Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  4 */
  5
  6#ifndef BTRFS_CTREE_H
  7#define BTRFS_CTREE_H
  8
  9#include <linux/mm.h>
 10#include <linux/sched/signal.h>
 11#include <linux/highmem.h>
 12#include <linux/fs.h>
 13#include <linux/rwsem.h>
 14#include <linux/semaphore.h>
 15#include <linux/completion.h>
 16#include <linux/backing-dev.h>
 17#include <linux/wait.h>
 18#include <linux/slab.h>
 
 19#include <trace/events/btrfs.h>
 20#include <asm/unaligned.h>
 21#include <linux/pagemap.h>
 22#include <linux/btrfs.h>
 23#include <linux/btrfs_tree.h>
 24#include <linux/workqueue.h>
 25#include <linux/security.h>
 26#include <linux/sizes.h>
 27#include <linux/dynamic_debug.h>
 28#include <linux/refcount.h>
 29#include <linux/crc32c.h>
 30#include <linux/iomap.h>
 31#include <linux/fscrypt.h>
 32#include "extent-io-tree.h"
 33#include "extent_io.h"
 34#include "extent_map.h"
 35#include "async-thread.h"
 36#include "block-rsv.h"
 37#include "locking.h"
 38#include "misc.h"
 39#include "fs.h"
 40
 41struct btrfs_trans_handle;
 42struct btrfs_transaction;
 43struct btrfs_pending_snapshot;
 44struct btrfs_delayed_ref_root;
 45struct btrfs_space_info;
 46struct btrfs_block_group;
 
 
 47struct btrfs_ordered_sum;
 48struct btrfs_ref;
 49struct btrfs_bio;
 50struct btrfs_ioctl_encoded_io_args;
 51struct btrfs_device;
 52struct btrfs_fs_devices;
 53struct btrfs_balance_control;
 54struct btrfs_delayed_root;
 55struct reloc_control;
 56
 57/* Read ahead values for struct btrfs_path.reada */
 58enum {
 59	READA_NONE,
 60	READA_BACK,
 61	READA_FORWARD,
 62	/*
 63	 * Similar to READA_FORWARD but unlike it:
 64	 *
 65	 * 1) It will trigger readahead even for leaves that are not close to
 66	 *    each other on disk;
 67	 * 2) It also triggers readahead for nodes;
 68	 * 3) During a search, even when a node or leaf is already in memory, it
 69	 *    will still trigger readahead for other nodes and leaves that follow
 70	 *    it.
 71	 *
 72	 * This is meant to be used only when we know we are iterating over the
 73	 * entire tree or a very large part of it.
 74	 */
 75	READA_FORWARD_ALWAYS,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 76};
 77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78/*
 79 * btrfs_paths remember the path taken from the root down to the leaf.
 80 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 81 * to any other levels that are present.
 82 *
 83 * The slots array records the index of the item or block pointer
 84 * used while walking the tree.
 85 */
 
 86struct btrfs_path {
 87	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 88	int slots[BTRFS_MAX_LEVEL];
 89	/* if there is real range locking, this locks field will change */
 90	u8 locks[BTRFS_MAX_LEVEL];
 91	u8 reada;
 92	/* keep some upper locks as we walk down */
 93	u8 lowest_level;
 94
 95	/*
 96	 * set by btrfs_split_item, tells search_slot to keep all locks
 97	 * and to force calls to keep space in the nodes
 98	 */
 99	unsigned int search_for_split:1;
100	unsigned int keep_locks:1;
101	unsigned int skip_locking:1;
 
102	unsigned int search_commit_root:1;
103	unsigned int need_commit_sem:1;
104	unsigned int skip_release_on_error:1;
105	/*
106	 * Indicate that new item (btrfs_search_slot) is extending already
107	 * existing item and ins_len contains only the data size and not item
108	 * header (ie. sizeof(struct btrfs_item) is not included).
109	 */
110	unsigned int search_for_extension:1;
111	/* Stop search if any locks need to be taken (for read) */
112	unsigned int nowait:1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
113};
114
115/*
116 * The state of btrfs root
 
 
117 */
118enum {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
119	/*
120	 * btrfs_record_root_in_trans is a multi-step process, and it can race
121	 * with the balancing code.   But the race is very small, and only the
122	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
123	 * is used to tell us when more checks are required
 
 
 
124	 */
125	BTRFS_ROOT_IN_TRANS_SETUP,
126
127	/*
128	 * Set if tree blocks of this root can be shared by other roots.
129	 * Only subvolume trees and their reloc trees have this bit set.
130	 * Conflicts with TRACK_DIRTY bit.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131	 *
132	 * This affects two things:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133	 *
134	 * - How balance works
135	 *   For shareable roots, we need to use reloc tree and do path
136	 *   replacement for balance, and need various pre/post hooks for
137	 *   snapshot creation to handle them.
138	 *
139	 *   While for non-shareable trees, we just simply do a tree search
140	 *   with COW.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
141	 *
142	 * - How dirty roots are tracked
143	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
144	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
145	 *   don't need to set this manually.
146	 */
147	BTRFS_ROOT_SHAREABLE,
148	BTRFS_ROOT_TRACK_DIRTY,
149	BTRFS_ROOT_IN_RADIX,
150	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
151	BTRFS_ROOT_DEFRAG_RUNNING,
152	BTRFS_ROOT_FORCE_COW,
153	BTRFS_ROOT_MULTI_LOG_TASKS,
154	BTRFS_ROOT_DIRTY,
155	BTRFS_ROOT_DELETING,
156
157	/*
158	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
 
 
 
 
159	 *
160	 * Set for the subvolume tree owning the reloc tree.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
161	 */
162	BTRFS_ROOT_DEAD_RELOC_TREE,
163	/* Mark dead root stored on device whose cleanup needs to be resumed */
164	BTRFS_ROOT_DEAD_TREE,
165	/* The root has a log tree. Used for subvolume roots and the tree root. */
166	BTRFS_ROOT_HAS_LOG_TREE,
167	/* Qgroup flushing is in progress */
168	BTRFS_ROOT_QGROUP_FLUSHING,
169	/* We started the orphan cleanup for this root. */
170	BTRFS_ROOT_ORPHAN_CLEANUP,
171	/* This root has a drop operation that was started previously. */
172	BTRFS_ROOT_UNFINISHED_DROP,
173	/* This reloc root needs to have its buffers lockdep class reset. */
174	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
 
 
 
 
 
 
175};
176
177/*
178 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
179 * code. For detail check comment in fs/btrfs/qgroup.c.
180 */
181struct btrfs_qgroup_swapped_blocks {
182	spinlock_t lock;
183	/* RM_EMPTY_ROOT() of above blocks[] */
184	bool swapped;
185	struct rb_root blocks[BTRFS_MAX_LEVEL];
186};
 
 
 
 
 
 
 
 
 
 
187
188/*
189 * in ram representation of the tree.  extent_root is used for all allocations
190 * and for the extent tree extent_root root.
191 */
192struct btrfs_root {
193	struct rb_node rb_node;
194
195	struct extent_buffer *node;
196
197	struct extent_buffer *commit_root;
198	struct btrfs_root *log_root;
199	struct btrfs_root *reloc_root;
200
201	unsigned long state;
202	struct btrfs_root_item root_item;
203	struct btrfs_key root_key;
204	struct btrfs_fs_info *fs_info;
205	struct extent_io_tree dirty_log_pages;
206
207	struct mutex objectid_mutex;
208
209	spinlock_t accounting_lock;
210	struct btrfs_block_rsv *block_rsv;
211
 
 
 
 
 
 
 
 
 
212	struct mutex log_mutex;
213	wait_queue_head_t log_writer_wait;
214	wait_queue_head_t log_commit_wait[2];
215	struct list_head log_ctxs[2];
216	/* Used only for log trees of subvolumes, not for the log root tree */
217	atomic_t log_writers;
218	atomic_t log_commit[2];
219	/* Used only for log trees of subvolumes, not for the log root tree */
220	atomic_t log_batch;
221	int log_transid;
222	/* No matter the commit succeeds or not*/
223	int log_transid_committed;
224	/* Just be updated when the commit succeeds. */
225	int last_log_commit;
226	pid_t log_start_pid;
227
 
228	u64 last_trans;
229
230	u32 type;
231
232	u64 free_objectid;
233
 
 
 
 
 
 
234	struct btrfs_key defrag_progress;
235	struct btrfs_key defrag_max;
 
236
237	/* The dirty list is only used by non-shareable roots */
238	struct list_head dirty_list;
239
240	struct list_head root_list;
241
242	spinlock_t log_extents_lock[2];
243	struct list_head logged_list[2];
244
 
 
 
 
 
245	spinlock_t inode_lock;
246	/* red-black tree that keeps track of in-memory inodes */
247	struct rb_root inode_tree;
248
249	/*
250	 * radix tree that keeps track of delayed nodes of every inode,
251	 * protected by inode_lock
252	 */
253	struct radix_tree_root delayed_nodes_tree;
254	/*
255	 * right now this just gets used so that a root has its own devid
256	 * for stat.  It may be used for more later
257	 */
258	dev_t anon_dev;
259
260	spinlock_t root_item_lock;
261	refcount_t refs;
262
263	struct mutex delalloc_mutex;
264	spinlock_t delalloc_lock;
265	/*
266	 * all of the inodes that have delalloc bytes.  It is possible for
267	 * this list to be empty even when there is still dirty data=ordered
268	 * extents waiting to finish IO.
269	 */
270	struct list_head delalloc_inodes;
271	struct list_head delalloc_root;
272	u64 nr_delalloc_inodes;
273
274	struct mutex ordered_extent_mutex;
275	/*
276	 * this is used by the balancing code to wait for all the pending
277	 * ordered extents
278	 */
279	spinlock_t ordered_extent_lock;
280
281	/*
282	 * all of the data=ordered extents pending writeback
283	 * these can span multiple transactions and basically include
284	 * every dirty data page that isn't from nodatacow
285	 */
286	struct list_head ordered_extents;
287	struct list_head ordered_root;
288	u64 nr_ordered_extents;
289
290	/*
291	 * Not empty if this subvolume root has gone through tree block swap
292	 * (relocation)
293	 *
294	 * Will be used by reloc_control::dirty_subvol_roots.
295	 */
296	struct list_head reloc_dirty_list;
297
298	/*
299	 * Number of currently running SEND ioctls to prevent
300	 * manipulation with the read-only status via SUBVOL_SETFLAGS
301	 */
302	int send_in_progress;
303	/*
304	 * Number of currently running deduplication operations that have a
305	 * destination inode belonging to this root. Protected by the lock
306	 * root_item_lock.
307	 */
308	int dedupe_in_progress;
309	/* For exclusion of snapshot creation and nocow writes */
310	struct btrfs_drew_lock snapshot_lock;
311
312	atomic_t snapshot_force_cow;
313
314	/* For qgroup metadata reserved space */
315	spinlock_t qgroup_meta_rsv_lock;
316	u64 qgroup_meta_rsv_pertrans;
317	u64 qgroup_meta_rsv_prealloc;
318	wait_queue_head_t qgroup_flush_wait;
319
320	/* Number of active swapfiles */
321	atomic_t nr_swapfiles;
 
 
 
 
 
322
323	/* Record pairs of swapped blocks for qgroup */
324	struct btrfs_qgroup_swapped_blocks swapped_blocks;
 
 
325
326	/* Used only by log trees, when logging csum items */
327	struct extent_io_tree log_csum_range;
 
 
328
329#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
330	u64 alloc_bytenr;
331#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
332
333#ifdef CONFIG_BTRFS_DEBUG
334	struct list_head leak_list;
 
 
 
 
 
 
 
 
 
335#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
336};
337
338static inline bool btrfs_root_readonly(const struct btrfs_root *root)
 
 
 
339{
340	/* Byte-swap the constant at compile time, root_item::flags is LE */
341	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
342}
343
344static inline bool btrfs_root_dead(const struct btrfs_root *root)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
345{
346	/* Byte-swap the constant at compile time, root_item::flags is LE */
347	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
348}
349
350static inline u64 btrfs_root_id(const struct btrfs_root *root)
351{
352	return root->root_key.objectid;
353}
354
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
355/*
356 * Structure that conveys information about an extent that is going to replace
357 * all the extents in a file range.
358 */
359struct btrfs_replace_extent_info {
360	u64 disk_offset;
361	u64 disk_len;
362	u64 data_offset;
363	u64 data_len;
364	u64 file_offset;
365	/* Pointer to a file extent item of type regular or prealloc. */
366	char *extent_buf;
367	/*
368	 * Set to true when attempting to replace a file range with a new extent
369	 * described by this structure, set to false when attempting to clone an
370	 * existing extent into a file range.
371	 */
372	bool is_new_extent;
373	/* Indicate if we should update the inode's mtime and ctime. */
374	bool update_times;
375	/* Meaningful only if is_new_extent is true. */
376	int qgroup_reserved;
377	/*
378	 * Meaningful only if is_new_extent is true.
379	 * Used to track how many extent items we have already inserted in a
380	 * subvolume tree that refer to the extent described by this structure,
381	 * so that we know when to create a new delayed ref or update an existing
382	 * one.
383	 */
384	int insertions;
385};
386
387/* Arguments for btrfs_drop_extents() */
388struct btrfs_drop_extents_args {
389	/* Input parameters */
 
 
 
390
391	/*
392	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
393	 * If 'replace_extent' is true, this must not be NULL. Also the path
394	 * is always released except if 'replace_extent' is true and
395	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
396	 * the path is kept locked.
397	 */
398	struct btrfs_path *path;
399	/* Start offset of the range to drop extents from */
400	u64 start;
401	/* End (exclusive, last byte + 1) of the range to drop extents from */
402	u64 end;
403	/* If true drop all the extent maps in the range */
404	bool drop_cache;
405	/*
406	 * If true it means we want to insert a new extent after dropping all
407	 * the extents in the range. If this is true, the 'extent_item_size'
408	 * parameter must be set as well and the 'extent_inserted' field will
409	 * be set to true by btrfs_drop_extents() if it could insert the new
410	 * extent.
411	 * Note: when this is set to true the path must not be NULL.
412	 */
413	bool replace_extent;
414	/*
415	 * Used if 'replace_extent' is true. Size of the file extent item to
416	 * insert after dropping all existing extents in the range
417	 */
418	u32 extent_item_size;
419
420	/* Output parameters */
 
 
 
 
 
421
422	/*
423	 * Set to the minimum between the input parameter 'end' and the end
424	 * (exclusive, last byte + 1) of the last dropped extent. This is always
425	 * set even if btrfs_drop_extents() returns an error.
426	 */
427	u64 drop_end;
428	/*
429	 * The number of allocated bytes found in the range. This can be smaller
430	 * than the range's length when there are holes in the range.
431	 */
432	u64 bytes_found;
433	/*
434	 * Only set if 'replace_extent' is true. Set to true if we were able
435	 * to insert a replacement extent after dropping all extents in the
436	 * range, otherwise set to false by btrfs_drop_extents().
437	 * Also, if btrfs_drop_extents() has set this to true it means it
438	 * returned with the path locked, otherwise if it has set this to
439	 * false it has returned with the path released.
440	 */
441	bool extent_inserted;
442};
443
444struct btrfs_file_private {
445	void *filldir_buf;
446	struct extent_state *llseek_cached_state;
447};
 
 
 
448
449static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
 
450{
451	return info->nodesize - sizeof(struct btrfs_header);
 
 
452}
453
454static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
 
455{
456	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
 
 
457}
458
459static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
 
460{
461	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
 
 
462}
463
464static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
 
 
465{
466	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
 
 
467}
468
469#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
470				((bytes) >> (fs_info)->sectorsize_bits)
471
472static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
473{
474	return crc32c(crc, address, length);
475}
476
477static inline void btrfs_crc32c_final(u32 crc, u8 *result)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
478{
479	put_unaligned_le32(~crc, result);
480}
481
482static inline u64 btrfs_name_hash(const char *name, int len)
 
 
483{
484       return crc32c((u32)~1, name, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
485}
486
487/*
488 * Figure the key offset of an extended inode ref
 
 
489 */
490static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
491                                   int len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
492{
493       return (u64) crc32c(parent_objectid, name, len);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
494}
495
496static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
497{
498	return mapping_gfp_constraint(mapping, ~__GFP_FS);
499}
500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
502				   u64 start, u64 end);
503int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
504			 u64 num_bytes, u64 *actual_bytes);
 
 
505int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
506
 
 
 
 
 
 
 
 
 
 
 
 
507/* ctree.c */
508int __init btrfs_ctree_init(void);
509void __cold btrfs_ctree_exit(void);
510int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
511		     int *slot);
512int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
513int btrfs_previous_item(struct btrfs_root *root,
514			struct btrfs_path *path, u64 min_objectid,
515			int type);
516int btrfs_previous_extent_item(struct btrfs_root *root,
517			struct btrfs_path *path, u64 min_objectid);
518void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
519			     struct btrfs_path *path,
520			     const struct btrfs_key *new_key);
521struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
 
522int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
523			struct btrfs_key *key, int lowest_level,
524			u64 min_trans);
525int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
526			 struct btrfs_path *path,
527			 u64 min_trans);
528struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
529					   int slot);
530
 
 
 
 
 
 
 
 
 
 
 
 
 
531int btrfs_cow_block(struct btrfs_trans_handle *trans,
532		    struct btrfs_root *root, struct extent_buffer *buf,
533		    struct extent_buffer *parent, int parent_slot,
534		    struct extent_buffer **cow_ret,
535		    enum btrfs_lock_nesting nest);
536int btrfs_copy_root(struct btrfs_trans_handle *trans,
537		      struct btrfs_root *root,
538		      struct extent_buffer *buf,
539		      struct extent_buffer **cow_ret, u64 new_root_objectid);
540int btrfs_block_can_be_shared(struct btrfs_root *root,
541			      struct extent_buffer *buf);
542void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
543void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
 
 
544int btrfs_split_item(struct btrfs_trans_handle *trans,
545		     struct btrfs_root *root,
546		     struct btrfs_path *path,
547		     const struct btrfs_key *new_key,
548		     unsigned long split_offset);
549int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
550			 struct btrfs_root *root,
551			 struct btrfs_path *path,
552			 const struct btrfs_key *new_key);
553int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
554		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
555int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
556		      const struct btrfs_key *key, struct btrfs_path *p,
557		      int ins_len, int cow);
558int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
559			  struct btrfs_path *p, u64 time_seq);
560int btrfs_search_slot_for_read(struct btrfs_root *root,
561			       const struct btrfs_key *key,
562			       struct btrfs_path *p, int find_higher,
563			       int return_any);
564int btrfs_realloc_node(struct btrfs_trans_handle *trans,
565		       struct btrfs_root *root, struct extent_buffer *parent,
566		       int start_slot, u64 *last_ret,
567		       struct btrfs_key *progress);
568void btrfs_release_path(struct btrfs_path *p);
569struct btrfs_path *btrfs_alloc_path(void);
570void btrfs_free_path(struct btrfs_path *p);
 
 
 
 
571
572int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
573		   struct btrfs_path *path, int slot, int nr);
574static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
575				 struct btrfs_root *root,
576				 struct btrfs_path *path)
577{
578	return btrfs_del_items(trans, root, path, path->slots[0], 1);
579}
580
581/*
582 * Describes a batch of items to insert in a btree. This is used by
583 * btrfs_insert_empty_items().
584 */
585struct btrfs_item_batch {
586	/*
587	 * Pointer to an array containing the keys of the items to insert (in
588	 * sorted order).
589	 */
590	const struct btrfs_key *keys;
591	/* Pointer to an array containing the data size for each item to insert. */
592	const u32 *data_sizes;
593	/*
594	 * The sum of data sizes for all items. The caller can compute this while
595	 * setting up the data_sizes array, so it ends up being more efficient
596	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
597	 * doing it, as it would avoid an extra loop over a potentially large
598	 * array, and in the case of setup_item_for_insert(), we would be doing
599	 * it while holding a write lock on a leaf and often on upper level nodes
600	 * too, unnecessarily increasing the size of a critical section.
601	 */
602	u32 total_data_size;
603	/* Size of the keys and data_sizes arrays (number of items in the batch). */
604	int nr;
605};
606
607void btrfs_setup_item_for_insert(struct btrfs_root *root,
608				 struct btrfs_path *path,
609				 const struct btrfs_key *key,
610				 u32 data_size);
611int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
612		      const struct btrfs_key *key, void *data, u32 data_size);
613int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
614			     struct btrfs_root *root,
615			     struct btrfs_path *path,
616			     const struct btrfs_item_batch *batch);
617
618static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
619					  struct btrfs_root *root,
620					  struct btrfs_path *path,
621					  const struct btrfs_key *key,
622					  u32 data_size)
623{
624	struct btrfs_item_batch batch;
625
626	batch.keys = key;
627	batch.data_sizes = &data_size;
628	batch.total_data_size = data_size;
629	batch.nr = 1;
630
631	return btrfs_insert_empty_items(trans, root, path, &batch);
632}
633
 
634int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
635int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
636			u64 time_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
637
638int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
639			   struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640
641int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
642			      struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
643
644/*
645 * Search in @root for a given @key, and store the slot found in @found_key.
646 *
647 * @root:	The root node of the tree.
648 * @key:	The key we are looking for.
649 * @found_key:	Will hold the found item.
650 * @path:	Holds the current slot/leaf.
651 * @iter_ret:	Contains the value returned from btrfs_search_slot or
652 * 		btrfs_get_next_valid_item, whichever was executed last.
653 *
654 * The @iter_ret is an output variable that will contain the return value of
655 * btrfs_search_slot, if it encountered an error, or the value returned from
656 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
657 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
658 *
659 * It's recommended to use a separate variable for iter_ret and then use it to
660 * set the function return value so there's no confusion of the 0/1/errno
661 * values stemming from btrfs_search_slot.
662 */
663#define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
664	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
665		(iter_ret) >= 0 &&						\
666		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
667		(path)->slots[0]++						\
668	)
 
 
 
 
 
 
 
 
669
670int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671
672/*
673 * Search the tree again to find a leaf with greater keys.
674 *
675 * Returns 0 if it found something or 1 if there are no greater leaves.
676 * Returns < 0 on error.
677 */
678static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
679{
680	return btrfs_next_old_leaf(root, path, 0);
 
 
681}
682
683static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684{
685	return btrfs_next_old_item(root, p, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
686}
687int btrfs_leaf_free_space(struct extent_buffer *leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688
689static inline int is_fstree(u64 rootid)
690{
691	if (rootid == BTRFS_FS_TREE_OBJECTID ||
692	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
693	      !btrfs_qgroup_level(rootid)))
694		return 1;
695	return 0;
696}
697
698static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
699{
700	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
701}
702
703int btrfs_super_csum_size(const struct btrfs_super_block *s);
704const char *btrfs_super_csum_name(u16 csum_type);
705const char *btrfs_super_csum_driver(u16 csum_type);
706size_t __attribute_const__ btrfs_get_num_csums(void);
707
708/*
709 * We use page status Private2 to indicate there is an ordered extent with
710 * unfinished IO.
711 *
712 * Rename the Private2 accessors to Ordered, to improve readability.
713 */
714#define PageOrdered(page)		PagePrivate2(page)
715#define SetPageOrdered(page)		SetPagePrivate2(page)
716#define ClearPageOrdered(page)		ClearPagePrivate2(page)
717#define folio_test_ordered(folio)	folio_test_private_2(folio)
718#define folio_set_ordered(folio)	folio_set_private_2(folio)
719#define folio_clear_ordered(folio)	folio_clear_private_2(folio)
720
 
 
 
 
 
 
 
 
 
721#endif
v4.10.11
 
   1/*
   2 * Copyright (C) 2007 Oracle.  All rights reserved.
   3 *
   4 * This program is free software; you can redistribute it and/or
   5 * modify it under the terms of the GNU General Public
   6 * License v2 as published by the Free Software Foundation.
   7 *
   8 * This program is distributed in the hope that it will be useful,
   9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  11 * General Public License for more details.
  12 *
  13 * You should have received a copy of the GNU General Public
  14 * License along with this program; if not, write to the
  15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
  16 * Boston, MA 021110-1307, USA.
  17 */
  18
  19#ifndef __BTRFS_CTREE__
  20#define __BTRFS_CTREE__
  21
  22#include <linux/mm.h>
 
  23#include <linux/highmem.h>
  24#include <linux/fs.h>
  25#include <linux/rwsem.h>
  26#include <linux/semaphore.h>
  27#include <linux/completion.h>
  28#include <linux/backing-dev.h>
  29#include <linux/wait.h>
  30#include <linux/slab.h>
  31#include <linux/kobject.h>
  32#include <trace/events/btrfs.h>
  33#include <asm/kmap_types.h>
  34#include <linux/pagemap.h>
  35#include <linux/btrfs.h>
  36#include <linux/btrfs_tree.h>
  37#include <linux/workqueue.h>
  38#include <linux/security.h>
  39#include <linux/sizes.h>
  40#include <linux/dynamic_debug.h>
 
 
 
 
 
  41#include "extent_io.h"
  42#include "extent_map.h"
  43#include "async-thread.h"
 
 
 
 
  44
  45struct btrfs_trans_handle;
  46struct btrfs_transaction;
  47struct btrfs_pending_snapshot;
  48extern struct kmem_cache *btrfs_trans_handle_cachep;
  49extern struct kmem_cache *btrfs_transaction_cachep;
  50extern struct kmem_cache *btrfs_bit_radix_cachep;
  51extern struct kmem_cache *btrfs_path_cachep;
  52extern struct kmem_cache *btrfs_free_space_cachep;
  53struct btrfs_ordered_sum;
 
 
 
 
 
 
 
 
  54
  55#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
  56#define STATIC noinline
  57#else
  58#define STATIC static noinline
  59#endif
  60
  61#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
  62
  63#define BTRFS_MAX_MIRRORS 3
  64
  65#define BTRFS_MAX_LEVEL 8
  66
  67#define BTRFS_COMPAT_EXTENT_TREE_V0
  68
  69/*
  70 * the max metadata block size.  This limit is somewhat artificial,
  71 * but the memmove costs go through the roof for larger blocks.
  72 */
  73#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
  74
  75/*
  76 * we can actually store much bigger names, but lets not confuse the rest
  77 * of linux
  78 */
  79#define BTRFS_NAME_LEN 255
  80
  81/*
  82 * Theoretical limit is larger, but we keep this down to a sane
  83 * value. That should limit greatly the possibility of collisions on
  84 * inode ref items.
  85 */
  86#define BTRFS_LINK_MAX 65535U
  87
  88static const int btrfs_csum_sizes[] = { 4 };
  89
  90/* four bytes for CRC32 */
  91#define BTRFS_EMPTY_DIR_SIZE 0
  92
  93/* ioprio of readahead is set to idle */
  94#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
  95
  96#define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
  97
  98#define BTRFS_MAX_EXTENT_SIZE SZ_128M
  99
 100struct btrfs_mapping_tree {
 101	struct extent_map_tree map_tree;
 102};
 103
 104static inline unsigned long btrfs_chunk_item_size(int num_stripes)
 105{
 106	BUG_ON(num_stripes == 0);
 107	return sizeof(struct btrfs_chunk) +
 108		sizeof(struct btrfs_stripe) * (num_stripes - 1);
 109}
 110
 111/*
 112 * File system states
 113 */
 114#define BTRFS_FS_STATE_ERROR		0
 115#define BTRFS_FS_STATE_REMOUNTING	1
 116#define BTRFS_FS_STATE_TRANS_ABORTED	2
 117#define BTRFS_FS_STATE_DEV_REPLACING	3
 118#define BTRFS_FS_STATE_DUMMY_FS_INFO	4
 119
 120#define BTRFS_BACKREF_REV_MAX		256
 121#define BTRFS_BACKREF_REV_SHIFT		56
 122#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
 123					 BTRFS_BACKREF_REV_SHIFT)
 124
 125#define BTRFS_OLD_BACKREF_REV		0
 126#define BTRFS_MIXED_BACKREF_REV		1
 127
 128/*
 129 * every tree block (leaf or node) starts with this header.
 130 */
 131struct btrfs_header {
 132	/* these first four must match the super block */
 133	u8 csum[BTRFS_CSUM_SIZE];
 134	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
 135	__le64 bytenr; /* which block this node is supposed to live in */
 136	__le64 flags;
 137
 138	/* allowed to be different from the super from here on down */
 139	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 140	__le64 generation;
 141	__le64 owner;
 142	__le32 nritems;
 143	u8 level;
 144} __attribute__ ((__packed__));
 145
 146/*
 147 * this is a very generous portion of the super block, giving us
 148 * room to translate 14 chunks with 3 stripes each.
 149 */
 150#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
 151
 152/*
 153 * just in case we somehow lose the roots and are not able to mount,
 154 * we store an array of the roots from previous transactions
 155 * in the super.
 156 */
 157#define BTRFS_NUM_BACKUP_ROOTS 4
 158struct btrfs_root_backup {
 159	__le64 tree_root;
 160	__le64 tree_root_gen;
 161
 162	__le64 chunk_root;
 163	__le64 chunk_root_gen;
 164
 165	__le64 extent_root;
 166	__le64 extent_root_gen;
 167
 168	__le64 fs_root;
 169	__le64 fs_root_gen;
 170
 171	__le64 dev_root;
 172	__le64 dev_root_gen;
 173
 174	__le64 csum_root;
 175	__le64 csum_root_gen;
 176
 177	__le64 total_bytes;
 178	__le64 bytes_used;
 179	__le64 num_devices;
 180	/* future */
 181	__le64 unused_64[4];
 182
 183	u8 tree_root_level;
 184	u8 chunk_root_level;
 185	u8 extent_root_level;
 186	u8 fs_root_level;
 187	u8 dev_root_level;
 188	u8 csum_root_level;
 189	/* future and to align */
 190	u8 unused_8[10];
 191} __attribute__ ((__packed__));
 192
 193/*
 194 * the super block basically lists the main trees of the FS
 195 * it currently lacks any block count etc etc
 196 */
 197struct btrfs_super_block {
 198	u8 csum[BTRFS_CSUM_SIZE];
 199	/* the first 4 fields must match struct btrfs_header */
 200	u8 fsid[BTRFS_FSID_SIZE];    /* FS specific uuid */
 201	__le64 bytenr; /* this block number */
 202	__le64 flags;
 203
 204	/* allowed to be different from the btrfs_header from here own down */
 205	__le64 magic;
 206	__le64 generation;
 207	__le64 root;
 208	__le64 chunk_root;
 209	__le64 log_root;
 210
 211	/* this will help find the new super based on the log root */
 212	__le64 log_root_transid;
 213	__le64 total_bytes;
 214	__le64 bytes_used;
 215	__le64 root_dir_objectid;
 216	__le64 num_devices;
 217	__le32 sectorsize;
 218	__le32 nodesize;
 219	__le32 __unused_leafsize;
 220	__le32 stripesize;
 221	__le32 sys_chunk_array_size;
 222	__le64 chunk_root_generation;
 223	__le64 compat_flags;
 224	__le64 compat_ro_flags;
 225	__le64 incompat_flags;
 226	__le16 csum_type;
 227	u8 root_level;
 228	u8 chunk_root_level;
 229	u8 log_root_level;
 230	struct btrfs_dev_item dev_item;
 231
 232	char label[BTRFS_LABEL_SIZE];
 233
 234	__le64 cache_generation;
 235	__le64 uuid_tree_generation;
 236
 237	/* future expansion */
 238	__le64 reserved[30];
 239	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
 240	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
 241} __attribute__ ((__packed__));
 242
 243/*
 244 * Compat flags that we support.  If any incompat flags are set other than the
 245 * ones specified below then we will fail to mount
 246 */
 247#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
 248#define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
 249#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
 250
 251#define BTRFS_FEATURE_COMPAT_RO_SUPP			\
 252	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
 253	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
 254
 255#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
 256#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
 257
 258#define BTRFS_FEATURE_INCOMPAT_SUPP			\
 259	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
 260	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
 261	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
 262	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
 263	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
 264	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
 265	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
 266	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
 267	 BTRFS_FEATURE_INCOMPAT_NO_HOLES)
 268
 269#define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
 270	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
 271#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
 272
 273/*
 274 * A leaf is full of items. offset and size tell us where to find
 275 * the item in the leaf (relative to the start of the data area)
 276 */
 277struct btrfs_item {
 278	struct btrfs_disk_key key;
 279	__le32 offset;
 280	__le32 size;
 281} __attribute__ ((__packed__));
 282
 283/*
 284 * leaves have an item area and a data area:
 285 * [item0, item1....itemN] [free space] [dataN...data1, data0]
 286 *
 287 * The data is separate from the items to get the keys closer together
 288 * during searches.
 289 */
 290struct btrfs_leaf {
 291	struct btrfs_header header;
 292	struct btrfs_item items[];
 293} __attribute__ ((__packed__));
 294
 295/*
 296 * all non-leaf blocks are nodes, they hold only keys and pointers to
 297 * other blocks
 298 */
 299struct btrfs_key_ptr {
 300	struct btrfs_disk_key key;
 301	__le64 blockptr;
 302	__le64 generation;
 303} __attribute__ ((__packed__));
 304
 305struct btrfs_node {
 306	struct btrfs_header header;
 307	struct btrfs_key_ptr ptrs[];
 308} __attribute__ ((__packed__));
 309
 310/*
 311 * btrfs_paths remember the path taken from the root down to the leaf.
 312 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 313 * to any other levels that are present.
 314 *
 315 * The slots array records the index of the item or block pointer
 316 * used while walking the tree.
 317 */
 318enum { READA_NONE = 0, READA_BACK, READA_FORWARD };
 319struct btrfs_path {
 320	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 321	int slots[BTRFS_MAX_LEVEL];
 322	/* if there is real range locking, this locks field will change */
 323	u8 locks[BTRFS_MAX_LEVEL];
 324	u8 reada;
 325	/* keep some upper locks as we walk down */
 326	u8 lowest_level;
 327
 328	/*
 329	 * set by btrfs_split_item, tells search_slot to keep all locks
 330	 * and to force calls to keep space in the nodes
 331	 */
 332	unsigned int search_for_split:1;
 333	unsigned int keep_locks:1;
 334	unsigned int skip_locking:1;
 335	unsigned int leave_spinning:1;
 336	unsigned int search_commit_root:1;
 337	unsigned int need_commit_sem:1;
 338	unsigned int skip_release_on_error:1;
 339};
 340#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
 341					sizeof(struct btrfs_item))
 342struct btrfs_dev_replace {
 343	u64 replace_state;	/* see #define above */
 344	u64 time_started;	/* seconds since 1-Jan-1970 */
 345	u64 time_stopped;	/* seconds since 1-Jan-1970 */
 346	atomic64_t num_write_errors;
 347	atomic64_t num_uncorrectable_read_errors;
 348
 349	u64 cursor_left;
 350	u64 committed_cursor_left;
 351	u64 cursor_left_last_write_of_item;
 352	u64 cursor_right;
 353
 354	u64 cont_reading_from_srcdev_mode;	/* see #define above */
 355
 356	int is_valid;
 357	int item_needs_writeback;
 358	struct btrfs_device *srcdev;
 359	struct btrfs_device *tgtdev;
 360
 361	pid_t lock_owner;
 362	atomic_t nesting_level;
 363	struct mutex lock_finishing_cancel_unmount;
 364	rwlock_t lock;
 365	atomic_t read_locks;
 366	atomic_t blocking_readers;
 367	wait_queue_head_t read_lock_wq;
 368
 369	struct btrfs_scrub_progress scrub_progress;
 370};
 371
 372/* For raid type sysfs entries */
 373struct raid_kobject {
 374	int raid_type;
 375	struct kobject kobj;
 376};
 377
 378struct btrfs_space_info {
 379	spinlock_t lock;
 380
 381	u64 total_bytes;	/* total bytes in the space,
 382				   this doesn't take mirrors into account */
 383	u64 bytes_used;		/* total bytes used,
 384				   this doesn't take mirrors into account */
 385	u64 bytes_pinned;	/* total bytes pinned, will be freed when the
 386				   transaction finishes */
 387	u64 bytes_reserved;	/* total bytes the allocator has reserved for
 388				   current allocations */
 389	u64 bytes_may_use;	/* number of bytes that may be used for
 390				   delalloc/allocations */
 391	u64 bytes_readonly;	/* total bytes that are read only */
 392
 393	u64 max_extent_size;	/* This will hold the maximum extent size of
 394				   the space info if we had an ENOSPC in the
 395				   allocator. */
 396
 397	unsigned int full:1;	/* indicates that we cannot allocate any more
 398				   chunks for this space */
 399	unsigned int chunk_alloc:1;	/* set if we are allocating a chunk */
 400
 401	unsigned int flush:1;		/* set if we are trying to make space */
 402
 403	unsigned int force_alloc;	/* set if we need to force a chunk
 404					   alloc for this space */
 405
 406	u64 disk_used;		/* total bytes used on disk */
 407	u64 disk_total;		/* total bytes on disk, takes mirrors into
 408				   account */
 409
 410	u64 flags;
 411
 412	/*
 413	 * bytes_pinned is kept in line with what is actually pinned, as in
 414	 * we've called update_block_group and dropped the bytes_used counter
 415	 * and increased the bytes_pinned counter.  However this means that
 416	 * bytes_pinned does not reflect the bytes that will be pinned once the
 417	 * delayed refs are flushed, so this counter is inc'ed every time we
 418	 * call btrfs_free_extent so it is a realtime count of what will be
 419	 * freed once the transaction is committed.  It will be zeroed every
 420	 * time the transaction commits.
 421	 */
 422	struct percpu_counter total_bytes_pinned;
 423
 424	struct list_head list;
 425	/* Protected by the spinlock 'lock'. */
 426	struct list_head ro_bgs;
 427	struct list_head priority_tickets;
 428	struct list_head tickets;
 429	/*
 430	 * tickets_id just indicates the next ticket will be handled, so note
 431	 * it's not stored per ticket.
 432	 */
 433	u64 tickets_id;
 434
 435	struct rw_semaphore groups_sem;
 436	/* for block groups in our same type */
 437	struct list_head block_groups[BTRFS_NR_RAID_TYPES];
 438	wait_queue_head_t wait;
 439
 440	struct kobject kobj;
 441	struct kobject *block_group_kobjs[BTRFS_NR_RAID_TYPES];
 442};
 443
 444#define	BTRFS_BLOCK_RSV_GLOBAL		1
 445#define	BTRFS_BLOCK_RSV_DELALLOC	2
 446#define	BTRFS_BLOCK_RSV_TRANS		3
 447#define	BTRFS_BLOCK_RSV_CHUNK		4
 448#define	BTRFS_BLOCK_RSV_DELOPS		5
 449#define	BTRFS_BLOCK_RSV_EMPTY		6
 450#define	BTRFS_BLOCK_RSV_TEMP		7
 451
 452struct btrfs_block_rsv {
 453	u64 size;
 454	u64 reserved;
 455	struct btrfs_space_info *space_info;
 456	spinlock_t lock;
 457	unsigned short full;
 458	unsigned short type;
 459	unsigned short failfast;
 460};
 461
 462/*
 463 * free clusters are used to claim free space in relatively large chunks,
 464 * allowing us to do less seeky writes.  They are used for all metadata
 465 * allocations and data allocations in ssd mode.
 466 */
 467struct btrfs_free_cluster {
 468	spinlock_t lock;
 469	spinlock_t refill_lock;
 470	struct rb_root root;
 471
 472	/* largest extent in this cluster */
 473	u64 max_size;
 474
 475	/* first extent starting offset */
 476	u64 window_start;
 477
 478	/* We did a full search and couldn't create a cluster */
 479	bool fragmented;
 480
 481	struct btrfs_block_group_cache *block_group;
 482	/*
 483	 * when a cluster is allocated from a block group, we put the
 484	 * cluster onto a list in the block group so that it can
 485	 * be freed before the block group is freed.
 486	 */
 487	struct list_head block_group_list;
 488};
 489
 490enum btrfs_caching_type {
 491	BTRFS_CACHE_NO		= 0,
 492	BTRFS_CACHE_STARTED	= 1,
 493	BTRFS_CACHE_FAST	= 2,
 494	BTRFS_CACHE_FINISHED	= 3,
 495	BTRFS_CACHE_ERROR	= 4,
 496};
 497
 498enum btrfs_disk_cache_state {
 499	BTRFS_DC_WRITTEN	= 0,
 500	BTRFS_DC_ERROR		= 1,
 501	BTRFS_DC_CLEAR		= 2,
 502	BTRFS_DC_SETUP		= 3,
 503};
 504
 505struct btrfs_caching_control {
 506	struct list_head list;
 507	struct mutex mutex;
 508	wait_queue_head_t wait;
 509	struct btrfs_work work;
 510	struct btrfs_block_group_cache *block_group;
 511	u64 progress;
 512	atomic_t count;
 513};
 514
 515/* Once caching_thread() finds this much free space, it will wake up waiters. */
 516#define CACHING_CTL_WAKE_UP (1024 * 1024 * 2)
 517
 518struct btrfs_io_ctl {
 519	void *cur, *orig;
 520	struct page *page;
 521	struct page **pages;
 522	struct btrfs_fs_info *fs_info;
 523	struct inode *inode;
 524	unsigned long size;
 525	int index;
 526	int num_pages;
 527	int entries;
 528	int bitmaps;
 529	unsigned check_crcs:1;
 530};
 531
 532struct btrfs_block_group_cache {
 533	struct btrfs_key key;
 534	struct btrfs_block_group_item item;
 535	struct btrfs_fs_info *fs_info;
 536	struct inode *inode;
 537	spinlock_t lock;
 538	u64 pinned;
 539	u64 reserved;
 540	u64 delalloc_bytes;
 541	u64 bytes_super;
 542	u64 flags;
 543	u64 cache_generation;
 544	u32 sectorsize;
 545
 546	/*
 547	 * If the free space extent count exceeds this number, convert the block
 548	 * group to bitmaps.
 549	 */
 550	u32 bitmap_high_thresh;
 551
 552	/*
 553	 * If the free space extent count drops below this number, convert the
 554	 * block group back to extents.
 555	 */
 556	u32 bitmap_low_thresh;
 557
 558	/*
 559	 * It is just used for the delayed data space allocation because
 560	 * only the data space allocation and the relative metadata update
 561	 * can be done cross the transaction.
 562	 */
 563	struct rw_semaphore data_rwsem;
 564
 565	/* for raid56, this is a full stripe, without parity */
 566	unsigned long full_stripe_len;
 567
 568	unsigned int ro;
 569	unsigned int iref:1;
 570	unsigned int has_caching_ctl:1;
 571	unsigned int removed:1;
 572
 573	int disk_cache_state;
 574
 575	/* cache tracking stuff */
 576	int cached;
 577	struct btrfs_caching_control *caching_ctl;
 578	u64 last_byte_to_unpin;
 579
 580	struct btrfs_space_info *space_info;
 581
 582	/* free space cache stuff */
 583	struct btrfs_free_space_ctl *free_space_ctl;
 584
 585	/* block group cache stuff */
 586	struct rb_node cache_node;
 587
 588	/* for block groups in the same raid type */
 589	struct list_head list;
 590
 591	/* usage count */
 592	atomic_t count;
 593
 594	/* List of struct btrfs_free_clusters for this block group.
 595	 * Today it will only have one thing on it, but that may change
 596	 */
 597	struct list_head cluster_list;
 598
 599	/* For delayed block group creation or deletion of empty block groups */
 600	struct list_head bg_list;
 601
 602	/* For read-only block groups */
 603	struct list_head ro_list;
 604
 605	atomic_t trimming;
 606
 607	/* For dirty block groups */
 608	struct list_head dirty_list;
 609	struct list_head io_list;
 610
 611	struct btrfs_io_ctl io_ctl;
 612
 613	/*
 614	 * Incremented when doing extent allocations and holding a read lock
 615	 * on the space_info's groups_sem semaphore.
 616	 * Decremented when an ordered extent that represents an IO against this
 617	 * block group's range is created (after it's added to its inode's
 618	 * root's list of ordered extents) or immediately after the allocation
 619	 * if it's a metadata extent or fallocate extent (for these cases we
 620	 * don't create ordered extents).
 621	 */
 622	atomic_t reservations;
 623
 624	/*
 625	 * Incremented while holding the spinlock *lock* by a task checking if
 626	 * it can perform a nocow write (incremented if the value for the *ro*
 627	 * field is 0). Decremented by such tasks once they create an ordered
 628	 * extent or before that if some error happens before reaching that step.
 629	 * This is to prevent races between block group relocation and nocow
 630	 * writes through direct IO.
 631	 */
 632	atomic_t nocow_writers;
 633
 634	/* Lock for free space tree operations. */
 635	struct mutex free_space_lock;
 636
 637	/*
 638	 * Does the block group need to be added to the free space tree?
 639	 * Protected by free_space_lock.
 640	 */
 641	int needs_free_space;
 642};
 643
 644/* delayed seq elem */
 645struct seq_list {
 646	struct list_head list;
 647	u64 seq;
 648};
 649
 650#define SEQ_LIST_INIT(name)	{ .list = LIST_HEAD_INIT((name).list), .seq = 0 }
 651
 652enum btrfs_orphan_cleanup_state {
 653	ORPHAN_CLEANUP_STARTED	= 1,
 654	ORPHAN_CLEANUP_DONE	= 2,
 655};
 656
 657/* used by the raid56 code to lock stripes for read/modify/write */
 658struct btrfs_stripe_hash {
 659	struct list_head hash_list;
 660	wait_queue_head_t wait;
 661	spinlock_t lock;
 662};
 663
 664/* used by the raid56 code to lock stripes for read/modify/write */
 665struct btrfs_stripe_hash_table {
 666	struct list_head stripe_cache;
 667	spinlock_t cache_lock;
 668	int cache_size;
 669	struct btrfs_stripe_hash table[];
 670};
 671
 672#define BTRFS_STRIPE_HASH_TABLE_BITS 11
 673
 674void btrfs_init_async_reclaim_work(struct work_struct *work);
 675
 676/* fs_info */
 677struct reloc_control;
 678struct btrfs_device;
 679struct btrfs_fs_devices;
 680struct btrfs_balance_control;
 681struct btrfs_delayed_root;
 682
 683#define BTRFS_FS_BARRIER			1
 684#define BTRFS_FS_CLOSING_START			2
 685#define BTRFS_FS_CLOSING_DONE			3
 686#define BTRFS_FS_LOG_RECOVERING			4
 687#define BTRFS_FS_OPEN				5
 688#define BTRFS_FS_QUOTA_ENABLED			6
 689#define BTRFS_FS_QUOTA_ENABLING			7
 690#define BTRFS_FS_QUOTA_DISABLING		8
 691#define BTRFS_FS_UPDATE_UUID_TREE_GEN		9
 692#define BTRFS_FS_CREATING_FREE_SPACE_TREE	10
 693#define BTRFS_FS_BTREE_ERR			11
 694#define BTRFS_FS_LOG1_ERR			12
 695#define BTRFS_FS_LOG2_ERR			13
 696
 697struct btrfs_fs_info {
 698	u8 fsid[BTRFS_FSID_SIZE];
 699	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 700	unsigned long flags;
 701	struct btrfs_root *extent_root;
 702	struct btrfs_root *tree_root;
 703	struct btrfs_root *chunk_root;
 704	struct btrfs_root *dev_root;
 705	struct btrfs_root *fs_root;
 706	struct btrfs_root *csum_root;
 707	struct btrfs_root *quota_root;
 708	struct btrfs_root *uuid_root;
 709	struct btrfs_root *free_space_root;
 710
 711	/* the log root tree is a directory of all the other log roots */
 712	struct btrfs_root *log_root_tree;
 713
 714	spinlock_t fs_roots_radix_lock;
 715	struct radix_tree_root fs_roots_radix;
 716
 717	/* block group cache stuff */
 718	spinlock_t block_group_cache_lock;
 719	u64 first_logical_byte;
 720	struct rb_root block_group_cache_tree;
 721
 722	/* keep track of unallocated space */
 723	spinlock_t free_chunk_lock;
 724	u64 free_chunk_space;
 725
 726	struct extent_io_tree freed_extents[2];
 727	struct extent_io_tree *pinned_extents;
 728
 729	/* logical->physical extent mapping */
 730	struct btrfs_mapping_tree mapping_tree;
 731
 732	/*
 733	 * block reservation for extent, checksum, root tree and
 734	 * delayed dir index item
 735	 */
 736	struct btrfs_block_rsv global_block_rsv;
 737	/* block reservation for delay allocation */
 738	struct btrfs_block_rsv delalloc_block_rsv;
 739	/* block reservation for metadata operations */
 740	struct btrfs_block_rsv trans_block_rsv;
 741	/* block reservation for chunk tree */
 742	struct btrfs_block_rsv chunk_block_rsv;
 743	/* block reservation for delayed operations */
 744	struct btrfs_block_rsv delayed_block_rsv;
 745
 746	struct btrfs_block_rsv empty_block_rsv;
 747
 748	u64 generation;
 749	u64 last_trans_committed;
 750	u64 avg_delayed_ref_runtime;
 751
 752	/*
 753	 * this is updated to the current trans every time a full commit
 754	 * is required instead of the faster short fsync log commits
 755	 */
 756	u64 last_trans_log_full_commit;
 757	unsigned long mount_opt;
 758	/*
 759	 * Track requests for actions that need to be done during transaction
 760	 * commit (like for some mount options).
 761	 */
 762	unsigned long pending_changes;
 763	unsigned long compress_type:4;
 764	int commit_interval;
 765	/*
 766	 * It is a suggestive number, the read side is safe even it gets a
 767	 * wrong number because we will write out the data into a regular
 768	 * extent. The write side(mount/remount) is under ->s_umount lock,
 769	 * so it is also safe.
 770	 */
 771	u64 max_inline;
 772	/*
 773	 * Protected by ->chunk_mutex and sb->s_umount.
 774	 *
 775	 * The reason that we use two lock to protect it is because only
 776	 * remount and mount operations can change it and these two operations
 777	 * are under sb->s_umount, but the read side (chunk allocation) can not
 778	 * acquire sb->s_umount or the deadlock would happen. So we use two
 779	 * locks to protect it. On the write side, we must acquire two locks,
 780	 * and on the read side, we just need acquire one of them.
 781	 */
 782	u64 alloc_start;
 783	struct btrfs_transaction *running_transaction;
 784	wait_queue_head_t transaction_throttle;
 785	wait_queue_head_t transaction_wait;
 786	wait_queue_head_t transaction_blocked_wait;
 787	wait_queue_head_t async_submit_wait;
 788
 789	/*
 790	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
 791	 * when they are updated.
 792	 *
 793	 * Because we do not clear the flags for ever, so we needn't use
 794	 * the lock on the read side.
 
 
 795	 *
 796	 * We also needn't use the lock when we mount the fs, because
 797	 * there is no other task which will update the flag.
 798	 */
 799	spinlock_t super_lock;
 800	struct btrfs_super_block *super_copy;
 801	struct btrfs_super_block *super_for_commit;
 802	struct super_block *sb;
 803	struct inode *btree_inode;
 804	struct backing_dev_info bdi;
 805	struct mutex tree_log_mutex;
 806	struct mutex transaction_kthread_mutex;
 807	struct mutex cleaner_mutex;
 808	struct mutex chunk_mutex;
 809	struct mutex volume_mutex;
 810
 811	/*
 812	 * this is taken to make sure we don't set block groups ro after
 813	 * the free space cache has been allocated on them
 814	 */
 815	struct mutex ro_block_group_mutex;
 816
 817	/* this is used during read/modify/write to make sure
 818	 * no two ios are trying to mod the same stripe at the same
 819	 * time
 820	 */
 821	struct btrfs_stripe_hash_table *stripe_hash_table;
 822
 823	/*
 824	 * this protects the ordered operations list only while we are
 825	 * processing all of the entries on it.  This way we make
 826	 * sure the commit code doesn't find the list temporarily empty
 827	 * because another function happens to be doing non-waiting preflush
 828	 * before jumping into the main commit.
 829	 */
 830	struct mutex ordered_operations_mutex;
 831
 832	struct rw_semaphore commit_root_sem;
 833
 834	struct rw_semaphore cleanup_work_sem;
 835
 836	struct rw_semaphore subvol_sem;
 837	struct srcu_struct subvol_srcu;
 838
 839	spinlock_t trans_lock;
 840	/*
 841	 * the reloc mutex goes with the trans lock, it is taken
 842	 * during commit to protect us from the relocation code
 843	 */
 844	struct mutex reloc_mutex;
 845
 846	struct list_head trans_list;
 847	struct list_head dead_roots;
 848	struct list_head caching_block_groups;
 849
 850	spinlock_t delayed_iput_lock;
 851	struct list_head delayed_iputs;
 852	struct mutex cleaner_delayed_iput_mutex;
 853
 854	/* this protects tree_mod_seq_list */
 855	spinlock_t tree_mod_seq_lock;
 856	atomic64_t tree_mod_seq;
 857	struct list_head tree_mod_seq_list;
 858
 859	/* this protects tree_mod_log */
 860	rwlock_t tree_mod_log_lock;
 861	struct rb_root tree_mod_log;
 862
 863	atomic_t nr_async_submits;
 864	atomic_t async_submit_draining;
 865	atomic_t nr_async_bios;
 866	atomic_t async_delalloc_pages;
 867	atomic_t open_ioctl_trans;
 868
 869	/*
 870	 * this is used to protect the following list -- ordered_roots.
 871	 */
 872	spinlock_t ordered_root_lock;
 873
 874	/*
 875	 * all fs/file tree roots in which there are data=ordered extents
 876	 * pending writeback are added into this list.
 877	 *
 878	 * these can span multiple transactions and basically include
 879	 * every dirty data page that isn't from nodatacow
 880	 */
 881	struct list_head ordered_roots;
 882
 883	struct mutex delalloc_root_mutex;
 884	spinlock_t delalloc_root_lock;
 885	/* all fs/file tree roots that have delalloc inodes. */
 886	struct list_head delalloc_roots;
 
 
 
 
 
 887
 888	/*
 889	 * there is a pool of worker threads for checksumming during writes
 890	 * and a pool for checksumming after reads.  This is because readers
 891	 * can run with FS locks held, and the writers may be waiting for
 892	 * those locks.  We don't want ordering in the pending list to cause
 893	 * deadlocks, and so the two are serviced separately.
 894	 *
 895	 * A third pool does submit_bio to avoid deadlocking with the other
 896	 * two
 897	 */
 898	struct btrfs_workqueue *workers;
 899	struct btrfs_workqueue *delalloc_workers;
 900	struct btrfs_workqueue *flush_workers;
 901	struct btrfs_workqueue *endio_workers;
 902	struct btrfs_workqueue *endio_meta_workers;
 903	struct btrfs_workqueue *endio_raid56_workers;
 904	struct btrfs_workqueue *endio_repair_workers;
 905	struct btrfs_workqueue *rmw_workers;
 906	struct btrfs_workqueue *endio_meta_write_workers;
 907	struct btrfs_workqueue *endio_write_workers;
 908	struct btrfs_workqueue *endio_freespace_worker;
 909	struct btrfs_workqueue *submit_workers;
 910	struct btrfs_workqueue *caching_workers;
 911	struct btrfs_workqueue *readahead_workers;
 912
 913	/*
 914	 * fixup workers take dirty pages that didn't properly go through
 915	 * the cow mechanism and make them safe to write.  It happens
 916	 * for the sys_munmap function call path
 917	 */
 918	struct btrfs_workqueue *fixup_workers;
 919	struct btrfs_workqueue *delayed_workers;
 920
 921	/* the extent workers do delayed refs on the extent allocation tree */
 922	struct btrfs_workqueue *extent_workers;
 923	struct task_struct *transaction_kthread;
 924	struct task_struct *cleaner_kthread;
 925	int thread_pool_size;
 926
 927	struct kobject *space_info_kobj;
 928
 929	u64 total_pinned;
 930
 931	/* used to keep from writing metadata until there is a nice batch */
 932	struct percpu_counter dirty_metadata_bytes;
 933	struct percpu_counter delalloc_bytes;
 934	s32 dirty_metadata_batch;
 935	s32 delalloc_batch;
 936
 937	struct list_head dirty_cowonly_roots;
 938
 939	struct btrfs_fs_devices *fs_devices;
 940
 941	/*
 942	 * the space_info list is almost entirely read only.  It only changes
 943	 * when we add a new raid type to the FS, and that happens
 944	 * very rarely.  RCU is used to protect it.
 945	 */
 946	struct list_head space_info;
 947
 948	struct btrfs_space_info *data_sinfo;
 949
 950	struct reloc_control *reloc_ctl;
 951
 952	/* data_alloc_cluster is only used in ssd mode */
 953	struct btrfs_free_cluster data_alloc_cluster;
 954
 955	/* all metadata allocations go through this cluster */
 956	struct btrfs_free_cluster meta_alloc_cluster;
 957
 958	/* auto defrag inodes go here */
 959	spinlock_t defrag_inodes_lock;
 960	struct rb_root defrag_inodes;
 961	atomic_t defrag_running;
 962
 963	/* Used to protect avail_{data, metadata, system}_alloc_bits */
 964	seqlock_t profiles_lock;
 965	/*
 966	 * these three are in extended format (availability of single
 967	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
 968	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
 969	 */
 970	u64 avail_data_alloc_bits;
 971	u64 avail_metadata_alloc_bits;
 972	u64 avail_system_alloc_bits;
 973
 974	/* restriper state */
 975	spinlock_t balance_lock;
 976	struct mutex balance_mutex;
 977	atomic_t balance_running;
 978	atomic_t balance_pause_req;
 979	atomic_t balance_cancel_req;
 980	struct btrfs_balance_control *balance_ctl;
 981	wait_queue_head_t balance_wait_q;
 982
 983	unsigned data_chunk_allocations;
 984	unsigned metadata_ratio;
 985
 986	void *bdev_holder;
 987
 988	/* private scrub information */
 989	struct mutex scrub_lock;
 990	atomic_t scrubs_running;
 991	atomic_t scrub_pause_req;
 992	atomic_t scrubs_paused;
 993	atomic_t scrub_cancel_req;
 994	wait_queue_head_t scrub_pause_wait;
 995	int scrub_workers_refcnt;
 996	struct btrfs_workqueue *scrub_workers;
 997	struct btrfs_workqueue *scrub_wr_completion_workers;
 998	struct btrfs_workqueue *scrub_nocow_workers;
 999	struct btrfs_workqueue *scrub_parity_workers;
1000
1001#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1002	u32 check_integrity_print_mask;
1003#endif
1004	/* is qgroup tracking in a consistent state? */
1005	u64 qgroup_flags;
1006
1007	/* holds configuration and tracking. Protected by qgroup_lock */
1008	struct rb_root qgroup_tree;
1009	struct rb_root qgroup_op_tree;
1010	spinlock_t qgroup_lock;
1011	spinlock_t qgroup_op_lock;
1012	atomic_t qgroup_op_seq;
1013
1014	/*
1015	 * used to avoid frequently calling ulist_alloc()/ulist_free()
1016	 * when doing qgroup accounting, it must be protected by qgroup_lock.
1017	 */
1018	struct ulist *qgroup_ulist;
1019
1020	/* protect user change for quota operations */
1021	struct mutex qgroup_ioctl_lock;
1022
1023	/* list of dirty qgroups to be written at next commit */
1024	struct list_head dirty_qgroups;
1025
1026	/* used by qgroup for an efficient tree traversal */
1027	u64 qgroup_seq;
1028
1029	/* qgroup rescan items */
1030	struct mutex qgroup_rescan_lock; /* protects the progress item */
1031	struct btrfs_key qgroup_rescan_progress;
1032	struct btrfs_workqueue *qgroup_rescan_workers;
1033	struct completion qgroup_rescan_completion;
1034	struct btrfs_work qgroup_rescan_work;
1035	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
1036
1037	/* filesystem state */
1038	unsigned long fs_state;
1039
1040	struct btrfs_delayed_root *delayed_root;
1041
1042	/* readahead tree */
1043	spinlock_t reada_lock;
1044	struct radix_tree_root reada_tree;
1045
1046	/* readahead works cnt */
1047	atomic_t reada_works_cnt;
1048
1049	/* Extent buffer radix tree */
1050	spinlock_t buffer_lock;
1051	struct radix_tree_root buffer_radix;
1052
1053	/* next backup root to be overwritten */
1054	int backup_root_index;
1055
1056	int num_tolerated_disk_barrier_failures;
1057
1058	/* device replace state */
1059	struct btrfs_dev_replace dev_replace;
1060
1061	atomic_t mutually_exclusive_operation_running;
1062
1063	struct percpu_counter bio_counter;
1064	wait_queue_head_t replace_wait;
1065
1066	struct semaphore uuid_tree_rescan_sem;
1067
1068	/* Used to reclaim the metadata space in the background. */
1069	struct work_struct async_reclaim_work;
1070
1071	spinlock_t unused_bgs_lock;
1072	struct list_head unused_bgs;
1073	struct mutex unused_bg_unpin_mutex;
1074	struct mutex delete_unused_bgs_mutex;
1075
1076	/* For btrfs to record security options */
1077	struct security_mnt_opts security_opts;
1078
1079	/*
1080	 * Chunks that can't be freed yet (under a trim/discard operation)
1081	 * and will be latter freed. Protected by fs_info->chunk_mutex.
1082	 */
1083	struct list_head pinned_chunks;
1084
1085	/* Used to record internally whether fs has been frozen */
1086	int fs_frozen;
1087
1088	/* Cached block sizes */
1089	u32 nodesize;
1090	u32 sectorsize;
1091	u32 stripesize;
1092};
1093
1094static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
1095{
1096	return sb->s_fs_info;
1097}
1098
1099struct btrfs_subvolume_writers {
1100	struct percpu_counter	counter;
1101	wait_queue_head_t	wait;
1102};
1103
1104/*
1105 * The state of btrfs root
 
1106 */
1107/*
1108 * btrfs_record_root_in_trans is a multi-step process,
1109 * and it can race with the balancing code.   But the
1110 * race is very small, and only the first time the root
1111 * is added to each transaction.  So IN_TRANS_SETUP
1112 * is used to tell us when more checks are required
1113 */
1114#define BTRFS_ROOT_IN_TRANS_SETUP	0
1115#define BTRFS_ROOT_REF_COWS		1
1116#define BTRFS_ROOT_TRACK_DIRTY		2
1117#define BTRFS_ROOT_IN_RADIX		3
1118#define BTRFS_ROOT_ORPHAN_ITEM_INSERTED	4
1119#define BTRFS_ROOT_DEFRAG_RUNNING	5
1120#define BTRFS_ROOT_FORCE_COW		6
1121#define BTRFS_ROOT_MULTI_LOG_TASKS	7
1122#define BTRFS_ROOT_DIRTY		8
1123
1124/*
1125 * in ram representation of the tree.  extent_root is used for all allocations
1126 * and for the extent tree extent_root root.
1127 */
1128struct btrfs_root {
 
 
1129	struct extent_buffer *node;
1130
1131	struct extent_buffer *commit_root;
1132	struct btrfs_root *log_root;
1133	struct btrfs_root *reloc_root;
1134
1135	unsigned long state;
1136	struct btrfs_root_item root_item;
1137	struct btrfs_key root_key;
1138	struct btrfs_fs_info *fs_info;
1139	struct extent_io_tree dirty_log_pages;
1140
1141	struct mutex objectid_mutex;
1142
1143	spinlock_t accounting_lock;
1144	struct btrfs_block_rsv *block_rsv;
1145
1146	/* free ino cache stuff */
1147	struct btrfs_free_space_ctl *free_ino_ctl;
1148	enum btrfs_caching_type ino_cache_state;
1149	spinlock_t ino_cache_lock;
1150	wait_queue_head_t ino_cache_wait;
1151	struct btrfs_free_space_ctl *free_ino_pinned;
1152	u64 ino_cache_progress;
1153	struct inode *ino_cache_inode;
1154
1155	struct mutex log_mutex;
1156	wait_queue_head_t log_writer_wait;
1157	wait_queue_head_t log_commit_wait[2];
1158	struct list_head log_ctxs[2];
 
1159	atomic_t log_writers;
1160	atomic_t log_commit[2];
 
1161	atomic_t log_batch;
1162	int log_transid;
1163	/* No matter the commit succeeds or not*/
1164	int log_transid_committed;
1165	/* Just be updated when the commit succeeds. */
1166	int last_log_commit;
1167	pid_t log_start_pid;
1168
1169	u64 objectid;
1170	u64 last_trans;
1171
1172	u32 type;
1173
1174	u64 highest_objectid;
1175
1176#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1177	/* only used with CONFIG_BTRFS_FS_RUN_SANITY_TESTS is enabled */
1178	u64 alloc_bytenr;
1179#endif
1180
1181	u64 defrag_trans_start;
1182	struct btrfs_key defrag_progress;
1183	struct btrfs_key defrag_max;
1184	char *name;
1185
1186	/* the dirty list is only used by non-reference counted roots */
1187	struct list_head dirty_list;
1188
1189	struct list_head root_list;
1190
1191	spinlock_t log_extents_lock[2];
1192	struct list_head logged_list[2];
1193
1194	spinlock_t orphan_lock;
1195	atomic_t orphan_inodes;
1196	struct btrfs_block_rsv *orphan_block_rsv;
1197	int orphan_cleanup_state;
1198
1199	spinlock_t inode_lock;
1200	/* red-black tree that keeps track of in-memory inodes */
1201	struct rb_root inode_tree;
1202
1203	/*
1204	 * radix tree that keeps track of delayed nodes of every inode,
1205	 * protected by inode_lock
1206	 */
1207	struct radix_tree_root delayed_nodes_tree;
1208	/*
1209	 * right now this just gets used so that a root has its own devid
1210	 * for stat.  It may be used for more later
1211	 */
1212	dev_t anon_dev;
1213
1214	spinlock_t root_item_lock;
1215	atomic_t refs;
1216
1217	struct mutex delalloc_mutex;
1218	spinlock_t delalloc_lock;
1219	/*
1220	 * all of the inodes that have delalloc bytes.  It is possible for
1221	 * this list to be empty even when there is still dirty data=ordered
1222	 * extents waiting to finish IO.
1223	 */
1224	struct list_head delalloc_inodes;
1225	struct list_head delalloc_root;
1226	u64 nr_delalloc_inodes;
1227
1228	struct mutex ordered_extent_mutex;
1229	/*
1230	 * this is used by the balancing code to wait for all the pending
1231	 * ordered extents
1232	 */
1233	spinlock_t ordered_extent_lock;
1234
1235	/*
1236	 * all of the data=ordered extents pending writeback
1237	 * these can span multiple transactions and basically include
1238	 * every dirty data page that isn't from nodatacow
1239	 */
1240	struct list_head ordered_extents;
1241	struct list_head ordered_root;
1242	u64 nr_ordered_extents;
1243
1244	/*
 
 
 
 
 
 
 
 
1245	 * Number of currently running SEND ioctls to prevent
1246	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1247	 */
1248	int send_in_progress;
1249	struct btrfs_subvolume_writers *subv_writers;
1250	atomic_t will_be_snapshoted;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1251
1252	/* For qgroup metadata space reserve */
1253	atomic_t qgroup_meta_rsv;
1254};
1255static inline u32 btrfs_inode_sectorsize(const struct inode *inode)
1256{
1257	return btrfs_sb(inode->i_sb)->sectorsize;
1258}
1259
1260static inline u32 __BTRFS_LEAF_DATA_SIZE(u32 blocksize)
1261{
1262	return blocksize - sizeof(struct btrfs_header);
1263}
1264
1265static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1266{
1267	return __BTRFS_LEAF_DATA_SIZE(info->nodesize);
1268}
1269
1270static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1271{
1272	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1273}
1274
1275static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1276{
1277	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1278}
1279
1280#define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1281		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1282static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1283{
1284	return BTRFS_MAX_ITEM_SIZE(info) -
1285	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1286}
1287
1288static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1289{
1290	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1291}
1292
1293/*
1294 * Flags for mount options.
1295 *
1296 * Note: don't forget to add new options to btrfs_show_options()
1297 */
1298#define BTRFS_MOUNT_NODATASUM		(1 << 0)
1299#define BTRFS_MOUNT_NODATACOW		(1 << 1)
1300#define BTRFS_MOUNT_NOBARRIER		(1 << 2)
1301#define BTRFS_MOUNT_SSD			(1 << 3)
1302#define BTRFS_MOUNT_DEGRADED		(1 << 4)
1303#define BTRFS_MOUNT_COMPRESS		(1 << 5)
1304#define BTRFS_MOUNT_NOTREELOG           (1 << 6)
1305#define BTRFS_MOUNT_FLUSHONCOMMIT       (1 << 7)
1306#define BTRFS_MOUNT_SSD_SPREAD		(1 << 8)
1307#define BTRFS_MOUNT_NOSSD		(1 << 9)
1308#define BTRFS_MOUNT_DISCARD		(1 << 10)
1309#define BTRFS_MOUNT_FORCE_COMPRESS      (1 << 11)
1310#define BTRFS_MOUNT_SPACE_CACHE		(1 << 12)
1311#define BTRFS_MOUNT_CLEAR_CACHE		(1 << 13)
1312#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
1313#define BTRFS_MOUNT_ENOSPC_DEBUG	 (1 << 15)
1314#define BTRFS_MOUNT_AUTO_DEFRAG		(1 << 16)
1315#define BTRFS_MOUNT_INODE_MAP_CACHE	(1 << 17)
1316#define BTRFS_MOUNT_USEBACKUPROOT	(1 << 18)
1317#define BTRFS_MOUNT_SKIP_BALANCE	(1 << 19)
1318#define BTRFS_MOUNT_CHECK_INTEGRITY	(1 << 20)
1319#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
1320#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	(1 << 22)
1321#define BTRFS_MOUNT_RESCAN_UUID_TREE	(1 << 23)
1322#define BTRFS_MOUNT_FRAGMENT_DATA	(1 << 24)
1323#define BTRFS_MOUNT_FRAGMENT_METADATA	(1 << 25)
1324#define BTRFS_MOUNT_FREE_SPACE_TREE	(1 << 26)
1325#define BTRFS_MOUNT_NOLOGREPLAY		(1 << 27)
1326
1327#define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1328#define BTRFS_DEFAULT_MAX_INLINE	(2048)
1329
1330#define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1331#define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1332#define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1333#define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1334					 BTRFS_MOUNT_##opt)
1335
1336#define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1337{									\
1338	if (!btrfs_test_opt(fs_info, opt))				\
1339		btrfs_info(fs_info, fmt, ##args);			\
1340	btrfs_set_opt(fs_info->mount_opt, opt);				\
1341}
1342
1343#define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1344{									\
1345	if (btrfs_test_opt(fs_info, opt))				\
1346		btrfs_info(fs_info, fmt, ##args);			\
1347	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1348}
1349
1350#ifdef CONFIG_BTRFS_DEBUG
1351static inline int
1352btrfs_should_fragment_free_space(struct btrfs_block_group_cache *block_group)
1353{
1354	struct btrfs_fs_info *fs_info = block_group->fs_info;
1355
1356	return (btrfs_test_opt(fs_info, FRAGMENT_METADATA) &&
1357		block_group->flags & BTRFS_BLOCK_GROUP_METADATA) ||
1358	       (btrfs_test_opt(fs_info, FRAGMENT_DATA) &&
1359		block_group->flags &  BTRFS_BLOCK_GROUP_DATA);
1360}
1361#endif
1362
1363/*
1364 * Requests for changes that need to be done during transaction commit.
1365 *
1366 * Internal mount options that are used for special handling of the real
1367 * mount options (eg. cannot be set during remount and have to be set during
1368 * transaction commit)
1369 */
1370
1371#define BTRFS_PENDING_SET_INODE_MAP_CACHE	(0)
1372#define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE	(1)
1373#define BTRFS_PENDING_COMMIT			(2)
1374
1375#define btrfs_test_pending(info, opt)	\
1376	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1377#define btrfs_set_pending(info, opt)	\
1378	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1379#define btrfs_clear_pending(info, opt)	\
1380	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1381
1382/*
1383 * Helpers for setting pending mount option changes.
1384 *
1385 * Expects corresponding macros
1386 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1387 */
1388#define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1389do {                                                                   \
1390       if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1391               btrfs_info((info), fmt, ##args);                        \
1392               btrfs_set_pending((info), SET_##opt);                   \
1393               btrfs_clear_pending((info), CLEAR_##opt);               \
1394       }                                                               \
1395} while(0)
1396
1397#define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1398do {                                                                   \
1399       if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1400               btrfs_info((info), fmt, ##args);                        \
1401               btrfs_set_pending((info), CLEAR_##opt);                 \
1402               btrfs_clear_pending((info), SET_##opt);                 \
1403       }                                                               \
1404} while(0)
1405
1406/*
1407 * Inode flags
1408 */
1409#define BTRFS_INODE_NODATASUM		(1 << 0)
1410#define BTRFS_INODE_NODATACOW		(1 << 1)
1411#define BTRFS_INODE_READONLY		(1 << 2)
1412#define BTRFS_INODE_NOCOMPRESS		(1 << 3)
1413#define BTRFS_INODE_PREALLOC		(1 << 4)
1414#define BTRFS_INODE_SYNC		(1 << 5)
1415#define BTRFS_INODE_IMMUTABLE		(1 << 6)
1416#define BTRFS_INODE_APPEND		(1 << 7)
1417#define BTRFS_INODE_NODUMP		(1 << 8)
1418#define BTRFS_INODE_NOATIME		(1 << 9)
1419#define BTRFS_INODE_DIRSYNC		(1 << 10)
1420#define BTRFS_INODE_COMPRESS		(1 << 11)
1421
1422#define BTRFS_INODE_ROOT_ITEM_INIT	(1 << 31)
1423
1424struct btrfs_map_token {
1425	struct extent_buffer *eb;
1426	char *kaddr;
1427	unsigned long offset;
1428};
1429
1430#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1431				((bytes) >> (fs_info)->sb->s_blocksize_bits)
1432
1433static inline void btrfs_init_map_token (struct btrfs_map_token *token)
1434{
1435	token->kaddr = NULL;
1436}
1437
1438/* some macros to generate set/get functions for the struct fields.  This
1439 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1440 * one for u8:
1441 */
1442#define le8_to_cpu(v) (v)
1443#define cpu_to_le8(v) (v)
1444#define __le8 u8
1445
1446#define read_eb_member(eb, ptr, type, member, result) (\
1447	read_extent_buffer(eb, (char *)(result),			\
1448			   ((unsigned long)(ptr)) +			\
1449			    offsetof(type, member),			\
1450			   sizeof(((type *)0)->member)))
1451
1452#define write_eb_member(eb, ptr, type, member, result) (\
1453	write_extent_buffer(eb, (char *)(result),			\
1454			   ((unsigned long)(ptr)) +			\
1455			    offsetof(type, member),			\
1456			   sizeof(((type *)0)->member)))
1457
1458#define DECLARE_BTRFS_SETGET_BITS(bits)					\
1459u##bits btrfs_get_token_##bits(struct extent_buffer *eb, void *ptr,	\
1460			       unsigned long off,			\
1461                              struct btrfs_map_token *token);		\
1462void btrfs_set_token_##bits(struct extent_buffer *eb, void *ptr,	\
1463			    unsigned long off, u##bits val,		\
1464			    struct btrfs_map_token *token);		\
1465static inline u##bits btrfs_get_##bits(struct extent_buffer *eb, void *ptr, \
1466				       unsigned long off)		\
1467{									\
1468	return btrfs_get_token_##bits(eb, ptr, off, NULL);		\
1469}									\
1470static inline void btrfs_set_##bits(struct extent_buffer *eb, void *ptr, \
1471				    unsigned long off, u##bits val)	\
1472{									\
1473       btrfs_set_token_##bits(eb, ptr, off, val, NULL);			\
1474}
1475
1476DECLARE_BTRFS_SETGET_BITS(8)
1477DECLARE_BTRFS_SETGET_BITS(16)
1478DECLARE_BTRFS_SETGET_BITS(32)
1479DECLARE_BTRFS_SETGET_BITS(64)
1480
1481#define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1482static inline u##bits btrfs_##name(struct extent_buffer *eb, type *s)	\
1483{									\
1484	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1485	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1486}									\
1487static inline void btrfs_set_##name(struct extent_buffer *eb, type *s,	\
1488				    u##bits val)			\
1489{									\
1490	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1491	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1492}									\
1493static inline u##bits btrfs_token_##name(struct extent_buffer *eb, type *s, \
1494					 struct btrfs_map_token *token)	\
1495{									\
1496	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1497	return btrfs_get_token_##bits(eb, s, offsetof(type, member), token); \
1498}									\
1499static inline void btrfs_set_token_##name(struct extent_buffer *eb,	\
1500					  type *s, u##bits val,		\
1501                                         struct btrfs_map_token *token)	\
1502{									\
1503	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1504	btrfs_set_token_##bits(eb, s, offsetof(type, member), val, token); \
1505}
1506
1507#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1508static inline u##bits btrfs_##name(struct extent_buffer *eb)		\
1509{									\
1510	type *p = page_address(eb->pages[0]);				\
1511	u##bits res = le##bits##_to_cpu(p->member);			\
1512	return res;							\
1513}									\
1514static inline void btrfs_set_##name(struct extent_buffer *eb,		\
1515				    u##bits val)			\
1516{									\
1517	type *p = page_address(eb->pages[0]);				\
1518	p->member = cpu_to_le##bits(val);				\
1519}
1520
1521#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1522static inline u##bits btrfs_##name(type *s)				\
1523{									\
1524	return le##bits##_to_cpu(s->member);				\
1525}									\
1526static inline void btrfs_set_##name(type *s, u##bits val)		\
1527{									\
1528	s->member = cpu_to_le##bits(val);				\
1529}
1530
1531BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1532BTRFS_SETGET_FUNCS(device_total_bytes, struct btrfs_dev_item, total_bytes, 64);
1533BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1534BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1535BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1536BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1537		   start_offset, 64);
1538BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1539BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1540BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1541BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1542BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1543BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1544
1545BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1546BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1547			 total_bytes, 64);
1548BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1549			 bytes_used, 64);
1550BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1551			 io_align, 32);
1552BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1553			 io_width, 32);
1554BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1555			 sector_size, 32);
1556BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1557BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1558			 dev_group, 32);
1559BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1560			 seek_speed, 8);
1561BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1562			 bandwidth, 8);
1563BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1564			 generation, 64);
1565
1566static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1567{
1568	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1569}
1570
1571static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1572{
1573	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1574}
1575
1576BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1577BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1578BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1579BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1580BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1581BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1582BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1583BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1584BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1585BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1586BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1587
1588static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1589{
1590	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1591}
1592
1593BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1594BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1595BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1596			 stripe_len, 64);
1597BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1598			 io_align, 32);
1599BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1600			 io_width, 32);
1601BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1602			 sector_size, 32);
1603BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1604BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1605			 num_stripes, 16);
1606BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1607			 sub_stripes, 16);
1608BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1609BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1610
1611static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1612						   int nr)
1613{
1614	unsigned long offset = (unsigned long)c;
1615	offset += offsetof(struct btrfs_chunk, stripe);
1616	offset += nr * sizeof(struct btrfs_stripe);
1617	return (struct btrfs_stripe *)offset;
1618}
1619
1620static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1621{
1622	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1623}
1624
1625static inline u64 btrfs_stripe_offset_nr(struct extent_buffer *eb,
1626					 struct btrfs_chunk *c, int nr)
1627{
1628	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1629}
1630
1631static inline u64 btrfs_stripe_devid_nr(struct extent_buffer *eb,
1632					 struct btrfs_chunk *c, int nr)
1633{
1634	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1635}
1636
1637/* struct btrfs_block_group_item */
1638BTRFS_SETGET_STACK_FUNCS(block_group_used, struct btrfs_block_group_item,
1639			 used, 64);
1640BTRFS_SETGET_FUNCS(disk_block_group_used, struct btrfs_block_group_item,
1641			 used, 64);
1642BTRFS_SETGET_STACK_FUNCS(block_group_chunk_objectid,
1643			struct btrfs_block_group_item, chunk_objectid, 64);
1644
1645BTRFS_SETGET_FUNCS(disk_block_group_chunk_objectid,
1646		   struct btrfs_block_group_item, chunk_objectid, 64);
1647BTRFS_SETGET_FUNCS(disk_block_group_flags,
1648		   struct btrfs_block_group_item, flags, 64);
1649BTRFS_SETGET_STACK_FUNCS(block_group_flags,
1650			struct btrfs_block_group_item, flags, 64);
1651
1652/* struct btrfs_free_space_info */
1653BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1654		   extent_count, 32);
1655BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1656
1657/* struct btrfs_inode_ref */
1658BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1659BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1660
1661/* struct btrfs_inode_extref */
1662BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1663		   parent_objectid, 64);
1664BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1665		   name_len, 16);
1666BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1667
1668/* struct btrfs_inode_item */
1669BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1670BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1671BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1672BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1673BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1674BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1675BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1676BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1677BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1678BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1679BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1680BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1681BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1682			 generation, 64);
1683BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1684			 sequence, 64);
1685BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1686			 transid, 64);
1687BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1688BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1689			 nbytes, 64);
1690BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1691			 block_group, 64);
1692BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1693BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1694BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1695BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1696BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1697BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1698BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1699BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1700BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1701BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1702
1703/* struct btrfs_dev_extent */
1704BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1705		   chunk_tree, 64);
1706BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1707		   chunk_objectid, 64);
1708BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1709		   chunk_offset, 64);
1710BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1711
1712static inline unsigned long btrfs_dev_extent_chunk_tree_uuid(struct btrfs_dev_extent *dev)
1713{
1714	unsigned long ptr = offsetof(struct btrfs_dev_extent, chunk_tree_uuid);
1715	return (unsigned long)dev + ptr;
1716}
1717
1718BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1719BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1720		   generation, 64);
1721BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1722
1723BTRFS_SETGET_FUNCS(extent_refs_v0, struct btrfs_extent_item_v0, refs, 32);
1724
1725
1726BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1727
1728static inline void btrfs_tree_block_key(struct extent_buffer *eb,
1729					struct btrfs_tree_block_info *item,
1730					struct btrfs_disk_key *key)
1731{
1732	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1733}
1734
1735static inline void btrfs_set_tree_block_key(struct extent_buffer *eb,
1736					    struct btrfs_tree_block_info *item,
1737					    struct btrfs_disk_key *key)
1738{
1739	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1740}
1741
1742BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1743		   root, 64);
1744BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1745		   objectid, 64);
1746BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1747		   offset, 64);
1748BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1749		   count, 32);
1750
1751BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1752		   count, 32);
1753
1754BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1755		   type, 8);
1756BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1757		   offset, 64);
1758
1759static inline u32 btrfs_extent_inline_ref_size(int type)
1760{
1761	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1762	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1763		return sizeof(struct btrfs_extent_inline_ref);
1764	if (type == BTRFS_SHARED_DATA_REF_KEY)
1765		return sizeof(struct btrfs_shared_data_ref) +
1766		       sizeof(struct btrfs_extent_inline_ref);
1767	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1768		return sizeof(struct btrfs_extent_data_ref) +
1769		       offsetof(struct btrfs_extent_inline_ref, offset);
1770	BUG();
1771	return 0;
1772}
1773
1774BTRFS_SETGET_FUNCS(ref_root_v0, struct btrfs_extent_ref_v0, root, 64);
1775BTRFS_SETGET_FUNCS(ref_generation_v0, struct btrfs_extent_ref_v0,
1776		   generation, 64);
1777BTRFS_SETGET_FUNCS(ref_objectid_v0, struct btrfs_extent_ref_v0, objectid, 64);
1778BTRFS_SETGET_FUNCS(ref_count_v0, struct btrfs_extent_ref_v0, count, 32);
1779
1780/* struct btrfs_node */
1781BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1782BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1783BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1784			 blockptr, 64);
1785BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1786			 generation, 64);
1787
1788static inline u64 btrfs_node_blockptr(struct extent_buffer *eb, int nr)
1789{
1790	unsigned long ptr;
1791	ptr = offsetof(struct btrfs_node, ptrs) +
1792		sizeof(struct btrfs_key_ptr) * nr;
1793	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1794}
1795
1796static inline void btrfs_set_node_blockptr(struct extent_buffer *eb,
1797					   int nr, u64 val)
1798{
1799	unsigned long ptr;
1800	ptr = offsetof(struct btrfs_node, ptrs) +
1801		sizeof(struct btrfs_key_ptr) * nr;
1802	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1803}
1804
1805static inline u64 btrfs_node_ptr_generation(struct extent_buffer *eb, int nr)
1806{
1807	unsigned long ptr;
1808	ptr = offsetof(struct btrfs_node, ptrs) +
1809		sizeof(struct btrfs_key_ptr) * nr;
1810	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1811}
1812
1813static inline void btrfs_set_node_ptr_generation(struct extent_buffer *eb,
1814						 int nr, u64 val)
1815{
1816	unsigned long ptr;
1817	ptr = offsetof(struct btrfs_node, ptrs) +
1818		sizeof(struct btrfs_key_ptr) * nr;
1819	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1820}
1821
1822static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1823{
1824	return offsetof(struct btrfs_node, ptrs) +
1825		sizeof(struct btrfs_key_ptr) * nr;
1826}
1827
1828void btrfs_node_key(struct extent_buffer *eb,
1829		    struct btrfs_disk_key *disk_key, int nr);
1830
1831static inline void btrfs_set_node_key(struct extent_buffer *eb,
1832				      struct btrfs_disk_key *disk_key, int nr)
1833{
1834	unsigned long ptr;
1835	ptr = btrfs_node_key_ptr_offset(nr);
1836	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1837		       struct btrfs_key_ptr, key, disk_key);
1838}
1839
1840/* struct btrfs_item */
1841BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1842BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1843BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1844BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1845
1846static inline unsigned long btrfs_item_nr_offset(int nr)
1847{
1848	return offsetof(struct btrfs_leaf, items) +
1849		sizeof(struct btrfs_item) * nr;
1850}
1851
1852static inline struct btrfs_item *btrfs_item_nr(int nr)
1853{
1854	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1855}
1856
1857static inline u32 btrfs_item_end(struct extent_buffer *eb,
1858				 struct btrfs_item *item)
1859{
1860	return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1861}
1862
1863static inline u32 btrfs_item_end_nr(struct extent_buffer *eb, int nr)
1864{
1865	return btrfs_item_end(eb, btrfs_item_nr(nr));
1866}
1867
1868static inline u32 btrfs_item_offset_nr(struct extent_buffer *eb, int nr)
1869{
1870	return btrfs_item_offset(eb, btrfs_item_nr(nr));
1871}
1872
1873static inline u32 btrfs_item_size_nr(struct extent_buffer *eb, int nr)
1874{
1875	return btrfs_item_size(eb, btrfs_item_nr(nr));
1876}
1877
1878static inline void btrfs_item_key(struct extent_buffer *eb,
1879			   struct btrfs_disk_key *disk_key, int nr)
1880{
1881	struct btrfs_item *item = btrfs_item_nr(nr);
1882	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
1883}
1884
1885static inline void btrfs_set_item_key(struct extent_buffer *eb,
1886			       struct btrfs_disk_key *disk_key, int nr)
1887{
1888	struct btrfs_item *item = btrfs_item_nr(nr);
1889	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
1890}
1891
1892BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
1893
1894/*
1895 * struct btrfs_root_ref
 
1896 */
1897BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
1898BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
1899BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
1900
1901/* struct btrfs_dir_item */
1902BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
1903BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
1904BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
1905BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
1906BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
1907BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
1908			 data_len, 16);
1909BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
1910			 name_len, 16);
1911BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
1912			 transid, 64);
1913
1914static inline void btrfs_dir_item_key(struct extent_buffer *eb,
1915				      struct btrfs_dir_item *item,
1916				      struct btrfs_disk_key *key)
1917{
1918	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
1919}
 
 
 
 
1920
1921static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
1922					  struct btrfs_dir_item *item,
1923					  struct btrfs_disk_key *key)
1924{
1925	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
1926}
1927
1928BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
1929		   num_entries, 64);
1930BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
1931		   num_bitmaps, 64);
1932BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
1933		   generation, 64);
1934
1935static inline void btrfs_free_space_key(struct extent_buffer *eb,
1936					struct btrfs_free_space_header *h,
1937					struct btrfs_disk_key *key)
1938{
1939	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1940}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1941
1942static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
1943					    struct btrfs_free_space_header *h,
1944					    struct btrfs_disk_key *key)
1945{
1946	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1947}
1948
1949/* struct btrfs_disk_key */
1950BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
1951			 objectid, 64);
1952BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
1953BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1954
1955static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
1956					 struct btrfs_disk_key *disk)
1957{
1958	cpu->offset = le64_to_cpu(disk->offset);
1959	cpu->type = disk->type;
1960	cpu->objectid = le64_to_cpu(disk->objectid);
1961}
1962
1963static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
1964					 struct btrfs_key *cpu)
1965{
1966	disk->offset = cpu_to_le64(cpu->offset);
1967	disk->type = cpu->type;
1968	disk->objectid = cpu_to_le64(cpu->objectid);
1969}
1970
1971static inline void btrfs_node_key_to_cpu(struct extent_buffer *eb,
1972				  struct btrfs_key *key, int nr)
1973{
1974	struct btrfs_disk_key disk_key;
1975	btrfs_node_key(eb, &disk_key, nr);
1976	btrfs_disk_key_to_cpu(key, &disk_key);
1977}
1978
1979static inline void btrfs_item_key_to_cpu(struct extent_buffer *eb,
1980				  struct btrfs_key *key, int nr)
1981{
1982	struct btrfs_disk_key disk_key;
1983	btrfs_item_key(eb, &disk_key, nr);
1984	btrfs_disk_key_to_cpu(key, &disk_key);
1985}
1986
1987static inline void btrfs_dir_item_key_to_cpu(struct extent_buffer *eb,
1988				      struct btrfs_dir_item *item,
1989				      struct btrfs_key *key)
1990{
1991	struct btrfs_disk_key disk_key;
1992	btrfs_dir_item_key(eb, item, &disk_key);
1993	btrfs_disk_key_to_cpu(key, &disk_key);
1994}
1995
 
 
1996
1997static inline u8 btrfs_key_type(struct btrfs_key *key)
1998{
1999	return key->type;
2000}
2001
2002static inline void btrfs_set_key_type(struct btrfs_key *key, u8 val)
2003{
2004	key->type = val;
2005}
2006
2007/* struct btrfs_header */
2008BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
2009BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
2010			  generation, 64);
2011BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
2012BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
2013BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
2014BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
2015BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
2016			 generation, 64);
2017BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
2018BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
2019			 nritems, 32);
2020BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2021
2022static inline int btrfs_header_flag(struct extent_buffer *eb, u64 flag)
2023{
2024	return (btrfs_header_flags(eb) & flag) == flag;
2025}
2026
2027static inline int btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2028{
2029	u64 flags = btrfs_header_flags(eb);
2030	btrfs_set_header_flags(eb, flags | flag);
2031	return (flags & flag) == flag;
2032}
2033
2034static inline int btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2035{
2036	u64 flags = btrfs_header_flags(eb);
2037	btrfs_set_header_flags(eb, flags & ~flag);
2038	return (flags & flag) == flag;
2039}
2040
2041static inline int btrfs_header_backref_rev(struct extent_buffer *eb)
2042{
2043	u64 flags = btrfs_header_flags(eb);
2044	return flags >> BTRFS_BACKREF_REV_SHIFT;
2045}
2046
2047static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2048						int rev)
2049{
2050	u64 flags = btrfs_header_flags(eb);
2051	flags &= ~BTRFS_BACKREF_REV_MASK;
2052	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2053	btrfs_set_header_flags(eb, flags);
2054}
2055
2056static inline unsigned long btrfs_header_fsid(void)
2057{
2058	return offsetof(struct btrfs_header, fsid);
2059}
2060
2061static inline unsigned long btrfs_header_chunk_tree_uuid(struct extent_buffer *eb)
2062{
2063	return offsetof(struct btrfs_header, chunk_tree_uuid);
2064}
2065
2066static inline int btrfs_is_leaf(struct extent_buffer *eb)
2067{
2068	return btrfs_header_level(eb) == 0;
2069}
2070
2071/* struct btrfs_root_item */
2072BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2073		   generation, 64);
2074BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2075BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2076BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2077
2078BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2079			 generation, 64);
2080BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2081BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2082BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2083BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2084BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2085BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2086BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2087BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2088			 last_snapshot, 64);
2089BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2090			 generation_v2, 64);
2091BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2092			 ctransid, 64);
2093BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2094			 otransid, 64);
2095BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2096			 stransid, 64);
2097BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2098			 rtransid, 64);
2099
2100static inline bool btrfs_root_readonly(struct btrfs_root *root)
2101{
2102	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2103}
2104
2105static inline bool btrfs_root_dead(struct btrfs_root *root)
2106{
2107	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2108}
2109
2110/* struct btrfs_root_backup */
2111BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2112		   tree_root, 64);
2113BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2114		   tree_root_gen, 64);
2115BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2116		   tree_root_level, 8);
2117
2118BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2119		   chunk_root, 64);
2120BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2121		   chunk_root_gen, 64);
2122BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2123		   chunk_root_level, 8);
2124
2125BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2126		   extent_root, 64);
2127BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2128		   extent_root_gen, 64);
2129BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2130		   extent_root_level, 8);
2131
2132BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2133		   fs_root, 64);
2134BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2135		   fs_root_gen, 64);
2136BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2137		   fs_root_level, 8);
2138
2139BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2140		   dev_root, 64);
2141BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2142		   dev_root_gen, 64);
2143BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2144		   dev_root_level, 8);
2145
2146BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2147		   csum_root, 64);
2148BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2149		   csum_root_gen, 64);
2150BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2151		   csum_root_level, 8);
2152BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2153		   total_bytes, 64);
2154BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2155		   bytes_used, 64);
2156BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2157		   num_devices, 64);
2158
2159/* struct btrfs_balance_item */
2160BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2161
2162static inline void btrfs_balance_data(struct extent_buffer *eb,
2163				      struct btrfs_balance_item *bi,
2164				      struct btrfs_disk_balance_args *ba)
2165{
2166	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2167}
2168
2169static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2170					  struct btrfs_balance_item *bi,
2171					  struct btrfs_disk_balance_args *ba)
2172{
2173	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2174}
2175
2176static inline void btrfs_balance_meta(struct extent_buffer *eb,
2177				      struct btrfs_balance_item *bi,
2178				      struct btrfs_disk_balance_args *ba)
2179{
2180	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2181}
2182
2183static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2184					  struct btrfs_balance_item *bi,
2185					  struct btrfs_disk_balance_args *ba)
2186{
2187	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2188}
2189
2190static inline void btrfs_balance_sys(struct extent_buffer *eb,
2191				     struct btrfs_balance_item *bi,
2192				     struct btrfs_disk_balance_args *ba)
2193{
2194	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2195}
2196
2197static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2198					 struct btrfs_balance_item *bi,
2199					 struct btrfs_disk_balance_args *ba)
2200{
2201	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2202}
2203
2204static inline void
2205btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2206			       struct btrfs_disk_balance_args *disk)
2207{
2208	memset(cpu, 0, sizeof(*cpu));
2209
2210	cpu->profiles = le64_to_cpu(disk->profiles);
2211	cpu->usage = le64_to_cpu(disk->usage);
2212	cpu->devid = le64_to_cpu(disk->devid);
2213	cpu->pstart = le64_to_cpu(disk->pstart);
2214	cpu->pend = le64_to_cpu(disk->pend);
2215	cpu->vstart = le64_to_cpu(disk->vstart);
2216	cpu->vend = le64_to_cpu(disk->vend);
2217	cpu->target = le64_to_cpu(disk->target);
2218	cpu->flags = le64_to_cpu(disk->flags);
2219	cpu->limit = le64_to_cpu(disk->limit);
2220	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2221	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2222}
2223
2224static inline void
2225btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2226			       struct btrfs_balance_args *cpu)
2227{
2228	memset(disk, 0, sizeof(*disk));
2229
2230	disk->profiles = cpu_to_le64(cpu->profiles);
2231	disk->usage = cpu_to_le64(cpu->usage);
2232	disk->devid = cpu_to_le64(cpu->devid);
2233	disk->pstart = cpu_to_le64(cpu->pstart);
2234	disk->pend = cpu_to_le64(cpu->pend);
2235	disk->vstart = cpu_to_le64(cpu->vstart);
2236	disk->vend = cpu_to_le64(cpu->vend);
2237	disk->target = cpu_to_le64(cpu->target);
2238	disk->flags = cpu_to_le64(cpu->flags);
2239	disk->limit = cpu_to_le64(cpu->limit);
2240	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2241	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2242}
2243
2244/* struct btrfs_super_block */
2245BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2246BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2247BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2248			 generation, 64);
2249BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2250BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2251			 struct btrfs_super_block, sys_chunk_array_size, 32);
2252BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2253			 struct btrfs_super_block, chunk_root_generation, 64);
2254BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2255			 root_level, 8);
2256BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2257			 chunk_root, 64);
2258BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2259			 chunk_root_level, 8);
2260BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2261			 log_root, 64);
2262BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2263			 log_root_transid, 64);
2264BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2265			 log_root_level, 8);
2266BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2267			 total_bytes, 64);
2268BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2269			 bytes_used, 64);
2270BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2271			 sectorsize, 32);
2272BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2273			 nodesize, 32);
2274BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2275			 stripesize, 32);
2276BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2277			 root_dir_objectid, 64);
2278BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2279			 num_devices, 64);
2280BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2281			 compat_flags, 64);
2282BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2283			 compat_ro_flags, 64);
2284BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2285			 incompat_flags, 64);
2286BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2287			 csum_type, 16);
2288BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2289			 cache_generation, 64);
2290BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2291BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2292			 uuid_tree_generation, 64);
2293
2294static inline int btrfs_super_csum_size(struct btrfs_super_block *s)
2295{
2296	u16 t = btrfs_super_csum_type(s);
2297	/*
2298	 * csum type is validated at mount time
2299	 */
2300	return btrfs_csum_sizes[t];
2301}
2302
2303static inline unsigned long btrfs_leaf_data(struct extent_buffer *l)
2304{
2305	return offsetof(struct btrfs_leaf, items);
2306}
2307
2308/*
2309 * The leaf data grows from end-to-front in the node.
2310 * this returns the address of the start of the last item,
2311 * which is the stop of the leaf data stack
2312 */
2313static inline unsigned int leaf_data_end(struct btrfs_fs_info *fs_info,
2314					 struct extent_buffer *leaf)
2315{
2316	u32 nr = btrfs_header_nritems(leaf);
2317
2318	if (nr == 0)
2319		return BTRFS_LEAF_DATA_SIZE(fs_info);
2320	return btrfs_item_offset_nr(leaf, nr - 1);
2321}
2322
2323/* struct btrfs_file_extent_item */
2324BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2325BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2326			 struct btrfs_file_extent_item, disk_bytenr, 64);
2327BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2328			 struct btrfs_file_extent_item, offset, 64);
2329BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2330			 struct btrfs_file_extent_item, generation, 64);
2331BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2332			 struct btrfs_file_extent_item, num_bytes, 64);
2333BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2334			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2335BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2336			 struct btrfs_file_extent_item, compression, 8);
2337
2338static inline unsigned long
2339btrfs_file_extent_inline_start(struct btrfs_file_extent_item *e)
2340{
2341	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2342}
2343
2344static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2345{
2346	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2347}
2348
2349BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2350		   disk_bytenr, 64);
2351BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2352		   generation, 64);
2353BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2354		   disk_num_bytes, 64);
2355BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2356		  offset, 64);
2357BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2358		   num_bytes, 64);
2359BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2360		   ram_bytes, 64);
2361BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2362		   compression, 8);
2363BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2364		   encryption, 8);
2365BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2366		   other_encoding, 16);
2367
2368/*
2369 * this returns the number of bytes used by the item on disk, minus the
2370 * size of any extent headers.  If a file is compressed on disk, this is
2371 * the compressed size
2372 */
2373static inline u32 btrfs_file_extent_inline_item_len(struct extent_buffer *eb,
2374						    struct btrfs_item *e)
2375{
2376	return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2377}
2378
2379/* this returns the number of file bytes represented by the inline item.
2380 * If an item is compressed, this is the uncompressed size
2381 */
2382static inline u32 btrfs_file_extent_inline_len(struct extent_buffer *eb,
2383					       int slot,
2384					       struct btrfs_file_extent_item *fi)
2385{
2386	struct btrfs_map_token token;
2387
2388	btrfs_init_map_token(&token);
2389	/*
2390	 * return the space used on disk if this item isn't
2391	 * compressed or encoded
2392	 */
2393	if (btrfs_token_file_extent_compression(eb, fi, &token) == 0 &&
2394	    btrfs_token_file_extent_encryption(eb, fi, &token) == 0 &&
2395	    btrfs_token_file_extent_other_encoding(eb, fi, &token) == 0) {
2396		return btrfs_file_extent_inline_item_len(eb,
2397							 btrfs_item_nr(slot));
2398	}
2399
2400	/* otherwise use the ram bytes field */
2401	return btrfs_token_file_extent_ram_bytes(eb, fi, &token);
2402}
2403
2404
2405/* btrfs_dev_stats_item */
2406static inline u64 btrfs_dev_stats_value(struct extent_buffer *eb,
2407					struct btrfs_dev_stats_item *ptr,
2408					int index)
2409{
2410	u64 val;
2411
2412	read_extent_buffer(eb, &val,
2413			   offsetof(struct btrfs_dev_stats_item, values) +
2414			    ((unsigned long)ptr) + (index * sizeof(u64)),
2415			   sizeof(val));
2416	return val;
2417}
2418
2419static inline void btrfs_set_dev_stats_value(struct extent_buffer *eb,
2420					     struct btrfs_dev_stats_item *ptr,
2421					     int index, u64 val)
2422{
2423	write_extent_buffer(eb, &val,
2424			    offsetof(struct btrfs_dev_stats_item, values) +
2425			     ((unsigned long)ptr) + (index * sizeof(u64)),
2426			    sizeof(val));
2427}
2428
2429/* btrfs_qgroup_status_item */
2430BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2431		   generation, 64);
2432BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2433		   version, 64);
2434BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2435		   flags, 64);
2436BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2437		   rescan, 64);
2438
2439/* btrfs_qgroup_info_item */
2440BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2441		   generation, 64);
2442BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2443BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2444		   rfer_cmpr, 64);
2445BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2446BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2447		   excl_cmpr, 64);
2448
2449BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2450			 struct btrfs_qgroup_info_item, generation, 64);
2451BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2452			 rfer, 64);
2453BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2454			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2455BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2456			 excl, 64);
2457BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2458			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2459
2460/* btrfs_qgroup_limit_item */
2461BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2462		   flags, 64);
2463BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2464		   max_rfer, 64);
2465BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2466		   max_excl, 64);
2467BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2468		   rsv_rfer, 64);
2469BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2470		   rsv_excl, 64);
2471
2472/* btrfs_dev_replace_item */
2473BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2474		   struct btrfs_dev_replace_item, src_devid, 64);
2475BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2476		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2477		   64);
2478BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2479		   replace_state, 64);
2480BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2481		   time_started, 64);
2482BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2483		   time_stopped, 64);
2484BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2485		   num_write_errors, 64);
2486BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2487		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2488		   64);
2489BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2490		   cursor_left, 64);
2491BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2492		   cursor_right, 64);
2493
2494BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2495			 struct btrfs_dev_replace_item, src_devid, 64);
2496BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2497			 struct btrfs_dev_replace_item,
2498			 cont_reading_from_srcdev_mode, 64);
2499BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2500			 struct btrfs_dev_replace_item, replace_state, 64);
2501BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2502			 struct btrfs_dev_replace_item, time_started, 64);
2503BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2504			 struct btrfs_dev_replace_item, time_stopped, 64);
2505BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2506			 struct btrfs_dev_replace_item, num_write_errors, 64);
2507BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2508			 struct btrfs_dev_replace_item,
2509			 num_uncorrectable_read_errors, 64);
2510BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2511			 struct btrfs_dev_replace_item, cursor_left, 64);
2512BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2513			 struct btrfs_dev_replace_item, cursor_right, 64);
2514
2515/* helper function to cast into the data area of the leaf. */
2516#define btrfs_item_ptr(leaf, slot, type) \
2517	((type *)(btrfs_leaf_data(leaf) + \
2518	btrfs_item_offset_nr(leaf, slot)))
2519
2520#define btrfs_item_ptr_offset(leaf, slot) \
2521	((unsigned long)(btrfs_leaf_data(leaf) + \
2522	btrfs_item_offset_nr(leaf, slot)))
2523
2524static inline bool btrfs_mixed_space_info(struct btrfs_space_info *space_info)
2525{
2526	return ((space_info->flags & BTRFS_BLOCK_GROUP_METADATA) &&
2527		(space_info->flags & BTRFS_BLOCK_GROUP_DATA));
2528}
2529
2530static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2531{
2532	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2533}
2534
2535/* extent-tree.c */
2536
2537u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes);
2538
2539static inline u64 btrfs_calc_trans_metadata_size(struct btrfs_fs_info *fs_info,
2540						 unsigned num_items)
2541{
2542	return fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2543}
2544
2545/*
2546 * Doing a truncate won't result in new nodes or leaves, just what we need for
2547 * COW.
2548 */
2549static inline u64 btrfs_calc_trunc_metadata_size(struct btrfs_fs_info *fs_info,
2550						 unsigned num_items)
2551{
2552	return fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2553}
2554
2555int btrfs_should_throttle_delayed_refs(struct btrfs_trans_handle *trans,
2556				       struct btrfs_fs_info *fs_info);
2557int btrfs_check_space_for_delayed_refs(struct btrfs_trans_handle *trans,
2558				       struct btrfs_fs_info *fs_info);
2559void btrfs_dec_block_group_reservations(struct btrfs_fs_info *fs_info,
2560					 const u64 start);
2561void btrfs_wait_block_group_reservations(struct btrfs_block_group_cache *bg);
2562bool btrfs_inc_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
2563void btrfs_dec_nocow_writers(struct btrfs_fs_info *fs_info, u64 bytenr);
2564void btrfs_wait_nocow_writers(struct btrfs_block_group_cache *bg);
2565void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
2566int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2567			   struct btrfs_fs_info *fs_info, unsigned long count);
2568int btrfs_async_run_delayed_refs(struct btrfs_fs_info *fs_info,
2569				 unsigned long count, u64 transid, int wait);
2570int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2571int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2572			     struct btrfs_fs_info *fs_info, u64 bytenr,
2573			     u64 offset, int metadata, u64 *refs, u64 *flags);
2574int btrfs_pin_extent(struct btrfs_fs_info *fs_info,
2575		     u64 bytenr, u64 num, int reserved);
2576int btrfs_pin_extent_for_log_replay(struct btrfs_fs_info *fs_info,
2577				    u64 bytenr, u64 num_bytes);
2578int btrfs_exclude_logged_extents(struct btrfs_fs_info *fs_info,
2579				 struct extent_buffer *eb);
2580int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2581			  struct btrfs_root *root,
2582			  u64 objectid, u64 offset, u64 bytenr);
2583struct btrfs_block_group_cache *btrfs_lookup_block_group(
2584						 struct btrfs_fs_info *info,
2585						 u64 bytenr);
2586void btrfs_get_block_group(struct btrfs_block_group_cache *cache);
2587void btrfs_put_block_group(struct btrfs_block_group_cache *cache);
2588int get_block_group_index(struct btrfs_block_group_cache *cache);
2589struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2590					struct btrfs_root *root, u64 parent,
2591					u64 root_objectid,
2592					struct btrfs_disk_key *key, int level,
2593					u64 hint, u64 empty_size);
2594void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2595			   struct btrfs_root *root,
2596			   struct extent_buffer *buf,
2597			   u64 parent, int last_ref);
2598int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2599				     u64 root_objectid, u64 owner,
2600				     u64 offset, u64 ram_bytes,
2601				     struct btrfs_key *ins);
2602int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2603				   struct btrfs_fs_info *fs_info,
2604				   u64 root_objectid, u64 owner, u64 offset,
2605				   struct btrfs_key *ins);
2606int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2607			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2608			 struct btrfs_key *ins, int is_data, int delalloc);
2609int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2610		  struct extent_buffer *buf, int full_backref);
2611int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2612		  struct extent_buffer *buf, int full_backref);
2613int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2614				struct btrfs_fs_info *fs_info,
2615				u64 bytenr, u64 num_bytes, u64 flags,
2616				int level, int is_data);
2617int btrfs_free_extent(struct btrfs_trans_handle *trans,
2618		      struct btrfs_fs_info *fs_info,
2619		      u64 bytenr, u64 num_bytes, u64 parent, u64 root_objectid,
2620		      u64 owner, u64 offset);
2621
2622int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2623			       u64 start, u64 len, int delalloc);
2624int btrfs_free_and_pin_reserved_extent(struct btrfs_fs_info *fs_info,
2625				       u64 start, u64 len);
2626void btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
2627				 struct btrfs_fs_info *fs_info);
2628int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
2629			       struct btrfs_fs_info *fs_info);
2630int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2631			 struct btrfs_fs_info *fs_info,
2632			 u64 bytenr, u64 num_bytes, u64 parent,
2633			 u64 root_objectid, u64 owner, u64 offset);
2634
2635int btrfs_start_dirty_block_groups(struct btrfs_trans_handle *trans,
2636				   struct btrfs_fs_info *fs_info);
2637int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2638				   struct btrfs_fs_info *fs_info);
2639int btrfs_setup_space_cache(struct btrfs_trans_handle *trans,
2640			    struct btrfs_fs_info *fs_info);
2641int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr);
2642int btrfs_free_block_groups(struct btrfs_fs_info *info);
2643int btrfs_read_block_groups(struct btrfs_fs_info *info);
2644int btrfs_can_relocate(struct btrfs_fs_info *fs_info, u64 bytenr);
2645int btrfs_make_block_group(struct btrfs_trans_handle *trans,
2646			   struct btrfs_fs_info *fs_info, u64 bytes_used,
2647			   u64 type, u64 chunk_objectid, u64 chunk_offset,
2648			   u64 size);
2649struct btrfs_trans_handle *btrfs_start_trans_remove_block_group(
2650				struct btrfs_fs_info *fs_info,
2651				const u64 chunk_offset);
2652int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
2653			     struct btrfs_fs_info *fs_info, u64 group_start,
2654			     struct extent_map *em);
2655void btrfs_delete_unused_bgs(struct btrfs_fs_info *fs_info);
2656void btrfs_get_block_group_trimming(struct btrfs_block_group_cache *cache);
2657void btrfs_put_block_group_trimming(struct btrfs_block_group_cache *cache);
2658void btrfs_create_pending_block_groups(struct btrfs_trans_handle *trans,
2659				       struct btrfs_fs_info *fs_info);
2660u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data);
2661void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2662
2663enum btrfs_reserve_flush_enum {
2664	/* If we are in the transaction, we can't flush anything.*/
2665	BTRFS_RESERVE_NO_FLUSH,
2666	/*
2667	 * Flushing delalloc may cause deadlock somewhere, in this
2668	 * case, use FLUSH LIMIT
2669	 */
2670	BTRFS_RESERVE_FLUSH_LIMIT,
2671	BTRFS_RESERVE_FLUSH_ALL,
2672};
2673
2674enum btrfs_flush_state {
2675	FLUSH_DELAYED_ITEMS_NR	=	1,
2676	FLUSH_DELAYED_ITEMS	=	2,
2677	FLUSH_DELALLOC		=	3,
2678	FLUSH_DELALLOC_WAIT	=	4,
2679	ALLOC_CHUNK		=	5,
2680	COMMIT_TRANS		=	6,
2681};
2682
2683int btrfs_check_data_free_space(struct inode *inode, u64 start, u64 len);
2684int btrfs_alloc_data_chunk_ondemand(struct inode *inode, u64 bytes);
2685void btrfs_free_reserved_data_space(struct inode *inode, u64 start, u64 len);
2686void btrfs_free_reserved_data_space_noquota(struct inode *inode, u64 start,
2687					    u64 len);
2688void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
2689				  struct btrfs_fs_info *fs_info);
2690void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans);
2691int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
2692				  struct inode *inode);
2693void btrfs_orphan_release_metadata(struct inode *inode);
2694int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2695				     struct btrfs_block_rsv *rsv,
2696				     int nitems,
2697				     u64 *qgroup_reserved, bool use_global_rsv);
2698void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
2699				      struct btrfs_block_rsv *rsv,
2700				      u64 qgroup_reserved);
2701int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes);
2702void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes);
2703int btrfs_delalloc_reserve_space(struct inode *inode, u64 start, u64 len);
2704void btrfs_delalloc_release_space(struct inode *inode, u64 start, u64 len);
2705void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv, unsigned short type);
2706struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_fs_info *fs_info,
2707					      unsigned short type);
2708void btrfs_free_block_rsv(struct btrfs_fs_info *fs_info,
2709			  struct btrfs_block_rsv *rsv);
2710void __btrfs_free_block_rsv(struct btrfs_block_rsv *rsv);
2711int btrfs_block_rsv_add(struct btrfs_root *root,
2712			struct btrfs_block_rsv *block_rsv, u64 num_bytes,
2713			enum btrfs_reserve_flush_enum flush);
2714int btrfs_block_rsv_check(struct btrfs_block_rsv *block_rsv, int min_factor);
2715int btrfs_block_rsv_refill(struct btrfs_root *root,
2716			   struct btrfs_block_rsv *block_rsv, u64 min_reserved,
2717			   enum btrfs_reserve_flush_enum flush);
2718int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
2719			    struct btrfs_block_rsv *dst_rsv, u64 num_bytes,
2720			    int update_size);
2721int btrfs_cond_migrate_bytes(struct btrfs_fs_info *fs_info,
2722			     struct btrfs_block_rsv *dest, u64 num_bytes,
2723			     int min_factor);
2724void btrfs_block_rsv_release(struct btrfs_fs_info *fs_info,
2725			     struct btrfs_block_rsv *block_rsv,
2726			     u64 num_bytes);
2727int btrfs_inc_block_group_ro(struct btrfs_root *root,
2728			     struct btrfs_block_group_cache *cache);
2729void btrfs_dec_block_group_ro(struct btrfs_block_group_cache *cache);
2730void btrfs_put_block_group_cache(struct btrfs_fs_info *info);
2731u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2732int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2733				   u64 start, u64 end);
2734int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2735			 u64 num_bytes, u64 *actual_bytes);
2736int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
2737			    struct btrfs_fs_info *fs_info, u64 type);
2738int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2739
2740int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2741int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2742					 struct btrfs_fs_info *fs_info);
2743int __get_raid_index(u64 flags);
2744int btrfs_start_write_no_snapshoting(struct btrfs_root *root);
2745void btrfs_end_write_no_snapshoting(struct btrfs_root *root);
2746void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2747void check_system_chunk(struct btrfs_trans_handle *trans,
2748			struct btrfs_fs_info *fs_info, const u64 type);
2749u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
2750		       struct btrfs_fs_info *info, u64 start, u64 end);
2751
2752/* ctree.c */
2753int btrfs_bin_search(struct extent_buffer *eb, struct btrfs_key *key,
2754		     int level, int *slot);
2755int btrfs_comp_cpu_keys(struct btrfs_key *k1, struct btrfs_key *k2);
 
 
2756int btrfs_previous_item(struct btrfs_root *root,
2757			struct btrfs_path *path, u64 min_objectid,
2758			int type);
2759int btrfs_previous_extent_item(struct btrfs_root *root,
2760			struct btrfs_path *path, u64 min_objectid);
2761void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2762			     struct btrfs_path *path,
2763			     struct btrfs_key *new_key);
2764struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2765struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
2766int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2767			struct btrfs_key *key, int lowest_level,
2768			u64 min_trans);
2769int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2770			 struct btrfs_path *path,
2771			 u64 min_trans);
2772enum btrfs_compare_tree_result {
2773	BTRFS_COMPARE_TREE_NEW,
2774	BTRFS_COMPARE_TREE_DELETED,
2775	BTRFS_COMPARE_TREE_CHANGED,
2776	BTRFS_COMPARE_TREE_SAME,
2777};
2778typedef int (*btrfs_changed_cb_t)(struct btrfs_root *left_root,
2779				  struct btrfs_root *right_root,
2780				  struct btrfs_path *left_path,
2781				  struct btrfs_path *right_path,
2782				  struct btrfs_key *key,
2783				  enum btrfs_compare_tree_result result,
2784				  void *ctx);
2785int btrfs_compare_trees(struct btrfs_root *left_root,
2786			struct btrfs_root *right_root,
2787			btrfs_changed_cb_t cb, void *ctx);
2788int btrfs_cow_block(struct btrfs_trans_handle *trans,
2789		    struct btrfs_root *root, struct extent_buffer *buf,
2790		    struct extent_buffer *parent, int parent_slot,
2791		    struct extent_buffer **cow_ret);
 
2792int btrfs_copy_root(struct btrfs_trans_handle *trans,
2793		      struct btrfs_root *root,
2794		      struct extent_buffer *buf,
2795		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2796int btrfs_block_can_be_shared(struct btrfs_root *root,
2797			      struct extent_buffer *buf);
2798void btrfs_extend_item(struct btrfs_fs_info *fs_info, struct btrfs_path *path,
2799		       u32 data_size);
2800void btrfs_truncate_item(struct btrfs_fs_info *fs_info,
2801			 struct btrfs_path *path, u32 new_size, int from_end);
2802int btrfs_split_item(struct btrfs_trans_handle *trans,
2803		     struct btrfs_root *root,
2804		     struct btrfs_path *path,
2805		     struct btrfs_key *new_key,
2806		     unsigned long split_offset);
2807int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2808			 struct btrfs_root *root,
2809			 struct btrfs_path *path,
2810			 struct btrfs_key *new_key);
2811int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2812		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2813int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root
2814		      *root, struct btrfs_key *key, struct btrfs_path *p, int
2815		      ins_len, int cow);
2816int btrfs_search_old_slot(struct btrfs_root *root, struct btrfs_key *key,
2817			  struct btrfs_path *p, u64 time_seq);
2818int btrfs_search_slot_for_read(struct btrfs_root *root,
2819			       struct btrfs_key *key, struct btrfs_path *p,
2820			       int find_higher, int return_any);
 
2821int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2822		       struct btrfs_root *root, struct extent_buffer *parent,
2823		       int start_slot, u64 *last_ret,
2824		       struct btrfs_key *progress);
2825void btrfs_release_path(struct btrfs_path *p);
2826struct btrfs_path *btrfs_alloc_path(void);
2827void btrfs_free_path(struct btrfs_path *p);
2828void btrfs_set_path_blocking(struct btrfs_path *p);
2829void btrfs_clear_path_blocking(struct btrfs_path *p,
2830			       struct extent_buffer *held, int held_rw);
2831void btrfs_unlock_up_safe(struct btrfs_path *p, int level);
2832
2833int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2834		   struct btrfs_path *path, int slot, int nr);
2835static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2836				 struct btrfs_root *root,
2837				 struct btrfs_path *path)
2838{
2839	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2840}
2841
2842void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
2843			    struct btrfs_key *cpu_key, u32 *data_size,
2844			    u32 total_data, u32 total_size, int nr);
2845int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root
2846		      *root, struct btrfs_key *key, void *data, u32 data_size);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2847int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2848			     struct btrfs_root *root,
2849			     struct btrfs_path *path,
2850			     struct btrfs_key *cpu_key, u32 *data_size, int nr);
2851
2852static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2853					  struct btrfs_root *root,
2854					  struct btrfs_path *path,
2855					  struct btrfs_key *key,
2856					  u32 data_size)
2857{
2858	return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
 
 
 
 
 
 
 
2859}
2860
2861int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
2862int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2863int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2864			u64 time_seq);
2865static inline int btrfs_next_old_item(struct btrfs_root *root,
2866				      struct btrfs_path *p, u64 time_seq)
2867{
2868	++p->slots[0];
2869	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2870		return btrfs_next_old_leaf(root, p, time_seq);
2871	return 0;
2872}
2873static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2874{
2875	return btrfs_next_old_item(root, p, 0);
2876}
2877int btrfs_leaf_free_space(struct btrfs_fs_info *fs_info,
2878			  struct extent_buffer *leaf);
2879int __must_check btrfs_drop_snapshot(struct btrfs_root *root,
2880				     struct btrfs_block_rsv *block_rsv,
2881				     int update_ref, int for_reloc);
2882int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2883			struct btrfs_root *root,
2884			struct extent_buffer *node,
2885			struct extent_buffer *parent);
2886static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2887{
2888	/*
2889	 * Do it this way so we only ever do one test_bit in the normal case.
2890	 */
2891	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
2892		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
2893			return 2;
2894		return 1;
2895	}
2896	return 0;
2897}
2898
2899/*
2900 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
2901 * anything except sleeping. This function is used to check the status of
2902 * the fs.
2903 */
2904static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
2905{
2906	return fs_info->sb->s_flags & MS_RDONLY || btrfs_fs_closing(fs_info);
2907}
2908
2909static inline void free_fs_info(struct btrfs_fs_info *fs_info)
2910{
2911	kfree(fs_info->balance_ctl);
2912	kfree(fs_info->delayed_root);
2913	kfree(fs_info->extent_root);
2914	kfree(fs_info->tree_root);
2915	kfree(fs_info->chunk_root);
2916	kfree(fs_info->dev_root);
2917	kfree(fs_info->csum_root);
2918	kfree(fs_info->quota_root);
2919	kfree(fs_info->uuid_root);
2920	kfree(fs_info->free_space_root);
2921	kfree(fs_info->super_copy);
2922	kfree(fs_info->super_for_commit);
2923	security_free_mnt_opts(&fs_info->security_opts);
2924	kfree(fs_info);
2925}
2926
2927/* tree mod log functions from ctree.c */
2928u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
2929			   struct seq_list *elem);
2930void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
2931			    struct seq_list *elem);
2932int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
2933
2934/* root-item.c */
2935int btrfs_add_root_ref(struct btrfs_trans_handle *trans,
2936		       struct btrfs_fs_info *fs_info,
2937		       u64 root_id, u64 ref_id, u64 dirid, u64 sequence,
2938		       const char *name, int name_len);
2939int btrfs_del_root_ref(struct btrfs_trans_handle *trans,
2940		       struct btrfs_fs_info *fs_info,
2941		       u64 root_id, u64 ref_id, u64 dirid, u64 *sequence,
2942		       const char *name, int name_len);
2943int btrfs_del_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2944		   struct btrfs_key *key);
2945int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root
2946		      *root, struct btrfs_key *key, struct btrfs_root_item
2947		      *item);
2948int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
2949				   struct btrfs_root *root,
2950				   struct btrfs_key *key,
2951				   struct btrfs_root_item *item);
2952int btrfs_find_root(struct btrfs_root *root, struct btrfs_key *search_key,
2953		    struct btrfs_path *path, struct btrfs_root_item *root_item,
2954		    struct btrfs_key *root_key);
2955int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
2956void btrfs_set_root_node(struct btrfs_root_item *item,
2957			 struct extent_buffer *node);
2958void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
2959void btrfs_update_root_times(struct btrfs_trans_handle *trans,
2960			     struct btrfs_root *root);
2961
2962/* uuid-tree.c */
2963int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans,
2964			struct btrfs_fs_info *fs_info, u8 *uuid, u8 type,
2965			u64 subid);
2966int btrfs_uuid_tree_rem(struct btrfs_trans_handle *trans,
2967			struct btrfs_fs_info *fs_info, u8 *uuid, u8 type,
2968			u64 subid);
2969int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info,
2970			    int (*check_func)(struct btrfs_fs_info *, u8 *, u8,
2971					      u64));
2972
2973/* dir-item.c */
2974int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
2975			  const char *name, int name_len);
2976int btrfs_insert_dir_item(struct btrfs_trans_handle *trans,
2977			  struct btrfs_root *root, const char *name,
2978			  int name_len, struct inode *dir,
2979			  struct btrfs_key *location, u8 type, u64 index);
2980struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
2981					     struct btrfs_root *root,
2982					     struct btrfs_path *path, u64 dir,
2983					     const char *name, int name_len,
2984					     int mod);
2985struct btrfs_dir_item *
2986btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
2987			    struct btrfs_root *root,
2988			    struct btrfs_path *path, u64 dir,
2989			    u64 objectid, const char *name, int name_len,
2990			    int mod);
2991struct btrfs_dir_item *
2992btrfs_search_dir_index_item(struct btrfs_root *root,
2993			    struct btrfs_path *path, u64 dirid,
2994			    const char *name, int name_len);
2995int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
2996			      struct btrfs_root *root,
2997			      struct btrfs_path *path,
2998			      struct btrfs_dir_item *di);
2999int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
3000			    struct btrfs_root *root,
3001			    struct btrfs_path *path, u64 objectid,
3002			    const char *name, u16 name_len,
3003			    const void *data, u16 data_len);
3004struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
3005					  struct btrfs_root *root,
3006					  struct btrfs_path *path, u64 dir,
3007					  const char *name, u16 name_len,
3008					  int mod);
3009int verify_dir_item(struct btrfs_fs_info *fs_info,
3010		    struct extent_buffer *leaf,
3011		    struct btrfs_dir_item *dir_item);
3012struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
3013						 struct btrfs_path *path,
3014						 const char *name,
3015						 int name_len);
3016
3017/* orphan.c */
3018int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
3019			     struct btrfs_root *root, u64 offset);
3020int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
3021			  struct btrfs_root *root, u64 offset);
3022int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
3023
3024/* inode-item.c */
3025int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
3026			   struct btrfs_root *root,
3027			   const char *name, int name_len,
3028			   u64 inode_objectid, u64 ref_objectid, u64 index);
3029int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
3030			   struct btrfs_root *root,
3031			   const char *name, int name_len,
3032			   u64 inode_objectid, u64 ref_objectid, u64 *index);
3033int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
3034			     struct btrfs_root *root,
3035			     struct btrfs_path *path, u64 objectid);
3036int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
3037		       *root, struct btrfs_path *path,
3038		       struct btrfs_key *location, int mod);
3039
3040struct btrfs_inode_extref *
3041btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
3042			  struct btrfs_root *root,
3043			  struct btrfs_path *path,
3044			  const char *name, int name_len,
3045			  u64 inode_objectid, u64 ref_objectid, int ins_len,
3046			  int cow);
3047
3048int btrfs_find_name_in_ext_backref(struct btrfs_path *path,
3049				   u64 ref_objectid, const char *name,
3050				   int name_len,
3051				   struct btrfs_inode_extref **extref_ret);
3052
3053/* file-item.c */
3054struct btrfs_dio_private;
3055int btrfs_del_csums(struct btrfs_trans_handle *trans,
3056		    struct btrfs_fs_info *fs_info, u64 bytenr, u64 len);
3057int btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio, u32 *dst);
3058int btrfs_lookup_bio_sums_dio(struct inode *inode, struct bio *bio,
3059			      u64 logical_offset);
3060int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
3061			     struct btrfs_root *root,
3062			     u64 objectid, u64 pos,
3063			     u64 disk_offset, u64 disk_num_bytes,
3064			     u64 num_bytes, u64 offset, u64 ram_bytes,
3065			     u8 compression, u8 encryption, u16 other_encoding);
3066int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
3067			     struct btrfs_root *root,
3068			     struct btrfs_path *path, u64 objectid,
3069			     u64 bytenr, int mod);
3070int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
3071			   struct btrfs_root *root,
3072			   struct btrfs_ordered_sum *sums);
3073int btrfs_csum_one_bio(struct inode *inode, struct bio *bio,
3074		       u64 file_start, int contig);
3075int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
3076			     struct list_head *list, int search_commit);
3077void btrfs_extent_item_to_extent_map(struct inode *inode,
3078				     const struct btrfs_path *path,
3079				     struct btrfs_file_extent_item *fi,
3080				     const bool new_inline,
3081				     struct extent_map *em);
3082
3083/* inode.c */
3084struct btrfs_delalloc_work {
3085	struct inode *inode;
3086	int delay_iput;
3087	struct completion completion;
3088	struct list_head list;
3089	struct btrfs_work work;
3090};
3091
3092struct btrfs_delalloc_work *btrfs_alloc_delalloc_work(struct inode *inode,
3093						    int delay_iput);
3094void btrfs_wait_and_free_delalloc_work(struct btrfs_delalloc_work *work);
3095
3096struct extent_map *btrfs_get_extent_fiemap(struct inode *inode, struct page *page,
3097					   size_t pg_offset, u64 start, u64 len,
3098					   int create);
3099noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
3100			      u64 *orig_start, u64 *orig_block_len,
3101			      u64 *ram_bytes);
3102
3103/* RHEL and EL kernels have a patch that renames PG_checked to FsMisc */
3104#if defined(ClearPageFsMisc) && !defined(ClearPageChecked)
3105#define ClearPageChecked ClearPageFsMisc
3106#define SetPageChecked SetPageFsMisc
3107#define PageChecked PageFsMisc
3108#endif
3109
3110/* This forces readahead on a given range of bytes in an inode */
3111static inline void btrfs_force_ra(struct address_space *mapping,
3112				  struct file_ra_state *ra, struct file *file,
3113				  pgoff_t offset, unsigned long req_size)
3114{
3115	page_cache_sync_readahead(mapping, ra, file, offset, req_size);
3116}
3117
3118struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
3119int btrfs_set_inode_index(struct inode *dir, u64 *index);
3120int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
3121		       struct btrfs_root *root,
3122		       struct inode *dir, struct inode *inode,
3123		       const char *name, int name_len);
3124int btrfs_add_link(struct btrfs_trans_handle *trans,
3125		   struct inode *parent_inode, struct inode *inode,
3126		   const char *name, int name_len, int add_backref, u64 index);
3127int btrfs_unlink_subvol(struct btrfs_trans_handle *trans,
3128			struct btrfs_root *root,
3129			struct inode *dir, u64 objectid,
3130			const char *name, int name_len);
3131int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
3132			int front);
3133int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
3134			       struct btrfs_root *root,
3135			       struct inode *inode, u64 new_size,
3136			       u32 min_type);
3137
3138int btrfs_start_delalloc_inodes(struct btrfs_root *root, int delay_iput);
3139int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int delay_iput,
3140			       int nr);
3141int btrfs_set_extent_delalloc(struct inode *inode, u64 start, u64 end,
3142			      struct extent_state **cached_state, int dedupe);
3143int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
3144			     struct btrfs_root *new_root,
3145			     struct btrfs_root *parent_root,
3146			     u64 new_dirid);
3147int btrfs_merge_bio_hook(struct page *page, unsigned long offset,
3148			 size_t size, struct bio *bio,
3149			 unsigned long bio_flags);
3150int btrfs_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
3151int btrfs_readpage(struct file *file, struct page *page);
3152void btrfs_evict_inode(struct inode *inode);
3153int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
3154struct inode *btrfs_alloc_inode(struct super_block *sb);
3155void btrfs_destroy_inode(struct inode *inode);
3156int btrfs_drop_inode(struct inode *inode);
3157int btrfs_init_cachep(void);
3158void btrfs_destroy_cachep(void);
3159long btrfs_ioctl_trans_end(struct file *file);
3160struct inode *btrfs_iget(struct super_block *s, struct btrfs_key *location,
3161			 struct btrfs_root *root, int *was_new);
3162struct extent_map *btrfs_get_extent(struct inode *inode, struct page *page,
3163				    size_t pg_offset, u64 start, u64 end,
3164				    int create);
3165int btrfs_update_inode(struct btrfs_trans_handle *trans,
3166			      struct btrfs_root *root,
3167			      struct inode *inode);
3168int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
3169				struct btrfs_root *root, struct inode *inode);
3170int btrfs_orphan_add(struct btrfs_trans_handle *trans, struct inode *inode);
3171int btrfs_orphan_cleanup(struct btrfs_root *root);
3172void btrfs_orphan_commit_root(struct btrfs_trans_handle *trans,
3173			      struct btrfs_root *root);
3174int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3175void btrfs_invalidate_inodes(struct btrfs_root *root);
3176void btrfs_add_delayed_iput(struct inode *inode);
3177void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3178int btrfs_prealloc_file_range(struct inode *inode, int mode,
3179			      u64 start, u64 num_bytes, u64 min_size,
3180			      loff_t actual_len, u64 *alloc_hint);
3181int btrfs_prealloc_file_range_trans(struct inode *inode,
3182				    struct btrfs_trans_handle *trans, int mode,
3183				    u64 start, u64 num_bytes, u64 min_size,
3184				    loff_t actual_len, u64 *alloc_hint);
3185extern const struct dentry_operations btrfs_dentry_operations;
3186#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3187void btrfs_test_inode_set_ops(struct inode *inode);
3188#endif
3189
3190/* ioctl.c */
3191long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3192long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3193int btrfs_ioctl_get_supported_features(void __user *arg);
3194void btrfs_update_iflags(struct inode *inode);
3195void btrfs_inherit_iflags(struct inode *inode, struct inode *dir);
3196int btrfs_is_empty_uuid(u8 *uuid);
3197int btrfs_defrag_file(struct inode *inode, struct file *file,
3198		      struct btrfs_ioctl_defrag_range_args *range,
3199		      u64 newer_than, unsigned long max_pages);
3200void btrfs_get_block_group_info(struct list_head *groups_list,
3201				struct btrfs_ioctl_space_info *space);
3202void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3203			       struct btrfs_ioctl_balance_args *bargs);
3204ssize_t btrfs_dedupe_file_range(struct file *src_file, u64 loff, u64 olen,
3205			   struct file *dst_file, u64 dst_loff);
3206
3207/* file.c */
3208int btrfs_auto_defrag_init(void);
3209void btrfs_auto_defrag_exit(void);
3210int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3211			   struct inode *inode);
3212int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3213void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3214int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3215void btrfs_drop_extent_cache(struct inode *inode, u64 start, u64 end,
3216			     int skip_pinned);
3217extern const struct file_operations btrfs_file_operations;
3218int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3219			 struct btrfs_root *root, struct inode *inode,
3220			 struct btrfs_path *path, u64 start, u64 end,
3221			 u64 *drop_end, int drop_cache,
3222			 int replace_extent,
3223			 u32 extent_item_size,
3224			 int *key_inserted);
3225int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3226		       struct btrfs_root *root, struct inode *inode, u64 start,
3227		       u64 end, int drop_cache);
3228int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3229			      struct inode *inode, u64 start, u64 end);
3230int btrfs_release_file(struct inode *inode, struct file *file);
3231int btrfs_dirty_pages(struct inode *inode, struct page **pages,
3232		      size_t num_pages, loff_t pos, size_t write_bytes,
3233		      struct extent_state **cached);
3234int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3235int btrfs_clone_file_range(struct file *file_in, loff_t pos_in,
3236			   struct file *file_out, loff_t pos_out, u64 len);
3237
3238/* tree-defrag.c */
3239int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3240			struct btrfs_root *root);
3241
3242/* sysfs.c */
3243int btrfs_init_sysfs(void);
3244void btrfs_exit_sysfs(void);
3245int btrfs_sysfs_add_mounted(struct btrfs_fs_info *fs_info);
3246void btrfs_sysfs_remove_mounted(struct btrfs_fs_info *fs_info);
3247
3248/* xattr.c */
3249ssize_t btrfs_listxattr(struct dentry *dentry, char *buffer, size_t size);
3250
3251/* super.c */
3252int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3253			unsigned long new_flags);
3254int btrfs_sync_fs(struct super_block *sb, int wait);
3255
3256static inline __printf(2, 3)
3257void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3258{
3259}
3260
3261#ifdef CONFIG_PRINTK
3262__printf(2, 3)
3263void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3264#else
3265#define btrfs_printk(fs_info, fmt, args...) \
3266	btrfs_no_printk(fs_info, fmt, ##args)
3267#endif
3268
3269#define btrfs_emerg(fs_info, fmt, args...) \
3270	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3271#define btrfs_alert(fs_info, fmt, args...) \
3272	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3273#define btrfs_crit(fs_info, fmt, args...) \
3274	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3275#define btrfs_err(fs_info, fmt, args...) \
3276	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3277#define btrfs_warn(fs_info, fmt, args...) \
3278	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3279#define btrfs_notice(fs_info, fmt, args...) \
3280	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3281#define btrfs_info(fs_info, fmt, args...) \
3282	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3283
3284/*
3285 * Wrappers that use printk_in_rcu
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3286 */
3287#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3288	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3289#define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3290	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3291#define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3292	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3293#define btrfs_err_in_rcu(fs_info, fmt, args...) \
3294	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3295#define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3296	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3297#define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3298	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3299#define btrfs_info_in_rcu(fs_info, fmt, args...) \
3300	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3301
3302/*
3303 * Wrappers that use a ratelimited printk_in_rcu
3304 */
3305#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3306	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3307#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3308	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3309#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3310	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3311#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3312	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3313#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3314	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3315#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3316	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3317#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3318	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3319
3320/*
3321 * Wrappers that use a ratelimited printk
 
 
 
3322 */
3323#define btrfs_emerg_rl(fs_info, fmt, args...) \
3324	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3325#define btrfs_alert_rl(fs_info, fmt, args...) \
3326	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3327#define btrfs_crit_rl(fs_info, fmt, args...) \
3328	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3329#define btrfs_err_rl(fs_info, fmt, args...) \
3330	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3331#define btrfs_warn_rl(fs_info, fmt, args...) \
3332	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3333#define btrfs_notice_rl(fs_info, fmt, args...) \
3334	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3335#define btrfs_info_rl(fs_info, fmt, args...) \
3336	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3337
3338#if defined(CONFIG_DYNAMIC_DEBUG)
3339#define btrfs_debug(fs_info, fmt, args...)				\
3340do {									\
3341        DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);         	\
3342        if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT))  	\
3343		btrfs_printk(fs_info, KERN_DEBUG fmt, ##args);		\
3344} while (0)
3345#define btrfs_debug_in_rcu(fs_info, fmt, args...) 			\
3346do {									\
3347        DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt); 	        \
3348        if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT)) 		\
3349		btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args);	\
3350} while (0)
3351#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3352do {									\
3353        DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);         	\
3354        if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT))  	\
3355		btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt,		\
3356				       ##args);\
3357} while (0)
3358#define btrfs_debug_rl(fs_info, fmt, args...) 				\
3359do {									\
3360        DEFINE_DYNAMIC_DEBUG_METADATA(descriptor, fmt);         	\
3361        if (unlikely(descriptor.flags & _DPRINTK_FLAGS_PRINT))  	\
3362		btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt,	\
3363					 ##args);			\
3364} while (0)
3365#elif defined(DEBUG)
3366#define btrfs_debug(fs_info, fmt, args...) \
3367	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3368#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3369	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3370#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3371	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3372#define btrfs_debug_rl(fs_info, fmt, args...) \
3373	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3374#else
3375#define btrfs_debug(fs_info, fmt, args...) \
3376	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3377#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3378	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3379#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3380	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3381#define btrfs_debug_rl(fs_info, fmt, args...) \
3382	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3383#endif
3384
3385#define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3386do {							\
3387	rcu_read_lock();				\
3388	btrfs_printk(fs_info, fmt, ##args);		\
3389	rcu_read_unlock();				\
3390} while (0)
3391
3392#define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3393do {								\
3394	static DEFINE_RATELIMIT_STATE(_rs,			\
3395		DEFAULT_RATELIMIT_INTERVAL,			\
3396		DEFAULT_RATELIMIT_BURST);       		\
3397	if (__ratelimit(&_rs))					\
3398		btrfs_printk(fs_info, fmt, ##args);		\
3399} while (0)
3400
3401#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3402do {								\
3403	rcu_read_lock();					\
3404	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3405	rcu_read_unlock();					\
3406} while (0)
3407
3408#ifdef CONFIG_BTRFS_ASSERT
3409
3410__cold
3411static inline void assfail(char *expr, char *file, int line)
3412{
3413	pr_err("assertion failed: %s, file: %s, line: %d\n",
3414	       expr, file, line);
3415	BUG();
3416}
3417
3418#define ASSERT(expr)	\
3419	(likely(expr) ? (void)0 : assfail(#expr, __FILE__, __LINE__))
3420#else
3421#define ASSERT(expr)	((void)0)
3422#endif
3423
3424__printf(5, 6)
3425__cold
3426void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3427		     unsigned int line, int errno, const char *fmt, ...);
3428
3429const char *btrfs_decode_error(int errno);
3430
3431__cold
3432void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3433			       const char *function,
3434			       unsigned int line, int errno);
3435
3436/*
3437 * Call btrfs_abort_transaction as early as possible when an error condition is
3438 * detected, that way the exact line number is reported.
3439 */
3440#define btrfs_abort_transaction(trans, errno)		\
3441do {								\
3442	/* Report first abort since mount */			\
3443	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3444			&((trans)->fs_info->fs_state))) {	\
3445		if ((errno) != -EIO) {				\
3446			WARN(1, KERN_DEBUG				\
3447			"BTRFS: Transaction aborted (error %d)\n",	\
3448			(errno));					\
3449		} else {						\
3450			pr_debug("BTRFS: Transaction aborted (error %d)\n", \
3451				  (errno));			\
3452		}						\
3453	}							\
3454	__btrfs_abort_transaction((trans), __func__,		\
3455				  __LINE__, (errno));		\
3456} while (0)
3457
3458#define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3459do {								\
3460	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,	\
3461			  (errno), fmt, ##args);		\
3462} while (0)
3463
3464__printf(5, 6)
3465__cold
3466void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3467		   unsigned int line, int errno, const char *fmt, ...);
3468/*
3469 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3470 * will panic().  Otherwise we BUG() here.
3471 */
3472#define btrfs_panic(fs_info, errno, fmt, args...)			\
3473do {									\
3474	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3475	BUG();								\
3476} while (0)
3477
3478
3479/* compatibility and incompatibility defines */
3480
3481#define btrfs_set_fs_incompat(__fs_info, opt) \
3482	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3483
3484static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3485					   u64 flag)
3486{
3487	struct btrfs_super_block *disk_super;
3488	u64 features;
3489
3490	disk_super = fs_info->super_copy;
3491	features = btrfs_super_incompat_flags(disk_super);
3492	if (!(features & flag)) {
3493		spin_lock(&fs_info->super_lock);
3494		features = btrfs_super_incompat_flags(disk_super);
3495		if (!(features & flag)) {
3496			features |= flag;
3497			btrfs_set_super_incompat_flags(disk_super, features);
3498			btrfs_info(fs_info, "setting %llu feature flag",
3499					 flag);
3500		}
3501		spin_unlock(&fs_info->super_lock);
3502	}
3503}
3504
3505#define btrfs_clear_fs_incompat(__fs_info, opt) \
3506	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3507
3508static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3509					     u64 flag)
3510{
3511	struct btrfs_super_block *disk_super;
3512	u64 features;
3513
3514	disk_super = fs_info->super_copy;
3515	features = btrfs_super_incompat_flags(disk_super);
3516	if (features & flag) {
3517		spin_lock(&fs_info->super_lock);
3518		features = btrfs_super_incompat_flags(disk_super);
3519		if (features & flag) {
3520			features &= ~flag;
3521			btrfs_set_super_incompat_flags(disk_super, features);
3522			btrfs_info(fs_info, "clearing %llu feature flag",
3523					 flag);
3524		}
3525		spin_unlock(&fs_info->super_lock);
3526	}
3527}
3528
3529#define btrfs_fs_incompat(fs_info, opt) \
3530	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3531
3532static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3533{
3534	struct btrfs_super_block *disk_super;
3535	disk_super = fs_info->super_copy;
3536	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3537}
3538
3539#define btrfs_set_fs_compat_ro(__fs_info, opt) \
3540	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3541
3542static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3543					    u64 flag)
3544{
3545	struct btrfs_super_block *disk_super;
3546	u64 features;
3547
3548	disk_super = fs_info->super_copy;
3549	features = btrfs_super_compat_ro_flags(disk_super);
3550	if (!(features & flag)) {
3551		spin_lock(&fs_info->super_lock);
3552		features = btrfs_super_compat_ro_flags(disk_super);
3553		if (!(features & flag)) {
3554			features |= flag;
3555			btrfs_set_super_compat_ro_flags(disk_super, features);
3556			btrfs_info(fs_info, "setting %llu ro feature flag",
3557				   flag);
3558		}
3559		spin_unlock(&fs_info->super_lock);
3560	}
3561}
3562
3563#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3564	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3565
3566static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3567					      u64 flag)
3568{
3569	struct btrfs_super_block *disk_super;
3570	u64 features;
3571
3572	disk_super = fs_info->super_copy;
3573	features = btrfs_super_compat_ro_flags(disk_super);
3574	if (features & flag) {
3575		spin_lock(&fs_info->super_lock);
3576		features = btrfs_super_compat_ro_flags(disk_super);
3577		if (features & flag) {
3578			features &= ~flag;
3579			btrfs_set_super_compat_ro_flags(disk_super, features);
3580			btrfs_info(fs_info, "clearing %llu ro feature flag",
3581				   flag);
3582		}
3583		spin_unlock(&fs_info->super_lock);
3584	}
3585}
3586
3587#define btrfs_fs_compat_ro(fs_info, opt) \
3588	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3589
3590static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3591{
3592	struct btrfs_super_block *disk_super;
3593	disk_super = fs_info->super_copy;
3594	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3595}
3596
3597/* acl.c */
3598#ifdef CONFIG_BTRFS_FS_POSIX_ACL
3599struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
3600int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
3601int btrfs_init_acl(struct btrfs_trans_handle *trans,
3602		   struct inode *inode, struct inode *dir);
3603#else
3604#define btrfs_get_acl NULL
3605#define btrfs_set_acl NULL
3606static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3607				 struct inode *inode, struct inode *dir)
3608{
3609	return 0;
3610}
3611#endif
3612
3613/* relocation.c */
3614int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3615int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3616			  struct btrfs_root *root);
3617int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3618			    struct btrfs_root *root);
3619int btrfs_recover_relocation(struct btrfs_root *root);
3620int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len);
3621int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3622			  struct btrfs_root *root, struct extent_buffer *buf,
3623			  struct extent_buffer *cow);
3624void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3625			      u64 *bytes_to_reserve);
3626int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3627			      struct btrfs_pending_snapshot *pending);
3628
3629/* scrub.c */
3630int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3631		    u64 end, struct btrfs_scrub_progress *progress,
3632		    int readonly, int is_dev_replace);
3633void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3634void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3635int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3636int btrfs_scrub_cancel_dev(struct btrfs_fs_info *info,
3637			   struct btrfs_device *dev);
3638int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3639			 struct btrfs_scrub_progress *progress);
3640
3641/* dev-replace.c */
3642void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3643void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3644void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3645
3646static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3647{
3648	btrfs_bio_counter_sub(fs_info, 1);
3649}
3650
3651/* reada.c */
3652struct reada_control {
3653	struct btrfs_fs_info	*fs_info;		/* tree to prefetch */
3654	struct btrfs_key	key_start;
3655	struct btrfs_key	key_end;	/* exclusive */
3656	atomic_t		elems;
3657	struct kref		refcnt;
3658	wait_queue_head_t	wait;
3659};
3660struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3661			      struct btrfs_key *start, struct btrfs_key *end);
3662int btrfs_reada_wait(void *handle);
3663void btrfs_reada_detach(void *handle);
3664int btree_readahead_hook(struct btrfs_fs_info *fs_info,
3665			 struct extent_buffer *eb, int err);
3666
3667static inline int is_fstree(u64 rootid)
3668{
3669	if (rootid == BTRFS_FS_TREE_OBJECTID ||
3670	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3671	      !btrfs_qgroup_level(rootid)))
3672		return 1;
3673	return 0;
3674}
3675
3676static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3677{
3678	return signal_pending(current);
3679}
3680
3681/* Sanity test specific functions */
3682#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3683void btrfs_test_destroy_inode(struct inode *inode);
3684#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
3685
3686static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3687{
3688#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3689	if (unlikely(test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO,
3690			      &fs_info->fs_state)))
3691		return 1;
3692#endif
3693	return 0;
3694}
3695#endif