONG_MAX,
527 .range_start = jinode->i_dirty_start,
528 .range_end = jinode->i_dirty_end,
529 };
530
531 return write_cache_pages(mapping, &wbc,
532 ext4_journalled_writepage_callback,
533 jinode->i_transaction);
534}
535
536static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
537{
538 int ret;
539
540 if (ext4_should_journal_data(jinode->i_vfs_inode))
541 ret = ext4_journalled_submit_inode_data_buffers(jinode);
542 else
543 ret = ext4_normal_submit_inode_data_buffers(jinode);
544 return ret;
545}
546
547static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
548{
549 int ret = 0;
550
551 if (!ext4_should_journal_data(jinode->i_vfs_inode))
552 ret = jbd2_journal_finish_inode_data_buffers(jinode);
553
554 return ret;
555}
556
557static bool system_going_down(void)
558{
559 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
560 || system_state == SYSTEM_RESTART;
561}
562
563struct ext4_err_translation {
564 int code;
565 int errno;
566};
567
568#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
569
570static struct ext4_err_translation err_translation[] = {
571 EXT4_ERR_TRANSLATE(EIO),
572 EXT4_ERR_TRANSLATE(ENOMEM),
573 EXT4_ERR_TRANSLATE(EFSBADCRC),
574 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
575 EXT4_ERR_TRANSLATE(ENOSPC),
576 EXT4_ERR_TRANSLATE(ENOKEY),
577 EXT4_ERR_TRANSLATE(EROFS),
578 EXT4_ERR_TRANSLATE(EFBIG),
579 EXT4_ERR_TRANSLATE(EEXIST),
580 EXT4_ERR_TRANSLATE(ERANGE),
581 EXT4_ERR_TRANSLATE(EOVERFLOW),
582 EXT4_ERR_TRANSLATE(EBUSY),
583 EXT4_ERR_TRANSLATE(ENOTDIR),
584 EXT4_ERR_TRANSLATE(ENOTEMPTY),
585 EXT4_ERR_TRANSLATE(ESHUTDOWN),
586 EXT4_ERR_TRANSLATE(EFAULT),
587};
588
589static int ext4_errno_to_code(int errno)
590{
591 int i;
592
593 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
594 if (err_translation[i].errno == errno)
595 return err_translation[i].code;
596 return EXT4_ERR_UNKNOWN;
597}
598
599static void save_error_info(struct super_block *sb, int error,
600 __u32 ino, __u64 block,
601 const char *func, unsigned int line)
602{
603 struct ext4_sb_info *sbi = EXT4_SB(sb);
604
605 /* We default to EFSCORRUPTED error... */
606 if (error == 0)
607 error = EFSCORRUPTED;
608
609 spin_lock(&sbi->s_error_lock);
610 sbi->s_add_error_count++;
611 sbi->s_last_error_code = error;
612 sbi->s_last_error_line = line;
613 sbi->s_last_error_ino = ino;
614 sbi->s_last_error_block = block;
615 sbi->s_last_error_func = func;
616 sbi->s_last_error_time = ktime_get_real_seconds();
617 if (!sbi->s_first_error_time) {
618 sbi->s_first_error_code = error;
619 sbi->s_first_error_line = line;
620 sbi->s_first_error_ino = ino;
621 sbi->s_first_error_block = block;
622 sbi->s_first_error_func = func;
623 sbi->s_first_error_time = sbi->s_last_error_time;
624 }
625 spin_unlock(&sbi->s_error_lock);
626}
627
628/* Deal with the reporting of failure conditions on a filesystem such as
629 * inconsistencies detected or read IO failures.
630 *
631 * On ext2, we can store the error state of the filesystem in the
632 * superblock. That is not possible on ext4, because we may have other
633 * write ordering constraints on the superblock which prevent us from
634 * writing it out straight away; and given that the journal is about to
635 * be aborted, we can't rely on the current, or future, transactions to
636 * write out the superblock safely.
637 *
638 * We'll just use the jbd2_journal_abort() error code to record an error in
639 * the journal instead. On recovery, the journal will complain about
640 * that error until we've noted it down and cleared it.
641 *
642 * If force_ro is set, we unconditionally force the filesystem into an
643 * ABORT|READONLY state, unless the error response on the fs has been set to
644 * panic in which case we take the easy way out and panic immediately. This is
645 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
646 * at a critical moment in log management.
647 */
648static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
649 __u32 ino, __u64 block,
650 const char *func, unsigned int line)
651{
652 journal_t *journal = EXT4_SB(sb)->s_journal;
653 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
654
655 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
656 if (test_opt(sb, WARN_ON_ERROR))
657 WARN_ON_ONCE(1);
658
659 if (!continue_fs && !sb_rdonly(sb)) {
660 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
661 if (journal)
662 jbd2_journal_abort(journal, -EIO);
663 }
664
665 if (!bdev_read_only(sb->s_bdev)) {
666 save_error_info(sb, error, ino, block, func, line);
667 /*
668 * In case the fs should keep running, we need to writeout
669 * superblock through the journal. Due to lock ordering
670 * constraints, it may not be safe to do it right here so we
671 * defer superblock flushing to a workqueue.
672 */
673 if (continue_fs && journal)
674 schedule_work(&EXT4_SB(sb)->s_error_work);
675 else
676 ext4_commit_super(sb);
677 }
678
679 /*
680 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
681 * could panic during 'reboot -f' as the underlying device got already
682 * disabled.
683 */
684 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
685 panic("EXT4-fs (device %s): panic forced after error\n",
686 sb->s_id);
687 }
688
689 if (sb_rdonly(sb) || continue_fs)
690 return;
691
692 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
693 /*
694 * Make sure updated value of ->s_mount_flags will be visible before
695 * ->s_flags update
696 */
697 smp_wmb();
698 sb->s_flags |= SB_RDONLY;
699}
700
701static void flush_stashed_error_work(struct work_struct *work)
702{
703 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
704 s_error_work);
705 journal_t *journal = sbi->s_journal;
706 handle_t *handle;
707
708 /*
709 * If the journal is still running, we have to write out superblock
710 * through the journal to avoid collisions of other journalled sb
711 * updates.
712 *
713 * We use directly jbd2 functions here to avoid recursing back into
714 * ext4 error handling code during handling of previous errors.
715 */
716 if (!sb_rdonly(sbi->s_sb) && journal) {
717 struct buffer_head *sbh = sbi->s_sbh;
718 handle = jbd2_journal_start(journal, 1);
719 if (IS_ERR(handle))
720 goto write_directly;
721 if (jbd2_journal_get_write_access(handle, sbh)) {
722 jbd2_journal_stop(handle);
723 goto write_directly;
724 }
725 ext4_update_super(sbi->s_sb);
726 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
727 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
728 "superblock detected");
729 clear_buffer_write_io_error(sbh);
730 set_buffer_uptodate(sbh);
731 }
732
733 if (jbd2_journal_dirty_metadata(handle, sbh)) {
734 jbd2_journal_stop(handle);
735 goto write_directly;
736 }
737 jbd2_journal_stop(handle);
738 ext4_notify_error_sysfs(sbi);
739 return;
740 }
741write_directly:
742 /*
743 * Write through journal failed. Write sb directly to get error info
744 * out and hope for the best.
745 */
746 ext4_commit_super(sbi->s_sb);
747 ext4_notify_error_sysfs(sbi);
748}
749
750#define ext4_error_ratelimit(sb) \
751 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
752 "EXT4-fs error")
753
754void __ext4_error(struct super_block *sb, const char *function,
755 unsigned int line, bool force_ro, int error, __u64 block,
756 const char *fmt, ...)
757{
758 struct va_format vaf;
759 va_list args;
760
761 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
762 return;
763
764 trace_ext4_error(sb, function, line);
765 if (ext4_error_ratelimit(sb)) {
766 va_start(args, fmt);
767 vaf.fmt = fmt;
768 vaf.va = &args;
769 printk(KERN_CRIT
770 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
771 sb->s_id, function, line, current->comm, &vaf);
772 va_end(args);
773 }
774 fsnotify_sb_error(sb, NULL, error ? error : EFSCORRUPTED);
775
776 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
777}
778
779void __ext4_error_inode(struct inode *inode, const char *function,
780 unsigned int line, ext4_fsblk_t block, int error,
781 const char *fmt, ...)
782{
783 va_list args;
784 struct va_format vaf;
785
786 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
787 return;
788
789 trace_ext4_error(inode->i_sb, function, line);
790 if (ext4_error_ratelimit(inode->i_sb)) {
791 va_start(args, fmt);
792 vaf.fmt = fmt;
793 vaf.va = &args;
794 if (block)
795 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
796 "inode #%lu: block %llu: comm %s: %pV\n",
797 inode->i_sb->s_id, function, line, inode->i_ino,
798 block, current->comm, &vaf);
799 else
800 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
801 "inode #%lu: comm %s: %pV\n",
802 inode->i_sb->s_id, function, line, inode->i_ino,
803 current->comm, &vaf);
804 va_end(args);
805 }
806 fsnotify_sb_error(inode->i_sb, inode, error ? error : EFSCORRUPTED);
807
808 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
809 function, line);
810}
811
812void __ext4_error_file(struct file *file, const char *function,
813 unsigned int line, ext4_fsblk_t block,
814 const char *fmt, ...)
815{
816 va_list args;
817 struct va_format vaf;
818 struct inode *inode = file_inode(file);
819 char pathname[80], *path;
820
821 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
822 return;
823
824 trace_ext4_error(inode->i_sb, function, line);
825 if (ext4_error_ratelimit(inode->i_sb)) {
826 path = file_path(file, pathname, sizeof(pathname));
827 if (IS_ERR(path))
828 path = "(unknown)";
829 va_start(args, fmt);
830 vaf.fmt = fmt;
831 vaf.va = &args;
832 if (block)
833 printk(KERN_CRIT
834 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
835 "block %llu: comm %s: path %s: %pV\n",
836 inode->i_sb->s_id, function, line, inode->i_ino,
837 block, current->comm, path, &vaf);
838 else
839 printk(KERN_CRIT
840 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
841 "comm %s: path %s: %pV\n",
842 inode->i_sb->s_id, function, line, inode->i_ino,
843 current->comm, path, &vaf);
844 va_end(args);
845 }
846 fsnotify_sb_error(inode->i_sb, inode, EFSCORRUPTED);
847
848 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
849 function, line);
850}
851
852const char *ext4_decode_error(struct super_block *sb, int errno,
853 char nbuf[16])
854{
855 char *errstr = NULL;
856
857 switch (errno) {
858 case -EFSCORRUPTED:
859 errstr = "Corrupt filesystem";
860 break;
861 case -EFSBADCRC:
862 errstr = "Filesystem failed CRC";
863 break;
864 case -EIO:
865 errstr = "IO failure";
866 break;
867 case -ENOMEM:
868 errstr = "Out of memory";
869 break;
870 case -EROFS:
871 if (!sb || (EXT4_SB(sb)->s_journal &&
872 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
873 errstr = "Journal has aborted";
874 else
875 errstr = "Readonly filesystem";
876 break;
877 default:
878 /* If the caller passed in an extra buffer for unknown
879 * errors, textualise them now. Else we just return
880 * NULL. */
881 if (nbuf) {
882 /* Check for truncated error codes... */
883 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
884 errstr = nbuf;
885 }
886 break;
887 }
888
889 return errstr;
890}
891
892/* __ext4_std_error decodes expected errors from journaling functions
893 * automatically and invokes the appropriate error response. */
894
895void __ext4_std_error(struct super_block *sb, const char *function,
896 unsigned int line, int errno)
897{
898 char nbuf[16];
899 const char *errstr;
900
901 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
902 return;
903
904 /* Special case: if the error is EROFS, and we're not already
905 * inside a transaction, then there's really no point in logging
906 * an error. */
907 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
908 return;
909
910 if (ext4_error_ratelimit(sb)) {
911 errstr = ext4_decode_error(sb, errno, nbuf);
912 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
913 sb->s_id, function, line, errstr);
914 }
915 fsnotify_sb_error(sb, NULL, errno ? errno : EFSCORRUPTED);
916
917 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
918}
919
920void __ext4_msg(struct super_block *sb,
921 const char *prefix, const char *fmt, ...)
922{
923 struct va_format vaf;
924 va_list args;
925
926 if (sb) {
927 atomic_inc(&EXT4_SB(sb)->s_msg_count);
928 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state),
929 "EXT4-fs"))
930 return;
931 }
932
933 va_start(args, fmt);
934 vaf.fmt = fmt;
935 vaf.va = &args;
936 if (sb)
937 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
938 else
939 printk("%sEXT4-fs: %pV\n", prefix, &vaf);
940 va_end(args);
941}
942
943static int ext4_warning_ratelimit(struct super_block *sb)
944{
945 atomic_inc(&EXT4_SB(sb)->s_warning_count);
946 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
947 "EXT4-fs warning");
948}
949
950void __ext4_warning(struct super_block *sb, const char *function,
951 unsigned int line, const char *fmt, ...)
952{
953 struct va_format vaf;
954 va_list args;
955
956 if (!ext4_warning_ratelimit(sb))
957 return;
958
959 va_start(args, fmt);
960 vaf.fmt = fmt;
961 vaf.va = &args;
962 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
963 sb->s_id, function, line, &vaf);
964 va_end(args);
965}
966
967void __ext4_warning_inode(const struct inode *inode, const char *function,
968 unsigned int line, const char *fmt, ...)
969{
970 struct va_format vaf;
971 va_list args;
972
973 if (!ext4_warning_ratelimit(inode->i_sb))
974 return;
975
976 va_start(args, fmt);
977 vaf.fmt = fmt;
978 vaf.va = &args;
979 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
980 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
981 function, line, inode->i_ino, current->comm, &vaf);
982 va_end(args);
983}
984
985void __ext4_grp_locked_error(const char *function, unsigned int line,
986 struct super_block *sb, ext4_group_t grp,
987 unsigned long ino, ext4_fsblk_t block,
988 const char *fmt, ...)
989__releases(bitlock)
990__acquires(bitlock)
991{
992 struct va_format vaf;
993 va_list args;
994
995 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
996 return;
997
998 trace_ext4_error(sb, function, line);
999 if (ext4_error_ratelimit(sb)) {
1000 va_start(args, fmt);
1001 vaf.fmt = fmt;
1002 vaf.va = &args;
1003 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
1004 sb->s_id, function, line, grp);
1005 if (ino)
1006 printk(KERN_CONT "inode %lu: ", ino);
1007 if (block)
1008 printk(KERN_CONT "block %llu:",
1009 (unsigned long long) block);
1010 printk(KERN_CONT "%pV\n", &vaf);
1011 va_end(args);
1012 }
1013
1014 if (test_opt(sb, ERRORS_CONT)) {
1015 if (test_opt(sb, WARN_ON_ERROR))
1016 WARN_ON_ONCE(1);
1017 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
1018 if (!bdev_read_only(sb->s_bdev)) {
1019 save_error_info(sb, EFSCORRUPTED, ino, block, function,
1020 line);
1021 schedule_work(&EXT4_SB(sb)->s_error_work);
1022 }
1023 return;
1024 }
1025 ext4_unlock_group(sb, grp);
1026 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1027 /*
1028 * We only get here in the ERRORS_RO case; relocking the group
1029 * may be dangerous, but nothing bad will happen since the
1030 * filesystem will have already been marked read/only and the
1031 * journal has been aborted. We return 1 as a hint to callers
1032 * who might what to use the return value from
1033 * ext4_grp_locked_error() to distinguish between the
1034 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1035 * aggressively from the ext4 function in question, with a
1036 * more appropriate error code.
1037 */
1038 ext4_lock_group(sb, grp);
1039 return;
1040}
1041
1042void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1043 ext4_group_t group,
1044 unsigned int flags)
1045{
1046 struct ext4_sb_info *sbi = EXT4_SB(sb);
1047 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1048 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1049 int ret;
1050
1051 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1052 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1053 &grp->bb_state);
1054 if (!ret)
1055 percpu_counter_sub(&sbi->s_freeclusters_counter,
1056 grp->bb_free);
1057 }
1058
1059 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1060 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1061 &grp->bb_state);
1062 if (!ret && gdp) {
1063 int count;
1064
1065 count = ext4_free_inodes_count(sb, gdp);
1066 percpu_counter_sub(&sbi->s_freeinodes_counter,
1067 count);
1068 }
1069 }
1070}
1071
1072void ext4_update_dynamic_rev(struct super_block *sb)
1073{
1074 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1075
1076 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1077 return;
1078
1079 ext4_warning(sb,
1080 "updating to rev %d because of new feature flag, "
1081 "running e2fsck is recommended",
1082 EXT4_DYNAMIC_REV);
1083
1084 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1085 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1086 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1087 /* leave es->s_feature_*compat flags alone */
1088 /* es->s_uuid will be set by e2fsck if empty */
1089
1090 /*
1091 * The rest of the superblock fields should be zero, and if not it
1092 * means they are likely already in use, so leave them alone. We
1093 * can leave it up to e2fsck to clean up any inconsistencies there.
1094 */
1095}
1096
1097/*
1098 * Open the external journal device
1099 */
1100static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1101{
1102 struct block_device *bdev;
1103
1104 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1105 if (IS_ERR(bdev))
1106 goto fail;
1107 return bdev;
1108
1109fail:
1110 ext4_msg(sb, KERN_ERR,
1111 "failed to open journal device unknown-block(%u,%u) %ld",
1112 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1113 return NULL;
1114}
1115
1116/*
1117 * Release the journal device
1118 */
1119static void ext4_blkdev_put(struct block_device *bdev)
1120{
1121 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1122}
1123
1124static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1125{
1126 struct block_device *bdev;
1127 bdev = sbi->s_journal_bdev;
1128 if (bdev) {
1129 ext4_blkdev_put(bdev);
1130 sbi->s_journal_bdev = NULL;
1131 }
1132}
1133
1134static inline struct inode *orphan_list_entry(struct list_head *l)
1135{
1136 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1137}
1138
1139static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1140{
1141 struct list_head *l;
1142
1143 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1144 le32_to_cpu(sbi->s_es->s_last_orphan));
1145
1146 printk(KERN_ERR "sb_info orphan list:\n");
1147 list_for_each(l, &sbi->s_orphan) {
1148 struct inode *inode = orphan_list_entry(l);
1149 printk(KERN_ERR " "
1150 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1151 inode->i_sb->s_id, inode->i_ino, inode,
1152 inode->i_mode, inode->i_nlink,
1153 NEXT_ORPHAN(inode));
1154 }
1155}
1156
1157#ifdef CONFIG_QUOTA
1158static int ext4_quota_off(struct super_block *sb, int type);
1159
1160static inline void ext4_quota_off_umount(struct super_block *sb)
1161{
1162 int type;
1163
1164 /* Use our quota_off function to clear inode flags etc. */
1165 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1166 ext4_quota_off(sb, type);
1167}
1168
1169/*
1170 * This is a helper function which is used in the mount/remount
1171 * codepaths (which holds s_umount) to fetch the quota file name.
1172 */
1173static inline char *get_qf_name(struct super_block *sb,
1174 struct ext4_sb_info *sbi,
1175 int type)
1176{
1177 return rcu_dereference_protected(sbi->s_qf_names[type],
1178 lockdep_is_held(&sb->s_umount));
1179}
1180#else
1181static inline void ext4_quota_off_umount(struct super_block *sb)
1182{
1183}
1184#endif
1185
1186static void ext4_put_super(struct super_block *sb)
1187{
1188 struct ext4_sb_info *sbi = EXT4_SB(sb);
1189 struct ext4_super_block *es = sbi->s_es;
1190 struct buffer_head **group_desc;
1191 struct flex_groups **flex_groups;
1192 int aborted = 0;
1193 int i, err;
1194
1195 /*
1196 * Unregister sysfs before destroying jbd2 journal.
1197 * Since we could still access attr_journal_task attribute via sysfs
1198 * path which could have sbi->s_journal->j_task as NULL
1199 * Unregister sysfs before flush sbi->s_error_work.
1200 * Since user may read /proc/fs/ext4/xx/mb_groups during umount, If
1201 * read metadata verify failed then will queue error work.
1202 * flush_stashed_error_work will call start_this_handle may trigger
1203 * BUG_ON.
1204 */
1205 ext4_unregister_sysfs(sb);
1206
1207 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs unmount"))
1208 ext4_msg(sb, KERN_INFO, "unmounting filesystem %pU.",
1209 &sb->s_uuid);
1210
1211 ext4_unregister_li_request(sb);
1212 ext4_quota_off_umount(sb);
1213
1214 flush_work(&sbi->s_error_work);
1215 destroy_workqueue(sbi->rsv_conversion_wq);
1216 ext4_release_orphan_info(sb);
1217
1218 if (sbi->s_journal) {
1219 aborted = is_journal_aborted(sbi->s_journal);
1220 err = jbd2_journal_destroy(sbi->s_journal);
1221 sbi->s_journal = NULL;
1222 if ((err < 0) && !aborted) {
1223 ext4_abort(sb, -err, "Couldn't clean up the journal");
1224 }
1225 }
1226
1227 ext4_es_unregister_shrinker(sbi);
1228 timer_shutdown_sync(&sbi->s_err_report);
1229 ext4_release_system_zone(sb);
1230 ext4_mb_release(sb);
1231 ext4_ext_release(sb);
1232
1233 if (!sb_rdonly(sb) && !aborted) {
1234 ext4_clear_feature_journal_needs_recovery(sb);
1235 ext4_clear_feature_orphan_present(sb);
1236 es->s_state = cpu_to_le16(sbi->s_mount_state);
1237 }
1238 if (!sb_rdonly(sb))
1239 ext4_commit_super(sb);
1240
1241 rcu_read_lock();
1242 group_desc = rcu_dereference(sbi->s_group_desc);
1243 for (i = 0; i < sbi->s_gdb_count; i++)
1244 brelse(group_desc[i]);
1245 kvfree(group_desc);
1246 flex_groups = rcu_dereference(sbi->s_flex_groups);
1247 if (flex_groups) {
1248 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1249 kvfree(flex_groups[i]);
1250 kvfree(flex_groups);
1251 }
1252 rcu_read_unlock();
1253 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1254 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1255 percpu_counter_destroy(&sbi->s_dirs_counter);
1256 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1257 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1258 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1259#ifdef CONFIG_QUOTA
1260 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1261 kfree(get_qf_name(sb, sbi, i));
1262#endif
1263
1264 /* Debugging code just in case the in-memory inode orphan list
1265 * isn't empty. The on-disk one can be non-empty if we've
1266 * detected an error and taken the fs readonly, but the
1267 * in-memory list had better be clean by this point. */
1268 if (!list_empty(&sbi->s_orphan))
1269 dump_orphan_list(sb, sbi);
1270 ASSERT(list_empty(&sbi->s_orphan));
1271
1272 sync_blockdev(sb->s_bdev);
1273 invalidate_bdev(sb->s_bdev);
1274 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1275 /*
1276 * Invalidate the journal device's buffers. We don't want them
1277 * floating about in memory - the physical journal device may
1278 * hotswapped, and it breaks the `ro-after' testing code.
1279 */
1280 sync_blockdev(sbi->s_journal_bdev);
1281 invalidate_bdev(sbi->s_journal_bdev);
1282 ext4_blkdev_remove(sbi);
1283 }
1284
1285 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1286 sbi->s_ea_inode_cache = NULL;
1287
1288 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1289 sbi->s_ea_block_cache = NULL;
1290
1291 ext4_stop_mmpd(sbi);
1292
1293 brelse(sbi->s_sbh);
1294 sb->s_fs_info = NULL;
1295 /*
1296 * Now that we are completely done shutting down the
1297 * superblock, we need to actually destroy the kobject.
1298 */
1299 kobject_put(&sbi->s_kobj);
1300 wait_for_completion(&sbi->s_kobj_unregister);
1301 if (sbi->s_chksum_driver)
1302 crypto_free_shash(sbi->s_chksum_driver);
1303 kfree(sbi->s_blockgroup_lock);
1304 fs_put_dax(sbi->s_daxdev, NULL);
1305 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1306#if IS_ENABLED(CONFIG_UNICODE)
1307 utf8_unload(sb->s_encoding);
1308#endif
1309 kfree(sbi);
1310}
1311
1312static struct kmem_cache *ext4_inode_cachep;
1313
1314/*
1315 * Called inside transaction, so use GFP_NOFS
1316 */
1317static struct inode *ext4_alloc_inode(struct super_block *sb)
1318{
1319 struct ext4_inode_info *ei;
1320
1321 ei = alloc_inode_sb(sb, ext4_inode_cachep, GFP_NOFS);
1322 if (!ei)
1323 return NULL;
1324
1325 inode_set_iversion(&ei->vfs_inode, 1);
1326 ei->i_flags = 0;
1327 spin_lock_init(&ei->i_raw_lock);
1328 INIT_LIST_HEAD(&ei->i_prealloc_list);
1329 atomic_set(&ei->i_prealloc_active, 0);
1330 spin_lock_init(&ei->i_prealloc_lock);
1331 ext4_es_init_tree(&ei->i_es_tree);
1332 rwlock_init(&ei->i_es_lock);
1333 INIT_LIST_HEAD(&ei->i_es_list);
1334 ei->i_es_all_nr = 0;
1335 ei->i_es_shk_nr = 0;
1336 ei->i_es_shrink_lblk = 0;
1337 ei->i_reserved_data_blocks = 0;
1338 spin_lock_init(&(ei->i_block_reservation_lock));
1339 ext4_init_pending_tree(&ei->i_pending_tree);
1340#ifdef CONFIG_QUOTA
1341 ei->i_reserved_quota = 0;
1342 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1343#endif
1344 ei->jinode = NULL;
1345 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1346 spin_lock_init(&ei->i_completed_io_lock);
1347 ei->i_sync_tid = 0;
1348 ei->i_datasync_tid = 0;
1349 atomic_set(&ei->i_unwritten, 0);
1350 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1351 ext4_fc_init_inode(&ei->vfs_inode);
1352 mutex_init(&ei->i_fc_lock);
1353 return &ei->vfs_inode;
1354}
1355
1356static int ext4_drop_inode(struct inode *inode)
1357{
1358 int drop = generic_drop_inode(inode);
1359
1360 if (!drop)
1361 drop = fscrypt_drop_inode(inode);
1362
1363 trace_ext4_drop_inode(inode, drop);
1364 return drop;
1365}
1366
1367static void ext4_free_in_core_inode(struct inode *inode)
1368{
1369 fscrypt_free_inode(inode);
1370 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1371 pr_warn("%s: inode %ld still in fc list",
1372 __func__, inode->i_ino);
1373 }
1374 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1375}
1376
1377static void ext4_destroy_inode(struct inode *inode)
1378{
1379 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1380 ext4_msg(inode->i_sb, KERN_ERR,
1381 "Inode %lu (%p): orphan list check failed!",
1382 inode->i_ino, EXT4_I(inode));
1383 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1384 EXT4_I(inode), sizeof(struct ext4_inode_info),
1385 true);
1386 dump_stack();
1387 }
1388
1389 if (EXT4_I(inode)->i_reserved_data_blocks)
1390 ext4_msg(inode->i_sb, KERN_ERR,
1391 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1392 inode->i_ino, EXT4_I(inode),
1393 EXT4_I(inode)->i_reserved_data_blocks);
1394}
1395
1396static void init_once(void *foo)
1397{
1398 struct ext4_inode_info *ei = foo;
1399
1400 INIT_LIST_HEAD(&ei->i_orphan);
1401 init_rwsem(&ei->xattr_sem);
1402 init_rwsem(&ei->i_data_sem);
1403 inode_init_once(&ei->vfs_inode);
1404 ext4_fc_init_inode(&ei->vfs_inode);
1405}
1406
1407static int __init init_inodecache(void)
1408{
1409 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1410 sizeof(struct ext4_inode_info), 0,
1411 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1412 SLAB_ACCOUNT),
1413 offsetof(struct ext4_inode_info, i_data),
1414 sizeof_field(struct ext4_inode_info, i_data),
1415 init_once);
1416 if (ext4_inode_cachep == NULL)
1417 return -ENOMEM;
1418 return 0;
1419}
1420
1421static void destroy_inodecache(void)
1422{
1423 /*
1424 * Make sure all delayed rcu free inodes are flushed before we
1425 * destroy cache.
1426 */
1427 rcu_barrier();
1428 kmem_cache_destroy(ext4_inode_cachep);
1429}
1430
1431void ext4_clear_inode(struct inode *inode)
1432{
1433 ext4_fc_del(inode);
1434 invalidate_inode_buffers(inode);
1435 clear_inode(inode);
1436 ext4_discard_preallocations(inode, 0);
1437 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1438 dquot_drop(inode);
1439 if (EXT4_I(inode)->jinode) {
1440 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1441 EXT4_I(inode)->jinode);
1442 jbd2_free_inode(EXT4_I(inode)->jinode);
1443 EXT4_I(inode)->jinode = NULL;
1444 }
1445 fscrypt_put_encryption_info(inode);
1446 fsverity_cleanup_inode(inode);
1447}
1448
1449static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1450 u64 ino, u32 generation)
1451{
1452 struct inode *inode;
1453
1454 /*
1455 * Currently we don't know the generation for parent directory, so
1456 * a generation of 0 means "accept any"
1457 */
1458 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1459 if (IS_ERR(inode))
1460 return ERR_CAST(inode);
1461 if (generation && inode->i_generation != generation) {
1462 iput(inode);
1463 return ERR_PTR(-ESTALE);
1464 }
1465
1466 return inode;
1467}
1468
1469static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1470 int fh_len, int fh_type)
1471{
1472 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1473 ext4_nfs_get_inode);
1474}
1475
1476static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1477 int fh_len, int fh_type)
1478{
1479 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1480 ext4_nfs_get_inode);
1481}
1482
1483static int ext4_nfs_commit_metadata(struct inode *inode)
1484{
1485 struct writeback_control wbc = {
1486 .sync_mode = WB_SYNC_ALL
1487 };
1488
1489 trace_ext4_nfs_commit_metadata(inode);
1490 return ext4_write_inode(inode, &wbc);
1491}
1492
1493#ifdef CONFIG_QUOTA
1494static const char * const quotatypes[] = INITQFNAMES;
1495#define QTYPE2NAME(t) (quotatypes[t])
1496
1497static int ext4_write_dquot(struct dquot *dquot);
1498static int ext4_acquire_dquot(struct dquot *dquot);
1499static int ext4_release_dquot(struct dquot *dquot);
1500static int ext4_mark_dquot_dirty(struct dquot *dquot);
1501static int ext4_write_info(struct super_block *sb, int type);
1502static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1503 const struct path *path);
1504static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1505 size_t len, loff_t off);
1506static ssize_t ext4_quota_write(struct super_block *sb, int type,
1507 const char *data, size_t len, loff_t off);
1508static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1509 unsigned int flags);
1510
1511static struct dquot **ext4_get_dquots(struct inode *inode)
1512{
1513 return EXT4_I(inode)->i_dquot;
1514}
1515
1516static const struct dquot_operations ext4_quota_operations = {
1517 .get_reserved_space = ext4_get_reserved_space,
1518 .write_dquot = ext4_write_dquot,
1519 .acquire_dquot = ext4_acquire_dquot,
1520 .release_dquot = ext4_release_dquot,
1521 .mark_dirty = ext4_mark_dquot_dirty,
1522 .write_info = ext4_write_info,
1523 .alloc_dquot = dquot_alloc,
1524 .destroy_dquot = dquot_destroy,
1525 .get_projid = ext4_get_projid,
1526 .get_inode_usage = ext4_get_inode_usage,
1527 .get_next_id = dquot_get_next_id,
1528};
1529
1530static const struct quotactl_ops ext4_qctl_operations = {
1531 .quota_on = ext4_quota_on,
1532 .quota_off = ext4_quota_off,
1533 .quota_sync = dquot_quota_sync,
1534 .get_state = dquot_get_state,
1535 .set_info = dquot_set_dqinfo,
1536 .get_dqblk = dquot_get_dqblk,
1537 .set_dqblk = dquot_set_dqblk,
1538 .get_nextdqblk = dquot_get_next_dqblk,
1539};
1540#endif
1541
1542static const struct super_operations ext4_sops = {
1543 .alloc_inode = ext4_alloc_inode,
1544 .free_inode = ext4_free_in_core_inode,
1545 .destroy_inode = ext4_destroy_inode,
1546 .write_inode = ext4_write_inode,
1547 .dirty_inode = ext4_dirty_inode,
1548 .drop_inode = ext4_drop_inode,
1549 .evict_inode = ext4_evict_inode,
1550 .put_super = ext4_put_super,
1551 .sync_fs = ext4_sync_fs,
1552 .freeze_fs = ext4_freeze,
1553 .unfreeze_fs = ext4_unfreeze,
1554 .statfs = ext4_statfs,
1555 .show_options = ext4_show_options,
1556#ifdef CONFIG_QUOTA
1557 .quota_read = ext4_quota_read,
1558 .quota_write = ext4_quota_write,
1559 .get_dquots = ext4_get_dquots,
1560#endif
1561};
1562
1563static const struct export_operations ext4_export_ops = {
1564 .fh_to_dentry = ext4_fh_to_dentry,
1565 .fh_to_parent = ext4_fh_to_parent,
1566 .get_parent = ext4_get_parent,
1567 .commit_metadata = ext4_nfs_commit_metadata,
1568};
1569
1570enum {
1571 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1572 Opt_resgid, Opt_resuid, Opt_sb,
1573 Opt_nouid32, Opt_debug, Opt_removed,
1574 Opt_user_xattr, Opt_acl,
1575 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1576 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1577 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1578 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1579 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1580 Opt_inlinecrypt,
1581 Opt_usrjquota, Opt_grpjquota, Opt_quota,
1582 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1583 Opt_usrquota, Opt_grpquota, Opt_prjquota,
1584 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1585 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1586 Opt_nowarn_on_error, Opt_mblk_io_submit, Opt_debug_want_extra_isize,
1587 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1588 Opt_inode_readahead_blks, Opt_journal_ioprio,
1589 Opt_dioread_nolock, Opt_dioread_lock,
1590 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1591 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1592 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1593 Opt_errors, Opt_data, Opt_data_err, Opt_jqfmt, Opt_dax_type,
1594#ifdef CONFIG_EXT4_DEBUG
1595 Opt_fc_debug_max_replay, Opt_fc_debug_force
1596#endif
1597};
1598
1599static const struct constant_table ext4_param_errors[] = {
1600 {"continue", EXT4_MOUNT_ERRORS_CONT},
1601 {"panic", EXT4_MOUNT_ERRORS_PANIC},
1602 {"remount-ro", EXT4_MOUNT_ERRORS_RO},
1603 {}
1604};
1605
1606static const struct constant_table ext4_param_data[] = {
1607 {"journal", EXT4_MOUNT_JOURNAL_DATA},
1608 {"ordered", EXT4_MOUNT_ORDERED_DATA},
1609 {"writeback", EXT4_MOUNT_WRITEBACK_DATA},
1610 {}
1611};
1612
1613static const struct constant_table ext4_param_data_err[] = {
1614 {"abort", Opt_data_err_abort},
1615 {"ignore", Opt_data_err_ignore},
1616 {}
1617};
1618
1619static const struct constant_table ext4_param_jqfmt[] = {
1620 {"vfsold", QFMT_VFS_OLD},
1621 {"vfsv0", QFMT_VFS_V0},
1622 {"vfsv1", QFMT_VFS_V1},
1623 {}
1624};
1625
1626static const struct constant_table ext4_param_dax[] = {
1627 {"always", Opt_dax_always},
1628 {"inode", Opt_dax_inode},
1629 {"never", Opt_dax_never},
1630 {}
1631};
1632
1633/* String parameter that allows empty argument */
1634#define fsparam_string_empty(NAME, OPT) \
1635 __fsparam(fs_param_is_string, NAME, OPT, fs_param_can_be_empty, NULL)
1636
1637/*
1638 * Mount option specification
1639 * We don't use fsparam_flag_no because of the way we set the
1640 * options and the way we show them in _ext4_show_options(). To
1641 * keep the changes to a minimum, let's keep the negative options
1642 * separate for now.
1643 */
1644static const struct fs_parameter_spec ext4_param_specs[] = {
1645 fsparam_flag ("bsddf", Opt_bsd_df),
1646 fsparam_flag ("minixdf", Opt_minix_df),
1647 fsparam_flag ("grpid", Opt_grpid),
1648 fsparam_flag ("bsdgroups", Opt_grpid),
1649 fsparam_flag ("nogrpid", Opt_nogrpid),
1650 fsparam_flag ("sysvgroups", Opt_nogrpid),
1651 fsparam_u32 ("resgid", Opt_resgid),
1652 fsparam_u32 ("resuid", Opt_resuid),
1653 fsparam_u32 ("sb", Opt_sb),
1654 fsparam_enum ("errors", Opt_errors, ext4_param_errors),
1655 fsparam_flag ("nouid32", Opt_nouid32),
1656 fsparam_flag ("debug", Opt_debug),
1657 fsparam_flag ("oldalloc", Opt_removed),
1658 fsparam_flag ("orlov", Opt_removed),
1659 fsparam_flag ("user_xattr", Opt_user_xattr),
1660 fsparam_flag ("acl", Opt_acl),
1661 fsparam_flag ("norecovery", Opt_noload),
1662 fsparam_flag ("noload", Opt_noload),
1663 fsparam_flag ("bh", Opt_removed),
1664 fsparam_flag ("nobh", Opt_removed),
1665 fsparam_u32 ("commit", Opt_commit),
1666 fsparam_u32 ("min_batch_time", Opt_min_batch_time),
1667 fsparam_u32 ("max_batch_time", Opt_max_batch_time),
1668 fsparam_u32 ("journal_dev", Opt_journal_dev),
1669 fsparam_bdev ("journal_path", Opt_journal_path),
1670 fsparam_flag ("journal_checksum", Opt_journal_checksum),
1671 fsparam_flag ("nojournal_checksum", Opt_nojournal_checksum),
1672 fsparam_flag ("journal_async_commit",Opt_journal_async_commit),
1673 fsparam_flag ("abort", Opt_abort),
1674 fsparam_enum ("data", Opt_data, ext4_param_data),
1675 fsparam_enum ("data_err", Opt_data_err,
1676 ext4_param_data_err),
1677 fsparam_string_empty
1678 ("usrjquota", Opt_usrjquota),
1679 fsparam_string_empty
1680 ("grpjquota", Opt_grpjquota),
1681 fsparam_enum ("jqfmt", Opt_jqfmt, ext4_param_jqfmt),
1682 fsparam_flag ("grpquota", Opt_grpquota),
1683 fsparam_flag ("quota", Opt_quota),
1684 fsparam_flag ("noquota", Opt_noquota),
1685 fsparam_flag ("usrquota", Opt_usrquota),
1686 fsparam_flag ("prjquota", Opt_prjquota),
1687 fsparam_flag ("barrier", Opt_barrier),
1688 fsparam_u32 ("barrier", Opt_barrier),
1689 fsparam_flag ("nobarrier", Opt_nobarrier),
1690 fsparam_flag ("i_version", Opt_removed),
1691 fsparam_flag ("dax", Opt_dax),
1692 fsparam_enum ("dax", Opt_dax_type, ext4_param_dax),
1693 fsparam_u32 ("stripe", Opt_stripe),
1694 fsparam_flag ("delalloc", Opt_delalloc),
1695 fsparam_flag ("nodelalloc", Opt_nodelalloc),
1696 fsparam_flag ("warn_on_error", Opt_warn_on_error),
1697 fsparam_flag ("nowarn_on_error", Opt_nowarn_on_error),
1698 fsparam_u32 ("debug_want_extra_isize",
1699 Opt_debug_want_extra_isize),
1700 fsparam_flag ("mblk_io_submit", Opt_removed),
1701 fsparam_flag ("nomblk_io_submit", Opt_removed),
1702 fsparam_flag ("block_validity", Opt_block_validity),
1703 fsparam_flag ("noblock_validity", Opt_noblock_validity),
1704 fsparam_u32 ("inode_readahead_blks",
1705 Opt_inode_readahead_blks),
1706 fsparam_u32 ("journal_ioprio", Opt_journal_ioprio),
1707 fsparam_u32 ("auto_da_alloc", Opt_auto_da_alloc),
1708 fsparam_flag ("auto_da_alloc", Opt_auto_da_alloc),
1709 fsparam_flag ("noauto_da_alloc", Opt_noauto_da_alloc),
1710 fsparam_flag ("dioread_nolock", Opt_dioread_nolock),
1711 fsparam_flag ("nodioread_nolock", Opt_dioread_lock),
1712 fsparam_flag ("dioread_lock", Opt_dioread_lock),
1713 fsparam_flag ("discard", Opt_discard),
1714 fsparam_flag ("nodiscard", Opt_nodiscard),
1715 fsparam_u32 ("init_itable", Opt_init_itable),
1716 fsparam_flag ("init_itable", Opt_init_itable),
1717 fsparam_flag ("noinit_itable", Opt_noinit_itable),
1718#ifdef CONFIG_EXT4_DEBUG
1719 fsparam_flag ("fc_debug_force", Opt_fc_debug_force),
1720 fsparam_u32 ("fc_debug_max_replay", Opt_fc_debug_max_replay),
1721#endif
1722 fsparam_u32 ("max_dir_size_kb", Opt_max_dir_size_kb),
1723 fsparam_flag ("test_dummy_encryption",
1724 Opt_test_dummy_encryption),
1725 fsparam_string ("test_dummy_encryption",
1726 Opt_test_dummy_encryption),
1727 fsparam_flag ("inlinecrypt", Opt_inlinecrypt),
1728 fsparam_flag ("nombcache", Opt_nombcache),
1729 fsparam_flag ("no_mbcache", Opt_nombcache), /* for backward compatibility */
1730 fsparam_flag ("prefetch_block_bitmaps",
1731 Opt_removed),
1732 fsparam_flag ("no_prefetch_block_bitmaps",
1733 Opt_no_prefetch_block_bitmaps),
1734 fsparam_s32 ("mb_optimize_scan", Opt_mb_optimize_scan),
1735 fsparam_string ("check", Opt_removed), /* mount option from ext2/3 */
1736 fsparam_flag ("nocheck", Opt_removed), /* mount option from ext2/3 */
1737 fsparam_flag ("reservation", Opt_removed), /* mount option from ext2/3 */
1738 fsparam_flag ("noreservation", Opt_removed), /* mount option from ext2/3 */
1739 fsparam_u32 ("journal", Opt_removed), /* mount option from ext2/3 */
1740 {}
1741};
1742
1743#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1744
1745#define MOPT_SET 0x0001
1746#define MOPT_CLEAR 0x0002
1747#define MOPT_NOSUPPORT 0x0004
1748#define MOPT_EXPLICIT 0x0008
1749#ifdef CONFIG_QUOTA
1750#define MOPT_Q 0
1751#define MOPT_QFMT 0x0010
1752#else
1753#define MOPT_Q MOPT_NOSUPPORT
1754#define MOPT_QFMT MOPT_NOSUPPORT
1755#endif
1756#define MOPT_NO_EXT2 0x0020
1757#define MOPT_NO_EXT3 0x0040
1758#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1759#define MOPT_SKIP 0x0080
1760#define MOPT_2 0x0100
1761
1762static const struct mount_opts {
1763 int token;
1764 int mount_opt;
1765 int flags;
1766} ext4_mount_opts[] = {
1767 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1768 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1769 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1770 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1771 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1772 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1773 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1774 MOPT_EXT4_ONLY | MOPT_SET},
1775 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1776 MOPT_EXT4_ONLY | MOPT_CLEAR},
1777 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1778 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1779 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1780 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1781 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1782 MOPT_EXT4_ONLY | MOPT_CLEAR},
1783 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1784 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1785 {Opt_commit, 0, MOPT_NO_EXT2},
1786 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1787 MOPT_EXT4_ONLY | MOPT_CLEAR},
1788 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1789 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1790 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1791 EXT4_MOUNT_JOURNAL_CHECKSUM),
1792 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1793 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1794 {Opt_data_err, EXT4_MOUNT_DATA_ERR_ABORT, MOPT_NO_EXT2},
1795 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1796 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1797 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1798 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1799 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1800 {Opt_dax_type, 0, MOPT_EXT4_ONLY},
1801 {Opt_journal_dev, 0, MOPT_NO_EXT2},
1802 {Opt_journal_path, 0, MOPT_NO_EXT2},
1803 {Opt_journal_ioprio, 0, MOPT_NO_EXT2},
1804 {Opt_data, 0, MOPT_NO_EXT2},
1805 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1806#ifdef CONFIG_EXT4_FS_POSIX_ACL
1807 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1808#else
1809 {Opt_acl, 0, MOPT_NOSUPPORT},
1810#endif
1811 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1812 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1813 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1814 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1815 MOPT_SET | MOPT_Q},
1816 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1817 MOPT_SET | MOPT_Q},
1818 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1819 MOPT_SET | MOPT_Q},
1820 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1821 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1822 MOPT_CLEAR | MOPT_Q},
1823 {Opt_usrjquota, 0, MOPT_Q},
1824 {Opt_grpjquota, 0, MOPT_Q},
1825 {Opt_jqfmt, 0, MOPT_QFMT},
1826 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
1827 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
1828 MOPT_SET},
1829#ifdef CONFIG_EXT4_DEBUG
1830 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
1831 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
1832#endif
1833 {Opt_err, 0, 0}
1834};
1835
1836#if IS_ENABLED(CONFIG_UNICODE)
1837static const struct ext4_sb_encodings {
1838 __u16 magic;
1839 char *name;
1840 unsigned int version;
1841} ext4_sb_encoding_map[] = {
1842 {EXT4_ENC_UTF8_12_1, "utf8", UNICODE_AGE(12, 1, 0)},
1843};
1844
1845static const struct ext4_sb_encodings *
1846ext4_sb_read_encoding(const struct ext4_super_block *es)
1847{
1848 __u16 magic = le16_to_cpu(es->s_encoding);
1849 int i;
1850
1851 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
1852 if (magic == ext4_sb_encoding_map[i].magic)
1853 return &ext4_sb_encoding_map[i];
1854
1855 return NULL;
1856}
1857#endif
1858
1859#define EXT4_SPEC_JQUOTA (1 << 0)
1860#define EXT4_SPEC_JQFMT (1 << 1)
1861#define EXT4_SPEC_DATAJ (1 << 2)
1862#define EXT4_SPEC_SB_BLOCK (1 << 3)
1863#define EXT4_SPEC_JOURNAL_DEV (1 << 4)
1864#define EXT4_SPEC_JOURNAL_IOPRIO (1 << 5)
1865#define EXT4_SPEC_s_want_extra_isize (1 << 7)
1866#define EXT4_SPEC_s_max_batch_time (1 << 8)
1867#define EXT4_SPEC_s_min_batch_time (1 << 9)
1868#define EXT4_SPEC_s_inode_readahead_blks (1 << 10)
1869#define EXT4_SPEC_s_li_wait_mult (1 << 11)
1870#define EXT4_SPEC_s_max_dir_size_kb (1 << 12)
1871#define EXT4_SPEC_s_stripe (1 << 13)
1872#define EXT4_SPEC_s_resuid (1 << 14)
1873#define EXT4_SPEC_s_resgid (1 << 15)
1874#define EXT4_SPEC_s_commit_interval (1 << 16)
1875#define EXT4_SPEC_s_fc_debug_max_replay (1 << 17)
1876#define EXT4_SPEC_s_sb_block (1 << 18)
1877#define EXT4_SPEC_mb_optimize_scan (1 << 19)
1878
1879struct ext4_fs_context {
1880 char *s_qf_names[EXT4_MAXQUOTAS];
1881 struct fscrypt_dummy_policy dummy_enc_policy;
1882 int s_jquota_fmt; /* Format of quota to use */
1883#ifdef CONFIG_EXT4_DEBUG
1884 int s_fc_debug_max_replay;
1885#endif
1886 unsigned short qname_spec;
1887 unsigned long vals_s_flags; /* Bits to set in s_flags */
1888 unsigned long mask_s_flags; /* Bits changed in s_flags */
1889 unsigned long journal_devnum;
1890 unsigned long s_commit_interval;
1891 unsigned long s_stripe;
1892 unsigned int s_inode_readahead_blks;
1893 unsigned int s_want_extra_isize;
1894 unsigned int s_li_wait_mult;
1895 unsigned int s_max_dir_size_kb;
1896 unsigned int journal_ioprio;
1897 unsigned int vals_s_mount_opt;
1898 unsigned int mask_s_mount_opt;
1899 unsigned int vals_s_mount_opt2;
1900 unsigned int mask_s_mount_opt2;
1901 unsigned long vals_s_mount_flags;
1902 unsigned long mask_s_mount_flags;
1903 unsigned int opt_flags; /* MOPT flags */
1904 unsigned int spec;
1905 u32 s_max_batch_time;
1906 u32 s_min_batch_time;
1907 kuid_t s_resuid;
1908 kgid_t s_resgid;
1909 ext4_fsblk_t s_sb_block;
1910};
1911
1912static void ext4_fc_free(struct fs_context *fc)
1913{
1914 struct ext4_fs_context *ctx = fc->fs_private;
1915 int i;
1916
1917 if (!ctx)
1918 return;
1919
1920 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1921 kfree(ctx->s_qf_names[i]);
1922
1923 fscrypt_free_dummy_policy(&ctx->dummy_enc_policy);
1924 kfree(ctx);
1925}
1926
1927int ext4_init_fs_context(struct fs_context *fc)
1928{
1929 struct ext4_fs_context *ctx;
1930
1931 ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
1932 if (!ctx)
1933 return -ENOMEM;
1934
1935 fc->fs_private = ctx;
1936 fc->ops = &ext4_context_ops;
1937
1938 return 0;
1939}
1940
1941#ifdef CONFIG_QUOTA
1942/*
1943 * Note the name of the specified quota file.
1944 */
1945static int note_qf_name(struct fs_context *fc, int qtype,
1946 struct fs_parameter *param)
1947{
1948 struct ext4_fs_context *ctx = fc->fs_private;
1949 char *qname;
1950
1951 if (param->size < 1) {
1952 ext4_msg(NULL, KERN_ERR, "Missing quota name");
1953 return -EINVAL;
1954 }
1955 if (strchr(param->string, '/')) {
1956 ext4_msg(NULL, KERN_ERR,
1957 "quotafile must be on filesystem root");
1958 return -EINVAL;
1959 }
1960 if (ctx->s_qf_names[qtype]) {
1961 if (strcmp(ctx->s_qf_names[qtype], param->string) != 0) {
1962 ext4_msg(NULL, KERN_ERR,
1963 "%s quota file already specified",
1964 QTYPE2NAME(qtype));
1965 return -EINVAL;
1966 }
1967 return 0;
1968 }
1969
1970 qname = kmemdup_nul(param->string, param->size, GFP_KERNEL);
1971 if (!qname) {
1972 ext4_msg(NULL, KERN_ERR,
1973 "Not enough memory for storing quotafile name");
1974 return -ENOMEM;
1975 }
1976 ctx->s_qf_names[qtype] = qname;
1977 ctx->qname_spec |= 1 << qtype;
1978 ctx->spec |= EXT4_SPEC_JQUOTA;
1979 return 0;
1980}
1981
1982/*
1983 * Clear the name of the specified quota file.
1984 */
1985static int unnote_qf_name(struct fs_context *fc, int qtype)
1986{
1987 struct ext4_fs_context *ctx = fc->fs_private;
1988
1989 if (ctx->s_qf_names[qtype])
1990 kfree(ctx->s_qf_names[qtype]);
1991
1992 ctx->s_qf_names[qtype] = NULL;
1993 ctx->qname_spec |= 1 << qtype;
1994 ctx->spec |= EXT4_SPEC_JQUOTA;
1995 return 0;
1996}
1997#endif
1998
1999static int ext4_parse_test_dummy_encryption(const struct fs_parameter *param,
2000 struct ext4_fs_context *ctx)
2001{
2002 int err;
2003
2004 if (!IS_ENABLED(CONFIG_FS_ENCRYPTION)) {
2005 ext4_msg(NULL, KERN_WARNING,
2006 "test_dummy_encryption option not supported");
2007 return -EINVAL;
2008 }
2009 err = fscrypt_parse_test_dummy_encryption(param,
2010 &ctx->dummy_enc_policy);
2011 if (err == -EINVAL) {
2012 ext4_msg(NULL, KERN_WARNING,
2013 "Value of option \"%s\" is unrecognized", param->key);
2014 } else if (err == -EEXIST) {
2015 ext4_msg(NULL, KERN_WARNING,
2016 "Conflicting test_dummy_encryption options");
2017 return -EINVAL;
2018 }
2019 return err;
2020}
2021
2022#define EXT4_SET_CTX(name) \
2023static inline void ctx_set_##name(struct ext4_fs_context *ctx, \
2024 unsigned long flag) \
2025{ \
2026 ctx->mask_s_##name |= flag; \
2027 ctx->vals_s_##name |= flag; \
2028}
2029
2030#define EXT4_CLEAR_CTX(name) \
2031static inline void ctx_clear_##name(struct ext4_fs_context *ctx, \
2032 unsigned long flag) \
2033{ \
2034 ctx->mask_s_##name |= flag; \
2035 ctx->vals_s_##name &= ~flag; \
2036}
2037
2038#define EXT4_TEST_CTX(name) \
2039static inline unsigned long \
2040ctx_test_##name(struct ext4_fs_context *ctx, unsigned long flag) \
2041{ \
2042 return (ctx->vals_s_##name & flag); \
2043}
2044
2045EXT4_SET_CTX(flags); /* set only */
2046EXT4_SET_CTX(mount_opt);
2047EXT4_CLEAR_CTX(mount_opt);
2048EXT4_TEST_CTX(mount_opt);
2049EXT4_SET_CTX(mount_opt2);
2050EXT4_CLEAR_CTX(mount_opt2);
2051EXT4_TEST_CTX(mount_opt2);
2052
2053static inline void ctx_set_mount_flag(struct ext4_fs_context *ctx, int bit)
2054{
2055 set_bit(bit, &ctx->mask_s_mount_flags);
2056 set_bit(bit, &ctx->vals_s_mount_flags);
2057}
2058
2059static int ext4_parse_param(struct fs_context *fc, struct fs_parameter *param)
2060{
2061 struct ext4_fs_context *ctx = fc->fs_private;
2062 struct fs_parse_result result;
2063 const struct mount_opts *m;
2064 int is_remount;
2065 kuid_t uid;
2066 kgid_t gid;
2067 int token;
2068
2069 token = fs_parse(fc, ext4_param_specs, param, &result);
2070 if (token < 0)
2071 return token;
2072 is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2073
2074 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2075 if (token == m->token)
2076 break;
2077
2078 ctx->opt_flags |= m->flags;
2079
2080 if (m->flags & MOPT_EXPLICIT) {
2081 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2082 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_EXPLICIT_DELALLOC);
2083 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2084 ctx_set_mount_opt2(ctx,
2085 EXT4_MOUNT2_EXPLICIT_JOURNAL_CHECKSUM);
2086 } else
2087 return -EINVAL;
2088 }
2089
2090 if (m->flags & MOPT_NOSUPPORT) {
2091 ext4_msg(NULL, KERN_ERR, "%s option not supported",
2092 param->key);
2093 return 0;
2094 }
2095
2096 switch (token) {
2097#ifdef CONFIG_QUOTA
2098 case Opt_usrjquota:
2099 if (!*param->string)
2100 return unnote_qf_name(fc, USRQUOTA);
2101 else
2102 return note_qf_name(fc, USRQUOTA, param);
2103 case Opt_grpjquota:
2104 if (!*param->string)
2105 return unnote_qf_name(fc, GRPQUOTA);
2106 else
2107 return note_qf_name(fc, GRPQUOTA, param);
2108#endif
2109 case Opt_sb:
2110 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2111 ext4_msg(NULL, KERN_WARNING,
2112 "Ignoring %s option on remount", param->key);
2113 } else {
2114 ctx->s_sb_block = result.uint_32;
2115 ctx->spec |= EXT4_SPEC_s_sb_block;
2116 }
2117 return 0;
2118 case Opt_removed:
2119 ext4_msg(NULL, KERN_WARNING, "Ignoring removed %s option",
2120 param->key);
2121 return 0;
2122 case Opt_abort:
2123 ctx_set_mount_flag(ctx, EXT4_MF_FS_ABORTED);
2124 return 0;
2125 case Opt_inlinecrypt:
2126#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2127 ctx_set_flags(ctx, SB_INLINECRYPT);
2128#else
2129 ext4_msg(NULL, KERN_ERR, "inline encryption not supported");
2130#endif
2131 return 0;
2132 case Opt_errors:
2133 ctx_clear_mount_opt(ctx, EXT4_MOUNT_ERRORS_MASK);
2134 ctx_set_mount_opt(ctx, result.uint_32);
2135 return 0;
2136#ifdef CONFIG_QUOTA
2137 case Opt_jqfmt:
2138 ctx->s_jquota_fmt = result.uint_32;
2139 ctx->spec |= EXT4_SPEC_JQFMT;
2140 return 0;
2141#endif
2142 case Opt_data:
2143 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2144 ctx_set_mount_opt(ctx, result.uint_32);
2145 ctx->spec |= EXT4_SPEC_DATAJ;
2146 return 0;
2147 case Opt_commit:
2148 if (result.uint_32 == 0)
2149 ctx->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE;
2150 else if (result.uint_32 > INT_MAX / HZ) {
2151 ext4_msg(NULL, KERN_ERR,
2152 "Invalid commit interval %d, "
2153 "must be smaller than %d",
2154 result.uint_32, INT_MAX / HZ);
2155 return -EINVAL;
2156 }
2157 ctx->s_commit_interval = HZ * result.uint_32;
2158 ctx->spec |= EXT4_SPEC_s_commit_interval;
2159 return 0;
2160 case Opt_debug_want_extra_isize:
2161 if ((result.uint_32 & 1) || (result.uint_32 < 4)) {
2162 ext4_msg(NULL, KERN_ERR,
2163 "Invalid want_extra_isize %d", result.uint_32);
2164 return -EINVAL;
2165 }
2166 ctx->s_want_extra_isize = result.uint_32;
2167 ctx->spec |= EXT4_SPEC_s_want_extra_isize;
2168 return 0;
2169 case Opt_max_batch_time:
2170 ctx->s_max_batch_time = result.uint_32;
2171 ctx->spec |= EXT4_SPEC_s_max_batch_time;
2172 return 0;
2173 case Opt_min_batch_time:
2174 ctx->s_min_batch_time = result.uint_32;
2175 ctx->spec |= EXT4_SPEC_s_min_batch_time;
2176 return 0;
2177 case Opt_inode_readahead_blks:
2178 if (result.uint_32 &&
2179 (result.uint_32 > (1 << 30) ||
2180 !is_power_of_2(result.uint_32))) {
2181 ext4_msg(NULL, KERN_ERR,
2182 "EXT4-fs: inode_readahead_blks must be "
2183 "0 or a power of 2 smaller than 2^31");
2184 return -EINVAL;
2185 }
2186 ctx->s_inode_readahead_blks = result.uint_32;
2187 ctx->spec |= EXT4_SPEC_s_inode_readahead_blks;
2188 return 0;
2189 case Opt_init_itable:
2190 ctx_set_mount_opt(ctx, EXT4_MOUNT_INIT_INODE_TABLE);
2191 ctx->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
2192 if (param->type == fs_value_is_string)
2193 ctx->s_li_wait_mult = result.uint_32;
2194 ctx->spec |= EXT4_SPEC_s_li_wait_mult;
2195 return 0;
2196 case Opt_max_dir_size_kb:
2197 ctx->s_max_dir_size_kb = result.uint_32;
2198 ctx->spec |= EXT4_SPEC_s_max_dir_size_kb;
2199 return 0;
2200#ifdef CONFIG_EXT4_DEBUG
2201 case Opt_fc_debug_max_replay:
2202 ctx->s_fc_debug_max_replay = result.uint_32;
2203 ctx->spec |= EXT4_SPEC_s_fc_debug_max_replay;
2204 return 0;
2205#endif
2206 case Opt_stripe:
2207 ctx->s_stripe = result.uint_32;
2208 ctx->spec |= EXT4_SPEC_s_stripe;
2209 return 0;
2210 case Opt_resuid:
2211 uid = make_kuid(current_user_ns(), result.uint_32);
2212 if (!uid_valid(uid)) {
2213 ext4_msg(NULL, KERN_ERR, "Invalid uid value %d",
2214 result.uint_32);
2215 return -EINVAL;
2216 }
2217 ctx->s_resuid = uid;
2218 ctx->spec |= EXT4_SPEC_s_resuid;
2219 return 0;
2220 case Opt_resgid:
2221 gid = make_kgid(current_user_ns(), result.uint_32);
2222 if (!gid_valid(gid)) {
2223 ext4_msg(NULL, KERN_ERR, "Invalid gid value %d",
2224 result.uint_32);
2225 return -EINVAL;
2226 }
2227 ctx->s_resgid = gid;
2228 ctx->spec |= EXT4_SPEC_s_resgid;
2229 return 0;
2230 case Opt_journal_dev:
2231 if (is_remount) {
2232 ext4_msg(NULL, KERN_ERR,
2233 "Cannot specify journal on remount");
2234 return -EINVAL;
2235 }
2236 ctx->journal_devnum = result.uint_32;
2237 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2238 return 0;
2239 case Opt_journal_path:
2240 {
2241 struct inode *journal_inode;
2242 struct path path;
2243 int error;
2244
2245 if (is_remount) {
2246 ext4_msg(NULL, KERN_ERR,
2247 "Cannot specify journal on remount");
2248 return -EINVAL;
2249 }
2250
2251 error = fs_lookup_param(fc, param, 1, LOOKUP_FOLLOW, &path);
2252 if (error) {
2253 ext4_msg(NULL, KERN_ERR, "error: could not find "
2254 "journal device path");
2255 return -EINVAL;
2256 }
2257
2258 journal_inode = d_inode(path.dentry);
2259 ctx->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2260 ctx->spec |= EXT4_SPEC_JOURNAL_DEV;
2261 path_put(&path);
2262 return 0;
2263 }
2264 case Opt_journal_ioprio:
2265 if (result.uint_32 > 7) {
2266 ext4_msg(NULL, KERN_ERR, "Invalid journal IO priority"
2267 " (must be 0-7)");
2268 return -EINVAL;
2269 }
2270 ctx->journal_ioprio =
2271 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, result.uint_32);
2272 ctx->spec |= EXT4_SPEC_JOURNAL_IOPRIO;
2273 return 0;
2274 case Opt_test_dummy_encryption:
2275 return ext4_parse_test_dummy_encryption(param, ctx);
2276 case Opt_dax:
2277 case Opt_dax_type:
2278#ifdef CONFIG_FS_DAX
2279 {
2280 int type = (token == Opt_dax) ?
2281 Opt_dax : result.uint_32;
2282
2283 switch (type) {
2284 case Opt_dax:
2285 case Opt_dax_always:
2286 ctx_set_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2287 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2288 break;
2289 case Opt_dax_never:
2290 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2291 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2292 break;
2293 case Opt_dax_inode:
2294 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS);
2295 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER);
2296 /* Strictly for printing options */
2297 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE);
2298 break;
2299 }
2300 return 0;
2301 }
2302#else
2303 ext4_msg(NULL, KERN_INFO, "dax option not supported");
2304 return -EINVAL;
2305#endif
2306 case Opt_data_err:
2307 if (result.uint_32 == Opt_data_err_abort)
2308 ctx_set_mount_opt(ctx, m->mount_opt);
2309 else if (result.uint_32 == Opt_data_err_ignore)
2310 ctx_clear_mount_opt(ctx, m->mount_opt);
2311 return 0;
2312 case Opt_mb_optimize_scan:
2313 if (result.int_32 == 1) {
2314 ctx_set_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2315 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2316 } else if (result.int_32 == 0) {
2317 ctx_clear_mount_opt2(ctx, EXT4_MOUNT2_MB_OPTIMIZE_SCAN);
2318 ctx->spec |= EXT4_SPEC_mb_optimize_scan;
2319 } else {
2320 ext4_msg(NULL, KERN_WARNING,
2321 "mb_optimize_scan should be set to 0 or 1.");
2322 return -EINVAL;
2323 }
2324 return 0;
2325 }
2326
2327 /*
2328 * At this point we should only be getting options requiring MOPT_SET,
2329 * or MOPT_CLEAR. Anything else is a bug
2330 */
2331 if (m->token == Opt_err) {
2332 ext4_msg(NULL, KERN_WARNING, "buggy handling of option %s",
2333 param->key);
2334 WARN_ON(1);
2335 return -EINVAL;
2336 }
2337
2338 else {
2339 unsigned int set = 0;
2340
2341 if ((param->type == fs_value_is_flag) ||
2342 result.uint_32 > 0)
2343 set = 1;
2344
2345 if (m->flags & MOPT_CLEAR)
2346 set = !set;
2347 else if (unlikely(!(m->flags & MOPT_SET))) {
2348 ext4_msg(NULL, KERN_WARNING,
2349 "buggy handling of option %s",
2350 param->key);
2351 WARN_ON(1);
2352 return -EINVAL;
2353 }
2354 if (m->flags & MOPT_2) {
2355 if (set != 0)
2356 ctx_set_mount_opt2(ctx, m->mount_opt);
2357 else
2358 ctx_clear_mount_opt2(ctx, m->mount_opt);
2359 } else {
2360 if (set != 0)
2361 ctx_set_mount_opt(ctx, m->mount_opt);
2362 else
2363 ctx_clear_mount_opt(ctx, m->mount_opt);
2364 }
2365 }
2366
2367 return 0;
2368}
2369
2370static int parse_options(struct fs_context *fc, char *options)
2371{
2372 struct fs_parameter param;
2373 int ret;
2374 char *key;
2375
2376 if (!options)
2377 return 0;
2378
2379 while ((key = strsep(&options, ",")) != NULL) {
2380 if (*key) {
2381 size_t v_len = 0;
2382 char *value = strchr(key, '=');
2383
2384 param.type = fs_value_is_flag;
2385 param.string = NULL;
2386
2387 if (value) {
2388 if (value == key)
2389 continue;
2390
2391 *value++ = 0;
2392 v_len = strlen(value);
2393 param.string = kmemdup_nul(value, v_len,
2394 GFP_KERNEL);
2395 if (!param.string)
2396 return -ENOMEM;
2397 param.type = fs_value_is_string;
2398 }
2399
2400 param.key = key;
2401 param.size = v_len;
2402
2403 ret = ext4_parse_param(fc, ¶m);
2404 if (param.string)
2405 kfree(param.string);
2406 if (ret < 0)
2407 return ret;
2408 }
2409 }
2410
2411 ret = ext4_validate_options(fc);
2412 if (ret < 0)
2413 return ret;
2414
2415 return 0;
2416}
2417
2418static int parse_apply_sb_mount_options(struct super_block *sb,
2419 struct ext4_fs_context *m_ctx)
2420{
2421 struct ext4_sb_info *sbi = EXT4_SB(sb);
2422 char *s_mount_opts = NULL;
2423 struct ext4_fs_context *s_ctx = NULL;
2424 struct fs_context *fc = NULL;
2425 int ret = -ENOMEM;
2426
2427 if (!sbi->s_es->s_mount_opts[0])
2428 return 0;
2429
2430 s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
2431 sizeof(sbi->s_es->s_mount_opts),
2432 GFP_KERNEL);
2433 if (!s_mount_opts)
2434 return ret;
2435
2436 fc = kzalloc(sizeof(struct fs_context), GFP_KERNEL);
2437 if (!fc)
2438 goto out_free;
2439
2440 s_ctx = kzalloc(sizeof(struct ext4_fs_context), GFP_KERNEL);
2441 if (!s_ctx)
2442 goto out_free;
2443
2444 fc->fs_private = s_ctx;
2445 fc->s_fs_info = sbi;
2446
2447 ret = parse_options(fc, s_mount_opts);
2448 if (ret < 0)
2449 goto parse_failed;
2450
2451 ret = ext4_check_opt_consistency(fc, sb);
2452 if (ret < 0) {
2453parse_failed:
2454 ext4_msg(sb, KERN_WARNING,
2455 "failed to parse options in superblock: %s",
2456 s_mount_opts);
2457 ret = 0;
2458 goto out_free;
2459 }
2460
2461 if (s_ctx->spec & EXT4_SPEC_JOURNAL_DEV)
2462 m_ctx->journal_devnum = s_ctx->journal_devnum;
2463 if (s_ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)
2464 m_ctx->journal_ioprio = s_ctx->journal_ioprio;
2465
2466 ext4_apply_options(fc, sb);
2467 ret = 0;
2468
2469out_free:
2470 if (fc) {
2471 ext4_fc_free(fc);
2472 kfree(fc);
2473 }
2474 kfree(s_mount_opts);
2475 return ret;
2476}
2477
2478static void ext4_apply_quota_options(struct fs_context *fc,
2479 struct super_block *sb)
2480{
2481#ifdef CONFIG_QUOTA
2482 bool quota_feature = ext4_has_feature_quota(sb);
2483 struct ext4_fs_context *ctx = fc->fs_private;
2484 struct ext4_sb_info *sbi = EXT4_SB(sb);
2485 char *qname;
2486 int i;
2487
2488 if (quota_feature)
2489 return;
2490
2491 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2492 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2493 if (!(ctx->qname_spec & (1 << i)))
2494 continue;
2495
2496 qname = ctx->s_qf_names[i]; /* May be NULL */
2497 if (qname)
2498 set_opt(sb, QUOTA);
2499 ctx->s_qf_names[i] = NULL;
2500 qname = rcu_replace_pointer(sbi->s_qf_names[i], qname,
2501 lockdep_is_held(&sb->s_umount));
2502 if (qname)
2503 kfree_rcu(qname);
2504 }
2505 }
2506
2507 if (ctx->spec & EXT4_SPEC_JQFMT)
2508 sbi->s_jquota_fmt = ctx->s_jquota_fmt;
2509#endif
2510}
2511
2512/*
2513 * Check quota settings consistency.
2514 */
2515static int ext4_check_quota_consistency(struct fs_context *fc,
2516 struct super_block *sb)
2517{
2518#ifdef CONFIG_QUOTA
2519 struct ext4_fs_context *ctx = fc->fs_private;
2520 struct ext4_sb_info *sbi = EXT4_SB(sb);
2521 bool quota_feature = ext4_has_feature_quota(sb);
2522 bool quota_loaded = sb_any_quota_loaded(sb);
2523 bool usr_qf_name, grp_qf_name, usrquota, grpquota;
2524 int quota_flags, i;
2525
2526 /*
2527 * We do the test below only for project quotas. 'usrquota' and
2528 * 'grpquota' mount options are allowed even without quota feature
2529 * to support legacy quotas in quota files.
2530 */
2531 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_PRJQUOTA) &&
2532 !ext4_has_feature_project(sb)) {
2533 ext4_msg(NULL, KERN_ERR, "Project quota feature not enabled. "
2534 "Cannot enable project quota enforcement.");
2535 return -EINVAL;
2536 }
2537
2538 quota_flags = EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
2539 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA;
2540 if (quota_loaded &&
2541 ctx->mask_s_mount_opt & quota_flags &&
2542 !ctx_test_mount_opt(ctx, quota_flags))
2543 goto err_quota_change;
2544
2545 if (ctx->spec & EXT4_SPEC_JQUOTA) {
2546
2547 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
2548 if (!(ctx->qname_spec & (1 << i)))
2549 continue;
2550
2551 if (quota_loaded &&
2552 !!sbi->s_qf_names[i] != !!ctx->s_qf_names[i])
2553 goto err_jquota_change;
2554
2555 if (sbi->s_qf_names[i] && ctx->s_qf_names[i] &&
2556 strcmp(get_qf_name(sb, sbi, i),
2557 ctx->s_qf_names[i]) != 0)
2558 goto err_jquota_specified;
2559 }
2560
2561 if (quota_feature) {
2562 ext4_msg(NULL, KERN_INFO,
2563 "Journaled quota options ignored when "
2564 "QUOTA feature is enabled");
2565 return 0;
2566 }
2567 }
2568
2569 if (ctx->spec & EXT4_SPEC_JQFMT) {
2570 if (sbi->s_jquota_fmt != ctx->s_jquota_fmt && quota_loaded)
2571 goto err_jquota_change;
2572 if (quota_feature) {
2573 ext4_msg(NULL, KERN_INFO, "Quota format mount options "
2574 "ignored when QUOTA feature is enabled");
2575 return 0;
2576 }
2577 }
2578
2579 /* Make sure we don't mix old and new quota format */
2580 usr_qf_name = (get_qf_name(sb, sbi, USRQUOTA) ||
2581 ctx->s_qf_names[USRQUOTA]);
2582 grp_qf_name = (get_qf_name(sb, sbi, GRPQUOTA) ||
2583 ctx->s_qf_names[GRPQUOTA]);
2584
2585 usrquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2586 test_opt(sb, USRQUOTA));
2587
2588 grpquota = (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) ||
2589 test_opt(sb, GRPQUOTA));
2590
2591 if (usr_qf_name) {
2592 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2593 usrquota = false;
2594 }
2595 if (grp_qf_name) {
2596 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2597 grpquota = false;
2598 }
2599
2600 if (usr_qf_name || grp_qf_name) {
2601 if (usrquota || grpquota) {
2602 ext4_msg(NULL, KERN_ERR, "old and new quota "
2603 "format mixing");
2604 return -EINVAL;
2605 }
2606
2607 if (!(ctx->spec & EXT4_SPEC_JQFMT || sbi->s_jquota_fmt)) {
2608 ext4_msg(NULL, KERN_ERR, "journaled quota format "
2609 "not specified");
2610 return -EINVAL;
2611 }
2612 }
2613
2614 return 0;
2615
2616err_quota_change:
2617 ext4_msg(NULL, KERN_ERR,
2618 "Cannot change quota options when quota turned on");
2619 return -EINVAL;
2620err_jquota_change:
2621 ext4_msg(NULL, KERN_ERR, "Cannot change journaled quota "
2622 "options when quota turned on");
2623 return -EINVAL;
2624err_jquota_specified:
2625 ext4_msg(NULL, KERN_ERR, "%s quota file already specified",
2626 QTYPE2NAME(i));
2627 return -EINVAL;
2628#else
2629 return 0;
2630#endif
2631}
2632
2633static int ext4_check_test_dummy_encryption(const struct fs_context *fc,
2634 struct super_block *sb)
2635{
2636 const struct ext4_fs_context *ctx = fc->fs_private;
2637 const struct ext4_sb_info *sbi = EXT4_SB(sb);
2638 int err;
2639
2640 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy))
2641 return 0;
2642
2643 if (!ext4_has_feature_encrypt(sb)) {
2644 ext4_msg(NULL, KERN_WARNING,
2645 "test_dummy_encryption requires encrypt feature");
2646 return -EINVAL;
2647 }
2648 /*
2649 * This mount option is just for testing, and it's not worthwhile to
2650 * implement the extra complexity (e.g. RCU protection) that would be
2651 * needed to allow it to be set or changed during remount. We do allow
2652 * it to be specified during remount, but only if there is no change.
2653 */
2654 if (fc->purpose == FS_CONTEXT_FOR_RECONFIGURE) {
2655 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2656 &ctx->dummy_enc_policy))
2657 return 0;
2658 ext4_msg(NULL, KERN_WARNING,
2659 "Can't set or change test_dummy_encryption on remount");
2660 return -EINVAL;
2661 }
2662 /* Also make sure s_mount_opts didn't contain a conflicting value. */
2663 if (fscrypt_is_dummy_policy_set(&sbi->s_dummy_enc_policy)) {
2664 if (fscrypt_dummy_policies_equal(&sbi->s_dummy_enc_policy,
2665 &ctx->dummy_enc_policy))
2666 return 0;
2667 ext4_msg(NULL, KERN_WARNING,
2668 "Conflicting test_dummy_encryption options");
2669 return -EINVAL;
2670 }
2671 /*
2672 * fscrypt_add_test_dummy_key() technically changes the super_block, so
2673 * technically it should be delayed until ext4_apply_options() like the
2674 * other changes. But since we never get here for remounts (see above),
2675 * and this is the last chance to report errors, we do it here.
2676 */
2677 err = fscrypt_add_test_dummy_key(sb, &ctx->dummy_enc_policy);
2678 if (err)
2679 ext4_msg(NULL, KERN_WARNING,
2680 "Error adding test dummy encryption key [%d]", err);
2681 return err;
2682}
2683
2684static void ext4_apply_test_dummy_encryption(struct ext4_fs_context *ctx,
2685 struct super_block *sb)
2686{
2687 if (!fscrypt_is_dummy_policy_set(&ctx->dummy_enc_policy) ||
2688 /* if already set, it was already verified to be the same */
2689 fscrypt_is_dummy_policy_set(&EXT4_SB(sb)->s_dummy_enc_policy))
2690 return;
2691 EXT4_SB(sb)->s_dummy_enc_policy = ctx->dummy_enc_policy;
2692 memset(&ctx->dummy_enc_policy, 0, sizeof(ctx->dummy_enc_policy));
2693 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2694}
2695
2696static int ext4_check_opt_consistency(struct fs_context *fc,
2697 struct super_block *sb)
2698{
2699 struct ext4_fs_context *ctx = fc->fs_private;
2700 struct ext4_sb_info *sbi = fc->s_fs_info;
2701 int is_remount = fc->purpose == FS_CONTEXT_FOR_RECONFIGURE;
2702 int err;
2703
2704 if ((ctx->opt_flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2705 ext4_msg(NULL, KERN_ERR,
2706 "Mount option(s) incompatible with ext2");
2707 return -EINVAL;
2708 }
2709 if ((ctx->opt_flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2710 ext4_msg(NULL, KERN_ERR,
2711 "Mount option(s) incompatible with ext3");
2712 return -EINVAL;
2713 }
2714
2715 if (ctx->s_want_extra_isize >
2716 (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE)) {
2717 ext4_msg(NULL, KERN_ERR,
2718 "Invalid want_extra_isize %d",
2719 ctx->s_want_extra_isize);
2720 return -EINVAL;
2721 }
2722
2723 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DIOREAD_NOLOCK)) {
2724 int blocksize =
2725 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2726 if (blocksize < PAGE_SIZE)
2727 ext4_msg(NULL, KERN_WARNING, "Warning: mounting with an "
2728 "experimental mount option 'dioread_nolock' "
2729 "for blocksize < PAGE_SIZE");
2730 }
2731
2732 err = ext4_check_test_dummy_encryption(fc, sb);
2733 if (err)
2734 return err;
2735
2736 if ((ctx->spec & EXT4_SPEC_DATAJ) && is_remount) {
2737 if (!sbi->s_journal) {
2738 ext4_msg(NULL, KERN_WARNING,
2739 "Remounting file system with no journal "
2740 "so ignoring journalled data option");
2741 ctx_clear_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS);
2742 } else if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DATA_FLAGS) !=
2743 test_opt(sb, DATA_FLAGS)) {
2744 ext4_msg(NULL, KERN_ERR, "Cannot change data mode "
2745 "on remount");
2746 return -EINVAL;
2747 }
2748 }
2749
2750 if (is_remount) {
2751 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2752 (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)) {
2753 ext4_msg(NULL, KERN_ERR, "can't mount with "
2754 "both data=journal and dax");
2755 return -EINVAL;
2756 }
2757
2758 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_DAX_ALWAYS) &&
2759 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2760 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2761fail_dax_change_remount:
2762 ext4_msg(NULL, KERN_ERR, "can't change "
2763 "dax mount option while remounting");
2764 return -EINVAL;
2765 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_NEVER) &&
2766 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2767 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS))) {
2768 goto fail_dax_change_remount;
2769 } else if (ctx_test_mount_opt2(ctx, EXT4_MOUNT2_DAX_INODE) &&
2770 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2771 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2772 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE))) {
2773 goto fail_dax_change_remount;
2774 }
2775 }
2776
2777 return ext4_check_quota_consistency(fc, sb);
2778}
2779
2780static void ext4_apply_options(struct fs_context *fc, struct super_block *sb)
2781{
2782 struct ext4_fs_context *ctx = fc->fs_private;
2783 struct ext4_sb_info *sbi = fc->s_fs_info;
2784
2785 sbi->s_mount_opt &= ~ctx->mask_s_mount_opt;
2786 sbi->s_mount_opt |= ctx->vals_s_mount_opt;
2787 sbi->s_mount_opt2 &= ~ctx->mask_s_mount_opt2;
2788 sbi->s_mount_opt2 |= ctx->vals_s_mount_opt2;
2789 sbi->s_mount_flags &= ~ctx->mask_s_mount_flags;
2790 sbi->s_mount_flags |= ctx->vals_s_mount_flags;
2791 sb->s_flags &= ~ctx->mask_s_flags;
2792 sb->s_flags |= ctx->vals_s_flags;
2793
2794#define APPLY(X) ({ if (ctx->spec & EXT4_SPEC_##X) sbi->X = ctx->X; })
2795 APPLY(s_commit_interval);
2796 APPLY(s_stripe);
2797 APPLY(s_max_batch_time);
2798 APPLY(s_min_batch_time);
2799 APPLY(s_want_extra_isize);
2800 APPLY(s_inode_readahead_blks);
2801 APPLY(s_max_dir_size_kb);
2802 APPLY(s_li_wait_mult);
2803 APPLY(s_resgid);
2804 APPLY(s_resuid);
2805
2806#ifdef CONFIG_EXT4_DEBUG
2807 APPLY(s_fc_debug_max_replay);
2808#endif
2809
2810 ext4_apply_quota_options(fc, sb);
2811 ext4_apply_test_dummy_encryption(ctx, sb);
2812}
2813
2814
2815static int ext4_validate_options(struct fs_context *fc)
2816{
2817#ifdef CONFIG_QUOTA
2818 struct ext4_fs_context *ctx = fc->fs_private;
2819 char *usr_qf_name, *grp_qf_name;
2820
2821 usr_qf_name = ctx->s_qf_names[USRQUOTA];
2822 grp_qf_name = ctx->s_qf_names[GRPQUOTA];
2823
2824 if (usr_qf_name || grp_qf_name) {
2825 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) && usr_qf_name)
2826 ctx_clear_mount_opt(ctx, EXT4_MOUNT_USRQUOTA);
2827
2828 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA) && grp_qf_name)
2829 ctx_clear_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA);
2830
2831 if (ctx_test_mount_opt(ctx, EXT4_MOUNT_USRQUOTA) ||
2832 ctx_test_mount_opt(ctx, EXT4_MOUNT_GRPQUOTA)) {
2833 ext4_msg(NULL, KERN_ERR, "old and new quota "
2834 "format mixing");
2835 return -EINVAL;
2836 }
2837 }
2838#endif
2839 return 1;
2840}
2841
2842static inline void ext4_show_quota_options(struct seq_file *seq,
2843 struct super_block *sb)
2844{
2845#if defined(CONFIG_QUOTA)
2846 struct ext4_sb_info *sbi = EXT4_SB(sb);
2847 char *usr_qf_name, *grp_qf_name;
2848
2849 if (sbi->s_jquota_fmt) {
2850 char *fmtname = "";
2851
2852 switch (sbi->s_jquota_fmt) {
2853 case QFMT_VFS_OLD:
2854 fmtname = "vfsold";
2855 break;
2856 case QFMT_VFS_V0:
2857 fmtname = "vfsv0";
2858 break;
2859 case QFMT_VFS_V1:
2860 fmtname = "vfsv1";
2861 break;
2862 }
2863 seq_printf(seq, ",jqfmt=%s", fmtname);
2864 }
2865
2866 rcu_read_lock();
2867 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2868 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2869 if (usr_qf_name)
2870 seq_show_option(seq, "usrjquota", usr_qf_name);
2871 if (grp_qf_name)
2872 seq_show_option(seq, "grpjquota", grp_qf_name);
2873 rcu_read_unlock();
2874#endif
2875}
2876
2877static const char *token2str(int token)
2878{
2879 const struct fs_parameter_spec *spec;
2880
2881 for (spec = ext4_param_specs; spec->name != NULL; spec++)
2882 if (spec->opt == token && !spec->type)
2883 break;
2884 return spec->name;
2885}
2886
2887/*
2888 * Show an option if
2889 * - it's set to a non-default value OR
2890 * - if the per-sb default is different from the global default
2891 */
2892static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2893 int nodefs)
2894{
2895 struct ext4_sb_info *sbi = EXT4_SB(sb);
2896 struct ext4_super_block *es = sbi->s_es;
2897 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2898 const struct mount_opts *m;
2899 char sep = nodefs ? '\n' : ',';
2900
2901#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2902#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2903
2904 if (sbi->s_sb_block != 1)
2905 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2906
2907 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2908 int want_set = m->flags & MOPT_SET;
2909 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2910 m->flags & MOPT_SKIP)
2911 continue;
2912 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2913 continue; /* skip if same as the default */
2914 if ((want_set &&
2915 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2916 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2917 continue; /* select Opt_noFoo vs Opt_Foo */
2918 SEQ_OPTS_PRINT("%s", token2str(m->token));
2919 }
2920
2921 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2922 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2923 SEQ_OPTS_PRINT("resuid=%u",
2924 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2925 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2926 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2927 SEQ_OPTS_PRINT("resgid=%u",
2928 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2929 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2930 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2931 SEQ_OPTS_PUTS("errors=remount-ro");
2932 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2933 SEQ_OPTS_PUTS("errors=continue");
2934 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2935 SEQ_OPTS_PUTS("errors=panic");
2936 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2937 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2938 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2939 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2940 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2941 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2942 if (nodefs || sbi->s_stripe)
2943 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2944 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2945 (sbi->s_mount_opt ^ def_mount_opt)) {
2946 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2947 SEQ_OPTS_PUTS("data=journal");
2948 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2949 SEQ_OPTS_PUTS("data=ordered");
2950 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2951 SEQ_OPTS_PUTS("data=writeback");
2952 }
2953 if (nodefs ||
2954 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2955 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2956 sbi->s_inode_readahead_blks);
2957
2958 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2959 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2960 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2961 if (nodefs || sbi->s_max_dir_size_kb)
2962 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2963 if (test_opt(sb, DATA_ERR_ABORT))
2964 SEQ_OPTS_PUTS("data_err=abort");
2965
2966 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2967
2968 if (sb->s_flags & SB_INLINECRYPT)
2969 SEQ_OPTS_PUTS("inlinecrypt");
2970
2971 if (test_opt(sb, DAX_ALWAYS)) {
2972 if (IS_EXT2_SB(sb))
2973 SEQ_OPTS_PUTS("dax");
2974 else
2975 SEQ_OPTS_PUTS("dax=always");
2976 } else if (test_opt2(sb, DAX_NEVER)) {
2977 SEQ_OPTS_PUTS("dax=never");
2978 } else if (test_opt2(sb, DAX_INODE)) {
2979 SEQ_OPTS_PUTS("dax=inode");
2980 }
2981
2982 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2983 !test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2984 SEQ_OPTS_PUTS("mb_optimize_scan=0");
2985 } else if (sbi->s_groups_count < MB_DEFAULT_LINEAR_SCAN_THRESHOLD &&
2986 test_opt2(sb, MB_OPTIMIZE_SCAN)) {
2987 SEQ_OPTS_PUTS("mb_optimize_scan=1");
2988 }
2989
2990 ext4_show_quota_options(seq, sb);
2991 return 0;
2992}
2993
2994static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2995{
2996 return _ext4_show_options(seq, root->d_sb, 0);
2997}
2998
2999int ext4_seq_options_show(struct seq_file *seq, void *offset)
3000{
3001 struct super_block *sb = seq->private;
3002 int rc;
3003
3004 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
3005 rc = _ext4_show_options(seq, sb, 1);
3006 seq_puts(seq, "\n");
3007 return rc;
3008}
3009
3010static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
3011 int read_only)
3012{
3013 struct ext4_sb_info *sbi = EXT4_SB(sb);
3014 int err = 0;
3015
3016 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
3017 ext4_msg(sb, KERN_ERR, "revision level too high, "
3018 "forcing read-only mode");
3019 err = -EROFS;
3020 goto done;
3021 }
3022 if (read_only)
3023 goto done;
3024 if (!(sbi->s_mount_state & EXT4_VALID_FS))
3025 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
3026 "running e2fsck is recommended");
3027 else if (sbi->s_mount_state & EXT4_ERROR_FS)
3028 ext4_msg(sb, KERN_WARNING,
3029 "warning: mounting fs with errors, "
3030 "running e2fsck is recommended");
3031 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
3032 le16_to_cpu(es->s_mnt_count) >=
3033 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
3034 ext4_msg(sb, KERN_WARNING,
3035 "warning: maximal mount count reached, "
3036 "running e2fsck is recommended");
3037 else if (le32_to_cpu(es->s_checkinterval) &&
3038 (ext4_get_tstamp(es, s_lastcheck) +
3039 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
3040 ext4_msg(sb, KERN_WARNING,
3041 "warning: checktime reached, "
3042 "running e2fsck is recommended");
3043 if (!sbi->s_journal)
3044 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
3045 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
3046 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
3047 le16_add_cpu(&es->s_mnt_count, 1);
3048 ext4_update_tstamp(es, s_mtime);
3049 if (sbi->s_journal) {
3050 ext4_set_feature_journal_needs_recovery(sb);
3051 if (ext4_has_feature_orphan_file(sb))
3052 ext4_set_feature_orphan_present(sb);
3053 }
3054
3055 err = ext4_commit_super(sb);
3056done:
3057 if (test_opt(sb, DEBUG))
3058 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
3059 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
3060 sb->s_blocksize,
3061 sbi->s_groups_count,
3062 EXT4_BLOCKS_PER_GROUP(sb),
3063 EXT4_INODES_PER_GROUP(sb),
3064 sbi->s_mount_opt, sbi->s_mount_opt2);
3065 return err;
3066}
3067
3068int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
3069{
3070 struct ext4_sb_info *sbi = EXT4_SB(sb);
3071 struct flex_groups **old_groups, **new_groups;
3072 int size, i, j;
3073
3074 if (!sbi->s_log_groups_per_flex)
3075 return 0;
3076
3077 size = ext4_flex_group(sbi, ngroup - 1) + 1;
3078 if (size <= sbi->s_flex_groups_allocated)
3079 return 0;
3080
3081 new_groups = kvzalloc(roundup_pow_of_two(size *
3082 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
3083 if (!new_groups) {
3084 ext4_msg(sb, KERN_ERR,
3085 "not enough memory for %d flex group pointers", size);
3086 return -ENOMEM;
3087 }
3088 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
3089 new_groups[i] = kvzalloc(roundup_pow_of_two(
3090 sizeof(struct flex_groups)),
3091 GFP_KERNEL);
3092 if (!new_groups[i]) {
3093 for (j = sbi->s_flex_groups_allocated; j < i; j++)
3094 kvfree(new_groups[j]);
3095 kvfree(new_groups);
3096 ext4_msg(sb, KERN_ERR,
3097 "not enough memory for %d flex groups", size);
3098 return -ENOMEM;
3099 }
3100 }
3101 rcu_read_lock();
3102 old_groups = rcu_dereference(sbi->s_flex_groups);
3103 if (old_groups)
3104 memcpy(new_groups, old_groups,
3105 (sbi->s_flex_groups_allocated *
3106 sizeof(struct flex_groups *)));
3107 rcu_read_unlock();
3108 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
3109 sbi->s_flex_groups_allocated = size;
3110 if (old_groups)
3111 ext4_kvfree_array_rcu(old_groups);
3112 return 0;
3113}
3114
3115static int ext4_fill_flex_info(struct super_block *sb)
3116{
3117 struct ext4_sb_info *sbi = EXT4_SB(sb);
3118 struct ext4_group_desc *gdp = NULL;
3119 struct flex_groups *fg;
3120 ext4_group_t flex_group;
3121 int i, err;
3122
3123 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
3124 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
3125 sbi->s_log_groups_per_flex = 0;
3126 return 1;
3127 }
3128
3129 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
3130 if (err)
3131 goto failed;
3132
3133 for (i = 0; i < sbi->s_groups_count; i++) {
3134 gdp = ext4_get_group_desc(sb, i, NULL);
3135
3136 flex_group = ext4_flex_group(sbi, i);
3137 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
3138 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
3139 atomic64_add(ext4_free_group_clusters(sb, gdp),
3140 &fg->free_clusters);
3141 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
3142 }
3143
3144 return 1;
3145failed:
3146 return 0;
3147}
3148
3149static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
3150 struct ext4_group_desc *gdp)
3151{
3152 int offset = offsetof(struct ext4_group_desc, bg_checksum);
3153 __u16 crc = 0;
3154 __le32 le_group = cpu_to_le32(block_group);
3155 struct ext4_sb_info *sbi = EXT4_SB(sb);
3156
3157 if (ext4_has_metadata_csum(sbi->s_sb)) {
3158 /* Use new metadata_csum algorithm */
3159 __u32 csum32;
3160 __u16 dummy_csum = 0;
3161
3162 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
3163 sizeof(le_group));
3164 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
3165 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
3166 sizeof(dummy_csum));
3167 offset += sizeof(dummy_csum);
3168 if (offset < sbi->s_desc_size)
3169 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
3170 sbi->s_desc_size - offset);
3171
3172 crc = csum32 & 0xFFFF;
3173 goto out;
3174 }
3175
3176 /* old crc16 code */
3177 if (!ext4_has_feature_gdt_csum(sb))
3178 return 0;
3179
3180 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
3181 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
3182 crc = crc16(crc, (__u8 *)gdp, offset);
3183 offset += sizeof(gdp->bg_checksum); /* skip checksum */
3184 /* for checksum of struct ext4_group_desc do the rest...*/
3185 if (ext4_has_feature_64bit(sb) &&
3186 offset < le16_to_cpu(sbi->s_es->s_desc_size))
3187 crc = crc16(crc, (__u8 *)gdp + offset,
3188 le16_to_cpu(sbi->s_es->s_desc_size) -
3189 offset);
3190
3191out:
3192 return cpu_to_le16(crc);
3193}
3194
3195int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
3196 struct ext4_group_desc *gdp)
3197{
3198 if (ext4_has_group_desc_csum(sb) &&
3199 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
3200 return 0;
3201
3202 return 1;
3203}
3204
3205void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
3206 struct ext4_group_desc *gdp)
3207{
3208 if (!ext4_has_group_desc_csum(sb))
3209 return;
3210 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
3211}
3212
3213/* Called at mount-time, super-block is locked */
3214static int ext4_check_descriptors(struct super_block *sb,
3215 ext4_fsblk_t sb_block,
3216 ext4_group_t *first_not_zeroed)
3217{
3218 struct ext4_sb_info *sbi = EXT4_SB(sb);
3219 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
3220 ext4_fsblk_t last_block;
3221 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
3222 ext4_fsblk_t block_bitmap;
3223 ext4_fsblk_t inode_bitmap;
3224 ext4_fsblk_t inode_table;
3225 int flexbg_flag = 0;
3226 ext4_group_t i, grp = sbi->s_groups_count;
3227
3228 if (ext4_has_feature_flex_bg(sb))
3229 flexbg_flag = 1;
3230
3231 ext4_debug("Checking group descriptors");
3232
3233 for (i = 0; i < sbi->s_groups_count; i++) {
3234 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
3235
3236 if (i == sbi->s_groups_count - 1 || flexbg_flag)
3237 last_block = ext4_blocks_count(sbi->s_es) - 1;
3238 else
3239 last_block = first_block +
3240 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
3241
3242 if ((grp == sbi->s_groups_count) &&
3243 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3244 grp = i;
3245
3246 block_bitmap = ext4_block_bitmap(sb, gdp);
3247 if (block_bitmap == sb_block) {
3248 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3249 "Block bitmap for group %u overlaps "
3250 "superblock", i);
3251 if (!sb_rdonly(sb))
3252 return 0;
3253 }
3254 if (block_bitmap >= sb_block + 1 &&
3255 block_bitmap <= last_bg_block) {
3256 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3257 "Block bitmap for group %u overlaps "
3258 "block group descriptors", i);
3259 if (!sb_rdonly(sb))
3260 return 0;
3261 }
3262 if (block_bitmap < first_block || block_bitmap > last_block) {
3263 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3264 "Block bitmap for group %u not in group "
3265 "(block %llu)!", i, block_bitmap);
3266 return 0;
3267 }
3268 inode_bitmap = ext4_inode_bitmap(sb, gdp);
3269 if (inode_bitmap == sb_block) {
3270 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3271 "Inode bitmap for group %u overlaps "
3272 "superblock", i);
3273 if (!sb_rdonly(sb))
3274 return 0;
3275 }
3276 if (inode_bitmap >= sb_block + 1 &&
3277 inode_bitmap <= last_bg_block) {
3278 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3279 "Inode bitmap for group %u overlaps "
3280 "block group descriptors", i);
3281 if (!sb_rdonly(sb))
3282 return 0;
3283 }
3284 if (inode_bitmap < first_block || inode_bitmap > last_block) {
3285 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3286 "Inode bitmap for group %u not in group "
3287 "(block %llu)!", i, inode_bitmap);
3288 return 0;
3289 }
3290 inode_table = ext4_inode_table(sb, gdp);
3291 if (inode_table == sb_block) {
3292 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3293 "Inode table for group %u overlaps "
3294 "superblock", i);
3295 if (!sb_rdonly(sb))
3296 return 0;
3297 }
3298 if (inode_table >= sb_block + 1 &&
3299 inode_table <= last_bg_block) {
3300 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3301 "Inode table for group %u overlaps "
3302 "block group descriptors", i);
3303 if (!sb_rdonly(sb))
3304 return 0;
3305 }
3306 if (inode_table < first_block ||
3307 inode_table + sbi->s_itb_per_group - 1 > last_block) {
3308 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3309 "Inode table for group %u not in group "
3310 "(block %llu)!", i, inode_table);
3311 return 0;
3312 }
3313 ext4_lock_group(sb, i);
3314 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
3315 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
3316 "Checksum for group %u failed (%u!=%u)",
3317 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
3318 gdp)), le16_to_cpu(gdp->bg_checksum));
3319 if (!sb_rdonly(sb)) {
3320 ext4_unlock_group(sb, i);
3321 return 0;
3322 }
3323 }
3324 ext4_unlock_group(sb, i);
3325 if (!flexbg_flag)
3326 first_block += EXT4_BLOCKS_PER_GROUP(sb);
3327 }
3328 if (NULL != first_not_zeroed)
3329 *first_not_zeroed = grp;
3330 return 1;
3331}
3332
3333/*
3334 * Maximal extent format file size.
3335 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3336 * extent format containers, within a sector_t, and within i_blocks
3337 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3338 * so that won't be a limiting factor.
3339 *
3340 * However there is other limiting factor. We do store extents in the form
3341 * of starting block and length, hence the resulting length of the extent
3342 * covering maximum file size must fit into on-disk format containers as
3343 * well. Given that length is always by 1 unit bigger than max unit (because
3344 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3345 *
3346 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3347 */
3348static loff_t ext4_max_size(int blkbits, int has_huge_files)
3349{
3350 loff_t res;
3351 loff_t upper_limit = MAX_LFS_FILESIZE;
3352
3353 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3354
3355 if (!has_huge_files) {
3356 upper_limit = (1LL << 32) - 1;
3357
3358 /* total blocks in file system block size */
3359 upper_limit >>= (blkbits - 9);
3360 upper_limit <<= blkbits;
3361 }
3362
3363 /*
3364 * 32-bit extent-start container, ee_block. We lower the maxbytes
3365 * by one fs block, so ee_len can cover the extent of maximum file
3366 * size
3367 */
3368 res = (1LL << 32) - 1;
3369 res <<= blkbits;
3370
3371 /* Sanity check against vm- & vfs- imposed limits */
3372 if (res > upper_limit)
3373 res = upper_limit;
3374
3375 return res;
3376}
3377
3378/*
3379 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3380 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3381 * We need to be 1 filesystem block less than the 2^48 sector limit.
3382 */
3383static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3384{
3385 loff_t upper_limit, res = EXT4_NDIR_BLOCKS;
3386 int meta_blocks;
3387 unsigned int ppb = 1 << (bits - 2);
3388
3389 /*
3390 * This is calculated to be the largest file size for a dense, block
3391 * mapped file such that the file's total number of 512-byte sectors,
3392 * including data and all indirect blocks, does not exceed (2^48 - 1).
3393 *
3394 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3395 * number of 512-byte sectors of the file.
3396 */
3397 if (!has_huge_files) {
3398 /*
3399 * !has_huge_files or implies that the inode i_block field
3400 * represents total file blocks in 2^32 512-byte sectors ==
3401 * size of vfs inode i_blocks * 8
3402 */
3403 upper_limit = (1LL << 32) - 1;
3404
3405 /* total blocks in file system block size */
3406 upper_limit >>= (bits - 9);
3407
3408 } else {
3409 /*
3410 * We use 48 bit ext4_inode i_blocks
3411 * With EXT4_HUGE_FILE_FL set the i_blocks
3412 * represent total number of blocks in
3413 * file system block size
3414 */
3415 upper_limit = (1LL << 48) - 1;
3416
3417 }
3418
3419 /* Compute how many blocks we can address by block tree */
3420 res += ppb;
3421 res += ppb * ppb;
3422 res += ((loff_t)ppb) * ppb * ppb;
3423 /* Compute how many metadata blocks are needed */
3424 meta_blocks = 1;
3425 meta_blocks += 1 + ppb;
3426 meta_blocks += 1 + ppb + ppb * ppb;
3427 /* Does block tree limit file size? */
3428 if (res + meta_blocks <= upper_limit)
3429 goto check_lfs;
3430
3431 res = upper_limit;
3432 /* How many metadata blocks are needed for addressing upper_limit? */
3433 upper_limit -= EXT4_NDIR_BLOCKS;
3434 /* indirect blocks */
3435 meta_blocks = 1;
3436 upper_limit -= ppb;
3437 /* double indirect blocks */
3438 if (upper_limit < ppb * ppb) {
3439 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb);
3440 res -= meta_blocks;
3441 goto check_lfs;
3442 }
3443 meta_blocks += 1 + ppb;
3444 upper_limit -= ppb * ppb;
3445 /* tripple indirect blocks for the rest */
3446 meta_blocks += 1 + DIV_ROUND_UP_ULL(upper_limit, ppb) +
3447 DIV_ROUND_UP_ULL(upper_limit, ppb*ppb);
3448 res -= meta_blocks;
3449check_lfs:
3450 res <<= bits;
3451 if (res > MAX_LFS_FILESIZE)
3452 res = MAX_LFS_FILESIZE;
3453
3454 return res;
3455}
3456
3457static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3458 ext4_fsblk_t logical_sb_block, int nr)
3459{
3460 struct ext4_sb_info *sbi = EXT4_SB(sb);
3461 ext4_group_t bg, first_meta_bg;
3462 int has_super = 0;
3463
3464 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3465
3466 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3467 return logical_sb_block + nr + 1;
3468 bg = sbi->s_desc_per_block * nr;
3469 if (ext4_bg_has_super(sb, bg))
3470 has_super = 1;
3471
3472 /*
3473 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3474 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3475 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3476 * compensate.
3477 */
3478 if (sb->s_blocksize == 1024 && nr == 0 &&
3479 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3480 has_super++;
3481
3482 return (has_super + ext4_group_first_block_no(sb, bg));
3483}
3484
3485/**
3486 * ext4_get_stripe_size: Get the stripe size.
3487 * @sbi: In memory super block info
3488 *
3489 * If we have specified it via mount option, then
3490 * use the mount option value. If the value specified at mount time is
3491 * greater than the blocks per group use the super block value.
3492 * If the super block value is greater than blocks per group return 0.
3493 * Allocator needs it be less than blocks per group.
3494 *
3495 */
3496static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3497{
3498 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3499 unsigned long stripe_width =
3500 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3501 int ret;
3502
3503 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3504 ret = sbi->s_stripe;
3505 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3506 ret = stripe_width;
3507 else if (stride && stride <= sbi->s_blocks_per_group)
3508 ret = stride;
3509 else
3510 ret = 0;
3511
3512 /*
3513 * If the stripe width is 1, this makes no sense and
3514 * we set it to 0 to turn off stripe handling code.
3515 */
3516 if (ret <= 1)
3517 ret = 0;
3518
3519 return ret;
3520}
3521
3522/*
3523 * Check whether this filesystem can be mounted based on
3524 * the features present and the RDONLY/RDWR mount requested.
3525 * Returns 1 if this filesystem can be mounted as requested,
3526 * 0 if it cannot be.
3527 */
3528int ext4_feature_set_ok(struct super_block *sb, int readonly)
3529{
3530 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3531 ext4_msg(sb, KERN_ERR,
3532 "Couldn't mount because of "
3533 "unsupported optional features (%x)",
3534 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3535 ~EXT4_FEATURE_INCOMPAT_SUPP));
3536 return 0;
3537 }
3538
3539#if !IS_ENABLED(CONFIG_UNICODE)
3540 if (ext4_has_feature_casefold(sb)) {
3541 ext4_msg(sb, KERN_ERR,
3542 "Filesystem with casefold feature cannot be "
3543 "mounted without CONFIG_UNICODE");
3544 return 0;
3545 }
3546#endif
3547
3548 if (readonly)
3549 return 1;
3550
3551 if (ext4_has_feature_readonly(sb)) {
3552 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3553 sb->s_flags |= SB_RDONLY;
3554 return 1;
3555 }
3556
3557 /* Check that feature set is OK for a read-write mount */
3558 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3559 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3560 "unsupported optional features (%x)",
3561 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3562 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3563 return 0;
3564 }
3565 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3566 ext4_msg(sb, KERN_ERR,
3567 "Can't support bigalloc feature without "
3568 "extents feature\n");
3569 return 0;
3570 }
3571
3572#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3573 if (!readonly && (ext4_has_feature_quota(sb) ||
3574 ext4_has_feature_project(sb))) {
3575 ext4_msg(sb, KERN_ERR,
3576 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3577 return 0;
3578 }
3579#endif /* CONFIG_QUOTA */
3580 return 1;
3581}
3582
3583/*
3584 * This function is called once a day if we have errors logged
3585 * on the file system
3586 */
3587static void print_daily_error_info(struct timer_list *t)
3588{
3589 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3590 struct super_block *sb = sbi->s_sb;
3591 struct ext4_super_block *es = sbi->s_es;
3592
3593 if (es->s_error_count)
3594 /* fsck newer than v1.41.13 is needed to clean this condition. */
3595 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3596 le32_to_cpu(es->s_error_count));
3597 if (es->s_first_error_time) {
3598 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3599 sb->s_id,
3600 ext4_get_tstamp(es, s_first_error_time),
3601 (int) sizeof(es->s_first_error_func),
3602 es->s_first_error_func,
3603 le32_to_cpu(es->s_first_error_line));
3604 if (es->s_first_error_ino)
3605 printk(KERN_CONT ": inode %u",
3606 le32_to_cpu(es->s_first_error_ino));
3607 if (es->s_first_error_block)
3608 printk(KERN_CONT ": block %llu", (unsigned long long)
3609 le64_to_cpu(es->s_first_error_block));
3610 printk(KERN_CONT "\n");
3611 }
3612 if (es->s_last_error_time) {
3613 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3614 sb->s_id,
3615 ext4_get_tstamp(es, s_last_error_time),
3616 (int) sizeof(es->s_last_error_func),
3617 es->s_last_error_func,
3618 le32_to_cpu(es->s_last_error_line));
3619 if (es->s_last_error_ino)
3620 printk(KERN_CONT ": inode %u",
3621 le32_to_cpu(es->s_last_error_ino));
3622 if (es->s_last_error_block)
3623 printk(KERN_CONT ": block %llu", (unsigned long long)
3624 le64_to_cpu(es->s_last_error_block));
3625 printk(KERN_CONT "\n");
3626 }
3627 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3628}
3629
3630/* Find next suitable group and run ext4_init_inode_table */
3631static int ext4_run_li_request(struct ext4_li_request *elr)
3632{
3633 struct ext4_group_desc *gdp = NULL;
3634 struct super_block *sb = elr->lr_super;
3635 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3636 ext4_group_t group = elr->lr_next_group;
3637 unsigned int prefetch_ios = 0;
3638 int ret = 0;
3639 u64 start_time;
3640
3641 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3642 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3643 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3644 if (prefetch_ios)
3645 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3646 prefetch_ios);
3647 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3648 prefetch_ios);
3649 if (group >= elr->lr_next_group) {
3650 ret = 1;
3651 if (elr->lr_first_not_zeroed != ngroups &&
3652 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3653 elr->lr_next_group = elr->lr_first_not_zeroed;
3654 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3655 ret = 0;
3656 }
3657 }
3658 return ret;
3659 }
3660
3661 for (; group < ngroups; group++) {
3662 gdp = ext4_get_group_desc(sb, group, NULL);
3663 if (!gdp) {
3664 ret = 1;
3665 break;
3666 }
3667
3668 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3669 break;
3670 }
3671
3672 if (group >= ngroups)
3673 ret = 1;
3674
3675 if (!ret) {
3676 start_time = ktime_get_real_ns();
3677 ret = ext4_init_inode_table(sb, group,
3678 elr->lr_timeout ? 0 : 1);
3679 trace_ext4_lazy_itable_init(sb, group);
3680 if (elr->lr_timeout == 0) {
3681 elr->lr_timeout = nsecs_to_jiffies((ktime_get_real_ns() - start_time) *
3682 EXT4_SB(elr->lr_super)->s_li_wait_mult);
3683 }
3684 elr->lr_next_sched = jiffies + elr->lr_timeout;
3685 elr->lr_next_group = group + 1;
3686 }
3687 return ret;
3688}
3689
3690/*
3691 * Remove lr_request from the list_request and free the
3692 * request structure. Should be called with li_list_mtx held
3693 */
3694static void ext4_remove_li_request(struct ext4_li_request *elr)
3695{
3696 if (!elr)
3697 return;
3698
3699 list_del(&elr->lr_request);
3700 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3701 kfree(elr);
3702}
3703
3704static void ext4_unregister_li_request(struct super_block *sb)
3705{
3706 mutex_lock(&ext4_li_mtx);
3707 if (!ext4_li_info) {
3708 mutex_unlock(&ext4_li_mtx);
3709 return;
3710 }
3711
3712 mutex_lock(&ext4_li_info->li_list_mtx);
3713 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3714 mutex_unlock(&ext4_li_info->li_list_mtx);
3715 mutex_unlock(&ext4_li_mtx);
3716}
3717
3718static struct task_struct *ext4_lazyinit_task;
3719
3720/*
3721 * This is the function where ext4lazyinit thread lives. It walks
3722 * through the request list searching for next scheduled filesystem.
3723 * When such a fs is found, run the lazy initialization request
3724 * (ext4_rn_li_request) and keep track of the time spend in this
3725 * function. Based on that time we compute next schedule time of
3726 * the request. When walking through the list is complete, compute
3727 * next waking time and put itself into sleep.
3728 */
3729static int ext4_lazyinit_thread(void *arg)
3730{
3731 struct ext4_lazy_init *eli = arg;
3732 struct list_head *pos, *n;
3733 struct ext4_li_request *elr;
3734 unsigned long next_wakeup, cur;
3735
3736 BUG_ON(NULL == eli);
3737 set_freezable();
3738
3739cont_thread:
3740 while (true) {
3741 next_wakeup = MAX_JIFFY_OFFSET;
3742
3743 mutex_lock(&eli->li_list_mtx);
3744 if (list_empty(&eli->li_request_list)) {
3745 mutex_unlock(&eli->li_list_mtx);
3746 goto exit_thread;
3747 }
3748 list_for_each_safe(pos, n, &eli->li_request_list) {
3749 int err = 0;
3750 int progress = 0;
3751 elr = list_entry(pos, struct ext4_li_request,
3752 lr_request);
3753
3754 if (time_before(jiffies, elr->lr_next_sched)) {
3755 if (time_before(elr->lr_next_sched, next_wakeup))
3756 next_wakeup = elr->lr_next_sched;
3757 continue;
3758 }
3759 if (down_read_trylock(&elr->lr_super->s_umount)) {
3760 if (sb_start_write_trylock(elr->lr_super)) {
3761 progress = 1;
3762 /*
3763 * We hold sb->s_umount, sb can not
3764 * be removed from the list, it is
3765 * now safe to drop li_list_mtx
3766 */
3767 mutex_unlock(&eli->li_list_mtx);
3768 err = ext4_run_li_request(elr);
3769 sb_end_write(elr->lr_super);
3770 mutex_lock(&eli->li_list_mtx);
3771 n = pos->next;
3772 }
3773 up_read((&elr->lr_super->s_umount));
3774 }
3775 /* error, remove the lazy_init job */
3776 if (err) {
3777 ext4_remove_li_request(elr);
3778 continue;
3779 }
3780 if (!progress) {
3781 elr->lr_next_sched = jiffies +
3782 get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3783 }
3784 if (time_before(elr->lr_next_sched, next_wakeup))
3785 next_wakeup = elr->lr_next_sched;
3786 }
3787 mutex_unlock(&eli->li_list_mtx);
3788
3789 try_to_freeze();
3790
3791 cur = jiffies;
3792 if ((time_after_eq(cur, next_wakeup)) ||
3793 (MAX_JIFFY_OFFSET == next_wakeup)) {
3794 cond_resched();
3795 continue;
3796 }
3797
3798 schedule_timeout_interruptible(next_wakeup - cur);
3799
3800 if (kthread_should_stop()) {
3801 ext4_clear_request_list();
3802 goto exit_thread;
3803 }
3804 }
3805
3806exit_thread:
3807 /*
3808 * It looks like the request list is empty, but we need
3809 * to check it under the li_list_mtx lock, to prevent any
3810 * additions into it, and of course we should lock ext4_li_mtx
3811 * to atomically free the list and ext4_li_info, because at
3812 * this point another ext4 filesystem could be registering
3813 * new one.
3814 */
3815 mutex_lock(&ext4_li_mtx);
3816 mutex_lock(&eli->li_list_mtx);
3817 if (!list_empty(&eli->li_request_list)) {
3818 mutex_unlock(&eli->li_list_mtx);
3819 mutex_unlock(&ext4_li_mtx);
3820 goto cont_thread;
3821 }
3822 mutex_unlock(&eli->li_list_mtx);
3823 kfree(ext4_li_info);
3824 ext4_li_info = NULL;
3825 mutex_unlock(&ext4_li_mtx);
3826
3827 return 0;
3828}
3829
3830static void ext4_clear_request_list(void)
3831{
3832 struct list_head *pos, *n;
3833 struct ext4_li_request *elr;
3834
3835 mutex_lock(&ext4_li_info->li_list_mtx);
3836 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3837 elr = list_entry(pos, struct ext4_li_request,
3838 lr_request);
3839 ext4_remove_li_request(elr);
3840 }
3841 mutex_unlock(&ext4_li_info->li_list_mtx);
3842}
3843
3844static int ext4_run_lazyinit_thread(void)
3845{
3846 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3847 ext4_li_info, "ext4lazyinit");
3848 if (IS_ERR(ext4_lazyinit_task)) {
3849 int err = PTR_ERR(ext4_lazyinit_task);
3850 ext4_clear_request_list();
3851 kfree(ext4_li_info);
3852 ext4_li_info = NULL;
3853 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3854 "initialization thread\n",
3855 err);
3856 return err;
3857 }
3858 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3859 return 0;
3860}
3861
3862/*
3863 * Check whether it make sense to run itable init. thread or not.
3864 * If there is at least one uninitialized inode table, return
3865 * corresponding group number, else the loop goes through all
3866 * groups and return total number of groups.
3867 */
3868static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3869{
3870 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3871 struct ext4_group_desc *gdp = NULL;
3872
3873 if (!ext4_has_group_desc_csum(sb))
3874 return ngroups;
3875
3876 for (group = 0; group < ngroups; group++) {
3877 gdp = ext4_get_group_desc(sb, group, NULL);
3878 if (!gdp)
3879 continue;
3880
3881 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3882 break;
3883 }
3884
3885 return group;
3886}
3887
3888static int ext4_li_info_new(void)
3889{
3890 struct ext4_lazy_init *eli = NULL;
3891
3892 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3893 if (!eli)
3894 return -ENOMEM;
3895
3896 INIT_LIST_HEAD(&eli->li_request_list);
3897 mutex_init(&eli->li_list_mtx);
3898
3899 eli->li_state |= EXT4_LAZYINIT_QUIT;
3900
3901 ext4_li_info = eli;
3902
3903 return 0;
3904}
3905
3906static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3907 ext4_group_t start)
3908{
3909 struct ext4_li_request *elr;
3910
3911 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3912 if (!elr)
3913 return NULL;
3914
3915 elr->lr_super = sb;
3916 elr->lr_first_not_zeroed = start;
3917 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3918 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3919 elr->lr_next_group = start;
3920 } else {
3921 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3922 }
3923
3924 /*
3925 * Randomize first schedule time of the request to
3926 * spread the inode table initialization requests
3927 * better.
3928 */
3929 elr->lr_next_sched = jiffies + get_random_u32_below(EXT4_DEF_LI_MAX_START_DELAY * HZ);
3930 return elr;
3931}
3932
3933int ext4_register_li_request(struct super_block *sb,
3934 ext4_group_t first_not_zeroed)
3935{
3936 struct ext4_sb_info *sbi = EXT4_SB(sb);
3937 struct ext4_li_request *elr = NULL;
3938 ext4_group_t ngroups = sbi->s_groups_count;
3939 int ret = 0;
3940
3941 mutex_lock(&ext4_li_mtx);
3942 if (sbi->s_li_request != NULL) {
3943 /*
3944 * Reset timeout so it can be computed again, because
3945 * s_li_wait_mult might have changed.
3946 */
3947 sbi->s_li_request->lr_timeout = 0;
3948 goto out;
3949 }
3950
3951 if (sb_rdonly(sb) ||
3952 (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3953 (first_not_zeroed == ngroups || !test_opt(sb, INIT_INODE_TABLE))))
3954 goto out;
3955
3956 elr = ext4_li_request_new(sb, first_not_zeroed);
3957 if (!elr) {
3958 ret = -ENOMEM;
3959 goto out;
3960 }
3961
3962 if (NULL == ext4_li_info) {
3963 ret = ext4_li_info_new();
3964 if (ret)
3965 goto out;
3966 }
3967
3968 mutex_lock(&ext4_li_info->li_list_mtx);
3969 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3970 mutex_unlock(&ext4_li_info->li_list_mtx);
3971
3972 sbi->s_li_request = elr;
3973 /*
3974 * set elr to NULL here since it has been inserted to
3975 * the request_list and the removal and free of it is
3976 * handled by ext4_clear_request_list from now on.
3977 */
3978 elr = NULL;
3979
3980 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3981 ret = ext4_run_lazyinit_thread();
3982 if (ret)
3983 goto out;
3984 }
3985out:
3986 mutex_unlock(&ext4_li_mtx);
3987 if (ret)
3988 kfree(elr);
3989 return ret;
3990}
3991
3992/*
3993 * We do not need to lock anything since this is called on
3994 * module unload.
3995 */
3996static void ext4_destroy_lazyinit_thread(void)
3997{
3998 /*
3999 * If thread exited earlier
4000 * there's nothing to be done.
4001 */
4002 if (!ext4_li_info || !ext4_lazyinit_task)
4003 return;
4004
4005 kthread_stop(ext4_lazyinit_task);
4006}
4007
4008static int set_journal_csum_feature_set(struct super_block *sb)
4009{
4010 int ret = 1;
4011 int compat, incompat;
4012 struct ext4_sb_info *sbi = EXT4_SB(sb);
4013
4014 if (ext4_has_metadata_csum(sb)) {
4015 /* journal checksum v3 */
4016 compat = 0;
4017 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
4018 } else {
4019 /* journal checksum v1 */
4020 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
4021 incompat = 0;
4022 }
4023
4024 jbd2_journal_clear_features(sbi->s_journal,
4025 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
4026 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
4027 JBD2_FEATURE_INCOMPAT_CSUM_V2);
4028 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4029 ret = jbd2_journal_set_features(sbi->s_journal,
4030 compat, 0,
4031 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
4032 incompat);
4033 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
4034 ret = jbd2_journal_set_features(sbi->s_journal,
4035 compat, 0,
4036 incompat);
4037 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4038 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4039 } else {
4040 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
4041 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
4042 }
4043
4044 return ret;
4045}
4046
4047/*
4048 * Note: calculating the overhead so we can be compatible with
4049 * historical BSD practice is quite difficult in the face of
4050 * clusters/bigalloc. This is because multiple metadata blocks from
4051 * different block group can end up in the same allocation cluster.
4052 * Calculating the exact overhead in the face of clustered allocation
4053 * requires either O(all block bitmaps) in memory or O(number of block
4054 * groups**2) in time. We will still calculate the superblock for
4055 * older file systems --- and if we come across with a bigalloc file
4056 * system with zero in s_overhead_clusters the estimate will be close to
4057 * correct especially for very large cluster sizes --- but for newer
4058 * file systems, it's better to calculate this figure once at mkfs
4059 * time, and store it in the superblock. If the superblock value is
4060 * present (even for non-bigalloc file systems), we will use it.
4061 */
4062static int count_overhead(struct super_block *sb, ext4_group_t grp,
4063 char *buf)
4064{
4065 struct ext4_sb_info *sbi = EXT4_SB(sb);
4066 struct ext4_group_desc *gdp;
4067 ext4_fsblk_t first_block, last_block, b;
4068 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4069 int s, j, count = 0;
4070 int has_super = ext4_bg_has_super(sb, grp);
4071
4072 if (!ext4_has_feature_bigalloc(sb))
4073 return (has_super + ext4_bg_num_gdb(sb, grp) +
4074 (has_super ? le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) : 0) +
4075 sbi->s_itb_per_group + 2);
4076
4077 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
4078 (grp * EXT4_BLOCKS_PER_GROUP(sb));
4079 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
4080 for (i = 0; i < ngroups; i++) {
4081 gdp = ext4_get_group_desc(sb, i, NULL);
4082 b = ext4_block_bitmap(sb, gdp);
4083 if (b >= first_block && b <= last_block) {
4084 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4085 count++;
4086 }
4087 b = ext4_inode_bitmap(sb, gdp);
4088 if (b >= first_block && b <= last_block) {
4089 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
4090 count++;
4091 }
4092 b = ext4_inode_table(sb, gdp);
4093 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
4094 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
4095 int c = EXT4_B2C(sbi, b - first_block);
4096 ext4_set_bit(c, buf);
4097 count++;
4098 }
4099 if (i != grp)
4100 continue;
4101 s = 0;
4102 if (ext4_bg_has_super(sb, grp)) {
4103 ext4_set_bit(s++, buf);
4104 count++;
4105 }
4106 j = ext4_bg_num_gdb(sb, grp);
4107 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
4108 ext4_error(sb, "Invalid number of block group "
4109 "descriptor blocks: %d", j);
4110 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
4111 }
4112 count += j;
4113 for (; j > 0; j--)
4114 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
4115 }
4116 if (!count)
4117 return 0;
4118 return EXT4_CLUSTERS_PER_GROUP(sb) -
4119 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
4120}
4121
4122/*
4123 * Compute the overhead and stash it in sbi->s_overhead
4124 */
4125int ext4_calculate_overhead(struct super_block *sb)
4126{
4127 struct ext4_sb_info *sbi = EXT4_SB(sb);
4128 struct ext4_super_block *es = sbi->s_es;
4129 struct inode *j_inode;
4130 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
4131 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
4132 ext4_fsblk_t overhead = 0;
4133 char *buf = (char *) get_zeroed_page(GFP_NOFS);
4134
4135 if (!buf)
4136 return -ENOMEM;
4137
4138 /*
4139 * Compute the overhead (FS structures). This is constant
4140 * for a given filesystem unless the number of block groups
4141 * changes so we cache the previous value until it does.
4142 */
4143
4144 /*
4145 * All of the blocks before first_data_block are overhead
4146 */
4147 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
4148
4149 /*
4150 * Add the overhead found in each block group
4151 */
4152 for (i = 0; i < ngroups; i++) {
4153 int blks;
4154
4155 blks = count_overhead(sb, i, buf);
4156 overhead += blks;
4157 if (blks)
4158 memset(buf, 0, PAGE_SIZE);
4159 cond_resched();
4160 }
4161
4162 /*
4163 * Add the internal journal blocks whether the journal has been
4164 * loaded or not
4165 */
4166 if (sbi->s_journal && !sbi->s_journal_bdev)
4167 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
4168 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
4169 /* j_inum for internal journal is non-zero */
4170 j_inode = ext4_get_journal_inode(sb, j_inum);
4171 if (j_inode) {
4172 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
4173 overhead += EXT4_NUM_B2C(sbi, j_blocks);
4174 iput(j_inode);
4175 } else {
4176 ext4_msg(sb, KERN_ERR, "can't get journal size");
4177 }
4178 }
4179 sbi->s_overhead = overhead;
4180 smp_wmb();
4181 free_page((unsigned long) buf);
4182 return 0;
4183}
4184
4185static void ext4_set_resv_clusters(struct super_block *sb)
4186{
4187 ext4_fsblk_t resv_clusters;
4188 struct ext4_sb_info *sbi = EXT4_SB(sb);
4189
4190 /*
4191 * There's no need to reserve anything when we aren't using extents.
4192 * The space estimates are exact, there are no unwritten extents,
4193 * hole punching doesn't need new metadata... This is needed especially
4194 * to keep ext2/3 backward compatibility.
4195 */
4196 if (!ext4_has_feature_extents(sb))
4197 return;
4198 /*
4199 * By default we reserve 2% or 4096 clusters, whichever is smaller.
4200 * This should cover the situations where we can not afford to run
4201 * out of space like for example punch hole, or converting
4202 * unwritten extents in delalloc path. In most cases such
4203 * allocation would require 1, or 2 blocks, higher numbers are
4204 * very rare.
4205 */
4206 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4207 sbi->s_cluster_bits);
4208
4209 do_div(resv_clusters, 50);
4210 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4211
4212 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4213}
4214
4215static const char *ext4_quota_mode(struct super_block *sb)
4216{
4217#ifdef CONFIG_QUOTA
4218 if (!ext4_quota_capable(sb))
4219 return "none";
4220
4221 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4222 return "journalled";
4223 else
4224 return "writeback";
4225#else
4226 return "disabled";
4227#endif
4228}
4229
4230static void ext4_setup_csum_trigger(struct super_block *sb,
4231 enum ext4_journal_trigger_type type,
4232 void (*trigger)(
4233 struct jbd2_buffer_trigger_type *type,
4234 struct buffer_head *bh,
4235 void *mapped_data,
4236 size_t size))
4237{
4238 struct ext4_sb_info *sbi = EXT4_SB(sb);
4239
4240 sbi->s_journal_triggers[type].sb = sb;
4241 sbi->s_journal_triggers[type].tr_triggers.t_frozen = trigger;
4242}
4243
4244static void ext4_free_sbi(struct ext4_sb_info *sbi)
4245{
4246 if (!sbi)
4247 return;
4248
4249 kfree(sbi->s_blockgroup_lock);
4250 fs_put_dax(sbi->s_daxdev, NULL);
4251 kfree(sbi);
4252}
4253
4254static struct ext4_sb_info *ext4_alloc_sbi(struct super_block *sb)
4255{
4256 struct ext4_sb_info *sbi;
4257
4258 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4259 if (!sbi)
4260 return NULL;
4261
4262 sbi->s_daxdev = fs_dax_get_by_bdev(sb->s_bdev, &sbi->s_dax_part_off,
4263 NULL, NULL);
4264
4265 sbi->s_blockgroup_lock =
4266 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4267
4268 if (!sbi->s_blockgroup_lock)
4269 goto err_out;
4270
4271 sb->s_fs_info = sbi;
4272 sbi->s_sb = sb;
4273 return sbi;
4274err_out:
4275 fs_put_dax(sbi->s_daxdev, NULL);
4276 kfree(sbi);
4277 return NULL;
4278}
4279
4280static void ext4_set_def_opts(struct super_block *sb,
4281 struct ext4_super_block *es)
4282{
4283 unsigned long def_mount_opts;
4284
4285 /* Set defaults before we parse the mount options */
4286 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4287 set_opt(sb, INIT_INODE_TABLE);
4288 if (def_mount_opts & EXT4_DEFM_DEBUG)
4289 set_opt(sb, DEBUG);
4290 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4291 set_opt(sb, GRPID);
4292 if (def_mount_opts & EXT4_DEFM_UID16)
4293 set_opt(sb, NO_UID32);
4294 /* xattr user namespace & acls are now defaulted on */
4295 set_opt(sb, XATTR_USER);
4296#ifdef CONFIG_EXT4_FS_POSIX_ACL
4297 set_opt(sb, POSIX_ACL);
4298#endif
4299 if (ext4_has_feature_fast_commit(sb))
4300 set_opt2(sb, JOURNAL_FAST_COMMIT);
4301 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4302 if (ext4_has_metadata_csum(sb))
4303 set_opt(sb, JOURNAL_CHECKSUM);
4304
4305 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4306 set_opt(sb, JOURNAL_DATA);
4307 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4308 set_opt(sb, ORDERED_DATA);
4309 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4310 set_opt(sb, WRITEBACK_DATA);
4311
4312 if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_PANIC)
4313 set_opt(sb, ERRORS_PANIC);
4314 else if (le16_to_cpu(es->s_errors) == EXT4_ERRORS_CONTINUE)
4315 set_opt(sb, ERRORS_CONT);
4316 else
4317 set_opt(sb, ERRORS_RO);
4318 /* block_validity enabled by default; disable with noblock_validity */
4319 set_opt(sb, BLOCK_VALIDITY);
4320 if (def_mount_opts & EXT4_DEFM_DISCARD)
4321 set_opt(sb, DISCARD);
4322
4323 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4324 set_opt(sb, BARRIER);
4325
4326 /*
4327 * enable delayed allocation by default
4328 * Use -o nodelalloc to turn it off
4329 */
4330 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4331 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4332 set_opt(sb, DELALLOC);
4333
4334 if (sb->s_blocksize == PAGE_SIZE)
4335 set_opt(sb, DIOREAD_NOLOCK);
4336}
4337
4338static int ext4_handle_clustersize(struct super_block *sb)
4339{
4340 struct ext4_sb_info *sbi = EXT4_SB(sb);
4341 struct ext4_super_block *es = sbi->s_es;
4342 int clustersize;
4343
4344 /* Handle clustersize */
4345 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4346 if (ext4_has_feature_bigalloc(sb)) {
4347 if (clustersize < sb->s_blocksize) {
4348 ext4_msg(sb, KERN_ERR,
4349 "cluster size (%d) smaller than "
4350 "block size (%lu)", clustersize, sb->s_blocksize);
4351 return -EINVAL;
4352 }
4353 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4354 le32_to_cpu(es->s_log_block_size);
4355 sbi->s_clusters_per_group =
4356 le32_to_cpu(es->s_clusters_per_group);
4357 if (sbi->s_clusters_per_group > sb->s_blocksize * 8) {
4358 ext4_msg(sb, KERN_ERR,
4359 "#clusters per group too big: %lu",
4360 sbi->s_clusters_per_group);
4361 return -EINVAL;
4362 }
4363 if (sbi->s_blocks_per_group !=
4364 (sbi->s_clusters_per_group * (clustersize / sb->s_blocksize))) {
4365 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4366 "clusters per group (%lu) inconsistent",
4367 sbi->s_blocks_per_group,
4368 sbi->s_clusters_per_group);
4369 return -EINVAL;
4370 }
4371 } else {
4372 if (clustersize != sb->s_blocksize) {
4373 ext4_msg(sb, KERN_ERR,
4374 "fragment/cluster size (%d) != "
4375 "block size (%lu)", clustersize, sb->s_blocksize);
4376 return -EINVAL;
4377 }
4378 if (sbi->s_blocks_per_group > sb->s_blocksize * 8) {
4379 ext4_msg(sb, KERN_ERR,
4380 "#blocks per group too big: %lu",
4381 sbi->s_blocks_per_group);
4382 return -EINVAL;
4383 }
4384 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4385 sbi->s_cluster_bits = 0;
4386 }
4387 sbi->s_cluster_ratio = clustersize / sb->s_blocksize;
4388
4389 /* Do we have standard group size of clustersize * 8 blocks ? */
4390 if (sbi->s_blocks_per_group == clustersize << 3)
4391 set_opt2(sb, STD_GROUP_SIZE);
4392
4393 return 0;
4394}
4395
4396static void ext4_fast_commit_init(struct super_block *sb)
4397{
4398 struct ext4_sb_info *sbi = EXT4_SB(sb);
4399
4400 /* Initialize fast commit stuff */
4401 atomic_set(&sbi->s_fc_subtid, 0);
4402 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4403 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4404 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4405 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4406 sbi->s_fc_bytes = 0;
4407 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4408 sbi->s_fc_ineligible_tid = 0;
4409 spin_lock_init(&sbi->s_fc_lock);
4410 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4411 sbi->s_fc_replay_state.fc_regions = NULL;
4412 sbi->s_fc_replay_state.fc_regions_size = 0;
4413 sbi->s_fc_replay_state.fc_regions_used = 0;
4414 sbi->s_fc_replay_state.fc_regions_valid = 0;
4415 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4416 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4417 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4418}
4419
4420static int ext4_inode_info_init(struct super_block *sb,
4421 struct ext4_super_block *es)
4422{
4423 struct ext4_sb_info *sbi = EXT4_SB(sb);
4424
4425 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4426 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4427 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4428 } else {
4429 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4430 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4431 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4432 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4433 sbi->s_first_ino);
4434 return -EINVAL;
4435 }
4436 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4437 (!is_power_of_2(sbi->s_inode_size)) ||
4438 (sbi->s_inode_size > sb->s_blocksize)) {
4439 ext4_msg(sb, KERN_ERR,
4440 "unsupported inode size: %d",
4441 sbi->s_inode_size);
4442 ext4_msg(sb, KERN_ERR, "blocksize: %lu", sb->s_blocksize);
4443 return -EINVAL;
4444 }
4445 /*
4446 * i_atime_extra is the last extra field available for
4447 * [acm]times in struct ext4_inode. Checking for that
4448 * field should suffice to ensure we have extra space
4449 * for all three.
4450 */
4451 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4452 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4453 sb->s_time_gran = 1;
4454 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4455 } else {
4456 sb->s_time_gran = NSEC_PER_SEC;
4457 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4458 }
4459 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4460 }
4461
4462 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4463 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4464 EXT4_GOOD_OLD_INODE_SIZE;
4465 if (ext4_has_feature_extra_isize(sb)) {
4466 unsigned v, max = (sbi->s_inode_size -
4467 EXT4_GOOD_OLD_INODE_SIZE);
4468
4469 v = le16_to_cpu(es->s_want_extra_isize);
4470 if (v > max) {
4471 ext4_msg(sb, KERN_ERR,
4472 "bad s_want_extra_isize: %d", v);
4473 return -EINVAL;
4474 }
4475 if (sbi->s_want_extra_isize < v)
4476 sbi->s_want_extra_isize = v;
4477
4478 v = le16_to_cpu(es->s_min_extra_isize);
4479 if (v > max) {
4480 ext4_msg(sb, KERN_ERR,
4481 "bad s_min_extra_isize: %d", v);
4482 return -EINVAL;
4483 }
4484 if (sbi->s_want_extra_isize < v)
4485 sbi->s_want_extra_isize = v;
4486 }
4487 }
4488
4489 return 0;
4490}
4491
4492#if IS_ENABLED(CONFIG_UNICODE)
4493static int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4494{
4495 const struct ext4_sb_encodings *encoding_info;
4496 struct unicode_map *encoding;
4497 __u16 encoding_flags = le16_to_cpu(es->s_encoding_flags);
4498
4499 if (!ext4_has_feature_casefold(sb) || sb->s_encoding)
4500 return 0;
4501
4502 encoding_info = ext4_sb_read_encoding(es);
4503 if (!encoding_info) {
4504 ext4_msg(sb, KERN_ERR,
4505 "Encoding requested by superblock is unknown");
4506 return -EINVAL;
4507 }
4508
4509 encoding = utf8_load(encoding_info->version);
4510 if (IS_ERR(encoding)) {
4511 ext4_msg(sb, KERN_ERR,
4512 "can't mount with superblock charset: %s-%u.%u.%u "
4513 "not supported by the kernel. flags: 0x%x.",
4514 encoding_info->name,
4515 unicode_major(encoding_info->version),
4516 unicode_minor(encoding_info->version),
4517 unicode_rev(encoding_info->version),
4518 encoding_flags);
4519 return -EINVAL;
4520 }
4521 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4522 "%s-%u.%u.%u with flags 0x%hx", encoding_info->name,
4523 unicode_major(encoding_info->version),
4524 unicode_minor(encoding_info->version),
4525 unicode_rev(encoding_info->version),
4526 encoding_flags);
4527
4528 sb->s_encoding = encoding;
4529 sb->s_encoding_flags = encoding_flags;
4530
4531 return 0;
4532}
4533#else
4534static inline int ext4_encoding_init(struct super_block *sb, struct ext4_super_block *es)
4535{
4536 return 0;
4537}
4538#endif
4539
4540static int ext4_init_metadata_csum(struct super_block *sb, struct ext4_super_block *es)
4541{
4542 struct ext4_sb_info *sbi = EXT4_SB(sb);
4543
4544 /* Warn if metadata_csum and gdt_csum are both set. */
4545 if (ext4_has_feature_metadata_csum(sb) &&
4546 ext4_has_feature_gdt_csum(sb))
4547 ext4_warning(sb, "metadata_csum and uninit_bg are "
4548 "redundant flags; please run fsck.");
4549
4550 /* Check for a known checksum algorithm */
4551 if (!ext4_verify_csum_type(sb, es)) {
4552 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4553 "unknown checksum algorithm.");
4554 return -EINVAL;
4555 }
4556 ext4_setup_csum_trigger(sb, EXT4_JTR_ORPHAN_FILE,
4557 ext4_orphan_file_block_trigger);
4558
4559 /* Load the checksum driver */
4560 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4561 if (IS_ERR(sbi->s_chksum_driver)) {
4562 int ret = PTR_ERR(sbi->s_chksum_driver);
4563 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4564 sbi->s_chksum_driver = NULL;
4565 return ret;
4566 }
4567
4568 /* Check superblock checksum */
4569 if (!ext4_superblock_csum_verify(sb, es)) {
4570 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4571 "invalid superblock checksum. Run e2fsck?");
4572 return -EFSBADCRC;
4573 }
4574
4575 /* Precompute checksum seed for all metadata */
4576 if (ext4_has_feature_csum_seed(sb))
4577 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4578 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4579 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4580 sizeof(es->s_uuid));
4581 return 0;
4582}
4583
4584static int ext4_check_feature_compatibility(struct super_block *sb,
4585 struct ext4_super_block *es,
4586 int silent)
4587{
4588 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4589 (ext4_has_compat_features(sb) ||
4590 ext4_has_ro_compat_features(sb) ||
4591 ext4_has_incompat_features(sb)))
4592 ext4_msg(sb, KERN_WARNING,
4593 "feature flags set on rev 0 fs, "
4594 "running e2fsck is recommended");
4595
4596 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4597 set_opt2(sb, HURD_COMPAT);
4598 if (ext4_has_feature_64bit(sb)) {
4599 ext4_msg(sb, KERN_ERR,
4600 "The Hurd can't support 64-bit file systems");
4601 return -EINVAL;
4602 }
4603
4604 /*
4605 * ea_inode feature uses l_i_version field which is not
4606 * available in HURD_COMPAT mode.
4607 */
4608 if (ext4_has_feature_ea_inode(sb)) {
4609 ext4_msg(sb, KERN_ERR,
4610 "ea_inode feature is not supported for Hurd");
4611 return -EINVAL;
4612 }
4613 }
4614
4615 if (IS_EXT2_SB(sb)) {
4616 if (ext2_feature_set_ok(sb))
4617 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4618 "using the ext4 subsystem");
4619 else {
4620 /*
4621 * If we're probing be silent, if this looks like
4622 * it's actually an ext[34] filesystem.
4623 */
4624 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4625 return -EINVAL;
4626 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4627 "to feature incompatibilities");
4628 return -EINVAL;
4629 }
4630 }
4631
4632 if (IS_EXT3_SB(sb)) {
4633 if (ext3_feature_set_ok(sb))
4634 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4635 "using the ext4 subsystem");
4636 else {
4637 /*
4638 * If we're probing be silent, if this looks like
4639 * it's actually an ext4 filesystem.
4640 */
4641 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4642 return -EINVAL;
4643 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4644 "to feature incompatibilities");
4645 return -EINVAL;
4646 }
4647 }
4648
4649 /*
4650 * Check feature flags regardless of the revision level, since we
4651 * previously didn't change the revision level when setting the flags,
4652 * so there is a chance incompat flags are set on a rev 0 filesystem.
4653 */
4654 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4655 return -EINVAL;
4656
4657 return 0;
4658}
4659
4660static int ext4_geometry_check(struct super_block *sb,
4661 struct ext4_super_block *es)
4662{
4663 struct ext4_sb_info *sbi = EXT4_SB(sb);
4664 __u64 blocks_count;
4665
4666 /* check blocks count against device size */
4667 blocks_count = sb_bdev_nr_blocks(sb);
4668 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4669 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4670 "exceeds size of device (%llu blocks)",
4671 ext4_blocks_count(es), blocks_count);
4672 return -EINVAL;
4673 }
4674
4675 /*
4676 * It makes no sense for the first data block to be beyond the end
4677 * of the filesystem.
4678 */
4679 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4680 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4681 "block %u is beyond end of filesystem (%llu)",
4682 le32_to_cpu(es->s_first_data_block),
4683 ext4_blocks_count(es));
4684 return -EINVAL;
4685 }
4686 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4687 (sbi->s_cluster_ratio == 1)) {
4688 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4689 "block is 0 with a 1k block and cluster size");
4690 return -EINVAL;
4691 }
4692
4693 blocks_count = (ext4_blocks_count(es) -
4694 le32_to_cpu(es->s_first_data_block) +
4695 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4696 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4697 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4698 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4699 "(block count %llu, first data block %u, "
4700 "blocks per group %lu)", blocks_count,
4701 ext4_blocks_count(es),
4702 le32_to_cpu(es->s_first_data_block),
4703 EXT4_BLOCKS_PER_GROUP(sb));
4704 return -EINVAL;
4705 }
4706 sbi->s_groups_count = blocks_count;
4707 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4708 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4709 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4710 le32_to_cpu(es->s_inodes_count)) {
4711 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4712 le32_to_cpu(es->s_inodes_count),
4713 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4714 return -EINVAL;
4715 }
4716
4717 return 0;
4718}
4719
4720static void ext4_group_desc_free(struct ext4_sb_info *sbi)
4721{
4722 struct buffer_head **group_desc;
4723 int i;
4724
4725 rcu_read_lock();
4726 group_desc = rcu_dereference(sbi->s_group_desc);
4727 for (i = 0; i < sbi->s_gdb_count; i++)
4728 brelse(group_desc[i]);
4729 kvfree(group_desc);
4730 rcu_read_unlock();
4731}
4732
4733static int ext4_group_desc_init(struct super_block *sb,
4734 struct ext4_super_block *es,
4735 ext4_fsblk_t logical_sb_block,
4736 ext4_group_t *first_not_zeroed)
4737{
4738 struct ext4_sb_info *sbi = EXT4_SB(sb);
4739 unsigned int db_count;
4740 ext4_fsblk_t block;
4741 int ret;
4742 int i;
4743
4744 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4745 EXT4_DESC_PER_BLOCK(sb);
4746 if (ext4_has_feature_meta_bg(sb)) {
4747 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4748 ext4_msg(sb, KERN_WARNING,
4749 "first meta block group too large: %u "
4750 "(group descriptor block count %u)",
4751 le32_to_cpu(es->s_first_meta_bg), db_count);
4752 return -EINVAL;
4753 }
4754 }
4755 rcu_assign_pointer(sbi->s_group_desc,
4756 kvmalloc_array(db_count,
4757 sizeof(struct buffer_head *),
4758 GFP_KERNEL));
4759 if (sbi->s_group_desc == NULL) {
4760 ext4_msg(sb, KERN_ERR, "not enough memory");
4761 return -ENOMEM;
4762 }
4763
4764 bgl_lock_init(sbi->s_blockgroup_lock);
4765
4766 /* Pre-read the descriptors into the buffer cache */
4767 for (i = 0; i < db_count; i++) {
4768 block = descriptor_loc(sb, logical_sb_block, i);
4769 ext4_sb_breadahead_unmovable(sb, block);
4770 }
4771
4772 for (i = 0; i < db_count; i++) {
4773 struct buffer_head *bh;
4774
4775 block = descriptor_loc(sb, logical_sb_block, i);
4776 bh = ext4_sb_bread_unmovable(sb, block);
4777 if (IS_ERR(bh)) {
4778 ext4_msg(sb, KERN_ERR,
4779 "can't read group descriptor %d", i);
4780 sbi->s_gdb_count = i;
4781 ret = PTR_ERR(bh);
4782 goto out;
4783 }
4784 rcu_read_lock();
4785 rcu_dereference(sbi->s_group_desc)[i] = bh;
4786 rcu_read_unlock();
4787 }
4788 sbi->s_gdb_count = db_count;
4789 if (!ext4_check_descriptors(sb, logical_sb_block, first_not_zeroed)) {
4790 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4791 ret = -EFSCORRUPTED;
4792 goto out;
4793 }
4794 return 0;
4795out:
4796 ext4_group_desc_free(sbi);
4797 return ret;
4798}
4799
4800static int ext4_load_and_init_journal(struct super_block *sb,
4801 struct ext4_super_block *es,
4802 struct ext4_fs_context *ctx)
4803{
4804 struct ext4_sb_info *sbi = EXT4_SB(sb);
4805 int err;
4806
4807 err = ext4_load_journal(sb, es, ctx->journal_devnum);
4808 if (err)
4809 return err;
4810
4811 if (ext4_has_feature_64bit(sb) &&
4812 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4813 JBD2_FEATURE_INCOMPAT_64BIT)) {
4814 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4815 goto out;
4816 }
4817
4818 if (!set_journal_csum_feature_set(sb)) {
4819 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4820 "feature set");
4821 goto out;
4822 }
4823
4824 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4825 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4826 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4827 ext4_msg(sb, KERN_ERR,
4828 "Failed to set fast commit journal feature");
4829 goto out;
4830 }
4831
4832 /* We have now updated the journal if required, so we can
4833 * validate the data journaling mode. */
4834 switch (test_opt(sb, DATA_FLAGS)) {
4835 case 0:
4836 /* No mode set, assume a default based on the journal
4837 * capabilities: ORDERED_DATA if the journal can
4838 * cope, else JOURNAL_DATA
4839 */
4840 if (jbd2_journal_check_available_features
4841 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4842 set_opt(sb, ORDERED_DATA);
4843 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4844 } else {
4845 set_opt(sb, JOURNAL_DATA);
4846 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4847 }
4848 break;
4849
4850 case EXT4_MOUNT_ORDERED_DATA:
4851 case EXT4_MOUNT_WRITEBACK_DATA:
4852 if (!jbd2_journal_check_available_features
4853 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4854 ext4_msg(sb, KERN_ERR, "Journal does not support "
4855 "requested data journaling mode");
4856 goto out;
4857 }
4858 break;
4859 default:
4860 break;
4861 }
4862
4863 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4864 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4865 ext4_msg(sb, KERN_ERR, "can't mount with "
4866 "journal_async_commit in data=ordered mode");
4867 goto out;
4868 }
4869
4870 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
4871
4872 sbi->s_journal->j_submit_inode_data_buffers =
4873 ext4_journal_submit_inode_data_buffers;
4874 sbi->s_journal->j_finish_inode_data_buffers =
4875 ext4_journal_finish_inode_data_buffers;
4876
4877 return 0;
4878
4879out:
4880 /* flush s_error_work before journal destroy. */
4881 flush_work(&sbi->s_error_work);
4882 jbd2_journal_destroy(sbi->s_journal);
4883 sbi->s_journal = NULL;
4884 return -EINVAL;
4885}
4886
4887static int ext4_journal_data_mode_check(struct super_block *sb)
4888{
4889 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4890 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with "
4891 "data=journal disables delayed allocation, "
4892 "dioread_nolock, O_DIRECT and fast_commit support!\n");
4893 /* can't mount with both data=journal and dioread_nolock. */
4894 clear_opt(sb, DIOREAD_NOLOCK);
4895 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4896 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4897 ext4_msg(sb, KERN_ERR, "can't mount with "
4898 "both data=journal and delalloc");
4899 return -EINVAL;
4900 }
4901 if (test_opt(sb, DAX_ALWAYS)) {
4902 ext4_msg(sb, KERN_ERR, "can't mount with "
4903 "both data=journal and dax");
4904 return -EINVAL;
4905 }
4906 if (ext4_has_feature_encrypt(sb)) {
4907 ext4_msg(sb, KERN_WARNING,
4908 "encrypted files will use data=ordered "
4909 "instead of data journaling mode");
4910 }
4911 if (test_opt(sb, DELALLOC))
4912 clear_opt(sb, DELALLOC);
4913 } else {
4914 sb->s_iflags |= SB_I_CGROUPWB;
4915 }
4916
4917 return 0;
4918}
4919
4920static int ext4_load_super(struct super_block *sb, ext4_fsblk_t *lsb,
4921 int silent)
4922{
4923 struct ext4_sb_info *sbi = EXT4_SB(sb);
4924 struct ext4_super_block *es;
4925 ext4_fsblk_t logical_sb_block;
4926 unsigned long offset = 0;
4927 struct buffer_head *bh;
4928 int ret = -EINVAL;
4929 int blocksize;
4930
4931 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4932 if (!blocksize) {
4933 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4934 return -EINVAL;
4935 }
4936
4937 /*
4938 * The ext4 superblock will not be buffer aligned for other than 1kB
4939 * block sizes. We need to calculate the offset from buffer start.
4940 */
4941 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4942 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
4943 offset = do_div(logical_sb_block, blocksize);
4944 } else {
4945 logical_sb_block = sbi->s_sb_block;
4946 }
4947
4948 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4949 if (IS_ERR(bh)) {
4950 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4951 return PTR_ERR(bh);
4952 }
4953 /*
4954 * Note: s_es must be initialized as soon as possible because
4955 * some ext4 macro-instructions depend on its value
4956 */
4957 es = (struct ext4_super_block *) (bh->b_data + offset);
4958 sbi->s_es = es;
4959 sb->s_magic = le16_to_cpu(es->s_magic);
4960 if (sb->s_magic != EXT4_SUPER_MAGIC) {
4961 if (!silent)
4962 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
4963 goto out;
4964 }
4965
4966 if (le32_to_cpu(es->s_log_block_size) >
4967 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4968 ext4_msg(sb, KERN_ERR,
4969 "Invalid log block size: %u",
4970 le32_to_cpu(es->s_log_block_size));
4971 goto out;
4972 }
4973 if (le32_to_cpu(es->s_log_cluster_size) >
4974 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4975 ext4_msg(sb, KERN_ERR,
4976 "Invalid log cluster size: %u",
4977 le32_to_cpu(es->s_log_cluster_size));
4978 goto out;
4979 }
4980
4981 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4982
4983 /*
4984 * If the default block size is not the same as the real block size,
4985 * we need to reload it.
4986 */
4987 if (sb->s_blocksize == blocksize) {
4988 *lsb = logical_sb_block;
4989 sbi->s_sbh = bh;
4990 return 0;
4991 }
4992
4993 /*
4994 * bh must be released before kill_bdev(), otherwise
4995 * it won't be freed and its page also. kill_bdev()
4996 * is called by sb_set_blocksize().
4997 */
4998 brelse(bh);
4999 /* Validate the filesystem blocksize */
5000 if (!sb_set_blocksize(sb, blocksize)) {
5001 ext4_msg(sb, KERN_ERR, "bad block size %d",
5002 blocksize);
5003 bh = NULL;
5004 goto out;
5005 }
5006
5007 logical_sb_block = sbi->s_sb_block * EXT4_MIN_BLOCK_SIZE;
5008 offset = do_div(logical_sb_block, blocksize);
5009 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
5010 if (IS_ERR(bh)) {
5011 ext4_msg(sb, KERN_ERR, "Can't read superblock on 2nd try");
5012 ret = PTR_ERR(bh);
5013 bh = NULL;
5014 goto out;
5015 }
5016 es = (struct ext4_super_block *)(bh->b_data + offset);
5017 sbi->s_es = es;
5018 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
5019 ext4_msg(sb, KERN_ERR, "Magic mismatch, very weird!");
5020 goto out;
5021 }
5022 *lsb = logical_sb_block;
5023 sbi->s_sbh = bh;
5024 return 0;
5025out:
5026 brelse(bh);
5027 return ret;
5028}
5029
5030static int __ext4_fill_super(struct fs_context *fc, struct super_block *sb)
5031{
5032 struct ext4_super_block *es = NULL;
5033 struct ext4_sb_info *sbi = EXT4_SB(sb);
5034 struct flex_groups **flex_groups;
5035 ext4_fsblk_t block;
5036 ext4_fsblk_t logical_sb_block;
5037 struct inode *root;
5038 int ret = -ENOMEM;
5039 unsigned int i;
5040 int needs_recovery, has_huge_files;
5041 int err = 0;
5042 ext4_group_t first_not_zeroed;
5043 struct ext4_fs_context *ctx = fc->fs_private;
5044 int silent = fc->sb_flags & SB_SILENT;
5045
5046 /* Set defaults for the variables that will be set during parsing */
5047 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO))
5048 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5049
5050 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
5051 sbi->s_sectors_written_start =
5052 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
5053
5054 /* -EINVAL is default */
5055 ret = -EINVAL;
5056 err = ext4_load_super(sb, &logical_sb_block, silent);
5057 if (err)
5058 goto out_fail;
5059
5060 es = sbi->s_es;
5061 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
5062
5063 err = ext4_init_metadata_csum(sb, es);
5064 if (err)
5065 goto failed_mount;
5066
5067 ext4_set_def_opts(sb, es);
5068
5069 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
5070 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
5071 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
5072 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
5073 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
5074
5075 /*
5076 * set default s_li_wait_mult for lazyinit, for the case there is
5077 * no mount option specified.
5078 */
5079 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
5080
5081 if (ext4_inode_info_init(sb, es))
5082 goto failed_mount;
5083
5084 err = parse_apply_sb_mount_options(sb, ctx);
5085 if (err < 0)
5086 goto failed_mount;
5087
5088 sbi->s_def_mount_opt = sbi->s_mount_opt;
5089
5090 err = ext4_check_opt_consistency(fc, sb);
5091 if (err < 0)
5092 goto failed_mount;
5093
5094 ext4_apply_options(fc, sb);
5095
5096 if (ext4_encoding_init(sb, es))
5097 goto failed_mount;
5098
5099 if (ext4_journal_data_mode_check(sb))
5100 goto failed_mount;
5101
5102 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5103 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5104
5105 /* i_version is always enabled now */
5106 sb->s_flags |= SB_I_VERSION;
5107
5108 if (ext4_check_feature_compatibility(sb, es, silent))
5109 goto failed_mount;
5110
5111 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (sb->s_blocksize / 4)) {
5112 ext4_msg(sb, KERN_ERR,
5113 "Number of reserved GDT blocks insanely large: %d",
5114 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
5115 goto failed_mount;
5116 }
5117
5118 if (sbi->s_daxdev) {
5119 if (sb->s_blocksize == PAGE_SIZE)
5120 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
5121 else
5122 ext4_msg(sb, KERN_ERR, "unsupported blocksize for DAX\n");
5123 }
5124
5125 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
5126 if (ext4_has_feature_inline_data(sb)) {
5127 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
5128 " that may contain inline data");
5129 goto failed_mount;
5130 }
5131 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
5132 ext4_msg(sb, KERN_ERR,
5133 "DAX unsupported by block device.");
5134 goto failed_mount;
5135 }
5136 }
5137
5138 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
5139 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
5140 es->s_encryption_level);
5141 goto failed_mount;
5142 }
5143
5144 has_huge_files = ext4_has_feature_huge_file(sb);
5145 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
5146 has_huge_files);
5147 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
5148
5149 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
5150 if (ext4_has_feature_64bit(sb)) {
5151 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
5152 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
5153 !is_power_of_2(sbi->s_desc_size)) {
5154 ext4_msg(sb, KERN_ERR,
5155 "unsupported descriptor size %lu",
5156 sbi->s_desc_size);
5157 goto failed_mount;
5158 }
5159 } else
5160 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
5161
5162 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
5163 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
5164
5165 sbi->s_inodes_per_block = sb->s_blocksize / EXT4_INODE_SIZE(sb);
5166 if (sbi->s_inodes_per_block == 0 || sbi->s_blocks_per_group == 0) {
5167 if (!silent)
5168 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5169 goto failed_mount;
5170 }
5171 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
5172 sbi->s_inodes_per_group > sb->s_blocksize * 8) {
5173 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
5174 sbi->s_inodes_per_group);
5175 goto failed_mount;
5176 }
5177 sbi->s_itb_per_group = sbi->s_inodes_per_group /
5178 sbi->s_inodes_per_block;
5179 sbi->s_desc_per_block = sb->s_blocksize / EXT4_DESC_SIZE(sb);
5180 sbi->s_mount_state = le16_to_cpu(es->s_state) & ~EXT4_FC_REPLAY;
5181 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
5182 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
5183
5184 for (i = 0; i < 4; i++)
5185 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
5186 sbi->s_def_hash_version = es->s_def_hash_version;
5187 if (ext4_has_feature_dir_index(sb)) {
5188 i = le32_to_cpu(es->s_flags);
5189 if (i & EXT2_FLAGS_UNSIGNED_HASH)
5190 sbi->s_hash_unsigned = 3;
5191 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
5192#ifdef __CHAR_UNSIGNED__
5193 if (!sb_rdonly(sb))
5194 es->s_flags |=
5195 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
5196 sbi->s_hash_unsigned = 3;
5197#else
5198 if (!sb_rdonly(sb))
5199 es->s_flags |=
5200 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
5201#endif
5202 }
5203 }
5204
5205 if (ext4_handle_clustersize(sb))
5206 goto failed_mount;
5207
5208 /*
5209 * Test whether we have more sectors than will fit in sector_t,
5210 * and whether the max offset is addressable by the page cache.
5211 */
5212 err = generic_check_addressable(sb->s_blocksize_bits,
5213 ext4_blocks_count(es));
5214 if (err) {
5215 ext4_msg(sb, KERN_ERR, "filesystem"
5216 " too large to mount safely on this system");
5217 goto failed_mount;
5218 }
5219
5220 if (ext4_geometry_check(sb, es))
5221 goto failed_mount;
5222
5223 err = ext4_group_desc_init(sb, es, logical_sb_block, &first_not_zeroed);
5224 if (err)
5225 goto failed_mount;
5226
5227 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
5228 spin_lock_init(&sbi->s_error_lock);
5229 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
5230
5231 /* Register extent status tree shrinker */
5232 if (ext4_es_register_shrinker(sbi))
5233 goto failed_mount3;
5234
5235 sbi->s_stripe = ext4_get_stripe_size(sbi);
5236 sbi->s_extent_max_zeroout_kb = 32;
5237
5238 /*
5239 * set up enough so that it can read an inode
5240 */
5241 sb->s_op = &ext4_sops;
5242 sb->s_export_op = &ext4_export_ops;
5243 sb->s_xattr = ext4_xattr_handlers;
5244#ifdef CONFIG_FS_ENCRYPTION
5245 sb->s_cop = &ext4_cryptops;
5246#endif
5247#ifdef CONFIG_FS_VERITY
5248 sb->s_vop = &ext4_verityops;
5249#endif
5250#ifdef CONFIG_QUOTA
5251 sb->dq_op = &ext4_quota_operations;
5252 if (ext4_has_feature_quota(sb))
5253 sb->s_qcop = &dquot_quotactl_sysfile_ops;
5254 else
5255 sb->s_qcop = &ext4_qctl_operations;
5256 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
5257#endif
5258 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
5259
5260 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
5261 mutex_init(&sbi->s_orphan_lock);
5262
5263 ext4_fast_commit_init(sb);
5264
5265 sb->s_root = NULL;
5266
5267 needs_recovery = (es->s_last_orphan != 0 ||
5268 ext4_has_feature_orphan_present(sb) ||
5269 ext4_has_feature_journal_needs_recovery(sb));
5270
5271 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
5272 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
5273 goto failed_mount3a;
5274
5275 /*
5276 * The first inode we look at is the journal inode. Don't try
5277 * root first: it may be modified in the journal!
5278 */
5279 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
5280 err = ext4_load_and_init_journal(sb, es, ctx);
5281 if (err)
5282 goto failed_mount3a;
5283 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
5284 ext4_has_feature_journal_needs_recovery(sb)) {
5285 ext4_msg(sb, KERN_ERR, "required journal recovery "
5286 "suppressed and not mounted read-only");
5287 goto failed_mount3a;
5288 } else {
5289 /* Nojournal mode, all journal mount options are illegal */
5290 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5291 ext4_msg(sb, KERN_ERR, "can't mount with "
5292 "journal_async_commit, fs mounted w/o journal");
5293 goto failed_mount3a;
5294 }
5295
5296 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
5297 ext4_msg(sb, KERN_ERR, "can't mount with "
5298 "journal_checksum, fs mounted w/o journal");
5299 goto failed_mount3a;
5300 }
5301 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
5302 ext4_msg(sb, KERN_ERR, "can't mount with "
5303 "commit=%lu, fs mounted w/o journal",
5304 sbi->s_commit_interval / HZ);
5305 goto failed_mount3a;
5306 }
5307 if (EXT4_MOUNT_DATA_FLAGS &
5308 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
5309 ext4_msg(sb, KERN_ERR, "can't mount with "
5310 "data=, fs mounted w/o journal");
5311 goto failed_mount3a;
5312 }
5313 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
5314 clear_opt(sb, JOURNAL_CHECKSUM);
5315 clear_opt(sb, DATA_FLAGS);
5316 clear_opt2(sb, JOURNAL_FAST_COMMIT);
5317 sbi->s_journal = NULL;
5318 needs_recovery = 0;
5319 }
5320
5321 if (!test_opt(sb, NO_MBCACHE)) {
5322 sbi->s_ea_block_cache = ext4_xattr_create_cache();
5323 if (!sbi->s_ea_block_cache) {
5324 ext4_msg(sb, KERN_ERR,
5325 "Failed to create ea_block_cache");
5326 goto failed_mount_wq;
5327 }
5328
5329 if (ext4_has_feature_ea_inode(sb)) {
5330 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
5331 if (!sbi->s_ea_inode_cache) {
5332 ext4_msg(sb, KERN_ERR,
5333 "Failed to create ea_inode_cache");
5334 goto failed_mount_wq;
5335 }
5336 }
5337 }
5338
5339 if (ext4_has_feature_verity(sb) && sb->s_blocksize != PAGE_SIZE) {
5340 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
5341 goto failed_mount_wq;
5342 }
5343
5344 /*
5345 * Get the # of file system overhead blocks from the
5346 * superblock if present.
5347 */
5348 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
5349 /* ignore the precalculated value if it is ridiculous */
5350 if (sbi->s_overhead > ext4_blocks_count(es))
5351 sbi->s_overhead = 0;
5352 /*
5353 * If the bigalloc feature is not enabled recalculating the
5354 * overhead doesn't take long, so we might as well just redo
5355 * it to make sure we are using the correct value.
5356 */
5357 if (!ext4_has_feature_bigalloc(sb))
5358 sbi->s_overhead = 0;
5359 if (sbi->s_overhead == 0) {
5360 err = ext4_calculate_overhead(sb);
5361 if (err)
5362 goto failed_mount_wq;
5363 }
5364
5365 /*
5366 * The maximum number of concurrent works can be high and
5367 * concurrency isn't really necessary. Limit it to 1.
5368 */
5369 EXT4_SB(sb)->rsv_conversion_wq =
5370 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
5371 if (!EXT4_SB(sb)->rsv_conversion_wq) {
5372 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
5373 ret = -ENOMEM;
5374 goto failed_mount4;
5375 }
5376
5377 /*
5378 * The jbd2_journal_load will have done any necessary log recovery,
5379 * so we can safely mount the rest of the filesystem now.
5380 */
5381
5382 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
5383 if (IS_ERR(root)) {
5384 ext4_msg(sb, KERN_ERR, "get root inode failed");
5385 ret = PTR_ERR(root);
5386 root = NULL;
5387 goto failed_mount4;
5388 }
5389 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
5390 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
5391 iput(root);
5392 goto failed_mount4;
5393 }
5394
5395 sb->s_root = d_make_root(root);
5396 if (!sb->s_root) {
5397 ext4_msg(sb, KERN_ERR, "get root dentry failed");
5398 ret = -ENOMEM;
5399 goto failed_mount4;
5400 }
5401
5402 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
5403 if (ret == -EROFS) {
5404 sb->s_flags |= SB_RDONLY;
5405 ret = 0;
5406 } else if (ret)
5407 goto failed_mount4a;
5408
5409 ext4_set_resv_clusters(sb);
5410
5411 if (test_opt(sb, BLOCK_VALIDITY)) {
5412 err = ext4_setup_system_zone(sb);
5413 if (err) {
5414 ext4_msg(sb, KERN_ERR, "failed to initialize system "
5415 "zone (%d)", err);
5416 goto failed_mount4a;
5417 }
5418 }
5419 ext4_fc_replay_cleanup(sb);
5420
5421 ext4_ext_init(sb);
5422
5423 /*
5424 * Enable optimize_scan if number of groups is > threshold. This can be
5425 * turned off by passing "mb_optimize_scan=0". This can also be
5426 * turned on forcefully by passing "mb_optimize_scan=1".
5427 */
5428 if (!(ctx->spec & EXT4_SPEC_mb_optimize_scan)) {
5429 if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5430 set_opt2(sb, MB_OPTIMIZE_SCAN);
5431 else
5432 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5433 }
5434
5435 err = ext4_mb_init(sb);
5436 if (err) {
5437 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5438 err);
5439 goto failed_mount5;
5440 }
5441
5442 /*
5443 * We can only set up the journal commit callback once
5444 * mballoc is initialized
5445 */
5446 if (sbi->s_journal)
5447 sbi->s_journal->j_commit_callback =
5448 ext4_journal_commit_callback;
5449
5450 block = ext4_count_free_clusters(sb);
5451 ext4_free_blocks_count_set(sbi->s_es,
5452 EXT4_C2B(sbi, block));
5453 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5454 GFP_KERNEL);
5455 if (!err) {
5456 unsigned long freei = ext4_count_free_inodes(sb);
5457 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5458 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5459 GFP_KERNEL);
5460 }
5461 if (!err)
5462 err = percpu_counter_init(&sbi->s_dirs_counter,
5463 ext4_count_dirs(sb), GFP_KERNEL);
5464 if (!err)
5465 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5466 GFP_KERNEL);
5467 if (!err)
5468 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5469 GFP_KERNEL);
5470 if (!err)
5471 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5472
5473 if (err) {
5474 ext4_msg(sb, KERN_ERR, "insufficient memory");
5475 goto failed_mount6;
5476 }
5477
5478 if (ext4_has_feature_flex_bg(sb))
5479 if (!ext4_fill_flex_info(sb)) {
5480 ext4_msg(sb, KERN_ERR,
5481 "unable to initialize "
5482 "flex_bg meta info!");
5483 ret = -ENOMEM;
5484 goto failed_mount6;
5485 }
5486
5487 err = ext4_register_li_request(sb, first_not_zeroed);
5488 if (err)
5489 goto failed_mount6;
5490
5491 err = ext4_register_sysfs(sb);
5492 if (err)
5493 goto failed_mount7;
5494
5495 err = ext4_init_orphan_info(sb);
5496 if (err)
5497 goto failed_mount8;
5498#ifdef CONFIG_QUOTA
5499 /* Enable quota usage during mount. */
5500 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5501 err = ext4_enable_quotas(sb);
5502 if (err)
5503 goto failed_mount9;
5504 }
5505#endif /* CONFIG_QUOTA */
5506
5507 /*
5508 * Save the original bdev mapping's wb_err value which could be
5509 * used to detect the metadata async write error.
5510 */
5511 spin_lock_init(&sbi->s_bdev_wb_lock);
5512 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5513 &sbi->s_bdev_wb_err);
5514 sb->s_bdev->bd_super = sb;
5515 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5516 ext4_orphan_cleanup(sb, es);
5517 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5518 /*
5519 * Update the checksum after updating free space/inode counters and
5520 * ext4_orphan_cleanup. Otherwise the superblock can have an incorrect
5521 * checksum in the buffer cache until it is written out and
5522 * e2fsprogs programs trying to open a file system immediately
5523 * after it is mounted can fail.
5524 */
5525 ext4_superblock_csum_set(sb);
5526 if (needs_recovery) {
5527 ext4_msg(sb, KERN_INFO, "recovery complete");
5528 err = ext4_mark_recovery_complete(sb, es);
5529 if (err)
5530 goto failed_mount9;
5531 }
5532
5533 if (test_opt(sb, DISCARD) && !bdev_max_discard_sectors(sb->s_bdev))
5534 ext4_msg(sb, KERN_WARNING,
5535 "mounting with \"discard\" option, but the device does not support discard");
5536
5537 if (es->s_error_count)
5538 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5539
5540 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5541 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5542 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5543 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5544 atomic_set(&sbi->s_warning_count, 0);
5545 atomic_set(&sbi->s_msg_count, 0);
5546
5547 return 0;
5548
5549failed_mount9:
5550 ext4_release_orphan_info(sb);
5551failed_mount8:
5552 ext4_unregister_sysfs(sb);
5553 kobject_put(&sbi->s_kobj);
5554failed_mount7:
5555 ext4_unregister_li_request(sb);
5556failed_mount6:
5557 ext4_mb_release(sb);
5558 rcu_read_lock();
5559 flex_groups = rcu_dereference(sbi->s_flex_groups);
5560 if (flex_groups) {
5561 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5562 kvfree(flex_groups[i]);
5563 kvfree(flex_groups);
5564 }
5565 rcu_read_unlock();
5566 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5567 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5568 percpu_counter_destroy(&sbi->s_dirs_counter);
5569 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5570 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5571 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5572failed_mount5:
5573 ext4_ext_release(sb);
5574 ext4_release_system_zone(sb);
5575failed_mount4a:
5576 dput(sb->s_root);
5577 sb->s_root = NULL;
5578failed_mount4:
5579 ext4_msg(sb, KERN_ERR, "mount failed");
5580 if (EXT4_SB(sb)->rsv_conversion_wq)
5581 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5582failed_mount_wq:
5583 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5584 sbi->s_ea_inode_cache = NULL;
5585
5586 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5587 sbi->s_ea_block_cache = NULL;
5588
5589 if (sbi->s_journal) {
5590 /* flush s_error_work before journal destroy. */
5591 flush_work(&sbi->s_error_work);
5592 jbd2_journal_destroy(sbi->s_journal);
5593 sbi->s_journal = NULL;
5594 }
5595failed_mount3a:
5596 ext4_es_unregister_shrinker(sbi);
5597failed_mount3:
5598 /* flush s_error_work before sbi destroy */
5599 flush_work(&sbi->s_error_work);
5600 del_timer_sync(&sbi->s_err_report);
5601 ext4_stop_mmpd(sbi);
5602 ext4_group_desc_free(sbi);
5603failed_mount:
5604 if (sbi->s_chksum_driver)
5605 crypto_free_shash(sbi->s_chksum_driver);
5606
5607#if IS_ENABLED(CONFIG_UNICODE)
5608 utf8_unload(sb->s_encoding);
5609#endif
5610
5611#ifdef CONFIG_QUOTA
5612 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5613 kfree(get_qf_name(sb, sbi, i));
5614#endif
5615 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5616 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5617 brelse(sbi->s_sbh);
5618 ext4_blkdev_remove(sbi);
5619out_fail:
5620 sb->s_fs_info = NULL;
5621 return err ? err : ret;
5622}
5623
5624static int ext4_fill_super(struct super_block *sb, struct fs_context *fc)
5625{
5626 struct ext4_fs_context *ctx = fc->fs_private;
5627 struct ext4_sb_info *sbi;
5628 const char *descr;
5629 int ret;
5630
5631 sbi = ext4_alloc_sbi(sb);
5632 if (!sbi)
5633 return -ENOMEM;
5634
5635 fc->s_fs_info = sbi;
5636
5637 /* Cleanup superblock name */
5638 strreplace(sb->s_id, '/', '!');
5639
5640 sbi->s_sb_block = 1; /* Default super block location */
5641 if (ctx->spec & EXT4_SPEC_s_sb_block)
5642 sbi->s_sb_block = ctx->s_sb_block;
5643
5644 ret = __ext4_fill_super(fc, sb);
5645 if (ret < 0)
5646 goto free_sbi;
5647
5648 if (sbi->s_journal) {
5649 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5650 descr = " journalled data mode";
5651 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5652 descr = " ordered data mode";
5653 else
5654 descr = " writeback data mode";
5655 } else
5656 descr = "out journal";
5657
5658 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5659 ext4_msg(sb, KERN_INFO, "mounted filesystem %pU with%s. "
5660 "Quota mode: %s.", &sb->s_uuid, descr,
5661 ext4_quota_mode(sb));
5662
5663 /* Update the s_overhead_clusters if necessary */
5664 ext4_update_overhead(sb, false);
5665 return 0;
5666
5667free_sbi:
5668 ext4_free_sbi(sbi);
5669 fc->s_fs_info = NULL;
5670 return ret;
5671}
5672
5673static int ext4_get_tree(struct fs_context *fc)
5674{
5675 return get_tree_bdev(fc, ext4_fill_super);
5676}
5677
5678/*
5679 * Setup any per-fs journal parameters now. We'll do this both on
5680 * initial mount, once the journal has been initialised but before we've
5681 * done any recovery; and again on any subsequent remount.
5682 */
5683static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5684{
5685 struct ext4_sb_info *sbi = EXT4_SB(sb);
5686
5687 journal->j_commit_interval = sbi->s_commit_interval;
5688 journal->j_min_batch_time = sbi->s_min_batch_time;
5689 journal->j_max_batch_time = sbi->s_max_batch_time;
5690 ext4_fc_init(sb, journal);
5691
5692 write_lock(&journal->j_state_lock);
5693 if (test_opt(sb, BARRIER))
5694 journal->j_flags |= JBD2_BARRIER;
5695 else
5696 journal->j_flags &= ~JBD2_BARRIER;
5697 if (test_opt(sb, DATA_ERR_ABORT))
5698 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5699 else
5700 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5701 write_unlock(&journal->j_state_lock);
5702}
5703
5704static struct inode *ext4_get_journal_inode(struct super_block *sb,
5705 unsigned int journal_inum)
5706{
5707 struct inode *journal_inode;
5708
5709 /*
5710 * Test for the existence of a valid inode on disk. Bad things
5711 * happen if we iget() an unused inode, as the subsequent iput()
5712 * will try to delete it.
5713 */
5714 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5715 if (IS_ERR(journal_inode)) {
5716 ext4_msg(sb, KERN_ERR, "no journal found");
5717 return NULL;
5718 }
5719 if (!journal_inode->i_nlink) {
5720 make_bad_inode(journal_inode);
5721 iput(journal_inode);
5722 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5723 return NULL;
5724 }
5725
5726 ext4_debug("Journal inode found at %p: %lld bytes\n",
5727 journal_inode, journal_inode->i_size);
5728 if (!S_ISREG(journal_inode->i_mode) || IS_ENCRYPTED(journal_inode)) {
5729 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5730 iput(journal_inode);
5731 return NULL;
5732 }
5733 return journal_inode;
5734}
5735
5736static journal_t *ext4_get_journal(struct super_block *sb,
5737 unsigned int journal_inum)
5738{
5739 struct inode *journal_inode;
5740 journal_t *journal;
5741
5742 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5743 return NULL;
5744
5745 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5746 if (!journal_inode)
5747 return NULL;
5748
5749 journal = jbd2_journal_init_inode(journal_inode);
5750 if (!journal) {
5751 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5752 iput(journal_inode);
5753 return NULL;
5754 }
5755 journal->j_private = sb;
5756 ext4_init_journal_params(sb, journal);
5757 return journal;
5758}
5759
5760static journal_t *ext4_get_dev_journal(struct super_block *sb,
5761 dev_t j_dev)
5762{
5763 struct buffer_head *bh;
5764 journal_t *journal;
5765 ext4_fsblk_t start;
5766 ext4_fsblk_t len;
5767 int hblock, blocksize;
5768 ext4_fsblk_t sb_block;
5769 unsigned long offset;
5770 struct ext4_super_block *es;
5771 struct block_device *bdev;
5772
5773 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5774 return NULL;
5775
5776 bdev = ext4_blkdev_get(j_dev, sb);
5777 if (bdev == NULL)
5778 return NULL;
5779
5780 blocksize = sb->s_blocksize;
5781 hblock = bdev_logical_block_size(bdev);
5782 if (blocksize < hblock) {
5783 ext4_msg(sb, KERN_ERR,
5784 "blocksize too small for journal device");
5785 goto out_bdev;
5786 }
5787
5788 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5789 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5790 set_blocksize(bdev, blocksize);
5791 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5792 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5793 "external journal");
5794 goto out_bdev;
5795 }
5796
5797 es = (struct ext4_super_block *) (bh->b_data + offset);
5798 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5799 !(le32_to_cpu(es->s_feature_incompat) &
5800 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5801 ext4_msg(sb, KERN_ERR, "external journal has "
5802 "bad superblock");
5803 brelse(bh);
5804 goto out_bdev;
5805 }
5806
5807 if ((le32_to_cpu(es->s_feature_ro_compat) &
5808 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5809 es->s_checksum != ext4_superblock_csum(sb, es)) {
5810 ext4_msg(sb, KERN_ERR, "external journal has "
5811 "corrupt superblock");
5812 brelse(bh);
5813 goto out_bdev;
5814 }
5815
5816 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5817 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5818 brelse(bh);
5819 goto out_bdev;
5820 }
5821
5822 len = ext4_blocks_count(es);
5823 start = sb_block + 1;
5824 brelse(bh); /* we're done with the superblock */
5825
5826 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5827 start, len, blocksize);
5828 if (!journal) {
5829 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5830 goto out_bdev;
5831 }
5832 journal->j_private = sb;
5833 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5834 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5835 goto out_journal;
5836 }
5837 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5838 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5839 "user (unsupported) - %d",
5840 be32_to_cpu(journal->j_superblock->s_nr_users));
5841 goto out_journal;
5842 }
5843 EXT4_SB(sb)->s_journal_bdev = bdev;
5844 ext4_init_journal_params(sb, journal);
5845 return journal;
5846
5847out_journal:
5848 jbd2_journal_destroy(journal);
5849out_bdev:
5850 ext4_blkdev_put(bdev);
5851 return NULL;
5852}
5853
5854static int ext4_load_journal(struct super_block *sb,
5855 struct ext4_super_block *es,
5856 unsigned long journal_devnum)
5857{
5858 journal_t *journal;
5859 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5860 dev_t journal_dev;
5861 int err = 0;
5862 int really_read_only;
5863 int journal_dev_ro;
5864
5865 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5866 return -EFSCORRUPTED;
5867
5868 if (journal_devnum &&
5869 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5870 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5871 "numbers have changed");
5872 journal_dev = new_decode_dev(journal_devnum);
5873 } else
5874 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5875
5876 if (journal_inum && journal_dev) {
5877 ext4_msg(sb, KERN_ERR,
5878 "filesystem has both journal inode and journal device!");
5879 return -EINVAL;
5880 }
5881
5882 if (journal_inum) {
5883 journal = ext4_get_journal(sb, journal_inum);
5884 if (!journal)
5885 return -EINVAL;
5886 } else {
5887 journal = ext4_get_dev_journal(sb, journal_dev);
5888 if (!journal)
5889 return -EINVAL;
5890 }
5891
5892 journal_dev_ro = bdev_read_only(journal->j_dev);
5893 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5894
5895 if (journal_dev_ro && !sb_rdonly(sb)) {
5896 ext4_msg(sb, KERN_ERR,
5897 "journal device read-only, try mounting with '-o ro'");
5898 err = -EROFS;
5899 goto err_out;
5900 }
5901
5902 /*
5903 * Are we loading a blank journal or performing recovery after a
5904 * crash? For recovery, we need to check in advance whether we
5905 * can get read-write access to the device.
5906 */
5907 if (ext4_has_feature_journal_needs_recovery(sb)) {
5908 if (sb_rdonly(sb)) {
5909 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5910 "required on readonly filesystem");
5911 if (really_read_only) {
5912 ext4_msg(sb, KERN_ERR, "write access "
5913 "unavailable, cannot proceed "
5914 "(try mounting with noload)");
5915 err = -EROFS;
5916 goto err_out;
5917 }
5918 ext4_msg(sb, KERN_INFO, "write access will "
5919 "be enabled during recovery");
5920 }
5921 }
5922
5923 if (!(journal->j_flags & JBD2_BARRIER))
5924 ext4_msg(sb, KERN_INFO, "barriers disabled");
5925
5926 if (!ext4_has_feature_journal_needs_recovery(sb))
5927 err = jbd2_journal_wipe(journal, !really_read_only);
5928 if (!err) {
5929 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5930 if (save)
5931 memcpy(save, ((char *) es) +
5932 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5933 err = jbd2_journal_load(journal);
5934 if (save)
5935 memcpy(((char *) es) + EXT4_S_ERR_START,
5936 save, EXT4_S_ERR_LEN);
5937 kfree(save);
5938 }
5939
5940 if (err) {
5941 ext4_msg(sb, KERN_ERR, "error loading journal");
5942 goto err_out;
5943 }
5944
5945 EXT4_SB(sb)->s_journal = journal;
5946 err = ext4_clear_journal_err(sb, es);
5947 if (err) {
5948 EXT4_SB(sb)->s_journal = NULL;
5949 jbd2_journal_destroy(journal);
5950 return err;
5951 }
5952
5953 if (!really_read_only && journal_devnum &&
5954 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5955 es->s_journal_dev = cpu_to_le32(journal_devnum);
5956
5957 /* Make sure we flush the recovery flag to disk. */
5958 ext4_commit_super(sb);
5959 }
5960
5961 return 0;
5962
5963err_out:
5964 jbd2_journal_destroy(journal);
5965 return err;
5966}
5967
5968/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5969static void ext4_update_super(struct super_block *sb)
5970{
5971 struct ext4_sb_info *sbi = EXT4_SB(sb);
5972 struct ext4_super_block *es = sbi->s_es;
5973 struct buffer_head *sbh = sbi->s_sbh;
5974
5975 lock_buffer(sbh);
5976 /*
5977 * If the file system is mounted read-only, don't update the
5978 * superblock write time. This avoids updating the superblock
5979 * write time when we are mounting the root file system
5980 * read/only but we need to replay the journal; at that point,
5981 * for people who are east of GMT and who make their clock
5982 * tick in localtime for Windows bug-for-bug compatibility,
5983 * the clock is set in the future, and this will cause e2fsck
5984 * to complain and force a full file system check.
5985 */
5986 if (!(sb->s_flags & SB_RDONLY))
5987 ext4_update_tstamp(es, s_wtime);
5988 es->s_kbytes_written =
5989 cpu_to_le64(sbi->s_kbytes_written +
5990 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5991 sbi->s_sectors_written_start) >> 1));
5992 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5993 ext4_free_blocks_count_set(es,
5994 EXT4_C2B(sbi, percpu_counter_sum_positive(
5995 &sbi->s_freeclusters_counter)));
5996 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5997 es->s_free_inodes_count =
5998 cpu_to_le32(percpu_counter_sum_positive(
5999 &sbi->s_freeinodes_counter));
6000 /* Copy error information to the on-disk superblock */
6001 spin_lock(&sbi->s_error_lock);
6002 if (sbi->s_add_error_count > 0) {
6003 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6004 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
6005 __ext4_update_tstamp(&es->s_first_error_time,
6006 &es->s_first_error_time_hi,
6007 sbi->s_first_error_time);
6008 strncpy(es->s_first_error_func, sbi->s_first_error_func,
6009 sizeof(es->s_first_error_func));
6010 es->s_first_error_line =
6011 cpu_to_le32(sbi->s_first_error_line);
6012 es->s_first_error_ino =
6013 cpu_to_le32(sbi->s_first_error_ino);
6014 es->s_first_error_block =
6015 cpu_to_le64(sbi->s_first_error_block);
6016 es->s_first_error_errcode =
6017 ext4_errno_to_code(sbi->s_first_error_code);
6018 }
6019 __ext4_update_tstamp(&es->s_last_error_time,
6020 &es->s_last_error_time_hi,
6021 sbi->s_last_error_time);
6022 strncpy(es->s_last_error_func, sbi->s_last_error_func,
6023 sizeof(es->s_last_error_func));
6024 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
6025 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
6026 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
6027 es->s_last_error_errcode =
6028 ext4_errno_to_code(sbi->s_last_error_code);
6029 /*
6030 * Start the daily error reporting function if it hasn't been
6031 * started already
6032 */
6033 if (!es->s_error_count)
6034 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
6035 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
6036 sbi->s_add_error_count = 0;
6037 }
6038 spin_unlock(&sbi->s_error_lock);
6039
6040 ext4_superblock_csum_set(sb);
6041 unlock_buffer(sbh);
6042}
6043
6044static int ext4_commit_super(struct super_block *sb)
6045{
6046 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
6047
6048 if (!sbh)
6049 return -EINVAL;
6050 if (block_device_ejected(sb))
6051 return -ENODEV;
6052
6053 ext4_update_super(sb);
6054
6055 lock_buffer(sbh);
6056 /* Buffer got discarded which means block device got invalidated */
6057 if (!buffer_mapped(sbh)) {
6058 unlock_buffer(sbh);
6059 return -EIO;
6060 }
6061
6062 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
6063 /*
6064 * Oh, dear. A previous attempt to write the
6065 * superblock failed. This could happen because the
6066 * USB device was yanked out. Or it could happen to
6067 * be a transient write error and maybe the block will
6068 * be remapped. Nothing we can do but to retry the
6069 * write and hope for the best.
6070 */
6071 ext4_msg(sb, KERN_ERR, "previous I/O error to "
6072 "superblock detected");
6073 clear_buffer_write_io_error(sbh);
6074 set_buffer_uptodate(sbh);
6075 }
6076 get_bh(sbh);
6077 /* Clear potential dirty bit if it was journalled update */
6078 clear_buffer_dirty(sbh);
6079 sbh->b_end_io = end_buffer_write_sync;
6080 submit_bh(REQ_OP_WRITE | REQ_SYNC |
6081 (test_opt(sb, BARRIER) ? REQ_FUA : 0), sbh);
6082 wait_on_buffer(sbh);
6083 if (buffer_write_io_error(sbh)) {
6084 ext4_msg(sb, KERN_ERR, "I/O error while writing "
6085 "superblock");
6086 clear_buffer_write_io_error(sbh);
6087 set_buffer_uptodate(sbh);
6088 return -EIO;
6089 }
6090 return 0;
6091}
6092
6093/*
6094 * Have we just finished recovery? If so, and if we are mounting (or
6095 * remounting) the filesystem readonly, then we will end up with a
6096 * consistent fs on disk. Record that fact.
6097 */
6098static int ext4_mark_recovery_complete(struct super_block *sb,
6099 struct ext4_super_block *es)
6100{
6101 int err;
6102 journal_t *journal = EXT4_SB(sb)->s_journal;
6103
6104 if (!ext4_has_feature_journal(sb)) {
6105 if (journal != NULL) {
6106 ext4_error(sb, "Journal got removed while the fs was "
6107 "mounted!");
6108 return -EFSCORRUPTED;
6109 }
6110 return 0;
6111 }
6112 jbd2_journal_lock_updates(journal);
6113 err = jbd2_journal_flush(journal, 0);
6114 if (err < 0)
6115 goto out;
6116
6117 if (sb_rdonly(sb) && (ext4_has_feature_journal_needs_recovery(sb) ||
6118 ext4_has_feature_orphan_present(sb))) {
6119 if (!ext4_orphan_file_empty(sb)) {
6120 ext4_error(sb, "Orphan file not empty on read-only fs.");
6121 err = -EFSCORRUPTED;
6122 goto out;
6123 }
6124 ext4_clear_feature_journal_needs_recovery(sb);
6125 ext4_clear_feature_orphan_present(sb);
6126 ext4_commit_super(sb);
6127 }
6128out:
6129 jbd2_journal_unlock_updates(journal);
6130 return err;
6131}
6132
6133/*
6134 * If we are mounting (or read-write remounting) a filesystem whose journal
6135 * has recorded an error from a previous lifetime, move that error to the
6136 * main filesystem now.
6137 */
6138static int ext4_clear_journal_err(struct super_block *sb,
6139 struct ext4_super_block *es)
6140{
6141 journal_t *journal;
6142 int j_errno;
6143 const char *errstr;
6144
6145 if (!ext4_has_feature_journal(sb)) {
6146 ext4_error(sb, "Journal got removed while the fs was mounted!");
6147 return -EFSCORRUPTED;
6148 }
6149
6150 journal = EXT4_SB(sb)->s_journal;
6151
6152 /*
6153 * Now check for any error status which may have been recorded in the
6154 * journal by a prior ext4_error() or ext4_abort()
6155 */
6156
6157 j_errno = jbd2_journal_errno(journal);
6158 if (j_errno) {
6159 char nbuf[16];
6160
6161 errstr = ext4_decode_error(sb, j_errno, nbuf);
6162 ext4_warning(sb, "Filesystem error recorded "
6163 "from previous mount: %s", errstr);
6164 ext4_warning(sb, "Marking fs in need of filesystem check.");
6165
6166 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
6167 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
6168 ext4_commit_super(sb);
6169
6170 jbd2_journal_clear_err(journal);
6171 jbd2_journal_update_sb_errno(journal);
6172 }
6173 return 0;
6174}
6175
6176/*
6177 * Force the running and committing transactions to commit,
6178 * and wait on the commit.
6179 */
6180int ext4_force_commit(struct super_block *sb)
6181{
6182 journal_t *journal;
6183
6184 if (sb_rdonly(sb))
6185 return 0;
6186
6187 journal = EXT4_SB(sb)->s_journal;
6188 return ext4_journal_force_commit(journal);
6189}
6190
6191static int ext4_sync_fs(struct super_block *sb, int wait)
6192{
6193 int ret = 0;
6194 tid_t target;
6195 bool needs_barrier = false;
6196 struct ext4_sb_info *sbi = EXT4_SB(sb);
6197
6198 if (unlikely(ext4_forced_shutdown(sbi)))
6199 return 0;
6200
6201 trace_ext4_sync_fs(sb, wait);
6202 flush_workqueue(sbi->rsv_conversion_wq);
6203 /*
6204 * Writeback quota in non-journalled quota case - journalled quota has
6205 * no dirty dquots
6206 */
6207 dquot_writeback_dquots(sb, -1);
6208 /*
6209 * Data writeback is possible w/o journal transaction, so barrier must
6210 * being sent at the end of the function. But we can skip it if
6211 * transaction_commit will do it for us.
6212 */
6213 if (sbi->s_journal) {
6214 target = jbd2_get_latest_transaction(sbi->s_journal);
6215 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
6216 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
6217 needs_barrier = true;
6218
6219 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
6220 if (wait)
6221 ret = jbd2_log_wait_commit(sbi->s_journal,
6222 target);
6223 }
6224 } else if (wait && test_opt(sb, BARRIER))
6225 needs_barrier = true;
6226 if (needs_barrier) {
6227 int err;
6228 err = blkdev_issue_flush(sb->s_bdev);
6229 if (!ret)
6230 ret = err;
6231 }
6232
6233 return ret;
6234}
6235
6236/*
6237 * LVM calls this function before a (read-only) snapshot is created. This
6238 * gives us a chance to flush the journal completely and mark the fs clean.
6239 *
6240 * Note that only this function cannot bring a filesystem to be in a clean
6241 * state independently. It relies on upper layer to stop all data & metadata
6242 * modifications.
6243 */
6244static int ext4_freeze(struct super_block *sb)
6245{
6246 int error = 0;
6247 journal_t *journal;
6248
6249 if (sb_rdonly(sb))
6250 return 0;
6251
6252 journal = EXT4_SB(sb)->s_journal;
6253
6254 if (journal) {
6255 /* Now we set up the journal barrier. */
6256 jbd2_journal_lock_updates(journal);
6257
6258 /*
6259 * Don't clear the needs_recovery flag if we failed to
6260 * flush the journal.
6261 */
6262 error = jbd2_journal_flush(journal, 0);
6263 if (error < 0)
6264 goto out;
6265
6266 /* Journal blocked and flushed, clear needs_recovery flag. */
6267 ext4_clear_feature_journal_needs_recovery(sb);
6268 if (ext4_orphan_file_empty(sb))
6269 ext4_clear_feature_orphan_present(sb);
6270 }
6271
6272 error = ext4_commit_super(sb);
6273out:
6274 if (journal)
6275 /* we rely on upper layer to stop further updates */
6276 jbd2_journal_unlock_updates(journal);
6277 return error;
6278}
6279
6280/*
6281 * Called by LVM after the snapshot is done. We need to reset the RECOVER
6282 * flag here, even though the filesystem is not technically dirty yet.
6283 */
6284static int ext4_unfreeze(struct super_block *sb)
6285{
6286 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
6287 return 0;
6288
6289 if (EXT4_SB(sb)->s_journal) {
6290 /* Reset the needs_recovery flag before the fs is unlocked. */
6291 ext4_set_feature_journal_needs_recovery(sb);
6292 if (ext4_has_feature_orphan_file(sb))
6293 ext4_set_feature_orphan_present(sb);
6294 }
6295
6296 ext4_commit_super(sb);
6297 return 0;
6298}
6299
6300/*
6301 * Structure to save mount options for ext4_remount's benefit
6302 */
6303struct ext4_mount_options {
6304 unsigned long s_mount_opt;
6305 unsigned long s_mount_opt2;
6306 kuid_t s_resuid;
6307 kgid_t s_resgid;
6308 unsigned long s_commit_interval;
6309 u32 s_min_batch_time, s_max_batch_time;
6310#ifdef CONFIG_QUOTA
6311 int s_jquota_fmt;
6312 char *s_qf_names[EXT4_MAXQUOTAS];
6313#endif
6314};
6315
6316static int __ext4_remount(struct fs_context *fc, struct super_block *sb)
6317{
6318 struct ext4_fs_context *ctx = fc->fs_private;
6319 struct ext4_super_block *es;
6320 struct ext4_sb_info *sbi = EXT4_SB(sb);
6321 unsigned long old_sb_flags;
6322 struct ext4_mount_options old_opts;
6323 ext4_group_t g;
6324 int err = 0;
6325#ifdef CONFIG_QUOTA
6326 int enable_quota = 0;
6327 int i, j;
6328 char *to_free[EXT4_MAXQUOTAS];
6329#endif
6330
6331
6332 /* Store the original options */
6333 old_sb_flags = sb->s_flags;
6334 old_opts.s_mount_opt = sbi->s_mount_opt;
6335 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
6336 old_opts.s_resuid = sbi->s_resuid;
6337 old_opts.s_resgid = sbi->s_resgid;
6338 old_opts.s_commit_interval = sbi->s_commit_interval;
6339 old_opts.s_min_batch_time = sbi->s_min_batch_time;
6340 old_opts.s_max_batch_time = sbi->s_max_batch_time;
6341#ifdef CONFIG_QUOTA
6342 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
6343 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6344 if (sbi->s_qf_names[i]) {
6345 char *qf_name = get_qf_name(sb, sbi, i);
6346
6347 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
6348 if (!old_opts.s_qf_names[i]) {
6349 for (j = 0; j < i; j++)
6350 kfree(old_opts.s_qf_names[j]);
6351 return -ENOMEM;
6352 }
6353 } else
6354 old_opts.s_qf_names[i] = NULL;
6355#endif
6356 if (!(ctx->spec & EXT4_SPEC_JOURNAL_IOPRIO)) {
6357 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
6358 ctx->journal_ioprio =
6359 sbi->s_journal->j_task->io_context->ioprio;
6360 else
6361 ctx->journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
6362
6363 }
6364
6365 ext4_apply_options(fc, sb);
6366
6367 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
6368 test_opt(sb, JOURNAL_CHECKSUM)) {
6369 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
6370 "during remount not supported; ignoring");
6371 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
6372 }
6373
6374 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
6375 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
6376 ext4_msg(sb, KERN_ERR, "can't mount with "
6377 "both data=journal and delalloc");
6378 err = -EINVAL;
6379 goto restore_opts;
6380 }
6381 if (test_opt(sb, DIOREAD_NOLOCK)) {
6382 ext4_msg(sb, KERN_ERR, "can't mount with "
6383 "both data=journal and dioread_nolock");
6384 err = -EINVAL;
6385 goto restore_opts;
6386 }
6387 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
6388 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
6389 ext4_msg(sb, KERN_ERR, "can't mount with "
6390 "journal_async_commit in data=ordered mode");
6391 err = -EINVAL;
6392 goto restore_opts;
6393 }
6394 }
6395
6396 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
6397 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
6398 err = -EINVAL;
6399 goto restore_opts;
6400 }
6401
6402 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
6403 ext4_abort(sb, ESHUTDOWN, "Abort forced by user");
6404
6405 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
6406 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
6407
6408 es = sbi->s_es;
6409
6410 if (sbi->s_journal) {
6411 ext4_init_journal_params(sb, sbi->s_journal);
6412 set_task_ioprio(sbi->s_journal->j_task, ctx->journal_ioprio);
6413 }
6414
6415 /* Flush outstanding errors before changing fs state */
6416 flush_work(&sbi->s_error_work);
6417
6418 if ((bool)(fc->sb_flags & SB_RDONLY) != sb_rdonly(sb)) {
6419 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
6420 err = -EROFS;
6421 goto restore_opts;
6422 }
6423
6424 if (fc->sb_flags & SB_RDONLY) {
6425 err = sync_filesystem(sb);
6426 if (err < 0)
6427 goto restore_opts;
6428 err = dquot_suspend(sb, -1);
6429 if (err < 0)
6430 goto restore_opts;
6431
6432 /*
6433 * First of all, the unconditional stuff we have to do
6434 * to disable replay of the journal when we next remount
6435 */
6436 sb->s_flags |= SB_RDONLY;
6437
6438 /*
6439 * OK, test if we are remounting a valid rw partition
6440 * readonly, and if so set the rdonly flag and then
6441 * mark the partition as valid again.
6442 */
6443 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
6444 (sbi->s_mount_state & EXT4_VALID_FS))
6445 es->s_state = cpu_to_le16(sbi->s_mount_state);
6446
6447 if (sbi->s_journal) {
6448 /*
6449 * We let remount-ro finish even if marking fs
6450 * as clean failed...
6451 */
6452 ext4_mark_recovery_complete(sb, es);
6453 }
6454 } else {
6455 /* Make sure we can mount this feature set readwrite */
6456 if (ext4_has_feature_readonly(sb) ||
6457 !ext4_feature_set_ok(sb, 0)) {
6458 err = -EROFS;
6459 goto restore_opts;
6460 }
6461 /*
6462 * Make sure the group descriptor checksums
6463 * are sane. If they aren't, refuse to remount r/w.
6464 */
6465 for (g = 0; g < sbi->s_groups_count; g++) {
6466 struct ext4_group_desc *gdp =
6467 ext4_get_group_desc(sb, g, NULL);
6468
6469 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6470 ext4_msg(sb, KERN_ERR,
6471 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6472 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6473 le16_to_cpu(gdp->bg_checksum));
6474 err = -EFSBADCRC;
6475 goto restore_opts;
6476 }
6477 }
6478
6479 /*
6480 * If we have an unprocessed orphan list hanging
6481 * around from a previously readonly bdev mount,
6482 * require a full umount/remount for now.
6483 */
6484 if (es->s_last_orphan || !ext4_orphan_file_empty(sb)) {
6485 ext4_msg(sb, KERN_WARNING, "Couldn't "
6486 "remount RDWR because of unprocessed "
6487 "orphan inode list. Please "
6488 "umount/remount instead");
6489 err = -EINVAL;
6490 goto restore_opts;
6491 }
6492
6493 /*
6494 * Mounting a RDONLY partition read-write, so reread
6495 * and store the current valid flag. (It may have
6496 * been changed by e2fsck since we originally mounted
6497 * the partition.)
6498 */
6499 if (sbi->s_journal) {
6500 err = ext4_clear_journal_err(sb, es);
6501 if (err)
6502 goto restore_opts;
6503 }
6504 sbi->s_mount_state = (le16_to_cpu(es->s_state) &
6505 ~EXT4_FC_REPLAY);
6506
6507 err = ext4_setup_super(sb, es, 0);
6508 if (err)
6509 goto restore_opts;
6510
6511 sb->s_flags &= ~SB_RDONLY;
6512 if (ext4_has_feature_mmp(sb))
6513 if (ext4_multi_mount_protect(sb,
6514 le64_to_cpu(es->s_mmp_block))) {
6515 err = -EROFS;
6516 goto restore_opts;
6517 }
6518#ifdef CONFIG_QUOTA
6519 enable_quota = 1;
6520#endif
6521 }
6522 }
6523
6524 /*
6525 * Reinitialize lazy itable initialization thread based on
6526 * current settings
6527 */
6528 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6529 ext4_unregister_li_request(sb);
6530 else {
6531 ext4_group_t first_not_zeroed;
6532 first_not_zeroed = ext4_has_uninit_itable(sb);
6533 ext4_register_li_request(sb, first_not_zeroed);
6534 }
6535
6536 /*
6537 * Handle creation of system zone data early because it can fail.
6538 * Releasing of existing data is done when we are sure remount will
6539 * succeed.
6540 */
6541 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6542 err = ext4_setup_system_zone(sb);
6543 if (err)
6544 goto restore_opts;
6545 }
6546
6547 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6548 err = ext4_commit_super(sb);
6549 if (err)
6550 goto restore_opts;
6551 }
6552
6553#ifdef CONFIG_QUOTA
6554 /* Release old quota file names */
6555 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6556 kfree(old_opts.s_qf_names[i]);
6557 if (enable_quota) {
6558 if (sb_any_quota_suspended(sb))
6559 dquot_resume(sb, -1);
6560 else if (ext4_has_feature_quota(sb)) {
6561 err = ext4_enable_quotas(sb);
6562 if (err)
6563 goto restore_opts;
6564 }
6565 }
6566#endif
6567 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6568 ext4_release_system_zone(sb);
6569
6570 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6571 ext4_stop_mmpd(sbi);
6572
6573 return 0;
6574
6575restore_opts:
6576 sb->s_flags = old_sb_flags;
6577 sbi->s_mount_opt = old_opts.s_mount_opt;
6578 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6579 sbi->s_resuid = old_opts.s_resuid;
6580 sbi->s_resgid = old_opts.s_resgid;
6581 sbi->s_commit_interval = old_opts.s_commit_interval;
6582 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6583 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6584 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6585 ext4_release_system_zone(sb);
6586#ifdef CONFIG_QUOTA
6587 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6588 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6589 to_free[i] = get_qf_name(sb, sbi, i);
6590 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6591 }
6592 synchronize_rcu();
6593 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6594 kfree(to_free[i]);
6595#endif
6596 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6597 ext4_stop_mmpd(sbi);
6598 return err;
6599}
6600
6601static int ext4_reconfigure(struct fs_context *fc)
6602{
6603 struct super_block *sb = fc->root->d_sb;
6604 int ret;
6605
6606 fc->s_fs_info = EXT4_SB(sb);
6607
6608 ret = ext4_check_opt_consistency(fc, sb);
6609 if (ret < 0)
6610 return ret;
6611
6612 ret = __ext4_remount(fc, sb);
6613 if (ret < 0)
6614 return ret;
6615
6616 ext4_msg(sb, KERN_INFO, "re-mounted %pU. Quota mode: %s.",
6617 &sb->s_uuid, ext4_quota_mode(sb));
6618
6619 return 0;
6620}
6621
6622#ifdef CONFIG_QUOTA
6623static int ext4_statfs_project(struct super_block *sb,
6624 kprojid_t projid, struct kstatfs *buf)
6625{
6626 struct kqid qid;
6627 struct dquot *dquot;
6628 u64 limit;
6629 u64 curblock;
6630
6631 qid = make_kqid_projid(projid);
6632 dquot = dqget(sb, qid);
6633 if (IS_ERR(dquot))
6634 return PTR_ERR(dquot);
6635 spin_lock(&dquot->dq_dqb_lock);
6636
6637 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6638 dquot->dq_dqb.dqb_bhardlimit);
6639 limit >>= sb->s_blocksize_bits;
6640
6641 if (limit && buf->f_blocks > limit) {
6642 curblock = (dquot->dq_dqb.dqb_curspace +
6643 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6644 buf->f_blocks = limit;
6645 buf->f_bfree = buf->f_bavail =
6646 (buf->f_blocks > curblock) ?
6647 (buf->f_blocks - curblock) : 0;
6648 }
6649
6650 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6651 dquot->dq_dqb.dqb_ihardlimit);
6652 if (limit && buf->f_files > limit) {
6653 buf->f_files = limit;
6654 buf->f_ffree =
6655 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6656 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6657 }
6658
6659 spin_unlock(&dquot->dq_dqb_lock);
6660 dqput(dquot);
6661 return 0;
6662}
6663#endif
6664
6665static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6666{
6667 struct super_block *sb = dentry->d_sb;
6668 struct ext4_sb_info *sbi = EXT4_SB(sb);
6669 struct ext4_super_block *es = sbi->s_es;
6670 ext4_fsblk_t overhead = 0, resv_blocks;
6671 s64 bfree;
6672 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6673
6674 if (!test_opt(sb, MINIX_DF))
6675 overhead = sbi->s_overhead;
6676
6677 buf->f_type = EXT4_SUPER_MAGIC;
6678 buf->f_bsize = sb->s_blocksize;
6679 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6680 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6681 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6682 /* prevent underflow in case that few free space is available */
6683 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6684 buf->f_bavail = buf->f_bfree -
6685 (ext4_r_blocks_count(es) + resv_blocks);
6686 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6687 buf->f_bavail = 0;
6688 buf->f_files = le32_to_cpu(es->s_inodes_count);
6689 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6690 buf->f_namelen = EXT4_NAME_LEN;
6691 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6692
6693#ifdef CONFIG_QUOTA
6694 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6695 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6696 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6697#endif
6698 return 0;
6699}
6700
6701
6702#ifdef CONFIG_QUOTA
6703
6704/*
6705 * Helper functions so that transaction is started before we acquire dqio_sem
6706 * to keep correct lock ordering of transaction > dqio_sem
6707 */
6708static inline struct inode *dquot_to_inode(struct dquot *dquot)
6709{
6710 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6711}
6712
6713static int ext4_write_dquot(struct dquot *dquot)
6714{
6715 int ret, err;
6716 handle_t *handle;
6717 struct inode *inode;
6718
6719 inode = dquot_to_inode(dquot);
6720 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6721 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6722 if (IS_ERR(handle))
6723 return PTR_ERR(handle);
6724 ret = dquot_commit(dquot);
6725 err = ext4_journal_stop(handle);
6726 if (!ret)
6727 ret = err;
6728 return ret;
6729}
6730
6731static int ext4_acquire_dquot(struct dquot *dquot)
6732{
6733 int ret, err;
6734 handle_t *handle;
6735
6736 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6737 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6738 if (IS_ERR(handle))
6739 return PTR_ERR(handle);
6740 ret = dquot_acquire(dquot);
6741 err = ext4_journal_stop(handle);
6742 if (!ret)
6743 ret = err;
6744 return ret;
6745}
6746
6747static int ext4_release_dquot(struct dquot *dquot)
6748{
6749 int ret, err;
6750 handle_t *handle;
6751
6752 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6753 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6754 if (IS_ERR(handle)) {
6755 /* Release dquot anyway to avoid endless cycle in dqput() */
6756 dquot_release(dquot);
6757 return PTR_ERR(handle);
6758 }
6759 ret = dquot_release(dquot);
6760 err = ext4_journal_stop(handle);
6761 if (!ret)
6762 ret = err;
6763 return ret;
6764}
6765
6766static int ext4_mark_dquot_dirty(struct dquot *dquot)
6767{
6768 struct super_block *sb = dquot->dq_sb;
6769
6770 if (ext4_is_quota_journalled(sb)) {
6771 dquot_mark_dquot_dirty(dquot);
6772 return ext4_write_dquot(dquot);
6773 } else {
6774 return dquot_mark_dquot_dirty(dquot);
6775 }
6776}
6777
6778static int ext4_write_info(struct super_block *sb, int type)
6779{
6780 int ret, err;
6781 handle_t *handle;
6782
6783 /* Data block + inode block */
6784 handle = ext4_journal_start_sb(sb, EXT4_HT_QUOTA, 2);
6785 if (IS_ERR(handle))
6786 return PTR_ERR(handle);
6787 ret = dquot_commit_info(sb, type);
6788 err = ext4_journal_stop(handle);
6789 if (!ret)
6790 ret = err;
6791 return ret;
6792}
6793
6794static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6795{
6796 struct ext4_inode_info *ei = EXT4_I(inode);
6797
6798 /* The first argument of lockdep_set_subclass has to be
6799 * *exactly* the same as the argument to init_rwsem() --- in
6800 * this case, in init_once() --- or lockdep gets unhappy
6801 * because the name of the lock is set using the
6802 * stringification of the argument to init_rwsem().
6803 */
6804 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6805 lockdep_set_subclass(&ei->i_data_sem, subclass);
6806}
6807
6808/*
6809 * Standard function to be called on quota_on
6810 */
6811static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6812 const struct path *path)
6813{
6814 int err;
6815
6816 if (!test_opt(sb, QUOTA))
6817 return -EINVAL;
6818
6819 /* Quotafile not on the same filesystem? */
6820 if (path->dentry->d_sb != sb)
6821 return -EXDEV;
6822
6823 /* Quota already enabled for this file? */
6824 if (IS_NOQUOTA(d_inode(path->dentry)))
6825 return -EBUSY;
6826
6827 /* Journaling quota? */
6828 if (EXT4_SB(sb)->s_qf_names[type]) {
6829 /* Quotafile not in fs root? */
6830 if (path->dentry->d_parent != sb->s_root)
6831 ext4_msg(sb, KERN_WARNING,
6832 "Quota file not on filesystem root. "
6833 "Journaled quota will not work");
6834 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6835 } else {
6836 /*
6837 * Clear the flag just in case mount options changed since
6838 * last time.
6839 */
6840 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6841 }
6842
6843 /*
6844 * When we journal data on quota file, we have to flush journal to see
6845 * all updates to the file when we bypass pagecache...
6846 */
6847 if (EXT4_SB(sb)->s_journal &&
6848 ext4_should_journal_data(d_inode(path->dentry))) {
6849 /*
6850 * We don't need to lock updates but journal_flush() could
6851 * otherwise be livelocked...
6852 */
6853 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6854 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6855 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6856 if (err)
6857 return err;
6858 }
6859
6860 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6861 err = dquot_quota_on(sb, type, format_id, path);
6862 if (!err) {
6863 struct inode *inode = d_inode(path->dentry);
6864 handle_t *handle;
6865
6866 /*
6867 * Set inode flags to prevent userspace from messing with quota
6868 * files. If this fails, we return success anyway since quotas
6869 * are already enabled and this is not a hard failure.
6870 */
6871 inode_lock(inode);
6872 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6873 if (IS_ERR(handle))
6874 goto unlock_inode;
6875 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6876 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6877 S_NOATIME | S_IMMUTABLE);
6878 err = ext4_mark_inode_dirty(handle, inode);
6879 ext4_journal_stop(handle);
6880 unlock_inode:
6881 inode_unlock(inode);
6882 if (err)
6883 dquot_quota_off(sb, type);
6884 }
6885 if (err)
6886 lockdep_set_quota_inode(path->dentry->d_inode,
6887 I_DATA_SEM_NORMAL);
6888 return err;
6889}
6890
6891static inline bool ext4_check_quota_inum(int type, unsigned long qf_inum)
6892{
6893 switch (type) {
6894 case USRQUOTA:
6895 return qf_inum == EXT4_USR_QUOTA_INO;
6896 case GRPQUOTA:
6897 return qf_inum == EXT4_GRP_QUOTA_INO;
6898 case PRJQUOTA:
6899 return qf_inum >= EXT4_GOOD_OLD_FIRST_INO;
6900 default:
6901 BUG();
6902 }
6903}
6904
6905static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6906 unsigned int flags)
6907{
6908 int err;
6909 struct inode *qf_inode;
6910 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6911 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6912 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6913 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6914 };
6915
6916 BUG_ON(!ext4_has_feature_quota(sb));
6917
6918 if (!qf_inums[type])
6919 return -EPERM;
6920
6921 if (!ext4_check_quota_inum(type, qf_inums[type])) {
6922 ext4_error(sb, "Bad quota inum: %lu, type: %d",
6923 qf_inums[type], type);
6924 return -EUCLEAN;
6925 }
6926
6927 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6928 if (IS_ERR(qf_inode)) {
6929 ext4_error(sb, "Bad quota inode: %lu, type: %d",
6930 qf_inums[type], type);
6931 return PTR_ERR(qf_inode);
6932 }
6933
6934 /* Don't account quota for quota files to avoid recursion */
6935 qf_inode->i_flags |= S_NOQUOTA;
6936 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6937 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6938 if (err)
6939 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6940 iput(qf_inode);
6941
6942 return err;
6943}
6944
6945/* Enable usage tracking for all quota types. */
6946int ext4_enable_quotas(struct super_block *sb)
6947{
6948 int type, err = 0;
6949 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6950 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6951 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6952 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6953 };
6954 bool quota_mopt[EXT4_MAXQUOTAS] = {
6955 test_opt(sb, USRQUOTA),
6956 test_opt(sb, GRPQUOTA),
6957 test_opt(sb, PRJQUOTA),
6958 };
6959
6960 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6961 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6962 if (qf_inums[type]) {
6963 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6964 DQUOT_USAGE_ENABLED |
6965 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6966 if (err) {
6967 ext4_warning(sb,
6968 "Failed to enable quota tracking "
6969 "(type=%d, err=%d, ino=%lu). "
6970 "Please run e2fsck to fix.", type,
6971 err, qf_inums[type]);
6972 for (type--; type >= 0; type--) {
6973 struct inode *inode;
6974
6975 inode = sb_dqopt(sb)->files[type];
6976 if (inode)
6977 inode = igrab(inode);
6978 dquot_quota_off(sb, type);
6979 if (inode) {
6980 lockdep_set_quota_inode(inode,
6981 I_DATA_SEM_NORMAL);
6982 iput(inode);
6983 }
6984 }
6985
6986 return err;
6987 }
6988 }
6989 }
6990 return 0;
6991}
6992
6993static int ext4_quota_off(struct super_block *sb, int type)
6994{
6995 struct inode *inode = sb_dqopt(sb)->files[type];
6996 handle_t *handle;
6997 int err;
6998
6999 /* Force all delayed allocation blocks to be allocated.
7000 * Caller already holds s_umount sem */
7001 if (test_opt(sb, DELALLOC))
7002 sync_filesystem(sb);
7003
7004 if (!inode || !igrab(inode))
7005 goto out;
7006
7007 err = dquot_quota_off(sb, type);
7008 if (err || ext4_has_feature_quota(sb))
7009 goto out_put;
7010
7011 inode_lock(inode);
7012 /*
7013 * Update modification times of quota files when userspace can
7014 * start looking at them. If we fail, we return success anyway since
7015 * this is not a hard failure and quotas are already disabled.
7016 */
7017 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
7018 if (IS_ERR(handle)) {
7019 err = PTR_ERR(handle);
7020 goto out_unlock;
7021 }
7022 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
7023 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
7024 inode->i_mtime = inode->i_ctime = current_time(inode);
7025 err = ext4_mark_inode_dirty(handle, inode);
7026 ext4_journal_stop(handle);
7027out_unlock:
7028 inode_unlock(inode);
7029out_put:
7030 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
7031 iput(inode);
7032 return err;
7033out:
7034 return dquot_quota_off(sb, type);
7035}
7036
7037/* Read data from quotafile - avoid pagecache and such because we cannot afford
7038 * acquiring the locks... As quota files are never truncated and quota code
7039 * itself serializes the operations (and no one else should touch the files)
7040 * we don't have to be afraid of races */
7041static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
7042 size_t len, loff_t off)
7043{
7044 struct inode *inode = sb_dqopt(sb)->files[type];
7045 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7046 int offset = off & (sb->s_blocksize - 1);
7047 int tocopy;
7048 size_t toread;
7049 struct buffer_head *bh;
7050 loff_t i_size = i_size_read(inode);
7051
7052 if (off > i_size)
7053 return 0;
7054 if (off+len > i_size)
7055 len = i_size-off;
7056 toread = len;
7057 while (toread > 0) {
7058 tocopy = min_t(unsigned long, sb->s_blocksize - offset, toread);
7059 bh = ext4_bread(NULL, inode, blk, 0);
7060 if (IS_ERR(bh))
7061 return PTR_ERR(bh);
7062 if (!bh) /* A hole? */
7063 memset(data, 0, tocopy);
7064 else
7065 memcpy(data, bh->b_data+offset, tocopy);
7066 brelse(bh);
7067 offset = 0;
7068 toread -= tocopy;
7069 data += tocopy;
7070 blk++;
7071 }
7072 return len;
7073}
7074
7075/* Write to quotafile (we know the transaction is already started and has
7076 * enough credits) */
7077static ssize_t ext4_quota_write(struct super_block *sb, int type,
7078 const char *data, size_t len, loff_t off)
7079{
7080 struct inode *inode = sb_dqopt(sb)->files[type];
7081 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
7082 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
7083 int retries = 0;
7084 struct buffer_head *bh;
7085 handle_t *handle = journal_current_handle();
7086
7087 if (!handle) {
7088 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7089 " cancelled because transaction is not started",
7090 (unsigned long long)off, (unsigned long long)len);
7091 return -EIO;
7092 }
7093 /*
7094 * Since we account only one data block in transaction credits,
7095 * then it is impossible to cross a block boundary.
7096 */
7097 if (sb->s_blocksize - offset < len) {
7098 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
7099 " cancelled because not block aligned",
7100 (unsigned long long)off, (unsigned long long)len);
7101 return -EIO;
7102 }
7103
7104 do {
7105 bh = ext4_bread(handle, inode, blk,
7106 EXT4_GET_BLOCKS_CREATE |
7107 EXT4_GET_BLOCKS_METADATA_NOFAIL);
7108 } while (PTR_ERR(bh) == -ENOSPC &&
7109 ext4_should_retry_alloc(inode->i_sb, &retries));
7110 if (IS_ERR(bh))
7111 return PTR_ERR(bh);
7112 if (!bh)
7113 goto out;
7114 BUFFER_TRACE(bh, "get write access");
7115 err = ext4_journal_get_write_access(handle, sb, bh, EXT4_JTR_NONE);
7116 if (err) {
7117 brelse(bh);
7118 return err;
7119 }
7120 lock_buffer(bh);
7121 memcpy(bh->b_data+offset, data, len);
7122 flush_dcache_page(bh->b_page);
7123 unlock_buffer(bh);
7124 err = ext4_handle_dirty_metadata(handle, NULL, bh);
7125 brelse(bh);
7126out:
7127 if (inode->i_size < off + len) {
7128 i_size_write(inode, off + len);
7129 EXT4_I(inode)->i_disksize = inode->i_size;
7130 err2 = ext4_mark_inode_dirty(handle, inode);
7131 if (unlikely(err2 && !err))
7132 err = err2;
7133 }
7134 return err ? err : len;
7135}
7136#endif
7137
7138#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
7139static inline void register_as_ext2(void)
7140{
7141 int err = register_filesystem(&ext2_fs_type);
7142 if (err)
7143 printk(KERN_WARNING
7144 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
7145}
7146
7147static inline void unregister_as_ext2(void)
7148{
7149 unregister_filesystem(&ext2_fs_type);
7150}
7151
7152static inline int ext2_feature_set_ok(struct super_block *sb)
7153{
7154 if (ext4_has_unknown_ext2_incompat_features(sb))
7155 return 0;
7156 if (sb_rdonly(sb))
7157 return 1;
7158 if (ext4_has_unknown_ext2_ro_compat_features(sb))
7159 return 0;
7160 return 1;
7161}
7162#else
7163static inline void register_as_ext2(void) { }
7164static inline void unregister_as_ext2(void) { }
7165static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
7166#endif
7167
7168static inline void register_as_ext3(void)
7169{
7170 int err = register_filesystem(&ext3_fs_type);
7171 if (err)
7172 printk(KERN_WARNING
7173 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
7174}
7175
7176static inline void unregister_as_ext3(void)
7177{
7178 unregister_filesystem(&ext3_fs_type);
7179}
7180
7181static inline int ext3_feature_set_ok(struct super_block *sb)
7182{
7183 if (ext4_has_unknown_ext3_incompat_features(sb))
7184 return 0;
7185 if (!ext4_has_feature_journal(sb))
7186 return 0;
7187 if (sb_rdonly(sb))
7188 return 1;
7189 if (ext4_has_unknown_ext3_ro_compat_features(sb))
7190 return 0;
7191 return 1;
7192}
7193
7194static struct file_system_type ext4_fs_type = {
7195 .owner = THIS_MODULE,
7196 .name = "ext4",
7197 .init_fs_context = ext4_init_fs_context,
7198 .parameters = ext4_param_specs,
7199 .kill_sb = kill_block_super,
7200 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
7201};
7202MODULE_ALIAS_FS("ext4");
7203
7204/* Shared across all ext4 file systems */
7205wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
7206
7207static int __init ext4_init_fs(void)
7208{
7209 int i, err;
7210
7211 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
7212 ext4_li_info = NULL;
7213
7214 /* Build-time check for flags consistency */
7215 ext4_check_flag_values();
7216
7217 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
7218 init_waitqueue_head(&ext4__ioend_wq[i]);
7219
7220 err = ext4_init_es();
7221 if (err)
7222 return err;
7223
7224 err = ext4_init_pending();
7225 if (err)
7226 goto out7;
7227
7228 err = ext4_init_post_read_processing();
7229 if (err)
7230 goto out6;
7231
7232 err = ext4_init_pageio();
7233 if (err)
7234 goto out5;
7235
7236 err = ext4_init_system_zone();
7237 if (err)
7238 goto out4;
7239
7240 err = ext4_init_sysfs();
7241 if (err)
7242 goto out3;
7243
7244 err = ext4_init_mballoc();
7245 if (err)
7246 goto out2;
7247 err = init_inodecache();
7248 if (err)
7249 goto out1;
7250
7251 err = ext4_fc_init_dentry_cache();
7252 if (err)
7253 goto out05;
7254
7255 register_as_ext3();
7256 register_as_ext2();
7257 err = register_filesystem(&ext4_fs_type);
7258 if (err)
7259 goto out;
7260
7261 return 0;
7262out:
7263 unregister_as_ext2();
7264 unregister_as_ext3();
7265 ext4_fc_destroy_dentry_cache();
7266out05:
7267 destroy_inodecache();
7268out1:
7269 ext4_exit_mballoc();
7270out2:
7271 ext4_exit_sysfs();
7272out3:
7273 ext4_exit_system_zone();
7274out4:
7275 ext4_exit_pageio();
7276out5:
7277 ext4_exit_post_read_processing();
7278out6:
7279 ext4_exit_pending();
7280out7:
7281 ext4_exit_es();
7282
7283 return err;
7284}
7285
7286static void __exit ext4_exit_fs(void)
7287{
7288 ext4_destroy_lazyinit_thread();
7289 unregister_as_ext2();
7290 unregister_as_ext3();
7291 unregister_filesystem(&ext4_fs_type);
7292 ext4_fc_destroy_dentry_cache();
7293 destroy_inodecache();
7294 ext4_exit_mballoc();
7295 ext4_exit_sysfs();
7296 ext4_exit_system_zone();
7297 ext4_exit_pageio();
7298 ext4_exit_post_read_processing();
7299 ext4_exit_es();
7300 ext4_exit_pending();
7301}
7302
7303MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
7304MODULE_DESCRIPTION("Fourth Extended Filesystem");
7305MODULE_LICENSE("GPL");
7306MODULE_SOFTDEP("pre: crc32c");
7307module_init(ext4_init_fs)
7308module_exit(ext4_exit_fs)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * linux/fs/ext4/super.c
4 *
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
9 *
10 * from
11 *
12 * linux/fs/minix/inode.c
13 *
14 * Copyright (C) 1991, 1992 Linus Torvalds
15 *
16 * Big-endian to little-endian byte-swapping/bitmaps by
17 * David S. Miller (davem@caip.rutgers.edu), 1995
18 */
19
20#include <linux/module.h>
21#include <linux/string.h>
22#include <linux/fs.h>
23#include <linux/time.h>
24#include <linux/vmalloc.h>
25#include <linux/slab.h>
26#include <linux/init.h>
27#include <linux/blkdev.h>
28#include <linux/backing-dev.h>
29#include <linux/parser.h>
30#include <linux/buffer_head.h>
31#include <linux/exportfs.h>
32#include <linux/vfs.h>
33#include <linux/random.h>
34#include <linux/mount.h>
35#include <linux/namei.h>
36#include <linux/quotaops.h>
37#include <linux/seq_file.h>
38#include <linux/ctype.h>
39#include <linux/log2.h>
40#include <linux/crc16.h>
41#include <linux/dax.h>
42#include <linux/cleancache.h>
43#include <linux/uaccess.h>
44#include <linux/iversion.h>
45#include <linux/unicode.h>
46#include <linux/part_stat.h>
47#include <linux/kthread.h>
48#include <linux/freezer.h>
49
50#include "ext4.h"
51#include "ext4_extents.h" /* Needed for trace points definition */
52#include "ext4_jbd2.h"
53#include "xattr.h"
54#include "acl.h"
55#include "mballoc.h"
56#include "fsmap.h"
57
58#define CREATE_TRACE_POINTS
59#include <trace/events/ext4.h>
60
61static struct ext4_lazy_init *ext4_li_info;
62static DEFINE_MUTEX(ext4_li_mtx);
63static struct ratelimit_state ext4_mount_msg_ratelimit;
64
65static int ext4_load_journal(struct super_block *, struct ext4_super_block *,
66 unsigned long journal_devnum);
67static int ext4_show_options(struct seq_file *seq, struct dentry *root);
68static void ext4_update_super(struct super_block *sb);
69static int ext4_commit_super(struct super_block *sb);
70static int ext4_mark_recovery_complete(struct super_block *sb,
71 struct ext4_super_block *es);
72static int ext4_clear_journal_err(struct super_block *sb,
73 struct ext4_super_block *es);
74static int ext4_sync_fs(struct super_block *sb, int wait);
75static int ext4_remount(struct super_block *sb, int *flags, char *data);
76static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf);
77static int ext4_unfreeze(struct super_block *sb);
78static int ext4_freeze(struct super_block *sb);
79static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
80 const char *dev_name, void *data);
81static inline int ext2_feature_set_ok(struct super_block *sb);
82static inline int ext3_feature_set_ok(struct super_block *sb);
83static int ext4_feature_set_ok(struct super_block *sb, int readonly);
84static void ext4_destroy_lazyinit_thread(void);
85static void ext4_unregister_li_request(struct super_block *sb);
86static void ext4_clear_request_list(void);
87static struct inode *ext4_get_journal_inode(struct super_block *sb,
88 unsigned int journal_inum);
89
90/*
91 * Lock ordering
92 *
93 * Note the difference between i_mmap_sem (EXT4_I(inode)->i_mmap_sem) and
94 * i_mmap_rwsem (inode->i_mmap_rwsem)!
95 *
96 * page fault path:
97 * mmap_lock -> sb_start_pagefault -> i_mmap_sem (r) -> transaction start ->
98 * page lock -> i_data_sem (rw)
99 *
100 * buffered write path:
101 * sb_start_write -> i_mutex -> mmap_lock
102 * sb_start_write -> i_mutex -> transaction start -> page lock ->
103 * i_data_sem (rw)
104 *
105 * truncate:
106 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> i_mmap_rwsem (w) -> page lock
107 * sb_start_write -> i_mutex -> i_mmap_sem (w) -> transaction start ->
108 * i_data_sem (rw)
109 *
110 * direct IO:
111 * sb_start_write -> i_mutex -> mmap_lock
112 * sb_start_write -> i_mutex -> transaction start -> i_data_sem (rw)
113 *
114 * writepages:
115 * transaction start -> page lock(s) -> i_data_sem (rw)
116 */
117
118#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
119static struct file_system_type ext2_fs_type = {
120 .owner = THIS_MODULE,
121 .name = "ext2",
122 .mount = ext4_mount,
123 .kill_sb = kill_block_super,
124 .fs_flags = FS_REQUIRES_DEV,
125};
126MODULE_ALIAS_FS("ext2");
127MODULE_ALIAS("ext2");
128#define IS_EXT2_SB(sb) ((sb)->s_bdev->bd_holder == &ext2_fs_type)
129#else
130#define IS_EXT2_SB(sb) (0)
131#endif
132
133
134static struct file_system_type ext3_fs_type = {
135 .owner = THIS_MODULE,
136 .name = "ext3",
137 .mount = ext4_mount,
138 .kill_sb = kill_block_super,
139 .fs_flags = FS_REQUIRES_DEV,
140};
141MODULE_ALIAS_FS("ext3");
142MODULE_ALIAS("ext3");
143#define IS_EXT3_SB(sb) ((sb)->s_bdev->bd_holder == &ext3_fs_type)
144
145
146static inline void __ext4_read_bh(struct buffer_head *bh, int op_flags,
147 bh_end_io_t *end_io)
148{
149 /*
150 * buffer's verified bit is no longer valid after reading from
151 * disk again due to write out error, clear it to make sure we
152 * recheck the buffer contents.
153 */
154 clear_buffer_verified(bh);
155
156 bh->b_end_io = end_io ? end_io : end_buffer_read_sync;
157 get_bh(bh);
158 submit_bh(REQ_OP_READ, op_flags, bh);
159}
160
161void ext4_read_bh_nowait(struct buffer_head *bh, int op_flags,
162 bh_end_io_t *end_io)
163{
164 BUG_ON(!buffer_locked(bh));
165
166 if (ext4_buffer_uptodate(bh)) {
167 unlock_buffer(bh);
168 return;
169 }
170 __ext4_read_bh(bh, op_flags, end_io);
171}
172
173int ext4_read_bh(struct buffer_head *bh, int op_flags, bh_end_io_t *end_io)
174{
175 BUG_ON(!buffer_locked(bh));
176
177 if (ext4_buffer_uptodate(bh)) {
178 unlock_buffer(bh);
179 return 0;
180 }
181
182 __ext4_read_bh(bh, op_flags, end_io);
183
184 wait_on_buffer(bh);
185 if (buffer_uptodate(bh))
186 return 0;
187 return -EIO;
188}
189
190int ext4_read_bh_lock(struct buffer_head *bh, int op_flags, bool wait)
191{
192 if (trylock_buffer(bh)) {
193 if (wait)
194 return ext4_read_bh(bh, op_flags, NULL);
195 ext4_read_bh_nowait(bh, op_flags, NULL);
196 return 0;
197 }
198 if (wait) {
199 wait_on_buffer(bh);
200 if (buffer_uptodate(bh))
201 return 0;
202 return -EIO;
203 }
204 return 0;
205}
206
207/*
208 * This works like __bread_gfp() except it uses ERR_PTR for error
209 * returns. Currently with sb_bread it's impossible to distinguish
210 * between ENOMEM and EIO situations (since both result in a NULL
211 * return.
212 */
213static struct buffer_head *__ext4_sb_bread_gfp(struct super_block *sb,
214 sector_t block, int op_flags,
215 gfp_t gfp)
216{
217 struct buffer_head *bh;
218 int ret;
219
220 bh = sb_getblk_gfp(sb, block, gfp);
221 if (bh == NULL)
222 return ERR_PTR(-ENOMEM);
223 if (ext4_buffer_uptodate(bh))
224 return bh;
225
226 ret = ext4_read_bh_lock(bh, REQ_META | op_flags, true);
227 if (ret) {
228 put_bh(bh);
229 return ERR_PTR(ret);
230 }
231 return bh;
232}
233
234struct buffer_head *ext4_sb_bread(struct super_block *sb, sector_t block,
235 int op_flags)
236{
237 return __ext4_sb_bread_gfp(sb, block, op_flags, __GFP_MOVABLE);
238}
239
240struct buffer_head *ext4_sb_bread_unmovable(struct super_block *sb,
241 sector_t block)
242{
243 return __ext4_sb_bread_gfp(sb, block, 0, 0);
244}
245
246void ext4_sb_breadahead_unmovable(struct super_block *sb, sector_t block)
247{
248 struct buffer_head *bh = sb_getblk_gfp(sb, block, 0);
249
250 if (likely(bh)) {
251 ext4_read_bh_lock(bh, REQ_RAHEAD, false);
252 brelse(bh);
253 }
254}
255
256static int ext4_verify_csum_type(struct super_block *sb,
257 struct ext4_super_block *es)
258{
259 if (!ext4_has_feature_metadata_csum(sb))
260 return 1;
261
262 return es->s_checksum_type == EXT4_CRC32C_CHKSUM;
263}
264
265static __le32 ext4_superblock_csum(struct super_block *sb,
266 struct ext4_super_block *es)
267{
268 struct ext4_sb_info *sbi = EXT4_SB(sb);
269 int offset = offsetof(struct ext4_super_block, s_checksum);
270 __u32 csum;
271
272 csum = ext4_chksum(sbi, ~0, (char *)es, offset);
273
274 return cpu_to_le32(csum);
275}
276
277static int ext4_superblock_csum_verify(struct super_block *sb,
278 struct ext4_super_block *es)
279{
280 if (!ext4_has_metadata_csum(sb))
281 return 1;
282
283 return es->s_checksum == ext4_superblock_csum(sb, es);
284}
285
286void ext4_superblock_csum_set(struct super_block *sb)
287{
288 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
289
290 if (!ext4_has_metadata_csum(sb))
291 return;
292
293 es->s_checksum = ext4_superblock_csum(sb, es);
294}
295
296ext4_fsblk_t ext4_block_bitmap(struct super_block *sb,
297 struct ext4_group_desc *bg)
298{
299 return le32_to_cpu(bg->bg_block_bitmap_lo) |
300 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
301 (ext4_fsblk_t)le32_to_cpu(bg->bg_block_bitmap_hi) << 32 : 0);
302}
303
304ext4_fsblk_t ext4_inode_bitmap(struct super_block *sb,
305 struct ext4_group_desc *bg)
306{
307 return le32_to_cpu(bg->bg_inode_bitmap_lo) |
308 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
309 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_bitmap_hi) << 32 : 0);
310}
311
312ext4_fsblk_t ext4_inode_table(struct super_block *sb,
313 struct ext4_group_desc *bg)
314{
315 return le32_to_cpu(bg->bg_inode_table_lo) |
316 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
317 (ext4_fsblk_t)le32_to_cpu(bg->bg_inode_table_hi) << 32 : 0);
318}
319
320__u32 ext4_free_group_clusters(struct super_block *sb,
321 struct ext4_group_desc *bg)
322{
323 return le16_to_cpu(bg->bg_free_blocks_count_lo) |
324 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
325 (__u32)le16_to_cpu(bg->bg_free_blocks_count_hi) << 16 : 0);
326}
327
328__u32 ext4_free_inodes_count(struct super_block *sb,
329 struct ext4_group_desc *bg)
330{
331 return le16_to_cpu(bg->bg_free_inodes_count_lo) |
332 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
333 (__u32)le16_to_cpu(bg->bg_free_inodes_count_hi) << 16 : 0);
334}
335
336__u32 ext4_used_dirs_count(struct super_block *sb,
337 struct ext4_group_desc *bg)
338{
339 return le16_to_cpu(bg->bg_used_dirs_count_lo) |
340 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
341 (__u32)le16_to_cpu(bg->bg_used_dirs_count_hi) << 16 : 0);
342}
343
344__u32 ext4_itable_unused_count(struct super_block *sb,
345 struct ext4_group_desc *bg)
346{
347 return le16_to_cpu(bg->bg_itable_unused_lo) |
348 (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT ?
349 (__u32)le16_to_cpu(bg->bg_itable_unused_hi) << 16 : 0);
350}
351
352void ext4_block_bitmap_set(struct super_block *sb,
353 struct ext4_group_desc *bg, ext4_fsblk_t blk)
354{
355 bg->bg_block_bitmap_lo = cpu_to_le32((u32)blk);
356 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
357 bg->bg_block_bitmap_hi = cpu_to_le32(blk >> 32);
358}
359
360void ext4_inode_bitmap_set(struct super_block *sb,
361 struct ext4_group_desc *bg, ext4_fsblk_t blk)
362{
363 bg->bg_inode_bitmap_lo = cpu_to_le32((u32)blk);
364 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
365 bg->bg_inode_bitmap_hi = cpu_to_le32(blk >> 32);
366}
367
368void ext4_inode_table_set(struct super_block *sb,
369 struct ext4_group_desc *bg, ext4_fsblk_t blk)
370{
371 bg->bg_inode_table_lo = cpu_to_le32((u32)blk);
372 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
373 bg->bg_inode_table_hi = cpu_to_le32(blk >> 32);
374}
375
376void ext4_free_group_clusters_set(struct super_block *sb,
377 struct ext4_group_desc *bg, __u32 count)
378{
379 bg->bg_free_blocks_count_lo = cpu_to_le16((__u16)count);
380 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
381 bg->bg_free_blocks_count_hi = cpu_to_le16(count >> 16);
382}
383
384void ext4_free_inodes_set(struct super_block *sb,
385 struct ext4_group_desc *bg, __u32 count)
386{
387 bg->bg_free_inodes_count_lo = cpu_to_le16((__u16)count);
388 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
389 bg->bg_free_inodes_count_hi = cpu_to_le16(count >> 16);
390}
391
392void ext4_used_dirs_set(struct super_block *sb,
393 struct ext4_group_desc *bg, __u32 count)
394{
395 bg->bg_used_dirs_count_lo = cpu_to_le16((__u16)count);
396 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
397 bg->bg_used_dirs_count_hi = cpu_to_le16(count >> 16);
398}
399
400void ext4_itable_unused_set(struct super_block *sb,
401 struct ext4_group_desc *bg, __u32 count)
402{
403 bg->bg_itable_unused_lo = cpu_to_le16((__u16)count);
404 if (EXT4_DESC_SIZE(sb) >= EXT4_MIN_DESC_SIZE_64BIT)
405 bg->bg_itable_unused_hi = cpu_to_le16(count >> 16);
406}
407
408static void __ext4_update_tstamp(__le32 *lo, __u8 *hi, time64_t now)
409{
410 now = clamp_val(now, 0, (1ull << 40) - 1);
411
412 *lo = cpu_to_le32(lower_32_bits(now));
413 *hi = upper_32_bits(now);
414}
415
416static time64_t __ext4_get_tstamp(__le32 *lo, __u8 *hi)
417{
418 return ((time64_t)(*hi) << 32) + le32_to_cpu(*lo);
419}
420#define ext4_update_tstamp(es, tstamp) \
421 __ext4_update_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi, \
422 ktime_get_real_seconds())
423#define ext4_get_tstamp(es, tstamp) \
424 __ext4_get_tstamp(&(es)->tstamp, &(es)->tstamp ## _hi)
425
426/*
427 * The del_gendisk() function uninitializes the disk-specific data
428 * structures, including the bdi structure, without telling anyone
429 * else. Once this happens, any attempt to call mark_buffer_dirty()
430 * (for example, by ext4_commit_super), will cause a kernel OOPS.
431 * This is a kludge to prevent these oops until we can put in a proper
432 * hook in del_gendisk() to inform the VFS and file system layers.
433 */
434static int block_device_ejected(struct super_block *sb)
435{
436 struct inode *bd_inode = sb->s_bdev->bd_inode;
437 struct backing_dev_info *bdi = inode_to_bdi(bd_inode);
438
439 return bdi->dev == NULL;
440}
441
442static void ext4_journal_commit_callback(journal_t *journal, transaction_t *txn)
443{
444 struct super_block *sb = journal->j_private;
445 struct ext4_sb_info *sbi = EXT4_SB(sb);
446 int error = is_journal_aborted(journal);
447 struct ext4_journal_cb_entry *jce;
448
449 BUG_ON(txn->t_state == T_FINISHED);
450
451 ext4_process_freed_data(sb, txn->t_tid);
452
453 spin_lock(&sbi->s_md_lock);
454 while (!list_empty(&txn->t_private_list)) {
455 jce = list_entry(txn->t_private_list.next,
456 struct ext4_journal_cb_entry, jce_list);
457 list_del_init(&jce->jce_list);
458 spin_unlock(&sbi->s_md_lock);
459 jce->jce_func(sb, jce, error);
460 spin_lock(&sbi->s_md_lock);
461 }
462 spin_unlock(&sbi->s_md_lock);
463}
464
465/*
466 * This writepage callback for write_cache_pages()
467 * takes care of a few cases after page cleaning.
468 *
469 * write_cache_pages() already checks for dirty pages
470 * and calls clear_page_dirty_for_io(), which we want,
471 * to write protect the pages.
472 *
473 * However, we may have to redirty a page (see below.)
474 */
475static int ext4_journalled_writepage_callback(struct page *page,
476 struct writeback_control *wbc,
477 void *data)
478{
479 transaction_t *transaction = (transaction_t *) data;
480 struct buffer_head *bh, *head;
481 struct journal_head *jh;
482
483 bh = head = page_buffers(page);
484 do {
485 /*
486 * We have to redirty a page in these cases:
487 * 1) If buffer is dirty, it means the page was dirty because it
488 * contains a buffer that needs checkpointing. So the dirty bit
489 * needs to be preserved so that checkpointing writes the buffer
490 * properly.
491 * 2) If buffer is not part of the committing transaction
492 * (we may have just accidentally come across this buffer because
493 * inode range tracking is not exact) or if the currently running
494 * transaction already contains this buffer as well, dirty bit
495 * needs to be preserved so that the buffer gets writeprotected
496 * properly on running transaction's commit.
497 */
498 jh = bh2jh(bh);
499 if (buffer_dirty(bh) ||
500 (jh && (jh->b_transaction != transaction ||
501 jh->b_next_transaction))) {
502 redirty_page_for_writepage(wbc, page);
503 goto out;
504 }
505 } while ((bh = bh->b_this_page) != head);
506
507out:
508 return AOP_WRITEPAGE_ACTIVATE;
509}
510
511static int ext4_journalled_submit_inode_data_buffers(struct jbd2_inode *jinode)
512{
513 struct address_space *mapping = jinode->i_vfs_inode->i_mapping;
514 struct writeback_control wbc = {
515 .sync_mode = WB_SYNC_ALL,
516 .nr_to_write = LONG_MAX,
517 .range_start = jinode->i_dirty_start,
518 .range_end = jinode->i_dirty_end,
519 };
520
521 return write_cache_pages(mapping, &wbc,
522 ext4_journalled_writepage_callback,
523 jinode->i_transaction);
524}
525
526static int ext4_journal_submit_inode_data_buffers(struct jbd2_inode *jinode)
527{
528 int ret;
529
530 if (ext4_should_journal_data(jinode->i_vfs_inode))
531 ret = ext4_journalled_submit_inode_data_buffers(jinode);
532 else
533 ret = jbd2_journal_submit_inode_data_buffers(jinode);
534
535 return ret;
536}
537
538static int ext4_journal_finish_inode_data_buffers(struct jbd2_inode *jinode)
539{
540 int ret = 0;
541
542 if (!ext4_should_journal_data(jinode->i_vfs_inode))
543 ret = jbd2_journal_finish_inode_data_buffers(jinode);
544
545 return ret;
546}
547
548static bool system_going_down(void)
549{
550 return system_state == SYSTEM_HALT || system_state == SYSTEM_POWER_OFF
551 || system_state == SYSTEM_RESTART;
552}
553
554struct ext4_err_translation {
555 int code;
556 int errno;
557};
558
559#define EXT4_ERR_TRANSLATE(err) { .code = EXT4_ERR_##err, .errno = err }
560
561static struct ext4_err_translation err_translation[] = {
562 EXT4_ERR_TRANSLATE(EIO),
563 EXT4_ERR_TRANSLATE(ENOMEM),
564 EXT4_ERR_TRANSLATE(EFSBADCRC),
565 EXT4_ERR_TRANSLATE(EFSCORRUPTED),
566 EXT4_ERR_TRANSLATE(ENOSPC),
567 EXT4_ERR_TRANSLATE(ENOKEY),
568 EXT4_ERR_TRANSLATE(EROFS),
569 EXT4_ERR_TRANSLATE(EFBIG),
570 EXT4_ERR_TRANSLATE(EEXIST),
571 EXT4_ERR_TRANSLATE(ERANGE),
572 EXT4_ERR_TRANSLATE(EOVERFLOW),
573 EXT4_ERR_TRANSLATE(EBUSY),
574 EXT4_ERR_TRANSLATE(ENOTDIR),
575 EXT4_ERR_TRANSLATE(ENOTEMPTY),
576 EXT4_ERR_TRANSLATE(ESHUTDOWN),
577 EXT4_ERR_TRANSLATE(EFAULT),
578};
579
580static int ext4_errno_to_code(int errno)
581{
582 int i;
583
584 for (i = 0; i < ARRAY_SIZE(err_translation); i++)
585 if (err_translation[i].errno == errno)
586 return err_translation[i].code;
587 return EXT4_ERR_UNKNOWN;
588}
589
590static void save_error_info(struct super_block *sb, int error,
591 __u32 ino, __u64 block,
592 const char *func, unsigned int line)
593{
594 struct ext4_sb_info *sbi = EXT4_SB(sb);
595
596 /* We default to EFSCORRUPTED error... */
597 if (error == 0)
598 error = EFSCORRUPTED;
599
600 spin_lock(&sbi->s_error_lock);
601 sbi->s_add_error_count++;
602 sbi->s_last_error_code = error;
603 sbi->s_last_error_line = line;
604 sbi->s_last_error_ino = ino;
605 sbi->s_last_error_block = block;
606 sbi->s_last_error_func = func;
607 sbi->s_last_error_time = ktime_get_real_seconds();
608 if (!sbi->s_first_error_time) {
609 sbi->s_first_error_code = error;
610 sbi->s_first_error_line = line;
611 sbi->s_first_error_ino = ino;
612 sbi->s_first_error_block = block;
613 sbi->s_first_error_func = func;
614 sbi->s_first_error_time = sbi->s_last_error_time;
615 }
616 spin_unlock(&sbi->s_error_lock);
617}
618
619/* Deal with the reporting of failure conditions on a filesystem such as
620 * inconsistencies detected or read IO failures.
621 *
622 * On ext2, we can store the error state of the filesystem in the
623 * superblock. That is not possible on ext4, because we may have other
624 * write ordering constraints on the superblock which prevent us from
625 * writing it out straight away; and given that the journal is about to
626 * be aborted, we can't rely on the current, or future, transactions to
627 * write out the superblock safely.
628 *
629 * We'll just use the jbd2_journal_abort() error code to record an error in
630 * the journal instead. On recovery, the journal will complain about
631 * that error until we've noted it down and cleared it.
632 *
633 * If force_ro is set, we unconditionally force the filesystem into an
634 * ABORT|READONLY state, unless the error response on the fs has been set to
635 * panic in which case we take the easy way out and panic immediately. This is
636 * used to deal with unrecoverable failures such as journal IO errors or ENOMEM
637 * at a critical moment in log management.
638 */
639static void ext4_handle_error(struct super_block *sb, bool force_ro, int error,
640 __u32 ino, __u64 block,
641 const char *func, unsigned int line)
642{
643 journal_t *journal = EXT4_SB(sb)->s_journal;
644 bool continue_fs = !force_ro && test_opt(sb, ERRORS_CONT);
645
646 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
647 if (test_opt(sb, WARN_ON_ERROR))
648 WARN_ON_ONCE(1);
649
650 if (!continue_fs && !sb_rdonly(sb)) {
651 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
652 if (journal)
653 jbd2_journal_abort(journal, -EIO);
654 }
655
656 if (!bdev_read_only(sb->s_bdev)) {
657 save_error_info(sb, error, ino, block, func, line);
658 /*
659 * In case the fs should keep running, we need to writeout
660 * superblock through the journal. Due to lock ordering
661 * constraints, it may not be safe to do it right here so we
662 * defer superblock flushing to a workqueue.
663 */
664 if (continue_fs && journal)
665 schedule_work(&EXT4_SB(sb)->s_error_work);
666 else
667 ext4_commit_super(sb);
668 }
669
670 /*
671 * We force ERRORS_RO behavior when system is rebooting. Otherwise we
672 * could panic during 'reboot -f' as the underlying device got already
673 * disabled.
674 */
675 if (test_opt(sb, ERRORS_PANIC) && !system_going_down()) {
676 panic("EXT4-fs (device %s): panic forced after error\n",
677 sb->s_id);
678 }
679
680 if (sb_rdonly(sb) || continue_fs)
681 return;
682
683 ext4_msg(sb, KERN_CRIT, "Remounting filesystem read-only");
684 /*
685 * Make sure updated value of ->s_mount_flags will be visible before
686 * ->s_flags update
687 */
688 smp_wmb();
689 sb->s_flags |= SB_RDONLY;
690}
691
692static void flush_stashed_error_work(struct work_struct *work)
693{
694 struct ext4_sb_info *sbi = container_of(work, struct ext4_sb_info,
695 s_error_work);
696 journal_t *journal = sbi->s_journal;
697 handle_t *handle;
698
699 /*
700 * If the journal is still running, we have to write out superblock
701 * through the journal to avoid collisions of other journalled sb
702 * updates.
703 *
704 * We use directly jbd2 functions here to avoid recursing back into
705 * ext4 error handling code during handling of previous errors.
706 */
707 if (!sb_rdonly(sbi->s_sb) && journal) {
708 struct buffer_head *sbh = sbi->s_sbh;
709 handle = jbd2_journal_start(journal, 1);
710 if (IS_ERR(handle))
711 goto write_directly;
712 if (jbd2_journal_get_write_access(handle, sbh)) {
713 jbd2_journal_stop(handle);
714 goto write_directly;
715 }
716 ext4_update_super(sbi->s_sb);
717 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
718 ext4_msg(sbi->s_sb, KERN_ERR, "previous I/O error to "
719 "superblock detected");
720 clear_buffer_write_io_error(sbh);
721 set_buffer_uptodate(sbh);
722 }
723
724 if (jbd2_journal_dirty_metadata(handle, sbh)) {
725 jbd2_journal_stop(handle);
726 goto write_directly;
727 }
728 jbd2_journal_stop(handle);
729 ext4_notify_error_sysfs(sbi);
730 return;
731 }
732write_directly:
733 /*
734 * Write through journal failed. Write sb directly to get error info
735 * out and hope for the best.
736 */
737 ext4_commit_super(sbi->s_sb);
738 ext4_notify_error_sysfs(sbi);
739}
740
741#define ext4_error_ratelimit(sb) \
742 ___ratelimit(&(EXT4_SB(sb)->s_err_ratelimit_state), \
743 "EXT4-fs error")
744
745void __ext4_error(struct super_block *sb, const char *function,
746 unsigned int line, bool force_ro, int error, __u64 block,
747 const char *fmt, ...)
748{
749 struct va_format vaf;
750 va_list args;
751
752 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
753 return;
754
755 trace_ext4_error(sb, function, line);
756 if (ext4_error_ratelimit(sb)) {
757 va_start(args, fmt);
758 vaf.fmt = fmt;
759 vaf.va = &args;
760 printk(KERN_CRIT
761 "EXT4-fs error (device %s): %s:%d: comm %s: %pV\n",
762 sb->s_id, function, line, current->comm, &vaf);
763 va_end(args);
764 }
765 ext4_handle_error(sb, force_ro, error, 0, block, function, line);
766}
767
768void __ext4_error_inode(struct inode *inode, const char *function,
769 unsigned int line, ext4_fsblk_t block, int error,
770 const char *fmt, ...)
771{
772 va_list args;
773 struct va_format vaf;
774
775 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
776 return;
777
778 trace_ext4_error(inode->i_sb, function, line);
779 if (ext4_error_ratelimit(inode->i_sb)) {
780 va_start(args, fmt);
781 vaf.fmt = fmt;
782 vaf.va = &args;
783 if (block)
784 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
785 "inode #%lu: block %llu: comm %s: %pV\n",
786 inode->i_sb->s_id, function, line, inode->i_ino,
787 block, current->comm, &vaf);
788 else
789 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: "
790 "inode #%lu: comm %s: %pV\n",
791 inode->i_sb->s_id, function, line, inode->i_ino,
792 current->comm, &vaf);
793 va_end(args);
794 }
795 ext4_handle_error(inode->i_sb, false, error, inode->i_ino, block,
796 function, line);
797}
798
799void __ext4_error_file(struct file *file, const char *function,
800 unsigned int line, ext4_fsblk_t block,
801 const char *fmt, ...)
802{
803 va_list args;
804 struct va_format vaf;
805 struct inode *inode = file_inode(file);
806 char pathname[80], *path;
807
808 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
809 return;
810
811 trace_ext4_error(inode->i_sb, function, line);
812 if (ext4_error_ratelimit(inode->i_sb)) {
813 path = file_path(file, pathname, sizeof(pathname));
814 if (IS_ERR(path))
815 path = "(unknown)";
816 va_start(args, fmt);
817 vaf.fmt = fmt;
818 vaf.va = &args;
819 if (block)
820 printk(KERN_CRIT
821 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
822 "block %llu: comm %s: path %s: %pV\n",
823 inode->i_sb->s_id, function, line, inode->i_ino,
824 block, current->comm, path, &vaf);
825 else
826 printk(KERN_CRIT
827 "EXT4-fs error (device %s): %s:%d: inode #%lu: "
828 "comm %s: path %s: %pV\n",
829 inode->i_sb->s_id, function, line, inode->i_ino,
830 current->comm, path, &vaf);
831 va_end(args);
832 }
833 ext4_handle_error(inode->i_sb, false, EFSCORRUPTED, inode->i_ino, block,
834 function, line);
835}
836
837const char *ext4_decode_error(struct super_block *sb, int errno,
838 char nbuf[16])
839{
840 char *errstr = NULL;
841
842 switch (errno) {
843 case -EFSCORRUPTED:
844 errstr = "Corrupt filesystem";
845 break;
846 case -EFSBADCRC:
847 errstr = "Filesystem failed CRC";
848 break;
849 case -EIO:
850 errstr = "IO failure";
851 break;
852 case -ENOMEM:
853 errstr = "Out of memory";
854 break;
855 case -EROFS:
856 if (!sb || (EXT4_SB(sb)->s_journal &&
857 EXT4_SB(sb)->s_journal->j_flags & JBD2_ABORT))
858 errstr = "Journal has aborted";
859 else
860 errstr = "Readonly filesystem";
861 break;
862 default:
863 /* If the caller passed in an extra buffer for unknown
864 * errors, textualise them now. Else we just return
865 * NULL. */
866 if (nbuf) {
867 /* Check for truncated error codes... */
868 if (snprintf(nbuf, 16, "error %d", -errno) >= 0)
869 errstr = nbuf;
870 }
871 break;
872 }
873
874 return errstr;
875}
876
877/* __ext4_std_error decodes expected errors from journaling functions
878 * automatically and invokes the appropriate error response. */
879
880void __ext4_std_error(struct super_block *sb, const char *function,
881 unsigned int line, int errno)
882{
883 char nbuf[16];
884 const char *errstr;
885
886 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
887 return;
888
889 /* Special case: if the error is EROFS, and we're not already
890 * inside a transaction, then there's really no point in logging
891 * an error. */
892 if (errno == -EROFS && journal_current_handle() == NULL && sb_rdonly(sb))
893 return;
894
895 if (ext4_error_ratelimit(sb)) {
896 errstr = ext4_decode_error(sb, errno, nbuf);
897 printk(KERN_CRIT "EXT4-fs error (device %s) in %s:%d: %s\n",
898 sb->s_id, function, line, errstr);
899 }
900
901 ext4_handle_error(sb, false, -errno, 0, 0, function, line);
902}
903
904void __ext4_msg(struct super_block *sb,
905 const char *prefix, const char *fmt, ...)
906{
907 struct va_format vaf;
908 va_list args;
909
910 atomic_inc(&EXT4_SB(sb)->s_msg_count);
911 if (!___ratelimit(&(EXT4_SB(sb)->s_msg_ratelimit_state), "EXT4-fs"))
912 return;
913
914 va_start(args, fmt);
915 vaf.fmt = fmt;
916 vaf.va = &args;
917 printk("%sEXT4-fs (%s): %pV\n", prefix, sb->s_id, &vaf);
918 va_end(args);
919}
920
921static int ext4_warning_ratelimit(struct super_block *sb)
922{
923 atomic_inc(&EXT4_SB(sb)->s_warning_count);
924 return ___ratelimit(&(EXT4_SB(sb)->s_warning_ratelimit_state),
925 "EXT4-fs warning");
926}
927
928void __ext4_warning(struct super_block *sb, const char *function,
929 unsigned int line, const char *fmt, ...)
930{
931 struct va_format vaf;
932 va_list args;
933
934 if (!ext4_warning_ratelimit(sb))
935 return;
936
937 va_start(args, fmt);
938 vaf.fmt = fmt;
939 vaf.va = &args;
940 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: %pV\n",
941 sb->s_id, function, line, &vaf);
942 va_end(args);
943}
944
945void __ext4_warning_inode(const struct inode *inode, const char *function,
946 unsigned int line, const char *fmt, ...)
947{
948 struct va_format vaf;
949 va_list args;
950
951 if (!ext4_warning_ratelimit(inode->i_sb))
952 return;
953
954 va_start(args, fmt);
955 vaf.fmt = fmt;
956 vaf.va = &args;
957 printk(KERN_WARNING "EXT4-fs warning (device %s): %s:%d: "
958 "inode #%lu: comm %s: %pV\n", inode->i_sb->s_id,
959 function, line, inode->i_ino, current->comm, &vaf);
960 va_end(args);
961}
962
963void __ext4_grp_locked_error(const char *function, unsigned int line,
964 struct super_block *sb, ext4_group_t grp,
965 unsigned long ino, ext4_fsblk_t block,
966 const char *fmt, ...)
967__releases(bitlock)
968__acquires(bitlock)
969{
970 struct va_format vaf;
971 va_list args;
972
973 if (unlikely(ext4_forced_shutdown(EXT4_SB(sb))))
974 return;
975
976 trace_ext4_error(sb, function, line);
977 if (ext4_error_ratelimit(sb)) {
978 va_start(args, fmt);
979 vaf.fmt = fmt;
980 vaf.va = &args;
981 printk(KERN_CRIT "EXT4-fs error (device %s): %s:%d: group %u, ",
982 sb->s_id, function, line, grp);
983 if (ino)
984 printk(KERN_CONT "inode %lu: ", ino);
985 if (block)
986 printk(KERN_CONT "block %llu:",
987 (unsigned long long) block);
988 printk(KERN_CONT "%pV\n", &vaf);
989 va_end(args);
990 }
991
992 if (test_opt(sb, ERRORS_CONT)) {
993 if (test_opt(sb, WARN_ON_ERROR))
994 WARN_ON_ONCE(1);
995 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
996 if (!bdev_read_only(sb->s_bdev)) {
997 save_error_info(sb, EFSCORRUPTED, ino, block, function,
998 line);
999 schedule_work(&EXT4_SB(sb)->s_error_work);
1000 }
1001 return;
1002 }
1003 ext4_unlock_group(sb, grp);
1004 ext4_handle_error(sb, false, EFSCORRUPTED, ino, block, function, line);
1005 /*
1006 * We only get here in the ERRORS_RO case; relocking the group
1007 * may be dangerous, but nothing bad will happen since the
1008 * filesystem will have already been marked read/only and the
1009 * journal has been aborted. We return 1 as a hint to callers
1010 * who might what to use the return value from
1011 * ext4_grp_locked_error() to distinguish between the
1012 * ERRORS_CONT and ERRORS_RO case, and perhaps return more
1013 * aggressively from the ext4 function in question, with a
1014 * more appropriate error code.
1015 */
1016 ext4_lock_group(sb, grp);
1017 return;
1018}
1019
1020void ext4_mark_group_bitmap_corrupted(struct super_block *sb,
1021 ext4_group_t group,
1022 unsigned int flags)
1023{
1024 struct ext4_sb_info *sbi = EXT4_SB(sb);
1025 struct ext4_group_info *grp = ext4_get_group_info(sb, group);
1026 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, group, NULL);
1027 int ret;
1028
1029 if (flags & EXT4_GROUP_INFO_BBITMAP_CORRUPT) {
1030 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_BBITMAP_CORRUPT_BIT,
1031 &grp->bb_state);
1032 if (!ret)
1033 percpu_counter_sub(&sbi->s_freeclusters_counter,
1034 grp->bb_free);
1035 }
1036
1037 if (flags & EXT4_GROUP_INFO_IBITMAP_CORRUPT) {
1038 ret = ext4_test_and_set_bit(EXT4_GROUP_INFO_IBITMAP_CORRUPT_BIT,
1039 &grp->bb_state);
1040 if (!ret && gdp) {
1041 int count;
1042
1043 count = ext4_free_inodes_count(sb, gdp);
1044 percpu_counter_sub(&sbi->s_freeinodes_counter,
1045 count);
1046 }
1047 }
1048}
1049
1050void ext4_update_dynamic_rev(struct super_block *sb)
1051{
1052 struct ext4_super_block *es = EXT4_SB(sb)->s_es;
1053
1054 if (le32_to_cpu(es->s_rev_level) > EXT4_GOOD_OLD_REV)
1055 return;
1056
1057 ext4_warning(sb,
1058 "updating to rev %d because of new feature flag, "
1059 "running e2fsck is recommended",
1060 EXT4_DYNAMIC_REV);
1061
1062 es->s_first_ino = cpu_to_le32(EXT4_GOOD_OLD_FIRST_INO);
1063 es->s_inode_size = cpu_to_le16(EXT4_GOOD_OLD_INODE_SIZE);
1064 es->s_rev_level = cpu_to_le32(EXT4_DYNAMIC_REV);
1065 /* leave es->s_feature_*compat flags alone */
1066 /* es->s_uuid will be set by e2fsck if empty */
1067
1068 /*
1069 * The rest of the superblock fields should be zero, and if not it
1070 * means they are likely already in use, so leave them alone. We
1071 * can leave it up to e2fsck to clean up any inconsistencies there.
1072 */
1073}
1074
1075/*
1076 * Open the external journal device
1077 */
1078static struct block_device *ext4_blkdev_get(dev_t dev, struct super_block *sb)
1079{
1080 struct block_device *bdev;
1081
1082 bdev = blkdev_get_by_dev(dev, FMODE_READ|FMODE_WRITE|FMODE_EXCL, sb);
1083 if (IS_ERR(bdev))
1084 goto fail;
1085 return bdev;
1086
1087fail:
1088 ext4_msg(sb, KERN_ERR,
1089 "failed to open journal device unknown-block(%u,%u) %ld",
1090 MAJOR(dev), MINOR(dev), PTR_ERR(bdev));
1091 return NULL;
1092}
1093
1094/*
1095 * Release the journal device
1096 */
1097static void ext4_blkdev_put(struct block_device *bdev)
1098{
1099 blkdev_put(bdev, FMODE_READ|FMODE_WRITE|FMODE_EXCL);
1100}
1101
1102static void ext4_blkdev_remove(struct ext4_sb_info *sbi)
1103{
1104 struct block_device *bdev;
1105 bdev = sbi->s_journal_bdev;
1106 if (bdev) {
1107 ext4_blkdev_put(bdev);
1108 sbi->s_journal_bdev = NULL;
1109 }
1110}
1111
1112static inline struct inode *orphan_list_entry(struct list_head *l)
1113{
1114 return &list_entry(l, struct ext4_inode_info, i_orphan)->vfs_inode;
1115}
1116
1117static void dump_orphan_list(struct super_block *sb, struct ext4_sb_info *sbi)
1118{
1119 struct list_head *l;
1120
1121 ext4_msg(sb, KERN_ERR, "sb orphan head is %d",
1122 le32_to_cpu(sbi->s_es->s_last_orphan));
1123
1124 printk(KERN_ERR "sb_info orphan list:\n");
1125 list_for_each(l, &sbi->s_orphan) {
1126 struct inode *inode = orphan_list_entry(l);
1127 printk(KERN_ERR " "
1128 "inode %s:%lu at %p: mode %o, nlink %d, next %d\n",
1129 inode->i_sb->s_id, inode->i_ino, inode,
1130 inode->i_mode, inode->i_nlink,
1131 NEXT_ORPHAN(inode));
1132 }
1133}
1134
1135#ifdef CONFIG_QUOTA
1136static int ext4_quota_off(struct super_block *sb, int type);
1137
1138static inline void ext4_quota_off_umount(struct super_block *sb)
1139{
1140 int type;
1141
1142 /* Use our quota_off function to clear inode flags etc. */
1143 for (type = 0; type < EXT4_MAXQUOTAS; type++)
1144 ext4_quota_off(sb, type);
1145}
1146
1147/*
1148 * This is a helper function which is used in the mount/remount
1149 * codepaths (which holds s_umount) to fetch the quota file name.
1150 */
1151static inline char *get_qf_name(struct super_block *sb,
1152 struct ext4_sb_info *sbi,
1153 int type)
1154{
1155 return rcu_dereference_protected(sbi->s_qf_names[type],
1156 lockdep_is_held(&sb->s_umount));
1157}
1158#else
1159static inline void ext4_quota_off_umount(struct super_block *sb)
1160{
1161}
1162#endif
1163
1164static void ext4_put_super(struct super_block *sb)
1165{
1166 struct ext4_sb_info *sbi = EXT4_SB(sb);
1167 struct ext4_super_block *es = sbi->s_es;
1168 struct buffer_head **group_desc;
1169 struct flex_groups **flex_groups;
1170 int aborted = 0;
1171 int i, err;
1172
1173 ext4_unregister_li_request(sb);
1174 ext4_quota_off_umount(sb);
1175
1176 flush_work(&sbi->s_error_work);
1177 destroy_workqueue(sbi->rsv_conversion_wq);
1178
1179 /*
1180 * Unregister sysfs before destroying jbd2 journal.
1181 * Since we could still access attr_journal_task attribute via sysfs
1182 * path which could have sbi->s_journal->j_task as NULL
1183 */
1184 ext4_unregister_sysfs(sb);
1185
1186 if (sbi->s_journal) {
1187 aborted = is_journal_aborted(sbi->s_journal);
1188 err = jbd2_journal_destroy(sbi->s_journal);
1189 sbi->s_journal = NULL;
1190 if ((err < 0) && !aborted) {
1191 ext4_abort(sb, -err, "Couldn't clean up the journal");
1192 }
1193 }
1194
1195 ext4_es_unregister_shrinker(sbi);
1196 del_timer_sync(&sbi->s_err_report);
1197 ext4_release_system_zone(sb);
1198 ext4_mb_release(sb);
1199 ext4_ext_release(sb);
1200
1201 if (!sb_rdonly(sb) && !aborted) {
1202 ext4_clear_feature_journal_needs_recovery(sb);
1203 es->s_state = cpu_to_le16(sbi->s_mount_state);
1204 }
1205 if (!sb_rdonly(sb))
1206 ext4_commit_super(sb);
1207
1208 rcu_read_lock();
1209 group_desc = rcu_dereference(sbi->s_group_desc);
1210 for (i = 0; i < sbi->s_gdb_count; i++)
1211 brelse(group_desc[i]);
1212 kvfree(group_desc);
1213 flex_groups = rcu_dereference(sbi->s_flex_groups);
1214 if (flex_groups) {
1215 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
1216 kvfree(flex_groups[i]);
1217 kvfree(flex_groups);
1218 }
1219 rcu_read_unlock();
1220 percpu_counter_destroy(&sbi->s_freeclusters_counter);
1221 percpu_counter_destroy(&sbi->s_freeinodes_counter);
1222 percpu_counter_destroy(&sbi->s_dirs_counter);
1223 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
1224 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
1225 percpu_free_rwsem(&sbi->s_writepages_rwsem);
1226#ifdef CONFIG_QUOTA
1227 for (i = 0; i < EXT4_MAXQUOTAS; i++)
1228 kfree(get_qf_name(sb, sbi, i));
1229#endif
1230
1231 /* Debugging code just in case the in-memory inode orphan list
1232 * isn't empty. The on-disk one can be non-empty if we've
1233 * detected an error and taken the fs readonly, but the
1234 * in-memory list had better be clean by this point. */
1235 if (!list_empty(&sbi->s_orphan))
1236 dump_orphan_list(sb, sbi);
1237 ASSERT(list_empty(&sbi->s_orphan));
1238
1239 sync_blockdev(sb->s_bdev);
1240 invalidate_bdev(sb->s_bdev);
1241 if (sbi->s_journal_bdev && sbi->s_journal_bdev != sb->s_bdev) {
1242 /*
1243 * Invalidate the journal device's buffers. We don't want them
1244 * floating about in memory - the physical journal device may
1245 * hotswapped, and it breaks the `ro-after' testing code.
1246 */
1247 sync_blockdev(sbi->s_journal_bdev);
1248 invalidate_bdev(sbi->s_journal_bdev);
1249 ext4_blkdev_remove(sbi);
1250 }
1251
1252 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
1253 sbi->s_ea_inode_cache = NULL;
1254
1255 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
1256 sbi->s_ea_block_cache = NULL;
1257
1258 ext4_stop_mmpd(sbi);
1259
1260 brelse(sbi->s_sbh);
1261 sb->s_fs_info = NULL;
1262 /*
1263 * Now that we are completely done shutting down the
1264 * superblock, we need to actually destroy the kobject.
1265 */
1266 kobject_put(&sbi->s_kobj);
1267 wait_for_completion(&sbi->s_kobj_unregister);
1268 if (sbi->s_chksum_driver)
1269 crypto_free_shash(sbi->s_chksum_driver);
1270 kfree(sbi->s_blockgroup_lock);
1271 fs_put_dax(sbi->s_daxdev);
1272 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
1273#ifdef CONFIG_UNICODE
1274 utf8_unload(sb->s_encoding);
1275#endif
1276 kfree(sbi);
1277}
1278
1279static struct kmem_cache *ext4_inode_cachep;
1280
1281/*
1282 * Called inside transaction, so use GFP_NOFS
1283 */
1284static struct inode *ext4_alloc_inode(struct super_block *sb)
1285{
1286 struct ext4_inode_info *ei;
1287
1288 ei = kmem_cache_alloc(ext4_inode_cachep, GFP_NOFS);
1289 if (!ei)
1290 return NULL;
1291
1292 inode_set_iversion(&ei->vfs_inode, 1);
1293 spin_lock_init(&ei->i_raw_lock);
1294 INIT_LIST_HEAD(&ei->i_prealloc_list);
1295 atomic_set(&ei->i_prealloc_active, 0);
1296 spin_lock_init(&ei->i_prealloc_lock);
1297 ext4_es_init_tree(&ei->i_es_tree);
1298 rwlock_init(&ei->i_es_lock);
1299 INIT_LIST_HEAD(&ei->i_es_list);
1300 ei->i_es_all_nr = 0;
1301 ei->i_es_shk_nr = 0;
1302 ei->i_es_shrink_lblk = 0;
1303 ei->i_reserved_data_blocks = 0;
1304 spin_lock_init(&(ei->i_block_reservation_lock));
1305 ext4_init_pending_tree(&ei->i_pending_tree);
1306#ifdef CONFIG_QUOTA
1307 ei->i_reserved_quota = 0;
1308 memset(&ei->i_dquot, 0, sizeof(ei->i_dquot));
1309#endif
1310 ei->jinode = NULL;
1311 INIT_LIST_HEAD(&ei->i_rsv_conversion_list);
1312 spin_lock_init(&ei->i_completed_io_lock);
1313 ei->i_sync_tid = 0;
1314 ei->i_datasync_tid = 0;
1315 atomic_set(&ei->i_unwritten, 0);
1316 INIT_WORK(&ei->i_rsv_conversion_work, ext4_end_io_rsv_work);
1317 ext4_fc_init_inode(&ei->vfs_inode);
1318 mutex_init(&ei->i_fc_lock);
1319 return &ei->vfs_inode;
1320}
1321
1322static int ext4_drop_inode(struct inode *inode)
1323{
1324 int drop = generic_drop_inode(inode);
1325
1326 if (!drop)
1327 drop = fscrypt_drop_inode(inode);
1328
1329 trace_ext4_drop_inode(inode, drop);
1330 return drop;
1331}
1332
1333static void ext4_free_in_core_inode(struct inode *inode)
1334{
1335 fscrypt_free_inode(inode);
1336 if (!list_empty(&(EXT4_I(inode)->i_fc_list))) {
1337 pr_warn("%s: inode %ld still in fc list",
1338 __func__, inode->i_ino);
1339 }
1340 kmem_cache_free(ext4_inode_cachep, EXT4_I(inode));
1341}
1342
1343static void ext4_destroy_inode(struct inode *inode)
1344{
1345 if (!list_empty(&(EXT4_I(inode)->i_orphan))) {
1346 ext4_msg(inode->i_sb, KERN_ERR,
1347 "Inode %lu (%p): orphan list check failed!",
1348 inode->i_ino, EXT4_I(inode));
1349 print_hex_dump(KERN_INFO, "", DUMP_PREFIX_ADDRESS, 16, 4,
1350 EXT4_I(inode), sizeof(struct ext4_inode_info),
1351 true);
1352 dump_stack();
1353 }
1354
1355 if (EXT4_I(inode)->i_reserved_data_blocks)
1356 ext4_msg(inode->i_sb, KERN_ERR,
1357 "Inode %lu (%p): i_reserved_data_blocks (%u) not cleared!",
1358 inode->i_ino, EXT4_I(inode),
1359 EXT4_I(inode)->i_reserved_data_blocks);
1360}
1361
1362static void init_once(void *foo)
1363{
1364 struct ext4_inode_info *ei = (struct ext4_inode_info *) foo;
1365
1366 INIT_LIST_HEAD(&ei->i_orphan);
1367 init_rwsem(&ei->xattr_sem);
1368 init_rwsem(&ei->i_data_sem);
1369 init_rwsem(&ei->i_mmap_sem);
1370 inode_init_once(&ei->vfs_inode);
1371 ext4_fc_init_inode(&ei->vfs_inode);
1372}
1373
1374static int __init init_inodecache(void)
1375{
1376 ext4_inode_cachep = kmem_cache_create_usercopy("ext4_inode_cache",
1377 sizeof(struct ext4_inode_info), 0,
1378 (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|
1379 SLAB_ACCOUNT),
1380 offsetof(struct ext4_inode_info, i_data),
1381 sizeof_field(struct ext4_inode_info, i_data),
1382 init_once);
1383 if (ext4_inode_cachep == NULL)
1384 return -ENOMEM;
1385 return 0;
1386}
1387
1388static void destroy_inodecache(void)
1389{
1390 /*
1391 * Make sure all delayed rcu free inodes are flushed before we
1392 * destroy cache.
1393 */
1394 rcu_barrier();
1395 kmem_cache_destroy(ext4_inode_cachep);
1396}
1397
1398void ext4_clear_inode(struct inode *inode)
1399{
1400 ext4_fc_del(inode);
1401 invalidate_inode_buffers(inode);
1402 clear_inode(inode);
1403 ext4_discard_preallocations(inode, 0);
1404 ext4_es_remove_extent(inode, 0, EXT_MAX_BLOCKS);
1405 dquot_drop(inode);
1406 if (EXT4_I(inode)->jinode) {
1407 jbd2_journal_release_jbd_inode(EXT4_JOURNAL(inode),
1408 EXT4_I(inode)->jinode);
1409 jbd2_free_inode(EXT4_I(inode)->jinode);
1410 EXT4_I(inode)->jinode = NULL;
1411 }
1412 fscrypt_put_encryption_info(inode);
1413 fsverity_cleanup_inode(inode);
1414}
1415
1416static struct inode *ext4_nfs_get_inode(struct super_block *sb,
1417 u64 ino, u32 generation)
1418{
1419 struct inode *inode;
1420
1421 /*
1422 * Currently we don't know the generation for parent directory, so
1423 * a generation of 0 means "accept any"
1424 */
1425 inode = ext4_iget(sb, ino, EXT4_IGET_HANDLE);
1426 if (IS_ERR(inode))
1427 return ERR_CAST(inode);
1428 if (generation && inode->i_generation != generation) {
1429 iput(inode);
1430 return ERR_PTR(-ESTALE);
1431 }
1432
1433 return inode;
1434}
1435
1436static struct dentry *ext4_fh_to_dentry(struct super_block *sb, struct fid *fid,
1437 int fh_len, int fh_type)
1438{
1439 return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1440 ext4_nfs_get_inode);
1441}
1442
1443static struct dentry *ext4_fh_to_parent(struct super_block *sb, struct fid *fid,
1444 int fh_len, int fh_type)
1445{
1446 return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1447 ext4_nfs_get_inode);
1448}
1449
1450static int ext4_nfs_commit_metadata(struct inode *inode)
1451{
1452 struct writeback_control wbc = {
1453 .sync_mode = WB_SYNC_ALL
1454 };
1455
1456 trace_ext4_nfs_commit_metadata(inode);
1457 return ext4_write_inode(inode, &wbc);
1458}
1459
1460#ifdef CONFIG_FS_ENCRYPTION
1461static int ext4_get_context(struct inode *inode, void *ctx, size_t len)
1462{
1463 return ext4_xattr_get(inode, EXT4_XATTR_INDEX_ENCRYPTION,
1464 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT, ctx, len);
1465}
1466
1467static int ext4_set_context(struct inode *inode, const void *ctx, size_t len,
1468 void *fs_data)
1469{
1470 handle_t *handle = fs_data;
1471 int res, res2, credits, retries = 0;
1472
1473 /*
1474 * Encrypting the root directory is not allowed because e2fsck expects
1475 * lost+found to exist and be unencrypted, and encrypting the root
1476 * directory would imply encrypting the lost+found directory as well as
1477 * the filename "lost+found" itself.
1478 */
1479 if (inode->i_ino == EXT4_ROOT_INO)
1480 return -EPERM;
1481
1482 if (WARN_ON_ONCE(IS_DAX(inode) && i_size_read(inode)))
1483 return -EINVAL;
1484
1485 if (ext4_test_inode_flag(inode, EXT4_INODE_DAX))
1486 return -EOPNOTSUPP;
1487
1488 res = ext4_convert_inline_data(inode);
1489 if (res)
1490 return res;
1491
1492 /*
1493 * If a journal handle was specified, then the encryption context is
1494 * being set on a new inode via inheritance and is part of a larger
1495 * transaction to create the inode. Otherwise the encryption context is
1496 * being set on an existing inode in its own transaction. Only in the
1497 * latter case should the "retry on ENOSPC" logic be used.
1498 */
1499
1500 if (handle) {
1501 res = ext4_xattr_set_handle(handle, inode,
1502 EXT4_XATTR_INDEX_ENCRYPTION,
1503 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1504 ctx, len, 0);
1505 if (!res) {
1506 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1507 ext4_clear_inode_state(inode,
1508 EXT4_STATE_MAY_INLINE_DATA);
1509 /*
1510 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1511 * S_DAX may be disabled
1512 */
1513 ext4_set_inode_flags(inode, false);
1514 }
1515 return res;
1516 }
1517
1518 res = dquot_initialize(inode);
1519 if (res)
1520 return res;
1521retry:
1522 res = ext4_xattr_set_credits(inode, len, false /* is_create */,
1523 &credits);
1524 if (res)
1525 return res;
1526
1527 handle = ext4_journal_start(inode, EXT4_HT_MISC, credits);
1528 if (IS_ERR(handle))
1529 return PTR_ERR(handle);
1530
1531 res = ext4_xattr_set_handle(handle, inode, EXT4_XATTR_INDEX_ENCRYPTION,
1532 EXT4_XATTR_NAME_ENCRYPTION_CONTEXT,
1533 ctx, len, 0);
1534 if (!res) {
1535 ext4_set_inode_flag(inode, EXT4_INODE_ENCRYPT);
1536 /*
1537 * Update inode->i_flags - S_ENCRYPTED will be enabled,
1538 * S_DAX may be disabled
1539 */
1540 ext4_set_inode_flags(inode, false);
1541 res = ext4_mark_inode_dirty(handle, inode);
1542 if (res)
1543 EXT4_ERROR_INODE(inode, "Failed to mark inode dirty");
1544 }
1545 res2 = ext4_journal_stop(handle);
1546
1547 if (res == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1548 goto retry;
1549 if (!res)
1550 res = res2;
1551 return res;
1552}
1553
1554static const union fscrypt_policy *ext4_get_dummy_policy(struct super_block *sb)
1555{
1556 return EXT4_SB(sb)->s_dummy_enc_policy.policy;
1557}
1558
1559static bool ext4_has_stable_inodes(struct super_block *sb)
1560{
1561 return ext4_has_feature_stable_inodes(sb);
1562}
1563
1564static void ext4_get_ino_and_lblk_bits(struct super_block *sb,
1565 int *ino_bits_ret, int *lblk_bits_ret)
1566{
1567 *ino_bits_ret = 8 * sizeof(EXT4_SB(sb)->s_es->s_inodes_count);
1568 *lblk_bits_ret = 8 * sizeof(ext4_lblk_t);
1569}
1570
1571static const struct fscrypt_operations ext4_cryptops = {
1572 .key_prefix = "ext4:",
1573 .get_context = ext4_get_context,
1574 .set_context = ext4_set_context,
1575 .get_dummy_policy = ext4_get_dummy_policy,
1576 .empty_dir = ext4_empty_dir,
1577 .max_namelen = EXT4_NAME_LEN,
1578 .has_stable_inodes = ext4_has_stable_inodes,
1579 .get_ino_and_lblk_bits = ext4_get_ino_and_lblk_bits,
1580};
1581#endif
1582
1583#ifdef CONFIG_QUOTA
1584static const char * const quotatypes[] = INITQFNAMES;
1585#define QTYPE2NAME(t) (quotatypes[t])
1586
1587static int ext4_write_dquot(struct dquot *dquot);
1588static int ext4_acquire_dquot(struct dquot *dquot);
1589static int ext4_release_dquot(struct dquot *dquot);
1590static int ext4_mark_dquot_dirty(struct dquot *dquot);
1591static int ext4_write_info(struct super_block *sb, int type);
1592static int ext4_quota_on(struct super_block *sb, int type, int format_id,
1593 const struct path *path);
1594static int ext4_quota_on_mount(struct super_block *sb, int type);
1595static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
1596 size_t len, loff_t off);
1597static ssize_t ext4_quota_write(struct super_block *sb, int type,
1598 const char *data, size_t len, loff_t off);
1599static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
1600 unsigned int flags);
1601static int ext4_enable_quotas(struct super_block *sb);
1602
1603static struct dquot **ext4_get_dquots(struct inode *inode)
1604{
1605 return EXT4_I(inode)->i_dquot;
1606}
1607
1608static const struct dquot_operations ext4_quota_operations = {
1609 .get_reserved_space = ext4_get_reserved_space,
1610 .write_dquot = ext4_write_dquot,
1611 .acquire_dquot = ext4_acquire_dquot,
1612 .release_dquot = ext4_release_dquot,
1613 .mark_dirty = ext4_mark_dquot_dirty,
1614 .write_info = ext4_write_info,
1615 .alloc_dquot = dquot_alloc,
1616 .destroy_dquot = dquot_destroy,
1617 .get_projid = ext4_get_projid,
1618 .get_inode_usage = ext4_get_inode_usage,
1619 .get_next_id = dquot_get_next_id,
1620};
1621
1622static const struct quotactl_ops ext4_qctl_operations = {
1623 .quota_on = ext4_quota_on,
1624 .quota_off = ext4_quota_off,
1625 .quota_sync = dquot_quota_sync,
1626 .get_state = dquot_get_state,
1627 .set_info = dquot_set_dqinfo,
1628 .get_dqblk = dquot_get_dqblk,
1629 .set_dqblk = dquot_set_dqblk,
1630 .get_nextdqblk = dquot_get_next_dqblk,
1631};
1632#endif
1633
1634static const struct super_operations ext4_sops = {
1635 .alloc_inode = ext4_alloc_inode,
1636 .free_inode = ext4_free_in_core_inode,
1637 .destroy_inode = ext4_destroy_inode,
1638 .write_inode = ext4_write_inode,
1639 .dirty_inode = ext4_dirty_inode,
1640 .drop_inode = ext4_drop_inode,
1641 .evict_inode = ext4_evict_inode,
1642 .put_super = ext4_put_super,
1643 .sync_fs = ext4_sync_fs,
1644 .freeze_fs = ext4_freeze,
1645 .unfreeze_fs = ext4_unfreeze,
1646 .statfs = ext4_statfs,
1647 .remount_fs = ext4_remount,
1648 .show_options = ext4_show_options,
1649#ifdef CONFIG_QUOTA
1650 .quota_read = ext4_quota_read,
1651 .quota_write = ext4_quota_write,
1652 .get_dquots = ext4_get_dquots,
1653#endif
1654};
1655
1656static const struct export_operations ext4_export_ops = {
1657 .fh_to_dentry = ext4_fh_to_dentry,
1658 .fh_to_parent = ext4_fh_to_parent,
1659 .get_parent = ext4_get_parent,
1660 .commit_metadata = ext4_nfs_commit_metadata,
1661};
1662
1663enum {
1664 Opt_bsd_df, Opt_minix_df, Opt_grpid, Opt_nogrpid,
1665 Opt_resgid, Opt_resuid, Opt_sb, Opt_err_cont, Opt_err_panic, Opt_err_ro,
1666 Opt_nouid32, Opt_debug, Opt_removed,
1667 Opt_user_xattr, Opt_nouser_xattr, Opt_acl, Opt_noacl,
1668 Opt_auto_da_alloc, Opt_noauto_da_alloc, Opt_noload,
1669 Opt_commit, Opt_min_batch_time, Opt_max_batch_time, Opt_journal_dev,
1670 Opt_journal_path, Opt_journal_checksum, Opt_journal_async_commit,
1671 Opt_abort, Opt_data_journal, Opt_data_ordered, Opt_data_writeback,
1672 Opt_data_err_abort, Opt_data_err_ignore, Opt_test_dummy_encryption,
1673 Opt_inlinecrypt,
1674 Opt_usrjquota, Opt_grpjquota, Opt_offusrjquota, Opt_offgrpjquota,
1675 Opt_jqfmt_vfsold, Opt_jqfmt_vfsv0, Opt_jqfmt_vfsv1, Opt_quota,
1676 Opt_noquota, Opt_barrier, Opt_nobarrier, Opt_err,
1677 Opt_usrquota, Opt_grpquota, Opt_prjquota, Opt_i_version,
1678 Opt_dax, Opt_dax_always, Opt_dax_inode, Opt_dax_never,
1679 Opt_stripe, Opt_delalloc, Opt_nodelalloc, Opt_warn_on_error,
1680 Opt_nowarn_on_error, Opt_mblk_io_submit,
1681 Opt_lazytime, Opt_nolazytime, Opt_debug_want_extra_isize,
1682 Opt_nomblk_io_submit, Opt_block_validity, Opt_noblock_validity,
1683 Opt_inode_readahead_blks, Opt_journal_ioprio,
1684 Opt_dioread_nolock, Opt_dioread_lock,
1685 Opt_discard, Opt_nodiscard, Opt_init_itable, Opt_noinit_itable,
1686 Opt_max_dir_size_kb, Opt_nojournal_checksum, Opt_nombcache,
1687 Opt_no_prefetch_block_bitmaps, Opt_mb_optimize_scan,
1688#ifdef CONFIG_EXT4_DEBUG
1689 Opt_fc_debug_max_replay, Opt_fc_debug_force
1690#endif
1691};
1692
1693static const match_table_t tokens = {
1694 {Opt_bsd_df, "bsddf"},
1695 {Opt_minix_df, "minixdf"},
1696 {Opt_grpid, "grpid"},
1697 {Opt_grpid, "bsdgroups"},
1698 {Opt_nogrpid, "nogrpid"},
1699 {Opt_nogrpid, "sysvgroups"},
1700 {Opt_resgid, "resgid=%u"},
1701 {Opt_resuid, "resuid=%u"},
1702 {Opt_sb, "sb=%u"},
1703 {Opt_err_cont, "errors=continue"},
1704 {Opt_err_panic, "errors=panic"},
1705 {Opt_err_ro, "errors=remount-ro"},
1706 {Opt_nouid32, "nouid32"},
1707 {Opt_debug, "debug"},
1708 {Opt_removed, "oldalloc"},
1709 {Opt_removed, "orlov"},
1710 {Opt_user_xattr, "user_xattr"},
1711 {Opt_nouser_xattr, "nouser_xattr"},
1712 {Opt_acl, "acl"},
1713 {Opt_noacl, "noacl"},
1714 {Opt_noload, "norecovery"},
1715 {Opt_noload, "noload"},
1716 {Opt_removed, "nobh"},
1717 {Opt_removed, "bh"},
1718 {Opt_commit, "commit=%u"},
1719 {Opt_min_batch_time, "min_batch_time=%u"},
1720 {Opt_max_batch_time, "max_batch_time=%u"},
1721 {Opt_journal_dev, "journal_dev=%u"},
1722 {Opt_journal_path, "journal_path=%s"},
1723 {Opt_journal_checksum, "journal_checksum"},
1724 {Opt_nojournal_checksum, "nojournal_checksum"},
1725 {Opt_journal_async_commit, "journal_async_commit"},
1726 {Opt_abort, "abort"},
1727 {Opt_data_journal, "data=journal"},
1728 {Opt_data_ordered, "data=ordered"},
1729 {Opt_data_writeback, "data=writeback"},
1730 {Opt_data_err_abort, "data_err=abort"},
1731 {Opt_data_err_ignore, "data_err=ignore"},
1732 {Opt_offusrjquota, "usrjquota="},
1733 {Opt_usrjquota, "usrjquota=%s"},
1734 {Opt_offgrpjquota, "grpjquota="},
1735 {Opt_grpjquota, "grpjquota=%s"},
1736 {Opt_jqfmt_vfsold, "jqfmt=vfsold"},
1737 {Opt_jqfmt_vfsv0, "jqfmt=vfsv0"},
1738 {Opt_jqfmt_vfsv1, "jqfmt=vfsv1"},
1739 {Opt_grpquota, "grpquota"},
1740 {Opt_noquota, "noquota"},
1741 {Opt_quota, "quota"},
1742 {Opt_usrquota, "usrquota"},
1743 {Opt_prjquota, "prjquota"},
1744 {Opt_barrier, "barrier=%u"},
1745 {Opt_barrier, "barrier"},
1746 {Opt_nobarrier, "nobarrier"},
1747 {Opt_i_version, "i_version"},
1748 {Opt_dax, "dax"},
1749 {Opt_dax_always, "dax=always"},
1750 {Opt_dax_inode, "dax=inode"},
1751 {Opt_dax_never, "dax=never"},
1752 {Opt_stripe, "stripe=%u"},
1753 {Opt_delalloc, "delalloc"},
1754 {Opt_warn_on_error, "warn_on_error"},
1755 {Opt_nowarn_on_error, "nowarn_on_error"},
1756 {Opt_lazytime, "lazytime"},
1757 {Opt_nolazytime, "nolazytime"},
1758 {Opt_debug_want_extra_isize, "debug_want_extra_isize=%u"},
1759 {Opt_nodelalloc, "nodelalloc"},
1760 {Opt_removed, "mblk_io_submit"},
1761 {Opt_removed, "nomblk_io_submit"},
1762 {Opt_block_validity, "block_validity"},
1763 {Opt_noblock_validity, "noblock_validity"},
1764 {Opt_inode_readahead_blks, "inode_readahead_blks=%u"},
1765 {Opt_journal_ioprio, "journal_ioprio=%u"},
1766 {Opt_auto_da_alloc, "auto_da_alloc=%u"},
1767 {Opt_auto_da_alloc, "auto_da_alloc"},
1768 {Opt_noauto_da_alloc, "noauto_da_alloc"},
1769 {Opt_dioread_nolock, "dioread_nolock"},
1770 {Opt_dioread_lock, "nodioread_nolock"},
1771 {Opt_dioread_lock, "dioread_lock"},
1772 {Opt_discard, "discard"},
1773 {Opt_nodiscard, "nodiscard"},
1774 {Opt_init_itable, "init_itable=%u"},
1775 {Opt_init_itable, "init_itable"},
1776 {Opt_noinit_itable, "noinit_itable"},
1777#ifdef CONFIG_EXT4_DEBUG
1778 {Opt_fc_debug_force, "fc_debug_force"},
1779 {Opt_fc_debug_max_replay, "fc_debug_max_replay=%u"},
1780#endif
1781 {Opt_max_dir_size_kb, "max_dir_size_kb=%u"},
1782 {Opt_test_dummy_encryption, "test_dummy_encryption=%s"},
1783 {Opt_test_dummy_encryption, "test_dummy_encryption"},
1784 {Opt_inlinecrypt, "inlinecrypt"},
1785 {Opt_nombcache, "nombcache"},
1786 {Opt_nombcache, "no_mbcache"}, /* for backward compatibility */
1787 {Opt_removed, "prefetch_block_bitmaps"},
1788 {Opt_no_prefetch_block_bitmaps, "no_prefetch_block_bitmaps"},
1789 {Opt_mb_optimize_scan, "mb_optimize_scan=%d"},
1790 {Opt_removed, "check=none"}, /* mount option from ext2/3 */
1791 {Opt_removed, "nocheck"}, /* mount option from ext2/3 */
1792 {Opt_removed, "reservation"}, /* mount option from ext2/3 */
1793 {Opt_removed, "noreservation"}, /* mount option from ext2/3 */
1794 {Opt_removed, "journal=%u"}, /* mount option from ext2/3 */
1795 {Opt_err, NULL},
1796};
1797
1798static ext4_fsblk_t get_sb_block(void **data)
1799{
1800 ext4_fsblk_t sb_block;
1801 char *options = (char *) *data;
1802
1803 if (!options || strncmp(options, "sb=", 3) != 0)
1804 return 1; /* Default location */
1805
1806 options += 3;
1807 /* TODO: use simple_strtoll with >32bit ext4 */
1808 sb_block = simple_strtoul(options, &options, 0);
1809 if (*options && *options != ',') {
1810 printk(KERN_ERR "EXT4-fs: Invalid sb specification: %s\n",
1811 (char *) *data);
1812 return 1;
1813 }
1814 if (*options == ',')
1815 options++;
1816 *data = (void *) options;
1817
1818 return sb_block;
1819}
1820
1821#define DEFAULT_JOURNAL_IOPRIO (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, 3))
1822#define DEFAULT_MB_OPTIMIZE_SCAN (-1)
1823
1824static const char deprecated_msg[] =
1825 "Mount option \"%s\" will be removed by %s\n"
1826 "Contact linux-ext4@vger.kernel.org if you think we should keep it.\n";
1827
1828#ifdef CONFIG_QUOTA
1829static int set_qf_name(struct super_block *sb, int qtype, substring_t *args)
1830{
1831 struct ext4_sb_info *sbi = EXT4_SB(sb);
1832 char *qname, *old_qname = get_qf_name(sb, sbi, qtype);
1833 int ret = -1;
1834
1835 if (sb_any_quota_loaded(sb) && !old_qname) {
1836 ext4_msg(sb, KERN_ERR,
1837 "Cannot change journaled "
1838 "quota options when quota turned on");
1839 return -1;
1840 }
1841 if (ext4_has_feature_quota(sb)) {
1842 ext4_msg(sb, KERN_INFO, "Journaled quota options "
1843 "ignored when QUOTA feature is enabled");
1844 return 1;
1845 }
1846 qname = match_strdup(args);
1847 if (!qname) {
1848 ext4_msg(sb, KERN_ERR,
1849 "Not enough memory for storing quotafile name");
1850 return -1;
1851 }
1852 if (old_qname) {
1853 if (strcmp(old_qname, qname) == 0)
1854 ret = 1;
1855 else
1856 ext4_msg(sb, KERN_ERR,
1857 "%s quota file already specified",
1858 QTYPE2NAME(qtype));
1859 goto errout;
1860 }
1861 if (strchr(qname, '/')) {
1862 ext4_msg(sb, KERN_ERR,
1863 "quotafile must be on filesystem root");
1864 goto errout;
1865 }
1866 rcu_assign_pointer(sbi->s_qf_names[qtype], qname);
1867 set_opt(sb, QUOTA);
1868 return 1;
1869errout:
1870 kfree(qname);
1871 return ret;
1872}
1873
1874static int clear_qf_name(struct super_block *sb, int qtype)
1875{
1876
1877 struct ext4_sb_info *sbi = EXT4_SB(sb);
1878 char *old_qname = get_qf_name(sb, sbi, qtype);
1879
1880 if (sb_any_quota_loaded(sb) && old_qname) {
1881 ext4_msg(sb, KERN_ERR, "Cannot change journaled quota options"
1882 " when quota turned on");
1883 return -1;
1884 }
1885 rcu_assign_pointer(sbi->s_qf_names[qtype], NULL);
1886 synchronize_rcu();
1887 kfree(old_qname);
1888 return 1;
1889}
1890#endif
1891
1892#define MOPT_SET 0x0001
1893#define MOPT_CLEAR 0x0002
1894#define MOPT_NOSUPPORT 0x0004
1895#define MOPT_EXPLICIT 0x0008
1896#define MOPT_CLEAR_ERR 0x0010
1897#define MOPT_GTE0 0x0020
1898#ifdef CONFIG_QUOTA
1899#define MOPT_Q 0
1900#define MOPT_QFMT 0x0040
1901#else
1902#define MOPT_Q MOPT_NOSUPPORT
1903#define MOPT_QFMT MOPT_NOSUPPORT
1904#endif
1905#define MOPT_DATAJ 0x0080
1906#define MOPT_NO_EXT2 0x0100
1907#define MOPT_NO_EXT3 0x0200
1908#define MOPT_EXT4_ONLY (MOPT_NO_EXT2 | MOPT_NO_EXT3)
1909#define MOPT_STRING 0x0400
1910#define MOPT_SKIP 0x0800
1911#define MOPT_2 0x1000
1912
1913static const struct mount_opts {
1914 int token;
1915 int mount_opt;
1916 int flags;
1917} ext4_mount_opts[] = {
1918 {Opt_minix_df, EXT4_MOUNT_MINIX_DF, MOPT_SET},
1919 {Opt_bsd_df, EXT4_MOUNT_MINIX_DF, MOPT_CLEAR},
1920 {Opt_grpid, EXT4_MOUNT_GRPID, MOPT_SET},
1921 {Opt_nogrpid, EXT4_MOUNT_GRPID, MOPT_CLEAR},
1922 {Opt_block_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_SET},
1923 {Opt_noblock_validity, EXT4_MOUNT_BLOCK_VALIDITY, MOPT_CLEAR},
1924 {Opt_dioread_nolock, EXT4_MOUNT_DIOREAD_NOLOCK,
1925 MOPT_EXT4_ONLY | MOPT_SET},
1926 {Opt_dioread_lock, EXT4_MOUNT_DIOREAD_NOLOCK,
1927 MOPT_EXT4_ONLY | MOPT_CLEAR},
1928 {Opt_discard, EXT4_MOUNT_DISCARD, MOPT_SET},
1929 {Opt_nodiscard, EXT4_MOUNT_DISCARD, MOPT_CLEAR},
1930 {Opt_delalloc, EXT4_MOUNT_DELALLOC,
1931 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1932 {Opt_nodelalloc, EXT4_MOUNT_DELALLOC,
1933 MOPT_EXT4_ONLY | MOPT_CLEAR},
1934 {Opt_warn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_SET},
1935 {Opt_nowarn_on_error, EXT4_MOUNT_WARN_ON_ERROR, MOPT_CLEAR},
1936 {Opt_nojournal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1937 MOPT_EXT4_ONLY | MOPT_CLEAR},
1938 {Opt_journal_checksum, EXT4_MOUNT_JOURNAL_CHECKSUM,
1939 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1940 {Opt_journal_async_commit, (EXT4_MOUNT_JOURNAL_ASYNC_COMMIT |
1941 EXT4_MOUNT_JOURNAL_CHECKSUM),
1942 MOPT_EXT4_ONLY | MOPT_SET | MOPT_EXPLICIT},
1943 {Opt_noload, EXT4_MOUNT_NOLOAD, MOPT_NO_EXT2 | MOPT_SET},
1944 {Opt_err_panic, EXT4_MOUNT_ERRORS_PANIC, MOPT_SET | MOPT_CLEAR_ERR},
1945 {Opt_err_ro, EXT4_MOUNT_ERRORS_RO, MOPT_SET | MOPT_CLEAR_ERR},
1946 {Opt_err_cont, EXT4_MOUNT_ERRORS_CONT, MOPT_SET | MOPT_CLEAR_ERR},
1947 {Opt_data_err_abort, EXT4_MOUNT_DATA_ERR_ABORT,
1948 MOPT_NO_EXT2},
1949 {Opt_data_err_ignore, EXT4_MOUNT_DATA_ERR_ABORT,
1950 MOPT_NO_EXT2},
1951 {Opt_barrier, EXT4_MOUNT_BARRIER, MOPT_SET},
1952 {Opt_nobarrier, EXT4_MOUNT_BARRIER, MOPT_CLEAR},
1953 {Opt_noauto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_SET},
1954 {Opt_auto_da_alloc, EXT4_MOUNT_NO_AUTO_DA_ALLOC, MOPT_CLEAR},
1955 {Opt_noinit_itable, EXT4_MOUNT_INIT_INODE_TABLE, MOPT_CLEAR},
1956 {Opt_commit, 0, MOPT_GTE0},
1957 {Opt_max_batch_time, 0, MOPT_GTE0},
1958 {Opt_min_batch_time, 0, MOPT_GTE0},
1959 {Opt_inode_readahead_blks, 0, MOPT_GTE0},
1960 {Opt_init_itable, 0, MOPT_GTE0},
1961 {Opt_dax, EXT4_MOUNT_DAX_ALWAYS, MOPT_SET | MOPT_SKIP},
1962 {Opt_dax_always, EXT4_MOUNT_DAX_ALWAYS,
1963 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1964 {Opt_dax_inode, EXT4_MOUNT2_DAX_INODE,
1965 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1966 {Opt_dax_never, EXT4_MOUNT2_DAX_NEVER,
1967 MOPT_EXT4_ONLY | MOPT_SET | MOPT_SKIP},
1968 {Opt_stripe, 0, MOPT_GTE0},
1969 {Opt_resuid, 0, MOPT_GTE0},
1970 {Opt_resgid, 0, MOPT_GTE0},
1971 {Opt_journal_dev, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1972 {Opt_journal_path, 0, MOPT_NO_EXT2 | MOPT_STRING},
1973 {Opt_journal_ioprio, 0, MOPT_NO_EXT2 | MOPT_GTE0},
1974 {Opt_data_journal, EXT4_MOUNT_JOURNAL_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1975 {Opt_data_ordered, EXT4_MOUNT_ORDERED_DATA, MOPT_NO_EXT2 | MOPT_DATAJ},
1976 {Opt_data_writeback, EXT4_MOUNT_WRITEBACK_DATA,
1977 MOPT_NO_EXT2 | MOPT_DATAJ},
1978 {Opt_user_xattr, EXT4_MOUNT_XATTR_USER, MOPT_SET},
1979 {Opt_nouser_xattr, EXT4_MOUNT_XATTR_USER, MOPT_CLEAR},
1980#ifdef CONFIG_EXT4_FS_POSIX_ACL
1981 {Opt_acl, EXT4_MOUNT_POSIX_ACL, MOPT_SET},
1982 {Opt_noacl, EXT4_MOUNT_POSIX_ACL, MOPT_CLEAR},
1983#else
1984 {Opt_acl, 0, MOPT_NOSUPPORT},
1985 {Opt_noacl, 0, MOPT_NOSUPPORT},
1986#endif
1987 {Opt_nouid32, EXT4_MOUNT_NO_UID32, MOPT_SET},
1988 {Opt_debug, EXT4_MOUNT_DEBUG, MOPT_SET},
1989 {Opt_debug_want_extra_isize, 0, MOPT_GTE0},
1990 {Opt_quota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA, MOPT_SET | MOPT_Q},
1991 {Opt_usrquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA,
1992 MOPT_SET | MOPT_Q},
1993 {Opt_grpquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_GRPQUOTA,
1994 MOPT_SET | MOPT_Q},
1995 {Opt_prjquota, EXT4_MOUNT_QUOTA | EXT4_MOUNT_PRJQUOTA,
1996 MOPT_SET | MOPT_Q},
1997 {Opt_noquota, (EXT4_MOUNT_QUOTA | EXT4_MOUNT_USRQUOTA |
1998 EXT4_MOUNT_GRPQUOTA | EXT4_MOUNT_PRJQUOTA),
1999 MOPT_CLEAR | MOPT_Q},
2000 {Opt_usrjquota, 0, MOPT_Q | MOPT_STRING},
2001 {Opt_grpjquota, 0, MOPT_Q | MOPT_STRING},
2002 {Opt_offusrjquota, 0, MOPT_Q},
2003 {Opt_offgrpjquota, 0, MOPT_Q},
2004 {Opt_jqfmt_vfsold, QFMT_VFS_OLD, MOPT_QFMT},
2005 {Opt_jqfmt_vfsv0, QFMT_VFS_V0, MOPT_QFMT},
2006 {Opt_jqfmt_vfsv1, QFMT_VFS_V1, MOPT_QFMT},
2007 {Opt_max_dir_size_kb, 0, MOPT_GTE0},
2008 {Opt_test_dummy_encryption, 0, MOPT_STRING},
2009 {Opt_nombcache, EXT4_MOUNT_NO_MBCACHE, MOPT_SET},
2010 {Opt_no_prefetch_block_bitmaps, EXT4_MOUNT_NO_PREFETCH_BLOCK_BITMAPS,
2011 MOPT_SET},
2012 {Opt_mb_optimize_scan, EXT4_MOUNT2_MB_OPTIMIZE_SCAN, MOPT_GTE0},
2013#ifdef CONFIG_EXT4_DEBUG
2014 {Opt_fc_debug_force, EXT4_MOUNT2_JOURNAL_FAST_COMMIT,
2015 MOPT_SET | MOPT_2 | MOPT_EXT4_ONLY},
2016 {Opt_fc_debug_max_replay, 0, MOPT_GTE0},
2017#endif
2018 {Opt_err, 0, 0}
2019};
2020
2021#ifdef CONFIG_UNICODE
2022static const struct ext4_sb_encodings {
2023 __u16 magic;
2024 char *name;
2025 char *version;
2026} ext4_sb_encoding_map[] = {
2027 {EXT4_ENC_UTF8_12_1, "utf8", "12.1.0"},
2028};
2029
2030static int ext4_sb_read_encoding(const struct ext4_super_block *es,
2031 const struct ext4_sb_encodings **encoding,
2032 __u16 *flags)
2033{
2034 __u16 magic = le16_to_cpu(es->s_encoding);
2035 int i;
2036
2037 for (i = 0; i < ARRAY_SIZE(ext4_sb_encoding_map); i++)
2038 if (magic == ext4_sb_encoding_map[i].magic)
2039 break;
2040
2041 if (i >= ARRAY_SIZE(ext4_sb_encoding_map))
2042 return -EINVAL;
2043
2044 *encoding = &ext4_sb_encoding_map[i];
2045 *flags = le16_to_cpu(es->s_encoding_flags);
2046
2047 return 0;
2048}
2049#endif
2050
2051static int ext4_set_test_dummy_encryption(struct super_block *sb,
2052 const char *opt,
2053 const substring_t *arg,
2054 bool is_remount)
2055{
2056#ifdef CONFIG_FS_ENCRYPTION
2057 struct ext4_sb_info *sbi = EXT4_SB(sb);
2058 int err;
2059
2060 /*
2061 * This mount option is just for testing, and it's not worthwhile to
2062 * implement the extra complexity (e.g. RCU protection) that would be
2063 * needed to allow it to be set or changed during remount. We do allow
2064 * it to be specified during remount, but only if there is no change.
2065 */
2066 if (is_remount && !sbi->s_dummy_enc_policy.policy) {
2067 ext4_msg(sb, KERN_WARNING,
2068 "Can't set test_dummy_encryption on remount");
2069 return -1;
2070 }
2071 err = fscrypt_set_test_dummy_encryption(sb, arg->from,
2072 &sbi->s_dummy_enc_policy);
2073 if (err) {
2074 if (err == -EEXIST)
2075 ext4_msg(sb, KERN_WARNING,
2076 "Can't change test_dummy_encryption on remount");
2077 else if (err == -EINVAL)
2078 ext4_msg(sb, KERN_WARNING,
2079 "Value of option \"%s\" is unrecognized", opt);
2080 else
2081 ext4_msg(sb, KERN_WARNING,
2082 "Error processing option \"%s\" [%d]",
2083 opt, err);
2084 return -1;
2085 }
2086 ext4_msg(sb, KERN_WARNING, "Test dummy encryption mode enabled");
2087#else
2088 ext4_msg(sb, KERN_WARNING,
2089 "Test dummy encryption mount option ignored");
2090#endif
2091 return 1;
2092}
2093
2094struct ext4_parsed_options {
2095 unsigned long journal_devnum;
2096 unsigned int journal_ioprio;
2097 int mb_optimize_scan;
2098};
2099
2100static int handle_mount_opt(struct super_block *sb, char *opt, int token,
2101 substring_t *args, struct ext4_parsed_options *parsed_opts,
2102 int is_remount)
2103{
2104 struct ext4_sb_info *sbi = EXT4_SB(sb);
2105 const struct mount_opts *m;
2106 kuid_t uid;
2107 kgid_t gid;
2108 int arg = 0;
2109
2110#ifdef CONFIG_QUOTA
2111 if (token == Opt_usrjquota)
2112 return set_qf_name(sb, USRQUOTA, &args[0]);
2113 else if (token == Opt_grpjquota)
2114 return set_qf_name(sb, GRPQUOTA, &args[0]);
2115 else if (token == Opt_offusrjquota)
2116 return clear_qf_name(sb, USRQUOTA);
2117 else if (token == Opt_offgrpjquota)
2118 return clear_qf_name(sb, GRPQUOTA);
2119#endif
2120 switch (token) {
2121 case Opt_noacl:
2122 case Opt_nouser_xattr:
2123 ext4_msg(sb, KERN_WARNING, deprecated_msg, opt, "3.5");
2124 break;
2125 case Opt_sb:
2126 return 1; /* handled by get_sb_block() */
2127 case Opt_removed:
2128 ext4_msg(sb, KERN_WARNING, "Ignoring removed %s option", opt);
2129 return 1;
2130 case Opt_abort:
2131 ext4_set_mount_flag(sb, EXT4_MF_FS_ABORTED);
2132 return 1;
2133 case Opt_i_version:
2134 sb->s_flags |= SB_I_VERSION;
2135 return 1;
2136 case Opt_lazytime:
2137 sb->s_flags |= SB_LAZYTIME;
2138 return 1;
2139 case Opt_nolazytime:
2140 sb->s_flags &= ~SB_LAZYTIME;
2141 return 1;
2142 case Opt_inlinecrypt:
2143#ifdef CONFIG_FS_ENCRYPTION_INLINE_CRYPT
2144 sb->s_flags |= SB_INLINECRYPT;
2145#else
2146 ext4_msg(sb, KERN_ERR, "inline encryption not supported");
2147#endif
2148 return 1;
2149 }
2150
2151 for (m = ext4_mount_opts; m->token != Opt_err; m++)
2152 if (token == m->token)
2153 break;
2154
2155 if (m->token == Opt_err) {
2156 ext4_msg(sb, KERN_ERR, "Unrecognized mount option \"%s\" "
2157 "or missing value", opt);
2158 return -1;
2159 }
2160
2161 if ((m->flags & MOPT_NO_EXT2) && IS_EXT2_SB(sb)) {
2162 ext4_msg(sb, KERN_ERR,
2163 "Mount option \"%s\" incompatible with ext2", opt);
2164 return -1;
2165 }
2166 if ((m->flags & MOPT_NO_EXT3) && IS_EXT3_SB(sb)) {
2167 ext4_msg(sb, KERN_ERR,
2168 "Mount option \"%s\" incompatible with ext3", opt);
2169 return -1;
2170 }
2171
2172 if (args->from && !(m->flags & MOPT_STRING) && match_int(args, &arg))
2173 return -1;
2174 if (args->from && (m->flags & MOPT_GTE0) && (arg < 0))
2175 return -1;
2176 if (m->flags & MOPT_EXPLICIT) {
2177 if (m->mount_opt & EXT4_MOUNT_DELALLOC) {
2178 set_opt2(sb, EXPLICIT_DELALLOC);
2179 } else if (m->mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) {
2180 set_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM);
2181 } else
2182 return -1;
2183 }
2184 if (m->flags & MOPT_CLEAR_ERR)
2185 clear_opt(sb, ERRORS_MASK);
2186 if (token == Opt_noquota && sb_any_quota_loaded(sb)) {
2187 ext4_msg(sb, KERN_ERR, "Cannot change quota "
2188 "options when quota turned on");
2189 return -1;
2190 }
2191
2192 if (m->flags & MOPT_NOSUPPORT) {
2193 ext4_msg(sb, KERN_ERR, "%s option not supported", opt);
2194 } else if (token == Opt_commit) {
2195 if (arg == 0)
2196 arg = JBD2_DEFAULT_MAX_COMMIT_AGE;
2197 else if (arg > INT_MAX / HZ) {
2198 ext4_msg(sb, KERN_ERR,
2199 "Invalid commit interval %d, "
2200 "must be smaller than %d",
2201 arg, INT_MAX / HZ);
2202 return -1;
2203 }
2204 sbi->s_commit_interval = HZ * arg;
2205 } else if (token == Opt_debug_want_extra_isize) {
2206 if ((arg & 1) ||
2207 (arg < 4) ||
2208 (arg > (sbi->s_inode_size - EXT4_GOOD_OLD_INODE_SIZE))) {
2209 ext4_msg(sb, KERN_ERR,
2210 "Invalid want_extra_isize %d", arg);
2211 return -1;
2212 }
2213 sbi->s_want_extra_isize = arg;
2214 } else if (token == Opt_max_batch_time) {
2215 sbi->s_max_batch_time = arg;
2216 } else if (token == Opt_min_batch_time) {
2217 sbi->s_min_batch_time = arg;
2218 } else if (token == Opt_inode_readahead_blks) {
2219 if (arg && (arg > (1 << 30) || !is_power_of_2(arg))) {
2220 ext4_msg(sb, KERN_ERR,
2221 "EXT4-fs: inode_readahead_blks must be "
2222 "0 or a power of 2 smaller than 2^31");
2223 return -1;
2224 }
2225 sbi->s_inode_readahead_blks = arg;
2226 } else if (token == Opt_init_itable) {
2227 set_opt(sb, INIT_INODE_TABLE);
2228 if (!args->from)
2229 arg = EXT4_DEF_LI_WAIT_MULT;
2230 sbi->s_li_wait_mult = arg;
2231 } else if (token == Opt_max_dir_size_kb) {
2232 sbi->s_max_dir_size_kb = arg;
2233#ifdef CONFIG_EXT4_DEBUG
2234 } else if (token == Opt_fc_debug_max_replay) {
2235 sbi->s_fc_debug_max_replay = arg;
2236#endif
2237 } else if (token == Opt_stripe) {
2238 sbi->s_stripe = arg;
2239 } else if (token == Opt_resuid) {
2240 uid = make_kuid(current_user_ns(), arg);
2241 if (!uid_valid(uid)) {
2242 ext4_msg(sb, KERN_ERR, "Invalid uid value %d", arg);
2243 return -1;
2244 }
2245 sbi->s_resuid = uid;
2246 } else if (token == Opt_resgid) {
2247 gid = make_kgid(current_user_ns(), arg);
2248 if (!gid_valid(gid)) {
2249 ext4_msg(sb, KERN_ERR, "Invalid gid value %d", arg);
2250 return -1;
2251 }
2252 sbi->s_resgid = gid;
2253 } else if (token == Opt_journal_dev) {
2254 if (is_remount) {
2255 ext4_msg(sb, KERN_ERR,
2256 "Cannot specify journal on remount");
2257 return -1;
2258 }
2259 parsed_opts->journal_devnum = arg;
2260 } else if (token == Opt_journal_path) {
2261 char *journal_path;
2262 struct inode *journal_inode;
2263 struct path path;
2264 int error;
2265
2266 if (is_remount) {
2267 ext4_msg(sb, KERN_ERR,
2268 "Cannot specify journal on remount");
2269 return -1;
2270 }
2271 journal_path = match_strdup(&args[0]);
2272 if (!journal_path) {
2273 ext4_msg(sb, KERN_ERR, "error: could not dup "
2274 "journal device string");
2275 return -1;
2276 }
2277
2278 error = kern_path(journal_path, LOOKUP_FOLLOW, &path);
2279 if (error) {
2280 ext4_msg(sb, KERN_ERR, "error: could not find "
2281 "journal device path: error %d", error);
2282 kfree(journal_path);
2283 return -1;
2284 }
2285
2286 journal_inode = d_inode(path.dentry);
2287 if (!S_ISBLK(journal_inode->i_mode)) {
2288 ext4_msg(sb, KERN_ERR, "error: journal path %s "
2289 "is not a block device", journal_path);
2290 path_put(&path);
2291 kfree(journal_path);
2292 return -1;
2293 }
2294
2295 parsed_opts->journal_devnum = new_encode_dev(journal_inode->i_rdev);
2296 path_put(&path);
2297 kfree(journal_path);
2298 } else if (token == Opt_journal_ioprio) {
2299 if (arg > 7) {
2300 ext4_msg(sb, KERN_ERR, "Invalid journal IO priority"
2301 " (must be 0-7)");
2302 return -1;
2303 }
2304 parsed_opts->journal_ioprio =
2305 IOPRIO_PRIO_VALUE(IOPRIO_CLASS_BE, arg);
2306 } else if (token == Opt_test_dummy_encryption) {
2307 return ext4_set_test_dummy_encryption(sb, opt, &args[0],
2308 is_remount);
2309 } else if (m->flags & MOPT_DATAJ) {
2310 if (is_remount) {
2311 if (!sbi->s_journal)
2312 ext4_msg(sb, KERN_WARNING, "Remounting file system with no journal so ignoring journalled data option");
2313 else if (test_opt(sb, DATA_FLAGS) != m->mount_opt) {
2314 ext4_msg(sb, KERN_ERR,
2315 "Cannot change data mode on remount");
2316 return -1;
2317 }
2318 } else {
2319 clear_opt(sb, DATA_FLAGS);
2320 sbi->s_mount_opt |= m->mount_opt;
2321 }
2322#ifdef CONFIG_QUOTA
2323 } else if (m->flags & MOPT_QFMT) {
2324 if (sb_any_quota_loaded(sb) &&
2325 sbi->s_jquota_fmt != m->mount_opt) {
2326 ext4_msg(sb, KERN_ERR, "Cannot change journaled "
2327 "quota options when quota turned on");
2328 return -1;
2329 }
2330 if (ext4_has_feature_quota(sb)) {
2331 ext4_msg(sb, KERN_INFO,
2332 "Quota format mount options ignored "
2333 "when QUOTA feature is enabled");
2334 return 1;
2335 }
2336 sbi->s_jquota_fmt = m->mount_opt;
2337#endif
2338 } else if (token == Opt_dax || token == Opt_dax_always ||
2339 token == Opt_dax_inode || token == Opt_dax_never) {
2340#ifdef CONFIG_FS_DAX
2341 switch (token) {
2342 case Opt_dax:
2343 case Opt_dax_always:
2344 if (is_remount &&
2345 (!(sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2346 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER))) {
2347 fail_dax_change_remount:
2348 ext4_msg(sb, KERN_ERR, "can't change "
2349 "dax mount option while remounting");
2350 return -1;
2351 }
2352 if (is_remount &&
2353 (test_opt(sb, DATA_FLAGS) ==
2354 EXT4_MOUNT_JOURNAL_DATA)) {
2355 ext4_msg(sb, KERN_ERR, "can't mount with "
2356 "both data=journal and dax");
2357 return -1;
2358 }
2359 ext4_msg(sb, KERN_WARNING,
2360 "DAX enabled. Warning: EXPERIMENTAL, use at your own risk");
2361 sbi->s_mount_opt |= EXT4_MOUNT_DAX_ALWAYS;
2362 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2363 break;
2364 case Opt_dax_never:
2365 if (is_remount &&
2366 (!(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2367 (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS)))
2368 goto fail_dax_change_remount;
2369 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2370 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2371 break;
2372 case Opt_dax_inode:
2373 if (is_remount &&
2374 ((sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) ||
2375 (sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_NEVER) ||
2376 !(sbi->s_mount_opt2 & EXT4_MOUNT2_DAX_INODE)))
2377 goto fail_dax_change_remount;
2378 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2379 sbi->s_mount_opt2 &= ~EXT4_MOUNT2_DAX_NEVER;
2380 /* Strictly for printing options */
2381 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_INODE;
2382 break;
2383 }
2384#else
2385 ext4_msg(sb, KERN_INFO, "dax option not supported");
2386 sbi->s_mount_opt2 |= EXT4_MOUNT2_DAX_NEVER;
2387 sbi->s_mount_opt &= ~EXT4_MOUNT_DAX_ALWAYS;
2388 return -1;
2389#endif
2390 } else if (token == Opt_data_err_abort) {
2391 sbi->s_mount_opt |= m->mount_opt;
2392 } else if (token == Opt_data_err_ignore) {
2393 sbi->s_mount_opt &= ~m->mount_opt;
2394 } else if (token == Opt_mb_optimize_scan) {
2395 if (arg != 0 && arg != 1) {
2396 ext4_msg(sb, KERN_WARNING,
2397 "mb_optimize_scan should be set to 0 or 1.");
2398 return -1;
2399 }
2400 parsed_opts->mb_optimize_scan = arg;
2401 } else {
2402 if (!args->from)
2403 arg = 1;
2404 if (m->flags & MOPT_CLEAR)
2405 arg = !arg;
2406 else if (unlikely(!(m->flags & MOPT_SET))) {
2407 ext4_msg(sb, KERN_WARNING,
2408 "buggy handling of option %s", opt);
2409 WARN_ON(1);
2410 return -1;
2411 }
2412 if (m->flags & MOPT_2) {
2413 if (arg != 0)
2414 sbi->s_mount_opt2 |= m->mount_opt;
2415 else
2416 sbi->s_mount_opt2 &= ~m->mount_opt;
2417 } else {
2418 if (arg != 0)
2419 sbi->s_mount_opt |= m->mount_opt;
2420 else
2421 sbi->s_mount_opt &= ~m->mount_opt;
2422 }
2423 }
2424 return 1;
2425}
2426
2427static int parse_options(char *options, struct super_block *sb,
2428 struct ext4_parsed_options *ret_opts,
2429 int is_remount)
2430{
2431 struct ext4_sb_info __maybe_unused *sbi = EXT4_SB(sb);
2432 char *p, __maybe_unused *usr_qf_name, __maybe_unused *grp_qf_name;
2433 substring_t args[MAX_OPT_ARGS];
2434 int token;
2435
2436 if (!options)
2437 return 1;
2438
2439 while ((p = strsep(&options, ",")) != NULL) {
2440 if (!*p)
2441 continue;
2442 /*
2443 * Initialize args struct so we know whether arg was
2444 * found; some options take optional arguments.
2445 */
2446 args[0].to = args[0].from = NULL;
2447 token = match_token(p, tokens, args);
2448 if (handle_mount_opt(sb, p, token, args, ret_opts,
2449 is_remount) < 0)
2450 return 0;
2451 }
2452#ifdef CONFIG_QUOTA
2453 /*
2454 * We do the test below only for project quotas. 'usrquota' and
2455 * 'grpquota' mount options are allowed even without quota feature
2456 * to support legacy quotas in quota files.
2457 */
2458 if (test_opt(sb, PRJQUOTA) && !ext4_has_feature_project(sb)) {
2459 ext4_msg(sb, KERN_ERR, "Project quota feature not enabled. "
2460 "Cannot enable project quota enforcement.");
2461 return 0;
2462 }
2463 usr_qf_name = get_qf_name(sb, sbi, USRQUOTA);
2464 grp_qf_name = get_qf_name(sb, sbi, GRPQUOTA);
2465 if (usr_qf_name || grp_qf_name) {
2466 if (test_opt(sb, USRQUOTA) && usr_qf_name)
2467 clear_opt(sb, USRQUOTA);
2468
2469 if (test_opt(sb, GRPQUOTA) && grp_qf_name)
2470 clear_opt(sb, GRPQUOTA);
2471
2472 if (test_opt(sb, GRPQUOTA) || test_opt(sb, USRQUOTA)) {
2473 ext4_msg(sb, KERN_ERR, "old and new quota "
2474 "format mixing");
2475 return 0;
2476 }
2477
2478 if (!sbi->s_jquota_fmt) {
2479 ext4_msg(sb, KERN_ERR, "journaled quota format "
2480 "not specified");
2481 return 0;
2482 }
2483 }
2484#endif
2485 if (test_opt(sb, DIOREAD_NOLOCK)) {
2486 int blocksize =
2487 BLOCK_SIZE << le32_to_cpu(sbi->s_es->s_log_block_size);
2488 if (blocksize < PAGE_SIZE)
2489 ext4_msg(sb, KERN_WARNING, "Warning: mounting with an "
2490 "experimental mount option 'dioread_nolock' "
2491 "for blocksize < PAGE_SIZE");
2492 }
2493 return 1;
2494}
2495
2496static inline void ext4_show_quota_options(struct seq_file *seq,
2497 struct super_block *sb)
2498{
2499#if defined(CONFIG_QUOTA)
2500 struct ext4_sb_info *sbi = EXT4_SB(sb);
2501 char *usr_qf_name, *grp_qf_name;
2502
2503 if (sbi->s_jquota_fmt) {
2504 char *fmtname = "";
2505
2506 switch (sbi->s_jquota_fmt) {
2507 case QFMT_VFS_OLD:
2508 fmtname = "vfsold";
2509 break;
2510 case QFMT_VFS_V0:
2511 fmtname = "vfsv0";
2512 break;
2513 case QFMT_VFS_V1:
2514 fmtname = "vfsv1";
2515 break;
2516 }
2517 seq_printf(seq, ",jqfmt=%s", fmtname);
2518 }
2519
2520 rcu_read_lock();
2521 usr_qf_name = rcu_dereference(sbi->s_qf_names[USRQUOTA]);
2522 grp_qf_name = rcu_dereference(sbi->s_qf_names[GRPQUOTA]);
2523 if (usr_qf_name)
2524 seq_show_option(seq, "usrjquota", usr_qf_name);
2525 if (grp_qf_name)
2526 seq_show_option(seq, "grpjquota", grp_qf_name);
2527 rcu_read_unlock();
2528#endif
2529}
2530
2531static const char *token2str(int token)
2532{
2533 const struct match_token *t;
2534
2535 for (t = tokens; t->token != Opt_err; t++)
2536 if (t->token == token && !strchr(t->pattern, '='))
2537 break;
2538 return t->pattern;
2539}
2540
2541/*
2542 * Show an option if
2543 * - it's set to a non-default value OR
2544 * - if the per-sb default is different from the global default
2545 */
2546static int _ext4_show_options(struct seq_file *seq, struct super_block *sb,
2547 int nodefs)
2548{
2549 struct ext4_sb_info *sbi = EXT4_SB(sb);
2550 struct ext4_super_block *es = sbi->s_es;
2551 int def_errors, def_mount_opt = sbi->s_def_mount_opt;
2552 const struct mount_opts *m;
2553 char sep = nodefs ? '\n' : ',';
2554
2555#define SEQ_OPTS_PUTS(str) seq_printf(seq, "%c" str, sep)
2556#define SEQ_OPTS_PRINT(str, arg) seq_printf(seq, "%c" str, sep, arg)
2557
2558 if (sbi->s_sb_block != 1)
2559 SEQ_OPTS_PRINT("sb=%llu", sbi->s_sb_block);
2560
2561 for (m = ext4_mount_opts; m->token != Opt_err; m++) {
2562 int want_set = m->flags & MOPT_SET;
2563 if (((m->flags & (MOPT_SET|MOPT_CLEAR)) == 0) ||
2564 (m->flags & MOPT_CLEAR_ERR) || m->flags & MOPT_SKIP)
2565 continue;
2566 if (!nodefs && !(m->mount_opt & (sbi->s_mount_opt ^ def_mount_opt)))
2567 continue; /* skip if same as the default */
2568 if ((want_set &&
2569 (sbi->s_mount_opt & m->mount_opt) != m->mount_opt) ||
2570 (!want_set && (sbi->s_mount_opt & m->mount_opt)))
2571 continue; /* select Opt_noFoo vs Opt_Foo */
2572 SEQ_OPTS_PRINT("%s", token2str(m->token));
2573 }
2574
2575 if (nodefs || !uid_eq(sbi->s_resuid, make_kuid(&init_user_ns, EXT4_DEF_RESUID)) ||
2576 le16_to_cpu(es->s_def_resuid) != EXT4_DEF_RESUID)
2577 SEQ_OPTS_PRINT("resuid=%u",
2578 from_kuid_munged(&init_user_ns, sbi->s_resuid));
2579 if (nodefs || !gid_eq(sbi->s_resgid, make_kgid(&init_user_ns, EXT4_DEF_RESGID)) ||
2580 le16_to_cpu(es->s_def_resgid) != EXT4_DEF_RESGID)
2581 SEQ_OPTS_PRINT("resgid=%u",
2582 from_kgid_munged(&init_user_ns, sbi->s_resgid));
2583 def_errors = nodefs ? -1 : le16_to_cpu(es->s_errors);
2584 if (test_opt(sb, ERRORS_RO) && def_errors != EXT4_ERRORS_RO)
2585 SEQ_OPTS_PUTS("errors=remount-ro");
2586 if (test_opt(sb, ERRORS_CONT) && def_errors != EXT4_ERRORS_CONTINUE)
2587 SEQ_OPTS_PUTS("errors=continue");
2588 if (test_opt(sb, ERRORS_PANIC) && def_errors != EXT4_ERRORS_PANIC)
2589 SEQ_OPTS_PUTS("errors=panic");
2590 if (nodefs || sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ)
2591 SEQ_OPTS_PRINT("commit=%lu", sbi->s_commit_interval / HZ);
2592 if (nodefs || sbi->s_min_batch_time != EXT4_DEF_MIN_BATCH_TIME)
2593 SEQ_OPTS_PRINT("min_batch_time=%u", sbi->s_min_batch_time);
2594 if (nodefs || sbi->s_max_batch_time != EXT4_DEF_MAX_BATCH_TIME)
2595 SEQ_OPTS_PRINT("max_batch_time=%u", sbi->s_max_batch_time);
2596 if (sb->s_flags & SB_I_VERSION)
2597 SEQ_OPTS_PUTS("i_version");
2598 if (nodefs || sbi->s_stripe)
2599 SEQ_OPTS_PRINT("stripe=%lu", sbi->s_stripe);
2600 if (nodefs || EXT4_MOUNT_DATA_FLAGS &
2601 (sbi->s_mount_opt ^ def_mount_opt)) {
2602 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
2603 SEQ_OPTS_PUTS("data=journal");
2604 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
2605 SEQ_OPTS_PUTS("data=ordered");
2606 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_WRITEBACK_DATA)
2607 SEQ_OPTS_PUTS("data=writeback");
2608 }
2609 if (nodefs ||
2610 sbi->s_inode_readahead_blks != EXT4_DEF_INODE_READAHEAD_BLKS)
2611 SEQ_OPTS_PRINT("inode_readahead_blks=%u",
2612 sbi->s_inode_readahead_blks);
2613
2614 if (test_opt(sb, INIT_INODE_TABLE) && (nodefs ||
2615 (sbi->s_li_wait_mult != EXT4_DEF_LI_WAIT_MULT)))
2616 SEQ_OPTS_PRINT("init_itable=%u", sbi->s_li_wait_mult);
2617 if (nodefs || sbi->s_max_dir_size_kb)
2618 SEQ_OPTS_PRINT("max_dir_size_kb=%u", sbi->s_max_dir_size_kb);
2619 if (test_opt(sb, DATA_ERR_ABORT))
2620 SEQ_OPTS_PUTS("data_err=abort");
2621
2622 fscrypt_show_test_dummy_encryption(seq, sep, sb);
2623
2624 if (sb->s_flags & SB_INLINECRYPT)
2625 SEQ_OPTS_PUTS("inlinecrypt");
2626
2627 if (test_opt(sb, DAX_ALWAYS)) {
2628 if (IS_EXT2_SB(sb))
2629 SEQ_OPTS_PUTS("dax");
2630 else
2631 SEQ_OPTS_PUTS("dax=always");
2632 } else if (test_opt2(sb, DAX_NEVER)) {
2633 SEQ_OPTS_PUTS("dax=never");
2634 } else if (test_opt2(sb, DAX_INODE)) {
2635 SEQ_OPTS_PUTS("dax=inode");
2636 }
2637 ext4_show_quota_options(seq, sb);
2638 return 0;
2639}
2640
2641static int ext4_show_options(struct seq_file *seq, struct dentry *root)
2642{
2643 return _ext4_show_options(seq, root->d_sb, 0);
2644}
2645
2646int ext4_seq_options_show(struct seq_file *seq, void *offset)
2647{
2648 struct super_block *sb = seq->private;
2649 int rc;
2650
2651 seq_puts(seq, sb_rdonly(sb) ? "ro" : "rw");
2652 rc = _ext4_show_options(seq, sb, 1);
2653 seq_puts(seq, "\n");
2654 return rc;
2655}
2656
2657static int ext4_setup_super(struct super_block *sb, struct ext4_super_block *es,
2658 int read_only)
2659{
2660 struct ext4_sb_info *sbi = EXT4_SB(sb);
2661 int err = 0;
2662
2663 if (le32_to_cpu(es->s_rev_level) > EXT4_MAX_SUPP_REV) {
2664 ext4_msg(sb, KERN_ERR, "revision level too high, "
2665 "forcing read-only mode");
2666 err = -EROFS;
2667 goto done;
2668 }
2669 if (read_only)
2670 goto done;
2671 if (!(sbi->s_mount_state & EXT4_VALID_FS))
2672 ext4_msg(sb, KERN_WARNING, "warning: mounting unchecked fs, "
2673 "running e2fsck is recommended");
2674 else if (sbi->s_mount_state & EXT4_ERROR_FS)
2675 ext4_msg(sb, KERN_WARNING,
2676 "warning: mounting fs with errors, "
2677 "running e2fsck is recommended");
2678 else if ((__s16) le16_to_cpu(es->s_max_mnt_count) > 0 &&
2679 le16_to_cpu(es->s_mnt_count) >=
2680 (unsigned short) (__s16) le16_to_cpu(es->s_max_mnt_count))
2681 ext4_msg(sb, KERN_WARNING,
2682 "warning: maximal mount count reached, "
2683 "running e2fsck is recommended");
2684 else if (le32_to_cpu(es->s_checkinterval) &&
2685 (ext4_get_tstamp(es, s_lastcheck) +
2686 le32_to_cpu(es->s_checkinterval) <= ktime_get_real_seconds()))
2687 ext4_msg(sb, KERN_WARNING,
2688 "warning: checktime reached, "
2689 "running e2fsck is recommended");
2690 if (!sbi->s_journal)
2691 es->s_state &= cpu_to_le16(~EXT4_VALID_FS);
2692 if (!(__s16) le16_to_cpu(es->s_max_mnt_count))
2693 es->s_max_mnt_count = cpu_to_le16(EXT4_DFL_MAX_MNT_COUNT);
2694 le16_add_cpu(&es->s_mnt_count, 1);
2695 ext4_update_tstamp(es, s_mtime);
2696 if (sbi->s_journal)
2697 ext4_set_feature_journal_needs_recovery(sb);
2698
2699 err = ext4_commit_super(sb);
2700done:
2701 if (test_opt(sb, DEBUG))
2702 printk(KERN_INFO "[EXT4 FS bs=%lu, gc=%u, "
2703 "bpg=%lu, ipg=%lu, mo=%04x, mo2=%04x]\n",
2704 sb->s_blocksize,
2705 sbi->s_groups_count,
2706 EXT4_BLOCKS_PER_GROUP(sb),
2707 EXT4_INODES_PER_GROUP(sb),
2708 sbi->s_mount_opt, sbi->s_mount_opt2);
2709
2710 cleancache_init_fs(sb);
2711 return err;
2712}
2713
2714int ext4_alloc_flex_bg_array(struct super_block *sb, ext4_group_t ngroup)
2715{
2716 struct ext4_sb_info *sbi = EXT4_SB(sb);
2717 struct flex_groups **old_groups, **new_groups;
2718 int size, i, j;
2719
2720 if (!sbi->s_log_groups_per_flex)
2721 return 0;
2722
2723 size = ext4_flex_group(sbi, ngroup - 1) + 1;
2724 if (size <= sbi->s_flex_groups_allocated)
2725 return 0;
2726
2727 new_groups = kvzalloc(roundup_pow_of_two(size *
2728 sizeof(*sbi->s_flex_groups)), GFP_KERNEL);
2729 if (!new_groups) {
2730 ext4_msg(sb, KERN_ERR,
2731 "not enough memory for %d flex group pointers", size);
2732 return -ENOMEM;
2733 }
2734 for (i = sbi->s_flex_groups_allocated; i < size; i++) {
2735 new_groups[i] = kvzalloc(roundup_pow_of_two(
2736 sizeof(struct flex_groups)),
2737 GFP_KERNEL);
2738 if (!new_groups[i]) {
2739 for (j = sbi->s_flex_groups_allocated; j < i; j++)
2740 kvfree(new_groups[j]);
2741 kvfree(new_groups);
2742 ext4_msg(sb, KERN_ERR,
2743 "not enough memory for %d flex groups", size);
2744 return -ENOMEM;
2745 }
2746 }
2747 rcu_read_lock();
2748 old_groups = rcu_dereference(sbi->s_flex_groups);
2749 if (old_groups)
2750 memcpy(new_groups, old_groups,
2751 (sbi->s_flex_groups_allocated *
2752 sizeof(struct flex_groups *)));
2753 rcu_read_unlock();
2754 rcu_assign_pointer(sbi->s_flex_groups, new_groups);
2755 sbi->s_flex_groups_allocated = size;
2756 if (old_groups)
2757 ext4_kvfree_array_rcu(old_groups);
2758 return 0;
2759}
2760
2761static int ext4_fill_flex_info(struct super_block *sb)
2762{
2763 struct ext4_sb_info *sbi = EXT4_SB(sb);
2764 struct ext4_group_desc *gdp = NULL;
2765 struct flex_groups *fg;
2766 ext4_group_t flex_group;
2767 int i, err;
2768
2769 sbi->s_log_groups_per_flex = sbi->s_es->s_log_groups_per_flex;
2770 if (sbi->s_log_groups_per_flex < 1 || sbi->s_log_groups_per_flex > 31) {
2771 sbi->s_log_groups_per_flex = 0;
2772 return 1;
2773 }
2774
2775 err = ext4_alloc_flex_bg_array(sb, sbi->s_groups_count);
2776 if (err)
2777 goto failed;
2778
2779 for (i = 0; i < sbi->s_groups_count; i++) {
2780 gdp = ext4_get_group_desc(sb, i, NULL);
2781
2782 flex_group = ext4_flex_group(sbi, i);
2783 fg = sbi_array_rcu_deref(sbi, s_flex_groups, flex_group);
2784 atomic_add(ext4_free_inodes_count(sb, gdp), &fg->free_inodes);
2785 atomic64_add(ext4_free_group_clusters(sb, gdp),
2786 &fg->free_clusters);
2787 atomic_add(ext4_used_dirs_count(sb, gdp), &fg->used_dirs);
2788 }
2789
2790 return 1;
2791failed:
2792 return 0;
2793}
2794
2795static __le16 ext4_group_desc_csum(struct super_block *sb, __u32 block_group,
2796 struct ext4_group_desc *gdp)
2797{
2798 int offset = offsetof(struct ext4_group_desc, bg_checksum);
2799 __u16 crc = 0;
2800 __le32 le_group = cpu_to_le32(block_group);
2801 struct ext4_sb_info *sbi = EXT4_SB(sb);
2802
2803 if (ext4_has_metadata_csum(sbi->s_sb)) {
2804 /* Use new metadata_csum algorithm */
2805 __u32 csum32;
2806 __u16 dummy_csum = 0;
2807
2808 csum32 = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&le_group,
2809 sizeof(le_group));
2810 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp, offset);
2811 csum32 = ext4_chksum(sbi, csum32, (__u8 *)&dummy_csum,
2812 sizeof(dummy_csum));
2813 offset += sizeof(dummy_csum);
2814 if (offset < sbi->s_desc_size)
2815 csum32 = ext4_chksum(sbi, csum32, (__u8 *)gdp + offset,
2816 sbi->s_desc_size - offset);
2817
2818 crc = csum32 & 0xFFFF;
2819 goto out;
2820 }
2821
2822 /* old crc16 code */
2823 if (!ext4_has_feature_gdt_csum(sb))
2824 return 0;
2825
2826 crc = crc16(~0, sbi->s_es->s_uuid, sizeof(sbi->s_es->s_uuid));
2827 crc = crc16(crc, (__u8 *)&le_group, sizeof(le_group));
2828 crc = crc16(crc, (__u8 *)gdp, offset);
2829 offset += sizeof(gdp->bg_checksum); /* skip checksum */
2830 /* for checksum of struct ext4_group_desc do the rest...*/
2831 if (ext4_has_feature_64bit(sb) &&
2832 offset < le16_to_cpu(sbi->s_es->s_desc_size))
2833 crc = crc16(crc, (__u8 *)gdp + offset,
2834 le16_to_cpu(sbi->s_es->s_desc_size) -
2835 offset);
2836
2837out:
2838 return cpu_to_le16(crc);
2839}
2840
2841int ext4_group_desc_csum_verify(struct super_block *sb, __u32 block_group,
2842 struct ext4_group_desc *gdp)
2843{
2844 if (ext4_has_group_desc_csum(sb) &&
2845 (gdp->bg_checksum != ext4_group_desc_csum(sb, block_group, gdp)))
2846 return 0;
2847
2848 return 1;
2849}
2850
2851void ext4_group_desc_csum_set(struct super_block *sb, __u32 block_group,
2852 struct ext4_group_desc *gdp)
2853{
2854 if (!ext4_has_group_desc_csum(sb))
2855 return;
2856 gdp->bg_checksum = ext4_group_desc_csum(sb, block_group, gdp);
2857}
2858
2859/* Called at mount-time, super-block is locked */
2860static int ext4_check_descriptors(struct super_block *sb,
2861 ext4_fsblk_t sb_block,
2862 ext4_group_t *first_not_zeroed)
2863{
2864 struct ext4_sb_info *sbi = EXT4_SB(sb);
2865 ext4_fsblk_t first_block = le32_to_cpu(sbi->s_es->s_first_data_block);
2866 ext4_fsblk_t last_block;
2867 ext4_fsblk_t last_bg_block = sb_block + ext4_bg_num_gdb(sb, 0);
2868 ext4_fsblk_t block_bitmap;
2869 ext4_fsblk_t inode_bitmap;
2870 ext4_fsblk_t inode_table;
2871 int flexbg_flag = 0;
2872 ext4_group_t i, grp = sbi->s_groups_count;
2873
2874 if (ext4_has_feature_flex_bg(sb))
2875 flexbg_flag = 1;
2876
2877 ext4_debug("Checking group descriptors");
2878
2879 for (i = 0; i < sbi->s_groups_count; i++) {
2880 struct ext4_group_desc *gdp = ext4_get_group_desc(sb, i, NULL);
2881
2882 if (i == sbi->s_groups_count - 1 || flexbg_flag)
2883 last_block = ext4_blocks_count(sbi->s_es) - 1;
2884 else
2885 last_block = first_block +
2886 (EXT4_BLOCKS_PER_GROUP(sb) - 1);
2887
2888 if ((grp == sbi->s_groups_count) &&
2889 !(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
2890 grp = i;
2891
2892 block_bitmap = ext4_block_bitmap(sb, gdp);
2893 if (block_bitmap == sb_block) {
2894 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2895 "Block bitmap for group %u overlaps "
2896 "superblock", i);
2897 if (!sb_rdonly(sb))
2898 return 0;
2899 }
2900 if (block_bitmap >= sb_block + 1 &&
2901 block_bitmap <= last_bg_block) {
2902 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2903 "Block bitmap for group %u overlaps "
2904 "block group descriptors", i);
2905 if (!sb_rdonly(sb))
2906 return 0;
2907 }
2908 if (block_bitmap < first_block || block_bitmap > last_block) {
2909 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2910 "Block bitmap for group %u not in group "
2911 "(block %llu)!", i, block_bitmap);
2912 return 0;
2913 }
2914 inode_bitmap = ext4_inode_bitmap(sb, gdp);
2915 if (inode_bitmap == sb_block) {
2916 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2917 "Inode bitmap for group %u overlaps "
2918 "superblock", i);
2919 if (!sb_rdonly(sb))
2920 return 0;
2921 }
2922 if (inode_bitmap >= sb_block + 1 &&
2923 inode_bitmap <= last_bg_block) {
2924 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2925 "Inode bitmap for group %u overlaps "
2926 "block group descriptors", i);
2927 if (!sb_rdonly(sb))
2928 return 0;
2929 }
2930 if (inode_bitmap < first_block || inode_bitmap > last_block) {
2931 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2932 "Inode bitmap for group %u not in group "
2933 "(block %llu)!", i, inode_bitmap);
2934 return 0;
2935 }
2936 inode_table = ext4_inode_table(sb, gdp);
2937 if (inode_table == sb_block) {
2938 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2939 "Inode table for group %u overlaps "
2940 "superblock", i);
2941 if (!sb_rdonly(sb))
2942 return 0;
2943 }
2944 if (inode_table >= sb_block + 1 &&
2945 inode_table <= last_bg_block) {
2946 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2947 "Inode table for group %u overlaps "
2948 "block group descriptors", i);
2949 if (!sb_rdonly(sb))
2950 return 0;
2951 }
2952 if (inode_table < first_block ||
2953 inode_table + sbi->s_itb_per_group - 1 > last_block) {
2954 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2955 "Inode table for group %u not in group "
2956 "(block %llu)!", i, inode_table);
2957 return 0;
2958 }
2959 ext4_lock_group(sb, i);
2960 if (!ext4_group_desc_csum_verify(sb, i, gdp)) {
2961 ext4_msg(sb, KERN_ERR, "ext4_check_descriptors: "
2962 "Checksum for group %u failed (%u!=%u)",
2963 i, le16_to_cpu(ext4_group_desc_csum(sb, i,
2964 gdp)), le16_to_cpu(gdp->bg_checksum));
2965 if (!sb_rdonly(sb)) {
2966 ext4_unlock_group(sb, i);
2967 return 0;
2968 }
2969 }
2970 ext4_unlock_group(sb, i);
2971 if (!flexbg_flag)
2972 first_block += EXT4_BLOCKS_PER_GROUP(sb);
2973 }
2974 if (NULL != first_not_zeroed)
2975 *first_not_zeroed = grp;
2976 return 1;
2977}
2978
2979/* ext4_orphan_cleanup() walks a singly-linked list of inodes (starting at
2980 * the superblock) which were deleted from all directories, but held open by
2981 * a process at the time of a crash. We walk the list and try to delete these
2982 * inodes at recovery time (only with a read-write filesystem).
2983 *
2984 * In order to keep the orphan inode chain consistent during traversal (in
2985 * case of crash during recovery), we link each inode into the superblock
2986 * orphan list_head and handle it the same way as an inode deletion during
2987 * normal operation (which journals the operations for us).
2988 *
2989 * We only do an iget() and an iput() on each inode, which is very safe if we
2990 * accidentally point at an in-use or already deleted inode. The worst that
2991 * can happen in this case is that we get a "bit already cleared" message from
2992 * ext4_free_inode(). The only reason we would point at a wrong inode is if
2993 * e2fsck was run on this filesystem, and it must have already done the orphan
2994 * inode cleanup for us, so we can safely abort without any further action.
2995 */
2996static void ext4_orphan_cleanup(struct super_block *sb,
2997 struct ext4_super_block *es)
2998{
2999 unsigned int s_flags = sb->s_flags;
3000 int ret, nr_orphans = 0, nr_truncates = 0;
3001#ifdef CONFIG_QUOTA
3002 int quota_update = 0;
3003 int i;
3004#endif
3005 if (!es->s_last_orphan) {
3006 jbd_debug(4, "no orphan inodes to clean up\n");
3007 return;
3008 }
3009
3010 if (bdev_read_only(sb->s_bdev)) {
3011 ext4_msg(sb, KERN_ERR, "write access "
3012 "unavailable, skipping orphan cleanup");
3013 return;
3014 }
3015
3016 /* Check if feature set would not allow a r/w mount */
3017 if (!ext4_feature_set_ok(sb, 0)) {
3018 ext4_msg(sb, KERN_INFO, "Skipping orphan cleanup due to "
3019 "unknown ROCOMPAT features");
3020 return;
3021 }
3022
3023 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3024 /* don't clear list on RO mount w/ errors */
3025 if (es->s_last_orphan && !(s_flags & SB_RDONLY)) {
3026 ext4_msg(sb, KERN_INFO, "Errors on filesystem, "
3027 "clearing orphan list.\n");
3028 es->s_last_orphan = 0;
3029 }
3030 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3031 return;
3032 }
3033
3034 if (s_flags & SB_RDONLY) {
3035 ext4_msg(sb, KERN_INFO, "orphan cleanup on readonly fs");
3036 sb->s_flags &= ~SB_RDONLY;
3037 }
3038#ifdef CONFIG_QUOTA
3039 /*
3040 * Turn on quotas which were not enabled for read-only mounts if
3041 * filesystem has quota feature, so that they are updated correctly.
3042 */
3043 if (ext4_has_feature_quota(sb) && (s_flags & SB_RDONLY)) {
3044 int ret = ext4_enable_quotas(sb);
3045
3046 if (!ret)
3047 quota_update = 1;
3048 else
3049 ext4_msg(sb, KERN_ERR,
3050 "Cannot turn on quotas: error %d", ret);
3051 }
3052
3053 /* Turn on journaled quotas used for old sytle */
3054 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3055 if (EXT4_SB(sb)->s_qf_names[i]) {
3056 int ret = ext4_quota_on_mount(sb, i);
3057
3058 if (!ret)
3059 quota_update = 1;
3060 else
3061 ext4_msg(sb, KERN_ERR,
3062 "Cannot turn on journaled "
3063 "quota: type %d: error %d", i, ret);
3064 }
3065 }
3066#endif
3067
3068 while (es->s_last_orphan) {
3069 struct inode *inode;
3070
3071 /*
3072 * We may have encountered an error during cleanup; if
3073 * so, skip the rest.
3074 */
3075 if (EXT4_SB(sb)->s_mount_state & EXT4_ERROR_FS) {
3076 jbd_debug(1, "Skipping orphan recovery on fs with errors.\n");
3077 es->s_last_orphan = 0;
3078 break;
3079 }
3080
3081 inode = ext4_orphan_get(sb, le32_to_cpu(es->s_last_orphan));
3082 if (IS_ERR(inode)) {
3083 es->s_last_orphan = 0;
3084 break;
3085 }
3086
3087 list_add(&EXT4_I(inode)->i_orphan, &EXT4_SB(sb)->s_orphan);
3088 dquot_initialize(inode);
3089 if (inode->i_nlink) {
3090 if (test_opt(sb, DEBUG))
3091 ext4_msg(sb, KERN_DEBUG,
3092 "%s: truncating inode %lu to %lld bytes",
3093 __func__, inode->i_ino, inode->i_size);
3094 jbd_debug(2, "truncating inode %lu to %lld bytes\n",
3095 inode->i_ino, inode->i_size);
3096 inode_lock(inode);
3097 truncate_inode_pages(inode->i_mapping, inode->i_size);
3098 ret = ext4_truncate(inode);
3099 if (ret) {
3100 /*
3101 * We need to clean up the in-core orphan list
3102 * manually if ext4_truncate() failed to get a
3103 * transaction handle.
3104 */
3105 ext4_orphan_del(NULL, inode);
3106 ext4_std_error(inode->i_sb, ret);
3107 }
3108 inode_unlock(inode);
3109 nr_truncates++;
3110 } else {
3111 if (test_opt(sb, DEBUG))
3112 ext4_msg(sb, KERN_DEBUG,
3113 "%s: deleting unreferenced inode %lu",
3114 __func__, inode->i_ino);
3115 jbd_debug(2, "deleting unreferenced inode %lu\n",
3116 inode->i_ino);
3117 nr_orphans++;
3118 }
3119 iput(inode); /* The delete magic happens here! */
3120 }
3121
3122#define PLURAL(x) (x), ((x) == 1) ? "" : "s"
3123
3124 if (nr_orphans)
3125 ext4_msg(sb, KERN_INFO, "%d orphan inode%s deleted",
3126 PLURAL(nr_orphans));
3127 if (nr_truncates)
3128 ext4_msg(sb, KERN_INFO, "%d truncate%s cleaned up",
3129 PLURAL(nr_truncates));
3130#ifdef CONFIG_QUOTA
3131 /* Turn off quotas if they were enabled for orphan cleanup */
3132 if (quota_update) {
3133 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
3134 if (sb_dqopt(sb)->files[i])
3135 dquot_quota_off(sb, i);
3136 }
3137 }
3138#endif
3139 sb->s_flags = s_flags; /* Restore SB_RDONLY status */
3140}
3141
3142/*
3143 * Maximal extent format file size.
3144 * Resulting logical blkno at s_maxbytes must fit in our on-disk
3145 * extent format containers, within a sector_t, and within i_blocks
3146 * in the vfs. ext4 inode has 48 bits of i_block in fsblock units,
3147 * so that won't be a limiting factor.
3148 *
3149 * However there is other limiting factor. We do store extents in the form
3150 * of starting block and length, hence the resulting length of the extent
3151 * covering maximum file size must fit into on-disk format containers as
3152 * well. Given that length is always by 1 unit bigger than max unit (because
3153 * we count 0 as well) we have to lower the s_maxbytes by one fs block.
3154 *
3155 * Note, this does *not* consider any metadata overhead for vfs i_blocks.
3156 */
3157static loff_t ext4_max_size(int blkbits, int has_huge_files)
3158{
3159 loff_t res;
3160 loff_t upper_limit = MAX_LFS_FILESIZE;
3161
3162 BUILD_BUG_ON(sizeof(blkcnt_t) < sizeof(u64));
3163
3164 if (!has_huge_files) {
3165 upper_limit = (1LL << 32) - 1;
3166
3167 /* total blocks in file system block size */
3168 upper_limit >>= (blkbits - 9);
3169 upper_limit <<= blkbits;
3170 }
3171
3172 /*
3173 * 32-bit extent-start container, ee_block. We lower the maxbytes
3174 * by one fs block, so ee_len can cover the extent of maximum file
3175 * size
3176 */
3177 res = (1LL << 32) - 1;
3178 res <<= blkbits;
3179
3180 /* Sanity check against vm- & vfs- imposed limits */
3181 if (res > upper_limit)
3182 res = upper_limit;
3183
3184 return res;
3185}
3186
3187/*
3188 * Maximal bitmap file size. There is a direct, and {,double-,triple-}indirect
3189 * block limit, and also a limit of (2^48 - 1) 512-byte sectors in i_blocks.
3190 * We need to be 1 filesystem block less than the 2^48 sector limit.
3191 */
3192static loff_t ext4_max_bitmap_size(int bits, int has_huge_files)
3193{
3194 unsigned long long upper_limit, res = EXT4_NDIR_BLOCKS;
3195 int meta_blocks;
3196
3197 /*
3198 * This is calculated to be the largest file size for a dense, block
3199 * mapped file such that the file's total number of 512-byte sectors,
3200 * including data and all indirect blocks, does not exceed (2^48 - 1).
3201 *
3202 * __u32 i_blocks_lo and _u16 i_blocks_high represent the total
3203 * number of 512-byte sectors of the file.
3204 */
3205 if (!has_huge_files) {
3206 /*
3207 * !has_huge_files or implies that the inode i_block field
3208 * represents total file blocks in 2^32 512-byte sectors ==
3209 * size of vfs inode i_blocks * 8
3210 */
3211 upper_limit = (1LL << 32) - 1;
3212
3213 /* total blocks in file system block size */
3214 upper_limit >>= (bits - 9);
3215
3216 } else {
3217 /*
3218 * We use 48 bit ext4_inode i_blocks
3219 * With EXT4_HUGE_FILE_FL set the i_blocks
3220 * represent total number of blocks in
3221 * file system block size
3222 */
3223 upper_limit = (1LL << 48) - 1;
3224
3225 }
3226
3227 /* indirect blocks */
3228 meta_blocks = 1;
3229 /* double indirect blocks */
3230 meta_blocks += 1 + (1LL << (bits-2));
3231 /* tripple indirect blocks */
3232 meta_blocks += 1 + (1LL << (bits-2)) + (1LL << (2*(bits-2)));
3233
3234 upper_limit -= meta_blocks;
3235 upper_limit <<= bits;
3236
3237 res += 1LL << (bits-2);
3238 res += 1LL << (2*(bits-2));
3239 res += 1LL << (3*(bits-2));
3240 res <<= bits;
3241 if (res > upper_limit)
3242 res = upper_limit;
3243
3244 if (res > MAX_LFS_FILESIZE)
3245 res = MAX_LFS_FILESIZE;
3246
3247 return (loff_t)res;
3248}
3249
3250static ext4_fsblk_t descriptor_loc(struct super_block *sb,
3251 ext4_fsblk_t logical_sb_block, int nr)
3252{
3253 struct ext4_sb_info *sbi = EXT4_SB(sb);
3254 ext4_group_t bg, first_meta_bg;
3255 int has_super = 0;
3256
3257 first_meta_bg = le32_to_cpu(sbi->s_es->s_first_meta_bg);
3258
3259 if (!ext4_has_feature_meta_bg(sb) || nr < first_meta_bg)
3260 return logical_sb_block + nr + 1;
3261 bg = sbi->s_desc_per_block * nr;
3262 if (ext4_bg_has_super(sb, bg))
3263 has_super = 1;
3264
3265 /*
3266 * If we have a meta_bg fs with 1k blocks, group 0's GDT is at
3267 * block 2, not 1. If s_first_data_block == 0 (bigalloc is enabled
3268 * on modern mke2fs or blksize > 1k on older mke2fs) then we must
3269 * compensate.
3270 */
3271 if (sb->s_blocksize == 1024 && nr == 0 &&
3272 le32_to_cpu(sbi->s_es->s_first_data_block) == 0)
3273 has_super++;
3274
3275 return (has_super + ext4_group_first_block_no(sb, bg));
3276}
3277
3278/**
3279 * ext4_get_stripe_size: Get the stripe size.
3280 * @sbi: In memory super block info
3281 *
3282 * If we have specified it via mount option, then
3283 * use the mount option value. If the value specified at mount time is
3284 * greater than the blocks per group use the super block value.
3285 * If the super block value is greater than blocks per group return 0.
3286 * Allocator needs it be less than blocks per group.
3287 *
3288 */
3289static unsigned long ext4_get_stripe_size(struct ext4_sb_info *sbi)
3290{
3291 unsigned long stride = le16_to_cpu(sbi->s_es->s_raid_stride);
3292 unsigned long stripe_width =
3293 le32_to_cpu(sbi->s_es->s_raid_stripe_width);
3294 int ret;
3295
3296 if (sbi->s_stripe && sbi->s_stripe <= sbi->s_blocks_per_group)
3297 ret = sbi->s_stripe;
3298 else if (stripe_width && stripe_width <= sbi->s_blocks_per_group)
3299 ret = stripe_width;
3300 else if (stride && stride <= sbi->s_blocks_per_group)
3301 ret = stride;
3302 else
3303 ret = 0;
3304
3305 /*
3306 * If the stripe width is 1, this makes no sense and
3307 * we set it to 0 to turn off stripe handling code.
3308 */
3309 if (ret <= 1)
3310 ret = 0;
3311
3312 return ret;
3313}
3314
3315/*
3316 * Check whether this filesystem can be mounted based on
3317 * the features present and the RDONLY/RDWR mount requested.
3318 * Returns 1 if this filesystem can be mounted as requested,
3319 * 0 if it cannot be.
3320 */
3321static int ext4_feature_set_ok(struct super_block *sb, int readonly)
3322{
3323 if (ext4_has_unknown_ext4_incompat_features(sb)) {
3324 ext4_msg(sb, KERN_ERR,
3325 "Couldn't mount because of "
3326 "unsupported optional features (%x)",
3327 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_incompat) &
3328 ~EXT4_FEATURE_INCOMPAT_SUPP));
3329 return 0;
3330 }
3331
3332#ifndef CONFIG_UNICODE
3333 if (ext4_has_feature_casefold(sb)) {
3334 ext4_msg(sb, KERN_ERR,
3335 "Filesystem with casefold feature cannot be "
3336 "mounted without CONFIG_UNICODE");
3337 return 0;
3338 }
3339#endif
3340
3341 if (readonly)
3342 return 1;
3343
3344 if (ext4_has_feature_readonly(sb)) {
3345 ext4_msg(sb, KERN_INFO, "filesystem is read-only");
3346 sb->s_flags |= SB_RDONLY;
3347 return 1;
3348 }
3349
3350 /* Check that feature set is OK for a read-write mount */
3351 if (ext4_has_unknown_ext4_ro_compat_features(sb)) {
3352 ext4_msg(sb, KERN_ERR, "couldn't mount RDWR because of "
3353 "unsupported optional features (%x)",
3354 (le32_to_cpu(EXT4_SB(sb)->s_es->s_feature_ro_compat) &
3355 ~EXT4_FEATURE_RO_COMPAT_SUPP));
3356 return 0;
3357 }
3358 if (ext4_has_feature_bigalloc(sb) && !ext4_has_feature_extents(sb)) {
3359 ext4_msg(sb, KERN_ERR,
3360 "Can't support bigalloc feature without "
3361 "extents feature\n");
3362 return 0;
3363 }
3364
3365#if !IS_ENABLED(CONFIG_QUOTA) || !IS_ENABLED(CONFIG_QFMT_V2)
3366 if (!readonly && (ext4_has_feature_quota(sb) ||
3367 ext4_has_feature_project(sb))) {
3368 ext4_msg(sb, KERN_ERR,
3369 "The kernel was not built with CONFIG_QUOTA and CONFIG_QFMT_V2");
3370 return 0;
3371 }
3372#endif /* CONFIG_QUOTA */
3373 return 1;
3374}
3375
3376/*
3377 * This function is called once a day if we have errors logged
3378 * on the file system
3379 */
3380static void print_daily_error_info(struct timer_list *t)
3381{
3382 struct ext4_sb_info *sbi = from_timer(sbi, t, s_err_report);
3383 struct super_block *sb = sbi->s_sb;
3384 struct ext4_super_block *es = sbi->s_es;
3385
3386 if (es->s_error_count)
3387 /* fsck newer than v1.41.13 is needed to clean this condition. */
3388 ext4_msg(sb, KERN_NOTICE, "error count since last fsck: %u",
3389 le32_to_cpu(es->s_error_count));
3390 if (es->s_first_error_time) {
3391 printk(KERN_NOTICE "EXT4-fs (%s): initial error at time %llu: %.*s:%d",
3392 sb->s_id,
3393 ext4_get_tstamp(es, s_first_error_time),
3394 (int) sizeof(es->s_first_error_func),
3395 es->s_first_error_func,
3396 le32_to_cpu(es->s_first_error_line));
3397 if (es->s_first_error_ino)
3398 printk(KERN_CONT ": inode %u",
3399 le32_to_cpu(es->s_first_error_ino));
3400 if (es->s_first_error_block)
3401 printk(KERN_CONT ": block %llu", (unsigned long long)
3402 le64_to_cpu(es->s_first_error_block));
3403 printk(KERN_CONT "\n");
3404 }
3405 if (es->s_last_error_time) {
3406 printk(KERN_NOTICE "EXT4-fs (%s): last error at time %llu: %.*s:%d",
3407 sb->s_id,
3408 ext4_get_tstamp(es, s_last_error_time),
3409 (int) sizeof(es->s_last_error_func),
3410 es->s_last_error_func,
3411 le32_to_cpu(es->s_last_error_line));
3412 if (es->s_last_error_ino)
3413 printk(KERN_CONT ": inode %u",
3414 le32_to_cpu(es->s_last_error_ino));
3415 if (es->s_last_error_block)
3416 printk(KERN_CONT ": block %llu", (unsigned long long)
3417 le64_to_cpu(es->s_last_error_block));
3418 printk(KERN_CONT "\n");
3419 }
3420 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ); /* Once a day */
3421}
3422
3423/* Find next suitable group and run ext4_init_inode_table */
3424static int ext4_run_li_request(struct ext4_li_request *elr)
3425{
3426 struct ext4_group_desc *gdp = NULL;
3427 struct super_block *sb = elr->lr_super;
3428 ext4_group_t ngroups = EXT4_SB(sb)->s_groups_count;
3429 ext4_group_t group = elr->lr_next_group;
3430 unsigned long timeout = 0;
3431 unsigned int prefetch_ios = 0;
3432 int ret = 0;
3433
3434 if (elr->lr_mode == EXT4_LI_MODE_PREFETCH_BBITMAP) {
3435 elr->lr_next_group = ext4_mb_prefetch(sb, group,
3436 EXT4_SB(sb)->s_mb_prefetch, &prefetch_ios);
3437 if (prefetch_ios)
3438 ext4_mb_prefetch_fini(sb, elr->lr_next_group,
3439 prefetch_ios);
3440 trace_ext4_prefetch_bitmaps(sb, group, elr->lr_next_group,
3441 prefetch_ios);
3442 if (group >= elr->lr_next_group) {
3443 ret = 1;
3444 if (elr->lr_first_not_zeroed != ngroups &&
3445 !sb_rdonly(sb) && test_opt(sb, INIT_INODE_TABLE)) {
3446 elr->lr_next_group = elr->lr_first_not_zeroed;
3447 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3448 ret = 0;
3449 }
3450 }
3451 return ret;
3452 }
3453
3454 for (; group < ngroups; group++) {
3455 gdp = ext4_get_group_desc(sb, group, NULL);
3456 if (!gdp) {
3457 ret = 1;
3458 break;
3459 }
3460
3461 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3462 break;
3463 }
3464
3465 if (group >= ngroups)
3466 ret = 1;
3467
3468 if (!ret) {
3469 timeout = jiffies;
3470 ret = ext4_init_inode_table(sb, group,
3471 elr->lr_timeout ? 0 : 1);
3472 trace_ext4_lazy_itable_init(sb, group);
3473 if (elr->lr_timeout == 0) {
3474 timeout = (jiffies - timeout) *
3475 EXT4_SB(elr->lr_super)->s_li_wait_mult;
3476 elr->lr_timeout = timeout;
3477 }
3478 elr->lr_next_sched = jiffies + elr->lr_timeout;
3479 elr->lr_next_group = group + 1;
3480 }
3481 return ret;
3482}
3483
3484/*
3485 * Remove lr_request from the list_request and free the
3486 * request structure. Should be called with li_list_mtx held
3487 */
3488static void ext4_remove_li_request(struct ext4_li_request *elr)
3489{
3490 if (!elr)
3491 return;
3492
3493 list_del(&elr->lr_request);
3494 EXT4_SB(elr->lr_super)->s_li_request = NULL;
3495 kfree(elr);
3496}
3497
3498static void ext4_unregister_li_request(struct super_block *sb)
3499{
3500 mutex_lock(&ext4_li_mtx);
3501 if (!ext4_li_info) {
3502 mutex_unlock(&ext4_li_mtx);
3503 return;
3504 }
3505
3506 mutex_lock(&ext4_li_info->li_list_mtx);
3507 ext4_remove_li_request(EXT4_SB(sb)->s_li_request);
3508 mutex_unlock(&ext4_li_info->li_list_mtx);
3509 mutex_unlock(&ext4_li_mtx);
3510}
3511
3512static struct task_struct *ext4_lazyinit_task;
3513
3514/*
3515 * This is the function where ext4lazyinit thread lives. It walks
3516 * through the request list searching for next scheduled filesystem.
3517 * When such a fs is found, run the lazy initialization request
3518 * (ext4_rn_li_request) and keep track of the time spend in this
3519 * function. Based on that time we compute next schedule time of
3520 * the request. When walking through the list is complete, compute
3521 * next waking time and put itself into sleep.
3522 */
3523static int ext4_lazyinit_thread(void *arg)
3524{
3525 struct ext4_lazy_init *eli = (struct ext4_lazy_init *)arg;
3526 struct list_head *pos, *n;
3527 struct ext4_li_request *elr;
3528 unsigned long next_wakeup, cur;
3529
3530 BUG_ON(NULL == eli);
3531
3532cont_thread:
3533 while (true) {
3534 next_wakeup = MAX_JIFFY_OFFSET;
3535
3536 mutex_lock(&eli->li_list_mtx);
3537 if (list_empty(&eli->li_request_list)) {
3538 mutex_unlock(&eli->li_list_mtx);
3539 goto exit_thread;
3540 }
3541 list_for_each_safe(pos, n, &eli->li_request_list) {
3542 int err = 0;
3543 int progress = 0;
3544 elr = list_entry(pos, struct ext4_li_request,
3545 lr_request);
3546
3547 if (time_before(jiffies, elr->lr_next_sched)) {
3548 if (time_before(elr->lr_next_sched, next_wakeup))
3549 next_wakeup = elr->lr_next_sched;
3550 continue;
3551 }
3552 if (down_read_trylock(&elr->lr_super->s_umount)) {
3553 if (sb_start_write_trylock(elr->lr_super)) {
3554 progress = 1;
3555 /*
3556 * We hold sb->s_umount, sb can not
3557 * be removed from the list, it is
3558 * now safe to drop li_list_mtx
3559 */
3560 mutex_unlock(&eli->li_list_mtx);
3561 err = ext4_run_li_request(elr);
3562 sb_end_write(elr->lr_super);
3563 mutex_lock(&eli->li_list_mtx);
3564 n = pos->next;
3565 }
3566 up_read((&elr->lr_super->s_umount));
3567 }
3568 /* error, remove the lazy_init job */
3569 if (err) {
3570 ext4_remove_li_request(elr);
3571 continue;
3572 }
3573 if (!progress) {
3574 elr->lr_next_sched = jiffies +
3575 (prandom_u32()
3576 % (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3577 }
3578 if (time_before(elr->lr_next_sched, next_wakeup))
3579 next_wakeup = elr->lr_next_sched;
3580 }
3581 mutex_unlock(&eli->li_list_mtx);
3582
3583 try_to_freeze();
3584
3585 cur = jiffies;
3586 if ((time_after_eq(cur, next_wakeup)) ||
3587 (MAX_JIFFY_OFFSET == next_wakeup)) {
3588 cond_resched();
3589 continue;
3590 }
3591
3592 schedule_timeout_interruptible(next_wakeup - cur);
3593
3594 if (kthread_should_stop()) {
3595 ext4_clear_request_list();
3596 goto exit_thread;
3597 }
3598 }
3599
3600exit_thread:
3601 /*
3602 * It looks like the request list is empty, but we need
3603 * to check it under the li_list_mtx lock, to prevent any
3604 * additions into it, and of course we should lock ext4_li_mtx
3605 * to atomically free the list and ext4_li_info, because at
3606 * this point another ext4 filesystem could be registering
3607 * new one.
3608 */
3609 mutex_lock(&ext4_li_mtx);
3610 mutex_lock(&eli->li_list_mtx);
3611 if (!list_empty(&eli->li_request_list)) {
3612 mutex_unlock(&eli->li_list_mtx);
3613 mutex_unlock(&ext4_li_mtx);
3614 goto cont_thread;
3615 }
3616 mutex_unlock(&eli->li_list_mtx);
3617 kfree(ext4_li_info);
3618 ext4_li_info = NULL;
3619 mutex_unlock(&ext4_li_mtx);
3620
3621 return 0;
3622}
3623
3624static void ext4_clear_request_list(void)
3625{
3626 struct list_head *pos, *n;
3627 struct ext4_li_request *elr;
3628
3629 mutex_lock(&ext4_li_info->li_list_mtx);
3630 list_for_each_safe(pos, n, &ext4_li_info->li_request_list) {
3631 elr = list_entry(pos, struct ext4_li_request,
3632 lr_request);
3633 ext4_remove_li_request(elr);
3634 }
3635 mutex_unlock(&ext4_li_info->li_list_mtx);
3636}
3637
3638static int ext4_run_lazyinit_thread(void)
3639{
3640 ext4_lazyinit_task = kthread_run(ext4_lazyinit_thread,
3641 ext4_li_info, "ext4lazyinit");
3642 if (IS_ERR(ext4_lazyinit_task)) {
3643 int err = PTR_ERR(ext4_lazyinit_task);
3644 ext4_clear_request_list();
3645 kfree(ext4_li_info);
3646 ext4_li_info = NULL;
3647 printk(KERN_CRIT "EXT4-fs: error %d creating inode table "
3648 "initialization thread\n",
3649 err);
3650 return err;
3651 }
3652 ext4_li_info->li_state |= EXT4_LAZYINIT_RUNNING;
3653 return 0;
3654}
3655
3656/*
3657 * Check whether it make sense to run itable init. thread or not.
3658 * If there is at least one uninitialized inode table, return
3659 * corresponding group number, else the loop goes through all
3660 * groups and return total number of groups.
3661 */
3662static ext4_group_t ext4_has_uninit_itable(struct super_block *sb)
3663{
3664 ext4_group_t group, ngroups = EXT4_SB(sb)->s_groups_count;
3665 struct ext4_group_desc *gdp = NULL;
3666
3667 if (!ext4_has_group_desc_csum(sb))
3668 return ngroups;
3669
3670 for (group = 0; group < ngroups; group++) {
3671 gdp = ext4_get_group_desc(sb, group, NULL);
3672 if (!gdp)
3673 continue;
3674
3675 if (!(gdp->bg_flags & cpu_to_le16(EXT4_BG_INODE_ZEROED)))
3676 break;
3677 }
3678
3679 return group;
3680}
3681
3682static int ext4_li_info_new(void)
3683{
3684 struct ext4_lazy_init *eli = NULL;
3685
3686 eli = kzalloc(sizeof(*eli), GFP_KERNEL);
3687 if (!eli)
3688 return -ENOMEM;
3689
3690 INIT_LIST_HEAD(&eli->li_request_list);
3691 mutex_init(&eli->li_list_mtx);
3692
3693 eli->li_state |= EXT4_LAZYINIT_QUIT;
3694
3695 ext4_li_info = eli;
3696
3697 return 0;
3698}
3699
3700static struct ext4_li_request *ext4_li_request_new(struct super_block *sb,
3701 ext4_group_t start)
3702{
3703 struct ext4_li_request *elr;
3704
3705 elr = kzalloc(sizeof(*elr), GFP_KERNEL);
3706 if (!elr)
3707 return NULL;
3708
3709 elr->lr_super = sb;
3710 elr->lr_first_not_zeroed = start;
3711 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS)) {
3712 elr->lr_mode = EXT4_LI_MODE_ITABLE;
3713 elr->lr_next_group = start;
3714 } else {
3715 elr->lr_mode = EXT4_LI_MODE_PREFETCH_BBITMAP;
3716 }
3717
3718 /*
3719 * Randomize first schedule time of the request to
3720 * spread the inode table initialization requests
3721 * better.
3722 */
3723 elr->lr_next_sched = jiffies + (prandom_u32() %
3724 (EXT4_DEF_LI_MAX_START_DELAY * HZ));
3725 return elr;
3726}
3727
3728int ext4_register_li_request(struct super_block *sb,
3729 ext4_group_t first_not_zeroed)
3730{
3731 struct ext4_sb_info *sbi = EXT4_SB(sb);
3732 struct ext4_li_request *elr = NULL;
3733 ext4_group_t ngroups = sbi->s_groups_count;
3734 int ret = 0;
3735
3736 mutex_lock(&ext4_li_mtx);
3737 if (sbi->s_li_request != NULL) {
3738 /*
3739 * Reset timeout so it can be computed again, because
3740 * s_li_wait_mult might have changed.
3741 */
3742 sbi->s_li_request->lr_timeout = 0;
3743 goto out;
3744 }
3745
3746 if (test_opt(sb, NO_PREFETCH_BLOCK_BITMAPS) &&
3747 (first_not_zeroed == ngroups || sb_rdonly(sb) ||
3748 !test_opt(sb, INIT_INODE_TABLE)))
3749 goto out;
3750
3751 elr = ext4_li_request_new(sb, first_not_zeroed);
3752 if (!elr) {
3753 ret = -ENOMEM;
3754 goto out;
3755 }
3756
3757 if (NULL == ext4_li_info) {
3758 ret = ext4_li_info_new();
3759 if (ret)
3760 goto out;
3761 }
3762
3763 mutex_lock(&ext4_li_info->li_list_mtx);
3764 list_add(&elr->lr_request, &ext4_li_info->li_request_list);
3765 mutex_unlock(&ext4_li_info->li_list_mtx);
3766
3767 sbi->s_li_request = elr;
3768 /*
3769 * set elr to NULL here since it has been inserted to
3770 * the request_list and the removal and free of it is
3771 * handled by ext4_clear_request_list from now on.
3772 */
3773 elr = NULL;
3774
3775 if (!(ext4_li_info->li_state & EXT4_LAZYINIT_RUNNING)) {
3776 ret = ext4_run_lazyinit_thread();
3777 if (ret)
3778 goto out;
3779 }
3780out:
3781 mutex_unlock(&ext4_li_mtx);
3782 if (ret)
3783 kfree(elr);
3784 return ret;
3785}
3786
3787/*
3788 * We do not need to lock anything since this is called on
3789 * module unload.
3790 */
3791static void ext4_destroy_lazyinit_thread(void)
3792{
3793 /*
3794 * If thread exited earlier
3795 * there's nothing to be done.
3796 */
3797 if (!ext4_li_info || !ext4_lazyinit_task)
3798 return;
3799
3800 kthread_stop(ext4_lazyinit_task);
3801}
3802
3803static int set_journal_csum_feature_set(struct super_block *sb)
3804{
3805 int ret = 1;
3806 int compat, incompat;
3807 struct ext4_sb_info *sbi = EXT4_SB(sb);
3808
3809 if (ext4_has_metadata_csum(sb)) {
3810 /* journal checksum v3 */
3811 compat = 0;
3812 incompat = JBD2_FEATURE_INCOMPAT_CSUM_V3;
3813 } else {
3814 /* journal checksum v1 */
3815 compat = JBD2_FEATURE_COMPAT_CHECKSUM;
3816 incompat = 0;
3817 }
3818
3819 jbd2_journal_clear_features(sbi->s_journal,
3820 JBD2_FEATURE_COMPAT_CHECKSUM, 0,
3821 JBD2_FEATURE_INCOMPAT_CSUM_V3 |
3822 JBD2_FEATURE_INCOMPAT_CSUM_V2);
3823 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
3824 ret = jbd2_journal_set_features(sbi->s_journal,
3825 compat, 0,
3826 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT |
3827 incompat);
3828 } else if (test_opt(sb, JOURNAL_CHECKSUM)) {
3829 ret = jbd2_journal_set_features(sbi->s_journal,
3830 compat, 0,
3831 incompat);
3832 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3833 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3834 } else {
3835 jbd2_journal_clear_features(sbi->s_journal, 0, 0,
3836 JBD2_FEATURE_INCOMPAT_ASYNC_COMMIT);
3837 }
3838
3839 return ret;
3840}
3841
3842/*
3843 * Note: calculating the overhead so we can be compatible with
3844 * historical BSD practice is quite difficult in the face of
3845 * clusters/bigalloc. This is because multiple metadata blocks from
3846 * different block group can end up in the same allocation cluster.
3847 * Calculating the exact overhead in the face of clustered allocation
3848 * requires either O(all block bitmaps) in memory or O(number of block
3849 * groups**2) in time. We will still calculate the superblock for
3850 * older file systems --- and if we come across with a bigalloc file
3851 * system with zero in s_overhead_clusters the estimate will be close to
3852 * correct especially for very large cluster sizes --- but for newer
3853 * file systems, it's better to calculate this figure once at mkfs
3854 * time, and store it in the superblock. If the superblock value is
3855 * present (even for non-bigalloc file systems), we will use it.
3856 */
3857static int count_overhead(struct super_block *sb, ext4_group_t grp,
3858 char *buf)
3859{
3860 struct ext4_sb_info *sbi = EXT4_SB(sb);
3861 struct ext4_group_desc *gdp;
3862 ext4_fsblk_t first_block, last_block, b;
3863 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3864 int s, j, count = 0;
3865
3866 if (!ext4_has_feature_bigalloc(sb))
3867 return (ext4_bg_has_super(sb, grp) + ext4_bg_num_gdb(sb, grp) +
3868 sbi->s_itb_per_group + 2);
3869
3870 first_block = le32_to_cpu(sbi->s_es->s_first_data_block) +
3871 (grp * EXT4_BLOCKS_PER_GROUP(sb));
3872 last_block = first_block + EXT4_BLOCKS_PER_GROUP(sb) - 1;
3873 for (i = 0; i < ngroups; i++) {
3874 gdp = ext4_get_group_desc(sb, i, NULL);
3875 b = ext4_block_bitmap(sb, gdp);
3876 if (b >= first_block && b <= last_block) {
3877 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3878 count++;
3879 }
3880 b = ext4_inode_bitmap(sb, gdp);
3881 if (b >= first_block && b <= last_block) {
3882 ext4_set_bit(EXT4_B2C(sbi, b - first_block), buf);
3883 count++;
3884 }
3885 b = ext4_inode_table(sb, gdp);
3886 if (b >= first_block && b + sbi->s_itb_per_group <= last_block)
3887 for (j = 0; j < sbi->s_itb_per_group; j++, b++) {
3888 int c = EXT4_B2C(sbi, b - first_block);
3889 ext4_set_bit(c, buf);
3890 count++;
3891 }
3892 if (i != grp)
3893 continue;
3894 s = 0;
3895 if (ext4_bg_has_super(sb, grp)) {
3896 ext4_set_bit(s++, buf);
3897 count++;
3898 }
3899 j = ext4_bg_num_gdb(sb, grp);
3900 if (s + j > EXT4_BLOCKS_PER_GROUP(sb)) {
3901 ext4_error(sb, "Invalid number of block group "
3902 "descriptor blocks: %d", j);
3903 j = EXT4_BLOCKS_PER_GROUP(sb) - s;
3904 }
3905 count += j;
3906 for (; j > 0; j--)
3907 ext4_set_bit(EXT4_B2C(sbi, s++), buf);
3908 }
3909 if (!count)
3910 return 0;
3911 return EXT4_CLUSTERS_PER_GROUP(sb) -
3912 ext4_count_free(buf, EXT4_CLUSTERS_PER_GROUP(sb) / 8);
3913}
3914
3915/*
3916 * Compute the overhead and stash it in sbi->s_overhead
3917 */
3918int ext4_calculate_overhead(struct super_block *sb)
3919{
3920 struct ext4_sb_info *sbi = EXT4_SB(sb);
3921 struct ext4_super_block *es = sbi->s_es;
3922 struct inode *j_inode;
3923 unsigned int j_blocks, j_inum = le32_to_cpu(es->s_journal_inum);
3924 ext4_group_t i, ngroups = ext4_get_groups_count(sb);
3925 ext4_fsblk_t overhead = 0;
3926 char *buf = (char *) get_zeroed_page(GFP_NOFS);
3927
3928 if (!buf)
3929 return -ENOMEM;
3930
3931 /*
3932 * Compute the overhead (FS structures). This is constant
3933 * for a given filesystem unless the number of block groups
3934 * changes so we cache the previous value until it does.
3935 */
3936
3937 /*
3938 * All of the blocks before first_data_block are overhead
3939 */
3940 overhead = EXT4_B2C(sbi, le32_to_cpu(es->s_first_data_block));
3941
3942 /*
3943 * Add the overhead found in each block group
3944 */
3945 for (i = 0; i < ngroups; i++) {
3946 int blks;
3947
3948 blks = count_overhead(sb, i, buf);
3949 overhead += blks;
3950 if (blks)
3951 memset(buf, 0, PAGE_SIZE);
3952 cond_resched();
3953 }
3954
3955 /*
3956 * Add the internal journal blocks whether the journal has been
3957 * loaded or not
3958 */
3959 if (sbi->s_journal && !sbi->s_journal_bdev)
3960 overhead += EXT4_NUM_B2C(sbi, sbi->s_journal->j_total_len);
3961 else if (ext4_has_feature_journal(sb) && !sbi->s_journal && j_inum) {
3962 /* j_inum for internal journal is non-zero */
3963 j_inode = ext4_get_journal_inode(sb, j_inum);
3964 if (j_inode) {
3965 j_blocks = j_inode->i_size >> sb->s_blocksize_bits;
3966 overhead += EXT4_NUM_B2C(sbi, j_blocks);
3967 iput(j_inode);
3968 } else {
3969 ext4_msg(sb, KERN_ERR, "can't get journal size");
3970 }
3971 }
3972 sbi->s_overhead = overhead;
3973 smp_wmb();
3974 free_page((unsigned long) buf);
3975 return 0;
3976}
3977
3978static void ext4_set_resv_clusters(struct super_block *sb)
3979{
3980 ext4_fsblk_t resv_clusters;
3981 struct ext4_sb_info *sbi = EXT4_SB(sb);
3982
3983 /*
3984 * There's no need to reserve anything when we aren't using extents.
3985 * The space estimates are exact, there are no unwritten extents,
3986 * hole punching doesn't need new metadata... This is needed especially
3987 * to keep ext2/3 backward compatibility.
3988 */
3989 if (!ext4_has_feature_extents(sb))
3990 return;
3991 /*
3992 * By default we reserve 2% or 4096 clusters, whichever is smaller.
3993 * This should cover the situations where we can not afford to run
3994 * out of space like for example punch hole, or converting
3995 * unwritten extents in delalloc path. In most cases such
3996 * allocation would require 1, or 2 blocks, higher numbers are
3997 * very rare.
3998 */
3999 resv_clusters = (ext4_blocks_count(sbi->s_es) >>
4000 sbi->s_cluster_bits);
4001
4002 do_div(resv_clusters, 50);
4003 resv_clusters = min_t(ext4_fsblk_t, resv_clusters, 4096);
4004
4005 atomic64_set(&sbi->s_resv_clusters, resv_clusters);
4006}
4007
4008static const char *ext4_quota_mode(struct super_block *sb)
4009{
4010#ifdef CONFIG_QUOTA
4011 if (!ext4_quota_capable(sb))
4012 return "none";
4013
4014 if (EXT4_SB(sb)->s_journal && ext4_is_quota_journalled(sb))
4015 return "journalled";
4016 else
4017 return "writeback";
4018#else
4019 return "disabled";
4020#endif
4021}
4022
4023static int ext4_fill_super(struct super_block *sb, void *data, int silent)
4024{
4025 struct dax_device *dax_dev = fs_dax_get_by_bdev(sb->s_bdev);
4026 char *orig_data = kstrdup(data, GFP_KERNEL);
4027 struct buffer_head *bh, **group_desc;
4028 struct ext4_super_block *es = NULL;
4029 struct ext4_sb_info *sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
4030 struct flex_groups **flex_groups;
4031 ext4_fsblk_t block;
4032 ext4_fsblk_t sb_block = get_sb_block(&data);
4033 ext4_fsblk_t logical_sb_block;
4034 unsigned long offset = 0;
4035 unsigned long def_mount_opts;
4036 struct inode *root;
4037 const char *descr;
4038 int ret = -ENOMEM;
4039 int blocksize, clustersize;
4040 unsigned int db_count;
4041 unsigned int i;
4042 int needs_recovery, has_huge_files;
4043 __u64 blocks_count;
4044 int err = 0;
4045 ext4_group_t first_not_zeroed;
4046 struct ext4_parsed_options parsed_opts;
4047
4048 /* Set defaults for the variables that will be set during parsing */
4049 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
4050 parsed_opts.journal_devnum = 0;
4051 parsed_opts.mb_optimize_scan = DEFAULT_MB_OPTIMIZE_SCAN;
4052
4053 if ((data && !orig_data) || !sbi)
4054 goto out_free_base;
4055
4056 sbi->s_daxdev = dax_dev;
4057 sbi->s_blockgroup_lock =
4058 kzalloc(sizeof(struct blockgroup_lock), GFP_KERNEL);
4059 if (!sbi->s_blockgroup_lock)
4060 goto out_free_base;
4061
4062 sb->s_fs_info = sbi;
4063 sbi->s_sb = sb;
4064 sbi->s_inode_readahead_blks = EXT4_DEF_INODE_READAHEAD_BLKS;
4065 sbi->s_sb_block = sb_block;
4066 sbi->s_sectors_written_start =
4067 part_stat_read(sb->s_bdev, sectors[STAT_WRITE]);
4068
4069 /* Cleanup superblock name */
4070 strreplace(sb->s_id, '/', '!');
4071
4072 /* -EINVAL is default */
4073 ret = -EINVAL;
4074 blocksize = sb_min_blocksize(sb, EXT4_MIN_BLOCK_SIZE);
4075 if (!blocksize) {
4076 ext4_msg(sb, KERN_ERR, "unable to set blocksize");
4077 goto out_fail;
4078 }
4079
4080 /*
4081 * The ext4 superblock will not be buffer aligned for other than 1kB
4082 * block sizes. We need to calculate the offset from buffer start.
4083 */
4084 if (blocksize != EXT4_MIN_BLOCK_SIZE) {
4085 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4086 offset = do_div(logical_sb_block, blocksize);
4087 } else {
4088 logical_sb_block = sb_block;
4089 }
4090
4091 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4092 if (IS_ERR(bh)) {
4093 ext4_msg(sb, KERN_ERR, "unable to read superblock");
4094 ret = PTR_ERR(bh);
4095 goto out_fail;
4096 }
4097 /*
4098 * Note: s_es must be initialized as soon as possible because
4099 * some ext4 macro-instructions depend on its value
4100 */
4101 es = (struct ext4_super_block *) (bh->b_data + offset);
4102 sbi->s_es = es;
4103 sb->s_magic = le16_to_cpu(es->s_magic);
4104 if (sb->s_magic != EXT4_SUPER_MAGIC)
4105 goto cantfind_ext4;
4106 sbi->s_kbytes_written = le64_to_cpu(es->s_kbytes_written);
4107
4108 /* Warn if metadata_csum and gdt_csum are both set. */
4109 if (ext4_has_feature_metadata_csum(sb) &&
4110 ext4_has_feature_gdt_csum(sb))
4111 ext4_warning(sb, "metadata_csum and uninit_bg are "
4112 "redundant flags; please run fsck.");
4113
4114 /* Check for a known checksum algorithm */
4115 if (!ext4_verify_csum_type(sb, es)) {
4116 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4117 "unknown checksum algorithm.");
4118 silent = 1;
4119 goto cantfind_ext4;
4120 }
4121
4122 /* Load the checksum driver */
4123 sbi->s_chksum_driver = crypto_alloc_shash("crc32c", 0, 0);
4124 if (IS_ERR(sbi->s_chksum_driver)) {
4125 ext4_msg(sb, KERN_ERR, "Cannot load crc32c driver.");
4126 ret = PTR_ERR(sbi->s_chksum_driver);
4127 sbi->s_chksum_driver = NULL;
4128 goto failed_mount;
4129 }
4130
4131 /* Check superblock checksum */
4132 if (!ext4_superblock_csum_verify(sb, es)) {
4133 ext4_msg(sb, KERN_ERR, "VFS: Found ext4 filesystem with "
4134 "invalid superblock checksum. Run e2fsck?");
4135 silent = 1;
4136 ret = -EFSBADCRC;
4137 goto cantfind_ext4;
4138 }
4139
4140 /* Precompute checksum seed for all metadata */
4141 if (ext4_has_feature_csum_seed(sb))
4142 sbi->s_csum_seed = le32_to_cpu(es->s_checksum_seed);
4143 else if (ext4_has_metadata_csum(sb) || ext4_has_feature_ea_inode(sb))
4144 sbi->s_csum_seed = ext4_chksum(sbi, ~0, es->s_uuid,
4145 sizeof(es->s_uuid));
4146
4147 /* Set defaults before we parse the mount options */
4148 def_mount_opts = le32_to_cpu(es->s_default_mount_opts);
4149 set_opt(sb, INIT_INODE_TABLE);
4150 if (def_mount_opts & EXT4_DEFM_DEBUG)
4151 set_opt(sb, DEBUG);
4152 if (def_mount_opts & EXT4_DEFM_BSDGROUPS)
4153 set_opt(sb, GRPID);
4154 if (def_mount_opts & EXT4_DEFM_UID16)
4155 set_opt(sb, NO_UID32);
4156 /* xattr user namespace & acls are now defaulted on */
4157 set_opt(sb, XATTR_USER);
4158#ifdef CONFIG_EXT4_FS_POSIX_ACL
4159 set_opt(sb, POSIX_ACL);
4160#endif
4161 if (ext4_has_feature_fast_commit(sb))
4162 set_opt2(sb, JOURNAL_FAST_COMMIT);
4163 /* don't forget to enable journal_csum when metadata_csum is enabled. */
4164 if (ext4_has_metadata_csum(sb))
4165 set_opt(sb, JOURNAL_CHECKSUM);
4166
4167 if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_DATA)
4168 set_opt(sb, JOURNAL_DATA);
4169 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_ORDERED)
4170 set_opt(sb, ORDERED_DATA);
4171 else if ((def_mount_opts & EXT4_DEFM_JMODE) == EXT4_DEFM_JMODE_WBACK)
4172 set_opt(sb, WRITEBACK_DATA);
4173
4174 if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_PANIC)
4175 set_opt(sb, ERRORS_PANIC);
4176 else if (le16_to_cpu(sbi->s_es->s_errors) == EXT4_ERRORS_CONTINUE)
4177 set_opt(sb, ERRORS_CONT);
4178 else
4179 set_opt(sb, ERRORS_RO);
4180 /* block_validity enabled by default; disable with noblock_validity */
4181 set_opt(sb, BLOCK_VALIDITY);
4182 if (def_mount_opts & EXT4_DEFM_DISCARD)
4183 set_opt(sb, DISCARD);
4184
4185 sbi->s_resuid = make_kuid(&init_user_ns, le16_to_cpu(es->s_def_resuid));
4186 sbi->s_resgid = make_kgid(&init_user_ns, le16_to_cpu(es->s_def_resgid));
4187 sbi->s_commit_interval = JBD2_DEFAULT_MAX_COMMIT_AGE * HZ;
4188 sbi->s_min_batch_time = EXT4_DEF_MIN_BATCH_TIME;
4189 sbi->s_max_batch_time = EXT4_DEF_MAX_BATCH_TIME;
4190
4191 if ((def_mount_opts & EXT4_DEFM_NOBARRIER) == 0)
4192 set_opt(sb, BARRIER);
4193
4194 /*
4195 * enable delayed allocation by default
4196 * Use -o nodelalloc to turn it off
4197 */
4198 if (!IS_EXT3_SB(sb) && !IS_EXT2_SB(sb) &&
4199 ((def_mount_opts & EXT4_DEFM_NODELALLOC) == 0))
4200 set_opt(sb, DELALLOC);
4201
4202 /*
4203 * set default s_li_wait_mult for lazyinit, for the case there is
4204 * no mount option specified.
4205 */
4206 sbi->s_li_wait_mult = EXT4_DEF_LI_WAIT_MULT;
4207
4208 if (le32_to_cpu(es->s_log_block_size) >
4209 (EXT4_MAX_BLOCK_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4210 ext4_msg(sb, KERN_ERR,
4211 "Invalid log block size: %u",
4212 le32_to_cpu(es->s_log_block_size));
4213 goto failed_mount;
4214 }
4215 if (le32_to_cpu(es->s_log_cluster_size) >
4216 (EXT4_MAX_CLUSTER_LOG_SIZE - EXT4_MIN_BLOCK_LOG_SIZE)) {
4217 ext4_msg(sb, KERN_ERR,
4218 "Invalid log cluster size: %u",
4219 le32_to_cpu(es->s_log_cluster_size));
4220 goto failed_mount;
4221 }
4222
4223 blocksize = EXT4_MIN_BLOCK_SIZE << le32_to_cpu(es->s_log_block_size);
4224
4225 if (blocksize == PAGE_SIZE)
4226 set_opt(sb, DIOREAD_NOLOCK);
4227
4228 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV) {
4229 sbi->s_inode_size = EXT4_GOOD_OLD_INODE_SIZE;
4230 sbi->s_first_ino = EXT4_GOOD_OLD_FIRST_INO;
4231 } else {
4232 sbi->s_inode_size = le16_to_cpu(es->s_inode_size);
4233 sbi->s_first_ino = le32_to_cpu(es->s_first_ino);
4234 if (sbi->s_first_ino < EXT4_GOOD_OLD_FIRST_INO) {
4235 ext4_msg(sb, KERN_ERR, "invalid first ino: %u",
4236 sbi->s_first_ino);
4237 goto failed_mount;
4238 }
4239 if ((sbi->s_inode_size < EXT4_GOOD_OLD_INODE_SIZE) ||
4240 (!is_power_of_2(sbi->s_inode_size)) ||
4241 (sbi->s_inode_size > blocksize)) {
4242 ext4_msg(sb, KERN_ERR,
4243 "unsupported inode size: %d",
4244 sbi->s_inode_size);
4245 ext4_msg(sb, KERN_ERR, "blocksize: %d", blocksize);
4246 goto failed_mount;
4247 }
4248 /*
4249 * i_atime_extra is the last extra field available for
4250 * [acm]times in struct ext4_inode. Checking for that
4251 * field should suffice to ensure we have extra space
4252 * for all three.
4253 */
4254 if (sbi->s_inode_size >= offsetof(struct ext4_inode, i_atime_extra) +
4255 sizeof(((struct ext4_inode *)0)->i_atime_extra)) {
4256 sb->s_time_gran = 1;
4257 sb->s_time_max = EXT4_EXTRA_TIMESTAMP_MAX;
4258 } else {
4259 sb->s_time_gran = NSEC_PER_SEC;
4260 sb->s_time_max = EXT4_NON_EXTRA_TIMESTAMP_MAX;
4261 }
4262 sb->s_time_min = EXT4_TIMESTAMP_MIN;
4263 }
4264 if (sbi->s_inode_size > EXT4_GOOD_OLD_INODE_SIZE) {
4265 sbi->s_want_extra_isize = sizeof(struct ext4_inode) -
4266 EXT4_GOOD_OLD_INODE_SIZE;
4267 if (ext4_has_feature_extra_isize(sb)) {
4268 unsigned v, max = (sbi->s_inode_size -
4269 EXT4_GOOD_OLD_INODE_SIZE);
4270
4271 v = le16_to_cpu(es->s_want_extra_isize);
4272 if (v > max) {
4273 ext4_msg(sb, KERN_ERR,
4274 "bad s_want_extra_isize: %d", v);
4275 goto failed_mount;
4276 }
4277 if (sbi->s_want_extra_isize < v)
4278 sbi->s_want_extra_isize = v;
4279
4280 v = le16_to_cpu(es->s_min_extra_isize);
4281 if (v > max) {
4282 ext4_msg(sb, KERN_ERR,
4283 "bad s_min_extra_isize: %d", v);
4284 goto failed_mount;
4285 }
4286 if (sbi->s_want_extra_isize < v)
4287 sbi->s_want_extra_isize = v;
4288 }
4289 }
4290
4291 if (sbi->s_es->s_mount_opts[0]) {
4292 char *s_mount_opts = kstrndup(sbi->s_es->s_mount_opts,
4293 sizeof(sbi->s_es->s_mount_opts),
4294 GFP_KERNEL);
4295 if (!s_mount_opts)
4296 goto failed_mount;
4297 if (!parse_options(s_mount_opts, sb, &parsed_opts, 0)) {
4298 ext4_msg(sb, KERN_WARNING,
4299 "failed to parse options in superblock: %s",
4300 s_mount_opts);
4301 }
4302 kfree(s_mount_opts);
4303 }
4304 sbi->s_def_mount_opt = sbi->s_mount_opt;
4305 if (!parse_options((char *) data, sb, &parsed_opts, 0))
4306 goto failed_mount;
4307
4308#ifdef CONFIG_UNICODE
4309 if (ext4_has_feature_casefold(sb) && !sb->s_encoding) {
4310 const struct ext4_sb_encodings *encoding_info;
4311 struct unicode_map *encoding;
4312 __u16 encoding_flags;
4313
4314 if (ext4_sb_read_encoding(es, &encoding_info,
4315 &encoding_flags)) {
4316 ext4_msg(sb, KERN_ERR,
4317 "Encoding requested by superblock is unknown");
4318 goto failed_mount;
4319 }
4320
4321 encoding = utf8_load(encoding_info->version);
4322 if (IS_ERR(encoding)) {
4323 ext4_msg(sb, KERN_ERR,
4324 "can't mount with superblock charset: %s-%s "
4325 "not supported by the kernel. flags: 0x%x.",
4326 encoding_info->name, encoding_info->version,
4327 encoding_flags);
4328 goto failed_mount;
4329 }
4330 ext4_msg(sb, KERN_INFO,"Using encoding defined by superblock: "
4331 "%s-%s with flags 0x%hx", encoding_info->name,
4332 encoding_info->version?:"\b", encoding_flags);
4333
4334 sb->s_encoding = encoding;
4335 sb->s_encoding_flags = encoding_flags;
4336 }
4337#endif
4338
4339 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
4340 printk_once(KERN_WARNING "EXT4-fs: Warning: mounting with data=journal disables delayed allocation, dioread_nolock, O_DIRECT and fast_commit support!\n");
4341 /* can't mount with both data=journal and dioread_nolock. */
4342 clear_opt(sb, DIOREAD_NOLOCK);
4343 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4344 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
4345 ext4_msg(sb, KERN_ERR, "can't mount with "
4346 "both data=journal and delalloc");
4347 goto failed_mount;
4348 }
4349 if (test_opt(sb, DAX_ALWAYS)) {
4350 ext4_msg(sb, KERN_ERR, "can't mount with "
4351 "both data=journal and dax");
4352 goto failed_mount;
4353 }
4354 if (ext4_has_feature_encrypt(sb)) {
4355 ext4_msg(sb, KERN_WARNING,
4356 "encrypted files will use data=ordered "
4357 "instead of data journaling mode");
4358 }
4359 if (test_opt(sb, DELALLOC))
4360 clear_opt(sb, DELALLOC);
4361 } else {
4362 sb->s_iflags |= SB_I_CGROUPWB;
4363 }
4364
4365 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
4366 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
4367
4368 if (le32_to_cpu(es->s_rev_level) == EXT4_GOOD_OLD_REV &&
4369 (ext4_has_compat_features(sb) ||
4370 ext4_has_ro_compat_features(sb) ||
4371 ext4_has_incompat_features(sb)))
4372 ext4_msg(sb, KERN_WARNING,
4373 "feature flags set on rev 0 fs, "
4374 "running e2fsck is recommended");
4375
4376 if (es->s_creator_os == cpu_to_le32(EXT4_OS_HURD)) {
4377 set_opt2(sb, HURD_COMPAT);
4378 if (ext4_has_feature_64bit(sb)) {
4379 ext4_msg(sb, KERN_ERR,
4380 "The Hurd can't support 64-bit file systems");
4381 goto failed_mount;
4382 }
4383
4384 /*
4385 * ea_inode feature uses l_i_version field which is not
4386 * available in HURD_COMPAT mode.
4387 */
4388 if (ext4_has_feature_ea_inode(sb)) {
4389 ext4_msg(sb, KERN_ERR,
4390 "ea_inode feature is not supported for Hurd");
4391 goto failed_mount;
4392 }
4393 }
4394
4395 if (IS_EXT2_SB(sb)) {
4396 if (ext2_feature_set_ok(sb))
4397 ext4_msg(sb, KERN_INFO, "mounting ext2 file system "
4398 "using the ext4 subsystem");
4399 else {
4400 /*
4401 * If we're probing be silent, if this looks like
4402 * it's actually an ext[34] filesystem.
4403 */
4404 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4405 goto failed_mount;
4406 ext4_msg(sb, KERN_ERR, "couldn't mount as ext2 due "
4407 "to feature incompatibilities");
4408 goto failed_mount;
4409 }
4410 }
4411
4412 if (IS_EXT3_SB(sb)) {
4413 if (ext3_feature_set_ok(sb))
4414 ext4_msg(sb, KERN_INFO, "mounting ext3 file system "
4415 "using the ext4 subsystem");
4416 else {
4417 /*
4418 * If we're probing be silent, if this looks like
4419 * it's actually an ext4 filesystem.
4420 */
4421 if (silent && ext4_feature_set_ok(sb, sb_rdonly(sb)))
4422 goto failed_mount;
4423 ext4_msg(sb, KERN_ERR, "couldn't mount as ext3 due "
4424 "to feature incompatibilities");
4425 goto failed_mount;
4426 }
4427 }
4428
4429 /*
4430 * Check feature flags regardless of the revision level, since we
4431 * previously didn't change the revision level when setting the flags,
4432 * so there is a chance incompat flags are set on a rev 0 filesystem.
4433 */
4434 if (!ext4_feature_set_ok(sb, (sb_rdonly(sb))))
4435 goto failed_mount;
4436
4437 if (le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks) > (blocksize / 4)) {
4438 ext4_msg(sb, KERN_ERR,
4439 "Number of reserved GDT blocks insanely large: %d",
4440 le16_to_cpu(sbi->s_es->s_reserved_gdt_blocks));
4441 goto failed_mount;
4442 }
4443
4444 if (bdev_dax_supported(sb->s_bdev, blocksize))
4445 set_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags);
4446
4447 if (sbi->s_mount_opt & EXT4_MOUNT_DAX_ALWAYS) {
4448 if (ext4_has_feature_inline_data(sb)) {
4449 ext4_msg(sb, KERN_ERR, "Cannot use DAX on a filesystem"
4450 " that may contain inline data");
4451 goto failed_mount;
4452 }
4453 if (!test_bit(EXT4_FLAGS_BDEV_IS_DAX, &sbi->s_ext4_flags)) {
4454 ext4_msg(sb, KERN_ERR,
4455 "DAX unsupported by block device.");
4456 goto failed_mount;
4457 }
4458 }
4459
4460 if (ext4_has_feature_encrypt(sb) && es->s_encryption_level) {
4461 ext4_msg(sb, KERN_ERR, "Unsupported encryption level %d",
4462 es->s_encryption_level);
4463 goto failed_mount;
4464 }
4465
4466 if (sb->s_blocksize != blocksize) {
4467 /*
4468 * bh must be released before kill_bdev(), otherwise
4469 * it won't be freed and its page also. kill_bdev()
4470 * is called by sb_set_blocksize().
4471 */
4472 brelse(bh);
4473 /* Validate the filesystem blocksize */
4474 if (!sb_set_blocksize(sb, blocksize)) {
4475 ext4_msg(sb, KERN_ERR, "bad block size %d",
4476 blocksize);
4477 bh = NULL;
4478 goto failed_mount;
4479 }
4480
4481 logical_sb_block = sb_block * EXT4_MIN_BLOCK_SIZE;
4482 offset = do_div(logical_sb_block, blocksize);
4483 bh = ext4_sb_bread_unmovable(sb, logical_sb_block);
4484 if (IS_ERR(bh)) {
4485 ext4_msg(sb, KERN_ERR,
4486 "Can't read superblock on 2nd try");
4487 ret = PTR_ERR(bh);
4488 bh = NULL;
4489 goto failed_mount;
4490 }
4491 es = (struct ext4_super_block *)(bh->b_data + offset);
4492 sbi->s_es = es;
4493 if (es->s_magic != cpu_to_le16(EXT4_SUPER_MAGIC)) {
4494 ext4_msg(sb, KERN_ERR,
4495 "Magic mismatch, very weird!");
4496 goto failed_mount;
4497 }
4498 }
4499
4500 has_huge_files = ext4_has_feature_huge_file(sb);
4501 sbi->s_bitmap_maxbytes = ext4_max_bitmap_size(sb->s_blocksize_bits,
4502 has_huge_files);
4503 sb->s_maxbytes = ext4_max_size(sb->s_blocksize_bits, has_huge_files);
4504
4505 sbi->s_desc_size = le16_to_cpu(es->s_desc_size);
4506 if (ext4_has_feature_64bit(sb)) {
4507 if (sbi->s_desc_size < EXT4_MIN_DESC_SIZE_64BIT ||
4508 sbi->s_desc_size > EXT4_MAX_DESC_SIZE ||
4509 !is_power_of_2(sbi->s_desc_size)) {
4510 ext4_msg(sb, KERN_ERR,
4511 "unsupported descriptor size %lu",
4512 sbi->s_desc_size);
4513 goto failed_mount;
4514 }
4515 } else
4516 sbi->s_desc_size = EXT4_MIN_DESC_SIZE;
4517
4518 sbi->s_blocks_per_group = le32_to_cpu(es->s_blocks_per_group);
4519 sbi->s_inodes_per_group = le32_to_cpu(es->s_inodes_per_group);
4520
4521 sbi->s_inodes_per_block = blocksize / EXT4_INODE_SIZE(sb);
4522 if (sbi->s_inodes_per_block == 0)
4523 goto cantfind_ext4;
4524 if (sbi->s_inodes_per_group < sbi->s_inodes_per_block ||
4525 sbi->s_inodes_per_group > blocksize * 8) {
4526 ext4_msg(sb, KERN_ERR, "invalid inodes per group: %lu\n",
4527 sbi->s_inodes_per_group);
4528 goto failed_mount;
4529 }
4530 sbi->s_itb_per_group = sbi->s_inodes_per_group /
4531 sbi->s_inodes_per_block;
4532 sbi->s_desc_per_block = blocksize / EXT4_DESC_SIZE(sb);
4533 sbi->s_sbh = bh;
4534 sbi->s_mount_state = le16_to_cpu(es->s_state);
4535 sbi->s_addr_per_block_bits = ilog2(EXT4_ADDR_PER_BLOCK(sb));
4536 sbi->s_desc_per_block_bits = ilog2(EXT4_DESC_PER_BLOCK(sb));
4537
4538 for (i = 0; i < 4; i++)
4539 sbi->s_hash_seed[i] = le32_to_cpu(es->s_hash_seed[i]);
4540 sbi->s_def_hash_version = es->s_def_hash_version;
4541 if (ext4_has_feature_dir_index(sb)) {
4542 i = le32_to_cpu(es->s_flags);
4543 if (i & EXT2_FLAGS_UNSIGNED_HASH)
4544 sbi->s_hash_unsigned = 3;
4545 else if ((i & EXT2_FLAGS_SIGNED_HASH) == 0) {
4546#ifdef __CHAR_UNSIGNED__
4547 if (!sb_rdonly(sb))
4548 es->s_flags |=
4549 cpu_to_le32(EXT2_FLAGS_UNSIGNED_HASH);
4550 sbi->s_hash_unsigned = 3;
4551#else
4552 if (!sb_rdonly(sb))
4553 es->s_flags |=
4554 cpu_to_le32(EXT2_FLAGS_SIGNED_HASH);
4555#endif
4556 }
4557 }
4558
4559 /* Handle clustersize */
4560 clustersize = BLOCK_SIZE << le32_to_cpu(es->s_log_cluster_size);
4561 if (ext4_has_feature_bigalloc(sb)) {
4562 if (clustersize < blocksize) {
4563 ext4_msg(sb, KERN_ERR,
4564 "cluster size (%d) smaller than "
4565 "block size (%d)", clustersize, blocksize);
4566 goto failed_mount;
4567 }
4568 sbi->s_cluster_bits = le32_to_cpu(es->s_log_cluster_size) -
4569 le32_to_cpu(es->s_log_block_size);
4570 sbi->s_clusters_per_group =
4571 le32_to_cpu(es->s_clusters_per_group);
4572 if (sbi->s_clusters_per_group > blocksize * 8) {
4573 ext4_msg(sb, KERN_ERR,
4574 "#clusters per group too big: %lu",
4575 sbi->s_clusters_per_group);
4576 goto failed_mount;
4577 }
4578 if (sbi->s_blocks_per_group !=
4579 (sbi->s_clusters_per_group * (clustersize / blocksize))) {
4580 ext4_msg(sb, KERN_ERR, "blocks per group (%lu) and "
4581 "clusters per group (%lu) inconsistent",
4582 sbi->s_blocks_per_group,
4583 sbi->s_clusters_per_group);
4584 goto failed_mount;
4585 }
4586 } else {
4587 if (clustersize != blocksize) {
4588 ext4_msg(sb, KERN_ERR,
4589 "fragment/cluster size (%d) != "
4590 "block size (%d)", clustersize, blocksize);
4591 goto failed_mount;
4592 }
4593 if (sbi->s_blocks_per_group > blocksize * 8) {
4594 ext4_msg(sb, KERN_ERR,
4595 "#blocks per group too big: %lu",
4596 sbi->s_blocks_per_group);
4597 goto failed_mount;
4598 }
4599 sbi->s_clusters_per_group = sbi->s_blocks_per_group;
4600 sbi->s_cluster_bits = 0;
4601 }
4602 sbi->s_cluster_ratio = clustersize / blocksize;
4603
4604 /* Do we have standard group size of clustersize * 8 blocks ? */
4605 if (sbi->s_blocks_per_group == clustersize << 3)
4606 set_opt2(sb, STD_GROUP_SIZE);
4607
4608 /*
4609 * Test whether we have more sectors than will fit in sector_t,
4610 * and whether the max offset is addressable by the page cache.
4611 */
4612 err = generic_check_addressable(sb->s_blocksize_bits,
4613 ext4_blocks_count(es));
4614 if (err) {
4615 ext4_msg(sb, KERN_ERR, "filesystem"
4616 " too large to mount safely on this system");
4617 goto failed_mount;
4618 }
4619
4620 if (EXT4_BLOCKS_PER_GROUP(sb) == 0)
4621 goto cantfind_ext4;
4622
4623 /* check blocks count against device size */
4624 blocks_count = sb->s_bdev->bd_inode->i_size >> sb->s_blocksize_bits;
4625 if (blocks_count && ext4_blocks_count(es) > blocks_count) {
4626 ext4_msg(sb, KERN_WARNING, "bad geometry: block count %llu "
4627 "exceeds size of device (%llu blocks)",
4628 ext4_blocks_count(es), blocks_count);
4629 goto failed_mount;
4630 }
4631
4632 /*
4633 * It makes no sense for the first data block to be beyond the end
4634 * of the filesystem.
4635 */
4636 if (le32_to_cpu(es->s_first_data_block) >= ext4_blocks_count(es)) {
4637 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4638 "block %u is beyond end of filesystem (%llu)",
4639 le32_to_cpu(es->s_first_data_block),
4640 ext4_blocks_count(es));
4641 goto failed_mount;
4642 }
4643 if ((es->s_first_data_block == 0) && (es->s_log_block_size == 0) &&
4644 (sbi->s_cluster_ratio == 1)) {
4645 ext4_msg(sb, KERN_WARNING, "bad geometry: first data "
4646 "block is 0 with a 1k block and cluster size");
4647 goto failed_mount;
4648 }
4649
4650 blocks_count = (ext4_blocks_count(es) -
4651 le32_to_cpu(es->s_first_data_block) +
4652 EXT4_BLOCKS_PER_GROUP(sb) - 1);
4653 do_div(blocks_count, EXT4_BLOCKS_PER_GROUP(sb));
4654 if (blocks_count > ((uint64_t)1<<32) - EXT4_DESC_PER_BLOCK(sb)) {
4655 ext4_msg(sb, KERN_WARNING, "groups count too large: %llu "
4656 "(block count %llu, first data block %u, "
4657 "blocks per group %lu)", blocks_count,
4658 ext4_blocks_count(es),
4659 le32_to_cpu(es->s_first_data_block),
4660 EXT4_BLOCKS_PER_GROUP(sb));
4661 goto failed_mount;
4662 }
4663 sbi->s_groups_count = blocks_count;
4664 sbi->s_blockfile_groups = min_t(ext4_group_t, sbi->s_groups_count,
4665 (EXT4_MAX_BLOCK_FILE_PHYS / EXT4_BLOCKS_PER_GROUP(sb)));
4666 if (((u64)sbi->s_groups_count * sbi->s_inodes_per_group) !=
4667 le32_to_cpu(es->s_inodes_count)) {
4668 ext4_msg(sb, KERN_ERR, "inodes count not valid: %u vs %llu",
4669 le32_to_cpu(es->s_inodes_count),
4670 ((u64)sbi->s_groups_count * sbi->s_inodes_per_group));
4671 ret = -EINVAL;
4672 goto failed_mount;
4673 }
4674 db_count = (sbi->s_groups_count + EXT4_DESC_PER_BLOCK(sb) - 1) /
4675 EXT4_DESC_PER_BLOCK(sb);
4676 if (ext4_has_feature_meta_bg(sb)) {
4677 if (le32_to_cpu(es->s_first_meta_bg) > db_count) {
4678 ext4_msg(sb, KERN_WARNING,
4679 "first meta block group too large: %u "
4680 "(group descriptor block count %u)",
4681 le32_to_cpu(es->s_first_meta_bg), db_count);
4682 goto failed_mount;
4683 }
4684 }
4685 rcu_assign_pointer(sbi->s_group_desc,
4686 kvmalloc_array(db_count,
4687 sizeof(struct buffer_head *),
4688 GFP_KERNEL));
4689 if (sbi->s_group_desc == NULL) {
4690 ext4_msg(sb, KERN_ERR, "not enough memory");
4691 ret = -ENOMEM;
4692 goto failed_mount;
4693 }
4694
4695 bgl_lock_init(sbi->s_blockgroup_lock);
4696
4697 /* Pre-read the descriptors into the buffer cache */
4698 for (i = 0; i < db_count; i++) {
4699 block = descriptor_loc(sb, logical_sb_block, i);
4700 ext4_sb_breadahead_unmovable(sb, block);
4701 }
4702
4703 for (i = 0; i < db_count; i++) {
4704 struct buffer_head *bh;
4705
4706 block = descriptor_loc(sb, logical_sb_block, i);
4707 bh = ext4_sb_bread_unmovable(sb, block);
4708 if (IS_ERR(bh)) {
4709 ext4_msg(sb, KERN_ERR,
4710 "can't read group descriptor %d", i);
4711 db_count = i;
4712 ret = PTR_ERR(bh);
4713 goto failed_mount2;
4714 }
4715 rcu_read_lock();
4716 rcu_dereference(sbi->s_group_desc)[i] = bh;
4717 rcu_read_unlock();
4718 }
4719 sbi->s_gdb_count = db_count;
4720 if (!ext4_check_descriptors(sb, logical_sb_block, &first_not_zeroed)) {
4721 ext4_msg(sb, KERN_ERR, "group descriptors corrupted!");
4722 ret = -EFSCORRUPTED;
4723 goto failed_mount2;
4724 }
4725
4726 timer_setup(&sbi->s_err_report, print_daily_error_info, 0);
4727 spin_lock_init(&sbi->s_error_lock);
4728 INIT_WORK(&sbi->s_error_work, flush_stashed_error_work);
4729
4730 /* Register extent status tree shrinker */
4731 if (ext4_es_register_shrinker(sbi))
4732 goto failed_mount3;
4733
4734 sbi->s_stripe = ext4_get_stripe_size(sbi);
4735 sbi->s_extent_max_zeroout_kb = 32;
4736
4737 /*
4738 * set up enough so that it can read an inode
4739 */
4740 sb->s_op = &ext4_sops;
4741 sb->s_export_op = &ext4_export_ops;
4742 sb->s_xattr = ext4_xattr_handlers;
4743#ifdef CONFIG_FS_ENCRYPTION
4744 sb->s_cop = &ext4_cryptops;
4745#endif
4746#ifdef CONFIG_FS_VERITY
4747 sb->s_vop = &ext4_verityops;
4748#endif
4749#ifdef CONFIG_QUOTA
4750 sb->dq_op = &ext4_quota_operations;
4751 if (ext4_has_feature_quota(sb))
4752 sb->s_qcop = &dquot_quotactl_sysfile_ops;
4753 else
4754 sb->s_qcop = &ext4_qctl_operations;
4755 sb->s_quota_types = QTYPE_MASK_USR | QTYPE_MASK_GRP | QTYPE_MASK_PRJ;
4756#endif
4757 memcpy(&sb->s_uuid, es->s_uuid, sizeof(es->s_uuid));
4758
4759 INIT_LIST_HEAD(&sbi->s_orphan); /* unlinked but open files */
4760 mutex_init(&sbi->s_orphan_lock);
4761
4762 /* Initialize fast commit stuff */
4763 atomic_set(&sbi->s_fc_subtid, 0);
4764 atomic_set(&sbi->s_fc_ineligible_updates, 0);
4765 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_MAIN]);
4766 INIT_LIST_HEAD(&sbi->s_fc_q[FC_Q_STAGING]);
4767 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_MAIN]);
4768 INIT_LIST_HEAD(&sbi->s_fc_dentry_q[FC_Q_STAGING]);
4769 sbi->s_fc_bytes = 0;
4770 ext4_clear_mount_flag(sb, EXT4_MF_FC_INELIGIBLE);
4771 ext4_clear_mount_flag(sb, EXT4_MF_FC_COMMITTING);
4772 spin_lock_init(&sbi->s_fc_lock);
4773 memset(&sbi->s_fc_stats, 0, sizeof(sbi->s_fc_stats));
4774 sbi->s_fc_replay_state.fc_regions = NULL;
4775 sbi->s_fc_replay_state.fc_regions_size = 0;
4776 sbi->s_fc_replay_state.fc_regions_used = 0;
4777 sbi->s_fc_replay_state.fc_regions_valid = 0;
4778 sbi->s_fc_replay_state.fc_modified_inodes = NULL;
4779 sbi->s_fc_replay_state.fc_modified_inodes_size = 0;
4780 sbi->s_fc_replay_state.fc_modified_inodes_used = 0;
4781
4782 sb->s_root = NULL;
4783
4784 needs_recovery = (es->s_last_orphan != 0 ||
4785 ext4_has_feature_journal_needs_recovery(sb));
4786
4787 if (ext4_has_feature_mmp(sb) && !sb_rdonly(sb))
4788 if (ext4_multi_mount_protect(sb, le64_to_cpu(es->s_mmp_block)))
4789 goto failed_mount3a;
4790
4791 /*
4792 * The first inode we look at is the journal inode. Don't try
4793 * root first: it may be modified in the journal!
4794 */
4795 if (!test_opt(sb, NOLOAD) && ext4_has_feature_journal(sb)) {
4796 err = ext4_load_journal(sb, es, parsed_opts.journal_devnum);
4797 if (err)
4798 goto failed_mount3a;
4799 } else if (test_opt(sb, NOLOAD) && !sb_rdonly(sb) &&
4800 ext4_has_feature_journal_needs_recovery(sb)) {
4801 ext4_msg(sb, KERN_ERR, "required journal recovery "
4802 "suppressed and not mounted read-only");
4803 goto failed_mount_wq;
4804 } else {
4805 /* Nojournal mode, all journal mount options are illegal */
4806 if (test_opt2(sb, EXPLICIT_JOURNAL_CHECKSUM)) {
4807 ext4_msg(sb, KERN_ERR, "can't mount with "
4808 "journal_checksum, fs mounted w/o journal");
4809 goto failed_mount_wq;
4810 }
4811 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4812 ext4_msg(sb, KERN_ERR, "can't mount with "
4813 "journal_async_commit, fs mounted w/o journal");
4814 goto failed_mount_wq;
4815 }
4816 if (sbi->s_commit_interval != JBD2_DEFAULT_MAX_COMMIT_AGE*HZ) {
4817 ext4_msg(sb, KERN_ERR, "can't mount with "
4818 "commit=%lu, fs mounted w/o journal",
4819 sbi->s_commit_interval / HZ);
4820 goto failed_mount_wq;
4821 }
4822 if (EXT4_MOUNT_DATA_FLAGS &
4823 (sbi->s_mount_opt ^ sbi->s_def_mount_opt)) {
4824 ext4_msg(sb, KERN_ERR, "can't mount with "
4825 "data=, fs mounted w/o journal");
4826 goto failed_mount_wq;
4827 }
4828 sbi->s_def_mount_opt &= ~EXT4_MOUNT_JOURNAL_CHECKSUM;
4829 clear_opt(sb, JOURNAL_CHECKSUM);
4830 clear_opt(sb, DATA_FLAGS);
4831 clear_opt2(sb, JOURNAL_FAST_COMMIT);
4832 sbi->s_journal = NULL;
4833 needs_recovery = 0;
4834 goto no_journal;
4835 }
4836
4837 if (ext4_has_feature_64bit(sb) &&
4838 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4839 JBD2_FEATURE_INCOMPAT_64BIT)) {
4840 ext4_msg(sb, KERN_ERR, "Failed to set 64-bit journal feature");
4841 goto failed_mount_wq;
4842 }
4843
4844 if (!set_journal_csum_feature_set(sb)) {
4845 ext4_msg(sb, KERN_ERR, "Failed to set journal checksum "
4846 "feature set");
4847 goto failed_mount_wq;
4848 }
4849
4850 if (test_opt2(sb, JOURNAL_FAST_COMMIT) &&
4851 !jbd2_journal_set_features(EXT4_SB(sb)->s_journal, 0, 0,
4852 JBD2_FEATURE_INCOMPAT_FAST_COMMIT)) {
4853 ext4_msg(sb, KERN_ERR,
4854 "Failed to set fast commit journal feature");
4855 goto failed_mount_wq;
4856 }
4857
4858 /* We have now updated the journal if required, so we can
4859 * validate the data journaling mode. */
4860 switch (test_opt(sb, DATA_FLAGS)) {
4861 case 0:
4862 /* No mode set, assume a default based on the journal
4863 * capabilities: ORDERED_DATA if the journal can
4864 * cope, else JOURNAL_DATA
4865 */
4866 if (jbd2_journal_check_available_features
4867 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4868 set_opt(sb, ORDERED_DATA);
4869 sbi->s_def_mount_opt |= EXT4_MOUNT_ORDERED_DATA;
4870 } else {
4871 set_opt(sb, JOURNAL_DATA);
4872 sbi->s_def_mount_opt |= EXT4_MOUNT_JOURNAL_DATA;
4873 }
4874 break;
4875
4876 case EXT4_MOUNT_ORDERED_DATA:
4877 case EXT4_MOUNT_WRITEBACK_DATA:
4878 if (!jbd2_journal_check_available_features
4879 (sbi->s_journal, 0, 0, JBD2_FEATURE_INCOMPAT_REVOKE)) {
4880 ext4_msg(sb, KERN_ERR, "Journal does not support "
4881 "requested data journaling mode");
4882 goto failed_mount_wq;
4883 }
4884 break;
4885 default:
4886 break;
4887 }
4888
4889 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA &&
4890 test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
4891 ext4_msg(sb, KERN_ERR, "can't mount with "
4892 "journal_async_commit in data=ordered mode");
4893 goto failed_mount_wq;
4894 }
4895
4896 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
4897
4898 sbi->s_journal->j_submit_inode_data_buffers =
4899 ext4_journal_submit_inode_data_buffers;
4900 sbi->s_journal->j_finish_inode_data_buffers =
4901 ext4_journal_finish_inode_data_buffers;
4902
4903no_journal:
4904 if (!test_opt(sb, NO_MBCACHE)) {
4905 sbi->s_ea_block_cache = ext4_xattr_create_cache();
4906 if (!sbi->s_ea_block_cache) {
4907 ext4_msg(sb, KERN_ERR,
4908 "Failed to create ea_block_cache");
4909 goto failed_mount_wq;
4910 }
4911
4912 if (ext4_has_feature_ea_inode(sb)) {
4913 sbi->s_ea_inode_cache = ext4_xattr_create_cache();
4914 if (!sbi->s_ea_inode_cache) {
4915 ext4_msg(sb, KERN_ERR,
4916 "Failed to create ea_inode_cache");
4917 goto failed_mount_wq;
4918 }
4919 }
4920 }
4921
4922 if (ext4_has_feature_verity(sb) && blocksize != PAGE_SIZE) {
4923 ext4_msg(sb, KERN_ERR, "Unsupported blocksize for fs-verity");
4924 goto failed_mount_wq;
4925 }
4926
4927 if (DUMMY_ENCRYPTION_ENABLED(sbi) && !sb_rdonly(sb) &&
4928 !ext4_has_feature_encrypt(sb)) {
4929 ext4_set_feature_encrypt(sb);
4930 ext4_commit_super(sb);
4931 }
4932
4933 /*
4934 * Get the # of file system overhead blocks from the
4935 * superblock if present.
4936 */
4937 if (es->s_overhead_clusters)
4938 sbi->s_overhead = le32_to_cpu(es->s_overhead_clusters);
4939 else {
4940 err = ext4_calculate_overhead(sb);
4941 if (err)
4942 goto failed_mount_wq;
4943 }
4944
4945 /*
4946 * The maximum number of concurrent works can be high and
4947 * concurrency isn't really necessary. Limit it to 1.
4948 */
4949 EXT4_SB(sb)->rsv_conversion_wq =
4950 alloc_workqueue("ext4-rsv-conversion", WQ_MEM_RECLAIM | WQ_UNBOUND, 1);
4951 if (!EXT4_SB(sb)->rsv_conversion_wq) {
4952 printk(KERN_ERR "EXT4-fs: failed to create workqueue\n");
4953 ret = -ENOMEM;
4954 goto failed_mount4;
4955 }
4956
4957 /*
4958 * The jbd2_journal_load will have done any necessary log recovery,
4959 * so we can safely mount the rest of the filesystem now.
4960 */
4961
4962 root = ext4_iget(sb, EXT4_ROOT_INO, EXT4_IGET_SPECIAL);
4963 if (IS_ERR(root)) {
4964 ext4_msg(sb, KERN_ERR, "get root inode failed");
4965 ret = PTR_ERR(root);
4966 root = NULL;
4967 goto failed_mount4;
4968 }
4969 if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
4970 ext4_msg(sb, KERN_ERR, "corrupt root inode, run e2fsck");
4971 iput(root);
4972 goto failed_mount4;
4973 }
4974
4975 sb->s_root = d_make_root(root);
4976 if (!sb->s_root) {
4977 ext4_msg(sb, KERN_ERR, "get root dentry failed");
4978 ret = -ENOMEM;
4979 goto failed_mount4;
4980 }
4981
4982 ret = ext4_setup_super(sb, es, sb_rdonly(sb));
4983 if (ret == -EROFS) {
4984 sb->s_flags |= SB_RDONLY;
4985 ret = 0;
4986 } else if (ret)
4987 goto failed_mount4a;
4988
4989 ext4_set_resv_clusters(sb);
4990
4991 if (test_opt(sb, BLOCK_VALIDITY)) {
4992 err = ext4_setup_system_zone(sb);
4993 if (err) {
4994 ext4_msg(sb, KERN_ERR, "failed to initialize system "
4995 "zone (%d)", err);
4996 goto failed_mount4a;
4997 }
4998 }
4999 ext4_fc_replay_cleanup(sb);
5000
5001 ext4_ext_init(sb);
5002
5003 /*
5004 * Enable optimize_scan if number of groups is > threshold. This can be
5005 * turned off by passing "mb_optimize_scan=0". This can also be
5006 * turned on forcefully by passing "mb_optimize_scan=1".
5007 */
5008 if (parsed_opts.mb_optimize_scan == 1)
5009 set_opt2(sb, MB_OPTIMIZE_SCAN);
5010 else if (parsed_opts.mb_optimize_scan == 0)
5011 clear_opt2(sb, MB_OPTIMIZE_SCAN);
5012 else if (sbi->s_groups_count >= MB_DEFAULT_LINEAR_SCAN_THRESHOLD)
5013 set_opt2(sb, MB_OPTIMIZE_SCAN);
5014
5015 err = ext4_mb_init(sb);
5016 if (err) {
5017 ext4_msg(sb, KERN_ERR, "failed to initialize mballoc (%d)",
5018 err);
5019 goto failed_mount5;
5020 }
5021
5022 /*
5023 * We can only set up the journal commit callback once
5024 * mballoc is initialized
5025 */
5026 if (sbi->s_journal)
5027 sbi->s_journal->j_commit_callback =
5028 ext4_journal_commit_callback;
5029
5030 block = ext4_count_free_clusters(sb);
5031 ext4_free_blocks_count_set(sbi->s_es,
5032 EXT4_C2B(sbi, block));
5033 err = percpu_counter_init(&sbi->s_freeclusters_counter, block,
5034 GFP_KERNEL);
5035 if (!err) {
5036 unsigned long freei = ext4_count_free_inodes(sb);
5037 sbi->s_es->s_free_inodes_count = cpu_to_le32(freei);
5038 err = percpu_counter_init(&sbi->s_freeinodes_counter, freei,
5039 GFP_KERNEL);
5040 }
5041 /*
5042 * Update the checksum after updating free space/inode
5043 * counters. Otherwise the superblock can have an incorrect
5044 * checksum in the buffer cache until it is written out and
5045 * e2fsprogs programs trying to open a file system immediately
5046 * after it is mounted can fail.
5047 */
5048 ext4_superblock_csum_set(sb);
5049 if (!err)
5050 err = percpu_counter_init(&sbi->s_dirs_counter,
5051 ext4_count_dirs(sb), GFP_KERNEL);
5052 if (!err)
5053 err = percpu_counter_init(&sbi->s_dirtyclusters_counter, 0,
5054 GFP_KERNEL);
5055 if (!err)
5056 err = percpu_counter_init(&sbi->s_sra_exceeded_retry_limit, 0,
5057 GFP_KERNEL);
5058 if (!err)
5059 err = percpu_init_rwsem(&sbi->s_writepages_rwsem);
5060
5061 if (err) {
5062 ext4_msg(sb, KERN_ERR, "insufficient memory");
5063 goto failed_mount6;
5064 }
5065
5066 if (ext4_has_feature_flex_bg(sb))
5067 if (!ext4_fill_flex_info(sb)) {
5068 ext4_msg(sb, KERN_ERR,
5069 "unable to initialize "
5070 "flex_bg meta info!");
5071 ret = -ENOMEM;
5072 goto failed_mount6;
5073 }
5074
5075 err = ext4_register_li_request(sb, first_not_zeroed);
5076 if (err)
5077 goto failed_mount6;
5078
5079 err = ext4_register_sysfs(sb);
5080 if (err)
5081 goto failed_mount7;
5082
5083#ifdef CONFIG_QUOTA
5084 /* Enable quota usage during mount. */
5085 if (ext4_has_feature_quota(sb) && !sb_rdonly(sb)) {
5086 err = ext4_enable_quotas(sb);
5087 if (err)
5088 goto failed_mount8;
5089 }
5090#endif /* CONFIG_QUOTA */
5091
5092 /*
5093 * Save the original bdev mapping's wb_err value which could be
5094 * used to detect the metadata async write error.
5095 */
5096 spin_lock_init(&sbi->s_bdev_wb_lock);
5097 errseq_check_and_advance(&sb->s_bdev->bd_inode->i_mapping->wb_err,
5098 &sbi->s_bdev_wb_err);
5099 sb->s_bdev->bd_super = sb;
5100 EXT4_SB(sb)->s_mount_state |= EXT4_ORPHAN_FS;
5101 ext4_orphan_cleanup(sb, es);
5102 EXT4_SB(sb)->s_mount_state &= ~EXT4_ORPHAN_FS;
5103 if (needs_recovery) {
5104 ext4_msg(sb, KERN_INFO, "recovery complete");
5105 err = ext4_mark_recovery_complete(sb, es);
5106 if (err)
5107 goto failed_mount8;
5108 }
5109 if (EXT4_SB(sb)->s_journal) {
5110 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA)
5111 descr = " journalled data mode";
5112 else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA)
5113 descr = " ordered data mode";
5114 else
5115 descr = " writeback data mode";
5116 } else
5117 descr = "out journal";
5118
5119 if (test_opt(sb, DISCARD)) {
5120 struct request_queue *q = bdev_get_queue(sb->s_bdev);
5121 if (!blk_queue_discard(q))
5122 ext4_msg(sb, KERN_WARNING,
5123 "mounting with \"discard\" option, but "
5124 "the device does not support discard");
5125 }
5126
5127 if (___ratelimit(&ext4_mount_msg_ratelimit, "EXT4-fs mount"))
5128 ext4_msg(sb, KERN_INFO, "mounted filesystem with%s. "
5129 "Opts: %.*s%s%s. Quota mode: %s.", descr,
5130 (int) sizeof(sbi->s_es->s_mount_opts),
5131 sbi->s_es->s_mount_opts,
5132 *sbi->s_es->s_mount_opts ? "; " : "", orig_data,
5133 ext4_quota_mode(sb));
5134
5135 if (es->s_error_count)
5136 mod_timer(&sbi->s_err_report, jiffies + 300*HZ); /* 5 minutes */
5137
5138 /* Enable message ratelimiting. Default is 10 messages per 5 secs. */
5139 ratelimit_state_init(&sbi->s_err_ratelimit_state, 5 * HZ, 10);
5140 ratelimit_state_init(&sbi->s_warning_ratelimit_state, 5 * HZ, 10);
5141 ratelimit_state_init(&sbi->s_msg_ratelimit_state, 5 * HZ, 10);
5142 atomic_set(&sbi->s_warning_count, 0);
5143 atomic_set(&sbi->s_msg_count, 0);
5144
5145 kfree(orig_data);
5146 return 0;
5147
5148cantfind_ext4:
5149 if (!silent)
5150 ext4_msg(sb, KERN_ERR, "VFS: Can't find ext4 filesystem");
5151 goto failed_mount;
5152
5153failed_mount8:
5154 ext4_unregister_sysfs(sb);
5155 kobject_put(&sbi->s_kobj);
5156failed_mount7:
5157 ext4_unregister_li_request(sb);
5158failed_mount6:
5159 ext4_mb_release(sb);
5160 rcu_read_lock();
5161 flex_groups = rcu_dereference(sbi->s_flex_groups);
5162 if (flex_groups) {
5163 for (i = 0; i < sbi->s_flex_groups_allocated; i++)
5164 kvfree(flex_groups[i]);
5165 kvfree(flex_groups);
5166 }
5167 rcu_read_unlock();
5168 percpu_counter_destroy(&sbi->s_freeclusters_counter);
5169 percpu_counter_destroy(&sbi->s_freeinodes_counter);
5170 percpu_counter_destroy(&sbi->s_dirs_counter);
5171 percpu_counter_destroy(&sbi->s_dirtyclusters_counter);
5172 percpu_counter_destroy(&sbi->s_sra_exceeded_retry_limit);
5173 percpu_free_rwsem(&sbi->s_writepages_rwsem);
5174failed_mount5:
5175 ext4_ext_release(sb);
5176 ext4_release_system_zone(sb);
5177failed_mount4a:
5178 dput(sb->s_root);
5179 sb->s_root = NULL;
5180failed_mount4:
5181 ext4_msg(sb, KERN_ERR, "mount failed");
5182 if (EXT4_SB(sb)->rsv_conversion_wq)
5183 destroy_workqueue(EXT4_SB(sb)->rsv_conversion_wq);
5184failed_mount_wq:
5185 ext4_xattr_destroy_cache(sbi->s_ea_inode_cache);
5186 sbi->s_ea_inode_cache = NULL;
5187
5188 ext4_xattr_destroy_cache(sbi->s_ea_block_cache);
5189 sbi->s_ea_block_cache = NULL;
5190
5191 if (sbi->s_journal) {
5192 /* flush s_error_work before journal destroy. */
5193 flush_work(&sbi->s_error_work);
5194 jbd2_journal_destroy(sbi->s_journal);
5195 sbi->s_journal = NULL;
5196 }
5197failed_mount3a:
5198 ext4_es_unregister_shrinker(sbi);
5199failed_mount3:
5200 /* flush s_error_work before sbi destroy */
5201 flush_work(&sbi->s_error_work);
5202 del_timer_sync(&sbi->s_err_report);
5203 ext4_stop_mmpd(sbi);
5204failed_mount2:
5205 rcu_read_lock();
5206 group_desc = rcu_dereference(sbi->s_group_desc);
5207 for (i = 0; i < db_count; i++)
5208 brelse(group_desc[i]);
5209 kvfree(group_desc);
5210 rcu_read_unlock();
5211failed_mount:
5212 if (sbi->s_chksum_driver)
5213 crypto_free_shash(sbi->s_chksum_driver);
5214
5215#ifdef CONFIG_UNICODE
5216 utf8_unload(sb->s_encoding);
5217#endif
5218
5219#ifdef CONFIG_QUOTA
5220 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5221 kfree(get_qf_name(sb, sbi, i));
5222#endif
5223 fscrypt_free_dummy_policy(&sbi->s_dummy_enc_policy);
5224 /* ext4_blkdev_remove() calls kill_bdev(), release bh before it. */
5225 brelse(bh);
5226 ext4_blkdev_remove(sbi);
5227out_fail:
5228 sb->s_fs_info = NULL;
5229 kfree(sbi->s_blockgroup_lock);
5230out_free_base:
5231 kfree(sbi);
5232 kfree(orig_data);
5233 fs_put_dax(dax_dev);
5234 return err ? err : ret;
5235}
5236
5237/*
5238 * Setup any per-fs journal parameters now. We'll do this both on
5239 * initial mount, once the journal has been initialised but before we've
5240 * done any recovery; and again on any subsequent remount.
5241 */
5242static void ext4_init_journal_params(struct super_block *sb, journal_t *journal)
5243{
5244 struct ext4_sb_info *sbi = EXT4_SB(sb);
5245
5246 journal->j_commit_interval = sbi->s_commit_interval;
5247 journal->j_min_batch_time = sbi->s_min_batch_time;
5248 journal->j_max_batch_time = sbi->s_max_batch_time;
5249 ext4_fc_init(sb, journal);
5250
5251 write_lock(&journal->j_state_lock);
5252 if (test_opt(sb, BARRIER))
5253 journal->j_flags |= JBD2_BARRIER;
5254 else
5255 journal->j_flags &= ~JBD2_BARRIER;
5256 if (test_opt(sb, DATA_ERR_ABORT))
5257 journal->j_flags |= JBD2_ABORT_ON_SYNCDATA_ERR;
5258 else
5259 journal->j_flags &= ~JBD2_ABORT_ON_SYNCDATA_ERR;
5260 write_unlock(&journal->j_state_lock);
5261}
5262
5263static struct inode *ext4_get_journal_inode(struct super_block *sb,
5264 unsigned int journal_inum)
5265{
5266 struct inode *journal_inode;
5267
5268 /*
5269 * Test for the existence of a valid inode on disk. Bad things
5270 * happen if we iget() an unused inode, as the subsequent iput()
5271 * will try to delete it.
5272 */
5273 journal_inode = ext4_iget(sb, journal_inum, EXT4_IGET_SPECIAL);
5274 if (IS_ERR(journal_inode)) {
5275 ext4_msg(sb, KERN_ERR, "no journal found");
5276 return NULL;
5277 }
5278 if (!journal_inode->i_nlink) {
5279 make_bad_inode(journal_inode);
5280 iput(journal_inode);
5281 ext4_msg(sb, KERN_ERR, "journal inode is deleted");
5282 return NULL;
5283 }
5284
5285 jbd_debug(2, "Journal inode found at %p: %lld bytes\n",
5286 journal_inode, journal_inode->i_size);
5287 if (!S_ISREG(journal_inode->i_mode)) {
5288 ext4_msg(sb, KERN_ERR, "invalid journal inode");
5289 iput(journal_inode);
5290 return NULL;
5291 }
5292 return journal_inode;
5293}
5294
5295static journal_t *ext4_get_journal(struct super_block *sb,
5296 unsigned int journal_inum)
5297{
5298 struct inode *journal_inode;
5299 journal_t *journal;
5300
5301 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5302 return NULL;
5303
5304 journal_inode = ext4_get_journal_inode(sb, journal_inum);
5305 if (!journal_inode)
5306 return NULL;
5307
5308 journal = jbd2_journal_init_inode(journal_inode);
5309 if (!journal) {
5310 ext4_msg(sb, KERN_ERR, "Could not load journal inode");
5311 iput(journal_inode);
5312 return NULL;
5313 }
5314 journal->j_private = sb;
5315 ext4_init_journal_params(sb, journal);
5316 return journal;
5317}
5318
5319static journal_t *ext4_get_dev_journal(struct super_block *sb,
5320 dev_t j_dev)
5321{
5322 struct buffer_head *bh;
5323 journal_t *journal;
5324 ext4_fsblk_t start;
5325 ext4_fsblk_t len;
5326 int hblock, blocksize;
5327 ext4_fsblk_t sb_block;
5328 unsigned long offset;
5329 struct ext4_super_block *es;
5330 struct block_device *bdev;
5331
5332 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5333 return NULL;
5334
5335 bdev = ext4_blkdev_get(j_dev, sb);
5336 if (bdev == NULL)
5337 return NULL;
5338
5339 blocksize = sb->s_blocksize;
5340 hblock = bdev_logical_block_size(bdev);
5341 if (blocksize < hblock) {
5342 ext4_msg(sb, KERN_ERR,
5343 "blocksize too small for journal device");
5344 goto out_bdev;
5345 }
5346
5347 sb_block = EXT4_MIN_BLOCK_SIZE / blocksize;
5348 offset = EXT4_MIN_BLOCK_SIZE % blocksize;
5349 set_blocksize(bdev, blocksize);
5350 if (!(bh = __bread(bdev, sb_block, blocksize))) {
5351 ext4_msg(sb, KERN_ERR, "couldn't read superblock of "
5352 "external journal");
5353 goto out_bdev;
5354 }
5355
5356 es = (struct ext4_super_block *) (bh->b_data + offset);
5357 if ((le16_to_cpu(es->s_magic) != EXT4_SUPER_MAGIC) ||
5358 !(le32_to_cpu(es->s_feature_incompat) &
5359 EXT4_FEATURE_INCOMPAT_JOURNAL_DEV)) {
5360 ext4_msg(sb, KERN_ERR, "external journal has "
5361 "bad superblock");
5362 brelse(bh);
5363 goto out_bdev;
5364 }
5365
5366 if ((le32_to_cpu(es->s_feature_ro_compat) &
5367 EXT4_FEATURE_RO_COMPAT_METADATA_CSUM) &&
5368 es->s_checksum != ext4_superblock_csum(sb, es)) {
5369 ext4_msg(sb, KERN_ERR, "external journal has "
5370 "corrupt superblock");
5371 brelse(bh);
5372 goto out_bdev;
5373 }
5374
5375 if (memcmp(EXT4_SB(sb)->s_es->s_journal_uuid, es->s_uuid, 16)) {
5376 ext4_msg(sb, KERN_ERR, "journal UUID does not match");
5377 brelse(bh);
5378 goto out_bdev;
5379 }
5380
5381 len = ext4_blocks_count(es);
5382 start = sb_block + 1;
5383 brelse(bh); /* we're done with the superblock */
5384
5385 journal = jbd2_journal_init_dev(bdev, sb->s_bdev,
5386 start, len, blocksize);
5387 if (!journal) {
5388 ext4_msg(sb, KERN_ERR, "failed to create device journal");
5389 goto out_bdev;
5390 }
5391 journal->j_private = sb;
5392 if (ext4_read_bh_lock(journal->j_sb_buffer, REQ_META | REQ_PRIO, true)) {
5393 ext4_msg(sb, KERN_ERR, "I/O error on journal device");
5394 goto out_journal;
5395 }
5396 if (be32_to_cpu(journal->j_superblock->s_nr_users) != 1) {
5397 ext4_msg(sb, KERN_ERR, "External journal has more than one "
5398 "user (unsupported) - %d",
5399 be32_to_cpu(journal->j_superblock->s_nr_users));
5400 goto out_journal;
5401 }
5402 EXT4_SB(sb)->s_journal_bdev = bdev;
5403 ext4_init_journal_params(sb, journal);
5404 return journal;
5405
5406out_journal:
5407 jbd2_journal_destroy(journal);
5408out_bdev:
5409 ext4_blkdev_put(bdev);
5410 return NULL;
5411}
5412
5413static int ext4_load_journal(struct super_block *sb,
5414 struct ext4_super_block *es,
5415 unsigned long journal_devnum)
5416{
5417 journal_t *journal;
5418 unsigned int journal_inum = le32_to_cpu(es->s_journal_inum);
5419 dev_t journal_dev;
5420 int err = 0;
5421 int really_read_only;
5422 int journal_dev_ro;
5423
5424 if (WARN_ON_ONCE(!ext4_has_feature_journal(sb)))
5425 return -EFSCORRUPTED;
5426
5427 if (journal_devnum &&
5428 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5429 ext4_msg(sb, KERN_INFO, "external journal device major/minor "
5430 "numbers have changed");
5431 journal_dev = new_decode_dev(journal_devnum);
5432 } else
5433 journal_dev = new_decode_dev(le32_to_cpu(es->s_journal_dev));
5434
5435 if (journal_inum && journal_dev) {
5436 ext4_msg(sb, KERN_ERR,
5437 "filesystem has both journal inode and journal device!");
5438 return -EINVAL;
5439 }
5440
5441 if (journal_inum) {
5442 journal = ext4_get_journal(sb, journal_inum);
5443 if (!journal)
5444 return -EINVAL;
5445 } else {
5446 journal = ext4_get_dev_journal(sb, journal_dev);
5447 if (!journal)
5448 return -EINVAL;
5449 }
5450
5451 journal_dev_ro = bdev_read_only(journal->j_dev);
5452 really_read_only = bdev_read_only(sb->s_bdev) | journal_dev_ro;
5453
5454 if (journal_dev_ro && !sb_rdonly(sb)) {
5455 ext4_msg(sb, KERN_ERR,
5456 "journal device read-only, try mounting with '-o ro'");
5457 err = -EROFS;
5458 goto err_out;
5459 }
5460
5461 /*
5462 * Are we loading a blank journal or performing recovery after a
5463 * crash? For recovery, we need to check in advance whether we
5464 * can get read-write access to the device.
5465 */
5466 if (ext4_has_feature_journal_needs_recovery(sb)) {
5467 if (sb_rdonly(sb)) {
5468 ext4_msg(sb, KERN_INFO, "INFO: recovery "
5469 "required on readonly filesystem");
5470 if (really_read_only) {
5471 ext4_msg(sb, KERN_ERR, "write access "
5472 "unavailable, cannot proceed "
5473 "(try mounting with noload)");
5474 err = -EROFS;
5475 goto err_out;
5476 }
5477 ext4_msg(sb, KERN_INFO, "write access will "
5478 "be enabled during recovery");
5479 }
5480 }
5481
5482 if (!(journal->j_flags & JBD2_BARRIER))
5483 ext4_msg(sb, KERN_INFO, "barriers disabled");
5484
5485 if (!ext4_has_feature_journal_needs_recovery(sb))
5486 err = jbd2_journal_wipe(journal, !really_read_only);
5487 if (!err) {
5488 char *save = kmalloc(EXT4_S_ERR_LEN, GFP_KERNEL);
5489 if (save)
5490 memcpy(save, ((char *) es) +
5491 EXT4_S_ERR_START, EXT4_S_ERR_LEN);
5492 err = jbd2_journal_load(journal);
5493 if (save)
5494 memcpy(((char *) es) + EXT4_S_ERR_START,
5495 save, EXT4_S_ERR_LEN);
5496 kfree(save);
5497 }
5498
5499 if (err) {
5500 ext4_msg(sb, KERN_ERR, "error loading journal");
5501 goto err_out;
5502 }
5503
5504 EXT4_SB(sb)->s_journal = journal;
5505 err = ext4_clear_journal_err(sb, es);
5506 if (err) {
5507 EXT4_SB(sb)->s_journal = NULL;
5508 jbd2_journal_destroy(journal);
5509 return err;
5510 }
5511
5512 if (!really_read_only && journal_devnum &&
5513 journal_devnum != le32_to_cpu(es->s_journal_dev)) {
5514 es->s_journal_dev = cpu_to_le32(journal_devnum);
5515
5516 /* Make sure we flush the recovery flag to disk. */
5517 ext4_commit_super(sb);
5518 }
5519
5520 return 0;
5521
5522err_out:
5523 jbd2_journal_destroy(journal);
5524 return err;
5525}
5526
5527/* Copy state of EXT4_SB(sb) into buffer for on-disk superblock */
5528static void ext4_update_super(struct super_block *sb)
5529{
5530 struct ext4_sb_info *sbi = EXT4_SB(sb);
5531 struct ext4_super_block *es = sbi->s_es;
5532 struct buffer_head *sbh = sbi->s_sbh;
5533
5534 lock_buffer(sbh);
5535 /*
5536 * If the file system is mounted read-only, don't update the
5537 * superblock write time. This avoids updating the superblock
5538 * write time when we are mounting the root file system
5539 * read/only but we need to replay the journal; at that point,
5540 * for people who are east of GMT and who make their clock
5541 * tick in localtime for Windows bug-for-bug compatibility,
5542 * the clock is set in the future, and this will cause e2fsck
5543 * to complain and force a full file system check.
5544 */
5545 if (!(sb->s_flags & SB_RDONLY))
5546 ext4_update_tstamp(es, s_wtime);
5547 es->s_kbytes_written =
5548 cpu_to_le64(sbi->s_kbytes_written +
5549 ((part_stat_read(sb->s_bdev, sectors[STAT_WRITE]) -
5550 sbi->s_sectors_written_start) >> 1));
5551 if (percpu_counter_initialized(&sbi->s_freeclusters_counter))
5552 ext4_free_blocks_count_set(es,
5553 EXT4_C2B(sbi, percpu_counter_sum_positive(
5554 &sbi->s_freeclusters_counter)));
5555 if (percpu_counter_initialized(&sbi->s_freeinodes_counter))
5556 es->s_free_inodes_count =
5557 cpu_to_le32(percpu_counter_sum_positive(
5558 &sbi->s_freeinodes_counter));
5559 /* Copy error information to the on-disk superblock */
5560 spin_lock(&sbi->s_error_lock);
5561 if (sbi->s_add_error_count > 0) {
5562 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5563 if (!es->s_first_error_time && !es->s_first_error_time_hi) {
5564 __ext4_update_tstamp(&es->s_first_error_time,
5565 &es->s_first_error_time_hi,
5566 sbi->s_first_error_time);
5567 strncpy(es->s_first_error_func, sbi->s_first_error_func,
5568 sizeof(es->s_first_error_func));
5569 es->s_first_error_line =
5570 cpu_to_le32(sbi->s_first_error_line);
5571 es->s_first_error_ino =
5572 cpu_to_le32(sbi->s_first_error_ino);
5573 es->s_first_error_block =
5574 cpu_to_le64(sbi->s_first_error_block);
5575 es->s_first_error_errcode =
5576 ext4_errno_to_code(sbi->s_first_error_code);
5577 }
5578 __ext4_update_tstamp(&es->s_last_error_time,
5579 &es->s_last_error_time_hi,
5580 sbi->s_last_error_time);
5581 strncpy(es->s_last_error_func, sbi->s_last_error_func,
5582 sizeof(es->s_last_error_func));
5583 es->s_last_error_line = cpu_to_le32(sbi->s_last_error_line);
5584 es->s_last_error_ino = cpu_to_le32(sbi->s_last_error_ino);
5585 es->s_last_error_block = cpu_to_le64(sbi->s_last_error_block);
5586 es->s_last_error_errcode =
5587 ext4_errno_to_code(sbi->s_last_error_code);
5588 /*
5589 * Start the daily error reporting function if it hasn't been
5590 * started already
5591 */
5592 if (!es->s_error_count)
5593 mod_timer(&sbi->s_err_report, jiffies + 24*60*60*HZ);
5594 le32_add_cpu(&es->s_error_count, sbi->s_add_error_count);
5595 sbi->s_add_error_count = 0;
5596 }
5597 spin_unlock(&sbi->s_error_lock);
5598
5599 ext4_superblock_csum_set(sb);
5600 unlock_buffer(sbh);
5601}
5602
5603static int ext4_commit_super(struct super_block *sb)
5604{
5605 struct buffer_head *sbh = EXT4_SB(sb)->s_sbh;
5606 int error = 0;
5607
5608 if (!sbh)
5609 return -EINVAL;
5610 if (block_device_ejected(sb))
5611 return -ENODEV;
5612
5613 ext4_update_super(sb);
5614
5615 if (buffer_write_io_error(sbh) || !buffer_uptodate(sbh)) {
5616 /*
5617 * Oh, dear. A previous attempt to write the
5618 * superblock failed. This could happen because the
5619 * USB device was yanked out. Or it could happen to
5620 * be a transient write error and maybe the block will
5621 * be remapped. Nothing we can do but to retry the
5622 * write and hope for the best.
5623 */
5624 ext4_msg(sb, KERN_ERR, "previous I/O error to "
5625 "superblock detected");
5626 clear_buffer_write_io_error(sbh);
5627 set_buffer_uptodate(sbh);
5628 }
5629 BUFFER_TRACE(sbh, "marking dirty");
5630 mark_buffer_dirty(sbh);
5631 error = __sync_dirty_buffer(sbh,
5632 REQ_SYNC | (test_opt(sb, BARRIER) ? REQ_FUA : 0));
5633 if (buffer_write_io_error(sbh)) {
5634 ext4_msg(sb, KERN_ERR, "I/O error while writing "
5635 "superblock");
5636 clear_buffer_write_io_error(sbh);
5637 set_buffer_uptodate(sbh);
5638 }
5639 return error;
5640}
5641
5642/*
5643 * Have we just finished recovery? If so, and if we are mounting (or
5644 * remounting) the filesystem readonly, then we will end up with a
5645 * consistent fs on disk. Record that fact.
5646 */
5647static int ext4_mark_recovery_complete(struct super_block *sb,
5648 struct ext4_super_block *es)
5649{
5650 int err;
5651 journal_t *journal = EXT4_SB(sb)->s_journal;
5652
5653 if (!ext4_has_feature_journal(sb)) {
5654 if (journal != NULL) {
5655 ext4_error(sb, "Journal got removed while the fs was "
5656 "mounted!");
5657 return -EFSCORRUPTED;
5658 }
5659 return 0;
5660 }
5661 jbd2_journal_lock_updates(journal);
5662 err = jbd2_journal_flush(journal, 0);
5663 if (err < 0)
5664 goto out;
5665
5666 if (ext4_has_feature_journal_needs_recovery(sb) && sb_rdonly(sb)) {
5667 ext4_clear_feature_journal_needs_recovery(sb);
5668 ext4_commit_super(sb);
5669 }
5670out:
5671 jbd2_journal_unlock_updates(journal);
5672 return err;
5673}
5674
5675/*
5676 * If we are mounting (or read-write remounting) a filesystem whose journal
5677 * has recorded an error from a previous lifetime, move that error to the
5678 * main filesystem now.
5679 */
5680static int ext4_clear_journal_err(struct super_block *sb,
5681 struct ext4_super_block *es)
5682{
5683 journal_t *journal;
5684 int j_errno;
5685 const char *errstr;
5686
5687 if (!ext4_has_feature_journal(sb)) {
5688 ext4_error(sb, "Journal got removed while the fs was mounted!");
5689 return -EFSCORRUPTED;
5690 }
5691
5692 journal = EXT4_SB(sb)->s_journal;
5693
5694 /*
5695 * Now check for any error status which may have been recorded in the
5696 * journal by a prior ext4_error() or ext4_abort()
5697 */
5698
5699 j_errno = jbd2_journal_errno(journal);
5700 if (j_errno) {
5701 char nbuf[16];
5702
5703 errstr = ext4_decode_error(sb, j_errno, nbuf);
5704 ext4_warning(sb, "Filesystem error recorded "
5705 "from previous mount: %s", errstr);
5706 ext4_warning(sb, "Marking fs in need of filesystem check.");
5707
5708 EXT4_SB(sb)->s_mount_state |= EXT4_ERROR_FS;
5709 es->s_state |= cpu_to_le16(EXT4_ERROR_FS);
5710 ext4_commit_super(sb);
5711
5712 jbd2_journal_clear_err(journal);
5713 jbd2_journal_update_sb_errno(journal);
5714 }
5715 return 0;
5716}
5717
5718/*
5719 * Force the running and committing transactions to commit,
5720 * and wait on the commit.
5721 */
5722int ext4_force_commit(struct super_block *sb)
5723{
5724 journal_t *journal;
5725
5726 if (sb_rdonly(sb))
5727 return 0;
5728
5729 journal = EXT4_SB(sb)->s_journal;
5730 return ext4_journal_force_commit(journal);
5731}
5732
5733static int ext4_sync_fs(struct super_block *sb, int wait)
5734{
5735 int ret = 0;
5736 tid_t target;
5737 bool needs_barrier = false;
5738 struct ext4_sb_info *sbi = EXT4_SB(sb);
5739
5740 if (unlikely(ext4_forced_shutdown(sbi)))
5741 return 0;
5742
5743 trace_ext4_sync_fs(sb, wait);
5744 flush_workqueue(sbi->rsv_conversion_wq);
5745 /*
5746 * Writeback quota in non-journalled quota case - journalled quota has
5747 * no dirty dquots
5748 */
5749 dquot_writeback_dquots(sb, -1);
5750 /*
5751 * Data writeback is possible w/o journal transaction, so barrier must
5752 * being sent at the end of the function. But we can skip it if
5753 * transaction_commit will do it for us.
5754 */
5755 if (sbi->s_journal) {
5756 target = jbd2_get_latest_transaction(sbi->s_journal);
5757 if (wait && sbi->s_journal->j_flags & JBD2_BARRIER &&
5758 !jbd2_trans_will_send_data_barrier(sbi->s_journal, target))
5759 needs_barrier = true;
5760
5761 if (jbd2_journal_start_commit(sbi->s_journal, &target)) {
5762 if (wait)
5763 ret = jbd2_log_wait_commit(sbi->s_journal,
5764 target);
5765 }
5766 } else if (wait && test_opt(sb, BARRIER))
5767 needs_barrier = true;
5768 if (needs_barrier) {
5769 int err;
5770 err = blkdev_issue_flush(sb->s_bdev);
5771 if (!ret)
5772 ret = err;
5773 }
5774
5775 return ret;
5776}
5777
5778/*
5779 * LVM calls this function before a (read-only) snapshot is created. This
5780 * gives us a chance to flush the journal completely and mark the fs clean.
5781 *
5782 * Note that only this function cannot bring a filesystem to be in a clean
5783 * state independently. It relies on upper layer to stop all data & metadata
5784 * modifications.
5785 */
5786static int ext4_freeze(struct super_block *sb)
5787{
5788 int error = 0;
5789 journal_t *journal;
5790
5791 if (sb_rdonly(sb))
5792 return 0;
5793
5794 journal = EXT4_SB(sb)->s_journal;
5795
5796 if (journal) {
5797 /* Now we set up the journal barrier. */
5798 jbd2_journal_lock_updates(journal);
5799
5800 /*
5801 * Don't clear the needs_recovery flag if we failed to
5802 * flush the journal.
5803 */
5804 error = jbd2_journal_flush(journal, 0);
5805 if (error < 0)
5806 goto out;
5807
5808 /* Journal blocked and flushed, clear needs_recovery flag. */
5809 ext4_clear_feature_journal_needs_recovery(sb);
5810 }
5811
5812 error = ext4_commit_super(sb);
5813out:
5814 if (journal)
5815 /* we rely on upper layer to stop further updates */
5816 jbd2_journal_unlock_updates(journal);
5817 return error;
5818}
5819
5820/*
5821 * Called by LVM after the snapshot is done. We need to reset the RECOVER
5822 * flag here, even though the filesystem is not technically dirty yet.
5823 */
5824static int ext4_unfreeze(struct super_block *sb)
5825{
5826 if (sb_rdonly(sb) || ext4_forced_shutdown(EXT4_SB(sb)))
5827 return 0;
5828
5829 if (EXT4_SB(sb)->s_journal) {
5830 /* Reset the needs_recovery flag before the fs is unlocked. */
5831 ext4_set_feature_journal_needs_recovery(sb);
5832 }
5833
5834 ext4_commit_super(sb);
5835 return 0;
5836}
5837
5838/*
5839 * Structure to save mount options for ext4_remount's benefit
5840 */
5841struct ext4_mount_options {
5842 unsigned long s_mount_opt;
5843 unsigned long s_mount_opt2;
5844 kuid_t s_resuid;
5845 kgid_t s_resgid;
5846 unsigned long s_commit_interval;
5847 u32 s_min_batch_time, s_max_batch_time;
5848#ifdef CONFIG_QUOTA
5849 int s_jquota_fmt;
5850 char *s_qf_names[EXT4_MAXQUOTAS];
5851#endif
5852};
5853
5854static int ext4_remount(struct super_block *sb, int *flags, char *data)
5855{
5856 struct ext4_super_block *es;
5857 struct ext4_sb_info *sbi = EXT4_SB(sb);
5858 unsigned long old_sb_flags, vfs_flags;
5859 struct ext4_mount_options old_opts;
5860 int enable_quota = 0;
5861 ext4_group_t g;
5862 int err = 0;
5863#ifdef CONFIG_QUOTA
5864 int i, j;
5865 char *to_free[EXT4_MAXQUOTAS];
5866#endif
5867 char *orig_data = kstrdup(data, GFP_KERNEL);
5868 struct ext4_parsed_options parsed_opts;
5869
5870 parsed_opts.journal_ioprio = DEFAULT_JOURNAL_IOPRIO;
5871 parsed_opts.journal_devnum = 0;
5872
5873 if (data && !orig_data)
5874 return -ENOMEM;
5875
5876 /* Store the original options */
5877 old_sb_flags = sb->s_flags;
5878 old_opts.s_mount_opt = sbi->s_mount_opt;
5879 old_opts.s_mount_opt2 = sbi->s_mount_opt2;
5880 old_opts.s_resuid = sbi->s_resuid;
5881 old_opts.s_resgid = sbi->s_resgid;
5882 old_opts.s_commit_interval = sbi->s_commit_interval;
5883 old_opts.s_min_batch_time = sbi->s_min_batch_time;
5884 old_opts.s_max_batch_time = sbi->s_max_batch_time;
5885#ifdef CONFIG_QUOTA
5886 old_opts.s_jquota_fmt = sbi->s_jquota_fmt;
5887 for (i = 0; i < EXT4_MAXQUOTAS; i++)
5888 if (sbi->s_qf_names[i]) {
5889 char *qf_name = get_qf_name(sb, sbi, i);
5890
5891 old_opts.s_qf_names[i] = kstrdup(qf_name, GFP_KERNEL);
5892 if (!old_opts.s_qf_names[i]) {
5893 for (j = 0; j < i; j++)
5894 kfree(old_opts.s_qf_names[j]);
5895 kfree(orig_data);
5896 return -ENOMEM;
5897 }
5898 } else
5899 old_opts.s_qf_names[i] = NULL;
5900#endif
5901 if (sbi->s_journal && sbi->s_journal->j_task->io_context)
5902 parsed_opts.journal_ioprio =
5903 sbi->s_journal->j_task->io_context->ioprio;
5904
5905 /*
5906 * Some options can be enabled by ext4 and/or by VFS mount flag
5907 * either way we need to make sure it matches in both *flags and
5908 * s_flags. Copy those selected flags from *flags to s_flags
5909 */
5910 vfs_flags = SB_LAZYTIME | SB_I_VERSION;
5911 sb->s_flags = (sb->s_flags & ~vfs_flags) | (*flags & vfs_flags);
5912
5913 if (!parse_options(data, sb, &parsed_opts, 1)) {
5914 err = -EINVAL;
5915 goto restore_opts;
5916 }
5917
5918 if ((old_opts.s_mount_opt & EXT4_MOUNT_JOURNAL_CHECKSUM) ^
5919 test_opt(sb, JOURNAL_CHECKSUM)) {
5920 ext4_msg(sb, KERN_ERR, "changing journal_checksum "
5921 "during remount not supported; ignoring");
5922 sbi->s_mount_opt ^= EXT4_MOUNT_JOURNAL_CHECKSUM;
5923 }
5924
5925 if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_JOURNAL_DATA) {
5926 if (test_opt2(sb, EXPLICIT_DELALLOC)) {
5927 ext4_msg(sb, KERN_ERR, "can't mount with "
5928 "both data=journal and delalloc");
5929 err = -EINVAL;
5930 goto restore_opts;
5931 }
5932 if (test_opt(sb, DIOREAD_NOLOCK)) {
5933 ext4_msg(sb, KERN_ERR, "can't mount with "
5934 "both data=journal and dioread_nolock");
5935 err = -EINVAL;
5936 goto restore_opts;
5937 }
5938 } else if (test_opt(sb, DATA_FLAGS) == EXT4_MOUNT_ORDERED_DATA) {
5939 if (test_opt(sb, JOURNAL_ASYNC_COMMIT)) {
5940 ext4_msg(sb, KERN_ERR, "can't mount with "
5941 "journal_async_commit in data=ordered mode");
5942 err = -EINVAL;
5943 goto restore_opts;
5944 }
5945 }
5946
5947 if ((sbi->s_mount_opt ^ old_opts.s_mount_opt) & EXT4_MOUNT_NO_MBCACHE) {
5948 ext4_msg(sb, KERN_ERR, "can't enable nombcache during remount");
5949 err = -EINVAL;
5950 goto restore_opts;
5951 }
5952
5953 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED))
5954 ext4_abort(sb, EXT4_ERR_ESHUTDOWN, "Abort forced by user");
5955
5956 sb->s_flags = (sb->s_flags & ~SB_POSIXACL) |
5957 (test_opt(sb, POSIX_ACL) ? SB_POSIXACL : 0);
5958
5959 es = sbi->s_es;
5960
5961 if (sbi->s_journal) {
5962 ext4_init_journal_params(sb, sbi->s_journal);
5963 set_task_ioprio(sbi->s_journal->j_task, parsed_opts.journal_ioprio);
5964 }
5965
5966 /* Flush outstanding errors before changing fs state */
5967 flush_work(&sbi->s_error_work);
5968
5969 if ((bool)(*flags & SB_RDONLY) != sb_rdonly(sb)) {
5970 if (ext4_test_mount_flag(sb, EXT4_MF_FS_ABORTED)) {
5971 err = -EROFS;
5972 goto restore_opts;
5973 }
5974
5975 if (*flags & SB_RDONLY) {
5976 err = sync_filesystem(sb);
5977 if (err < 0)
5978 goto restore_opts;
5979 err = dquot_suspend(sb, -1);
5980 if (err < 0)
5981 goto restore_opts;
5982
5983 /*
5984 * First of all, the unconditional stuff we have to do
5985 * to disable replay of the journal when we next remount
5986 */
5987 sb->s_flags |= SB_RDONLY;
5988
5989 /*
5990 * OK, test if we are remounting a valid rw partition
5991 * readonly, and if so set the rdonly flag and then
5992 * mark the partition as valid again.
5993 */
5994 if (!(es->s_state & cpu_to_le16(EXT4_VALID_FS)) &&
5995 (sbi->s_mount_state & EXT4_VALID_FS))
5996 es->s_state = cpu_to_le16(sbi->s_mount_state);
5997
5998 if (sbi->s_journal) {
5999 /*
6000 * We let remount-ro finish even if marking fs
6001 * as clean failed...
6002 */
6003 ext4_mark_recovery_complete(sb, es);
6004 }
6005 } else {
6006 /* Make sure we can mount this feature set readwrite */
6007 if (ext4_has_feature_readonly(sb) ||
6008 !ext4_feature_set_ok(sb, 0)) {
6009 err = -EROFS;
6010 goto restore_opts;
6011 }
6012 /*
6013 * Make sure the group descriptor checksums
6014 * are sane. If they aren't, refuse to remount r/w.
6015 */
6016 for (g = 0; g < sbi->s_groups_count; g++) {
6017 struct ext4_group_desc *gdp =
6018 ext4_get_group_desc(sb, g, NULL);
6019
6020 if (!ext4_group_desc_csum_verify(sb, g, gdp)) {
6021 ext4_msg(sb, KERN_ERR,
6022 "ext4_remount: Checksum for group %u failed (%u!=%u)",
6023 g, le16_to_cpu(ext4_group_desc_csum(sb, g, gdp)),
6024 le16_to_cpu(gdp->bg_checksum));
6025 err = -EFSBADCRC;
6026 goto restore_opts;
6027 }
6028 }
6029
6030 /*
6031 * If we have an unprocessed orphan list hanging
6032 * around from a previously readonly bdev mount,
6033 * require a full umount/remount for now.
6034 */
6035 if (es->s_last_orphan) {
6036 ext4_msg(sb, KERN_WARNING, "Couldn't "
6037 "remount RDWR because of unprocessed "
6038 "orphan inode list. Please "
6039 "umount/remount instead");
6040 err = -EINVAL;
6041 goto restore_opts;
6042 }
6043
6044 /*
6045 * Mounting a RDONLY partition read-write, so reread
6046 * and store the current valid flag. (It may have
6047 * been changed by e2fsck since we originally mounted
6048 * the partition.)
6049 */
6050 if (sbi->s_journal) {
6051 err = ext4_clear_journal_err(sb, es);
6052 if (err)
6053 goto restore_opts;
6054 }
6055 sbi->s_mount_state = le16_to_cpu(es->s_state);
6056
6057 err = ext4_setup_super(sb, es, 0);
6058 if (err)
6059 goto restore_opts;
6060
6061 sb->s_flags &= ~SB_RDONLY;
6062 if (ext4_has_feature_mmp(sb))
6063 if (ext4_multi_mount_protect(sb,
6064 le64_to_cpu(es->s_mmp_block))) {
6065 err = -EROFS;
6066 goto restore_opts;
6067 }
6068 enable_quota = 1;
6069 }
6070 }
6071
6072 /*
6073 * Reinitialize lazy itable initialization thread based on
6074 * current settings
6075 */
6076 if (sb_rdonly(sb) || !test_opt(sb, INIT_INODE_TABLE))
6077 ext4_unregister_li_request(sb);
6078 else {
6079 ext4_group_t first_not_zeroed;
6080 first_not_zeroed = ext4_has_uninit_itable(sb);
6081 ext4_register_li_request(sb, first_not_zeroed);
6082 }
6083
6084 /*
6085 * Handle creation of system zone data early because it can fail.
6086 * Releasing of existing data is done when we are sure remount will
6087 * succeed.
6088 */
6089 if (test_opt(sb, BLOCK_VALIDITY) && !sbi->s_system_blks) {
6090 err = ext4_setup_system_zone(sb);
6091 if (err)
6092 goto restore_opts;
6093 }
6094
6095 if (sbi->s_journal == NULL && !(old_sb_flags & SB_RDONLY)) {
6096 err = ext4_commit_super(sb);
6097 if (err)
6098 goto restore_opts;
6099 }
6100
6101#ifdef CONFIG_QUOTA
6102 /* Release old quota file names */
6103 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6104 kfree(old_opts.s_qf_names[i]);
6105 if (enable_quota) {
6106 if (sb_any_quota_suspended(sb))
6107 dquot_resume(sb, -1);
6108 else if (ext4_has_feature_quota(sb)) {
6109 err = ext4_enable_quotas(sb);
6110 if (err)
6111 goto restore_opts;
6112 }
6113 }
6114#endif
6115 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6116 ext4_release_system_zone(sb);
6117
6118 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6119 ext4_stop_mmpd(sbi);
6120
6121 /*
6122 * Some options can be enabled by ext4 and/or by VFS mount flag
6123 * either way we need to make sure it matches in both *flags and
6124 * s_flags. Copy those selected flags from s_flags to *flags
6125 */
6126 *flags = (*flags & ~vfs_flags) | (sb->s_flags & vfs_flags);
6127
6128 ext4_msg(sb, KERN_INFO, "re-mounted. Opts: %s. Quota mode: %s.",
6129 orig_data, ext4_quota_mode(sb));
6130 kfree(orig_data);
6131 return 0;
6132
6133restore_opts:
6134 sb->s_flags = old_sb_flags;
6135 sbi->s_mount_opt = old_opts.s_mount_opt;
6136 sbi->s_mount_opt2 = old_opts.s_mount_opt2;
6137 sbi->s_resuid = old_opts.s_resuid;
6138 sbi->s_resgid = old_opts.s_resgid;
6139 sbi->s_commit_interval = old_opts.s_commit_interval;
6140 sbi->s_min_batch_time = old_opts.s_min_batch_time;
6141 sbi->s_max_batch_time = old_opts.s_max_batch_time;
6142 if (!test_opt(sb, BLOCK_VALIDITY) && sbi->s_system_blks)
6143 ext4_release_system_zone(sb);
6144#ifdef CONFIG_QUOTA
6145 sbi->s_jquota_fmt = old_opts.s_jquota_fmt;
6146 for (i = 0; i < EXT4_MAXQUOTAS; i++) {
6147 to_free[i] = get_qf_name(sb, sbi, i);
6148 rcu_assign_pointer(sbi->s_qf_names[i], old_opts.s_qf_names[i]);
6149 }
6150 synchronize_rcu();
6151 for (i = 0; i < EXT4_MAXQUOTAS; i++)
6152 kfree(to_free[i]);
6153#endif
6154 if (!ext4_has_feature_mmp(sb) || sb_rdonly(sb))
6155 ext4_stop_mmpd(sbi);
6156 kfree(orig_data);
6157 return err;
6158}
6159
6160#ifdef CONFIG_QUOTA
6161static int ext4_statfs_project(struct super_block *sb,
6162 kprojid_t projid, struct kstatfs *buf)
6163{
6164 struct kqid qid;
6165 struct dquot *dquot;
6166 u64 limit;
6167 u64 curblock;
6168
6169 qid = make_kqid_projid(projid);
6170 dquot = dqget(sb, qid);
6171 if (IS_ERR(dquot))
6172 return PTR_ERR(dquot);
6173 spin_lock(&dquot->dq_dqb_lock);
6174
6175 limit = min_not_zero(dquot->dq_dqb.dqb_bsoftlimit,
6176 dquot->dq_dqb.dqb_bhardlimit);
6177 limit >>= sb->s_blocksize_bits;
6178
6179 if (limit && buf->f_blocks > limit) {
6180 curblock = (dquot->dq_dqb.dqb_curspace +
6181 dquot->dq_dqb.dqb_rsvspace) >> sb->s_blocksize_bits;
6182 buf->f_blocks = limit;
6183 buf->f_bfree = buf->f_bavail =
6184 (buf->f_blocks > curblock) ?
6185 (buf->f_blocks - curblock) : 0;
6186 }
6187
6188 limit = min_not_zero(dquot->dq_dqb.dqb_isoftlimit,
6189 dquot->dq_dqb.dqb_ihardlimit);
6190 if (limit && buf->f_files > limit) {
6191 buf->f_files = limit;
6192 buf->f_ffree =
6193 (buf->f_files > dquot->dq_dqb.dqb_curinodes) ?
6194 (buf->f_files - dquot->dq_dqb.dqb_curinodes) : 0;
6195 }
6196
6197 spin_unlock(&dquot->dq_dqb_lock);
6198 dqput(dquot);
6199 return 0;
6200}
6201#endif
6202
6203static int ext4_statfs(struct dentry *dentry, struct kstatfs *buf)
6204{
6205 struct super_block *sb = dentry->d_sb;
6206 struct ext4_sb_info *sbi = EXT4_SB(sb);
6207 struct ext4_super_block *es = sbi->s_es;
6208 ext4_fsblk_t overhead = 0, resv_blocks;
6209 s64 bfree;
6210 resv_blocks = EXT4_C2B(sbi, atomic64_read(&sbi->s_resv_clusters));
6211
6212 if (!test_opt(sb, MINIX_DF))
6213 overhead = sbi->s_overhead;
6214
6215 buf->f_type = EXT4_SUPER_MAGIC;
6216 buf->f_bsize = sb->s_blocksize;
6217 buf->f_blocks = ext4_blocks_count(es) - EXT4_C2B(sbi, overhead);
6218 bfree = percpu_counter_sum_positive(&sbi->s_freeclusters_counter) -
6219 percpu_counter_sum_positive(&sbi->s_dirtyclusters_counter);
6220 /* prevent underflow in case that few free space is available */
6221 buf->f_bfree = EXT4_C2B(sbi, max_t(s64, bfree, 0));
6222 buf->f_bavail = buf->f_bfree -
6223 (ext4_r_blocks_count(es) + resv_blocks);
6224 if (buf->f_bfree < (ext4_r_blocks_count(es) + resv_blocks))
6225 buf->f_bavail = 0;
6226 buf->f_files = le32_to_cpu(es->s_inodes_count);
6227 buf->f_ffree = percpu_counter_sum_positive(&sbi->s_freeinodes_counter);
6228 buf->f_namelen = EXT4_NAME_LEN;
6229 buf->f_fsid = uuid_to_fsid(es->s_uuid);
6230
6231#ifdef CONFIG_QUOTA
6232 if (ext4_test_inode_flag(dentry->d_inode, EXT4_INODE_PROJINHERIT) &&
6233 sb_has_quota_limits_enabled(sb, PRJQUOTA))
6234 ext4_statfs_project(sb, EXT4_I(dentry->d_inode)->i_projid, buf);
6235#endif
6236 return 0;
6237}
6238
6239
6240#ifdef CONFIG_QUOTA
6241
6242/*
6243 * Helper functions so that transaction is started before we acquire dqio_sem
6244 * to keep correct lock ordering of transaction > dqio_sem
6245 */
6246static inline struct inode *dquot_to_inode(struct dquot *dquot)
6247{
6248 return sb_dqopt(dquot->dq_sb)->files[dquot->dq_id.type];
6249}
6250
6251static int ext4_write_dquot(struct dquot *dquot)
6252{
6253 int ret, err;
6254 handle_t *handle;
6255 struct inode *inode;
6256
6257 inode = dquot_to_inode(dquot);
6258 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
6259 EXT4_QUOTA_TRANS_BLOCKS(dquot->dq_sb));
6260 if (IS_ERR(handle))
6261 return PTR_ERR(handle);
6262 ret = dquot_commit(dquot);
6263 err = ext4_journal_stop(handle);
6264 if (!ret)
6265 ret = err;
6266 return ret;
6267}
6268
6269static int ext4_acquire_dquot(struct dquot *dquot)
6270{
6271 int ret, err;
6272 handle_t *handle;
6273
6274 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6275 EXT4_QUOTA_INIT_BLOCKS(dquot->dq_sb));
6276 if (IS_ERR(handle))
6277 return PTR_ERR(handle);
6278 ret = dquot_acquire(dquot);
6279 err = ext4_journal_stop(handle);
6280 if (!ret)
6281 ret = err;
6282 return ret;
6283}
6284
6285static int ext4_release_dquot(struct dquot *dquot)
6286{
6287 int ret, err;
6288 handle_t *handle;
6289
6290 handle = ext4_journal_start(dquot_to_inode(dquot), EXT4_HT_QUOTA,
6291 EXT4_QUOTA_DEL_BLOCKS(dquot->dq_sb));
6292 if (IS_ERR(handle)) {
6293 /* Release dquot anyway to avoid endless cycle in dqput() */
6294 dquot_release(dquot);
6295 return PTR_ERR(handle);
6296 }
6297 ret = dquot_release(dquot);
6298 err = ext4_journal_stop(handle);
6299 if (!ret)
6300 ret = err;
6301 return ret;
6302}
6303
6304static int ext4_mark_dquot_dirty(struct dquot *dquot)
6305{
6306 struct super_block *sb = dquot->dq_sb;
6307
6308 if (ext4_is_quota_journalled(sb)) {
6309 dquot_mark_dquot_dirty(dquot);
6310 return ext4_write_dquot(dquot);
6311 } else {
6312 return dquot_mark_dquot_dirty(dquot);
6313 }
6314}
6315
6316static int ext4_write_info(struct super_block *sb, int type)
6317{
6318 int ret, err;
6319 handle_t *handle;
6320
6321 /* Data block + inode block */
6322 handle = ext4_journal_start(d_inode(sb->s_root), EXT4_HT_QUOTA, 2);
6323 if (IS_ERR(handle))
6324 return PTR_ERR(handle);
6325 ret = dquot_commit_info(sb, type);
6326 err = ext4_journal_stop(handle);
6327 if (!ret)
6328 ret = err;
6329 return ret;
6330}
6331
6332/*
6333 * Turn on quotas during mount time - we need to find
6334 * the quota file and such...
6335 */
6336static int ext4_quota_on_mount(struct super_block *sb, int type)
6337{
6338 return dquot_quota_on_mount(sb, get_qf_name(sb, EXT4_SB(sb), type),
6339 EXT4_SB(sb)->s_jquota_fmt, type);
6340}
6341
6342static void lockdep_set_quota_inode(struct inode *inode, int subclass)
6343{
6344 struct ext4_inode_info *ei = EXT4_I(inode);
6345
6346 /* The first argument of lockdep_set_subclass has to be
6347 * *exactly* the same as the argument to init_rwsem() --- in
6348 * this case, in init_once() --- or lockdep gets unhappy
6349 * because the name of the lock is set using the
6350 * stringification of the argument to init_rwsem().
6351 */
6352 (void) ei; /* shut up clang warning if !CONFIG_LOCKDEP */
6353 lockdep_set_subclass(&ei->i_data_sem, subclass);
6354}
6355
6356/*
6357 * Standard function to be called on quota_on
6358 */
6359static int ext4_quota_on(struct super_block *sb, int type, int format_id,
6360 const struct path *path)
6361{
6362 int err;
6363
6364 if (!test_opt(sb, QUOTA))
6365 return -EINVAL;
6366
6367 /* Quotafile not on the same filesystem? */
6368 if (path->dentry->d_sb != sb)
6369 return -EXDEV;
6370
6371 /* Quota already enabled for this file? */
6372 if (IS_NOQUOTA(d_inode(path->dentry)))
6373 return -EBUSY;
6374
6375 /* Journaling quota? */
6376 if (EXT4_SB(sb)->s_qf_names[type]) {
6377 /* Quotafile not in fs root? */
6378 if (path->dentry->d_parent != sb->s_root)
6379 ext4_msg(sb, KERN_WARNING,
6380 "Quota file not on filesystem root. "
6381 "Journaled quota will not work");
6382 sb_dqopt(sb)->flags |= DQUOT_NOLIST_DIRTY;
6383 } else {
6384 /*
6385 * Clear the flag just in case mount options changed since
6386 * last time.
6387 */
6388 sb_dqopt(sb)->flags &= ~DQUOT_NOLIST_DIRTY;
6389 }
6390
6391 /*
6392 * When we journal data on quota file, we have to flush journal to see
6393 * all updates to the file when we bypass pagecache...
6394 */
6395 if (EXT4_SB(sb)->s_journal &&
6396 ext4_should_journal_data(d_inode(path->dentry))) {
6397 /*
6398 * We don't need to lock updates but journal_flush() could
6399 * otherwise be livelocked...
6400 */
6401 jbd2_journal_lock_updates(EXT4_SB(sb)->s_journal);
6402 err = jbd2_journal_flush(EXT4_SB(sb)->s_journal, 0);
6403 jbd2_journal_unlock_updates(EXT4_SB(sb)->s_journal);
6404 if (err)
6405 return err;
6406 }
6407
6408 lockdep_set_quota_inode(path->dentry->d_inode, I_DATA_SEM_QUOTA);
6409 err = dquot_quota_on(sb, type, format_id, path);
6410 if (err) {
6411 lockdep_set_quota_inode(path->dentry->d_inode,
6412 I_DATA_SEM_NORMAL);
6413 } else {
6414 struct inode *inode = d_inode(path->dentry);
6415 handle_t *handle;
6416
6417 /*
6418 * Set inode flags to prevent userspace from messing with quota
6419 * files. If this fails, we return success anyway since quotas
6420 * are already enabled and this is not a hard failure.
6421 */
6422 inode_lock(inode);
6423 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6424 if (IS_ERR(handle))
6425 goto unlock_inode;
6426 EXT4_I(inode)->i_flags |= EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL;
6427 inode_set_flags(inode, S_NOATIME | S_IMMUTABLE,
6428 S_NOATIME | S_IMMUTABLE);
6429 err = ext4_mark_inode_dirty(handle, inode);
6430 ext4_journal_stop(handle);
6431 unlock_inode:
6432 inode_unlock(inode);
6433 }
6434 return err;
6435}
6436
6437static int ext4_quota_enable(struct super_block *sb, int type, int format_id,
6438 unsigned int flags)
6439{
6440 int err;
6441 struct inode *qf_inode;
6442 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6443 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6444 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6445 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6446 };
6447
6448 BUG_ON(!ext4_has_feature_quota(sb));
6449
6450 if (!qf_inums[type])
6451 return -EPERM;
6452
6453 qf_inode = ext4_iget(sb, qf_inums[type], EXT4_IGET_SPECIAL);
6454 if (IS_ERR(qf_inode)) {
6455 ext4_error(sb, "Bad quota inode # %lu", qf_inums[type]);
6456 return PTR_ERR(qf_inode);
6457 }
6458
6459 /* Don't account quota for quota files to avoid recursion */
6460 qf_inode->i_flags |= S_NOQUOTA;
6461 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_QUOTA);
6462 err = dquot_load_quota_inode(qf_inode, type, format_id, flags);
6463 if (err)
6464 lockdep_set_quota_inode(qf_inode, I_DATA_SEM_NORMAL);
6465 iput(qf_inode);
6466
6467 return err;
6468}
6469
6470/* Enable usage tracking for all quota types. */
6471static int ext4_enable_quotas(struct super_block *sb)
6472{
6473 int type, err = 0;
6474 unsigned long qf_inums[EXT4_MAXQUOTAS] = {
6475 le32_to_cpu(EXT4_SB(sb)->s_es->s_usr_quota_inum),
6476 le32_to_cpu(EXT4_SB(sb)->s_es->s_grp_quota_inum),
6477 le32_to_cpu(EXT4_SB(sb)->s_es->s_prj_quota_inum)
6478 };
6479 bool quota_mopt[EXT4_MAXQUOTAS] = {
6480 test_opt(sb, USRQUOTA),
6481 test_opt(sb, GRPQUOTA),
6482 test_opt(sb, PRJQUOTA),
6483 };
6484
6485 sb_dqopt(sb)->flags |= DQUOT_QUOTA_SYS_FILE | DQUOT_NOLIST_DIRTY;
6486 for (type = 0; type < EXT4_MAXQUOTAS; type++) {
6487 if (qf_inums[type]) {
6488 err = ext4_quota_enable(sb, type, QFMT_VFS_V1,
6489 DQUOT_USAGE_ENABLED |
6490 (quota_mopt[type] ? DQUOT_LIMITS_ENABLED : 0));
6491 if (err) {
6492 ext4_warning(sb,
6493 "Failed to enable quota tracking "
6494 "(type=%d, err=%d). Please run "
6495 "e2fsck to fix.", type, err);
6496 for (type--; type >= 0; type--)
6497 dquot_quota_off(sb, type);
6498
6499 return err;
6500 }
6501 }
6502 }
6503 return 0;
6504}
6505
6506static int ext4_quota_off(struct super_block *sb, int type)
6507{
6508 struct inode *inode = sb_dqopt(sb)->files[type];
6509 handle_t *handle;
6510 int err;
6511
6512 /* Force all delayed allocation blocks to be allocated.
6513 * Caller already holds s_umount sem */
6514 if (test_opt(sb, DELALLOC))
6515 sync_filesystem(sb);
6516
6517 if (!inode || !igrab(inode))
6518 goto out;
6519
6520 err = dquot_quota_off(sb, type);
6521 if (err || ext4_has_feature_quota(sb))
6522 goto out_put;
6523
6524 inode_lock(inode);
6525 /*
6526 * Update modification times of quota files when userspace can
6527 * start looking at them. If we fail, we return success anyway since
6528 * this is not a hard failure and quotas are already disabled.
6529 */
6530 handle = ext4_journal_start(inode, EXT4_HT_QUOTA, 1);
6531 if (IS_ERR(handle)) {
6532 err = PTR_ERR(handle);
6533 goto out_unlock;
6534 }
6535 EXT4_I(inode)->i_flags &= ~(EXT4_NOATIME_FL | EXT4_IMMUTABLE_FL);
6536 inode_set_flags(inode, 0, S_NOATIME | S_IMMUTABLE);
6537 inode->i_mtime = inode->i_ctime = current_time(inode);
6538 err = ext4_mark_inode_dirty(handle, inode);
6539 ext4_journal_stop(handle);
6540out_unlock:
6541 inode_unlock(inode);
6542out_put:
6543 lockdep_set_quota_inode(inode, I_DATA_SEM_NORMAL);
6544 iput(inode);
6545 return err;
6546out:
6547 return dquot_quota_off(sb, type);
6548}
6549
6550/* Read data from quotafile - avoid pagecache and such because we cannot afford
6551 * acquiring the locks... As quota files are never truncated and quota code
6552 * itself serializes the operations (and no one else should touch the files)
6553 * we don't have to be afraid of races */
6554static ssize_t ext4_quota_read(struct super_block *sb, int type, char *data,
6555 size_t len, loff_t off)
6556{
6557 struct inode *inode = sb_dqopt(sb)->files[type];
6558 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6559 int offset = off & (sb->s_blocksize - 1);
6560 int tocopy;
6561 size_t toread;
6562 struct buffer_head *bh;
6563 loff_t i_size = i_size_read(inode);
6564
6565 if (off > i_size)
6566 return 0;
6567 if (off+len > i_size)
6568 len = i_size-off;
6569 toread = len;
6570 while (toread > 0) {
6571 tocopy = sb->s_blocksize - offset < toread ?
6572 sb->s_blocksize - offset : toread;
6573 bh = ext4_bread(NULL, inode, blk, 0);
6574 if (IS_ERR(bh))
6575 return PTR_ERR(bh);
6576 if (!bh) /* A hole? */
6577 memset(data, 0, tocopy);
6578 else
6579 memcpy(data, bh->b_data+offset, tocopy);
6580 brelse(bh);
6581 offset = 0;
6582 toread -= tocopy;
6583 data += tocopy;
6584 blk++;
6585 }
6586 return len;
6587}
6588
6589/* Write to quotafile (we know the transaction is already started and has
6590 * enough credits) */
6591static ssize_t ext4_quota_write(struct super_block *sb, int type,
6592 const char *data, size_t len, loff_t off)
6593{
6594 struct inode *inode = sb_dqopt(sb)->files[type];
6595 ext4_lblk_t blk = off >> EXT4_BLOCK_SIZE_BITS(sb);
6596 int err = 0, err2 = 0, offset = off & (sb->s_blocksize - 1);
6597 int retries = 0;
6598 struct buffer_head *bh;
6599 handle_t *handle = journal_current_handle();
6600
6601 if (EXT4_SB(sb)->s_journal && !handle) {
6602 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6603 " cancelled because transaction is not started",
6604 (unsigned long long)off, (unsigned long long)len);
6605 return -EIO;
6606 }
6607 /*
6608 * Since we account only one data block in transaction credits,
6609 * then it is impossible to cross a block boundary.
6610 */
6611 if (sb->s_blocksize - offset < len) {
6612 ext4_msg(sb, KERN_WARNING, "Quota write (off=%llu, len=%llu)"
6613 " cancelled because not block aligned",
6614 (unsigned long long)off, (unsigned long long)len);
6615 return -EIO;
6616 }
6617
6618 do {
6619 bh = ext4_bread(handle, inode, blk,
6620 EXT4_GET_BLOCKS_CREATE |
6621 EXT4_GET_BLOCKS_METADATA_NOFAIL);
6622 } while (PTR_ERR(bh) == -ENOSPC &&
6623 ext4_should_retry_alloc(inode->i_sb, &retries));
6624 if (IS_ERR(bh))
6625 return PTR_ERR(bh);
6626 if (!bh)
6627 goto out;
6628 BUFFER_TRACE(bh, "get write access");
6629 err = ext4_journal_get_write_access(handle, bh);
6630 if (err) {
6631 brelse(bh);
6632 return err;
6633 }
6634 lock_buffer(bh);
6635 memcpy(bh->b_data+offset, data, len);
6636 flush_dcache_page(bh->b_page);
6637 unlock_buffer(bh);
6638 err = ext4_handle_dirty_metadata(handle, NULL, bh);
6639 brelse(bh);
6640out:
6641 if (inode->i_size < off + len) {
6642 i_size_write(inode, off + len);
6643 EXT4_I(inode)->i_disksize = inode->i_size;
6644 err2 = ext4_mark_inode_dirty(handle, inode);
6645 if (unlikely(err2 && !err))
6646 err = err2;
6647 }
6648 return err ? err : len;
6649}
6650#endif
6651
6652static struct dentry *ext4_mount(struct file_system_type *fs_type, int flags,
6653 const char *dev_name, void *data)
6654{
6655 return mount_bdev(fs_type, flags, dev_name, data, ext4_fill_super);
6656}
6657
6658#if !defined(CONFIG_EXT2_FS) && !defined(CONFIG_EXT2_FS_MODULE) && defined(CONFIG_EXT4_USE_FOR_EXT2)
6659static inline void register_as_ext2(void)
6660{
6661 int err = register_filesystem(&ext2_fs_type);
6662 if (err)
6663 printk(KERN_WARNING
6664 "EXT4-fs: Unable to register as ext2 (%d)\n", err);
6665}
6666
6667static inline void unregister_as_ext2(void)
6668{
6669 unregister_filesystem(&ext2_fs_type);
6670}
6671
6672static inline int ext2_feature_set_ok(struct super_block *sb)
6673{
6674 if (ext4_has_unknown_ext2_incompat_features(sb))
6675 return 0;
6676 if (sb_rdonly(sb))
6677 return 1;
6678 if (ext4_has_unknown_ext2_ro_compat_features(sb))
6679 return 0;
6680 return 1;
6681}
6682#else
6683static inline void register_as_ext2(void) { }
6684static inline void unregister_as_ext2(void) { }
6685static inline int ext2_feature_set_ok(struct super_block *sb) { return 0; }
6686#endif
6687
6688static inline void register_as_ext3(void)
6689{
6690 int err = register_filesystem(&ext3_fs_type);
6691 if (err)
6692 printk(KERN_WARNING
6693 "EXT4-fs: Unable to register as ext3 (%d)\n", err);
6694}
6695
6696static inline void unregister_as_ext3(void)
6697{
6698 unregister_filesystem(&ext3_fs_type);
6699}
6700
6701static inline int ext3_feature_set_ok(struct super_block *sb)
6702{
6703 if (ext4_has_unknown_ext3_incompat_features(sb))
6704 return 0;
6705 if (!ext4_has_feature_journal(sb))
6706 return 0;
6707 if (sb_rdonly(sb))
6708 return 1;
6709 if (ext4_has_unknown_ext3_ro_compat_features(sb))
6710 return 0;
6711 return 1;
6712}
6713
6714static struct file_system_type ext4_fs_type = {
6715 .owner = THIS_MODULE,
6716 .name = "ext4",
6717 .mount = ext4_mount,
6718 .kill_sb = kill_block_super,
6719 .fs_flags = FS_REQUIRES_DEV | FS_ALLOW_IDMAP,
6720};
6721MODULE_ALIAS_FS("ext4");
6722
6723/* Shared across all ext4 file systems */
6724wait_queue_head_t ext4__ioend_wq[EXT4_WQ_HASH_SZ];
6725
6726static int __init ext4_init_fs(void)
6727{
6728 int i, err;
6729
6730 ratelimit_state_init(&ext4_mount_msg_ratelimit, 30 * HZ, 64);
6731 ext4_li_info = NULL;
6732
6733 /* Build-time check for flags consistency */
6734 ext4_check_flag_values();
6735
6736 for (i = 0; i < EXT4_WQ_HASH_SZ; i++)
6737 init_waitqueue_head(&ext4__ioend_wq[i]);
6738
6739 err = ext4_init_es();
6740 if (err)
6741 return err;
6742
6743 err = ext4_init_pending();
6744 if (err)
6745 goto out7;
6746
6747 err = ext4_init_post_read_processing();
6748 if (err)
6749 goto out6;
6750
6751 err = ext4_init_pageio();
6752 if (err)
6753 goto out5;
6754
6755 err = ext4_init_system_zone();
6756 if (err)
6757 goto out4;
6758
6759 err = ext4_init_sysfs();
6760 if (err)
6761 goto out3;
6762
6763 err = ext4_init_mballoc();
6764 if (err)
6765 goto out2;
6766 err = init_inodecache();
6767 if (err)
6768 goto out1;
6769
6770 err = ext4_fc_init_dentry_cache();
6771 if (err)
6772 goto out05;
6773
6774 register_as_ext3();
6775 register_as_ext2();
6776 err = register_filesystem(&ext4_fs_type);
6777 if (err)
6778 goto out;
6779
6780 return 0;
6781out:
6782 unregister_as_ext2();
6783 unregister_as_ext3();
6784out05:
6785 destroy_inodecache();
6786out1:
6787 ext4_exit_mballoc();
6788out2:
6789 ext4_exit_sysfs();
6790out3:
6791 ext4_exit_system_zone();
6792out4:
6793 ext4_exit_pageio();
6794out5:
6795 ext4_exit_post_read_processing();
6796out6:
6797 ext4_exit_pending();
6798out7:
6799 ext4_exit_es();
6800
6801 return err;
6802}
6803
6804static void __exit ext4_exit_fs(void)
6805{
6806 ext4_destroy_lazyinit_thread();
6807 unregister_as_ext2();
6808 unregister_as_ext3();
6809 unregister_filesystem(&ext4_fs_type);
6810 destroy_inodecache();
6811 ext4_exit_mballoc();
6812 ext4_exit_sysfs();
6813 ext4_exit_system_zone();
6814 ext4_exit_pageio();
6815 ext4_exit_post_read_processing();
6816 ext4_exit_es();
6817 ext4_exit_pending();
6818}
6819
6820MODULE_AUTHOR("Remy Card, Stephen Tweedie, Andrew Morton, Andreas Dilger, Theodore Ts'o and others");
6821MODULE_DESCRIPTION("Fourth Extended Filesystem");
6822MODULE_LICENSE("GPL");
6823MODULE_SOFTDEP("pre: crc32c");
6824module_init(ext4_init_fs)
6825module_exit(ext4_exit_fs)