Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_CTREE_H
  7#define BTRFS_CTREE_H
  8
  9#include <linux/mm.h>
 10#include <linux/sched/signal.h>
 11#include <linux/highmem.h>
 12#include <linux/fs.h>
 13#include <linux/rwsem.h>
 14#include <linux/semaphore.h>
 15#include <linux/completion.h>
 16#include <linux/backing-dev.h>
 17#include <linux/wait.h>
 18#include <linux/slab.h>
 19#include <trace/events/btrfs.h>
 20#include <asm/unaligned.h>
 21#include <linux/pagemap.h>
 22#include <linux/btrfs.h>
 23#include <linux/btrfs_tree.h>
 24#include <linux/workqueue.h>
 25#include <linux/security.h>
 26#include <linux/sizes.h>
 27#include <linux/dynamic_debug.h>
 
 28#include <linux/refcount.h>
 29#include <linux/crc32c.h>
 30#include <linux/iomap.h>
 31#include <linux/fscrypt.h>
 32#include "extent-io-tree.h"
 33#include "extent_io.h"
 34#include "extent_map.h"
 35#include "async-thread.h"
 36#include "block-rsv.h"
 37#include "locking.h"
 38#include "misc.h"
 39#include "fs.h"
 
 
 40
 
 
 41struct btrfs_trans_handle;
 42struct btrfs_transaction;
 43struct btrfs_pending_snapshot;
 44struct btrfs_delayed_ref_root;
 45struct btrfs_space_info;
 46struct btrfs_block_group;
 47struct btrfs_ordered_sum;
 48struct btrfs_ref;
 49struct btrfs_bio;
 50struct btrfs_ioctl_encoded_io_args;
 51struct btrfs_device;
 52struct btrfs_fs_devices;
 53struct btrfs_balance_control;
 54struct btrfs_delayed_root;
 55struct reloc_control;
 56
 57/* Read ahead values for struct btrfs_path.reada */
 58enum {
 59	READA_NONE,
 60	READA_BACK,
 61	READA_FORWARD,
 62	/*
 63	 * Similar to READA_FORWARD but unlike it:
 64	 *
 65	 * 1) It will trigger readahead even for leaves that are not close to
 66	 *    each other on disk;
 67	 * 2) It also triggers readahead for nodes;
 68	 * 3) During a search, even when a node or leaf is already in memory, it
 69	 *    will still trigger readahead for other nodes and leaves that follow
 70	 *    it.
 71	 *
 72	 * This is meant to be used only when we know we are iterating over the
 73	 * entire tree or a very large part of it.
 74	 */
 75	READA_FORWARD_ALWAYS,
 76};
 77
 78/*
 79 * btrfs_paths remember the path taken from the root down to the leaf.
 80 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 81 * to any other levels that are present.
 82 *
 83 * The slots array records the index of the item or block pointer
 84 * used while walking the tree.
 85 */
 86struct btrfs_path {
 87	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 88	int slots[BTRFS_MAX_LEVEL];
 89	/* if there is real range locking, this locks field will change */
 90	u8 locks[BTRFS_MAX_LEVEL];
 91	u8 reada;
 92	/* keep some upper locks as we walk down */
 93	u8 lowest_level;
 94
 95	/*
 96	 * set by btrfs_split_item, tells search_slot to keep all locks
 97	 * and to force calls to keep space in the nodes
 98	 */
 99	unsigned int search_for_split:1;
100	unsigned int keep_locks:1;
101	unsigned int skip_locking:1;
102	unsigned int search_commit_root:1;
103	unsigned int need_commit_sem:1;
104	unsigned int skip_release_on_error:1;
105	/*
106	 * Indicate that new item (btrfs_search_slot) is extending already
107	 * existing item and ins_len contains only the data size and not item
108	 * header (ie. sizeof(struct btrfs_item) is not included).
109	 */
110	unsigned int search_for_extension:1;
111	/* Stop search if any locks need to be taken (for read) */
112	unsigned int nowait:1;
113};
114
 
 
 
115/*
116 * The state of btrfs root
117 */
118enum {
119	/*
120	 * btrfs_record_root_in_trans is a multi-step process, and it can race
121	 * with the balancing code.   But the race is very small, and only the
122	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
123	 * is used to tell us when more checks are required
124	 */
125	BTRFS_ROOT_IN_TRANS_SETUP,
126
127	/*
128	 * Set if tree blocks of this root can be shared by other roots.
129	 * Only subvolume trees and their reloc trees have this bit set.
130	 * Conflicts with TRACK_DIRTY bit.
131	 *
132	 * This affects two things:
133	 *
134	 * - How balance works
135	 *   For shareable roots, we need to use reloc tree and do path
136	 *   replacement for balance, and need various pre/post hooks for
137	 *   snapshot creation to handle them.
138	 *
139	 *   While for non-shareable trees, we just simply do a tree search
140	 *   with COW.
141	 *
142	 * - How dirty roots are tracked
143	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
144	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
145	 *   don't need to set this manually.
146	 */
147	BTRFS_ROOT_SHAREABLE,
148	BTRFS_ROOT_TRACK_DIRTY,
149	BTRFS_ROOT_IN_RADIX,
150	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
151	BTRFS_ROOT_DEFRAG_RUNNING,
152	BTRFS_ROOT_FORCE_COW,
153	BTRFS_ROOT_MULTI_LOG_TASKS,
154	BTRFS_ROOT_DIRTY,
155	BTRFS_ROOT_DELETING,
156
157	/*
158	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
159	 *
160	 * Set for the subvolume tree owning the reloc tree.
161	 */
162	BTRFS_ROOT_DEAD_RELOC_TREE,
163	/* Mark dead root stored on device whose cleanup needs to be resumed */
164	BTRFS_ROOT_DEAD_TREE,
165	/* The root has a log tree. Used for subvolume roots and the tree root. */
166	BTRFS_ROOT_HAS_LOG_TREE,
167	/* Qgroup flushing is in progress */
168	BTRFS_ROOT_QGROUP_FLUSHING,
169	/* We started the orphan cleanup for this root. */
170	BTRFS_ROOT_ORPHAN_CLEANUP,
171	/* This root has a drop operation that was started previously. */
172	BTRFS_ROOT_UNFINISHED_DROP,
173	/* This reloc root needs to have its buffers lockdep class reset. */
174	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
175};
176
177/*
178 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
179 * code. For detail check comment in fs/btrfs/qgroup.c.
180 */
181struct btrfs_qgroup_swapped_blocks {
182	spinlock_t lock;
183	/* RM_EMPTY_ROOT() of above blocks[] */
184	bool swapped;
185	struct rb_root blocks[BTRFS_MAX_LEVEL];
186};
187
188/*
189 * in ram representation of the tree.  extent_root is used for all allocations
190 * and for the extent tree extent_root root.
191 */
192struct btrfs_root {
193	struct rb_node rb_node;
194
195	struct extent_buffer *node;
196
197	struct extent_buffer *commit_root;
198	struct btrfs_root *log_root;
199	struct btrfs_root *reloc_root;
200
201	unsigned long state;
202	struct btrfs_root_item root_item;
203	struct btrfs_key root_key;
204	struct btrfs_fs_info *fs_info;
205	struct extent_io_tree dirty_log_pages;
206
207	struct mutex objectid_mutex;
208
209	spinlock_t accounting_lock;
210	struct btrfs_block_rsv *block_rsv;
211
212	struct mutex log_mutex;
213	wait_queue_head_t log_writer_wait;
214	wait_queue_head_t log_commit_wait[2];
215	struct list_head log_ctxs[2];
216	/* Used only for log trees of subvolumes, not for the log root tree */
217	atomic_t log_writers;
218	atomic_t log_commit[2];
219	/* Used only for log trees of subvolumes, not for the log root tree */
220	atomic_t log_batch;
 
 
 
 
 
 
 
 
221	int log_transid;
222	/* No matter the commit succeeds or not*/
223	int log_transid_committed;
224	/* Just be updated when the commit succeeds. */
 
 
 
 
225	int last_log_commit;
226	pid_t log_start_pid;
227
228	u64 last_trans;
229
230	u32 type;
231
232	u64 free_objectid;
233
234	struct btrfs_key defrag_progress;
235	struct btrfs_key defrag_max;
236
237	/* The dirty list is only used by non-shareable roots */
238	struct list_head dirty_list;
239
240	struct list_head root_list;
241
242	spinlock_t log_extents_lock[2];
243	struct list_head logged_list[2];
244
245	spinlock_t inode_lock;
246	/* red-black tree that keeps track of in-memory inodes */
247	struct rb_root inode_tree;
248
249	/*
250	 * radix tree that keeps track of delayed nodes of every inode,
251	 * protected by inode_lock
252	 */
253	struct radix_tree_root delayed_nodes_tree;
254	/*
255	 * right now this just gets used so that a root has its own devid
256	 * for stat.  It may be used for more later
257	 */
258	dev_t anon_dev;
259
260	spinlock_t root_item_lock;
261	refcount_t refs;
262
263	struct mutex delalloc_mutex;
264	spinlock_t delalloc_lock;
265	/*
266	 * all of the inodes that have delalloc bytes.  It is possible for
267	 * this list to be empty even when there is still dirty data=ordered
268	 * extents waiting to finish IO.
269	 */
270	struct list_head delalloc_inodes;
271	struct list_head delalloc_root;
272	u64 nr_delalloc_inodes;
273
274	struct mutex ordered_extent_mutex;
275	/*
276	 * this is used by the balancing code to wait for all the pending
277	 * ordered extents
278	 */
279	spinlock_t ordered_extent_lock;
280
281	/*
282	 * all of the data=ordered extents pending writeback
283	 * these can span multiple transactions and basically include
284	 * every dirty data page that isn't from nodatacow
285	 */
286	struct list_head ordered_extents;
287	struct list_head ordered_root;
288	u64 nr_ordered_extents;
289
290	/*
291	 * Not empty if this subvolume root has gone through tree block swap
292	 * (relocation)
293	 *
294	 * Will be used by reloc_control::dirty_subvol_roots.
295	 */
296	struct list_head reloc_dirty_list;
297
298	/*
299	 * Number of currently running SEND ioctls to prevent
300	 * manipulation with the read-only status via SUBVOL_SETFLAGS
301	 */
302	int send_in_progress;
303	/*
304	 * Number of currently running deduplication operations that have a
305	 * destination inode belonging to this root. Protected by the lock
306	 * root_item_lock.
307	 */
308	int dedupe_in_progress;
309	/* For exclusion of snapshot creation and nocow writes */
310	struct btrfs_drew_lock snapshot_lock;
311
312	atomic_t snapshot_force_cow;
313
314	/* For qgroup metadata reserved space */
315	spinlock_t qgroup_meta_rsv_lock;
316	u64 qgroup_meta_rsv_pertrans;
317	u64 qgroup_meta_rsv_prealloc;
318	wait_queue_head_t qgroup_flush_wait;
319
320	/* Number of active swapfiles */
321	atomic_t nr_swapfiles;
322
323	/* Record pairs of swapped blocks for qgroup */
324	struct btrfs_qgroup_swapped_blocks swapped_blocks;
325
326	/* Used only by log trees, when logging csum items */
327	struct extent_io_tree log_csum_range;
328
 
 
 
329#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
330	u64 alloc_bytenr;
331#endif
332
333#ifdef CONFIG_BTRFS_DEBUG
334	struct list_head leak_list;
335#endif
336};
337
338static inline bool btrfs_root_readonly(const struct btrfs_root *root)
339{
340	/* Byte-swap the constant at compile time, root_item::flags is LE */
341	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
342}
343
344static inline bool btrfs_root_dead(const struct btrfs_root *root)
345{
346	/* Byte-swap the constant at compile time, root_item::flags is LE */
347	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
348}
349
350static inline u64 btrfs_root_id(const struct btrfs_root *root)
351{
352	return root->root_key.objectid;
353}
354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355/*
356 * Structure that conveys information about an extent that is going to replace
357 * all the extents in a file range.
358 */
359struct btrfs_replace_extent_info {
360	u64 disk_offset;
361	u64 disk_len;
362	u64 data_offset;
363	u64 data_len;
364	u64 file_offset;
365	/* Pointer to a file extent item of type regular or prealloc. */
366	char *extent_buf;
367	/*
368	 * Set to true when attempting to replace a file range with a new extent
369	 * described by this structure, set to false when attempting to clone an
370	 * existing extent into a file range.
371	 */
372	bool is_new_extent;
373	/* Indicate if we should update the inode's mtime and ctime. */
374	bool update_times;
375	/* Meaningful only if is_new_extent is true. */
376	int qgroup_reserved;
377	/*
378	 * Meaningful only if is_new_extent is true.
379	 * Used to track how many extent items we have already inserted in a
380	 * subvolume tree that refer to the extent described by this structure,
381	 * so that we know when to create a new delayed ref or update an existing
382	 * one.
383	 */
384	int insertions;
385};
386
387/* Arguments for btrfs_drop_extents() */
388struct btrfs_drop_extents_args {
389	/* Input parameters */
390
391	/*
392	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
393	 * If 'replace_extent' is true, this must not be NULL. Also the path
394	 * is always released except if 'replace_extent' is true and
395	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
396	 * the path is kept locked.
397	 */
398	struct btrfs_path *path;
399	/* Start offset of the range to drop extents from */
400	u64 start;
401	/* End (exclusive, last byte + 1) of the range to drop extents from */
402	u64 end;
403	/* If true drop all the extent maps in the range */
404	bool drop_cache;
405	/*
406	 * If true it means we want to insert a new extent after dropping all
407	 * the extents in the range. If this is true, the 'extent_item_size'
408	 * parameter must be set as well and the 'extent_inserted' field will
409	 * be set to true by btrfs_drop_extents() if it could insert the new
410	 * extent.
411	 * Note: when this is set to true the path must not be NULL.
412	 */
413	bool replace_extent;
414	/*
415	 * Used if 'replace_extent' is true. Size of the file extent item to
416	 * insert after dropping all existing extents in the range
417	 */
418	u32 extent_item_size;
419
420	/* Output parameters */
421
422	/*
423	 * Set to the minimum between the input parameter 'end' and the end
424	 * (exclusive, last byte + 1) of the last dropped extent. This is always
425	 * set even if btrfs_drop_extents() returns an error.
426	 */
427	u64 drop_end;
428	/*
429	 * The number of allocated bytes found in the range. This can be smaller
430	 * than the range's length when there are holes in the range.
431	 */
432	u64 bytes_found;
433	/*
434	 * Only set if 'replace_extent' is true. Set to true if we were able
435	 * to insert a replacement extent after dropping all extents in the
436	 * range, otherwise set to false by btrfs_drop_extents().
437	 * Also, if btrfs_drop_extents() has set this to true it means it
438	 * returned with the path locked, otherwise if it has set this to
439	 * false it has returned with the path released.
440	 */
441	bool extent_inserted;
442};
443
444struct btrfs_file_private {
445	void *filldir_buf;
 
446	struct extent_state *llseek_cached_state;
 
 
447};
448
449static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
450{
451	return info->nodesize - sizeof(struct btrfs_header);
452}
453
454static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
455{
456	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
457}
458
459static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
460{
461	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
462}
463
464static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
465{
466	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
467}
468
469#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
470				((bytes) >> (fs_info)->sectorsize_bits)
471
472static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
473{
474	return crc32c(crc, address, length);
475}
476
477static inline void btrfs_crc32c_final(u32 crc, u8 *result)
478{
479	put_unaligned_le32(~crc, result);
480}
481
482static inline u64 btrfs_name_hash(const char *name, int len)
483{
484       return crc32c((u32)~1, name, len);
485}
 
 
 
 
 
 
486
487/*
488 * Figure the key offset of an extended inode ref
 
489 */
490static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
491                                   int len)
492{
493       return (u64) crc32c(parent_objectid, name, len);
 
 
494}
495
496static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
 
 
 
 
497{
498	return mapping_gfp_constraint(mapping, ~__GFP_FS);
 
 
 
 
499}
500
501int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
502				   u64 start, u64 end);
503int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
504			 u64 num_bytes, u64 *actual_bytes);
505int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
506
507/* ctree.c */
508int __init btrfs_ctree_init(void);
509void __cold btrfs_ctree_exit(void);
510int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
511		     int *slot);
512int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
513int btrfs_previous_item(struct btrfs_root *root,
514			struct btrfs_path *path, u64 min_objectid,
515			int type);
516int btrfs_previous_extent_item(struct btrfs_root *root,
517			struct btrfs_path *path, u64 min_objectid);
518void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
519			     struct btrfs_path *path,
520			     const struct btrfs_key *new_key);
521struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
522int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
523			struct btrfs_key *key, int lowest_level,
524			u64 min_trans);
525int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
526			 struct btrfs_path *path,
527			 u64 min_trans);
528struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
529					   int slot);
530
531int btrfs_cow_block(struct btrfs_trans_handle *trans,
532		    struct btrfs_root *root, struct extent_buffer *buf,
533		    struct extent_buffer *parent, int parent_slot,
534		    struct extent_buffer **cow_ret,
535		    enum btrfs_lock_nesting nest);
 
 
 
 
 
 
 
536int btrfs_copy_root(struct btrfs_trans_handle *trans,
537		      struct btrfs_root *root,
538		      struct extent_buffer *buf,
539		      struct extent_buffer **cow_ret, u64 new_root_objectid);
540int btrfs_block_can_be_shared(struct btrfs_root *root,
541			      struct extent_buffer *buf);
542void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
543void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
 
 
 
 
 
544int btrfs_split_item(struct btrfs_trans_handle *trans,
545		     struct btrfs_root *root,
546		     struct btrfs_path *path,
547		     const struct btrfs_key *new_key,
548		     unsigned long split_offset);
549int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
550			 struct btrfs_root *root,
551			 struct btrfs_path *path,
552			 const struct btrfs_key *new_key);
553int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
554		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
555int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
556		      const struct btrfs_key *key, struct btrfs_path *p,
557		      int ins_len, int cow);
558int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
559			  struct btrfs_path *p, u64 time_seq);
560int btrfs_search_slot_for_read(struct btrfs_root *root,
561			       const struct btrfs_key *key,
562			       struct btrfs_path *p, int find_higher,
563			       int return_any);
564int btrfs_realloc_node(struct btrfs_trans_handle *trans,
565		       struct btrfs_root *root, struct extent_buffer *parent,
566		       int start_slot, u64 *last_ret,
567		       struct btrfs_key *progress);
568void btrfs_release_path(struct btrfs_path *p);
569struct btrfs_path *btrfs_alloc_path(void);
570void btrfs_free_path(struct btrfs_path *p);
 
571
572int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
573		   struct btrfs_path *path, int slot, int nr);
574static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
575				 struct btrfs_root *root,
576				 struct btrfs_path *path)
577{
578	return btrfs_del_items(trans, root, path, path->slots[0], 1);
579}
580
581/*
582 * Describes a batch of items to insert in a btree. This is used by
583 * btrfs_insert_empty_items().
584 */
585struct btrfs_item_batch {
586	/*
587	 * Pointer to an array containing the keys of the items to insert (in
588	 * sorted order).
589	 */
590	const struct btrfs_key *keys;
591	/* Pointer to an array containing the data size for each item to insert. */
592	const u32 *data_sizes;
593	/*
594	 * The sum of data sizes for all items. The caller can compute this while
595	 * setting up the data_sizes array, so it ends up being more efficient
596	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
597	 * doing it, as it would avoid an extra loop over a potentially large
598	 * array, and in the case of setup_item_for_insert(), we would be doing
599	 * it while holding a write lock on a leaf and often on upper level nodes
600	 * too, unnecessarily increasing the size of a critical section.
601	 */
602	u32 total_data_size;
603	/* Size of the keys and data_sizes arrays (number of items in the batch). */
604	int nr;
605};
606
607void btrfs_setup_item_for_insert(struct btrfs_root *root,
 
608				 struct btrfs_path *path,
609				 const struct btrfs_key *key,
610				 u32 data_size);
611int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
612		      const struct btrfs_key *key, void *data, u32 data_size);
613int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
614			     struct btrfs_root *root,
615			     struct btrfs_path *path,
616			     const struct btrfs_item_batch *batch);
617
618static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
619					  struct btrfs_root *root,
620					  struct btrfs_path *path,
621					  const struct btrfs_key *key,
622					  u32 data_size)
623{
624	struct btrfs_item_batch batch;
625
626	batch.keys = key;
627	batch.data_sizes = &data_size;
628	batch.total_data_size = data_size;
629	batch.nr = 1;
630
631	return btrfs_insert_empty_items(trans, root, path, &batch);
632}
633
634int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
635int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
636			u64 time_seq);
637
638int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
639			   struct btrfs_path *path);
640
641int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
642			      struct btrfs_path *path);
643
644/*
645 * Search in @root for a given @key, and store the slot found in @found_key.
646 *
647 * @root:	The root node of the tree.
648 * @key:	The key we are looking for.
649 * @found_key:	Will hold the found item.
650 * @path:	Holds the current slot/leaf.
651 * @iter_ret:	Contains the value returned from btrfs_search_slot or
652 * 		btrfs_get_next_valid_item, whichever was executed last.
653 *
654 * The @iter_ret is an output variable that will contain the return value of
655 * btrfs_search_slot, if it encountered an error, or the value returned from
656 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
657 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
658 *
659 * It's recommended to use a separate variable for iter_ret and then use it to
660 * set the function return value so there's no confusion of the 0/1/errno
661 * values stemming from btrfs_search_slot.
662 */
663#define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
664	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
665		(iter_ret) >= 0 &&						\
666		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
667		(path)->slots[0]++						\
668	)
669
670int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
671
672/*
673 * Search the tree again to find a leaf with greater keys.
674 *
675 * Returns 0 if it found something or 1 if there are no greater leaves.
676 * Returns < 0 on error.
677 */
678static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
679{
680	return btrfs_next_old_leaf(root, path, 0);
681}
682
683static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
684{
685	return btrfs_next_old_item(root, p, 0);
686}
687int btrfs_leaf_free_space(struct extent_buffer *leaf);
688
689static inline int is_fstree(u64 rootid)
690{
691	if (rootid == BTRFS_FS_TREE_OBJECTID ||
692	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
693	      !btrfs_qgroup_level(rootid)))
694		return 1;
695	return 0;
696}
697
698static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
699{
700	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
701}
702
 
703int btrfs_super_csum_size(const struct btrfs_super_block *s);
704const char *btrfs_super_csum_name(u16 csum_type);
705const char *btrfs_super_csum_driver(u16 csum_type);
706size_t __attribute_const__ btrfs_get_num_csums(void);
707
708/*
709 * We use page status Private2 to indicate there is an ordered extent with
710 * unfinished IO.
711 *
712 * Rename the Private2 accessors to Ordered, to improve readability.
713 */
714#define PageOrdered(page)		PagePrivate2(page)
715#define SetPageOrdered(page)		SetPagePrivate2(page)
716#define ClearPageOrdered(page)		ClearPagePrivate2(page)
717#define folio_test_ordered(folio)	folio_test_private_2(folio)
718#define folio_set_ordered(folio)	folio_set_private_2(folio)
719#define folio_clear_ordered(folio)	folio_clear_private_2(folio)
720
721#endif
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_CTREE_H
  7#define BTRFS_CTREE_H
  8
  9#include "linux/cleanup.h"
 
 
 
 
 
 
 
 
 
 
 
 10#include <linux/pagemap.h>
 11#include <linux/spinlock.h>
 12#include <linux/rbtree.h>
 13#include <linux/mutex.h>
 14#include <linux/wait.h>
 15#include <linux/list.h>
 16#include <linux/atomic.h>
 17#include <linux/xarray.h>
 18#include <linux/refcount.h>
 19#include <uapi/linux/btrfs_tree.h>
 
 
 
 
 
 
 
 20#include "locking.h"
 
 21#include "fs.h"
 22#include "accessors.h"
 23#include "extent-io-tree.h"
 24
 25struct extent_buffer;
 26struct btrfs_block_rsv;
 27struct btrfs_trans_handle;
 
 
 
 
 28struct btrfs_block_group;
 
 
 
 
 
 
 
 
 
 29
 30/* Read ahead values for struct btrfs_path.reada */
 31enum {
 32	READA_NONE,
 33	READA_BACK,
 34	READA_FORWARD,
 35	/*
 36	 * Similar to READA_FORWARD but unlike it:
 37	 *
 38	 * 1) It will trigger readahead even for leaves that are not close to
 39	 *    each other on disk;
 40	 * 2) It also triggers readahead for nodes;
 41	 * 3) During a search, even when a node or leaf is already in memory, it
 42	 *    will still trigger readahead for other nodes and leaves that follow
 43	 *    it.
 44	 *
 45	 * This is meant to be used only when we know we are iterating over the
 46	 * entire tree or a very large part of it.
 47	 */
 48	READA_FORWARD_ALWAYS,
 49};
 50
 51/*
 52 * btrfs_paths remember the path taken from the root down to the leaf.
 53 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 54 * to any other levels that are present.
 55 *
 56 * The slots array records the index of the item or block pointer
 57 * used while walking the tree.
 58 */
 59struct btrfs_path {
 60	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 61	int slots[BTRFS_MAX_LEVEL];
 62	/* if there is real range locking, this locks field will change */
 63	u8 locks[BTRFS_MAX_LEVEL];
 64	u8 reada;
 65	/* keep some upper locks as we walk down */
 66	u8 lowest_level;
 67
 68	/*
 69	 * set by btrfs_split_item, tells search_slot to keep all locks
 70	 * and to force calls to keep space in the nodes
 71	 */
 72	unsigned int search_for_split:1;
 73	unsigned int keep_locks:1;
 74	unsigned int skip_locking:1;
 75	unsigned int search_commit_root:1;
 76	unsigned int need_commit_sem:1;
 77	unsigned int skip_release_on_error:1;
 78	/*
 79	 * Indicate that new item (btrfs_search_slot) is extending already
 80	 * existing item and ins_len contains only the data size and not item
 81	 * header (ie. sizeof(struct btrfs_item) is not included).
 82	 */
 83	unsigned int search_for_extension:1;
 84	/* Stop search if any locks need to be taken (for read) */
 85	unsigned int nowait:1;
 86};
 87
 88#define BTRFS_PATH_AUTO_FREE(path_name)					\
 89	struct btrfs_path *path_name __free(btrfs_free_path) = NULL
 90
 91/*
 92 * The state of btrfs root
 93 */
 94enum {
 95	/*
 96	 * btrfs_record_root_in_trans is a multi-step process, and it can race
 97	 * with the balancing code.   But the race is very small, and only the
 98	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
 99	 * is used to tell us when more checks are required
100	 */
101	BTRFS_ROOT_IN_TRANS_SETUP,
102
103	/*
104	 * Set if tree blocks of this root can be shared by other roots.
105	 * Only subvolume trees and their reloc trees have this bit set.
106	 * Conflicts with TRACK_DIRTY bit.
107	 *
108	 * This affects two things:
109	 *
110	 * - How balance works
111	 *   For shareable roots, we need to use reloc tree and do path
112	 *   replacement for balance, and need various pre/post hooks for
113	 *   snapshot creation to handle them.
114	 *
115	 *   While for non-shareable trees, we just simply do a tree search
116	 *   with COW.
117	 *
118	 * - How dirty roots are tracked
119	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
120	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
121	 *   don't need to set this manually.
122	 */
123	BTRFS_ROOT_SHAREABLE,
124	BTRFS_ROOT_TRACK_DIRTY,
125	BTRFS_ROOT_IN_RADIX,
126	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
127	BTRFS_ROOT_DEFRAG_RUNNING,
128	BTRFS_ROOT_FORCE_COW,
129	BTRFS_ROOT_MULTI_LOG_TASKS,
130	BTRFS_ROOT_DIRTY,
131	BTRFS_ROOT_DELETING,
132
133	/*
134	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
135	 *
136	 * Set for the subvolume tree owning the reloc tree.
137	 */
138	BTRFS_ROOT_DEAD_RELOC_TREE,
139	/* Mark dead root stored on device whose cleanup needs to be resumed */
140	BTRFS_ROOT_DEAD_TREE,
141	/* The root has a log tree. Used for subvolume roots and the tree root. */
142	BTRFS_ROOT_HAS_LOG_TREE,
143	/* Qgroup flushing is in progress */
144	BTRFS_ROOT_QGROUP_FLUSHING,
145	/* We started the orphan cleanup for this root. */
146	BTRFS_ROOT_ORPHAN_CLEANUP,
147	/* This root has a drop operation that was started previously. */
148	BTRFS_ROOT_UNFINISHED_DROP,
149	/* This reloc root needs to have its buffers lockdep class reset. */
150	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
151};
152
153/*
154 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
155 * code. For detail check comment in fs/btrfs/qgroup.c.
156 */
157struct btrfs_qgroup_swapped_blocks {
158	spinlock_t lock;
159	/* RM_EMPTY_ROOT() of above blocks[] */
160	bool swapped;
161	struct rb_root blocks[BTRFS_MAX_LEVEL];
162};
163
164/*
165 * in ram representation of the tree.  extent_root is used for all allocations
166 * and for the extent tree extent_root root.
167 */
168struct btrfs_root {
169	struct rb_node rb_node;
170
171	struct extent_buffer *node;
172
173	struct extent_buffer *commit_root;
174	struct btrfs_root *log_root;
175	struct btrfs_root *reloc_root;
176
177	unsigned long state;
178	struct btrfs_root_item root_item;
179	struct btrfs_key root_key;
180	struct btrfs_fs_info *fs_info;
181	struct extent_io_tree dirty_log_pages;
182
183	struct mutex objectid_mutex;
184
185	spinlock_t accounting_lock;
186	struct btrfs_block_rsv *block_rsv;
187
188	struct mutex log_mutex;
189	wait_queue_head_t log_writer_wait;
190	wait_queue_head_t log_commit_wait[2];
191	struct list_head log_ctxs[2];
192	/* Used only for log trees of subvolumes, not for the log root tree */
193	atomic_t log_writers;
194	atomic_t log_commit[2];
195	/* Used only for log trees of subvolumes, not for the log root tree */
196	atomic_t log_batch;
197	/*
198	 * Protected by the 'log_mutex' lock but can be read without holding
199	 * that lock to avoid unnecessary lock contention, in which case it
200	 * should be read using btrfs_get_root_log_transid() except if it's a
201	 * log tree in which case it can be directly accessed. Updates to this
202	 * field should always use btrfs_set_root_log_transid(), except for log
203	 * trees where the field can be updated directly.
204	 */
205	int log_transid;
206	/* No matter the commit succeeds or not*/
207	int log_transid_committed;
208	/*
209	 * Just be updated when the commit succeeds. Use
210	 * btrfs_get_root_last_log_commit() and btrfs_set_root_last_log_commit()
211	 * to access this field.
212	 */
213	int last_log_commit;
214	pid_t log_start_pid;
215
216	u64 last_trans;
217
 
 
218	u64 free_objectid;
219
220	struct btrfs_key defrag_progress;
221	struct btrfs_key defrag_max;
222
223	/* The dirty list is only used by non-shareable roots */
224	struct list_head dirty_list;
225
226	struct list_head root_list;
227
228	/*
229	 * Xarray that keeps track of in-memory inodes, protected by the lock
230	 * @inode_lock.
231	 */
232	struct xarray inodes;
 
233
234	/*
235	 * Xarray that keeps track of delayed nodes of every inode, protected
236	 * by @inode_lock.
237	 */
238	struct xarray delayed_nodes;
239	/*
240	 * right now this just gets used so that a root has its own devid
241	 * for stat.  It may be used for more later
242	 */
243	dev_t anon_dev;
244
245	spinlock_t root_item_lock;
246	refcount_t refs;
247
248	struct mutex delalloc_mutex;
249	spinlock_t delalloc_lock;
250	/*
251	 * all of the inodes that have delalloc bytes.  It is possible for
252	 * this list to be empty even when there is still dirty data=ordered
253	 * extents waiting to finish IO.
254	 */
255	struct list_head delalloc_inodes;
256	struct list_head delalloc_root;
257	u64 nr_delalloc_inodes;
258
259	struct mutex ordered_extent_mutex;
260	/*
261	 * this is used by the balancing code to wait for all the pending
262	 * ordered extents
263	 */
264	spinlock_t ordered_extent_lock;
265
266	/*
267	 * all of the data=ordered extents pending writeback
268	 * these can span multiple transactions and basically include
269	 * every dirty data page that isn't from nodatacow
270	 */
271	struct list_head ordered_extents;
272	struct list_head ordered_root;
273	u64 nr_ordered_extents;
274
275	/*
276	 * Not empty if this subvolume root has gone through tree block swap
277	 * (relocation)
278	 *
279	 * Will be used by reloc_control::dirty_subvol_roots.
280	 */
281	struct list_head reloc_dirty_list;
282
283	/*
284	 * Number of currently running SEND ioctls to prevent
285	 * manipulation with the read-only status via SUBVOL_SETFLAGS
286	 */
287	int send_in_progress;
288	/*
289	 * Number of currently running deduplication operations that have a
290	 * destination inode belonging to this root. Protected by the lock
291	 * root_item_lock.
292	 */
293	int dedupe_in_progress;
294	/* For exclusion of snapshot creation and nocow writes */
295	struct btrfs_drew_lock snapshot_lock;
296
297	atomic_t snapshot_force_cow;
298
299	/* For qgroup metadata reserved space */
300	spinlock_t qgroup_meta_rsv_lock;
301	u64 qgroup_meta_rsv_pertrans;
302	u64 qgroup_meta_rsv_prealloc;
303	wait_queue_head_t qgroup_flush_wait;
304
305	/* Number of active swapfiles */
306	atomic_t nr_swapfiles;
307
308	/* Record pairs of swapped blocks for qgroup */
309	struct btrfs_qgroup_swapped_blocks swapped_blocks;
310
311	/* Used only by log trees, when logging csum items */
312	struct extent_io_tree log_csum_range;
313
314	/* Used in simple quotas, track root during relocation. */
315	u64 relocation_src_root;
316
317#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
318	u64 alloc_bytenr;
319#endif
320
321#ifdef CONFIG_BTRFS_DEBUG
322	struct list_head leak_list;
323#endif
324};
325
326static inline bool btrfs_root_readonly(const struct btrfs_root *root)
327{
328	/* Byte-swap the constant at compile time, root_item::flags is LE */
329	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
330}
331
332static inline bool btrfs_root_dead(const struct btrfs_root *root)
333{
334	/* Byte-swap the constant at compile time, root_item::flags is LE */
335	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
336}
337
338static inline u64 btrfs_root_id(const struct btrfs_root *root)
339{
340	return root->root_key.objectid;
341}
342
343static inline int btrfs_get_root_log_transid(const struct btrfs_root *root)
344{
345	return READ_ONCE(root->log_transid);
346}
347
348static inline void btrfs_set_root_log_transid(struct btrfs_root *root, int log_transid)
349{
350	WRITE_ONCE(root->log_transid, log_transid);
351}
352
353static inline int btrfs_get_root_last_log_commit(const struct btrfs_root *root)
354{
355	return READ_ONCE(root->last_log_commit);
356}
357
358static inline void btrfs_set_root_last_log_commit(struct btrfs_root *root, int commit_id)
359{
360	WRITE_ONCE(root->last_log_commit, commit_id);
361}
362
363static inline u64 btrfs_get_root_last_trans(const struct btrfs_root *root)
364{
365	return READ_ONCE(root->last_trans);
366}
367
368static inline void btrfs_set_root_last_trans(struct btrfs_root *root, u64 transid)
369{
370	WRITE_ONCE(root->last_trans, transid);
371}
372
373/*
374 * Return the generation this root started with.
375 *
376 * Every normal root that is created with root->root_key.offset set to it's
377 * originating generation.  If it is a snapshot it is the generation when the
378 * snapshot was created.
379 *
380 * However for TREE_RELOC roots root_key.offset is the objectid of the owning
381 * tree root.  Thankfully we copy the root item of the owning tree root, which
382 * has it's last_snapshot set to what we would have root_key.offset set to, so
383 * return that if this is a TREE_RELOC root.
384 */
385static inline u64 btrfs_root_origin_generation(const struct btrfs_root *root)
386{
387	if (btrfs_root_id(root) == BTRFS_TREE_RELOC_OBJECTID)
388		return btrfs_root_last_snapshot(&root->root_item);
389	return root->root_key.offset;
390}
391
392/*
393 * Structure that conveys information about an extent that is going to replace
394 * all the extents in a file range.
395 */
396struct btrfs_replace_extent_info {
397	u64 disk_offset;
398	u64 disk_len;
399	u64 data_offset;
400	u64 data_len;
401	u64 file_offset;
402	/* Pointer to a file extent item of type regular or prealloc. */
403	char *extent_buf;
404	/*
405	 * Set to true when attempting to replace a file range with a new extent
406	 * described by this structure, set to false when attempting to clone an
407	 * existing extent into a file range.
408	 */
409	bool is_new_extent;
410	/* Indicate if we should update the inode's mtime and ctime. */
411	bool update_times;
412	/* Meaningful only if is_new_extent is true. */
413	int qgroup_reserved;
414	/*
415	 * Meaningful only if is_new_extent is true.
416	 * Used to track how many extent items we have already inserted in a
417	 * subvolume tree that refer to the extent described by this structure,
418	 * so that we know when to create a new delayed ref or update an existing
419	 * one.
420	 */
421	int insertions;
422};
423
424/* Arguments for btrfs_drop_extents() */
425struct btrfs_drop_extents_args {
426	/* Input parameters */
427
428	/*
429	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
430	 * If 'replace_extent' is true, this must not be NULL. Also the path
431	 * is always released except if 'replace_extent' is true and
432	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
433	 * the path is kept locked.
434	 */
435	struct btrfs_path *path;
436	/* Start offset of the range to drop extents from */
437	u64 start;
438	/* End (exclusive, last byte + 1) of the range to drop extents from */
439	u64 end;
440	/* If true drop all the extent maps in the range */
441	bool drop_cache;
442	/*
443	 * If true it means we want to insert a new extent after dropping all
444	 * the extents in the range. If this is true, the 'extent_item_size'
445	 * parameter must be set as well and the 'extent_inserted' field will
446	 * be set to true by btrfs_drop_extents() if it could insert the new
447	 * extent.
448	 * Note: when this is set to true the path must not be NULL.
449	 */
450	bool replace_extent;
451	/*
452	 * Used if 'replace_extent' is true. Size of the file extent item to
453	 * insert after dropping all existing extents in the range
454	 */
455	u32 extent_item_size;
456
457	/* Output parameters */
458
459	/*
460	 * Set to the minimum between the input parameter 'end' and the end
461	 * (exclusive, last byte + 1) of the last dropped extent. This is always
462	 * set even if btrfs_drop_extents() returns an error.
463	 */
464	u64 drop_end;
465	/*
466	 * The number of allocated bytes found in the range. This can be smaller
467	 * than the range's length when there are holes in the range.
468	 */
469	u64 bytes_found;
470	/*
471	 * Only set if 'replace_extent' is true. Set to true if we were able
472	 * to insert a replacement extent after dropping all extents in the
473	 * range, otherwise set to false by btrfs_drop_extents().
474	 * Also, if btrfs_drop_extents() has set this to true it means it
475	 * returned with the path locked, otherwise if it has set this to
476	 * false it has returned with the path released.
477	 */
478	bool extent_inserted;
479};
480
481struct btrfs_file_private {
482	void *filldir_buf;
483	u64 last_index;
484	struct extent_state *llseek_cached_state;
485	/* Task that allocated this structure. */
486	struct task_struct *owner_task;
487};
488
489static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
490{
491	return info->nodesize - sizeof(struct btrfs_header);
492}
493
494static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
495{
496	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
497}
498
499static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
500{
501	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
502}
503
504static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
505{
506	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
507}
508
509#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
510				((bytes) >> (fs_info)->sectorsize_bits)
511
512static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
513{
514	return mapping_gfp_constraint(mapping, ~__GFP_FS);
515}
516
517void btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info, u64 start, u64 end);
518int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
519			 u64 num_bytes, u64 *actual_bytes);
520int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
521
522/* ctree.c */
523int __init btrfs_ctree_init(void);
524void __cold btrfs_ctree_exit(void);
525
526int btrfs_bin_search(struct extent_buffer *eb, int first_slot,
527		     const struct btrfs_key *key, int *slot);
528
529int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
530
531#ifdef __LITTLE_ENDIAN
532
533/*
534 * Compare two keys, on little-endian the disk order is same as CPU order and
535 * we can avoid the conversion.
536 */
537static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk_key,
538				  const struct btrfs_key *k2)
539{
540	const struct btrfs_key *k1 = (const struct btrfs_key *)disk_key;
541
542	return btrfs_comp_cpu_keys(k1, k2);
543}
544
545#else
546
547/* Compare two keys in a memcmp fashion. */
548static inline int btrfs_comp_keys(const struct btrfs_disk_key *disk,
549				  const struct btrfs_key *k2)
550{
551	struct btrfs_key k1;
552
553	btrfs_disk_key_to_cpu(&k1, disk);
554
555	return btrfs_comp_cpu_keys(&k1, k2);
556}
557
558#endif
 
 
 
 
559
 
 
 
 
 
 
560int btrfs_previous_item(struct btrfs_root *root,
561			struct btrfs_path *path, u64 min_objectid,
562			int type);
563int btrfs_previous_extent_item(struct btrfs_root *root,
564			struct btrfs_path *path, u64 min_objectid);
565void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
566			     const struct btrfs_path *path,
567			     const struct btrfs_key *new_key);
568struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
569int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
570			struct btrfs_key *key, int lowest_level,
571			u64 min_trans);
572int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
573			 struct btrfs_path *path,
574			 u64 min_trans);
575struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
576					   int slot);
577
578int btrfs_cow_block(struct btrfs_trans_handle *trans,
579		    struct btrfs_root *root, struct extent_buffer *buf,
580		    struct extent_buffer *parent, int parent_slot,
581		    struct extent_buffer **cow_ret,
582		    enum btrfs_lock_nesting nest);
583int btrfs_force_cow_block(struct btrfs_trans_handle *trans,
584			  struct btrfs_root *root,
585			  struct extent_buffer *buf,
586			  struct extent_buffer *parent, int parent_slot,
587			  struct extent_buffer **cow_ret,
588			  u64 search_start, u64 empty_size,
589			  enum btrfs_lock_nesting nest);
590int btrfs_copy_root(struct btrfs_trans_handle *trans,
591		      struct btrfs_root *root,
592		      struct extent_buffer *buf,
593		      struct extent_buffer **cow_ret, u64 new_root_objectid);
594bool btrfs_block_can_be_shared(struct btrfs_trans_handle *trans,
595			       struct btrfs_root *root,
596			       struct extent_buffer *buf);
597int btrfs_del_ptr(struct btrfs_trans_handle *trans, struct btrfs_root *root,
598		  struct btrfs_path *path, int level, int slot);
599void btrfs_extend_item(struct btrfs_trans_handle *trans,
600		       const struct btrfs_path *path, u32 data_size);
601void btrfs_truncate_item(struct btrfs_trans_handle *trans,
602			 const struct btrfs_path *path, u32 new_size, int from_end);
603int btrfs_split_item(struct btrfs_trans_handle *trans,
604		     struct btrfs_root *root,
605		     struct btrfs_path *path,
606		     const struct btrfs_key *new_key,
607		     unsigned long split_offset);
608int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
609			 struct btrfs_root *root,
610			 struct btrfs_path *path,
611			 const struct btrfs_key *new_key);
612int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
613		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
614int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
615		      const struct btrfs_key *key, struct btrfs_path *p,
616		      int ins_len, int cow);
617int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
618			  struct btrfs_path *p, u64 time_seq);
619int btrfs_search_slot_for_read(struct btrfs_root *root,
620			       const struct btrfs_key *key,
621			       struct btrfs_path *p, int find_higher,
622			       int return_any);
 
 
 
 
623void btrfs_release_path(struct btrfs_path *p);
624struct btrfs_path *btrfs_alloc_path(void);
625void btrfs_free_path(struct btrfs_path *p);
626DEFINE_FREE(btrfs_free_path, struct btrfs_path *, btrfs_free_path(_T))
627
628int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
629		   struct btrfs_path *path, int slot, int nr);
630static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
631				 struct btrfs_root *root,
632				 struct btrfs_path *path)
633{
634	return btrfs_del_items(trans, root, path, path->slots[0], 1);
635}
636
637/*
638 * Describes a batch of items to insert in a btree. This is used by
639 * btrfs_insert_empty_items().
640 */
641struct btrfs_item_batch {
642	/*
643	 * Pointer to an array containing the keys of the items to insert (in
644	 * sorted order).
645	 */
646	const struct btrfs_key *keys;
647	/* Pointer to an array containing the data size for each item to insert. */
648	const u32 *data_sizes;
649	/*
650	 * The sum of data sizes for all items. The caller can compute this while
651	 * setting up the data_sizes array, so it ends up being more efficient
652	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
653	 * doing it, as it would avoid an extra loop over a potentially large
654	 * array, and in the case of setup_item_for_insert(), we would be doing
655	 * it while holding a write lock on a leaf and often on upper level nodes
656	 * too, unnecessarily increasing the size of a critical section.
657	 */
658	u32 total_data_size;
659	/* Size of the keys and data_sizes arrays (number of items in the batch). */
660	int nr;
661};
662
663void btrfs_setup_item_for_insert(struct btrfs_trans_handle *trans,
664				 struct btrfs_root *root,
665				 struct btrfs_path *path,
666				 const struct btrfs_key *key,
667				 u32 data_size);
668int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
669		      const struct btrfs_key *key, void *data, u32 data_size);
670int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
671			     struct btrfs_root *root,
672			     struct btrfs_path *path,
673			     const struct btrfs_item_batch *batch);
674
675static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
676					  struct btrfs_root *root,
677					  struct btrfs_path *path,
678					  const struct btrfs_key *key,
679					  u32 data_size)
680{
681	struct btrfs_item_batch batch;
682
683	batch.keys = key;
684	batch.data_sizes = &data_size;
685	batch.total_data_size = data_size;
686	batch.nr = 1;
687
688	return btrfs_insert_empty_items(trans, root, path, &batch);
689}
690
 
691int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
692			u64 time_seq);
693
694int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
695			   struct btrfs_path *path);
696
697int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
698			      struct btrfs_path *path);
699
700/*
701 * Search in @root for a given @key, and store the slot found in @found_key.
702 *
703 * @root:	The root node of the tree.
704 * @key:	The key we are looking for.
705 * @found_key:	Will hold the found item.
706 * @path:	Holds the current slot/leaf.
707 * @iter_ret:	Contains the value returned from btrfs_search_slot or
708 * 		btrfs_get_next_valid_item, whichever was executed last.
709 *
710 * The @iter_ret is an output variable that will contain the return value of
711 * btrfs_search_slot, if it encountered an error, or the value returned from
712 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
713 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
714 *
715 * It's recommended to use a separate variable for iter_ret and then use it to
716 * set the function return value so there's no confusion of the 0/1/errno
717 * values stemming from btrfs_search_slot.
718 */
719#define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
720	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
721		(iter_ret) >= 0 &&						\
722		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
723		(path)->slots[0]++						\
724	)
725
726int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
727
728/*
729 * Search the tree again to find a leaf with greater keys.
730 *
731 * Returns 0 if it found something or 1 if there are no greater leaves.
732 * Returns < 0 on error.
733 */
734static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
735{
736	return btrfs_next_old_leaf(root, path, 0);
737}
738
739static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
740{
741	return btrfs_next_old_item(root, p, 0);
742}
743int btrfs_leaf_free_space(const struct extent_buffer *leaf);
744
745static inline int is_fstree(u64 rootid)
746{
747	if (rootid == BTRFS_FS_TREE_OBJECTID ||
748	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
749	      !btrfs_qgroup_level(rootid)))
750		return 1;
751	return 0;
752}
753
754static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
755{
756	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
757}
758
759u16 btrfs_csum_type_size(u16 type);
760int btrfs_super_csum_size(const struct btrfs_super_block *s);
761const char *btrfs_super_csum_name(u16 csum_type);
762const char *btrfs_super_csum_driver(u16 csum_type);
763size_t __attribute_const__ btrfs_get_num_csums(void);
764
765/*
766 * We use folio flag owner_2 to indicate there is an ordered extent with
767 * unfinished IO.
 
 
768 */
769#define folio_test_ordered(folio)	folio_test_owner_2(folio)
770#define folio_set_ordered(folio)	folio_set_owner_2(folio)
771#define folio_clear_ordered(folio)	folio_clear_owner_2(folio)
 
 
 
772
773#endif