Linux Audio

Check our new training course

Loading...
v6.2
  1/* SPDX-License-Identifier: GPL-2.0 */
  2/*
  3 * Copyright (C) 2007 Oracle.  All rights reserved.
  4 */
  5
  6#ifndef BTRFS_CTREE_H
  7#define BTRFS_CTREE_H
  8
  9#include <linux/mm.h>
 10#include <linux/sched/signal.h>
 11#include <linux/highmem.h>
 12#include <linux/fs.h>
 13#include <linux/rwsem.h>
 14#include <linux/semaphore.h>
 15#include <linux/completion.h>
 16#include <linux/backing-dev.h>
 17#include <linux/wait.h>
 18#include <linux/slab.h>
 19#include <trace/events/btrfs.h>
 
 20#include <asm/unaligned.h>
 21#include <linux/pagemap.h>
 22#include <linux/btrfs.h>
 23#include <linux/btrfs_tree.h>
 24#include <linux/workqueue.h>
 25#include <linux/security.h>
 26#include <linux/sizes.h>
 27#include <linux/dynamic_debug.h>
 28#include <linux/refcount.h>
 29#include <linux/crc32c.h>
 30#include <linux/iomap.h>
 31#include <linux/fscrypt.h>
 32#include "extent-io-tree.h"
 33#include "extent_io.h"
 34#include "extent_map.h"
 35#include "async-thread.h"
 36#include "block-rsv.h"
 37#include "locking.h"
 38#include "misc.h"
 39#include "fs.h"
 40
 41struct btrfs_trans_handle;
 42struct btrfs_transaction;
 43struct btrfs_pending_snapshot;
 44struct btrfs_delayed_ref_root;
 45struct btrfs_space_info;
 46struct btrfs_block_group;
 
 
 
 
 
 47struct btrfs_ordered_sum;
 48struct btrfs_ref;
 49struct btrfs_bio;
 50struct btrfs_ioctl_encoded_io_args;
 51struct btrfs_device;
 52struct btrfs_fs_devices;
 53struct btrfs_balance_control;
 54struct btrfs_delayed_root;
 55struct reloc_control;
 56
 57/* Read ahead values for struct btrfs_path.reada */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58enum {
 59	READA_NONE,
 60	READA_BACK,
 61	READA_FORWARD,
 62	/*
 63	 * Similar to READA_FORWARD but unlike it:
 64	 *
 65	 * 1) It will trigger readahead even for leaves that are not close to
 66	 *    each other on disk;
 67	 * 2) It also triggers readahead for nodes;
 68	 * 3) During a search, even when a node or leaf is already in memory, it
 69	 *    will still trigger readahead for other nodes and leaves that follow
 70	 *    it.
 71	 *
 72	 * This is meant to be used only when we know we are iterating over the
 73	 * entire tree or a very large part of it.
 74	 */
 75	READA_FORWARD_ALWAYS,
 
 
 
 
 
 
 
 
 
 76};
 77
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 78/*
 79 * btrfs_paths remember the path taken from the root down to the leaf.
 80 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 81 * to any other levels that are present.
 82 *
 83 * The slots array records the index of the item or block pointer
 84 * used while walking the tree.
 85 */
 
 86struct btrfs_path {
 87	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 88	int slots[BTRFS_MAX_LEVEL];
 89	/* if there is real range locking, this locks field will change */
 90	u8 locks[BTRFS_MAX_LEVEL];
 91	u8 reada;
 92	/* keep some upper locks as we walk down */
 93	u8 lowest_level;
 94
 95	/*
 96	 * set by btrfs_split_item, tells search_slot to keep all locks
 97	 * and to force calls to keep space in the nodes
 98	 */
 99	unsigned int search_for_split:1;
100	unsigned int keep_locks:1;
101	unsigned int skip_locking:1;
 
102	unsigned int search_commit_root:1;
103	unsigned int need_commit_sem:1;
104	unsigned int skip_release_on_error:1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105	/*
106	 * Indicate that new item (btrfs_search_slot) is extending already
107	 * existing item and ins_len contains only the data size and not item
108	 * header (ie. sizeof(struct btrfs_item) is not included).
109	 */
110	unsigned int search_for_extension:1;
111	/* Stop search if any locks need to be taken (for read) */
112	unsigned int nowait:1;
 
 
 
 
 
 
 
 
 
 
 
113};
114
 
 
 
 
 
115/*
116 * The state of btrfs root
117 */
118enum {
119	/*
120	 * btrfs_record_root_in_trans is a multi-step process, and it can race
121	 * with the balancing code.   But the race is very small, and only the
122	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
123	 * is used to tell us when more checks are required
124	 */
125	BTRFS_ROOT_IN_TRANS_SETUP,
126
127	/*
128	 * Set if tree blocks of this root can be shared by other roots.
129	 * Only subvolume trees and their reloc trees have this bit set.
130	 * Conflicts with TRACK_DIRTY bit.
131	 *
132	 * This affects two things:
133	 *
134	 * - How balance works
135	 *   For shareable roots, we need to use reloc tree and do path
136	 *   replacement for balance, and need various pre/post hooks for
137	 *   snapshot creation to handle them.
138	 *
139	 *   While for non-shareable trees, we just simply do a tree search
140	 *   with COW.
141	 *
142	 * - How dirty roots are tracked
143	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
144	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
145	 *   don't need to set this manually.
146	 */
147	BTRFS_ROOT_SHAREABLE,
148	BTRFS_ROOT_TRACK_DIRTY,
149	BTRFS_ROOT_IN_RADIX,
150	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
151	BTRFS_ROOT_DEFRAG_RUNNING,
152	BTRFS_ROOT_FORCE_COW,
153	BTRFS_ROOT_MULTI_LOG_TASKS,
154	BTRFS_ROOT_DIRTY,
155	BTRFS_ROOT_DELETING,
156
157	/*
158	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
159	 *
160	 * Set for the subvolume tree owning the reloc tree.
161	 */
162	BTRFS_ROOT_DEAD_RELOC_TREE,
163	/* Mark dead root stored on device whose cleanup needs to be resumed */
164	BTRFS_ROOT_DEAD_TREE,
165	/* The root has a log tree. Used for subvolume roots and the tree root. */
166	BTRFS_ROOT_HAS_LOG_TREE,
167	/* Qgroup flushing is in progress */
168	BTRFS_ROOT_QGROUP_FLUSHING,
169	/* We started the orphan cleanup for this root. */
170	BTRFS_ROOT_ORPHAN_CLEANUP,
171	/* This root has a drop operation that was started previously. */
172	BTRFS_ROOT_UNFINISHED_DROP,
173	/* This reloc root needs to have its buffers lockdep class reset. */
174	BTRFS_ROOT_RESET_LOCKDEP_CLASS,
175};
176
177/*
178 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
179 * code. For detail check comment in fs/btrfs/qgroup.c.
180 */
181struct btrfs_qgroup_swapped_blocks {
182	spinlock_t lock;
183	/* RM_EMPTY_ROOT() of above blocks[] */
184	bool swapped;
185	struct rb_root blocks[BTRFS_MAX_LEVEL];
186};
187
188/*
189 * in ram representation of the tree.  extent_root is used for all allocations
190 * and for the extent tree extent_root root.
191 */
192struct btrfs_root {
193	struct rb_node rb_node;
194
195	struct extent_buffer *node;
196
197	struct extent_buffer *commit_root;
198	struct btrfs_root *log_root;
199	struct btrfs_root *reloc_root;
200
201	unsigned long state;
202	struct btrfs_root_item root_item;
203	struct btrfs_key root_key;
204	struct btrfs_fs_info *fs_info;
205	struct extent_io_tree dirty_log_pages;
206
207	struct mutex objectid_mutex;
208
209	spinlock_t accounting_lock;
210	struct btrfs_block_rsv *block_rsv;
211
 
 
 
 
 
 
 
 
 
212	struct mutex log_mutex;
213	wait_queue_head_t log_writer_wait;
214	wait_queue_head_t log_commit_wait[2];
215	struct list_head log_ctxs[2];
216	/* Used only for log trees of subvolumes, not for the log root tree */
217	atomic_t log_writers;
218	atomic_t log_commit[2];
219	/* Used only for log trees of subvolumes, not for the log root tree */
220	atomic_t log_batch;
221	int log_transid;
222	/* No matter the commit succeeds or not*/
223	int log_transid_committed;
224	/* Just be updated when the commit succeeds. */
225	int last_log_commit;
226	pid_t log_start_pid;
227
228	u64 last_trans;
229
230	u32 type;
231
232	u64 free_objectid;
233
234	struct btrfs_key defrag_progress;
235	struct btrfs_key defrag_max;
236
237	/* The dirty list is only used by non-shareable roots */
238	struct list_head dirty_list;
239
240	struct list_head root_list;
241
242	spinlock_t log_extents_lock[2];
243	struct list_head logged_list[2];
244
 
 
245	spinlock_t inode_lock;
246	/* red-black tree that keeps track of in-memory inodes */
247	struct rb_root inode_tree;
248
249	/*
250	 * radix tree that keeps track of delayed nodes of every inode,
251	 * protected by inode_lock
252	 */
253	struct radix_tree_root delayed_nodes_tree;
254	/*
255	 * right now this just gets used so that a root has its own devid
256	 * for stat.  It may be used for more later
257	 */
258	dev_t anon_dev;
259
260	spinlock_t root_item_lock;
261	refcount_t refs;
262
263	struct mutex delalloc_mutex;
264	spinlock_t delalloc_lock;
265	/*
266	 * all of the inodes that have delalloc bytes.  It is possible for
267	 * this list to be empty even when there is still dirty data=ordered
268	 * extents waiting to finish IO.
269	 */
270	struct list_head delalloc_inodes;
271	struct list_head delalloc_root;
272	u64 nr_delalloc_inodes;
273
274	struct mutex ordered_extent_mutex;
275	/*
276	 * this is used by the balancing code to wait for all the pending
277	 * ordered extents
278	 */
279	spinlock_t ordered_extent_lock;
280
281	/*
282	 * all of the data=ordered extents pending writeback
283	 * these can span multiple transactions and basically include
284	 * every dirty data page that isn't from nodatacow
285	 */
286	struct list_head ordered_extents;
287	struct list_head ordered_root;
288	u64 nr_ordered_extents;
289
290	/*
291	 * Not empty if this subvolume root has gone through tree block swap
292	 * (relocation)
293	 *
294	 * Will be used by reloc_control::dirty_subvol_roots.
295	 */
296	struct list_head reloc_dirty_list;
297
298	/*
299	 * Number of currently running SEND ioctls to prevent
300	 * manipulation with the read-only status via SUBVOL_SETFLAGS
301	 */
302	int send_in_progress;
303	/*
304	 * Number of currently running deduplication operations that have a
305	 * destination inode belonging to this root. Protected by the lock
306	 * root_item_lock.
307	 */
308	int dedupe_in_progress;
309	/* For exclusion of snapshot creation and nocow writes */
310	struct btrfs_drew_lock snapshot_lock;
311
312	atomic_t snapshot_force_cow;
313
314	/* For qgroup metadata reserved space */
315	spinlock_t qgroup_meta_rsv_lock;
316	u64 qgroup_meta_rsv_pertrans;
317	u64 qgroup_meta_rsv_prealloc;
318	wait_queue_head_t qgroup_flush_wait;
319
320	/* Number of active swapfiles */
321	atomic_t nr_swapfiles;
322
323	/* Record pairs of swapped blocks for qgroup */
324	struct btrfs_qgroup_swapped_blocks swapped_blocks;
325
326	/* Used only by log trees, when logging csum items */
327	struct extent_io_tree log_csum_range;
328
329#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
330	u64 alloc_bytenr;
331#endif
332
333#ifdef CONFIG_BTRFS_DEBUG
334	struct list_head leak_list;
335#endif
336};
337
338static inline bool btrfs_root_readonly(const struct btrfs_root *root)
339{
340	/* Byte-swap the constant at compile time, root_item::flags is LE */
341	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
342}
343
344static inline bool btrfs_root_dead(const struct btrfs_root *root)
345{
346	/* Byte-swap the constant at compile time, root_item::flags is LE */
347	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
348}
349
350static inline u64 btrfs_root_id(const struct btrfs_root *root)
351{
352	return root->root_key.objectid;
353}
354
355/*
356 * Structure that conveys information about an extent that is going to replace
357 * all the extents in a file range.
358 */
359struct btrfs_replace_extent_info {
360	u64 disk_offset;
361	u64 disk_len;
362	u64 data_offset;
363	u64 data_len;
364	u64 file_offset;
365	/* Pointer to a file extent item of type regular or prealloc. */
366	char *extent_buf;
367	/*
368	 * Set to true when attempting to replace a file range with a new extent
369	 * described by this structure, set to false when attempting to clone an
370	 * existing extent into a file range.
371	 */
372	bool is_new_extent;
373	/* Indicate if we should update the inode's mtime and ctime. */
374	bool update_times;
375	/* Meaningful only if is_new_extent is true. */
376	int qgroup_reserved;
377	/*
378	 * Meaningful only if is_new_extent is true.
379	 * Used to track how many extent items we have already inserted in a
380	 * subvolume tree that refer to the extent described by this structure,
381	 * so that we know when to create a new delayed ref or update an existing
382	 * one.
383	 */
384	int insertions;
385};
386
387/* Arguments for btrfs_drop_extents() */
388struct btrfs_drop_extents_args {
389	/* Input parameters */
390
391	/*
392	 * If NULL, btrfs_drop_extents() will allocate and free its own path.
393	 * If 'replace_extent' is true, this must not be NULL. Also the path
394	 * is always released except if 'replace_extent' is true and
395	 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
396	 * the path is kept locked.
397	 */
398	struct btrfs_path *path;
399	/* Start offset of the range to drop extents from */
400	u64 start;
401	/* End (exclusive, last byte + 1) of the range to drop extents from */
402	u64 end;
403	/* If true drop all the extent maps in the range */
404	bool drop_cache;
405	/*
406	 * If true it means we want to insert a new extent after dropping all
407	 * the extents in the range. If this is true, the 'extent_item_size'
408	 * parameter must be set as well and the 'extent_inserted' field will
409	 * be set to true by btrfs_drop_extents() if it could insert the new
410	 * extent.
411	 * Note: when this is set to true the path must not be NULL.
412	 */
413	bool replace_extent;
414	/*
415	 * Used if 'replace_extent' is true. Size of the file extent item to
416	 * insert after dropping all existing extents in the range
417	 */
418	u32 extent_item_size;
419
420	/* Output parameters */
421
422	/*
423	 * Set to the minimum between the input parameter 'end' and the end
424	 * (exclusive, last byte + 1) of the last dropped extent. This is always
425	 * set even if btrfs_drop_extents() returns an error.
426	 */
427	u64 drop_end;
428	/*
429	 * The number of allocated bytes found in the range. This can be smaller
430	 * than the range's length when there are holes in the range.
431	 */
432	u64 bytes_found;
433	/*
434	 * Only set if 'replace_extent' is true. Set to true if we were able
435	 * to insert a replacement extent after dropping all extents in the
436	 * range, otherwise set to false by btrfs_drop_extents().
437	 * Also, if btrfs_drop_extents() has set this to true it means it
438	 * returned with the path locked, otherwise if it has set this to
439	 * false it has returned with the path released.
440	 */
441	bool extent_inserted;
442};
443
444struct btrfs_file_private {
445	void *filldir_buf;
446	struct extent_state *llseek_cached_state;
447};
448
 
 
 
 
 
449static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
450{
 
451	return info->nodesize - sizeof(struct btrfs_header);
452}
453
 
 
454static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
455{
456	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
457}
458
459static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
460{
461	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
462}
463
 
 
 
 
 
 
 
 
464static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
465{
466	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
467}
468
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
469#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
470				((bytes) >> (fs_info)->sectorsize_bits)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
471
472static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
473{
474	return crc32c(crc, address, length);
475}
476
477static inline void btrfs_crc32c_final(u32 crc, u8 *result)
478{
479	put_unaligned_le32(~crc, result);
480}
481
482static inline u64 btrfs_name_hash(const char *name, int len)
483{
484       return crc32c((u32)~1, name, len);
485}
486
487/*
488 * Figure the key offset of an extended inode ref
489 */
490static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
491                                   int len)
492{
493       return (u64) crc32c(parent_objectid, name, len);
494}
495
496static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
497{
498	return mapping_gfp_constraint(mapping, ~__GFP_FS);
499}
500
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
501int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
502				   u64 start, u64 end);
503int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
504			 u64 num_bytes, u64 *actual_bytes);
505int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
506
 
 
 
 
 
 
 
507/* ctree.c */
508int __init btrfs_ctree_init(void);
509void __cold btrfs_ctree_exit(void);
510int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
511		     int *slot);
512int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
513int btrfs_previous_item(struct btrfs_root *root,
514			struct btrfs_path *path, u64 min_objectid,
515			int type);
516int btrfs_previous_extent_item(struct btrfs_root *root,
517			struct btrfs_path *path, u64 min_objectid);
518void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
519			     struct btrfs_path *path,
520			     const struct btrfs_key *new_key);
521struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
 
 
522int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
523			struct btrfs_key *key, int lowest_level,
524			u64 min_trans);
525int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
526			 struct btrfs_path *path,
527			 u64 min_trans);
528struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
529					   int slot);
530
531int btrfs_cow_block(struct btrfs_trans_handle *trans,
532		    struct btrfs_root *root, struct extent_buffer *buf,
533		    struct extent_buffer *parent, int parent_slot,
534		    struct extent_buffer **cow_ret,
535		    enum btrfs_lock_nesting nest);
536int btrfs_copy_root(struct btrfs_trans_handle *trans,
537		      struct btrfs_root *root,
538		      struct extent_buffer *buf,
539		      struct extent_buffer **cow_ret, u64 new_root_objectid);
540int btrfs_block_can_be_shared(struct btrfs_root *root,
541			      struct extent_buffer *buf);
542void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
543void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
544int btrfs_split_item(struct btrfs_trans_handle *trans,
545		     struct btrfs_root *root,
546		     struct btrfs_path *path,
547		     const struct btrfs_key *new_key,
548		     unsigned long split_offset);
549int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
550			 struct btrfs_root *root,
551			 struct btrfs_path *path,
552			 const struct btrfs_key *new_key);
553int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
554		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
555int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
556		      const struct btrfs_key *key, struct btrfs_path *p,
557		      int ins_len, int cow);
558int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
559			  struct btrfs_path *p, u64 time_seq);
560int btrfs_search_slot_for_read(struct btrfs_root *root,
561			       const struct btrfs_key *key,
562			       struct btrfs_path *p, int find_higher,
563			       int return_any);
564int btrfs_realloc_node(struct btrfs_trans_handle *trans,
565		       struct btrfs_root *root, struct extent_buffer *parent,
566		       int start_slot, u64 *last_ret,
567		       struct btrfs_key *progress);
568void btrfs_release_path(struct btrfs_path *p);
569struct btrfs_path *btrfs_alloc_path(void);
570void btrfs_free_path(struct btrfs_path *p);
571
572int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
573		   struct btrfs_path *path, int slot, int nr);
574static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
575				 struct btrfs_root *root,
576				 struct btrfs_path *path)
577{
578	return btrfs_del_items(trans, root, path, path->slots[0], 1);
579}
580
581/*
582 * Describes a batch of items to insert in a btree. This is used by
583 * btrfs_insert_empty_items().
584 */
585struct btrfs_item_batch {
586	/*
587	 * Pointer to an array containing the keys of the items to insert (in
588	 * sorted order).
589	 */
590	const struct btrfs_key *keys;
591	/* Pointer to an array containing the data size for each item to insert. */
592	const u32 *data_sizes;
593	/*
594	 * The sum of data sizes for all items. The caller can compute this while
595	 * setting up the data_sizes array, so it ends up being more efficient
596	 * than having btrfs_insert_empty_items() or setup_item_for_insert()
597	 * doing it, as it would avoid an extra loop over a potentially large
598	 * array, and in the case of setup_item_for_insert(), we would be doing
599	 * it while holding a write lock on a leaf and often on upper level nodes
600	 * too, unnecessarily increasing the size of a critical section.
601	 */
602	u32 total_data_size;
603	/* Size of the keys and data_sizes arrays (number of items in the batch). */
604	int nr;
605};
606
607void btrfs_setup_item_for_insert(struct btrfs_root *root,
608				 struct btrfs_path *path,
609				 const struct btrfs_key *key,
610				 u32 data_size);
611int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
612		      const struct btrfs_key *key, void *data, u32 data_size);
613int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
614			     struct btrfs_root *root,
615			     struct btrfs_path *path,
616			     const struct btrfs_item_batch *batch);
 
617
618static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
619					  struct btrfs_root *root,
620					  struct btrfs_path *path,
621					  const struct btrfs_key *key,
622					  u32 data_size)
623{
624	struct btrfs_item_batch batch;
625
626	batch.keys = key;
627	batch.data_sizes = &data_size;
628	batch.total_data_size = data_size;
629	batch.nr = 1;
630
631	return btrfs_insert_empty_items(trans, root, path, &batch);
632}
633
 
634int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
635int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
636			u64 time_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
637
638int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
639			   struct btrfs_path *path);
 
 
 
 
 
 
640
641int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
642			      struct btrfs_path *path);
 
 
 
 
 
 
 
 
 
 
 
 
643
644/*
645 * Search in @root for a given @key, and store the slot found in @found_key.
646 *
647 * @root:	The root node of the tree.
648 * @key:	The key we are looking for.
649 * @found_key:	Will hold the found item.
650 * @path:	Holds the current slot/leaf.
651 * @iter_ret:	Contains the value returned from btrfs_search_slot or
652 * 		btrfs_get_next_valid_item, whichever was executed last.
653 *
654 * The @iter_ret is an output variable that will contain the return value of
655 * btrfs_search_slot, if it encountered an error, or the value returned from
656 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
657 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
658 *
659 * It's recommended to use a separate variable for iter_ret and then use it to
660 * set the function return value so there's no confusion of the 0/1/errno
661 * values stemming from btrfs_search_slot.
662 */
663#define btrfs_for_each_slot(root, key, found_key, path, iter_ret)		\
664	for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0);	\
665		(iter_ret) >= 0 &&						\
666		(iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
667		(path)->slots[0]++						\
668	)
 
 
 
 
 
 
 
 
669
670int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
671
672/*
673 * Search the tree again to find a leaf with greater keys.
674 *
675 * Returns 0 if it found something or 1 if there are no greater leaves.
676 * Returns < 0 on error.
677 */
678static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
679{
680	return btrfs_next_old_leaf(root, path, 0);
 
681}
682
683static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
684{
685	return btrfs_next_old_item(root, p, 0);
 
686}
687int btrfs_leaf_free_space(struct extent_buffer *leaf);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688
689static inline int is_fstree(u64 rootid)
690{
691	if (rootid == BTRFS_FS_TREE_OBJECTID ||
692	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
693	      !btrfs_qgroup_level(rootid)))
694		return 1;
695	return 0;
696}
697
698static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
699{
700	return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
701}
702
703int btrfs_super_csum_size(const struct btrfs_super_block *s);
704const char *btrfs_super_csum_name(u16 csum_type);
705const char *btrfs_super_csum_driver(u16 csum_type);
706size_t __attribute_const__ btrfs_get_num_csums(void);
707
708/*
709 * We use page status Private2 to indicate there is an ordered extent with
710 * unfinished IO.
711 *
712 * Rename the Private2 accessors to Ordered, to improve readability.
713 */
714#define PageOrdered(page)		PagePrivate2(page)
715#define SetPageOrdered(page)		SetPagePrivate2(page)
716#define ClearPageOrdered(page)		ClearPagePrivate2(page)
717#define folio_test_ordered(folio)	folio_test_private_2(folio)
718#define folio_set_ordered(folio)	folio_set_private_2(folio)
719#define folio_clear_ordered(folio)	folio_clear_private_2(folio)
 
 
 
720
721#endif
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 */
   2/*
   3 * Copyright (C) 2007 Oracle.  All rights reserved.
   4 */
   5
   6#ifndef BTRFS_CTREE_H
   7#define BTRFS_CTREE_H
   8
   9#include <linux/mm.h>
  10#include <linux/sched/signal.h>
  11#include <linux/highmem.h>
  12#include <linux/fs.h>
  13#include <linux/rwsem.h>
  14#include <linux/semaphore.h>
  15#include <linux/completion.h>
  16#include <linux/backing-dev.h>
  17#include <linux/wait.h>
  18#include <linux/slab.h>
  19#include <trace/events/btrfs.h>
  20#include <asm/kmap_types.h>
  21#include <asm/unaligned.h>
  22#include <linux/pagemap.h>
  23#include <linux/btrfs.h>
  24#include <linux/btrfs_tree.h>
  25#include <linux/workqueue.h>
  26#include <linux/security.h>
  27#include <linux/sizes.h>
  28#include <linux/dynamic_debug.h>
  29#include <linux/refcount.h>
  30#include <linux/crc32c.h>
 
 
  31#include "extent-io-tree.h"
  32#include "extent_io.h"
  33#include "extent_map.h"
  34#include "async-thread.h"
  35#include "block-rsv.h"
  36#include "locking.h"
 
 
  37
  38struct btrfs_trans_handle;
  39struct btrfs_transaction;
  40struct btrfs_pending_snapshot;
  41struct btrfs_delayed_ref_root;
  42struct btrfs_space_info;
  43struct btrfs_block_group;
  44extern struct kmem_cache *btrfs_trans_handle_cachep;
  45extern struct kmem_cache *btrfs_bit_radix_cachep;
  46extern struct kmem_cache *btrfs_path_cachep;
  47extern struct kmem_cache *btrfs_free_space_cachep;
  48extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
  49struct btrfs_ordered_sum;
  50struct btrfs_ref;
 
 
 
 
 
 
 
  51
  52#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
  53
  54/*
  55 * Maximum number of mirrors that can be available for all profiles counting
  56 * the target device of dev-replace as one. During an active device replace
  57 * procedure, the target device of the copy operation is a mirror for the
  58 * filesystem data as well that can be used to read data in order to repair
  59 * read errors on other disks.
  60 *
  61 * Current value is derived from RAID1C4 with 4 copies.
  62 */
  63#define BTRFS_MAX_MIRRORS (4 + 1)
  64
  65#define BTRFS_MAX_LEVEL 8
  66
  67#define BTRFS_OLDEST_GENERATION	0ULL
  68
  69/*
  70 * the max metadata block size.  This limit is somewhat artificial,
  71 * but the memmove costs go through the roof for larger blocks.
  72 */
  73#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
  74
  75/*
  76 * we can actually store much bigger names, but lets not confuse the rest
  77 * of linux
  78 */
  79#define BTRFS_NAME_LEN 255
  80
  81/*
  82 * Theoretical limit is larger, but we keep this down to a sane
  83 * value. That should limit greatly the possibility of collisions on
  84 * inode ref items.
  85 */
  86#define BTRFS_LINK_MAX 65535U
  87
  88#define BTRFS_EMPTY_DIR_SIZE 0
  89
  90/* ioprio of readahead is set to idle */
  91#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
  92
  93#define BTRFS_DIRTY_METADATA_THRESH	SZ_32M
  94
  95/*
  96 * Use large batch size to reduce overhead of metadata updates.  On the reader
  97 * side, we only read it when we are close to ENOSPC and the read overhead is
  98 * mostly related to the number of CPUs, so it is OK to use arbitrary large
  99 * value here.
 100 */
 101#define BTRFS_TOTAL_BYTES_PINNED_BATCH	SZ_128M
 102
 103#define BTRFS_MAX_EXTENT_SIZE SZ_128M
 104
 105/*
 106 * Deltas are an effective way to populate global statistics.  Give macro names
 107 * to make it clear what we're doing.  An example is discard_extents in
 108 * btrfs_free_space_ctl.
 109 */
 110#define BTRFS_STAT_NR_ENTRIES	2
 111#define BTRFS_STAT_CURR		0
 112#define BTRFS_STAT_PREV		1
 113
 114/*
 115 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
 116 */
 117static inline u32 count_max_extents(u64 size)
 118{
 119	return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
 120}
 121
 122static inline unsigned long btrfs_chunk_item_size(int num_stripes)
 123{
 124	BUG_ON(num_stripes == 0);
 125	return sizeof(struct btrfs_chunk) +
 126		sizeof(struct btrfs_stripe) * (num_stripes - 1);
 127}
 128
 129/*
 130 * Runtime (in-memory) states of filesystem
 131 */
 132enum {
 133	/* Global indicator of serious filesystem errors */
 134	BTRFS_FS_STATE_ERROR,
 135	/*
 136	 * Filesystem is being remounted, allow to skip some operations, like
 137	 * defrag
 
 
 
 
 
 
 
 
 
 
 138	 */
 139	BTRFS_FS_STATE_REMOUNTING,
 140	/* Track if a transaction abort has been reported on this filesystem */
 141	BTRFS_FS_STATE_TRANS_ABORTED,
 142	/*
 143	 * Bio operations should be blocked on this filesystem because a source
 144	 * or target device is being destroyed as part of a device replace
 145	 */
 146	BTRFS_FS_STATE_DEV_REPLACING,
 147	/* The btrfs_fs_info created for self-tests */
 148	BTRFS_FS_STATE_DUMMY_FS_INFO,
 149};
 150
 151#define BTRFS_BACKREF_REV_MAX		256
 152#define BTRFS_BACKREF_REV_SHIFT		56
 153#define BTRFS_BACKREF_REV_MASK		(((u64)BTRFS_BACKREF_REV_MAX - 1) << \
 154					 BTRFS_BACKREF_REV_SHIFT)
 155
 156#define BTRFS_OLD_BACKREF_REV		0
 157#define BTRFS_MIXED_BACKREF_REV		1
 158
 159/*
 160 * every tree block (leaf or node) starts with this header.
 161 */
 162struct btrfs_header {
 163	/* these first four must match the super block */
 164	u8 csum[BTRFS_CSUM_SIZE];
 165	u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
 166	__le64 bytenr; /* which block this node is supposed to live in */
 167	__le64 flags;
 168
 169	/* allowed to be different from the super from here on down */
 170	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 171	__le64 generation;
 172	__le64 owner;
 173	__le32 nritems;
 174	u8 level;
 175} __attribute__ ((__packed__));
 176
 177/*
 178 * this is a very generous portion of the super block, giving us
 179 * room to translate 14 chunks with 3 stripes each.
 180 */
 181#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
 182
 183/*
 184 * just in case we somehow lose the roots and are not able to mount,
 185 * we store an array of the roots from previous transactions
 186 * in the super.
 187 */
 188#define BTRFS_NUM_BACKUP_ROOTS 4
 189struct btrfs_root_backup {
 190	__le64 tree_root;
 191	__le64 tree_root_gen;
 192
 193	__le64 chunk_root;
 194	__le64 chunk_root_gen;
 195
 196	__le64 extent_root;
 197	__le64 extent_root_gen;
 198
 199	__le64 fs_root;
 200	__le64 fs_root_gen;
 201
 202	__le64 dev_root;
 203	__le64 dev_root_gen;
 204
 205	__le64 csum_root;
 206	__le64 csum_root_gen;
 207
 208	__le64 total_bytes;
 209	__le64 bytes_used;
 210	__le64 num_devices;
 211	/* future */
 212	__le64 unused_64[4];
 213
 214	u8 tree_root_level;
 215	u8 chunk_root_level;
 216	u8 extent_root_level;
 217	u8 fs_root_level;
 218	u8 dev_root_level;
 219	u8 csum_root_level;
 220	/* future and to align */
 221	u8 unused_8[10];
 222} __attribute__ ((__packed__));
 223
 224/*
 225 * the super block basically lists the main trees of the FS
 226 * it currently lacks any block count etc etc
 227 */
 228struct btrfs_super_block {
 229	/* the first 4 fields must match struct btrfs_header */
 230	u8 csum[BTRFS_CSUM_SIZE];
 231	/* FS specific UUID, visible to user */
 232	u8 fsid[BTRFS_FSID_SIZE];
 233	__le64 bytenr; /* this block number */
 234	__le64 flags;
 235
 236	/* allowed to be different from the btrfs_header from here own down */
 237	__le64 magic;
 238	__le64 generation;
 239	__le64 root;
 240	__le64 chunk_root;
 241	__le64 log_root;
 242
 243	/* this will help find the new super based on the log root */
 244	__le64 log_root_transid;
 245	__le64 total_bytes;
 246	__le64 bytes_used;
 247	__le64 root_dir_objectid;
 248	__le64 num_devices;
 249	__le32 sectorsize;
 250	__le32 nodesize;
 251	__le32 __unused_leafsize;
 252	__le32 stripesize;
 253	__le32 sys_chunk_array_size;
 254	__le64 chunk_root_generation;
 255	__le64 compat_flags;
 256	__le64 compat_ro_flags;
 257	__le64 incompat_flags;
 258	__le16 csum_type;
 259	u8 root_level;
 260	u8 chunk_root_level;
 261	u8 log_root_level;
 262	struct btrfs_dev_item dev_item;
 263
 264	char label[BTRFS_LABEL_SIZE];
 265
 266	__le64 cache_generation;
 267	__le64 uuid_tree_generation;
 268
 269	/* the UUID written into btree blocks */
 270	u8 metadata_uuid[BTRFS_FSID_SIZE];
 271
 272	/* future expansion */
 273	__le64 reserved[28];
 274	u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
 275	struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
 276} __attribute__ ((__packed__));
 277
 278/*
 279 * Compat flags that we support.  If any incompat flags are set other than the
 280 * ones specified below then we will fail to mount
 281 */
 282#define BTRFS_FEATURE_COMPAT_SUPP		0ULL
 283#define BTRFS_FEATURE_COMPAT_SAFE_SET		0ULL
 284#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR		0ULL
 285
 286#define BTRFS_FEATURE_COMPAT_RO_SUPP			\
 287	(BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE |	\
 288	 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
 289
 290#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET	0ULL
 291#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR	0ULL
 292
 293#define BTRFS_FEATURE_INCOMPAT_SUPP			\
 294	(BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF |		\
 295	 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL |	\
 296	 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS |		\
 297	 BTRFS_FEATURE_INCOMPAT_BIG_METADATA |		\
 298	 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO |		\
 299	 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD |		\
 300	 BTRFS_FEATURE_INCOMPAT_RAID56 |		\
 301	 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF |		\
 302	 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA |	\
 303	 BTRFS_FEATURE_INCOMPAT_NO_HOLES	|	\
 304	 BTRFS_FEATURE_INCOMPAT_METADATA_UUID	|	\
 305	 BTRFS_FEATURE_INCOMPAT_RAID1C34)
 306
 307#define BTRFS_FEATURE_INCOMPAT_SAFE_SET			\
 308	(BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
 309#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR		0ULL
 310
 311/*
 312 * A leaf is full of items. offset and size tell us where to find
 313 * the item in the leaf (relative to the start of the data area)
 314 */
 315struct btrfs_item {
 316	struct btrfs_disk_key key;
 317	__le32 offset;
 318	__le32 size;
 319} __attribute__ ((__packed__));
 320
 321/*
 322 * leaves have an item area and a data area:
 323 * [item0, item1....itemN] [free space] [dataN...data1, data0]
 324 *
 325 * The data is separate from the items to get the keys closer together
 326 * during searches.
 327 */
 328struct btrfs_leaf {
 329	struct btrfs_header header;
 330	struct btrfs_item items[];
 331} __attribute__ ((__packed__));
 332
 333/*
 334 * all non-leaf blocks are nodes, they hold only keys and pointers to
 335 * other blocks
 336 */
 337struct btrfs_key_ptr {
 338	struct btrfs_disk_key key;
 339	__le64 blockptr;
 340	__le64 generation;
 341} __attribute__ ((__packed__));
 342
 343struct btrfs_node {
 344	struct btrfs_header header;
 345	struct btrfs_key_ptr ptrs[];
 346} __attribute__ ((__packed__));
 347
 348/*
 349 * btrfs_paths remember the path taken from the root down to the leaf.
 350 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
 351 * to any other levels that are present.
 352 *
 353 * The slots array records the index of the item or block pointer
 354 * used while walking the tree.
 355 */
 356enum { READA_NONE, READA_BACK, READA_FORWARD };
 357struct btrfs_path {
 358	struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
 359	int slots[BTRFS_MAX_LEVEL];
 360	/* if there is real range locking, this locks field will change */
 361	u8 locks[BTRFS_MAX_LEVEL];
 362	u8 reada;
 363	/* keep some upper locks as we walk down */
 364	u8 lowest_level;
 365
 366	/*
 367	 * set by btrfs_split_item, tells search_slot to keep all locks
 368	 * and to force calls to keep space in the nodes
 369	 */
 370	unsigned int search_for_split:1;
 371	unsigned int keep_locks:1;
 372	unsigned int skip_locking:1;
 373	unsigned int leave_spinning:1;
 374	unsigned int search_commit_root:1;
 375	unsigned int need_commit_sem:1;
 376	unsigned int skip_release_on_error:1;
 377};
 378#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
 379					sizeof(struct btrfs_item))
 380struct btrfs_dev_replace {
 381	u64 replace_state;	/* see #define above */
 382	time64_t time_started;	/* seconds since 1-Jan-1970 */
 383	time64_t time_stopped;	/* seconds since 1-Jan-1970 */
 384	atomic64_t num_write_errors;
 385	atomic64_t num_uncorrectable_read_errors;
 386
 387	u64 cursor_left;
 388	u64 committed_cursor_left;
 389	u64 cursor_left_last_write_of_item;
 390	u64 cursor_right;
 391
 392	u64 cont_reading_from_srcdev_mode;	/* see #define above */
 393
 394	int is_valid;
 395	int item_needs_writeback;
 396	struct btrfs_device *srcdev;
 397	struct btrfs_device *tgtdev;
 398
 399	struct mutex lock_finishing_cancel_unmount;
 400	struct rw_semaphore rwsem;
 401
 402	struct btrfs_scrub_progress scrub_progress;
 403
 404	struct percpu_counter bio_counter;
 405	wait_queue_head_t replace_wait;
 406};
 407
 408/*
 409 * free clusters are used to claim free space in relatively large chunks,
 410 * allowing us to do less seeky writes. They are used for all metadata
 411 * allocations. In ssd_spread mode they are also used for data allocations.
 412 */
 413struct btrfs_free_cluster {
 414	spinlock_t lock;
 415	spinlock_t refill_lock;
 416	struct rb_root root;
 417
 418	/* largest extent in this cluster */
 419	u64 max_size;
 420
 421	/* first extent starting offset */
 422	u64 window_start;
 423
 424	/* We did a full search and couldn't create a cluster */
 425	bool fragmented;
 426
 427	struct btrfs_block_group *block_group;
 428	/*
 429	 * when a cluster is allocated from a block group, we put the
 430	 * cluster onto a list in the block group so that it can
 431	 * be freed before the block group is freed.
 432	 */
 433	struct list_head block_group_list;
 434};
 435
 436enum btrfs_caching_type {
 437	BTRFS_CACHE_NO,
 438	BTRFS_CACHE_STARTED,
 439	BTRFS_CACHE_FAST,
 440	BTRFS_CACHE_FINISHED,
 441	BTRFS_CACHE_ERROR,
 442};
 443
 444/*
 445 * Tree to record all locked full stripes of a RAID5/6 block group
 446 */
 447struct btrfs_full_stripe_locks_tree {
 448	struct rb_root root;
 449	struct mutex lock;
 450};
 451
 452/* Discard control. */
 453/*
 454 * Async discard uses multiple lists to differentiate the discard filter
 455 * parameters.  Index 0 is for completely free block groups where we need to
 456 * ensure the entire block group is trimmed without being lossy.  Indices
 457 * afterwards represent monotonically decreasing discard filter sizes to
 458 * prioritize what should be discarded next.
 459 */
 460#define BTRFS_NR_DISCARD_LISTS		3
 461#define BTRFS_DISCARD_INDEX_UNUSED	0
 462#define BTRFS_DISCARD_INDEX_START	1
 463
 464struct btrfs_discard_ctl {
 465	struct workqueue_struct *discard_workers;
 466	struct delayed_work work;
 467	spinlock_t lock;
 468	struct btrfs_block_group *block_group;
 469	struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
 470	u64 prev_discard;
 471	atomic_t discardable_extents;
 472	atomic64_t discardable_bytes;
 473	u64 max_discard_size;
 474	unsigned long delay;
 475	u32 iops_limit;
 476	u32 kbps_limit;
 477	u64 discard_extent_bytes;
 478	u64 discard_bitmap_bytes;
 479	atomic64_t discard_bytes_saved;
 480};
 481
 482/* delayed seq elem */
 483struct seq_list {
 484	struct list_head list;
 485	u64 seq;
 486};
 487
 488#define SEQ_LIST_INIT(name)	{ .list = LIST_HEAD_INIT((name).list), .seq = 0 }
 489
 490#define SEQ_LAST	((u64)-1)
 491
 492enum btrfs_orphan_cleanup_state {
 493	ORPHAN_CLEANUP_STARTED	= 1,
 494	ORPHAN_CLEANUP_DONE	= 2,
 495};
 496
 497void btrfs_init_async_reclaim_work(struct work_struct *work);
 498
 499/* fs_info */
 500struct reloc_control;
 501struct btrfs_device;
 502struct btrfs_fs_devices;
 503struct btrfs_balance_control;
 504struct btrfs_delayed_root;
 505
 506/*
 507 * Block group or device which contains an active swapfile. Used for preventing
 508 * unsafe operations while a swapfile is active.
 509 *
 510 * These are sorted on (ptr, inode) (note that a block group or device can
 511 * contain more than one swapfile). We compare the pointer values because we
 512 * don't actually care what the object is, we just need a quick check whether
 513 * the object exists in the rbtree.
 514 */
 515struct btrfs_swapfile_pin {
 516	struct rb_node node;
 517	void *ptr;
 518	struct inode *inode;
 519	/*
 520	 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
 521	 * points to a struct btrfs_device.
 522	 */
 523	bool is_block_group;
 524};
 525
 526bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
 527
 528enum {
 529	BTRFS_FS_BARRIER,
 530	BTRFS_FS_CLOSING_START,
 531	BTRFS_FS_CLOSING_DONE,
 532	BTRFS_FS_LOG_RECOVERING,
 533	BTRFS_FS_OPEN,
 534	BTRFS_FS_QUOTA_ENABLED,
 535	BTRFS_FS_UPDATE_UUID_TREE_GEN,
 536	BTRFS_FS_CREATING_FREE_SPACE_TREE,
 537	BTRFS_FS_BTREE_ERR,
 538	BTRFS_FS_LOG1_ERR,
 539	BTRFS_FS_LOG2_ERR,
 540	BTRFS_FS_QUOTA_OVERRIDE,
 541	/* Used to record internally whether fs has been frozen */
 542	BTRFS_FS_FROZEN,
 543	/*
 544	 * Indicate that a whole-filesystem exclusive operation is running
 545	 * (device replace, resize, device add/delete, balance)
 546	 */
 547	BTRFS_FS_EXCL_OP,
 548	/*
 549	 * Indicate that balance has been set up from the ioctl and is in the
 550	 * main phase. The fs_info::balance_ctl is initialized.
 551	 * Set and cleared while holding fs_info::balance_mutex.
 552	 */
 553	BTRFS_FS_BALANCE_RUNNING,
 554
 555	/* Indicate that the cleaner thread is awake and doing something. */
 556	BTRFS_FS_CLEANER_RUNNING,
 557
 558	/*
 559	 * The checksumming has an optimized version and is considered fast,
 560	 * so we don't need to offload checksums to workqueues.
 561	 */
 562	BTRFS_FS_CSUM_IMPL_FAST,
 563
 564	/* Indicate that the discard workqueue can service discards. */
 565	BTRFS_FS_DISCARD_RUNNING,
 566};
 567
 568struct btrfs_fs_info {
 569	u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
 570	unsigned long flags;
 571	struct btrfs_root *extent_root;
 572	struct btrfs_root *tree_root;
 573	struct btrfs_root *chunk_root;
 574	struct btrfs_root *dev_root;
 575	struct btrfs_root *fs_root;
 576	struct btrfs_root *csum_root;
 577	struct btrfs_root *quota_root;
 578	struct btrfs_root *uuid_root;
 579	struct btrfs_root *free_space_root;
 580	struct btrfs_root *data_reloc_root;
 581
 582	/* the log root tree is a directory of all the other log roots */
 583	struct btrfs_root *log_root_tree;
 584
 585	spinlock_t fs_roots_radix_lock;
 586	struct radix_tree_root fs_roots_radix;
 587
 588	/* block group cache stuff */
 589	spinlock_t block_group_cache_lock;
 590	u64 first_logical_byte;
 591	struct rb_root block_group_cache_tree;
 592
 593	/* keep track of unallocated space */
 594	atomic64_t free_chunk_space;
 595
 596	/* Track ranges which are used by log trees blocks/logged data extents */
 597	struct extent_io_tree excluded_extents;
 598
 599	/* logical->physical extent mapping */
 600	struct extent_map_tree mapping_tree;
 601
 602	/*
 603	 * block reservation for extent, checksum, root tree and
 604	 * delayed dir index item
 605	 */
 606	struct btrfs_block_rsv global_block_rsv;
 607	/* block reservation for metadata operations */
 608	struct btrfs_block_rsv trans_block_rsv;
 609	/* block reservation for chunk tree */
 610	struct btrfs_block_rsv chunk_block_rsv;
 611	/* block reservation for delayed operations */
 612	struct btrfs_block_rsv delayed_block_rsv;
 613	/* block reservation for delayed refs */
 614	struct btrfs_block_rsv delayed_refs_rsv;
 615
 616	struct btrfs_block_rsv empty_block_rsv;
 617
 618	u64 generation;
 619	u64 last_trans_committed;
 620	u64 avg_delayed_ref_runtime;
 621
 622	/*
 623	 * this is updated to the current trans every time a full commit
 624	 * is required instead of the faster short fsync log commits
 625	 */
 626	u64 last_trans_log_full_commit;
 627	unsigned long mount_opt;
 628	/*
 629	 * Track requests for actions that need to be done during transaction
 630	 * commit (like for some mount options).
 631	 */
 632	unsigned long pending_changes;
 633	unsigned long compress_type:4;
 634	unsigned int compress_level;
 635	u32 commit_interval;
 636	/*
 637	 * It is a suggestive number, the read side is safe even it gets a
 638	 * wrong number because we will write out the data into a regular
 639	 * extent. The write side(mount/remount) is under ->s_umount lock,
 640	 * so it is also safe.
 641	 */
 642	u64 max_inline;
 643
 644	struct btrfs_transaction *running_transaction;
 645	wait_queue_head_t transaction_throttle;
 646	wait_queue_head_t transaction_wait;
 647	wait_queue_head_t transaction_blocked_wait;
 648	wait_queue_head_t async_submit_wait;
 649
 650	/*
 651	 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
 652	 * when they are updated.
 653	 *
 654	 * Because we do not clear the flags for ever, so we needn't use
 655	 * the lock on the read side.
 656	 *
 657	 * We also needn't use the lock when we mount the fs, because
 658	 * there is no other task which will update the flag.
 659	 */
 660	spinlock_t super_lock;
 661	struct btrfs_super_block *super_copy;
 662	struct btrfs_super_block *super_for_commit;
 663	struct super_block *sb;
 664	struct inode *btree_inode;
 665	struct mutex tree_log_mutex;
 666	struct mutex transaction_kthread_mutex;
 667	struct mutex cleaner_mutex;
 668	struct mutex chunk_mutex;
 669
 670	/*
 671	 * this is taken to make sure we don't set block groups ro after
 672	 * the free space cache has been allocated on them
 673	 */
 674	struct mutex ro_block_group_mutex;
 675
 676	/* this is used during read/modify/write to make sure
 677	 * no two ios are trying to mod the same stripe at the same
 678	 * time
 679	 */
 680	struct btrfs_stripe_hash_table *stripe_hash_table;
 681
 682	/*
 683	 * this protects the ordered operations list only while we are
 684	 * processing all of the entries on it.  This way we make
 685	 * sure the commit code doesn't find the list temporarily empty
 686	 * because another function happens to be doing non-waiting preflush
 687	 * before jumping into the main commit.
 688	 */
 689	struct mutex ordered_operations_mutex;
 690
 691	struct rw_semaphore commit_root_sem;
 692
 693	struct rw_semaphore cleanup_work_sem;
 694
 695	struct rw_semaphore subvol_sem;
 696
 697	spinlock_t trans_lock;
 698	/*
 699	 * the reloc mutex goes with the trans lock, it is taken
 700	 * during commit to protect us from the relocation code
 701	 */
 702	struct mutex reloc_mutex;
 703
 704	struct list_head trans_list;
 705	struct list_head dead_roots;
 706	struct list_head caching_block_groups;
 707
 708	spinlock_t delayed_iput_lock;
 709	struct list_head delayed_iputs;
 710	atomic_t nr_delayed_iputs;
 711	wait_queue_head_t delayed_iputs_wait;
 712
 713	atomic64_t tree_mod_seq;
 714
 715	/* this protects tree_mod_log and tree_mod_seq_list */
 716	rwlock_t tree_mod_log_lock;
 717	struct rb_root tree_mod_log;
 718	struct list_head tree_mod_seq_list;
 719
 720	atomic_t async_delalloc_pages;
 721
 722	/*
 723	 * this is used to protect the following list -- ordered_roots.
 724	 */
 725	spinlock_t ordered_root_lock;
 726
 727	/*
 728	 * all fs/file tree roots in which there are data=ordered extents
 729	 * pending writeback are added into this list.
 730	 *
 731	 * these can span multiple transactions and basically include
 732	 * every dirty data page that isn't from nodatacow
 733	 */
 734	struct list_head ordered_roots;
 735
 736	struct mutex delalloc_root_mutex;
 737	spinlock_t delalloc_root_lock;
 738	/* all fs/file tree roots that have delalloc inodes. */
 739	struct list_head delalloc_roots;
 740
 741	/*
 742	 * there is a pool of worker threads for checksumming during writes
 743	 * and a pool for checksumming after reads.  This is because readers
 744	 * can run with FS locks held, and the writers may be waiting for
 745	 * those locks.  We don't want ordering in the pending list to cause
 746	 * deadlocks, and so the two are serviced separately.
 747	 *
 748	 * A third pool does submit_bio to avoid deadlocking with the other
 749	 * two
 750	 */
 751	struct btrfs_workqueue *workers;
 752	struct btrfs_workqueue *delalloc_workers;
 753	struct btrfs_workqueue *flush_workers;
 754	struct btrfs_workqueue *endio_workers;
 755	struct btrfs_workqueue *endio_meta_workers;
 756	struct btrfs_workqueue *endio_raid56_workers;
 757	struct btrfs_workqueue *rmw_workers;
 758	struct btrfs_workqueue *endio_meta_write_workers;
 759	struct btrfs_workqueue *endio_write_workers;
 760	struct btrfs_workqueue *endio_freespace_worker;
 761	struct btrfs_workqueue *caching_workers;
 762	struct btrfs_workqueue *readahead_workers;
 763
 764	/*
 765	 * fixup workers take dirty pages that didn't properly go through
 766	 * the cow mechanism and make them safe to write.  It happens
 767	 * for the sys_munmap function call path
 768	 */
 769	struct btrfs_workqueue *fixup_workers;
 770	struct btrfs_workqueue *delayed_workers;
 771
 772	struct task_struct *transaction_kthread;
 773	struct task_struct *cleaner_kthread;
 774	u32 thread_pool_size;
 775
 776	struct kobject *space_info_kobj;
 777	struct kobject *qgroups_kobj;
 778
 779	u64 total_pinned;
 780
 781	/* used to keep from writing metadata until there is a nice batch */
 782	struct percpu_counter dirty_metadata_bytes;
 783	struct percpu_counter delalloc_bytes;
 784	struct percpu_counter dio_bytes;
 785	s32 dirty_metadata_batch;
 786	s32 delalloc_batch;
 787
 788	struct list_head dirty_cowonly_roots;
 789
 790	struct btrfs_fs_devices *fs_devices;
 791
 792	/*
 793	 * The space_info list is effectively read only after initial
 794	 * setup.  It is populated at mount time and cleaned up after
 795	 * all block groups are removed.  RCU is used to protect it.
 796	 */
 797	struct list_head space_info;
 798
 799	struct btrfs_space_info *data_sinfo;
 800
 801	struct reloc_control *reloc_ctl;
 802
 803	/* data_alloc_cluster is only used in ssd_spread mode */
 804	struct btrfs_free_cluster data_alloc_cluster;
 805
 806	/* all metadata allocations go through this cluster */
 807	struct btrfs_free_cluster meta_alloc_cluster;
 808
 809	/* auto defrag inodes go here */
 810	spinlock_t defrag_inodes_lock;
 811	struct rb_root defrag_inodes;
 812	atomic_t defrag_running;
 813
 814	/* Used to protect avail_{data, metadata, system}_alloc_bits */
 815	seqlock_t profiles_lock;
 816	/*
 817	 * these three are in extended format (availability of single
 818	 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
 819	 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
 820	 */
 821	u64 avail_data_alloc_bits;
 822	u64 avail_metadata_alloc_bits;
 823	u64 avail_system_alloc_bits;
 824
 825	/* restriper state */
 826	spinlock_t balance_lock;
 827	struct mutex balance_mutex;
 828	atomic_t balance_pause_req;
 829	atomic_t balance_cancel_req;
 830	struct btrfs_balance_control *balance_ctl;
 831	wait_queue_head_t balance_wait_q;
 832
 833	u32 data_chunk_allocations;
 834	u32 metadata_ratio;
 835
 836	void *bdev_holder;
 837
 838	/* private scrub information */
 839	struct mutex scrub_lock;
 840	atomic_t scrubs_running;
 841	atomic_t scrub_pause_req;
 842	atomic_t scrubs_paused;
 843	atomic_t scrub_cancel_req;
 844	wait_queue_head_t scrub_pause_wait;
 845	/*
 846	 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
 847	 * running.
 848	 */
 849	refcount_t scrub_workers_refcnt;
 850	struct btrfs_workqueue *scrub_workers;
 851	struct btrfs_workqueue *scrub_wr_completion_workers;
 852	struct btrfs_workqueue *scrub_parity_workers;
 853
 854	struct btrfs_discard_ctl discard_ctl;
 855
 856#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
 857	u32 check_integrity_print_mask;
 858#endif
 859	/* is qgroup tracking in a consistent state? */
 860	u64 qgroup_flags;
 861
 862	/* holds configuration and tracking. Protected by qgroup_lock */
 863	struct rb_root qgroup_tree;
 864	spinlock_t qgroup_lock;
 865
 866	/*
 867	 * used to avoid frequently calling ulist_alloc()/ulist_free()
 868	 * when doing qgroup accounting, it must be protected by qgroup_lock.
 869	 */
 870	struct ulist *qgroup_ulist;
 871
 872	/* protect user change for quota operations */
 873	struct mutex qgroup_ioctl_lock;
 874
 875	/* list of dirty qgroups to be written at next commit */
 876	struct list_head dirty_qgroups;
 877
 878	/* used by qgroup for an efficient tree traversal */
 879	u64 qgroup_seq;
 880
 881	/* qgroup rescan items */
 882	struct mutex qgroup_rescan_lock; /* protects the progress item */
 883	struct btrfs_key qgroup_rescan_progress;
 884	struct btrfs_workqueue *qgroup_rescan_workers;
 885	struct completion qgroup_rescan_completion;
 886	struct btrfs_work qgroup_rescan_work;
 887	bool qgroup_rescan_running;	/* protected by qgroup_rescan_lock */
 888
 889	/* filesystem state */
 890	unsigned long fs_state;
 891
 892	struct btrfs_delayed_root *delayed_root;
 893
 894	/* readahead tree */
 895	spinlock_t reada_lock;
 896	struct radix_tree_root reada_tree;
 897
 898	/* readahead works cnt */
 899	atomic_t reada_works_cnt;
 900
 901	/* Extent buffer radix tree */
 902	spinlock_t buffer_lock;
 903	struct radix_tree_root buffer_radix;
 904
 905	/* next backup root to be overwritten */
 906	int backup_root_index;
 907
 908	/* device replace state */
 909	struct btrfs_dev_replace dev_replace;
 910
 911	struct semaphore uuid_tree_rescan_sem;
 912
 913	/* Used to reclaim the metadata space in the background. */
 914	struct work_struct async_reclaim_work;
 915
 916	spinlock_t unused_bgs_lock;
 917	struct list_head unused_bgs;
 918	struct mutex unused_bg_unpin_mutex;
 919	struct mutex delete_unused_bgs_mutex;
 920
 921	/* Cached block sizes */
 922	u32 nodesize;
 923	u32 sectorsize;
 924	u32 stripesize;
 925
 926	/* Block groups and devices containing active swapfiles. */
 927	spinlock_t swapfile_pins_lock;
 928	struct rb_root swapfile_pins;
 929
 930	struct crypto_shash *csum_shash;
 931
 932	/*
 933	 * Number of send operations in progress.
 934	 * Updated while holding fs_info::balance_mutex.
 935	 */
 936	int send_in_progress;
 937
 938#ifdef CONFIG_BTRFS_FS_REF_VERIFY
 939	spinlock_t ref_verify_lock;
 940	struct rb_root block_tree;
 941#endif
 942
 943#ifdef CONFIG_BTRFS_DEBUG
 944	struct kobject *debug_kobj;
 945	struct kobject *discard_debug_kobj;
 946	struct list_head allocated_roots;
 947
 948	spinlock_t eb_leak_lock;
 949	struct list_head allocated_ebs;
 950#endif
 951};
 952
 953static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
 954{
 955	return sb->s_fs_info;
 956}
 957
 958/*
 959 * The state of btrfs root
 960 */
 961enum {
 962	/*
 963	 * btrfs_record_root_in_trans is a multi-step process, and it can race
 964	 * with the balancing code.   But the race is very small, and only the
 965	 * first time the root is added to each transaction.  So IN_TRANS_SETUP
 966	 * is used to tell us when more checks are required
 967	 */
 968	BTRFS_ROOT_IN_TRANS_SETUP,
 969
 970	/*
 971	 * Set if tree blocks of this root can be shared by other roots.
 972	 * Only subvolume trees and their reloc trees have this bit set.
 973	 * Conflicts with TRACK_DIRTY bit.
 974	 *
 975	 * This affects two things:
 976	 *
 977	 * - How balance works
 978	 *   For shareable roots, we need to use reloc tree and do path
 979	 *   replacement for balance, and need various pre/post hooks for
 980	 *   snapshot creation to handle them.
 981	 *
 982	 *   While for non-shareable trees, we just simply do a tree search
 983	 *   with COW.
 984	 *
 985	 * - How dirty roots are tracked
 986	 *   For shareable roots, btrfs_record_root_in_trans() is needed to
 987	 *   track them, while non-subvolume roots have TRACK_DIRTY bit, they
 988	 *   don't need to set this manually.
 989	 */
 990	BTRFS_ROOT_SHAREABLE,
 991	BTRFS_ROOT_TRACK_DIRTY,
 992	BTRFS_ROOT_IN_RADIX,
 993	BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
 994	BTRFS_ROOT_DEFRAG_RUNNING,
 995	BTRFS_ROOT_FORCE_COW,
 996	BTRFS_ROOT_MULTI_LOG_TASKS,
 997	BTRFS_ROOT_DIRTY,
 998	BTRFS_ROOT_DELETING,
 999
1000	/*
1001	 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1002	 *
1003	 * Set for the subvolume tree owning the reloc tree.
1004	 */
1005	BTRFS_ROOT_DEAD_RELOC_TREE,
1006	/* Mark dead root stored on device whose cleanup needs to be resumed */
1007	BTRFS_ROOT_DEAD_TREE,
1008	/* The root has a log tree. Used only for subvolume roots. */
1009	BTRFS_ROOT_HAS_LOG_TREE,
1010	/* Qgroup flushing is in progress */
1011	BTRFS_ROOT_QGROUP_FLUSHING,
 
 
 
 
 
 
1012};
1013
1014/*
1015 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1016 * code. For detail check comment in fs/btrfs/qgroup.c.
1017 */
1018struct btrfs_qgroup_swapped_blocks {
1019	spinlock_t lock;
1020	/* RM_EMPTY_ROOT() of above blocks[] */
1021	bool swapped;
1022	struct rb_root blocks[BTRFS_MAX_LEVEL];
1023};
1024
1025/*
1026 * in ram representation of the tree.  extent_root is used for all allocations
1027 * and for the extent tree extent_root root.
1028 */
1029struct btrfs_root {
 
 
1030	struct extent_buffer *node;
1031
1032	struct extent_buffer *commit_root;
1033	struct btrfs_root *log_root;
1034	struct btrfs_root *reloc_root;
1035
1036	unsigned long state;
1037	struct btrfs_root_item root_item;
1038	struct btrfs_key root_key;
1039	struct btrfs_fs_info *fs_info;
1040	struct extent_io_tree dirty_log_pages;
1041
1042	struct mutex objectid_mutex;
1043
1044	spinlock_t accounting_lock;
1045	struct btrfs_block_rsv *block_rsv;
1046
1047	/* free ino cache stuff */
1048	struct btrfs_free_space_ctl *free_ino_ctl;
1049	enum btrfs_caching_type ino_cache_state;
1050	spinlock_t ino_cache_lock;
1051	wait_queue_head_t ino_cache_wait;
1052	struct btrfs_free_space_ctl *free_ino_pinned;
1053	u64 ino_cache_progress;
1054	struct inode *ino_cache_inode;
1055
1056	struct mutex log_mutex;
1057	wait_queue_head_t log_writer_wait;
1058	wait_queue_head_t log_commit_wait[2];
1059	struct list_head log_ctxs[2];
1060	/* Used only for log trees of subvolumes, not for the log root tree */
1061	atomic_t log_writers;
1062	atomic_t log_commit[2];
1063	/* Used only for log trees of subvolumes, not for the log root tree */
1064	atomic_t log_batch;
1065	int log_transid;
1066	/* No matter the commit succeeds or not*/
1067	int log_transid_committed;
1068	/* Just be updated when the commit succeeds. */
1069	int last_log_commit;
1070	pid_t log_start_pid;
1071
1072	u64 last_trans;
1073
1074	u32 type;
1075
1076	u64 highest_objectid;
1077
1078	struct btrfs_key defrag_progress;
1079	struct btrfs_key defrag_max;
1080
1081	/* The dirty list is only used by non-shareable roots */
1082	struct list_head dirty_list;
1083
1084	struct list_head root_list;
1085
1086	spinlock_t log_extents_lock[2];
1087	struct list_head logged_list[2];
1088
1089	int orphan_cleanup_state;
1090
1091	spinlock_t inode_lock;
1092	/* red-black tree that keeps track of in-memory inodes */
1093	struct rb_root inode_tree;
1094
1095	/*
1096	 * radix tree that keeps track of delayed nodes of every inode,
1097	 * protected by inode_lock
1098	 */
1099	struct radix_tree_root delayed_nodes_tree;
1100	/*
1101	 * right now this just gets used so that a root has its own devid
1102	 * for stat.  It may be used for more later
1103	 */
1104	dev_t anon_dev;
1105
1106	spinlock_t root_item_lock;
1107	refcount_t refs;
1108
1109	struct mutex delalloc_mutex;
1110	spinlock_t delalloc_lock;
1111	/*
1112	 * all of the inodes that have delalloc bytes.  It is possible for
1113	 * this list to be empty even when there is still dirty data=ordered
1114	 * extents waiting to finish IO.
1115	 */
1116	struct list_head delalloc_inodes;
1117	struct list_head delalloc_root;
1118	u64 nr_delalloc_inodes;
1119
1120	struct mutex ordered_extent_mutex;
1121	/*
1122	 * this is used by the balancing code to wait for all the pending
1123	 * ordered extents
1124	 */
1125	spinlock_t ordered_extent_lock;
1126
1127	/*
1128	 * all of the data=ordered extents pending writeback
1129	 * these can span multiple transactions and basically include
1130	 * every dirty data page that isn't from nodatacow
1131	 */
1132	struct list_head ordered_extents;
1133	struct list_head ordered_root;
1134	u64 nr_ordered_extents;
1135
1136	/*
1137	 * Not empty if this subvolume root has gone through tree block swap
1138	 * (relocation)
1139	 *
1140	 * Will be used by reloc_control::dirty_subvol_roots.
1141	 */
1142	struct list_head reloc_dirty_list;
1143
1144	/*
1145	 * Number of currently running SEND ioctls to prevent
1146	 * manipulation with the read-only status via SUBVOL_SETFLAGS
1147	 */
1148	int send_in_progress;
1149	/*
1150	 * Number of currently running deduplication operations that have a
1151	 * destination inode belonging to this root. Protected by the lock
1152	 * root_item_lock.
1153	 */
1154	int dedupe_in_progress;
1155	/* For exclusion of snapshot creation and nocow writes */
1156	struct btrfs_drew_lock snapshot_lock;
1157
1158	atomic_t snapshot_force_cow;
1159
1160	/* For qgroup metadata reserved space */
1161	spinlock_t qgroup_meta_rsv_lock;
1162	u64 qgroup_meta_rsv_pertrans;
1163	u64 qgroup_meta_rsv_prealloc;
1164	wait_queue_head_t qgroup_flush_wait;
1165
1166	/* Number of active swapfiles */
1167	atomic_t nr_swapfiles;
1168
1169	/* Record pairs of swapped blocks for qgroup */
1170	struct btrfs_qgroup_swapped_blocks swapped_blocks;
1171
1172	/* Used only by log trees, when logging csum items */
1173	struct extent_io_tree log_csum_range;
1174
1175#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1176	u64 alloc_bytenr;
1177#endif
1178
1179#ifdef CONFIG_BTRFS_DEBUG
1180	struct list_head leak_list;
1181#endif
1182};
1183
1184struct btrfs_clone_extent_info {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1185	u64 disk_offset;
1186	u64 disk_len;
1187	u64 data_offset;
1188	u64 data_len;
1189	u64 file_offset;
 
1190	char *extent_buf;
1191	u32 item_size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1192};
1193
1194struct btrfs_file_private {
1195	void *filldir_buf;
 
1196};
1197
1198static inline u32 btrfs_inode_sectorsize(const struct inode *inode)
1199{
1200	return btrfs_sb(inode->i_sb)->sectorsize;
1201}
1202
1203static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1204{
1205
1206	return info->nodesize - sizeof(struct btrfs_header);
1207}
1208
1209#define BTRFS_LEAF_DATA_OFFSET		offsetof(struct btrfs_leaf, items)
1210
1211static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1212{
1213	return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1214}
1215
1216static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1217{
1218	return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1219}
1220
1221#define BTRFS_FILE_EXTENT_INLINE_DATA_START		\
1222		(offsetof(struct btrfs_file_extent_item, disk_bytenr))
1223static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1224{
1225	return BTRFS_MAX_ITEM_SIZE(info) -
1226	       BTRFS_FILE_EXTENT_INLINE_DATA_START;
1227}
1228
1229static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1230{
1231	return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1232}
1233
1234/*
1235 * Flags for mount options.
1236 *
1237 * Note: don't forget to add new options to btrfs_show_options()
1238 */
1239#define BTRFS_MOUNT_NODATASUM		(1 << 0)
1240#define BTRFS_MOUNT_NODATACOW		(1 << 1)
1241#define BTRFS_MOUNT_NOBARRIER		(1 << 2)
1242#define BTRFS_MOUNT_SSD			(1 << 3)
1243#define BTRFS_MOUNT_DEGRADED		(1 << 4)
1244#define BTRFS_MOUNT_COMPRESS		(1 << 5)
1245#define BTRFS_MOUNT_NOTREELOG           (1 << 6)
1246#define BTRFS_MOUNT_FLUSHONCOMMIT       (1 << 7)
1247#define BTRFS_MOUNT_SSD_SPREAD		(1 << 8)
1248#define BTRFS_MOUNT_NOSSD		(1 << 9)
1249#define BTRFS_MOUNT_DISCARD_SYNC	(1 << 10)
1250#define BTRFS_MOUNT_FORCE_COMPRESS      (1 << 11)
1251#define BTRFS_MOUNT_SPACE_CACHE		(1 << 12)
1252#define BTRFS_MOUNT_CLEAR_CACHE		(1 << 13)
1253#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
1254#define BTRFS_MOUNT_ENOSPC_DEBUG	 (1 << 15)
1255#define BTRFS_MOUNT_AUTO_DEFRAG		(1 << 16)
1256#define BTRFS_MOUNT_INODE_MAP_CACHE	(1 << 17)
1257#define BTRFS_MOUNT_USEBACKUPROOT	(1 << 18)
1258#define BTRFS_MOUNT_SKIP_BALANCE	(1 << 19)
1259#define BTRFS_MOUNT_CHECK_INTEGRITY	(1 << 20)
1260#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
1261#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR	(1 << 22)
1262#define BTRFS_MOUNT_RESCAN_UUID_TREE	(1 << 23)
1263#define BTRFS_MOUNT_FRAGMENT_DATA	(1 << 24)
1264#define BTRFS_MOUNT_FRAGMENT_METADATA	(1 << 25)
1265#define BTRFS_MOUNT_FREE_SPACE_TREE	(1 << 26)
1266#define BTRFS_MOUNT_NOLOGREPLAY		(1 << 27)
1267#define BTRFS_MOUNT_REF_VERIFY		(1 << 28)
1268#define BTRFS_MOUNT_DISCARD_ASYNC	(1 << 29)
1269
1270#define BTRFS_DEFAULT_COMMIT_INTERVAL	(30)
1271#define BTRFS_DEFAULT_MAX_INLINE	(2048)
1272
1273#define btrfs_clear_opt(o, opt)		((o) &= ~BTRFS_MOUNT_##opt)
1274#define btrfs_set_opt(o, opt)		((o) |= BTRFS_MOUNT_##opt)
1275#define btrfs_raw_test_opt(o, opt)	((o) & BTRFS_MOUNT_##opt)
1276#define btrfs_test_opt(fs_info, opt)	((fs_info)->mount_opt & \
1277					 BTRFS_MOUNT_##opt)
1278
1279#define btrfs_set_and_info(fs_info, opt, fmt, args...)			\
1280do {									\
1281	if (!btrfs_test_opt(fs_info, opt))				\
1282		btrfs_info(fs_info, fmt, ##args);			\
1283	btrfs_set_opt(fs_info->mount_opt, opt);				\
1284} while (0)
1285
1286#define btrfs_clear_and_info(fs_info, opt, fmt, args...)		\
1287do {									\
1288	if (btrfs_test_opt(fs_info, opt))				\
1289		btrfs_info(fs_info, fmt, ##args);			\
1290	btrfs_clear_opt(fs_info->mount_opt, opt);			\
1291} while (0)
1292
1293/*
1294 * Requests for changes that need to be done during transaction commit.
1295 *
1296 * Internal mount options that are used for special handling of the real
1297 * mount options (eg. cannot be set during remount and have to be set during
1298 * transaction commit)
1299 */
1300
1301#define BTRFS_PENDING_SET_INODE_MAP_CACHE	(0)
1302#define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE	(1)
1303#define BTRFS_PENDING_COMMIT			(2)
1304
1305#define btrfs_test_pending(info, opt)	\
1306	test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1307#define btrfs_set_pending(info, opt)	\
1308	set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1309#define btrfs_clear_pending(info, opt)	\
1310	clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1311
1312/*
1313 * Helpers for setting pending mount option changes.
1314 *
1315 * Expects corresponding macros
1316 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1317 */
1318#define btrfs_set_pending_and_info(info, opt, fmt, args...)            \
1319do {                                                                   \
1320       if (!btrfs_raw_test_opt((info)->mount_opt, opt)) {              \
1321               btrfs_info((info), fmt, ##args);                        \
1322               btrfs_set_pending((info), SET_##opt);                   \
1323               btrfs_clear_pending((info), CLEAR_##opt);               \
1324       }                                                               \
1325} while(0)
1326
1327#define btrfs_clear_pending_and_info(info, opt, fmt, args...)          \
1328do {                                                                   \
1329       if (btrfs_raw_test_opt((info)->mount_opt, opt)) {               \
1330               btrfs_info((info), fmt, ##args);                        \
1331               btrfs_set_pending((info), CLEAR_##opt);                 \
1332               btrfs_clear_pending((info), SET_##opt);                 \
1333       }                                                               \
1334} while(0)
1335
1336/*
1337 * Inode flags
1338 */
1339#define BTRFS_INODE_NODATASUM		(1 << 0)
1340#define BTRFS_INODE_NODATACOW		(1 << 1)
1341#define BTRFS_INODE_READONLY		(1 << 2)
1342#define BTRFS_INODE_NOCOMPRESS		(1 << 3)
1343#define BTRFS_INODE_PREALLOC		(1 << 4)
1344#define BTRFS_INODE_SYNC		(1 << 5)
1345#define BTRFS_INODE_IMMUTABLE		(1 << 6)
1346#define BTRFS_INODE_APPEND		(1 << 7)
1347#define BTRFS_INODE_NODUMP		(1 << 8)
1348#define BTRFS_INODE_NOATIME		(1 << 9)
1349#define BTRFS_INODE_DIRSYNC		(1 << 10)
1350#define BTRFS_INODE_COMPRESS		(1 << 11)
1351
1352#define BTRFS_INODE_ROOT_ITEM_INIT	(1 << 31)
1353
1354#define BTRFS_INODE_FLAG_MASK						\
1355	(BTRFS_INODE_NODATASUM |					\
1356	 BTRFS_INODE_NODATACOW |					\
1357	 BTRFS_INODE_READONLY |						\
1358	 BTRFS_INODE_NOCOMPRESS |					\
1359	 BTRFS_INODE_PREALLOC |						\
1360	 BTRFS_INODE_SYNC |						\
1361	 BTRFS_INODE_IMMUTABLE |					\
1362	 BTRFS_INODE_APPEND |						\
1363	 BTRFS_INODE_NODUMP |						\
1364	 BTRFS_INODE_NOATIME |						\
1365	 BTRFS_INODE_DIRSYNC |						\
1366	 BTRFS_INODE_COMPRESS |						\
1367	 BTRFS_INODE_ROOT_ITEM_INIT)
1368
1369struct btrfs_map_token {
1370	struct extent_buffer *eb;
1371	char *kaddr;
1372	unsigned long offset;
1373};
1374
1375#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1376				((bytes) >> (fs_info)->sb->s_blocksize_bits)
1377
1378static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1379					struct extent_buffer *eb)
1380{
1381	token->eb = eb;
1382	token->kaddr = page_address(eb->pages[0]);
1383	token->offset = 0;
1384}
1385
1386/* some macros to generate set/get functions for the struct fields.  This
1387 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1388 * one for u8:
1389 */
1390#define le8_to_cpu(v) (v)
1391#define cpu_to_le8(v) (v)
1392#define __le8 u8
1393
1394#define read_eb_member(eb, ptr, type, member, result) (\
1395	read_extent_buffer(eb, (char *)(result),			\
1396			   ((unsigned long)(ptr)) +			\
1397			    offsetof(type, member),			\
1398			   sizeof(((type *)0)->member)))
1399
1400#define write_eb_member(eb, ptr, type, member, result) (\
1401	write_extent_buffer(eb, (char *)(result),			\
1402			   ((unsigned long)(ptr)) +			\
1403			    offsetof(type, member),			\
1404			   sizeof(((type *)0)->member)))
1405
1406#define DECLARE_BTRFS_SETGET_BITS(bits)					\
1407u##bits btrfs_get_token_##bits(struct btrfs_map_token *token,		\
1408			       const void *ptr, unsigned long off);	\
1409void btrfs_set_token_##bits(struct btrfs_map_token *token,		\
1410			    const void *ptr, unsigned long off,		\
1411			    u##bits val);				\
1412u##bits btrfs_get_##bits(const struct extent_buffer *eb,		\
1413			 const void *ptr, unsigned long off);		\
1414void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr,	\
1415		      unsigned long off, u##bits val);
1416
1417DECLARE_BTRFS_SETGET_BITS(8)
1418DECLARE_BTRFS_SETGET_BITS(16)
1419DECLARE_BTRFS_SETGET_BITS(32)
1420DECLARE_BTRFS_SETGET_BITS(64)
1421
1422#define BTRFS_SETGET_FUNCS(name, type, member, bits)			\
1423static inline u##bits btrfs_##name(const struct extent_buffer *eb,	\
1424				   const type *s)			\
1425{									\
1426	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1427	return btrfs_get_##bits(eb, s, offsetof(type, member));		\
1428}									\
1429static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1430				    u##bits val)			\
1431{									\
1432	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1433	btrfs_set_##bits(eb, s, offsetof(type, member), val);		\
1434}									\
1435static inline u##bits btrfs_token_##name(struct btrfs_map_token *token,	\
1436					 const type *s)			\
1437{									\
1438	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1439	return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1440}									\
1441static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1442					  type *s, u##bits val)		\
1443{									\
1444	BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member);	\
1445	btrfs_set_token_##bits(token, s, offsetof(type, member), val);	\
1446}
1447
1448#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits)		\
1449static inline u##bits btrfs_##name(const struct extent_buffer *eb)	\
1450{									\
1451	const type *p = page_address(eb->pages[0]);			\
1452	u##bits res = le##bits##_to_cpu(p->member);			\
1453	return res;							\
1454}									\
1455static inline void btrfs_set_##name(const struct extent_buffer *eb,	\
1456				    u##bits val)			\
1457{									\
1458	type *p = page_address(eb->pages[0]);				\
1459	p->member = cpu_to_le##bits(val);				\
1460}
1461
1462#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits)		\
1463static inline u##bits btrfs_##name(const type *s)			\
1464{									\
1465	return le##bits##_to_cpu(s->member);				\
1466}									\
1467static inline void btrfs_set_##name(type *s, u##bits val)		\
1468{									\
1469	s->member = cpu_to_le##bits(val);				\
1470}
1471
1472
1473static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1474					   struct btrfs_dev_item *s)
1475{
1476	BUILD_BUG_ON(sizeof(u64) !=
1477		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1478	return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1479					    total_bytes));
1480}
1481static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1482						struct btrfs_dev_item *s,
1483						u64 val)
1484{
1485	BUILD_BUG_ON(sizeof(u64) !=
1486		     sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1487	WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1488	btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1489}
1490
1491
1492BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1493BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1494BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1495BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1496BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1497		   start_offset, 64);
1498BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1499BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1500BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1501BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1502BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1503BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1504
1505BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1506BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1507			 total_bytes, 64);
1508BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1509			 bytes_used, 64);
1510BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1511			 io_align, 32);
1512BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1513			 io_width, 32);
1514BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1515			 sector_size, 32);
1516BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1517BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1518			 dev_group, 32);
1519BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1520			 seek_speed, 8);
1521BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1522			 bandwidth, 8);
1523BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1524			 generation, 64);
1525
1526static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1527{
1528	return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1529}
1530
1531static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1532{
1533	return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1534}
1535
1536BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1537BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1538BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1539BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1540BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1541BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1542BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1543BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1544BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1545BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1546BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1547
1548static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1549{
1550	return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1551}
1552
1553BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1554BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1555BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1556			 stripe_len, 64);
1557BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1558			 io_align, 32);
1559BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1560			 io_width, 32);
1561BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1562			 sector_size, 32);
1563BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1564BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1565			 num_stripes, 16);
1566BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1567			 sub_stripes, 16);
1568BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1569BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1570
1571static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1572						   int nr)
1573{
1574	unsigned long offset = (unsigned long)c;
1575	offset += offsetof(struct btrfs_chunk, stripe);
1576	offset += nr * sizeof(struct btrfs_stripe);
1577	return (struct btrfs_stripe *)offset;
1578}
1579
1580static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1581{
1582	return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1583}
1584
1585static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1586					 struct btrfs_chunk *c, int nr)
1587{
1588	return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1589}
1590
1591static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1592					 struct btrfs_chunk *c, int nr)
1593{
1594	return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1595}
1596
1597/* struct btrfs_block_group_item */
1598BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1599			 used, 64);
1600BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1601			 used, 64);
1602BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1603			struct btrfs_block_group_item, chunk_objectid, 64);
1604
1605BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1606		   struct btrfs_block_group_item, chunk_objectid, 64);
1607BTRFS_SETGET_FUNCS(block_group_flags,
1608		   struct btrfs_block_group_item, flags, 64);
1609BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1610			struct btrfs_block_group_item, flags, 64);
1611
1612/* struct btrfs_free_space_info */
1613BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1614		   extent_count, 32);
1615BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1616
1617/* struct btrfs_inode_ref */
1618BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1619BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1620
1621/* struct btrfs_inode_extref */
1622BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1623		   parent_objectid, 64);
1624BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1625		   name_len, 16);
1626BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1627
1628/* struct btrfs_inode_item */
1629BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1630BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1631BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1632BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1633BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1634BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1635BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1636BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1637BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1638BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1639BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1640BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1641BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1642			 generation, 64);
1643BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1644			 sequence, 64);
1645BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1646			 transid, 64);
1647BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1648BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1649			 nbytes, 64);
1650BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1651			 block_group, 64);
1652BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1653BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1654BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1655BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1656BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1657BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1658BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1659BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1660BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1661BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1662
1663/* struct btrfs_dev_extent */
1664BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1665		   chunk_tree, 64);
1666BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1667		   chunk_objectid, 64);
1668BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1669		   chunk_offset, 64);
1670BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1671BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1672BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1673		   generation, 64);
1674BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1675
1676BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1677
1678static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1679					struct btrfs_tree_block_info *item,
1680					struct btrfs_disk_key *key)
1681{
1682	read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1683}
1684
1685static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1686					    struct btrfs_tree_block_info *item,
1687					    struct btrfs_disk_key *key)
1688{
1689	write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1690}
1691
1692BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1693		   root, 64);
1694BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1695		   objectid, 64);
1696BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1697		   offset, 64);
1698BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1699		   count, 32);
1700
1701BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1702		   count, 32);
1703
1704BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1705		   type, 8);
1706BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1707		   offset, 64);
1708
1709static inline u32 btrfs_extent_inline_ref_size(int type)
1710{
1711	if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1712	    type == BTRFS_SHARED_BLOCK_REF_KEY)
1713		return sizeof(struct btrfs_extent_inline_ref);
1714	if (type == BTRFS_SHARED_DATA_REF_KEY)
1715		return sizeof(struct btrfs_shared_data_ref) +
1716		       sizeof(struct btrfs_extent_inline_ref);
1717	if (type == BTRFS_EXTENT_DATA_REF_KEY)
1718		return sizeof(struct btrfs_extent_data_ref) +
1719		       offsetof(struct btrfs_extent_inline_ref, offset);
1720	return 0;
1721}
1722
1723/* struct btrfs_node */
1724BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1725BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1726BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1727			 blockptr, 64);
1728BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1729			 generation, 64);
1730
1731static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1732{
1733	unsigned long ptr;
1734	ptr = offsetof(struct btrfs_node, ptrs) +
1735		sizeof(struct btrfs_key_ptr) * nr;
1736	return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1737}
1738
1739static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1740					   int nr, u64 val)
1741{
1742	unsigned long ptr;
1743	ptr = offsetof(struct btrfs_node, ptrs) +
1744		sizeof(struct btrfs_key_ptr) * nr;
1745	btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1746}
1747
1748static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1749{
1750	unsigned long ptr;
1751	ptr = offsetof(struct btrfs_node, ptrs) +
1752		sizeof(struct btrfs_key_ptr) * nr;
1753	return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1754}
1755
1756static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1757						 int nr, u64 val)
1758{
1759	unsigned long ptr;
1760	ptr = offsetof(struct btrfs_node, ptrs) +
1761		sizeof(struct btrfs_key_ptr) * nr;
1762	btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1763}
1764
1765static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1766{
1767	return offsetof(struct btrfs_node, ptrs) +
1768		sizeof(struct btrfs_key_ptr) * nr;
1769}
1770
1771void btrfs_node_key(const struct extent_buffer *eb,
1772		    struct btrfs_disk_key *disk_key, int nr);
1773
1774static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1775				      struct btrfs_disk_key *disk_key, int nr)
1776{
1777	unsigned long ptr;
1778	ptr = btrfs_node_key_ptr_offset(nr);
1779	write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1780		       struct btrfs_key_ptr, key, disk_key);
1781}
1782
1783/* struct btrfs_item */
1784BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1785BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1786BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1787BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1788
1789static inline unsigned long btrfs_item_nr_offset(int nr)
1790{
1791	return offsetof(struct btrfs_leaf, items) +
1792		sizeof(struct btrfs_item) * nr;
1793}
1794
1795static inline struct btrfs_item *btrfs_item_nr(int nr)
1796{
1797	return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1798}
1799
1800static inline u32 btrfs_item_end(const struct extent_buffer *eb,
1801				 struct btrfs_item *item)
1802{
1803	return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1804}
1805
1806static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr)
1807{
1808	return btrfs_item_end(eb, btrfs_item_nr(nr));
1809}
1810
1811static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr)
1812{
1813	return btrfs_item_offset(eb, btrfs_item_nr(nr));
1814}
1815
1816static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr)
1817{
1818	return btrfs_item_size(eb, btrfs_item_nr(nr));
1819}
1820
1821static inline void btrfs_item_key(const struct extent_buffer *eb,
1822			   struct btrfs_disk_key *disk_key, int nr)
1823{
1824	struct btrfs_item *item = btrfs_item_nr(nr);
1825	read_eb_member(eb, item, struct btrfs_item, key, disk_key);
1826}
1827
1828static inline void btrfs_set_item_key(struct extent_buffer *eb,
1829			       struct btrfs_disk_key *disk_key, int nr)
1830{
1831	struct btrfs_item *item = btrfs_item_nr(nr);
1832	write_eb_member(eb, item, struct btrfs_item, key, disk_key);
1833}
1834
1835BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
1836
1837/*
1838 * struct btrfs_root_ref
1839 */
1840BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
1841BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
1842BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
1843
1844/* struct btrfs_dir_item */
1845BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
1846BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
1847BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
1848BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
1849BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
1850BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
1851			 data_len, 16);
1852BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
1853			 name_len, 16);
1854BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
1855			 transid, 64);
1856
1857static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
1858				      const struct btrfs_dir_item *item,
1859				      struct btrfs_disk_key *key)
1860{
1861	read_eb_member(eb, item, struct btrfs_dir_item, location, key);
1862}
1863
1864static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
1865					  struct btrfs_dir_item *item,
1866					  const struct btrfs_disk_key *key)
1867{
1868	write_eb_member(eb, item, struct btrfs_dir_item, location, key);
1869}
1870
1871BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
1872		   num_entries, 64);
1873BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
1874		   num_bitmaps, 64);
1875BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
1876		   generation, 64);
1877
1878static inline void btrfs_free_space_key(const struct extent_buffer *eb,
1879					const struct btrfs_free_space_header *h,
1880					struct btrfs_disk_key *key)
1881{
1882	read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1883}
1884
1885static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
1886					    struct btrfs_free_space_header *h,
1887					    const struct btrfs_disk_key *key)
1888{
1889	write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1890}
1891
1892/* struct btrfs_disk_key */
1893BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
1894			 objectid, 64);
1895BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
1896BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
1897
1898#ifdef __LITTLE_ENDIAN
1899
1900/*
1901 * Optimized helpers for little-endian architectures where CPU and on-disk
1902 * structures have the same endianness and we can skip conversions.
1903 */
1904
1905static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
1906					 const struct btrfs_disk_key *disk_key)
1907{
1908	memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
1909}
1910
1911static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
1912					 const struct btrfs_key *cpu_key)
1913{
1914	memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
1915}
1916
1917static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
1918					 struct btrfs_key *cpu_key, int nr)
1919{
1920	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
1921
1922	btrfs_node_key(eb, disk_key, nr);
1923}
1924
1925static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
1926					 struct btrfs_key *cpu_key, int nr)
1927{
1928	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
1929
1930	btrfs_item_key(eb, disk_key, nr);
1931}
1932
1933static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
1934					     const struct btrfs_dir_item *item,
1935					     struct btrfs_key *cpu_key)
1936{
1937	struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
1938
1939	btrfs_dir_item_key(eb, item, disk_key);
1940}
1941
1942#else
1943
1944static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
1945					 const struct btrfs_disk_key *disk)
1946{
1947	cpu->offset = le64_to_cpu(disk->offset);
1948	cpu->type = disk->type;
1949	cpu->objectid = le64_to_cpu(disk->objectid);
1950}
1951
1952static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
1953					 const struct btrfs_key *cpu)
1954{
1955	disk->offset = cpu_to_le64(cpu->offset);
1956	disk->type = cpu->type;
1957	disk->objectid = cpu_to_le64(cpu->objectid);
1958}
1959
1960static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
1961					 struct btrfs_key *key, int nr)
1962{
1963	struct btrfs_disk_key disk_key;
1964	btrfs_node_key(eb, &disk_key, nr);
1965	btrfs_disk_key_to_cpu(key, &disk_key);
1966}
1967
1968static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
1969					 struct btrfs_key *key, int nr)
1970{
1971	struct btrfs_disk_key disk_key;
1972	btrfs_item_key(eb, &disk_key, nr);
1973	btrfs_disk_key_to_cpu(key, &disk_key);
1974}
1975
1976static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
1977					     const struct btrfs_dir_item *item,
1978					     struct btrfs_key *key)
1979{
1980	struct btrfs_disk_key disk_key;
1981	btrfs_dir_item_key(eb, item, &disk_key);
1982	btrfs_disk_key_to_cpu(key, &disk_key);
1983}
1984
1985#endif
1986
1987/* struct btrfs_header */
1988BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
1989BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
1990			  generation, 64);
1991BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
1992BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
1993BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
1994BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
1995BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
1996			 generation, 64);
1997BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
1998BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
1999			 nritems, 32);
2000BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2001
2002static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2003{
2004	return (btrfs_header_flags(eb) & flag) == flag;
2005}
2006
2007static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2008{
2009	u64 flags = btrfs_header_flags(eb);
2010	btrfs_set_header_flags(eb, flags | flag);
2011}
2012
2013static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2014{
2015	u64 flags = btrfs_header_flags(eb);
2016	btrfs_set_header_flags(eb, flags & ~flag);
2017}
2018
2019static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2020{
2021	u64 flags = btrfs_header_flags(eb);
2022	return flags >> BTRFS_BACKREF_REV_SHIFT;
2023}
2024
2025static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2026						int rev)
2027{
2028	u64 flags = btrfs_header_flags(eb);
2029	flags &= ~BTRFS_BACKREF_REV_MASK;
2030	flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2031	btrfs_set_header_flags(eb, flags);
2032}
2033
2034static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2035{
2036	return btrfs_header_level(eb) == 0;
2037}
2038
2039/* struct btrfs_root_item */
2040BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2041		   generation, 64);
2042BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2043BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2044BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2045
2046BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2047			 generation, 64);
2048BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2049BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2050BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2051BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2052BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2053BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2054BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2055BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2056			 last_snapshot, 64);
2057BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2058			 generation_v2, 64);
2059BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2060			 ctransid, 64);
2061BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2062			 otransid, 64);
2063BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2064			 stransid, 64);
2065BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2066			 rtransid, 64);
2067
2068static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2069{
2070	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2071}
2072
2073static inline bool btrfs_root_dead(const struct btrfs_root *root)
2074{
2075	return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2076}
2077
2078/* struct btrfs_root_backup */
2079BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2080		   tree_root, 64);
2081BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2082		   tree_root_gen, 64);
2083BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2084		   tree_root_level, 8);
2085
2086BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2087		   chunk_root, 64);
2088BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2089		   chunk_root_gen, 64);
2090BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2091		   chunk_root_level, 8);
2092
2093BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2094		   extent_root, 64);
2095BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2096		   extent_root_gen, 64);
2097BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2098		   extent_root_level, 8);
2099
2100BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2101		   fs_root, 64);
2102BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2103		   fs_root_gen, 64);
2104BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2105		   fs_root_level, 8);
2106
2107BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2108		   dev_root, 64);
2109BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2110		   dev_root_gen, 64);
2111BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2112		   dev_root_level, 8);
2113
2114BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2115		   csum_root, 64);
2116BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2117		   csum_root_gen, 64);
2118BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2119		   csum_root_level, 8);
2120BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2121		   total_bytes, 64);
2122BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2123		   bytes_used, 64);
2124BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2125		   num_devices, 64);
2126
2127/* struct btrfs_balance_item */
2128BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2129
2130static inline void btrfs_balance_data(const struct extent_buffer *eb,
2131				      const struct btrfs_balance_item *bi,
2132				      struct btrfs_disk_balance_args *ba)
2133{
2134	read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2135}
2136
2137static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2138				  struct btrfs_balance_item *bi,
2139				  const struct btrfs_disk_balance_args *ba)
2140{
2141	write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2142}
2143
2144static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2145				      const struct btrfs_balance_item *bi,
2146				      struct btrfs_disk_balance_args *ba)
2147{
2148	read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2149}
2150
2151static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2152				  struct btrfs_balance_item *bi,
2153				  const struct btrfs_disk_balance_args *ba)
2154{
2155	write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2156}
2157
2158static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2159				     const struct btrfs_balance_item *bi,
2160				     struct btrfs_disk_balance_args *ba)
2161{
2162	read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2163}
2164
2165static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2166				 struct btrfs_balance_item *bi,
2167				 const struct btrfs_disk_balance_args *ba)
2168{
2169	write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2170}
2171
2172static inline void
2173btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2174			       const struct btrfs_disk_balance_args *disk)
2175{
2176	memset(cpu, 0, sizeof(*cpu));
2177
2178	cpu->profiles = le64_to_cpu(disk->profiles);
2179	cpu->usage = le64_to_cpu(disk->usage);
2180	cpu->devid = le64_to_cpu(disk->devid);
2181	cpu->pstart = le64_to_cpu(disk->pstart);
2182	cpu->pend = le64_to_cpu(disk->pend);
2183	cpu->vstart = le64_to_cpu(disk->vstart);
2184	cpu->vend = le64_to_cpu(disk->vend);
2185	cpu->target = le64_to_cpu(disk->target);
2186	cpu->flags = le64_to_cpu(disk->flags);
2187	cpu->limit = le64_to_cpu(disk->limit);
2188	cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2189	cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2190}
2191
2192static inline void
2193btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2194			       const struct btrfs_balance_args *cpu)
2195{
2196	memset(disk, 0, sizeof(*disk));
2197
2198	disk->profiles = cpu_to_le64(cpu->profiles);
2199	disk->usage = cpu_to_le64(cpu->usage);
2200	disk->devid = cpu_to_le64(cpu->devid);
2201	disk->pstart = cpu_to_le64(cpu->pstart);
2202	disk->pend = cpu_to_le64(cpu->pend);
2203	disk->vstart = cpu_to_le64(cpu->vstart);
2204	disk->vend = cpu_to_le64(cpu->vend);
2205	disk->target = cpu_to_le64(cpu->target);
2206	disk->flags = cpu_to_le64(cpu->flags);
2207	disk->limit = cpu_to_le64(cpu->limit);
2208	disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2209	disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2210}
2211
2212/* struct btrfs_super_block */
2213BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2214BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2215BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2216			 generation, 64);
2217BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2218BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2219			 struct btrfs_super_block, sys_chunk_array_size, 32);
2220BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2221			 struct btrfs_super_block, chunk_root_generation, 64);
2222BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2223			 root_level, 8);
2224BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2225			 chunk_root, 64);
2226BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2227			 chunk_root_level, 8);
2228BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2229			 log_root, 64);
2230BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2231			 log_root_transid, 64);
2232BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2233			 log_root_level, 8);
2234BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2235			 total_bytes, 64);
2236BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2237			 bytes_used, 64);
2238BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2239			 sectorsize, 32);
2240BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2241			 nodesize, 32);
2242BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2243			 stripesize, 32);
2244BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2245			 root_dir_objectid, 64);
2246BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2247			 num_devices, 64);
2248BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2249			 compat_flags, 64);
2250BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2251			 compat_ro_flags, 64);
2252BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2253			 incompat_flags, 64);
2254BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2255			 csum_type, 16);
2256BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2257			 cache_generation, 64);
2258BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2259BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2260			 uuid_tree_generation, 64);
2261
2262int btrfs_super_csum_size(const struct btrfs_super_block *s);
2263const char *btrfs_super_csum_name(u16 csum_type);
2264const char *btrfs_super_csum_driver(u16 csum_type);
2265size_t __attribute_const__ btrfs_get_num_csums(void);
2266
2267
2268/*
2269 * The leaf data grows from end-to-front in the node.
2270 * this returns the address of the start of the last item,
2271 * which is the stop of the leaf data stack
2272 */
2273static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2274{
2275	u32 nr = btrfs_header_nritems(leaf);
2276
2277	if (nr == 0)
2278		return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2279	return btrfs_item_offset_nr(leaf, nr - 1);
2280}
2281
2282/* struct btrfs_file_extent_item */
2283BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2284			 type, 8);
2285BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2286			 struct btrfs_file_extent_item, disk_bytenr, 64);
2287BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2288			 struct btrfs_file_extent_item, offset, 64);
2289BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2290			 struct btrfs_file_extent_item, generation, 64);
2291BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2292			 struct btrfs_file_extent_item, num_bytes, 64);
2293BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2294			 struct btrfs_file_extent_item, ram_bytes, 64);
2295BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2296			 struct btrfs_file_extent_item, disk_num_bytes, 64);
2297BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2298			 struct btrfs_file_extent_item, compression, 8);
2299
2300static inline unsigned long
2301btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2302{
2303	return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2304}
2305
2306static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2307{
2308	return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2309}
2310
2311BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2312BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2313		   disk_bytenr, 64);
2314BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2315		   generation, 64);
2316BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2317		   disk_num_bytes, 64);
2318BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2319		  offset, 64);
2320BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2321		   num_bytes, 64);
2322BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2323		   ram_bytes, 64);
2324BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2325		   compression, 8);
2326BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2327		   encryption, 8);
2328BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2329		   other_encoding, 16);
2330
2331/*
2332 * this returns the number of bytes used by the item on disk, minus the
2333 * size of any extent headers.  If a file is compressed on disk, this is
2334 * the compressed size
2335 */
2336static inline u32 btrfs_file_extent_inline_item_len(
2337						const struct extent_buffer *eb,
2338						struct btrfs_item *e)
2339{
2340	return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2341}
2342
2343/* btrfs_qgroup_status_item */
2344BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2345		   generation, 64);
2346BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2347		   version, 64);
2348BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2349		   flags, 64);
2350BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2351		   rescan, 64);
2352
2353/* btrfs_qgroup_info_item */
2354BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2355		   generation, 64);
2356BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2357BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2358		   rfer_cmpr, 64);
2359BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2360BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2361		   excl_cmpr, 64);
2362
2363BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2364			 struct btrfs_qgroup_info_item, generation, 64);
2365BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2366			 rfer, 64);
2367BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2368			 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2369BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2370			 excl, 64);
2371BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2372			 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2373
2374/* btrfs_qgroup_limit_item */
2375BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2376		   flags, 64);
2377BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2378		   max_rfer, 64);
2379BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2380		   max_excl, 64);
2381BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2382		   rsv_rfer, 64);
2383BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2384		   rsv_excl, 64);
2385
2386/* btrfs_dev_replace_item */
2387BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2388		   struct btrfs_dev_replace_item, src_devid, 64);
2389BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2390		   struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2391		   64);
2392BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2393		   replace_state, 64);
2394BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2395		   time_started, 64);
2396BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2397		   time_stopped, 64);
2398BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2399		   num_write_errors, 64);
2400BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2401		   struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2402		   64);
2403BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2404		   cursor_left, 64);
2405BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2406		   cursor_right, 64);
2407
2408BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2409			 struct btrfs_dev_replace_item, src_devid, 64);
2410BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2411			 struct btrfs_dev_replace_item,
2412			 cont_reading_from_srcdev_mode, 64);
2413BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2414			 struct btrfs_dev_replace_item, replace_state, 64);
2415BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2416			 struct btrfs_dev_replace_item, time_started, 64);
2417BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2418			 struct btrfs_dev_replace_item, time_stopped, 64);
2419BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2420			 struct btrfs_dev_replace_item, num_write_errors, 64);
2421BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2422			 struct btrfs_dev_replace_item,
2423			 num_uncorrectable_read_errors, 64);
2424BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2425			 struct btrfs_dev_replace_item, cursor_left, 64);
2426BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2427			 struct btrfs_dev_replace_item, cursor_right, 64);
2428
2429/* helper function to cast into the data area of the leaf. */
2430#define btrfs_item_ptr(leaf, slot, type) \
2431	((type *)(BTRFS_LEAF_DATA_OFFSET + \
2432	btrfs_item_offset_nr(leaf, slot)))
2433
2434#define btrfs_item_ptr_offset(leaf, slot) \
2435	((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2436	btrfs_item_offset_nr(leaf, slot)))
2437
2438static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2439{
2440	return crc32c(crc, address, length);
2441}
2442
2443static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2444{
2445	put_unaligned_le32(~crc, result);
2446}
2447
2448static inline u64 btrfs_name_hash(const char *name, int len)
2449{
2450       return crc32c((u32)~1, name, len);
2451}
2452
2453/*
2454 * Figure the key offset of an extended inode ref
2455 */
2456static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2457                                   int len)
2458{
2459       return (u64) crc32c(parent_objectid, name, len);
2460}
2461
2462static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2463{
2464	return mapping_gfp_constraint(mapping, ~__GFP_FS);
2465}
2466
2467/* extent-tree.c */
2468
2469enum btrfs_inline_ref_type {
2470	BTRFS_REF_TYPE_INVALID,
2471	BTRFS_REF_TYPE_BLOCK,
2472	BTRFS_REF_TYPE_DATA,
2473	BTRFS_REF_TYPE_ANY,
2474};
2475
2476int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2477				     struct btrfs_extent_inline_ref *iref,
2478				     enum btrfs_inline_ref_type is_data);
2479u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2480
2481u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes);
2482
2483/*
2484 * Use this if we would be adding new items, as we could split nodes as we cow
2485 * down the tree.
2486 */
2487static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2488						  unsigned num_items)
2489{
2490	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2491}
2492
2493/*
2494 * Doing a truncate or a modification won't result in new nodes or leaves, just
2495 * what we need for COW.
2496 */
2497static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2498						 unsigned num_items)
2499{
2500	return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2501}
2502
2503int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2504			      u64 start, u64 num_bytes);
2505void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2506int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2507			   unsigned long count);
2508void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2509				  struct btrfs_delayed_ref_root *delayed_refs,
2510				  struct btrfs_delayed_ref_head *head);
2511int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2512int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2513			     struct btrfs_fs_info *fs_info, u64 bytenr,
2514			     u64 offset, int metadata, u64 *refs, u64 *flags);
2515int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2516		     int reserved);
2517int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2518				    u64 bytenr, u64 num_bytes);
2519int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2520int btrfs_cross_ref_exist(struct btrfs_root *root,
2521			  u64 objectid, u64 offset, u64 bytenr, bool strict);
2522struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2523					     struct btrfs_root *root,
2524					     u64 parent, u64 root_objectid,
2525					     const struct btrfs_disk_key *key,
2526					     int level, u64 hint,
2527					     u64 empty_size);
2528void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2529			   struct btrfs_root *root,
2530			   struct extent_buffer *buf,
2531			   u64 parent, int last_ref);
2532int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2533				     struct btrfs_root *root, u64 owner,
2534				     u64 offset, u64 ram_bytes,
2535				     struct btrfs_key *ins);
2536int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2537				   u64 root_objectid, u64 owner, u64 offset,
2538				   struct btrfs_key *ins);
2539int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2540			 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2541			 struct btrfs_key *ins, int is_data, int delalloc);
2542int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2543		  struct extent_buffer *buf, int full_backref);
2544int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2545		  struct extent_buffer *buf, int full_backref);
2546int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2547				struct extent_buffer *eb, u64 flags,
2548				int level, int is_data);
2549int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2550
2551int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2552			       u64 start, u64 len, int delalloc);
2553int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2554			      u64 len);
2555void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info);
2556int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2557int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2558			 struct btrfs_ref *generic_ref);
2559
2560int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr);
2561void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2562
2563/*
2564 * Different levels for to flush space when doing space reservations.
2565 *
2566 * The higher the level, the more methods we try to reclaim space.
2567 */
2568enum btrfs_reserve_flush_enum {
2569	/* If we are in the transaction, we can't flush anything.*/
2570	BTRFS_RESERVE_NO_FLUSH,
2571
2572	/*
2573	 * Flush space by:
2574	 * - Running delayed inode items
2575	 * - Allocating a new chunk
2576	 */
2577	BTRFS_RESERVE_FLUSH_LIMIT,
2578
2579	/*
2580	 * Flush space by:
2581	 * - Running delayed inode items
2582	 * - Running delayed refs
2583	 * - Running delalloc and waiting for ordered extents
2584	 * - Allocating a new chunk
2585	 */
2586	BTRFS_RESERVE_FLUSH_EVICT,
2587
2588	/*
2589	 * Flush space by above mentioned methods and by:
2590	 * - Running delayed iputs
2591	 * - Commiting transaction
2592	 *
2593	 * Can be interruped by fatal signal.
2594	 */
2595	BTRFS_RESERVE_FLUSH_ALL,
2596
2597	/*
2598	 * Pretty much the same as FLUSH_ALL, but can also steal space from
2599	 * global rsv.
2600	 *
2601	 * Can be interruped by fatal signal.
2602	 */
2603	BTRFS_RESERVE_FLUSH_ALL_STEAL,
2604};
2605
2606enum btrfs_flush_state {
2607	FLUSH_DELAYED_ITEMS_NR	=	1,
2608	FLUSH_DELAYED_ITEMS	=	2,
2609	FLUSH_DELAYED_REFS_NR	=	3,
2610	FLUSH_DELAYED_REFS	=	4,
2611	FLUSH_DELALLOC		=	5,
2612	FLUSH_DELALLOC_WAIT	=	6,
2613	ALLOC_CHUNK		=	7,
2614	ALLOC_CHUNK_FORCE	=	8,
2615	RUN_DELAYED_IPUTS	=	9,
2616	COMMIT_TRANS		=	10,
2617};
2618
2619int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2620				     struct btrfs_block_rsv *rsv,
2621				     int nitems, bool use_global_rsv);
2622void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
2623				      struct btrfs_block_rsv *rsv);
2624void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2625
2626int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2627u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2628int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2629				   u64 start, u64 end);
2630int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2631			 u64 num_bytes, u64 *actual_bytes);
2632int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2633
2634int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2635int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2636					 struct btrfs_fs_info *fs_info);
2637int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2638void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2639void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2640
2641/* ctree.c */
 
 
2642int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2643		     int *slot);
2644int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2645int btrfs_previous_item(struct btrfs_root *root,
2646			struct btrfs_path *path, u64 min_objectid,
2647			int type);
2648int btrfs_previous_extent_item(struct btrfs_root *root,
2649			struct btrfs_path *path, u64 min_objectid);
2650void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2651			     struct btrfs_path *path,
2652			     const struct btrfs_key *new_key);
2653struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2654struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
2655struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root);
2656int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2657			struct btrfs_key *key, int lowest_level,
2658			u64 min_trans);
2659int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2660			 struct btrfs_path *path,
2661			 u64 min_trans);
2662struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2663					   int slot);
2664
2665int btrfs_cow_block(struct btrfs_trans_handle *trans,
2666		    struct btrfs_root *root, struct extent_buffer *buf,
2667		    struct extent_buffer *parent, int parent_slot,
2668		    struct extent_buffer **cow_ret);
 
2669int btrfs_copy_root(struct btrfs_trans_handle *trans,
2670		      struct btrfs_root *root,
2671		      struct extent_buffer *buf,
2672		      struct extent_buffer **cow_ret, u64 new_root_objectid);
2673int btrfs_block_can_be_shared(struct btrfs_root *root,
2674			      struct extent_buffer *buf);
2675void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2676void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2677int btrfs_split_item(struct btrfs_trans_handle *trans,
2678		     struct btrfs_root *root,
2679		     struct btrfs_path *path,
2680		     const struct btrfs_key *new_key,
2681		     unsigned long split_offset);
2682int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2683			 struct btrfs_root *root,
2684			 struct btrfs_path *path,
2685			 const struct btrfs_key *new_key);
2686int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2687		u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2688int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2689		      const struct btrfs_key *key, struct btrfs_path *p,
2690		      int ins_len, int cow);
2691int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2692			  struct btrfs_path *p, u64 time_seq);
2693int btrfs_search_slot_for_read(struct btrfs_root *root,
2694			       const struct btrfs_key *key,
2695			       struct btrfs_path *p, int find_higher,
2696			       int return_any);
2697int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2698		       struct btrfs_root *root, struct extent_buffer *parent,
2699		       int start_slot, u64 *last_ret,
2700		       struct btrfs_key *progress);
2701void btrfs_release_path(struct btrfs_path *p);
2702struct btrfs_path *btrfs_alloc_path(void);
2703void btrfs_free_path(struct btrfs_path *p);
2704
2705int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2706		   struct btrfs_path *path, int slot, int nr);
2707static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2708				 struct btrfs_root *root,
2709				 struct btrfs_path *path)
2710{
2711	return btrfs_del_items(trans, root, path, path->slots[0], 1);
2712}
2713
2714void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
2715			    const struct btrfs_key *cpu_key, u32 *data_size,
2716			    u32 total_data, u32 total_size, int nr);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2717int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2718		      const struct btrfs_key *key, void *data, u32 data_size);
2719int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2720			     struct btrfs_root *root,
2721			     struct btrfs_path *path,
2722			     const struct btrfs_key *cpu_key, u32 *data_size,
2723			     int nr);
2724
2725static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2726					  struct btrfs_root *root,
2727					  struct btrfs_path *path,
2728					  const struct btrfs_key *key,
2729					  u32 data_size)
2730{
2731	return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
 
 
 
 
 
 
 
2732}
2733
2734int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
2735int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2736int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2737			u64 time_seq);
2738static inline int btrfs_next_old_item(struct btrfs_root *root,
2739				      struct btrfs_path *p, u64 time_seq)
2740{
2741	++p->slots[0];
2742	if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2743		return btrfs_next_old_leaf(root, p, time_seq);
2744	return 0;
2745}
2746static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2747{
2748	return btrfs_next_old_item(root, p, 0);
2749}
2750int btrfs_leaf_free_space(struct extent_buffer *leaf);
2751int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
2752				     int for_reloc);
2753int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2754			struct btrfs_root *root,
2755			struct extent_buffer *node,
2756			struct extent_buffer *parent);
2757static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2758{
2759	/*
2760	 * Do it this way so we only ever do one test_bit in the normal case.
2761	 */
2762	if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
2763		if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
2764			return 2;
2765		return 1;
2766	}
2767	return 0;
2768}
2769
2770/*
2771 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
2772 * anything except sleeping. This function is used to check the status of
2773 * the fs.
2774 */
2775static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
2776{
2777	return fs_info->sb->s_flags & SB_RDONLY || btrfs_fs_closing(fs_info);
2778}
2779
2780/* tree mod log functions from ctree.c */
2781u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
2782			   struct seq_list *elem);
2783void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
2784			    struct seq_list *elem);
2785int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
2786
2787/* root-item.c */
2788int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2789		       u64 ref_id, u64 dirid, u64 sequence, const char *name,
2790		       int name_len);
2791int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2792		       u64 ref_id, u64 dirid, u64 *sequence, const char *name,
2793		       int name_len);
2794int btrfs_del_root(struct btrfs_trans_handle *trans,
2795		   const struct btrfs_key *key);
2796int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2797		      const struct btrfs_key *key,
2798		      struct btrfs_root_item *item);
2799int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
2800				   struct btrfs_root *root,
2801				   struct btrfs_key *key,
2802				   struct btrfs_root_item *item);
2803int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
2804		    struct btrfs_path *path, struct btrfs_root_item *root_item,
2805		    struct btrfs_key *root_key);
2806int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
2807void btrfs_set_root_node(struct btrfs_root_item *item,
2808			 struct extent_buffer *node);
2809void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
2810void btrfs_update_root_times(struct btrfs_trans_handle *trans,
2811			     struct btrfs_root *root);
2812
2813/* uuid-tree.c */
2814int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
2815			u64 subid);
2816int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
2817			u64 subid);
2818int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
2819
2820/* dir-item.c */
2821int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
2822			  const char *name, int name_len);
2823int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
2824			  int name_len, struct btrfs_inode *dir,
2825			  struct btrfs_key *location, u8 type, u64 index);
2826struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
2827					     struct btrfs_root *root,
2828					     struct btrfs_path *path, u64 dir,
2829					     const char *name, int name_len,
2830					     int mod);
2831struct btrfs_dir_item *
2832btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
2833			    struct btrfs_root *root,
2834			    struct btrfs_path *path, u64 dir,
2835			    u64 objectid, const char *name, int name_len,
2836			    int mod);
2837struct btrfs_dir_item *
2838btrfs_search_dir_index_item(struct btrfs_root *root,
2839			    struct btrfs_path *path, u64 dirid,
2840			    const char *name, int name_len);
2841int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
2842			      struct btrfs_root *root,
2843			      struct btrfs_path *path,
2844			      struct btrfs_dir_item *di);
2845int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
2846			    struct btrfs_root *root,
2847			    struct btrfs_path *path, u64 objectid,
2848			    const char *name, u16 name_len,
2849			    const void *data, u16 data_len);
2850struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
2851					  struct btrfs_root *root,
2852					  struct btrfs_path *path, u64 dir,
2853					  const char *name, u16 name_len,
2854					  int mod);
2855struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
2856						 struct btrfs_path *path,
2857						 const char *name,
2858						 int name_len);
2859
2860/* orphan.c */
2861int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
2862			     struct btrfs_root *root, u64 offset);
2863int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
2864			  struct btrfs_root *root, u64 offset);
2865int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
2866
2867/* inode-item.c */
2868int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
2869			   struct btrfs_root *root,
2870			   const char *name, int name_len,
2871			   u64 inode_objectid, u64 ref_objectid, u64 index);
2872int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
2873			   struct btrfs_root *root,
2874			   const char *name, int name_len,
2875			   u64 inode_objectid, u64 ref_objectid, u64 *index);
2876int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
2877			     struct btrfs_root *root,
2878			     struct btrfs_path *path, u64 objectid);
2879int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
2880		       *root, struct btrfs_path *path,
2881		       struct btrfs_key *location, int mod);
2882
2883struct btrfs_inode_extref *
2884btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
2885			  struct btrfs_root *root,
2886			  struct btrfs_path *path,
2887			  const char *name, int name_len,
2888			  u64 inode_objectid, u64 ref_objectid, int ins_len,
2889			  int cow);
2890
2891struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf,
2892						   int slot, const char *name,
2893						   int name_len);
2894struct btrfs_inode_extref *btrfs_find_name_in_ext_backref(
2895		struct extent_buffer *leaf, int slot, u64 ref_objectid,
2896		const char *name, int name_len);
2897/* file-item.c */
2898struct btrfs_dio_private;
2899int btrfs_del_csums(struct btrfs_trans_handle *trans,
2900		    struct btrfs_root *root, u64 bytenr, u64 len);
2901blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
2902				   u64 offset, u8 *dst);
2903int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
2904			     struct btrfs_root *root,
2905			     u64 objectid, u64 pos,
2906			     u64 disk_offset, u64 disk_num_bytes,
2907			     u64 num_bytes, u64 offset, u64 ram_bytes,
2908			     u8 compression, u8 encryption, u16 other_encoding);
2909int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
2910			     struct btrfs_root *root,
2911			     struct btrfs_path *path, u64 objectid,
2912			     u64 bytenr, int mod);
2913int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
2914			   struct btrfs_root *root,
2915			   struct btrfs_ordered_sum *sums);
2916blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
2917				u64 file_start, int contig);
2918int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
2919			     struct list_head *list, int search_commit);
2920void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
2921				     const struct btrfs_path *path,
2922				     struct btrfs_file_extent_item *fi,
2923				     const bool new_inline,
2924				     struct extent_map *em);
2925int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
2926					u64 len);
2927int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
2928				      u64 len);
2929void btrfs_inode_safe_disk_i_size_write(struct inode *inode, u64 new_i_size);
2930u64 btrfs_file_extent_end(const struct btrfs_path *path);
2931
2932/* inode.c */
2933struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
2934					   u64 start, u64 len);
2935noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
2936			      u64 *orig_start, u64 *orig_block_len,
2937			      u64 *ram_bytes, bool strict);
2938
2939void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2940				struct btrfs_inode *inode);
2941struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
2942int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
2943int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2944		       struct btrfs_root *root,
2945		       struct btrfs_inode *dir, struct btrfs_inode *inode,
2946		       const char *name, int name_len);
2947int btrfs_add_link(struct btrfs_trans_handle *trans,
2948		   struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
2949		   const char *name, int name_len, int add_backref, u64 index);
2950int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
2951int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2952			int front);
2953int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2954			       struct btrfs_root *root,
2955			       struct inode *inode, u64 new_size,
2956			       u32 min_type);
2957
2958int btrfs_start_delalloc_snapshot(struct btrfs_root *root);
2959int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr);
2960int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2961			      unsigned int extra_bits,
2962			      struct extent_state **cached_state);
2963int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
2964			     struct btrfs_root *new_root,
2965			     struct btrfs_root *parent_root,
2966			     u64 new_dirid);
2967 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2968			       unsigned *bits);
2969void btrfs_clear_delalloc_extent(struct inode *inode,
2970				 struct extent_state *state, unsigned *bits);
2971void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2972				 struct extent_state *other);
2973void btrfs_split_delalloc_extent(struct inode *inode,
2974				 struct extent_state *orig, u64 split);
2975int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2976			     unsigned long bio_flags);
2977void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end);
2978vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
2979int btrfs_readpage(struct file *file, struct page *page);
2980void btrfs_evict_inode(struct inode *inode);
2981int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2982struct inode *btrfs_alloc_inode(struct super_block *sb);
2983void btrfs_destroy_inode(struct inode *inode);
2984void btrfs_free_inode(struct inode *inode);
2985int btrfs_drop_inode(struct inode *inode);
2986int __init btrfs_init_cachep(void);
2987void __cold btrfs_destroy_cachep(void);
2988struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
2989			      struct btrfs_root *root, struct btrfs_path *path);
2990struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
2991struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
2992				    struct page *page, size_t pg_offset,
2993				    u64 start, u64 end);
2994int btrfs_update_inode(struct btrfs_trans_handle *trans,
2995			      struct btrfs_root *root,
2996			      struct inode *inode);
2997int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2998				struct btrfs_root *root, struct inode *inode);
2999int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3000		struct btrfs_inode *inode);
3001int btrfs_orphan_cleanup(struct btrfs_root *root);
3002int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3003void btrfs_add_delayed_iput(struct inode *inode);
3004void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3005int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3006int btrfs_prealloc_file_range(struct inode *inode, int mode,
3007			      u64 start, u64 num_bytes, u64 min_size,
3008			      loff_t actual_len, u64 *alloc_hint);
3009int btrfs_prealloc_file_range_trans(struct inode *inode,
3010				    struct btrfs_trans_handle *trans, int mode,
3011				    u64 start, u64 num_bytes, u64 min_size,
3012				    loff_t actual_len, u64 *alloc_hint);
3013int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3014		u64 start, u64 end, int *page_started, unsigned long *nr_written,
3015		struct writeback_control *wbc);
3016int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end);
3017void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3018					  u64 end, int uptodate);
3019extern const struct dentry_operations btrfs_dentry_operations;
3020
3021/* ioctl.c */
3022long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3023long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3024int btrfs_ioctl_get_supported_features(void __user *arg);
3025void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3026int __pure btrfs_is_empty_uuid(u8 *uuid);
3027int btrfs_defrag_file(struct inode *inode, struct file *file,
3028		      struct btrfs_ioctl_defrag_range_args *range,
3029		      u64 newer_than, unsigned long max_pages);
3030void btrfs_get_block_group_info(struct list_head *groups_list,
3031				struct btrfs_ioctl_space_info *space);
3032void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3033			       struct btrfs_ioctl_balance_args *bargs);
3034
3035/* file.c */
3036int __init btrfs_auto_defrag_init(void);
3037void __cold btrfs_auto_defrag_exit(void);
3038int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3039			   struct btrfs_inode *inode);
3040int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3041void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3042int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3043void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3044			     int skip_pinned);
3045extern const struct file_operations btrfs_file_operations;
3046int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3047			 struct btrfs_root *root, struct btrfs_inode *inode,
3048			 struct btrfs_path *path, u64 start, u64 end,
3049			 u64 *drop_end, int drop_cache,
3050			 int replace_extent,
3051			 u32 extent_item_size,
3052			 int *key_inserted);
3053int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3054		       struct btrfs_root *root, struct inode *inode, u64 start,
3055		       u64 end, int drop_cache);
3056int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
3057			   const u64 start, const u64 end,
3058			   struct btrfs_clone_extent_info *clone_info,
3059			   struct btrfs_trans_handle **trans_out);
3060int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3061			      struct btrfs_inode *inode, u64 start, u64 end);
3062int btrfs_release_file(struct inode *inode, struct file *file);
3063int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3064		      size_t num_pages, loff_t pos, size_t write_bytes,
3065		      struct extent_state **cached);
3066int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3067int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3068			   size_t *write_bytes);
3069void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3070
3071/* tree-defrag.c */
3072int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3073			struct btrfs_root *root);
3074
3075/* super.c */
3076int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3077			unsigned long new_flags);
3078int btrfs_sync_fs(struct super_block *sb, int wait);
3079char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3080					  u64 subvol_objectid);
3081
3082static inline __printf(2, 3) __cold
3083void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3084{
3085}
3086
3087#ifdef CONFIG_PRINTK
3088__printf(2, 3)
3089__cold
3090void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3091#else
3092#define btrfs_printk(fs_info, fmt, args...) \
3093	btrfs_no_printk(fs_info, fmt, ##args)
3094#endif
3095
3096#define btrfs_emerg(fs_info, fmt, args...) \
3097	btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3098#define btrfs_alert(fs_info, fmt, args...) \
3099	btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3100#define btrfs_crit(fs_info, fmt, args...) \
3101	btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3102#define btrfs_err(fs_info, fmt, args...) \
3103	btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3104#define btrfs_warn(fs_info, fmt, args...) \
3105	btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3106#define btrfs_notice(fs_info, fmt, args...) \
3107	btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3108#define btrfs_info(fs_info, fmt, args...) \
3109	btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3110
3111/*
3112 * Wrappers that use printk_in_rcu
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3113 */
3114#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3115	btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3116#define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3117	btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3118#define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3119	btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3120#define btrfs_err_in_rcu(fs_info, fmt, args...) \
3121	btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3122#define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3123	btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3124#define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3125	btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3126#define btrfs_info_in_rcu(fs_info, fmt, args...) \
3127	btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3128
3129/*
3130 * Wrappers that use a ratelimited printk_in_rcu
3131 */
3132#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3133	btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3134#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3135	btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3136#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3137	btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3138#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3139	btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3140#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3141	btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3142#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3143	btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3144#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3145	btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3146
3147/*
3148 * Wrappers that use a ratelimited printk
 
 
 
3149 */
3150#define btrfs_emerg_rl(fs_info, fmt, args...) \
3151	btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3152#define btrfs_alert_rl(fs_info, fmt, args...) \
3153	btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3154#define btrfs_crit_rl(fs_info, fmt, args...) \
3155	btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3156#define btrfs_err_rl(fs_info, fmt, args...) \
3157	btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3158#define btrfs_warn_rl(fs_info, fmt, args...) \
3159	btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3160#define btrfs_notice_rl(fs_info, fmt, args...) \
3161	btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3162#define btrfs_info_rl(fs_info, fmt, args...) \
3163	btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3164
3165#if defined(CONFIG_DYNAMIC_DEBUG)
3166#define btrfs_debug(fs_info, fmt, args...)				\
3167	_dynamic_func_call_no_desc(fmt, btrfs_printk,			\
3168				   fs_info, KERN_DEBUG fmt, ##args)
3169#define btrfs_debug_in_rcu(fs_info, fmt, args...)			\
3170	_dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu,		\
3171				   fs_info, KERN_DEBUG fmt, ##args)
3172#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...)			\
3173	_dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu,		\
3174				   fs_info, KERN_DEBUG fmt, ##args)
3175#define btrfs_debug_rl(fs_info, fmt, args...)				\
3176	_dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited,	\
3177				   fs_info, KERN_DEBUG fmt, ##args)
3178#elif defined(DEBUG)
3179#define btrfs_debug(fs_info, fmt, args...) \
3180	btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3181#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3182	btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3183#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3184	btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3185#define btrfs_debug_rl(fs_info, fmt, args...) \
3186	btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3187#else
3188#define btrfs_debug(fs_info, fmt, args...) \
3189	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3190#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3191	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3192#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3193	btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3194#define btrfs_debug_rl(fs_info, fmt, args...) \
3195	btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3196#endif
3197
3198#define btrfs_printk_in_rcu(fs_info, fmt, args...)	\
3199do {							\
3200	rcu_read_lock();				\
3201	btrfs_printk(fs_info, fmt, ##args);		\
3202	rcu_read_unlock();				\
3203} while (0)
3204
3205#define btrfs_no_printk_in_rcu(fs_info, fmt, args...)	\
3206do {							\
3207	rcu_read_lock();				\
3208	btrfs_no_printk(fs_info, fmt, ##args);		\
3209	rcu_read_unlock();				\
3210} while (0)
3211
3212#define btrfs_printk_ratelimited(fs_info, fmt, args...)		\
3213do {								\
3214	static DEFINE_RATELIMIT_STATE(_rs,			\
3215		DEFAULT_RATELIMIT_INTERVAL,			\
3216		DEFAULT_RATELIMIT_BURST);       		\
3217	if (__ratelimit(&_rs))					\
3218		btrfs_printk(fs_info, fmt, ##args);		\
3219} while (0)
3220
3221#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...)		\
3222do {								\
3223	rcu_read_lock();					\
3224	btrfs_printk_ratelimited(fs_info, fmt, ##args);		\
3225	rcu_read_unlock();					\
3226} while (0)
3227
3228#ifdef CONFIG_BTRFS_ASSERT
3229__cold __noreturn
3230static inline void assertfail(const char *expr, const char *file, int line)
3231{
3232	pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3233	BUG();
3234}
3235
3236#define ASSERT(expr)						\
3237	(likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3238
3239#else
3240static inline void assertfail(const char *expr, const char* file, int line) { }
3241#define ASSERT(expr)	(void)(expr)
3242#endif
3243
3244/*
3245 * Use that for functions that are conditionally exported for sanity tests but
3246 * otherwise static
3247 */
3248#ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3249#define EXPORT_FOR_TESTS static
3250#else
3251#define EXPORT_FOR_TESTS
3252#endif
3253
3254__cold
3255static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3256{
3257	btrfs_err(fs_info,
3258"Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3259}
3260
3261__printf(5, 6)
3262__cold
3263void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3264		     unsigned int line, int errno, const char *fmt, ...);
3265
3266const char * __attribute_const__ btrfs_decode_error(int errno);
3267
3268__cold
3269void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3270			       const char *function,
3271			       unsigned int line, int errno);
3272
3273/*
3274 * Call btrfs_abort_transaction as early as possible when an error condition is
3275 * detected, that way the exact line number is reported.
3276 */
3277#define btrfs_abort_transaction(trans, errno)		\
3278do {								\
3279	/* Report first abort since mount */			\
3280	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,	\
3281			&((trans)->fs_info->fs_state))) {	\
3282		if ((errno) != -EIO && (errno) != -EROFS) {		\
3283			WARN(1, KERN_DEBUG				\
3284			"BTRFS: Transaction aborted (error %d)\n",	\
3285			(errno));					\
3286		} else {						\
3287			btrfs_debug((trans)->fs_info,			\
3288				    "Transaction aborted (error %d)", \
3289				  (errno));			\
3290		}						\
3291	}							\
3292	__btrfs_abort_transaction((trans), __func__,		\
3293				  __LINE__, (errno));		\
3294} while (0)
3295
3296#define btrfs_handle_fs_error(fs_info, errno, fmt, args...)		\
3297do {								\
3298	__btrfs_handle_fs_error((fs_info), __func__, __LINE__,	\
3299			  (errno), fmt, ##args);		\
3300} while (0)
3301
3302__printf(5, 6)
3303__cold
3304void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3305		   unsigned int line, int errno, const char *fmt, ...);
3306/*
3307 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3308 * will panic().  Otherwise we BUG() here.
3309 */
3310#define btrfs_panic(fs_info, errno, fmt, args...)			\
3311do {									\
3312	__btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args);	\
3313	BUG();								\
3314} while (0)
3315
3316
3317/* compatibility and incompatibility defines */
3318
3319#define btrfs_set_fs_incompat(__fs_info, opt) \
3320	__btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3321				#opt)
3322
3323static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3324					   u64 flag, const char* name)
3325{
3326	struct btrfs_super_block *disk_super;
3327	u64 features;
3328
3329	disk_super = fs_info->super_copy;
3330	features = btrfs_super_incompat_flags(disk_super);
3331	if (!(features & flag)) {
3332		spin_lock(&fs_info->super_lock);
3333		features = btrfs_super_incompat_flags(disk_super);
3334		if (!(features & flag)) {
3335			features |= flag;
3336			btrfs_set_super_incompat_flags(disk_super, features);
3337			btrfs_info(fs_info,
3338				"setting incompat feature flag for %s (0x%llx)",
3339				name, flag);
3340		}
3341		spin_unlock(&fs_info->super_lock);
3342	}
3343}
3344
3345#define btrfs_clear_fs_incompat(__fs_info, opt) \
3346	__btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3347				  #opt)
3348
3349static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3350					     u64 flag, const char* name)
3351{
3352	struct btrfs_super_block *disk_super;
3353	u64 features;
3354
3355	disk_super = fs_info->super_copy;
3356	features = btrfs_super_incompat_flags(disk_super);
3357	if (features & flag) {
3358		spin_lock(&fs_info->super_lock);
3359		features = btrfs_super_incompat_flags(disk_super);
3360		if (features & flag) {
3361			features &= ~flag;
3362			btrfs_set_super_incompat_flags(disk_super, features);
3363			btrfs_info(fs_info,
3364				"clearing incompat feature flag for %s (0x%llx)",
3365				name, flag);
3366		}
3367		spin_unlock(&fs_info->super_lock);
3368	}
3369}
3370
3371#define btrfs_fs_incompat(fs_info, opt) \
3372	__btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3373
3374static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3375{
3376	struct btrfs_super_block *disk_super;
3377	disk_super = fs_info->super_copy;
3378	return !!(btrfs_super_incompat_flags(disk_super) & flag);
3379}
3380
3381#define btrfs_set_fs_compat_ro(__fs_info, opt) \
3382	__btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3383				 #opt)
3384
3385static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3386					    u64 flag, const char *name)
3387{
3388	struct btrfs_super_block *disk_super;
3389	u64 features;
3390
3391	disk_super = fs_info->super_copy;
3392	features = btrfs_super_compat_ro_flags(disk_super);
3393	if (!(features & flag)) {
3394		spin_lock(&fs_info->super_lock);
3395		features = btrfs_super_compat_ro_flags(disk_super);
3396		if (!(features & flag)) {
3397			features |= flag;
3398			btrfs_set_super_compat_ro_flags(disk_super, features);
3399			btrfs_info(fs_info,
3400				"setting compat-ro feature flag for %s (0x%llx)",
3401				name, flag);
3402		}
3403		spin_unlock(&fs_info->super_lock);
3404	}
3405}
3406
3407#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3408	__btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3409				   #opt)
3410
3411static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3412					      u64 flag, const char *name)
3413{
3414	struct btrfs_super_block *disk_super;
3415	u64 features;
3416
3417	disk_super = fs_info->super_copy;
3418	features = btrfs_super_compat_ro_flags(disk_super);
3419	if (features & flag) {
3420		spin_lock(&fs_info->super_lock);
3421		features = btrfs_super_compat_ro_flags(disk_super);
3422		if (features & flag) {
3423			features &= ~flag;
3424			btrfs_set_super_compat_ro_flags(disk_super, features);
3425			btrfs_info(fs_info,
3426				"clearing compat-ro feature flag for %s (0x%llx)",
3427				name, flag);
3428		}
3429		spin_unlock(&fs_info->super_lock);
3430	}
3431}
3432
3433#define btrfs_fs_compat_ro(fs_info, opt) \
3434	__btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3435
3436static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3437{
3438	struct btrfs_super_block *disk_super;
3439	disk_super = fs_info->super_copy;
3440	return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3441}
3442
3443/* acl.c */
3444#ifdef CONFIG_BTRFS_FS_POSIX_ACL
3445struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
3446int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
3447int btrfs_init_acl(struct btrfs_trans_handle *trans,
3448		   struct inode *inode, struct inode *dir);
3449#else
3450#define btrfs_get_acl NULL
3451#define btrfs_set_acl NULL
3452static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3453				 struct inode *inode, struct inode *dir)
3454{
3455	return 0;
3456}
3457#endif
3458
3459/* relocation.c */
3460int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3461int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3462			  struct btrfs_root *root);
3463int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3464			    struct btrfs_root *root);
3465int btrfs_recover_relocation(struct btrfs_root *root);
3466int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3467int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3468			  struct btrfs_root *root, struct extent_buffer *buf,
3469			  struct extent_buffer *cow);
3470void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3471			      u64 *bytes_to_reserve);
3472int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3473			      struct btrfs_pending_snapshot *pending);
3474int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3475struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3476				   u64 bytenr);
3477int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3478
3479/* scrub.c */
3480int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3481		    u64 end, struct btrfs_scrub_progress *progress,
3482		    int readonly, int is_dev_replace);
3483void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3484void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3485int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3486int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3487int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3488			 struct btrfs_scrub_progress *progress);
3489static inline void btrfs_init_full_stripe_locks_tree(
3490			struct btrfs_full_stripe_locks_tree *locks_root)
3491{
3492	locks_root->root = RB_ROOT;
3493	mutex_init(&locks_root->lock);
3494}
3495
3496/* dev-replace.c */
3497void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3498void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3499void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3500
3501static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3502{
3503	btrfs_bio_counter_sub(fs_info, 1);
3504}
3505
3506/* reada.c */
3507struct reada_control {
3508	struct btrfs_fs_info	*fs_info;		/* tree to prefetch */
3509	struct btrfs_key	key_start;
3510	struct btrfs_key	key_end;	/* exclusive */
3511	atomic_t		elems;
3512	struct kref		refcnt;
3513	wait_queue_head_t	wait;
3514};
3515struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3516			      struct btrfs_key *start, struct btrfs_key *end);
3517int btrfs_reada_wait(void *handle);
3518void btrfs_reada_detach(void *handle);
3519int btree_readahead_hook(struct extent_buffer *eb, int err);
3520
3521static inline int is_fstree(u64 rootid)
3522{
3523	if (rootid == BTRFS_FS_TREE_OBJECTID ||
3524	    ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3525	      !btrfs_qgroup_level(rootid)))
3526		return 1;
3527	return 0;
3528}
3529
3530static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3531{
3532	return signal_pending(current);
3533}
3534
3535#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
 
 
 
3536
3537/* Sanity test specific functions */
3538#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3539void btrfs_test_inode_set_ops(struct inode *inode);
3540void btrfs_test_destroy_inode(struct inode *inode);
3541
3542static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3543{
3544	return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3545}
3546#else
3547static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3548{
3549	return 0;
3550}
3551#endif
3552
3553#endif