Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   4 * Copyright (C) 2013, 2021 Intel Corporation
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/err.h>
  14#include <linux/errno.h>
  15#include <linux/gpio/consumer.h>
 
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/ioport.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/mod_devicetable.h>
  22#include <linux/of.h>
 
  23#include <linux/platform_device.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/property.h>
  26#include <linux/slab.h>
  27
  28#include <linux/spi/pxa2xx_spi.h>
  29#include <linux/spi/spi.h>
  30
  31#include "spi-pxa2xx.h"
  32
  33MODULE_AUTHOR("Stephen Street");
  34MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  35MODULE_LICENSE("GPL");
  36MODULE_ALIAS("platform:pxa2xx-spi");
  37
  38#define TIMOUT_DFLT		1000
  39
  40/*
  41 * For testing SSCR1 changes that require SSP restart, basically
  42 * everything except the service and interrupt enables, the PXA270 developer
  43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  44 * list, but the PXA255 developer manual says all bits without really meaning
  45 * the service and interrupt enables.
  46 */
  47#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  48				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  49				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  50				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  51				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  52				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  53
  54#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  55				| QUARK_X1000_SSCR1_EFWR	\
  56				| QUARK_X1000_SSCR1_RFT		\
  57				| QUARK_X1000_SSCR1_TFT		\
  58				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  61				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  62				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  63				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  64				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  65				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  66
  67#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  68#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  69#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  70#define LPSS_CAPS_CS_EN_SHIFT			9
  71#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  72
  73#define LPSS_PRIV_CLOCK_GATE 0x38
  74#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
  75#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
  76
  77struct lpss_config {
  78	/* LPSS offset from drv_data->ioaddr */
  79	unsigned offset;
  80	/* Register offsets from drv_data->lpss_base or -1 */
  81	int reg_general;
  82	int reg_ssp;
  83	int reg_cs_ctrl;
  84	int reg_capabilities;
  85	/* FIFO thresholds */
  86	u32 rx_threshold;
  87	u32 tx_threshold_lo;
  88	u32 tx_threshold_hi;
  89	/* Chip select control */
  90	unsigned cs_sel_shift;
  91	unsigned cs_sel_mask;
  92	unsigned cs_num;
  93	/* Quirks */
  94	unsigned cs_clk_stays_gated : 1;
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99	{	/* LPSS_LPT_SSP */
 100		.offset = 0x800,
 101		.reg_general = 0x08,
 102		.reg_ssp = 0x0c,
 103		.reg_cs_ctrl = 0x18,
 104		.reg_capabilities = -1,
 105		.rx_threshold = 64,
 106		.tx_threshold_lo = 160,
 107		.tx_threshold_hi = 224,
 108	},
 109	{	/* LPSS_BYT_SSP */
 110		.offset = 0x400,
 111		.reg_general = 0x08,
 112		.reg_ssp = 0x0c,
 113		.reg_cs_ctrl = 0x18,
 114		.reg_capabilities = -1,
 115		.rx_threshold = 64,
 116		.tx_threshold_lo = 160,
 117		.tx_threshold_hi = 224,
 118	},
 119	{	/* LPSS_BSW_SSP */
 120		.offset = 0x400,
 121		.reg_general = 0x08,
 122		.reg_ssp = 0x0c,
 123		.reg_cs_ctrl = 0x18,
 124		.reg_capabilities = -1,
 125		.rx_threshold = 64,
 126		.tx_threshold_lo = 160,
 127		.tx_threshold_hi = 224,
 128		.cs_sel_shift = 2,
 129		.cs_sel_mask = 1 << 2,
 130		.cs_num = 2,
 131	},
 132	{	/* LPSS_SPT_SSP */
 133		.offset = 0x200,
 134		.reg_general = -1,
 135		.reg_ssp = 0x20,
 136		.reg_cs_ctrl = 0x24,
 137		.reg_capabilities = -1,
 138		.rx_threshold = 1,
 139		.tx_threshold_lo = 32,
 140		.tx_threshold_hi = 56,
 141	},
 142	{	/* LPSS_BXT_SSP */
 143		.offset = 0x200,
 144		.reg_general = -1,
 145		.reg_ssp = 0x20,
 146		.reg_cs_ctrl = 0x24,
 147		.reg_capabilities = 0xfc,
 148		.rx_threshold = 1,
 149		.tx_threshold_lo = 16,
 150		.tx_threshold_hi = 48,
 151		.cs_sel_shift = 8,
 152		.cs_sel_mask = 3 << 8,
 153		.cs_clk_stays_gated = true,
 154	},
 155	{	/* LPSS_CNL_SSP */
 156		.offset = 0x200,
 157		.reg_general = -1,
 158		.reg_ssp = 0x20,
 159		.reg_cs_ctrl = 0x24,
 160		.reg_capabilities = 0xfc,
 161		.rx_threshold = 1,
 162		.tx_threshold_lo = 32,
 163		.tx_threshold_hi = 56,
 164		.cs_sel_shift = 8,
 165		.cs_sel_mask = 3 << 8,
 166		.cs_clk_stays_gated = true,
 167	},
 168};
 169
 170static inline const struct lpss_config
 171*lpss_get_config(const struct driver_data *drv_data)
 172{
 173	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 174}
 175
 176static bool is_lpss_ssp(const struct driver_data *drv_data)
 177{
 178	switch (drv_data->ssp_type) {
 179	case LPSS_LPT_SSP:
 180	case LPSS_BYT_SSP:
 181	case LPSS_BSW_SSP:
 182	case LPSS_SPT_SSP:
 183	case LPSS_BXT_SSP:
 184	case LPSS_CNL_SSP:
 185		return true;
 186	default:
 187		return false;
 188	}
 189}
 190
 191static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 192{
 193	return drv_data->ssp_type == QUARK_X1000_SSP;
 194}
 195
 196static bool is_mmp2_ssp(const struct driver_data *drv_data)
 197{
 198	return drv_data->ssp_type == MMP2_SSP;
 199}
 200
 201static bool is_mrfld_ssp(const struct driver_data *drv_data)
 202{
 203	return drv_data->ssp_type == MRFLD_SSP;
 204}
 205
 206static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
 207{
 208	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
 209		pxa2xx_spi_write(drv_data, reg, value & mask);
 210}
 211
 212static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 213{
 214	switch (drv_data->ssp_type) {
 215	case QUARK_X1000_SSP:
 216		return QUARK_X1000_SSCR1_CHANGE_MASK;
 217	case CE4100_SSP:
 218		return CE4100_SSCR1_CHANGE_MASK;
 219	default:
 220		return SSCR1_CHANGE_MASK;
 221	}
 222}
 223
 224static u32
 225pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 226{
 227	switch (drv_data->ssp_type) {
 228	case QUARK_X1000_SSP:
 229		return RX_THRESH_QUARK_X1000_DFLT;
 230	case CE4100_SSP:
 231		return RX_THRESH_CE4100_DFLT;
 232	default:
 233		return RX_THRESH_DFLT;
 234	}
 235}
 236
 237static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 238{
 239	u32 mask;
 240
 241	switch (drv_data->ssp_type) {
 242	case QUARK_X1000_SSP:
 243		mask = QUARK_X1000_SSSR_TFL_MASK;
 244		break;
 245	case CE4100_SSP:
 246		mask = CE4100_SSSR_TFL_MASK;
 247		break;
 248	default:
 249		mask = SSSR_TFL_MASK;
 250		break;
 251	}
 252
 253	return read_SSSR_bits(drv_data, mask) == mask;
 254}
 255
 256static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 257				     u32 *sccr1_reg)
 258{
 259	u32 mask;
 260
 261	switch (drv_data->ssp_type) {
 262	case QUARK_X1000_SSP:
 263		mask = QUARK_X1000_SSCR1_RFT;
 264		break;
 265	case CE4100_SSP:
 266		mask = CE4100_SSCR1_RFT;
 267		break;
 268	default:
 269		mask = SSCR1_RFT;
 270		break;
 271	}
 272	*sccr1_reg &= ~mask;
 273}
 274
 275static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 276				   u32 *sccr1_reg, u32 threshold)
 277{
 278	switch (drv_data->ssp_type) {
 279	case QUARK_X1000_SSP:
 280		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 281		break;
 282	case CE4100_SSP:
 283		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 284		break;
 285	default:
 286		*sccr1_reg |= SSCR1_RxTresh(threshold);
 287		break;
 288	}
 289}
 290
 291static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 292				  u32 clk_div, u8 bits)
 293{
 294	switch (drv_data->ssp_type) {
 295	case QUARK_X1000_SSP:
 296		return clk_div
 297			| QUARK_X1000_SSCR0_Motorola
 298			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
 
 299	default:
 300		return clk_div
 301			| SSCR0_Motorola
 302			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 
 303			| (bits > 16 ? SSCR0_EDSS : 0);
 304	}
 305}
 306
 307/*
 308 * Read and write LPSS SSP private registers. Caller must first check that
 309 * is_lpss_ssp() returns true before these can be called.
 310 */
 311static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 312{
 313	WARN_ON(!drv_data->lpss_base);
 314	return readl(drv_data->lpss_base + offset);
 315}
 316
 317static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 318				  unsigned offset, u32 value)
 319{
 320	WARN_ON(!drv_data->lpss_base);
 321	writel(value, drv_data->lpss_base + offset);
 322}
 323
 324/*
 325 * lpss_ssp_setup - perform LPSS SSP specific setup
 326 * @drv_data: pointer to the driver private data
 327 *
 328 * Perform LPSS SSP specific setup. This function must be called first if
 329 * one is going to use LPSS SSP private registers.
 330 */
 331static void lpss_ssp_setup(struct driver_data *drv_data)
 332{
 333	const struct lpss_config *config;
 334	u32 value;
 335
 336	config = lpss_get_config(drv_data);
 337	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
 338
 339	/* Enable software chip select control */
 340	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 341	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 342	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 343	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 344
 345	/* Enable multiblock DMA transfers */
 346	if (drv_data->controller_info->enable_dma) {
 347		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 348
 349		if (config->reg_general >= 0) {
 350			value = __lpss_ssp_read_priv(drv_data,
 351						     config->reg_general);
 352			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 353			__lpss_ssp_write_priv(drv_data,
 354					      config->reg_general, value);
 355		}
 356	}
 357}
 358
 359static void lpss_ssp_select_cs(struct spi_device *spi,
 360			       const struct lpss_config *config)
 361{
 362	struct driver_data *drv_data =
 363		spi_controller_get_devdata(spi->controller);
 364	u32 value, cs;
 365
 366	if (!config->cs_sel_mask)
 367		return;
 368
 369	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 370
 371	cs = spi->chip_select;
 372	cs <<= config->cs_sel_shift;
 373	if (cs != (value & config->cs_sel_mask)) {
 374		/*
 375		 * When switching another chip select output active the
 376		 * output must be selected first and wait 2 ssp_clk cycles
 377		 * before changing state to active. Otherwise a short
 378		 * glitch will occur on the previous chip select since
 379		 * output select is latched but state control is not.
 380		 */
 381		value &= ~config->cs_sel_mask;
 382		value |= cs;
 383		__lpss_ssp_write_priv(drv_data,
 384				      config->reg_cs_ctrl, value);
 385		ndelay(1000000000 /
 386		       (drv_data->controller->max_speed_hz / 2));
 387	}
 388}
 389
 390static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 391{
 392	struct driver_data *drv_data =
 393		spi_controller_get_devdata(spi->controller);
 394	const struct lpss_config *config;
 395	u32 value;
 396
 397	config = lpss_get_config(drv_data);
 398
 399	if (enable)
 400		lpss_ssp_select_cs(spi, config);
 401
 402	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 403	if (enable)
 404		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 405	else
 406		value |= LPSS_CS_CONTROL_CS_HIGH;
 407	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 408	if (config->cs_clk_stays_gated) {
 409		u32 clkgate;
 410
 411		/*
 412		 * Changing CS alone when dynamic clock gating is on won't
 413		 * actually flip CS at that time. This ruins SPI transfers
 414		 * that specify delays, or have no data. Toggle the clock mode
 415		 * to force on briefly to poke the CS pin to move.
 416		 */
 417		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
 418		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
 419			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
 420
 421		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
 422		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
 423	}
 424}
 425
 426static void cs_assert(struct spi_device *spi)
 427{
 
 428	struct driver_data *drv_data =
 429		spi_controller_get_devdata(spi->controller);
 430
 431	if (drv_data->ssp_type == CE4100_SSP) {
 432		pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
 
 
 
 
 
 
 
 
 
 
 433		return;
 434	}
 435
 436	if (is_lpss_ssp(drv_data))
 437		lpss_ssp_cs_control(spi, true);
 438}
 439
 440static void cs_deassert(struct spi_device *spi)
 441{
 
 442	struct driver_data *drv_data =
 443		spi_controller_get_devdata(spi->controller);
 444	unsigned long timeout;
 445
 446	if (drv_data->ssp_type == CE4100_SSP)
 447		return;
 448
 449	/* Wait until SSP becomes idle before deasserting the CS */
 450	timeout = jiffies + msecs_to_jiffies(10);
 451	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 452	       !time_after(jiffies, timeout))
 453		cpu_relax();
 454
 
 
 
 
 
 
 
 
 
 
 455	if (is_lpss_ssp(drv_data))
 456		lpss_ssp_cs_control(spi, false);
 457}
 458
 459static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 460{
 461	if (level)
 462		cs_deassert(spi);
 463	else
 464		cs_assert(spi);
 465}
 466
 467int pxa2xx_spi_flush(struct driver_data *drv_data)
 468{
 469	unsigned long limit = loops_per_jiffy << 1;
 470
 471	do {
 472		while (read_SSSR_bits(drv_data, SSSR_RNE))
 473			pxa2xx_spi_read(drv_data, SSDR);
 474	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 475	write_SSSR_CS(drv_data, SSSR_ROR);
 476
 477	return limit;
 478}
 479
 480static void pxa2xx_spi_off(struct driver_data *drv_data)
 481{
 482	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
 483	if (is_mmp2_ssp(drv_data))
 484		return;
 485
 486	pxa_ssp_disable(drv_data->ssp);
 
 487}
 488
 489static int null_writer(struct driver_data *drv_data)
 490{
 491	u8 n_bytes = drv_data->n_bytes;
 492
 493	if (pxa2xx_spi_txfifo_full(drv_data)
 494		|| (drv_data->tx == drv_data->tx_end))
 495		return 0;
 496
 497	pxa2xx_spi_write(drv_data, SSDR, 0);
 498	drv_data->tx += n_bytes;
 499
 500	return 1;
 501}
 502
 503static int null_reader(struct driver_data *drv_data)
 504{
 505	u8 n_bytes = drv_data->n_bytes;
 506
 507	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 508		pxa2xx_spi_read(drv_data, SSDR);
 509		drv_data->rx += n_bytes;
 510	}
 511
 512	return drv_data->rx == drv_data->rx_end;
 513}
 514
 515static int u8_writer(struct driver_data *drv_data)
 516{
 517	if (pxa2xx_spi_txfifo_full(drv_data)
 518		|| (drv_data->tx == drv_data->tx_end))
 519		return 0;
 520
 521	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 522	++drv_data->tx;
 523
 524	return 1;
 525}
 526
 527static int u8_reader(struct driver_data *drv_data)
 528{
 529	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 530		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 531		++drv_data->rx;
 532	}
 533
 534	return drv_data->rx == drv_data->rx_end;
 535}
 536
 537static int u16_writer(struct driver_data *drv_data)
 538{
 539	if (pxa2xx_spi_txfifo_full(drv_data)
 540		|| (drv_data->tx == drv_data->tx_end))
 541		return 0;
 542
 543	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 544	drv_data->tx += 2;
 545
 546	return 1;
 547}
 548
 549static int u16_reader(struct driver_data *drv_data)
 550{
 551	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 552		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 553		drv_data->rx += 2;
 554	}
 555
 556	return drv_data->rx == drv_data->rx_end;
 557}
 558
 559static int u32_writer(struct driver_data *drv_data)
 560{
 561	if (pxa2xx_spi_txfifo_full(drv_data)
 562		|| (drv_data->tx == drv_data->tx_end))
 563		return 0;
 564
 565	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 566	drv_data->tx += 4;
 567
 568	return 1;
 569}
 570
 571static int u32_reader(struct driver_data *drv_data)
 572{
 573	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 574		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 575		drv_data->rx += 4;
 576	}
 577
 578	return drv_data->rx == drv_data->rx_end;
 579}
 580
 581static void reset_sccr1(struct driver_data *drv_data)
 582{
 583	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
 584	struct chip_data *chip;
 585
 586	if (drv_data->controller->cur_msg) {
 587		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
 588		threshold = chip->threshold;
 589	} else {
 590		threshold = 0;
 591	}
 592
 
 593	switch (drv_data->ssp_type) {
 594	case QUARK_X1000_SSP:
 595		mask |= QUARK_X1000_SSCR1_RFT;
 596		break;
 597	case CE4100_SSP:
 598		mask |= CE4100_SSCR1_RFT;
 599		break;
 600	default:
 601		mask |= SSCR1_RFT;
 602		break;
 603	}
 604
 605	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
 606}
 607
 608static void int_stop_and_reset(struct driver_data *drv_data)
 609{
 610	/* Clear and disable interrupts */
 611	write_SSSR_CS(drv_data, drv_data->clear_sr);
 612	reset_sccr1(drv_data);
 613	if (pxa25x_ssp_comp(drv_data))
 614		return;
 615
 616	pxa2xx_spi_write(drv_data, SSTO, 0);
 617}
 618
 619static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
 620{
 621	int_stop_and_reset(drv_data);
 622	pxa2xx_spi_flush(drv_data);
 623	pxa2xx_spi_off(drv_data);
 624
 625	dev_err(drv_data->ssp->dev, "%s\n", msg);
 626
 627	drv_data->controller->cur_msg->status = err;
 628	spi_finalize_current_transfer(drv_data->controller);
 629}
 630
 631static void int_transfer_complete(struct driver_data *drv_data)
 632{
 633	int_stop_and_reset(drv_data);
 
 
 
 
 634
 635	spi_finalize_current_transfer(drv_data->controller);
 636}
 637
 638static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 639{
 640	u32 irq_status;
 
 641
 642	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
 643	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
 644		irq_status &= ~SSSR_TFS;
 645
 646	if (irq_status & SSSR_ROR) {
 647		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
 648		return IRQ_HANDLED;
 649	}
 650
 651	if (irq_status & SSSR_TUR) {
 652		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
 653		return IRQ_HANDLED;
 654	}
 655
 656	if (irq_status & SSSR_TINT) {
 657		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 658		if (drv_data->read(drv_data)) {
 659			int_transfer_complete(drv_data);
 660			return IRQ_HANDLED;
 661		}
 662	}
 663
 664	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
 665	do {
 666		if (drv_data->read(drv_data)) {
 667			int_transfer_complete(drv_data);
 668			return IRQ_HANDLED;
 669		}
 670	} while (drv_data->write(drv_data));
 671
 672	if (drv_data->read(drv_data)) {
 673		int_transfer_complete(drv_data);
 674		return IRQ_HANDLED;
 675	}
 676
 677	if (drv_data->tx == drv_data->tx_end) {
 678		u32 bytes_left;
 679		u32 sccr1_reg;
 680
 681		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 682		sccr1_reg &= ~SSCR1_TIE;
 683
 684		/*
 685		 * PXA25x_SSP has no timeout, set up Rx threshold for
 686		 * the remaining Rx bytes.
 687		 */
 688		if (pxa25x_ssp_comp(drv_data)) {
 689			u32 rx_thre;
 690
 691			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 692
 693			bytes_left = drv_data->rx_end - drv_data->rx;
 694			switch (drv_data->n_bytes) {
 695			case 4:
 696				bytes_left >>= 2;
 697				break;
 698			case 2:
 699				bytes_left >>= 1;
 700				break;
 701			}
 702
 703			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 704			if (rx_thre > bytes_left)
 705				rx_thre = bytes_left;
 706
 707			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 708		}
 709		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 710	}
 711
 712	/* We did something */
 713	return IRQ_HANDLED;
 714}
 715
 716static void handle_bad_msg(struct driver_data *drv_data)
 717{
 718	int_stop_and_reset(drv_data);
 719	pxa2xx_spi_off(drv_data);
 
 
 
 
 
 720
 721	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
 
 722}
 723
 724static irqreturn_t ssp_int(int irq, void *dev_id)
 725{
 726	struct driver_data *drv_data = dev_id;
 727	u32 sccr1_reg;
 728	u32 mask = drv_data->mask_sr;
 729	u32 status;
 730
 731	/*
 732	 * The IRQ might be shared with other peripherals so we must first
 733	 * check that are we RPM suspended or not. If we are we assume that
 734	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 735	 * interrupt is enabled).
 736	 */
 737	if (pm_runtime_suspended(drv_data->ssp->dev))
 738		return IRQ_NONE;
 739
 740	/*
 741	 * If the device is not yet in RPM suspended state and we get an
 742	 * interrupt that is meant for another device, check if status bits
 743	 * are all set to one. That means that the device is already
 744	 * powered off.
 745	 */
 746	status = pxa2xx_spi_read(drv_data, SSSR);
 747	if (status == ~0)
 748		return IRQ_NONE;
 749
 750	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 751
 752	/* Ignore possible writes if we don't need to write */
 753	if (!(sccr1_reg & SSCR1_TIE))
 754		mask &= ~SSSR_TFS;
 755
 756	/* Ignore RX timeout interrupt if it is disabled */
 757	if (!(sccr1_reg & SSCR1_TINTE))
 758		mask &= ~SSSR_TINT;
 759
 760	if (!(status & mask))
 761		return IRQ_NONE;
 762
 763	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 764	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 765
 766	if (!drv_data->controller->cur_msg) {
 767		handle_bad_msg(drv_data);
 768		/* Never fail */
 769		return IRQ_HANDLED;
 770	}
 771
 772	return drv_data->transfer_handler(drv_data);
 773}
 774
 775/*
 776 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 777 * input frequency by fractions of 2^24. It also has a divider by 5.
 778 *
 779 * There are formulas to get baud rate value for given input frequency and
 780 * divider parameters, such as DDS_CLK_RATE and SCR:
 781 *
 782 * Fsys = 200MHz
 783 *
 784 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 785 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 786 *
 787 * DDS_CLK_RATE either 2^n or 2^n / 5.
 788 * SCR is in range 0 .. 255
 789 *
 790 * Divisor = 5^i * 2^j * 2 * k
 791 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 792 *       j = [0, 23]     j = 0 iff i = 1
 793 *       k = [1, 256]
 794 * Special case: j = 0, i = 1: Divisor = 2 / 5
 795 *
 796 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 797 * are:
 798 *	Case 1:		2^n, n = [0, 23]
 799 *	Case 2:		2^24 * 2 / 5 (0x666666)
 800 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 801 *
 802 * In all cases the lowest possible value is better.
 803 *
 804 * The function calculates parameters for all cases and chooses the one closest
 805 * to the asked baud rate.
 806 */
 807static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 808{
 809	unsigned long xtal = 200000000;
 810	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 811						   see (2) */
 812						/* case 3 */
 813	unsigned long fref1 = fref / 2;		/* case 1 */
 814	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 815	unsigned long scale;
 816	unsigned long q, q1, q2;
 817	long r, r1, r2;
 818	u32 mul;
 819
 820	/* Case 1 */
 821
 822	/* Set initial value for DDS_CLK_RATE */
 823	mul = (1 << 24) >> 1;
 824
 825	/* Calculate initial quot */
 826	q1 = DIV_ROUND_UP(fref1, rate);
 827
 828	/* Scale q1 if it's too big */
 829	if (q1 > 256) {
 830		/* Scale q1 to range [1, 512] */
 831		scale = fls_long(q1 - 1);
 832		if (scale > 9) {
 833			q1 >>= scale - 9;
 834			mul >>= scale - 9;
 835		}
 836
 837		/* Round the result if we have a remainder */
 838		q1 += q1 & 1;
 839	}
 840
 841	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 842	scale = __ffs(q1);
 843	q1 >>= scale;
 844	mul >>= scale;
 845
 846	/* Get the remainder */
 847	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 848
 849	/* Case 2 */
 850
 851	q2 = DIV_ROUND_UP(fref2, rate);
 852	r2 = abs(fref2 / q2 - rate);
 853
 854	/*
 855	 * Choose the best between two: less remainder we have the better. We
 856	 * can't go case 2 if q2 is greater than 256 since SCR register can
 857	 * hold only values 0 .. 255.
 858	 */
 859	if (r2 >= r1 || q2 > 256) {
 860		/* case 1 is better */
 861		r = r1;
 862		q = q1;
 863	} else {
 864		/* case 2 is better */
 865		r = r2;
 866		q = q2;
 867		mul = (1 << 24) * 2 / 5;
 868	}
 869
 870	/* Check case 3 only if the divisor is big enough */
 871	if (fref / rate >= 80) {
 872		u64 fssp;
 873		u32 m;
 874
 875		/* Calculate initial quot */
 876		q1 = DIV_ROUND_UP(fref, rate);
 877		m = (1 << 24) / q1;
 878
 879		/* Get the remainder */
 880		fssp = (u64)fref * m;
 881		do_div(fssp, 1 << 24);
 882		r1 = abs(fssp - rate);
 883
 884		/* Choose this one if it suits better */
 885		if (r1 < r) {
 886			/* case 3 is better */
 887			q = 1;
 888			mul = m;
 889		}
 890	}
 891
 892	*dds = mul;
 893	return q - 1;
 894}
 895
 896static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 897{
 898	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
 899	const struct ssp_device *ssp = drv_data->ssp;
 900
 901	rate = min_t(int, ssp_clk, rate);
 902
 903	/*
 904	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
 905	 * that the SSP transmission rate can be greater than the device rate.
 906	 */
 907	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 908		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
 909	else
 910		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
 911}
 912
 913static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 914					   int rate)
 915{
 916	struct chip_data *chip =
 917		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 918	unsigned int clk_div;
 919
 920	switch (drv_data->ssp_type) {
 921	case QUARK_X1000_SSP:
 922		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 923		break;
 924	default:
 925		clk_div = ssp_get_clk_div(drv_data, rate);
 926		break;
 927	}
 928	return clk_div << 8;
 929}
 930
 931static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
 932			       struct spi_device *spi,
 933			       struct spi_transfer *xfer)
 934{
 935	struct chip_data *chip = spi_get_ctldata(spi);
 936
 937	return chip->enable_dma &&
 938	       xfer->len <= MAX_DMA_LEN &&
 939	       xfer->len >= chip->dma_burst_size;
 940}
 941
 942static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
 943				   struct spi_device *spi,
 944				   struct spi_transfer *transfer)
 945{
 946	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 947	struct spi_message *message = controller->cur_msg;
 948	struct chip_data *chip = spi_get_ctldata(spi);
 949	u32 dma_thresh = chip->dma_threshold;
 950	u32 dma_burst = chip->dma_burst_size;
 951	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 952	u32 clk_div;
 953	u8 bits;
 954	u32 speed;
 955	u32 cr0;
 956	u32 cr1;
 957	int err;
 958	int dma_mapped;
 959
 960	/* Check if we can DMA this transfer */
 961	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 962
 963		/* Reject already-mapped transfers; PIO won't always work */
 964		if (message->is_dma_mapped
 965				|| transfer->rx_dma || transfer->tx_dma) {
 966			dev_err(&spi->dev,
 967				"Mapped transfer length of %u is greater than %d\n",
 968				transfer->len, MAX_DMA_LEN);
 969			return -EINVAL;
 970		}
 971
 972		/* Warn ... we force this to PIO mode */
 973		dev_warn_ratelimited(&spi->dev,
 974				     "DMA disabled for transfer length %u greater than %d\n",
 975				     transfer->len, MAX_DMA_LEN);
 976	}
 977
 978	/* Setup the transfer state based on the type of transfer */
 979	if (pxa2xx_spi_flush(drv_data) == 0) {
 980		dev_err(&spi->dev, "Flush failed\n");
 981		return -EIO;
 982	}
 
 983	drv_data->tx = (void *)transfer->tx_buf;
 984	drv_data->tx_end = drv_data->tx + transfer->len;
 985	drv_data->rx = transfer->rx_buf;
 986	drv_data->rx_end = drv_data->rx + transfer->len;
 
 
 987
 988	/* Change speed and bit per word on a per transfer */
 989	bits = transfer->bits_per_word;
 990	speed = transfer->speed_hz;
 991
 992	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
 993
 994	if (bits <= 8) {
 995		drv_data->n_bytes = 1;
 996		drv_data->read = drv_data->rx ? u8_reader : null_reader;
 997		drv_data->write = drv_data->tx ? u8_writer : null_writer;
 
 
 998	} else if (bits <= 16) {
 999		drv_data->n_bytes = 2;
1000		drv_data->read = drv_data->rx ? u16_reader : null_reader;
1001		drv_data->write = drv_data->tx ? u16_writer : null_writer;
 
 
1002	} else if (bits <= 32) {
1003		drv_data->n_bytes = 4;
1004		drv_data->read = drv_data->rx ? u32_reader : null_reader;
1005		drv_data->write = drv_data->tx ? u32_writer : null_writer;
 
 
1006	}
1007	/*
1008	 * If bits per word is changed in DMA mode, then must check
1009	 * the thresholds and burst also.
1010	 */
1011	if (chip->enable_dma) {
1012		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1013						spi,
1014						bits, &dma_burst,
1015						&dma_thresh))
1016			dev_warn_ratelimited(&spi->dev,
1017					     "DMA burst size reduced to match bits_per_word\n");
1018	}
1019
1020	dma_mapped = controller->can_dma &&
1021		     controller->can_dma(controller, spi, transfer) &&
1022		     controller->cur_msg_mapped;
1023	if (dma_mapped) {
1024
1025		/* Ensure we have the correct interrupt handler */
1026		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1027
1028		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1029		if (err)
1030			return err;
1031
1032		/* Clear status and start DMA engine */
1033		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1034		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1035
1036		pxa2xx_spi_dma_start(drv_data);
1037	} else {
1038		/* Ensure we have the correct interrupt handler	*/
1039		drv_data->transfer_handler = interrupt_transfer;
1040
1041		/* Clear status  */
1042		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1043		write_SSSR_CS(drv_data, drv_data->clear_sr);
1044	}
1045
1046	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1047	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1048	if (!pxa25x_ssp_comp(drv_data))
1049		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1050			controller->max_speed_hz
1051				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1052			dma_mapped ? "DMA" : "PIO");
1053	else
1054		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1055			controller->max_speed_hz / 2
1056				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1057			dma_mapped ? "DMA" : "PIO");
1058
1059	if (is_lpss_ssp(drv_data)) {
1060		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1061		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1062	}
1063
1064	if (is_mrfld_ssp(drv_data)) {
1065		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1066		u32 thresh = 0;
1067
1068		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1069		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1070
1071		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
 
 
1072	}
1073
1074	if (is_quark_x1000_ssp(drv_data))
1075		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1076
1077	/* Stop the SSP */
1078	if (!is_mmp2_ssp(drv_data))
1079		pxa_ssp_disable(drv_data->ssp);
1080
1081	if (!pxa25x_ssp_comp(drv_data))
1082		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1083
1084	/* First set CR1 without interrupt and service enables */
1085	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1086
1087	/* See if we need to reload the configuration registers */
1088	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1089
1090	/* Restart the SSP */
1091	pxa_ssp_enable(drv_data->ssp);
1092
1093	if (is_mmp2_ssp(drv_data)) {
1094		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
 
1095
1096		if (tx_level) {
1097			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1098			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
 
1099			if (tx_level > transfer->len)
1100				tx_level = transfer->len;
1101			drv_data->tx += tx_level;
1102		}
1103	}
1104
1105	if (spi_controller_is_slave(controller)) {
1106		while (drv_data->write(drv_data))
1107			;
1108		if (drv_data->gpiod_ready) {
1109			gpiod_set_value(drv_data->gpiod_ready, 1);
1110			udelay(1);
1111			gpiod_set_value(drv_data->gpiod_ready, 0);
1112		}
1113	}
1114
1115	/*
1116	 * Release the data by enabling service requests and interrupts,
1117	 * without changing any mode bits.
1118	 */
1119	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1120
1121	return 1;
1122}
1123
1124static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1125{
1126	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1127
1128	int_error_stop(drv_data, "transfer aborted", -EINTR);
 
 
 
 
 
 
 
 
 
 
 
1129
1130	return 0;
1131}
1132
1133static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1134				 struct spi_message *msg)
1135{
1136	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1137
1138	int_stop_and_reset(drv_data);
1139
1140	/* Disable the SSP */
1141	pxa2xx_spi_off(drv_data);
 
 
 
 
 
 
 
1142
1143	/*
1144	 * Stop the DMA if running. Note DMA callback handler may have unset
1145	 * the dma_running already, which is fine as stopping is not needed
1146	 * then but we shouldn't rely this flag for anything else than
1147	 * stopping. For instance to differentiate between PIO and DMA
1148	 * transfers.
1149	 */
1150	if (atomic_read(&drv_data->dma_running))
1151		pxa2xx_spi_dma_stop(drv_data);
1152}
1153
1154static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1155{
1156	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1157
1158	/* Disable the SSP now */
1159	pxa2xx_spi_off(drv_data);
1160
1161	return 0;
1162}
1163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164static int setup(struct spi_device *spi)
1165{
1166	struct pxa2xx_spi_chip *chip_info;
1167	struct chip_data *chip;
1168	const struct lpss_config *config;
1169	struct driver_data *drv_data =
1170		spi_controller_get_devdata(spi->controller);
1171	uint tx_thres, tx_hi_thres, rx_thres;
1172
1173	switch (drv_data->ssp_type) {
1174	case QUARK_X1000_SSP:
1175		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1176		tx_hi_thres = 0;
1177		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1178		break;
1179	case MRFLD_SSP:
1180		tx_thres = TX_THRESH_MRFLD_DFLT;
1181		tx_hi_thres = 0;
1182		rx_thres = RX_THRESH_MRFLD_DFLT;
1183		break;
1184	case CE4100_SSP:
1185		tx_thres = TX_THRESH_CE4100_DFLT;
1186		tx_hi_thres = 0;
1187		rx_thres = RX_THRESH_CE4100_DFLT;
1188		break;
1189	case LPSS_LPT_SSP:
1190	case LPSS_BYT_SSP:
1191	case LPSS_BSW_SSP:
1192	case LPSS_SPT_SSP:
1193	case LPSS_BXT_SSP:
1194	case LPSS_CNL_SSP:
1195		config = lpss_get_config(drv_data);
1196		tx_thres = config->tx_threshold_lo;
1197		tx_hi_thres = config->tx_threshold_hi;
1198		rx_thres = config->rx_threshold;
1199		break;
1200	default:
1201		tx_hi_thres = 0;
1202		if (spi_controller_is_slave(drv_data->controller)) {
1203			tx_thres = 1;
1204			rx_thres = 2;
1205		} else {
1206			tx_thres = TX_THRESH_DFLT;
1207			rx_thres = RX_THRESH_DFLT;
1208		}
1209		break;
1210	}
1211
1212	/* Only allocate on the first setup */
1213	chip = spi_get_ctldata(spi);
1214	if (!chip) {
1215		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1216		if (!chip)
1217			return -ENOMEM;
1218
1219		if (drv_data->ssp_type == CE4100_SSP) {
1220			if (spi->chip_select > 4) {
1221				dev_err(&spi->dev,
1222					"failed setup: cs number must not be > 4.\n");
1223				kfree(chip);
1224				return -EINVAL;
1225			}
 
 
1226		}
1227		chip->enable_dma = drv_data->controller_info->enable_dma;
1228		chip->timeout = TIMOUT_DFLT;
1229	}
1230
1231	/*
1232	 * Protocol drivers may change the chip settings, so...
1233	 * if chip_info exists, use it.
1234	 */
1235	chip_info = spi->controller_data;
1236
1237	/* chip_info isn't always needed */
 
1238	if (chip_info) {
1239		if (chip_info->timeout)
1240			chip->timeout = chip_info->timeout;
1241		if (chip_info->tx_threshold)
1242			tx_thres = chip_info->tx_threshold;
1243		if (chip_info->tx_hi_threshold)
1244			tx_hi_thres = chip_info->tx_hi_threshold;
1245		if (chip_info->rx_threshold)
1246			rx_thres = chip_info->rx_threshold;
1247		chip->dma_threshold = 0;
 
 
1248	}
1249
1250	chip->cr1 = 0;
1251	if (spi_controller_is_slave(drv_data->controller)) {
1252		chip->cr1 |= SSCR1_SCFR;
1253		chip->cr1 |= SSCR1_SCLKDIR;
1254		chip->cr1 |= SSCR1_SFRMDIR;
1255		chip->cr1 |= SSCR1_SPH;
1256	}
1257
1258	if (is_lpss_ssp(drv_data)) {
1259		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1260		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1261					  SSITF_TxHiThresh(tx_hi_thres);
1262	}
1263
1264	if (is_mrfld_ssp(drv_data)) {
1265		chip->lpss_rx_threshold = rx_thres;
1266		chip->lpss_tx_threshold = tx_thres;
1267	}
1268
1269	/*
1270	 * Set DMA burst and threshold outside of chip_info path so that if
1271	 * chip_info goes away after setting chip->enable_dma, the burst and
1272	 * threshold can still respond to changes in bits_per_word.
1273	 */
1274	if (chip->enable_dma) {
1275		/* Set up legal burst and threshold for DMA */
1276		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1277						spi->bits_per_word,
1278						&chip->dma_burst_size,
1279						&chip->dma_threshold)) {
1280			dev_warn(&spi->dev,
1281				 "in setup: DMA burst size reduced to match bits_per_word\n");
1282		}
1283		dev_dbg(&spi->dev,
1284			"in setup: DMA burst size set to %u\n",
1285			chip->dma_burst_size);
1286	}
1287
1288	switch (drv_data->ssp_type) {
1289	case QUARK_X1000_SSP:
1290		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1291				   & QUARK_X1000_SSCR1_RFT)
1292				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1293				   & QUARK_X1000_SSCR1_TFT);
1294		break;
1295	case CE4100_SSP:
1296		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1297			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1298		break;
1299	default:
1300		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1301			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1302		break;
1303	}
1304
1305	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1306	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1307		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1308
1309	if (spi->mode & SPI_LOOP)
1310		chip->cr1 |= SSCR1_LBM;
1311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312	spi_set_ctldata(spi, chip);
1313
1314	return 0;
 
 
 
1315}
1316
1317static void cleanup(struct spi_device *spi)
1318{
1319	struct chip_data *chip = spi_get_ctldata(spi);
 
 
 
 
 
 
 
 
 
1320
1321	kfree(chip);
1322}
1323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1325{
1326	return param == chan->device->dev;
1327}
1328
 
 
1329static struct pxa2xx_spi_controller *
1330pxa2xx_spi_init_pdata(struct platform_device *pdev)
1331{
1332	struct pxa2xx_spi_controller *pdata;
1333	struct device *dev = &pdev->dev;
1334	struct device *parent = dev->parent;
1335	struct ssp_device *ssp;
1336	struct resource *res;
1337	enum pxa_ssp_type type = SSP_UNDEFINED;
 
 
 
1338	const void *match;
1339	bool is_lpss_priv;
1340	int status;
1341	u64 uid;
1342
1343	is_lpss_priv = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpss_priv");
 
1344
1345	match = device_get_match_data(dev);
1346	if (match)
1347		type = (enum pxa_ssp_type)match;
1348	else if (is_lpss_priv) {
1349		u32 value;
1350
1351		status = device_property_read_u32(dev, "intel,spi-pxa2xx-type", &value);
1352		if (status)
1353			return ERR_PTR(status);
1354
1355		type = (enum pxa_ssp_type)value;
1356	}
1357
1358	/* Validate the SSP type correctness */
1359	if (!(type > SSP_UNDEFINED && type < SSP_MAX))
1360		return ERR_PTR(-EINVAL);
1361
1362	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1363	if (!pdata)
1364		return ERR_PTR(-ENOMEM);
1365
1366	ssp = &pdata->ssp;
1367
1368	ssp->mmio_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
 
1369	if (IS_ERR(ssp->mmio_base))
1370		return ERR_CAST(ssp->mmio_base);
1371
1372	ssp->phys_base = res->start;
1373
1374	/* Platforms with iDMA 64-bit */
1375	if (is_lpss_priv) {
1376		pdata->tx_param = parent;
1377		pdata->rx_param = parent;
1378		pdata->dma_filter = pxa2xx_spi_idma_filter;
1379	}
 
1380
1381	ssp->clk = devm_clk_get(dev, NULL);
1382	if (IS_ERR(ssp->clk))
1383		return ERR_CAST(ssp->clk);
1384
1385	ssp->irq = platform_get_irq(pdev, 0);
1386	if (ssp->irq < 0)
1387		return ERR_PTR(ssp->irq);
1388
1389	ssp->type = type;
1390	ssp->dev = dev;
 
1391
1392	status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid);
1393	if (status)
1394		ssp->port_id = -1;
1395	else
1396		ssp->port_id = uid;
1397
1398	pdata->is_slave = device_property_read_bool(dev, "spi-slave");
1399	pdata->num_chipselect = 1;
1400	pdata->enable_dma = true;
1401	pdata->dma_burst_size = 1;
1402
1403	return pdata;
1404}
1405
1406static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1407				      unsigned int cs)
1408{
1409	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1410
1411	if (has_acpi_companion(drv_data->ssp->dev)) {
1412		switch (drv_data->ssp_type) {
1413		/*
1414		 * For Atoms the ACPI DeviceSelection used by the Windows
1415		 * driver starts from 1 instead of 0 so translate it here
1416		 * to match what Linux expects.
1417		 */
1418		case LPSS_BYT_SSP:
1419		case LPSS_BSW_SSP:
1420			return cs - 1;
1421
1422		default:
1423			break;
1424		}
1425	}
1426
1427	return cs;
1428}
1429
1430static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1431{
1432	return MAX_DMA_LEN;
1433}
1434
1435static int pxa2xx_spi_probe(struct platform_device *pdev)
1436{
1437	struct device *dev = &pdev->dev;
1438	struct pxa2xx_spi_controller *platform_info;
1439	struct spi_controller *controller;
1440	struct driver_data *drv_data;
1441	struct ssp_device *ssp;
1442	const struct lpss_config *config;
1443	int status;
1444	u32 tmp;
1445
1446	platform_info = dev_get_platdata(dev);
1447	if (!platform_info) {
1448		platform_info = pxa2xx_spi_init_pdata(pdev);
1449		if (IS_ERR(platform_info)) {
1450			dev_err(&pdev->dev, "missing platform data\n");
1451			return PTR_ERR(platform_info);
1452		}
1453	}
1454
1455	ssp = pxa_ssp_request(pdev->id, pdev->name);
1456	if (!ssp)
1457		ssp = &platform_info->ssp;
1458
1459	if (!ssp->mmio_base) {
1460		dev_err(&pdev->dev, "failed to get SSP\n");
1461		return -ENODEV;
1462	}
1463
1464	if (platform_info->is_slave)
1465		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1466	else
1467		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1468
1469	if (!controller) {
1470		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1471		status = -ENOMEM;
1472		goto out_error_controller_alloc;
1473	}
1474	drv_data = spi_controller_get_devdata(controller);
1475	drv_data->controller = controller;
1476	drv_data->controller_info = platform_info;
 
1477	drv_data->ssp = ssp;
1478
1479	device_set_node(&controller->dev, dev_fwnode(dev));
1480
1481	/* The spi->mode bits understood by this driver: */
1482	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1483
1484	controller->bus_num = ssp->port_id;
1485	controller->dma_alignment = DMA_ALIGNMENT;
1486	controller->cleanup = cleanup;
1487	controller->setup = setup;
1488	controller->set_cs = pxa2xx_spi_set_cs;
1489	controller->transfer_one = pxa2xx_spi_transfer_one;
1490	controller->slave_abort = pxa2xx_spi_slave_abort;
1491	controller->handle_err = pxa2xx_spi_handle_err;
1492	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1493	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1494	controller->auto_runtime_pm = true;
1495	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1496
1497	drv_data->ssp_type = ssp->type;
1498
 
 
1499	if (pxa25x_ssp_comp(drv_data)) {
1500		switch (drv_data->ssp_type) {
1501		case QUARK_X1000_SSP:
1502			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1503			break;
1504		default:
1505			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1506			break;
1507		}
1508
1509		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1510		drv_data->dma_cr1 = 0;
1511		drv_data->clear_sr = SSSR_ROR;
1512		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1513	} else {
1514		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1515		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1516		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1517		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1518		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1519						| SSSR_ROR | SSSR_TUR;
1520	}
1521
1522	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1523			drv_data);
1524	if (status < 0) {
1525		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1526		goto out_error_controller_alloc;
1527	}
1528
1529	/* Setup DMA if requested */
1530	if (platform_info->enable_dma) {
1531		status = pxa2xx_spi_dma_setup(drv_data);
1532		if (status) {
1533			dev_warn(dev, "no DMA channels available, using PIO\n");
1534			platform_info->enable_dma = false;
1535		} else {
1536			controller->can_dma = pxa2xx_spi_can_dma;
1537			controller->max_dma_len = MAX_DMA_LEN;
1538			controller->max_transfer_size =
1539				pxa2xx_spi_max_dma_transfer_size;
1540		}
1541	}
1542
1543	/* Enable SOC clock */
1544	status = clk_prepare_enable(ssp->clk);
1545	if (status)
1546		goto out_error_dma_irq_alloc;
1547
1548	controller->max_speed_hz = clk_get_rate(ssp->clk);
1549	/*
1550	 * Set minimum speed for all other platforms than Intel Quark which is
1551	 * able do under 1 Hz transfers.
1552	 */
1553	if (!pxa25x_ssp_comp(drv_data))
1554		controller->min_speed_hz =
1555			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1556	else if (!is_quark_x1000_ssp(drv_data))
1557		controller->min_speed_hz =
1558			DIV_ROUND_UP(controller->max_speed_hz, 512);
1559
1560	pxa_ssp_disable(ssp);
1561
1562	/* Load default SSP configuration */
 
1563	switch (drv_data->ssp_type) {
1564	case QUARK_X1000_SSP:
1565		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1566		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1567		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1568
1569		/* Using the Motorola SPI protocol and use 8 bit frame */
1570		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1571		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1572		break;
1573	case CE4100_SSP:
1574		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1575		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1576		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1577		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1578		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1579		break;
1580	default:
1581
1582		if (spi_controller_is_slave(controller)) {
1583			tmp = SSCR1_SCFR |
1584			      SSCR1_SCLKDIR |
1585			      SSCR1_SFRMDIR |
1586			      SSCR1_RxTresh(2) |
1587			      SSCR1_TxTresh(1) |
1588			      SSCR1_SPH;
1589		} else {
1590			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1591			      SSCR1_TxTresh(TX_THRESH_DFLT);
1592		}
1593		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1594		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1595		if (!spi_controller_is_slave(controller))
1596			tmp |= SSCR0_SCR(2);
1597		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1598		break;
1599	}
1600
1601	if (!pxa25x_ssp_comp(drv_data))
1602		pxa2xx_spi_write(drv_data, SSTO, 0);
1603
1604	if (!is_quark_x1000_ssp(drv_data))
1605		pxa2xx_spi_write(drv_data, SSPSP, 0);
1606
1607	if (is_lpss_ssp(drv_data)) {
1608		lpss_ssp_setup(drv_data);
1609		config = lpss_get_config(drv_data);
1610		if (config->reg_capabilities >= 0) {
1611			tmp = __lpss_ssp_read_priv(drv_data,
1612						   config->reg_capabilities);
1613			tmp &= LPSS_CAPS_CS_EN_MASK;
1614			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1615			platform_info->num_chipselect = ffz(tmp);
1616		} else if (config->cs_num) {
1617			platform_info->num_chipselect = config->cs_num;
1618		}
1619	}
1620	controller->num_chipselect = platform_info->num_chipselect;
1621	controller->use_gpio_descriptors = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1622
1623	if (platform_info->is_slave) {
1624		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1625						"ready", GPIOD_OUT_LOW);
1626		if (IS_ERR(drv_data->gpiod_ready)) {
1627			status = PTR_ERR(drv_data->gpiod_ready);
1628			goto out_error_clock_enabled;
1629		}
1630	}
1631
1632	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1633	pm_runtime_use_autosuspend(&pdev->dev);
1634	pm_runtime_set_active(&pdev->dev);
1635	pm_runtime_enable(&pdev->dev);
1636
1637	/* Register with the SPI framework */
1638	platform_set_drvdata(pdev, drv_data);
1639	status = spi_register_controller(controller);
1640	if (status) {
1641		dev_err(&pdev->dev, "problem registering SPI controller\n");
1642		goto out_error_pm_runtime_enabled;
1643	}
1644
1645	return status;
1646
1647out_error_pm_runtime_enabled:
1648	pm_runtime_disable(&pdev->dev);
1649
1650out_error_clock_enabled:
1651	clk_disable_unprepare(ssp->clk);
1652
1653out_error_dma_irq_alloc:
1654	pxa2xx_spi_dma_release(drv_data);
1655	free_irq(ssp->irq, drv_data);
1656
1657out_error_controller_alloc:
 
1658	pxa_ssp_free(ssp);
1659	return status;
1660}
1661
1662static int pxa2xx_spi_remove(struct platform_device *pdev)
1663{
1664	struct driver_data *drv_data = platform_get_drvdata(pdev);
1665	struct ssp_device *ssp = drv_data->ssp;
1666
1667	pm_runtime_get_sync(&pdev->dev);
1668
1669	spi_unregister_controller(drv_data->controller);
1670
1671	/* Disable the SSP at the peripheral and SOC level */
1672	pxa_ssp_disable(ssp);
1673	clk_disable_unprepare(ssp->clk);
1674
1675	/* Release DMA */
1676	if (drv_data->controller_info->enable_dma)
1677		pxa2xx_spi_dma_release(drv_data);
1678
1679	pm_runtime_put_noidle(&pdev->dev);
1680	pm_runtime_disable(&pdev->dev);
1681
1682	/* Release IRQ */
1683	free_irq(ssp->irq, drv_data);
1684
1685	/* Release SSP */
1686	pxa_ssp_free(ssp);
1687
1688	return 0;
1689}
1690
 
1691static int pxa2xx_spi_suspend(struct device *dev)
1692{
1693	struct driver_data *drv_data = dev_get_drvdata(dev);
1694	struct ssp_device *ssp = drv_data->ssp;
1695	int status;
1696
1697	status = spi_controller_suspend(drv_data->controller);
1698	if (status)
1699		return status;
1700
1701	pxa_ssp_disable(ssp);
1702
1703	if (!pm_runtime_suspended(dev))
1704		clk_disable_unprepare(ssp->clk);
1705
1706	return 0;
1707}
1708
1709static int pxa2xx_spi_resume(struct device *dev)
1710{
1711	struct driver_data *drv_data = dev_get_drvdata(dev);
1712	struct ssp_device *ssp = drv_data->ssp;
1713	int status;
1714
1715	/* Enable the SSP clock */
1716	if (!pm_runtime_suspended(dev)) {
1717		status = clk_prepare_enable(ssp->clk);
1718		if (status)
1719			return status;
1720	}
1721
1722	/* Start the queue running */
1723	return spi_controller_resume(drv_data->controller);
1724}
 
1725
 
1726static int pxa2xx_spi_runtime_suspend(struct device *dev)
1727{
1728	struct driver_data *drv_data = dev_get_drvdata(dev);
1729
1730	clk_disable_unprepare(drv_data->ssp->clk);
1731	return 0;
1732}
1733
1734static int pxa2xx_spi_runtime_resume(struct device *dev)
1735{
1736	struct driver_data *drv_data = dev_get_drvdata(dev);
 
1737
1738	return clk_prepare_enable(drv_data->ssp->clk);
 
1739}
1740
1741static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1742	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1743	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
1744};
1745
1746#ifdef CONFIG_ACPI
1747static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1748	{ "80860F0E", LPSS_BYT_SSP },
1749	{ "8086228E", LPSS_BSW_SSP },
1750	{ "INT33C0", LPSS_LPT_SSP },
1751	{ "INT33C1", LPSS_LPT_SSP },
1752	{ "INT3430", LPSS_LPT_SSP },
1753	{ "INT3431", LPSS_LPT_SSP },
1754	{}
1755};
1756MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1757#endif
1758
1759static const struct of_device_id pxa2xx_spi_of_match[] = {
1760	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1761	{}
 
1762};
1763MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1764
1765static struct platform_driver driver = {
1766	.driver = {
1767		.name	= "pxa2xx-spi",
1768		.pm	= pm_ptr(&pxa2xx_spi_pm_ops),
1769		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1770		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1771	},
1772	.probe = pxa2xx_spi_probe,
1773	.remove = pxa2xx_spi_remove,
1774};
1775
1776static int __init pxa2xx_spi_init(void)
1777{
1778	return platform_driver_register(&driver);
1779}
1780subsys_initcall(pxa2xx_spi_init);
1781
1782static void __exit pxa2xx_spi_exit(void)
1783{
1784	platform_driver_unregister(&driver);
1785}
1786module_exit(pxa2xx_spi_exit);
1787
1788MODULE_SOFTDEP("pre: dw_dmac");
v5.9
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   4 * Copyright (C) 2013, Intel Corporation
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
 
  12#include <linux/err.h>
  13#include <linux/errno.h>
  14#include <linux/gpio/consumer.h>
  15#include <linux/gpio.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/ioport.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/mod_devicetable.h>
  22#include <linux/of.h>
  23#include <linux/pci.h>
  24#include <linux/platform_device.h>
  25#include <linux/pm_runtime.h>
  26#include <linux/property.h>
  27#include <linux/slab.h>
 
  28#include <linux/spi/pxa2xx_spi.h>
  29#include <linux/spi/spi.h>
  30
  31#include "spi-pxa2xx.h"
  32
  33MODULE_AUTHOR("Stephen Street");
  34MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  35MODULE_LICENSE("GPL");
  36MODULE_ALIAS("platform:pxa2xx-spi");
  37
  38#define TIMOUT_DFLT		1000
  39
  40/*
  41 * for testing SSCR1 changes that require SSP restart, basically
  42 * everything except the service and interrupt enables, the pxa270 developer
  43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  44 * list, but the PXA255 dev man says all bits without really meaning the
  45 * service and interrupt enables
  46 */
  47#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  48				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  49				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  50				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  51				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  52				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  53
  54#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  55				| QUARK_X1000_SSCR1_EFWR	\
  56				| QUARK_X1000_SSCR1_RFT		\
  57				| QUARK_X1000_SSCR1_TFT		\
  58				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  61				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  62				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  63				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  64				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  65				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  66
  67#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  68#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  69#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  70#define LPSS_CAPS_CS_EN_SHIFT			9
  71#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  72
  73#define LPSS_PRIV_CLOCK_GATE 0x38
  74#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
  75#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
  76
  77struct lpss_config {
  78	/* LPSS offset from drv_data->ioaddr */
  79	unsigned offset;
  80	/* Register offsets from drv_data->lpss_base or -1 */
  81	int reg_general;
  82	int reg_ssp;
  83	int reg_cs_ctrl;
  84	int reg_capabilities;
  85	/* FIFO thresholds */
  86	u32 rx_threshold;
  87	u32 tx_threshold_lo;
  88	u32 tx_threshold_hi;
  89	/* Chip select control */
  90	unsigned cs_sel_shift;
  91	unsigned cs_sel_mask;
  92	unsigned cs_num;
  93	/* Quirks */
  94	unsigned cs_clk_stays_gated : 1;
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99	{	/* LPSS_LPT_SSP */
 100		.offset = 0x800,
 101		.reg_general = 0x08,
 102		.reg_ssp = 0x0c,
 103		.reg_cs_ctrl = 0x18,
 104		.reg_capabilities = -1,
 105		.rx_threshold = 64,
 106		.tx_threshold_lo = 160,
 107		.tx_threshold_hi = 224,
 108	},
 109	{	/* LPSS_BYT_SSP */
 110		.offset = 0x400,
 111		.reg_general = 0x08,
 112		.reg_ssp = 0x0c,
 113		.reg_cs_ctrl = 0x18,
 114		.reg_capabilities = -1,
 115		.rx_threshold = 64,
 116		.tx_threshold_lo = 160,
 117		.tx_threshold_hi = 224,
 118	},
 119	{	/* LPSS_BSW_SSP */
 120		.offset = 0x400,
 121		.reg_general = 0x08,
 122		.reg_ssp = 0x0c,
 123		.reg_cs_ctrl = 0x18,
 124		.reg_capabilities = -1,
 125		.rx_threshold = 64,
 126		.tx_threshold_lo = 160,
 127		.tx_threshold_hi = 224,
 128		.cs_sel_shift = 2,
 129		.cs_sel_mask = 1 << 2,
 130		.cs_num = 2,
 131	},
 132	{	/* LPSS_SPT_SSP */
 133		.offset = 0x200,
 134		.reg_general = -1,
 135		.reg_ssp = 0x20,
 136		.reg_cs_ctrl = 0x24,
 137		.reg_capabilities = -1,
 138		.rx_threshold = 1,
 139		.tx_threshold_lo = 32,
 140		.tx_threshold_hi = 56,
 141	},
 142	{	/* LPSS_BXT_SSP */
 143		.offset = 0x200,
 144		.reg_general = -1,
 145		.reg_ssp = 0x20,
 146		.reg_cs_ctrl = 0x24,
 147		.reg_capabilities = 0xfc,
 148		.rx_threshold = 1,
 149		.tx_threshold_lo = 16,
 150		.tx_threshold_hi = 48,
 151		.cs_sel_shift = 8,
 152		.cs_sel_mask = 3 << 8,
 153		.cs_clk_stays_gated = true,
 154	},
 155	{	/* LPSS_CNL_SSP */
 156		.offset = 0x200,
 157		.reg_general = -1,
 158		.reg_ssp = 0x20,
 159		.reg_cs_ctrl = 0x24,
 160		.reg_capabilities = 0xfc,
 161		.rx_threshold = 1,
 162		.tx_threshold_lo = 32,
 163		.tx_threshold_hi = 56,
 164		.cs_sel_shift = 8,
 165		.cs_sel_mask = 3 << 8,
 166		.cs_clk_stays_gated = true,
 167	},
 168};
 169
 170static inline const struct lpss_config
 171*lpss_get_config(const struct driver_data *drv_data)
 172{
 173	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 174}
 175
 176static bool is_lpss_ssp(const struct driver_data *drv_data)
 177{
 178	switch (drv_data->ssp_type) {
 179	case LPSS_LPT_SSP:
 180	case LPSS_BYT_SSP:
 181	case LPSS_BSW_SSP:
 182	case LPSS_SPT_SSP:
 183	case LPSS_BXT_SSP:
 184	case LPSS_CNL_SSP:
 185		return true;
 186	default:
 187		return false;
 188	}
 189}
 190
 191static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 192{
 193	return drv_data->ssp_type == QUARK_X1000_SSP;
 194}
 195
 196static bool is_mmp2_ssp(const struct driver_data *drv_data)
 197{
 198	return drv_data->ssp_type == MMP2_SSP;
 199}
 200
 
 
 
 
 
 
 
 
 
 
 
 201static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 202{
 203	switch (drv_data->ssp_type) {
 204	case QUARK_X1000_SSP:
 205		return QUARK_X1000_SSCR1_CHANGE_MASK;
 206	case CE4100_SSP:
 207		return CE4100_SSCR1_CHANGE_MASK;
 208	default:
 209		return SSCR1_CHANGE_MASK;
 210	}
 211}
 212
 213static u32
 214pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 215{
 216	switch (drv_data->ssp_type) {
 217	case QUARK_X1000_SSP:
 218		return RX_THRESH_QUARK_X1000_DFLT;
 219	case CE4100_SSP:
 220		return RX_THRESH_CE4100_DFLT;
 221	default:
 222		return RX_THRESH_DFLT;
 223	}
 224}
 225
 226static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 227{
 228	u32 mask;
 229
 230	switch (drv_data->ssp_type) {
 231	case QUARK_X1000_SSP:
 232		mask = QUARK_X1000_SSSR_TFL_MASK;
 233		break;
 234	case CE4100_SSP:
 235		mask = CE4100_SSSR_TFL_MASK;
 236		break;
 237	default:
 238		mask = SSSR_TFL_MASK;
 239		break;
 240	}
 241
 242	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 243}
 244
 245static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 246				     u32 *sccr1_reg)
 247{
 248	u32 mask;
 249
 250	switch (drv_data->ssp_type) {
 251	case QUARK_X1000_SSP:
 252		mask = QUARK_X1000_SSCR1_RFT;
 253		break;
 254	case CE4100_SSP:
 255		mask = CE4100_SSCR1_RFT;
 256		break;
 257	default:
 258		mask = SSCR1_RFT;
 259		break;
 260	}
 261	*sccr1_reg &= ~mask;
 262}
 263
 264static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 265				   u32 *sccr1_reg, u32 threshold)
 266{
 267	switch (drv_data->ssp_type) {
 268	case QUARK_X1000_SSP:
 269		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 270		break;
 271	case CE4100_SSP:
 272		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 273		break;
 274	default:
 275		*sccr1_reg |= SSCR1_RxTresh(threshold);
 276		break;
 277	}
 278}
 279
 280static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 281				  u32 clk_div, u8 bits)
 282{
 283	switch (drv_data->ssp_type) {
 284	case QUARK_X1000_SSP:
 285		return clk_div
 286			| QUARK_X1000_SSCR0_Motorola
 287			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 288			| SSCR0_SSE;
 289	default:
 290		return clk_div
 291			| SSCR0_Motorola
 292			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 293			| SSCR0_SSE
 294			| (bits > 16 ? SSCR0_EDSS : 0);
 295	}
 296}
 297
 298/*
 299 * Read and write LPSS SSP private registers. Caller must first check that
 300 * is_lpss_ssp() returns true before these can be called.
 301 */
 302static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 303{
 304	WARN_ON(!drv_data->lpss_base);
 305	return readl(drv_data->lpss_base + offset);
 306}
 307
 308static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 309				  unsigned offset, u32 value)
 310{
 311	WARN_ON(!drv_data->lpss_base);
 312	writel(value, drv_data->lpss_base + offset);
 313}
 314
 315/*
 316 * lpss_ssp_setup - perform LPSS SSP specific setup
 317 * @drv_data: pointer to the driver private data
 318 *
 319 * Perform LPSS SSP specific setup. This function must be called first if
 320 * one is going to use LPSS SSP private registers.
 321 */
 322static void lpss_ssp_setup(struct driver_data *drv_data)
 323{
 324	const struct lpss_config *config;
 325	u32 value;
 326
 327	config = lpss_get_config(drv_data);
 328	drv_data->lpss_base = drv_data->ioaddr + config->offset;
 329
 330	/* Enable software chip select control */
 331	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 332	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 333	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 334	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 335
 336	/* Enable multiblock DMA transfers */
 337	if (drv_data->controller_info->enable_dma) {
 338		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 339
 340		if (config->reg_general >= 0) {
 341			value = __lpss_ssp_read_priv(drv_data,
 342						     config->reg_general);
 343			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 344			__lpss_ssp_write_priv(drv_data,
 345					      config->reg_general, value);
 346		}
 347	}
 348}
 349
 350static void lpss_ssp_select_cs(struct spi_device *spi,
 351			       const struct lpss_config *config)
 352{
 353	struct driver_data *drv_data =
 354		spi_controller_get_devdata(spi->controller);
 355	u32 value, cs;
 356
 357	if (!config->cs_sel_mask)
 358		return;
 359
 360	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 361
 362	cs = spi->chip_select;
 363	cs <<= config->cs_sel_shift;
 364	if (cs != (value & config->cs_sel_mask)) {
 365		/*
 366		 * When switching another chip select output active the
 367		 * output must be selected first and wait 2 ssp_clk cycles
 368		 * before changing state to active. Otherwise a short
 369		 * glitch will occur on the previous chip select since
 370		 * output select is latched but state control is not.
 371		 */
 372		value &= ~config->cs_sel_mask;
 373		value |= cs;
 374		__lpss_ssp_write_priv(drv_data,
 375				      config->reg_cs_ctrl, value);
 376		ndelay(1000000000 /
 377		       (drv_data->controller->max_speed_hz / 2));
 378	}
 379}
 380
 381static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 382{
 383	struct driver_data *drv_data =
 384		spi_controller_get_devdata(spi->controller);
 385	const struct lpss_config *config;
 386	u32 value;
 387
 388	config = lpss_get_config(drv_data);
 389
 390	if (enable)
 391		lpss_ssp_select_cs(spi, config);
 392
 393	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 394	if (enable)
 395		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 396	else
 397		value |= LPSS_CS_CONTROL_CS_HIGH;
 398	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 399	if (config->cs_clk_stays_gated) {
 400		u32 clkgate;
 401
 402		/*
 403		 * Changing CS alone when dynamic clock gating is on won't
 404		 * actually flip CS at that time. This ruins SPI transfers
 405		 * that specify delays, or have no data. Toggle the clock mode
 406		 * to force on briefly to poke the CS pin to move.
 407		 */
 408		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
 409		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
 410			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
 411
 412		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
 413		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
 414	}
 415}
 416
 417static void cs_assert(struct spi_device *spi)
 418{
 419	struct chip_data *chip = spi_get_ctldata(spi);
 420	struct driver_data *drv_data =
 421		spi_controller_get_devdata(spi->controller);
 422
 423	if (drv_data->ssp_type == CE4100_SSP) {
 424		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
 425		return;
 426	}
 427
 428	if (chip->cs_control) {
 429		chip->cs_control(PXA2XX_CS_ASSERT);
 430		return;
 431	}
 432
 433	if (chip->gpiod_cs) {
 434		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
 435		return;
 436	}
 437
 438	if (is_lpss_ssp(drv_data))
 439		lpss_ssp_cs_control(spi, true);
 440}
 441
 442static void cs_deassert(struct spi_device *spi)
 443{
 444	struct chip_data *chip = spi_get_ctldata(spi);
 445	struct driver_data *drv_data =
 446		spi_controller_get_devdata(spi->controller);
 447	unsigned long timeout;
 448
 449	if (drv_data->ssp_type == CE4100_SSP)
 450		return;
 451
 452	/* Wait until SSP becomes idle before deasserting the CS */
 453	timeout = jiffies + msecs_to_jiffies(10);
 454	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 455	       !time_after(jiffies, timeout))
 456		cpu_relax();
 457
 458	if (chip->cs_control) {
 459		chip->cs_control(PXA2XX_CS_DEASSERT);
 460		return;
 461	}
 462
 463	if (chip->gpiod_cs) {
 464		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
 465		return;
 466	}
 467
 468	if (is_lpss_ssp(drv_data))
 469		lpss_ssp_cs_control(spi, false);
 470}
 471
 472static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 473{
 474	if (level)
 475		cs_deassert(spi);
 476	else
 477		cs_assert(spi);
 478}
 479
 480int pxa2xx_spi_flush(struct driver_data *drv_data)
 481{
 482	unsigned long limit = loops_per_jiffy << 1;
 483
 484	do {
 485		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 486			pxa2xx_spi_read(drv_data, SSDR);
 487	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 488	write_SSSR_CS(drv_data, SSSR_ROR);
 489
 490	return limit;
 491}
 492
 493static void pxa2xx_spi_off(struct driver_data *drv_data)
 494{
 495	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
 496	if (is_mmp2_ssp(drv_data))
 497		return;
 498
 499	pxa2xx_spi_write(drv_data, SSCR0,
 500			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 501}
 502
 503static int null_writer(struct driver_data *drv_data)
 504{
 505	u8 n_bytes = drv_data->n_bytes;
 506
 507	if (pxa2xx_spi_txfifo_full(drv_data)
 508		|| (drv_data->tx == drv_data->tx_end))
 509		return 0;
 510
 511	pxa2xx_spi_write(drv_data, SSDR, 0);
 512	drv_data->tx += n_bytes;
 513
 514	return 1;
 515}
 516
 517static int null_reader(struct driver_data *drv_data)
 518{
 519	u8 n_bytes = drv_data->n_bytes;
 520
 521	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 522	       && (drv_data->rx < drv_data->rx_end)) {
 523		pxa2xx_spi_read(drv_data, SSDR);
 524		drv_data->rx += n_bytes;
 525	}
 526
 527	return drv_data->rx == drv_data->rx_end;
 528}
 529
 530static int u8_writer(struct driver_data *drv_data)
 531{
 532	if (pxa2xx_spi_txfifo_full(drv_data)
 533		|| (drv_data->tx == drv_data->tx_end))
 534		return 0;
 535
 536	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 537	++drv_data->tx;
 538
 539	return 1;
 540}
 541
 542static int u8_reader(struct driver_data *drv_data)
 543{
 544	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 545	       && (drv_data->rx < drv_data->rx_end)) {
 546		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 547		++drv_data->rx;
 548	}
 549
 550	return drv_data->rx == drv_data->rx_end;
 551}
 552
 553static int u16_writer(struct driver_data *drv_data)
 554{
 555	if (pxa2xx_spi_txfifo_full(drv_data)
 556		|| (drv_data->tx == drv_data->tx_end))
 557		return 0;
 558
 559	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 560	drv_data->tx += 2;
 561
 562	return 1;
 563}
 564
 565static int u16_reader(struct driver_data *drv_data)
 566{
 567	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 568	       && (drv_data->rx < drv_data->rx_end)) {
 569		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 570		drv_data->rx += 2;
 571	}
 572
 573	return drv_data->rx == drv_data->rx_end;
 574}
 575
 576static int u32_writer(struct driver_data *drv_data)
 577{
 578	if (pxa2xx_spi_txfifo_full(drv_data)
 579		|| (drv_data->tx == drv_data->tx_end))
 580		return 0;
 581
 582	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 583	drv_data->tx += 4;
 584
 585	return 1;
 586}
 587
 588static int u32_reader(struct driver_data *drv_data)
 589{
 590	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 591	       && (drv_data->rx < drv_data->rx_end)) {
 592		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 593		drv_data->rx += 4;
 594	}
 595
 596	return drv_data->rx == drv_data->rx_end;
 597}
 598
 599static void reset_sccr1(struct driver_data *drv_data)
 600{
 601	struct chip_data *chip =
 602		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 603	u32 sccr1_reg;
 
 
 
 
 
 
 604
 605	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 606	switch (drv_data->ssp_type) {
 607	case QUARK_X1000_SSP:
 608		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
 609		break;
 610	case CE4100_SSP:
 611		sccr1_reg &= ~CE4100_SSCR1_RFT;
 612		break;
 613	default:
 614		sccr1_reg &= ~SSCR1_RFT;
 615		break;
 616	}
 617	sccr1_reg |= chip->threshold;
 618	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 619}
 620
 621static void int_error_stop(struct driver_data *drv_data, const char* msg)
 622{
 623	/* Stop and reset SSP */
 624	write_SSSR_CS(drv_data, drv_data->clear_sr);
 625	reset_sccr1(drv_data);
 626	if (!pxa25x_ssp_comp(drv_data))
 627		pxa2xx_spi_write(drv_data, SSTO, 0);
 
 
 
 
 
 
 
 628	pxa2xx_spi_flush(drv_data);
 629	pxa2xx_spi_off(drv_data);
 630
 631	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 632
 633	drv_data->controller->cur_msg->status = -EIO;
 634	spi_finalize_current_transfer(drv_data->controller);
 635}
 636
 637static void int_transfer_complete(struct driver_data *drv_data)
 638{
 639	/* Clear and disable interrupts */
 640	write_SSSR_CS(drv_data, drv_data->clear_sr);
 641	reset_sccr1(drv_data);
 642	if (!pxa25x_ssp_comp(drv_data))
 643		pxa2xx_spi_write(drv_data, SSTO, 0);
 644
 645	spi_finalize_current_transfer(drv_data->controller);
 646}
 647
 648static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 649{
 650	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 651		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 652
 653	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 
 
 654
 655	if (irq_status & SSSR_ROR) {
 656		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 657		return IRQ_HANDLED;
 658	}
 659
 660	if (irq_status & SSSR_TUR) {
 661		int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
 662		return IRQ_HANDLED;
 663	}
 664
 665	if (irq_status & SSSR_TINT) {
 666		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 667		if (drv_data->read(drv_data)) {
 668			int_transfer_complete(drv_data);
 669			return IRQ_HANDLED;
 670		}
 671	}
 672
 673	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 674	do {
 675		if (drv_data->read(drv_data)) {
 676			int_transfer_complete(drv_data);
 677			return IRQ_HANDLED;
 678		}
 679	} while (drv_data->write(drv_data));
 680
 681	if (drv_data->read(drv_data)) {
 682		int_transfer_complete(drv_data);
 683		return IRQ_HANDLED;
 684	}
 685
 686	if (drv_data->tx == drv_data->tx_end) {
 687		u32 bytes_left;
 688		u32 sccr1_reg;
 689
 690		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 691		sccr1_reg &= ~SSCR1_TIE;
 692
 693		/*
 694		 * PXA25x_SSP has no timeout, set up rx threshould for the
 695		 * remaining RX bytes.
 696		 */
 697		if (pxa25x_ssp_comp(drv_data)) {
 698			u32 rx_thre;
 699
 700			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 701
 702			bytes_left = drv_data->rx_end - drv_data->rx;
 703			switch (drv_data->n_bytes) {
 704			case 4:
 705				bytes_left >>= 2;
 706				break;
 707			case 2:
 708				bytes_left >>= 1;
 709				break;
 710			}
 711
 712			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 713			if (rx_thre > bytes_left)
 714				rx_thre = bytes_left;
 715
 716			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 717		}
 718		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 719	}
 720
 721	/* We did something */
 722	return IRQ_HANDLED;
 723}
 724
 725static void handle_bad_msg(struct driver_data *drv_data)
 726{
 
 727	pxa2xx_spi_off(drv_data);
 728	pxa2xx_spi_write(drv_data, SSCR1,
 729			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
 730	if (!pxa25x_ssp_comp(drv_data))
 731		pxa2xx_spi_write(drv_data, SSTO, 0);
 732	write_SSSR_CS(drv_data, drv_data->clear_sr);
 733
 734	dev_err(&drv_data->pdev->dev,
 735		"bad message state in interrupt handler\n");
 736}
 737
 738static irqreturn_t ssp_int(int irq, void *dev_id)
 739{
 740	struct driver_data *drv_data = dev_id;
 741	u32 sccr1_reg;
 742	u32 mask = drv_data->mask_sr;
 743	u32 status;
 744
 745	/*
 746	 * The IRQ might be shared with other peripherals so we must first
 747	 * check that are we RPM suspended or not. If we are we assume that
 748	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 749	 * interrupt is enabled).
 750	 */
 751	if (pm_runtime_suspended(&drv_data->pdev->dev))
 752		return IRQ_NONE;
 753
 754	/*
 755	 * If the device is not yet in RPM suspended state and we get an
 756	 * interrupt that is meant for another device, check if status bits
 757	 * are all set to one. That means that the device is already
 758	 * powered off.
 759	 */
 760	status = pxa2xx_spi_read(drv_data, SSSR);
 761	if (status == ~0)
 762		return IRQ_NONE;
 763
 764	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 765
 766	/* Ignore possible writes if we don't need to write */
 767	if (!(sccr1_reg & SSCR1_TIE))
 768		mask &= ~SSSR_TFS;
 769
 770	/* Ignore RX timeout interrupt if it is disabled */
 771	if (!(sccr1_reg & SSCR1_TINTE))
 772		mask &= ~SSSR_TINT;
 773
 774	if (!(status & mask))
 775		return IRQ_NONE;
 776
 777	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 778	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 779
 780	if (!drv_data->controller->cur_msg) {
 781		handle_bad_msg(drv_data);
 782		/* Never fail */
 783		return IRQ_HANDLED;
 784	}
 785
 786	return drv_data->transfer_handler(drv_data);
 787}
 788
 789/*
 790 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 791 * input frequency by fractions of 2^24. It also has a divider by 5.
 792 *
 793 * There are formulas to get baud rate value for given input frequency and
 794 * divider parameters, such as DDS_CLK_RATE and SCR:
 795 *
 796 * Fsys = 200MHz
 797 *
 798 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 799 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 800 *
 801 * DDS_CLK_RATE either 2^n or 2^n / 5.
 802 * SCR is in range 0 .. 255
 803 *
 804 * Divisor = 5^i * 2^j * 2 * k
 805 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 806 *       j = [0, 23]     j = 0 iff i = 1
 807 *       k = [1, 256]
 808 * Special case: j = 0, i = 1: Divisor = 2 / 5
 809 *
 810 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 811 * are:
 812 *	Case 1:		2^n, n = [0, 23]
 813 *	Case 2:		2^24 * 2 / 5 (0x666666)
 814 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 815 *
 816 * In all cases the lowest possible value is better.
 817 *
 818 * The function calculates parameters for all cases and chooses the one closest
 819 * to the asked baud rate.
 820 */
 821static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 822{
 823	unsigned long xtal = 200000000;
 824	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 825						   see (2) */
 826						/* case 3 */
 827	unsigned long fref1 = fref / 2;		/* case 1 */
 828	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 829	unsigned long scale;
 830	unsigned long q, q1, q2;
 831	long r, r1, r2;
 832	u32 mul;
 833
 834	/* Case 1 */
 835
 836	/* Set initial value for DDS_CLK_RATE */
 837	mul = (1 << 24) >> 1;
 838
 839	/* Calculate initial quot */
 840	q1 = DIV_ROUND_UP(fref1, rate);
 841
 842	/* Scale q1 if it's too big */
 843	if (q1 > 256) {
 844		/* Scale q1 to range [1, 512] */
 845		scale = fls_long(q1 - 1);
 846		if (scale > 9) {
 847			q1 >>= scale - 9;
 848			mul >>= scale - 9;
 849		}
 850
 851		/* Round the result if we have a remainder */
 852		q1 += q1 & 1;
 853	}
 854
 855	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 856	scale = __ffs(q1);
 857	q1 >>= scale;
 858	mul >>= scale;
 859
 860	/* Get the remainder */
 861	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 862
 863	/* Case 2 */
 864
 865	q2 = DIV_ROUND_UP(fref2, rate);
 866	r2 = abs(fref2 / q2 - rate);
 867
 868	/*
 869	 * Choose the best between two: less remainder we have the better. We
 870	 * can't go case 2 if q2 is greater than 256 since SCR register can
 871	 * hold only values 0 .. 255.
 872	 */
 873	if (r2 >= r1 || q2 > 256) {
 874		/* case 1 is better */
 875		r = r1;
 876		q = q1;
 877	} else {
 878		/* case 2 is better */
 879		r = r2;
 880		q = q2;
 881		mul = (1 << 24) * 2 / 5;
 882	}
 883
 884	/* Check case 3 only if the divisor is big enough */
 885	if (fref / rate >= 80) {
 886		u64 fssp;
 887		u32 m;
 888
 889		/* Calculate initial quot */
 890		q1 = DIV_ROUND_UP(fref, rate);
 891		m = (1 << 24) / q1;
 892
 893		/* Get the remainder */
 894		fssp = (u64)fref * m;
 895		do_div(fssp, 1 << 24);
 896		r1 = abs(fssp - rate);
 897
 898		/* Choose this one if it suits better */
 899		if (r1 < r) {
 900			/* case 3 is better */
 901			q = 1;
 902			mul = m;
 903		}
 904	}
 905
 906	*dds = mul;
 907	return q - 1;
 908}
 909
 910static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 911{
 912	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
 913	const struct ssp_device *ssp = drv_data->ssp;
 914
 915	rate = min_t(int, ssp_clk, rate);
 916
 917	/*
 918	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
 919	 * that the SSP transmission rate can be greater than the device rate
 920	 */
 921	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 922		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
 923	else
 924		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
 925}
 926
 927static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 928					   int rate)
 929{
 930	struct chip_data *chip =
 931		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 932	unsigned int clk_div;
 933
 934	switch (drv_data->ssp_type) {
 935	case QUARK_X1000_SSP:
 936		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 937		break;
 938	default:
 939		clk_div = ssp_get_clk_div(drv_data, rate);
 940		break;
 941	}
 942	return clk_div << 8;
 943}
 944
 945static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
 946			       struct spi_device *spi,
 947			       struct spi_transfer *xfer)
 948{
 949	struct chip_data *chip = spi_get_ctldata(spi);
 950
 951	return chip->enable_dma &&
 952	       xfer->len <= MAX_DMA_LEN &&
 953	       xfer->len >= chip->dma_burst_size;
 954}
 955
 956static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
 957				   struct spi_device *spi,
 958				   struct spi_transfer *transfer)
 959{
 960	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 961	struct spi_message *message = controller->cur_msg;
 962	struct chip_data *chip = spi_get_ctldata(spi);
 963	u32 dma_thresh = chip->dma_threshold;
 964	u32 dma_burst = chip->dma_burst_size;
 965	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 966	u32 clk_div;
 967	u8 bits;
 968	u32 speed;
 969	u32 cr0;
 970	u32 cr1;
 971	int err;
 972	int dma_mapped;
 973
 974	/* Check if we can DMA this transfer */
 975	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 976
 977		/* reject already-mapped transfers; PIO won't always work */
 978		if (message->is_dma_mapped
 979				|| transfer->rx_dma || transfer->tx_dma) {
 980			dev_err(&spi->dev,
 981				"Mapped transfer length of %u is greater than %d\n",
 982				transfer->len, MAX_DMA_LEN);
 983			return -EINVAL;
 984		}
 985
 986		/* warn ... we force this to PIO mode */
 987		dev_warn_ratelimited(&spi->dev,
 988				     "DMA disabled for transfer length %ld greater than %d\n",
 989				     (long)transfer->len, MAX_DMA_LEN);
 990	}
 991
 992	/* Setup the transfer state based on the type of transfer */
 993	if (pxa2xx_spi_flush(drv_data) == 0) {
 994		dev_err(&spi->dev, "Flush failed\n");
 995		return -EIO;
 996	}
 997	drv_data->n_bytes = chip->n_bytes;
 998	drv_data->tx = (void *)transfer->tx_buf;
 999	drv_data->tx_end = drv_data->tx + transfer->len;
1000	drv_data->rx = transfer->rx_buf;
1001	drv_data->rx_end = drv_data->rx + transfer->len;
1002	drv_data->write = drv_data->tx ? chip->write : null_writer;
1003	drv_data->read = drv_data->rx ? chip->read : null_reader;
1004
1005	/* Change speed and bit per word on a per transfer */
1006	bits = transfer->bits_per_word;
1007	speed = transfer->speed_hz;
1008
1009	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1010
1011	if (bits <= 8) {
1012		drv_data->n_bytes = 1;
1013		drv_data->read = drv_data->read != null_reader ?
1014					u8_reader : null_reader;
1015		drv_data->write = drv_data->write != null_writer ?
1016					u8_writer : null_writer;
1017	} else if (bits <= 16) {
1018		drv_data->n_bytes = 2;
1019		drv_data->read = drv_data->read != null_reader ?
1020					u16_reader : null_reader;
1021		drv_data->write = drv_data->write != null_writer ?
1022					u16_writer : null_writer;
1023	} else if (bits <= 32) {
1024		drv_data->n_bytes = 4;
1025		drv_data->read = drv_data->read != null_reader ?
1026					u32_reader : null_reader;
1027		drv_data->write = drv_data->write != null_writer ?
1028					u32_writer : null_writer;
1029	}
1030	/*
1031	 * if bits/word is changed in dma mode, then must check the
1032	 * thresholds and burst also
1033	 */
1034	if (chip->enable_dma) {
1035		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1036						spi,
1037						bits, &dma_burst,
1038						&dma_thresh))
1039			dev_warn_ratelimited(&spi->dev,
1040					     "DMA burst size reduced to match bits_per_word\n");
1041	}
1042
1043	dma_mapped = controller->can_dma &&
1044		     controller->can_dma(controller, spi, transfer) &&
1045		     controller->cur_msg_mapped;
1046	if (dma_mapped) {
1047
1048		/* Ensure we have the correct interrupt handler */
1049		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1050
1051		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1052		if (err)
1053			return err;
1054
1055		/* Clear status and start DMA engine */
1056		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1057		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1058
1059		pxa2xx_spi_dma_start(drv_data);
1060	} else {
1061		/* Ensure we have the correct interrupt handler	*/
1062		drv_data->transfer_handler = interrupt_transfer;
1063
1064		/* Clear status  */
1065		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1066		write_SSSR_CS(drv_data, drv_data->clear_sr);
1067	}
1068
1069	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1070	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1071	if (!pxa25x_ssp_comp(drv_data))
1072		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1073			controller->max_speed_hz
1074				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1075			dma_mapped ? "DMA" : "PIO");
1076	else
1077		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1078			controller->max_speed_hz / 2
1079				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1080			dma_mapped ? "DMA" : "PIO");
1081
1082	if (is_lpss_ssp(drv_data)) {
1083		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1084		    != chip->lpss_rx_threshold)
1085			pxa2xx_spi_write(drv_data, SSIRF,
1086					 chip->lpss_rx_threshold);
1087		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1088		    != chip->lpss_tx_threshold)
1089			pxa2xx_spi_write(drv_data, SSITF,
1090					 chip->lpss_tx_threshold);
1091	}
1092
1093	if (is_quark_x1000_ssp(drv_data) &&
1094	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1095		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1096
1097	/* see if we need to reload the config registers */
1098	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1099	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1100	    != (cr1 & change_mask)) {
1101		/* stop the SSP, and update the other bits */
1102		if (!is_mmp2_ssp(drv_data))
1103			pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1104		if (!pxa25x_ssp_comp(drv_data))
1105			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1106		/* first set CR1 without interrupt and service enables */
1107		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1108		/* restart the SSP */
1109		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1110
1111	} else {
1112		if (!pxa25x_ssp_comp(drv_data))
1113			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1114	}
1115
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1116	if (is_mmp2_ssp(drv_data)) {
1117		u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1118					& SSSR_TFL_MASK) >> 8;
1119
1120		if (tx_level) {
1121			/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1122			dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1123								tx_level);
1124			if (tx_level > transfer->len)
1125				tx_level = transfer->len;
1126			drv_data->tx += tx_level;
1127		}
1128	}
1129
1130	if (spi_controller_is_slave(controller)) {
1131		while (drv_data->write(drv_data))
1132			;
1133		if (drv_data->gpiod_ready) {
1134			gpiod_set_value(drv_data->gpiod_ready, 1);
1135			udelay(1);
1136			gpiod_set_value(drv_data->gpiod_ready, 0);
1137		}
1138	}
1139
1140	/*
1141	 * Release the data by enabling service requests and interrupts,
1142	 * without changing any mode bits
1143	 */
1144	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1145
1146	return 1;
1147}
1148
1149static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1150{
1151	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1152
1153	/* Stop and reset SSP */
1154	write_SSSR_CS(drv_data, drv_data->clear_sr);
1155	reset_sccr1(drv_data);
1156	if (!pxa25x_ssp_comp(drv_data))
1157		pxa2xx_spi_write(drv_data, SSTO, 0);
1158	pxa2xx_spi_flush(drv_data);
1159	pxa2xx_spi_off(drv_data);
1160
1161	dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1162
1163	drv_data->controller->cur_msg->status = -EINTR;
1164	spi_finalize_current_transfer(drv_data->controller);
1165
1166	return 0;
1167}
1168
1169static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1170				 struct spi_message *msg)
1171{
1172	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1173
 
 
1174	/* Disable the SSP */
1175	pxa2xx_spi_off(drv_data);
1176	/* Clear and disable interrupts and service requests */
1177	write_SSSR_CS(drv_data, drv_data->clear_sr);
1178	pxa2xx_spi_write(drv_data, SSCR1,
1179			 pxa2xx_spi_read(drv_data, SSCR1)
1180			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1181	if (!pxa25x_ssp_comp(drv_data))
1182		pxa2xx_spi_write(drv_data, SSTO, 0);
1183
1184	/*
1185	 * Stop the DMA if running. Note DMA callback handler may have unset
1186	 * the dma_running already, which is fine as stopping is not needed
1187	 * then but we shouldn't rely this flag for anything else than
1188	 * stopping. For instance to differentiate between PIO and DMA
1189	 * transfers.
1190	 */
1191	if (atomic_read(&drv_data->dma_running))
1192		pxa2xx_spi_dma_stop(drv_data);
1193}
1194
1195static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1196{
1197	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1198
1199	/* Disable the SSP now */
1200	pxa2xx_spi_off(drv_data);
1201
1202	return 0;
1203}
1204
1205static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1206		    struct pxa2xx_spi_chip *chip_info)
1207{
1208	struct driver_data *drv_data =
1209		spi_controller_get_devdata(spi->controller);
1210	struct gpio_desc *gpiod;
1211	int err = 0;
1212
1213	if (chip == NULL)
1214		return 0;
1215
1216	if (drv_data->cs_gpiods) {
1217		gpiod = drv_data->cs_gpiods[spi->chip_select];
1218		if (gpiod) {
1219			chip->gpiod_cs = gpiod;
1220			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1221			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1222		}
1223
1224		return 0;
1225	}
1226
1227	if (chip_info == NULL)
1228		return 0;
1229
1230	/* NOTE: setup() can be called multiple times, possibly with
1231	 * different chip_info, release previously requested GPIO
1232	 */
1233	if (chip->gpiod_cs) {
1234		gpiod_put(chip->gpiod_cs);
1235		chip->gpiod_cs = NULL;
1236	}
1237
1238	/* If (*cs_control) is provided, ignore GPIO chip select */
1239	if (chip_info->cs_control) {
1240		chip->cs_control = chip_info->cs_control;
1241		return 0;
1242	}
1243
1244	if (gpio_is_valid(chip_info->gpio_cs)) {
1245		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1246		if (err) {
1247			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1248				chip_info->gpio_cs);
1249			return err;
1250		}
1251
1252		gpiod = gpio_to_desc(chip_info->gpio_cs);
1253		chip->gpiod_cs = gpiod;
1254		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1255
1256		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1257	}
1258
1259	return err;
1260}
1261
1262static int setup(struct spi_device *spi)
1263{
1264	struct pxa2xx_spi_chip *chip_info;
1265	struct chip_data *chip;
1266	const struct lpss_config *config;
1267	struct driver_data *drv_data =
1268		spi_controller_get_devdata(spi->controller);
1269	uint tx_thres, tx_hi_thres, rx_thres;
1270
1271	switch (drv_data->ssp_type) {
1272	case QUARK_X1000_SSP:
1273		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1274		tx_hi_thres = 0;
1275		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1276		break;
 
 
 
 
 
1277	case CE4100_SSP:
1278		tx_thres = TX_THRESH_CE4100_DFLT;
1279		tx_hi_thres = 0;
1280		rx_thres = RX_THRESH_CE4100_DFLT;
1281		break;
1282	case LPSS_LPT_SSP:
1283	case LPSS_BYT_SSP:
1284	case LPSS_BSW_SSP:
1285	case LPSS_SPT_SSP:
1286	case LPSS_BXT_SSP:
1287	case LPSS_CNL_SSP:
1288		config = lpss_get_config(drv_data);
1289		tx_thres = config->tx_threshold_lo;
1290		tx_hi_thres = config->tx_threshold_hi;
1291		rx_thres = config->rx_threshold;
1292		break;
1293	default:
1294		tx_hi_thres = 0;
1295		if (spi_controller_is_slave(drv_data->controller)) {
1296			tx_thres = 1;
1297			rx_thres = 2;
1298		} else {
1299			tx_thres = TX_THRESH_DFLT;
1300			rx_thres = RX_THRESH_DFLT;
1301		}
1302		break;
1303	}
1304
1305	/* Only alloc on first setup */
1306	chip = spi_get_ctldata(spi);
1307	if (!chip) {
1308		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1309		if (!chip)
1310			return -ENOMEM;
1311
1312		if (drv_data->ssp_type == CE4100_SSP) {
1313			if (spi->chip_select > 4) {
1314				dev_err(&spi->dev,
1315					"failed setup: cs number must not be > 4.\n");
1316				kfree(chip);
1317				return -EINVAL;
1318			}
1319
1320			chip->frm = spi->chip_select;
1321		}
1322		chip->enable_dma = drv_data->controller_info->enable_dma;
1323		chip->timeout = TIMOUT_DFLT;
1324	}
1325
1326	/* protocol drivers may change the chip settings, so...
1327	 * if chip_info exists, use it */
 
 
1328	chip_info = spi->controller_data;
1329
1330	/* chip_info isn't always needed */
1331	chip->cr1 = 0;
1332	if (chip_info) {
1333		if (chip_info->timeout)
1334			chip->timeout = chip_info->timeout;
1335		if (chip_info->tx_threshold)
1336			tx_thres = chip_info->tx_threshold;
1337		if (chip_info->tx_hi_threshold)
1338			tx_hi_thres = chip_info->tx_hi_threshold;
1339		if (chip_info->rx_threshold)
1340			rx_thres = chip_info->rx_threshold;
1341		chip->dma_threshold = 0;
1342		if (chip_info->enable_loopback)
1343			chip->cr1 = SSCR1_LBM;
1344	}
 
 
1345	if (spi_controller_is_slave(drv_data->controller)) {
1346		chip->cr1 |= SSCR1_SCFR;
1347		chip->cr1 |= SSCR1_SCLKDIR;
1348		chip->cr1 |= SSCR1_SFRMDIR;
1349		chip->cr1 |= SSCR1_SPH;
1350	}
1351
1352	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1353	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1354				| SSITF_TxHiThresh(tx_hi_thres);
1355
1356	/* set dma burst and threshold outside of chip_info path so that if
1357	 * chip_info goes away after setting chip->enable_dma, the
1358	 * burst and threshold can still respond to changes in bits_per_word */
 
 
 
 
 
 
 
 
 
1359	if (chip->enable_dma) {
1360		/* set up legal burst and threshold for dma */
1361		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1362						spi->bits_per_word,
1363						&chip->dma_burst_size,
1364						&chip->dma_threshold)) {
1365			dev_warn(&spi->dev,
1366				 "in setup: DMA burst size reduced to match bits_per_word\n");
1367		}
1368		dev_dbg(&spi->dev,
1369			"in setup: DMA burst size set to %u\n",
1370			chip->dma_burst_size);
1371	}
1372
1373	switch (drv_data->ssp_type) {
1374	case QUARK_X1000_SSP:
1375		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1376				   & QUARK_X1000_SSCR1_RFT)
1377				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1378				   & QUARK_X1000_SSCR1_TFT);
1379		break;
1380	case CE4100_SSP:
1381		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1382			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1383		break;
1384	default:
1385		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1386			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1387		break;
1388	}
1389
1390	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1391	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1392			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1393
1394	if (spi->mode & SPI_LOOP)
1395		chip->cr1 |= SSCR1_LBM;
1396
1397	if (spi->bits_per_word <= 8) {
1398		chip->n_bytes = 1;
1399		chip->read = u8_reader;
1400		chip->write = u8_writer;
1401	} else if (spi->bits_per_word <= 16) {
1402		chip->n_bytes = 2;
1403		chip->read = u16_reader;
1404		chip->write = u16_writer;
1405	} else if (spi->bits_per_word <= 32) {
1406		chip->n_bytes = 4;
1407		chip->read = u32_reader;
1408		chip->write = u32_writer;
1409	}
1410
1411	spi_set_ctldata(spi, chip);
1412
1413	if (drv_data->ssp_type == CE4100_SSP)
1414		return 0;
1415
1416	return setup_cs(spi, chip, chip_info);
1417}
1418
1419static void cleanup(struct spi_device *spi)
1420{
1421	struct chip_data *chip = spi_get_ctldata(spi);
1422	struct driver_data *drv_data =
1423		spi_controller_get_devdata(spi->controller);
1424
1425	if (!chip)
1426		return;
1427
1428	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1429	    chip->gpiod_cs)
1430		gpiod_put(chip->gpiod_cs);
1431
1432	kfree(chip);
1433}
1434
1435#ifdef CONFIG_ACPI
1436static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1437	{ "INT33C0", LPSS_LPT_SSP },
1438	{ "INT33C1", LPSS_LPT_SSP },
1439	{ "INT3430", LPSS_LPT_SSP },
1440	{ "INT3431", LPSS_LPT_SSP },
1441	{ "80860F0E", LPSS_BYT_SSP },
1442	{ "8086228E", LPSS_BSW_SSP },
1443	{ },
1444};
1445MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1446#endif
1447
1448/*
1449 * PCI IDs of compound devices that integrate both host controller and private
1450 * integrated DMA engine. Please note these are not used in module
1451 * autoloading and probing in this module but matching the LPSS SSP type.
1452 */
1453static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1454	/* SPT-LP */
1455	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1456	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1457	/* SPT-H */
1458	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1459	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1460	/* KBL-H */
1461	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1462	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1463	/* CML-V */
1464	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1465	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1466	/* BXT A-Step */
1467	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1468	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1469	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1470	/* BXT B-Step */
1471	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1472	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1473	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1474	/* GLK */
1475	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1476	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1477	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1478	/* ICL-LP */
1479	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1480	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1481	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1482	/* EHL */
1483	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1484	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1485	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1486	/* JSL */
1487	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1488	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1489	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1490	/* TGL-H */
1491	{ PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1492	{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1493	{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1494	{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1495	/* APL */
1496	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1497	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1498	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1499	/* CNL-LP */
1500	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1501	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1502	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1503	/* CNL-H */
1504	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1505	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1506	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1507	/* CML-LP */
1508	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1509	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1510	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1511	/* CML-H */
1512	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1513	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1514	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1515	/* TGL-LP */
1516	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1517	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1518	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1519	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1520	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1521	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1522	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1523	{ },
1524};
1525
1526static const struct of_device_id pxa2xx_spi_of_match[] = {
1527	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1528	{},
1529};
1530MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1531
1532#ifdef CONFIG_ACPI
1533
1534static int pxa2xx_spi_get_port_id(struct device *dev)
1535{
1536	struct acpi_device *adev;
1537	unsigned int devid;
1538	int port_id = -1;
1539
1540	adev = ACPI_COMPANION(dev);
1541	if (adev && adev->pnp.unique_id &&
1542	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1543		port_id = devid;
1544	return port_id;
1545}
1546
1547#else /* !CONFIG_ACPI */
1548
1549static int pxa2xx_spi_get_port_id(struct device *dev)
1550{
1551	return -1;
1552}
1553
1554#endif /* CONFIG_ACPI */
1555
1556
1557#ifdef CONFIG_PCI
1558
1559static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1560{
1561	return param == chan->device->dev;
1562}
1563
1564#endif /* CONFIG_PCI */
1565
1566static struct pxa2xx_spi_controller *
1567pxa2xx_spi_init_pdata(struct platform_device *pdev)
1568{
1569	struct pxa2xx_spi_controller *pdata;
 
 
1570	struct ssp_device *ssp;
1571	struct resource *res;
1572	struct device *parent = pdev->dev.parent;
1573	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1574	const struct pci_device_id *pcidev_id = NULL;
1575	enum pxa_ssp_type type;
1576	const void *match;
 
 
 
1577
1578	if (pcidev)
1579		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1580
1581	match = device_get_match_data(&pdev->dev);
1582	if (match)
1583		type = (enum pxa_ssp_type)match;
1584	else if (pcidev_id)
1585		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1586	else
 
 
 
 
 
 
 
 
 
1587		return ERR_PTR(-EINVAL);
1588
1589	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1590	if (!pdata)
1591		return ERR_PTR(-ENOMEM);
1592
1593	ssp = &pdata->ssp;
1594
1595	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1596	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1597	if (IS_ERR(ssp->mmio_base))
1598		return ERR_CAST(ssp->mmio_base);
1599
1600	ssp->phys_base = res->start;
1601
1602#ifdef CONFIG_PCI
1603	if (pcidev_id) {
1604		pdata->tx_param = parent;
1605		pdata->rx_param = parent;
1606		pdata->dma_filter = pxa2xx_spi_idma_filter;
1607	}
1608#endif
1609
1610	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1611	if (IS_ERR(ssp->clk))
1612		return ERR_CAST(ssp->clk);
1613
1614	ssp->irq = platform_get_irq(pdev, 0);
1615	if (ssp->irq < 0)
1616		return ERR_PTR(ssp->irq);
1617
1618	ssp->type = type;
1619	ssp->dev = &pdev->dev;
1620	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1621
1622	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
 
 
 
 
 
 
1623	pdata->num_chipselect = 1;
1624	pdata->enable_dma = true;
1625	pdata->dma_burst_size = 1;
1626
1627	return pdata;
1628}
1629
1630static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1631				      unsigned int cs)
1632{
1633	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1634
1635	if (has_acpi_companion(&drv_data->pdev->dev)) {
1636		switch (drv_data->ssp_type) {
1637		/*
1638		 * For Atoms the ACPI DeviceSelection used by the Windows
1639		 * driver starts from 1 instead of 0 so translate it here
1640		 * to match what Linux expects.
1641		 */
1642		case LPSS_BYT_SSP:
1643		case LPSS_BSW_SSP:
1644			return cs - 1;
1645
1646		default:
1647			break;
1648		}
1649	}
1650
1651	return cs;
1652}
1653
1654static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1655{
1656	return MAX_DMA_LEN;
1657}
1658
1659static int pxa2xx_spi_probe(struct platform_device *pdev)
1660{
1661	struct device *dev = &pdev->dev;
1662	struct pxa2xx_spi_controller *platform_info;
1663	struct spi_controller *controller;
1664	struct driver_data *drv_data;
1665	struct ssp_device *ssp;
1666	const struct lpss_config *config;
1667	int status, count;
1668	u32 tmp;
1669
1670	platform_info = dev_get_platdata(dev);
1671	if (!platform_info) {
1672		platform_info = pxa2xx_spi_init_pdata(pdev);
1673		if (IS_ERR(platform_info)) {
1674			dev_err(&pdev->dev, "missing platform data\n");
1675			return PTR_ERR(platform_info);
1676		}
1677	}
1678
1679	ssp = pxa_ssp_request(pdev->id, pdev->name);
1680	if (!ssp)
1681		ssp = &platform_info->ssp;
1682
1683	if (!ssp->mmio_base) {
1684		dev_err(&pdev->dev, "failed to get ssp\n");
1685		return -ENODEV;
1686	}
1687
1688	if (platform_info->is_slave)
1689		controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1690	else
1691		controller = spi_alloc_master(dev, sizeof(struct driver_data));
1692
1693	if (!controller) {
1694		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1695		pxa_ssp_free(ssp);
1696		return -ENOMEM;
1697	}
1698	drv_data = spi_controller_get_devdata(controller);
1699	drv_data->controller = controller;
1700	drv_data->controller_info = platform_info;
1701	drv_data->pdev = pdev;
1702	drv_data->ssp = ssp;
1703
1704	controller->dev.of_node = pdev->dev.of_node;
1705	/* the spi->mode bits understood by this driver: */
 
1706	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1707
1708	controller->bus_num = ssp->port_id;
1709	controller->dma_alignment = DMA_ALIGNMENT;
1710	controller->cleanup = cleanup;
1711	controller->setup = setup;
1712	controller->set_cs = pxa2xx_spi_set_cs;
1713	controller->transfer_one = pxa2xx_spi_transfer_one;
1714	controller->slave_abort = pxa2xx_spi_slave_abort;
1715	controller->handle_err = pxa2xx_spi_handle_err;
1716	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1717	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1718	controller->auto_runtime_pm = true;
1719	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1720
1721	drv_data->ssp_type = ssp->type;
1722
1723	drv_data->ioaddr = ssp->mmio_base;
1724	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1725	if (pxa25x_ssp_comp(drv_data)) {
1726		switch (drv_data->ssp_type) {
1727		case QUARK_X1000_SSP:
1728			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1729			break;
1730		default:
1731			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1732			break;
1733		}
1734
1735		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1736		drv_data->dma_cr1 = 0;
1737		drv_data->clear_sr = SSSR_ROR;
1738		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1739	} else {
1740		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1741		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1742		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1743		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1744		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1745						| SSSR_ROR | SSSR_TUR;
1746	}
1747
1748	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1749			drv_data);
1750	if (status < 0) {
1751		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1752		goto out_error_controller_alloc;
1753	}
1754
1755	/* Setup DMA if requested */
1756	if (platform_info->enable_dma) {
1757		status = pxa2xx_spi_dma_setup(drv_data);
1758		if (status) {
1759			dev_warn(dev, "no DMA channels available, using PIO\n");
1760			platform_info->enable_dma = false;
1761		} else {
1762			controller->can_dma = pxa2xx_spi_can_dma;
1763			controller->max_dma_len = MAX_DMA_LEN;
1764			controller->max_transfer_size =
1765				pxa2xx_spi_max_dma_transfer_size;
1766		}
1767	}
1768
1769	/* Enable SOC clock */
1770	status = clk_prepare_enable(ssp->clk);
1771	if (status)
1772		goto out_error_dma_irq_alloc;
1773
1774	controller->max_speed_hz = clk_get_rate(ssp->clk);
1775	/*
1776	 * Set minimum speed for all other platforms than Intel Quark which is
1777	 * able do under 1 Hz transfers.
1778	 */
1779	if (!pxa25x_ssp_comp(drv_data))
1780		controller->min_speed_hz =
1781			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1782	else if (!is_quark_x1000_ssp(drv_data))
1783		controller->min_speed_hz =
1784			DIV_ROUND_UP(controller->max_speed_hz, 512);
1785
 
 
1786	/* Load default SSP configuration */
1787	pxa2xx_spi_write(drv_data, SSCR0, 0);
1788	switch (drv_data->ssp_type) {
1789	case QUARK_X1000_SSP:
1790		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1791		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1792		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1793
1794		/* using the Motorola SPI protocol and use 8 bit frame */
1795		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1796		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1797		break;
1798	case CE4100_SSP:
1799		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1800		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1801		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1802		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1803		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1804		break;
1805	default:
1806
1807		if (spi_controller_is_slave(controller)) {
1808			tmp = SSCR1_SCFR |
1809			      SSCR1_SCLKDIR |
1810			      SSCR1_SFRMDIR |
1811			      SSCR1_RxTresh(2) |
1812			      SSCR1_TxTresh(1) |
1813			      SSCR1_SPH;
1814		} else {
1815			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1816			      SSCR1_TxTresh(TX_THRESH_DFLT);
1817		}
1818		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1819		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1820		if (!spi_controller_is_slave(controller))
1821			tmp |= SSCR0_SCR(2);
1822		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1823		break;
1824	}
1825
1826	if (!pxa25x_ssp_comp(drv_data))
1827		pxa2xx_spi_write(drv_data, SSTO, 0);
1828
1829	if (!is_quark_x1000_ssp(drv_data))
1830		pxa2xx_spi_write(drv_data, SSPSP, 0);
1831
1832	if (is_lpss_ssp(drv_data)) {
1833		lpss_ssp_setup(drv_data);
1834		config = lpss_get_config(drv_data);
1835		if (config->reg_capabilities >= 0) {
1836			tmp = __lpss_ssp_read_priv(drv_data,
1837						   config->reg_capabilities);
1838			tmp &= LPSS_CAPS_CS_EN_MASK;
1839			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1840			platform_info->num_chipselect = ffz(tmp);
1841		} else if (config->cs_num) {
1842			platform_info->num_chipselect = config->cs_num;
1843		}
1844	}
1845	controller->num_chipselect = platform_info->num_chipselect;
1846
1847	count = gpiod_count(&pdev->dev, "cs");
1848	if (count > 0) {
1849		int i;
1850
1851		controller->num_chipselect = max_t(int, count,
1852			controller->num_chipselect);
1853
1854		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1855			controller->num_chipselect, sizeof(struct gpio_desc *),
1856			GFP_KERNEL);
1857		if (!drv_data->cs_gpiods) {
1858			status = -ENOMEM;
1859			goto out_error_clock_enabled;
1860		}
1861
1862		for (i = 0; i < controller->num_chipselect; i++) {
1863			struct gpio_desc *gpiod;
1864
1865			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1866			if (IS_ERR(gpiod)) {
1867				/* Means use native chip select */
1868				if (PTR_ERR(gpiod) == -ENOENT)
1869					continue;
1870
1871				status = PTR_ERR(gpiod);
1872				goto out_error_clock_enabled;
1873			} else {
1874				drv_data->cs_gpiods[i] = gpiod;
1875			}
1876		}
1877	}
1878
1879	if (platform_info->is_slave) {
1880		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1881						"ready", GPIOD_OUT_LOW);
1882		if (IS_ERR(drv_data->gpiod_ready)) {
1883			status = PTR_ERR(drv_data->gpiod_ready);
1884			goto out_error_clock_enabled;
1885		}
1886	}
1887
1888	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1889	pm_runtime_use_autosuspend(&pdev->dev);
1890	pm_runtime_set_active(&pdev->dev);
1891	pm_runtime_enable(&pdev->dev);
1892
1893	/* Register with the SPI framework */
1894	platform_set_drvdata(pdev, drv_data);
1895	status = spi_register_controller(controller);
1896	if (status != 0) {
1897		dev_err(&pdev->dev, "problem registering spi controller\n");
1898		goto out_error_pm_runtime_enabled;
1899	}
1900
1901	return status;
1902
1903out_error_pm_runtime_enabled:
1904	pm_runtime_disable(&pdev->dev);
1905
1906out_error_clock_enabled:
1907	clk_disable_unprepare(ssp->clk);
1908
1909out_error_dma_irq_alloc:
1910	pxa2xx_spi_dma_release(drv_data);
1911	free_irq(ssp->irq, drv_data);
1912
1913out_error_controller_alloc:
1914	spi_controller_put(controller);
1915	pxa_ssp_free(ssp);
1916	return status;
1917}
1918
1919static int pxa2xx_spi_remove(struct platform_device *pdev)
1920{
1921	struct driver_data *drv_data = platform_get_drvdata(pdev);
1922	struct ssp_device *ssp = drv_data->ssp;
1923
1924	pm_runtime_get_sync(&pdev->dev);
1925
1926	spi_unregister_controller(drv_data->controller);
1927
1928	/* Disable the SSP at the peripheral and SOC level */
1929	pxa2xx_spi_write(drv_data, SSCR0, 0);
1930	clk_disable_unprepare(ssp->clk);
1931
1932	/* Release DMA */
1933	if (drv_data->controller_info->enable_dma)
1934		pxa2xx_spi_dma_release(drv_data);
1935
1936	pm_runtime_put_noidle(&pdev->dev);
1937	pm_runtime_disable(&pdev->dev);
1938
1939	/* Release IRQ */
1940	free_irq(ssp->irq, drv_data);
1941
1942	/* Release SSP */
1943	pxa_ssp_free(ssp);
1944
1945	return 0;
1946}
1947
1948#ifdef CONFIG_PM_SLEEP
1949static int pxa2xx_spi_suspend(struct device *dev)
1950{
1951	struct driver_data *drv_data = dev_get_drvdata(dev);
1952	struct ssp_device *ssp = drv_data->ssp;
1953	int status;
1954
1955	status = spi_controller_suspend(drv_data->controller);
1956	if (status != 0)
1957		return status;
1958	pxa2xx_spi_write(drv_data, SSCR0, 0);
 
1959
1960	if (!pm_runtime_suspended(dev))
1961		clk_disable_unprepare(ssp->clk);
1962
1963	return 0;
1964}
1965
1966static int pxa2xx_spi_resume(struct device *dev)
1967{
1968	struct driver_data *drv_data = dev_get_drvdata(dev);
1969	struct ssp_device *ssp = drv_data->ssp;
1970	int status;
1971
1972	/* Enable the SSP clock */
1973	if (!pm_runtime_suspended(dev)) {
1974		status = clk_prepare_enable(ssp->clk);
1975		if (status)
1976			return status;
1977	}
1978
1979	/* Start the queue running */
1980	return spi_controller_resume(drv_data->controller);
1981}
1982#endif
1983
1984#ifdef CONFIG_PM
1985static int pxa2xx_spi_runtime_suspend(struct device *dev)
1986{
1987	struct driver_data *drv_data = dev_get_drvdata(dev);
1988
1989	clk_disable_unprepare(drv_data->ssp->clk);
1990	return 0;
1991}
1992
1993static int pxa2xx_spi_runtime_resume(struct device *dev)
1994{
1995	struct driver_data *drv_data = dev_get_drvdata(dev);
1996	int status;
1997
1998	status = clk_prepare_enable(drv_data->ssp->clk);
1999	return status;
2000}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2001#endif
2002
2003static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
2004	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
2005	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
2006			   pxa2xx_spi_runtime_resume, NULL)
2007};
 
2008
2009static struct platform_driver driver = {
2010	.driver = {
2011		.name	= "pxa2xx-spi",
2012		.pm	= &pxa2xx_spi_pm_ops,
2013		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
2014		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
2015	},
2016	.probe = pxa2xx_spi_probe,
2017	.remove = pxa2xx_spi_remove,
2018};
2019
2020static int __init pxa2xx_spi_init(void)
2021{
2022	return platform_driver_register(&driver);
2023}
2024subsys_initcall(pxa2xx_spi_init);
2025
2026static void __exit pxa2xx_spi_exit(void)
2027{
2028	platform_driver_unregister(&driver);
2029}
2030module_exit(pxa2xx_spi_exit);
2031
2032MODULE_SOFTDEP("pre: dw_dmac");