Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   4 * Copyright (C) 2013, 2021 Intel Corporation
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/err.h>
  14#include <linux/errno.h>
  15#include <linux/gpio/consumer.h>
 
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/ioport.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/mod_devicetable.h>
  22#include <linux/of.h>
 
  23#include <linux/platform_device.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/property.h>
  26#include <linux/slab.h>
  27
  28#include <linux/spi/pxa2xx_spi.h>
  29#include <linux/spi/spi.h>
  30
  31#include "spi-pxa2xx.h"
  32
  33MODULE_AUTHOR("Stephen Street");
  34MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  35MODULE_LICENSE("GPL");
  36MODULE_ALIAS("platform:pxa2xx-spi");
  37
  38#define TIMOUT_DFLT		1000
  39
  40/*
  41 * For testing SSCR1 changes that require SSP restart, basically
  42 * everything except the service and interrupt enables, the PXA270 developer
  43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  44 * list, but the PXA255 developer manual says all bits without really meaning
  45 * the service and interrupt enables.
  46 */
  47#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  48				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  49				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  50				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  51				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  52				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  53
  54#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  55				| QUARK_X1000_SSCR1_EFWR	\
  56				| QUARK_X1000_SSCR1_RFT		\
  57				| QUARK_X1000_SSCR1_TFT		\
  58				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  61				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  62				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  63				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  64				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  65				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  66
  67#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  68#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  69#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  70#define LPSS_CAPS_CS_EN_SHIFT			9
  71#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  72
  73#define LPSS_PRIV_CLOCK_GATE 0x38
  74#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
  75#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
  76
  77struct lpss_config {
  78	/* LPSS offset from drv_data->ioaddr */
  79	unsigned offset;
  80	/* Register offsets from drv_data->lpss_base or -1 */
  81	int reg_general;
  82	int reg_ssp;
  83	int reg_cs_ctrl;
  84	int reg_capabilities;
  85	/* FIFO thresholds */
  86	u32 rx_threshold;
  87	u32 tx_threshold_lo;
  88	u32 tx_threshold_hi;
  89	/* Chip select control */
  90	unsigned cs_sel_shift;
  91	unsigned cs_sel_mask;
  92	unsigned cs_num;
  93	/* Quirks */
  94	unsigned cs_clk_stays_gated : 1;
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99	{	/* LPSS_LPT_SSP */
 100		.offset = 0x800,
 101		.reg_general = 0x08,
 102		.reg_ssp = 0x0c,
 103		.reg_cs_ctrl = 0x18,
 104		.reg_capabilities = -1,
 105		.rx_threshold = 64,
 106		.tx_threshold_lo = 160,
 107		.tx_threshold_hi = 224,
 108	},
 109	{	/* LPSS_BYT_SSP */
 110		.offset = 0x400,
 111		.reg_general = 0x08,
 112		.reg_ssp = 0x0c,
 113		.reg_cs_ctrl = 0x18,
 114		.reg_capabilities = -1,
 115		.rx_threshold = 64,
 116		.tx_threshold_lo = 160,
 117		.tx_threshold_hi = 224,
 118	},
 119	{	/* LPSS_BSW_SSP */
 120		.offset = 0x400,
 121		.reg_general = 0x08,
 122		.reg_ssp = 0x0c,
 123		.reg_cs_ctrl = 0x18,
 124		.reg_capabilities = -1,
 125		.rx_threshold = 64,
 126		.tx_threshold_lo = 160,
 127		.tx_threshold_hi = 224,
 128		.cs_sel_shift = 2,
 129		.cs_sel_mask = 1 << 2,
 130		.cs_num = 2,
 131	},
 132	{	/* LPSS_SPT_SSP */
 133		.offset = 0x200,
 134		.reg_general = -1,
 135		.reg_ssp = 0x20,
 136		.reg_cs_ctrl = 0x24,
 137		.reg_capabilities = -1,
 138		.rx_threshold = 1,
 139		.tx_threshold_lo = 32,
 140		.tx_threshold_hi = 56,
 141	},
 142	{	/* LPSS_BXT_SSP */
 143		.offset = 0x200,
 144		.reg_general = -1,
 145		.reg_ssp = 0x20,
 146		.reg_cs_ctrl = 0x24,
 147		.reg_capabilities = 0xfc,
 148		.rx_threshold = 1,
 149		.tx_threshold_lo = 16,
 150		.tx_threshold_hi = 48,
 151		.cs_sel_shift = 8,
 152		.cs_sel_mask = 3 << 8,
 153		.cs_clk_stays_gated = true,
 154	},
 155	{	/* LPSS_CNL_SSP */
 156		.offset = 0x200,
 157		.reg_general = -1,
 158		.reg_ssp = 0x20,
 159		.reg_cs_ctrl = 0x24,
 160		.reg_capabilities = 0xfc,
 161		.rx_threshold = 1,
 162		.tx_threshold_lo = 32,
 163		.tx_threshold_hi = 56,
 164		.cs_sel_shift = 8,
 165		.cs_sel_mask = 3 << 8,
 166		.cs_clk_stays_gated = true,
 167	},
 168};
 169
 170static inline const struct lpss_config
 171*lpss_get_config(const struct driver_data *drv_data)
 172{
 173	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 174}
 175
 176static bool is_lpss_ssp(const struct driver_data *drv_data)
 177{
 178	switch (drv_data->ssp_type) {
 179	case LPSS_LPT_SSP:
 180	case LPSS_BYT_SSP:
 181	case LPSS_BSW_SSP:
 182	case LPSS_SPT_SSP:
 183	case LPSS_BXT_SSP:
 184	case LPSS_CNL_SSP:
 185		return true;
 186	default:
 187		return false;
 188	}
 189}
 190
 191static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 192{
 193	return drv_data->ssp_type == QUARK_X1000_SSP;
 194}
 195
 196static bool is_mmp2_ssp(const struct driver_data *drv_data)
 197{
 198	return drv_data->ssp_type == MMP2_SSP;
 199}
 200
 201static bool is_mrfld_ssp(const struct driver_data *drv_data)
 202{
 203	return drv_data->ssp_type == MRFLD_SSP;
 204}
 205
 206static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
 207{
 208	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
 209		pxa2xx_spi_write(drv_data, reg, value & mask);
 210}
 211
 212static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 213{
 214	switch (drv_data->ssp_type) {
 215	case QUARK_X1000_SSP:
 216		return QUARK_X1000_SSCR1_CHANGE_MASK;
 217	case CE4100_SSP:
 218		return CE4100_SSCR1_CHANGE_MASK;
 219	default:
 220		return SSCR1_CHANGE_MASK;
 221	}
 222}
 223
 224static u32
 225pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 226{
 227	switch (drv_data->ssp_type) {
 228	case QUARK_X1000_SSP:
 229		return RX_THRESH_QUARK_X1000_DFLT;
 230	case CE4100_SSP:
 231		return RX_THRESH_CE4100_DFLT;
 232	default:
 233		return RX_THRESH_DFLT;
 234	}
 235}
 236
 237static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 238{
 239	u32 mask;
 240
 241	switch (drv_data->ssp_type) {
 242	case QUARK_X1000_SSP:
 243		mask = QUARK_X1000_SSSR_TFL_MASK;
 244		break;
 245	case CE4100_SSP:
 246		mask = CE4100_SSSR_TFL_MASK;
 247		break;
 248	default:
 249		mask = SSSR_TFL_MASK;
 250		break;
 251	}
 252
 253	return read_SSSR_bits(drv_data, mask) == mask;
 254}
 255
 256static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 257				     u32 *sccr1_reg)
 258{
 259	u32 mask;
 260
 261	switch (drv_data->ssp_type) {
 262	case QUARK_X1000_SSP:
 263		mask = QUARK_X1000_SSCR1_RFT;
 264		break;
 265	case CE4100_SSP:
 266		mask = CE4100_SSCR1_RFT;
 267		break;
 268	default:
 269		mask = SSCR1_RFT;
 270		break;
 271	}
 272	*sccr1_reg &= ~mask;
 273}
 274
 275static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 276				   u32 *sccr1_reg, u32 threshold)
 277{
 278	switch (drv_data->ssp_type) {
 279	case QUARK_X1000_SSP:
 280		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 281		break;
 282	case CE4100_SSP:
 283		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 284		break;
 285	default:
 286		*sccr1_reg |= SSCR1_RxTresh(threshold);
 287		break;
 288	}
 289}
 290
 291static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 292				  u32 clk_div, u8 bits)
 293{
 294	switch (drv_data->ssp_type) {
 295	case QUARK_X1000_SSP:
 296		return clk_div
 297			| QUARK_X1000_SSCR0_Motorola
 298			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
 299	default:
 300		return clk_div
 301			| SSCR0_Motorola
 302			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 303			| (bits > 16 ? SSCR0_EDSS : 0);
 304	}
 305}
 306
 307/*
 308 * Read and write LPSS SSP private registers. Caller must first check that
 309 * is_lpss_ssp() returns true before these can be called.
 310 */
 311static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 312{
 313	WARN_ON(!drv_data->lpss_base);
 314	return readl(drv_data->lpss_base + offset);
 315}
 316
 317static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 318				  unsigned offset, u32 value)
 319{
 320	WARN_ON(!drv_data->lpss_base);
 321	writel(value, drv_data->lpss_base + offset);
 322}
 323
 324/*
 325 * lpss_ssp_setup - perform LPSS SSP specific setup
 326 * @drv_data: pointer to the driver private data
 327 *
 328 * Perform LPSS SSP specific setup. This function must be called first if
 329 * one is going to use LPSS SSP private registers.
 330 */
 331static void lpss_ssp_setup(struct driver_data *drv_data)
 332{
 333	const struct lpss_config *config;
 334	u32 value;
 335
 336	config = lpss_get_config(drv_data);
 337	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
 338
 339	/* Enable software chip select control */
 340	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 341	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 342	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 343	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 344
 345	/* Enable multiblock DMA transfers */
 346	if (drv_data->controller_info->enable_dma) {
 347		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 348
 349		if (config->reg_general >= 0) {
 350			value = __lpss_ssp_read_priv(drv_data,
 351						     config->reg_general);
 352			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 353			__lpss_ssp_write_priv(drv_data,
 354					      config->reg_general, value);
 355		}
 356	}
 357}
 358
 359static void lpss_ssp_select_cs(struct spi_device *spi,
 360			       const struct lpss_config *config)
 361{
 362	struct driver_data *drv_data =
 363		spi_controller_get_devdata(spi->controller);
 364	u32 value, cs;
 365
 366	if (!config->cs_sel_mask)
 367		return;
 368
 369	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 370
 371	cs = spi->chip_select;
 372	cs <<= config->cs_sel_shift;
 373	if (cs != (value & config->cs_sel_mask)) {
 374		/*
 375		 * When switching another chip select output active the
 376		 * output must be selected first and wait 2 ssp_clk cycles
 377		 * before changing state to active. Otherwise a short
 378		 * glitch will occur on the previous chip select since
 379		 * output select is latched but state control is not.
 380		 */
 381		value &= ~config->cs_sel_mask;
 382		value |= cs;
 383		__lpss_ssp_write_priv(drv_data,
 384				      config->reg_cs_ctrl, value);
 385		ndelay(1000000000 /
 386		       (drv_data->controller->max_speed_hz / 2));
 387	}
 388}
 389
 390static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 391{
 392	struct driver_data *drv_data =
 393		spi_controller_get_devdata(spi->controller);
 394	const struct lpss_config *config;
 395	u32 value;
 396
 397	config = lpss_get_config(drv_data);
 398
 399	if (enable)
 400		lpss_ssp_select_cs(spi, config);
 401
 402	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 403	if (enable)
 404		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 405	else
 406		value |= LPSS_CS_CONTROL_CS_HIGH;
 407	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 408	if (config->cs_clk_stays_gated) {
 409		u32 clkgate;
 410
 411		/*
 412		 * Changing CS alone when dynamic clock gating is on won't
 413		 * actually flip CS at that time. This ruins SPI transfers
 414		 * that specify delays, or have no data. Toggle the clock mode
 415		 * to force on briefly to poke the CS pin to move.
 416		 */
 417		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
 418		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
 419			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
 420
 421		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
 422		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
 423	}
 424}
 425
 426static void cs_assert(struct spi_device *spi)
 427{
 
 428	struct driver_data *drv_data =
 429		spi_controller_get_devdata(spi->controller);
 430
 431	if (drv_data->ssp_type == CE4100_SSP) {
 432		pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
 433		return;
 434	}
 435
 
 
 
 
 
 436	if (is_lpss_ssp(drv_data))
 437		lpss_ssp_cs_control(spi, true);
 438}
 439
 440static void cs_deassert(struct spi_device *spi)
 441{
 
 442	struct driver_data *drv_data =
 443		spi_controller_get_devdata(spi->controller);
 444	unsigned long timeout;
 445
 446	if (drv_data->ssp_type == CE4100_SSP)
 447		return;
 448
 449	/* Wait until SSP becomes idle before deasserting the CS */
 450	timeout = jiffies + msecs_to_jiffies(10);
 451	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 452	       !time_after(jiffies, timeout))
 453		cpu_relax();
 454
 
 
 
 
 
 455	if (is_lpss_ssp(drv_data))
 456		lpss_ssp_cs_control(spi, false);
 457}
 458
 459static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 460{
 461	if (level)
 462		cs_deassert(spi);
 463	else
 464		cs_assert(spi);
 465}
 466
 467int pxa2xx_spi_flush(struct driver_data *drv_data)
 468{
 469	unsigned long limit = loops_per_jiffy << 1;
 470
 471	do {
 472		while (read_SSSR_bits(drv_data, SSSR_RNE))
 473			pxa2xx_spi_read(drv_data, SSDR);
 474	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 475	write_SSSR_CS(drv_data, SSSR_ROR);
 476
 477	return limit;
 478}
 479
 480static void pxa2xx_spi_off(struct driver_data *drv_data)
 481{
 482	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
 483	if (is_mmp2_ssp(drv_data))
 484		return;
 485
 486	pxa_ssp_disable(drv_data->ssp);
 487}
 488
 489static int null_writer(struct driver_data *drv_data)
 490{
 491	u8 n_bytes = drv_data->n_bytes;
 492
 493	if (pxa2xx_spi_txfifo_full(drv_data)
 494		|| (drv_data->tx == drv_data->tx_end))
 495		return 0;
 496
 497	pxa2xx_spi_write(drv_data, SSDR, 0);
 498	drv_data->tx += n_bytes;
 499
 500	return 1;
 501}
 502
 503static int null_reader(struct driver_data *drv_data)
 504{
 505	u8 n_bytes = drv_data->n_bytes;
 506
 507	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 508		pxa2xx_spi_read(drv_data, SSDR);
 509		drv_data->rx += n_bytes;
 510	}
 511
 512	return drv_data->rx == drv_data->rx_end;
 513}
 514
 515static int u8_writer(struct driver_data *drv_data)
 516{
 517	if (pxa2xx_spi_txfifo_full(drv_data)
 518		|| (drv_data->tx == drv_data->tx_end))
 519		return 0;
 520
 521	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 522	++drv_data->tx;
 523
 524	return 1;
 525}
 526
 527static int u8_reader(struct driver_data *drv_data)
 528{
 529	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 530		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 531		++drv_data->rx;
 532	}
 533
 534	return drv_data->rx == drv_data->rx_end;
 535}
 536
 537static int u16_writer(struct driver_data *drv_data)
 538{
 539	if (pxa2xx_spi_txfifo_full(drv_data)
 540		|| (drv_data->tx == drv_data->tx_end))
 541		return 0;
 542
 543	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 544	drv_data->tx += 2;
 545
 546	return 1;
 547}
 548
 549static int u16_reader(struct driver_data *drv_data)
 550{
 551	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 552		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 553		drv_data->rx += 2;
 554	}
 555
 556	return drv_data->rx == drv_data->rx_end;
 557}
 558
 559static int u32_writer(struct driver_data *drv_data)
 560{
 561	if (pxa2xx_spi_txfifo_full(drv_data)
 562		|| (drv_data->tx == drv_data->tx_end))
 563		return 0;
 564
 565	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 566	drv_data->tx += 4;
 567
 568	return 1;
 569}
 570
 571static int u32_reader(struct driver_data *drv_data)
 572{
 573	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 574		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 575		drv_data->rx += 4;
 576	}
 577
 578	return drv_data->rx == drv_data->rx_end;
 579}
 580
 581static void reset_sccr1(struct driver_data *drv_data)
 582{
 583	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
 584	struct chip_data *chip;
 585
 586	if (drv_data->controller->cur_msg) {
 587		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
 588		threshold = chip->threshold;
 589	} else {
 590		threshold = 0;
 591	}
 592
 
 593	switch (drv_data->ssp_type) {
 594	case QUARK_X1000_SSP:
 595		mask |= QUARK_X1000_SSCR1_RFT;
 596		break;
 597	case CE4100_SSP:
 598		mask |= CE4100_SSCR1_RFT;
 599		break;
 600	default:
 601		mask |= SSCR1_RFT;
 602		break;
 603	}
 604
 605	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
 606}
 607
 608static void int_stop_and_reset(struct driver_data *drv_data)
 609{
 610	/* Clear and disable interrupts */
 611	write_SSSR_CS(drv_data, drv_data->clear_sr);
 612	reset_sccr1(drv_data);
 613	if (pxa25x_ssp_comp(drv_data))
 614		return;
 615
 616	pxa2xx_spi_write(drv_data, SSTO, 0);
 617}
 618
 619static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
 620{
 621	int_stop_and_reset(drv_data);
 622	pxa2xx_spi_flush(drv_data);
 623	pxa2xx_spi_off(drv_data);
 624
 625	dev_err(drv_data->ssp->dev, "%s\n", msg);
 626
 627	drv_data->controller->cur_msg->status = err;
 628	spi_finalize_current_transfer(drv_data->controller);
 629}
 630
 631static void int_transfer_complete(struct driver_data *drv_data)
 632{
 633	int_stop_and_reset(drv_data);
 634
 635	spi_finalize_current_transfer(drv_data->controller);
 636}
 637
 638static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 639{
 640	u32 irq_status;
 641
 642	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
 643	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
 644		irq_status &= ~SSSR_TFS;
 645
 646	if (irq_status & SSSR_ROR) {
 647		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
 648		return IRQ_HANDLED;
 649	}
 650
 651	if (irq_status & SSSR_TUR) {
 652		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
 653		return IRQ_HANDLED;
 654	}
 655
 656	if (irq_status & SSSR_TINT) {
 657		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 658		if (drv_data->read(drv_data)) {
 659			int_transfer_complete(drv_data);
 660			return IRQ_HANDLED;
 661		}
 662	}
 663
 664	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
 665	do {
 666		if (drv_data->read(drv_data)) {
 667			int_transfer_complete(drv_data);
 668			return IRQ_HANDLED;
 669		}
 670	} while (drv_data->write(drv_data));
 671
 672	if (drv_data->read(drv_data)) {
 673		int_transfer_complete(drv_data);
 674		return IRQ_HANDLED;
 675	}
 676
 677	if (drv_data->tx == drv_data->tx_end) {
 678		u32 bytes_left;
 679		u32 sccr1_reg;
 680
 681		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 682		sccr1_reg &= ~SSCR1_TIE;
 683
 684		/*
 685		 * PXA25x_SSP has no timeout, set up Rx threshold for
 686		 * the remaining Rx bytes.
 687		 */
 688		if (pxa25x_ssp_comp(drv_data)) {
 689			u32 rx_thre;
 690
 691			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 692
 693			bytes_left = drv_data->rx_end - drv_data->rx;
 694			switch (drv_data->n_bytes) {
 695			case 4:
 696				bytes_left >>= 2;
 697				break;
 698			case 2:
 699				bytes_left >>= 1;
 700				break;
 701			}
 702
 703			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 704			if (rx_thre > bytes_left)
 705				rx_thre = bytes_left;
 706
 707			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 708		}
 709		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 710	}
 711
 712	/* We did something */
 713	return IRQ_HANDLED;
 714}
 715
 716static void handle_bad_msg(struct driver_data *drv_data)
 717{
 718	int_stop_and_reset(drv_data);
 719	pxa2xx_spi_off(drv_data);
 
 
 
 
 720
 721	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
 722}
 723
 724static irqreturn_t ssp_int(int irq, void *dev_id)
 725{
 726	struct driver_data *drv_data = dev_id;
 727	u32 sccr1_reg;
 728	u32 mask = drv_data->mask_sr;
 729	u32 status;
 730
 731	/*
 732	 * The IRQ might be shared with other peripherals so we must first
 733	 * check that are we RPM suspended or not. If we are we assume that
 734	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 735	 * interrupt is enabled).
 736	 */
 737	if (pm_runtime_suspended(drv_data->ssp->dev))
 738		return IRQ_NONE;
 739
 740	/*
 741	 * If the device is not yet in RPM suspended state and we get an
 742	 * interrupt that is meant for another device, check if status bits
 743	 * are all set to one. That means that the device is already
 744	 * powered off.
 745	 */
 746	status = pxa2xx_spi_read(drv_data, SSSR);
 747	if (status == ~0)
 748		return IRQ_NONE;
 749
 750	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 751
 752	/* Ignore possible writes if we don't need to write */
 753	if (!(sccr1_reg & SSCR1_TIE))
 754		mask &= ~SSSR_TFS;
 755
 756	/* Ignore RX timeout interrupt if it is disabled */
 757	if (!(sccr1_reg & SSCR1_TINTE))
 758		mask &= ~SSSR_TINT;
 759
 760	if (!(status & mask))
 761		return IRQ_NONE;
 762
 763	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 764	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 765
 766	if (!drv_data->controller->cur_msg) {
 767		handle_bad_msg(drv_data);
 768		/* Never fail */
 769		return IRQ_HANDLED;
 770	}
 771
 772	return drv_data->transfer_handler(drv_data);
 773}
 774
 775/*
 776 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 777 * input frequency by fractions of 2^24. It also has a divider by 5.
 778 *
 779 * There are formulas to get baud rate value for given input frequency and
 780 * divider parameters, such as DDS_CLK_RATE and SCR:
 781 *
 782 * Fsys = 200MHz
 783 *
 784 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 785 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 786 *
 787 * DDS_CLK_RATE either 2^n or 2^n / 5.
 788 * SCR is in range 0 .. 255
 789 *
 790 * Divisor = 5^i * 2^j * 2 * k
 791 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 792 *       j = [0, 23]     j = 0 iff i = 1
 793 *       k = [1, 256]
 794 * Special case: j = 0, i = 1: Divisor = 2 / 5
 795 *
 796 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 797 * are:
 798 *	Case 1:		2^n, n = [0, 23]
 799 *	Case 2:		2^24 * 2 / 5 (0x666666)
 800 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 801 *
 802 * In all cases the lowest possible value is better.
 803 *
 804 * The function calculates parameters for all cases and chooses the one closest
 805 * to the asked baud rate.
 806 */
 807static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 808{
 809	unsigned long xtal = 200000000;
 810	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 811						   see (2) */
 812						/* case 3 */
 813	unsigned long fref1 = fref / 2;		/* case 1 */
 814	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 815	unsigned long scale;
 816	unsigned long q, q1, q2;
 817	long r, r1, r2;
 818	u32 mul;
 819
 820	/* Case 1 */
 821
 822	/* Set initial value for DDS_CLK_RATE */
 823	mul = (1 << 24) >> 1;
 824
 825	/* Calculate initial quot */
 826	q1 = DIV_ROUND_UP(fref1, rate);
 827
 828	/* Scale q1 if it's too big */
 829	if (q1 > 256) {
 830		/* Scale q1 to range [1, 512] */
 831		scale = fls_long(q1 - 1);
 832		if (scale > 9) {
 833			q1 >>= scale - 9;
 834			mul >>= scale - 9;
 835		}
 836
 837		/* Round the result if we have a remainder */
 838		q1 += q1 & 1;
 839	}
 840
 841	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 842	scale = __ffs(q1);
 843	q1 >>= scale;
 844	mul >>= scale;
 845
 846	/* Get the remainder */
 847	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 848
 849	/* Case 2 */
 850
 851	q2 = DIV_ROUND_UP(fref2, rate);
 852	r2 = abs(fref2 / q2 - rate);
 853
 854	/*
 855	 * Choose the best between two: less remainder we have the better. We
 856	 * can't go case 2 if q2 is greater than 256 since SCR register can
 857	 * hold only values 0 .. 255.
 858	 */
 859	if (r2 >= r1 || q2 > 256) {
 860		/* case 1 is better */
 861		r = r1;
 862		q = q1;
 863	} else {
 864		/* case 2 is better */
 865		r = r2;
 866		q = q2;
 867		mul = (1 << 24) * 2 / 5;
 868	}
 869
 870	/* Check case 3 only if the divisor is big enough */
 871	if (fref / rate >= 80) {
 872		u64 fssp;
 873		u32 m;
 874
 875		/* Calculate initial quot */
 876		q1 = DIV_ROUND_UP(fref, rate);
 877		m = (1 << 24) / q1;
 878
 879		/* Get the remainder */
 880		fssp = (u64)fref * m;
 881		do_div(fssp, 1 << 24);
 882		r1 = abs(fssp - rate);
 883
 884		/* Choose this one if it suits better */
 885		if (r1 < r) {
 886			/* case 3 is better */
 887			q = 1;
 888			mul = m;
 889		}
 890	}
 891
 892	*dds = mul;
 893	return q - 1;
 894}
 895
 896static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 897{
 898	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
 899	const struct ssp_device *ssp = drv_data->ssp;
 900
 901	rate = min_t(int, ssp_clk, rate);
 902
 903	/*
 904	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
 905	 * that the SSP transmission rate can be greater than the device rate.
 906	 */
 907	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 908		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
 909	else
 910		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
 911}
 912
 913static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 914					   int rate)
 915{
 916	struct chip_data *chip =
 917		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 918	unsigned int clk_div;
 919
 920	switch (drv_data->ssp_type) {
 921	case QUARK_X1000_SSP:
 922		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 923		break;
 924	default:
 925		clk_div = ssp_get_clk_div(drv_data, rate);
 926		break;
 927	}
 928	return clk_div << 8;
 929}
 930
 931static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
 932			       struct spi_device *spi,
 933			       struct spi_transfer *xfer)
 934{
 935	struct chip_data *chip = spi_get_ctldata(spi);
 936
 937	return chip->enable_dma &&
 938	       xfer->len <= MAX_DMA_LEN &&
 939	       xfer->len >= chip->dma_burst_size;
 940}
 941
 942static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
 943				   struct spi_device *spi,
 944				   struct spi_transfer *transfer)
 945{
 946	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 947	struct spi_message *message = controller->cur_msg;
 948	struct chip_data *chip = spi_get_ctldata(spi);
 949	u32 dma_thresh = chip->dma_threshold;
 950	u32 dma_burst = chip->dma_burst_size;
 951	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 952	u32 clk_div;
 953	u8 bits;
 954	u32 speed;
 955	u32 cr0;
 956	u32 cr1;
 957	int err;
 958	int dma_mapped;
 959
 960	/* Check if we can DMA this transfer */
 961	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 962
 963		/* Reject already-mapped transfers; PIO won't always work */
 964		if (message->is_dma_mapped
 965				|| transfer->rx_dma || transfer->tx_dma) {
 966			dev_err(&spi->dev,
 967				"Mapped transfer length of %u is greater than %d\n",
 968				transfer->len, MAX_DMA_LEN);
 969			return -EINVAL;
 970		}
 971
 972		/* Warn ... we force this to PIO mode */
 973		dev_warn_ratelimited(&spi->dev,
 974				     "DMA disabled for transfer length %u greater than %d\n",
 975				     transfer->len, MAX_DMA_LEN);
 976	}
 977
 978	/* Setup the transfer state based on the type of transfer */
 979	if (pxa2xx_spi_flush(drv_data) == 0) {
 980		dev_err(&spi->dev, "Flush failed\n");
 981		return -EIO;
 982	}
 
 983	drv_data->tx = (void *)transfer->tx_buf;
 984	drv_data->tx_end = drv_data->tx + transfer->len;
 985	drv_data->rx = transfer->rx_buf;
 986	drv_data->rx_end = drv_data->rx + transfer->len;
 
 
 987
 988	/* Change speed and bit per word on a per transfer */
 989	bits = transfer->bits_per_word;
 990	speed = transfer->speed_hz;
 991
 992	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
 993
 994	if (bits <= 8) {
 995		drv_data->n_bytes = 1;
 996		drv_data->read = drv_data->rx ? u8_reader : null_reader;
 997		drv_data->write = drv_data->tx ? u8_writer : null_writer;
 
 
 998	} else if (bits <= 16) {
 999		drv_data->n_bytes = 2;
1000		drv_data->read = drv_data->rx ? u16_reader : null_reader;
1001		drv_data->write = drv_data->tx ? u16_writer : null_writer;
 
 
1002	} else if (bits <= 32) {
1003		drv_data->n_bytes = 4;
1004		drv_data->read = drv_data->rx ? u32_reader : null_reader;
1005		drv_data->write = drv_data->tx ? u32_writer : null_writer;
 
 
1006	}
1007	/*
1008	 * If bits per word is changed in DMA mode, then must check
1009	 * the thresholds and burst also.
1010	 */
1011	if (chip->enable_dma) {
1012		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1013						spi,
1014						bits, &dma_burst,
1015						&dma_thresh))
1016			dev_warn_ratelimited(&spi->dev,
1017					     "DMA burst size reduced to match bits_per_word\n");
1018	}
1019
1020	dma_mapped = controller->can_dma &&
1021		     controller->can_dma(controller, spi, transfer) &&
1022		     controller->cur_msg_mapped;
1023	if (dma_mapped) {
1024
1025		/* Ensure we have the correct interrupt handler */
1026		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1027
1028		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1029		if (err)
1030			return err;
1031
1032		/* Clear status and start DMA engine */
1033		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1034		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1035
1036		pxa2xx_spi_dma_start(drv_data);
1037	} else {
1038		/* Ensure we have the correct interrupt handler	*/
1039		drv_data->transfer_handler = interrupt_transfer;
1040
1041		/* Clear status  */
1042		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1043		write_SSSR_CS(drv_data, drv_data->clear_sr);
1044	}
1045
1046	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1047	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1048	if (!pxa25x_ssp_comp(drv_data))
1049		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1050			controller->max_speed_hz
1051				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1052			dma_mapped ? "DMA" : "PIO");
1053	else
1054		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1055			controller->max_speed_hz / 2
1056				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1057			dma_mapped ? "DMA" : "PIO");
1058
1059	if (is_lpss_ssp(drv_data)) {
1060		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1061		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1062	}
1063
1064	if (is_mrfld_ssp(drv_data)) {
1065		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1066		u32 thresh = 0;
1067
1068		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1069		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1070
1071		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1072	}
1073
1074	if (is_quark_x1000_ssp(drv_data))
1075		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1076
1077	/* Stop the SSP */
1078	if (!is_mmp2_ssp(drv_data))
1079		pxa_ssp_disable(drv_data->ssp);
1080
1081	if (!pxa25x_ssp_comp(drv_data))
1082		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1083
1084	/* First set CR1 without interrupt and service enables */
1085	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1086
1087	/* See if we need to reload the configuration registers */
1088	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1089
1090	/* Restart the SSP */
1091	pxa_ssp_enable(drv_data->ssp);
1092
1093	if (is_mmp2_ssp(drv_data)) {
1094		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1095
1096		if (tx_level) {
1097			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1098			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1099			if (tx_level > transfer->len)
1100				tx_level = transfer->len;
1101			drv_data->tx += tx_level;
1102		}
1103	}
1104
1105	if (spi_controller_is_slave(controller)) {
1106		while (drv_data->write(drv_data))
1107			;
1108		if (drv_data->gpiod_ready) {
1109			gpiod_set_value(drv_data->gpiod_ready, 1);
1110			udelay(1);
1111			gpiod_set_value(drv_data->gpiod_ready, 0);
1112		}
1113	}
1114
1115	/*
1116	 * Release the data by enabling service requests and interrupts,
1117	 * without changing any mode bits.
1118	 */
1119	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1120
1121	return 1;
1122}
1123
1124static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1125{
1126	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1127
1128	int_error_stop(drv_data, "transfer aborted", -EINTR);
1129
1130	return 0;
1131}
1132
1133static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1134				 struct spi_message *msg)
1135{
1136	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1137
1138	int_stop_and_reset(drv_data);
1139
1140	/* Disable the SSP */
1141	pxa2xx_spi_off(drv_data);
 
 
 
 
 
1142
1143	/*
1144	 * Stop the DMA if running. Note DMA callback handler may have unset
1145	 * the dma_running already, which is fine as stopping is not needed
1146	 * then but we shouldn't rely this flag for anything else than
1147	 * stopping. For instance to differentiate between PIO and DMA
1148	 * transfers.
1149	 */
1150	if (atomic_read(&drv_data->dma_running))
1151		pxa2xx_spi_dma_stop(drv_data);
1152}
1153
1154static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1155{
1156	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1157
1158	/* Disable the SSP now */
1159	pxa2xx_spi_off(drv_data);
1160
1161	return 0;
1162}
1163
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1164static int setup(struct spi_device *spi)
1165{
1166	struct pxa2xx_spi_chip *chip_info;
1167	struct chip_data *chip;
1168	const struct lpss_config *config;
1169	struct driver_data *drv_data =
1170		spi_controller_get_devdata(spi->controller);
1171	uint tx_thres, tx_hi_thres, rx_thres;
 
1172
1173	switch (drv_data->ssp_type) {
1174	case QUARK_X1000_SSP:
1175		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1176		tx_hi_thres = 0;
1177		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1178		break;
1179	case MRFLD_SSP:
1180		tx_thres = TX_THRESH_MRFLD_DFLT;
1181		tx_hi_thres = 0;
1182		rx_thres = RX_THRESH_MRFLD_DFLT;
1183		break;
1184	case CE4100_SSP:
1185		tx_thres = TX_THRESH_CE4100_DFLT;
1186		tx_hi_thres = 0;
1187		rx_thres = RX_THRESH_CE4100_DFLT;
1188		break;
1189	case LPSS_LPT_SSP:
1190	case LPSS_BYT_SSP:
1191	case LPSS_BSW_SSP:
1192	case LPSS_SPT_SSP:
1193	case LPSS_BXT_SSP:
1194	case LPSS_CNL_SSP:
1195		config = lpss_get_config(drv_data);
1196		tx_thres = config->tx_threshold_lo;
1197		tx_hi_thres = config->tx_threshold_hi;
1198		rx_thres = config->rx_threshold;
1199		break;
1200	default:
1201		tx_hi_thres = 0;
1202		if (spi_controller_is_slave(drv_data->controller)) {
1203			tx_thres = 1;
1204			rx_thres = 2;
1205		} else {
1206			tx_thres = TX_THRESH_DFLT;
1207			rx_thres = RX_THRESH_DFLT;
1208		}
1209		break;
1210	}
1211
1212	/* Only allocate on the first setup */
1213	chip = spi_get_ctldata(spi);
1214	if (!chip) {
1215		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1216		if (!chip)
1217			return -ENOMEM;
1218
1219		if (drv_data->ssp_type == CE4100_SSP) {
1220			if (spi->chip_select > 4) {
1221				dev_err(&spi->dev,
1222					"failed setup: cs number must not be > 4.\n");
1223				kfree(chip);
1224				return -EINVAL;
1225			}
1226		}
1227		chip->enable_dma = drv_data->controller_info->enable_dma;
1228		chip->timeout = TIMOUT_DFLT;
1229	}
1230
1231	/*
1232	 * Protocol drivers may change the chip settings, so...
1233	 * if chip_info exists, use it.
1234	 */
1235	chip_info = spi->controller_data;
1236
1237	/* chip_info isn't always needed */
 
1238	if (chip_info) {
1239		if (chip_info->timeout)
1240			chip->timeout = chip_info->timeout;
1241		if (chip_info->tx_threshold)
1242			tx_thres = chip_info->tx_threshold;
1243		if (chip_info->tx_hi_threshold)
1244			tx_hi_thres = chip_info->tx_hi_threshold;
1245		if (chip_info->rx_threshold)
1246			rx_thres = chip_info->rx_threshold;
1247		chip->dma_threshold = 0;
 
 
1248	}
1249
1250	chip->cr1 = 0;
1251	if (spi_controller_is_slave(drv_data->controller)) {
1252		chip->cr1 |= SSCR1_SCFR;
1253		chip->cr1 |= SSCR1_SCLKDIR;
1254		chip->cr1 |= SSCR1_SFRMDIR;
1255		chip->cr1 |= SSCR1_SPH;
1256	}
1257
1258	if (is_lpss_ssp(drv_data)) {
1259		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1260		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1261					  SSITF_TxHiThresh(tx_hi_thres);
1262	}
1263
1264	if (is_mrfld_ssp(drv_data)) {
1265		chip->lpss_rx_threshold = rx_thres;
1266		chip->lpss_tx_threshold = tx_thres;
1267	}
1268
1269	/*
1270	 * Set DMA burst and threshold outside of chip_info path so that if
1271	 * chip_info goes away after setting chip->enable_dma, the burst and
1272	 * threshold can still respond to changes in bits_per_word.
1273	 */
1274	if (chip->enable_dma) {
1275		/* Set up legal burst and threshold for DMA */
1276		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1277						spi->bits_per_word,
1278						&chip->dma_burst_size,
1279						&chip->dma_threshold)) {
1280			dev_warn(&spi->dev,
1281				 "in setup: DMA burst size reduced to match bits_per_word\n");
1282		}
1283		dev_dbg(&spi->dev,
1284			"in setup: DMA burst size set to %u\n",
1285			chip->dma_burst_size);
1286	}
1287
1288	switch (drv_data->ssp_type) {
1289	case QUARK_X1000_SSP:
1290		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1291				   & QUARK_X1000_SSCR1_RFT)
1292				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1293				   & QUARK_X1000_SSCR1_TFT);
1294		break;
1295	case CE4100_SSP:
1296		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1297			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1298		break;
1299	default:
1300		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1301			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1302		break;
1303	}
1304
1305	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1306	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1307		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1308
1309	if (spi->mode & SPI_LOOP)
1310		chip->cr1 |= SSCR1_LBM;
1311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312	spi_set_ctldata(spi, chip);
1313
1314	return 0;
 
 
 
 
 
 
 
1315}
1316
1317static void cleanup(struct spi_device *spi)
1318{
1319	struct chip_data *chip = spi_get_ctldata(spi);
1320
 
1321	kfree(chip);
1322}
1323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1325{
1326	return param == chan->device->dev;
1327}
1328
 
 
1329static struct pxa2xx_spi_controller *
1330pxa2xx_spi_init_pdata(struct platform_device *pdev)
1331{
1332	struct pxa2xx_spi_controller *pdata;
1333	struct device *dev = &pdev->dev;
1334	struct device *parent = dev->parent;
1335	struct ssp_device *ssp;
1336	struct resource *res;
1337	enum pxa_ssp_type type = SSP_UNDEFINED;
 
 
 
1338	const void *match;
1339	bool is_lpss_priv;
1340	int status;
1341	u64 uid;
1342
1343	is_lpss_priv = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpss_priv");
 
1344
1345	match = device_get_match_data(dev);
1346	if (match)
1347		type = (enum pxa_ssp_type)match;
1348	else if (is_lpss_priv) {
1349		u32 value;
1350
1351		status = device_property_read_u32(dev, "intel,spi-pxa2xx-type", &value);
1352		if (status)
1353			return ERR_PTR(status);
1354
1355		type = (enum pxa_ssp_type)value;
1356	}
1357
1358	/* Validate the SSP type correctness */
1359	if (!(type > SSP_UNDEFINED && type < SSP_MAX))
1360		return ERR_PTR(-EINVAL);
1361
1362	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1363	if (!pdata)
1364		return ERR_PTR(-ENOMEM);
1365
1366	ssp = &pdata->ssp;
1367
1368	ssp->mmio_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
 
1369	if (IS_ERR(ssp->mmio_base))
1370		return ERR_CAST(ssp->mmio_base);
1371
1372	ssp->phys_base = res->start;
1373
1374	/* Platforms with iDMA 64-bit */
1375	if (is_lpss_priv) {
1376		pdata->tx_param = parent;
1377		pdata->rx_param = parent;
1378		pdata->dma_filter = pxa2xx_spi_idma_filter;
1379	}
 
1380
1381	ssp->clk = devm_clk_get(dev, NULL);
1382	if (IS_ERR(ssp->clk))
1383		return ERR_CAST(ssp->clk);
1384
1385	ssp->irq = platform_get_irq(pdev, 0);
1386	if (ssp->irq < 0)
1387		return ERR_PTR(ssp->irq);
1388
1389	ssp->type = type;
1390	ssp->dev = dev;
1391
1392	status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid);
1393	if (status)
1394		ssp->port_id = -1;
1395	else
1396		ssp->port_id = uid;
1397
1398	pdata->is_slave = device_property_read_bool(dev, "spi-slave");
1399	pdata->num_chipselect = 1;
1400	pdata->enable_dma = true;
1401	pdata->dma_burst_size = 1;
1402
1403	return pdata;
1404}
1405
1406static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1407				      unsigned int cs)
1408{
1409	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1410
1411	if (has_acpi_companion(drv_data->ssp->dev)) {
1412		switch (drv_data->ssp_type) {
1413		/*
1414		 * For Atoms the ACPI DeviceSelection used by the Windows
1415		 * driver starts from 1 instead of 0 so translate it here
1416		 * to match what Linux expects.
1417		 */
1418		case LPSS_BYT_SSP:
1419		case LPSS_BSW_SSP:
1420			return cs - 1;
1421
1422		default:
1423			break;
1424		}
1425	}
1426
1427	return cs;
1428}
1429
1430static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1431{
1432	return MAX_DMA_LEN;
1433}
1434
1435static int pxa2xx_spi_probe(struct platform_device *pdev)
1436{
1437	struct device *dev = &pdev->dev;
1438	struct pxa2xx_spi_controller *platform_info;
1439	struct spi_controller *controller;
1440	struct driver_data *drv_data;
1441	struct ssp_device *ssp;
1442	const struct lpss_config *config;
1443	int status;
1444	u32 tmp;
1445
1446	platform_info = dev_get_platdata(dev);
1447	if (!platform_info) {
1448		platform_info = pxa2xx_spi_init_pdata(pdev);
1449		if (IS_ERR(platform_info)) {
1450			dev_err(&pdev->dev, "missing platform data\n");
1451			return PTR_ERR(platform_info);
1452		}
1453	}
1454
1455	ssp = pxa_ssp_request(pdev->id, pdev->name);
1456	if (!ssp)
1457		ssp = &platform_info->ssp;
1458
1459	if (!ssp->mmio_base) {
1460		dev_err(&pdev->dev, "failed to get SSP\n");
1461		return -ENODEV;
1462	}
1463
1464	if (platform_info->is_slave)
1465		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1466	else
1467		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1468
1469	if (!controller) {
1470		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1471		status = -ENOMEM;
1472		goto out_error_controller_alloc;
1473	}
1474	drv_data = spi_controller_get_devdata(controller);
1475	drv_data->controller = controller;
1476	drv_data->controller_info = platform_info;
1477	drv_data->ssp = ssp;
1478
1479	device_set_node(&controller->dev, dev_fwnode(dev));
 
1480
1481	/* The spi->mode bits understood by this driver: */
1482	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1483
1484	controller->bus_num = ssp->port_id;
1485	controller->dma_alignment = DMA_ALIGNMENT;
1486	controller->cleanup = cleanup;
1487	controller->setup = setup;
1488	controller->set_cs = pxa2xx_spi_set_cs;
1489	controller->transfer_one = pxa2xx_spi_transfer_one;
1490	controller->slave_abort = pxa2xx_spi_slave_abort;
1491	controller->handle_err = pxa2xx_spi_handle_err;
1492	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1493	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1494	controller->auto_runtime_pm = true;
1495	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1496
1497	drv_data->ssp_type = ssp->type;
1498
1499	if (pxa25x_ssp_comp(drv_data)) {
1500		switch (drv_data->ssp_type) {
1501		case QUARK_X1000_SSP:
1502			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1503			break;
1504		default:
1505			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1506			break;
1507		}
1508
1509		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1510		drv_data->dma_cr1 = 0;
1511		drv_data->clear_sr = SSSR_ROR;
1512		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1513	} else {
1514		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1515		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1516		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1517		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1518		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1519						| SSSR_ROR | SSSR_TUR;
1520	}
1521
1522	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1523			drv_data);
1524	if (status < 0) {
1525		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1526		goto out_error_controller_alloc;
1527	}
1528
1529	/* Setup DMA if requested */
1530	if (platform_info->enable_dma) {
1531		status = pxa2xx_spi_dma_setup(drv_data);
1532		if (status) {
1533			dev_warn(dev, "no DMA channels available, using PIO\n");
1534			platform_info->enable_dma = false;
1535		} else {
1536			controller->can_dma = pxa2xx_spi_can_dma;
1537			controller->max_dma_len = MAX_DMA_LEN;
1538			controller->max_transfer_size =
1539				pxa2xx_spi_max_dma_transfer_size;
1540		}
1541	}
1542
1543	/* Enable SOC clock */
1544	status = clk_prepare_enable(ssp->clk);
1545	if (status)
1546		goto out_error_dma_irq_alloc;
1547
1548	controller->max_speed_hz = clk_get_rate(ssp->clk);
1549	/*
1550	 * Set minimum speed for all other platforms than Intel Quark which is
1551	 * able do under 1 Hz transfers.
1552	 */
1553	if (!pxa25x_ssp_comp(drv_data))
1554		controller->min_speed_hz =
1555			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1556	else if (!is_quark_x1000_ssp(drv_data))
1557		controller->min_speed_hz =
1558			DIV_ROUND_UP(controller->max_speed_hz, 512);
1559
1560	pxa_ssp_disable(ssp);
1561
1562	/* Load default SSP configuration */
1563	switch (drv_data->ssp_type) {
1564	case QUARK_X1000_SSP:
1565		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1566		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1567		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1568
1569		/* Using the Motorola SPI protocol and use 8 bit frame */
1570		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1571		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1572		break;
1573	case CE4100_SSP:
1574		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1575		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1576		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1577		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1578		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1579		break;
1580	default:
1581
1582		if (spi_controller_is_slave(controller)) {
1583			tmp = SSCR1_SCFR |
1584			      SSCR1_SCLKDIR |
1585			      SSCR1_SFRMDIR |
1586			      SSCR1_RxTresh(2) |
1587			      SSCR1_TxTresh(1) |
1588			      SSCR1_SPH;
1589		} else {
1590			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1591			      SSCR1_TxTresh(TX_THRESH_DFLT);
1592		}
1593		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1594		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1595		if (!spi_controller_is_slave(controller))
1596			tmp |= SSCR0_SCR(2);
1597		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1598		break;
1599	}
1600
1601	if (!pxa25x_ssp_comp(drv_data))
1602		pxa2xx_spi_write(drv_data, SSTO, 0);
1603
1604	if (!is_quark_x1000_ssp(drv_data))
1605		pxa2xx_spi_write(drv_data, SSPSP, 0);
1606
1607	if (is_lpss_ssp(drv_data)) {
1608		lpss_ssp_setup(drv_data);
1609		config = lpss_get_config(drv_data);
1610		if (config->reg_capabilities >= 0) {
1611			tmp = __lpss_ssp_read_priv(drv_data,
1612						   config->reg_capabilities);
1613			tmp &= LPSS_CAPS_CS_EN_MASK;
1614			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1615			platform_info->num_chipselect = ffz(tmp);
1616		} else if (config->cs_num) {
1617			platform_info->num_chipselect = config->cs_num;
1618		}
1619	}
1620	controller->num_chipselect = platform_info->num_chipselect;
1621	controller->use_gpio_descriptors = true;
1622
1623	if (platform_info->is_slave) {
1624		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1625						"ready", GPIOD_OUT_LOW);
1626		if (IS_ERR(drv_data->gpiod_ready)) {
1627			status = PTR_ERR(drv_data->gpiod_ready);
1628			goto out_error_clock_enabled;
1629		}
1630	}
1631
1632	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1633	pm_runtime_use_autosuspend(&pdev->dev);
1634	pm_runtime_set_active(&pdev->dev);
1635	pm_runtime_enable(&pdev->dev);
1636
1637	/* Register with the SPI framework */
1638	platform_set_drvdata(pdev, drv_data);
1639	status = spi_register_controller(controller);
1640	if (status) {
1641		dev_err(&pdev->dev, "problem registering SPI controller\n");
1642		goto out_error_pm_runtime_enabled;
1643	}
1644
1645	return status;
1646
1647out_error_pm_runtime_enabled:
1648	pm_runtime_disable(&pdev->dev);
1649
1650out_error_clock_enabled:
1651	clk_disable_unprepare(ssp->clk);
1652
1653out_error_dma_irq_alloc:
1654	pxa2xx_spi_dma_release(drv_data);
1655	free_irq(ssp->irq, drv_data);
1656
1657out_error_controller_alloc:
1658	pxa_ssp_free(ssp);
1659	return status;
1660}
1661
1662static int pxa2xx_spi_remove(struct platform_device *pdev)
1663{
1664	struct driver_data *drv_data = platform_get_drvdata(pdev);
1665	struct ssp_device *ssp = drv_data->ssp;
1666
1667	pm_runtime_get_sync(&pdev->dev);
1668
1669	spi_unregister_controller(drv_data->controller);
1670
1671	/* Disable the SSP at the peripheral and SOC level */
1672	pxa_ssp_disable(ssp);
1673	clk_disable_unprepare(ssp->clk);
1674
1675	/* Release DMA */
1676	if (drv_data->controller_info->enable_dma)
1677		pxa2xx_spi_dma_release(drv_data);
1678
1679	pm_runtime_put_noidle(&pdev->dev);
1680	pm_runtime_disable(&pdev->dev);
1681
1682	/* Release IRQ */
1683	free_irq(ssp->irq, drv_data);
1684
1685	/* Release SSP */
1686	pxa_ssp_free(ssp);
1687
1688	return 0;
1689}
1690
 
1691static int pxa2xx_spi_suspend(struct device *dev)
1692{
1693	struct driver_data *drv_data = dev_get_drvdata(dev);
1694	struct ssp_device *ssp = drv_data->ssp;
1695	int status;
1696
1697	status = spi_controller_suspend(drv_data->controller);
1698	if (status)
1699		return status;
1700
1701	pxa_ssp_disable(ssp);
1702
1703	if (!pm_runtime_suspended(dev))
1704		clk_disable_unprepare(ssp->clk);
1705
1706	return 0;
1707}
1708
1709static int pxa2xx_spi_resume(struct device *dev)
1710{
1711	struct driver_data *drv_data = dev_get_drvdata(dev);
1712	struct ssp_device *ssp = drv_data->ssp;
1713	int status;
1714
1715	/* Enable the SSP clock */
1716	if (!pm_runtime_suspended(dev)) {
1717		status = clk_prepare_enable(ssp->clk);
1718		if (status)
1719			return status;
1720	}
1721
1722	/* Start the queue running */
1723	return spi_controller_resume(drv_data->controller);
1724}
 
1725
 
1726static int pxa2xx_spi_runtime_suspend(struct device *dev)
1727{
1728	struct driver_data *drv_data = dev_get_drvdata(dev);
1729
1730	clk_disable_unprepare(drv_data->ssp->clk);
1731	return 0;
1732}
1733
1734static int pxa2xx_spi_runtime_resume(struct device *dev)
1735{
1736	struct driver_data *drv_data = dev_get_drvdata(dev);
 
1737
1738	return clk_prepare_enable(drv_data->ssp->clk);
 
1739}
1740
1741static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1742	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1743	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
1744};
1745
1746#ifdef CONFIG_ACPI
1747static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1748	{ "80860F0E", LPSS_BYT_SSP },
1749	{ "8086228E", LPSS_BSW_SSP },
1750	{ "INT33C0", LPSS_LPT_SSP },
1751	{ "INT33C1", LPSS_LPT_SSP },
1752	{ "INT3430", LPSS_LPT_SSP },
1753	{ "INT3431", LPSS_LPT_SSP },
1754	{}
1755};
1756MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1757#endif
1758
1759static const struct of_device_id pxa2xx_spi_of_match[] = {
1760	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1761	{}
 
1762};
1763MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1764
1765static struct platform_driver driver = {
1766	.driver = {
1767		.name	= "pxa2xx-spi",
1768		.pm	= pm_ptr(&pxa2xx_spi_pm_ops),
1769		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1770		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1771	},
1772	.probe = pxa2xx_spi_probe,
1773	.remove = pxa2xx_spi_remove,
1774};
1775
1776static int __init pxa2xx_spi_init(void)
1777{
1778	return platform_driver_register(&driver);
1779}
1780subsys_initcall(pxa2xx_spi_init);
1781
1782static void __exit pxa2xx_spi_exit(void)
1783{
1784	platform_driver_unregister(&driver);
1785}
1786module_exit(pxa2xx_spi_exit);
1787
1788MODULE_SOFTDEP("pre: dw_dmac");
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   4 * Copyright (C) 2013, 2021 Intel Corporation
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/err.h>
  14#include <linux/errno.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/gpio.h>
  17#include <linux/init.h>
  18#include <linux/interrupt.h>
  19#include <linux/ioport.h>
  20#include <linux/kernel.h>
  21#include <linux/module.h>
  22#include <linux/mod_devicetable.h>
  23#include <linux/of.h>
  24#include <linux/pci.h>
  25#include <linux/platform_device.h>
  26#include <linux/pm_runtime.h>
  27#include <linux/property.h>
  28#include <linux/slab.h>
  29
  30#include <linux/spi/pxa2xx_spi.h>
  31#include <linux/spi/spi.h>
  32
  33#include "spi-pxa2xx.h"
  34
  35MODULE_AUTHOR("Stephen Street");
  36MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  37MODULE_LICENSE("GPL");
  38MODULE_ALIAS("platform:pxa2xx-spi");
  39
  40#define TIMOUT_DFLT		1000
  41
  42/*
  43 * For testing SSCR1 changes that require SSP restart, basically
  44 * everything except the service and interrupt enables, the PXA270 developer
  45 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  46 * list, but the PXA255 developer manual says all bits without really meaning
  47 * the service and interrupt enables.
  48 */
  49#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  50				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  51				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  52				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  53				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  54				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  55
  56#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  57				| QUARK_X1000_SSCR1_EFWR	\
  58				| QUARK_X1000_SSCR1_RFT		\
  59				| QUARK_X1000_SSCR1_TFT		\
  60				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  61
  62#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  63				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  64				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  65				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  66				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  67				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  68
  69#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  70#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  71#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  72#define LPSS_CAPS_CS_EN_SHIFT			9
  73#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  74
  75#define LPSS_PRIV_CLOCK_GATE 0x38
  76#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
  77#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
  78
  79struct lpss_config {
  80	/* LPSS offset from drv_data->ioaddr */
  81	unsigned offset;
  82	/* Register offsets from drv_data->lpss_base or -1 */
  83	int reg_general;
  84	int reg_ssp;
  85	int reg_cs_ctrl;
  86	int reg_capabilities;
  87	/* FIFO thresholds */
  88	u32 rx_threshold;
  89	u32 tx_threshold_lo;
  90	u32 tx_threshold_hi;
  91	/* Chip select control */
  92	unsigned cs_sel_shift;
  93	unsigned cs_sel_mask;
  94	unsigned cs_num;
  95	/* Quirks */
  96	unsigned cs_clk_stays_gated : 1;
  97};
  98
  99/* Keep these sorted with enum pxa_ssp_type */
 100static const struct lpss_config lpss_platforms[] = {
 101	{	/* LPSS_LPT_SSP */
 102		.offset = 0x800,
 103		.reg_general = 0x08,
 104		.reg_ssp = 0x0c,
 105		.reg_cs_ctrl = 0x18,
 106		.reg_capabilities = -1,
 107		.rx_threshold = 64,
 108		.tx_threshold_lo = 160,
 109		.tx_threshold_hi = 224,
 110	},
 111	{	/* LPSS_BYT_SSP */
 112		.offset = 0x400,
 113		.reg_general = 0x08,
 114		.reg_ssp = 0x0c,
 115		.reg_cs_ctrl = 0x18,
 116		.reg_capabilities = -1,
 117		.rx_threshold = 64,
 118		.tx_threshold_lo = 160,
 119		.tx_threshold_hi = 224,
 120	},
 121	{	/* LPSS_BSW_SSP */
 122		.offset = 0x400,
 123		.reg_general = 0x08,
 124		.reg_ssp = 0x0c,
 125		.reg_cs_ctrl = 0x18,
 126		.reg_capabilities = -1,
 127		.rx_threshold = 64,
 128		.tx_threshold_lo = 160,
 129		.tx_threshold_hi = 224,
 130		.cs_sel_shift = 2,
 131		.cs_sel_mask = 1 << 2,
 132		.cs_num = 2,
 133	},
 134	{	/* LPSS_SPT_SSP */
 135		.offset = 0x200,
 136		.reg_general = -1,
 137		.reg_ssp = 0x20,
 138		.reg_cs_ctrl = 0x24,
 139		.reg_capabilities = -1,
 140		.rx_threshold = 1,
 141		.tx_threshold_lo = 32,
 142		.tx_threshold_hi = 56,
 143	},
 144	{	/* LPSS_BXT_SSP */
 145		.offset = 0x200,
 146		.reg_general = -1,
 147		.reg_ssp = 0x20,
 148		.reg_cs_ctrl = 0x24,
 149		.reg_capabilities = 0xfc,
 150		.rx_threshold = 1,
 151		.tx_threshold_lo = 16,
 152		.tx_threshold_hi = 48,
 153		.cs_sel_shift = 8,
 154		.cs_sel_mask = 3 << 8,
 155		.cs_clk_stays_gated = true,
 156	},
 157	{	/* LPSS_CNL_SSP */
 158		.offset = 0x200,
 159		.reg_general = -1,
 160		.reg_ssp = 0x20,
 161		.reg_cs_ctrl = 0x24,
 162		.reg_capabilities = 0xfc,
 163		.rx_threshold = 1,
 164		.tx_threshold_lo = 32,
 165		.tx_threshold_hi = 56,
 166		.cs_sel_shift = 8,
 167		.cs_sel_mask = 3 << 8,
 168		.cs_clk_stays_gated = true,
 169	},
 170};
 171
 172static inline const struct lpss_config
 173*lpss_get_config(const struct driver_data *drv_data)
 174{
 175	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 176}
 177
 178static bool is_lpss_ssp(const struct driver_data *drv_data)
 179{
 180	switch (drv_data->ssp_type) {
 181	case LPSS_LPT_SSP:
 182	case LPSS_BYT_SSP:
 183	case LPSS_BSW_SSP:
 184	case LPSS_SPT_SSP:
 185	case LPSS_BXT_SSP:
 186	case LPSS_CNL_SSP:
 187		return true;
 188	default:
 189		return false;
 190	}
 191}
 192
 193static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 194{
 195	return drv_data->ssp_type == QUARK_X1000_SSP;
 196}
 197
 198static bool is_mmp2_ssp(const struct driver_data *drv_data)
 199{
 200	return drv_data->ssp_type == MMP2_SSP;
 201}
 202
 203static bool is_mrfld_ssp(const struct driver_data *drv_data)
 204{
 205	return drv_data->ssp_type == MRFLD_SSP;
 206}
 207
 208static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
 209{
 210	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
 211		pxa2xx_spi_write(drv_data, reg, value & mask);
 212}
 213
 214static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 215{
 216	switch (drv_data->ssp_type) {
 217	case QUARK_X1000_SSP:
 218		return QUARK_X1000_SSCR1_CHANGE_MASK;
 219	case CE4100_SSP:
 220		return CE4100_SSCR1_CHANGE_MASK;
 221	default:
 222		return SSCR1_CHANGE_MASK;
 223	}
 224}
 225
 226static u32
 227pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 228{
 229	switch (drv_data->ssp_type) {
 230	case QUARK_X1000_SSP:
 231		return RX_THRESH_QUARK_X1000_DFLT;
 232	case CE4100_SSP:
 233		return RX_THRESH_CE4100_DFLT;
 234	default:
 235		return RX_THRESH_DFLT;
 236	}
 237}
 238
 239static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 240{
 241	u32 mask;
 242
 243	switch (drv_data->ssp_type) {
 244	case QUARK_X1000_SSP:
 245		mask = QUARK_X1000_SSSR_TFL_MASK;
 246		break;
 247	case CE4100_SSP:
 248		mask = CE4100_SSSR_TFL_MASK;
 249		break;
 250	default:
 251		mask = SSSR_TFL_MASK;
 252		break;
 253	}
 254
 255	return read_SSSR_bits(drv_data, mask) == mask;
 256}
 257
 258static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 259				     u32 *sccr1_reg)
 260{
 261	u32 mask;
 262
 263	switch (drv_data->ssp_type) {
 264	case QUARK_X1000_SSP:
 265		mask = QUARK_X1000_SSCR1_RFT;
 266		break;
 267	case CE4100_SSP:
 268		mask = CE4100_SSCR1_RFT;
 269		break;
 270	default:
 271		mask = SSCR1_RFT;
 272		break;
 273	}
 274	*sccr1_reg &= ~mask;
 275}
 276
 277static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 278				   u32 *sccr1_reg, u32 threshold)
 279{
 280	switch (drv_data->ssp_type) {
 281	case QUARK_X1000_SSP:
 282		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 283		break;
 284	case CE4100_SSP:
 285		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 286		break;
 287	default:
 288		*sccr1_reg |= SSCR1_RxTresh(threshold);
 289		break;
 290	}
 291}
 292
 293static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 294				  u32 clk_div, u8 bits)
 295{
 296	switch (drv_data->ssp_type) {
 297	case QUARK_X1000_SSP:
 298		return clk_div
 299			| QUARK_X1000_SSCR0_Motorola
 300			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
 301	default:
 302		return clk_div
 303			| SSCR0_Motorola
 304			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 305			| (bits > 16 ? SSCR0_EDSS : 0);
 306	}
 307}
 308
 309/*
 310 * Read and write LPSS SSP private registers. Caller must first check that
 311 * is_lpss_ssp() returns true before these can be called.
 312 */
 313static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 314{
 315	WARN_ON(!drv_data->lpss_base);
 316	return readl(drv_data->lpss_base + offset);
 317}
 318
 319static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 320				  unsigned offset, u32 value)
 321{
 322	WARN_ON(!drv_data->lpss_base);
 323	writel(value, drv_data->lpss_base + offset);
 324}
 325
 326/*
 327 * lpss_ssp_setup - perform LPSS SSP specific setup
 328 * @drv_data: pointer to the driver private data
 329 *
 330 * Perform LPSS SSP specific setup. This function must be called first if
 331 * one is going to use LPSS SSP private registers.
 332 */
 333static void lpss_ssp_setup(struct driver_data *drv_data)
 334{
 335	const struct lpss_config *config;
 336	u32 value;
 337
 338	config = lpss_get_config(drv_data);
 339	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
 340
 341	/* Enable software chip select control */
 342	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 343	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 344	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 345	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 346
 347	/* Enable multiblock DMA transfers */
 348	if (drv_data->controller_info->enable_dma) {
 349		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 350
 351		if (config->reg_general >= 0) {
 352			value = __lpss_ssp_read_priv(drv_data,
 353						     config->reg_general);
 354			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 355			__lpss_ssp_write_priv(drv_data,
 356					      config->reg_general, value);
 357		}
 358	}
 359}
 360
 361static void lpss_ssp_select_cs(struct spi_device *spi,
 362			       const struct lpss_config *config)
 363{
 364	struct driver_data *drv_data =
 365		spi_controller_get_devdata(spi->controller);
 366	u32 value, cs;
 367
 368	if (!config->cs_sel_mask)
 369		return;
 370
 371	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 372
 373	cs = spi->chip_select;
 374	cs <<= config->cs_sel_shift;
 375	if (cs != (value & config->cs_sel_mask)) {
 376		/*
 377		 * When switching another chip select output active the
 378		 * output must be selected first and wait 2 ssp_clk cycles
 379		 * before changing state to active. Otherwise a short
 380		 * glitch will occur on the previous chip select since
 381		 * output select is latched but state control is not.
 382		 */
 383		value &= ~config->cs_sel_mask;
 384		value |= cs;
 385		__lpss_ssp_write_priv(drv_data,
 386				      config->reg_cs_ctrl, value);
 387		ndelay(1000000000 /
 388		       (drv_data->controller->max_speed_hz / 2));
 389	}
 390}
 391
 392static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 393{
 394	struct driver_data *drv_data =
 395		spi_controller_get_devdata(spi->controller);
 396	const struct lpss_config *config;
 397	u32 value;
 398
 399	config = lpss_get_config(drv_data);
 400
 401	if (enable)
 402		lpss_ssp_select_cs(spi, config);
 403
 404	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 405	if (enable)
 406		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 407	else
 408		value |= LPSS_CS_CONTROL_CS_HIGH;
 409	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 410	if (config->cs_clk_stays_gated) {
 411		u32 clkgate;
 412
 413		/*
 414		 * Changing CS alone when dynamic clock gating is on won't
 415		 * actually flip CS at that time. This ruins SPI transfers
 416		 * that specify delays, or have no data. Toggle the clock mode
 417		 * to force on briefly to poke the CS pin to move.
 418		 */
 419		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
 420		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
 421			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
 422
 423		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
 424		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
 425	}
 426}
 427
 428static void cs_assert(struct spi_device *spi)
 429{
 430	struct chip_data *chip = spi_get_ctldata(spi);
 431	struct driver_data *drv_data =
 432		spi_controller_get_devdata(spi->controller);
 433
 434	if (drv_data->ssp_type == CE4100_SSP) {
 435		pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
 436		return;
 437	}
 438
 439	if (chip->cs_control) {
 440		chip->cs_control(PXA2XX_CS_ASSERT);
 441		return;
 442	}
 443
 444	if (is_lpss_ssp(drv_data))
 445		lpss_ssp_cs_control(spi, true);
 446}
 447
 448static void cs_deassert(struct spi_device *spi)
 449{
 450	struct chip_data *chip = spi_get_ctldata(spi);
 451	struct driver_data *drv_data =
 452		spi_controller_get_devdata(spi->controller);
 453	unsigned long timeout;
 454
 455	if (drv_data->ssp_type == CE4100_SSP)
 456		return;
 457
 458	/* Wait until SSP becomes idle before deasserting the CS */
 459	timeout = jiffies + msecs_to_jiffies(10);
 460	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 461	       !time_after(jiffies, timeout))
 462		cpu_relax();
 463
 464	if (chip->cs_control) {
 465		chip->cs_control(PXA2XX_CS_DEASSERT);
 466		return;
 467	}
 468
 469	if (is_lpss_ssp(drv_data))
 470		lpss_ssp_cs_control(spi, false);
 471}
 472
 473static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 474{
 475	if (level)
 476		cs_deassert(spi);
 477	else
 478		cs_assert(spi);
 479}
 480
 481int pxa2xx_spi_flush(struct driver_data *drv_data)
 482{
 483	unsigned long limit = loops_per_jiffy << 1;
 484
 485	do {
 486		while (read_SSSR_bits(drv_data, SSSR_RNE))
 487			pxa2xx_spi_read(drv_data, SSDR);
 488	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 489	write_SSSR_CS(drv_data, SSSR_ROR);
 490
 491	return limit;
 492}
 493
 494static void pxa2xx_spi_off(struct driver_data *drv_data)
 495{
 496	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
 497	if (is_mmp2_ssp(drv_data))
 498		return;
 499
 500	pxa_ssp_disable(drv_data->ssp);
 501}
 502
 503static int null_writer(struct driver_data *drv_data)
 504{
 505	u8 n_bytes = drv_data->n_bytes;
 506
 507	if (pxa2xx_spi_txfifo_full(drv_data)
 508		|| (drv_data->tx == drv_data->tx_end))
 509		return 0;
 510
 511	pxa2xx_spi_write(drv_data, SSDR, 0);
 512	drv_data->tx += n_bytes;
 513
 514	return 1;
 515}
 516
 517static int null_reader(struct driver_data *drv_data)
 518{
 519	u8 n_bytes = drv_data->n_bytes;
 520
 521	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 522		pxa2xx_spi_read(drv_data, SSDR);
 523		drv_data->rx += n_bytes;
 524	}
 525
 526	return drv_data->rx == drv_data->rx_end;
 527}
 528
 529static int u8_writer(struct driver_data *drv_data)
 530{
 531	if (pxa2xx_spi_txfifo_full(drv_data)
 532		|| (drv_data->tx == drv_data->tx_end))
 533		return 0;
 534
 535	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 536	++drv_data->tx;
 537
 538	return 1;
 539}
 540
 541static int u8_reader(struct driver_data *drv_data)
 542{
 543	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 544		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 545		++drv_data->rx;
 546	}
 547
 548	return drv_data->rx == drv_data->rx_end;
 549}
 550
 551static int u16_writer(struct driver_data *drv_data)
 552{
 553	if (pxa2xx_spi_txfifo_full(drv_data)
 554		|| (drv_data->tx == drv_data->tx_end))
 555		return 0;
 556
 557	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 558	drv_data->tx += 2;
 559
 560	return 1;
 561}
 562
 563static int u16_reader(struct driver_data *drv_data)
 564{
 565	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 566		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 567		drv_data->rx += 2;
 568	}
 569
 570	return drv_data->rx == drv_data->rx_end;
 571}
 572
 573static int u32_writer(struct driver_data *drv_data)
 574{
 575	if (pxa2xx_spi_txfifo_full(drv_data)
 576		|| (drv_data->tx == drv_data->tx_end))
 577		return 0;
 578
 579	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 580	drv_data->tx += 4;
 581
 582	return 1;
 583}
 584
 585static int u32_reader(struct driver_data *drv_data)
 586{
 587	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 588		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 589		drv_data->rx += 4;
 590	}
 591
 592	return drv_data->rx == drv_data->rx_end;
 593}
 594
 595static void reset_sccr1(struct driver_data *drv_data)
 596{
 597	struct chip_data *chip =
 598		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 599	u32 sccr1_reg;
 
 
 
 
 
 
 600
 601	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 602	switch (drv_data->ssp_type) {
 603	case QUARK_X1000_SSP:
 604		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
 605		break;
 606	case CE4100_SSP:
 607		sccr1_reg &= ~CE4100_SSCR1_RFT;
 608		break;
 609	default:
 610		sccr1_reg &= ~SSCR1_RFT;
 611		break;
 612	}
 613	sccr1_reg |= chip->threshold;
 614	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 615}
 616
 617static void int_stop_and_reset(struct driver_data *drv_data)
 618{
 619	/* Clear and disable interrupts */
 620	write_SSSR_CS(drv_data, drv_data->clear_sr);
 621	reset_sccr1(drv_data);
 622	if (pxa25x_ssp_comp(drv_data))
 623		return;
 624
 625	pxa2xx_spi_write(drv_data, SSTO, 0);
 626}
 627
 628static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
 629{
 630	int_stop_and_reset(drv_data);
 631	pxa2xx_spi_flush(drv_data);
 632	pxa2xx_spi_off(drv_data);
 633
 634	dev_err(drv_data->ssp->dev, "%s\n", msg);
 635
 636	drv_data->controller->cur_msg->status = err;
 637	spi_finalize_current_transfer(drv_data->controller);
 638}
 639
 640static void int_transfer_complete(struct driver_data *drv_data)
 641{
 642	int_stop_and_reset(drv_data);
 643
 644	spi_finalize_current_transfer(drv_data->controller);
 645}
 646
 647static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 648{
 649	u32 irq_status;
 650
 651	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
 652	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
 653		irq_status &= ~SSSR_TFS;
 654
 655	if (irq_status & SSSR_ROR) {
 656		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
 657		return IRQ_HANDLED;
 658	}
 659
 660	if (irq_status & SSSR_TUR) {
 661		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
 662		return IRQ_HANDLED;
 663	}
 664
 665	if (irq_status & SSSR_TINT) {
 666		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 667		if (drv_data->read(drv_data)) {
 668			int_transfer_complete(drv_data);
 669			return IRQ_HANDLED;
 670		}
 671	}
 672
 673	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
 674	do {
 675		if (drv_data->read(drv_data)) {
 676			int_transfer_complete(drv_data);
 677			return IRQ_HANDLED;
 678		}
 679	} while (drv_data->write(drv_data));
 680
 681	if (drv_data->read(drv_data)) {
 682		int_transfer_complete(drv_data);
 683		return IRQ_HANDLED;
 684	}
 685
 686	if (drv_data->tx == drv_data->tx_end) {
 687		u32 bytes_left;
 688		u32 sccr1_reg;
 689
 690		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 691		sccr1_reg &= ~SSCR1_TIE;
 692
 693		/*
 694		 * PXA25x_SSP has no timeout, set up Rx threshold for
 695		 * the remaining Rx bytes.
 696		 */
 697		if (pxa25x_ssp_comp(drv_data)) {
 698			u32 rx_thre;
 699
 700			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 701
 702			bytes_left = drv_data->rx_end - drv_data->rx;
 703			switch (drv_data->n_bytes) {
 704			case 4:
 705				bytes_left >>= 2;
 706				break;
 707			case 2:
 708				bytes_left >>= 1;
 709				break;
 710			}
 711
 712			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 713			if (rx_thre > bytes_left)
 714				rx_thre = bytes_left;
 715
 716			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 717		}
 718		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 719	}
 720
 721	/* We did something */
 722	return IRQ_HANDLED;
 723}
 724
 725static void handle_bad_msg(struct driver_data *drv_data)
 726{
 
 727	pxa2xx_spi_off(drv_data);
 728	clear_SSCR1_bits(drv_data, drv_data->int_cr1);
 729	if (!pxa25x_ssp_comp(drv_data))
 730		pxa2xx_spi_write(drv_data, SSTO, 0);
 731	write_SSSR_CS(drv_data, drv_data->clear_sr);
 732
 733	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
 734}
 735
 736static irqreturn_t ssp_int(int irq, void *dev_id)
 737{
 738	struct driver_data *drv_data = dev_id;
 739	u32 sccr1_reg;
 740	u32 mask = drv_data->mask_sr;
 741	u32 status;
 742
 743	/*
 744	 * The IRQ might be shared with other peripherals so we must first
 745	 * check that are we RPM suspended or not. If we are we assume that
 746	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 747	 * interrupt is enabled).
 748	 */
 749	if (pm_runtime_suspended(drv_data->ssp->dev))
 750		return IRQ_NONE;
 751
 752	/*
 753	 * If the device is not yet in RPM suspended state and we get an
 754	 * interrupt that is meant for another device, check if status bits
 755	 * are all set to one. That means that the device is already
 756	 * powered off.
 757	 */
 758	status = pxa2xx_spi_read(drv_data, SSSR);
 759	if (status == ~0)
 760		return IRQ_NONE;
 761
 762	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 763
 764	/* Ignore possible writes if we don't need to write */
 765	if (!(sccr1_reg & SSCR1_TIE))
 766		mask &= ~SSSR_TFS;
 767
 768	/* Ignore RX timeout interrupt if it is disabled */
 769	if (!(sccr1_reg & SSCR1_TINTE))
 770		mask &= ~SSSR_TINT;
 771
 772	if (!(status & mask))
 773		return IRQ_NONE;
 774
 775	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 776	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 777
 778	if (!drv_data->controller->cur_msg) {
 779		handle_bad_msg(drv_data);
 780		/* Never fail */
 781		return IRQ_HANDLED;
 782	}
 783
 784	return drv_data->transfer_handler(drv_data);
 785}
 786
 787/*
 788 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 789 * input frequency by fractions of 2^24. It also has a divider by 5.
 790 *
 791 * There are formulas to get baud rate value for given input frequency and
 792 * divider parameters, such as DDS_CLK_RATE and SCR:
 793 *
 794 * Fsys = 200MHz
 795 *
 796 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 797 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 798 *
 799 * DDS_CLK_RATE either 2^n or 2^n / 5.
 800 * SCR is in range 0 .. 255
 801 *
 802 * Divisor = 5^i * 2^j * 2 * k
 803 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 804 *       j = [0, 23]     j = 0 iff i = 1
 805 *       k = [1, 256]
 806 * Special case: j = 0, i = 1: Divisor = 2 / 5
 807 *
 808 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 809 * are:
 810 *	Case 1:		2^n, n = [0, 23]
 811 *	Case 2:		2^24 * 2 / 5 (0x666666)
 812 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 813 *
 814 * In all cases the lowest possible value is better.
 815 *
 816 * The function calculates parameters for all cases and chooses the one closest
 817 * to the asked baud rate.
 818 */
 819static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 820{
 821	unsigned long xtal = 200000000;
 822	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 823						   see (2) */
 824						/* case 3 */
 825	unsigned long fref1 = fref / 2;		/* case 1 */
 826	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 827	unsigned long scale;
 828	unsigned long q, q1, q2;
 829	long r, r1, r2;
 830	u32 mul;
 831
 832	/* Case 1 */
 833
 834	/* Set initial value for DDS_CLK_RATE */
 835	mul = (1 << 24) >> 1;
 836
 837	/* Calculate initial quot */
 838	q1 = DIV_ROUND_UP(fref1, rate);
 839
 840	/* Scale q1 if it's too big */
 841	if (q1 > 256) {
 842		/* Scale q1 to range [1, 512] */
 843		scale = fls_long(q1 - 1);
 844		if (scale > 9) {
 845			q1 >>= scale - 9;
 846			mul >>= scale - 9;
 847		}
 848
 849		/* Round the result if we have a remainder */
 850		q1 += q1 & 1;
 851	}
 852
 853	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 854	scale = __ffs(q1);
 855	q1 >>= scale;
 856	mul >>= scale;
 857
 858	/* Get the remainder */
 859	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 860
 861	/* Case 2 */
 862
 863	q2 = DIV_ROUND_UP(fref2, rate);
 864	r2 = abs(fref2 / q2 - rate);
 865
 866	/*
 867	 * Choose the best between two: less remainder we have the better. We
 868	 * can't go case 2 if q2 is greater than 256 since SCR register can
 869	 * hold only values 0 .. 255.
 870	 */
 871	if (r2 >= r1 || q2 > 256) {
 872		/* case 1 is better */
 873		r = r1;
 874		q = q1;
 875	} else {
 876		/* case 2 is better */
 877		r = r2;
 878		q = q2;
 879		mul = (1 << 24) * 2 / 5;
 880	}
 881
 882	/* Check case 3 only if the divisor is big enough */
 883	if (fref / rate >= 80) {
 884		u64 fssp;
 885		u32 m;
 886
 887		/* Calculate initial quot */
 888		q1 = DIV_ROUND_UP(fref, rate);
 889		m = (1 << 24) / q1;
 890
 891		/* Get the remainder */
 892		fssp = (u64)fref * m;
 893		do_div(fssp, 1 << 24);
 894		r1 = abs(fssp - rate);
 895
 896		/* Choose this one if it suits better */
 897		if (r1 < r) {
 898			/* case 3 is better */
 899			q = 1;
 900			mul = m;
 901		}
 902	}
 903
 904	*dds = mul;
 905	return q - 1;
 906}
 907
 908static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 909{
 910	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
 911	const struct ssp_device *ssp = drv_data->ssp;
 912
 913	rate = min_t(int, ssp_clk, rate);
 914
 915	/*
 916	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
 917	 * that the SSP transmission rate can be greater than the device rate.
 918	 */
 919	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 920		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
 921	else
 922		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
 923}
 924
 925static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 926					   int rate)
 927{
 928	struct chip_data *chip =
 929		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 930	unsigned int clk_div;
 931
 932	switch (drv_data->ssp_type) {
 933	case QUARK_X1000_SSP:
 934		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 935		break;
 936	default:
 937		clk_div = ssp_get_clk_div(drv_data, rate);
 938		break;
 939	}
 940	return clk_div << 8;
 941}
 942
 943static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
 944			       struct spi_device *spi,
 945			       struct spi_transfer *xfer)
 946{
 947	struct chip_data *chip = spi_get_ctldata(spi);
 948
 949	return chip->enable_dma &&
 950	       xfer->len <= MAX_DMA_LEN &&
 951	       xfer->len >= chip->dma_burst_size;
 952}
 953
 954static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
 955				   struct spi_device *spi,
 956				   struct spi_transfer *transfer)
 957{
 958	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 959	struct spi_message *message = controller->cur_msg;
 960	struct chip_data *chip = spi_get_ctldata(spi);
 961	u32 dma_thresh = chip->dma_threshold;
 962	u32 dma_burst = chip->dma_burst_size;
 963	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 964	u32 clk_div;
 965	u8 bits;
 966	u32 speed;
 967	u32 cr0;
 968	u32 cr1;
 969	int err;
 970	int dma_mapped;
 971
 972	/* Check if we can DMA this transfer */
 973	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 974
 975		/* Reject already-mapped transfers; PIO won't always work */
 976		if (message->is_dma_mapped
 977				|| transfer->rx_dma || transfer->tx_dma) {
 978			dev_err(&spi->dev,
 979				"Mapped transfer length of %u is greater than %d\n",
 980				transfer->len, MAX_DMA_LEN);
 981			return -EINVAL;
 982		}
 983
 984		/* Warn ... we force this to PIO mode */
 985		dev_warn_ratelimited(&spi->dev,
 986				     "DMA disabled for transfer length %u greater than %d\n",
 987				     transfer->len, MAX_DMA_LEN);
 988	}
 989
 990	/* Setup the transfer state based on the type of transfer */
 991	if (pxa2xx_spi_flush(drv_data) == 0) {
 992		dev_err(&spi->dev, "Flush failed\n");
 993		return -EIO;
 994	}
 995	drv_data->n_bytes = chip->n_bytes;
 996	drv_data->tx = (void *)transfer->tx_buf;
 997	drv_data->tx_end = drv_data->tx + transfer->len;
 998	drv_data->rx = transfer->rx_buf;
 999	drv_data->rx_end = drv_data->rx + transfer->len;
1000	drv_data->write = drv_data->tx ? chip->write : null_writer;
1001	drv_data->read = drv_data->rx ? chip->read : null_reader;
1002
1003	/* Change speed and bit per word on a per transfer */
1004	bits = transfer->bits_per_word;
1005	speed = transfer->speed_hz;
1006
1007	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1008
1009	if (bits <= 8) {
1010		drv_data->n_bytes = 1;
1011		drv_data->read = drv_data->read != null_reader ?
1012					u8_reader : null_reader;
1013		drv_data->write = drv_data->write != null_writer ?
1014					u8_writer : null_writer;
1015	} else if (bits <= 16) {
1016		drv_data->n_bytes = 2;
1017		drv_data->read = drv_data->read != null_reader ?
1018					u16_reader : null_reader;
1019		drv_data->write = drv_data->write != null_writer ?
1020					u16_writer : null_writer;
1021	} else if (bits <= 32) {
1022		drv_data->n_bytes = 4;
1023		drv_data->read = drv_data->read != null_reader ?
1024					u32_reader : null_reader;
1025		drv_data->write = drv_data->write != null_writer ?
1026					u32_writer : null_writer;
1027	}
1028	/*
1029	 * If bits per word is changed in DMA mode, then must check
1030	 * the thresholds and burst also.
1031	 */
1032	if (chip->enable_dma) {
1033		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1034						spi,
1035						bits, &dma_burst,
1036						&dma_thresh))
1037			dev_warn_ratelimited(&spi->dev,
1038					     "DMA burst size reduced to match bits_per_word\n");
1039	}
1040
1041	dma_mapped = controller->can_dma &&
1042		     controller->can_dma(controller, spi, transfer) &&
1043		     controller->cur_msg_mapped;
1044	if (dma_mapped) {
1045
1046		/* Ensure we have the correct interrupt handler */
1047		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1048
1049		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1050		if (err)
1051			return err;
1052
1053		/* Clear status and start DMA engine */
1054		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1055		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1056
1057		pxa2xx_spi_dma_start(drv_data);
1058	} else {
1059		/* Ensure we have the correct interrupt handler	*/
1060		drv_data->transfer_handler = interrupt_transfer;
1061
1062		/* Clear status  */
1063		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1064		write_SSSR_CS(drv_data, drv_data->clear_sr);
1065	}
1066
1067	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1068	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1069	if (!pxa25x_ssp_comp(drv_data))
1070		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1071			controller->max_speed_hz
1072				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1073			dma_mapped ? "DMA" : "PIO");
1074	else
1075		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1076			controller->max_speed_hz / 2
1077				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1078			dma_mapped ? "DMA" : "PIO");
1079
1080	if (is_lpss_ssp(drv_data)) {
1081		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1082		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1083	}
1084
1085	if (is_mrfld_ssp(drv_data)) {
1086		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1087		u32 thresh = 0;
1088
1089		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1090		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1091
1092		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1093	}
1094
1095	if (is_quark_x1000_ssp(drv_data))
1096		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1097
1098	/* Stop the SSP */
1099	if (!is_mmp2_ssp(drv_data))
1100		pxa_ssp_disable(drv_data->ssp);
1101
1102	if (!pxa25x_ssp_comp(drv_data))
1103		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1104
1105	/* First set CR1 without interrupt and service enables */
1106	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1107
1108	/* See if we need to reload the configuration registers */
1109	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1110
1111	/* Restart the SSP */
1112	pxa_ssp_enable(drv_data->ssp);
1113
1114	if (is_mmp2_ssp(drv_data)) {
1115		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1116
1117		if (tx_level) {
1118			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1119			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1120			if (tx_level > transfer->len)
1121				tx_level = transfer->len;
1122			drv_data->tx += tx_level;
1123		}
1124	}
1125
1126	if (spi_controller_is_slave(controller)) {
1127		while (drv_data->write(drv_data))
1128			;
1129		if (drv_data->gpiod_ready) {
1130			gpiod_set_value(drv_data->gpiod_ready, 1);
1131			udelay(1);
1132			gpiod_set_value(drv_data->gpiod_ready, 0);
1133		}
1134	}
1135
1136	/*
1137	 * Release the data by enabling service requests and interrupts,
1138	 * without changing any mode bits.
1139	 */
1140	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1141
1142	return 1;
1143}
1144
1145static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1146{
1147	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1148
1149	int_error_stop(drv_data, "transfer aborted", -EINTR);
1150
1151	return 0;
1152}
1153
1154static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1155				 struct spi_message *msg)
1156{
1157	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1158
 
 
1159	/* Disable the SSP */
1160	pxa2xx_spi_off(drv_data);
1161	/* Clear and disable interrupts and service requests */
1162	write_SSSR_CS(drv_data, drv_data->clear_sr);
1163	clear_SSCR1_bits(drv_data, drv_data->int_cr1 | drv_data->dma_cr1);
1164	if (!pxa25x_ssp_comp(drv_data))
1165		pxa2xx_spi_write(drv_data, SSTO, 0);
1166
1167	/*
1168	 * Stop the DMA if running. Note DMA callback handler may have unset
1169	 * the dma_running already, which is fine as stopping is not needed
1170	 * then but we shouldn't rely this flag for anything else than
1171	 * stopping. For instance to differentiate between PIO and DMA
1172	 * transfers.
1173	 */
1174	if (atomic_read(&drv_data->dma_running))
1175		pxa2xx_spi_dma_stop(drv_data);
1176}
1177
1178static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1179{
1180	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1181
1182	/* Disable the SSP now */
1183	pxa2xx_spi_off(drv_data);
1184
1185	return 0;
1186}
1187
1188static void cleanup_cs(struct spi_device *spi)
1189{
1190	if (!gpio_is_valid(spi->cs_gpio))
1191		return;
1192
1193	gpio_free(spi->cs_gpio);
1194	spi->cs_gpio = -ENOENT;
1195}
1196
1197static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1198		    struct pxa2xx_spi_chip *chip_info)
1199{
1200	struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
1201
1202	if (chip == NULL)
1203		return 0;
1204
1205	if (chip_info == NULL)
1206		return 0;
1207
1208	if (drv_data->ssp_type == CE4100_SSP)
1209		return 0;
1210
1211	/*
1212	 * NOTE: setup() can be called multiple times, possibly with
1213	 * different chip_info, release previously requested GPIO.
1214	 */
1215	cleanup_cs(spi);
1216
1217	/* If ->cs_control() is provided, ignore GPIO chip select */
1218	if (chip_info->cs_control) {
1219		chip->cs_control = chip_info->cs_control;
1220		return 0;
1221	}
1222
1223	if (gpio_is_valid(chip_info->gpio_cs)) {
1224		int gpio = chip_info->gpio_cs;
1225		int err;
1226
1227		err = gpio_request(gpio, "SPI_CS");
1228		if (err) {
1229			dev_err(&spi->dev, "failed to request chip select GPIO%d\n", gpio);
1230			return err;
1231		}
1232
1233		err = gpio_direction_output(gpio, !(spi->mode & SPI_CS_HIGH));
1234		if (err) {
1235			gpio_free(gpio);
1236			return err;
1237		}
1238
1239		spi->cs_gpio = gpio;
1240	}
1241
1242	return 0;
1243}
1244
1245static int setup(struct spi_device *spi)
1246{
1247	struct pxa2xx_spi_chip *chip_info;
1248	struct chip_data *chip;
1249	const struct lpss_config *config;
1250	struct driver_data *drv_data =
1251		spi_controller_get_devdata(spi->controller);
1252	uint tx_thres, tx_hi_thres, rx_thres;
1253	int err;
1254
1255	switch (drv_data->ssp_type) {
1256	case QUARK_X1000_SSP:
1257		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1258		tx_hi_thres = 0;
1259		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1260		break;
1261	case MRFLD_SSP:
1262		tx_thres = TX_THRESH_MRFLD_DFLT;
1263		tx_hi_thres = 0;
1264		rx_thres = RX_THRESH_MRFLD_DFLT;
1265		break;
1266	case CE4100_SSP:
1267		tx_thres = TX_THRESH_CE4100_DFLT;
1268		tx_hi_thres = 0;
1269		rx_thres = RX_THRESH_CE4100_DFLT;
1270		break;
1271	case LPSS_LPT_SSP:
1272	case LPSS_BYT_SSP:
1273	case LPSS_BSW_SSP:
1274	case LPSS_SPT_SSP:
1275	case LPSS_BXT_SSP:
1276	case LPSS_CNL_SSP:
1277		config = lpss_get_config(drv_data);
1278		tx_thres = config->tx_threshold_lo;
1279		tx_hi_thres = config->tx_threshold_hi;
1280		rx_thres = config->rx_threshold;
1281		break;
1282	default:
1283		tx_hi_thres = 0;
1284		if (spi_controller_is_slave(drv_data->controller)) {
1285			tx_thres = 1;
1286			rx_thres = 2;
1287		} else {
1288			tx_thres = TX_THRESH_DFLT;
1289			rx_thres = RX_THRESH_DFLT;
1290		}
1291		break;
1292	}
1293
1294	/* Only allocate on the first setup */
1295	chip = spi_get_ctldata(spi);
1296	if (!chip) {
1297		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1298		if (!chip)
1299			return -ENOMEM;
1300
1301		if (drv_data->ssp_type == CE4100_SSP) {
1302			if (spi->chip_select > 4) {
1303				dev_err(&spi->dev,
1304					"failed setup: cs number must not be > 4.\n");
1305				kfree(chip);
1306				return -EINVAL;
1307			}
1308		}
1309		chip->enable_dma = drv_data->controller_info->enable_dma;
1310		chip->timeout = TIMOUT_DFLT;
1311	}
1312
1313	/*
1314	 * Protocol drivers may change the chip settings, so...
1315	 * if chip_info exists, use it.
1316	 */
1317	chip_info = spi->controller_data;
1318
1319	/* chip_info isn't always needed */
1320	chip->cr1 = 0;
1321	if (chip_info) {
1322		if (chip_info->timeout)
1323			chip->timeout = chip_info->timeout;
1324		if (chip_info->tx_threshold)
1325			tx_thres = chip_info->tx_threshold;
1326		if (chip_info->tx_hi_threshold)
1327			tx_hi_thres = chip_info->tx_hi_threshold;
1328		if (chip_info->rx_threshold)
1329			rx_thres = chip_info->rx_threshold;
1330		chip->dma_threshold = 0;
1331		if (chip_info->enable_loopback)
1332			chip->cr1 = SSCR1_LBM;
1333	}
 
 
1334	if (spi_controller_is_slave(drv_data->controller)) {
1335		chip->cr1 |= SSCR1_SCFR;
1336		chip->cr1 |= SSCR1_SCLKDIR;
1337		chip->cr1 |= SSCR1_SFRMDIR;
1338		chip->cr1 |= SSCR1_SPH;
1339	}
1340
1341	if (is_lpss_ssp(drv_data)) {
1342		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1343		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1344					  SSITF_TxHiThresh(tx_hi_thres);
1345	}
1346
1347	if (is_mrfld_ssp(drv_data)) {
1348		chip->lpss_rx_threshold = rx_thres;
1349		chip->lpss_tx_threshold = tx_thres;
1350	}
1351
1352	/*
1353	 * Set DMA burst and threshold outside of chip_info path so that if
1354	 * chip_info goes away after setting chip->enable_dma, the burst and
1355	 * threshold can still respond to changes in bits_per_word.
1356	 */
1357	if (chip->enable_dma) {
1358		/* Set up legal burst and threshold for DMA */
1359		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1360						spi->bits_per_word,
1361						&chip->dma_burst_size,
1362						&chip->dma_threshold)) {
1363			dev_warn(&spi->dev,
1364				 "in setup: DMA burst size reduced to match bits_per_word\n");
1365		}
1366		dev_dbg(&spi->dev,
1367			"in setup: DMA burst size set to %u\n",
1368			chip->dma_burst_size);
1369	}
1370
1371	switch (drv_data->ssp_type) {
1372	case QUARK_X1000_SSP:
1373		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1374				   & QUARK_X1000_SSCR1_RFT)
1375				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1376				   & QUARK_X1000_SSCR1_TFT);
1377		break;
1378	case CE4100_SSP:
1379		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1380			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1381		break;
1382	default:
1383		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1384			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1385		break;
1386	}
1387
1388	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1389	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1390		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1391
1392	if (spi->mode & SPI_LOOP)
1393		chip->cr1 |= SSCR1_LBM;
1394
1395	if (spi->bits_per_word <= 8) {
1396		chip->n_bytes = 1;
1397		chip->read = u8_reader;
1398		chip->write = u8_writer;
1399	} else if (spi->bits_per_word <= 16) {
1400		chip->n_bytes = 2;
1401		chip->read = u16_reader;
1402		chip->write = u16_writer;
1403	} else if (spi->bits_per_word <= 32) {
1404		chip->n_bytes = 4;
1405		chip->read = u32_reader;
1406		chip->write = u32_writer;
1407	}
1408
1409	spi_set_ctldata(spi, chip);
1410
1411	if (drv_data->ssp_type == CE4100_SSP)
1412		return 0;
1413
1414	err = setup_cs(spi, chip, chip_info);
1415	if (err)
1416		kfree(chip);
1417
1418	return err;
1419}
1420
1421static void cleanup(struct spi_device *spi)
1422{
1423	struct chip_data *chip = spi_get_ctldata(spi);
1424
1425	cleanup_cs(spi);
1426	kfree(chip);
1427}
1428
1429#ifdef CONFIG_ACPI
1430static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1431	{ "INT33C0", LPSS_LPT_SSP },
1432	{ "INT33C1", LPSS_LPT_SSP },
1433	{ "INT3430", LPSS_LPT_SSP },
1434	{ "INT3431", LPSS_LPT_SSP },
1435	{ "80860F0E", LPSS_BYT_SSP },
1436	{ "8086228E", LPSS_BSW_SSP },
1437	{ },
1438};
1439MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1440#endif
1441
1442/*
1443 * PCI IDs of compound devices that integrate both host controller and private
1444 * integrated DMA engine. Please note these are not used in module
1445 * autoloading and probing in this module but matching the LPSS SSP type.
1446 */
1447static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1448	/* SPT-LP */
1449	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1450	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1451	/* SPT-H */
1452	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1453	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1454	/* KBL-H */
1455	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1456	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1457	/* CML-V */
1458	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1459	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1460	/* BXT A-Step */
1461	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1462	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1463	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1464	/* BXT B-Step */
1465	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1466	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1467	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1468	/* GLK */
1469	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1470	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1471	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1472	/* ICL-LP */
1473	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1474	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1475	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1476	/* EHL */
1477	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1478	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1479	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1480	/* JSL */
1481	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1482	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1483	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1484	/* TGL-H */
1485	{ PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1486	{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1487	{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1488	{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1489	/* ADL-P */
1490	{ PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP },
1491	{ PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP },
1492	{ PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP },
1493	/* ADL-M */
1494	{ PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP },
1495	{ PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP },
1496	{ PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP },
1497	/* APL */
1498	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1499	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1500	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1501	/* ADL-S */
1502	{ PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP },
1503	{ PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP },
1504	{ PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP },
1505	{ PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP },
1506	/* CNL-LP */
1507	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1508	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1509	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1510	/* CNL-H */
1511	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1512	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1513	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1514	/* CML-LP */
1515	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1516	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1517	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1518	/* CML-H */
1519	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1520	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1521	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1522	/* TGL-LP */
1523	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1524	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1525	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1526	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1527	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1528	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1529	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1530	{ },
1531};
1532
1533static const struct of_device_id pxa2xx_spi_of_match[] = {
1534	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1535	{},
1536};
1537MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1538
1539#ifdef CONFIG_ACPI
1540
1541static int pxa2xx_spi_get_port_id(struct device *dev)
1542{
1543	struct acpi_device *adev;
1544	unsigned int devid;
1545	int port_id = -1;
1546
1547	adev = ACPI_COMPANION(dev);
1548	if (adev && adev->pnp.unique_id &&
1549	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1550		port_id = devid;
1551	return port_id;
1552}
1553
1554#else /* !CONFIG_ACPI */
1555
1556static int pxa2xx_spi_get_port_id(struct device *dev)
1557{
1558	return -1;
1559}
1560
1561#endif /* CONFIG_ACPI */
1562
1563
1564#ifdef CONFIG_PCI
1565
1566static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1567{
1568	return param == chan->device->dev;
1569}
1570
1571#endif /* CONFIG_PCI */
1572
1573static struct pxa2xx_spi_controller *
1574pxa2xx_spi_init_pdata(struct platform_device *pdev)
1575{
1576	struct pxa2xx_spi_controller *pdata;
 
 
1577	struct ssp_device *ssp;
1578	struct resource *res;
1579	struct device *parent = pdev->dev.parent;
1580	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1581	const struct pci_device_id *pcidev_id = NULL;
1582	enum pxa_ssp_type type;
1583	const void *match;
 
 
 
1584
1585	if (pcidev)
1586		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1587
1588	match = device_get_match_data(&pdev->dev);
1589	if (match)
1590		type = (enum pxa_ssp_type)match;
1591	else if (pcidev_id)
1592		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1593	else
 
 
 
 
 
 
 
 
 
1594		return ERR_PTR(-EINVAL);
1595
1596	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1597	if (!pdata)
1598		return ERR_PTR(-ENOMEM);
1599
1600	ssp = &pdata->ssp;
1601
1602	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1603	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1604	if (IS_ERR(ssp->mmio_base))
1605		return ERR_CAST(ssp->mmio_base);
1606
1607	ssp->phys_base = res->start;
1608
1609#ifdef CONFIG_PCI
1610	if (pcidev_id) {
1611		pdata->tx_param = parent;
1612		pdata->rx_param = parent;
1613		pdata->dma_filter = pxa2xx_spi_idma_filter;
1614	}
1615#endif
1616
1617	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1618	if (IS_ERR(ssp->clk))
1619		return ERR_CAST(ssp->clk);
1620
1621	ssp->irq = platform_get_irq(pdev, 0);
1622	if (ssp->irq < 0)
1623		return ERR_PTR(ssp->irq);
1624
1625	ssp->type = type;
1626	ssp->dev = &pdev->dev;
1627	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
 
 
 
 
 
1628
1629	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1630	pdata->num_chipselect = 1;
1631	pdata->enable_dma = true;
1632	pdata->dma_burst_size = 1;
1633
1634	return pdata;
1635}
1636
1637static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1638				      unsigned int cs)
1639{
1640	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1641
1642	if (has_acpi_companion(drv_data->ssp->dev)) {
1643		switch (drv_data->ssp_type) {
1644		/*
1645		 * For Atoms the ACPI DeviceSelection used by the Windows
1646		 * driver starts from 1 instead of 0 so translate it here
1647		 * to match what Linux expects.
1648		 */
1649		case LPSS_BYT_SSP:
1650		case LPSS_BSW_SSP:
1651			return cs - 1;
1652
1653		default:
1654			break;
1655		}
1656	}
1657
1658	return cs;
1659}
1660
1661static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1662{
1663	return MAX_DMA_LEN;
1664}
1665
1666static int pxa2xx_spi_probe(struct platform_device *pdev)
1667{
1668	struct device *dev = &pdev->dev;
1669	struct pxa2xx_spi_controller *platform_info;
1670	struct spi_controller *controller;
1671	struct driver_data *drv_data;
1672	struct ssp_device *ssp;
1673	const struct lpss_config *config;
1674	int status;
1675	u32 tmp;
1676
1677	platform_info = dev_get_platdata(dev);
1678	if (!platform_info) {
1679		platform_info = pxa2xx_spi_init_pdata(pdev);
1680		if (IS_ERR(platform_info)) {
1681			dev_err(&pdev->dev, "missing platform data\n");
1682			return PTR_ERR(platform_info);
1683		}
1684	}
1685
1686	ssp = pxa_ssp_request(pdev->id, pdev->name);
1687	if (!ssp)
1688		ssp = &platform_info->ssp;
1689
1690	if (!ssp->mmio_base) {
1691		dev_err(&pdev->dev, "failed to get SSP\n");
1692		return -ENODEV;
1693	}
1694
1695	if (platform_info->is_slave)
1696		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1697	else
1698		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1699
1700	if (!controller) {
1701		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1702		status = -ENOMEM;
1703		goto out_error_controller_alloc;
1704	}
1705	drv_data = spi_controller_get_devdata(controller);
1706	drv_data->controller = controller;
1707	drv_data->controller_info = platform_info;
1708	drv_data->ssp = ssp;
1709
1710	controller->dev.of_node = dev->of_node;
1711	controller->dev.fwnode = dev->fwnode;
1712
1713	/* The spi->mode bits understood by this driver: */
1714	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1715
1716	controller->bus_num = ssp->port_id;
1717	controller->dma_alignment = DMA_ALIGNMENT;
1718	controller->cleanup = cleanup;
1719	controller->setup = setup;
1720	controller->set_cs = pxa2xx_spi_set_cs;
1721	controller->transfer_one = pxa2xx_spi_transfer_one;
1722	controller->slave_abort = pxa2xx_spi_slave_abort;
1723	controller->handle_err = pxa2xx_spi_handle_err;
1724	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1725	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1726	controller->auto_runtime_pm = true;
1727	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1728
1729	drv_data->ssp_type = ssp->type;
1730
1731	if (pxa25x_ssp_comp(drv_data)) {
1732		switch (drv_data->ssp_type) {
1733		case QUARK_X1000_SSP:
1734			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1735			break;
1736		default:
1737			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1738			break;
1739		}
1740
1741		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1742		drv_data->dma_cr1 = 0;
1743		drv_data->clear_sr = SSSR_ROR;
1744		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1745	} else {
1746		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1747		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1748		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1749		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1750		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1751						| SSSR_ROR | SSSR_TUR;
1752	}
1753
1754	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1755			drv_data);
1756	if (status < 0) {
1757		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1758		goto out_error_controller_alloc;
1759	}
1760
1761	/* Setup DMA if requested */
1762	if (platform_info->enable_dma) {
1763		status = pxa2xx_spi_dma_setup(drv_data);
1764		if (status) {
1765			dev_warn(dev, "no DMA channels available, using PIO\n");
1766			platform_info->enable_dma = false;
1767		} else {
1768			controller->can_dma = pxa2xx_spi_can_dma;
1769			controller->max_dma_len = MAX_DMA_LEN;
1770			controller->max_transfer_size =
1771				pxa2xx_spi_max_dma_transfer_size;
1772		}
1773	}
1774
1775	/* Enable SOC clock */
1776	status = clk_prepare_enable(ssp->clk);
1777	if (status)
1778		goto out_error_dma_irq_alloc;
1779
1780	controller->max_speed_hz = clk_get_rate(ssp->clk);
1781	/*
1782	 * Set minimum speed for all other platforms than Intel Quark which is
1783	 * able do under 1 Hz transfers.
1784	 */
1785	if (!pxa25x_ssp_comp(drv_data))
1786		controller->min_speed_hz =
1787			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1788	else if (!is_quark_x1000_ssp(drv_data))
1789		controller->min_speed_hz =
1790			DIV_ROUND_UP(controller->max_speed_hz, 512);
1791
1792	pxa_ssp_disable(ssp);
1793
1794	/* Load default SSP configuration */
1795	switch (drv_data->ssp_type) {
1796	case QUARK_X1000_SSP:
1797		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1798		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1799		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1800
1801		/* Using the Motorola SPI protocol and use 8 bit frame */
1802		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1803		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1804		break;
1805	case CE4100_SSP:
1806		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1807		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1808		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1809		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1810		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1811		break;
1812	default:
1813
1814		if (spi_controller_is_slave(controller)) {
1815			tmp = SSCR1_SCFR |
1816			      SSCR1_SCLKDIR |
1817			      SSCR1_SFRMDIR |
1818			      SSCR1_RxTresh(2) |
1819			      SSCR1_TxTresh(1) |
1820			      SSCR1_SPH;
1821		} else {
1822			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1823			      SSCR1_TxTresh(TX_THRESH_DFLT);
1824		}
1825		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1826		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1827		if (!spi_controller_is_slave(controller))
1828			tmp |= SSCR0_SCR(2);
1829		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1830		break;
1831	}
1832
1833	if (!pxa25x_ssp_comp(drv_data))
1834		pxa2xx_spi_write(drv_data, SSTO, 0);
1835
1836	if (!is_quark_x1000_ssp(drv_data))
1837		pxa2xx_spi_write(drv_data, SSPSP, 0);
1838
1839	if (is_lpss_ssp(drv_data)) {
1840		lpss_ssp_setup(drv_data);
1841		config = lpss_get_config(drv_data);
1842		if (config->reg_capabilities >= 0) {
1843			tmp = __lpss_ssp_read_priv(drv_data,
1844						   config->reg_capabilities);
1845			tmp &= LPSS_CAPS_CS_EN_MASK;
1846			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1847			platform_info->num_chipselect = ffz(tmp);
1848		} else if (config->cs_num) {
1849			platform_info->num_chipselect = config->cs_num;
1850		}
1851	}
1852	controller->num_chipselect = platform_info->num_chipselect;
1853	controller->use_gpio_descriptors = true;
1854
1855	if (platform_info->is_slave) {
1856		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1857						"ready", GPIOD_OUT_LOW);
1858		if (IS_ERR(drv_data->gpiod_ready)) {
1859			status = PTR_ERR(drv_data->gpiod_ready);
1860			goto out_error_clock_enabled;
1861		}
1862	}
1863
1864	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1865	pm_runtime_use_autosuspend(&pdev->dev);
1866	pm_runtime_set_active(&pdev->dev);
1867	pm_runtime_enable(&pdev->dev);
1868
1869	/* Register with the SPI framework */
1870	platform_set_drvdata(pdev, drv_data);
1871	status = spi_register_controller(controller);
1872	if (status) {
1873		dev_err(&pdev->dev, "problem registering SPI controller\n");
1874		goto out_error_pm_runtime_enabled;
1875	}
1876
1877	return status;
1878
1879out_error_pm_runtime_enabled:
1880	pm_runtime_disable(&pdev->dev);
1881
1882out_error_clock_enabled:
1883	clk_disable_unprepare(ssp->clk);
1884
1885out_error_dma_irq_alloc:
1886	pxa2xx_spi_dma_release(drv_data);
1887	free_irq(ssp->irq, drv_data);
1888
1889out_error_controller_alloc:
1890	pxa_ssp_free(ssp);
1891	return status;
1892}
1893
1894static int pxa2xx_spi_remove(struct platform_device *pdev)
1895{
1896	struct driver_data *drv_data = platform_get_drvdata(pdev);
1897	struct ssp_device *ssp = drv_data->ssp;
1898
1899	pm_runtime_get_sync(&pdev->dev);
1900
1901	spi_unregister_controller(drv_data->controller);
1902
1903	/* Disable the SSP at the peripheral and SOC level */
1904	pxa_ssp_disable(ssp);
1905	clk_disable_unprepare(ssp->clk);
1906
1907	/* Release DMA */
1908	if (drv_data->controller_info->enable_dma)
1909		pxa2xx_spi_dma_release(drv_data);
1910
1911	pm_runtime_put_noidle(&pdev->dev);
1912	pm_runtime_disable(&pdev->dev);
1913
1914	/* Release IRQ */
1915	free_irq(ssp->irq, drv_data);
1916
1917	/* Release SSP */
1918	pxa_ssp_free(ssp);
1919
1920	return 0;
1921}
1922
1923#ifdef CONFIG_PM_SLEEP
1924static int pxa2xx_spi_suspend(struct device *dev)
1925{
1926	struct driver_data *drv_data = dev_get_drvdata(dev);
1927	struct ssp_device *ssp = drv_data->ssp;
1928	int status;
1929
1930	status = spi_controller_suspend(drv_data->controller);
1931	if (status)
1932		return status;
1933
1934	pxa_ssp_disable(ssp);
1935
1936	if (!pm_runtime_suspended(dev))
1937		clk_disable_unprepare(ssp->clk);
1938
1939	return 0;
1940}
1941
1942static int pxa2xx_spi_resume(struct device *dev)
1943{
1944	struct driver_data *drv_data = dev_get_drvdata(dev);
1945	struct ssp_device *ssp = drv_data->ssp;
1946	int status;
1947
1948	/* Enable the SSP clock */
1949	if (!pm_runtime_suspended(dev)) {
1950		status = clk_prepare_enable(ssp->clk);
1951		if (status)
1952			return status;
1953	}
1954
1955	/* Start the queue running */
1956	return spi_controller_resume(drv_data->controller);
1957}
1958#endif
1959
1960#ifdef CONFIG_PM
1961static int pxa2xx_spi_runtime_suspend(struct device *dev)
1962{
1963	struct driver_data *drv_data = dev_get_drvdata(dev);
1964
1965	clk_disable_unprepare(drv_data->ssp->clk);
1966	return 0;
1967}
1968
1969static int pxa2xx_spi_runtime_resume(struct device *dev)
1970{
1971	struct driver_data *drv_data = dev_get_drvdata(dev);
1972	int status;
1973
1974	status = clk_prepare_enable(drv_data->ssp->clk);
1975	return status;
1976}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1977#endif
1978
1979static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1980	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1981	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1982			   pxa2xx_spi_runtime_resume, NULL)
1983};
 
1984
1985static struct platform_driver driver = {
1986	.driver = {
1987		.name	= "pxa2xx-spi",
1988		.pm	= &pxa2xx_spi_pm_ops,
1989		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1990		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1991	},
1992	.probe = pxa2xx_spi_probe,
1993	.remove = pxa2xx_spi_remove,
1994};
1995
1996static int __init pxa2xx_spi_init(void)
1997{
1998	return platform_driver_register(&driver);
1999}
2000subsys_initcall(pxa2xx_spi_init);
2001
2002static void __exit pxa2xx_spi_exit(void)
2003{
2004	platform_driver_unregister(&driver);
2005}
2006module_exit(pxa2xx_spi_exit);
2007
2008MODULE_SOFTDEP("pre: dw_dmac");