Loading...
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/highmem.h>
12#include <linux/fs.h>
13#include <linux/rwsem.h>
14#include <linux/semaphore.h>
15#include <linux/completion.h>
16#include <linux/backing-dev.h>
17#include <linux/wait.h>
18#include <linux/slab.h>
19#include <trace/events/btrfs.h>
20#include <asm/unaligned.h>
21#include <linux/pagemap.h>
22#include <linux/btrfs.h>
23#include <linux/btrfs_tree.h>
24#include <linux/workqueue.h>
25#include <linux/security.h>
26#include <linux/sizes.h>
27#include <linux/dynamic_debug.h>
28#include <linux/refcount.h>
29#include <linux/crc32c.h>
30#include <linux/iomap.h>
31#include <linux/fscrypt.h>
32#include "extent-io-tree.h"
33#include "extent_io.h"
34#include "extent_map.h"
35#include "async-thread.h"
36#include "block-rsv.h"
37#include "locking.h"
38#include "misc.h"
39#include "fs.h"
40
41struct btrfs_trans_handle;
42struct btrfs_transaction;
43struct btrfs_pending_snapshot;
44struct btrfs_delayed_ref_root;
45struct btrfs_space_info;
46struct btrfs_block_group;
47struct btrfs_ordered_sum;
48struct btrfs_ref;
49struct btrfs_bio;
50struct btrfs_ioctl_encoded_io_args;
51struct btrfs_device;
52struct btrfs_fs_devices;
53struct btrfs_balance_control;
54struct btrfs_delayed_root;
55struct reloc_control;
56
57/* Read ahead values for struct btrfs_path.reada */
58enum {
59 READA_NONE,
60 READA_BACK,
61 READA_FORWARD,
62 /*
63 * Similar to READA_FORWARD but unlike it:
64 *
65 * 1) It will trigger readahead even for leaves that are not close to
66 * each other on disk;
67 * 2) It also triggers readahead for nodes;
68 * 3) During a search, even when a node or leaf is already in memory, it
69 * will still trigger readahead for other nodes and leaves that follow
70 * it.
71 *
72 * This is meant to be used only when we know we are iterating over the
73 * entire tree or a very large part of it.
74 */
75 READA_FORWARD_ALWAYS,
76};
77
78/*
79 * btrfs_paths remember the path taken from the root down to the leaf.
80 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
81 * to any other levels that are present.
82 *
83 * The slots array records the index of the item or block pointer
84 * used while walking the tree.
85 */
86struct btrfs_path {
87 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
88 int slots[BTRFS_MAX_LEVEL];
89 /* if there is real range locking, this locks field will change */
90 u8 locks[BTRFS_MAX_LEVEL];
91 u8 reada;
92 /* keep some upper locks as we walk down */
93 u8 lowest_level;
94
95 /*
96 * set by btrfs_split_item, tells search_slot to keep all locks
97 * and to force calls to keep space in the nodes
98 */
99 unsigned int search_for_split:1;
100 unsigned int keep_locks:1;
101 unsigned int skip_locking:1;
102 unsigned int search_commit_root:1;
103 unsigned int need_commit_sem:1;
104 unsigned int skip_release_on_error:1;
105 /*
106 * Indicate that new item (btrfs_search_slot) is extending already
107 * existing item and ins_len contains only the data size and not item
108 * header (ie. sizeof(struct btrfs_item) is not included).
109 */
110 unsigned int search_for_extension:1;
111 /* Stop search if any locks need to be taken (for read) */
112 unsigned int nowait:1;
113};
114
115/*
116 * The state of btrfs root
117 */
118enum {
119 /*
120 * btrfs_record_root_in_trans is a multi-step process, and it can race
121 * with the balancing code. But the race is very small, and only the
122 * first time the root is added to each transaction. So IN_TRANS_SETUP
123 * is used to tell us when more checks are required
124 */
125 BTRFS_ROOT_IN_TRANS_SETUP,
126
127 /*
128 * Set if tree blocks of this root can be shared by other roots.
129 * Only subvolume trees and their reloc trees have this bit set.
130 * Conflicts with TRACK_DIRTY bit.
131 *
132 * This affects two things:
133 *
134 * - How balance works
135 * For shareable roots, we need to use reloc tree and do path
136 * replacement for balance, and need various pre/post hooks for
137 * snapshot creation to handle them.
138 *
139 * While for non-shareable trees, we just simply do a tree search
140 * with COW.
141 *
142 * - How dirty roots are tracked
143 * For shareable roots, btrfs_record_root_in_trans() is needed to
144 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
145 * don't need to set this manually.
146 */
147 BTRFS_ROOT_SHAREABLE,
148 BTRFS_ROOT_TRACK_DIRTY,
149 BTRFS_ROOT_IN_RADIX,
150 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
151 BTRFS_ROOT_DEFRAG_RUNNING,
152 BTRFS_ROOT_FORCE_COW,
153 BTRFS_ROOT_MULTI_LOG_TASKS,
154 BTRFS_ROOT_DIRTY,
155 BTRFS_ROOT_DELETING,
156
157 /*
158 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
159 *
160 * Set for the subvolume tree owning the reloc tree.
161 */
162 BTRFS_ROOT_DEAD_RELOC_TREE,
163 /* Mark dead root stored on device whose cleanup needs to be resumed */
164 BTRFS_ROOT_DEAD_TREE,
165 /* The root has a log tree. Used for subvolume roots and the tree root. */
166 BTRFS_ROOT_HAS_LOG_TREE,
167 /* Qgroup flushing is in progress */
168 BTRFS_ROOT_QGROUP_FLUSHING,
169 /* We started the orphan cleanup for this root. */
170 BTRFS_ROOT_ORPHAN_CLEANUP,
171 /* This root has a drop operation that was started previously. */
172 BTRFS_ROOT_UNFINISHED_DROP,
173 /* This reloc root needs to have its buffers lockdep class reset. */
174 BTRFS_ROOT_RESET_LOCKDEP_CLASS,
175};
176
177/*
178 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
179 * code. For detail check comment in fs/btrfs/qgroup.c.
180 */
181struct btrfs_qgroup_swapped_blocks {
182 spinlock_t lock;
183 /* RM_EMPTY_ROOT() of above blocks[] */
184 bool swapped;
185 struct rb_root blocks[BTRFS_MAX_LEVEL];
186};
187
188/*
189 * in ram representation of the tree. extent_root is used for all allocations
190 * and for the extent tree extent_root root.
191 */
192struct btrfs_root {
193 struct rb_node rb_node;
194
195 struct extent_buffer *node;
196
197 struct extent_buffer *commit_root;
198 struct btrfs_root *log_root;
199 struct btrfs_root *reloc_root;
200
201 unsigned long state;
202 struct btrfs_root_item root_item;
203 struct btrfs_key root_key;
204 struct btrfs_fs_info *fs_info;
205 struct extent_io_tree dirty_log_pages;
206
207 struct mutex objectid_mutex;
208
209 spinlock_t accounting_lock;
210 struct btrfs_block_rsv *block_rsv;
211
212 struct mutex log_mutex;
213 wait_queue_head_t log_writer_wait;
214 wait_queue_head_t log_commit_wait[2];
215 struct list_head log_ctxs[2];
216 /* Used only for log trees of subvolumes, not for the log root tree */
217 atomic_t log_writers;
218 atomic_t log_commit[2];
219 /* Used only for log trees of subvolumes, not for the log root tree */
220 atomic_t log_batch;
221 int log_transid;
222 /* No matter the commit succeeds or not*/
223 int log_transid_committed;
224 /* Just be updated when the commit succeeds. */
225 int last_log_commit;
226 pid_t log_start_pid;
227
228 u64 last_trans;
229
230 u32 type;
231
232 u64 free_objectid;
233
234 struct btrfs_key defrag_progress;
235 struct btrfs_key defrag_max;
236
237 /* The dirty list is only used by non-shareable roots */
238 struct list_head dirty_list;
239
240 struct list_head root_list;
241
242 spinlock_t log_extents_lock[2];
243 struct list_head logged_list[2];
244
245 spinlock_t inode_lock;
246 /* red-black tree that keeps track of in-memory inodes */
247 struct rb_root inode_tree;
248
249 /*
250 * radix tree that keeps track of delayed nodes of every inode,
251 * protected by inode_lock
252 */
253 struct radix_tree_root delayed_nodes_tree;
254 /*
255 * right now this just gets used so that a root has its own devid
256 * for stat. It may be used for more later
257 */
258 dev_t anon_dev;
259
260 spinlock_t root_item_lock;
261 refcount_t refs;
262
263 struct mutex delalloc_mutex;
264 spinlock_t delalloc_lock;
265 /*
266 * all of the inodes that have delalloc bytes. It is possible for
267 * this list to be empty even when there is still dirty data=ordered
268 * extents waiting to finish IO.
269 */
270 struct list_head delalloc_inodes;
271 struct list_head delalloc_root;
272 u64 nr_delalloc_inodes;
273
274 struct mutex ordered_extent_mutex;
275 /*
276 * this is used by the balancing code to wait for all the pending
277 * ordered extents
278 */
279 spinlock_t ordered_extent_lock;
280
281 /*
282 * all of the data=ordered extents pending writeback
283 * these can span multiple transactions and basically include
284 * every dirty data page that isn't from nodatacow
285 */
286 struct list_head ordered_extents;
287 struct list_head ordered_root;
288 u64 nr_ordered_extents;
289
290 /*
291 * Not empty if this subvolume root has gone through tree block swap
292 * (relocation)
293 *
294 * Will be used by reloc_control::dirty_subvol_roots.
295 */
296 struct list_head reloc_dirty_list;
297
298 /*
299 * Number of currently running SEND ioctls to prevent
300 * manipulation with the read-only status via SUBVOL_SETFLAGS
301 */
302 int send_in_progress;
303 /*
304 * Number of currently running deduplication operations that have a
305 * destination inode belonging to this root. Protected by the lock
306 * root_item_lock.
307 */
308 int dedupe_in_progress;
309 /* For exclusion of snapshot creation and nocow writes */
310 struct btrfs_drew_lock snapshot_lock;
311
312 atomic_t snapshot_force_cow;
313
314 /* For qgroup metadata reserved space */
315 spinlock_t qgroup_meta_rsv_lock;
316 u64 qgroup_meta_rsv_pertrans;
317 u64 qgroup_meta_rsv_prealloc;
318 wait_queue_head_t qgroup_flush_wait;
319
320 /* Number of active swapfiles */
321 atomic_t nr_swapfiles;
322
323 /* Record pairs of swapped blocks for qgroup */
324 struct btrfs_qgroup_swapped_blocks swapped_blocks;
325
326 /* Used only by log trees, when logging csum items */
327 struct extent_io_tree log_csum_range;
328
329#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
330 u64 alloc_bytenr;
331#endif
332
333#ifdef CONFIG_BTRFS_DEBUG
334 struct list_head leak_list;
335#endif
336};
337
338static inline bool btrfs_root_readonly(const struct btrfs_root *root)
339{
340 /* Byte-swap the constant at compile time, root_item::flags is LE */
341 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
342}
343
344static inline bool btrfs_root_dead(const struct btrfs_root *root)
345{
346 /* Byte-swap the constant at compile time, root_item::flags is LE */
347 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
348}
349
350static inline u64 btrfs_root_id(const struct btrfs_root *root)
351{
352 return root->root_key.objectid;
353}
354
355/*
356 * Structure that conveys information about an extent that is going to replace
357 * all the extents in a file range.
358 */
359struct btrfs_replace_extent_info {
360 u64 disk_offset;
361 u64 disk_len;
362 u64 data_offset;
363 u64 data_len;
364 u64 file_offset;
365 /* Pointer to a file extent item of type regular or prealloc. */
366 char *extent_buf;
367 /*
368 * Set to true when attempting to replace a file range with a new extent
369 * described by this structure, set to false when attempting to clone an
370 * existing extent into a file range.
371 */
372 bool is_new_extent;
373 /* Indicate if we should update the inode's mtime and ctime. */
374 bool update_times;
375 /* Meaningful only if is_new_extent is true. */
376 int qgroup_reserved;
377 /*
378 * Meaningful only if is_new_extent is true.
379 * Used to track how many extent items we have already inserted in a
380 * subvolume tree that refer to the extent described by this structure,
381 * so that we know when to create a new delayed ref or update an existing
382 * one.
383 */
384 int insertions;
385};
386
387/* Arguments for btrfs_drop_extents() */
388struct btrfs_drop_extents_args {
389 /* Input parameters */
390
391 /*
392 * If NULL, btrfs_drop_extents() will allocate and free its own path.
393 * If 'replace_extent' is true, this must not be NULL. Also the path
394 * is always released except if 'replace_extent' is true and
395 * btrfs_drop_extents() sets 'extent_inserted' to true, in which case
396 * the path is kept locked.
397 */
398 struct btrfs_path *path;
399 /* Start offset of the range to drop extents from */
400 u64 start;
401 /* End (exclusive, last byte + 1) of the range to drop extents from */
402 u64 end;
403 /* If true drop all the extent maps in the range */
404 bool drop_cache;
405 /*
406 * If true it means we want to insert a new extent after dropping all
407 * the extents in the range. If this is true, the 'extent_item_size'
408 * parameter must be set as well and the 'extent_inserted' field will
409 * be set to true by btrfs_drop_extents() if it could insert the new
410 * extent.
411 * Note: when this is set to true the path must not be NULL.
412 */
413 bool replace_extent;
414 /*
415 * Used if 'replace_extent' is true. Size of the file extent item to
416 * insert after dropping all existing extents in the range
417 */
418 u32 extent_item_size;
419
420 /* Output parameters */
421
422 /*
423 * Set to the minimum between the input parameter 'end' and the end
424 * (exclusive, last byte + 1) of the last dropped extent. This is always
425 * set even if btrfs_drop_extents() returns an error.
426 */
427 u64 drop_end;
428 /*
429 * The number of allocated bytes found in the range. This can be smaller
430 * than the range's length when there are holes in the range.
431 */
432 u64 bytes_found;
433 /*
434 * Only set if 'replace_extent' is true. Set to true if we were able
435 * to insert a replacement extent after dropping all extents in the
436 * range, otherwise set to false by btrfs_drop_extents().
437 * Also, if btrfs_drop_extents() has set this to true it means it
438 * returned with the path locked, otherwise if it has set this to
439 * false it has returned with the path released.
440 */
441 bool extent_inserted;
442};
443
444struct btrfs_file_private {
445 void *filldir_buf;
446 struct extent_state *llseek_cached_state;
447};
448
449static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
450{
451 return info->nodesize - sizeof(struct btrfs_header);
452}
453
454static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
455{
456 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
457}
458
459static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
460{
461 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
462}
463
464static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
465{
466 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
467}
468
469#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
470 ((bytes) >> (fs_info)->sectorsize_bits)
471
472static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
473{
474 return crc32c(crc, address, length);
475}
476
477static inline void btrfs_crc32c_final(u32 crc, u8 *result)
478{
479 put_unaligned_le32(~crc, result);
480}
481
482static inline u64 btrfs_name_hash(const char *name, int len)
483{
484 return crc32c((u32)~1, name, len);
485}
486
487/*
488 * Figure the key offset of an extended inode ref
489 */
490static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
491 int len)
492{
493 return (u64) crc32c(parent_objectid, name, len);
494}
495
496static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
497{
498 return mapping_gfp_constraint(mapping, ~__GFP_FS);
499}
500
501int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
502 u64 start, u64 end);
503int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
504 u64 num_bytes, u64 *actual_bytes);
505int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
506
507/* ctree.c */
508int __init btrfs_ctree_init(void);
509void __cold btrfs_ctree_exit(void);
510int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
511 int *slot);
512int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
513int btrfs_previous_item(struct btrfs_root *root,
514 struct btrfs_path *path, u64 min_objectid,
515 int type);
516int btrfs_previous_extent_item(struct btrfs_root *root,
517 struct btrfs_path *path, u64 min_objectid);
518void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
519 struct btrfs_path *path,
520 const struct btrfs_key *new_key);
521struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
522int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
523 struct btrfs_key *key, int lowest_level,
524 u64 min_trans);
525int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
526 struct btrfs_path *path,
527 u64 min_trans);
528struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
529 int slot);
530
531int btrfs_cow_block(struct btrfs_trans_handle *trans,
532 struct btrfs_root *root, struct extent_buffer *buf,
533 struct extent_buffer *parent, int parent_slot,
534 struct extent_buffer **cow_ret,
535 enum btrfs_lock_nesting nest);
536int btrfs_copy_root(struct btrfs_trans_handle *trans,
537 struct btrfs_root *root,
538 struct extent_buffer *buf,
539 struct extent_buffer **cow_ret, u64 new_root_objectid);
540int btrfs_block_can_be_shared(struct btrfs_root *root,
541 struct extent_buffer *buf);
542void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
543void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
544int btrfs_split_item(struct btrfs_trans_handle *trans,
545 struct btrfs_root *root,
546 struct btrfs_path *path,
547 const struct btrfs_key *new_key,
548 unsigned long split_offset);
549int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
550 struct btrfs_root *root,
551 struct btrfs_path *path,
552 const struct btrfs_key *new_key);
553int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
554 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
555int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
556 const struct btrfs_key *key, struct btrfs_path *p,
557 int ins_len, int cow);
558int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
559 struct btrfs_path *p, u64 time_seq);
560int btrfs_search_slot_for_read(struct btrfs_root *root,
561 const struct btrfs_key *key,
562 struct btrfs_path *p, int find_higher,
563 int return_any);
564int btrfs_realloc_node(struct btrfs_trans_handle *trans,
565 struct btrfs_root *root, struct extent_buffer *parent,
566 int start_slot, u64 *last_ret,
567 struct btrfs_key *progress);
568void btrfs_release_path(struct btrfs_path *p);
569struct btrfs_path *btrfs_alloc_path(void);
570void btrfs_free_path(struct btrfs_path *p);
571
572int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
573 struct btrfs_path *path, int slot, int nr);
574static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
575 struct btrfs_root *root,
576 struct btrfs_path *path)
577{
578 return btrfs_del_items(trans, root, path, path->slots[0], 1);
579}
580
581/*
582 * Describes a batch of items to insert in a btree. This is used by
583 * btrfs_insert_empty_items().
584 */
585struct btrfs_item_batch {
586 /*
587 * Pointer to an array containing the keys of the items to insert (in
588 * sorted order).
589 */
590 const struct btrfs_key *keys;
591 /* Pointer to an array containing the data size for each item to insert. */
592 const u32 *data_sizes;
593 /*
594 * The sum of data sizes for all items. The caller can compute this while
595 * setting up the data_sizes array, so it ends up being more efficient
596 * than having btrfs_insert_empty_items() or setup_item_for_insert()
597 * doing it, as it would avoid an extra loop over a potentially large
598 * array, and in the case of setup_item_for_insert(), we would be doing
599 * it while holding a write lock on a leaf and often on upper level nodes
600 * too, unnecessarily increasing the size of a critical section.
601 */
602 u32 total_data_size;
603 /* Size of the keys and data_sizes arrays (number of items in the batch). */
604 int nr;
605};
606
607void btrfs_setup_item_for_insert(struct btrfs_root *root,
608 struct btrfs_path *path,
609 const struct btrfs_key *key,
610 u32 data_size);
611int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
612 const struct btrfs_key *key, void *data, u32 data_size);
613int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
614 struct btrfs_root *root,
615 struct btrfs_path *path,
616 const struct btrfs_item_batch *batch);
617
618static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
619 struct btrfs_root *root,
620 struct btrfs_path *path,
621 const struct btrfs_key *key,
622 u32 data_size)
623{
624 struct btrfs_item_batch batch;
625
626 batch.keys = key;
627 batch.data_sizes = &data_size;
628 batch.total_data_size = data_size;
629 batch.nr = 1;
630
631 return btrfs_insert_empty_items(trans, root, path, &batch);
632}
633
634int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
635int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
636 u64 time_seq);
637
638int btrfs_search_backwards(struct btrfs_root *root, struct btrfs_key *key,
639 struct btrfs_path *path);
640
641int btrfs_get_next_valid_item(struct btrfs_root *root, struct btrfs_key *key,
642 struct btrfs_path *path);
643
644/*
645 * Search in @root for a given @key, and store the slot found in @found_key.
646 *
647 * @root: The root node of the tree.
648 * @key: The key we are looking for.
649 * @found_key: Will hold the found item.
650 * @path: Holds the current slot/leaf.
651 * @iter_ret: Contains the value returned from btrfs_search_slot or
652 * btrfs_get_next_valid_item, whichever was executed last.
653 *
654 * The @iter_ret is an output variable that will contain the return value of
655 * btrfs_search_slot, if it encountered an error, or the value returned from
656 * btrfs_get_next_valid_item otherwise. That return value can be 0, if a valid
657 * slot was found, 1 if there were no more leaves, and <0 if there was an error.
658 *
659 * It's recommended to use a separate variable for iter_ret and then use it to
660 * set the function return value so there's no confusion of the 0/1/errno
661 * values stemming from btrfs_search_slot.
662 */
663#define btrfs_for_each_slot(root, key, found_key, path, iter_ret) \
664 for (iter_ret = btrfs_search_slot(NULL, (root), (key), (path), 0, 0); \
665 (iter_ret) >= 0 && \
666 (iter_ret = btrfs_get_next_valid_item((root), (found_key), (path))) == 0; \
667 (path)->slots[0]++ \
668 )
669
670int btrfs_next_old_item(struct btrfs_root *root, struct btrfs_path *path, u64 time_seq);
671
672/*
673 * Search the tree again to find a leaf with greater keys.
674 *
675 * Returns 0 if it found something or 1 if there are no greater leaves.
676 * Returns < 0 on error.
677 */
678static inline int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path)
679{
680 return btrfs_next_old_leaf(root, path, 0);
681}
682
683static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
684{
685 return btrfs_next_old_item(root, p, 0);
686}
687int btrfs_leaf_free_space(struct extent_buffer *leaf);
688
689static inline int is_fstree(u64 rootid)
690{
691 if (rootid == BTRFS_FS_TREE_OBJECTID ||
692 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
693 !btrfs_qgroup_level(rootid)))
694 return 1;
695 return 0;
696}
697
698static inline bool btrfs_is_data_reloc_root(const struct btrfs_root *root)
699{
700 return root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID;
701}
702
703int btrfs_super_csum_size(const struct btrfs_super_block *s);
704const char *btrfs_super_csum_name(u16 csum_type);
705const char *btrfs_super_csum_driver(u16 csum_type);
706size_t __attribute_const__ btrfs_get_num_csums(void);
707
708/*
709 * We use page status Private2 to indicate there is an ordered extent with
710 * unfinished IO.
711 *
712 * Rename the Private2 accessors to Ordered, to improve readability.
713 */
714#define PageOrdered(page) PagePrivate2(page)
715#define SetPageOrdered(page) SetPagePrivate2(page)
716#define ClearPageOrdered(page) ClearPagePrivate2(page)
717#define folio_test_ordered(folio) folio_test_private_2(folio)
718#define folio_set_ordered(folio) folio_set_private_2(folio)
719#define folio_clear_ordered(folio) folio_clear_private_2(folio)
720
721#endif
1/* SPDX-License-Identifier: GPL-2.0 */
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#ifndef BTRFS_CTREE_H
7#define BTRFS_CTREE_H
8
9#include <linux/mm.h>
10#include <linux/sched/signal.h>
11#include <linux/highmem.h>
12#include <linux/fs.h>
13#include <linux/rwsem.h>
14#include <linux/semaphore.h>
15#include <linux/completion.h>
16#include <linux/backing-dev.h>
17#include <linux/wait.h>
18#include <linux/slab.h>
19#include <trace/events/btrfs.h>
20#include <asm/kmap_types.h>
21#include <asm/unaligned.h>
22#include <linux/pagemap.h>
23#include <linux/btrfs.h>
24#include <linux/btrfs_tree.h>
25#include <linux/workqueue.h>
26#include <linux/security.h>
27#include <linux/sizes.h>
28#include <linux/dynamic_debug.h>
29#include <linux/refcount.h>
30#include <linux/crc32c.h>
31#include "extent-io-tree.h"
32#include "extent_io.h"
33#include "extent_map.h"
34#include "async-thread.h"
35#include "block-rsv.h"
36#include "locking.h"
37
38struct btrfs_trans_handle;
39struct btrfs_transaction;
40struct btrfs_pending_snapshot;
41struct btrfs_delayed_ref_root;
42struct btrfs_space_info;
43struct btrfs_block_group;
44extern struct kmem_cache *btrfs_trans_handle_cachep;
45extern struct kmem_cache *btrfs_bit_radix_cachep;
46extern struct kmem_cache *btrfs_path_cachep;
47extern struct kmem_cache *btrfs_free_space_cachep;
48extern struct kmem_cache *btrfs_free_space_bitmap_cachep;
49struct btrfs_ordered_sum;
50struct btrfs_ref;
51
52#define BTRFS_MAGIC 0x4D5F53665248425FULL /* ascii _BHRfS_M, no null */
53
54/*
55 * Maximum number of mirrors that can be available for all profiles counting
56 * the target device of dev-replace as one. During an active device replace
57 * procedure, the target device of the copy operation is a mirror for the
58 * filesystem data as well that can be used to read data in order to repair
59 * read errors on other disks.
60 *
61 * Current value is derived from RAID1C4 with 4 copies.
62 */
63#define BTRFS_MAX_MIRRORS (4 + 1)
64
65#define BTRFS_MAX_LEVEL 8
66
67#define BTRFS_OLDEST_GENERATION 0ULL
68
69/*
70 * the max metadata block size. This limit is somewhat artificial,
71 * but the memmove costs go through the roof for larger blocks.
72 */
73#define BTRFS_MAX_METADATA_BLOCKSIZE 65536
74
75/*
76 * we can actually store much bigger names, but lets not confuse the rest
77 * of linux
78 */
79#define BTRFS_NAME_LEN 255
80
81/*
82 * Theoretical limit is larger, but we keep this down to a sane
83 * value. That should limit greatly the possibility of collisions on
84 * inode ref items.
85 */
86#define BTRFS_LINK_MAX 65535U
87
88#define BTRFS_EMPTY_DIR_SIZE 0
89
90/* ioprio of readahead is set to idle */
91#define BTRFS_IOPRIO_READA (IOPRIO_PRIO_VALUE(IOPRIO_CLASS_IDLE, 0))
92
93#define BTRFS_DIRTY_METADATA_THRESH SZ_32M
94
95/*
96 * Use large batch size to reduce overhead of metadata updates. On the reader
97 * side, we only read it when we are close to ENOSPC and the read overhead is
98 * mostly related to the number of CPUs, so it is OK to use arbitrary large
99 * value here.
100 */
101#define BTRFS_TOTAL_BYTES_PINNED_BATCH SZ_128M
102
103#define BTRFS_MAX_EXTENT_SIZE SZ_128M
104
105/*
106 * Deltas are an effective way to populate global statistics. Give macro names
107 * to make it clear what we're doing. An example is discard_extents in
108 * btrfs_free_space_ctl.
109 */
110#define BTRFS_STAT_NR_ENTRIES 2
111#define BTRFS_STAT_CURR 0
112#define BTRFS_STAT_PREV 1
113
114/*
115 * Count how many BTRFS_MAX_EXTENT_SIZE cover the @size
116 */
117static inline u32 count_max_extents(u64 size)
118{
119 return div_u64(size + BTRFS_MAX_EXTENT_SIZE - 1, BTRFS_MAX_EXTENT_SIZE);
120}
121
122static inline unsigned long btrfs_chunk_item_size(int num_stripes)
123{
124 BUG_ON(num_stripes == 0);
125 return sizeof(struct btrfs_chunk) +
126 sizeof(struct btrfs_stripe) * (num_stripes - 1);
127}
128
129/*
130 * Runtime (in-memory) states of filesystem
131 */
132enum {
133 /* Global indicator of serious filesystem errors */
134 BTRFS_FS_STATE_ERROR,
135 /*
136 * Filesystem is being remounted, allow to skip some operations, like
137 * defrag
138 */
139 BTRFS_FS_STATE_REMOUNTING,
140 /* Track if a transaction abort has been reported on this filesystem */
141 BTRFS_FS_STATE_TRANS_ABORTED,
142 /*
143 * Bio operations should be blocked on this filesystem because a source
144 * or target device is being destroyed as part of a device replace
145 */
146 BTRFS_FS_STATE_DEV_REPLACING,
147 /* The btrfs_fs_info created for self-tests */
148 BTRFS_FS_STATE_DUMMY_FS_INFO,
149};
150
151#define BTRFS_BACKREF_REV_MAX 256
152#define BTRFS_BACKREF_REV_SHIFT 56
153#define BTRFS_BACKREF_REV_MASK (((u64)BTRFS_BACKREF_REV_MAX - 1) << \
154 BTRFS_BACKREF_REV_SHIFT)
155
156#define BTRFS_OLD_BACKREF_REV 0
157#define BTRFS_MIXED_BACKREF_REV 1
158
159/*
160 * every tree block (leaf or node) starts with this header.
161 */
162struct btrfs_header {
163 /* these first four must match the super block */
164 u8 csum[BTRFS_CSUM_SIZE];
165 u8 fsid[BTRFS_FSID_SIZE]; /* FS specific uuid */
166 __le64 bytenr; /* which block this node is supposed to live in */
167 __le64 flags;
168
169 /* allowed to be different from the super from here on down */
170 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
171 __le64 generation;
172 __le64 owner;
173 __le32 nritems;
174 u8 level;
175} __attribute__ ((__packed__));
176
177/*
178 * this is a very generous portion of the super block, giving us
179 * room to translate 14 chunks with 3 stripes each.
180 */
181#define BTRFS_SYSTEM_CHUNK_ARRAY_SIZE 2048
182
183/*
184 * just in case we somehow lose the roots and are not able to mount,
185 * we store an array of the roots from previous transactions
186 * in the super.
187 */
188#define BTRFS_NUM_BACKUP_ROOTS 4
189struct btrfs_root_backup {
190 __le64 tree_root;
191 __le64 tree_root_gen;
192
193 __le64 chunk_root;
194 __le64 chunk_root_gen;
195
196 __le64 extent_root;
197 __le64 extent_root_gen;
198
199 __le64 fs_root;
200 __le64 fs_root_gen;
201
202 __le64 dev_root;
203 __le64 dev_root_gen;
204
205 __le64 csum_root;
206 __le64 csum_root_gen;
207
208 __le64 total_bytes;
209 __le64 bytes_used;
210 __le64 num_devices;
211 /* future */
212 __le64 unused_64[4];
213
214 u8 tree_root_level;
215 u8 chunk_root_level;
216 u8 extent_root_level;
217 u8 fs_root_level;
218 u8 dev_root_level;
219 u8 csum_root_level;
220 /* future and to align */
221 u8 unused_8[10];
222} __attribute__ ((__packed__));
223
224/*
225 * the super block basically lists the main trees of the FS
226 * it currently lacks any block count etc etc
227 */
228struct btrfs_super_block {
229 /* the first 4 fields must match struct btrfs_header */
230 u8 csum[BTRFS_CSUM_SIZE];
231 /* FS specific UUID, visible to user */
232 u8 fsid[BTRFS_FSID_SIZE];
233 __le64 bytenr; /* this block number */
234 __le64 flags;
235
236 /* allowed to be different from the btrfs_header from here own down */
237 __le64 magic;
238 __le64 generation;
239 __le64 root;
240 __le64 chunk_root;
241 __le64 log_root;
242
243 /* this will help find the new super based on the log root */
244 __le64 log_root_transid;
245 __le64 total_bytes;
246 __le64 bytes_used;
247 __le64 root_dir_objectid;
248 __le64 num_devices;
249 __le32 sectorsize;
250 __le32 nodesize;
251 __le32 __unused_leafsize;
252 __le32 stripesize;
253 __le32 sys_chunk_array_size;
254 __le64 chunk_root_generation;
255 __le64 compat_flags;
256 __le64 compat_ro_flags;
257 __le64 incompat_flags;
258 __le16 csum_type;
259 u8 root_level;
260 u8 chunk_root_level;
261 u8 log_root_level;
262 struct btrfs_dev_item dev_item;
263
264 char label[BTRFS_LABEL_SIZE];
265
266 __le64 cache_generation;
267 __le64 uuid_tree_generation;
268
269 /* the UUID written into btree blocks */
270 u8 metadata_uuid[BTRFS_FSID_SIZE];
271
272 /* future expansion */
273 __le64 reserved[28];
274 u8 sys_chunk_array[BTRFS_SYSTEM_CHUNK_ARRAY_SIZE];
275 struct btrfs_root_backup super_roots[BTRFS_NUM_BACKUP_ROOTS];
276} __attribute__ ((__packed__));
277
278/*
279 * Compat flags that we support. If any incompat flags are set other than the
280 * ones specified below then we will fail to mount
281 */
282#define BTRFS_FEATURE_COMPAT_SUPP 0ULL
283#define BTRFS_FEATURE_COMPAT_SAFE_SET 0ULL
284#define BTRFS_FEATURE_COMPAT_SAFE_CLEAR 0ULL
285
286#define BTRFS_FEATURE_COMPAT_RO_SUPP \
287 (BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE | \
288 BTRFS_FEATURE_COMPAT_RO_FREE_SPACE_TREE_VALID)
289
290#define BTRFS_FEATURE_COMPAT_RO_SAFE_SET 0ULL
291#define BTRFS_FEATURE_COMPAT_RO_SAFE_CLEAR 0ULL
292
293#define BTRFS_FEATURE_INCOMPAT_SUPP \
294 (BTRFS_FEATURE_INCOMPAT_MIXED_BACKREF | \
295 BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL | \
296 BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS | \
297 BTRFS_FEATURE_INCOMPAT_BIG_METADATA | \
298 BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO | \
299 BTRFS_FEATURE_INCOMPAT_COMPRESS_ZSTD | \
300 BTRFS_FEATURE_INCOMPAT_RAID56 | \
301 BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF | \
302 BTRFS_FEATURE_INCOMPAT_SKINNY_METADATA | \
303 BTRFS_FEATURE_INCOMPAT_NO_HOLES | \
304 BTRFS_FEATURE_INCOMPAT_METADATA_UUID | \
305 BTRFS_FEATURE_INCOMPAT_RAID1C34)
306
307#define BTRFS_FEATURE_INCOMPAT_SAFE_SET \
308 (BTRFS_FEATURE_INCOMPAT_EXTENDED_IREF)
309#define BTRFS_FEATURE_INCOMPAT_SAFE_CLEAR 0ULL
310
311/*
312 * A leaf is full of items. offset and size tell us where to find
313 * the item in the leaf (relative to the start of the data area)
314 */
315struct btrfs_item {
316 struct btrfs_disk_key key;
317 __le32 offset;
318 __le32 size;
319} __attribute__ ((__packed__));
320
321/*
322 * leaves have an item area and a data area:
323 * [item0, item1....itemN] [free space] [dataN...data1, data0]
324 *
325 * The data is separate from the items to get the keys closer together
326 * during searches.
327 */
328struct btrfs_leaf {
329 struct btrfs_header header;
330 struct btrfs_item items[];
331} __attribute__ ((__packed__));
332
333/*
334 * all non-leaf blocks are nodes, they hold only keys and pointers to
335 * other blocks
336 */
337struct btrfs_key_ptr {
338 struct btrfs_disk_key key;
339 __le64 blockptr;
340 __le64 generation;
341} __attribute__ ((__packed__));
342
343struct btrfs_node {
344 struct btrfs_header header;
345 struct btrfs_key_ptr ptrs[];
346} __attribute__ ((__packed__));
347
348/*
349 * btrfs_paths remember the path taken from the root down to the leaf.
350 * level 0 is always the leaf, and nodes[1...BTRFS_MAX_LEVEL] will point
351 * to any other levels that are present.
352 *
353 * The slots array records the index of the item or block pointer
354 * used while walking the tree.
355 */
356enum { READA_NONE, READA_BACK, READA_FORWARD };
357struct btrfs_path {
358 struct extent_buffer *nodes[BTRFS_MAX_LEVEL];
359 int slots[BTRFS_MAX_LEVEL];
360 /* if there is real range locking, this locks field will change */
361 u8 locks[BTRFS_MAX_LEVEL];
362 u8 reada;
363 /* keep some upper locks as we walk down */
364 u8 lowest_level;
365
366 /*
367 * set by btrfs_split_item, tells search_slot to keep all locks
368 * and to force calls to keep space in the nodes
369 */
370 unsigned int search_for_split:1;
371 unsigned int keep_locks:1;
372 unsigned int skip_locking:1;
373 unsigned int leave_spinning:1;
374 unsigned int search_commit_root:1;
375 unsigned int need_commit_sem:1;
376 unsigned int skip_release_on_error:1;
377};
378#define BTRFS_MAX_EXTENT_ITEM_SIZE(r) ((BTRFS_LEAF_DATA_SIZE(r->fs_info) >> 4) - \
379 sizeof(struct btrfs_item))
380struct btrfs_dev_replace {
381 u64 replace_state; /* see #define above */
382 time64_t time_started; /* seconds since 1-Jan-1970 */
383 time64_t time_stopped; /* seconds since 1-Jan-1970 */
384 atomic64_t num_write_errors;
385 atomic64_t num_uncorrectable_read_errors;
386
387 u64 cursor_left;
388 u64 committed_cursor_left;
389 u64 cursor_left_last_write_of_item;
390 u64 cursor_right;
391
392 u64 cont_reading_from_srcdev_mode; /* see #define above */
393
394 int is_valid;
395 int item_needs_writeback;
396 struct btrfs_device *srcdev;
397 struct btrfs_device *tgtdev;
398
399 struct mutex lock_finishing_cancel_unmount;
400 struct rw_semaphore rwsem;
401
402 struct btrfs_scrub_progress scrub_progress;
403
404 struct percpu_counter bio_counter;
405 wait_queue_head_t replace_wait;
406};
407
408/*
409 * free clusters are used to claim free space in relatively large chunks,
410 * allowing us to do less seeky writes. They are used for all metadata
411 * allocations. In ssd_spread mode they are also used for data allocations.
412 */
413struct btrfs_free_cluster {
414 spinlock_t lock;
415 spinlock_t refill_lock;
416 struct rb_root root;
417
418 /* largest extent in this cluster */
419 u64 max_size;
420
421 /* first extent starting offset */
422 u64 window_start;
423
424 /* We did a full search and couldn't create a cluster */
425 bool fragmented;
426
427 struct btrfs_block_group *block_group;
428 /*
429 * when a cluster is allocated from a block group, we put the
430 * cluster onto a list in the block group so that it can
431 * be freed before the block group is freed.
432 */
433 struct list_head block_group_list;
434};
435
436enum btrfs_caching_type {
437 BTRFS_CACHE_NO,
438 BTRFS_CACHE_STARTED,
439 BTRFS_CACHE_FAST,
440 BTRFS_CACHE_FINISHED,
441 BTRFS_CACHE_ERROR,
442};
443
444/*
445 * Tree to record all locked full stripes of a RAID5/6 block group
446 */
447struct btrfs_full_stripe_locks_tree {
448 struct rb_root root;
449 struct mutex lock;
450};
451
452/* Discard control. */
453/*
454 * Async discard uses multiple lists to differentiate the discard filter
455 * parameters. Index 0 is for completely free block groups where we need to
456 * ensure the entire block group is trimmed without being lossy. Indices
457 * afterwards represent monotonically decreasing discard filter sizes to
458 * prioritize what should be discarded next.
459 */
460#define BTRFS_NR_DISCARD_LISTS 3
461#define BTRFS_DISCARD_INDEX_UNUSED 0
462#define BTRFS_DISCARD_INDEX_START 1
463
464struct btrfs_discard_ctl {
465 struct workqueue_struct *discard_workers;
466 struct delayed_work work;
467 spinlock_t lock;
468 struct btrfs_block_group *block_group;
469 struct list_head discard_list[BTRFS_NR_DISCARD_LISTS];
470 u64 prev_discard;
471 atomic_t discardable_extents;
472 atomic64_t discardable_bytes;
473 u64 max_discard_size;
474 unsigned long delay;
475 u32 iops_limit;
476 u32 kbps_limit;
477 u64 discard_extent_bytes;
478 u64 discard_bitmap_bytes;
479 atomic64_t discard_bytes_saved;
480};
481
482/* delayed seq elem */
483struct seq_list {
484 struct list_head list;
485 u64 seq;
486};
487
488#define SEQ_LIST_INIT(name) { .list = LIST_HEAD_INIT((name).list), .seq = 0 }
489
490#define SEQ_LAST ((u64)-1)
491
492enum btrfs_orphan_cleanup_state {
493 ORPHAN_CLEANUP_STARTED = 1,
494 ORPHAN_CLEANUP_DONE = 2,
495};
496
497void btrfs_init_async_reclaim_work(struct work_struct *work);
498
499/* fs_info */
500struct reloc_control;
501struct btrfs_device;
502struct btrfs_fs_devices;
503struct btrfs_balance_control;
504struct btrfs_delayed_root;
505
506/*
507 * Block group or device which contains an active swapfile. Used for preventing
508 * unsafe operations while a swapfile is active.
509 *
510 * These are sorted on (ptr, inode) (note that a block group or device can
511 * contain more than one swapfile). We compare the pointer values because we
512 * don't actually care what the object is, we just need a quick check whether
513 * the object exists in the rbtree.
514 */
515struct btrfs_swapfile_pin {
516 struct rb_node node;
517 void *ptr;
518 struct inode *inode;
519 /*
520 * If true, ptr points to a struct btrfs_block_group. Otherwise, ptr
521 * points to a struct btrfs_device.
522 */
523 bool is_block_group;
524};
525
526bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr);
527
528enum {
529 BTRFS_FS_BARRIER,
530 BTRFS_FS_CLOSING_START,
531 BTRFS_FS_CLOSING_DONE,
532 BTRFS_FS_LOG_RECOVERING,
533 BTRFS_FS_OPEN,
534 BTRFS_FS_QUOTA_ENABLED,
535 BTRFS_FS_UPDATE_UUID_TREE_GEN,
536 BTRFS_FS_CREATING_FREE_SPACE_TREE,
537 BTRFS_FS_BTREE_ERR,
538 BTRFS_FS_LOG1_ERR,
539 BTRFS_FS_LOG2_ERR,
540 BTRFS_FS_QUOTA_OVERRIDE,
541 /* Used to record internally whether fs has been frozen */
542 BTRFS_FS_FROZEN,
543 /*
544 * Indicate that a whole-filesystem exclusive operation is running
545 * (device replace, resize, device add/delete, balance)
546 */
547 BTRFS_FS_EXCL_OP,
548 /*
549 * Indicate that balance has been set up from the ioctl and is in the
550 * main phase. The fs_info::balance_ctl is initialized.
551 * Set and cleared while holding fs_info::balance_mutex.
552 */
553 BTRFS_FS_BALANCE_RUNNING,
554
555 /* Indicate that the cleaner thread is awake and doing something. */
556 BTRFS_FS_CLEANER_RUNNING,
557
558 /*
559 * The checksumming has an optimized version and is considered fast,
560 * so we don't need to offload checksums to workqueues.
561 */
562 BTRFS_FS_CSUM_IMPL_FAST,
563
564 /* Indicate that the discard workqueue can service discards. */
565 BTRFS_FS_DISCARD_RUNNING,
566};
567
568struct btrfs_fs_info {
569 u8 chunk_tree_uuid[BTRFS_UUID_SIZE];
570 unsigned long flags;
571 struct btrfs_root *extent_root;
572 struct btrfs_root *tree_root;
573 struct btrfs_root *chunk_root;
574 struct btrfs_root *dev_root;
575 struct btrfs_root *fs_root;
576 struct btrfs_root *csum_root;
577 struct btrfs_root *quota_root;
578 struct btrfs_root *uuid_root;
579 struct btrfs_root *free_space_root;
580 struct btrfs_root *data_reloc_root;
581
582 /* the log root tree is a directory of all the other log roots */
583 struct btrfs_root *log_root_tree;
584
585 spinlock_t fs_roots_radix_lock;
586 struct radix_tree_root fs_roots_radix;
587
588 /* block group cache stuff */
589 spinlock_t block_group_cache_lock;
590 u64 first_logical_byte;
591 struct rb_root block_group_cache_tree;
592
593 /* keep track of unallocated space */
594 atomic64_t free_chunk_space;
595
596 /* Track ranges which are used by log trees blocks/logged data extents */
597 struct extent_io_tree excluded_extents;
598
599 /* logical->physical extent mapping */
600 struct extent_map_tree mapping_tree;
601
602 /*
603 * block reservation for extent, checksum, root tree and
604 * delayed dir index item
605 */
606 struct btrfs_block_rsv global_block_rsv;
607 /* block reservation for metadata operations */
608 struct btrfs_block_rsv trans_block_rsv;
609 /* block reservation for chunk tree */
610 struct btrfs_block_rsv chunk_block_rsv;
611 /* block reservation for delayed operations */
612 struct btrfs_block_rsv delayed_block_rsv;
613 /* block reservation for delayed refs */
614 struct btrfs_block_rsv delayed_refs_rsv;
615
616 struct btrfs_block_rsv empty_block_rsv;
617
618 u64 generation;
619 u64 last_trans_committed;
620 u64 avg_delayed_ref_runtime;
621
622 /*
623 * this is updated to the current trans every time a full commit
624 * is required instead of the faster short fsync log commits
625 */
626 u64 last_trans_log_full_commit;
627 unsigned long mount_opt;
628 /*
629 * Track requests for actions that need to be done during transaction
630 * commit (like for some mount options).
631 */
632 unsigned long pending_changes;
633 unsigned long compress_type:4;
634 unsigned int compress_level;
635 u32 commit_interval;
636 /*
637 * It is a suggestive number, the read side is safe even it gets a
638 * wrong number because we will write out the data into a regular
639 * extent. The write side(mount/remount) is under ->s_umount lock,
640 * so it is also safe.
641 */
642 u64 max_inline;
643
644 struct btrfs_transaction *running_transaction;
645 wait_queue_head_t transaction_throttle;
646 wait_queue_head_t transaction_wait;
647 wait_queue_head_t transaction_blocked_wait;
648 wait_queue_head_t async_submit_wait;
649
650 /*
651 * Used to protect the incompat_flags, compat_flags, compat_ro_flags
652 * when they are updated.
653 *
654 * Because we do not clear the flags for ever, so we needn't use
655 * the lock on the read side.
656 *
657 * We also needn't use the lock when we mount the fs, because
658 * there is no other task which will update the flag.
659 */
660 spinlock_t super_lock;
661 struct btrfs_super_block *super_copy;
662 struct btrfs_super_block *super_for_commit;
663 struct super_block *sb;
664 struct inode *btree_inode;
665 struct mutex tree_log_mutex;
666 struct mutex transaction_kthread_mutex;
667 struct mutex cleaner_mutex;
668 struct mutex chunk_mutex;
669
670 /*
671 * this is taken to make sure we don't set block groups ro after
672 * the free space cache has been allocated on them
673 */
674 struct mutex ro_block_group_mutex;
675
676 /* this is used during read/modify/write to make sure
677 * no two ios are trying to mod the same stripe at the same
678 * time
679 */
680 struct btrfs_stripe_hash_table *stripe_hash_table;
681
682 /*
683 * this protects the ordered operations list only while we are
684 * processing all of the entries on it. This way we make
685 * sure the commit code doesn't find the list temporarily empty
686 * because another function happens to be doing non-waiting preflush
687 * before jumping into the main commit.
688 */
689 struct mutex ordered_operations_mutex;
690
691 struct rw_semaphore commit_root_sem;
692
693 struct rw_semaphore cleanup_work_sem;
694
695 struct rw_semaphore subvol_sem;
696
697 spinlock_t trans_lock;
698 /*
699 * the reloc mutex goes with the trans lock, it is taken
700 * during commit to protect us from the relocation code
701 */
702 struct mutex reloc_mutex;
703
704 struct list_head trans_list;
705 struct list_head dead_roots;
706 struct list_head caching_block_groups;
707
708 spinlock_t delayed_iput_lock;
709 struct list_head delayed_iputs;
710 atomic_t nr_delayed_iputs;
711 wait_queue_head_t delayed_iputs_wait;
712
713 atomic64_t tree_mod_seq;
714
715 /* this protects tree_mod_log and tree_mod_seq_list */
716 rwlock_t tree_mod_log_lock;
717 struct rb_root tree_mod_log;
718 struct list_head tree_mod_seq_list;
719
720 atomic_t async_delalloc_pages;
721
722 /*
723 * this is used to protect the following list -- ordered_roots.
724 */
725 spinlock_t ordered_root_lock;
726
727 /*
728 * all fs/file tree roots in which there are data=ordered extents
729 * pending writeback are added into this list.
730 *
731 * these can span multiple transactions and basically include
732 * every dirty data page that isn't from nodatacow
733 */
734 struct list_head ordered_roots;
735
736 struct mutex delalloc_root_mutex;
737 spinlock_t delalloc_root_lock;
738 /* all fs/file tree roots that have delalloc inodes. */
739 struct list_head delalloc_roots;
740
741 /*
742 * there is a pool of worker threads for checksumming during writes
743 * and a pool for checksumming after reads. This is because readers
744 * can run with FS locks held, and the writers may be waiting for
745 * those locks. We don't want ordering in the pending list to cause
746 * deadlocks, and so the two are serviced separately.
747 *
748 * A third pool does submit_bio to avoid deadlocking with the other
749 * two
750 */
751 struct btrfs_workqueue *workers;
752 struct btrfs_workqueue *delalloc_workers;
753 struct btrfs_workqueue *flush_workers;
754 struct btrfs_workqueue *endio_workers;
755 struct btrfs_workqueue *endio_meta_workers;
756 struct btrfs_workqueue *endio_raid56_workers;
757 struct btrfs_workqueue *rmw_workers;
758 struct btrfs_workqueue *endio_meta_write_workers;
759 struct btrfs_workqueue *endio_write_workers;
760 struct btrfs_workqueue *endio_freespace_worker;
761 struct btrfs_workqueue *caching_workers;
762 struct btrfs_workqueue *readahead_workers;
763
764 /*
765 * fixup workers take dirty pages that didn't properly go through
766 * the cow mechanism and make them safe to write. It happens
767 * for the sys_munmap function call path
768 */
769 struct btrfs_workqueue *fixup_workers;
770 struct btrfs_workqueue *delayed_workers;
771
772 struct task_struct *transaction_kthread;
773 struct task_struct *cleaner_kthread;
774 u32 thread_pool_size;
775
776 struct kobject *space_info_kobj;
777 struct kobject *qgroups_kobj;
778
779 u64 total_pinned;
780
781 /* used to keep from writing metadata until there is a nice batch */
782 struct percpu_counter dirty_metadata_bytes;
783 struct percpu_counter delalloc_bytes;
784 struct percpu_counter dio_bytes;
785 s32 dirty_metadata_batch;
786 s32 delalloc_batch;
787
788 struct list_head dirty_cowonly_roots;
789
790 struct btrfs_fs_devices *fs_devices;
791
792 /*
793 * The space_info list is effectively read only after initial
794 * setup. It is populated at mount time and cleaned up after
795 * all block groups are removed. RCU is used to protect it.
796 */
797 struct list_head space_info;
798
799 struct btrfs_space_info *data_sinfo;
800
801 struct reloc_control *reloc_ctl;
802
803 /* data_alloc_cluster is only used in ssd_spread mode */
804 struct btrfs_free_cluster data_alloc_cluster;
805
806 /* all metadata allocations go through this cluster */
807 struct btrfs_free_cluster meta_alloc_cluster;
808
809 /* auto defrag inodes go here */
810 spinlock_t defrag_inodes_lock;
811 struct rb_root defrag_inodes;
812 atomic_t defrag_running;
813
814 /* Used to protect avail_{data, metadata, system}_alloc_bits */
815 seqlock_t profiles_lock;
816 /*
817 * these three are in extended format (availability of single
818 * chunks is denoted by BTRFS_AVAIL_ALLOC_BIT_SINGLE bit, other
819 * types are denoted by corresponding BTRFS_BLOCK_GROUP_* bits)
820 */
821 u64 avail_data_alloc_bits;
822 u64 avail_metadata_alloc_bits;
823 u64 avail_system_alloc_bits;
824
825 /* restriper state */
826 spinlock_t balance_lock;
827 struct mutex balance_mutex;
828 atomic_t balance_pause_req;
829 atomic_t balance_cancel_req;
830 struct btrfs_balance_control *balance_ctl;
831 wait_queue_head_t balance_wait_q;
832
833 u32 data_chunk_allocations;
834 u32 metadata_ratio;
835
836 void *bdev_holder;
837
838 /* private scrub information */
839 struct mutex scrub_lock;
840 atomic_t scrubs_running;
841 atomic_t scrub_pause_req;
842 atomic_t scrubs_paused;
843 atomic_t scrub_cancel_req;
844 wait_queue_head_t scrub_pause_wait;
845 /*
846 * The worker pointers are NULL iff the refcount is 0, ie. scrub is not
847 * running.
848 */
849 refcount_t scrub_workers_refcnt;
850 struct btrfs_workqueue *scrub_workers;
851 struct btrfs_workqueue *scrub_wr_completion_workers;
852 struct btrfs_workqueue *scrub_parity_workers;
853
854 struct btrfs_discard_ctl discard_ctl;
855
856#ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
857 u32 check_integrity_print_mask;
858#endif
859 /* is qgroup tracking in a consistent state? */
860 u64 qgroup_flags;
861
862 /* holds configuration and tracking. Protected by qgroup_lock */
863 struct rb_root qgroup_tree;
864 spinlock_t qgroup_lock;
865
866 /*
867 * used to avoid frequently calling ulist_alloc()/ulist_free()
868 * when doing qgroup accounting, it must be protected by qgroup_lock.
869 */
870 struct ulist *qgroup_ulist;
871
872 /* protect user change for quota operations */
873 struct mutex qgroup_ioctl_lock;
874
875 /* list of dirty qgroups to be written at next commit */
876 struct list_head dirty_qgroups;
877
878 /* used by qgroup for an efficient tree traversal */
879 u64 qgroup_seq;
880
881 /* qgroup rescan items */
882 struct mutex qgroup_rescan_lock; /* protects the progress item */
883 struct btrfs_key qgroup_rescan_progress;
884 struct btrfs_workqueue *qgroup_rescan_workers;
885 struct completion qgroup_rescan_completion;
886 struct btrfs_work qgroup_rescan_work;
887 bool qgroup_rescan_running; /* protected by qgroup_rescan_lock */
888
889 /* filesystem state */
890 unsigned long fs_state;
891
892 struct btrfs_delayed_root *delayed_root;
893
894 /* readahead tree */
895 spinlock_t reada_lock;
896 struct radix_tree_root reada_tree;
897
898 /* readahead works cnt */
899 atomic_t reada_works_cnt;
900
901 /* Extent buffer radix tree */
902 spinlock_t buffer_lock;
903 struct radix_tree_root buffer_radix;
904
905 /* next backup root to be overwritten */
906 int backup_root_index;
907
908 /* device replace state */
909 struct btrfs_dev_replace dev_replace;
910
911 struct semaphore uuid_tree_rescan_sem;
912
913 /* Used to reclaim the metadata space in the background. */
914 struct work_struct async_reclaim_work;
915
916 spinlock_t unused_bgs_lock;
917 struct list_head unused_bgs;
918 struct mutex unused_bg_unpin_mutex;
919 struct mutex delete_unused_bgs_mutex;
920
921 /* Cached block sizes */
922 u32 nodesize;
923 u32 sectorsize;
924 u32 stripesize;
925
926 /* Block groups and devices containing active swapfiles. */
927 spinlock_t swapfile_pins_lock;
928 struct rb_root swapfile_pins;
929
930 struct crypto_shash *csum_shash;
931
932 /*
933 * Number of send operations in progress.
934 * Updated while holding fs_info::balance_mutex.
935 */
936 int send_in_progress;
937
938#ifdef CONFIG_BTRFS_FS_REF_VERIFY
939 spinlock_t ref_verify_lock;
940 struct rb_root block_tree;
941#endif
942
943#ifdef CONFIG_BTRFS_DEBUG
944 struct kobject *debug_kobj;
945 struct kobject *discard_debug_kobj;
946 struct list_head allocated_roots;
947
948 spinlock_t eb_leak_lock;
949 struct list_head allocated_ebs;
950#endif
951};
952
953static inline struct btrfs_fs_info *btrfs_sb(struct super_block *sb)
954{
955 return sb->s_fs_info;
956}
957
958/*
959 * The state of btrfs root
960 */
961enum {
962 /*
963 * btrfs_record_root_in_trans is a multi-step process, and it can race
964 * with the balancing code. But the race is very small, and only the
965 * first time the root is added to each transaction. So IN_TRANS_SETUP
966 * is used to tell us when more checks are required
967 */
968 BTRFS_ROOT_IN_TRANS_SETUP,
969
970 /*
971 * Set if tree blocks of this root can be shared by other roots.
972 * Only subvolume trees and their reloc trees have this bit set.
973 * Conflicts with TRACK_DIRTY bit.
974 *
975 * This affects two things:
976 *
977 * - How balance works
978 * For shareable roots, we need to use reloc tree and do path
979 * replacement for balance, and need various pre/post hooks for
980 * snapshot creation to handle them.
981 *
982 * While for non-shareable trees, we just simply do a tree search
983 * with COW.
984 *
985 * - How dirty roots are tracked
986 * For shareable roots, btrfs_record_root_in_trans() is needed to
987 * track them, while non-subvolume roots have TRACK_DIRTY bit, they
988 * don't need to set this manually.
989 */
990 BTRFS_ROOT_SHAREABLE,
991 BTRFS_ROOT_TRACK_DIRTY,
992 BTRFS_ROOT_IN_RADIX,
993 BTRFS_ROOT_ORPHAN_ITEM_INSERTED,
994 BTRFS_ROOT_DEFRAG_RUNNING,
995 BTRFS_ROOT_FORCE_COW,
996 BTRFS_ROOT_MULTI_LOG_TASKS,
997 BTRFS_ROOT_DIRTY,
998 BTRFS_ROOT_DELETING,
999
1000 /*
1001 * Reloc tree is orphan, only kept here for qgroup delayed subtree scan
1002 *
1003 * Set for the subvolume tree owning the reloc tree.
1004 */
1005 BTRFS_ROOT_DEAD_RELOC_TREE,
1006 /* Mark dead root stored on device whose cleanup needs to be resumed */
1007 BTRFS_ROOT_DEAD_TREE,
1008 /* The root has a log tree. Used only for subvolume roots. */
1009 BTRFS_ROOT_HAS_LOG_TREE,
1010 /* Qgroup flushing is in progress */
1011 BTRFS_ROOT_QGROUP_FLUSHING,
1012};
1013
1014/*
1015 * Record swapped tree blocks of a subvolume tree for delayed subtree trace
1016 * code. For detail check comment in fs/btrfs/qgroup.c.
1017 */
1018struct btrfs_qgroup_swapped_blocks {
1019 spinlock_t lock;
1020 /* RM_EMPTY_ROOT() of above blocks[] */
1021 bool swapped;
1022 struct rb_root blocks[BTRFS_MAX_LEVEL];
1023};
1024
1025/*
1026 * in ram representation of the tree. extent_root is used for all allocations
1027 * and for the extent tree extent_root root.
1028 */
1029struct btrfs_root {
1030 struct extent_buffer *node;
1031
1032 struct extent_buffer *commit_root;
1033 struct btrfs_root *log_root;
1034 struct btrfs_root *reloc_root;
1035
1036 unsigned long state;
1037 struct btrfs_root_item root_item;
1038 struct btrfs_key root_key;
1039 struct btrfs_fs_info *fs_info;
1040 struct extent_io_tree dirty_log_pages;
1041
1042 struct mutex objectid_mutex;
1043
1044 spinlock_t accounting_lock;
1045 struct btrfs_block_rsv *block_rsv;
1046
1047 /* free ino cache stuff */
1048 struct btrfs_free_space_ctl *free_ino_ctl;
1049 enum btrfs_caching_type ino_cache_state;
1050 spinlock_t ino_cache_lock;
1051 wait_queue_head_t ino_cache_wait;
1052 struct btrfs_free_space_ctl *free_ino_pinned;
1053 u64 ino_cache_progress;
1054 struct inode *ino_cache_inode;
1055
1056 struct mutex log_mutex;
1057 wait_queue_head_t log_writer_wait;
1058 wait_queue_head_t log_commit_wait[2];
1059 struct list_head log_ctxs[2];
1060 /* Used only for log trees of subvolumes, not for the log root tree */
1061 atomic_t log_writers;
1062 atomic_t log_commit[2];
1063 /* Used only for log trees of subvolumes, not for the log root tree */
1064 atomic_t log_batch;
1065 int log_transid;
1066 /* No matter the commit succeeds or not*/
1067 int log_transid_committed;
1068 /* Just be updated when the commit succeeds. */
1069 int last_log_commit;
1070 pid_t log_start_pid;
1071
1072 u64 last_trans;
1073
1074 u32 type;
1075
1076 u64 highest_objectid;
1077
1078 struct btrfs_key defrag_progress;
1079 struct btrfs_key defrag_max;
1080
1081 /* The dirty list is only used by non-shareable roots */
1082 struct list_head dirty_list;
1083
1084 struct list_head root_list;
1085
1086 spinlock_t log_extents_lock[2];
1087 struct list_head logged_list[2];
1088
1089 int orphan_cleanup_state;
1090
1091 spinlock_t inode_lock;
1092 /* red-black tree that keeps track of in-memory inodes */
1093 struct rb_root inode_tree;
1094
1095 /*
1096 * radix tree that keeps track of delayed nodes of every inode,
1097 * protected by inode_lock
1098 */
1099 struct radix_tree_root delayed_nodes_tree;
1100 /*
1101 * right now this just gets used so that a root has its own devid
1102 * for stat. It may be used for more later
1103 */
1104 dev_t anon_dev;
1105
1106 spinlock_t root_item_lock;
1107 refcount_t refs;
1108
1109 struct mutex delalloc_mutex;
1110 spinlock_t delalloc_lock;
1111 /*
1112 * all of the inodes that have delalloc bytes. It is possible for
1113 * this list to be empty even when there is still dirty data=ordered
1114 * extents waiting to finish IO.
1115 */
1116 struct list_head delalloc_inodes;
1117 struct list_head delalloc_root;
1118 u64 nr_delalloc_inodes;
1119
1120 struct mutex ordered_extent_mutex;
1121 /*
1122 * this is used by the balancing code to wait for all the pending
1123 * ordered extents
1124 */
1125 spinlock_t ordered_extent_lock;
1126
1127 /*
1128 * all of the data=ordered extents pending writeback
1129 * these can span multiple transactions and basically include
1130 * every dirty data page that isn't from nodatacow
1131 */
1132 struct list_head ordered_extents;
1133 struct list_head ordered_root;
1134 u64 nr_ordered_extents;
1135
1136 /*
1137 * Not empty if this subvolume root has gone through tree block swap
1138 * (relocation)
1139 *
1140 * Will be used by reloc_control::dirty_subvol_roots.
1141 */
1142 struct list_head reloc_dirty_list;
1143
1144 /*
1145 * Number of currently running SEND ioctls to prevent
1146 * manipulation with the read-only status via SUBVOL_SETFLAGS
1147 */
1148 int send_in_progress;
1149 /*
1150 * Number of currently running deduplication operations that have a
1151 * destination inode belonging to this root. Protected by the lock
1152 * root_item_lock.
1153 */
1154 int dedupe_in_progress;
1155 /* For exclusion of snapshot creation and nocow writes */
1156 struct btrfs_drew_lock snapshot_lock;
1157
1158 atomic_t snapshot_force_cow;
1159
1160 /* For qgroup metadata reserved space */
1161 spinlock_t qgroup_meta_rsv_lock;
1162 u64 qgroup_meta_rsv_pertrans;
1163 u64 qgroup_meta_rsv_prealloc;
1164 wait_queue_head_t qgroup_flush_wait;
1165
1166 /* Number of active swapfiles */
1167 atomic_t nr_swapfiles;
1168
1169 /* Record pairs of swapped blocks for qgroup */
1170 struct btrfs_qgroup_swapped_blocks swapped_blocks;
1171
1172 /* Used only by log trees, when logging csum items */
1173 struct extent_io_tree log_csum_range;
1174
1175#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
1176 u64 alloc_bytenr;
1177#endif
1178
1179#ifdef CONFIG_BTRFS_DEBUG
1180 struct list_head leak_list;
1181#endif
1182};
1183
1184struct btrfs_clone_extent_info {
1185 u64 disk_offset;
1186 u64 disk_len;
1187 u64 data_offset;
1188 u64 data_len;
1189 u64 file_offset;
1190 char *extent_buf;
1191 u32 item_size;
1192};
1193
1194struct btrfs_file_private {
1195 void *filldir_buf;
1196};
1197
1198static inline u32 btrfs_inode_sectorsize(const struct inode *inode)
1199{
1200 return btrfs_sb(inode->i_sb)->sectorsize;
1201}
1202
1203static inline u32 BTRFS_LEAF_DATA_SIZE(const struct btrfs_fs_info *info)
1204{
1205
1206 return info->nodesize - sizeof(struct btrfs_header);
1207}
1208
1209#define BTRFS_LEAF_DATA_OFFSET offsetof(struct btrfs_leaf, items)
1210
1211static inline u32 BTRFS_MAX_ITEM_SIZE(const struct btrfs_fs_info *info)
1212{
1213 return BTRFS_LEAF_DATA_SIZE(info) - sizeof(struct btrfs_item);
1214}
1215
1216static inline u32 BTRFS_NODEPTRS_PER_BLOCK(const struct btrfs_fs_info *info)
1217{
1218 return BTRFS_LEAF_DATA_SIZE(info) / sizeof(struct btrfs_key_ptr);
1219}
1220
1221#define BTRFS_FILE_EXTENT_INLINE_DATA_START \
1222 (offsetof(struct btrfs_file_extent_item, disk_bytenr))
1223static inline u32 BTRFS_MAX_INLINE_DATA_SIZE(const struct btrfs_fs_info *info)
1224{
1225 return BTRFS_MAX_ITEM_SIZE(info) -
1226 BTRFS_FILE_EXTENT_INLINE_DATA_START;
1227}
1228
1229static inline u32 BTRFS_MAX_XATTR_SIZE(const struct btrfs_fs_info *info)
1230{
1231 return BTRFS_MAX_ITEM_SIZE(info) - sizeof(struct btrfs_dir_item);
1232}
1233
1234/*
1235 * Flags for mount options.
1236 *
1237 * Note: don't forget to add new options to btrfs_show_options()
1238 */
1239#define BTRFS_MOUNT_NODATASUM (1 << 0)
1240#define BTRFS_MOUNT_NODATACOW (1 << 1)
1241#define BTRFS_MOUNT_NOBARRIER (1 << 2)
1242#define BTRFS_MOUNT_SSD (1 << 3)
1243#define BTRFS_MOUNT_DEGRADED (1 << 4)
1244#define BTRFS_MOUNT_COMPRESS (1 << 5)
1245#define BTRFS_MOUNT_NOTREELOG (1 << 6)
1246#define BTRFS_MOUNT_FLUSHONCOMMIT (1 << 7)
1247#define BTRFS_MOUNT_SSD_SPREAD (1 << 8)
1248#define BTRFS_MOUNT_NOSSD (1 << 9)
1249#define BTRFS_MOUNT_DISCARD_SYNC (1 << 10)
1250#define BTRFS_MOUNT_FORCE_COMPRESS (1 << 11)
1251#define BTRFS_MOUNT_SPACE_CACHE (1 << 12)
1252#define BTRFS_MOUNT_CLEAR_CACHE (1 << 13)
1253#define BTRFS_MOUNT_USER_SUBVOL_RM_ALLOWED (1 << 14)
1254#define BTRFS_MOUNT_ENOSPC_DEBUG (1 << 15)
1255#define BTRFS_MOUNT_AUTO_DEFRAG (1 << 16)
1256#define BTRFS_MOUNT_INODE_MAP_CACHE (1 << 17)
1257#define BTRFS_MOUNT_USEBACKUPROOT (1 << 18)
1258#define BTRFS_MOUNT_SKIP_BALANCE (1 << 19)
1259#define BTRFS_MOUNT_CHECK_INTEGRITY (1 << 20)
1260#define BTRFS_MOUNT_CHECK_INTEGRITY_INCLUDING_EXTENT_DATA (1 << 21)
1261#define BTRFS_MOUNT_PANIC_ON_FATAL_ERROR (1 << 22)
1262#define BTRFS_MOUNT_RESCAN_UUID_TREE (1 << 23)
1263#define BTRFS_MOUNT_FRAGMENT_DATA (1 << 24)
1264#define BTRFS_MOUNT_FRAGMENT_METADATA (1 << 25)
1265#define BTRFS_MOUNT_FREE_SPACE_TREE (1 << 26)
1266#define BTRFS_MOUNT_NOLOGREPLAY (1 << 27)
1267#define BTRFS_MOUNT_REF_VERIFY (1 << 28)
1268#define BTRFS_MOUNT_DISCARD_ASYNC (1 << 29)
1269
1270#define BTRFS_DEFAULT_COMMIT_INTERVAL (30)
1271#define BTRFS_DEFAULT_MAX_INLINE (2048)
1272
1273#define btrfs_clear_opt(o, opt) ((o) &= ~BTRFS_MOUNT_##opt)
1274#define btrfs_set_opt(o, opt) ((o) |= BTRFS_MOUNT_##opt)
1275#define btrfs_raw_test_opt(o, opt) ((o) & BTRFS_MOUNT_##opt)
1276#define btrfs_test_opt(fs_info, opt) ((fs_info)->mount_opt & \
1277 BTRFS_MOUNT_##opt)
1278
1279#define btrfs_set_and_info(fs_info, opt, fmt, args...) \
1280do { \
1281 if (!btrfs_test_opt(fs_info, opt)) \
1282 btrfs_info(fs_info, fmt, ##args); \
1283 btrfs_set_opt(fs_info->mount_opt, opt); \
1284} while (0)
1285
1286#define btrfs_clear_and_info(fs_info, opt, fmt, args...) \
1287do { \
1288 if (btrfs_test_opt(fs_info, opt)) \
1289 btrfs_info(fs_info, fmt, ##args); \
1290 btrfs_clear_opt(fs_info->mount_opt, opt); \
1291} while (0)
1292
1293/*
1294 * Requests for changes that need to be done during transaction commit.
1295 *
1296 * Internal mount options that are used for special handling of the real
1297 * mount options (eg. cannot be set during remount and have to be set during
1298 * transaction commit)
1299 */
1300
1301#define BTRFS_PENDING_SET_INODE_MAP_CACHE (0)
1302#define BTRFS_PENDING_CLEAR_INODE_MAP_CACHE (1)
1303#define BTRFS_PENDING_COMMIT (2)
1304
1305#define btrfs_test_pending(info, opt) \
1306 test_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1307#define btrfs_set_pending(info, opt) \
1308 set_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1309#define btrfs_clear_pending(info, opt) \
1310 clear_bit(BTRFS_PENDING_##opt, &(info)->pending_changes)
1311
1312/*
1313 * Helpers for setting pending mount option changes.
1314 *
1315 * Expects corresponding macros
1316 * BTRFS_PENDING_SET_ and CLEAR_ + short mount option name
1317 */
1318#define btrfs_set_pending_and_info(info, opt, fmt, args...) \
1319do { \
1320 if (!btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1321 btrfs_info((info), fmt, ##args); \
1322 btrfs_set_pending((info), SET_##opt); \
1323 btrfs_clear_pending((info), CLEAR_##opt); \
1324 } \
1325} while(0)
1326
1327#define btrfs_clear_pending_and_info(info, opt, fmt, args...) \
1328do { \
1329 if (btrfs_raw_test_opt((info)->mount_opt, opt)) { \
1330 btrfs_info((info), fmt, ##args); \
1331 btrfs_set_pending((info), CLEAR_##opt); \
1332 btrfs_clear_pending((info), SET_##opt); \
1333 } \
1334} while(0)
1335
1336/*
1337 * Inode flags
1338 */
1339#define BTRFS_INODE_NODATASUM (1 << 0)
1340#define BTRFS_INODE_NODATACOW (1 << 1)
1341#define BTRFS_INODE_READONLY (1 << 2)
1342#define BTRFS_INODE_NOCOMPRESS (1 << 3)
1343#define BTRFS_INODE_PREALLOC (1 << 4)
1344#define BTRFS_INODE_SYNC (1 << 5)
1345#define BTRFS_INODE_IMMUTABLE (1 << 6)
1346#define BTRFS_INODE_APPEND (1 << 7)
1347#define BTRFS_INODE_NODUMP (1 << 8)
1348#define BTRFS_INODE_NOATIME (1 << 9)
1349#define BTRFS_INODE_DIRSYNC (1 << 10)
1350#define BTRFS_INODE_COMPRESS (1 << 11)
1351
1352#define BTRFS_INODE_ROOT_ITEM_INIT (1 << 31)
1353
1354#define BTRFS_INODE_FLAG_MASK \
1355 (BTRFS_INODE_NODATASUM | \
1356 BTRFS_INODE_NODATACOW | \
1357 BTRFS_INODE_READONLY | \
1358 BTRFS_INODE_NOCOMPRESS | \
1359 BTRFS_INODE_PREALLOC | \
1360 BTRFS_INODE_SYNC | \
1361 BTRFS_INODE_IMMUTABLE | \
1362 BTRFS_INODE_APPEND | \
1363 BTRFS_INODE_NODUMP | \
1364 BTRFS_INODE_NOATIME | \
1365 BTRFS_INODE_DIRSYNC | \
1366 BTRFS_INODE_COMPRESS | \
1367 BTRFS_INODE_ROOT_ITEM_INIT)
1368
1369struct btrfs_map_token {
1370 struct extent_buffer *eb;
1371 char *kaddr;
1372 unsigned long offset;
1373};
1374
1375#define BTRFS_BYTES_TO_BLKS(fs_info, bytes) \
1376 ((bytes) >> (fs_info)->sb->s_blocksize_bits)
1377
1378static inline void btrfs_init_map_token(struct btrfs_map_token *token,
1379 struct extent_buffer *eb)
1380{
1381 token->eb = eb;
1382 token->kaddr = page_address(eb->pages[0]);
1383 token->offset = 0;
1384}
1385
1386/* some macros to generate set/get functions for the struct fields. This
1387 * assumes there is a lefoo_to_cpu for every type, so lets make a simple
1388 * one for u8:
1389 */
1390#define le8_to_cpu(v) (v)
1391#define cpu_to_le8(v) (v)
1392#define __le8 u8
1393
1394#define read_eb_member(eb, ptr, type, member, result) (\
1395 read_extent_buffer(eb, (char *)(result), \
1396 ((unsigned long)(ptr)) + \
1397 offsetof(type, member), \
1398 sizeof(((type *)0)->member)))
1399
1400#define write_eb_member(eb, ptr, type, member, result) (\
1401 write_extent_buffer(eb, (char *)(result), \
1402 ((unsigned long)(ptr)) + \
1403 offsetof(type, member), \
1404 sizeof(((type *)0)->member)))
1405
1406#define DECLARE_BTRFS_SETGET_BITS(bits) \
1407u##bits btrfs_get_token_##bits(struct btrfs_map_token *token, \
1408 const void *ptr, unsigned long off); \
1409void btrfs_set_token_##bits(struct btrfs_map_token *token, \
1410 const void *ptr, unsigned long off, \
1411 u##bits val); \
1412u##bits btrfs_get_##bits(const struct extent_buffer *eb, \
1413 const void *ptr, unsigned long off); \
1414void btrfs_set_##bits(const struct extent_buffer *eb, void *ptr, \
1415 unsigned long off, u##bits val);
1416
1417DECLARE_BTRFS_SETGET_BITS(8)
1418DECLARE_BTRFS_SETGET_BITS(16)
1419DECLARE_BTRFS_SETGET_BITS(32)
1420DECLARE_BTRFS_SETGET_BITS(64)
1421
1422#define BTRFS_SETGET_FUNCS(name, type, member, bits) \
1423static inline u##bits btrfs_##name(const struct extent_buffer *eb, \
1424 const type *s) \
1425{ \
1426 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1427 return btrfs_get_##bits(eb, s, offsetof(type, member)); \
1428} \
1429static inline void btrfs_set_##name(const struct extent_buffer *eb, type *s, \
1430 u##bits val) \
1431{ \
1432 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1433 btrfs_set_##bits(eb, s, offsetof(type, member), val); \
1434} \
1435static inline u##bits btrfs_token_##name(struct btrfs_map_token *token, \
1436 const type *s) \
1437{ \
1438 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1439 return btrfs_get_token_##bits(token, s, offsetof(type, member));\
1440} \
1441static inline void btrfs_set_token_##name(struct btrfs_map_token *token,\
1442 type *s, u##bits val) \
1443{ \
1444 BUILD_BUG_ON(sizeof(u##bits) != sizeof(((type *)0))->member); \
1445 btrfs_set_token_##bits(token, s, offsetof(type, member), val); \
1446}
1447
1448#define BTRFS_SETGET_HEADER_FUNCS(name, type, member, bits) \
1449static inline u##bits btrfs_##name(const struct extent_buffer *eb) \
1450{ \
1451 const type *p = page_address(eb->pages[0]); \
1452 u##bits res = le##bits##_to_cpu(p->member); \
1453 return res; \
1454} \
1455static inline void btrfs_set_##name(const struct extent_buffer *eb, \
1456 u##bits val) \
1457{ \
1458 type *p = page_address(eb->pages[0]); \
1459 p->member = cpu_to_le##bits(val); \
1460}
1461
1462#define BTRFS_SETGET_STACK_FUNCS(name, type, member, bits) \
1463static inline u##bits btrfs_##name(const type *s) \
1464{ \
1465 return le##bits##_to_cpu(s->member); \
1466} \
1467static inline void btrfs_set_##name(type *s, u##bits val) \
1468{ \
1469 s->member = cpu_to_le##bits(val); \
1470}
1471
1472
1473static inline u64 btrfs_device_total_bytes(const struct extent_buffer *eb,
1474 struct btrfs_dev_item *s)
1475{
1476 BUILD_BUG_ON(sizeof(u64) !=
1477 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1478 return btrfs_get_64(eb, s, offsetof(struct btrfs_dev_item,
1479 total_bytes));
1480}
1481static inline void btrfs_set_device_total_bytes(const struct extent_buffer *eb,
1482 struct btrfs_dev_item *s,
1483 u64 val)
1484{
1485 BUILD_BUG_ON(sizeof(u64) !=
1486 sizeof(((struct btrfs_dev_item *)0))->total_bytes);
1487 WARN_ON(!IS_ALIGNED(val, eb->fs_info->sectorsize));
1488 btrfs_set_64(eb, s, offsetof(struct btrfs_dev_item, total_bytes), val);
1489}
1490
1491
1492BTRFS_SETGET_FUNCS(device_type, struct btrfs_dev_item, type, 64);
1493BTRFS_SETGET_FUNCS(device_bytes_used, struct btrfs_dev_item, bytes_used, 64);
1494BTRFS_SETGET_FUNCS(device_io_align, struct btrfs_dev_item, io_align, 32);
1495BTRFS_SETGET_FUNCS(device_io_width, struct btrfs_dev_item, io_width, 32);
1496BTRFS_SETGET_FUNCS(device_start_offset, struct btrfs_dev_item,
1497 start_offset, 64);
1498BTRFS_SETGET_FUNCS(device_sector_size, struct btrfs_dev_item, sector_size, 32);
1499BTRFS_SETGET_FUNCS(device_id, struct btrfs_dev_item, devid, 64);
1500BTRFS_SETGET_FUNCS(device_group, struct btrfs_dev_item, dev_group, 32);
1501BTRFS_SETGET_FUNCS(device_seek_speed, struct btrfs_dev_item, seek_speed, 8);
1502BTRFS_SETGET_FUNCS(device_bandwidth, struct btrfs_dev_item, bandwidth, 8);
1503BTRFS_SETGET_FUNCS(device_generation, struct btrfs_dev_item, generation, 64);
1504
1505BTRFS_SETGET_STACK_FUNCS(stack_device_type, struct btrfs_dev_item, type, 64);
1506BTRFS_SETGET_STACK_FUNCS(stack_device_total_bytes, struct btrfs_dev_item,
1507 total_bytes, 64);
1508BTRFS_SETGET_STACK_FUNCS(stack_device_bytes_used, struct btrfs_dev_item,
1509 bytes_used, 64);
1510BTRFS_SETGET_STACK_FUNCS(stack_device_io_align, struct btrfs_dev_item,
1511 io_align, 32);
1512BTRFS_SETGET_STACK_FUNCS(stack_device_io_width, struct btrfs_dev_item,
1513 io_width, 32);
1514BTRFS_SETGET_STACK_FUNCS(stack_device_sector_size, struct btrfs_dev_item,
1515 sector_size, 32);
1516BTRFS_SETGET_STACK_FUNCS(stack_device_id, struct btrfs_dev_item, devid, 64);
1517BTRFS_SETGET_STACK_FUNCS(stack_device_group, struct btrfs_dev_item,
1518 dev_group, 32);
1519BTRFS_SETGET_STACK_FUNCS(stack_device_seek_speed, struct btrfs_dev_item,
1520 seek_speed, 8);
1521BTRFS_SETGET_STACK_FUNCS(stack_device_bandwidth, struct btrfs_dev_item,
1522 bandwidth, 8);
1523BTRFS_SETGET_STACK_FUNCS(stack_device_generation, struct btrfs_dev_item,
1524 generation, 64);
1525
1526static inline unsigned long btrfs_device_uuid(struct btrfs_dev_item *d)
1527{
1528 return (unsigned long)d + offsetof(struct btrfs_dev_item, uuid);
1529}
1530
1531static inline unsigned long btrfs_device_fsid(struct btrfs_dev_item *d)
1532{
1533 return (unsigned long)d + offsetof(struct btrfs_dev_item, fsid);
1534}
1535
1536BTRFS_SETGET_FUNCS(chunk_length, struct btrfs_chunk, length, 64);
1537BTRFS_SETGET_FUNCS(chunk_owner, struct btrfs_chunk, owner, 64);
1538BTRFS_SETGET_FUNCS(chunk_stripe_len, struct btrfs_chunk, stripe_len, 64);
1539BTRFS_SETGET_FUNCS(chunk_io_align, struct btrfs_chunk, io_align, 32);
1540BTRFS_SETGET_FUNCS(chunk_io_width, struct btrfs_chunk, io_width, 32);
1541BTRFS_SETGET_FUNCS(chunk_sector_size, struct btrfs_chunk, sector_size, 32);
1542BTRFS_SETGET_FUNCS(chunk_type, struct btrfs_chunk, type, 64);
1543BTRFS_SETGET_FUNCS(chunk_num_stripes, struct btrfs_chunk, num_stripes, 16);
1544BTRFS_SETGET_FUNCS(chunk_sub_stripes, struct btrfs_chunk, sub_stripes, 16);
1545BTRFS_SETGET_FUNCS(stripe_devid, struct btrfs_stripe, devid, 64);
1546BTRFS_SETGET_FUNCS(stripe_offset, struct btrfs_stripe, offset, 64);
1547
1548static inline char *btrfs_stripe_dev_uuid(struct btrfs_stripe *s)
1549{
1550 return (char *)s + offsetof(struct btrfs_stripe, dev_uuid);
1551}
1552
1553BTRFS_SETGET_STACK_FUNCS(stack_chunk_length, struct btrfs_chunk, length, 64);
1554BTRFS_SETGET_STACK_FUNCS(stack_chunk_owner, struct btrfs_chunk, owner, 64);
1555BTRFS_SETGET_STACK_FUNCS(stack_chunk_stripe_len, struct btrfs_chunk,
1556 stripe_len, 64);
1557BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_align, struct btrfs_chunk,
1558 io_align, 32);
1559BTRFS_SETGET_STACK_FUNCS(stack_chunk_io_width, struct btrfs_chunk,
1560 io_width, 32);
1561BTRFS_SETGET_STACK_FUNCS(stack_chunk_sector_size, struct btrfs_chunk,
1562 sector_size, 32);
1563BTRFS_SETGET_STACK_FUNCS(stack_chunk_type, struct btrfs_chunk, type, 64);
1564BTRFS_SETGET_STACK_FUNCS(stack_chunk_num_stripes, struct btrfs_chunk,
1565 num_stripes, 16);
1566BTRFS_SETGET_STACK_FUNCS(stack_chunk_sub_stripes, struct btrfs_chunk,
1567 sub_stripes, 16);
1568BTRFS_SETGET_STACK_FUNCS(stack_stripe_devid, struct btrfs_stripe, devid, 64);
1569BTRFS_SETGET_STACK_FUNCS(stack_stripe_offset, struct btrfs_stripe, offset, 64);
1570
1571static inline struct btrfs_stripe *btrfs_stripe_nr(struct btrfs_chunk *c,
1572 int nr)
1573{
1574 unsigned long offset = (unsigned long)c;
1575 offset += offsetof(struct btrfs_chunk, stripe);
1576 offset += nr * sizeof(struct btrfs_stripe);
1577 return (struct btrfs_stripe *)offset;
1578}
1579
1580static inline char *btrfs_stripe_dev_uuid_nr(struct btrfs_chunk *c, int nr)
1581{
1582 return btrfs_stripe_dev_uuid(btrfs_stripe_nr(c, nr));
1583}
1584
1585static inline u64 btrfs_stripe_offset_nr(const struct extent_buffer *eb,
1586 struct btrfs_chunk *c, int nr)
1587{
1588 return btrfs_stripe_offset(eb, btrfs_stripe_nr(c, nr));
1589}
1590
1591static inline u64 btrfs_stripe_devid_nr(const struct extent_buffer *eb,
1592 struct btrfs_chunk *c, int nr)
1593{
1594 return btrfs_stripe_devid(eb, btrfs_stripe_nr(c, nr));
1595}
1596
1597/* struct btrfs_block_group_item */
1598BTRFS_SETGET_STACK_FUNCS(stack_block_group_used, struct btrfs_block_group_item,
1599 used, 64);
1600BTRFS_SETGET_FUNCS(block_group_used, struct btrfs_block_group_item,
1601 used, 64);
1602BTRFS_SETGET_STACK_FUNCS(stack_block_group_chunk_objectid,
1603 struct btrfs_block_group_item, chunk_objectid, 64);
1604
1605BTRFS_SETGET_FUNCS(block_group_chunk_objectid,
1606 struct btrfs_block_group_item, chunk_objectid, 64);
1607BTRFS_SETGET_FUNCS(block_group_flags,
1608 struct btrfs_block_group_item, flags, 64);
1609BTRFS_SETGET_STACK_FUNCS(stack_block_group_flags,
1610 struct btrfs_block_group_item, flags, 64);
1611
1612/* struct btrfs_free_space_info */
1613BTRFS_SETGET_FUNCS(free_space_extent_count, struct btrfs_free_space_info,
1614 extent_count, 32);
1615BTRFS_SETGET_FUNCS(free_space_flags, struct btrfs_free_space_info, flags, 32);
1616
1617/* struct btrfs_inode_ref */
1618BTRFS_SETGET_FUNCS(inode_ref_name_len, struct btrfs_inode_ref, name_len, 16);
1619BTRFS_SETGET_FUNCS(inode_ref_index, struct btrfs_inode_ref, index, 64);
1620
1621/* struct btrfs_inode_extref */
1622BTRFS_SETGET_FUNCS(inode_extref_parent, struct btrfs_inode_extref,
1623 parent_objectid, 64);
1624BTRFS_SETGET_FUNCS(inode_extref_name_len, struct btrfs_inode_extref,
1625 name_len, 16);
1626BTRFS_SETGET_FUNCS(inode_extref_index, struct btrfs_inode_extref, index, 64);
1627
1628/* struct btrfs_inode_item */
1629BTRFS_SETGET_FUNCS(inode_generation, struct btrfs_inode_item, generation, 64);
1630BTRFS_SETGET_FUNCS(inode_sequence, struct btrfs_inode_item, sequence, 64);
1631BTRFS_SETGET_FUNCS(inode_transid, struct btrfs_inode_item, transid, 64);
1632BTRFS_SETGET_FUNCS(inode_size, struct btrfs_inode_item, size, 64);
1633BTRFS_SETGET_FUNCS(inode_nbytes, struct btrfs_inode_item, nbytes, 64);
1634BTRFS_SETGET_FUNCS(inode_block_group, struct btrfs_inode_item, block_group, 64);
1635BTRFS_SETGET_FUNCS(inode_nlink, struct btrfs_inode_item, nlink, 32);
1636BTRFS_SETGET_FUNCS(inode_uid, struct btrfs_inode_item, uid, 32);
1637BTRFS_SETGET_FUNCS(inode_gid, struct btrfs_inode_item, gid, 32);
1638BTRFS_SETGET_FUNCS(inode_mode, struct btrfs_inode_item, mode, 32);
1639BTRFS_SETGET_FUNCS(inode_rdev, struct btrfs_inode_item, rdev, 64);
1640BTRFS_SETGET_FUNCS(inode_flags, struct btrfs_inode_item, flags, 64);
1641BTRFS_SETGET_STACK_FUNCS(stack_inode_generation, struct btrfs_inode_item,
1642 generation, 64);
1643BTRFS_SETGET_STACK_FUNCS(stack_inode_sequence, struct btrfs_inode_item,
1644 sequence, 64);
1645BTRFS_SETGET_STACK_FUNCS(stack_inode_transid, struct btrfs_inode_item,
1646 transid, 64);
1647BTRFS_SETGET_STACK_FUNCS(stack_inode_size, struct btrfs_inode_item, size, 64);
1648BTRFS_SETGET_STACK_FUNCS(stack_inode_nbytes, struct btrfs_inode_item,
1649 nbytes, 64);
1650BTRFS_SETGET_STACK_FUNCS(stack_inode_block_group, struct btrfs_inode_item,
1651 block_group, 64);
1652BTRFS_SETGET_STACK_FUNCS(stack_inode_nlink, struct btrfs_inode_item, nlink, 32);
1653BTRFS_SETGET_STACK_FUNCS(stack_inode_uid, struct btrfs_inode_item, uid, 32);
1654BTRFS_SETGET_STACK_FUNCS(stack_inode_gid, struct btrfs_inode_item, gid, 32);
1655BTRFS_SETGET_STACK_FUNCS(stack_inode_mode, struct btrfs_inode_item, mode, 32);
1656BTRFS_SETGET_STACK_FUNCS(stack_inode_rdev, struct btrfs_inode_item, rdev, 64);
1657BTRFS_SETGET_STACK_FUNCS(stack_inode_flags, struct btrfs_inode_item, flags, 64);
1658BTRFS_SETGET_FUNCS(timespec_sec, struct btrfs_timespec, sec, 64);
1659BTRFS_SETGET_FUNCS(timespec_nsec, struct btrfs_timespec, nsec, 32);
1660BTRFS_SETGET_STACK_FUNCS(stack_timespec_sec, struct btrfs_timespec, sec, 64);
1661BTRFS_SETGET_STACK_FUNCS(stack_timespec_nsec, struct btrfs_timespec, nsec, 32);
1662
1663/* struct btrfs_dev_extent */
1664BTRFS_SETGET_FUNCS(dev_extent_chunk_tree, struct btrfs_dev_extent,
1665 chunk_tree, 64);
1666BTRFS_SETGET_FUNCS(dev_extent_chunk_objectid, struct btrfs_dev_extent,
1667 chunk_objectid, 64);
1668BTRFS_SETGET_FUNCS(dev_extent_chunk_offset, struct btrfs_dev_extent,
1669 chunk_offset, 64);
1670BTRFS_SETGET_FUNCS(dev_extent_length, struct btrfs_dev_extent, length, 64);
1671BTRFS_SETGET_FUNCS(extent_refs, struct btrfs_extent_item, refs, 64);
1672BTRFS_SETGET_FUNCS(extent_generation, struct btrfs_extent_item,
1673 generation, 64);
1674BTRFS_SETGET_FUNCS(extent_flags, struct btrfs_extent_item, flags, 64);
1675
1676BTRFS_SETGET_FUNCS(tree_block_level, struct btrfs_tree_block_info, level, 8);
1677
1678static inline void btrfs_tree_block_key(const struct extent_buffer *eb,
1679 struct btrfs_tree_block_info *item,
1680 struct btrfs_disk_key *key)
1681{
1682 read_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1683}
1684
1685static inline void btrfs_set_tree_block_key(const struct extent_buffer *eb,
1686 struct btrfs_tree_block_info *item,
1687 struct btrfs_disk_key *key)
1688{
1689 write_eb_member(eb, item, struct btrfs_tree_block_info, key, key);
1690}
1691
1692BTRFS_SETGET_FUNCS(extent_data_ref_root, struct btrfs_extent_data_ref,
1693 root, 64);
1694BTRFS_SETGET_FUNCS(extent_data_ref_objectid, struct btrfs_extent_data_ref,
1695 objectid, 64);
1696BTRFS_SETGET_FUNCS(extent_data_ref_offset, struct btrfs_extent_data_ref,
1697 offset, 64);
1698BTRFS_SETGET_FUNCS(extent_data_ref_count, struct btrfs_extent_data_ref,
1699 count, 32);
1700
1701BTRFS_SETGET_FUNCS(shared_data_ref_count, struct btrfs_shared_data_ref,
1702 count, 32);
1703
1704BTRFS_SETGET_FUNCS(extent_inline_ref_type, struct btrfs_extent_inline_ref,
1705 type, 8);
1706BTRFS_SETGET_FUNCS(extent_inline_ref_offset, struct btrfs_extent_inline_ref,
1707 offset, 64);
1708
1709static inline u32 btrfs_extent_inline_ref_size(int type)
1710{
1711 if (type == BTRFS_TREE_BLOCK_REF_KEY ||
1712 type == BTRFS_SHARED_BLOCK_REF_KEY)
1713 return sizeof(struct btrfs_extent_inline_ref);
1714 if (type == BTRFS_SHARED_DATA_REF_KEY)
1715 return sizeof(struct btrfs_shared_data_ref) +
1716 sizeof(struct btrfs_extent_inline_ref);
1717 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1718 return sizeof(struct btrfs_extent_data_ref) +
1719 offsetof(struct btrfs_extent_inline_ref, offset);
1720 return 0;
1721}
1722
1723/* struct btrfs_node */
1724BTRFS_SETGET_FUNCS(key_blockptr, struct btrfs_key_ptr, blockptr, 64);
1725BTRFS_SETGET_FUNCS(key_generation, struct btrfs_key_ptr, generation, 64);
1726BTRFS_SETGET_STACK_FUNCS(stack_key_blockptr, struct btrfs_key_ptr,
1727 blockptr, 64);
1728BTRFS_SETGET_STACK_FUNCS(stack_key_generation, struct btrfs_key_ptr,
1729 generation, 64);
1730
1731static inline u64 btrfs_node_blockptr(const struct extent_buffer *eb, int nr)
1732{
1733 unsigned long ptr;
1734 ptr = offsetof(struct btrfs_node, ptrs) +
1735 sizeof(struct btrfs_key_ptr) * nr;
1736 return btrfs_key_blockptr(eb, (struct btrfs_key_ptr *)ptr);
1737}
1738
1739static inline void btrfs_set_node_blockptr(const struct extent_buffer *eb,
1740 int nr, u64 val)
1741{
1742 unsigned long ptr;
1743 ptr = offsetof(struct btrfs_node, ptrs) +
1744 sizeof(struct btrfs_key_ptr) * nr;
1745 btrfs_set_key_blockptr(eb, (struct btrfs_key_ptr *)ptr, val);
1746}
1747
1748static inline u64 btrfs_node_ptr_generation(const struct extent_buffer *eb, int nr)
1749{
1750 unsigned long ptr;
1751 ptr = offsetof(struct btrfs_node, ptrs) +
1752 sizeof(struct btrfs_key_ptr) * nr;
1753 return btrfs_key_generation(eb, (struct btrfs_key_ptr *)ptr);
1754}
1755
1756static inline void btrfs_set_node_ptr_generation(const struct extent_buffer *eb,
1757 int nr, u64 val)
1758{
1759 unsigned long ptr;
1760 ptr = offsetof(struct btrfs_node, ptrs) +
1761 sizeof(struct btrfs_key_ptr) * nr;
1762 btrfs_set_key_generation(eb, (struct btrfs_key_ptr *)ptr, val);
1763}
1764
1765static inline unsigned long btrfs_node_key_ptr_offset(int nr)
1766{
1767 return offsetof(struct btrfs_node, ptrs) +
1768 sizeof(struct btrfs_key_ptr) * nr;
1769}
1770
1771void btrfs_node_key(const struct extent_buffer *eb,
1772 struct btrfs_disk_key *disk_key, int nr);
1773
1774static inline void btrfs_set_node_key(const struct extent_buffer *eb,
1775 struct btrfs_disk_key *disk_key, int nr)
1776{
1777 unsigned long ptr;
1778 ptr = btrfs_node_key_ptr_offset(nr);
1779 write_eb_member(eb, (struct btrfs_key_ptr *)ptr,
1780 struct btrfs_key_ptr, key, disk_key);
1781}
1782
1783/* struct btrfs_item */
1784BTRFS_SETGET_FUNCS(item_offset, struct btrfs_item, offset, 32);
1785BTRFS_SETGET_FUNCS(item_size, struct btrfs_item, size, 32);
1786BTRFS_SETGET_STACK_FUNCS(stack_item_offset, struct btrfs_item, offset, 32);
1787BTRFS_SETGET_STACK_FUNCS(stack_item_size, struct btrfs_item, size, 32);
1788
1789static inline unsigned long btrfs_item_nr_offset(int nr)
1790{
1791 return offsetof(struct btrfs_leaf, items) +
1792 sizeof(struct btrfs_item) * nr;
1793}
1794
1795static inline struct btrfs_item *btrfs_item_nr(int nr)
1796{
1797 return (struct btrfs_item *)btrfs_item_nr_offset(nr);
1798}
1799
1800static inline u32 btrfs_item_end(const struct extent_buffer *eb,
1801 struct btrfs_item *item)
1802{
1803 return btrfs_item_offset(eb, item) + btrfs_item_size(eb, item);
1804}
1805
1806static inline u32 btrfs_item_end_nr(const struct extent_buffer *eb, int nr)
1807{
1808 return btrfs_item_end(eb, btrfs_item_nr(nr));
1809}
1810
1811static inline u32 btrfs_item_offset_nr(const struct extent_buffer *eb, int nr)
1812{
1813 return btrfs_item_offset(eb, btrfs_item_nr(nr));
1814}
1815
1816static inline u32 btrfs_item_size_nr(const struct extent_buffer *eb, int nr)
1817{
1818 return btrfs_item_size(eb, btrfs_item_nr(nr));
1819}
1820
1821static inline void btrfs_item_key(const struct extent_buffer *eb,
1822 struct btrfs_disk_key *disk_key, int nr)
1823{
1824 struct btrfs_item *item = btrfs_item_nr(nr);
1825 read_eb_member(eb, item, struct btrfs_item, key, disk_key);
1826}
1827
1828static inline void btrfs_set_item_key(struct extent_buffer *eb,
1829 struct btrfs_disk_key *disk_key, int nr)
1830{
1831 struct btrfs_item *item = btrfs_item_nr(nr);
1832 write_eb_member(eb, item, struct btrfs_item, key, disk_key);
1833}
1834
1835BTRFS_SETGET_FUNCS(dir_log_end, struct btrfs_dir_log_item, end, 64);
1836
1837/*
1838 * struct btrfs_root_ref
1839 */
1840BTRFS_SETGET_FUNCS(root_ref_dirid, struct btrfs_root_ref, dirid, 64);
1841BTRFS_SETGET_FUNCS(root_ref_sequence, struct btrfs_root_ref, sequence, 64);
1842BTRFS_SETGET_FUNCS(root_ref_name_len, struct btrfs_root_ref, name_len, 16);
1843
1844/* struct btrfs_dir_item */
1845BTRFS_SETGET_FUNCS(dir_data_len, struct btrfs_dir_item, data_len, 16);
1846BTRFS_SETGET_FUNCS(dir_type, struct btrfs_dir_item, type, 8);
1847BTRFS_SETGET_FUNCS(dir_name_len, struct btrfs_dir_item, name_len, 16);
1848BTRFS_SETGET_FUNCS(dir_transid, struct btrfs_dir_item, transid, 64);
1849BTRFS_SETGET_STACK_FUNCS(stack_dir_type, struct btrfs_dir_item, type, 8);
1850BTRFS_SETGET_STACK_FUNCS(stack_dir_data_len, struct btrfs_dir_item,
1851 data_len, 16);
1852BTRFS_SETGET_STACK_FUNCS(stack_dir_name_len, struct btrfs_dir_item,
1853 name_len, 16);
1854BTRFS_SETGET_STACK_FUNCS(stack_dir_transid, struct btrfs_dir_item,
1855 transid, 64);
1856
1857static inline void btrfs_dir_item_key(const struct extent_buffer *eb,
1858 const struct btrfs_dir_item *item,
1859 struct btrfs_disk_key *key)
1860{
1861 read_eb_member(eb, item, struct btrfs_dir_item, location, key);
1862}
1863
1864static inline void btrfs_set_dir_item_key(struct extent_buffer *eb,
1865 struct btrfs_dir_item *item,
1866 const struct btrfs_disk_key *key)
1867{
1868 write_eb_member(eb, item, struct btrfs_dir_item, location, key);
1869}
1870
1871BTRFS_SETGET_FUNCS(free_space_entries, struct btrfs_free_space_header,
1872 num_entries, 64);
1873BTRFS_SETGET_FUNCS(free_space_bitmaps, struct btrfs_free_space_header,
1874 num_bitmaps, 64);
1875BTRFS_SETGET_FUNCS(free_space_generation, struct btrfs_free_space_header,
1876 generation, 64);
1877
1878static inline void btrfs_free_space_key(const struct extent_buffer *eb,
1879 const struct btrfs_free_space_header *h,
1880 struct btrfs_disk_key *key)
1881{
1882 read_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1883}
1884
1885static inline void btrfs_set_free_space_key(struct extent_buffer *eb,
1886 struct btrfs_free_space_header *h,
1887 const struct btrfs_disk_key *key)
1888{
1889 write_eb_member(eb, h, struct btrfs_free_space_header, location, key);
1890}
1891
1892/* struct btrfs_disk_key */
1893BTRFS_SETGET_STACK_FUNCS(disk_key_objectid, struct btrfs_disk_key,
1894 objectid, 64);
1895BTRFS_SETGET_STACK_FUNCS(disk_key_offset, struct btrfs_disk_key, offset, 64);
1896BTRFS_SETGET_STACK_FUNCS(disk_key_type, struct btrfs_disk_key, type, 8);
1897
1898#ifdef __LITTLE_ENDIAN
1899
1900/*
1901 * Optimized helpers for little-endian architectures where CPU and on-disk
1902 * structures have the same endianness and we can skip conversions.
1903 */
1904
1905static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu_key,
1906 const struct btrfs_disk_key *disk_key)
1907{
1908 memcpy(cpu_key, disk_key, sizeof(struct btrfs_key));
1909}
1910
1911static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk_key,
1912 const struct btrfs_key *cpu_key)
1913{
1914 memcpy(disk_key, cpu_key, sizeof(struct btrfs_key));
1915}
1916
1917static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
1918 struct btrfs_key *cpu_key, int nr)
1919{
1920 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
1921
1922 btrfs_node_key(eb, disk_key, nr);
1923}
1924
1925static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
1926 struct btrfs_key *cpu_key, int nr)
1927{
1928 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
1929
1930 btrfs_item_key(eb, disk_key, nr);
1931}
1932
1933static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
1934 const struct btrfs_dir_item *item,
1935 struct btrfs_key *cpu_key)
1936{
1937 struct btrfs_disk_key *disk_key = (struct btrfs_disk_key *)cpu_key;
1938
1939 btrfs_dir_item_key(eb, item, disk_key);
1940}
1941
1942#else
1943
1944static inline void btrfs_disk_key_to_cpu(struct btrfs_key *cpu,
1945 const struct btrfs_disk_key *disk)
1946{
1947 cpu->offset = le64_to_cpu(disk->offset);
1948 cpu->type = disk->type;
1949 cpu->objectid = le64_to_cpu(disk->objectid);
1950}
1951
1952static inline void btrfs_cpu_key_to_disk(struct btrfs_disk_key *disk,
1953 const struct btrfs_key *cpu)
1954{
1955 disk->offset = cpu_to_le64(cpu->offset);
1956 disk->type = cpu->type;
1957 disk->objectid = cpu_to_le64(cpu->objectid);
1958}
1959
1960static inline void btrfs_node_key_to_cpu(const struct extent_buffer *eb,
1961 struct btrfs_key *key, int nr)
1962{
1963 struct btrfs_disk_key disk_key;
1964 btrfs_node_key(eb, &disk_key, nr);
1965 btrfs_disk_key_to_cpu(key, &disk_key);
1966}
1967
1968static inline void btrfs_item_key_to_cpu(const struct extent_buffer *eb,
1969 struct btrfs_key *key, int nr)
1970{
1971 struct btrfs_disk_key disk_key;
1972 btrfs_item_key(eb, &disk_key, nr);
1973 btrfs_disk_key_to_cpu(key, &disk_key);
1974}
1975
1976static inline void btrfs_dir_item_key_to_cpu(const struct extent_buffer *eb,
1977 const struct btrfs_dir_item *item,
1978 struct btrfs_key *key)
1979{
1980 struct btrfs_disk_key disk_key;
1981 btrfs_dir_item_key(eb, item, &disk_key);
1982 btrfs_disk_key_to_cpu(key, &disk_key);
1983}
1984
1985#endif
1986
1987/* struct btrfs_header */
1988BTRFS_SETGET_HEADER_FUNCS(header_bytenr, struct btrfs_header, bytenr, 64);
1989BTRFS_SETGET_HEADER_FUNCS(header_generation, struct btrfs_header,
1990 generation, 64);
1991BTRFS_SETGET_HEADER_FUNCS(header_owner, struct btrfs_header, owner, 64);
1992BTRFS_SETGET_HEADER_FUNCS(header_nritems, struct btrfs_header, nritems, 32);
1993BTRFS_SETGET_HEADER_FUNCS(header_flags, struct btrfs_header, flags, 64);
1994BTRFS_SETGET_HEADER_FUNCS(header_level, struct btrfs_header, level, 8);
1995BTRFS_SETGET_STACK_FUNCS(stack_header_generation, struct btrfs_header,
1996 generation, 64);
1997BTRFS_SETGET_STACK_FUNCS(stack_header_owner, struct btrfs_header, owner, 64);
1998BTRFS_SETGET_STACK_FUNCS(stack_header_nritems, struct btrfs_header,
1999 nritems, 32);
2000BTRFS_SETGET_STACK_FUNCS(stack_header_bytenr, struct btrfs_header, bytenr, 64);
2001
2002static inline int btrfs_header_flag(const struct extent_buffer *eb, u64 flag)
2003{
2004 return (btrfs_header_flags(eb) & flag) == flag;
2005}
2006
2007static inline void btrfs_set_header_flag(struct extent_buffer *eb, u64 flag)
2008{
2009 u64 flags = btrfs_header_flags(eb);
2010 btrfs_set_header_flags(eb, flags | flag);
2011}
2012
2013static inline void btrfs_clear_header_flag(struct extent_buffer *eb, u64 flag)
2014{
2015 u64 flags = btrfs_header_flags(eb);
2016 btrfs_set_header_flags(eb, flags & ~flag);
2017}
2018
2019static inline int btrfs_header_backref_rev(const struct extent_buffer *eb)
2020{
2021 u64 flags = btrfs_header_flags(eb);
2022 return flags >> BTRFS_BACKREF_REV_SHIFT;
2023}
2024
2025static inline void btrfs_set_header_backref_rev(struct extent_buffer *eb,
2026 int rev)
2027{
2028 u64 flags = btrfs_header_flags(eb);
2029 flags &= ~BTRFS_BACKREF_REV_MASK;
2030 flags |= (u64)rev << BTRFS_BACKREF_REV_SHIFT;
2031 btrfs_set_header_flags(eb, flags);
2032}
2033
2034static inline int btrfs_is_leaf(const struct extent_buffer *eb)
2035{
2036 return btrfs_header_level(eb) == 0;
2037}
2038
2039/* struct btrfs_root_item */
2040BTRFS_SETGET_FUNCS(disk_root_generation, struct btrfs_root_item,
2041 generation, 64);
2042BTRFS_SETGET_FUNCS(disk_root_refs, struct btrfs_root_item, refs, 32);
2043BTRFS_SETGET_FUNCS(disk_root_bytenr, struct btrfs_root_item, bytenr, 64);
2044BTRFS_SETGET_FUNCS(disk_root_level, struct btrfs_root_item, level, 8);
2045
2046BTRFS_SETGET_STACK_FUNCS(root_generation, struct btrfs_root_item,
2047 generation, 64);
2048BTRFS_SETGET_STACK_FUNCS(root_bytenr, struct btrfs_root_item, bytenr, 64);
2049BTRFS_SETGET_STACK_FUNCS(root_level, struct btrfs_root_item, level, 8);
2050BTRFS_SETGET_STACK_FUNCS(root_dirid, struct btrfs_root_item, root_dirid, 64);
2051BTRFS_SETGET_STACK_FUNCS(root_refs, struct btrfs_root_item, refs, 32);
2052BTRFS_SETGET_STACK_FUNCS(root_flags, struct btrfs_root_item, flags, 64);
2053BTRFS_SETGET_STACK_FUNCS(root_used, struct btrfs_root_item, bytes_used, 64);
2054BTRFS_SETGET_STACK_FUNCS(root_limit, struct btrfs_root_item, byte_limit, 64);
2055BTRFS_SETGET_STACK_FUNCS(root_last_snapshot, struct btrfs_root_item,
2056 last_snapshot, 64);
2057BTRFS_SETGET_STACK_FUNCS(root_generation_v2, struct btrfs_root_item,
2058 generation_v2, 64);
2059BTRFS_SETGET_STACK_FUNCS(root_ctransid, struct btrfs_root_item,
2060 ctransid, 64);
2061BTRFS_SETGET_STACK_FUNCS(root_otransid, struct btrfs_root_item,
2062 otransid, 64);
2063BTRFS_SETGET_STACK_FUNCS(root_stransid, struct btrfs_root_item,
2064 stransid, 64);
2065BTRFS_SETGET_STACK_FUNCS(root_rtransid, struct btrfs_root_item,
2066 rtransid, 64);
2067
2068static inline bool btrfs_root_readonly(const struct btrfs_root *root)
2069{
2070 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_RDONLY)) != 0;
2071}
2072
2073static inline bool btrfs_root_dead(const struct btrfs_root *root)
2074{
2075 return (root->root_item.flags & cpu_to_le64(BTRFS_ROOT_SUBVOL_DEAD)) != 0;
2076}
2077
2078/* struct btrfs_root_backup */
2079BTRFS_SETGET_STACK_FUNCS(backup_tree_root, struct btrfs_root_backup,
2080 tree_root, 64);
2081BTRFS_SETGET_STACK_FUNCS(backup_tree_root_gen, struct btrfs_root_backup,
2082 tree_root_gen, 64);
2083BTRFS_SETGET_STACK_FUNCS(backup_tree_root_level, struct btrfs_root_backup,
2084 tree_root_level, 8);
2085
2086BTRFS_SETGET_STACK_FUNCS(backup_chunk_root, struct btrfs_root_backup,
2087 chunk_root, 64);
2088BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_gen, struct btrfs_root_backup,
2089 chunk_root_gen, 64);
2090BTRFS_SETGET_STACK_FUNCS(backup_chunk_root_level, struct btrfs_root_backup,
2091 chunk_root_level, 8);
2092
2093BTRFS_SETGET_STACK_FUNCS(backup_extent_root, struct btrfs_root_backup,
2094 extent_root, 64);
2095BTRFS_SETGET_STACK_FUNCS(backup_extent_root_gen, struct btrfs_root_backup,
2096 extent_root_gen, 64);
2097BTRFS_SETGET_STACK_FUNCS(backup_extent_root_level, struct btrfs_root_backup,
2098 extent_root_level, 8);
2099
2100BTRFS_SETGET_STACK_FUNCS(backup_fs_root, struct btrfs_root_backup,
2101 fs_root, 64);
2102BTRFS_SETGET_STACK_FUNCS(backup_fs_root_gen, struct btrfs_root_backup,
2103 fs_root_gen, 64);
2104BTRFS_SETGET_STACK_FUNCS(backup_fs_root_level, struct btrfs_root_backup,
2105 fs_root_level, 8);
2106
2107BTRFS_SETGET_STACK_FUNCS(backup_dev_root, struct btrfs_root_backup,
2108 dev_root, 64);
2109BTRFS_SETGET_STACK_FUNCS(backup_dev_root_gen, struct btrfs_root_backup,
2110 dev_root_gen, 64);
2111BTRFS_SETGET_STACK_FUNCS(backup_dev_root_level, struct btrfs_root_backup,
2112 dev_root_level, 8);
2113
2114BTRFS_SETGET_STACK_FUNCS(backup_csum_root, struct btrfs_root_backup,
2115 csum_root, 64);
2116BTRFS_SETGET_STACK_FUNCS(backup_csum_root_gen, struct btrfs_root_backup,
2117 csum_root_gen, 64);
2118BTRFS_SETGET_STACK_FUNCS(backup_csum_root_level, struct btrfs_root_backup,
2119 csum_root_level, 8);
2120BTRFS_SETGET_STACK_FUNCS(backup_total_bytes, struct btrfs_root_backup,
2121 total_bytes, 64);
2122BTRFS_SETGET_STACK_FUNCS(backup_bytes_used, struct btrfs_root_backup,
2123 bytes_used, 64);
2124BTRFS_SETGET_STACK_FUNCS(backup_num_devices, struct btrfs_root_backup,
2125 num_devices, 64);
2126
2127/* struct btrfs_balance_item */
2128BTRFS_SETGET_FUNCS(balance_flags, struct btrfs_balance_item, flags, 64);
2129
2130static inline void btrfs_balance_data(const struct extent_buffer *eb,
2131 const struct btrfs_balance_item *bi,
2132 struct btrfs_disk_balance_args *ba)
2133{
2134 read_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2135}
2136
2137static inline void btrfs_set_balance_data(struct extent_buffer *eb,
2138 struct btrfs_balance_item *bi,
2139 const struct btrfs_disk_balance_args *ba)
2140{
2141 write_eb_member(eb, bi, struct btrfs_balance_item, data, ba);
2142}
2143
2144static inline void btrfs_balance_meta(const struct extent_buffer *eb,
2145 const struct btrfs_balance_item *bi,
2146 struct btrfs_disk_balance_args *ba)
2147{
2148 read_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2149}
2150
2151static inline void btrfs_set_balance_meta(struct extent_buffer *eb,
2152 struct btrfs_balance_item *bi,
2153 const struct btrfs_disk_balance_args *ba)
2154{
2155 write_eb_member(eb, bi, struct btrfs_balance_item, meta, ba);
2156}
2157
2158static inline void btrfs_balance_sys(const struct extent_buffer *eb,
2159 const struct btrfs_balance_item *bi,
2160 struct btrfs_disk_balance_args *ba)
2161{
2162 read_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2163}
2164
2165static inline void btrfs_set_balance_sys(struct extent_buffer *eb,
2166 struct btrfs_balance_item *bi,
2167 const struct btrfs_disk_balance_args *ba)
2168{
2169 write_eb_member(eb, bi, struct btrfs_balance_item, sys, ba);
2170}
2171
2172static inline void
2173btrfs_disk_balance_args_to_cpu(struct btrfs_balance_args *cpu,
2174 const struct btrfs_disk_balance_args *disk)
2175{
2176 memset(cpu, 0, sizeof(*cpu));
2177
2178 cpu->profiles = le64_to_cpu(disk->profiles);
2179 cpu->usage = le64_to_cpu(disk->usage);
2180 cpu->devid = le64_to_cpu(disk->devid);
2181 cpu->pstart = le64_to_cpu(disk->pstart);
2182 cpu->pend = le64_to_cpu(disk->pend);
2183 cpu->vstart = le64_to_cpu(disk->vstart);
2184 cpu->vend = le64_to_cpu(disk->vend);
2185 cpu->target = le64_to_cpu(disk->target);
2186 cpu->flags = le64_to_cpu(disk->flags);
2187 cpu->limit = le64_to_cpu(disk->limit);
2188 cpu->stripes_min = le32_to_cpu(disk->stripes_min);
2189 cpu->stripes_max = le32_to_cpu(disk->stripes_max);
2190}
2191
2192static inline void
2193btrfs_cpu_balance_args_to_disk(struct btrfs_disk_balance_args *disk,
2194 const struct btrfs_balance_args *cpu)
2195{
2196 memset(disk, 0, sizeof(*disk));
2197
2198 disk->profiles = cpu_to_le64(cpu->profiles);
2199 disk->usage = cpu_to_le64(cpu->usage);
2200 disk->devid = cpu_to_le64(cpu->devid);
2201 disk->pstart = cpu_to_le64(cpu->pstart);
2202 disk->pend = cpu_to_le64(cpu->pend);
2203 disk->vstart = cpu_to_le64(cpu->vstart);
2204 disk->vend = cpu_to_le64(cpu->vend);
2205 disk->target = cpu_to_le64(cpu->target);
2206 disk->flags = cpu_to_le64(cpu->flags);
2207 disk->limit = cpu_to_le64(cpu->limit);
2208 disk->stripes_min = cpu_to_le32(cpu->stripes_min);
2209 disk->stripes_max = cpu_to_le32(cpu->stripes_max);
2210}
2211
2212/* struct btrfs_super_block */
2213BTRFS_SETGET_STACK_FUNCS(super_bytenr, struct btrfs_super_block, bytenr, 64);
2214BTRFS_SETGET_STACK_FUNCS(super_flags, struct btrfs_super_block, flags, 64);
2215BTRFS_SETGET_STACK_FUNCS(super_generation, struct btrfs_super_block,
2216 generation, 64);
2217BTRFS_SETGET_STACK_FUNCS(super_root, struct btrfs_super_block, root, 64);
2218BTRFS_SETGET_STACK_FUNCS(super_sys_array_size,
2219 struct btrfs_super_block, sys_chunk_array_size, 32);
2220BTRFS_SETGET_STACK_FUNCS(super_chunk_root_generation,
2221 struct btrfs_super_block, chunk_root_generation, 64);
2222BTRFS_SETGET_STACK_FUNCS(super_root_level, struct btrfs_super_block,
2223 root_level, 8);
2224BTRFS_SETGET_STACK_FUNCS(super_chunk_root, struct btrfs_super_block,
2225 chunk_root, 64);
2226BTRFS_SETGET_STACK_FUNCS(super_chunk_root_level, struct btrfs_super_block,
2227 chunk_root_level, 8);
2228BTRFS_SETGET_STACK_FUNCS(super_log_root, struct btrfs_super_block,
2229 log_root, 64);
2230BTRFS_SETGET_STACK_FUNCS(super_log_root_transid, struct btrfs_super_block,
2231 log_root_transid, 64);
2232BTRFS_SETGET_STACK_FUNCS(super_log_root_level, struct btrfs_super_block,
2233 log_root_level, 8);
2234BTRFS_SETGET_STACK_FUNCS(super_total_bytes, struct btrfs_super_block,
2235 total_bytes, 64);
2236BTRFS_SETGET_STACK_FUNCS(super_bytes_used, struct btrfs_super_block,
2237 bytes_used, 64);
2238BTRFS_SETGET_STACK_FUNCS(super_sectorsize, struct btrfs_super_block,
2239 sectorsize, 32);
2240BTRFS_SETGET_STACK_FUNCS(super_nodesize, struct btrfs_super_block,
2241 nodesize, 32);
2242BTRFS_SETGET_STACK_FUNCS(super_stripesize, struct btrfs_super_block,
2243 stripesize, 32);
2244BTRFS_SETGET_STACK_FUNCS(super_root_dir, struct btrfs_super_block,
2245 root_dir_objectid, 64);
2246BTRFS_SETGET_STACK_FUNCS(super_num_devices, struct btrfs_super_block,
2247 num_devices, 64);
2248BTRFS_SETGET_STACK_FUNCS(super_compat_flags, struct btrfs_super_block,
2249 compat_flags, 64);
2250BTRFS_SETGET_STACK_FUNCS(super_compat_ro_flags, struct btrfs_super_block,
2251 compat_ro_flags, 64);
2252BTRFS_SETGET_STACK_FUNCS(super_incompat_flags, struct btrfs_super_block,
2253 incompat_flags, 64);
2254BTRFS_SETGET_STACK_FUNCS(super_csum_type, struct btrfs_super_block,
2255 csum_type, 16);
2256BTRFS_SETGET_STACK_FUNCS(super_cache_generation, struct btrfs_super_block,
2257 cache_generation, 64);
2258BTRFS_SETGET_STACK_FUNCS(super_magic, struct btrfs_super_block, magic, 64);
2259BTRFS_SETGET_STACK_FUNCS(super_uuid_tree_generation, struct btrfs_super_block,
2260 uuid_tree_generation, 64);
2261
2262int btrfs_super_csum_size(const struct btrfs_super_block *s);
2263const char *btrfs_super_csum_name(u16 csum_type);
2264const char *btrfs_super_csum_driver(u16 csum_type);
2265size_t __attribute_const__ btrfs_get_num_csums(void);
2266
2267
2268/*
2269 * The leaf data grows from end-to-front in the node.
2270 * this returns the address of the start of the last item,
2271 * which is the stop of the leaf data stack
2272 */
2273static inline unsigned int leaf_data_end(const struct extent_buffer *leaf)
2274{
2275 u32 nr = btrfs_header_nritems(leaf);
2276
2277 if (nr == 0)
2278 return BTRFS_LEAF_DATA_SIZE(leaf->fs_info);
2279 return btrfs_item_offset_nr(leaf, nr - 1);
2280}
2281
2282/* struct btrfs_file_extent_item */
2283BTRFS_SETGET_STACK_FUNCS(stack_file_extent_type, struct btrfs_file_extent_item,
2284 type, 8);
2285BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_bytenr,
2286 struct btrfs_file_extent_item, disk_bytenr, 64);
2287BTRFS_SETGET_STACK_FUNCS(stack_file_extent_offset,
2288 struct btrfs_file_extent_item, offset, 64);
2289BTRFS_SETGET_STACK_FUNCS(stack_file_extent_generation,
2290 struct btrfs_file_extent_item, generation, 64);
2291BTRFS_SETGET_STACK_FUNCS(stack_file_extent_num_bytes,
2292 struct btrfs_file_extent_item, num_bytes, 64);
2293BTRFS_SETGET_STACK_FUNCS(stack_file_extent_ram_bytes,
2294 struct btrfs_file_extent_item, ram_bytes, 64);
2295BTRFS_SETGET_STACK_FUNCS(stack_file_extent_disk_num_bytes,
2296 struct btrfs_file_extent_item, disk_num_bytes, 64);
2297BTRFS_SETGET_STACK_FUNCS(stack_file_extent_compression,
2298 struct btrfs_file_extent_item, compression, 8);
2299
2300static inline unsigned long
2301btrfs_file_extent_inline_start(const struct btrfs_file_extent_item *e)
2302{
2303 return (unsigned long)e + BTRFS_FILE_EXTENT_INLINE_DATA_START;
2304}
2305
2306static inline u32 btrfs_file_extent_calc_inline_size(u32 datasize)
2307{
2308 return BTRFS_FILE_EXTENT_INLINE_DATA_START + datasize;
2309}
2310
2311BTRFS_SETGET_FUNCS(file_extent_type, struct btrfs_file_extent_item, type, 8);
2312BTRFS_SETGET_FUNCS(file_extent_disk_bytenr, struct btrfs_file_extent_item,
2313 disk_bytenr, 64);
2314BTRFS_SETGET_FUNCS(file_extent_generation, struct btrfs_file_extent_item,
2315 generation, 64);
2316BTRFS_SETGET_FUNCS(file_extent_disk_num_bytes, struct btrfs_file_extent_item,
2317 disk_num_bytes, 64);
2318BTRFS_SETGET_FUNCS(file_extent_offset, struct btrfs_file_extent_item,
2319 offset, 64);
2320BTRFS_SETGET_FUNCS(file_extent_num_bytes, struct btrfs_file_extent_item,
2321 num_bytes, 64);
2322BTRFS_SETGET_FUNCS(file_extent_ram_bytes, struct btrfs_file_extent_item,
2323 ram_bytes, 64);
2324BTRFS_SETGET_FUNCS(file_extent_compression, struct btrfs_file_extent_item,
2325 compression, 8);
2326BTRFS_SETGET_FUNCS(file_extent_encryption, struct btrfs_file_extent_item,
2327 encryption, 8);
2328BTRFS_SETGET_FUNCS(file_extent_other_encoding, struct btrfs_file_extent_item,
2329 other_encoding, 16);
2330
2331/*
2332 * this returns the number of bytes used by the item on disk, minus the
2333 * size of any extent headers. If a file is compressed on disk, this is
2334 * the compressed size
2335 */
2336static inline u32 btrfs_file_extent_inline_item_len(
2337 const struct extent_buffer *eb,
2338 struct btrfs_item *e)
2339{
2340 return btrfs_item_size(eb, e) - BTRFS_FILE_EXTENT_INLINE_DATA_START;
2341}
2342
2343/* btrfs_qgroup_status_item */
2344BTRFS_SETGET_FUNCS(qgroup_status_generation, struct btrfs_qgroup_status_item,
2345 generation, 64);
2346BTRFS_SETGET_FUNCS(qgroup_status_version, struct btrfs_qgroup_status_item,
2347 version, 64);
2348BTRFS_SETGET_FUNCS(qgroup_status_flags, struct btrfs_qgroup_status_item,
2349 flags, 64);
2350BTRFS_SETGET_FUNCS(qgroup_status_rescan, struct btrfs_qgroup_status_item,
2351 rescan, 64);
2352
2353/* btrfs_qgroup_info_item */
2354BTRFS_SETGET_FUNCS(qgroup_info_generation, struct btrfs_qgroup_info_item,
2355 generation, 64);
2356BTRFS_SETGET_FUNCS(qgroup_info_rfer, struct btrfs_qgroup_info_item, rfer, 64);
2357BTRFS_SETGET_FUNCS(qgroup_info_rfer_cmpr, struct btrfs_qgroup_info_item,
2358 rfer_cmpr, 64);
2359BTRFS_SETGET_FUNCS(qgroup_info_excl, struct btrfs_qgroup_info_item, excl, 64);
2360BTRFS_SETGET_FUNCS(qgroup_info_excl_cmpr, struct btrfs_qgroup_info_item,
2361 excl_cmpr, 64);
2362
2363BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_generation,
2364 struct btrfs_qgroup_info_item, generation, 64);
2365BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer, struct btrfs_qgroup_info_item,
2366 rfer, 64);
2367BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_rfer_cmpr,
2368 struct btrfs_qgroup_info_item, rfer_cmpr, 64);
2369BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl, struct btrfs_qgroup_info_item,
2370 excl, 64);
2371BTRFS_SETGET_STACK_FUNCS(stack_qgroup_info_excl_cmpr,
2372 struct btrfs_qgroup_info_item, excl_cmpr, 64);
2373
2374/* btrfs_qgroup_limit_item */
2375BTRFS_SETGET_FUNCS(qgroup_limit_flags, struct btrfs_qgroup_limit_item,
2376 flags, 64);
2377BTRFS_SETGET_FUNCS(qgroup_limit_max_rfer, struct btrfs_qgroup_limit_item,
2378 max_rfer, 64);
2379BTRFS_SETGET_FUNCS(qgroup_limit_max_excl, struct btrfs_qgroup_limit_item,
2380 max_excl, 64);
2381BTRFS_SETGET_FUNCS(qgroup_limit_rsv_rfer, struct btrfs_qgroup_limit_item,
2382 rsv_rfer, 64);
2383BTRFS_SETGET_FUNCS(qgroup_limit_rsv_excl, struct btrfs_qgroup_limit_item,
2384 rsv_excl, 64);
2385
2386/* btrfs_dev_replace_item */
2387BTRFS_SETGET_FUNCS(dev_replace_src_devid,
2388 struct btrfs_dev_replace_item, src_devid, 64);
2389BTRFS_SETGET_FUNCS(dev_replace_cont_reading_from_srcdev_mode,
2390 struct btrfs_dev_replace_item, cont_reading_from_srcdev_mode,
2391 64);
2392BTRFS_SETGET_FUNCS(dev_replace_replace_state, struct btrfs_dev_replace_item,
2393 replace_state, 64);
2394BTRFS_SETGET_FUNCS(dev_replace_time_started, struct btrfs_dev_replace_item,
2395 time_started, 64);
2396BTRFS_SETGET_FUNCS(dev_replace_time_stopped, struct btrfs_dev_replace_item,
2397 time_stopped, 64);
2398BTRFS_SETGET_FUNCS(dev_replace_num_write_errors, struct btrfs_dev_replace_item,
2399 num_write_errors, 64);
2400BTRFS_SETGET_FUNCS(dev_replace_num_uncorrectable_read_errors,
2401 struct btrfs_dev_replace_item, num_uncorrectable_read_errors,
2402 64);
2403BTRFS_SETGET_FUNCS(dev_replace_cursor_left, struct btrfs_dev_replace_item,
2404 cursor_left, 64);
2405BTRFS_SETGET_FUNCS(dev_replace_cursor_right, struct btrfs_dev_replace_item,
2406 cursor_right, 64);
2407
2408BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_src_devid,
2409 struct btrfs_dev_replace_item, src_devid, 64);
2410BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cont_reading_from_srcdev_mode,
2411 struct btrfs_dev_replace_item,
2412 cont_reading_from_srcdev_mode, 64);
2413BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_replace_state,
2414 struct btrfs_dev_replace_item, replace_state, 64);
2415BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_started,
2416 struct btrfs_dev_replace_item, time_started, 64);
2417BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_time_stopped,
2418 struct btrfs_dev_replace_item, time_stopped, 64);
2419BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_write_errors,
2420 struct btrfs_dev_replace_item, num_write_errors, 64);
2421BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_num_uncorrectable_read_errors,
2422 struct btrfs_dev_replace_item,
2423 num_uncorrectable_read_errors, 64);
2424BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_left,
2425 struct btrfs_dev_replace_item, cursor_left, 64);
2426BTRFS_SETGET_STACK_FUNCS(stack_dev_replace_cursor_right,
2427 struct btrfs_dev_replace_item, cursor_right, 64);
2428
2429/* helper function to cast into the data area of the leaf. */
2430#define btrfs_item_ptr(leaf, slot, type) \
2431 ((type *)(BTRFS_LEAF_DATA_OFFSET + \
2432 btrfs_item_offset_nr(leaf, slot)))
2433
2434#define btrfs_item_ptr_offset(leaf, slot) \
2435 ((unsigned long)(BTRFS_LEAF_DATA_OFFSET + \
2436 btrfs_item_offset_nr(leaf, slot)))
2437
2438static inline u32 btrfs_crc32c(u32 crc, const void *address, unsigned length)
2439{
2440 return crc32c(crc, address, length);
2441}
2442
2443static inline void btrfs_crc32c_final(u32 crc, u8 *result)
2444{
2445 put_unaligned_le32(~crc, result);
2446}
2447
2448static inline u64 btrfs_name_hash(const char *name, int len)
2449{
2450 return crc32c((u32)~1, name, len);
2451}
2452
2453/*
2454 * Figure the key offset of an extended inode ref
2455 */
2456static inline u64 btrfs_extref_hash(u64 parent_objectid, const char *name,
2457 int len)
2458{
2459 return (u64) crc32c(parent_objectid, name, len);
2460}
2461
2462static inline gfp_t btrfs_alloc_write_mask(struct address_space *mapping)
2463{
2464 return mapping_gfp_constraint(mapping, ~__GFP_FS);
2465}
2466
2467/* extent-tree.c */
2468
2469enum btrfs_inline_ref_type {
2470 BTRFS_REF_TYPE_INVALID,
2471 BTRFS_REF_TYPE_BLOCK,
2472 BTRFS_REF_TYPE_DATA,
2473 BTRFS_REF_TYPE_ANY,
2474};
2475
2476int btrfs_get_extent_inline_ref_type(const struct extent_buffer *eb,
2477 struct btrfs_extent_inline_ref *iref,
2478 enum btrfs_inline_ref_type is_data);
2479u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset);
2480
2481u64 btrfs_csum_bytes_to_leaves(struct btrfs_fs_info *fs_info, u64 csum_bytes);
2482
2483/*
2484 * Use this if we would be adding new items, as we could split nodes as we cow
2485 * down the tree.
2486 */
2487static inline u64 btrfs_calc_insert_metadata_size(struct btrfs_fs_info *fs_info,
2488 unsigned num_items)
2489{
2490 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * 2 * num_items;
2491}
2492
2493/*
2494 * Doing a truncate or a modification won't result in new nodes or leaves, just
2495 * what we need for COW.
2496 */
2497static inline u64 btrfs_calc_metadata_size(struct btrfs_fs_info *fs_info,
2498 unsigned num_items)
2499{
2500 return (u64)fs_info->nodesize * BTRFS_MAX_LEVEL * num_items;
2501}
2502
2503int btrfs_add_excluded_extent(struct btrfs_fs_info *fs_info,
2504 u64 start, u64 num_bytes);
2505void btrfs_free_excluded_extents(struct btrfs_block_group *cache);
2506int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2507 unsigned long count);
2508void btrfs_cleanup_ref_head_accounting(struct btrfs_fs_info *fs_info,
2509 struct btrfs_delayed_ref_root *delayed_refs,
2510 struct btrfs_delayed_ref_head *head);
2511int btrfs_lookup_data_extent(struct btrfs_fs_info *fs_info, u64 start, u64 len);
2512int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
2513 struct btrfs_fs_info *fs_info, u64 bytenr,
2514 u64 offset, int metadata, u64 *refs, u64 *flags);
2515int btrfs_pin_extent(struct btrfs_trans_handle *trans, u64 bytenr, u64 num,
2516 int reserved);
2517int btrfs_pin_extent_for_log_replay(struct btrfs_trans_handle *trans,
2518 u64 bytenr, u64 num_bytes);
2519int btrfs_exclude_logged_extents(struct extent_buffer *eb);
2520int btrfs_cross_ref_exist(struct btrfs_root *root,
2521 u64 objectid, u64 offset, u64 bytenr, bool strict);
2522struct extent_buffer *btrfs_alloc_tree_block(struct btrfs_trans_handle *trans,
2523 struct btrfs_root *root,
2524 u64 parent, u64 root_objectid,
2525 const struct btrfs_disk_key *key,
2526 int level, u64 hint,
2527 u64 empty_size);
2528void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
2529 struct btrfs_root *root,
2530 struct extent_buffer *buf,
2531 u64 parent, int last_ref);
2532int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
2533 struct btrfs_root *root, u64 owner,
2534 u64 offset, u64 ram_bytes,
2535 struct btrfs_key *ins);
2536int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
2537 u64 root_objectid, u64 owner, u64 offset,
2538 struct btrfs_key *ins);
2539int btrfs_reserve_extent(struct btrfs_root *root, u64 ram_bytes, u64 num_bytes,
2540 u64 min_alloc_size, u64 empty_size, u64 hint_byte,
2541 struct btrfs_key *ins, int is_data, int delalloc);
2542int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2543 struct extent_buffer *buf, int full_backref);
2544int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2545 struct extent_buffer *buf, int full_backref);
2546int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2547 struct extent_buffer *eb, u64 flags,
2548 int level, int is_data);
2549int btrfs_free_extent(struct btrfs_trans_handle *trans, struct btrfs_ref *ref);
2550
2551int btrfs_free_reserved_extent(struct btrfs_fs_info *fs_info,
2552 u64 start, u64 len, int delalloc);
2553int btrfs_pin_reserved_extent(struct btrfs_trans_handle *trans, u64 start,
2554 u64 len);
2555void btrfs_prepare_extent_commit(struct btrfs_fs_info *fs_info);
2556int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans);
2557int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
2558 struct btrfs_ref *generic_ref);
2559
2560int btrfs_extent_readonly(struct btrfs_fs_info *fs_info, u64 bytenr);
2561void btrfs_clear_space_info_full(struct btrfs_fs_info *info);
2562
2563/*
2564 * Different levels for to flush space when doing space reservations.
2565 *
2566 * The higher the level, the more methods we try to reclaim space.
2567 */
2568enum btrfs_reserve_flush_enum {
2569 /* If we are in the transaction, we can't flush anything.*/
2570 BTRFS_RESERVE_NO_FLUSH,
2571
2572 /*
2573 * Flush space by:
2574 * - Running delayed inode items
2575 * - Allocating a new chunk
2576 */
2577 BTRFS_RESERVE_FLUSH_LIMIT,
2578
2579 /*
2580 * Flush space by:
2581 * - Running delayed inode items
2582 * - Running delayed refs
2583 * - Running delalloc and waiting for ordered extents
2584 * - Allocating a new chunk
2585 */
2586 BTRFS_RESERVE_FLUSH_EVICT,
2587
2588 /*
2589 * Flush space by above mentioned methods and by:
2590 * - Running delayed iputs
2591 * - Commiting transaction
2592 *
2593 * Can be interruped by fatal signal.
2594 */
2595 BTRFS_RESERVE_FLUSH_ALL,
2596
2597 /*
2598 * Pretty much the same as FLUSH_ALL, but can also steal space from
2599 * global rsv.
2600 *
2601 * Can be interruped by fatal signal.
2602 */
2603 BTRFS_RESERVE_FLUSH_ALL_STEAL,
2604};
2605
2606enum btrfs_flush_state {
2607 FLUSH_DELAYED_ITEMS_NR = 1,
2608 FLUSH_DELAYED_ITEMS = 2,
2609 FLUSH_DELAYED_REFS_NR = 3,
2610 FLUSH_DELAYED_REFS = 4,
2611 FLUSH_DELALLOC = 5,
2612 FLUSH_DELALLOC_WAIT = 6,
2613 ALLOC_CHUNK = 7,
2614 ALLOC_CHUNK_FORCE = 8,
2615 RUN_DELAYED_IPUTS = 9,
2616 COMMIT_TRANS = 10,
2617};
2618
2619int btrfs_subvolume_reserve_metadata(struct btrfs_root *root,
2620 struct btrfs_block_rsv *rsv,
2621 int nitems, bool use_global_rsv);
2622void btrfs_subvolume_release_metadata(struct btrfs_fs_info *fs_info,
2623 struct btrfs_block_rsv *rsv);
2624void btrfs_delalloc_release_extents(struct btrfs_inode *inode, u64 num_bytes);
2625
2626int btrfs_delalloc_reserve_metadata(struct btrfs_inode *inode, u64 num_bytes);
2627u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo);
2628int btrfs_error_unpin_extent_range(struct btrfs_fs_info *fs_info,
2629 u64 start, u64 end);
2630int btrfs_discard_extent(struct btrfs_fs_info *fs_info, u64 bytenr,
2631 u64 num_bytes, u64 *actual_bytes);
2632int btrfs_trim_fs(struct btrfs_fs_info *fs_info, struct fstrim_range *range);
2633
2634int btrfs_init_space_info(struct btrfs_fs_info *fs_info);
2635int btrfs_delayed_refs_qgroup_accounting(struct btrfs_trans_handle *trans,
2636 struct btrfs_fs_info *fs_info);
2637int btrfs_start_write_no_snapshotting(struct btrfs_root *root);
2638void btrfs_end_write_no_snapshotting(struct btrfs_root *root);
2639void btrfs_wait_for_snapshot_creation(struct btrfs_root *root);
2640
2641/* ctree.c */
2642int btrfs_bin_search(struct extent_buffer *eb, const struct btrfs_key *key,
2643 int *slot);
2644int __pure btrfs_comp_cpu_keys(const struct btrfs_key *k1, const struct btrfs_key *k2);
2645int btrfs_previous_item(struct btrfs_root *root,
2646 struct btrfs_path *path, u64 min_objectid,
2647 int type);
2648int btrfs_previous_extent_item(struct btrfs_root *root,
2649 struct btrfs_path *path, u64 min_objectid);
2650void btrfs_set_item_key_safe(struct btrfs_fs_info *fs_info,
2651 struct btrfs_path *path,
2652 const struct btrfs_key *new_key);
2653struct extent_buffer *btrfs_root_node(struct btrfs_root *root);
2654struct extent_buffer *btrfs_lock_root_node(struct btrfs_root *root);
2655struct extent_buffer *btrfs_read_lock_root_node(struct btrfs_root *root);
2656int btrfs_find_next_key(struct btrfs_root *root, struct btrfs_path *path,
2657 struct btrfs_key *key, int lowest_level,
2658 u64 min_trans);
2659int btrfs_search_forward(struct btrfs_root *root, struct btrfs_key *min_key,
2660 struct btrfs_path *path,
2661 u64 min_trans);
2662struct extent_buffer *btrfs_read_node_slot(struct extent_buffer *parent,
2663 int slot);
2664
2665int btrfs_cow_block(struct btrfs_trans_handle *trans,
2666 struct btrfs_root *root, struct extent_buffer *buf,
2667 struct extent_buffer *parent, int parent_slot,
2668 struct extent_buffer **cow_ret);
2669int btrfs_copy_root(struct btrfs_trans_handle *trans,
2670 struct btrfs_root *root,
2671 struct extent_buffer *buf,
2672 struct extent_buffer **cow_ret, u64 new_root_objectid);
2673int btrfs_block_can_be_shared(struct btrfs_root *root,
2674 struct extent_buffer *buf);
2675void btrfs_extend_item(struct btrfs_path *path, u32 data_size);
2676void btrfs_truncate_item(struct btrfs_path *path, u32 new_size, int from_end);
2677int btrfs_split_item(struct btrfs_trans_handle *trans,
2678 struct btrfs_root *root,
2679 struct btrfs_path *path,
2680 const struct btrfs_key *new_key,
2681 unsigned long split_offset);
2682int btrfs_duplicate_item(struct btrfs_trans_handle *trans,
2683 struct btrfs_root *root,
2684 struct btrfs_path *path,
2685 const struct btrfs_key *new_key);
2686int btrfs_find_item(struct btrfs_root *fs_root, struct btrfs_path *path,
2687 u64 inum, u64 ioff, u8 key_type, struct btrfs_key *found_key);
2688int btrfs_search_slot(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2689 const struct btrfs_key *key, struct btrfs_path *p,
2690 int ins_len, int cow);
2691int btrfs_search_old_slot(struct btrfs_root *root, const struct btrfs_key *key,
2692 struct btrfs_path *p, u64 time_seq);
2693int btrfs_search_slot_for_read(struct btrfs_root *root,
2694 const struct btrfs_key *key,
2695 struct btrfs_path *p, int find_higher,
2696 int return_any);
2697int btrfs_realloc_node(struct btrfs_trans_handle *trans,
2698 struct btrfs_root *root, struct extent_buffer *parent,
2699 int start_slot, u64 *last_ret,
2700 struct btrfs_key *progress);
2701void btrfs_release_path(struct btrfs_path *p);
2702struct btrfs_path *btrfs_alloc_path(void);
2703void btrfs_free_path(struct btrfs_path *p);
2704
2705int btrfs_del_items(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2706 struct btrfs_path *path, int slot, int nr);
2707static inline int btrfs_del_item(struct btrfs_trans_handle *trans,
2708 struct btrfs_root *root,
2709 struct btrfs_path *path)
2710{
2711 return btrfs_del_items(trans, root, path, path->slots[0], 1);
2712}
2713
2714void setup_items_for_insert(struct btrfs_root *root, struct btrfs_path *path,
2715 const struct btrfs_key *cpu_key, u32 *data_size,
2716 u32 total_data, u32 total_size, int nr);
2717int btrfs_insert_item(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2718 const struct btrfs_key *key, void *data, u32 data_size);
2719int btrfs_insert_empty_items(struct btrfs_trans_handle *trans,
2720 struct btrfs_root *root,
2721 struct btrfs_path *path,
2722 const struct btrfs_key *cpu_key, u32 *data_size,
2723 int nr);
2724
2725static inline int btrfs_insert_empty_item(struct btrfs_trans_handle *trans,
2726 struct btrfs_root *root,
2727 struct btrfs_path *path,
2728 const struct btrfs_key *key,
2729 u32 data_size)
2730{
2731 return btrfs_insert_empty_items(trans, root, path, key, &data_size, 1);
2732}
2733
2734int btrfs_next_leaf(struct btrfs_root *root, struct btrfs_path *path);
2735int btrfs_prev_leaf(struct btrfs_root *root, struct btrfs_path *path);
2736int btrfs_next_old_leaf(struct btrfs_root *root, struct btrfs_path *path,
2737 u64 time_seq);
2738static inline int btrfs_next_old_item(struct btrfs_root *root,
2739 struct btrfs_path *p, u64 time_seq)
2740{
2741 ++p->slots[0];
2742 if (p->slots[0] >= btrfs_header_nritems(p->nodes[0]))
2743 return btrfs_next_old_leaf(root, p, time_seq);
2744 return 0;
2745}
2746static inline int btrfs_next_item(struct btrfs_root *root, struct btrfs_path *p)
2747{
2748 return btrfs_next_old_item(root, p, 0);
2749}
2750int btrfs_leaf_free_space(struct extent_buffer *leaf);
2751int __must_check btrfs_drop_snapshot(struct btrfs_root *root, int update_ref,
2752 int for_reloc);
2753int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
2754 struct btrfs_root *root,
2755 struct extent_buffer *node,
2756 struct extent_buffer *parent);
2757static inline int btrfs_fs_closing(struct btrfs_fs_info *fs_info)
2758{
2759 /*
2760 * Do it this way so we only ever do one test_bit in the normal case.
2761 */
2762 if (test_bit(BTRFS_FS_CLOSING_START, &fs_info->flags)) {
2763 if (test_bit(BTRFS_FS_CLOSING_DONE, &fs_info->flags))
2764 return 2;
2765 return 1;
2766 }
2767 return 0;
2768}
2769
2770/*
2771 * If we remount the fs to be R/O or umount the fs, the cleaner needn't do
2772 * anything except sleeping. This function is used to check the status of
2773 * the fs.
2774 */
2775static inline int btrfs_need_cleaner_sleep(struct btrfs_fs_info *fs_info)
2776{
2777 return fs_info->sb->s_flags & SB_RDONLY || btrfs_fs_closing(fs_info);
2778}
2779
2780/* tree mod log functions from ctree.c */
2781u64 btrfs_get_tree_mod_seq(struct btrfs_fs_info *fs_info,
2782 struct seq_list *elem);
2783void btrfs_put_tree_mod_seq(struct btrfs_fs_info *fs_info,
2784 struct seq_list *elem);
2785int btrfs_old_root_level(struct btrfs_root *root, u64 time_seq);
2786
2787/* root-item.c */
2788int btrfs_add_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2789 u64 ref_id, u64 dirid, u64 sequence, const char *name,
2790 int name_len);
2791int btrfs_del_root_ref(struct btrfs_trans_handle *trans, u64 root_id,
2792 u64 ref_id, u64 dirid, u64 *sequence, const char *name,
2793 int name_len);
2794int btrfs_del_root(struct btrfs_trans_handle *trans,
2795 const struct btrfs_key *key);
2796int btrfs_insert_root(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2797 const struct btrfs_key *key,
2798 struct btrfs_root_item *item);
2799int __must_check btrfs_update_root(struct btrfs_trans_handle *trans,
2800 struct btrfs_root *root,
2801 struct btrfs_key *key,
2802 struct btrfs_root_item *item);
2803int btrfs_find_root(struct btrfs_root *root, const struct btrfs_key *search_key,
2804 struct btrfs_path *path, struct btrfs_root_item *root_item,
2805 struct btrfs_key *root_key);
2806int btrfs_find_orphan_roots(struct btrfs_fs_info *fs_info);
2807void btrfs_set_root_node(struct btrfs_root_item *item,
2808 struct extent_buffer *node);
2809void btrfs_check_and_init_root_item(struct btrfs_root_item *item);
2810void btrfs_update_root_times(struct btrfs_trans_handle *trans,
2811 struct btrfs_root *root);
2812
2813/* uuid-tree.c */
2814int btrfs_uuid_tree_add(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
2815 u64 subid);
2816int btrfs_uuid_tree_remove(struct btrfs_trans_handle *trans, u8 *uuid, u8 type,
2817 u64 subid);
2818int btrfs_uuid_tree_iterate(struct btrfs_fs_info *fs_info);
2819
2820/* dir-item.c */
2821int btrfs_check_dir_item_collision(struct btrfs_root *root, u64 dir,
2822 const char *name, int name_len);
2823int btrfs_insert_dir_item(struct btrfs_trans_handle *trans, const char *name,
2824 int name_len, struct btrfs_inode *dir,
2825 struct btrfs_key *location, u8 type, u64 index);
2826struct btrfs_dir_item *btrfs_lookup_dir_item(struct btrfs_trans_handle *trans,
2827 struct btrfs_root *root,
2828 struct btrfs_path *path, u64 dir,
2829 const char *name, int name_len,
2830 int mod);
2831struct btrfs_dir_item *
2832btrfs_lookup_dir_index_item(struct btrfs_trans_handle *trans,
2833 struct btrfs_root *root,
2834 struct btrfs_path *path, u64 dir,
2835 u64 objectid, const char *name, int name_len,
2836 int mod);
2837struct btrfs_dir_item *
2838btrfs_search_dir_index_item(struct btrfs_root *root,
2839 struct btrfs_path *path, u64 dirid,
2840 const char *name, int name_len);
2841int btrfs_delete_one_dir_name(struct btrfs_trans_handle *trans,
2842 struct btrfs_root *root,
2843 struct btrfs_path *path,
2844 struct btrfs_dir_item *di);
2845int btrfs_insert_xattr_item(struct btrfs_trans_handle *trans,
2846 struct btrfs_root *root,
2847 struct btrfs_path *path, u64 objectid,
2848 const char *name, u16 name_len,
2849 const void *data, u16 data_len);
2850struct btrfs_dir_item *btrfs_lookup_xattr(struct btrfs_trans_handle *trans,
2851 struct btrfs_root *root,
2852 struct btrfs_path *path, u64 dir,
2853 const char *name, u16 name_len,
2854 int mod);
2855struct btrfs_dir_item *btrfs_match_dir_item_name(struct btrfs_fs_info *fs_info,
2856 struct btrfs_path *path,
2857 const char *name,
2858 int name_len);
2859
2860/* orphan.c */
2861int btrfs_insert_orphan_item(struct btrfs_trans_handle *trans,
2862 struct btrfs_root *root, u64 offset);
2863int btrfs_del_orphan_item(struct btrfs_trans_handle *trans,
2864 struct btrfs_root *root, u64 offset);
2865int btrfs_find_orphan_item(struct btrfs_root *root, u64 offset);
2866
2867/* inode-item.c */
2868int btrfs_insert_inode_ref(struct btrfs_trans_handle *trans,
2869 struct btrfs_root *root,
2870 const char *name, int name_len,
2871 u64 inode_objectid, u64 ref_objectid, u64 index);
2872int btrfs_del_inode_ref(struct btrfs_trans_handle *trans,
2873 struct btrfs_root *root,
2874 const char *name, int name_len,
2875 u64 inode_objectid, u64 ref_objectid, u64 *index);
2876int btrfs_insert_empty_inode(struct btrfs_trans_handle *trans,
2877 struct btrfs_root *root,
2878 struct btrfs_path *path, u64 objectid);
2879int btrfs_lookup_inode(struct btrfs_trans_handle *trans, struct btrfs_root
2880 *root, struct btrfs_path *path,
2881 struct btrfs_key *location, int mod);
2882
2883struct btrfs_inode_extref *
2884btrfs_lookup_inode_extref(struct btrfs_trans_handle *trans,
2885 struct btrfs_root *root,
2886 struct btrfs_path *path,
2887 const char *name, int name_len,
2888 u64 inode_objectid, u64 ref_objectid, int ins_len,
2889 int cow);
2890
2891struct btrfs_inode_ref *btrfs_find_name_in_backref(struct extent_buffer *leaf,
2892 int slot, const char *name,
2893 int name_len);
2894struct btrfs_inode_extref *btrfs_find_name_in_ext_backref(
2895 struct extent_buffer *leaf, int slot, u64 ref_objectid,
2896 const char *name, int name_len);
2897/* file-item.c */
2898struct btrfs_dio_private;
2899int btrfs_del_csums(struct btrfs_trans_handle *trans,
2900 struct btrfs_root *root, u64 bytenr, u64 len);
2901blk_status_t btrfs_lookup_bio_sums(struct inode *inode, struct bio *bio,
2902 u64 offset, u8 *dst);
2903int btrfs_insert_file_extent(struct btrfs_trans_handle *trans,
2904 struct btrfs_root *root,
2905 u64 objectid, u64 pos,
2906 u64 disk_offset, u64 disk_num_bytes,
2907 u64 num_bytes, u64 offset, u64 ram_bytes,
2908 u8 compression, u8 encryption, u16 other_encoding);
2909int btrfs_lookup_file_extent(struct btrfs_trans_handle *trans,
2910 struct btrfs_root *root,
2911 struct btrfs_path *path, u64 objectid,
2912 u64 bytenr, int mod);
2913int btrfs_csum_file_blocks(struct btrfs_trans_handle *trans,
2914 struct btrfs_root *root,
2915 struct btrfs_ordered_sum *sums);
2916blk_status_t btrfs_csum_one_bio(struct btrfs_inode *inode, struct bio *bio,
2917 u64 file_start, int contig);
2918int btrfs_lookup_csums_range(struct btrfs_root *root, u64 start, u64 end,
2919 struct list_head *list, int search_commit);
2920void btrfs_extent_item_to_extent_map(struct btrfs_inode *inode,
2921 const struct btrfs_path *path,
2922 struct btrfs_file_extent_item *fi,
2923 const bool new_inline,
2924 struct extent_map *em);
2925int btrfs_inode_clear_file_extent_range(struct btrfs_inode *inode, u64 start,
2926 u64 len);
2927int btrfs_inode_set_file_extent_range(struct btrfs_inode *inode, u64 start,
2928 u64 len);
2929void btrfs_inode_safe_disk_i_size_write(struct inode *inode, u64 new_i_size);
2930u64 btrfs_file_extent_end(const struct btrfs_path *path);
2931
2932/* inode.c */
2933struct extent_map *btrfs_get_extent_fiemap(struct btrfs_inode *inode,
2934 u64 start, u64 len);
2935noinline int can_nocow_extent(struct inode *inode, u64 offset, u64 *len,
2936 u64 *orig_start, u64 *orig_block_len,
2937 u64 *ram_bytes, bool strict);
2938
2939void __btrfs_del_delalloc_inode(struct btrfs_root *root,
2940 struct btrfs_inode *inode);
2941struct inode *btrfs_lookup_dentry(struct inode *dir, struct dentry *dentry);
2942int btrfs_set_inode_index(struct btrfs_inode *dir, u64 *index);
2943int btrfs_unlink_inode(struct btrfs_trans_handle *trans,
2944 struct btrfs_root *root,
2945 struct btrfs_inode *dir, struct btrfs_inode *inode,
2946 const char *name, int name_len);
2947int btrfs_add_link(struct btrfs_trans_handle *trans,
2948 struct btrfs_inode *parent_inode, struct btrfs_inode *inode,
2949 const char *name, int name_len, int add_backref, u64 index);
2950int btrfs_delete_subvolume(struct inode *dir, struct dentry *dentry);
2951int btrfs_truncate_block(struct inode *inode, loff_t from, loff_t len,
2952 int front);
2953int btrfs_truncate_inode_items(struct btrfs_trans_handle *trans,
2954 struct btrfs_root *root,
2955 struct inode *inode, u64 new_size,
2956 u32 min_type);
2957
2958int btrfs_start_delalloc_snapshot(struct btrfs_root *root);
2959int btrfs_start_delalloc_roots(struct btrfs_fs_info *fs_info, int nr);
2960int btrfs_set_extent_delalloc(struct btrfs_inode *inode, u64 start, u64 end,
2961 unsigned int extra_bits,
2962 struct extent_state **cached_state);
2963int btrfs_create_subvol_root(struct btrfs_trans_handle *trans,
2964 struct btrfs_root *new_root,
2965 struct btrfs_root *parent_root,
2966 u64 new_dirid);
2967 void btrfs_set_delalloc_extent(struct inode *inode, struct extent_state *state,
2968 unsigned *bits);
2969void btrfs_clear_delalloc_extent(struct inode *inode,
2970 struct extent_state *state, unsigned *bits);
2971void btrfs_merge_delalloc_extent(struct inode *inode, struct extent_state *new,
2972 struct extent_state *other);
2973void btrfs_split_delalloc_extent(struct inode *inode,
2974 struct extent_state *orig, u64 split);
2975int btrfs_bio_fits_in_stripe(struct page *page, size_t size, struct bio *bio,
2976 unsigned long bio_flags);
2977void btrfs_set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end);
2978vm_fault_t btrfs_page_mkwrite(struct vm_fault *vmf);
2979int btrfs_readpage(struct file *file, struct page *page);
2980void btrfs_evict_inode(struct inode *inode);
2981int btrfs_write_inode(struct inode *inode, struct writeback_control *wbc);
2982struct inode *btrfs_alloc_inode(struct super_block *sb);
2983void btrfs_destroy_inode(struct inode *inode);
2984void btrfs_free_inode(struct inode *inode);
2985int btrfs_drop_inode(struct inode *inode);
2986int __init btrfs_init_cachep(void);
2987void __cold btrfs_destroy_cachep(void);
2988struct inode *btrfs_iget_path(struct super_block *s, u64 ino,
2989 struct btrfs_root *root, struct btrfs_path *path);
2990struct inode *btrfs_iget(struct super_block *s, u64 ino, struct btrfs_root *root);
2991struct extent_map *btrfs_get_extent(struct btrfs_inode *inode,
2992 struct page *page, size_t pg_offset,
2993 u64 start, u64 end);
2994int btrfs_update_inode(struct btrfs_trans_handle *trans,
2995 struct btrfs_root *root,
2996 struct inode *inode);
2997int btrfs_update_inode_fallback(struct btrfs_trans_handle *trans,
2998 struct btrfs_root *root, struct inode *inode);
2999int btrfs_orphan_add(struct btrfs_trans_handle *trans,
3000 struct btrfs_inode *inode);
3001int btrfs_orphan_cleanup(struct btrfs_root *root);
3002int btrfs_cont_expand(struct inode *inode, loff_t oldsize, loff_t size);
3003void btrfs_add_delayed_iput(struct inode *inode);
3004void btrfs_run_delayed_iputs(struct btrfs_fs_info *fs_info);
3005int btrfs_wait_on_delayed_iputs(struct btrfs_fs_info *fs_info);
3006int btrfs_prealloc_file_range(struct inode *inode, int mode,
3007 u64 start, u64 num_bytes, u64 min_size,
3008 loff_t actual_len, u64 *alloc_hint);
3009int btrfs_prealloc_file_range_trans(struct inode *inode,
3010 struct btrfs_trans_handle *trans, int mode,
3011 u64 start, u64 num_bytes, u64 min_size,
3012 loff_t actual_len, u64 *alloc_hint);
3013int btrfs_run_delalloc_range(struct btrfs_inode *inode, struct page *locked_page,
3014 u64 start, u64 end, int *page_started, unsigned long *nr_written,
3015 struct writeback_control *wbc);
3016int btrfs_writepage_cow_fixup(struct page *page, u64 start, u64 end);
3017void btrfs_writepage_endio_finish_ordered(struct page *page, u64 start,
3018 u64 end, int uptodate);
3019extern const struct dentry_operations btrfs_dentry_operations;
3020
3021/* ioctl.c */
3022long btrfs_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3023long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg);
3024int btrfs_ioctl_get_supported_features(void __user *arg);
3025void btrfs_sync_inode_flags_to_i_flags(struct inode *inode);
3026int __pure btrfs_is_empty_uuid(u8 *uuid);
3027int btrfs_defrag_file(struct inode *inode, struct file *file,
3028 struct btrfs_ioctl_defrag_range_args *range,
3029 u64 newer_than, unsigned long max_pages);
3030void btrfs_get_block_group_info(struct list_head *groups_list,
3031 struct btrfs_ioctl_space_info *space);
3032void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3033 struct btrfs_ioctl_balance_args *bargs);
3034
3035/* file.c */
3036int __init btrfs_auto_defrag_init(void);
3037void __cold btrfs_auto_defrag_exit(void);
3038int btrfs_add_inode_defrag(struct btrfs_trans_handle *trans,
3039 struct btrfs_inode *inode);
3040int btrfs_run_defrag_inodes(struct btrfs_fs_info *fs_info);
3041void btrfs_cleanup_defrag_inodes(struct btrfs_fs_info *fs_info);
3042int btrfs_sync_file(struct file *file, loff_t start, loff_t end, int datasync);
3043void btrfs_drop_extent_cache(struct btrfs_inode *inode, u64 start, u64 end,
3044 int skip_pinned);
3045extern const struct file_operations btrfs_file_operations;
3046int __btrfs_drop_extents(struct btrfs_trans_handle *trans,
3047 struct btrfs_root *root, struct btrfs_inode *inode,
3048 struct btrfs_path *path, u64 start, u64 end,
3049 u64 *drop_end, int drop_cache,
3050 int replace_extent,
3051 u32 extent_item_size,
3052 int *key_inserted);
3053int btrfs_drop_extents(struct btrfs_trans_handle *trans,
3054 struct btrfs_root *root, struct inode *inode, u64 start,
3055 u64 end, int drop_cache);
3056int btrfs_punch_hole_range(struct inode *inode, struct btrfs_path *path,
3057 const u64 start, const u64 end,
3058 struct btrfs_clone_extent_info *clone_info,
3059 struct btrfs_trans_handle **trans_out);
3060int btrfs_mark_extent_written(struct btrfs_trans_handle *trans,
3061 struct btrfs_inode *inode, u64 start, u64 end);
3062int btrfs_release_file(struct inode *inode, struct file *file);
3063int btrfs_dirty_pages(struct btrfs_inode *inode, struct page **pages,
3064 size_t num_pages, loff_t pos, size_t write_bytes,
3065 struct extent_state **cached);
3066int btrfs_fdatawrite_range(struct inode *inode, loff_t start, loff_t end);
3067int btrfs_check_nocow_lock(struct btrfs_inode *inode, loff_t pos,
3068 size_t *write_bytes);
3069void btrfs_check_nocow_unlock(struct btrfs_inode *inode);
3070
3071/* tree-defrag.c */
3072int btrfs_defrag_leaves(struct btrfs_trans_handle *trans,
3073 struct btrfs_root *root);
3074
3075/* super.c */
3076int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
3077 unsigned long new_flags);
3078int btrfs_sync_fs(struct super_block *sb, int wait);
3079char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
3080 u64 subvol_objectid);
3081
3082static inline __printf(2, 3) __cold
3083void btrfs_no_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
3084{
3085}
3086
3087#ifdef CONFIG_PRINTK
3088__printf(2, 3)
3089__cold
3090void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...);
3091#else
3092#define btrfs_printk(fs_info, fmt, args...) \
3093 btrfs_no_printk(fs_info, fmt, ##args)
3094#endif
3095
3096#define btrfs_emerg(fs_info, fmt, args...) \
3097 btrfs_printk(fs_info, KERN_EMERG fmt, ##args)
3098#define btrfs_alert(fs_info, fmt, args...) \
3099 btrfs_printk(fs_info, KERN_ALERT fmt, ##args)
3100#define btrfs_crit(fs_info, fmt, args...) \
3101 btrfs_printk(fs_info, KERN_CRIT fmt, ##args)
3102#define btrfs_err(fs_info, fmt, args...) \
3103 btrfs_printk(fs_info, KERN_ERR fmt, ##args)
3104#define btrfs_warn(fs_info, fmt, args...) \
3105 btrfs_printk(fs_info, KERN_WARNING fmt, ##args)
3106#define btrfs_notice(fs_info, fmt, args...) \
3107 btrfs_printk(fs_info, KERN_NOTICE fmt, ##args)
3108#define btrfs_info(fs_info, fmt, args...) \
3109 btrfs_printk(fs_info, KERN_INFO fmt, ##args)
3110
3111/*
3112 * Wrappers that use printk_in_rcu
3113 */
3114#define btrfs_emerg_in_rcu(fs_info, fmt, args...) \
3115 btrfs_printk_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3116#define btrfs_alert_in_rcu(fs_info, fmt, args...) \
3117 btrfs_printk_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3118#define btrfs_crit_in_rcu(fs_info, fmt, args...) \
3119 btrfs_printk_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3120#define btrfs_err_in_rcu(fs_info, fmt, args...) \
3121 btrfs_printk_in_rcu(fs_info, KERN_ERR fmt, ##args)
3122#define btrfs_warn_in_rcu(fs_info, fmt, args...) \
3123 btrfs_printk_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3124#define btrfs_notice_in_rcu(fs_info, fmt, args...) \
3125 btrfs_printk_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3126#define btrfs_info_in_rcu(fs_info, fmt, args...) \
3127 btrfs_printk_in_rcu(fs_info, KERN_INFO fmt, ##args)
3128
3129/*
3130 * Wrappers that use a ratelimited printk_in_rcu
3131 */
3132#define btrfs_emerg_rl_in_rcu(fs_info, fmt, args...) \
3133 btrfs_printk_rl_in_rcu(fs_info, KERN_EMERG fmt, ##args)
3134#define btrfs_alert_rl_in_rcu(fs_info, fmt, args...) \
3135 btrfs_printk_rl_in_rcu(fs_info, KERN_ALERT fmt, ##args)
3136#define btrfs_crit_rl_in_rcu(fs_info, fmt, args...) \
3137 btrfs_printk_rl_in_rcu(fs_info, KERN_CRIT fmt, ##args)
3138#define btrfs_err_rl_in_rcu(fs_info, fmt, args...) \
3139 btrfs_printk_rl_in_rcu(fs_info, KERN_ERR fmt, ##args)
3140#define btrfs_warn_rl_in_rcu(fs_info, fmt, args...) \
3141 btrfs_printk_rl_in_rcu(fs_info, KERN_WARNING fmt, ##args)
3142#define btrfs_notice_rl_in_rcu(fs_info, fmt, args...) \
3143 btrfs_printk_rl_in_rcu(fs_info, KERN_NOTICE fmt, ##args)
3144#define btrfs_info_rl_in_rcu(fs_info, fmt, args...) \
3145 btrfs_printk_rl_in_rcu(fs_info, KERN_INFO fmt, ##args)
3146
3147/*
3148 * Wrappers that use a ratelimited printk
3149 */
3150#define btrfs_emerg_rl(fs_info, fmt, args...) \
3151 btrfs_printk_ratelimited(fs_info, KERN_EMERG fmt, ##args)
3152#define btrfs_alert_rl(fs_info, fmt, args...) \
3153 btrfs_printk_ratelimited(fs_info, KERN_ALERT fmt, ##args)
3154#define btrfs_crit_rl(fs_info, fmt, args...) \
3155 btrfs_printk_ratelimited(fs_info, KERN_CRIT fmt, ##args)
3156#define btrfs_err_rl(fs_info, fmt, args...) \
3157 btrfs_printk_ratelimited(fs_info, KERN_ERR fmt, ##args)
3158#define btrfs_warn_rl(fs_info, fmt, args...) \
3159 btrfs_printk_ratelimited(fs_info, KERN_WARNING fmt, ##args)
3160#define btrfs_notice_rl(fs_info, fmt, args...) \
3161 btrfs_printk_ratelimited(fs_info, KERN_NOTICE fmt, ##args)
3162#define btrfs_info_rl(fs_info, fmt, args...) \
3163 btrfs_printk_ratelimited(fs_info, KERN_INFO fmt, ##args)
3164
3165#if defined(CONFIG_DYNAMIC_DEBUG)
3166#define btrfs_debug(fs_info, fmt, args...) \
3167 _dynamic_func_call_no_desc(fmt, btrfs_printk, \
3168 fs_info, KERN_DEBUG fmt, ##args)
3169#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3170 _dynamic_func_call_no_desc(fmt, btrfs_printk_in_rcu, \
3171 fs_info, KERN_DEBUG fmt, ##args)
3172#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3173 _dynamic_func_call_no_desc(fmt, btrfs_printk_rl_in_rcu, \
3174 fs_info, KERN_DEBUG fmt, ##args)
3175#define btrfs_debug_rl(fs_info, fmt, args...) \
3176 _dynamic_func_call_no_desc(fmt, btrfs_printk_ratelimited, \
3177 fs_info, KERN_DEBUG fmt, ##args)
3178#elif defined(DEBUG)
3179#define btrfs_debug(fs_info, fmt, args...) \
3180 btrfs_printk(fs_info, KERN_DEBUG fmt, ##args)
3181#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3182 btrfs_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3183#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3184 btrfs_printk_rl_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3185#define btrfs_debug_rl(fs_info, fmt, args...) \
3186 btrfs_printk_ratelimited(fs_info, KERN_DEBUG fmt, ##args)
3187#else
3188#define btrfs_debug(fs_info, fmt, args...) \
3189 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3190#define btrfs_debug_in_rcu(fs_info, fmt, args...) \
3191 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3192#define btrfs_debug_rl_in_rcu(fs_info, fmt, args...) \
3193 btrfs_no_printk_in_rcu(fs_info, KERN_DEBUG fmt, ##args)
3194#define btrfs_debug_rl(fs_info, fmt, args...) \
3195 btrfs_no_printk(fs_info, KERN_DEBUG fmt, ##args)
3196#endif
3197
3198#define btrfs_printk_in_rcu(fs_info, fmt, args...) \
3199do { \
3200 rcu_read_lock(); \
3201 btrfs_printk(fs_info, fmt, ##args); \
3202 rcu_read_unlock(); \
3203} while (0)
3204
3205#define btrfs_no_printk_in_rcu(fs_info, fmt, args...) \
3206do { \
3207 rcu_read_lock(); \
3208 btrfs_no_printk(fs_info, fmt, ##args); \
3209 rcu_read_unlock(); \
3210} while (0)
3211
3212#define btrfs_printk_ratelimited(fs_info, fmt, args...) \
3213do { \
3214 static DEFINE_RATELIMIT_STATE(_rs, \
3215 DEFAULT_RATELIMIT_INTERVAL, \
3216 DEFAULT_RATELIMIT_BURST); \
3217 if (__ratelimit(&_rs)) \
3218 btrfs_printk(fs_info, fmt, ##args); \
3219} while (0)
3220
3221#define btrfs_printk_rl_in_rcu(fs_info, fmt, args...) \
3222do { \
3223 rcu_read_lock(); \
3224 btrfs_printk_ratelimited(fs_info, fmt, ##args); \
3225 rcu_read_unlock(); \
3226} while (0)
3227
3228#ifdef CONFIG_BTRFS_ASSERT
3229__cold __noreturn
3230static inline void assertfail(const char *expr, const char *file, int line)
3231{
3232 pr_err("assertion failed: %s, in %s:%d\n", expr, file, line);
3233 BUG();
3234}
3235
3236#define ASSERT(expr) \
3237 (likely(expr) ? (void)0 : assertfail(#expr, __FILE__, __LINE__))
3238
3239#else
3240static inline void assertfail(const char *expr, const char* file, int line) { }
3241#define ASSERT(expr) (void)(expr)
3242#endif
3243
3244/*
3245 * Use that for functions that are conditionally exported for sanity tests but
3246 * otherwise static
3247 */
3248#ifndef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3249#define EXPORT_FOR_TESTS static
3250#else
3251#define EXPORT_FOR_TESTS
3252#endif
3253
3254__cold
3255static inline void btrfs_print_v0_err(struct btrfs_fs_info *fs_info)
3256{
3257 btrfs_err(fs_info,
3258"Unsupported V0 extent filesystem detected. Aborting. Please re-create your filesystem with a newer kernel");
3259}
3260
3261__printf(5, 6)
3262__cold
3263void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
3264 unsigned int line, int errno, const char *fmt, ...);
3265
3266const char * __attribute_const__ btrfs_decode_error(int errno);
3267
3268__cold
3269void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
3270 const char *function,
3271 unsigned int line, int errno);
3272
3273/*
3274 * Call btrfs_abort_transaction as early as possible when an error condition is
3275 * detected, that way the exact line number is reported.
3276 */
3277#define btrfs_abort_transaction(trans, errno) \
3278do { \
3279 /* Report first abort since mount */ \
3280 if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED, \
3281 &((trans)->fs_info->fs_state))) { \
3282 if ((errno) != -EIO && (errno) != -EROFS) { \
3283 WARN(1, KERN_DEBUG \
3284 "BTRFS: Transaction aborted (error %d)\n", \
3285 (errno)); \
3286 } else { \
3287 btrfs_debug((trans)->fs_info, \
3288 "Transaction aborted (error %d)", \
3289 (errno)); \
3290 } \
3291 } \
3292 __btrfs_abort_transaction((trans), __func__, \
3293 __LINE__, (errno)); \
3294} while (0)
3295
3296#define btrfs_handle_fs_error(fs_info, errno, fmt, args...) \
3297do { \
3298 __btrfs_handle_fs_error((fs_info), __func__, __LINE__, \
3299 (errno), fmt, ##args); \
3300} while (0)
3301
3302__printf(5, 6)
3303__cold
3304void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
3305 unsigned int line, int errno, const char *fmt, ...);
3306/*
3307 * If BTRFS_MOUNT_PANIC_ON_FATAL_ERROR is in mount_opt, __btrfs_panic
3308 * will panic(). Otherwise we BUG() here.
3309 */
3310#define btrfs_panic(fs_info, errno, fmt, args...) \
3311do { \
3312 __btrfs_panic(fs_info, __func__, __LINE__, errno, fmt, ##args); \
3313 BUG(); \
3314} while (0)
3315
3316
3317/* compatibility and incompatibility defines */
3318
3319#define btrfs_set_fs_incompat(__fs_info, opt) \
3320 __btrfs_set_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3321 #opt)
3322
3323static inline void __btrfs_set_fs_incompat(struct btrfs_fs_info *fs_info,
3324 u64 flag, const char* name)
3325{
3326 struct btrfs_super_block *disk_super;
3327 u64 features;
3328
3329 disk_super = fs_info->super_copy;
3330 features = btrfs_super_incompat_flags(disk_super);
3331 if (!(features & flag)) {
3332 spin_lock(&fs_info->super_lock);
3333 features = btrfs_super_incompat_flags(disk_super);
3334 if (!(features & flag)) {
3335 features |= flag;
3336 btrfs_set_super_incompat_flags(disk_super, features);
3337 btrfs_info(fs_info,
3338 "setting incompat feature flag for %s (0x%llx)",
3339 name, flag);
3340 }
3341 spin_unlock(&fs_info->super_lock);
3342 }
3343}
3344
3345#define btrfs_clear_fs_incompat(__fs_info, opt) \
3346 __btrfs_clear_fs_incompat((__fs_info), BTRFS_FEATURE_INCOMPAT_##opt, \
3347 #opt)
3348
3349static inline void __btrfs_clear_fs_incompat(struct btrfs_fs_info *fs_info,
3350 u64 flag, const char* name)
3351{
3352 struct btrfs_super_block *disk_super;
3353 u64 features;
3354
3355 disk_super = fs_info->super_copy;
3356 features = btrfs_super_incompat_flags(disk_super);
3357 if (features & flag) {
3358 spin_lock(&fs_info->super_lock);
3359 features = btrfs_super_incompat_flags(disk_super);
3360 if (features & flag) {
3361 features &= ~flag;
3362 btrfs_set_super_incompat_flags(disk_super, features);
3363 btrfs_info(fs_info,
3364 "clearing incompat feature flag for %s (0x%llx)",
3365 name, flag);
3366 }
3367 spin_unlock(&fs_info->super_lock);
3368 }
3369}
3370
3371#define btrfs_fs_incompat(fs_info, opt) \
3372 __btrfs_fs_incompat((fs_info), BTRFS_FEATURE_INCOMPAT_##opt)
3373
3374static inline bool __btrfs_fs_incompat(struct btrfs_fs_info *fs_info, u64 flag)
3375{
3376 struct btrfs_super_block *disk_super;
3377 disk_super = fs_info->super_copy;
3378 return !!(btrfs_super_incompat_flags(disk_super) & flag);
3379}
3380
3381#define btrfs_set_fs_compat_ro(__fs_info, opt) \
3382 __btrfs_set_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3383 #opt)
3384
3385static inline void __btrfs_set_fs_compat_ro(struct btrfs_fs_info *fs_info,
3386 u64 flag, const char *name)
3387{
3388 struct btrfs_super_block *disk_super;
3389 u64 features;
3390
3391 disk_super = fs_info->super_copy;
3392 features = btrfs_super_compat_ro_flags(disk_super);
3393 if (!(features & flag)) {
3394 spin_lock(&fs_info->super_lock);
3395 features = btrfs_super_compat_ro_flags(disk_super);
3396 if (!(features & flag)) {
3397 features |= flag;
3398 btrfs_set_super_compat_ro_flags(disk_super, features);
3399 btrfs_info(fs_info,
3400 "setting compat-ro feature flag for %s (0x%llx)",
3401 name, flag);
3402 }
3403 spin_unlock(&fs_info->super_lock);
3404 }
3405}
3406
3407#define btrfs_clear_fs_compat_ro(__fs_info, opt) \
3408 __btrfs_clear_fs_compat_ro((__fs_info), BTRFS_FEATURE_COMPAT_RO_##opt, \
3409 #opt)
3410
3411static inline void __btrfs_clear_fs_compat_ro(struct btrfs_fs_info *fs_info,
3412 u64 flag, const char *name)
3413{
3414 struct btrfs_super_block *disk_super;
3415 u64 features;
3416
3417 disk_super = fs_info->super_copy;
3418 features = btrfs_super_compat_ro_flags(disk_super);
3419 if (features & flag) {
3420 spin_lock(&fs_info->super_lock);
3421 features = btrfs_super_compat_ro_flags(disk_super);
3422 if (features & flag) {
3423 features &= ~flag;
3424 btrfs_set_super_compat_ro_flags(disk_super, features);
3425 btrfs_info(fs_info,
3426 "clearing compat-ro feature flag for %s (0x%llx)",
3427 name, flag);
3428 }
3429 spin_unlock(&fs_info->super_lock);
3430 }
3431}
3432
3433#define btrfs_fs_compat_ro(fs_info, opt) \
3434 __btrfs_fs_compat_ro((fs_info), BTRFS_FEATURE_COMPAT_RO_##opt)
3435
3436static inline int __btrfs_fs_compat_ro(struct btrfs_fs_info *fs_info, u64 flag)
3437{
3438 struct btrfs_super_block *disk_super;
3439 disk_super = fs_info->super_copy;
3440 return !!(btrfs_super_compat_ro_flags(disk_super) & flag);
3441}
3442
3443/* acl.c */
3444#ifdef CONFIG_BTRFS_FS_POSIX_ACL
3445struct posix_acl *btrfs_get_acl(struct inode *inode, int type);
3446int btrfs_set_acl(struct inode *inode, struct posix_acl *acl, int type);
3447int btrfs_init_acl(struct btrfs_trans_handle *trans,
3448 struct inode *inode, struct inode *dir);
3449#else
3450#define btrfs_get_acl NULL
3451#define btrfs_set_acl NULL
3452static inline int btrfs_init_acl(struct btrfs_trans_handle *trans,
3453 struct inode *inode, struct inode *dir)
3454{
3455 return 0;
3456}
3457#endif
3458
3459/* relocation.c */
3460int btrfs_relocate_block_group(struct btrfs_fs_info *fs_info, u64 group_start);
3461int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
3462 struct btrfs_root *root);
3463int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
3464 struct btrfs_root *root);
3465int btrfs_recover_relocation(struct btrfs_root *root);
3466int btrfs_reloc_clone_csums(struct btrfs_inode *inode, u64 file_pos, u64 len);
3467int btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
3468 struct btrfs_root *root, struct extent_buffer *buf,
3469 struct extent_buffer *cow);
3470void btrfs_reloc_pre_snapshot(struct btrfs_pending_snapshot *pending,
3471 u64 *bytes_to_reserve);
3472int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
3473 struct btrfs_pending_snapshot *pending);
3474int btrfs_should_cancel_balance(struct btrfs_fs_info *fs_info);
3475struct btrfs_root *find_reloc_root(struct btrfs_fs_info *fs_info,
3476 u64 bytenr);
3477int btrfs_should_ignore_reloc_root(struct btrfs_root *root);
3478
3479/* scrub.c */
3480int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
3481 u64 end, struct btrfs_scrub_progress *progress,
3482 int readonly, int is_dev_replace);
3483void btrfs_scrub_pause(struct btrfs_fs_info *fs_info);
3484void btrfs_scrub_continue(struct btrfs_fs_info *fs_info);
3485int btrfs_scrub_cancel(struct btrfs_fs_info *info);
3486int btrfs_scrub_cancel_dev(struct btrfs_device *dev);
3487int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
3488 struct btrfs_scrub_progress *progress);
3489static inline void btrfs_init_full_stripe_locks_tree(
3490 struct btrfs_full_stripe_locks_tree *locks_root)
3491{
3492 locks_root->root = RB_ROOT;
3493 mutex_init(&locks_root->lock);
3494}
3495
3496/* dev-replace.c */
3497void btrfs_bio_counter_inc_blocked(struct btrfs_fs_info *fs_info);
3498void btrfs_bio_counter_inc_noblocked(struct btrfs_fs_info *fs_info);
3499void btrfs_bio_counter_sub(struct btrfs_fs_info *fs_info, s64 amount);
3500
3501static inline void btrfs_bio_counter_dec(struct btrfs_fs_info *fs_info)
3502{
3503 btrfs_bio_counter_sub(fs_info, 1);
3504}
3505
3506/* reada.c */
3507struct reada_control {
3508 struct btrfs_fs_info *fs_info; /* tree to prefetch */
3509 struct btrfs_key key_start;
3510 struct btrfs_key key_end; /* exclusive */
3511 atomic_t elems;
3512 struct kref refcnt;
3513 wait_queue_head_t wait;
3514};
3515struct reada_control *btrfs_reada_add(struct btrfs_root *root,
3516 struct btrfs_key *start, struct btrfs_key *end);
3517int btrfs_reada_wait(void *handle);
3518void btrfs_reada_detach(void *handle);
3519int btree_readahead_hook(struct extent_buffer *eb, int err);
3520
3521static inline int is_fstree(u64 rootid)
3522{
3523 if (rootid == BTRFS_FS_TREE_OBJECTID ||
3524 ((s64)rootid >= (s64)BTRFS_FIRST_FREE_OBJECTID &&
3525 !btrfs_qgroup_level(rootid)))
3526 return 1;
3527 return 0;
3528}
3529
3530static inline int btrfs_defrag_cancelled(struct btrfs_fs_info *fs_info)
3531{
3532 return signal_pending(current);
3533}
3534
3535#define in_range(b, first, len) ((b) >= (first) && (b) < (first) + (len))
3536
3537/* Sanity test specific functions */
3538#ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
3539void btrfs_test_inode_set_ops(struct inode *inode);
3540void btrfs_test_destroy_inode(struct inode *inode);
3541
3542static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3543{
3544 return test_bit(BTRFS_FS_STATE_DUMMY_FS_INFO, &fs_info->fs_state);
3545}
3546#else
3547static inline int btrfs_is_testing(struct btrfs_fs_info *fs_info)
3548{
3549 return 0;
3550}
3551#endif
3552
3553#endif