Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#ifndef BTRFS_CTREE_H
  7#define BTRFS_CTREE_H
  8
  9#include <linux/mm.h>
 10#include <linux/sched/signal.h>
 11#include <linux/highmem.h>
 12#include <linux/fs.h>
 13#include <linux/rwsem.h>
 14#include <linux/semaphore.h>
 15#include <linux/completion.h>
 16#include <linux/backing-dev.h>
 17#include <linux/wait.h>
 18#include <linux/slab.h>
 
 19#include <trace/events/btrfs.h>
 20#include <asm/unaligned.h>
 21#include <linux/pagemap.h>
 22#include <linux/btrfs.h>
 23#include <linux/btrfs_tree.h>
 24#include <linux/workqueue.h>
 25#include <linux/security.h>
 26#include <linux/sizes.h>
 27#include <linux/dynamic_debug.h>
 28#include <linux/refcount.h>
 29#include <linux/crc32c.h>
 30#include <linux/iomap.h>
 31#include <linux/fscrypt.h>
 32#include "extent-io-tree.h"
 33#include "extent_io.h"
 34#include "extent_map.h"
 35#include "async-thread.h"
 36#include "block-rsv.h"
 37#include "locking.h"
 38#include "misc.h"
 39#include "fs.h"
 40
 41struct btrfs_trans_handle;
 42struct btrfs_transaction;
 43struct btrfs_pending_snapshot;
 44struct btrfs_delayed_ref_root;
 45struct btrfs_space_info;
 46struct btrfs_block_group;
 
 
 47struct btrfs_ordered_sum;
 48struct btrfs_ref;
 49struct btrfs_bio;
 50struct btrfs_ioctl_encoded_io_args;
 51struct btrfs_device;
 52struct btrfs_fs_devices;
 53struct btrfs_balance_control;
 54struct btrfs_delayed_root;
 55struct reloc_control;
 56
 57/* Read ahead values for struct btrfs_path.reada */
 58enum {
 59	READA_NONE,
 60	READA_BACK,
 61	READA_FORWARD,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 62	/*
 63	 * Similar to READA_FORWARD but unlike it:
 64	 *
 65	 * 1) It will trigger readahead even for leaves that are not close to
 66	 *    each other on disk;
 67	 * 2) It also triggers readahead for nodes;
 68	 * 3) During a search, even when a node or leaf is already in memory, it
 69	 *    will still trigger readahead for other nodes and leaves that follow
 70	 *    it.
 71	 *
 72	 * This is meant to be used only when we know we are iterating over the
 73	 * entire tree or a very large part of it.
 74	 */
 75	READA_FORWARD_ALWAYS,
 76};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 77
 78/*
 79 * btrfs_paths remember the path taken from the root down to the leaf.
 80 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 81 * to any other levels that are present.
 82 *
 83 * The slots array records the index of the item or block pointer
 84 * used while walking the tree.
 85 */
 86struct btrfs_path {
 87	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 88	int slots[BTRFS_MAX_LEVEL];
 89	/* if there is real range locking, this locks field will change */
 90	u8 locks[BTRFS_MAX_LEVEL];
 91	u8 reada;
 92	/* keep some upper locks as we walk down */
 93	u8 lowest_level;
 94
 95	/*
 96	 * set by btrfs_split_item, tells search_slot to keep all locks
 97	 * and to force calls to keep space in the nodes
 98	 */
 99	unsigned int search_for_split:1;
100	unsigned int keep_locks:1;
101	unsigned int skip_locking:1;
 
102	unsigned int search_commit_root:1;
103	unsigned int need_commit_sem:1;
104	unsigned int skip_release_on_error:1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105	/*
106	 * Indicate that new item (btrfs_search_slot) is extending already
107	 * existing item and ins_len contains only the data size and not item
108	 * header (ie. sizeof(struct btrfs_item) is not included).
109	 */
110	unsigned int search_for_extension:1;
111	/* Stop search if any locks need to be taken (for read) */
112	unsigned int nowait:1;
113};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
114
115/*
116 * The state of btrfs root
 
117 */
118enum {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119	/*
120	 * btrfs_record_root_in_trans is a multi-step process, and it can race
121	 * with the balancing code.   But the race is very small, and only the
122	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
123	 * is used to tell us when more checks are required
 
 
 
 
 
124	 */
125	BTRFS_ROOT_IN_TRANS_SETUP,
126
127	/*
128	 * Set if tree blocks of this root can be shared by other roots.
129	 * Only subvolume trees and their reloc trees have this bit set.
130	 * Conflicts with TRACK_DIRTY bit.
131	 *
132	 * This affects two things:
133	 *
134	 * - How balance works
135	 *   For shareable roots, we need to use reloc tree and do path
136	 *   replacement for balance, and need various pre/post hooks for
137	 *   snapshot creation to handle them.
138	 *
139	 *   While for non-shareable trees, we just simply do a tree search
140	 *   with COW.
141	 *
142	 * - How dirty roots are tracked
143	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
144	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
145	 *   don't need to set this manually.
146	 */
147	BTRFS_ROOT_SHAREABLE,
148	BTRFS_ROOT_TRACK_DIRTY,
149	BTRFS_ROOT_IN_RADIX,
150	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
151	BTRFS_ROOT_DEFRAG_RUNNING,
152	BTRFS_ROOT_FORCE_COW,
153	BTRFS_ROOT_MULTI_LOG_TASKS,
154	BTRFS_ROOT_DIRTY,
155	BTRFS_ROOT_DELETING,
156
157	/*
158	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
159	 *
160	 * Set for the subvolume tree owning the reloc tree.
161	 */
162	BTRFS_ROOT_DEAD_RELOC_TREE,
163	/* Mark dead root stored on device whose cleanup needs to be resumed */
164	BTRFS_ROOT_DEAD_TREE,
165	/* The root has a log tree. Used for subvolume roots and the tree root. */
166	BTRFS_ROOT_HAS_LOG_TREE,
167	/* Qgroup flushing is in progress */
168	BTRFS_ROOT_QGROUP_FLUSHING,
169	/* We started the orphan cleanup for this root. */
170	BTRFS_ROOT_ORPHAN_CLEANUP,
171	/* This root has a drop operation that was started previously. */
172	BTRFS_ROOT_UNFINISHED_DROP,
173	/* This reloc root needs to have its buffers lockdep class reset. */
174	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
175};
176
177/*
178 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
179 * code. For detail check comment in fs/btrfs/qgroup.c.
 
180 */
181struct btrfs_qgroup_swapped_blocks {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
182	spinlock_t lock;
183	/* RM_EMPTY_ROOT() of above blocks[] */
184	bool swapped;
185	struct rb_root blocks[BTRFS_MAX_LEVEL];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
186};
187
188/*
189 * in ram representation of the tree.  extent_root is used for all allocations
190 * and for the extent tree extent_root root.
191 */
192struct btrfs_root {
193	struct rb_node rb_node;
194
195	struct extent_buffer *node;
196
197	struct extent_buffer *commit_root;
198	struct btrfs_root *log_root;
199	struct btrfs_root *reloc_root;
200
201	unsigned long state;
202	struct btrfs_root_item root_item;
203	struct btrfs_key root_key;
204	struct btrfs_fs_info *fs_info;
205	struct extent_io_tree dirty_log_pages;
206
 
 
207	struct mutex objectid_mutex;
208
209	spinlock_t accounting_lock;
210	struct btrfs_block_rsv *block_rsv;
211
 
 
 
 
 
 
 
 
 
 
212	struct mutex log_mutex;
213	wait_queue_head_t log_writer_wait;
214	wait_queue_head_t log_commit_wait[2];
215	struct list_head log_ctxs[2];
216	/* Used only for log trees of subvolumes, not for the log root tree */
217	atomic_t log_writers;
218	atomic_t log_commit[2];
219	/* Used only for log trees of subvolumes, not for the log root tree */
220	atomic_t log_batch;
221	int log_transid;
222	/* No matter the commit succeeds or not*/
223	int log_transid_committed;
224	/* Just be updated when the commit succeeds. */
225	int last_log_commit;
226	pid_t log_start_pid;
 
227
 
228	u64 last_trans;
229
 
 
 
 
 
 
 
 
 
 
 
230	u32 type;
231
232	u64 free_objectid;
233
 
 
 
 
 
 
 
 
 
 
 
 
234	struct btrfs_key defrag_progress;
235	struct btrfs_key defrag_max;
 
 
236
237	/* The dirty list is only used by non-shareable roots */
238	struct list_head dirty_list;
239
240	struct list_head root_list;
241
242	spinlock_t log_extents_lock[2];
243	struct list_head logged_list[2];
 
 
 
244
245	spinlock_t inode_lock;
246	/* red-black tree that keeps track of in-memory inodes */
247	struct rb_root inode_tree;
248
249	/*
250	 * radix tree that keeps track of delayed nodes of every inode,
251	 * protected by inode_lock
252	 */
253	struct radix_tree_root delayed_nodes_tree;
254	/*
255	 * right now this just gets used so that a root has its own devid
256	 * for stat.  It may be used for more later
257	 */
258	dev_t anon_dev;
259
260	spinlock_t root_item_lock;
261	refcount_t refs;
262
263	struct mutex delalloc_mutex;
264	spinlock_t delalloc_lock;
265	/*
266	 * all of the inodes that have delalloc bytes.  It is possible for
267	 * this list to be empty even when there is still dirty data=ordered
268	 * extents waiting to finish IO.
269	 */
270	struct list_head delalloc_inodes;
271	struct list_head delalloc_root;
272	u64 nr_delalloc_inodes;
273
274	struct mutex ordered_extent_mutex;
275	/*
276	 * this is used by the balancing code to wait for all the pending
277	 * ordered extents
278	 */
279	spinlock_t ordered_extent_lock;
280
281	/*
282	 * all of the data=ordered extents pending writeback
283	 * these can span multiple transactions and basically include
284	 * every dirty data page that isn't from nodatacow
285	 */
286	struct list_head ordered_extents;
287	struct list_head ordered_root;
288	u64 nr_ordered_extents;
289
290	/*
291	 * Not empty if this subvolume root has gone through tree block swap
292	 * (relocation)
293	 *
294	 * Will be used by reloc_control::dirty_subvol_roots.
295	 */
296	struct list_head reloc_dirty_list;
297
298	/*
299	 * Number of currently running SEND ioctls to prevent
300	 * manipulation with the read-only status via SUBVOL_SETFLAGS
 
301	 */
302	int send_in_progress;
303	/*
304	 * Number of currently running deduplication operations that have a
305	 * destination inode belonging to this root. Protected by the lock
306	 * root_item_lock.
307	 */
308	int dedupe_in_progress;
309	/* For exclusion of snapshot creation and nocow writes */
310	struct btrfs_drew_lock snapshot_lock;
311
312	atomic_t snapshot_force_cow;
313
314	/* For qgroup metadata reserved space */
315	spinlock_t qgroup_meta_rsv_lock;
316	u64 qgroup_meta_rsv_pertrans;
317	u64 qgroup_meta_rsv_prealloc;
318	wait_queue_head_t qgroup_flush_wait;
 
 
 
 
 
319
320	/* Number of active swapfiles */
321	atomic_t nr_swapfiles;
 
 
 
 
 
 
 
 
 
 
322
323	/* Record pairs of swapped blocks for qgroup */
324	struct btrfs_qgroup_swapped_blocks swapped_blocks;
 
 
 
325
326	/* Used only by log trees, when logging csum items */
327	struct extent_io_tree log_csum_range;
 
 
 
328
329#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
330	u64 alloc_bytenr;
331#endif
 
 
332
333#ifdef CONFIG_BTRFS_DEBUG
334	struct list_head leak_list;
335#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336};
337
338static inline bool btrfs_root_readonly(const struct btrfs_root *root)
339{
340	/* Byte-swap the constant at compile time, root_item::flags is LE */
341	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342}
343
344static inline bool btrfs_root_dead(const struct btrfs_root *root)
 
 
345{
346	/* Byte-swap the constant at compile time, root_item::flags is LE */
347	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
348}
349
350static inline u64 btrfs_root_id(const struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
351{
352	return root->root_key.objectid;
353}
354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355/*
356 * Structure that conveys information about an extent that is going to replace
357 * all the extents in a file range.
358 */
359struct btrfs_replace_extent_info {
360	u64 disk_offset;
361	u64 disk_len;
362	u64 data_offset;
363	u64 data_len;
364	u64 file_offset;
365	/* Pointer to a file extent item of type regular or prealloc. */
366	char *extent_buf;
367	/*
368	 * Set to true when attempting to replace a file range with a new extent
369	 * described by this structure, set to false when attempting to clone an
370	 * existing extent into a file range.
371	 */
372	bool is_new_extent;
373	/* Indicate if we should update the inode's mtime and ctime. */
374	bool update_times;
375	/* Meaningful only if is_new_extent is true. */
376	int qgroup_reserved;
377	/*
378	 * Meaningful only if is_new_extent is true.
379	 * Used to track how many extent items we have already inserted in a
380	 * subvolume tree that refer to the extent described by this structure,
381	 * so that we know when to create a new delayed ref or update an existing
382	 * one.
383	 */
384	int insertions;
385};
386
387/* Arguments for btrfs_drop_extents() */
388struct btrfs_drop_extents_args {
389	/* Input parameters */
 
 
 
390
391	/*
392	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
393	 * If 'replace_extent' is true, this must not be NULL. Also the path
394	 * is always released except if 'replace_extent' is true and
395	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
396	 * the path is kept locked.
397	 */
398	struct btrfs_path *path;
399	/* Start offset of the range to drop extents from */
400	u64 start;
401	/* End (exclusive, last byte + 1) of the range to drop extents from */
402	u64 end;
403	/* If true drop all the extent maps in the range */
404	bool drop_cache;
405	/*
406	 * If true it means we want to insert a new extent after dropping all
407	 * the extents in the range. If this is true, the 'extent_item_size'
408	 * parameter must be set as well and the 'extent_inserted' field will
409	 * be set to true by btrfs_drop_extents() if it could insert the new
410	 * extent.
411	 * Note: when this is set to true the path must not be NULL.
412	 */
413	bool replace_extent;
414	/*
415	 * Used if 'replace_extent' is true. Size of the file extent item to
416	 * insert after dropping all existing extents in the range
417	 */
418	u32 extent_item_size;
419
420	/* Output parameters */
 
 
 
 
 
421
422	/*
423	 * Set to the minimum between the input parameter 'end' and the end
424	 * (exclusive, last byte + 1) of the last dropped extent. This is always
425	 * set even if btrfs_drop_extents() returns an error.
426	 */
427	u64 drop_end;
428	/*
429	 * The number of allocated bytes found in the range. This can be smaller
430	 * than the range's length when there are holes in the range.
431	 */
432	u64 bytes_found;
433	/*
434	 * Only set if 'replace_extent' is true. Set to true if we were able
435	 * to insert a replacement extent after dropping all extents in the
436	 * range, otherwise set to false by btrfs_drop_extents().
437	 * Also, if btrfs_drop_extents() has set this to true it means it
438	 * returned with the path locked, otherwise if it has set this to
439	 * false it has returned with the path released.
440	 */
441	bool extent_inserted;
442};
443
444struct btrfs_file_private {
445	void *filldir_buf;
446	struct extent_state *llseek_cached_state;
447};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
448
449static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
 
450{
451	return info->nodesize - sizeof(struct btrfs_header);
 
 
452}
453
454static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
 
 
455{
456	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
 
 
457}
458
459static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
 
460{
461	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
462}
463
464static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
465{
466	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
467}
468
469#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
470				((bytes) >> (fs_info)->sectorsize_bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471
472static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
 
 
473{
474	return crc32c(crc, address, length);
475}
476
477static inline void btrfs_crc32c_final(u32 crc, u8 *result)
 
 
478{
479	put_unaligned_le32(~crc, result);
480}
481
482static inline u64 btrfs_name_hash(const char *name, int len)
 
 
483{
484       return crc32c((u32)~1, name, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485}
486
487/*
488 * Figure the key offset of an extended inode ref
 
 
489 */
490static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
491                                   int len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492{
493       return (u64) crc32c(parent_objectid, name, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494}
495
496static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
497{
498	return mapping_gfp_constraint(mapping, ~__GFP_FS);
499}
500
501int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502				   u64 start, u64 end);
503int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
504			 u64 num_bytes, u64 *actual_bytes);
505int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
 
 
506
 
507/* ctree.c */
508int __init btrfs_ctree_init(void);
509void __cold btrfs_ctree_exit(void);
510int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
511		     int *slot);
512int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
513int btrfs_previous_item(struct btrfs_root *root,
514			struct btrfs_path *path, u64 min_objectid,
515			int type);
516int btrfs_previous_extent_item(struct btrfs_root *root,
517			struct btrfs_path *path, u64 min_objectid);
518void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
519			     struct btrfs_path *path,
520			     const struct btrfs_key *new_key);
521struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
 
522int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
523			struct btrfs_key *key, int lowest_level,
524			u64 min_trans);
525int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
526			 struct btrfs_path *path,
 
527			 u64 min_trans);
528struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
529					   int slot);
530
531int btrfs_cow_block(struct btrfs_trans_handle *trans,
532		    struct btrfs_root *root, struct extent_buffer *buf,
533		    struct extent_buffer *parent, int parent_slot,
534		    struct extent_buffer **cow_ret,
535		    enum btrfs_lock_nesting nest);
536int btrfs_copy_root(struct btrfs_trans_handle *trans,
537		      struct btrfs_root *root,
538		      struct extent_buffer *buf,
539		      struct extent_buffer **cow_ret, u64 new_root_objectid);
540int btrfs_block_can_be_shared(struct btrfs_root *root,
541			      struct extent_buffer *buf);
542void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
543void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
 
 
 
 
 
544int btrfs_split_item(struct btrfs_trans_handle *trans,
545		     struct btrfs_root *root,
546		     struct btrfs_path *path,
547		     const struct btrfs_key *new_key,
548		     unsigned long split_offset);
549int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
550			 struct btrfs_root *root,
551			 struct btrfs_path *path,
552			 const struct btrfs_key *new_key);
553int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
554		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
555int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
556		      const struct btrfs_key *key, struct btrfs_path *p,
557		      int ins_len, int cow);
558int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
559			  struct btrfs_path *p, u64 time_seq);
560int btrfs_search_slot_for_read(struct btrfs_root *root,
561			       const struct btrfs_key *key,
562			       struct btrfs_path *p, int find_higher,
563			       int return_any);
564int btrfs_realloc_node(struct btrfs_trans_handle *trans,
565		       struct btrfs_root *root, struct extent_buffer *parent,
566		       int start_slot, u64 *last_ret,
567		       struct btrfs_key *progress);
568void btrfs_release_path(struct btrfs_path *p);
569struct btrfs_path *btrfs_alloc_path(void);
570void btrfs_free_path(struct btrfs_path *p);
 
 
 
 
571
572int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
573		   struct btrfs_path *path, int slot, int nr);
574static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
575				 struct btrfs_root *root,
576				 struct btrfs_path *path)
577{
578	return btrfs_del_items(trans, root, path, path->slots[0], 1);
579}
580
581/*
582 * Describes a batch of items to insert in a btree. This is used by
583 * btrfs_insert_empty_items().
584 */
585struct btrfs_item_batch {
586	/*
587	 * Pointer to an array containing the keys of the items to insert (in
588	 * sorted order).
589	 */
590	const struct btrfs_key *keys;
591	/* Pointer to an array containing the data size for each item to insert. */
592	const u32 *data_sizes;
593	/*
594	 * The sum of data sizes for all items. The caller can compute this while
595	 * setting up the data_sizes array, so it ends up being more efficient
596	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
597	 * doing it, as it would avoid an extra loop over a potentially large
598	 * array, and in the case of setup_item_for_insert(), we would be doing
599	 * it while holding a write lock on a leaf and often on upper level nodes
600	 * too, unnecessarily increasing the size of a critical section.
601	 */
602	u32 total_data_size;
603	/* Size of the keys and data_sizes arrays (number of items in the batch). */
604	int nr;
605};
606
607void btrfs_setup_item_for_insert(struct btrfs_root *root,
608				 struct btrfs_path *path,
609				 const struct btrfs_key *key,
610				 u32 data_size);
611int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
612		      const struct btrfs_key *key, void *data, u32 data_size);
613int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
614			     struct btrfs_root *root,
615			     struct btrfs_path *path,
616			     const struct btrfs_item_batch *batch);
617
618static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
619					  struct btrfs_root *root,
620					  struct btrfs_path *path,
621					  const struct btrfs_key *key,
622					  u32 data_size)
623{
624	struct btrfs_item_batch batch;
625
626	batch.keys = key;
627	batch.data_sizes = &data_size;
628	batch.total_data_size = data_size;
629	batch.nr = 1;
630
631	return btrfs_insert_empty_items(trans, root, path, &batch);
632}
633
634int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
635int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
636			u64 time_seq);
637
638int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
639			   struct btrfs_path *path);
640
641int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
642			      struct btrfs_path *path);
643
644/*
645 * Search in @root for a given @key, and store the slot found in @found_key.
646 *
647 * @root:	The root node of the tree.
648 * @key:	The key we are looking for.
649 * @found_key:	Will hold the found item.
650 * @path:	Holds the current slot/leaf.
651 * @iter_ret:	Contains the value returned from btrfs_search_slot or
652 * 		btrfs_get_next_valid_item, whichever was executed last.
653 *
654 * The @iter_ret is an output variable that will contain the return value of
655 * btrfs_search_slot, if it encountered an error, or the value returned from
656 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
657 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
658 *
659 * It's recommended to use a separate variable for iter_ret and then use it to
660 * set the function return value so there's no confusion of the 0/1/errno
661 * values stemming from btrfs_search_slot.
662 */
663#define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
664	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
665		(iter_ret) >= 0 &&						\
666		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
667		(path)->slots[0]++						\
668	)
669
670int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
671
672/*
673 * Search the tree again to find a leaf with greater keys.
674 *
675 * Returns 0 if it found something or 1 if there are no greater leaves.
676 * Returns < 0 on error.
677 */
678static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
679{
680	return btrfs_next_old_leaf(root, path, 0);
 
 
 
681}
682
683static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
684{
685	return btrfs_next_old_item(root, p, 0);
686}
687int btrfs_leaf_free_space(struct extent_buffer *leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688
689static inline int is_fstree(u64 rootid)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
690{
691	if (rootid == BTRFS_FS_TREE_OBJECTID ||
692	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
693	      !btrfs_qgroup_level(rootid)))
694		return 1;
695	return 0;
696}
697
698static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
699{
700	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
701}
 
702
703int btrfs_super_csum_size(const struct btrfs_super_block *s);
704const char *btrfs_super_csum_name(u16 csum_type);
705const char *btrfs_super_csum_driver(u16 csum_type);
706size_t __attribute_const__ btrfs_get_num_csums(void);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
707
708/*
709 * We use page status Private2 to indicate there is an ordered extent with
710 * unfinished IO.
711 *
712 * Rename the Private2 accessors to Ordered, to improve readability.
713 */
714#define PageOrdered(page)		PagePrivate2(page)
715#define SetPageOrdered(page)		SetPagePrivate2(page)
716#define ClearPageOrdered(page)		ClearPagePrivate2(page)
717#define folio_test_ordered(folio)	folio_test_private_2(folio)
718#define folio_set_ordered(folio)	folio_set_private_2(folio)
719#define folio_clear_ordered(folio)	folio_clear_private_2(folio)
720
 
 
 
 
 
 
 
721#endif
v3.5.6
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#ifndef __BTRFS_CTREE__
  20#define __BTRFS_CTREE__
  21
  22#include <linux/mm.h>
 
  23#include <linux/highmem.h>
  24#include <linux/fs.h>
  25#include <linux/rwsem.h>
 
  26#include <linux/completion.h>
  27#include <linux/backing-dev.h>
  28#include <linux/wait.h>
  29#include <linux/slab.h>
  30#include <linux/kobject.h>
  31#include <trace/events/btrfs.h>
  32#include <asm/kmap_types.h>
  33#include <linux/pagemap.h>
 
 
 
 
 
 
 
 
 
 
 
  34#include "extent_io.h"
  35#include "extent_map.h"
  36#include "async-thread.h"
  37#include "ioctl.h"
 
 
 
  38
  39struct btrfs_trans_handle;
  40struct btrfs_transaction;
  41struct btrfs_pending_snapshot;
  42extern struct kmem_cache *btrfs_trans_handle_cachep;
  43extern struct kmem_cache *btrfs_transaction_cachep;
  44extern struct kmem_cache *btrfs_bit_radix_cachep;
  45extern struct kmem_cache *btrfs_path_cachep;
  46extern struct kmem_cache *btrfs_free_space_cachep;
  47struct btrfs_ordered_sum;
 
 
 
 
 
 
 
 
  48
  49#define BTRFS_MAGIC "_BHRfS_M"
  50
  51#define BTRFS_MAX_MIRRORS 2
  52
  53#define BTRFS_MAX_LEVEL 8
  54
  55#define BTRFS_COMPAT_EXTENT_TREE_V0
  56
  57/*
  58 * files bigger than this get some pre-flushing when they are added
  59 * to the ordered operations list.  That way we limit the total
  60 * work done by the commit
  61 */
  62#define BTRFS_ORDERED_OPERATIONS_FLUSH_LIMIT (8 * 1024 * 1024)
  63
  64/* holds pointers to all of the tree roots */
  65#define BTRFS_ROOT_TREE_OBJECTID 1ULL
  66
  67/* stores information about which extents are in use, and reference counts */
  68#define BTRFS_EXTENT_TREE_OBJECTID 2ULL
  69
  70/*
  71 * chunk tree stores translations from logical -> physical block numbering
  72 * the super block points to the chunk tree
  73 */
  74#define BTRFS_CHUNK_TREE_OBJECTID 3ULL
  75
  76/*
  77 * stores information about which areas of a given device are in use.
  78 * one per device.  The tree of tree roots points to the device tree
  79 */
  80#define BTRFS_DEV_TREE_OBJECTID 4ULL
  81
  82/* one per subvolume, storing files and directories */
  83#define BTRFS_FS_TREE_OBJECTID 5ULL
  84
  85/* directory objectid inside the root tree */
  86#define BTRFS_ROOT_TREE_DIR_OBJECTID 6ULL
  87
  88/* holds checksums of all the data extents */
  89#define BTRFS_CSUM_TREE_OBJECTID 7ULL
  90
  91/* for storing balance parameters in the root tree */
  92#define BTRFS_BALANCE_OBJECTID -4ULL
  93
  94/* orhpan objectid for tracking unlinked/truncated files */
  95#define BTRFS_ORPHAN_OBJECTID -5ULL
  96
  97/* does write ahead logging to speed up fsyncs */
  98#define BTRFS_TREE_LOG_OBJECTID -6ULL
  99#define BTRFS_TREE_LOG_FIXUP_OBJECTID -7ULL
 100
 101/* for space balancing */
 102#define BTRFS_TREE_RELOC_OBJECTID -8ULL
 103#define BTRFS_DATA_RELOC_TREE_OBJECTID -9ULL
 104
 105/*
 106 * extent checksums all have this objectid
 107 * this allows them to share the logging tree
 108 * for fsyncs
 109 */
 110#define BTRFS_EXTENT_CSUM_OBJECTID -10ULL
 111
 112/* For storing free space cache */
 113#define BTRFS_FREE_SPACE_OBJECTID -11ULL
 114
 115/*
 116 * The inode number assigned to the special inode for sotring
 117 * free ino cache
 118 */
 119#define BTRFS_FREE_INO_OBJECTID -12ULL
 120
 121/* dummy objectid represents multiple objectids */
 122#define BTRFS_MULTIPLE_OBJECTIDS -255ULL
 123
 124/*
 125 * All files have objectids in this range.
 126 */
 127#define BTRFS_FIRST_FREE_OBJECTID 256ULL
 128#define BTRFS_LAST_FREE_OBJECTID -256ULL
 129#define BTRFS_FIRST_CHUNK_TREE_OBJECTID 256ULL
 130
 131
 132/*
 133 * the device items go into the chunk tree.  The key is in the form
 134 * [ 1 BTRFS_DEV_ITEM_KEY device_id ]
 135 */
 136#define BTRFS_DEV_ITEMS_OBJECTID 1ULL
 137
 138#define BTRFS_BTREE_INODE_OBJECTID 1
 139
 140#define BTRFS_EMPTY_SUBVOL_DIR_OBJECTID 2
 141
 142/*
 143 * the max metadata block size.  This limit is somewhat artificial,
 144 * but the memmove costs go through the roof for larger blocks.
 145 */
 146#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
 147
 148/*
 149 * we can actually store much bigger names, but lets not confuse the rest
 150 * of linux
 151 */
 152#define BTRFS_NAME_LEN 255
 153
 154/* 32 bytes in various csum fields */
 155#define BTRFS_CSUM_SIZE 32
 156
 157/* csum types */
 158#define BTRFS_CSUM_TYPE_CRC32	0
 159
 160static int btrfs_csum_sizes[] = { 4, 0 };
 161
 162/* four bytes for CRC32 */
 163#define BTRFS_EMPTY_DIR_SIZE 0
 164
 165#define BTRFS_FT_UNKNOWN	0
 166#define BTRFS_FT_REG_FILE	1
 167#define BTRFS_FT_DIR		2
 168#define BTRFS_FT_CHRDEV		3
 169#define BTRFS_FT_BLKDEV		4
 170#define BTRFS_FT_FIFO		5
 171#define BTRFS_FT_SOCK		6
 172#define BTRFS_FT_SYMLINK	7
 173#define BTRFS_FT_XATTR		8
 174#define BTRFS_FT_MAX		9
 175
 176/* ioprio of readahead is set to idle */
 177#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
 178
 179/*
 180 * The key defines the order in the tree, and so it also defines (optimal)
 181 * block layout.
 182 *
 183 * objectid corresponds to the inode number.
 184 *
 185 * type tells us things about the object, and is a kind of stream selector.
 186 * so for a given inode, keys with type of 1 might refer to the inode data,
 187 * type of 2 may point to file data in the btree and type == 3 may point to
 188 * extents.
 189 *
 190 * offset is the starting byte offset for this key in the stream.
 191 *
 192 * btrfs_disk_key is in disk byte order.  struct btrfs_key is always
 193 * in cpu native order.  Otherwise they are identical and their sizes
 194 * should be the same (ie both packed)
 195 */
 196struct btrfs_disk_key {
 197	__le64 objectid;
 198	u8 type;
 199	__le64 offset;
 200} __attribute__ ((__packed__));
 201
 202struct btrfs_key {
 203	u64 objectid;
 204	u8 type;
 205	u64 offset;
 206} __attribute__ ((__packed__));
 207
 208struct btrfs_mapping_tree {
 209	struct extent_map_tree map_tree;
 210};
 211
 212struct btrfs_dev_item {
 213	/* the internal btrfs device id */
 214	__le64 devid;
 215
 216	/* size of the device */
 217	__le64 total_bytes;
 218
 219	/* bytes used */
 220	__le64 bytes_used;
 221
 222	/* optimal io alignment for this device */
 223	__le32 io_align;
 224
 225	/* optimal io width for this device */
 226	__le32 io_width;
 227
 228	/* minimal io size for this device */
 229	__le32 sector_size;
 230
 231	/* type and info about this device */
 232	__le64 type;
 233
 234	/* expected generation for this device */
 235	__le64 generation;
 236
 237	/*
 238	 * starting byte of this partition on the device,
 239	 * to allow for stripe alignment in the future
 
 
 
 
 
 
 
 
 
 240	 */
 241	__le64 start_offset;
 242
 243	/* grouping information for allocation decisions */
 244	__le32 dev_group;
 245
 246	/* seek speed 0-100 where 100 is fastest */
 247	u8 seek_speed;
 248
 249	/* bandwidth 0-100 where 100 is fastest */
 250	u8 bandwidth;
 251
 252	/* btrfs generated uuid for this device */
 253	u8 uuid[BTRFS_UUID_SIZE];
 254
 255	/* uuid of FS who owns this device */
 256	u8 fsid[BTRFS_UUID_SIZE];
 257} __attribute__ ((__packed__));
 258
 259struct btrfs_stripe {
 260	__le64 devid;
 261	__le64 offset;
 262	u8 dev_uuid[BTRFS_UUID_SIZE];
 263} __attribute__ ((__packed__));
 264
 265struct btrfs_chunk {
 266	/* size of this chunk in bytes */
 267	__le64 length;
 268
 269	/* objectid of the root referencing this chunk */
 270	__le64 owner;
 271
 272	__le64 stripe_len;
 273	__le64 type;
 274
 275	/* optimal io alignment for this chunk */
 276	__le32 io_align;
 277
 278	/* optimal io width for this chunk */
 279	__le32 io_width;
 280
 281	/* minimal io size for this chunk */
 282	__le32 sector_size;
 283
 284	/* 2^16 stripes is quite a lot, a second limit is the size of a single
 285	 * item in the btree
 286	 */
 287	__le16 num_stripes;
 288
 289	/* sub stripes only matter for raid10 */
 290	__le16 sub_stripes;
 291	struct btrfs_stripe stripe;
 292	/* additional stripes go here */
 293} __attribute__ ((__packed__));
 294
 295#define BTRFS_FREE_SPACE_EXTENT	1
 296#define BTRFS_FREE_SPACE_BITMAP	2
 297
 298struct btrfs_free_space_entry {
 299	__le64 offset;
 300	__le64 bytes;
 301	u8 type;
 302} __attribute__ ((__packed__));
 303
 304struct btrfs_free_space_header {
 305	struct btrfs_disk_key location;
 306	__le64 generation;
 307	__le64 num_entries;
 308	__le64 num_bitmaps;
 309} __attribute__ ((__packed__));
 310
 311static inline unsigned long btrfs_chunk_item_size(int num_stripes)
 312{
 313	BUG_ON(num_stripes == 0);
 314	return sizeof(struct btrfs_chunk) +
 315		sizeof(struct btrfs_stripe) * (num_stripes - 1);
 316}
 317
 318#define BTRFS_HEADER_FLAG_WRITTEN	(1ULL << 0)
 319#define BTRFS_HEADER_FLAG_RELOC		(1ULL << 1)
 320
 321/*
 322 * File system states
 323 */
 324
 325/* Errors detected */
 326#define BTRFS_SUPER_FLAG_ERROR		(1ULL << 2)
 327
 328#define BTRFS_SUPER_FLAG_SEEDING	(1ULL << 32)
 329#define BTRFS_SUPER_FLAG_METADUMP	(1ULL << 33)
 330
 331#define BTRFS_BACKREF_REV_MAX		256
 332#define BTRFS_BACKREF_REV_SHIFT		56
 333#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
 334					 BTRFS_BACKREF_REV_SHIFT)
 335
 336#define BTRFS_OLD_BACKREF_REV		0
 337#define BTRFS_MIXED_BACKREF_REV		1
 338
 339/*
 340 * every tree block (leaf or node) starts with this header.
 341 */
 342struct btrfs_header {
 343	/* these first four must match the super block */
 344	u8 csum[BTRFS_CSUM_SIZE];
 345	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
 346	__le64 bytenr; /* which block this node is supposed to live in */
 347	__le64 flags;
 348
 349	/* allowed to be different from the super from here on down */
 350	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 351	__le64 generation;
 352	__le64 owner;
 353	__le32 nritems;
 354	u8 level;
 355} __attribute__ ((__packed__));
 356
 357#define BTRFS_NODEPTRS_PER_BLOCK(r) (((r)->nodesize - \
 358				      sizeof(struct btrfs_header)) / \
 359				     sizeof(struct btrfs_key_ptr))
 360#define __BTRFS_LEAF_DATA_SIZE(bs) ((bs) - sizeof(struct btrfs_header))
 361#define BTRFS_LEAF_DATA_SIZE(r) (__BTRFS_LEAF_DATA_SIZE(r->leafsize))
 362#define BTRFS_MAX_INLINE_DATA_SIZE(r) (BTRFS_LEAF_DATA_SIZE(r) - \
 363					sizeof(struct btrfs_item) - \
 364					sizeof(struct btrfs_file_extent_item))
 365#define BTRFS_MAX_XATTR_SIZE(r)	(BTRFS_LEAF_DATA_SIZE(r) - \
 366				 sizeof(struct btrfs_item) -\
 367				 sizeof(struct btrfs_dir_item))
 368
 369
 370/*
 371 * this is a very generous portion of the super block, giving us
 372 * room to translate 14 chunks with 3 stripes each.
 373 */
 374#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
 375#define BTRFS_LABEL_SIZE 256
 376
 377/*
 378 * just in case we somehow lose the roots and are not able to mount,
 379 * we store an array of the roots from previous transactions
 380 * in the super.
 381 */
 382#define BTRFS_NUM_BACKUP_ROOTS 4
 383struct btrfs_root_backup {
 384	__le64 tree_root;
 385	__le64 tree_root_gen;
 386
 387	__le64 chunk_root;
 388	__le64 chunk_root_gen;
 389
 390	__le64 extent_root;
 391	__le64 extent_root_gen;
 392
 393	__le64 fs_root;
 394	__le64 fs_root_gen;
 395
 396	__le64 dev_root;
 397	__le64 dev_root_gen;
 398
 399	__le64 csum_root;
 400	__le64 csum_root_gen;
 401
 402	__le64 total_bytes;
 403	__le64 bytes_used;
 404	__le64 num_devices;
 405	/* future */
 406	__le64 unsed_64[4];
 407
 408	u8 tree_root_level;
 409	u8 chunk_root_level;
 410	u8 extent_root_level;
 411	u8 fs_root_level;
 412	u8 dev_root_level;
 413	u8 csum_root_level;
 414	/* future and to align */
 415	u8 unused_8[10];
 416} __attribute__ ((__packed__));
 417
 418/*
 419 * the super block basically lists the main trees of the FS
 420 * it currently lacks any block count etc etc
 421 */
 422struct btrfs_super_block {
 423	u8 csum[BTRFS_CSUM_SIZE];
 424	/* the first 4 fields must match struct btrfs_header */
 425	u8 fsid[BTRFS_FSID_SIZE];    /* FS specific uuid */
 426	__le64 bytenr; /* this block number */
 427	__le64 flags;
 428
 429	/* allowed to be different from the btrfs_header from here own down */
 430	__le64 magic;
 431	__le64 generation;
 432	__le64 root;
 433	__le64 chunk_root;
 434	__le64 log_root;
 435
 436	/* this will help find the new super based on the log root */
 437	__le64 log_root_transid;
 438	__le64 total_bytes;
 439	__le64 bytes_used;
 440	__le64 root_dir_objectid;
 441	__le64 num_devices;
 442	__le32 sectorsize;
 443	__le32 nodesize;
 444	__le32 leafsize;
 445	__le32 stripesize;
 446	__le32 sys_chunk_array_size;
 447	__le64 chunk_root_generation;
 448	__le64 compat_flags;
 449	__le64 compat_ro_flags;
 450	__le64 incompat_flags;
 451	__le16 csum_type;
 452	u8 root_level;
 453	u8 chunk_root_level;
 454	u8 log_root_level;
 455	struct btrfs_dev_item dev_item;
 456
 457	char label[BTRFS_LABEL_SIZE];
 458
 459	__le64 cache_generation;
 460
 461	/* future expansion */
 462	__le64 reserved[31];
 463	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
 464	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
 465} __attribute__ ((__packed__));
 466
 467/*
 468 * Compat flags that we support.  If any incompat flags are set other than the
 469 * ones specified below then we will fail to mount
 470 */
 471#define BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF	(1ULL << 0)
 472#define BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL	(1ULL << 1)
 473#define BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS	(1ULL << 2)
 474#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO	(1ULL << 3)
 475/*
 476 * some patches floated around with a second compression method
 477 * lets save that incompat here for when they do get in
 478 * Note we don't actually support it, we're just reserving the
 479 * number
 480 */
 481#define BTRFS_FEATURE_INCOMPAT_COMPRESS_LZOv2	(1ULL << 4)
 482
 483/*
 484 * older kernels tried to do bigger metadata blocks, but the
 485 * code was pretty buggy.  Lets not let them try anymore.
 486 */
 487#define BTRFS_FEATURE_INCOMPAT_BIG_METADATA	(1ULL << 5)
 488
 489#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
 490#define BTRFS_FEATURE_COMPAT_RO_SUPP		0ULL
 491#define BTRFS_FEATURE_INCOMPAT_SUPP			\
 492	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
 493	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
 494	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
 495	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
 496	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO)
 497
 498/*
 499 * A leaf is full of items. offset and size tell us where to find
 500 * the item in the leaf (relative to the start of the data area)
 501 */
 502struct btrfs_item {
 503	struct btrfs_disk_key key;
 504	__le32 offset;
 505	__le32 size;
 506} __attribute__ ((__packed__));
 507
 508/*
 509 * leaves have an item area and a data area:
 510 * [item0, item1....itemN] [free space] [dataN...data1, data0]
 511 *
 512 * The data is separate from the items to get the keys closer together
 513 * during searches.
 514 */
 515struct btrfs_leaf {
 516	struct btrfs_header header;
 517	struct btrfs_item items[];
 518} __attribute__ ((__packed__));
 519
 520/*
 521 * all non-leaf blocks are nodes, they hold only keys and pointers to
 522 * other blocks
 523 */
 524struct btrfs_key_ptr {
 525	struct btrfs_disk_key key;
 526	__le64 blockptr;
 527	__le64 generation;
 528} __attribute__ ((__packed__));
 529
 530struct btrfs_node {
 531	struct btrfs_header header;
 532	struct btrfs_key_ptr ptrs[];
 533} __attribute__ ((__packed__));
 534
 535/*
 536 * btrfs_paths remember the path taken from the root down to the leaf.
 537 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 538 * to any other levels that are present.
 539 *
 540 * The slots array records the index of the item or block pointer
 541 * used while walking the tree.
 542 */
 543struct btrfs_path {
 544	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 545	int slots[BTRFS_MAX_LEVEL];
 546	/* if there is real range locking, this locks field will change */
 547	int locks[BTRFS_MAX_LEVEL];
 548	int reada;
 549	/* keep some upper locks as we walk down */
 550	int lowest_level;
 551
 552	/*
 553	 * set by btrfs_split_item, tells search_slot to keep all locks
 554	 * and to force calls to keep space in the nodes
 555	 */
 556	unsigned int search_for_split:1;
 557	unsigned int keep_locks:1;
 558	unsigned int skip_locking:1;
 559	unsigned int leave_spinning:1;
 560	unsigned int search_commit_root:1;
 561};
 562
 563/*
 564 * items in the extent btree are used to record the objectid of the
 565 * owner of the block and the number of references
 566 */
 567
 568struct btrfs_extent_item {
 569	__le64 refs;
 570	__le64 generation;
 571	__le64 flags;
 572} __attribute__ ((__packed__));
 573
 574struct btrfs_extent_item_v0 {
 575	__le32 refs;
 576} __attribute__ ((__packed__));
 577
 578#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r) >> 4) - \
 579					sizeof(struct btrfs_item))
 580
 581#define BTRFS_EXTENT_FLAG_DATA		(1ULL << 0)
 582#define BTRFS_EXTENT_FLAG_TREE_BLOCK	(1ULL << 1)
 583
 584/* following flags only apply to tree blocks */
 585
 586/* use full backrefs for extent pointers in the block */
 587#define BTRFS_BLOCK_FLAG_FULL_BACKREF	(1ULL << 8)
 588
 589/*
 590 * this flag is only used internally by scrub and may be changed at any time
 591 * it is only declared here to avoid collisions
 592 */
 593#define BTRFS_EXTENT_FLAG_SUPER		(1ULL << 48)
 594
 595struct btrfs_tree_block_info {
 596	struct btrfs_disk_key key;
 597	u8 level;
 598} __attribute__ ((__packed__));
 599
 600struct btrfs_extent_data_ref {
 601	__le64 root;
 602	__le64 objectid;
 603	__le64 offset;
 604	__le32 count;
 605} __attribute__ ((__packed__));
 606
 607struct btrfs_shared_data_ref {
 608	__le32 count;
 609} __attribute__ ((__packed__));
 610
 611struct btrfs_extent_inline_ref {
 612	u8 type;
 613	__le64 offset;
 614} __attribute__ ((__packed__));
 615
 616/* old style backrefs item */
 617struct btrfs_extent_ref_v0 {
 618	__le64 root;
 619	__le64 generation;
 620	__le64 objectid;
 621	__le32 count;
 622} __attribute__ ((__packed__));
 623
 624
 625/* dev extents record free space on individual devices.  The owner
 626 * field points back to the chunk allocation mapping tree that allocated
 627 * the extent.  The chunk tree uuid field is a way to double check the owner
 628 */
 629struct btrfs_dev_extent {
 630	__le64 chunk_tree;
 631	__le64 chunk_objectid;
 632	__le64 chunk_offset;
 633	__le64 length;
 634	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 635} __attribute__ ((__packed__));
 636
 637struct btrfs_inode_ref {
 638	__le64 index;
 639	__le16 name_len;
 640	/* name goes here */
 641} __attribute__ ((__packed__));
 642
 643struct btrfs_timespec {
 644	__le64 sec;
 645	__le32 nsec;
 646} __attribute__ ((__packed__));
 647
 648enum btrfs_compression_type {
 649	BTRFS_COMPRESS_NONE  = 0,
 650	BTRFS_COMPRESS_ZLIB  = 1,
 651	BTRFS_COMPRESS_LZO   = 2,
 652	BTRFS_COMPRESS_TYPES = 2,
 653	BTRFS_COMPRESS_LAST  = 3,
 654};
 655
 656struct btrfs_inode_item {
 657	/* nfs style generation number */
 658	__le64 generation;
 659	/* transid that last touched this inode */
 660	__le64 transid;
 661	__le64 size;
 662	__le64 nbytes;
 663	__le64 block_group;
 664	__le32 nlink;
 665	__le32 uid;
 666	__le32 gid;
 667	__le32 mode;
 668	__le64 rdev;
 669	__le64 flags;
 670
 671	/* modification sequence number for NFS */
 672	__le64 sequence;
 673
 674	/*
 675	 * a little future expansion, for more than this we can
 676	 * just grow the inode item and version it
 677	 */
 678	__le64 reserved[4];
 679	struct btrfs_timespec atime;
 680	struct btrfs_timespec ctime;
 681	struct btrfs_timespec mtime;
 682	struct btrfs_timespec otime;
 683} __attribute__ ((__packed__));
 684
 685struct btrfs_dir_log_item {
 686	__le64 end;
 687} __attribute__ ((__packed__));
 688
 689struct btrfs_dir_item {
 690	struct btrfs_disk_key location;
 691	__le64 transid;
 692	__le16 data_len;
 693	__le16 name_len;
 694	u8 type;
 695} __attribute__ ((__packed__));
 696
 697#define BTRFS_ROOT_SUBVOL_RDONLY	(1ULL << 0)
 698
 699struct btrfs_root_item {
 700	struct btrfs_inode_item inode;
 701	__le64 generation;
 702	__le64 root_dirid;
 703	__le64 bytenr;
 704	__le64 byte_limit;
 705	__le64 bytes_used;
 706	__le64 last_snapshot;
 707	__le64 flags;
 708	__le32 refs;
 709	struct btrfs_disk_key drop_progress;
 710	u8 drop_level;
 711	u8 level;
 712} __attribute__ ((__packed__));
 713
 714/*
 715 * this is used for both forward and backward root refs
 716 */
 717struct btrfs_root_ref {
 718	__le64 dirid;
 719	__le64 sequence;
 720	__le16 name_len;
 721} __attribute__ ((__packed__));
 722
 723struct btrfs_disk_balance_args {
 724	/*
 725	 * profiles to operate on, single is denoted by
 726	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 
 727	 */
 728	__le64 profiles;
 729
 730	/* usage filter */
 731	__le64 usage;
 732
 733	/* devid filter */
 734	__le64 devid;
 735
 736	/* devid subset filter [pstart..pend) */
 737	__le64 pstart;
 738	__le64 pend;
 739
 740	/* btrfs virtual address space subset filter [vstart..vend) */
 741	__le64 vstart;
 742	__le64 vend;
 743
 744	/*
 745	 * profile to convert to, single is denoted by
 746	 * BTRFS_AVAIL_ALLOC_BIT_SINGLE
 747	 */
 748	__le64 target;
 749
 750	/* BTRFS_BALANCE_ARGS_* */
 751	__le64 flags;
 752
 753	__le64 unused[8];
 754} __attribute__ ((__packed__));
 755
 756/*
 757 * store balance parameters to disk so that balance can be properly
 758 * resumed after crash or unmount
 759 */
 760struct btrfs_balance_item {
 761	/* BTRFS_BALANCE_* */
 762	__le64 flags;
 763
 764	struct btrfs_disk_balance_args data;
 765	struct btrfs_disk_balance_args meta;
 766	struct btrfs_disk_balance_args sys;
 767
 768	__le64 unused[4];
 769} __attribute__ ((__packed__));
 770
 771#define BTRFS_FILE_EXTENT_INLINE 0
 772#define BTRFS_FILE_EXTENT_REG 1
 773#define BTRFS_FILE_EXTENT_PREALLOC 2
 774
 775struct btrfs_file_extent_item {
 776	/*
 777	 * transaction id that created this extent
 778	 */
 779	__le64 generation;
 780	/*
 781	 * max number of bytes to hold this extent in ram
 782	 * when we split a compressed extent we can't know how big
 783	 * each of the resulting pieces will be.  So, this is
 784	 * an upper limit on the size of the extent in ram instead of
 785	 * an exact limit.
 786	 */
 787	__le64 ram_bytes;
 788
 789	/*
 790	 * 32 bits for the various ways we might encode the data,
 791	 * including compression and encryption.  If any of these
 792	 * are set to something a given disk format doesn't understand
 793	 * it is treated like an incompat flag for reading and writing,
 794	 * but not for stat.
 795	 */
 796	u8 compression;
 797	u8 encryption;
 798	__le16 other_encoding; /* spare for later use */
 799
 800	/* are we inline data or a real extent? */
 801	u8 type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 802
 803	/*
 804	 * disk space consumed by the extent, checksum blocks are included
 805	 * in these numbers
 
 806	 */
 807	__le64 disk_bytenr;
 808	__le64 disk_num_bytes;
 809	/*
 810	 * the logical offset in file blocks (no csums)
 811	 * this extent record is for.  This allows a file extent to point
 812	 * into the middle of an existing extent on disk, sharing it
 813	 * between two snapshots (useful if some bytes in the middle of the
 814	 * extent have changed
 815	 */
 816	__le64 offset;
 817	/*
 818	 * the logical number of file blocks (no csums included).  This
 819	 * always reflects the size uncompressed and without encoding.
 820	 */
 821	__le64 num_bytes;
 822
 823} __attribute__ ((__packed__));
 824
 825struct btrfs_csum_item {
 826	u8 csum;
 827} __attribute__ ((__packed__));
 828
 829struct btrfs_dev_stats_item {
 830	/*
 831	 * grow this item struct at the end for future enhancements and keep
 832	 * the existing values unchanged
 833	 */
 834	__le64 values[BTRFS_DEV_STAT_VALUES_MAX];
 835} __attribute__ ((__packed__));
 836
 837/* different types of block groups (and chunks) */
 838#define BTRFS_BLOCK_GROUP_DATA		(1ULL << 0)
 839#define BTRFS_BLOCK_GROUP_SYSTEM	(1ULL << 1)
 840#define BTRFS_BLOCK_GROUP_METADATA	(1ULL << 2)
 841#define BTRFS_BLOCK_GROUP_RAID0		(1ULL << 3)
 842#define BTRFS_BLOCK_GROUP_RAID1		(1ULL << 4)
 843#define BTRFS_BLOCK_GROUP_DUP		(1ULL << 5)
 844#define BTRFS_BLOCK_GROUP_RAID10	(1ULL << 6)
 845#define BTRFS_BLOCK_GROUP_RESERVED	BTRFS_AVAIL_ALLOC_BIT_SINGLE
 846#define BTRFS_NR_RAID_TYPES		5
 847
 848#define BTRFS_BLOCK_GROUP_TYPE_MASK	(BTRFS_BLOCK_GROUP_DATA |    \
 849					 BTRFS_BLOCK_GROUP_SYSTEM |  \
 850					 BTRFS_BLOCK_GROUP_METADATA)
 851
 852#define BTRFS_BLOCK_GROUP_PROFILE_MASK	(BTRFS_BLOCK_GROUP_RAID0 |   \
 853					 BTRFS_BLOCK_GROUP_RAID1 |   \
 854					 BTRFS_BLOCK_GROUP_DUP |     \
 855					 BTRFS_BLOCK_GROUP_RAID10)
 856/*
 857 * We need a bit for restriper to be able to tell when chunks of type
 858 * SINGLE are available.  This "extended" profile format is used in
 859 * fs_info->avail_*_alloc_bits (in-memory) and balance item fields
 860 * (on-disk).  The corresponding on-disk bit in chunk.type is reserved
 861 * to avoid remappings between two formats in future.
 862 */
 863#define BTRFS_AVAIL_ALLOC_BIT_SINGLE	(1ULL << 48)
 864
 865#define BTRFS_EXTENDED_PROFILE_MASK	(BTRFS_BLOCK_GROUP_PROFILE_MASK | \
 866					 BTRFS_AVAIL_ALLOC_BIT_SINGLE)
 867
 868static inline u64 chunk_to_extended(u64 flags)
 869{
 870	if ((flags & BTRFS_BLOCK_GROUP_PROFILE_MASK) == 0)
 871		flags |= BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 872
 873	return flags;
 874}
 875static inline u64 extended_to_chunk(u64 flags)
 876{
 877	return flags & ~BTRFS_AVAIL_ALLOC_BIT_SINGLE;
 878}
 879
 880struct btrfs_block_group_item {
 881	__le64 used;
 882	__le64 chunk_objectid;
 883	__le64 flags;
 884} __attribute__ ((__packed__));
 885
 886struct btrfs_space_info {
 887	u64 flags;
 888
 889	u64 total_bytes;	/* total bytes in the space,
 890				   this doesn't take mirrors into account */
 891	u64 bytes_used;		/* total bytes used,
 892				   this doesn't take mirrors into account */
 893	u64 bytes_pinned;	/* total bytes pinned, will be freed when the
 894				   transaction finishes */
 895	u64 bytes_reserved;	/* total bytes the allocator has reserved for
 896				   current allocations */
 897	u64 bytes_readonly;	/* total bytes that are read only */
 898
 899	u64 bytes_may_use;	/* number of bytes that may be used for
 900				   delalloc/allocations */
 901	u64 disk_used;		/* total bytes used on disk */
 902	u64 disk_total;		/* total bytes on disk, takes mirrors into
 903				   account */
 904
 905	/*
 906	 * we bump reservation progress every time we decrement
 907	 * bytes_reserved.  This way people waiting for reservations
 908	 * know something good has happened and they can check
 909	 * for progress.  The number here isn't to be trusted, it
 910	 * just shows reclaim activity
 911	 */
 912	unsigned long reservation_progress;
 913
 914	unsigned int full:1;	/* indicates that we cannot allocate any more
 915				   chunks for this space */
 916	unsigned int chunk_alloc:1;	/* set if we are allocating a chunk */
 917
 918	unsigned int flush:1;		/* set if we are trying to make space */
 919
 920	unsigned int force_alloc;	/* set if we need to force a chunk
 921					   alloc for this space */
 922
 923	struct list_head list;
 924
 925	/* for block groups in our same type */
 926	struct list_head block_groups[BTRFS_NR_RAID_TYPES];
 927	spinlock_t lock;
 928	struct rw_semaphore groups_sem;
 929	wait_queue_head_t wait;
 930};
 931
 932struct btrfs_block_rsv {
 933	u64 size;
 934	u64 reserved;
 935	struct btrfs_space_info *space_info;
 936	spinlock_t lock;
 937	unsigned int full;
 938};
 939
 940/*
 941 * free clusters are used to claim free space in relatively large chunks,
 942 * allowing us to do less seeky writes.  They are used for all metadata
 943 * allocations and data allocations in ssd mode.
 944 */
 945struct btrfs_free_cluster {
 946	spinlock_t lock;
 947	spinlock_t refill_lock;
 948	struct rb_root root;
 949
 950	/* largest extent in this cluster */
 951	u64 max_size;
 952
 953	/* first extent starting offset */
 954	u64 window_start;
 955
 956	struct btrfs_block_group_cache *block_group;
 957	/*
 958	 * when a cluster is allocated from a block group, we put the
 959	 * cluster onto a list in the block group so that it can
 960	 * be freed before the block group is freed.
 961	 */
 962	struct list_head block_group_list;
 963};
 964
 965enum btrfs_caching_type {
 966	BTRFS_CACHE_NO		= 0,
 967	BTRFS_CACHE_STARTED	= 1,
 968	BTRFS_CACHE_FAST	= 2,
 969	BTRFS_CACHE_FINISHED	= 3,
 970};
 971
 972enum btrfs_disk_cache_state {
 973	BTRFS_DC_WRITTEN	= 0,
 974	BTRFS_DC_ERROR		= 1,
 975	BTRFS_DC_CLEAR		= 2,
 976	BTRFS_DC_SETUP		= 3,
 977	BTRFS_DC_NEED_WRITE	= 4,
 978};
 979
 980struct btrfs_caching_control {
 981	struct list_head list;
 982	struct mutex mutex;
 983	wait_queue_head_t wait;
 984	struct btrfs_work work;
 985	struct btrfs_block_group_cache *block_group;
 986	u64 progress;
 987	atomic_t count;
 988};
 989
 990struct btrfs_block_group_cache {
 991	struct btrfs_key key;
 992	struct btrfs_block_group_item item;
 993	struct btrfs_fs_info *fs_info;
 994	struct inode *inode;
 995	spinlock_t lock;
 996	u64 pinned;
 997	u64 reserved;
 998	u64 bytes_super;
 999	u64 flags;
1000	u64 sectorsize;
1001	u64 cache_generation;
1002	unsigned int ro:1;
1003	unsigned int dirty:1;
1004	unsigned int iref:1;
1005
1006	int disk_cache_state;
1007
1008	/* cache tracking stuff */
1009	int cached;
1010	struct btrfs_caching_control *caching_ctl;
1011	u64 last_byte_to_unpin;
1012
1013	struct btrfs_space_info *space_info;
1014
1015	/* free space cache stuff */
1016	struct btrfs_free_space_ctl *free_space_ctl;
1017
1018	/* block group cache stuff */
1019	struct rb_node cache_node;
1020
1021	/* for block groups in the same raid type */
1022	struct list_head list;
1023
1024	/* usage count */
1025	atomic_t count;
1026
1027	/* List of struct btrfs_free_clusters for this block group.
1028	 * Today it will only have one thing on it, but that may change
1029	 */
1030	struct list_head cluster_list;
1031};
1032
1033struct reloc_control;
1034struct btrfs_device;
1035struct btrfs_fs_devices;
1036struct btrfs_balance_control;
1037struct btrfs_delayed_root;
1038struct btrfs_fs_info {
1039	u8 fsid[BTRFS_FSID_SIZE];
1040	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
1041	struct btrfs_root *extent_root;
1042	struct btrfs_root *tree_root;
1043	struct btrfs_root *chunk_root;
1044	struct btrfs_root *dev_root;
1045	struct btrfs_root *fs_root;
1046	struct btrfs_root *csum_root;
1047
1048	/* the log root tree is a directory of all the other log roots */
1049	struct btrfs_root *log_root_tree;
1050
1051	spinlock_t fs_roots_radix_lock;
1052	struct radix_tree_root fs_roots_radix;
1053
1054	/* block group cache stuff */
1055	spinlock_t block_group_cache_lock;
1056	struct rb_root block_group_cache_tree;
1057
1058	/* keep track of unallocated space */
1059	spinlock_t free_chunk_lock;
1060	u64 free_chunk_space;
1061
1062	struct extent_io_tree freed_extents[2];
1063	struct extent_io_tree *pinned_extents;
1064
1065	/* logical->physical extent mapping */
1066	struct btrfs_mapping_tree mapping_tree;
1067
1068	/*
1069	 * block reservation for extent, checksum, root tree and
1070	 * delayed dir index item
1071	 */
1072	struct btrfs_block_rsv global_block_rsv;
1073	/* block reservation for delay allocation */
1074	struct btrfs_block_rsv delalloc_block_rsv;
1075	/* block reservation for metadata operations */
1076	struct btrfs_block_rsv trans_block_rsv;
1077	/* block reservation for chunk tree */
1078	struct btrfs_block_rsv chunk_block_rsv;
1079	/* block reservation for delayed operations */
1080	struct btrfs_block_rsv delayed_block_rsv;
1081
1082	struct btrfs_block_rsv empty_block_rsv;
1083
1084	u64 generation;
1085	u64 last_trans_committed;
1086
1087	/*
1088	 * this is updated to the current trans every time a full commit
1089	 * is required instead of the faster short fsync log commits
1090	 */
1091	u64 last_trans_log_full_commit;
1092	unsigned long mount_opt;
1093	unsigned long compress_type:4;
1094	u64 max_inline;
1095	u64 alloc_start;
1096	struct btrfs_transaction *running_transaction;
1097	wait_queue_head_t transaction_throttle;
1098	wait_queue_head_t transaction_wait;
1099	wait_queue_head_t transaction_blocked_wait;
1100	wait_queue_head_t async_submit_wait;
1101
1102	struct btrfs_super_block *super_copy;
1103	struct btrfs_super_block *super_for_commit;
1104	struct block_device *__bdev;
1105	struct super_block *sb;
1106	struct inode *btree_inode;
1107	struct backing_dev_info bdi;
1108	struct mutex tree_log_mutex;
1109	struct mutex transaction_kthread_mutex;
1110	struct mutex cleaner_mutex;
1111	struct mutex chunk_mutex;
1112	struct mutex volume_mutex;
1113	/*
1114	 * this protects the ordered operations list only while we are
1115	 * processing all of the entries on it.  This way we make
1116	 * sure the commit code doesn't find the list temporarily empty
1117	 * because another function happens to be doing non-waiting preflush
1118	 * before jumping into the main commit.
1119	 */
1120	struct mutex ordered_operations_mutex;
1121	struct rw_semaphore extent_commit_sem;
1122
1123	struct rw_semaphore cleanup_work_sem;
1124
1125	struct rw_semaphore subvol_sem;
1126	struct srcu_struct subvol_srcu;
1127
1128	spinlock_t trans_lock;
1129	/*
1130	 * the reloc mutex goes with the trans lock, it is taken
1131	 * during commit to protect us from the relocation code
1132	 */
1133	struct mutex reloc_mutex;
1134
1135	struct list_head trans_list;
1136	struct list_head hashers;
1137	struct list_head dead_roots;
1138	struct list_head caching_block_groups;
1139
1140	spinlock_t delayed_iput_lock;
1141	struct list_head delayed_iputs;
1142
1143	/* this protects tree_mod_seq_list */
1144	spinlock_t tree_mod_seq_lock;
1145	atomic_t tree_mod_seq;
1146	struct list_head tree_mod_seq_list;
1147
1148	/* this protects tree_mod_log */
1149	rwlock_t tree_mod_log_lock;
1150	struct rb_root tree_mod_log;
1151
1152	atomic_t nr_async_submits;
1153	atomic_t async_submit_draining;
1154	atomic_t nr_async_bios;
1155	atomic_t async_delalloc_pages;
1156	atomic_t open_ioctl_trans;
1157
1158	/*
1159	 * this is used by the balancing code to wait for all the pending
1160	 * ordered extents
1161	 */
1162	spinlock_t ordered_extent_lock;
1163
1164	/*
1165	 * all of the data=ordered extents pending writeback
1166	 * these can span multiple transactions and basically include
1167	 * every dirty data page that isn't from nodatacow
1168	 */
1169	struct list_head ordered_extents;
1170
1171	/*
1172	 * all of the inodes that have delalloc bytes.  It is possible for
1173	 * this list to be empty even when there is still dirty data=ordered
1174	 * extents waiting to finish IO.
1175	 */
1176	struct list_head delalloc_inodes;
1177
1178	/*
1179	 * special rename and truncate targets that must be on disk before
1180	 * we're allowed to commit.  This is basically the ext3 style
1181	 * data=ordered list.
1182	 */
1183	struct list_head ordered_operations;
1184
1185	/*
1186	 * there is a pool of worker threads for checksumming during writes
1187	 * and a pool for checksumming after reads.  This is because readers
1188	 * can run with FS locks held, and the writers may be waiting for
1189	 * those locks.  We don't want ordering in the pending list to cause
1190	 * deadlocks, and so the two are serviced separately.
1191	 *
1192	 * A third pool does submit_bio to avoid deadlocking with the other
1193	 * two
1194	 */
1195	struct btrfs_workers generic_worker;
1196	struct btrfs_workers workers;
1197	struct btrfs_workers delalloc_workers;
1198	struct btrfs_workers endio_workers;
1199	struct btrfs_workers endio_meta_workers;
1200	struct btrfs_workers endio_meta_write_workers;
1201	struct btrfs_workers endio_write_workers;
1202	struct btrfs_workers endio_freespace_worker;
1203	struct btrfs_workers submit_workers;
1204	struct btrfs_workers caching_workers;
1205	struct btrfs_workers readahead_workers;
1206
1207	/*
1208	 * fixup workers take dirty pages that didn't properly go through
1209	 * the cow mechanism and make them safe to write.  It happens
1210	 * for the sys_munmap function call path
1211	 */
1212	struct btrfs_workers fixup_workers;
1213	struct btrfs_workers delayed_workers;
1214	struct task_struct *transaction_kthread;
1215	struct task_struct *cleaner_kthread;
1216	int thread_pool_size;
1217
1218	struct kobject super_kobj;
1219	struct completion kobj_unregister;
1220	int do_barriers;
1221	int closing;
1222	int log_root_recovering;
1223	int enospc_unlink;
1224	int trans_no_join;
1225
1226	u64 total_pinned;
1227
1228	/* protected by the delalloc lock, used to keep from writing
1229	 * metadata until there is a nice batch
1230	 */
1231	u64 dirty_metadata_bytes;
1232	struct list_head dirty_cowonly_roots;
1233
1234	struct btrfs_fs_devices *fs_devices;
1235
1236	/*
1237	 * the space_info list is almost entirely read only.  It only changes
1238	 * when we add a new raid type to the FS, and that happens
1239	 * very rarely.  RCU is used to protect it.
1240	 */
1241	struct list_head space_info;
1242
1243	struct reloc_control *reloc_ctl;
1244
1245	spinlock_t delalloc_lock;
1246	u64 delalloc_bytes;
1247
1248	/* data_alloc_cluster is only used in ssd mode */
1249	struct btrfs_free_cluster data_alloc_cluster;
1250
1251	/* all metadata allocations go through this cluster */
1252	struct btrfs_free_cluster meta_alloc_cluster;
1253
1254	/* auto defrag inodes go here */
1255	spinlock_t defrag_inodes_lock;
1256	struct rb_root defrag_inodes;
1257	atomic_t defrag_running;
1258
1259	spinlock_t ref_cache_lock;
1260	u64 total_ref_cache_size;
1261
1262	/*
1263	 * these three are in extended format (availability of single
1264	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
1265	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
1266	 */
1267	u64 avail_data_alloc_bits;
1268	u64 avail_metadata_alloc_bits;
1269	u64 avail_system_alloc_bits;
1270
1271	/* restriper state */
1272	spinlock_t balance_lock;
1273	struct mutex balance_mutex;
1274	atomic_t balance_running;
1275	atomic_t balance_pause_req;
1276	atomic_t balance_cancel_req;
1277	struct btrfs_balance_control *balance_ctl;
1278	wait_queue_head_t balance_wait_q;
1279
1280	unsigned data_chunk_allocations;
1281	unsigned metadata_ratio;
1282
1283	void *bdev_holder;
1284
1285	/* private scrub information */
1286	struct mutex scrub_lock;
1287	atomic_t scrubs_running;
1288	atomic_t scrub_pause_req;
1289	atomic_t scrubs_paused;
1290	atomic_t scrub_cancel_req;
1291	wait_queue_head_t scrub_pause_wait;
1292	struct rw_semaphore scrub_super_lock;
1293	int scrub_workers_refcnt;
1294	struct btrfs_workers scrub_workers;
1295
1296#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1297	u32 check_integrity_print_mask;
1298#endif
1299
1300	/* filesystem state */
1301	u64 fs_state;
1302
1303	struct btrfs_delayed_root *delayed_root;
1304
1305	/* readahead tree */
1306	spinlock_t reada_lock;
1307	struct radix_tree_root reada_tree;
1308
1309	/* next backup root to be overwritten */
1310	int backup_root_index;
1311};
1312
1313/*
1314 * in ram representation of the tree.  extent_root is used for all allocations
1315 * and for the extent tree extent_root root.
1316 */
1317struct btrfs_root {
 
 
1318	struct extent_buffer *node;
1319
1320	struct extent_buffer *commit_root;
1321	struct btrfs_root *log_root;
1322	struct btrfs_root *reloc_root;
1323
 
1324	struct btrfs_root_item root_item;
1325	struct btrfs_key root_key;
1326	struct btrfs_fs_info *fs_info;
1327	struct extent_io_tree dirty_log_pages;
1328
1329	struct kobject root_kobj;
1330	struct completion kobj_unregister;
1331	struct mutex objectid_mutex;
1332
1333	spinlock_t accounting_lock;
1334	struct btrfs_block_rsv *block_rsv;
1335
1336	/* free ino cache stuff */
1337	struct mutex fs_commit_mutex;
1338	struct btrfs_free_space_ctl *free_ino_ctl;
1339	enum btrfs_caching_type cached;
1340	spinlock_t cache_lock;
1341	wait_queue_head_t cache_wait;
1342	struct btrfs_free_space_ctl *free_ino_pinned;
1343	u64 cache_progress;
1344	struct inode *cache_inode;
1345
1346	struct mutex log_mutex;
1347	wait_queue_head_t log_writer_wait;
1348	wait_queue_head_t log_commit_wait[2];
 
 
1349	atomic_t log_writers;
1350	atomic_t log_commit[2];
1351	unsigned long log_transid;
1352	unsigned long last_log_commit;
1353	unsigned long log_batch;
 
 
 
 
1354	pid_t log_start_pid;
1355	bool log_multiple_pids;
1356
1357	u64 objectid;
1358	u64 last_trans;
1359
1360	/* data allocations are done in sectorsize units */
1361	u32 sectorsize;
1362
1363	/* node allocations are done in nodesize units */
1364	u32 nodesize;
1365
1366	/* leaf allocations are done in leafsize units */
1367	u32 leafsize;
1368
1369	u32 stripesize;
1370
1371	u32 type;
1372
1373	u64 highest_objectid;
1374
1375	/* btrfs_record_root_in_trans is a multi-step process,
1376	 * and it can race with the balancing code.   But the
1377	 * race is very small, and only the first time the root
1378	 * is added to each transaction.  So in_trans_setup
1379	 * is used to tell us when more checks are required
1380	 */
1381	unsigned long in_trans_setup;
1382	int ref_cows;
1383	int track_dirty;
1384	int in_radix;
1385
1386	u64 defrag_trans_start;
1387	struct btrfs_key defrag_progress;
1388	struct btrfs_key defrag_max;
1389	int defrag_running;
1390	char *name;
1391
1392	/* the dirty list is only used by non-reference counted roots */
1393	struct list_head dirty_list;
1394
1395	struct list_head root_list;
1396
1397	spinlock_t orphan_lock;
1398	atomic_t orphan_inodes;
1399	struct btrfs_block_rsv *orphan_block_rsv;
1400	int orphan_item_inserted;
1401	int orphan_cleanup_state;
1402
1403	spinlock_t inode_lock;
1404	/* red-black tree that keeps track of in-memory inodes */
1405	struct rb_root inode_tree;
1406
1407	/*
1408	 * radix tree that keeps track of delayed nodes of every inode,
1409	 * protected by inode_lock
1410	 */
1411	struct radix_tree_root delayed_nodes_tree;
1412	/*
1413	 * right now this just gets used so that a root has its own devid
1414	 * for stat.  It may be used for more later
1415	 */
1416	dev_t anon_dev;
1417
1418	int force_cow;
1419};
1420
1421struct btrfs_ioctl_defrag_range_args {
1422	/* start of the defrag operation */
1423	__u64 start;
 
 
 
 
 
 
 
1424
1425	/* number of bytes to defrag, use (u64)-1 to say all */
1426	__u64 len;
 
 
 
 
1427
1428	/*
1429	 * flags for the operation, which can include turning
1430	 * on compression for this one defrag
 
1431	 */
1432	__u64 flags;
 
 
1433
1434	/*
1435	 * any extent bigger than this will be considered
1436	 * already defragged.  Use 0 to take the kernel default
1437	 * Use 1 to say every single extent must be rewritten
 
1438	 */
1439	__u32 extent_thresh;
1440
1441	/*
1442	 * which compression method to use if turning on compression
1443	 * for this defrag operation.  If unspecified, zlib will
1444	 * be used
1445	 */
1446	__u32 compress_type;
1447
1448	/* spare for later */
1449	__u32 unused[4];
1450};
 
 
 
 
1451
 
1452
1453/*
1454 * inode items have the data typically returned from stat and store other
1455 * info about object characteristics.  There is one for every file and dir in
1456 * the FS
1457 */
1458#define BTRFS_INODE_ITEM_KEY		1
1459#define BTRFS_INODE_REF_KEY		12
1460#define BTRFS_XATTR_ITEM_KEY		24
1461#define BTRFS_ORPHAN_ITEM_KEY		48
1462/* reserve 2-15 close to the inode for later flexibility */
1463
1464/*
1465 * dir items are the name -> inode pointers in a directory.  There is one
1466 * for every name in a directory.
1467 */
1468#define BTRFS_DIR_LOG_ITEM_KEY  60
1469#define BTRFS_DIR_LOG_INDEX_KEY 72
1470#define BTRFS_DIR_ITEM_KEY	84
1471#define BTRFS_DIR_INDEX_KEY	96
1472/*
1473 * extent data is for file data
1474 */
1475#define BTRFS_EXTENT_DATA_KEY	108
1476
1477/*
1478 * extent csums are stored in a separate tree and hold csums for
1479 * an entire extent on disk.
1480 */
1481#define BTRFS_EXTENT_CSUM_KEY	128
1482
1483/*
1484 * root items point to tree roots.  They are typically in the root
1485 * tree used by the super block to find all the other trees
1486 */
1487#define BTRFS_ROOT_ITEM_KEY	132
1488
1489/*
1490 * root backrefs tie subvols and snapshots to the directory entries that
1491 * reference them
1492 */
1493#define BTRFS_ROOT_BACKREF_KEY	144
1494
1495/*
1496 * root refs make a fast index for listing all of the snapshots and
1497 * subvolumes referenced by a given root.  They point directly to the
1498 * directory item in the root that references the subvol
1499 */
1500#define BTRFS_ROOT_REF_KEY	156
1501
1502/*
1503 * extent items are in the extent map tree.  These record which blocks
1504 * are used, and how many references there are to each block
1505 */
1506#define BTRFS_EXTENT_ITEM_KEY	168
1507
1508#define BTRFS_TREE_BLOCK_REF_KEY	176
1509
1510#define BTRFS_EXTENT_DATA_REF_KEY	178
1511
1512#define BTRFS_EXTENT_REF_V0_KEY		180
1513
1514#define BTRFS_SHARED_BLOCK_REF_KEY	182
1515
1516#define BTRFS_SHARED_DATA_REF_KEY	184
1517
1518/*
1519 * block groups give us hints into the extent allocation trees.  Which
1520 * blocks are free etc etc
1521 */
1522#define BTRFS_BLOCK_GROUP_ITEM_KEY 192
1523
1524#define BTRFS_DEV_EXTENT_KEY	204
1525#define BTRFS_DEV_ITEM_KEY	216
1526#define BTRFS_CHUNK_ITEM_KEY	228
1527
1528#define BTRFS_BALANCE_ITEM_KEY	248
1529
1530/*
1531 * Persistantly stores the io stats in the device tree.
1532 * One key for all stats, (0, BTRFS_DEV_STATS_KEY, devid).
1533 */
1534#define BTRFS_DEV_STATS_KEY	249
1535
1536/*
1537 * string items are for debugging.  They just store a short string of
1538 * data in the FS
1539 */
1540#define BTRFS_STRING_ITEM_KEY	253
1541
1542/*
1543 * Flags for mount options.
1544 *
1545 * Note: don't forget to add new options to btrfs_show_options()
1546 */
1547#define BTRFS_MOUNT_NODATASUM		(1 << 0)
1548#define BTRFS_MOUNT_NODATACOW		(1 << 1)
1549#define BTRFS_MOUNT_NOBARRIER		(1 << 2)
1550#define BTRFS_MOUNT_SSD			(1 << 3)
1551#define BTRFS_MOUNT_DEGRADED		(1 << 4)
1552#define BTRFS_MOUNT_COMPRESS		(1 << 5)
1553#define BTRFS_MOUNT_NOTREELOG           (1 << 6)
1554#define BTRFS_MOUNT_FLUSHONCOMMIT       (1 << 7)
1555#define BTRFS_MOUNT_SSD_SPREAD		(1 << 8)
1556#define BTRFS_MOUNT_NOSSD		(1 << 9)
1557#define BTRFS_MOUNT_DISCARD		(1 << 10)
1558#define BTRFS_MOUNT_FORCE_COMPRESS      (1 << 11)
1559#define BTRFS_MOUNT_SPACE_CACHE		(1 << 12)
1560#define BTRFS_MOUNT_CLEAR_CACHE		(1 << 13)
1561#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
1562#define BTRFS_MOUNT_ENOSPC_DEBUG	 (1 << 15)
1563#define BTRFS_MOUNT_AUTO_DEFRAG		(1 << 16)
1564#define BTRFS_MOUNT_INODE_MAP_CACHE	(1 << 17)
1565#define BTRFS_MOUNT_RECOVERY		(1 << 18)
1566#define BTRFS_MOUNT_SKIP_BALANCE	(1 << 19)
1567#define BTRFS_MOUNT_CHECK_INTEGRITY	(1 << 20)
1568#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
1569#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	(1 << 22)
1570
1571#define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1572#define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1573#define btrfs_test_opt(root, opt)	((root)->fs_info->mount_opt & \
1574					 BTRFS_MOUNT_##opt)
1575/*
1576 * Inode flags
1577 */
1578#define BTRFS_INODE_NODATASUM		(1 << 0)
1579#define BTRFS_INODE_NODATACOW		(1 << 1)
1580#define BTRFS_INODE_READONLY		(1 << 2)
1581#define BTRFS_INODE_NOCOMPRESS		(1 << 3)
1582#define BTRFS_INODE_PREALLOC		(1 << 4)
1583#define BTRFS_INODE_SYNC		(1 << 5)
1584#define BTRFS_INODE_IMMUTABLE		(1 << 6)
1585#define BTRFS_INODE_APPEND		(1 << 7)
1586#define BTRFS_INODE_NODUMP		(1 << 8)
1587#define BTRFS_INODE_NOATIME		(1 << 9)
1588#define BTRFS_INODE_DIRSYNC		(1 << 10)
1589#define BTRFS_INODE_COMPRESS		(1 << 11)
1590
1591#define BTRFS_INODE_ROOT_ITEM_INIT	(1 << 31)
1592
1593struct btrfs_map_token {
1594	struct extent_buffer *eb;
1595	char *kaddr;
1596	unsigned long offset;
1597};
1598
1599static inline void btrfs_init_map_token (struct btrfs_map_token *token)
1600{
1601	memset(token, 0, sizeof(*token));
1602}
1603
1604/* some macros to generate set/get funcs for the struct fields.  This
1605 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1606 * one for u8:
1607 */
1608#define le8_to_cpu(v) (v)
1609#define cpu_to_le8(v) (v)
1610#define __le8 u8
1611
1612#define read_eb_member(eb, ptr, type, member, result) (			\
1613	read_extent_buffer(eb, (char *)(result),			\
1614			   ((unsigned long)(ptr)) +			\
1615			    offsetof(type, member),			\
1616			   sizeof(((type *)0)->member)))
1617
1618#define write_eb_member(eb, ptr, type, member, result) (		\
1619	write_extent_buffer(eb, (char *)(result),			\
1620			   ((unsigned long)(ptr)) +			\
1621			    offsetof(type, member),			\
1622			   sizeof(((type *)0)->member)))
1623
1624#ifndef BTRFS_SETGET_FUNCS
1625#define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1626u##bits btrfs_##name(struct extent_buffer *eb, type *s);		\
1627u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, struct btrfs_map_token *token);		\
1628void btrfs_set_token_##name(struct extent_buffer *eb, type *s, u##bits val, struct btrfs_map_token *token);\
1629void btrfs_set_##name(struct extent_buffer *eb, type *s, u##bits val);
1630#endif
1631
1632#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1633static inline u##bits btrfs_##name(struct extent_buffer *eb)		\
1634{									\
1635	type *p = page_address(eb->pages[0]);				\
1636	u##bits res = le##bits##_to_cpu(p->member);			\
1637	return res;							\
1638}									\
1639static inline void btrfs_set_##name(struct extent_buffer *eb,		\
1640				    u##bits val)			\
1641{									\
1642	type *p = page_address(eb->pages[0]);				\
1643	p->member = cpu_to_le##bits(val);				\
1644}
1645
1646#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1647static inline u##bits btrfs_##name(type *s)				\
1648{									\
1649	return le##bits##_to_cpu(s->member);				\
1650}									\
1651static inline void btrfs_set_##name(type *s, u##bits val)		\
1652{									\
1653	s->member = cpu_to_le##bits(val);				\
1654}
1655
1656BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1657BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
1658BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1659BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1660BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1661BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1662		   start_offset, 64);
1663BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1664BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1665BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1666BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1667BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1668BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1669
1670BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1671BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1672			 total_bytes, 64);
1673BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1674			 bytes_used, 64);
1675BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1676			 io_align, 32);
1677BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1678			 io_width, 32);
1679BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1680			 sector_size, 32);
1681BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1682BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1683			 dev_group, 32);
1684BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1685			 seek_speed, 8);
1686BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1687			 bandwidth, 8);
1688BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1689			 generation, 64);
1690
1691static inline char *btrfs_device_uuid(struct btrfs_dev_item *d)
1692{
1693	return (char *)d + offsetof(struct btrfs_dev_item, uuid);
1694}
1695
1696static inline char *btrfs_device_fsid(struct btrfs_dev_item *d)
1697{
1698	return (char *)d + offsetof(struct btrfs_dev_item, fsid);
1699}
1700
1701BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1702BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1703BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1704BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1705BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1706BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1707BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1708BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1709BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1710BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1711BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1712
1713static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1714{
1715	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1716}
1717
1718BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1719BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1720BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1721			 stripe_len, 64);
1722BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1723			 io_align, 32);
1724BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1725			 io_width, 32);
1726BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1727			 sector_size, 32);
1728BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1729BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1730			 num_stripes, 16);
1731BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1732			 sub_stripes, 16);
1733BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1734BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1735
1736static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1737						   int nr)
1738{
1739	unsigned long offset = (unsigned long)c;
1740	offset += offsetof(struct btrfs_chunk, stripe);
1741	offset += nr * sizeof(struct btrfs_stripe);
1742	return (struct btrfs_stripe *)offset;
1743}
1744
1745static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1746{
1747	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1748}
1749
1750static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
1751					 struct btrfs_chunk *c, int nr)
1752{
1753	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1754}
1755
1756static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
1757					 struct btrfs_chunk *c, int nr)
1758{
1759	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1760}
1761
1762/* struct btrfs_block_group_item */
1763BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
1764			 used, 64);
1765BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
1766			 used, 64);
1767BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
1768			struct btrfs_block_group_item, chunk_objectid, 64);
1769
1770BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
1771		   struct btrfs_block_group_item, chunk_objectid, 64);
1772BTRFS_SETGET_FUNCS(disk_block_group_flags,
1773		   struct btrfs_block_group_item, flags, 64);
1774BTRFS_SETGET_STACK_FUNCS(block_group_flags,
1775			struct btrfs_block_group_item, flags, 64);
1776
1777/* struct btrfs_inode_ref */
1778BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1779BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1780
1781/* struct btrfs_inode_item */
1782BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1783BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1784BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1785BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1786BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1787BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1788BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1789BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1790BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1791BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1792BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1793BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1794
1795static inline struct btrfs_timespec *
1796btrfs_inode_atime(struct btrfs_inode_item *inode_item)
1797{
1798	unsigned long ptr = (unsigned long)inode_item;
1799	ptr += offsetof(struct btrfs_inode_item, atime);
1800	return (struct btrfs_timespec *)ptr;
1801}
1802
1803static inline struct btrfs_timespec *
1804btrfs_inode_mtime(struct btrfs_inode_item *inode_item)
1805{
1806	unsigned long ptr = (unsigned long)inode_item;
1807	ptr += offsetof(struct btrfs_inode_item, mtime);
1808	return (struct btrfs_timespec *)ptr;
1809}
1810
1811static inline struct btrfs_timespec *
1812btrfs_inode_ctime(struct btrfs_inode_item *inode_item)
1813{
1814	unsigned long ptr = (unsigned long)inode_item;
1815	ptr += offsetof(struct btrfs_inode_item, ctime);
1816	return (struct btrfs_timespec *)ptr;
1817}
1818
1819BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1820BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1821
1822/* struct btrfs_dev_extent */
1823BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1824		   chunk_tree, 64);
1825BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1826		   chunk_objectid, 64);
1827BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1828		   chunk_offset, 64);
1829BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1830
1831static inline u8 *btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
1832{
1833	unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
1834	return (u8 *)((unsigned long)dev + ptr);
1835}
1836
1837BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1838BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1839		   generation, 64);
1840BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1841
1842BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
1843
1844
1845BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1846
1847static inline void btrfs_tree_block_key(struct extent_buffer *eb,
1848					struct btrfs_tree_block_info *item,
1849					struct btrfs_disk_key *key)
1850{
1851	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1852}
1853
1854static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
1855					    struct btrfs_tree_block_info *item,
1856					    struct btrfs_disk_key *key)
1857{
1858	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
 
1859}
1860
1861BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1862		   root, 64);
1863BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1864		   objectid, 64);
1865BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1866		   offset, 64);
1867BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1868		   count, 32);
1869
1870BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1871		   count, 32);
1872
1873BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1874		   type, 8);
1875BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1876		   offset, 64);
1877
1878static inline u32 btrfs_extent_inline_ref_size(int type)
1879{
1880	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1881	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1882		return sizeof(struct btrfs_extent_inline_ref);
1883	if (type == BTRFS_SHARED_DATA_REF_KEY)
1884		return sizeof(struct btrfs_shared_data_ref) +
1885		       sizeof(struct btrfs_extent_inline_ref);
1886	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1887		return sizeof(struct btrfs_extent_data_ref) +
1888		       offsetof(struct btrfs_extent_inline_ref, offset);
1889	BUG();
1890	return 0;
1891}
1892
1893BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
1894BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
1895		   generation, 64);
1896BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
1897BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
1898
1899/* struct btrfs_node */
1900BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1901BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1902
1903static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
1904{
1905	unsigned long ptr;
1906	ptr = offsetof(struct btrfs_node, ptrs) +
1907		sizeof(struct btrfs_key_ptr) * nr;
1908	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1909}
1910
1911static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
1912					   int nr, u64 val)
1913{
1914	unsigned long ptr;
1915	ptr = offsetof(struct btrfs_node, ptrs) +
1916		sizeof(struct btrfs_key_ptr) * nr;
1917	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1918}
1919
1920static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
1921{
1922	unsigned long ptr;
1923	ptr = offsetof(struct btrfs_node, ptrs) +
1924		sizeof(struct btrfs_key_ptr) * nr;
1925	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1926}
1927
1928static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
1929						 int nr, u64 val)
1930{
1931	unsigned long ptr;
1932	ptr = offsetof(struct btrfs_node, ptrs) +
1933		sizeof(struct btrfs_key_ptr) * nr;
1934	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1935}
1936
1937static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1938{
1939	return offsetof(struct btrfs_node, ptrs) +
1940		sizeof(struct btrfs_key_ptr) * nr;
1941}
1942
1943void btrfs_node_key(struct extent_buffer *eb,
1944		    struct btrfs_disk_key *disk_key, int nr);
1945
1946static inline void btrfs_set_node_key(struct extent_buffer *eb,
1947				      struct btrfs_disk_key *disk_key, int nr)
1948{
1949	unsigned long ptr;
1950	ptr = btrfs_node_key_ptr_offset(nr);
1951	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1952		       struct btrfs_key_ptr, key, disk_key);
1953}
1954
1955/* struct btrfs_item */
1956BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1957BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1958
1959static inline unsigned long btrfs_item_nr_offset(int nr)
1960{
1961	return offsetof(struct btrfs_leaf, items) +
1962		sizeof(struct btrfs_item) * nr;
1963}
1964
1965static inline struct btrfs_item *btrfs_item_nr(struct extent_buffer *eb,
1966					       int nr)
1967{
1968	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1969}
1970
1971static inline u32 btrfs_item_end(struct extent_buffer *eb,
1972				 struct btrfs_item *item)
1973{
1974	return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1975}
1976
1977static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
1978{
1979	return btrfs_item_end(eb, btrfs_item_nr(eb, nr));
1980}
1981
1982static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
1983{
1984	return btrfs_item_offset(eb, btrfs_item_nr(eb, nr));
1985}
1986
1987static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
1988{
1989	return btrfs_item_size(eb, btrfs_item_nr(eb, nr));
1990}
1991
1992static inline void btrfs_item_key(struct extent_buffer *eb,
1993			   struct btrfs_disk_key *disk_key, int nr)
1994{
1995	struct btrfs_item *item = btrfs_item_nr(eb, nr);
1996	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
1997}
1998
1999static inline void btrfs_set_item_key(struct extent_buffer *eb,
2000			       struct btrfs_disk_key *disk_key, int nr)
2001{
2002	struct btrfs_item *item = btrfs_item_nr(eb, nr);
2003	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
2004}
2005
2006BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
2007
2008/*
2009 * struct btrfs_root_ref
 
2010 */
2011BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
2012BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
2013BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
2014
2015/* struct btrfs_dir_item */
2016BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
2017BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
2018BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
2019BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
2020
2021static inline void btrfs_dir_item_key(struct extent_buffer *eb,
2022				      struct btrfs_dir_item *item,
2023				      struct btrfs_disk_key *key)
2024{
2025	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
2026}
 
 
 
 
 
 
 
 
 
 
 
2027
2028static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
2029					  struct btrfs_dir_item *item,
2030					  struct btrfs_disk_key *key)
2031{
2032	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
2033}
2034
2035BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
2036		   num_entries, 64);
2037BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
2038		   num_bitmaps, 64);
2039BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
2040		   generation, 64);
2041
2042static inline void btrfs_free_space_key(struct extent_buffer *eb,
2043					struct btrfs_free_space_header *h,
2044					struct btrfs_disk_key *key)
2045{
2046	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2047}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2048
2049static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
2050					    struct btrfs_free_space_header *h,
2051					    struct btrfs_disk_key *key)
2052{
2053	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
2054}
2055
2056/* struct btrfs_disk_key */
2057BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
2058			 objectid, 64);
2059BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
2060BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2061
2062static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
2063					 struct btrfs_disk_key *disk)
2064{
2065	cpu->offset = le64_to_cpu(disk->offset);
2066	cpu->type = disk->type;
2067	cpu->objectid = le64_to_cpu(disk->objectid);
2068}
2069
2070static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
2071					 struct btrfs_key *cpu)
2072{
2073	disk->offset = cpu_to_le64(cpu->offset);
2074	disk->type = cpu->type;
2075	disk->objectid = cpu_to_le64(cpu->objectid);
2076}
2077
2078static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
2079				  struct btrfs_key *key, int nr)
2080{
2081	struct btrfs_disk_key disk_key;
2082	btrfs_node_key(eb, &disk_key, nr);
2083	btrfs_disk_key_to_cpu(key, &disk_key);
2084}
2085
2086static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
2087				  struct btrfs_key *key, int nr)
2088{
2089	struct btrfs_disk_key disk_key;
2090	btrfs_item_key(eb, &disk_key, nr);
2091	btrfs_disk_key_to_cpu(key, &disk_key);
2092}
2093
2094static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
2095				      struct btrfs_dir_item *item,
2096				      struct btrfs_key *key)
2097{
2098	struct btrfs_disk_key disk_key;
2099	btrfs_dir_item_key(eb, item, &disk_key);
2100	btrfs_disk_key_to_cpu(key, &disk_key);
2101}
2102
2103
2104static inline u8 btrfs_key_type(struct btrfs_key *key)
2105{
2106	return key->type;
2107}
2108
2109static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2110{
2111	key->type = val;
2112}
2113
2114/* struct btrfs_header */
2115BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2116BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2117			  generation, 64);
2118BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2119BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2120BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2121BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2122
2123static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2124{
2125	return (btrfs_header_flags(eb) & flag) == flag;
2126}
2127
2128static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2129{
2130	u64 flags = btrfs_header_flags(eb);
2131	btrfs_set_header_flags(eb, flags | flag);
2132	return (flags & flag) == flag;
2133}
2134
2135static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2136{
2137	u64 flags = btrfs_header_flags(eb);
2138	btrfs_set_header_flags(eb, flags & ~flag);
2139	return (flags & flag) == flag;
2140}
2141
2142static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2143{
2144	u64 flags = btrfs_header_flags(eb);
2145	return flags >> BTRFS_BACKREF_REV_SHIFT;
2146}
2147
2148static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2149						int rev)
2150{
2151	u64 flags = btrfs_header_flags(eb);
2152	flags &= ~BTRFS_BACKREF_REV_MASK;
2153	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2154	btrfs_set_header_flags(eb, flags);
2155}
2156
2157static inline u8 *btrfs_header_fsid(struct extent_buffer *eb)
2158{
2159	unsigned long ptr = offsetof(struct btrfs_header, fsid);
2160	return (u8 *)ptr;
2161}
2162
2163static inline u8 *btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2164{
2165	unsigned long ptr = offsetof(struct btrfs_header, chunk_tree_uuid);
2166	return (u8 *)ptr;
2167}
2168
2169static inline int btrfs_is_leaf(struct extent_buffer *eb)
2170{
2171	return btrfs_header_level(eb) == 0;
2172}
2173
2174/* struct btrfs_root_item */
2175BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2176		   generation, 64);
2177BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2178BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2179BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2180
2181BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2182			 generation, 64);
2183BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2184BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2185BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2186BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2187BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2188BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2189BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2190BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2191			 last_snapshot, 64);
2192
2193static inline bool btrfs_root_readonly(struct btrfs_root *root)
2194{
2195	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2196}
2197
2198/* struct btrfs_root_backup */
2199BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2200		   tree_root, 64);
2201BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2202		   tree_root_gen, 64);
2203BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2204		   tree_root_level, 8);
2205
2206BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2207		   chunk_root, 64);
2208BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2209		   chunk_root_gen, 64);
2210BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2211		   chunk_root_level, 8);
2212
2213BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2214		   extent_root, 64);
2215BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2216		   extent_root_gen, 64);
2217BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2218		   extent_root_level, 8);
2219
2220BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2221		   fs_root, 64);
2222BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2223		   fs_root_gen, 64);
2224BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2225		   fs_root_level, 8);
2226
2227BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2228		   dev_root, 64);
2229BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2230		   dev_root_gen, 64);
2231BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2232		   dev_root_level, 8);
2233
2234BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2235		   csum_root, 64);
2236BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2237		   csum_root_gen, 64);
2238BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2239		   csum_root_level, 8);
2240BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2241		   total_bytes, 64);
2242BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2243		   bytes_used, 64);
2244BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2245		   num_devices, 64);
2246
2247/* struct btrfs_balance_item */
2248BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2249
2250static inline void btrfs_balance_data(struct extent_buffer *eb,
2251				      struct btrfs_balance_item *bi,
2252				      struct btrfs_disk_balance_args *ba)
2253{
2254	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2255}
2256
2257static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2258					  struct btrfs_balance_item *bi,
2259					  struct btrfs_disk_balance_args *ba)
2260{
2261	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2262}
2263
2264static inline void btrfs_balance_meta(struct extent_buffer *eb,
2265				      struct btrfs_balance_item *bi,
2266				      struct btrfs_disk_balance_args *ba)
2267{
2268	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2269}
2270
2271static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2272					  struct btrfs_balance_item *bi,
2273					  struct btrfs_disk_balance_args *ba)
2274{
2275	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2276}
2277
2278static inline void btrfs_balance_sys(struct extent_buffer *eb,
2279				     struct btrfs_balance_item *bi,
2280				     struct btrfs_disk_balance_args *ba)
2281{
2282	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2283}
2284
2285static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2286					 struct btrfs_balance_item *bi,
2287					 struct btrfs_disk_balance_args *ba)
2288{
2289	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2290}
2291
2292static inline void
2293btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2294			       struct btrfs_disk_balance_args *disk)
2295{
2296	memset(cpu, 0, sizeof(*cpu));
2297
2298	cpu->profiles = le64_to_cpu(disk->profiles);
2299	cpu->usage = le64_to_cpu(disk->usage);
2300	cpu->devid = le64_to_cpu(disk->devid);
2301	cpu->pstart = le64_to_cpu(disk->pstart);
2302	cpu->pend = le64_to_cpu(disk->pend);
2303	cpu->vstart = le64_to_cpu(disk->vstart);
2304	cpu->vend = le64_to_cpu(disk->vend);
2305	cpu->target = le64_to_cpu(disk->target);
2306	cpu->flags = le64_to_cpu(disk->flags);
2307}
2308
2309static inline void
2310btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2311			       struct btrfs_balance_args *cpu)
2312{
2313	memset(disk, 0, sizeof(*disk));
2314
2315	disk->profiles = cpu_to_le64(cpu->profiles);
2316	disk->usage = cpu_to_le64(cpu->usage);
2317	disk->devid = cpu_to_le64(cpu->devid);
2318	disk->pstart = cpu_to_le64(cpu->pstart);
2319	disk->pend = cpu_to_le64(cpu->pend);
2320	disk->vstart = cpu_to_le64(cpu->vstart);
2321	disk->vend = cpu_to_le64(cpu->vend);
2322	disk->target = cpu_to_le64(cpu->target);
2323	disk->flags = cpu_to_le64(cpu->flags);
2324}
2325
2326/* struct btrfs_super_block */
2327BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2328BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2329BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2330			 generation, 64);
2331BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2332BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2333			 struct btrfs_super_block, sys_chunk_array_size, 32);
2334BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2335			 struct btrfs_super_block, chunk_root_generation, 64);
2336BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2337			 root_level, 8);
2338BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2339			 chunk_root, 64);
2340BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2341			 chunk_root_level, 8);
2342BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2343			 log_root, 64);
2344BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2345			 log_root_transid, 64);
2346BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2347			 log_root_level, 8);
2348BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2349			 total_bytes, 64);
2350BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2351			 bytes_used, 64);
2352BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2353			 sectorsize, 32);
2354BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2355			 nodesize, 32);
2356BTRFS_SETGET_STACK_FUNCS(super_leafsize, struct btrfs_super_block,
2357			 leafsize, 32);
2358BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2359			 stripesize, 32);
2360BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2361			 root_dir_objectid, 64);
2362BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2363			 num_devices, 64);
2364BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2365			 compat_flags, 64);
2366BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2367			 compat_ro_flags, 64);
2368BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2369			 incompat_flags, 64);
2370BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2371			 csum_type, 16);
2372BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2373			 cache_generation, 64);
2374
2375static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
2376{
2377	int t = btrfs_super_csum_type(s);
2378	BUG_ON(t >= ARRAY_SIZE(btrfs_csum_sizes));
2379	return btrfs_csum_sizes[t];
2380}
2381
2382static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
2383{
2384	return offsetof(struct btrfs_leaf, items);
2385}
2386
2387/* struct btrfs_file_extent_item */
2388BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2389
2390static inline unsigned long
2391btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
2392{
2393	unsigned long offset = (unsigned long)e;
2394	offset += offsetof(struct btrfs_file_extent_item, disk_bytenr);
2395	return offset;
2396}
2397
2398static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2399{
2400	return offsetof(struct btrfs_file_extent_item, disk_bytenr) + datasize;
2401}
2402
2403BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2404		   disk_bytenr, 64);
2405BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2406		   generation, 64);
2407BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2408		   disk_num_bytes, 64);
2409BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2410		  offset, 64);
2411BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2412		   num_bytes, 64);
2413BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2414		   ram_bytes, 64);
2415BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2416		   compression, 8);
2417BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2418		   encryption, 8);
2419BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2420		   other_encoding, 16);
2421
2422/* this returns the number of file bytes represented by the inline item.
2423 * If an item is compressed, this is the uncompressed size
2424 */
2425static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
2426					       struct btrfs_file_extent_item *e)
2427{
2428	return btrfs_file_extent_ram_bytes(eb, e);
2429}
2430
2431/*
2432 * this returns the number of bytes used by the item on disk, minus the
2433 * size of any extent headers.  If a file is compressed on disk, this is
2434 * the compressed size
2435 */
2436static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
2437						    struct btrfs_item *e)
2438{
2439	unsigned long offset;
2440	offset = offsetof(struct btrfs_file_extent_item, disk_bytenr);
2441	return btrfs_item_size(eb, e) - offset;
2442}
2443
2444/* btrfs_dev_stats_item */
2445static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
2446					struct btrfs_dev_stats_item *ptr,
2447					int index)
2448{
2449	u64 val;
2450
2451	read_extent_buffer(eb, &val,
2452			   offsetof(struct btrfs_dev_stats_item, values) +
2453			    ((unsigned long)ptr) + (index * sizeof(u64)),
2454			   sizeof(val));
2455	return val;
2456}
2457
2458static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
2459					     struct btrfs_dev_stats_item *ptr,
2460					     int index, u64 val)
2461{
2462	write_extent_buffer(eb, &val,
2463			    offsetof(struct btrfs_dev_stats_item, values) +
2464			     ((unsigned long)ptr) + (index * sizeof(u64)),
2465			    sizeof(val));
2466}
2467
2468static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
2469{
2470	return sb->s_fs_info;
2471}
2472
2473static inline u32 btrfs_level_size(struct btrfs_root *root, int level)
2474{
2475	if (level == 0)
2476		return root->leafsize;
2477	return root->nodesize;
2478}
2479
2480/* helper function to cast into the data area of the leaf. */
2481#define btrfs_item_ptr(leaf, slot, type) \
2482	((type *)(btrfs_leaf_data(leaf) + \
2483	btrfs_item_offset_nr(leaf, slot)))
2484
2485#define btrfs_item_ptr_offset(leaf, slot) \
2486	((unsigned long)(btrfs_leaf_data(leaf) + \
2487	btrfs_item_offset_nr(leaf, slot)))
2488
2489static inline struct dentry *fdentry(struct file *file)
2490{
2491	return file->f_path.dentry;
2492}
2493
2494static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
2495{
2496	return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2497		(space_info->flags & BTRFS_BLOCK_GROUP_DATA));
2498}
2499
2500static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2501{
2502	return mapping_gfp_mask(mapping) & ~__GFP_FS;
2503}
2504
2505/* extent-tree.c */
2506static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_root *root,
2507						 unsigned num_items)
2508{
2509	return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
2510		3 * num_items;
2511}
2512
2513/*
2514 * Doing a truncate won't result in new nodes or leaves, just what we need for
2515 * COW.
2516 */
2517static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_root *root,
2518						 unsigned num_items)
2519{
2520	return (root->leafsize + root->nodesize * (BTRFS_MAX_LEVEL - 1)) *
2521		num_items;
2522}
2523
2524void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
2525int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2526			   struct btrfs_root *root, unsigned long count);
2527int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len);
2528int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2529			     struct btrfs_root *root, u64 bytenr,
2530			     u64 num_bytes, u64 *refs, u64 *flags);
2531int btrfs_pin_extent(struct btrfs_root *root,
2532		     u64 bytenr, u64 num, int reserved);
2533int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2534				    struct btrfs_root *root,
2535				    u64 bytenr, u64 num_bytes);
2536int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2537			  struct btrfs_root *root,
2538			  u64 objectid, u64 offset, u64 bytenr);
2539struct btrfs_block_group_cache *btrfs_lookup_block_group(
2540						 struct btrfs_fs_info *info,
2541						 u64 bytenr);
2542void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
2543u64 btrfs_find_block_group(struct btrfs_root *root,
2544			   u64 search_start, u64 search_hint, int owner);
2545struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
2546					struct btrfs_root *root, u32 blocksize,
2547					u64 parent, u64 root_objectid,
2548					struct btrfs_disk_key *key, int level,
2549					u64 hint, u64 empty_size);
2550void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2551			   struct btrfs_root *root,
2552			   struct extent_buffer *buf,
2553			   u64 parent, int last_ref);
2554struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
2555					    struct btrfs_root *root,
2556					    u64 bytenr, u32 blocksize,
2557					    int level);
2558int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2559				     struct btrfs_root *root,
2560				     u64 root_objectid, u64 owner,
2561				     u64 offset, struct btrfs_key *ins);
2562int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2563				   struct btrfs_root *root,
2564				   u64 root_objectid, u64 owner, u64 offset,
2565				   struct btrfs_key *ins);
2566int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
2567				  struct btrfs_root *root,
2568				  u64 num_bytes, u64 min_alloc_size,
2569				  u64 empty_size, u64 hint_byte,
2570				  struct btrfs_key *ins, u64 data);
2571int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2572		  struct extent_buffer *buf, int full_backref, int for_cow);
2573int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2574		  struct extent_buffer *buf, int full_backref, int for_cow);
2575int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2576				struct btrfs_root *root,
2577				u64 bytenr, u64 num_bytes, u64 flags,
2578				int is_data);
2579int btrfs_free_extent(struct btrfs_trans_handle *trans,
2580		      struct btrfs_root *root,
2581		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
2582		      u64 owner, u64 offset, int for_cow);
2583
2584int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len);
2585int btrfs_free_and_pin_reserved_extent(struct btrfs_root *root,
2586				       u64 start, u64 len);
2587void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
2588				 struct btrfs_root *root);
2589int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2590			       struct btrfs_root *root);
2591int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2592			 struct btrfs_root *root,
2593			 u64 bytenr, u64 num_bytes, u64 parent,
2594			 u64 root_objectid, u64 owner, u64 offset, int for_cow);
2595
2596int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2597				    struct btrfs_root *root);
2598int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr);
2599int btrfs_free_block_groups(struct btrfs_fs_info *info);
2600int btrfs_read_block_groups(struct btrfs_root *root);
2601int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr);
2602int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2603			   struct btrfs_root *root, u64 bytes_used,
2604			   u64 type, u64 chunk_objectid, u64 chunk_offset,
2605			   u64 size);
2606int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
2607			     struct btrfs_root *root, u64 group_start);
2608u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags);
2609u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
2610void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *ionde);
2611void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2612int btrfs_check_data_free_space(struct inode *inode, u64 bytes);
2613void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes);
2614void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2615				struct btrfs_root *root);
2616int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
2617				  struct inode *inode);
2618void btrfs_orphan_release_metadata(struct inode *inode);
2619int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
2620				struct btrfs_pending_snapshot *pending);
2621int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
2622void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
2623int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes);
2624void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes);
2625void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv);
2626struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root);
2627void btrfs_free_block_rsv(struct btrfs_root *root,
2628			  struct btrfs_block_rsv *rsv);
2629int btrfs_block_rsv_add(struct btrfs_root *root,
2630			struct btrfs_block_rsv *block_rsv,
2631			u64 num_bytes);
2632int btrfs_block_rsv_add_noflush(struct btrfs_root *root,
2633				struct btrfs_block_rsv *block_rsv,
2634				u64 num_bytes);
2635int btrfs_block_rsv_check(struct btrfs_root *root,
2636			  struct btrfs_block_rsv *block_rsv, int min_factor);
2637int btrfs_block_rsv_refill(struct btrfs_root *root,
2638			  struct btrfs_block_rsv *block_rsv,
2639			  u64 min_reserved);
2640int btrfs_block_rsv_refill_noflush(struct btrfs_root *root,
2641				   struct btrfs_block_rsv *block_rsv,
2642				   u64 min_reserved);
2643int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
2644			    struct btrfs_block_rsv *dst_rsv,
2645			    u64 num_bytes);
2646void btrfs_block_rsv_release(struct btrfs_root *root,
2647			     struct btrfs_block_rsv *block_rsv,
2648			     u64 num_bytes);
2649int btrfs_set_block_group_ro(struct btrfs_root *root,
2650			     struct btrfs_block_group_cache *cache);
2651void btrfs_set_block_group_rw(struct btrfs_root *root,
2652			      struct btrfs_block_group_cache *cache);
2653void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
2654u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2655int btrfs_error_unpin_extent_range(struct btrfs_root *root,
2656				   u64 start, u64 end);
2657int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
2658			       u64 num_bytes, u64 *actual_bytes);
2659int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2660			    struct btrfs_root *root, u64 type);
2661int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range);
2662
2663int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2664/* ctree.c */
2665int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
2666		     int level, int *slot);
2667int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
 
 
2668int btrfs_previous_item(struct btrfs_root *root,
2669			struct btrfs_path *path, u64 min_objectid,
2670			int type);
2671void btrfs_set_item_key_safe(struct btrfs_trans_handle *trans,
2672			     struct btrfs_root *root, struct btrfs_path *path,
2673			     struct btrfs_key *new_key);
 
 
2674struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2675struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
2676int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2677			struct btrfs_key *key, int lowest_level,
2678			int cache_only, u64 min_trans);
2679int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2680			 struct btrfs_key *max_key,
2681			 struct btrfs_path *path, int cache_only,
2682			 u64 min_trans);
 
 
 
2683int btrfs_cow_block(struct btrfs_trans_handle *trans,
2684		    struct btrfs_root *root, struct extent_buffer *buf,
2685		    struct extent_buffer *parent, int parent_slot,
2686		    struct extent_buffer **cow_ret);
 
2687int btrfs_copy_root(struct btrfs_trans_handle *trans,
2688		      struct btrfs_root *root,
2689		      struct extent_buffer *buf,
2690		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2691int btrfs_block_can_be_shared(struct btrfs_root *root,
2692			      struct extent_buffer *buf);
2693void btrfs_extend_item(struct btrfs_trans_handle *trans,
2694		       struct btrfs_root *root, struct btrfs_path *path,
2695		       u32 data_size);
2696void btrfs_truncate_item(struct btrfs_trans_handle *trans,
2697			 struct btrfs_root *root,
2698			 struct btrfs_path *path,
2699			 u32 new_size, int from_end);
2700int btrfs_split_item(struct btrfs_trans_handle *trans,
2701		     struct btrfs_root *root,
2702		     struct btrfs_path *path,
2703		     struct btrfs_key *new_key,
2704		     unsigned long split_offset);
2705int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2706			 struct btrfs_root *root,
2707			 struct btrfs_path *path,
2708			 struct btrfs_key *new_key);
2709int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2710		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2711		      ins_len, int cow);
2712int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
 
 
2713			  struct btrfs_path *p, u64 time_seq);
 
 
 
 
2714int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2715		       struct btrfs_root *root, struct extent_buffer *parent,
2716		       int start_slot, int cache_only, u64 *last_ret,
2717		       struct btrfs_key *progress);
2718void btrfs_release_path(struct btrfs_path *p);
2719struct btrfs_path *btrfs_alloc_path(void);
2720void btrfs_free_path(struct btrfs_path *p);
2721void btrfs_set_path_blocking(struct btrfs_path *p);
2722void btrfs_clear_path_blocking(struct btrfs_path *p,
2723			       struct extent_buffer *held, int held_rw);
2724void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
2725
2726int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2727		   struct btrfs_path *path, int slot, int nr);
2728static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2729				 struct btrfs_root *root,
2730				 struct btrfs_path *path)
2731{
2732	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2733}
2734
2735void setup_items_for_insert(struct btrfs_trans_handle *trans,
2736			    struct btrfs_root *root, struct btrfs_path *path,
2737			    struct btrfs_key *cpu_key, u32 *data_size,
2738			    u32 total_data, u32 total_size, int nr);
2739int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
2740		      *root, struct btrfs_key *key, void *data, u32 data_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2741int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2742			     struct btrfs_root *root,
2743			     struct btrfs_path *path,
2744			     struct btrfs_key *cpu_key, u32 *data_size, int nr);
2745
2746static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2747					  struct btrfs_root *root,
2748					  struct btrfs_path *path,
2749					  struct btrfs_key *key,
2750					  u32 data_size)
2751{
2752	return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
 
 
 
 
 
 
 
2753}
2754
2755int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
2756int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2757			u64 time_seq);
2758static inline int btrfs_next_old_item(struct btrfs_root *root,
2759				      struct btrfs_path *p, u64 time_seq)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2760{
2761	++p->slots[0];
2762	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2763		return btrfs_next_old_leaf(root, p, time_seq);
2764	return 0;
2765}
 
2766static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2767{
2768	return btrfs_next_old_item(root, p, 0);
2769}
2770int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2771int btrfs_leaf_free_space(struct btrfs_root *root, struct extent_buffer *leaf);
2772int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
2773				     struct btrfs_block_rsv *block_rsv,
2774				     int update_ref, int for_reloc);
2775int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2776			struct btrfs_root *root,
2777			struct extent_buffer *node,
2778			struct extent_buffer *parent);
2779static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2780{
2781	/*
2782	 * Get synced with close_ctree()
2783	 */
2784	smp_mb();
2785	return fs_info->closing;
2786}
2787static inline void free_fs_info(struct btrfs_fs_info *fs_info)
2788{
2789	kfree(fs_info->balance_ctl);
2790	kfree(fs_info->delayed_root);
2791	kfree(fs_info->extent_root);
2792	kfree(fs_info->tree_root);
2793	kfree(fs_info->chunk_root);
2794	kfree(fs_info->dev_root);
2795	kfree(fs_info->csum_root);
2796	kfree(fs_info->super_copy);
2797	kfree(fs_info->super_for_commit);
2798	kfree(fs_info);
2799}
2800
2801/* root-item.c */
2802int btrfs_find_root_ref(struct btrfs_root *tree_root,
2803			struct btrfs_path *path,
2804			u64 root_id, u64 ref_id);
2805int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
2806		       struct btrfs_root *tree_root,
2807		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
2808		       const char *name, int name_len);
2809int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
2810		       struct btrfs_root *tree_root,
2811		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
2812		       const char *name, int name_len);
2813int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2814		   struct btrfs_key *key);
2815int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
2816		      *root, struct btrfs_key *key, struct btrfs_root_item
2817		      *item);
2818int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
2819				   struct btrfs_root *root,
2820				   struct btrfs_key *key,
2821				   struct btrfs_root_item *item);
2822int btrfs_find_last_root(struct btrfs_root *root, u64 objectid, struct
2823			 btrfs_root_item *item, struct btrfs_key *key);
2824int btrfs_find_dead_roots(struct btrfs_root *root, u64 objectid);
2825int btrfs_find_orphan_roots(struct btrfs_root *tree_root);
2826void btrfs_set_root_node(struct btrfs_root_item *item,
2827			 struct extent_buffer *node);
2828void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
2829
2830/* dir-item.c */
2831int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
2832			  struct btrfs_root *root, const char *name,
2833			  int name_len, struct inode *dir,
2834			  struct btrfs_key *location, u8 type, u64 index);
2835struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
2836					     struct btrfs_root *root,
2837					     struct btrfs_path *path, u64 dir,
2838					     const char *name, int name_len,
2839					     int mod);
2840struct btrfs_dir_item *
2841btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
2842			    struct btrfs_root *root,
2843			    struct btrfs_path *path, u64 dir,
2844			    u64 objectid, const char *name, int name_len,
2845			    int mod);
2846struct btrfs_dir_item *
2847btrfs_search_dir_index_item(struct btrfs_root *root,
2848			    struct btrfs_path *path, u64 dirid,
2849			    const char *name, int name_len);
2850struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_root *root,
2851			      struct btrfs_path *path,
2852			      const char *name, int name_len);
2853int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
2854			      struct btrfs_root *root,
2855			      struct btrfs_path *path,
2856			      struct btrfs_dir_item *di);
2857int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
2858			    struct btrfs_root *root,
2859			    struct btrfs_path *path, u64 objectid,
2860			    const char *name, u16 name_len,
2861			    const void *data, u16 data_len);
2862struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
2863					  struct btrfs_root *root,
2864					  struct btrfs_path *path, u64 dir,
2865					  const char *name, u16 name_len,
2866					  int mod);
2867int verify_dir_item(struct btrfs_root *root,
2868		    struct extent_buffer *leaf,
2869		    struct btrfs_dir_item *dir_item);
2870
2871/* orphan.c */
2872int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
2873			     struct btrfs_root *root, u64 offset);
2874int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
2875			  struct btrfs_root *root, u64 offset);
2876int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
2877
2878/* inode-item.c */
2879int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
2880			   struct btrfs_root *root,
2881			   const char *name, int name_len,
2882			   u64 inode_objectid, u64 ref_objectid, u64 index);
2883int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
2884			   struct btrfs_root *root,
2885			   const char *name, int name_len,
2886			   u64 inode_objectid, u64 ref_objectid, u64 *index);
2887struct btrfs_inode_ref *
2888btrfs_lookup_inode_ref(struct btrfs_trans_handle *trans,
2889			struct btrfs_root *root,
2890			struct btrfs_path *path,
2891			const char *name, int name_len,
2892			u64 inode_objectid, u64 ref_objectid, int mod);
2893int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
2894			     struct btrfs_root *root,
2895			     struct btrfs_path *path, u64 objectid);
2896int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
2897		       *root, struct btrfs_path *path,
2898		       struct btrfs_key *location, int mod);
2899
2900/* file-item.c */
2901int btrfs_del_csums(struct btrfs_trans_handle *trans,
2902		    struct btrfs_root *root, u64 bytenr, u64 len);
2903int btrfs_lookup_bio_sums(struct btrfs_root *root, struct inode *inode,
2904			  struct bio *bio, u32 *dst);
2905int btrfs_lookup_bio_sums_dio(struct btrfs_root *root, struct inode *inode,
2906			      struct bio *bio, u64 logical_offset, u32 *dst);
2907int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
2908			     struct btrfs_root *root,
2909			     u64 objectid, u64 pos,
2910			     u64 disk_offset, u64 disk_num_bytes,
2911			     u64 num_bytes, u64 offset, u64 ram_bytes,
2912			     u8 compression, u8 encryption, u16 other_encoding);
2913int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
2914			     struct btrfs_root *root,
2915			     struct btrfs_path *path, u64 objectid,
2916			     u64 bytenr, int mod);
2917int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
2918			   struct btrfs_root *root,
2919			   struct btrfs_ordered_sum *sums);
2920int btrfs_csum_one_bio(struct btrfs_root *root, struct inode *inode,
2921		       struct bio *bio, u64 file_start, int contig);
2922struct btrfs_csum_item *btrfs_lookup_csum(struct btrfs_trans_handle *trans,
2923					  struct btrfs_root *root,
2924					  struct btrfs_path *path,
2925					  u64 bytenr, int cow);
2926int btrfs_csum_truncate(struct btrfs_trans_handle *trans,
2927			struct btrfs_root *root, struct btrfs_path *path,
2928			u64 isize);
2929int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
2930			     struct list_head *list, int search_commit);
2931/* inode.c */
2932struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
2933					   size_t pg_offset, u64 start, u64 len,
2934					   int create);
2935
2936/* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
2937#if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
2938#define ClearPageChecked ClearPageFsMisc
2939#define SetPageChecked SetPageFsMisc
2940#define PageChecked PageFsMisc
2941#endif
2942
2943/* This forces readahead on a given range of bytes in an inode */
2944static inline void btrfs_force_ra(struct address_space *mapping,
2945				  struct file_ra_state *ra, struct file *file,
2946				  pgoff_t offset, unsigned long req_size)
2947{
2948	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
 
 
 
 
2949}
2950
2951struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
2952int btrfs_set_inode_index(struct inode *dir, u64 *index);
2953int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2954		       struct btrfs_root *root,
2955		       struct inode *dir, struct inode *inode,
2956		       const char *name, int name_len);
2957int btrfs_add_link(struct btrfs_trans_handle *trans,
2958		   struct inode *parent_inode, struct inode *inode,
2959		   const char *name, int name_len, int add_backref, u64 index);
2960int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
2961			struct btrfs_root *root,
2962			struct inode *dir, u64 objectid,
2963			const char *name, int name_len);
2964int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2965			       struct btrfs_root *root,
2966			       struct inode *inode, u64 new_size,
2967			       u32 min_type);
2968
2969int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
2970int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2971			      struct extent_state **cached_state);
2972int btrfs_writepages(struct address_space *mapping,
2973		     struct writeback_control *wbc);
2974int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
2975			     struct btrfs_root *new_root, u64 new_dirid);
2976int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
2977			 size_t size, struct bio *bio, unsigned long bio_flags);
2978
2979int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
2980int btrfs_readpage(struct file *file, struct page *page);
2981void btrfs_evict_inode(struct inode *inode);
2982int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2983int btrfs_dirty_inode(struct inode *inode);
2984struct inode *btrfs_alloc_inode(struct super_block *sb);
2985void btrfs_destroy_inode(struct inode *inode);
2986int btrfs_drop_inode(struct inode *inode);
2987int btrfs_init_cachep(void);
2988void btrfs_destroy_cachep(void);
2989long btrfs_ioctl_trans_end(struct file *file);
2990struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
2991			 struct btrfs_root *root, int *was_new);
2992struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
2993				    size_t pg_offset, u64 start, u64 end,
2994				    int create);
2995int btrfs_update_inode(struct btrfs_trans_handle *trans,
2996			      struct btrfs_root *root,
2997			      struct inode *inode);
2998int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
2999int btrfs_orphan_del(struct btrfs_trans_handle *trans, struct inode *inode);
3000int btrfs_orphan_cleanup(struct btrfs_root *root);
3001void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3002			      struct btrfs_root *root);
3003int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3004void btrfs_invalidate_inodes(struct btrfs_root *root);
3005void btrfs_add_delayed_iput(struct inode *inode);
3006void btrfs_run_delayed_iputs(struct btrfs_root *root);
3007int btrfs_prealloc_file_range(struct inode *inode, int mode,
3008			      u64 start, u64 num_bytes, u64 min_size,
3009			      loff_t actual_len, u64 *alloc_hint);
3010int btrfs_prealloc_file_range_trans(struct inode *inode,
3011				    struct btrfs_trans_handle *trans, int mode,
3012				    u64 start, u64 num_bytes, u64 min_size,
3013				    loff_t actual_len, u64 *alloc_hint);
3014extern const struct dentry_operations btrfs_dentry_operations;
3015
3016/* ioctl.c */
3017long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3018void btrfs_update_iflags(struct inode *inode);
3019void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3020int btrfs_defrag_file(struct inode *inode, struct file *file,
3021		      struct btrfs_ioctl_defrag_range_args *range,
3022		      u64 newer_than, unsigned long max_pages);
3023/* file.c */
3024int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3025			   struct inode *inode);
3026int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3027int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3028int btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3029			    int skip_pinned);
3030extern const struct file_operations btrfs_file_operations;
3031int btrfs_drop_extents(struct btrfs_trans_handle *trans, struct inode *inode,
3032		       u64 start, u64 end, u64 *hint_byte, int drop_cache);
3033int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3034			      struct inode *inode, u64 start, u64 end);
3035int btrfs_release_file(struct inode *inode, struct file *file);
3036void btrfs_drop_pages(struct page **pages, size_t num_pages);
3037int btrfs_dirty_pages(struct btrfs_root *root, struct inode *inode,
3038		      struct page **pages, size_t num_pages,
3039		      loff_t pos, size_t write_bytes,
3040		      struct extent_state **cached);
3041
3042/* tree-defrag.c */
3043int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3044			struct btrfs_root *root, int cache_only);
3045
3046/* sysfs.c */
3047int btrfs_init_sysfs(void);
3048void btrfs_exit_sysfs(void);
3049
3050/* xattr.c */
3051ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
3052
3053/* super.c */
3054int btrfs_parse_options(struct btrfs_root *root, char *options);
3055int btrfs_sync_fs(struct super_block *sb, int wait);
3056void btrfs_printk(struct btrfs_fs_info *fs_info, const char *fmt, ...);
3057void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
3058		     unsigned int line, int errno, const char *fmt, ...);
3059
3060void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3061			       struct btrfs_root *root, const char *function,
3062			       unsigned int line, int errno);
3063
3064#define btrfs_abort_transaction(trans, root, errno)		\
3065do {								\
3066	__btrfs_abort_transaction(trans, root, __func__,	\
3067				  __LINE__, errno);		\
3068} while (0)
3069
3070#define btrfs_std_error(fs_info, errno)				\
3071do {								\
3072	if ((errno))						\
3073		__btrfs_std_error((fs_info), __func__,		\
3074				   __LINE__, (errno), NULL);	\
3075} while (0)
3076
3077#define btrfs_error(fs_info, errno, fmt, args...)		\
3078do {								\
3079	__btrfs_std_error((fs_info), __func__, __LINE__,	\
3080			  (errno), fmt, ##args);		\
3081} while (0)
3082
3083void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3084		   unsigned int line, int errno, const char *fmt, ...);
3085
3086#define btrfs_panic(fs_info, errno, fmt, args...)			\
3087do {									\
3088	struct btrfs_fs_info *_i = (fs_info);				\
3089	__btrfs_panic(_i, __func__, __LINE__, errno, fmt, ##args);	\
3090	BUG_ON(!(_i->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR));	\
3091} while (0)
3092
3093/* acl.c */
3094#ifdef CONFIG_BTRFS_FS_POSIX_ACL
3095struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
3096int btrfs_init_acl(struct btrfs_trans_handle *trans,
3097		   struct inode *inode, struct inode *dir);
3098int btrfs_acl_chmod(struct inode *inode);
3099#else
3100#define btrfs_get_acl NULL
3101static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3102				 struct inode *inode, struct inode *dir)
3103{
3104	return 0;
3105}
3106static inline int btrfs_acl_chmod(struct inode *inode)
3107{
3108	return 0;
3109}
3110#endif
3111
3112/* relocation.c */
3113int btrfs_relocate_block_group(struct btrfs_root *root, u64 group_start);
3114int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3115			  struct btrfs_root *root);
3116int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3117			    struct btrfs_root *root);
3118int btrfs_recover_relocation(struct btrfs_root *root);
3119int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
3120void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3121			   struct btrfs_root *root, struct extent_buffer *buf,
3122			   struct extent_buffer *cow);
3123void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
3124			      struct btrfs_pending_snapshot *pending,
3125			      u64 *bytes_to_reserve);
3126int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3127			      struct btrfs_pending_snapshot *pending);
3128
3129/* scrub.c */
3130int btrfs_scrub_dev(struct btrfs_root *root, u64 devid, u64 start, u64 end,
3131		    struct btrfs_scrub_progress *progress, int readonly);
3132void btrfs_scrub_pause(struct btrfs_root *root);
3133void btrfs_scrub_pause_super(struct btrfs_root *root);
3134void btrfs_scrub_continue(struct btrfs_root *root);
3135void btrfs_scrub_continue_super(struct btrfs_root *root);
3136int __btrfs_scrub_cancel(struct btrfs_fs_info *info);
3137int btrfs_scrub_cancel(struct btrfs_root *root);
3138int btrfs_scrub_cancel_dev(struct btrfs_root *root, struct btrfs_device *dev);
3139int btrfs_scrub_cancel_devid(struct btrfs_root *root, u64 devid);
3140int btrfs_scrub_progress(struct btrfs_root *root, u64 devid,
3141			 struct btrfs_scrub_progress *progress);
3142
3143/* reada.c */
3144struct reada_control {
3145	struct btrfs_root	*root;		/* tree to prefetch */
3146	struct btrfs_key	key_start;
3147	struct btrfs_key	key_end;	/* exclusive */
3148	atomic_t		elems;
3149	struct kref		refcnt;
3150	wait_queue_head_t	wait;
3151};
3152struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3153			      struct btrfs_key *start, struct btrfs_key *end);
3154int btrfs_reada_wait(void *handle);
3155void btrfs_reada_detach(void *handle);
3156int btree_readahead_hook(struct btrfs_root *root, struct extent_buffer *eb,
3157			 u64 start, int err);
3158
3159/* delayed seq elem */
3160struct seq_list {
3161	struct list_head list;
3162	u64 seq;
3163	u32 flags;
3164};
3165
3166void btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
3167			    struct seq_list *elem);
3168void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
3169			    struct seq_list *elem);
 
 
 
 
 
 
 
 
3170
3171static inline int is_fstree(u64 rootid)
3172{
3173	if (rootid == BTRFS_FS_TREE_OBJECTID ||
3174	    (s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID)
3175		return 1;
3176	return 0;
3177}
3178#endif