Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/highmem.h>
12#include <linux/fs.h>
13#include <linux/rwsem.h>
14#include <linux/semaphore.h>
15#include <linux/completion.h>
16#include <linux/backing-dev.h>
17#include <linux/wait.h>
18#include <linux/slab.h>
19#include <trace/events/btrfs.h>
20#include <asm/unaligned.h>
21#include <linux/pagemap.h>
22#include <linux/btrfs.h>
23#include <linux/btrfs_tree.h>
24#include <linux/workqueue.h>
25#include <linux/security.h>
26#include <linux/sizes.h>
27#include <linux/dynamic_debug.h>
28#include <linux/refcount.h>
29#include <linux/crc32c.h>
30#include <linux/iomap.h>
31#include <linux/fscrypt.h>
32#include "extent-io-tree.h"
33#include "extent_io.h"
34#include "extent_map.h"
35#include "async-thread.h"
36#include "block-rsv.h"
37#include "locking.h"
38#include "misc.h"
39#include "fs.h"
40
41struct btrfs_trans_handle;
42struct btrfs_transaction;
43struct btrfs_pending_snapshot;
44struct btrfs_delayed_ref_root;
45struct btrfs_space_info;
46struct btrfs_block_group;
47struct btrfs_ordered_sum;
48struct btrfs_ref;
49struct btrfs_bio;
50struct btrfs_ioctl_encoded_io_args;
51struct btrfs_device;
52struct btrfs_fs_devices;
53struct btrfs_balance_control;
54struct btrfs_delayed_root;
55struct reloc_control;
56
57/* Read ahead values for struct btrfs_path.reada */
58enum {
59 READA_NONE,
60 READA_BACK,
61 READA_FORWARD,
62 /*
63 * Similar to READA_FORWARD but unlike it:
64 *
65 * 1) It will trigger readahead even for leaves that are not close to
66 * each other on disk;
67 * 2) It also triggers readahead for nodes;
68 * 3) During a search, even when a node or leaf is already in memory, it
69 * will still trigger readahead for other nodes and leaves that follow
70 * it.
71 *
72 * This is meant to be used only when we know we are iterating over the
73 * entire tree or a very large part of it.
74 */
75 READA_FORWARD_ALWAYS,
76};
77
78/*
79 * btrfs_paths remember the path taken from the root down to the leaf.
80 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
81 * to any other levels that are present.
82 *
83 * The slots array records the index of the item or block pointer
84 * used while walking the tree.
85 */
86struct btrfs_path {
87 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
88 int slots[BTRFS_MAX_LEVEL];
89 /* if there is real range locking, this locks field will change */
90 u8 locks[BTRFS_MAX_LEVEL];
91 u8 reada;
92 /* keep some upper locks as we walk down */
93 u8 lowest_level;
94
95 /*
96 * set by btrfs_split_item, tells search_slot to keep all locks
97 * and to force calls to keep space in the nodes
98 */
99 unsigned int search_for_split:1;
100 unsigned int keep_locks:1;
101 unsigned int skip_locking:1;
102 unsigned int search_commit_root:1;
103 unsigned int need_commit_sem:1;
104 unsigned int skip_release_on_error:1;
105 /*
106 * Indicate that new item (btrfs_search_slot) is extending already
107 * existing item and ins_len contains only the data size and not item
108 * header (ie. sizeof(struct btrfs_item) is not included).
109 */
110 unsigned int search_for_extension:1;
111 /* Stop search if any locks need to be taken (for read) */
112 unsigned int nowait:1;
113};
114
115/*
116 * The state of btrfs root
117 */
118enum {
119 /*
120 * btrfs_record_root_in_trans is a multi-step process, and it can race
121 * with the balancing code. But the race is very small, and only the
122 * first time the root is added to each transaction. So IN_TRANS_SETUP
123 * is used to tell us when more checks are required
124 */
125 BTRFS_ROOT_IN_TRANS_SETUP,
126
127 /*
128 * Set if tree blocks of this root can be shared by other roots.
129 * Only subvolume trees and their reloc trees have this bit set.
130 * Conflicts with TRACK_DIRTY bit.
131 *
132 * This affects two things:
133 *
134 * - How balance works
135 * For shareable roots, we need to use reloc tree and do path
136 * replacement for balance, and need various pre/post hooks for
137 * snapshot creation to handle them.
138 *
139 * While for non-shareable trees, we just simply do a tree search
140 * with COW.
141 *
142 * - How dirty roots are tracked
143 * For shareable roots, btrfs_record_root_in_trans() is needed to
144 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
145 * don't need to set this manually.
146 */
147 BTRFS_ROOT_SHAREABLE,
148 BTRFS_ROOT_TRACK_DIRTY,
149 BTRFS_ROOT_IN_RADIX,
150 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
151 BTRFS_ROOT_DEFRAG_RUNNING,
152 BTRFS_ROOT_FORCE_COW,
153 BTRFS_ROOT_MULTI_LOG_TASKS,
154 BTRFS_ROOT_DIRTY,
155 BTRFS_ROOT_DELETING,
156
157 /*
158 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
159 *
160 * Set for the subvolume tree owning the reloc tree.
161 */
162 BTRFS_ROOT_DEAD_RELOC_TREE,
163 /* Mark dead root stored on device whose cleanup needs to be resumed */
164 BTRFS_ROOT_DEAD_TREE,
165 /* The root has a log tree. Used for subvolume roots and the tree root. */
166 BTRFS_ROOT_HAS_LOG_TREE,
167 /* Qgroup flushing is in progress */
168 BTRFS_ROOT_QGROUP_FLUSHING,
169 /* We started the orphan cleanup for this root. */
170 BTRFS_ROOT_ORPHAN_CLEANUP,
171 /* This root has a drop operation that was started previously. */
172 BTRFS_ROOT_UNFINISHED_DROP,
173 /* This reloc root needs to have its buffers lockdep class reset. */
174 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
175};
176
177/*
178 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
179 * code. For detail check comment in fs/btrfs/qgroup.c.
180 */
181struct btrfs_qgroup_swapped_blocks {
182 spinlock_t lock;
183 /* RM_EMPTY_ROOT() of above blocks[] */
184 bool swapped;
185 struct rb_root blocks[BTRFS_MAX_LEVEL];
186};
187
188/*
189 * in ram representation of the tree. extent_root is used for all allocations
190 * and for the extent tree extent_root root.
191 */
192struct btrfs_root {
193 struct rb_node rb_node;
194
195 struct extent_buffer *node;
196
197 struct extent_buffer *commit_root;
198 struct btrfs_root *log_root;
199 struct btrfs_root *reloc_root;
200
201 unsigned long state;
202 struct btrfs_root_item root_item;
203 struct btrfs_key root_key;
204 struct btrfs_fs_info *fs_info;
205 struct extent_io_tree dirty_log_pages;
206
207 struct mutex objectid_mutex;
208
209 spinlock_t accounting_lock;
210 struct btrfs_block_rsv *block_rsv;
211
212 struct mutex log_mutex;
213 wait_queue_head_t log_writer_wait;
214 wait_queue_head_t log_commit_wait[2];
215 struct list_head log_ctxs[2];
216 /* Used only for log trees of subvolumes, not for the log root tree */
217 atomic_t log_writers;
218 atomic_t log_commit[2];
219 /* Used only for log trees of subvolumes, not for the log root tree */
220 atomic_t log_batch;
221 int log_transid;
222 /* No matter the commit succeeds or not*/
223 int log_transid_committed;
224 /* Just be updated when the commit succeeds. */
225 int last_log_commit;
226 pid_t log_start_pid;
227
228 u64 last_trans;
229
230 u32 type;
231
232 u64 free_objectid;
233
234 struct btrfs_key defrag_progress;
235 struct btrfs_key defrag_max;
236
237 /* The dirty list is only used by non-shareable roots */
238 struct list_head dirty_list;
239
240 struct list_head root_list;
241
242 spinlock_t log_extents_lock[2];
243 struct list_head logged_list[2];
244
245 spinlock_t inode_lock;
246 /* red-black tree that keeps track of in-memory inodes */
247 struct rb_root inode_tree;
248
249 /*
250 * radix tree that keeps track of delayed nodes of every inode,
251 * protected by inode_lock
252 */
253 struct radix_tree_root delayed_nodes_tree;
254 /*
255 * right now this just gets used so that a root has its own devid
256 * for stat. It may be used for more later
257 */
258 dev_t anon_dev;
259
260 spinlock_t root_item_lock;
261 refcount_t refs;
262
263 struct mutex delalloc_mutex;
264 spinlock_t delalloc_lock;
265 /*
266 * all of the inodes that have delalloc bytes. It is possible for
267 * this list to be empty even when there is still dirty data=ordered
268 * extents waiting to finish IO.
269 */
270 struct list_head delalloc_inodes;
271 struct list_head delalloc_root;
272 u64 nr_delalloc_inodes;
273
274 struct mutex ordered_extent_mutex;
275 /*
276 * this is used by the balancing code to wait for all the pending
277 * ordered extents
278 */
279 spinlock_t ordered_extent_lock;
280
281 /*
282 * all of the data=ordered extents pending writeback
283 * these can span multiple transactions and basically include
284 * every dirty data page that isn't from nodatacow
285 */
286 struct list_head ordered_extents;
287 struct list_head ordered_root;
288 u64 nr_ordered_extents;
289
290 /*
291 * Not empty if this subvolume root has gone through tree block swap
292 * (relocation)
293 *
294 * Will be used by reloc_control::dirty_subvol_roots.
295 */
296 struct list_head reloc_dirty_list;
297
298 /*
299 * Number of currently running SEND ioctls to prevent
300 * manipulation with the read-only status via SUBVOL_SETFLAGS
301 */
302 int send_in_progress;
303 /*
304 * Number of currently running deduplication operations that have a
305 * destination inode belonging to this root. Protected by the lock
306 * root_item_lock.
307 */
308 int dedupe_in_progress;
309 /* For exclusion of snapshot creation and nocow writes */
310 struct btrfs_drew_lock snapshot_lock;
311
312 atomic_t snapshot_force_cow;
313
314 /* For qgroup metadata reserved space */
315 spinlock_t qgroup_meta_rsv_lock;
316 u64 qgroup_meta_rsv_pertrans;
317 u64 qgroup_meta_rsv_prealloc;
318 wait_queue_head_t qgroup_flush_wait;
319
320 /* Number of active swapfiles */
321 atomic_t nr_swapfiles;
322
323 /* Record pairs of swapped blocks for qgroup */
324 struct btrfs_qgroup_swapped_blocks swapped_blocks;
325
326 /* Used only by log trees, when logging csum items */
327 struct extent_io_tree log_csum_range;
328
329#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
330 u64 alloc_bytenr;
331#endif
332
333#ifdef CONFIG_BTRFS_DEBUG
334 struct list_head leak_list;
335#endif
336};
337
338static inline bool btrfs_root_readonly(const struct btrfs_root *root)
339{
340 /* Byte-swap the constant at compile time, root_item::flags is LE */
341 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
342}
343
344static inline bool btrfs_root_dead(const struct btrfs_root *root)
345{
346 /* Byte-swap the constant at compile time, root_item::flags is LE */
347 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
348}
349
350static inline u64 btrfs_root_id(const struct btrfs_root *root)
351{
352 return root->root_key.objectid;
353}
354
355/*
356 * Structure that conveys information about an extent that is going to replace
357 * all the extents in a file range.
358 */
359struct btrfs_replace_extent_info {
360 u64 disk_offset;
361 u64 disk_len;
362 u64 data_offset;
363 u64 data_len;
364 u64 file_offset;
365 /* Pointer to a file extent item of type regular or prealloc. */
366 char *extent_buf;
367 /*
368 * Set to true when attempting to replace a file range with a new extent
369 * described by this structure, set to false when attempting to clone an
370 * existing extent into a file range.
371 */
372 bool is_new_extent;
373 /* Indicate if we should update the inode's mtime and ctime. */
374 bool update_times;
375 /* Meaningful only if is_new_extent is true. */
376 int qgroup_reserved;
377 /*
378 * Meaningful only if is_new_extent is true.
379 * Used to track how many extent items we have already inserted in a
380 * subvolume tree that refer to the extent described by this structure,
381 * so that we know when to create a new delayed ref or update an existing
382 * one.
383 */
384 int insertions;
385};
386
387/* Arguments for btrfs_drop_extents() */
388struct btrfs_drop_extents_args {
389 /* Input parameters */
390
391 /*
392 * If NULL, btrfs_drop_extents() will allocate and free its own path.
393 * If 'replace_extent' is true, this must not be NULL. Also the path
394 * is always released except if 'replace_extent' is true and
395 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
396 * the path is kept locked.
397 */
398 struct btrfs_path *path;
399 /* Start offset of the range to drop extents from */
400 u64 start;
401 /* End (exclusive, last byte + 1) of the range to drop extents from */
402 u64 end;
403 /* If true drop all the extent maps in the range */
404 bool drop_cache;
405 /*
406 * If true it means we want to insert a new extent after dropping all
407 * the extents in the range. If this is true, the 'extent_item_size'
408 * parameter must be set as well and the 'extent_inserted' field will
409 * be set to true by btrfs_drop_extents() if it could insert the new
410 * extent.
411 * Note: when this is set to true the path must not be NULL.
412 */
413 bool replace_extent;
414 /*
415 * Used if 'replace_extent' is true. Size of the file extent item to
416 * insert after dropping all existing extents in the range
417 */
418 u32 extent_item_size;
419
420 /* Output parameters */
421
422 /*
423 * Set to the minimum between the input parameter 'end' and the end
424 * (exclusive, last byte + 1) of the last dropped extent. This is always
425 * set even if btrfs_drop_extents() returns an error.
426 */
427 u64 drop_end;
428 /*
429 * The number of allocated bytes found in the range. This can be smaller
430 * than the range's length when there are holes in the range.
431 */
432 u64 bytes_found;
433 /*
434 * Only set if 'replace_extent' is true. Set to true if we were able
435 * to insert a replacement extent after dropping all extents in the
436 * range, otherwise set to false by btrfs_drop_extents().
437 * Also, if btrfs_drop_extents() has set this to true it means it
438 * returned with the path locked, otherwise if it has set this to
439 * false it has returned with the path released.
440 */
441 bool extent_inserted;
442};
443
444struct btrfs_file_private {
445 void *filldir_buf;
446 struct extent_state *llseek_cached_state;
447};
448
449static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
450{
451 return info->nodesize - sizeof(struct btrfs_header);
452}
453
454static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
455{
456 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
457}
458
459static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
460{
461 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
462}
463
464static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
465{
466 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
467}
468
469#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
470 ((bytes) >> (fs_info)->sectorsize_bits)
471
472static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
473{
474 return crc32c(crc, address, length);
475}
476
477static inline void btrfs_crc32c_final(u32 crc, u8 *result)
478{
479 put_unaligned_le32(~crc, result);
480}
481
482static inline u64 btrfs_name_hash(const char *name, int len)
483{
484 return crc32c((u32)~1, name, len);
485}
486
487/*
488 * Figure the key offset of an extended inode ref
489 */
490static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
491 int len)
492{
493 return (u64) crc32c(parent_objectid, name, len);
494}
495
496static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
497{
498 return mapping_gfp_constraint(mapping, ~__GFP_FS);
499}
500
501int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
502 u64 start, u64 end);
503int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
504 u64 num_bytes, u64 *actual_bytes);
505int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
506
507/* ctree.c */
508int __init btrfs_ctree_init(void);
509void __cold btrfs_ctree_exit(void);
510int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
511 int *slot);
512int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
513int btrfs_previous_item(struct btrfs_root *root,
514 struct btrfs_path *path, u64 min_objectid,
515 int type);
516int btrfs_previous_extent_item(struct btrfs_root *root,
517 struct btrfs_path *path, u64 min_objectid);
518void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
519 struct btrfs_path *path,
520 const struct btrfs_key *new_key);
521struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
522int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
523 struct btrfs_key *key, int lowest_level,
524 u64 min_trans);
525int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
526 struct btrfs_path *path,
527 u64 min_trans);
528struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
529 int slot);
530
531int btrfs_cow_block(struct btrfs_trans_handle *trans,
532 struct btrfs_root *root, struct extent_buffer *buf,
533 struct extent_buffer *parent, int parent_slot,
534 struct extent_buffer **cow_ret,
535 enum btrfs_lock_nesting nest);
536int btrfs_copy_root(struct btrfs_trans_handle *trans,
537 struct btrfs_root *root,
538 struct extent_buffer *buf,
539 struct extent_buffer **cow_ret, u64 new_root_objectid);
540int btrfs_block_can_be_shared(struct btrfs_root *root,
541 struct extent_buffer *buf);
542void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
543void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
544int btrfs_split_item(struct btrfs_trans_handle *trans,
545 struct btrfs_root *root,
546 struct btrfs_path *path,
547 const struct btrfs_key *new_key,
548 unsigned long split_offset);
549int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
550 struct btrfs_root *root,
551 struct btrfs_path *path,
552 const struct btrfs_key *new_key);
553int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
554 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
555int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
556 const struct btrfs_key *key, struct btrfs_path *p,
557 int ins_len, int cow);
558int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
559 struct btrfs_path *p, u64 time_seq);
560int btrfs_search_slot_for_read(struct btrfs_root *root,
561 const struct btrfs_key *key,
562 struct btrfs_path *p, int find_higher,
563 int return_any);
564int btrfs_realloc_node(struct btrfs_trans_handle *trans,
565 struct btrfs_root *root, struct extent_buffer *parent,
566 int start_slot, u64 *last_ret,
567 struct btrfs_key *progress);
568void btrfs_release_path(struct btrfs_path *p);
569struct btrfs_path *btrfs_alloc_path(void);
570void btrfs_free_path(struct btrfs_path *p);
571
572int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
573 struct btrfs_path *path, int slot, int nr);
574static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
575 struct btrfs_root *root,
576 struct btrfs_path *path)
577{
578 return btrfs_del_items(trans, root, path, path->slots[0], 1);
579}
580
581/*
582 * Describes a batch of items to insert in a btree. This is used by
583 * btrfs_insert_empty_items().
584 */
585struct btrfs_item_batch {
586 /*
587 * Pointer to an array containing the keys of the items to insert (in
588 * sorted order).
589 */
590 const struct btrfs_key *keys;
591 /* Pointer to an array containing the data size for each item to insert. */
592 const u32 *data_sizes;
593 /*
594 * The sum of data sizes for all items. The caller can compute this while
595 * setting up the data_sizes array, so it ends up being more efficient
596 * than having btrfs_insert_empty_items() or setup_item_for_insert()
597 * doing it, as it would avoid an extra loop over a potentially large
598 * array, and in the case of setup_item_for_insert(), we would be doing
599 * it while holding a write lock on a leaf and often on upper level nodes
600 * too, unnecessarily increasing the size of a critical section.
601 */
602 u32 total_data_size;
603 /* Size of the keys and data_sizes arrays (number of items in the batch). */
604 int nr;
605};
606
607void btrfs_setup_item_for_insert(struct btrfs_root *root,
608 struct btrfs_path *path,
609 const struct btrfs_key *key,
610 u32 data_size);
611int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
612 const struct btrfs_key *key, void *data, u32 data_size);
613int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
614 struct btrfs_root *root,
615 struct btrfs_path *path,
616 const struct btrfs_item_batch *batch);
617
618static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
619 struct btrfs_root *root,
620 struct btrfs_path *path,
621 const struct btrfs_key *key,
622 u32 data_size)
623{
624 struct btrfs_item_batch batch;
625
626 batch.keys = key;
627 batch.data_sizes = &data_size;
628 batch.total_data_size = data_size;
629 batch.nr = 1;
630
631 return btrfs_insert_empty_items(trans, root, path, &batch);
632}
633
634int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
635int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
636 u64 time_seq);
637
638int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
639 struct btrfs_path *path);
640
641int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
642 struct btrfs_path *path);
643
644/*
645 * Search in @root for a given @key, and store the slot found in @found_key.
646 *
647 * @root: The root node of the tree.
648 * @key: The key we are looking for.
649 * @found_key: Will hold the found item.
650 * @path: Holds the current slot/leaf.
651 * @iter_ret: Contains the value returned from btrfs_search_slot or
652 * btrfs_get_next_valid_item, whichever was executed last.
653 *
654 * The @iter_ret is an output variable that will contain the return value of
655 * btrfs_search_slot, if it encountered an error, or the value returned from
656 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
657 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
658 *
659 * It's recommended to use a separate variable for iter_ret and then use it to
660 * set the function return value so there's no confusion of the 0/1/errno
661 * values stemming from btrfs_search_slot.
662 */
663#define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
664 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
665 (iter_ret) >= 0 && \
666 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
667 (path)->slots[0]++ \
668 )
669
670int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
671
672/*
673 * Search the tree again to find a leaf with greater keys.
674 *
675 * Returns 0 if it found something or 1 if there are no greater leaves.
676 * Returns < 0 on error.
677 */
678static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
679{
680 return btrfs_next_old_leaf(root, path, 0);
681}
682
683static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
684{
685 return btrfs_next_old_item(root, p, 0);
686}
687int btrfs_leaf_free_space(struct extent_buffer *leaf);
688
689static inline int is_fstree(u64 rootid)
690{
691 if (rootid == BTRFS_FS_TREE_OBJECTID ||
692 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
693 !btrfs_qgroup_level(rootid)))
694 return 1;
695 return 0;
696}
697
698static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
699{
700 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
701}
702
703int btrfs_super_csum_size(const struct btrfs_super_block *s);
704const char *btrfs_super_csum_name(u16 csum_type);
705const char *btrfs_super_csum_driver(u16 csum_type);
706size_t __attribute_const__ btrfs_get_num_csums(void);
707
708/*
709 * We use page status Private2 to indicate there is an ordered extent with
710 * unfinished IO.
711 *
712 * Rename the Private2 accessors to Ordered, to improve readability.
713 */
714#define PageOrdered(page) PagePrivate2(page)
715#define SetPageOrdered(page) SetPagePrivate2(page)
716#define ClearPageOrdered(page) ClearPagePrivate2(page)
717#define folio_test_ordered(folio) folio_test_private_2(folio)
718#define folio_set_ordered(folio) folio_set_private_2(folio)
719#define folio_clear_ordered(folio) folio_clear_private_2(folio)
720
721#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/highmem.h>
12#include <linux/fs.h>
13#include <linux/rwsem.h>
14#include <linux/semaphore.h>
15#include <linux/completion.h>
16#include <linux/backing-dev.h>
17#include <linux/wait.h>
18#include <linux/slab.h>
19#include <trace/events/btrfs.h>
20#include <asm/kmap_types.h>
21#include <asm/unaligned.h>
22#include <linux/pagemap.h>
23#include <linux/btrfs.h>
24#include <linux/btrfs_tree.h>
25#include <linux/workqueue.h>
26#include <linux/security.h>
27#include <linux/sizes.h>
28#include <linux/dynamic_debug.h>
29#include <linux/refcount.h>
30#include <linux/crc32c.h>
31#include "extent_io.h"
32#include "extent_map.h"
33#include "async-thread.h"
34#include "block-rsv.h"
35
36struct btrfs_trans_handle;
37struct btrfs_transaction;
38struct btrfs_pending_snapshot;
39struct btrfs_delayed_ref_root;
40struct btrfs_space_info;
41struct btrfs_block_group_cache;
42extern struct kmem_cache *btrfs_trans_handle_cachep;
43extern struct kmem_cache *btrfs_bit_radix_cachep;
44extern struct kmem_cache *btrfs_path_cachep;
45extern struct kmem_cache *btrfs_free_space_cachep;
46extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
47struct btrfs_ordered_sum;
48struct btrfs_ref;
49
50#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
51
52/*
53 * Maximum number of mirrors that can be available for all profiles counting
54 * the target device of dev-replace as one. During an active device replace
55 * procedure, the target device of the copy operation is a mirror for the
56 * filesystem data as well that can be used to read data in order to repair
57 * read errors on other disks.
58 *
59 * Current value is derived from RAID1 with 2 copies.
60 */
61#define BTRFS_MAX_MIRRORS (2 + 1)
62
63#define BTRFS_MAX_LEVEL 8
64
65#define BTRFS_OLDEST_GENERATION 0ULL
66
67/*
68 * the max metadata block size. This limit is somewhat artificial,
69 * but the memmove costs go through the roof for larger blocks.
70 */
71#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
72
73/*
74 * we can actually store much bigger names, but lets not confuse the rest
75 * of linux
76 */
77#define BTRFS_NAME_LEN 255
78
79/*
80 * Theoretical limit is larger, but we keep this down to a sane
81 * value. That should limit greatly the possibility of collisions on
82 * inode ref items.
83 */
84#define BTRFS_LINK_MAX 65535U
85
86#define BTRFS_EMPTY_DIR_SIZE 0
87
88/* ioprio of readahead is set to idle */
89#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
90
91#define BTRFS_DIRTY_METADATA_THRESH SZ_32M
92
93/*
94 * Use large batch size to reduce overhead of metadata updates. On the reader
95 * side, we only read it when we are close to ENOSPC and the read overhead is
96 * mostly related to the number of CPUs, so it is OK to use arbitrary large
97 * value here.
98 */
99#define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M
100
101#define BTRFS_MAX_EXTENT_SIZE SZ_128M
102
103
104/*
105 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
106 */
107static inline u32 count_max_extents(u64 size)
108{
109 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
110}
111
112static inline unsigned long btrfs_chunk_item_size(int num_stripes)
113{
114 BUG_ON(num_stripes == 0);
115 return sizeof(struct btrfs_chunk) +
116 sizeof(struct btrfs_stripe) * (num_stripes - 1);
117}
118
119/*
120 * Runtime (in-memory) states of filesystem
121 */
122enum {
123 /* Global indicator of serious filesystem errors */
124 BTRFS_FS_STATE_ERROR,
125 /*
126 * Filesystem is being remounted, allow to skip some operations, like
127 * defrag
128 */
129 BTRFS_FS_STATE_REMOUNTING,
130 /* Track if a transaction abort has been reported on this filesystem */
131 BTRFS_FS_STATE_TRANS_ABORTED,
132 /*
133 * Bio operations should be blocked on this filesystem because a source
134 * or target device is being destroyed as part of a device replace
135 */
136 BTRFS_FS_STATE_DEV_REPLACING,
137 /* The btrfs_fs_info created for self-tests */
138 BTRFS_FS_STATE_DUMMY_FS_INFO,
139};
140
141#define BTRFS_BACKREF_REV_MAX 256
142#define BTRFS_BACKREF_REV_SHIFT 56
143#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
144 BTRFS_BACKREF_REV_SHIFT)
145
146#define BTRFS_OLD_BACKREF_REV 0
147#define BTRFS_MIXED_BACKREF_REV 1
148
149/*
150 * every tree block (leaf or node) starts with this header.
151 */
152struct btrfs_header {
153 /* these first four must match the super block */
154 u8 csum[BTRFS_CSUM_SIZE];
155 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
156 __le64 bytenr; /* which block this node is supposed to live in */
157 __le64 flags;
158
159 /* allowed to be different from the super from here on down */
160 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
161 __le64 generation;
162 __le64 owner;
163 __le32 nritems;
164 u8 level;
165} __attribute__ ((__packed__));
166
167/*
168 * this is a very generous portion of the super block, giving us
169 * room to translate 14 chunks with 3 stripes each.
170 */
171#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
172
173/*
174 * just in case we somehow lose the roots and are not able to mount,
175 * we store an array of the roots from previous transactions
176 * in the super.
177 */
178#define BTRFS_NUM_BACKUP_ROOTS 4
179struct btrfs_root_backup {
180 __le64 tree_root;
181 __le64 tree_root_gen;
182
183 __le64 chunk_root;
184 __le64 chunk_root_gen;
185
186 __le64 extent_root;
187 __le64 extent_root_gen;
188
189 __le64 fs_root;
190 __le64 fs_root_gen;
191
192 __le64 dev_root;
193 __le64 dev_root_gen;
194
195 __le64 csum_root;
196 __le64 csum_root_gen;
197
198 __le64 total_bytes;
199 __le64 bytes_used;
200 __le64 num_devices;
201 /* future */
202 __le64 unused_64[4];
203
204 u8 tree_root_level;
205 u8 chunk_root_level;
206 u8 extent_root_level;
207 u8 fs_root_level;
208 u8 dev_root_level;
209 u8 csum_root_level;
210 /* future and to align */
211 u8 unused_8[10];
212} __attribute__ ((__packed__));
213
214/*
215 * the super block basically lists the main trees of the FS
216 * it currently lacks any block count etc etc
217 */
218struct btrfs_super_block {
219 /* the first 4 fields must match struct btrfs_header */
220 u8 csum[BTRFS_CSUM_SIZE];
221 /* FS specific UUID, visible to user */
222 u8 fsid[BTRFS_FSID_SIZE];
223 __le64 bytenr; /* this block number */
224 __le64 flags;
225
226 /* allowed to be different from the btrfs_header from here own down */
227 __le64 magic;
228 __le64 generation;
229 __le64 root;
230 __le64 chunk_root;
231 __le64 log_root;
232
233 /* this will help find the new super based on the log root */
234 __le64 log_root_transid;
235 __le64 total_bytes;
236 __le64 bytes_used;
237 __le64 root_dir_objectid;
238 __le64 num_devices;
239 __le32 sectorsize;
240 __le32 nodesize;
241 __le32 __unused_leafsize;
242 __le32 stripesize;
243 __le32 sys_chunk_array_size;
244 __le64 chunk_root_generation;
245 __le64 compat_flags;
246 __le64 compat_ro_flags;
247 __le64 incompat_flags;
248 __le16 csum_type;
249 u8 root_level;
250 u8 chunk_root_level;
251 u8 log_root_level;
252 struct btrfs_dev_item dev_item;
253
254 char label[BTRFS_LABEL_SIZE];
255
256 __le64 cache_generation;
257 __le64 uuid_tree_generation;
258
259 /* the UUID written into btree blocks */
260 u8 metadata_uuid[BTRFS_FSID_SIZE];
261
262 /* future expansion */
263 __le64 reserved[28];
264 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
265 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
266} __attribute__ ((__packed__));
267
268/*
269 * Compat flags that we support. If any incompat flags are set other than the
270 * ones specified below then we will fail to mount
271 */
272#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
273#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
274#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
275
276#define BTRFS_FEATURE_COMPAT_RO_SUPP \
277 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
278 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
279
280#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
281#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
282
283#define BTRFS_FEATURE_INCOMPAT_SUPP \
284 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
285 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
286 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
287 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
288 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
289 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
290 BTRFS_FEATURE_INCOMPAT_RAID56 | \
291 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
292 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
293 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
294 BTRFS_FEATURE_INCOMPAT_METADATA_UUID)
295
296#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
297 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
298#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
299
300/*
301 * A leaf is full of items. offset and size tell us where to find
302 * the item in the leaf (relative to the start of the data area)
303 */
304struct btrfs_item {
305 struct btrfs_disk_key key;
306 __le32 offset;
307 __le32 size;
308} __attribute__ ((__packed__));
309
310/*
311 * leaves have an item area and a data area:
312 * [item0, item1....itemN] [free space] [dataN...data1, data0]
313 *
314 * The data is separate from the items to get the keys closer together
315 * during searches.
316 */
317struct btrfs_leaf {
318 struct btrfs_header header;
319 struct btrfs_item items[];
320} __attribute__ ((__packed__));
321
322/*
323 * all non-leaf blocks are nodes, they hold only keys and pointers to
324 * other blocks
325 */
326struct btrfs_key_ptr {
327 struct btrfs_disk_key key;
328 __le64 blockptr;
329 __le64 generation;
330} __attribute__ ((__packed__));
331
332struct btrfs_node {
333 struct btrfs_header header;
334 struct btrfs_key_ptr ptrs[];
335} __attribute__ ((__packed__));
336
337/*
338 * btrfs_paths remember the path taken from the root down to the leaf.
339 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
340 * to any other levels that are present.
341 *
342 * The slots array records the index of the item or block pointer
343 * used while walking the tree.
344 */
345enum { READA_NONE, READA_BACK, READA_FORWARD };
346struct btrfs_path {
347 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
348 int slots[BTRFS_MAX_LEVEL];
349 /* if there is real range locking, this locks field will change */
350 u8 locks[BTRFS_MAX_LEVEL];
351 u8 reada;
352 /* keep some upper locks as we walk down */
353 u8 lowest_level;
354
355 /*
356 * set by btrfs_split_item, tells search_slot to keep all locks
357 * and to force calls to keep space in the nodes
358 */
359 unsigned int search_for_split:1;
360 unsigned int keep_locks:1;
361 unsigned int skip_locking:1;
362 unsigned int leave_spinning:1;
363 unsigned int search_commit_root:1;
364 unsigned int need_commit_sem:1;
365 unsigned int skip_release_on_error:1;
366};
367#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
368 sizeof(struct btrfs_item))
369struct btrfs_dev_replace {
370 u64 replace_state; /* see #define above */
371 time64_t time_started; /* seconds since 1-Jan-1970 */
372 time64_t time_stopped; /* seconds since 1-Jan-1970 */
373 atomic64_t num_write_errors;
374 atomic64_t num_uncorrectable_read_errors;
375
376 u64 cursor_left;
377 u64 committed_cursor_left;
378 u64 cursor_left_last_write_of_item;
379 u64 cursor_right;
380
381 u64 cont_reading_from_srcdev_mode; /* see #define above */
382
383 int is_valid;
384 int item_needs_writeback;
385 struct btrfs_device *srcdev;
386 struct btrfs_device *tgtdev;
387
388 struct mutex lock_finishing_cancel_unmount;
389 struct rw_semaphore rwsem;
390
391 struct btrfs_scrub_progress scrub_progress;
392
393 struct percpu_counter bio_counter;
394 wait_queue_head_t replace_wait;
395};
396
397/*
398 * free clusters are used to claim free space in relatively large chunks,
399 * allowing us to do less seeky writes. They are used for all metadata
400 * allocations. In ssd_spread mode they are also used for data allocations.
401 */
402struct btrfs_free_cluster {
403 spinlock_t lock;
404 spinlock_t refill_lock;
405 struct rb_root root;
406
407 /* largest extent in this cluster */
408 u64 max_size;
409
410 /* first extent starting offset */
411 u64 window_start;
412
413 /* We did a full search and couldn't create a cluster */
414 bool fragmented;
415
416 struct btrfs_block_group_cache *block_group;
417 /*
418 * when a cluster is allocated from a block group, we put the
419 * cluster onto a list in the block group so that it can
420 * be freed before the block group is freed.
421 */
422 struct list_head block_group_list;
423};
424
425enum btrfs_caching_type {
426 BTRFS_CACHE_NO,
427 BTRFS_CACHE_STARTED,
428 BTRFS_CACHE_FAST,
429 BTRFS_CACHE_FINISHED,
430 BTRFS_CACHE_ERROR,
431};
432
433/*
434 * Tree to record all locked full stripes of a RAID5/6 block group
435 */
436struct btrfs_full_stripe_locks_tree {
437 struct rb_root root;
438 struct mutex lock;
439};
440
441/* delayed seq elem */
442struct seq_list {
443 struct list_head list;
444 u64 seq;
445};
446
447#define SEQ_LIST_INIT(name) { .list = LIST_HEAD_INIT((name).list), .seq = 0 }
448
449#define SEQ_LAST ((u64)-1)
450
451enum btrfs_orphan_cleanup_state {
452 ORPHAN_CLEANUP_STARTED = 1,
453 ORPHAN_CLEANUP_DONE = 2,
454};
455
456void btrfs_init_async_reclaim_work(struct work_struct *work);
457
458/* fs_info */
459struct reloc_control;
460struct btrfs_device;
461struct btrfs_fs_devices;
462struct btrfs_balance_control;
463struct btrfs_delayed_root;
464
465/*
466 * Block group or device which contains an active swapfile. Used for preventing
467 * unsafe operations while a swapfile is active.
468 *
469 * These are sorted on (ptr, inode) (note that a block group or device can
470 * contain more than one swapfile). We compare the pointer values because we
471 * don't actually care what the object is, we just need a quick check whether
472 * the object exists in the rbtree.
473 */
474struct btrfs_swapfile_pin {
475 struct rb_node node;
476 void *ptr;
477 struct inode *inode;
478 /*
479 * If true, ptr points to a struct btrfs_block_group_cache. Otherwise,
480 * ptr points to a struct btrfs_device.
481 */
482 bool is_block_group;
483};
484
485bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
486
487enum {
488 BTRFS_FS_BARRIER,
489 BTRFS_FS_CLOSING_START,
490 BTRFS_FS_CLOSING_DONE,
491 BTRFS_FS_LOG_RECOVERING,
492 BTRFS_FS_OPEN,
493 BTRFS_FS_QUOTA_ENABLED,
494 BTRFS_FS_UPDATE_UUID_TREE_GEN,
495 BTRFS_FS_CREATING_FREE_SPACE_TREE,
496 BTRFS_FS_BTREE_ERR,
497 BTRFS_FS_LOG1_ERR,
498 BTRFS_FS_LOG2_ERR,
499 BTRFS_FS_QUOTA_OVERRIDE,
500 /* Used to record internally whether fs has been frozen */
501 BTRFS_FS_FROZEN,
502 /*
503 * Indicate that a whole-filesystem exclusive operation is running
504 * (device replace, resize, device add/delete, balance)
505 */
506 BTRFS_FS_EXCL_OP,
507 /*
508 * To info transaction_kthread we need an immediate commit so it
509 * doesn't need to wait for commit_interval
510 */
511 BTRFS_FS_NEED_ASYNC_COMMIT,
512 /*
513 * Indicate that balance has been set up from the ioctl and is in the
514 * main phase. The fs_info::balance_ctl is initialized.
515 * Set and cleared while holding fs_info::balance_mutex.
516 */
517 BTRFS_FS_BALANCE_RUNNING,
518
519 /* Indicate that the cleaner thread is awake and doing something. */
520 BTRFS_FS_CLEANER_RUNNING,
521
522 /*
523 * The checksumming has an optimized version and is considered fast,
524 * so we don't need to offload checksums to workqueues.
525 */
526 BTRFS_FS_CSUM_IMPL_FAST,
527};
528
529struct btrfs_fs_info {
530 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
531 unsigned long flags;
532 struct btrfs_root *extent_root;
533 struct btrfs_root *tree_root;
534 struct btrfs_root *chunk_root;
535 struct btrfs_root *dev_root;
536 struct btrfs_root *fs_root;
537 struct btrfs_root *csum_root;
538 struct btrfs_root *quota_root;
539 struct btrfs_root *uuid_root;
540 struct btrfs_root *free_space_root;
541
542 /* the log root tree is a directory of all the other log roots */
543 struct btrfs_root *log_root_tree;
544
545 spinlock_t fs_roots_radix_lock;
546 struct radix_tree_root fs_roots_radix;
547
548 /* block group cache stuff */
549 spinlock_t block_group_cache_lock;
550 u64 first_logical_byte;
551 struct rb_root block_group_cache_tree;
552
553 /* keep track of unallocated space */
554 atomic64_t free_chunk_space;
555
556 struct extent_io_tree freed_extents[2];
557 struct extent_io_tree *pinned_extents;
558
559 /* logical->physical extent mapping */
560 struct extent_map_tree mapping_tree;
561
562 /*
563 * block reservation for extent, checksum, root tree and
564 * delayed dir index item
565 */
566 struct btrfs_block_rsv global_block_rsv;
567 /* block reservation for metadata operations */
568 struct btrfs_block_rsv trans_block_rsv;
569 /* block reservation for chunk tree */
570 struct btrfs_block_rsv chunk_block_rsv;
571 /* block reservation for delayed operations */
572 struct btrfs_block_rsv delayed_block_rsv;
573 /* block reservation for delayed refs */
574 struct btrfs_block_rsv delayed_refs_rsv;
575
576 struct btrfs_block_rsv empty_block_rsv;
577
578 u64 generation;
579 u64 last_trans_committed;
580 u64 avg_delayed_ref_runtime;
581
582 /*
583 * this is updated to the current trans every time a full commit
584 * is required instead of the faster short fsync log commits
585 */
586 u64 last_trans_log_full_commit;
587 unsigned long mount_opt;
588 /*
589 * Track requests for actions that need to be done during transaction
590 * commit (like for some mount options).
591 */
592 unsigned long pending_changes;
593 unsigned long compress_type:4;
594 unsigned int compress_level;
595 u32 commit_interval;
596 /*
597 * It is a suggestive number, the read side is safe even it gets a
598 * wrong number because we will write out the data into a regular
599 * extent. The write side(mount/remount) is under ->s_umount lock,
600 * so it is also safe.
601 */
602 u64 max_inline;
603
604 struct btrfs_transaction *running_transaction;
605 wait_queue_head_t transaction_throttle;
606 wait_queue_head_t transaction_wait;
607 wait_queue_head_t transaction_blocked_wait;
608 wait_queue_head_t async_submit_wait;
609
610 /*
611 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
612 * when they are updated.
613 *
614 * Because we do not clear the flags for ever, so we needn't use
615 * the lock on the read side.
616 *
617 * We also needn't use the lock when we mount the fs, because
618 * there is no other task which will update the flag.
619 */
620 spinlock_t super_lock;
621 struct btrfs_super_block *super_copy;
622 struct btrfs_super_block *super_for_commit;
623 struct super_block *sb;
624 struct inode *btree_inode;
625 struct mutex tree_log_mutex;
626 struct mutex transaction_kthread_mutex;
627 struct mutex cleaner_mutex;
628 struct mutex chunk_mutex;
629
630 /*
631 * this is taken to make sure we don't set block groups ro after
632 * the free space cache has been allocated on them
633 */
634 struct mutex ro_block_group_mutex;
635
636 /* this is used during read/modify/write to make sure
637 * no two ios are trying to mod the same stripe at the same
638 * time
639 */
640 struct btrfs_stripe_hash_table *stripe_hash_table;
641
642 /*
643 * this protects the ordered operations list only while we are
644 * processing all of the entries on it. This way we make
645 * sure the commit code doesn't find the list temporarily empty
646 * because another function happens to be doing non-waiting preflush
647 * before jumping into the main commit.
648 */
649 struct mutex ordered_operations_mutex;
650
651 struct rw_semaphore commit_root_sem;
652
653 struct rw_semaphore cleanup_work_sem;
654
655 struct rw_semaphore subvol_sem;
656 struct srcu_struct subvol_srcu;
657
658 spinlock_t trans_lock;
659 /*
660 * the reloc mutex goes with the trans lock, it is taken
661 * during commit to protect us from the relocation code
662 */
663 struct mutex reloc_mutex;
664
665 struct list_head trans_list;
666 struct list_head dead_roots;
667 struct list_head caching_block_groups;
668
669 spinlock_t delayed_iput_lock;
670 struct list_head delayed_iputs;
671 atomic_t nr_delayed_iputs;
672 wait_queue_head_t delayed_iputs_wait;
673
674 /* this protects tree_mod_seq_list */
675 spinlock_t tree_mod_seq_lock;
676 atomic64_t tree_mod_seq;
677 struct list_head tree_mod_seq_list;
678
679 /* this protects tree_mod_log */
680 rwlock_t tree_mod_log_lock;
681 struct rb_root tree_mod_log;
682
683 atomic_t async_delalloc_pages;
684
685 /*
686 * this is used to protect the following list -- ordered_roots.
687 */
688 spinlock_t ordered_root_lock;
689
690 /*
691 * all fs/file tree roots in which there are data=ordered extents
692 * pending writeback are added into this list.
693 *
694 * these can span multiple transactions and basically include
695 * every dirty data page that isn't from nodatacow
696 */
697 struct list_head ordered_roots;
698
699 struct mutex delalloc_root_mutex;
700 spinlock_t delalloc_root_lock;
701 /* all fs/file tree roots that have delalloc inodes. */
702 struct list_head delalloc_roots;
703
704 /*
705 * there is a pool of worker threads for checksumming during writes
706 * and a pool for checksumming after reads. This is because readers
707 * can run with FS locks held, and the writers may be waiting for
708 * those locks. We don't want ordering in the pending list to cause
709 * deadlocks, and so the two are serviced separately.
710 *
711 * A third pool does submit_bio to avoid deadlocking with the other
712 * two
713 */
714 struct btrfs_workqueue *workers;
715 struct btrfs_workqueue *delalloc_workers;
716 struct btrfs_workqueue *flush_workers;
717 struct btrfs_workqueue *endio_workers;
718 struct btrfs_workqueue *endio_meta_workers;
719 struct btrfs_workqueue *endio_raid56_workers;
720 struct btrfs_workqueue *endio_repair_workers;
721 struct btrfs_workqueue *rmw_workers;
722 struct btrfs_workqueue *endio_meta_write_workers;
723 struct btrfs_workqueue *endio_write_workers;
724 struct btrfs_workqueue *endio_freespace_worker;
725 struct btrfs_workqueue *submit_workers;
726 struct btrfs_workqueue *caching_workers;
727 struct btrfs_workqueue *readahead_workers;
728
729 /*
730 * fixup workers take dirty pages that didn't properly go through
731 * the cow mechanism and make them safe to write. It happens
732 * for the sys_munmap function call path
733 */
734 struct btrfs_workqueue *fixup_workers;
735 struct btrfs_workqueue *delayed_workers;
736
737 struct task_struct *transaction_kthread;
738 struct task_struct *cleaner_kthread;
739 u32 thread_pool_size;
740
741 struct kobject *space_info_kobj;
742
743 u64 total_pinned;
744
745 /* used to keep from writing metadata until there is a nice batch */
746 struct percpu_counter dirty_metadata_bytes;
747 struct percpu_counter delalloc_bytes;
748 struct percpu_counter dio_bytes;
749 s32 dirty_metadata_batch;
750 s32 delalloc_batch;
751
752 struct list_head dirty_cowonly_roots;
753
754 struct btrfs_fs_devices *fs_devices;
755
756 /*
757 * The space_info list is effectively read only after initial
758 * setup. It is populated at mount time and cleaned up after
759 * all block groups are removed. RCU is used to protect it.
760 */
761 struct list_head space_info;
762
763 struct btrfs_space_info *data_sinfo;
764
765 struct reloc_control *reloc_ctl;
766
767 /* data_alloc_cluster is only used in ssd_spread mode */
768 struct btrfs_free_cluster data_alloc_cluster;
769
770 /* all metadata allocations go through this cluster */
771 struct btrfs_free_cluster meta_alloc_cluster;
772
773 /* auto defrag inodes go here */
774 spinlock_t defrag_inodes_lock;
775 struct rb_root defrag_inodes;
776 atomic_t defrag_running;
777
778 /* Used to protect avail_{data, metadata, system}_alloc_bits */
779 seqlock_t profiles_lock;
780 /*
781 * these three are in extended format (availability of single
782 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
783 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
784 */
785 u64 avail_data_alloc_bits;
786 u64 avail_metadata_alloc_bits;
787 u64 avail_system_alloc_bits;
788
789 /* restriper state */
790 spinlock_t balance_lock;
791 struct mutex balance_mutex;
792 atomic_t balance_pause_req;
793 atomic_t balance_cancel_req;
794 struct btrfs_balance_control *balance_ctl;
795 wait_queue_head_t balance_wait_q;
796
797 u32 data_chunk_allocations;
798 u32 metadata_ratio;
799
800 void *bdev_holder;
801
802 /* private scrub information */
803 struct mutex scrub_lock;
804 atomic_t scrubs_running;
805 atomic_t scrub_pause_req;
806 atomic_t scrubs_paused;
807 atomic_t scrub_cancel_req;
808 wait_queue_head_t scrub_pause_wait;
809 /*
810 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
811 * running.
812 */
813 refcount_t scrub_workers_refcnt;
814 struct btrfs_workqueue *scrub_workers;
815 struct btrfs_workqueue *scrub_wr_completion_workers;
816 struct btrfs_workqueue *scrub_parity_workers;
817
818#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
819 u32 check_integrity_print_mask;
820#endif
821 /* is qgroup tracking in a consistent state? */
822 u64 qgroup_flags;
823
824 /* holds configuration and tracking. Protected by qgroup_lock */
825 struct rb_root qgroup_tree;
826 spinlock_t qgroup_lock;
827
828 /*
829 * used to avoid frequently calling ulist_alloc()/ulist_free()
830 * when doing qgroup accounting, it must be protected by qgroup_lock.
831 */
832 struct ulist *qgroup_ulist;
833
834 /* protect user change for quota operations */
835 struct mutex qgroup_ioctl_lock;
836
837 /* list of dirty qgroups to be written at next commit */
838 struct list_head dirty_qgroups;
839
840 /* used by qgroup for an efficient tree traversal */
841 u64 qgroup_seq;
842
843 /* qgroup rescan items */
844 struct mutex qgroup_rescan_lock; /* protects the progress item */
845 struct btrfs_key qgroup_rescan_progress;
846 struct btrfs_workqueue *qgroup_rescan_workers;
847 struct completion qgroup_rescan_completion;
848 struct btrfs_work qgroup_rescan_work;
849 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */
850
851 /* filesystem state */
852 unsigned long fs_state;
853
854 struct btrfs_delayed_root *delayed_root;
855
856 /* readahead tree */
857 spinlock_t reada_lock;
858 struct radix_tree_root reada_tree;
859
860 /* readahead works cnt */
861 atomic_t reada_works_cnt;
862
863 /* Extent buffer radix tree */
864 spinlock_t buffer_lock;
865 struct radix_tree_root buffer_radix;
866
867 /* next backup root to be overwritten */
868 int backup_root_index;
869
870 /* device replace state */
871 struct btrfs_dev_replace dev_replace;
872
873 struct semaphore uuid_tree_rescan_sem;
874
875 /* Used to reclaim the metadata space in the background. */
876 struct work_struct async_reclaim_work;
877
878 spinlock_t unused_bgs_lock;
879 struct list_head unused_bgs;
880 struct mutex unused_bg_unpin_mutex;
881 struct mutex delete_unused_bgs_mutex;
882
883 /* Cached block sizes */
884 u32 nodesize;
885 u32 sectorsize;
886 u32 stripesize;
887
888 /* Block groups and devices containing active swapfiles. */
889 spinlock_t swapfile_pins_lock;
890 struct rb_root swapfile_pins;
891
892 struct crypto_shash *csum_shash;
893
894 /*
895 * Number of send operations in progress.
896 * Updated while holding fs_info::balance_mutex.
897 */
898 int send_in_progress;
899
900#ifdef CONFIG_BTRFS_FS_REF_VERIFY
901 spinlock_t ref_verify_lock;
902 struct rb_root block_tree;
903#endif
904};
905
906static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
907{
908 return sb->s_fs_info;
909}
910
911struct btrfs_subvolume_writers {
912 struct percpu_counter counter;
913 wait_queue_head_t wait;
914};
915
916/*
917 * The state of btrfs root
918 */
919enum {
920 /*
921 * btrfs_record_root_in_trans is a multi-step process, and it can race
922 * with the balancing code. But the race is very small, and only the
923 * first time the root is added to each transaction. So IN_TRANS_SETUP
924 * is used to tell us when more checks are required
925 */
926 BTRFS_ROOT_IN_TRANS_SETUP,
927 BTRFS_ROOT_REF_COWS,
928 BTRFS_ROOT_TRACK_DIRTY,
929 BTRFS_ROOT_IN_RADIX,
930 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
931 BTRFS_ROOT_DEFRAG_RUNNING,
932 BTRFS_ROOT_FORCE_COW,
933 BTRFS_ROOT_MULTI_LOG_TASKS,
934 BTRFS_ROOT_DIRTY,
935 BTRFS_ROOT_DELETING,
936
937 /*
938 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
939 *
940 * Set for the subvolume tree owning the reloc tree.
941 */
942 BTRFS_ROOT_DEAD_RELOC_TREE,
943 /* Mark dead root stored on device whose cleanup needs to be resumed */
944 BTRFS_ROOT_DEAD_TREE,
945};
946
947/*
948 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
949 * code. For detail check comment in fs/btrfs/qgroup.c.
950 */
951struct btrfs_qgroup_swapped_blocks {
952 spinlock_t lock;
953 /* RM_EMPTY_ROOT() of above blocks[] */
954 bool swapped;
955 struct rb_root blocks[BTRFS_MAX_LEVEL];
956};
957
958/*
959 * in ram representation of the tree. extent_root is used for all allocations
960 * and for the extent tree extent_root root.
961 */
962struct btrfs_root {
963 struct extent_buffer *node;
964
965 struct extent_buffer *commit_root;
966 struct btrfs_root *log_root;
967 struct btrfs_root *reloc_root;
968
969 unsigned long state;
970 struct btrfs_root_item root_item;
971 struct btrfs_key root_key;
972 struct btrfs_fs_info *fs_info;
973 struct extent_io_tree dirty_log_pages;
974
975 struct mutex objectid_mutex;
976
977 spinlock_t accounting_lock;
978 struct btrfs_block_rsv *block_rsv;
979
980 /* free ino cache stuff */
981 struct btrfs_free_space_ctl *free_ino_ctl;
982 enum btrfs_caching_type ino_cache_state;
983 spinlock_t ino_cache_lock;
984 wait_queue_head_t ino_cache_wait;
985 struct btrfs_free_space_ctl *free_ino_pinned;
986 u64 ino_cache_progress;
987 struct inode *ino_cache_inode;
988
989 struct mutex log_mutex;
990 wait_queue_head_t log_writer_wait;
991 wait_queue_head_t log_commit_wait[2];
992 struct list_head log_ctxs[2];
993 atomic_t log_writers;
994 atomic_t log_commit[2];
995 atomic_t log_batch;
996 int log_transid;
997 /* No matter the commit succeeds or not*/
998 int log_transid_committed;
999 /* Just be updated when the commit succeeds. */
1000 int last_log_commit;
1001 pid_t log_start_pid;
1002
1003 u64 last_trans;
1004
1005 u32 type;
1006
1007 u64 highest_objectid;
1008
1009 u64 defrag_trans_start;
1010 struct btrfs_key defrag_progress;
1011 struct btrfs_key defrag_max;
1012
1013 /* the dirty list is only used by non-reference counted roots */
1014 struct list_head dirty_list;
1015
1016 struct list_head root_list;
1017
1018 spinlock_t log_extents_lock[2];
1019 struct list_head logged_list[2];
1020
1021 int orphan_cleanup_state;
1022
1023 spinlock_t inode_lock;
1024 /* red-black tree that keeps track of in-memory inodes */
1025 struct rb_root inode_tree;
1026
1027 /*
1028 * radix tree that keeps track of delayed nodes of every inode,
1029 * protected by inode_lock
1030 */
1031 struct radix_tree_root delayed_nodes_tree;
1032 /*
1033 * right now this just gets used so that a root has its own devid
1034 * for stat. It may be used for more later
1035 */
1036 dev_t anon_dev;
1037
1038 spinlock_t root_item_lock;
1039 refcount_t refs;
1040
1041 struct mutex delalloc_mutex;
1042 spinlock_t delalloc_lock;
1043 /*
1044 * all of the inodes that have delalloc bytes. It is possible for
1045 * this list to be empty even when there is still dirty data=ordered
1046 * extents waiting to finish IO.
1047 */
1048 struct list_head delalloc_inodes;
1049 struct list_head delalloc_root;
1050 u64 nr_delalloc_inodes;
1051
1052 struct mutex ordered_extent_mutex;
1053 /*
1054 * this is used by the balancing code to wait for all the pending
1055 * ordered extents
1056 */
1057 spinlock_t ordered_extent_lock;
1058
1059 /*
1060 * all of the data=ordered extents pending writeback
1061 * these can span multiple transactions and basically include
1062 * every dirty data page that isn't from nodatacow
1063 */
1064 struct list_head ordered_extents;
1065 struct list_head ordered_root;
1066 u64 nr_ordered_extents;
1067
1068 /*
1069 * Not empty if this subvolume root has gone through tree block swap
1070 * (relocation)
1071 *
1072 * Will be used by reloc_control::dirty_subvol_roots.
1073 */
1074 struct list_head reloc_dirty_list;
1075
1076 /*
1077 * Number of currently running SEND ioctls to prevent
1078 * manipulation with the read-only status via SUBVOL_SETFLAGS
1079 */
1080 int send_in_progress;
1081 /*
1082 * Number of currently running deduplication operations that have a
1083 * destination inode belonging to this root. Protected by the lock
1084 * root_item_lock.
1085 */
1086 int dedupe_in_progress;
1087 struct btrfs_subvolume_writers *subv_writers;
1088 atomic_t will_be_snapshotted;
1089 atomic_t snapshot_force_cow;
1090
1091 /* For qgroup metadata reserved space */
1092 spinlock_t qgroup_meta_rsv_lock;
1093 u64 qgroup_meta_rsv_pertrans;
1094 u64 qgroup_meta_rsv_prealloc;
1095
1096 /* Number of active swapfiles */
1097 atomic_t nr_swapfiles;
1098
1099 /* Record pairs of swapped blocks for qgroup */
1100 struct btrfs_qgroup_swapped_blocks swapped_blocks;
1101
1102#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1103 u64 alloc_bytenr;
1104#endif
1105};
1106
1107struct btrfs_clone_extent_info {
1108 u64 disk_offset;
1109 u64 disk_len;
1110 u64 data_offset;
1111 u64 data_len;
1112 u64 file_offset;
1113 char *extent_buf;
1114 u32 item_size;
1115};
1116
1117struct btrfs_file_private {
1118 void *filldir_buf;
1119};
1120
1121static inline u32 btrfs_inode_sectorsize(const struct inode *inode)
1122{
1123 return btrfs_sb(inode->i_sb)->sectorsize;
1124}
1125
1126static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1127{
1128
1129 return info->nodesize - sizeof(struct btrfs_header);
1130}
1131
1132#define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items)
1133
1134static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1135{
1136 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1137}
1138
1139static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1140{
1141 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1142}
1143
1144#define BTRFS_FILE_EXTENT_INLINE_DATA_START \
1145 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
1146static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1147{
1148 return BTRFS_MAX_ITEM_SIZE(info) -
1149 BTRFS_FILE_EXTENT_INLINE_DATA_START;
1150}
1151
1152static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1153{
1154 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1155}
1156
1157/*
1158 * Flags for mount options.
1159 *
1160 * Note: don't forget to add new options to btrfs_show_options()
1161 */
1162#define BTRFS_MOUNT_NODATASUM (1 << 0)
1163#define BTRFS_MOUNT_NODATACOW (1 << 1)
1164#define BTRFS_MOUNT_NOBARRIER (1 << 2)
1165#define BTRFS_MOUNT_SSD (1 << 3)
1166#define BTRFS_MOUNT_DEGRADED (1 << 4)
1167#define BTRFS_MOUNT_COMPRESS (1 << 5)
1168#define BTRFS_MOUNT_NOTREELOG (1 << 6)
1169#define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
1170#define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
1171#define BTRFS_MOUNT_NOSSD (1 << 9)
1172#define BTRFS_MOUNT_DISCARD (1 << 10)
1173#define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
1174#define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
1175#define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
1176#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
1177#define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
1178#define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
1179#define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
1180#define BTRFS_MOUNT_USEBACKUPROOT (1 << 18)
1181#define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
1182#define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
1183#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
1184#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
1185#define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
1186#define BTRFS_MOUNT_FRAGMENT_DATA (1 << 24)
1187#define BTRFS_MOUNT_FRAGMENT_METADATA (1 << 25)
1188#define BTRFS_MOUNT_FREE_SPACE_TREE (1 << 26)
1189#define BTRFS_MOUNT_NOLOGREPLAY (1 << 27)
1190#define BTRFS_MOUNT_REF_VERIFY (1 << 28)
1191
1192#define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
1193#define BTRFS_DEFAULT_MAX_INLINE (2048)
1194
1195#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1196#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1197#define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
1198#define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
1199 BTRFS_MOUNT_##opt)
1200
1201#define btrfs_set_and_info(fs_info, opt, fmt, args...) \
1202{ \
1203 if (!btrfs_test_opt(fs_info, opt)) \
1204 btrfs_info(fs_info, fmt, ##args); \
1205 btrfs_set_opt(fs_info->mount_opt, opt); \
1206}
1207
1208#define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
1209{ \
1210 if (btrfs_test_opt(fs_info, opt)) \
1211 btrfs_info(fs_info, fmt, ##args); \
1212 btrfs_clear_opt(fs_info->mount_opt, opt); \
1213}
1214
1215/*
1216 * Requests for changes that need to be done during transaction commit.
1217 *
1218 * Internal mount options that are used for special handling of the real
1219 * mount options (eg. cannot be set during remount and have to be set during
1220 * transaction commit)
1221 */
1222
1223#define BTRFS_PENDING_SET_INODE_MAP_CACHE (0)
1224#define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE (1)
1225#define BTRFS_PENDING_COMMIT (2)
1226
1227#define btrfs_test_pending(info, opt) \
1228 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1229#define btrfs_set_pending(info, opt) \
1230 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1231#define btrfs_clear_pending(info, opt) \
1232 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1233
1234/*
1235 * Helpers for setting pending mount option changes.
1236 *
1237 * Expects corresponding macros
1238 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1239 */
1240#define btrfs_set_pending_and_info(info, opt, fmt, args...) \
1241do { \
1242 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1243 btrfs_info((info), fmt, ##args); \
1244 btrfs_set_pending((info), SET_##opt); \
1245 btrfs_clear_pending((info), CLEAR_##opt); \
1246 } \
1247} while(0)
1248
1249#define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
1250do { \
1251 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1252 btrfs_info((info), fmt, ##args); \
1253 btrfs_set_pending((info), CLEAR_##opt); \
1254 btrfs_clear_pending((info), SET_##opt); \
1255 } \
1256} while(0)
1257
1258/*
1259 * Inode flags
1260 */
1261#define BTRFS_INODE_NODATASUM (1 << 0)
1262#define BTRFS_INODE_NODATACOW (1 << 1)
1263#define BTRFS_INODE_READONLY (1 << 2)
1264#define BTRFS_INODE_NOCOMPRESS (1 << 3)
1265#define BTRFS_INODE_PREALLOC (1 << 4)
1266#define BTRFS_INODE_SYNC (1 << 5)
1267#define BTRFS_INODE_IMMUTABLE (1 << 6)
1268#define BTRFS_INODE_APPEND (1 << 7)
1269#define BTRFS_INODE_NODUMP (1 << 8)
1270#define BTRFS_INODE_NOATIME (1 << 9)
1271#define BTRFS_INODE_DIRSYNC (1 << 10)
1272#define BTRFS_INODE_COMPRESS (1 << 11)
1273
1274#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
1275
1276#define BTRFS_INODE_FLAG_MASK \
1277 (BTRFS_INODE_NODATASUM | \
1278 BTRFS_INODE_NODATACOW | \
1279 BTRFS_INODE_READONLY | \
1280 BTRFS_INODE_NOCOMPRESS | \
1281 BTRFS_INODE_PREALLOC | \
1282 BTRFS_INODE_SYNC | \
1283 BTRFS_INODE_IMMUTABLE | \
1284 BTRFS_INODE_APPEND | \
1285 BTRFS_INODE_NODUMP | \
1286 BTRFS_INODE_NOATIME | \
1287 BTRFS_INODE_DIRSYNC | \
1288 BTRFS_INODE_COMPRESS | \
1289 BTRFS_INODE_ROOT_ITEM_INIT)
1290
1291struct btrfs_map_token {
1292 const struct extent_buffer *eb;
1293 char *kaddr;
1294 unsigned long offset;
1295};
1296
1297#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1298 ((bytes) >> (fs_info)->sb->s_blocksize_bits)
1299
1300static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1301 struct extent_buffer *eb)
1302{
1303 token->eb = eb;
1304 token->kaddr = NULL;
1305}
1306
1307/* some macros to generate set/get functions for the struct fields. This
1308 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1309 * one for u8:
1310 */
1311#define le8_to_cpu(v) (v)
1312#define cpu_to_le8(v) (v)
1313#define __le8 u8
1314
1315#define read_eb_member(eb, ptr, type, member, result) (\
1316 read_extent_buffer(eb, (char *)(result), \
1317 ((unsigned long)(ptr)) + \
1318 offsetof(type, member), \
1319 sizeof(((type *)0)->member)))
1320
1321#define write_eb_member(eb, ptr, type, member, result) (\
1322 write_extent_buffer(eb, (char *)(result), \
1323 ((unsigned long)(ptr)) + \
1324 offsetof(type, member), \
1325 sizeof(((type *)0)->member)))
1326
1327#define DECLARE_BTRFS_SETGET_BITS(bits) \
1328u##bits btrfs_get_token_##bits(const struct extent_buffer *eb, \
1329 const void *ptr, unsigned long off, \
1330 struct btrfs_map_token *token); \
1331void btrfs_set_token_##bits(struct extent_buffer *eb, const void *ptr, \
1332 unsigned long off, u##bits val, \
1333 struct btrfs_map_token *token); \
1334u##bits btrfs_get_##bits(const struct extent_buffer *eb, \
1335 const void *ptr, unsigned long off); \
1336void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
1337 unsigned long off, u##bits val);
1338
1339DECLARE_BTRFS_SETGET_BITS(8)
1340DECLARE_BTRFS_SETGET_BITS(16)
1341DECLARE_BTRFS_SETGET_BITS(32)
1342DECLARE_BTRFS_SETGET_BITS(64)
1343
1344#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1345static inline u##bits btrfs_##name(const struct extent_buffer *eb, \
1346 const type *s) \
1347{ \
1348 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1349 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
1350} \
1351static inline void btrfs_set_##name(struct extent_buffer *eb, type *s, \
1352 u##bits val) \
1353{ \
1354 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1355 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
1356} \
1357static inline u##bits btrfs_token_##name(const struct extent_buffer *eb,\
1358 const type *s, \
1359 struct btrfs_map_token *token) \
1360{ \
1361 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1362 return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
1363} \
1364static inline void btrfs_set_token_##name(struct extent_buffer *eb, \
1365 type *s, u##bits val, \
1366 struct btrfs_map_token *token) \
1367{ \
1368 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1369 btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
1370}
1371
1372#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1373static inline u##bits btrfs_##name(const struct extent_buffer *eb) \
1374{ \
1375 const type *p = page_address(eb->pages[0]); \
1376 u##bits res = le##bits##_to_cpu(p->member); \
1377 return res; \
1378} \
1379static inline void btrfs_set_##name(struct extent_buffer *eb, \
1380 u##bits val) \
1381{ \
1382 type *p = page_address(eb->pages[0]); \
1383 p->member = cpu_to_le##bits(val); \
1384}
1385
1386#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1387static inline u##bits btrfs_##name(const type *s) \
1388{ \
1389 return le##bits##_to_cpu(s->member); \
1390} \
1391static inline void btrfs_set_##name(type *s, u##bits val) \
1392{ \
1393 s->member = cpu_to_le##bits(val); \
1394}
1395
1396
1397static inline u64 btrfs_device_total_bytes(struct extent_buffer *eb,
1398 struct btrfs_dev_item *s)
1399{
1400 BUILD_BUG_ON(sizeof(u64) !=
1401 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1402 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1403 total_bytes));
1404}
1405static inline void btrfs_set_device_total_bytes(struct extent_buffer *eb,
1406 struct btrfs_dev_item *s,
1407 u64 val)
1408{
1409 BUILD_BUG_ON(sizeof(u64) !=
1410 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1411 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1412 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1413}
1414
1415
1416BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1417BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1418BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1419BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1420BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1421 start_offset, 64);
1422BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1423BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1424BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1425BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1426BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1427BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1428
1429BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1430BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1431 total_bytes, 64);
1432BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1433 bytes_used, 64);
1434BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1435 io_align, 32);
1436BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1437 io_width, 32);
1438BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1439 sector_size, 32);
1440BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1441BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1442 dev_group, 32);
1443BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1444 seek_speed, 8);
1445BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1446 bandwidth, 8);
1447BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1448 generation, 64);
1449
1450static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1451{
1452 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1453}
1454
1455static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1456{
1457 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1458}
1459
1460BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1461BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1462BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1463BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1464BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1465BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1466BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1467BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1468BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1469BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1470BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1471
1472static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1473{
1474 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1475}
1476
1477BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1478BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1479BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1480 stripe_len, 64);
1481BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1482 io_align, 32);
1483BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1484 io_width, 32);
1485BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1486 sector_size, 32);
1487BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1488BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1489 num_stripes, 16);
1490BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1491 sub_stripes, 16);
1492BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1493BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1494
1495static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1496 int nr)
1497{
1498 unsigned long offset = (unsigned long)c;
1499 offset += offsetof(struct btrfs_chunk, stripe);
1500 offset += nr * sizeof(struct btrfs_stripe);
1501 return (struct btrfs_stripe *)offset;
1502}
1503
1504static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1505{
1506 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1507}
1508
1509static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
1510 struct btrfs_chunk *c, int nr)
1511{
1512 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1513}
1514
1515static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
1516 struct btrfs_chunk *c, int nr)
1517{
1518 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1519}
1520
1521/* struct btrfs_block_group_item */
1522BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
1523 used, 64);
1524BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
1525 used, 64);
1526BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
1527 struct btrfs_block_group_item, chunk_objectid, 64);
1528
1529BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
1530 struct btrfs_block_group_item, chunk_objectid, 64);
1531BTRFS_SETGET_FUNCS(disk_block_group_flags,
1532 struct btrfs_block_group_item, flags, 64);
1533BTRFS_SETGET_STACK_FUNCS(block_group_flags,
1534 struct btrfs_block_group_item, flags, 64);
1535
1536/* struct btrfs_free_space_info */
1537BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1538 extent_count, 32);
1539BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1540
1541/* struct btrfs_inode_ref */
1542BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1543BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1544
1545/* struct btrfs_inode_extref */
1546BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1547 parent_objectid, 64);
1548BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1549 name_len, 16);
1550BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1551
1552/* struct btrfs_inode_item */
1553BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1554BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1555BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1556BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1557BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1558BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1559BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1560BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1561BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1562BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1563BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1564BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1565BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1566 generation, 64);
1567BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1568 sequence, 64);
1569BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1570 transid, 64);
1571BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1572BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1573 nbytes, 64);
1574BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1575 block_group, 64);
1576BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1577BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1578BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1579BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1580BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1581BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1582BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1583BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1584BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1585BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1586
1587/* struct btrfs_dev_extent */
1588BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1589 chunk_tree, 64);
1590BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1591 chunk_objectid, 64);
1592BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1593 chunk_offset, 64);
1594BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1595
1596static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
1597{
1598 unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
1599 return (unsigned long)dev + ptr;
1600}
1601
1602BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1603BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1604 generation, 64);
1605BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1606
1607BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
1608
1609
1610BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1611
1612static inline void btrfs_tree_block_key(struct extent_buffer *eb,
1613 struct btrfs_tree_block_info *item,
1614 struct btrfs_disk_key *key)
1615{
1616 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1617}
1618
1619static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
1620 struct btrfs_tree_block_info *item,
1621 struct btrfs_disk_key *key)
1622{
1623 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1624}
1625
1626BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1627 root, 64);
1628BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1629 objectid, 64);
1630BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1631 offset, 64);
1632BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1633 count, 32);
1634
1635BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1636 count, 32);
1637
1638BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1639 type, 8);
1640BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1641 offset, 64);
1642
1643static inline u32 btrfs_extent_inline_ref_size(int type)
1644{
1645 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1646 type == BTRFS_SHARED_BLOCK_REF_KEY)
1647 return sizeof(struct btrfs_extent_inline_ref);
1648 if (type == BTRFS_SHARED_DATA_REF_KEY)
1649 return sizeof(struct btrfs_shared_data_ref) +
1650 sizeof(struct btrfs_extent_inline_ref);
1651 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1652 return sizeof(struct btrfs_extent_data_ref) +
1653 offsetof(struct btrfs_extent_inline_ref, offset);
1654 return 0;
1655}
1656
1657BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
1658BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
1659 generation, 64);
1660BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
1661BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
1662
1663/* struct btrfs_node */
1664BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1665BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1666BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1667 blockptr, 64);
1668BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1669 generation, 64);
1670
1671static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
1672{
1673 unsigned long ptr;
1674 ptr = offsetof(struct btrfs_node, ptrs) +
1675 sizeof(struct btrfs_key_ptr) * nr;
1676 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1677}
1678
1679static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
1680 int nr, u64 val)
1681{
1682 unsigned long ptr;
1683 ptr = offsetof(struct btrfs_node, ptrs) +
1684 sizeof(struct btrfs_key_ptr) * nr;
1685 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1686}
1687
1688static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
1689{
1690 unsigned long ptr;
1691 ptr = offsetof(struct btrfs_node, ptrs) +
1692 sizeof(struct btrfs_key_ptr) * nr;
1693 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1694}
1695
1696static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
1697 int nr, u64 val)
1698{
1699 unsigned long ptr;
1700 ptr = offsetof(struct btrfs_node, ptrs) +
1701 sizeof(struct btrfs_key_ptr) * nr;
1702 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1703}
1704
1705static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1706{
1707 return offsetof(struct btrfs_node, ptrs) +
1708 sizeof(struct btrfs_key_ptr) * nr;
1709}
1710
1711void btrfs_node_key(const struct extent_buffer *eb,
1712 struct btrfs_disk_key *disk_key, int nr);
1713
1714static inline void btrfs_set_node_key(struct extent_buffer *eb,
1715 struct btrfs_disk_key *disk_key, int nr)
1716{
1717 unsigned long ptr;
1718 ptr = btrfs_node_key_ptr_offset(nr);
1719 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1720 struct btrfs_key_ptr, key, disk_key);
1721}
1722
1723/* struct btrfs_item */
1724BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1725BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1726BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1727BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1728
1729static inline unsigned long btrfs_item_nr_offset(int nr)
1730{
1731 return offsetof(struct btrfs_leaf, items) +
1732 sizeof(struct btrfs_item) * nr;
1733}
1734
1735static inline struct btrfs_item *btrfs_item_nr(int nr)
1736{
1737 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1738}
1739
1740static inline u32 btrfs_item_end(const struct extent_buffer *eb,
1741 struct btrfs_item *item)
1742{
1743 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1744}
1745
1746static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr)
1747{
1748 return btrfs_item_end(eb, btrfs_item_nr(nr));
1749}
1750
1751static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr)
1752{
1753 return btrfs_item_offset(eb, btrfs_item_nr(nr));
1754}
1755
1756static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr)
1757{
1758 return btrfs_item_size(eb, btrfs_item_nr(nr));
1759}
1760
1761static inline void btrfs_item_key(const struct extent_buffer *eb,
1762 struct btrfs_disk_key *disk_key, int nr)
1763{
1764 struct btrfs_item *item = btrfs_item_nr(nr);
1765 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
1766}
1767
1768static inline void btrfs_set_item_key(struct extent_buffer *eb,
1769 struct btrfs_disk_key *disk_key, int nr)
1770{
1771 struct btrfs_item *item = btrfs_item_nr(nr);
1772 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
1773}
1774
1775BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
1776
1777/*
1778 * struct btrfs_root_ref
1779 */
1780BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
1781BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
1782BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
1783
1784/* struct btrfs_dir_item */
1785BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
1786BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
1787BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
1788BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
1789BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
1790BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
1791 data_len, 16);
1792BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
1793 name_len, 16);
1794BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
1795 transid, 64);
1796
1797static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
1798 const struct btrfs_dir_item *item,
1799 struct btrfs_disk_key *key)
1800{
1801 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
1802}
1803
1804static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
1805 struct btrfs_dir_item *item,
1806 const struct btrfs_disk_key *key)
1807{
1808 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
1809}
1810
1811BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
1812 num_entries, 64);
1813BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
1814 num_bitmaps, 64);
1815BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
1816 generation, 64);
1817
1818static inline void btrfs_free_space_key(const struct extent_buffer *eb,
1819 const struct btrfs_free_space_header *h,
1820 struct btrfs_disk_key *key)
1821{
1822 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1823}
1824
1825static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
1826 struct btrfs_free_space_header *h,
1827 const struct btrfs_disk_key *key)
1828{
1829 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1830}
1831
1832/* struct btrfs_disk_key */
1833BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
1834 objectid, 64);
1835BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
1836BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
1837
1838static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
1839 const struct btrfs_disk_key *disk)
1840{
1841 cpu->offset = le64_to_cpu(disk->offset);
1842 cpu->type = disk->type;
1843 cpu->objectid = le64_to_cpu(disk->objectid);
1844}
1845
1846static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
1847 const struct btrfs_key *cpu)
1848{
1849 disk->offset = cpu_to_le64(cpu->offset);
1850 disk->type = cpu->type;
1851 disk->objectid = cpu_to_le64(cpu->objectid);
1852}
1853
1854static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
1855 struct btrfs_key *key, int nr)
1856{
1857 struct btrfs_disk_key disk_key;
1858 btrfs_node_key(eb, &disk_key, nr);
1859 btrfs_disk_key_to_cpu(key, &disk_key);
1860}
1861
1862static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
1863 struct btrfs_key *key, int nr)
1864{
1865 struct btrfs_disk_key disk_key;
1866 btrfs_item_key(eb, &disk_key, nr);
1867 btrfs_disk_key_to_cpu(key, &disk_key);
1868}
1869
1870static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
1871 const struct btrfs_dir_item *item,
1872 struct btrfs_key *key)
1873{
1874 struct btrfs_disk_key disk_key;
1875 btrfs_dir_item_key(eb, item, &disk_key);
1876 btrfs_disk_key_to_cpu(key, &disk_key);
1877}
1878
1879/* struct btrfs_header */
1880BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
1881BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
1882 generation, 64);
1883BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
1884BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
1885BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
1886BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
1887BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
1888 generation, 64);
1889BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
1890BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
1891 nritems, 32);
1892BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
1893
1894static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
1895{
1896 return (btrfs_header_flags(eb) & flag) == flag;
1897}
1898
1899static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
1900{
1901 u64 flags = btrfs_header_flags(eb);
1902 btrfs_set_header_flags(eb, flags | flag);
1903}
1904
1905static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
1906{
1907 u64 flags = btrfs_header_flags(eb);
1908 btrfs_set_header_flags(eb, flags & ~flag);
1909}
1910
1911static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
1912{
1913 u64 flags = btrfs_header_flags(eb);
1914 return flags >> BTRFS_BACKREF_REV_SHIFT;
1915}
1916
1917static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
1918 int rev)
1919{
1920 u64 flags = btrfs_header_flags(eb);
1921 flags &= ~BTRFS_BACKREF_REV_MASK;
1922 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
1923 btrfs_set_header_flags(eb, flags);
1924}
1925
1926static inline unsigned long btrfs_header_fsid(void)
1927{
1928 return offsetof(struct btrfs_header, fsid);
1929}
1930
1931static inline unsigned long btrfs_header_chunk_tree_uuid(const struct extent_buffer *eb)
1932{
1933 return offsetof(struct btrfs_header, chunk_tree_uuid);
1934}
1935
1936static inline int btrfs_is_leaf(const struct extent_buffer *eb)
1937{
1938 return btrfs_header_level(eb) == 0;
1939}
1940
1941/* struct btrfs_root_item */
1942BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
1943 generation, 64);
1944BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
1945BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
1946BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
1947
1948BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
1949 generation, 64);
1950BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
1951BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
1952BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
1953BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
1954BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
1955BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
1956BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
1957BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
1958 last_snapshot, 64);
1959BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
1960 generation_v2, 64);
1961BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
1962 ctransid, 64);
1963BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
1964 otransid, 64);
1965BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
1966 stransid, 64);
1967BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
1968 rtransid, 64);
1969
1970static inline bool btrfs_root_readonly(const struct btrfs_root *root)
1971{
1972 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
1973}
1974
1975static inline bool btrfs_root_dead(const struct btrfs_root *root)
1976{
1977 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
1978}
1979
1980/* struct btrfs_root_backup */
1981BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
1982 tree_root, 64);
1983BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
1984 tree_root_gen, 64);
1985BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
1986 tree_root_level, 8);
1987
1988BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
1989 chunk_root, 64);
1990BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
1991 chunk_root_gen, 64);
1992BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
1993 chunk_root_level, 8);
1994
1995BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
1996 extent_root, 64);
1997BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
1998 extent_root_gen, 64);
1999BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2000 extent_root_level, 8);
2001
2002BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2003 fs_root, 64);
2004BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2005 fs_root_gen, 64);
2006BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2007 fs_root_level, 8);
2008
2009BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2010 dev_root, 64);
2011BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2012 dev_root_gen, 64);
2013BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2014 dev_root_level, 8);
2015
2016BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2017 csum_root, 64);
2018BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2019 csum_root_gen, 64);
2020BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2021 csum_root_level, 8);
2022BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2023 total_bytes, 64);
2024BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2025 bytes_used, 64);
2026BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2027 num_devices, 64);
2028
2029/* struct btrfs_balance_item */
2030BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2031
2032static inline void btrfs_balance_data(const struct extent_buffer *eb,
2033 const struct btrfs_balance_item *bi,
2034 struct btrfs_disk_balance_args *ba)
2035{
2036 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2037}
2038
2039static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2040 struct btrfs_balance_item *bi,
2041 const struct btrfs_disk_balance_args *ba)
2042{
2043 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2044}
2045
2046static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2047 const struct btrfs_balance_item *bi,
2048 struct btrfs_disk_balance_args *ba)
2049{
2050 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2051}
2052
2053static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2054 struct btrfs_balance_item *bi,
2055 const struct btrfs_disk_balance_args *ba)
2056{
2057 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2058}
2059
2060static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2061 const struct btrfs_balance_item *bi,
2062 struct btrfs_disk_balance_args *ba)
2063{
2064 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2065}
2066
2067static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2068 struct btrfs_balance_item *bi,
2069 const struct btrfs_disk_balance_args *ba)
2070{
2071 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2072}
2073
2074static inline void
2075btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2076 const struct btrfs_disk_balance_args *disk)
2077{
2078 memset(cpu, 0, sizeof(*cpu));
2079
2080 cpu->profiles = le64_to_cpu(disk->profiles);
2081 cpu->usage = le64_to_cpu(disk->usage);
2082 cpu->devid = le64_to_cpu(disk->devid);
2083 cpu->pstart = le64_to_cpu(disk->pstart);
2084 cpu->pend = le64_to_cpu(disk->pend);
2085 cpu->vstart = le64_to_cpu(disk->vstart);
2086 cpu->vend = le64_to_cpu(disk->vend);
2087 cpu->target = le64_to_cpu(disk->target);
2088 cpu->flags = le64_to_cpu(disk->flags);
2089 cpu->limit = le64_to_cpu(disk->limit);
2090 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2091 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2092}
2093
2094static inline void
2095btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2096 const struct btrfs_balance_args *cpu)
2097{
2098 memset(disk, 0, sizeof(*disk));
2099
2100 disk->profiles = cpu_to_le64(cpu->profiles);
2101 disk->usage = cpu_to_le64(cpu->usage);
2102 disk->devid = cpu_to_le64(cpu->devid);
2103 disk->pstart = cpu_to_le64(cpu->pstart);
2104 disk->pend = cpu_to_le64(cpu->pend);
2105 disk->vstart = cpu_to_le64(cpu->vstart);
2106 disk->vend = cpu_to_le64(cpu->vend);
2107 disk->target = cpu_to_le64(cpu->target);
2108 disk->flags = cpu_to_le64(cpu->flags);
2109 disk->limit = cpu_to_le64(cpu->limit);
2110 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2111 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2112}
2113
2114/* struct btrfs_super_block */
2115BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2116BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2117BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2118 generation, 64);
2119BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2120BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2121 struct btrfs_super_block, sys_chunk_array_size, 32);
2122BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2123 struct btrfs_super_block, chunk_root_generation, 64);
2124BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2125 root_level, 8);
2126BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2127 chunk_root, 64);
2128BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2129 chunk_root_level, 8);
2130BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2131 log_root, 64);
2132BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2133 log_root_transid, 64);
2134BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2135 log_root_level, 8);
2136BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2137 total_bytes, 64);
2138BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2139 bytes_used, 64);
2140BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2141 sectorsize, 32);
2142BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2143 nodesize, 32);
2144BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2145 stripesize, 32);
2146BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2147 root_dir_objectid, 64);
2148BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2149 num_devices, 64);
2150BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2151 compat_flags, 64);
2152BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2153 compat_ro_flags, 64);
2154BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2155 incompat_flags, 64);
2156BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2157 csum_type, 16);
2158BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2159 cache_generation, 64);
2160BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2161BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2162 uuid_tree_generation, 64);
2163
2164int btrfs_super_csum_size(const struct btrfs_super_block *s);
2165const char *btrfs_super_csum_name(u16 csum_type);
2166
2167/*
2168 * The leaf data grows from end-to-front in the node.
2169 * this returns the address of the start of the last item,
2170 * which is the stop of the leaf data stack
2171 */
2172static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2173{
2174 u32 nr = btrfs_header_nritems(leaf);
2175
2176 if (nr == 0)
2177 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2178 return btrfs_item_offset_nr(leaf, nr - 1);
2179}
2180
2181/* struct btrfs_file_extent_item */
2182BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2183BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2184 struct btrfs_file_extent_item, disk_bytenr, 64);
2185BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2186 struct btrfs_file_extent_item, offset, 64);
2187BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2188 struct btrfs_file_extent_item, generation, 64);
2189BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2190 struct btrfs_file_extent_item, num_bytes, 64);
2191BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2192 struct btrfs_file_extent_item, disk_num_bytes, 64);
2193BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2194 struct btrfs_file_extent_item, compression, 8);
2195
2196static inline unsigned long
2197btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2198{
2199 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2200}
2201
2202static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2203{
2204 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2205}
2206
2207BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2208 disk_bytenr, 64);
2209BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2210 generation, 64);
2211BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2212 disk_num_bytes, 64);
2213BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2214 offset, 64);
2215BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2216 num_bytes, 64);
2217BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2218 ram_bytes, 64);
2219BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2220 compression, 8);
2221BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2222 encryption, 8);
2223BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2224 other_encoding, 16);
2225
2226/*
2227 * this returns the number of bytes used by the item on disk, minus the
2228 * size of any extent headers. If a file is compressed on disk, this is
2229 * the compressed size
2230 */
2231static inline u32 btrfs_file_extent_inline_item_len(
2232 const struct extent_buffer *eb,
2233 struct btrfs_item *e)
2234{
2235 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2236}
2237
2238/* btrfs_qgroup_status_item */
2239BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2240 generation, 64);
2241BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2242 version, 64);
2243BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2244 flags, 64);
2245BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2246 rescan, 64);
2247
2248/* btrfs_qgroup_info_item */
2249BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2250 generation, 64);
2251BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2252BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2253 rfer_cmpr, 64);
2254BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2255BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2256 excl_cmpr, 64);
2257
2258BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2259 struct btrfs_qgroup_info_item, generation, 64);
2260BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2261 rfer, 64);
2262BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2263 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2264BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2265 excl, 64);
2266BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2267 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2268
2269/* btrfs_qgroup_limit_item */
2270BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2271 flags, 64);
2272BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2273 max_rfer, 64);
2274BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2275 max_excl, 64);
2276BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2277 rsv_rfer, 64);
2278BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2279 rsv_excl, 64);
2280
2281/* btrfs_dev_replace_item */
2282BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2283 struct btrfs_dev_replace_item, src_devid, 64);
2284BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2285 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2286 64);
2287BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2288 replace_state, 64);
2289BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2290 time_started, 64);
2291BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2292 time_stopped, 64);
2293BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2294 num_write_errors, 64);
2295BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2296 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2297 64);
2298BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2299 cursor_left, 64);
2300BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2301 cursor_right, 64);
2302
2303BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2304 struct btrfs_dev_replace_item, src_devid, 64);
2305BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2306 struct btrfs_dev_replace_item,
2307 cont_reading_from_srcdev_mode, 64);
2308BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2309 struct btrfs_dev_replace_item, replace_state, 64);
2310BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2311 struct btrfs_dev_replace_item, time_started, 64);
2312BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2313 struct btrfs_dev_replace_item, time_stopped, 64);
2314BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2315 struct btrfs_dev_replace_item, num_write_errors, 64);
2316BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2317 struct btrfs_dev_replace_item,
2318 num_uncorrectable_read_errors, 64);
2319BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2320 struct btrfs_dev_replace_item, cursor_left, 64);
2321BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2322 struct btrfs_dev_replace_item, cursor_right, 64);
2323
2324/* helper function to cast into the data area of the leaf. */
2325#define btrfs_item_ptr(leaf, slot, type) \
2326 ((type *)(BTRFS_LEAF_DATA_OFFSET + \
2327 btrfs_item_offset_nr(leaf, slot)))
2328
2329#define btrfs_item_ptr_offset(leaf, slot) \
2330 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2331 btrfs_item_offset_nr(leaf, slot)))
2332
2333static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2334{
2335 return crc32c(crc, address, length);
2336}
2337
2338static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2339{
2340 put_unaligned_le32(~crc, result);
2341}
2342
2343static inline u64 btrfs_name_hash(const char *name, int len)
2344{
2345 return crc32c((u32)~1, name, len);
2346}
2347
2348/*
2349 * Figure the key offset of an extended inode ref
2350 */
2351static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2352 int len)
2353{
2354 return (u64) crc32c(parent_objectid, name, len);
2355}
2356
2357static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2358{
2359 return mapping_gfp_constraint(mapping, ~__GFP_FS);
2360}
2361
2362/* extent-tree.c */
2363
2364enum btrfs_inline_ref_type {
2365 BTRFS_REF_TYPE_INVALID,
2366 BTRFS_REF_TYPE_BLOCK,
2367 BTRFS_REF_TYPE_DATA,
2368 BTRFS_REF_TYPE_ANY,
2369};
2370
2371int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2372 struct btrfs_extent_inline_ref *iref,
2373 enum btrfs_inline_ref_type is_data);
2374u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2375
2376u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes);
2377
2378/*
2379 * Use this if we would be adding new items, as we could split nodes as we cow
2380 * down the tree.
2381 */
2382static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2383 unsigned num_items)
2384{
2385 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2386}
2387
2388/*
2389 * Doing a truncate or a modification won't result in new nodes or leaves, just
2390 * what we need for COW.
2391 */
2392static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2393 unsigned num_items)
2394{
2395 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2396}
2397
2398int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2399 u64 start, u64 num_bytes);
2400void btrfs_free_excluded_extents(struct btrfs_block_group_cache *cache);
2401int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2402 unsigned long count);
2403void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2404 struct btrfs_delayed_ref_root *delayed_refs,
2405 struct btrfs_delayed_ref_head *head);
2406int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2407int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2408 struct btrfs_fs_info *fs_info, u64 bytenr,
2409 u64 offset, int metadata, u64 *refs, u64 *flags);
2410int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
2411 u64 bytenr, u64 num, int reserved);
2412int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
2413 u64 bytenr, u64 num_bytes);
2414int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2415int btrfs_cross_ref_exist(struct btrfs_root *root,
2416 u64 objectid, u64 offset, u64 bytenr);
2417struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2418 struct btrfs_root *root,
2419 u64 parent, u64 root_objectid,
2420 const struct btrfs_disk_key *key,
2421 int level, u64 hint,
2422 u64 empty_size);
2423void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2424 struct btrfs_root *root,
2425 struct extent_buffer *buf,
2426 u64 parent, int last_ref);
2427int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2428 struct btrfs_root *root, u64 owner,
2429 u64 offset, u64 ram_bytes,
2430 struct btrfs_key *ins);
2431int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2432 u64 root_objectid, u64 owner, u64 offset,
2433 struct btrfs_key *ins);
2434int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2435 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2436 struct btrfs_key *ins, int is_data, int delalloc);
2437int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2438 struct extent_buffer *buf, int full_backref);
2439int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2440 struct extent_buffer *buf, int full_backref);
2441int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2442 u64 bytenr, u64 num_bytes, u64 flags,
2443 int level, int is_data);
2444int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2445
2446int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2447 u64 start, u64 len, int delalloc);
2448int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
2449 u64 start, u64 len);
2450void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info);
2451int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2452int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2453 struct btrfs_ref *generic_ref);
2454
2455int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr);
2456void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache);
2457void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *cache);
2458void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2459
2460enum btrfs_reserve_flush_enum {
2461 /* If we are in the transaction, we can't flush anything.*/
2462 BTRFS_RESERVE_NO_FLUSH,
2463 /*
2464 * Flushing delalloc may cause deadlock somewhere, in this
2465 * case, use FLUSH LIMIT
2466 */
2467 BTRFS_RESERVE_FLUSH_LIMIT,
2468 BTRFS_RESERVE_FLUSH_EVICT,
2469 BTRFS_RESERVE_FLUSH_ALL,
2470};
2471
2472enum btrfs_flush_state {
2473 FLUSH_DELAYED_ITEMS_NR = 1,
2474 FLUSH_DELAYED_ITEMS = 2,
2475 FLUSH_DELAYED_REFS_NR = 3,
2476 FLUSH_DELAYED_REFS = 4,
2477 FLUSH_DELALLOC = 5,
2478 FLUSH_DELALLOC_WAIT = 6,
2479 ALLOC_CHUNK = 7,
2480 ALLOC_CHUNK_FORCE = 8,
2481 RUN_DELAYED_IPUTS = 9,
2482 COMMIT_TRANS = 10,
2483};
2484
2485int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2486 struct btrfs_block_rsv *rsv,
2487 int nitems, bool use_global_rsv);
2488void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
2489 struct btrfs_block_rsv *rsv);
2490void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2491
2492int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2493u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2494int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2495 u64 start, u64 end);
2496int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2497 u64 num_bytes, u64 *actual_bytes);
2498int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2499
2500int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2501int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2502 struct btrfs_fs_info *fs_info);
2503int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2504void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2505void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2506
2507/* ctree.c */
2508int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2509 int level, int *slot);
2510int btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2511int btrfs_previous_item(struct btrfs_root *root,
2512 struct btrfs_path *path, u64 min_objectid,
2513 int type);
2514int btrfs_previous_extent_item(struct btrfs_root *root,
2515 struct btrfs_path *path, u64 min_objectid);
2516void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2517 struct btrfs_path *path,
2518 const struct btrfs_key *new_key);
2519struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2520struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
2521struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root);
2522int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2523 struct btrfs_key *key, int lowest_level,
2524 u64 min_trans);
2525int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2526 struct btrfs_path *path,
2527 u64 min_trans);
2528struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2529 int slot);
2530
2531int btrfs_cow_block(struct btrfs_trans_handle *trans,
2532 struct btrfs_root *root, struct extent_buffer *buf,
2533 struct extent_buffer *parent, int parent_slot,
2534 struct extent_buffer **cow_ret);
2535int btrfs_copy_root(struct btrfs_trans_handle *trans,
2536 struct btrfs_root *root,
2537 struct extent_buffer *buf,
2538 struct extent_buffer **cow_ret, u64 new_root_objectid);
2539int btrfs_block_can_be_shared(struct btrfs_root *root,
2540 struct extent_buffer *buf);
2541void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2542void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2543int btrfs_split_item(struct btrfs_trans_handle *trans,
2544 struct btrfs_root *root,
2545 struct btrfs_path *path,
2546 const struct btrfs_key *new_key,
2547 unsigned long split_offset);
2548int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2549 struct btrfs_root *root,
2550 struct btrfs_path *path,
2551 const struct btrfs_key *new_key);
2552int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2553 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2554int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2555 const struct btrfs_key *key, struct btrfs_path *p,
2556 int ins_len, int cow);
2557int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2558 struct btrfs_path *p, u64 time_seq);
2559int btrfs_search_slot_for_read(struct btrfs_root *root,
2560 const struct btrfs_key *key,
2561 struct btrfs_path *p, int find_higher,
2562 int return_any);
2563int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2564 struct btrfs_root *root, struct extent_buffer *parent,
2565 int start_slot, u64 *last_ret,
2566 struct btrfs_key *progress);
2567void btrfs_release_path(struct btrfs_path *p);
2568struct btrfs_path *btrfs_alloc_path(void);
2569void btrfs_free_path(struct btrfs_path *p);
2570void btrfs_set_path_blocking(struct btrfs_path *p);
2571void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
2572
2573int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2574 struct btrfs_path *path, int slot, int nr);
2575static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2576 struct btrfs_root *root,
2577 struct btrfs_path *path)
2578{
2579 return btrfs_del_items(trans, root, path, path->slots[0], 1);
2580}
2581
2582void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
2583 const struct btrfs_key *cpu_key, u32 *data_size,
2584 u32 total_data, u32 total_size, int nr);
2585int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2586 const struct btrfs_key *key, void *data, u32 data_size);
2587int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2588 struct btrfs_root *root,
2589 struct btrfs_path *path,
2590 const struct btrfs_key *cpu_key, u32 *data_size,
2591 int nr);
2592
2593static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2594 struct btrfs_root *root,
2595 struct btrfs_path *path,
2596 const struct btrfs_key *key,
2597 u32 data_size)
2598{
2599 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
2600}
2601
2602int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
2603int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2604int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2605 u64 time_seq);
2606static inline int btrfs_next_old_item(struct btrfs_root *root,
2607 struct btrfs_path *p, u64 time_seq)
2608{
2609 ++p->slots[0];
2610 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2611 return btrfs_next_old_leaf(root, p, time_seq);
2612 return 0;
2613}
2614static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2615{
2616 return btrfs_next_old_item(root, p, 0);
2617}
2618int btrfs_leaf_free_space(struct extent_buffer *leaf);
2619int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
2620 struct btrfs_block_rsv *block_rsv,
2621 int update_ref, int for_reloc);
2622int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2623 struct btrfs_root *root,
2624 struct extent_buffer *node,
2625 struct extent_buffer *parent);
2626static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2627{
2628 /*
2629 * Do it this way so we only ever do one test_bit in the normal case.
2630 */
2631 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
2632 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
2633 return 2;
2634 return 1;
2635 }
2636 return 0;
2637}
2638
2639/*
2640 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
2641 * anything except sleeping. This function is used to check the status of
2642 * the fs.
2643 */
2644static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
2645{
2646 return fs_info->sb->s_flags & SB_RDONLY || btrfs_fs_closing(fs_info);
2647}
2648
2649static inline void free_fs_info(struct btrfs_fs_info *fs_info)
2650{
2651 kfree(fs_info->balance_ctl);
2652 kfree(fs_info->delayed_root);
2653 kfree(fs_info->extent_root);
2654 kfree(fs_info->tree_root);
2655 kfree(fs_info->chunk_root);
2656 kfree(fs_info->dev_root);
2657 kfree(fs_info->csum_root);
2658 kfree(fs_info->quota_root);
2659 kfree(fs_info->uuid_root);
2660 kfree(fs_info->free_space_root);
2661 kfree(fs_info->super_copy);
2662 kfree(fs_info->super_for_commit);
2663 kvfree(fs_info);
2664}
2665
2666/* tree mod log functions from ctree.c */
2667u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
2668 struct seq_list *elem);
2669void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
2670 struct seq_list *elem);
2671int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
2672
2673/* root-item.c */
2674int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2675 u64 ref_id, u64 dirid, u64 sequence, const char *name,
2676 int name_len);
2677int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2678 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
2679 int name_len);
2680int btrfs_del_root(struct btrfs_trans_handle *trans,
2681 const struct btrfs_key *key);
2682int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2683 const struct btrfs_key *key,
2684 struct btrfs_root_item *item);
2685int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
2686 struct btrfs_root *root,
2687 struct btrfs_key *key,
2688 struct btrfs_root_item *item);
2689int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
2690 struct btrfs_path *path, struct btrfs_root_item *root_item,
2691 struct btrfs_key *root_key);
2692int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
2693void btrfs_set_root_node(struct btrfs_root_item *item,
2694 struct extent_buffer *node);
2695void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
2696void btrfs_update_root_times(struct btrfs_trans_handle *trans,
2697 struct btrfs_root *root);
2698
2699/* uuid-tree.c */
2700int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
2701 u64 subid);
2702int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
2703 u64 subid);
2704int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
2705 int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
2706 u64));
2707
2708/* dir-item.c */
2709int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
2710 const char *name, int name_len);
2711int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
2712 int name_len, struct btrfs_inode *dir,
2713 struct btrfs_key *location, u8 type, u64 index);
2714struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
2715 struct btrfs_root *root,
2716 struct btrfs_path *path, u64 dir,
2717 const char *name, int name_len,
2718 int mod);
2719struct btrfs_dir_item *
2720btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
2721 struct btrfs_root *root,
2722 struct btrfs_path *path, u64 dir,
2723 u64 objectid, const char *name, int name_len,
2724 int mod);
2725struct btrfs_dir_item *
2726btrfs_search_dir_index_item(struct btrfs_root *root,
2727 struct btrfs_path *path, u64 dirid,
2728 const char *name, int name_len);
2729int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
2730 struct btrfs_root *root,
2731 struct btrfs_path *path,
2732 struct btrfs_dir_item *di);
2733int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
2734 struct btrfs_root *root,
2735 struct btrfs_path *path, u64 objectid,
2736 const char *name, u16 name_len,
2737 const void *data, u16 data_len);
2738struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
2739 struct btrfs_root *root,
2740 struct btrfs_path *path, u64 dir,
2741 const char *name, u16 name_len,
2742 int mod);
2743struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
2744 struct btrfs_path *path,
2745 const char *name,
2746 int name_len);
2747
2748/* orphan.c */
2749int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
2750 struct btrfs_root *root, u64 offset);
2751int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
2752 struct btrfs_root *root, u64 offset);
2753int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
2754
2755/* inode-item.c */
2756int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
2757 struct btrfs_root *root,
2758 const char *name, int name_len,
2759 u64 inode_objectid, u64 ref_objectid, u64 index);
2760int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
2761 struct btrfs_root *root,
2762 const char *name, int name_len,
2763 u64 inode_objectid, u64 ref_objectid, u64 *index);
2764int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
2765 struct btrfs_root *root,
2766 struct btrfs_path *path, u64 objectid);
2767int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
2768 *root, struct btrfs_path *path,
2769 struct btrfs_key *location, int mod);
2770
2771struct btrfs_inode_extref *
2772btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
2773 struct btrfs_root *root,
2774 struct btrfs_path *path,
2775 const char *name, int name_len,
2776 u64 inode_objectid, u64 ref_objectid, int ins_len,
2777 int cow);
2778
2779struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf,
2780 int slot, const char *name,
2781 int name_len);
2782struct btrfs_inode_extref *btrfs_find_name_in_ext_backref(
2783 struct extent_buffer *leaf, int slot, u64 ref_objectid,
2784 const char *name, int name_len);
2785/* file-item.c */
2786struct btrfs_dio_private;
2787int btrfs_del_csums(struct btrfs_trans_handle *trans,
2788 struct btrfs_fs_info *fs_info, u64 bytenr, u64 len);
2789blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
2790 u8 *dst);
2791blk_status_t btrfs_lookup_bio_sums_dio(struct inode *inode, struct bio *bio,
2792 u64 logical_offset);
2793int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
2794 struct btrfs_root *root,
2795 u64 objectid, u64 pos,
2796 u64 disk_offset, u64 disk_num_bytes,
2797 u64 num_bytes, u64 offset, u64 ram_bytes,
2798 u8 compression, u8 encryption, u16 other_encoding);
2799int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
2800 struct btrfs_root *root,
2801 struct btrfs_path *path, u64 objectid,
2802 u64 bytenr, int mod);
2803int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
2804 struct btrfs_root *root,
2805 struct btrfs_ordered_sum *sums);
2806blk_status_t btrfs_csum_one_bio(struct inode *inode, struct bio *bio,
2807 u64 file_start, int contig);
2808int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
2809 struct list_head *list, int search_commit);
2810void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
2811 const struct btrfs_path *path,
2812 struct btrfs_file_extent_item *fi,
2813 const bool new_inline,
2814 struct extent_map *em);
2815
2816/* inode.c */
2817struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
2818 u64 start, u64 len);
2819noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
2820 u64 *orig_start, u64 *orig_block_len,
2821 u64 *ram_bytes);
2822
2823void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2824 struct btrfs_inode *inode);
2825struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
2826int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
2827int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2828 struct btrfs_root *root,
2829 struct btrfs_inode *dir, struct btrfs_inode *inode,
2830 const char *name, int name_len);
2831int btrfs_add_link(struct btrfs_trans_handle *trans,
2832 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
2833 const char *name, int name_len, int add_backref, u64 index);
2834int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
2835int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2836 int front);
2837int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2838 struct btrfs_root *root,
2839 struct inode *inode, u64 new_size,
2840 u32 min_type);
2841
2842int btrfs_start_delalloc_snapshot(struct btrfs_root *root);
2843int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr);
2844int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
2845 unsigned int extra_bits,
2846 struct extent_state **cached_state);
2847int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
2848 struct btrfs_root *new_root,
2849 struct btrfs_root *parent_root,
2850 u64 new_dirid);
2851 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2852 unsigned *bits);
2853void btrfs_clear_delalloc_extent(struct inode *inode,
2854 struct extent_state *state, unsigned *bits);
2855void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2856 struct extent_state *other);
2857void btrfs_split_delalloc_extent(struct inode *inode,
2858 struct extent_state *orig, u64 split);
2859int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2860 unsigned long bio_flags);
2861void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end);
2862vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
2863int btrfs_readpage(struct file *file, struct page *page);
2864void btrfs_evict_inode(struct inode *inode);
2865int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2866struct inode *btrfs_alloc_inode(struct super_block *sb);
2867void btrfs_destroy_inode(struct inode *inode);
2868void btrfs_free_inode(struct inode *inode);
2869int btrfs_drop_inode(struct inode *inode);
2870int __init btrfs_init_cachep(void);
2871void __cold btrfs_destroy_cachep(void);
2872struct inode *btrfs_iget_path(struct super_block *s, struct btrfs_key *location,
2873 struct btrfs_root *root, int *new,
2874 struct btrfs_path *path);
2875struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
2876 struct btrfs_root *root, int *was_new);
2877struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
2878 struct page *page, size_t pg_offset,
2879 u64 start, u64 end, int create);
2880int btrfs_update_inode(struct btrfs_trans_handle *trans,
2881 struct btrfs_root *root,
2882 struct inode *inode);
2883int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2884 struct btrfs_root *root, struct inode *inode);
2885int btrfs_orphan_add(struct btrfs_trans_handle *trans,
2886 struct btrfs_inode *inode);
2887int btrfs_orphan_cleanup(struct btrfs_root *root);
2888int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
2889void btrfs_add_delayed_iput(struct inode *inode);
2890void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
2891int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
2892int btrfs_prealloc_file_range(struct inode *inode, int mode,
2893 u64 start, u64 num_bytes, u64 min_size,
2894 loff_t actual_len, u64 *alloc_hint);
2895int btrfs_prealloc_file_range_trans(struct inode *inode,
2896 struct btrfs_trans_handle *trans, int mode,
2897 u64 start, u64 num_bytes, u64 min_size,
2898 loff_t actual_len, u64 *alloc_hint);
2899int btrfs_run_delalloc_range(struct inode *inode, struct page *locked_page,
2900 u64 start, u64 end, int *page_started, unsigned long *nr_written,
2901 struct writeback_control *wbc);
2902int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end);
2903void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
2904 u64 end, int uptodate);
2905extern const struct dentry_operations btrfs_dentry_operations;
2906
2907/* ioctl.c */
2908long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2909long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
2910int btrfs_ioctl_get_supported_features(void __user *arg);
2911void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
2912int btrfs_is_empty_uuid(u8 *uuid);
2913int btrfs_defrag_file(struct inode *inode, struct file *file,
2914 struct btrfs_ioctl_defrag_range_args *range,
2915 u64 newer_than, unsigned long max_pages);
2916void btrfs_get_block_group_info(struct list_head *groups_list,
2917 struct btrfs_ioctl_space_info *space);
2918void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
2919 struct btrfs_ioctl_balance_args *bargs);
2920
2921/* file.c */
2922int __init btrfs_auto_defrag_init(void);
2923void __cold btrfs_auto_defrag_exit(void);
2924int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
2925 struct btrfs_inode *inode);
2926int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
2927void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
2928int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
2929void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
2930 int skip_pinned);
2931extern const struct file_operations btrfs_file_operations;
2932int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
2933 struct btrfs_root *root, struct inode *inode,
2934 struct btrfs_path *path, u64 start, u64 end,
2935 u64 *drop_end, int drop_cache,
2936 int replace_extent,
2937 u32 extent_item_size,
2938 int *key_inserted);
2939int btrfs_drop_extents(struct btrfs_trans_handle *trans,
2940 struct btrfs_root *root, struct inode *inode, u64 start,
2941 u64 end, int drop_cache);
2942int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
2943 const u64 start, const u64 end,
2944 struct btrfs_clone_extent_info *clone_info,
2945 struct btrfs_trans_handle **trans_out);
2946int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
2947 struct btrfs_inode *inode, u64 start, u64 end);
2948int btrfs_release_file(struct inode *inode, struct file *file);
2949int btrfs_dirty_pages(struct inode *inode, struct page **pages,
2950 size_t num_pages, loff_t pos, size_t write_bytes,
2951 struct extent_state **cached);
2952int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
2953loff_t btrfs_remap_file_range(struct file *file_in, loff_t pos_in,
2954 struct file *file_out, loff_t pos_out,
2955 loff_t len, unsigned int remap_flags);
2956
2957/* tree-defrag.c */
2958int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
2959 struct btrfs_root *root);
2960
2961/* super.c */
2962int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
2963 unsigned long new_flags);
2964int btrfs_sync_fs(struct super_block *sb, int wait);
2965
2966static inline __printf(2, 3) __cold
2967void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
2968{
2969}
2970
2971#ifdef CONFIG_PRINTK
2972__printf(2, 3)
2973__cold
2974void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
2975#else
2976#define btrfs_printk(fs_info, fmt, args...) \
2977 btrfs_no_printk(fs_info, fmt, ##args)
2978#endif
2979
2980#define btrfs_emerg(fs_info, fmt, args...) \
2981 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
2982#define btrfs_alert(fs_info, fmt, args...) \
2983 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
2984#define btrfs_crit(fs_info, fmt, args...) \
2985 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
2986#define btrfs_err(fs_info, fmt, args...) \
2987 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
2988#define btrfs_warn(fs_info, fmt, args...) \
2989 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
2990#define btrfs_notice(fs_info, fmt, args...) \
2991 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
2992#define btrfs_info(fs_info, fmt, args...) \
2993 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
2994
2995/*
2996 * Wrappers that use printk_in_rcu
2997 */
2998#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
2999 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3000#define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3001 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3002#define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3003 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3004#define btrfs_err_in_rcu(fs_info, fmt, args...) \
3005 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3006#define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3007 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3008#define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3009 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3010#define btrfs_info_in_rcu(fs_info, fmt, args...) \
3011 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3012
3013/*
3014 * Wrappers that use a ratelimited printk_in_rcu
3015 */
3016#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3017 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3018#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3019 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3020#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3021 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3022#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3023 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3024#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3025 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3026#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3027 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3028#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3029 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3030
3031/*
3032 * Wrappers that use a ratelimited printk
3033 */
3034#define btrfs_emerg_rl(fs_info, fmt, args...) \
3035 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3036#define btrfs_alert_rl(fs_info, fmt, args...) \
3037 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3038#define btrfs_crit_rl(fs_info, fmt, args...) \
3039 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3040#define btrfs_err_rl(fs_info, fmt, args...) \
3041 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3042#define btrfs_warn_rl(fs_info, fmt, args...) \
3043 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3044#define btrfs_notice_rl(fs_info, fmt, args...) \
3045 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3046#define btrfs_info_rl(fs_info, fmt, args...) \
3047 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3048
3049#if defined(CONFIG_DYNAMIC_DEBUG)
3050#define btrfs_debug(fs_info, fmt, args...) \
3051 _dynamic_func_call_no_desc(fmt, btrfs_printk, \
3052 fs_info, KERN_DEBUG fmt, ##args)
3053#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3054 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \
3055 fs_info, KERN_DEBUG fmt, ##args)
3056#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3057 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \
3058 fs_info, KERN_DEBUG fmt, ##args)
3059#define btrfs_debug_rl(fs_info, fmt, args...) \
3060 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \
3061 fs_info, KERN_DEBUG fmt, ##args)
3062#elif defined(DEBUG)
3063#define btrfs_debug(fs_info, fmt, args...) \
3064 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3065#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3066 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3067#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3068 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3069#define btrfs_debug_rl(fs_info, fmt, args...) \
3070 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3071#else
3072#define btrfs_debug(fs_info, fmt, args...) \
3073 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3074#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3075 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3076#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3077 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3078#define btrfs_debug_rl(fs_info, fmt, args...) \
3079 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3080#endif
3081
3082#define btrfs_printk_in_rcu(fs_info, fmt, args...) \
3083do { \
3084 rcu_read_lock(); \
3085 btrfs_printk(fs_info, fmt, ##args); \
3086 rcu_read_unlock(); \
3087} while (0)
3088
3089#define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \
3090do { \
3091 rcu_read_lock(); \
3092 btrfs_no_printk(fs_info, fmt, ##args); \
3093 rcu_read_unlock(); \
3094} while (0)
3095
3096#define btrfs_printk_ratelimited(fs_info, fmt, args...) \
3097do { \
3098 static DEFINE_RATELIMIT_STATE(_rs, \
3099 DEFAULT_RATELIMIT_INTERVAL, \
3100 DEFAULT_RATELIMIT_BURST); \
3101 if (__ratelimit(&_rs)) \
3102 btrfs_printk(fs_info, fmt, ##args); \
3103} while (0)
3104
3105#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
3106do { \
3107 rcu_read_lock(); \
3108 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
3109 rcu_read_unlock(); \
3110} while (0)
3111
3112__cold
3113static inline void assfail(const char *expr, const char *file, int line)
3114{
3115 if (IS_ENABLED(CONFIG_BTRFS_ASSERT)) {
3116 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3117 BUG();
3118 }
3119}
3120
3121#define ASSERT(expr) \
3122 (likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
3123
3124/*
3125 * Use that for functions that are conditionally exported for sanity tests but
3126 * otherwise static
3127 */
3128#ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3129#define EXPORT_FOR_TESTS static
3130#else
3131#define EXPORT_FOR_TESTS
3132#endif
3133
3134__cold
3135static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3136{
3137 btrfs_err(fs_info,
3138"Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3139}
3140
3141__printf(5, 6)
3142__cold
3143void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3144 unsigned int line, int errno, const char *fmt, ...);
3145
3146const char *btrfs_decode_error(int errno);
3147
3148__cold
3149void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3150 const char *function,
3151 unsigned int line, int errno);
3152
3153/*
3154 * Call btrfs_abort_transaction as early as possible when an error condition is
3155 * detected, that way the exact line number is reported.
3156 */
3157#define btrfs_abort_transaction(trans, errno) \
3158do { \
3159 /* Report first abort since mount */ \
3160 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
3161 &((trans)->fs_info->fs_state))) { \
3162 if ((errno) != -EIO) { \
3163 WARN(1, KERN_DEBUG \
3164 "BTRFS: Transaction aborted (error %d)\n", \
3165 (errno)); \
3166 } else { \
3167 btrfs_debug((trans)->fs_info, \
3168 "Transaction aborted (error %d)", \
3169 (errno)); \
3170 } \
3171 } \
3172 __btrfs_abort_transaction((trans), __func__, \
3173 __LINE__, (errno)); \
3174} while (0)
3175
3176#define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3177do { \
3178 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3179 (errno), fmt, ##args); \
3180} while (0)
3181
3182__printf(5, 6)
3183__cold
3184void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3185 unsigned int line, int errno, const char *fmt, ...);
3186/*
3187 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3188 * will panic(). Otherwise we BUG() here.
3189 */
3190#define btrfs_panic(fs_info, errno, fmt, args...) \
3191do { \
3192 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3193 BUG(); \
3194} while (0)
3195
3196
3197/* compatibility and incompatibility defines */
3198
3199#define btrfs_set_fs_incompat(__fs_info, opt) \
3200 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3201 #opt)
3202
3203static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3204 u64 flag, const char* name)
3205{
3206 struct btrfs_super_block *disk_super;
3207 u64 features;
3208
3209 disk_super = fs_info->super_copy;
3210 features = btrfs_super_incompat_flags(disk_super);
3211 if (!(features & flag)) {
3212 spin_lock(&fs_info->super_lock);
3213 features = btrfs_super_incompat_flags(disk_super);
3214 if (!(features & flag)) {
3215 features |= flag;
3216 btrfs_set_super_incompat_flags(disk_super, features);
3217 btrfs_info(fs_info,
3218 "setting incompat feature flag for %s (0x%llx)",
3219 name, flag);
3220 }
3221 spin_unlock(&fs_info->super_lock);
3222 }
3223}
3224
3225#define btrfs_clear_fs_incompat(__fs_info, opt) \
3226 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3227 #opt)
3228
3229static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3230 u64 flag, const char* name)
3231{
3232 struct btrfs_super_block *disk_super;
3233 u64 features;
3234
3235 disk_super = fs_info->super_copy;
3236 features = btrfs_super_incompat_flags(disk_super);
3237 if (features & flag) {
3238 spin_lock(&fs_info->super_lock);
3239 features = btrfs_super_incompat_flags(disk_super);
3240 if (features & flag) {
3241 features &= ~flag;
3242 btrfs_set_super_incompat_flags(disk_super, features);
3243 btrfs_info(fs_info,
3244 "clearing incompat feature flag for %s (0x%llx)",
3245 name, flag);
3246 }
3247 spin_unlock(&fs_info->super_lock);
3248 }
3249}
3250
3251#define btrfs_fs_incompat(fs_info, opt) \
3252 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3253
3254static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3255{
3256 struct btrfs_super_block *disk_super;
3257 disk_super = fs_info->super_copy;
3258 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3259}
3260
3261#define btrfs_set_fs_compat_ro(__fs_info, opt) \
3262 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3263 #opt)
3264
3265static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3266 u64 flag, const char *name)
3267{
3268 struct btrfs_super_block *disk_super;
3269 u64 features;
3270
3271 disk_super = fs_info->super_copy;
3272 features = btrfs_super_compat_ro_flags(disk_super);
3273 if (!(features & flag)) {
3274 spin_lock(&fs_info->super_lock);
3275 features = btrfs_super_compat_ro_flags(disk_super);
3276 if (!(features & flag)) {
3277 features |= flag;
3278 btrfs_set_super_compat_ro_flags(disk_super, features);
3279 btrfs_info(fs_info,
3280 "setting compat-ro feature flag for %s (0x%llx)",
3281 name, flag);
3282 }
3283 spin_unlock(&fs_info->super_lock);
3284 }
3285}
3286
3287#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3288 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3289 #opt)
3290
3291static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3292 u64 flag, const char *name)
3293{
3294 struct btrfs_super_block *disk_super;
3295 u64 features;
3296
3297 disk_super = fs_info->super_copy;
3298 features = btrfs_super_compat_ro_flags(disk_super);
3299 if (features & flag) {
3300 spin_lock(&fs_info->super_lock);
3301 features = btrfs_super_compat_ro_flags(disk_super);
3302 if (features & flag) {
3303 features &= ~flag;
3304 btrfs_set_super_compat_ro_flags(disk_super, features);
3305 btrfs_info(fs_info,
3306 "clearing compat-ro feature flag for %s (0x%llx)",
3307 name, flag);
3308 }
3309 spin_unlock(&fs_info->super_lock);
3310 }
3311}
3312
3313#define btrfs_fs_compat_ro(fs_info, opt) \
3314 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3315
3316static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3317{
3318 struct btrfs_super_block *disk_super;
3319 disk_super = fs_info->super_copy;
3320 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3321}
3322
3323/* acl.c */
3324#ifdef CONFIG_BTRFS_FS_POSIX_ACL
3325struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
3326int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
3327int btrfs_init_acl(struct btrfs_trans_handle *trans,
3328 struct inode *inode, struct inode *dir);
3329#else
3330#define btrfs_get_acl NULL
3331#define btrfs_set_acl NULL
3332static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3333 struct inode *inode, struct inode *dir)
3334{
3335 return 0;
3336}
3337#endif
3338
3339/* relocation.c */
3340int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3341int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3342 struct btrfs_root *root);
3343int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3344 struct btrfs_root *root);
3345int btrfs_recover_relocation(struct btrfs_root *root);
3346int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
3347int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3348 struct btrfs_root *root, struct extent_buffer *buf,
3349 struct extent_buffer *cow);
3350void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3351 u64 *bytes_to_reserve);
3352int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3353 struct btrfs_pending_snapshot *pending);
3354
3355/* scrub.c */
3356int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3357 u64 end, struct btrfs_scrub_progress *progress,
3358 int readonly, int is_dev_replace);
3359void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3360void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3361int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3362int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3363int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3364 struct btrfs_scrub_progress *progress);
3365static inline void btrfs_init_full_stripe_locks_tree(
3366 struct btrfs_full_stripe_locks_tree *locks_root)
3367{
3368 locks_root->root = RB_ROOT;
3369 mutex_init(&locks_root->lock);
3370}
3371
3372/* dev-replace.c */
3373void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3374void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3375void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3376
3377static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3378{
3379 btrfs_bio_counter_sub(fs_info, 1);
3380}
3381
3382/* reada.c */
3383struct reada_control {
3384 struct btrfs_fs_info *fs_info; /* tree to prefetch */
3385 struct btrfs_key key_start;
3386 struct btrfs_key key_end; /* exclusive */
3387 atomic_t elems;
3388 struct kref refcnt;
3389 wait_queue_head_t wait;
3390};
3391struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3392 struct btrfs_key *start, struct btrfs_key *end);
3393int btrfs_reada_wait(void *handle);
3394void btrfs_reada_detach(void *handle);
3395int btree_readahead_hook(struct extent_buffer *eb, int err);
3396
3397static inline int is_fstree(u64 rootid)
3398{
3399 if (rootid == BTRFS_FS_TREE_OBJECTID ||
3400 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3401 !btrfs_qgroup_level(rootid)))
3402 return 1;
3403 return 0;
3404}
3405
3406static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3407{
3408 return signal_pending(current);
3409}
3410
3411#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
3412
3413/* Sanity test specific functions */
3414#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3415void btrfs_test_inode_set_ops(struct inode *inode);
3416void btrfs_test_destroy_inode(struct inode *inode);
3417
3418static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3419{
3420 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3421}
3422#else
3423static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3424{
3425 return 0;
3426}
3427#endif
3428
3429#endif