Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   4 * Copyright (C) 2013, 2021 Intel Corporation
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/err.h>
  14#include <linux/errno.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/ioport.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/mod_devicetable.h>
  22#include <linux/of.h>
  23#include <linux/platform_device.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/property.h>
  26#include <linux/slab.h>
  27
  28#include <linux/spi/pxa2xx_spi.h>
  29#include <linux/spi/spi.h>
 
 
 
 
 
 
 
  30
  31#include "spi-pxa2xx.h"
  32
  33MODULE_AUTHOR("Stephen Street");
  34MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  35MODULE_LICENSE("GPL");
  36MODULE_ALIAS("platform:pxa2xx-spi");
  37
  38#define TIMOUT_DFLT		1000
  39
  40/*
  41 * For testing SSCR1 changes that require SSP restart, basically
  42 * everything except the service and interrupt enables, the PXA270 developer
  43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  44 * list, but the PXA255 developer manual says all bits without really meaning
  45 * the service and interrupt enables.
  46 */
  47#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  48				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  49				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  50				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  51				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  52				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  53
  54#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  55				| QUARK_X1000_SSCR1_EFWR	\
  56				| QUARK_X1000_SSCR1_RFT		\
  57				| QUARK_X1000_SSCR1_TFT		\
  58				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  61				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  62				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  63				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  64				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  65				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  66
  67#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  68#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  69#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  70#define LPSS_CAPS_CS_EN_SHIFT			9
  71#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  72
  73#define LPSS_PRIV_CLOCK_GATE 0x38
  74#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
  75#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
  76
  77struct lpss_config {
  78	/* LPSS offset from drv_data->ioaddr */
  79	unsigned offset;
  80	/* Register offsets from drv_data->lpss_base or -1 */
  81	int reg_general;
  82	int reg_ssp;
  83	int reg_cs_ctrl;
  84	int reg_capabilities;
  85	/* FIFO thresholds */
  86	u32 rx_threshold;
  87	u32 tx_threshold_lo;
  88	u32 tx_threshold_hi;
  89	/* Chip select control */
  90	unsigned cs_sel_shift;
  91	unsigned cs_sel_mask;
  92	unsigned cs_num;
  93	/* Quirks */
  94	unsigned cs_clk_stays_gated : 1;
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99	{	/* LPSS_LPT_SSP */
 100		.offset = 0x800,
 101		.reg_general = 0x08,
 102		.reg_ssp = 0x0c,
 103		.reg_cs_ctrl = 0x18,
 104		.reg_capabilities = -1,
 105		.rx_threshold = 64,
 106		.tx_threshold_lo = 160,
 107		.tx_threshold_hi = 224,
 108	},
 109	{	/* LPSS_BYT_SSP */
 110		.offset = 0x400,
 111		.reg_general = 0x08,
 112		.reg_ssp = 0x0c,
 113		.reg_cs_ctrl = 0x18,
 114		.reg_capabilities = -1,
 115		.rx_threshold = 64,
 116		.tx_threshold_lo = 160,
 117		.tx_threshold_hi = 224,
 118	},
 119	{	/* LPSS_BSW_SSP */
 120		.offset = 0x400,
 121		.reg_general = 0x08,
 122		.reg_ssp = 0x0c,
 123		.reg_cs_ctrl = 0x18,
 124		.reg_capabilities = -1,
 125		.rx_threshold = 64,
 126		.tx_threshold_lo = 160,
 127		.tx_threshold_hi = 224,
 128		.cs_sel_shift = 2,
 129		.cs_sel_mask = 1 << 2,
 130		.cs_num = 2,
 131	},
 132	{	/* LPSS_SPT_SSP */
 133		.offset = 0x200,
 134		.reg_general = -1,
 135		.reg_ssp = 0x20,
 136		.reg_cs_ctrl = 0x24,
 137		.reg_capabilities = -1,
 138		.rx_threshold = 1,
 139		.tx_threshold_lo = 32,
 140		.tx_threshold_hi = 56,
 141	},
 142	{	/* LPSS_BXT_SSP */
 143		.offset = 0x200,
 144		.reg_general = -1,
 145		.reg_ssp = 0x20,
 146		.reg_cs_ctrl = 0x24,
 147		.reg_capabilities = 0xfc,
 148		.rx_threshold = 1,
 149		.tx_threshold_lo = 16,
 150		.tx_threshold_hi = 48,
 151		.cs_sel_shift = 8,
 152		.cs_sel_mask = 3 << 8,
 153		.cs_clk_stays_gated = true,
 154	},
 155	{	/* LPSS_CNL_SSP */
 156		.offset = 0x200,
 157		.reg_general = -1,
 158		.reg_ssp = 0x20,
 159		.reg_cs_ctrl = 0x24,
 160		.reg_capabilities = 0xfc,
 161		.rx_threshold = 1,
 162		.tx_threshold_lo = 32,
 163		.tx_threshold_hi = 56,
 164		.cs_sel_shift = 8,
 165		.cs_sel_mask = 3 << 8,
 166		.cs_clk_stays_gated = true,
 167	},
 168};
 169
 170static inline const struct lpss_config
 171*lpss_get_config(const struct driver_data *drv_data)
 172{
 173	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 174}
 175
 176static bool is_lpss_ssp(const struct driver_data *drv_data)
 177{
 178	switch (drv_data->ssp_type) {
 179	case LPSS_LPT_SSP:
 180	case LPSS_BYT_SSP:
 181	case LPSS_BSW_SSP:
 182	case LPSS_SPT_SSP:
 183	case LPSS_BXT_SSP:
 184	case LPSS_CNL_SSP:
 185		return true;
 186	default:
 187		return false;
 188	}
 189}
 190
 191static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 192{
 193	return drv_data->ssp_type == QUARK_X1000_SSP;
 194}
 195
 196static bool is_mmp2_ssp(const struct driver_data *drv_data)
 197{
 198	return drv_data->ssp_type == MMP2_SSP;
 199}
 200
 201static bool is_mrfld_ssp(const struct driver_data *drv_data)
 202{
 203	return drv_data->ssp_type == MRFLD_SSP;
 204}
 205
 206static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
 207{
 208	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
 209		pxa2xx_spi_write(drv_data, reg, value & mask);
 210}
 211
 212static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 213{
 214	switch (drv_data->ssp_type) {
 215	case QUARK_X1000_SSP:
 216		return QUARK_X1000_SSCR1_CHANGE_MASK;
 217	case CE4100_SSP:
 218		return CE4100_SSCR1_CHANGE_MASK;
 219	default:
 220		return SSCR1_CHANGE_MASK;
 221	}
 222}
 223
 224static u32
 225pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 226{
 227	switch (drv_data->ssp_type) {
 228	case QUARK_X1000_SSP:
 229		return RX_THRESH_QUARK_X1000_DFLT;
 230	case CE4100_SSP:
 231		return RX_THRESH_CE4100_DFLT;
 232	default:
 233		return RX_THRESH_DFLT;
 234	}
 235}
 236
 237static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 238{
 239	u32 mask;
 240
 241	switch (drv_data->ssp_type) {
 242	case QUARK_X1000_SSP:
 243		mask = QUARK_X1000_SSSR_TFL_MASK;
 244		break;
 245	case CE4100_SSP:
 246		mask = CE4100_SSSR_TFL_MASK;
 247		break;
 248	default:
 249		mask = SSSR_TFL_MASK;
 250		break;
 251	}
 252
 253	return read_SSSR_bits(drv_data, mask) == mask;
 254}
 255
 256static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 257				     u32 *sccr1_reg)
 258{
 259	u32 mask;
 260
 261	switch (drv_data->ssp_type) {
 262	case QUARK_X1000_SSP:
 263		mask = QUARK_X1000_SSCR1_RFT;
 264		break;
 265	case CE4100_SSP:
 266		mask = CE4100_SSCR1_RFT;
 267		break;
 268	default:
 269		mask = SSCR1_RFT;
 270		break;
 271	}
 272	*sccr1_reg &= ~mask;
 273}
 274
 275static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 276				   u32 *sccr1_reg, u32 threshold)
 277{
 278	switch (drv_data->ssp_type) {
 279	case QUARK_X1000_SSP:
 280		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 281		break;
 282	case CE4100_SSP:
 283		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 284		break;
 285	default:
 286		*sccr1_reg |= SSCR1_RxTresh(threshold);
 287		break;
 288	}
 289}
 290
 291static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 292				  u32 clk_div, u8 bits)
 293{
 294	switch (drv_data->ssp_type) {
 295	case QUARK_X1000_SSP:
 296		return clk_div
 297			| QUARK_X1000_SSCR0_Motorola
 298			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
 
 299	default:
 300		return clk_div
 301			| SSCR0_Motorola
 302			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 
 303			| (bits > 16 ? SSCR0_EDSS : 0);
 304	}
 305}
 306
 307/*
 308 * Read and write LPSS SSP private registers. Caller must first check that
 309 * is_lpss_ssp() returns true before these can be called.
 310 */
 311static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 312{
 313	WARN_ON(!drv_data->lpss_base);
 314	return readl(drv_data->lpss_base + offset);
 315}
 316
 317static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 318				  unsigned offset, u32 value)
 319{
 320	WARN_ON(!drv_data->lpss_base);
 321	writel(value, drv_data->lpss_base + offset);
 322}
 323
 324/*
 325 * lpss_ssp_setup - perform LPSS SSP specific setup
 326 * @drv_data: pointer to the driver private data
 327 *
 328 * Perform LPSS SSP specific setup. This function must be called first if
 329 * one is going to use LPSS SSP private registers.
 330 */
 331static void lpss_ssp_setup(struct driver_data *drv_data)
 332{
 333	const struct lpss_config *config;
 334	u32 value;
 335
 336	config = lpss_get_config(drv_data);
 337	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
 338
 339	/* Enable software chip select control */
 340	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 341	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 342	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 343	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 344
 345	/* Enable multiblock DMA transfers */
 346	if (drv_data->controller_info->enable_dma) {
 347		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 348
 349		if (config->reg_general >= 0) {
 350			value = __lpss_ssp_read_priv(drv_data,
 351						     config->reg_general);
 352			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 353			__lpss_ssp_write_priv(drv_data,
 354					      config->reg_general, value);
 355		}
 356	}
 357}
 358
 359static void lpss_ssp_select_cs(struct spi_device *spi,
 360			       const struct lpss_config *config)
 361{
 362	struct driver_data *drv_data =
 363		spi_controller_get_devdata(spi->controller);
 364	u32 value, cs;
 365
 366	if (!config->cs_sel_mask)
 367		return;
 368
 369	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 370
 371	cs = spi->chip_select;
 372	cs <<= config->cs_sel_shift;
 373	if (cs != (value & config->cs_sel_mask)) {
 374		/*
 375		 * When switching another chip select output active the
 376		 * output must be selected first and wait 2 ssp_clk cycles
 377		 * before changing state to active. Otherwise a short
 378		 * glitch will occur on the previous chip select since
 379		 * output select is latched but state control is not.
 380		 */
 381		value &= ~config->cs_sel_mask;
 382		value |= cs;
 383		__lpss_ssp_write_priv(drv_data,
 384				      config->reg_cs_ctrl, value);
 385		ndelay(1000000000 /
 386		       (drv_data->controller->max_speed_hz / 2));
 387	}
 388}
 389
 390static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 391{
 392	struct driver_data *drv_data =
 393		spi_controller_get_devdata(spi->controller);
 394	const struct lpss_config *config;
 395	u32 value;
 396
 397	config = lpss_get_config(drv_data);
 398
 399	if (enable)
 400		lpss_ssp_select_cs(spi, config);
 401
 402	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 403	if (enable)
 404		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 405	else
 406		value |= LPSS_CS_CONTROL_CS_HIGH;
 407	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 408	if (config->cs_clk_stays_gated) {
 409		u32 clkgate;
 410
 411		/*
 412		 * Changing CS alone when dynamic clock gating is on won't
 413		 * actually flip CS at that time. This ruins SPI transfers
 414		 * that specify delays, or have no data. Toggle the clock mode
 415		 * to force on briefly to poke the CS pin to move.
 416		 */
 417		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
 418		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
 419			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
 420
 421		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
 422		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
 423	}
 424}
 425
 426static void cs_assert(struct spi_device *spi)
 427{
 428	struct driver_data *drv_data =
 429		spi_controller_get_devdata(spi->controller);
 430
 431	if (drv_data->ssp_type == CE4100_SSP) {
 432		pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
 
 
 
 
 
 
 
 
 
 
 433		return;
 434	}
 435
 436	if (is_lpss_ssp(drv_data))
 437		lpss_ssp_cs_control(spi, true);
 438}
 439
 440static void cs_deassert(struct spi_device *spi)
 441{
 442	struct driver_data *drv_data =
 443		spi_controller_get_devdata(spi->controller);
 444	unsigned long timeout;
 445
 446	if (drv_data->ssp_type == CE4100_SSP)
 447		return;
 448
 449	/* Wait until SSP becomes idle before deasserting the CS */
 450	timeout = jiffies + msecs_to_jiffies(10);
 451	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 452	       !time_after(jiffies, timeout))
 453		cpu_relax();
 454
 455	if (is_lpss_ssp(drv_data))
 456		lpss_ssp_cs_control(spi, false);
 457}
 
 458
 459static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 460{
 461	if (level)
 462		cs_deassert(spi);
 463	else
 464		cs_assert(spi);
 
 465}
 466
 467int pxa2xx_spi_flush(struct driver_data *drv_data)
 468{
 469	unsigned long limit = loops_per_jiffy << 1;
 470
 471	do {
 472		while (read_SSSR_bits(drv_data, SSSR_RNE))
 473			pxa2xx_spi_read(drv_data, SSDR);
 474	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 475	write_SSSR_CS(drv_data, SSSR_ROR);
 476
 477	return limit;
 478}
 479
 480static void pxa2xx_spi_off(struct driver_data *drv_data)
 481{
 482	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
 483	if (is_mmp2_ssp(drv_data))
 484		return;
 485
 486	pxa_ssp_disable(drv_data->ssp);
 487}
 488
 489static int null_writer(struct driver_data *drv_data)
 490{
 491	u8 n_bytes = drv_data->n_bytes;
 492
 493	if (pxa2xx_spi_txfifo_full(drv_data)
 494		|| (drv_data->tx == drv_data->tx_end))
 495		return 0;
 496
 497	pxa2xx_spi_write(drv_data, SSDR, 0);
 498	drv_data->tx += n_bytes;
 499
 500	return 1;
 501}
 502
 503static int null_reader(struct driver_data *drv_data)
 504{
 505	u8 n_bytes = drv_data->n_bytes;
 506
 507	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 508		pxa2xx_spi_read(drv_data, SSDR);
 509		drv_data->rx += n_bytes;
 510	}
 511
 512	return drv_data->rx == drv_data->rx_end;
 513}
 514
 515static int u8_writer(struct driver_data *drv_data)
 516{
 517	if (pxa2xx_spi_txfifo_full(drv_data)
 518		|| (drv_data->tx == drv_data->tx_end))
 519		return 0;
 520
 521	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 522	++drv_data->tx;
 523
 524	return 1;
 525}
 526
 527static int u8_reader(struct driver_data *drv_data)
 528{
 529	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 530		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 531		++drv_data->rx;
 532	}
 533
 534	return drv_data->rx == drv_data->rx_end;
 535}
 536
 537static int u16_writer(struct driver_data *drv_data)
 538{
 539	if (pxa2xx_spi_txfifo_full(drv_data)
 540		|| (drv_data->tx == drv_data->tx_end))
 541		return 0;
 542
 543	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 544	drv_data->tx += 2;
 545
 546	return 1;
 547}
 548
 549static int u16_reader(struct driver_data *drv_data)
 550{
 551	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 552		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 553		drv_data->rx += 2;
 554	}
 555
 556	return drv_data->rx == drv_data->rx_end;
 557}
 558
 559static int u32_writer(struct driver_data *drv_data)
 560{
 561	if (pxa2xx_spi_txfifo_full(drv_data)
 562		|| (drv_data->tx == drv_data->tx_end))
 563		return 0;
 564
 565	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 566	drv_data->tx += 4;
 567
 568	return 1;
 569}
 570
 571static int u32_reader(struct driver_data *drv_data)
 572{
 573	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 574		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 575		drv_data->rx += 4;
 576	}
 577
 578	return drv_data->rx == drv_data->rx_end;
 579}
 580
 581static void reset_sccr1(struct driver_data *drv_data)
 582{
 583	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
 584	struct chip_data *chip;
 585
 586	if (drv_data->controller->cur_msg) {
 587		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
 588		threshold = chip->threshold;
 589	} else {
 590		threshold = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 591	}
 592
 
 
 
 
 
 
 
 
 
 
 593	switch (drv_data->ssp_type) {
 594	case QUARK_X1000_SSP:
 595		mask |= QUARK_X1000_SSCR1_RFT;
 596		break;
 597	case CE4100_SSP:
 598		mask |= CE4100_SSCR1_RFT;
 599		break;
 600	default:
 601		mask |= SSCR1_RFT;
 602		break;
 603	}
 604
 605	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
 606}
 607
 608static void int_stop_and_reset(struct driver_data *drv_data)
 609{
 610	/* Clear and disable interrupts */
 611	write_SSSR_CS(drv_data, drv_data->clear_sr);
 612	reset_sccr1(drv_data);
 613	if (pxa25x_ssp_comp(drv_data))
 614		return;
 615
 616	pxa2xx_spi_write(drv_data, SSTO, 0);
 617}
 618
 619static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
 620{
 621	int_stop_and_reset(drv_data);
 622	pxa2xx_spi_flush(drv_data);
 623	pxa2xx_spi_off(drv_data);
 
 624
 625	dev_err(drv_data->ssp->dev, "%s\n", msg);
 626
 627	drv_data->controller->cur_msg->status = err;
 628	spi_finalize_current_transfer(drv_data->controller);
 629}
 630
 631static void int_transfer_complete(struct driver_data *drv_data)
 632{
 633	int_stop_and_reset(drv_data);
 
 
 
 
 
 
 
 
 
 
 
 
 634
 635	spi_finalize_current_transfer(drv_data->controller);
 
 
 
 
 636}
 637
 638static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 639{
 640	u32 irq_status;
 
 641
 642	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
 643	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
 644		irq_status &= ~SSSR_TFS;
 645
 646	if (irq_status & SSSR_ROR) {
 647		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
 648		return IRQ_HANDLED;
 649	}
 650
 651	if (irq_status & SSSR_TUR) {
 652		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
 653		return IRQ_HANDLED;
 654	}
 655
 656	if (irq_status & SSSR_TINT) {
 657		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 658		if (drv_data->read(drv_data)) {
 659			int_transfer_complete(drv_data);
 660			return IRQ_HANDLED;
 661		}
 662	}
 663
 664	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
 665	do {
 666		if (drv_data->read(drv_data)) {
 667			int_transfer_complete(drv_data);
 668			return IRQ_HANDLED;
 669		}
 670	} while (drv_data->write(drv_data));
 671
 672	if (drv_data->read(drv_data)) {
 673		int_transfer_complete(drv_data);
 674		return IRQ_HANDLED;
 675	}
 676
 677	if (drv_data->tx == drv_data->tx_end) {
 678		u32 bytes_left;
 679		u32 sccr1_reg;
 680
 681		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 682		sccr1_reg &= ~SSCR1_TIE;
 683
 684		/*
 685		 * PXA25x_SSP has no timeout, set up Rx threshold for
 686		 * the remaining Rx bytes.
 687		 */
 688		if (pxa25x_ssp_comp(drv_data)) {
 689			u32 rx_thre;
 690
 691			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 692
 693			bytes_left = drv_data->rx_end - drv_data->rx;
 694			switch (drv_data->n_bytes) {
 695			case 4:
 696				bytes_left >>= 2;
 697				break;
 698			case 2:
 699				bytes_left >>= 1;
 700				break;
 701			}
 702
 703			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 704			if (rx_thre > bytes_left)
 705				rx_thre = bytes_left;
 706
 707			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 708		}
 709		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 710	}
 711
 712	/* We did something */
 713	return IRQ_HANDLED;
 714}
 715
 716static void handle_bad_msg(struct driver_data *drv_data)
 717{
 718	int_stop_and_reset(drv_data);
 719	pxa2xx_spi_off(drv_data);
 
 
 
 
 
 720
 721	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
 
 722}
 723
 724static irqreturn_t ssp_int(int irq, void *dev_id)
 725{
 726	struct driver_data *drv_data = dev_id;
 727	u32 sccr1_reg;
 728	u32 mask = drv_data->mask_sr;
 729	u32 status;
 730
 731	/*
 732	 * The IRQ might be shared with other peripherals so we must first
 733	 * check that are we RPM suspended or not. If we are we assume that
 734	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 735	 * interrupt is enabled).
 736	 */
 737	if (pm_runtime_suspended(drv_data->ssp->dev))
 738		return IRQ_NONE;
 739
 740	/*
 741	 * If the device is not yet in RPM suspended state and we get an
 742	 * interrupt that is meant for another device, check if status bits
 743	 * are all set to one. That means that the device is already
 744	 * powered off.
 745	 */
 746	status = pxa2xx_spi_read(drv_data, SSSR);
 747	if (status == ~0)
 748		return IRQ_NONE;
 749
 750	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 751
 752	/* Ignore possible writes if we don't need to write */
 753	if (!(sccr1_reg & SSCR1_TIE))
 754		mask &= ~SSSR_TFS;
 755
 756	/* Ignore RX timeout interrupt if it is disabled */
 757	if (!(sccr1_reg & SSCR1_TINTE))
 758		mask &= ~SSSR_TINT;
 759
 760	if (!(status & mask))
 761		return IRQ_NONE;
 762
 763	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 764	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 765
 766	if (!drv_data->controller->cur_msg) {
 767		handle_bad_msg(drv_data);
 768		/* Never fail */
 769		return IRQ_HANDLED;
 770	}
 771
 772	return drv_data->transfer_handler(drv_data);
 773}
 774
 775/*
 776 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 777 * input frequency by fractions of 2^24. It also has a divider by 5.
 778 *
 779 * There are formulas to get baud rate value for given input frequency and
 780 * divider parameters, such as DDS_CLK_RATE and SCR:
 781 *
 782 * Fsys = 200MHz
 783 *
 784 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 785 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 786 *
 787 * DDS_CLK_RATE either 2^n or 2^n / 5.
 788 * SCR is in range 0 .. 255
 789 *
 790 * Divisor = 5^i * 2^j * 2 * k
 791 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 792 *       j = [0, 23]     j = 0 iff i = 1
 793 *       k = [1, 256]
 794 * Special case: j = 0, i = 1: Divisor = 2 / 5
 795 *
 796 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 797 * are:
 798 *	Case 1:		2^n, n = [0, 23]
 799 *	Case 2:		2^24 * 2 / 5 (0x666666)
 800 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 801 *
 802 * In all cases the lowest possible value is better.
 803 *
 804 * The function calculates parameters for all cases and chooses the one closest
 805 * to the asked baud rate.
 806 */
 807static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 808{
 809	unsigned long xtal = 200000000;
 810	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 811						   see (2) */
 812						/* case 3 */
 813	unsigned long fref1 = fref / 2;		/* case 1 */
 814	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 815	unsigned long scale;
 816	unsigned long q, q1, q2;
 817	long r, r1, r2;
 818	u32 mul;
 819
 820	/* Case 1 */
 821
 822	/* Set initial value for DDS_CLK_RATE */
 823	mul = (1 << 24) >> 1;
 824
 825	/* Calculate initial quot */
 826	q1 = DIV_ROUND_UP(fref1, rate);
 827
 828	/* Scale q1 if it's too big */
 829	if (q1 > 256) {
 830		/* Scale q1 to range [1, 512] */
 831		scale = fls_long(q1 - 1);
 832		if (scale > 9) {
 833			q1 >>= scale - 9;
 834			mul >>= scale - 9;
 835		}
 836
 837		/* Round the result if we have a remainder */
 838		q1 += q1 & 1;
 839	}
 840
 841	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 842	scale = __ffs(q1);
 843	q1 >>= scale;
 844	mul >>= scale;
 845
 846	/* Get the remainder */
 847	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 848
 849	/* Case 2 */
 850
 851	q2 = DIV_ROUND_UP(fref2, rate);
 852	r2 = abs(fref2 / q2 - rate);
 853
 854	/*
 855	 * Choose the best between two: less remainder we have the better. We
 856	 * can't go case 2 if q2 is greater than 256 since SCR register can
 857	 * hold only values 0 .. 255.
 858	 */
 859	if (r2 >= r1 || q2 > 256) {
 860		/* case 1 is better */
 861		r = r1;
 862		q = q1;
 863	} else {
 864		/* case 2 is better */
 865		r = r2;
 866		q = q2;
 867		mul = (1 << 24) * 2 / 5;
 868	}
 869
 870	/* Check case 3 only if the divisor is big enough */
 871	if (fref / rate >= 80) {
 872		u64 fssp;
 873		u32 m;
 874
 875		/* Calculate initial quot */
 876		q1 = DIV_ROUND_UP(fref, rate);
 877		m = (1 << 24) / q1;
 878
 879		/* Get the remainder */
 880		fssp = (u64)fref * m;
 881		do_div(fssp, 1 << 24);
 882		r1 = abs(fssp - rate);
 883
 884		/* Choose this one if it suits better */
 885		if (r1 < r) {
 886			/* case 3 is better */
 887			q = 1;
 888			mul = m;
 889		}
 890	}
 891
 892	*dds = mul;
 893	return q - 1;
 894}
 895
 896static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 897{
 898	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
 899	const struct ssp_device *ssp = drv_data->ssp;
 900
 901	rate = min_t(int, ssp_clk, rate);
 902
 903	/*
 904	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
 905	 * that the SSP transmission rate can be greater than the device rate.
 906	 */
 907	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 908		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
 909	else
 910		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
 911}
 912
 913static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 914					   int rate)
 915{
 916	struct chip_data *chip =
 917		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 918	unsigned int clk_div;
 919
 920	switch (drv_data->ssp_type) {
 921	case QUARK_X1000_SSP:
 922		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 923		break;
 924	default:
 925		clk_div = ssp_get_clk_div(drv_data, rate);
 926		break;
 927	}
 928	return clk_div << 8;
 929}
 930
 931static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
 932			       struct spi_device *spi,
 933			       struct spi_transfer *xfer)
 934{
 935	struct chip_data *chip = spi_get_ctldata(spi);
 936
 937	return chip->enable_dma &&
 938	       xfer->len <= MAX_DMA_LEN &&
 939	       xfer->len >= chip->dma_burst_size;
 940}
 941
 942static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
 943				   struct spi_device *spi,
 944				   struct spi_transfer *transfer)
 945{
 946	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 947	struct spi_message *message = controller->cur_msg;
 948	struct chip_data *chip = spi_get_ctldata(spi);
 
 949	u32 dma_thresh = chip->dma_threshold;
 950	u32 dma_burst = chip->dma_burst_size;
 951	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 
 
 952	u32 clk_div;
 953	u8 bits;
 954	u32 speed;
 955	u32 cr0;
 956	u32 cr1;
 957	int err;
 958	int dma_mapped;
 959
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 960	/* Check if we can DMA this transfer */
 961	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 962
 963		/* Reject already-mapped transfers; PIO won't always work */
 964		if (message->is_dma_mapped
 965				|| transfer->rx_dma || transfer->tx_dma) {
 966			dev_err(&spi->dev,
 967				"Mapped transfer length of %u is greater than %d\n",
 
 968				transfer->len, MAX_DMA_LEN);
 969			return -EINVAL;
 
 
 970		}
 971
 972		/* Warn ... we force this to PIO mode */
 973		dev_warn_ratelimited(&spi->dev,
 974				     "DMA disabled for transfer length %u greater than %d\n",
 975				     transfer->len, MAX_DMA_LEN);
 
 976	}
 977
 978	/* Setup the transfer state based on the type of transfer */
 979	if (pxa2xx_spi_flush(drv_data) == 0) {
 980		dev_err(&spi->dev, "Flush failed\n");
 981		return -EIO;
 
 
 982	}
 
 983	drv_data->tx = (void *)transfer->tx_buf;
 984	drv_data->tx_end = drv_data->tx + transfer->len;
 985	drv_data->rx = transfer->rx_buf;
 986	drv_data->rx_end = drv_data->rx + transfer->len;
 
 
 
 987
 988	/* Change speed and bit per word on a per transfer */
 989	bits = transfer->bits_per_word;
 990	speed = transfer->speed_hz;
 991
 992	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
 993
 994	if (bits <= 8) {
 995		drv_data->n_bytes = 1;
 996		drv_data->read = drv_data->rx ? u8_reader : null_reader;
 997		drv_data->write = drv_data->tx ? u8_writer : null_writer;
 
 
 998	} else if (bits <= 16) {
 999		drv_data->n_bytes = 2;
1000		drv_data->read = drv_data->rx ? u16_reader : null_reader;
1001		drv_data->write = drv_data->tx ? u16_writer : null_writer;
 
 
1002	} else if (bits <= 32) {
1003		drv_data->n_bytes = 4;
1004		drv_data->read = drv_data->rx ? u32_reader : null_reader;
1005		drv_data->write = drv_data->tx ? u32_writer : null_writer;
 
 
1006	}
1007	/*
1008	 * If bits per word is changed in DMA mode, then must check
1009	 * the thresholds and burst also.
1010	 */
1011	if (chip->enable_dma) {
1012		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1013						spi,
1014						bits, &dma_burst,
1015						&dma_thresh))
1016			dev_warn_ratelimited(&spi->dev,
1017					     "DMA burst size reduced to match bits_per_word\n");
1018	}
1019
1020	dma_mapped = controller->can_dma &&
1021		     controller->can_dma(controller, spi, transfer) &&
1022		     controller->cur_msg_mapped;
 
 
1023	if (dma_mapped) {
1024
1025		/* Ensure we have the correct interrupt handler */
1026		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1027
1028		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1029		if (err)
1030			return err;
 
 
 
1031
1032		/* Clear status and start DMA engine */
1033		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1034		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1035
1036		pxa2xx_spi_dma_start(drv_data);
1037	} else {
1038		/* Ensure we have the correct interrupt handler	*/
1039		drv_data->transfer_handler = interrupt_transfer;
1040
1041		/* Clear status  */
1042		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1043		write_SSSR_CS(drv_data, drv_data->clear_sr);
1044	}
1045
1046	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1047	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1048	if (!pxa25x_ssp_comp(drv_data))
1049		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1050			controller->max_speed_hz
1051				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1052			dma_mapped ? "DMA" : "PIO");
1053	else
1054		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1055			controller->max_speed_hz / 2
1056				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1057			dma_mapped ? "DMA" : "PIO");
1058
1059	if (is_lpss_ssp(drv_data)) {
1060		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1061		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1062	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1063
1064	if (is_mrfld_ssp(drv_data)) {
1065		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1066		u32 thresh = 0;
1067
1068		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1069		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1070
1071		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1072	}
1073
1074	if (is_quark_x1000_ssp(drv_data))
1075		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1076
1077	/* Stop the SSP */
1078	if (!is_mmp2_ssp(drv_data))
1079		pxa_ssp_disable(drv_data->ssp);
1080
1081	if (!pxa25x_ssp_comp(drv_data))
1082		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1083
1084	/* First set CR1 without interrupt and service enables */
1085	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1086
1087	/* See if we need to reload the configuration registers */
1088	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1089
1090	/* Restart the SSP */
1091	pxa_ssp_enable(drv_data->ssp);
1092
1093	if (is_mmp2_ssp(drv_data)) {
1094		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1095
1096		if (tx_level) {
1097			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1098			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1099			if (tx_level > transfer->len)
1100				tx_level = transfer->len;
1101			drv_data->tx += tx_level;
1102		}
1103	}
1104
1105	if (spi_controller_is_slave(controller)) {
1106		while (drv_data->write(drv_data))
1107			;
1108		if (drv_data->gpiod_ready) {
1109			gpiod_set_value(drv_data->gpiod_ready, 1);
1110			udelay(1);
1111			gpiod_set_value(drv_data->gpiod_ready, 0);
1112		}
1113	}
1114
1115	/*
1116	 * Release the data by enabling service requests and interrupts,
1117	 * without changing any mode bits.
1118	 */
1119	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1120
1121	return 1;
1122}
1123
1124static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1125{
1126	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1127
1128	int_error_stop(drv_data, "transfer aborted", -EINTR);
 
 
1129
1130	return 0;
1131}
1132
1133static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1134				 struct spi_message *msg)
1135{
1136	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 
 
 
 
 
 
1137
1138	int_stop_and_reset(drv_data);
 
 
 
 
 
 
1139
1140	/* Disable the SSP */
1141	pxa2xx_spi_off(drv_data);
1142
1143	/*
1144	 * Stop the DMA if running. Note DMA callback handler may have unset
1145	 * the dma_running already, which is fine as stopping is not needed
1146	 * then but we shouldn't rely this flag for anything else than
1147	 * stopping. For instance to differentiate between PIO and DMA
1148	 * transfers.
1149	 */
1150	if (atomic_read(&drv_data->dma_running))
1151		pxa2xx_spi_dma_stop(drv_data);
1152}
 
1153
1154static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1155{
1156	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 
 
1157
1158	/* Disable the SSP now */
1159	pxa2xx_spi_off(drv_data);
 
 
 
 
 
1160
1161	return 0;
 
 
 
 
 
 
 
1162}
1163
1164static int setup(struct spi_device *spi)
1165{
1166	struct pxa2xx_spi_chip *chip_info;
1167	struct chip_data *chip;
1168	const struct lpss_config *config;
1169	struct driver_data *drv_data =
1170		spi_controller_get_devdata(spi->controller);
1171	uint tx_thres, tx_hi_thres, rx_thres;
1172
1173	switch (drv_data->ssp_type) {
1174	case QUARK_X1000_SSP:
1175		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1176		tx_hi_thres = 0;
1177		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1178		break;
1179	case MRFLD_SSP:
1180		tx_thres = TX_THRESH_MRFLD_DFLT;
1181		tx_hi_thres = 0;
1182		rx_thres = RX_THRESH_MRFLD_DFLT;
1183		break;
1184	case CE4100_SSP:
1185		tx_thres = TX_THRESH_CE4100_DFLT;
1186		tx_hi_thres = 0;
1187		rx_thres = RX_THRESH_CE4100_DFLT;
1188		break;
1189	case LPSS_LPT_SSP:
1190	case LPSS_BYT_SSP:
1191	case LPSS_BSW_SSP:
1192	case LPSS_SPT_SSP:
1193	case LPSS_BXT_SSP:
1194	case LPSS_CNL_SSP:
1195		config = lpss_get_config(drv_data);
1196		tx_thres = config->tx_threshold_lo;
1197		tx_hi_thres = config->tx_threshold_hi;
1198		rx_thres = config->rx_threshold;
1199		break;
1200	default:
 
1201		tx_hi_thres = 0;
1202		if (spi_controller_is_slave(drv_data->controller)) {
1203			tx_thres = 1;
1204			rx_thres = 2;
1205		} else {
1206			tx_thres = TX_THRESH_DFLT;
1207			rx_thres = RX_THRESH_DFLT;
1208		}
1209		break;
1210	}
1211
1212	/* Only allocate on the first setup */
1213	chip = spi_get_ctldata(spi);
1214	if (!chip) {
1215		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1216		if (!chip)
1217			return -ENOMEM;
1218
1219		if (drv_data->ssp_type == CE4100_SSP) {
1220			if (spi->chip_select > 4) {
1221				dev_err(&spi->dev,
1222					"failed setup: cs number must not be > 4.\n");
1223				kfree(chip);
1224				return -EINVAL;
1225			}
 
 
1226		}
1227		chip->enable_dma = drv_data->controller_info->enable_dma;
1228		chip->timeout = TIMOUT_DFLT;
1229	}
1230
1231	/*
1232	 * Protocol drivers may change the chip settings, so...
1233	 * if chip_info exists, use it.
1234	 */
1235	chip_info = spi->controller_data;
1236
1237	/* chip_info isn't always needed */
 
1238	if (chip_info) {
1239		if (chip_info->timeout)
1240			chip->timeout = chip_info->timeout;
1241		if (chip_info->tx_threshold)
1242			tx_thres = chip_info->tx_threshold;
1243		if (chip_info->tx_hi_threshold)
1244			tx_hi_thres = chip_info->tx_hi_threshold;
1245		if (chip_info->rx_threshold)
1246			rx_thres = chip_info->rx_threshold;
1247		chip->dma_threshold = 0;
 
 
1248	}
1249
1250	chip->cr1 = 0;
1251	if (spi_controller_is_slave(drv_data->controller)) {
1252		chip->cr1 |= SSCR1_SCFR;
1253		chip->cr1 |= SSCR1_SCLKDIR;
1254		chip->cr1 |= SSCR1_SFRMDIR;
1255		chip->cr1 |= SSCR1_SPH;
1256	}
1257
1258	if (is_lpss_ssp(drv_data)) {
1259		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1260		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1261					  SSITF_TxHiThresh(tx_hi_thres);
1262	}
1263
1264	if (is_mrfld_ssp(drv_data)) {
1265		chip->lpss_rx_threshold = rx_thres;
1266		chip->lpss_tx_threshold = tx_thres;
1267	}
1268
1269	/*
1270	 * Set DMA burst and threshold outside of chip_info path so that if
1271	 * chip_info goes away after setting chip->enable_dma, the burst and
1272	 * threshold can still respond to changes in bits_per_word.
1273	 */
1274	if (chip->enable_dma) {
1275		/* Set up legal burst and threshold for DMA */
1276		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1277						spi->bits_per_word,
1278						&chip->dma_burst_size,
1279						&chip->dma_threshold)) {
1280			dev_warn(&spi->dev,
1281				 "in setup: DMA burst size reduced to match bits_per_word\n");
1282		}
1283		dev_dbg(&spi->dev,
1284			"in setup: DMA burst size set to %u\n",
1285			chip->dma_burst_size);
1286	}
1287
1288	switch (drv_data->ssp_type) {
1289	case QUARK_X1000_SSP:
1290		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1291				   & QUARK_X1000_SSCR1_RFT)
1292				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1293				   & QUARK_X1000_SSCR1_TFT);
1294		break;
1295	case CE4100_SSP:
1296		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1297			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1298		break;
1299	default:
1300		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1301			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1302		break;
1303	}
1304
1305	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1306	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1307		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1308
1309	if (spi->mode & SPI_LOOP)
1310		chip->cr1 |= SSCR1_LBM;
1311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312	spi_set_ctldata(spi, chip);
1313
1314	return 0;
 
 
 
1315}
1316
1317static void cleanup(struct spi_device *spi)
1318{
1319	struct chip_data *chip = spi_get_ctldata(spi);
 
 
 
 
 
 
 
 
 
1320
1321	kfree(chip);
1322}
1323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1325{
1326	return param == chan->device->dev;
 
 
 
 
 
1327}
1328
1329static struct pxa2xx_spi_controller *
1330pxa2xx_spi_init_pdata(struct platform_device *pdev)
1331{
1332	struct pxa2xx_spi_controller *pdata;
1333	struct device *dev = &pdev->dev;
1334	struct device *parent = dev->parent;
1335	struct ssp_device *ssp;
1336	struct resource *res;
1337	enum pxa_ssp_type type = SSP_UNDEFINED;
1338	const void *match;
1339	bool is_lpss_priv;
1340	int status;
1341	u64 uid;
1342
1343	is_lpss_priv = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpss_priv");
1344
1345	match = device_get_match_data(dev);
1346	if (match)
1347		type = (enum pxa_ssp_type)match;
1348	else if (is_lpss_priv) {
1349		u32 value;
1350
1351		status = device_property_read_u32(dev, "intel,spi-pxa2xx-type", &value);
1352		if (status)
1353			return ERR_PTR(status);
1354
1355		type = (enum pxa_ssp_type)value;
1356	}
1357
1358	/* Validate the SSP type correctness */
1359	if (!(type > SSP_UNDEFINED && type < SSP_MAX))
1360		return ERR_PTR(-EINVAL);
 
 
 
1361
1362	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1363	if (!pdata)
1364		return ERR_PTR(-ENOMEM);
1365
1366	ssp = &pdata->ssp;
 
 
1367
1368	ssp->mmio_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1369	if (IS_ERR(ssp->mmio_base))
1370		return ERR_CAST(ssp->mmio_base);
1371
1372	ssp->phys_base = res->start;
 
 
 
1373
1374	/* Platforms with iDMA 64-bit */
1375	if (is_lpss_priv) {
1376		pdata->tx_param = parent;
1377		pdata->rx_param = parent;
1378		pdata->dma_filter = pxa2xx_spi_idma_filter;
1379	}
1380
1381	ssp->clk = devm_clk_get(dev, NULL);
1382	if (IS_ERR(ssp->clk))
1383		return ERR_CAST(ssp->clk);
1384
1385	ssp->irq = platform_get_irq(pdev, 0);
1386	if (ssp->irq < 0)
1387		return ERR_PTR(ssp->irq);
1388
1389	ssp->type = type;
1390	ssp->dev = dev;
1391
1392	status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid);
1393	if (status)
1394		ssp->port_id = -1;
1395	else
1396		ssp->port_id = uid;
1397
1398	pdata->is_slave = device_property_read_bool(dev, "spi-slave");
1399	pdata->num_chipselect = 1;
1400	pdata->enable_dma = true;
1401	pdata->dma_burst_size = 1;
1402
1403	return pdata;
1404}
1405
1406static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
 
 
 
 
 
 
 
 
1407				      unsigned int cs)
1408{
1409	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1410
1411	if (has_acpi_companion(drv_data->ssp->dev)) {
1412		switch (drv_data->ssp_type) {
1413		/*
1414		 * For Atoms the ACPI DeviceSelection used by the Windows
1415		 * driver starts from 1 instead of 0 so translate it here
1416		 * to match what Linux expects.
1417		 */
1418		case LPSS_BYT_SSP:
1419		case LPSS_BSW_SSP:
1420			return cs - 1;
1421
1422		default:
1423			break;
1424		}
1425	}
1426
1427	return cs;
1428}
1429
1430static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1431{
1432	return MAX_DMA_LEN;
1433}
1434
1435static int pxa2xx_spi_probe(struct platform_device *pdev)
1436{
1437	struct device *dev = &pdev->dev;
1438	struct pxa2xx_spi_controller *platform_info;
1439	struct spi_controller *controller;
1440	struct driver_data *drv_data;
1441	struct ssp_device *ssp;
1442	const struct lpss_config *config;
1443	int status;
1444	u32 tmp;
1445
1446	platform_info = dev_get_platdata(dev);
1447	if (!platform_info) {
1448		platform_info = pxa2xx_spi_init_pdata(pdev);
1449		if (IS_ERR(platform_info)) {
1450			dev_err(&pdev->dev, "missing platform data\n");
1451			return PTR_ERR(platform_info);
1452		}
1453	}
1454
1455	ssp = pxa_ssp_request(pdev->id, pdev->name);
1456	if (!ssp)
1457		ssp = &platform_info->ssp;
1458
1459	if (!ssp->mmio_base) {
1460		dev_err(&pdev->dev, "failed to get SSP\n");
1461		return -ENODEV;
1462	}
1463
1464	if (platform_info->is_slave)
1465		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1466	else
1467		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1468
1469	if (!controller) {
1470		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1471		status = -ENOMEM;
1472		goto out_error_controller_alloc;
1473	}
1474	drv_data = spi_controller_get_devdata(controller);
1475	drv_data->controller = controller;
1476	drv_data->controller_info = platform_info;
1477	drv_data->ssp = ssp;
1478
1479	device_set_node(&controller->dev, dev_fwnode(dev));
1480
1481	/* The spi->mode bits understood by this driver: */
1482	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1483
1484	controller->bus_num = ssp->port_id;
1485	controller->dma_alignment = DMA_ALIGNMENT;
1486	controller->cleanup = cleanup;
1487	controller->setup = setup;
1488	controller->set_cs = pxa2xx_spi_set_cs;
1489	controller->transfer_one = pxa2xx_spi_transfer_one;
1490	controller->slave_abort = pxa2xx_spi_slave_abort;
1491	controller->handle_err = pxa2xx_spi_handle_err;
1492	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1493	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1494	controller->auto_runtime_pm = true;
1495	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1496
1497	drv_data->ssp_type = ssp->type;
1498
 
 
1499	if (pxa25x_ssp_comp(drv_data)) {
1500		switch (drv_data->ssp_type) {
1501		case QUARK_X1000_SSP:
1502			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1503			break;
1504		default:
1505			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1506			break;
1507		}
1508
1509		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1510		drv_data->dma_cr1 = 0;
1511		drv_data->clear_sr = SSSR_ROR;
1512		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1513	} else {
1514		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1515		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1516		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1517		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1518		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1519						| SSSR_ROR | SSSR_TUR;
1520	}
1521
1522	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1523			drv_data);
1524	if (status < 0) {
1525		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1526		goto out_error_controller_alloc;
1527	}
1528
1529	/* Setup DMA if requested */
1530	if (platform_info->enable_dma) {
1531		status = pxa2xx_spi_dma_setup(drv_data);
1532		if (status) {
1533			dev_warn(dev, "no DMA channels available, using PIO\n");
1534			platform_info->enable_dma = false;
1535		} else {
1536			controller->can_dma = pxa2xx_spi_can_dma;
1537			controller->max_dma_len = MAX_DMA_LEN;
1538			controller->max_transfer_size =
1539				pxa2xx_spi_max_dma_transfer_size;
1540		}
1541	}
1542
1543	/* Enable SOC clock */
1544	status = clk_prepare_enable(ssp->clk);
1545	if (status)
1546		goto out_error_dma_irq_alloc;
1547
1548	controller->max_speed_hz = clk_get_rate(ssp->clk);
1549	/*
1550	 * Set minimum speed for all other platforms than Intel Quark which is
1551	 * able do under 1 Hz transfers.
1552	 */
1553	if (!pxa25x_ssp_comp(drv_data))
1554		controller->min_speed_hz =
1555			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1556	else if (!is_quark_x1000_ssp(drv_data))
1557		controller->min_speed_hz =
1558			DIV_ROUND_UP(controller->max_speed_hz, 512);
1559
1560	pxa_ssp_disable(ssp);
1561
1562	/* Load default SSP configuration */
 
1563	switch (drv_data->ssp_type) {
1564	case QUARK_X1000_SSP:
1565		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1566		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1567		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1568
1569		/* Using the Motorola SPI protocol and use 8 bit frame */
1570		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1571		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1572		break;
1573	case CE4100_SSP:
1574		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1575		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1576		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1577		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1578		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1579		break;
1580	default:
1581
1582		if (spi_controller_is_slave(controller)) {
1583			tmp = SSCR1_SCFR |
1584			      SSCR1_SCLKDIR |
1585			      SSCR1_SFRMDIR |
1586			      SSCR1_RxTresh(2) |
1587			      SSCR1_TxTresh(1) |
1588			      SSCR1_SPH;
1589		} else {
1590			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1591			      SSCR1_TxTresh(TX_THRESH_DFLT);
1592		}
1593		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1594		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1595		if (!spi_controller_is_slave(controller))
1596			tmp |= SSCR0_SCR(2);
1597		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1598		break;
1599	}
1600
1601	if (!pxa25x_ssp_comp(drv_data))
1602		pxa2xx_spi_write(drv_data, SSTO, 0);
1603
1604	if (!is_quark_x1000_ssp(drv_data))
1605		pxa2xx_spi_write(drv_data, SSPSP, 0);
1606
1607	if (is_lpss_ssp(drv_data)) {
1608		lpss_ssp_setup(drv_data);
1609		config = lpss_get_config(drv_data);
1610		if (config->reg_capabilities >= 0) {
1611			tmp = __lpss_ssp_read_priv(drv_data,
1612						   config->reg_capabilities);
1613			tmp &= LPSS_CAPS_CS_EN_MASK;
1614			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1615			platform_info->num_chipselect = ffz(tmp);
1616		} else if (config->cs_num) {
1617			platform_info->num_chipselect = config->cs_num;
1618		}
1619	}
1620	controller->num_chipselect = platform_info->num_chipselect;
1621	controller->use_gpio_descriptors = true;
1622
1623	if (platform_info->is_slave) {
1624		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1625						"ready", GPIOD_OUT_LOW);
1626		if (IS_ERR(drv_data->gpiod_ready)) {
1627			status = PTR_ERR(drv_data->gpiod_ready);
 
 
 
 
 
 
 
1628			goto out_error_clock_enabled;
1629		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1630	}
1631
 
 
 
1632	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1633	pm_runtime_use_autosuspend(&pdev->dev);
1634	pm_runtime_set_active(&pdev->dev);
1635	pm_runtime_enable(&pdev->dev);
1636
1637	/* Register with the SPI framework */
1638	platform_set_drvdata(pdev, drv_data);
1639	status = spi_register_controller(controller);
1640	if (status) {
1641		dev_err(&pdev->dev, "problem registering SPI controller\n");
1642		goto out_error_pm_runtime_enabled;
1643	}
1644
1645	return status;
1646
1647out_error_pm_runtime_enabled:
1648	pm_runtime_disable(&pdev->dev);
1649
1650out_error_clock_enabled:
 
 
1651	clk_disable_unprepare(ssp->clk);
1652
1653out_error_dma_irq_alloc:
1654	pxa2xx_spi_dma_release(drv_data);
1655	free_irq(ssp->irq, drv_data);
1656
1657out_error_controller_alloc:
 
1658	pxa_ssp_free(ssp);
1659	return status;
1660}
1661
1662static int pxa2xx_spi_remove(struct platform_device *pdev)
1663{
1664	struct driver_data *drv_data = platform_get_drvdata(pdev);
1665	struct ssp_device *ssp = drv_data->ssp;
1666
1667	pm_runtime_get_sync(&pdev->dev);
 
 
1668
1669	spi_unregister_controller(drv_data->controller);
1670
1671	/* Disable the SSP at the peripheral and SOC level */
1672	pxa_ssp_disable(ssp);
1673	clk_disable_unprepare(ssp->clk);
1674
1675	/* Release DMA */
1676	if (drv_data->controller_info->enable_dma)
1677		pxa2xx_spi_dma_release(drv_data);
1678
1679	pm_runtime_put_noidle(&pdev->dev);
1680	pm_runtime_disable(&pdev->dev);
1681
1682	/* Release IRQ */
1683	free_irq(ssp->irq, drv_data);
1684
1685	/* Release SSP */
1686	pxa_ssp_free(ssp);
1687
1688	return 0;
1689}
1690
 
 
 
 
 
 
 
 
 
1691static int pxa2xx_spi_suspend(struct device *dev)
1692{
1693	struct driver_data *drv_data = dev_get_drvdata(dev);
1694	struct ssp_device *ssp = drv_data->ssp;
1695	int status;
1696
1697	status = spi_controller_suspend(drv_data->controller);
1698	if (status)
1699		return status;
1700
1701	pxa_ssp_disable(ssp);
1702
1703	if (!pm_runtime_suspended(dev))
1704		clk_disable_unprepare(ssp->clk);
1705
1706	return 0;
1707}
1708
1709static int pxa2xx_spi_resume(struct device *dev)
1710{
1711	struct driver_data *drv_data = dev_get_drvdata(dev);
1712	struct ssp_device *ssp = drv_data->ssp;
1713	int status;
1714
1715	/* Enable the SSP clock */
1716	if (!pm_runtime_suspended(dev)) {
1717		status = clk_prepare_enable(ssp->clk);
1718		if (status)
1719			return status;
1720	}
 
1721
1722	/* Start the queue running */
1723	return spi_controller_resume(drv_data->controller);
 
 
 
 
 
 
1724}
 
1725
 
1726static int pxa2xx_spi_runtime_suspend(struct device *dev)
1727{
1728	struct driver_data *drv_data = dev_get_drvdata(dev);
1729
1730	clk_disable_unprepare(drv_data->ssp->clk);
1731	return 0;
1732}
1733
1734static int pxa2xx_spi_runtime_resume(struct device *dev)
1735{
1736	struct driver_data *drv_data = dev_get_drvdata(dev);
1737
1738	return clk_prepare_enable(drv_data->ssp->clk);
 
1739}
1740
1741static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1742	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1743	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
1744};
1745
1746#ifdef CONFIG_ACPI
1747static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1748	{ "80860F0E", LPSS_BYT_SSP },
1749	{ "8086228E", LPSS_BSW_SSP },
1750	{ "INT33C0", LPSS_LPT_SSP },
1751	{ "INT33C1", LPSS_LPT_SSP },
1752	{ "INT3430", LPSS_LPT_SSP },
1753	{ "INT3431", LPSS_LPT_SSP },
1754	{}
1755};
1756MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1757#endif
1758
1759static const struct of_device_id pxa2xx_spi_of_match[] = {
1760	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1761	{}
 
1762};
1763MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1764
1765static struct platform_driver driver = {
1766	.driver = {
1767		.name	= "pxa2xx-spi",
1768		.pm	= pm_ptr(&pxa2xx_spi_pm_ops),
1769		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1770		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1771	},
1772	.probe = pxa2xx_spi_probe,
1773	.remove = pxa2xx_spi_remove,
 
1774};
1775
1776static int __init pxa2xx_spi_init(void)
1777{
1778	return platform_driver_register(&driver);
1779}
1780subsys_initcall(pxa2xx_spi_init);
1781
1782static void __exit pxa2xx_spi_exit(void)
1783{
1784	platform_driver_unregister(&driver);
1785}
1786module_exit(pxa2xx_spi_exit);
1787
1788MODULE_SOFTDEP("pre: dw_dmac");
v4.17
 
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 * Copyright (C) 2013, Intel Corporation
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
 
  16#include <linux/bitops.h>
  17#include <linux/init.h>
  18#include <linux/module.h>
  19#include <linux/device.h>
  20#include <linux/ioport.h>
 
  21#include <linux/errno.h>
  22#include <linux/err.h>
 
  23#include <linux/interrupt.h>
 
  24#include <linux/kernel.h>
  25#include <linux/pci.h>
 
 
  26#include <linux/platform_device.h>
 
 
 
 
  27#include <linux/spi/pxa2xx_spi.h>
  28#include <linux/spi/spi.h>
  29#include <linux/delay.h>
  30#include <linux/gpio.h>
  31#include <linux/gpio/consumer.h>
  32#include <linux/slab.h>
  33#include <linux/clk.h>
  34#include <linux/pm_runtime.h>
  35#include <linux/acpi.h>
  36
  37#include "spi-pxa2xx.h"
  38
  39MODULE_AUTHOR("Stephen Street");
  40MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  41MODULE_LICENSE("GPL");
  42MODULE_ALIAS("platform:pxa2xx-spi");
  43
  44#define TIMOUT_DFLT		1000
  45
  46/*
  47 * for testing SSCR1 changes that require SSP restart, basically
  48 * everything except the service and interrupt enables, the pxa270 developer
  49 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  50 * list, but the PXA255 dev man says all bits without really meaning the
  51 * service and interrupt enables
  52 */
  53#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  54				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  55				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  56				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  57				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  58				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  61				| QUARK_X1000_SSCR1_EFWR	\
  62				| QUARK_X1000_SSCR1_RFT		\
  63				| QUARK_X1000_SSCR1_TFT		\
  64				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  65
  66#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  67				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  68				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  69				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  70				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  71				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  72
  73#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  74#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  75#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  76#define LPSS_CAPS_CS_EN_SHIFT			9
  77#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  78
 
 
 
 
  79struct lpss_config {
  80	/* LPSS offset from drv_data->ioaddr */
  81	unsigned offset;
  82	/* Register offsets from drv_data->lpss_base or -1 */
  83	int reg_general;
  84	int reg_ssp;
  85	int reg_cs_ctrl;
  86	int reg_capabilities;
  87	/* FIFO thresholds */
  88	u32 rx_threshold;
  89	u32 tx_threshold_lo;
  90	u32 tx_threshold_hi;
  91	/* Chip select control */
  92	unsigned cs_sel_shift;
  93	unsigned cs_sel_mask;
  94	unsigned cs_num;
 
 
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99	{	/* LPSS_LPT_SSP */
 100		.offset = 0x800,
 101		.reg_general = 0x08,
 102		.reg_ssp = 0x0c,
 103		.reg_cs_ctrl = 0x18,
 104		.reg_capabilities = -1,
 105		.rx_threshold = 64,
 106		.tx_threshold_lo = 160,
 107		.tx_threshold_hi = 224,
 108	},
 109	{	/* LPSS_BYT_SSP */
 110		.offset = 0x400,
 111		.reg_general = 0x08,
 112		.reg_ssp = 0x0c,
 113		.reg_cs_ctrl = 0x18,
 114		.reg_capabilities = -1,
 115		.rx_threshold = 64,
 116		.tx_threshold_lo = 160,
 117		.tx_threshold_hi = 224,
 118	},
 119	{	/* LPSS_BSW_SSP */
 120		.offset = 0x400,
 121		.reg_general = 0x08,
 122		.reg_ssp = 0x0c,
 123		.reg_cs_ctrl = 0x18,
 124		.reg_capabilities = -1,
 125		.rx_threshold = 64,
 126		.tx_threshold_lo = 160,
 127		.tx_threshold_hi = 224,
 128		.cs_sel_shift = 2,
 129		.cs_sel_mask = 1 << 2,
 130		.cs_num = 2,
 131	},
 132	{	/* LPSS_SPT_SSP */
 133		.offset = 0x200,
 134		.reg_general = -1,
 135		.reg_ssp = 0x20,
 136		.reg_cs_ctrl = 0x24,
 137		.reg_capabilities = -1,
 138		.rx_threshold = 1,
 139		.tx_threshold_lo = 32,
 140		.tx_threshold_hi = 56,
 141	},
 142	{	/* LPSS_BXT_SSP */
 143		.offset = 0x200,
 144		.reg_general = -1,
 145		.reg_ssp = 0x20,
 146		.reg_cs_ctrl = 0x24,
 147		.reg_capabilities = 0xfc,
 148		.rx_threshold = 1,
 149		.tx_threshold_lo = 16,
 150		.tx_threshold_hi = 48,
 151		.cs_sel_shift = 8,
 152		.cs_sel_mask = 3 << 8,
 
 153	},
 154	{	/* LPSS_CNL_SSP */
 155		.offset = 0x200,
 156		.reg_general = -1,
 157		.reg_ssp = 0x20,
 158		.reg_cs_ctrl = 0x24,
 159		.reg_capabilities = 0xfc,
 160		.rx_threshold = 1,
 161		.tx_threshold_lo = 32,
 162		.tx_threshold_hi = 56,
 163		.cs_sel_shift = 8,
 164		.cs_sel_mask = 3 << 8,
 
 165	},
 166};
 167
 168static inline const struct lpss_config
 169*lpss_get_config(const struct driver_data *drv_data)
 170{
 171	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 172}
 173
 174static bool is_lpss_ssp(const struct driver_data *drv_data)
 175{
 176	switch (drv_data->ssp_type) {
 177	case LPSS_LPT_SSP:
 178	case LPSS_BYT_SSP:
 179	case LPSS_BSW_SSP:
 180	case LPSS_SPT_SSP:
 181	case LPSS_BXT_SSP:
 182	case LPSS_CNL_SSP:
 183		return true;
 184	default:
 185		return false;
 186	}
 187}
 188
 189static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 190{
 191	return drv_data->ssp_type == QUARK_X1000_SSP;
 192}
 193
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 194static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 195{
 196	switch (drv_data->ssp_type) {
 197	case QUARK_X1000_SSP:
 198		return QUARK_X1000_SSCR1_CHANGE_MASK;
 199	case CE4100_SSP:
 200		return CE4100_SSCR1_CHANGE_MASK;
 201	default:
 202		return SSCR1_CHANGE_MASK;
 203	}
 204}
 205
 206static u32
 207pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 208{
 209	switch (drv_data->ssp_type) {
 210	case QUARK_X1000_SSP:
 211		return RX_THRESH_QUARK_X1000_DFLT;
 212	case CE4100_SSP:
 213		return RX_THRESH_CE4100_DFLT;
 214	default:
 215		return RX_THRESH_DFLT;
 216	}
 217}
 218
 219static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 220{
 221	u32 mask;
 222
 223	switch (drv_data->ssp_type) {
 224	case QUARK_X1000_SSP:
 225		mask = QUARK_X1000_SSSR_TFL_MASK;
 226		break;
 227	case CE4100_SSP:
 228		mask = CE4100_SSSR_TFL_MASK;
 229		break;
 230	default:
 231		mask = SSSR_TFL_MASK;
 232		break;
 233	}
 234
 235	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 236}
 237
 238static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 239				     u32 *sccr1_reg)
 240{
 241	u32 mask;
 242
 243	switch (drv_data->ssp_type) {
 244	case QUARK_X1000_SSP:
 245		mask = QUARK_X1000_SSCR1_RFT;
 246		break;
 247	case CE4100_SSP:
 248		mask = CE4100_SSCR1_RFT;
 249		break;
 250	default:
 251		mask = SSCR1_RFT;
 252		break;
 253	}
 254	*sccr1_reg &= ~mask;
 255}
 256
 257static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 258				   u32 *sccr1_reg, u32 threshold)
 259{
 260	switch (drv_data->ssp_type) {
 261	case QUARK_X1000_SSP:
 262		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 263		break;
 264	case CE4100_SSP:
 265		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 266		break;
 267	default:
 268		*sccr1_reg |= SSCR1_RxTresh(threshold);
 269		break;
 270	}
 271}
 272
 273static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 274				  u32 clk_div, u8 bits)
 275{
 276	switch (drv_data->ssp_type) {
 277	case QUARK_X1000_SSP:
 278		return clk_div
 279			| QUARK_X1000_SSCR0_Motorola
 280			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 281			| SSCR0_SSE;
 282	default:
 283		return clk_div
 284			| SSCR0_Motorola
 285			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 286			| SSCR0_SSE
 287			| (bits > 16 ? SSCR0_EDSS : 0);
 288	}
 289}
 290
 291/*
 292 * Read and write LPSS SSP private registers. Caller must first check that
 293 * is_lpss_ssp() returns true before these can be called.
 294 */
 295static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 296{
 297	WARN_ON(!drv_data->lpss_base);
 298	return readl(drv_data->lpss_base + offset);
 299}
 300
 301static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 302				  unsigned offset, u32 value)
 303{
 304	WARN_ON(!drv_data->lpss_base);
 305	writel(value, drv_data->lpss_base + offset);
 306}
 307
 308/*
 309 * lpss_ssp_setup - perform LPSS SSP specific setup
 310 * @drv_data: pointer to the driver private data
 311 *
 312 * Perform LPSS SSP specific setup. This function must be called first if
 313 * one is going to use LPSS SSP private registers.
 314 */
 315static void lpss_ssp_setup(struct driver_data *drv_data)
 316{
 317	const struct lpss_config *config;
 318	u32 value;
 319
 320	config = lpss_get_config(drv_data);
 321	drv_data->lpss_base = drv_data->ioaddr + config->offset;
 322
 323	/* Enable software chip select control */
 324	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 325	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 326	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 327	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 328
 329	/* Enable multiblock DMA transfers */
 330	if (drv_data->master_info->enable_dma) {
 331		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 332
 333		if (config->reg_general >= 0) {
 334			value = __lpss_ssp_read_priv(drv_data,
 335						     config->reg_general);
 336			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 337			__lpss_ssp_write_priv(drv_data,
 338					      config->reg_general, value);
 339		}
 340	}
 341}
 342
 343static void lpss_ssp_select_cs(struct driver_data *drv_data,
 344			       const struct lpss_config *config)
 345{
 
 
 346	u32 value, cs;
 347
 348	if (!config->cs_sel_mask)
 349		return;
 350
 351	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 352
 353	cs = drv_data->master->cur_msg->spi->chip_select;
 354	cs <<= config->cs_sel_shift;
 355	if (cs != (value & config->cs_sel_mask)) {
 356		/*
 357		 * When switching another chip select output active the
 358		 * output must be selected first and wait 2 ssp_clk cycles
 359		 * before changing state to active. Otherwise a short
 360		 * glitch will occur on the previous chip select since
 361		 * output select is latched but state control is not.
 362		 */
 363		value &= ~config->cs_sel_mask;
 364		value |= cs;
 365		__lpss_ssp_write_priv(drv_data,
 366				      config->reg_cs_ctrl, value);
 367		ndelay(1000000000 /
 368		       (drv_data->master->max_speed_hz / 2));
 369	}
 370}
 371
 372static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
 373{
 
 
 374	const struct lpss_config *config;
 375	u32 value;
 376
 377	config = lpss_get_config(drv_data);
 378
 379	if (enable)
 380		lpss_ssp_select_cs(drv_data, config);
 381
 382	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 383	if (enable)
 384		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 385	else
 386		value |= LPSS_CS_CONTROL_CS_HIGH;
 387	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 388}
 389
 390static void cs_assert(struct driver_data *drv_data)
 391{
 392	struct chip_data *chip =
 393		spi_get_ctldata(drv_data->master->cur_msg->spi);
 394
 395	if (drv_data->ssp_type == CE4100_SSP) {
 396		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
 397		return;
 398	}
 399
 400	if (chip->cs_control) {
 401		chip->cs_control(PXA2XX_CS_ASSERT);
 402		return;
 403	}
 404
 405	if (chip->gpiod_cs) {
 406		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
 407		return;
 408	}
 409
 410	if (is_lpss_ssp(drv_data))
 411		lpss_ssp_cs_control(drv_data, true);
 412}
 413
 414static void cs_deassert(struct driver_data *drv_data)
 415{
 416	struct chip_data *chip =
 417		spi_get_ctldata(drv_data->master->cur_msg->spi);
 418	unsigned long timeout;
 419
 420	if (drv_data->ssp_type == CE4100_SSP)
 421		return;
 422
 423	/* Wait until SSP becomes idle before deasserting the CS */
 424	timeout = jiffies + msecs_to_jiffies(10);
 425	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 426	       !time_after(jiffies, timeout))
 427		cpu_relax();
 428
 429	if (chip->cs_control) {
 430		chip->cs_control(PXA2XX_CS_DEASSERT);
 431		return;
 432	}
 433
 434	if (chip->gpiod_cs) {
 435		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
 436		return;
 437	}
 438
 439	if (is_lpss_ssp(drv_data))
 440		lpss_ssp_cs_control(drv_data, false);
 441}
 442
 443int pxa2xx_spi_flush(struct driver_data *drv_data)
 444{
 445	unsigned long limit = loops_per_jiffy << 1;
 446
 447	do {
 448		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 449			pxa2xx_spi_read(drv_data, SSDR);
 450	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 451	write_SSSR_CS(drv_data, SSSR_ROR);
 452
 453	return limit;
 454}
 455
 
 
 
 
 
 
 
 
 
 456static int null_writer(struct driver_data *drv_data)
 457{
 458	u8 n_bytes = drv_data->n_bytes;
 459
 460	if (pxa2xx_spi_txfifo_full(drv_data)
 461		|| (drv_data->tx == drv_data->tx_end))
 462		return 0;
 463
 464	pxa2xx_spi_write(drv_data, SSDR, 0);
 465	drv_data->tx += n_bytes;
 466
 467	return 1;
 468}
 469
 470static int null_reader(struct driver_data *drv_data)
 471{
 472	u8 n_bytes = drv_data->n_bytes;
 473
 474	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 475	       && (drv_data->rx < drv_data->rx_end)) {
 476		pxa2xx_spi_read(drv_data, SSDR);
 477		drv_data->rx += n_bytes;
 478	}
 479
 480	return drv_data->rx == drv_data->rx_end;
 481}
 482
 483static int u8_writer(struct driver_data *drv_data)
 484{
 485	if (pxa2xx_spi_txfifo_full(drv_data)
 486		|| (drv_data->tx == drv_data->tx_end))
 487		return 0;
 488
 489	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 490	++drv_data->tx;
 491
 492	return 1;
 493}
 494
 495static int u8_reader(struct driver_data *drv_data)
 496{
 497	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 498	       && (drv_data->rx < drv_data->rx_end)) {
 499		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 500		++drv_data->rx;
 501	}
 502
 503	return drv_data->rx == drv_data->rx_end;
 504}
 505
 506static int u16_writer(struct driver_data *drv_data)
 507{
 508	if (pxa2xx_spi_txfifo_full(drv_data)
 509		|| (drv_data->tx == drv_data->tx_end))
 510		return 0;
 511
 512	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 513	drv_data->tx += 2;
 514
 515	return 1;
 516}
 517
 518static int u16_reader(struct driver_data *drv_data)
 519{
 520	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 521	       && (drv_data->rx < drv_data->rx_end)) {
 522		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 523		drv_data->rx += 2;
 524	}
 525
 526	return drv_data->rx == drv_data->rx_end;
 527}
 528
 529static int u32_writer(struct driver_data *drv_data)
 530{
 531	if (pxa2xx_spi_txfifo_full(drv_data)
 532		|| (drv_data->tx == drv_data->tx_end))
 533		return 0;
 534
 535	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 536	drv_data->tx += 4;
 537
 538	return 1;
 539}
 540
 541static int u32_reader(struct driver_data *drv_data)
 542{
 543	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 544	       && (drv_data->rx < drv_data->rx_end)) {
 545		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 546		drv_data->rx += 4;
 547	}
 548
 549	return drv_data->rx == drv_data->rx_end;
 550}
 551
 552void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
 553{
 554	struct spi_message *msg = drv_data->master->cur_msg;
 555	struct spi_transfer *trans = drv_data->cur_transfer;
 556
 557	/* Move to next transfer */
 558	if (trans->transfer_list.next != &msg->transfers) {
 559		drv_data->cur_transfer =
 560			list_entry(trans->transfer_list.next,
 561					struct spi_transfer,
 562					transfer_list);
 563		return RUNNING_STATE;
 564	} else
 565		return DONE_STATE;
 566}
 567
 568/* caller already set message->status; dma and pio irqs are blocked */
 569static void giveback(struct driver_data *drv_data)
 570{
 571	struct spi_transfer* last_transfer;
 572	struct spi_message *msg;
 573
 574	msg = drv_data->master->cur_msg;
 575	drv_data->cur_transfer = NULL;
 576
 577	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
 578					transfer_list);
 579
 580	/* Delay if requested before any change in chip select */
 581	if (last_transfer->delay_usecs)
 582		udelay(last_transfer->delay_usecs);
 583
 584	/* Drop chip select UNLESS cs_change is true or we are returning
 585	 * a message with an error, or next message is for another chip
 586	 */
 587	if (!last_transfer->cs_change)
 588		cs_deassert(drv_data);
 589	else {
 590		struct spi_message *next_msg;
 591
 592		/* Holding of cs was hinted, but we need to make sure
 593		 * the next message is for the same chip.  Don't waste
 594		 * time with the following tests unless this was hinted.
 595		 *
 596		 * We cannot postpone this until pump_messages, because
 597		 * after calling msg->complete (below) the driver that
 598		 * sent the current message could be unloaded, which
 599		 * could invalidate the cs_control() callback...
 600		 */
 601
 602		/* get a pointer to the next message, if any */
 603		next_msg = spi_get_next_queued_message(drv_data->master);
 604
 605		/* see if the next and current messages point
 606		 * to the same chip
 607		 */
 608		if ((next_msg && next_msg->spi != msg->spi) ||
 609		    msg->state == ERROR_STATE)
 610			cs_deassert(drv_data);
 611	}
 612
 613	spi_finalize_current_message(drv_data->master);
 614}
 615
 616static void reset_sccr1(struct driver_data *drv_data)
 617{
 618	struct chip_data *chip =
 619		spi_get_ctldata(drv_data->master->cur_msg->spi);
 620	u32 sccr1_reg;
 621
 622	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 623	switch (drv_data->ssp_type) {
 624	case QUARK_X1000_SSP:
 625		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
 626		break;
 627	case CE4100_SSP:
 628		sccr1_reg &= ~CE4100_SSCR1_RFT;
 629		break;
 630	default:
 631		sccr1_reg &= ~SSCR1_RFT;
 632		break;
 633	}
 634	sccr1_reg |= chip->threshold;
 635	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 636}
 637
 638static void int_error_stop(struct driver_data *drv_data, const char* msg)
 639{
 640	/* Stop and reset SSP */
 641	write_SSSR_CS(drv_data, drv_data->clear_sr);
 642	reset_sccr1(drv_data);
 643	if (!pxa25x_ssp_comp(drv_data))
 644		pxa2xx_spi_write(drv_data, SSTO, 0);
 
 
 
 
 
 
 
 645	pxa2xx_spi_flush(drv_data);
 646	pxa2xx_spi_write(drv_data, SSCR0,
 647			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 648
 649	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 650
 651	drv_data->master->cur_msg->state = ERROR_STATE;
 652	tasklet_schedule(&drv_data->pump_transfers);
 653}
 654
 655static void int_transfer_complete(struct driver_data *drv_data)
 656{
 657	/* Clear and disable interrupts */
 658	write_SSSR_CS(drv_data, drv_data->clear_sr);
 659	reset_sccr1(drv_data);
 660	if (!pxa25x_ssp_comp(drv_data))
 661		pxa2xx_spi_write(drv_data, SSTO, 0);
 662
 663	/* Update total byte transferred return count actual bytes read */
 664	drv_data->master->cur_msg->actual_length += drv_data->len -
 665				(drv_data->rx_end - drv_data->rx);
 666
 667	/* Transfer delays and chip select release are
 668	 * handled in pump_transfers or giveback
 669	 */
 670
 671	/* Move to next transfer */
 672	drv_data->master->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
 673
 674	/* Schedule transfer tasklet */
 675	tasklet_schedule(&drv_data->pump_transfers);
 676}
 677
 678static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 679{
 680	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 681		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 682
 683	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 
 
 684
 685	if (irq_status & SSSR_ROR) {
 686		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 
 
 
 
 
 687		return IRQ_HANDLED;
 688	}
 689
 690	if (irq_status & SSSR_TINT) {
 691		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 692		if (drv_data->read(drv_data)) {
 693			int_transfer_complete(drv_data);
 694			return IRQ_HANDLED;
 695		}
 696	}
 697
 698	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 699	do {
 700		if (drv_data->read(drv_data)) {
 701			int_transfer_complete(drv_data);
 702			return IRQ_HANDLED;
 703		}
 704	} while (drv_data->write(drv_data));
 705
 706	if (drv_data->read(drv_data)) {
 707		int_transfer_complete(drv_data);
 708		return IRQ_HANDLED;
 709	}
 710
 711	if (drv_data->tx == drv_data->tx_end) {
 712		u32 bytes_left;
 713		u32 sccr1_reg;
 714
 715		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 716		sccr1_reg &= ~SSCR1_TIE;
 717
 718		/*
 719		 * PXA25x_SSP has no timeout, set up rx threshould for the
 720		 * remaining RX bytes.
 721		 */
 722		if (pxa25x_ssp_comp(drv_data)) {
 723			u32 rx_thre;
 724
 725			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 726
 727			bytes_left = drv_data->rx_end - drv_data->rx;
 728			switch (drv_data->n_bytes) {
 729			case 4:
 730				bytes_left >>= 1;
 
 731			case 2:
 732				bytes_left >>= 1;
 
 733			}
 734
 735			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 736			if (rx_thre > bytes_left)
 737				rx_thre = bytes_left;
 738
 739			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 740		}
 741		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 742	}
 743
 744	/* We did something */
 745	return IRQ_HANDLED;
 746}
 747
 748static void handle_bad_msg(struct driver_data *drv_data)
 749{
 750	pxa2xx_spi_write(drv_data, SSCR0,
 751			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 752	pxa2xx_spi_write(drv_data, SSCR1,
 753			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
 754	if (!pxa25x_ssp_comp(drv_data))
 755		pxa2xx_spi_write(drv_data, SSTO, 0);
 756	write_SSSR_CS(drv_data, drv_data->clear_sr);
 757
 758	dev_err(&drv_data->pdev->dev,
 759		"bad message state in interrupt handler\n");
 760}
 761
 762static irqreturn_t ssp_int(int irq, void *dev_id)
 763{
 764	struct driver_data *drv_data = dev_id;
 765	u32 sccr1_reg;
 766	u32 mask = drv_data->mask_sr;
 767	u32 status;
 768
 769	/*
 770	 * The IRQ might be shared with other peripherals so we must first
 771	 * check that are we RPM suspended or not. If we are we assume that
 772	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 773	 * interrupt is enabled).
 774	 */
 775	if (pm_runtime_suspended(&drv_data->pdev->dev))
 776		return IRQ_NONE;
 777
 778	/*
 779	 * If the device is not yet in RPM suspended state and we get an
 780	 * interrupt that is meant for another device, check if status bits
 781	 * are all set to one. That means that the device is already
 782	 * powered off.
 783	 */
 784	status = pxa2xx_spi_read(drv_data, SSSR);
 785	if (status == ~0)
 786		return IRQ_NONE;
 787
 788	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 789
 790	/* Ignore possible writes if we don't need to write */
 791	if (!(sccr1_reg & SSCR1_TIE))
 792		mask &= ~SSSR_TFS;
 793
 794	/* Ignore RX timeout interrupt if it is disabled */
 795	if (!(sccr1_reg & SSCR1_TINTE))
 796		mask &= ~SSSR_TINT;
 797
 798	if (!(status & mask))
 799		return IRQ_NONE;
 800
 801	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 802	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 803
 804	if (!drv_data->master->cur_msg) {
 805		handle_bad_msg(drv_data);
 806		/* Never fail */
 807		return IRQ_HANDLED;
 808	}
 809
 810	return drv_data->transfer_handler(drv_data);
 811}
 812
 813/*
 814 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 815 * input frequency by fractions of 2^24. It also has a divider by 5.
 816 *
 817 * There are formulas to get baud rate value for given input frequency and
 818 * divider parameters, such as DDS_CLK_RATE and SCR:
 819 *
 820 * Fsys = 200MHz
 821 *
 822 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 823 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 824 *
 825 * DDS_CLK_RATE either 2^n or 2^n / 5.
 826 * SCR is in range 0 .. 255
 827 *
 828 * Divisor = 5^i * 2^j * 2 * k
 829 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 830 *       j = [0, 23]     j = 0 iff i = 1
 831 *       k = [1, 256]
 832 * Special case: j = 0, i = 1: Divisor = 2 / 5
 833 *
 834 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 835 * are:
 836 *	Case 1:		2^n, n = [0, 23]
 837 *	Case 2:		2^24 * 2 / 5 (0x666666)
 838 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 839 *
 840 * In all cases the lowest possible value is better.
 841 *
 842 * The function calculates parameters for all cases and chooses the one closest
 843 * to the asked baud rate.
 844 */
 845static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 846{
 847	unsigned long xtal = 200000000;
 848	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 849						   see (2) */
 850						/* case 3 */
 851	unsigned long fref1 = fref / 2;		/* case 1 */
 852	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 853	unsigned long scale;
 854	unsigned long q, q1, q2;
 855	long r, r1, r2;
 856	u32 mul;
 857
 858	/* Case 1 */
 859
 860	/* Set initial value for DDS_CLK_RATE */
 861	mul = (1 << 24) >> 1;
 862
 863	/* Calculate initial quot */
 864	q1 = DIV_ROUND_UP(fref1, rate);
 865
 866	/* Scale q1 if it's too big */
 867	if (q1 > 256) {
 868		/* Scale q1 to range [1, 512] */
 869		scale = fls_long(q1 - 1);
 870		if (scale > 9) {
 871			q1 >>= scale - 9;
 872			mul >>= scale - 9;
 873		}
 874
 875		/* Round the result if we have a remainder */
 876		q1 += q1 & 1;
 877	}
 878
 879	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 880	scale = __ffs(q1);
 881	q1 >>= scale;
 882	mul >>= scale;
 883
 884	/* Get the remainder */
 885	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 886
 887	/* Case 2 */
 888
 889	q2 = DIV_ROUND_UP(fref2, rate);
 890	r2 = abs(fref2 / q2 - rate);
 891
 892	/*
 893	 * Choose the best between two: less remainder we have the better. We
 894	 * can't go case 2 if q2 is greater than 256 since SCR register can
 895	 * hold only values 0 .. 255.
 896	 */
 897	if (r2 >= r1 || q2 > 256) {
 898		/* case 1 is better */
 899		r = r1;
 900		q = q1;
 901	} else {
 902		/* case 2 is better */
 903		r = r2;
 904		q = q2;
 905		mul = (1 << 24) * 2 / 5;
 906	}
 907
 908	/* Check case 3 only if the divisor is big enough */
 909	if (fref / rate >= 80) {
 910		u64 fssp;
 911		u32 m;
 912
 913		/* Calculate initial quot */
 914		q1 = DIV_ROUND_UP(fref, rate);
 915		m = (1 << 24) / q1;
 916
 917		/* Get the remainder */
 918		fssp = (u64)fref * m;
 919		do_div(fssp, 1 << 24);
 920		r1 = abs(fssp - rate);
 921
 922		/* Choose this one if it suits better */
 923		if (r1 < r) {
 924			/* case 3 is better */
 925			q = 1;
 926			mul = m;
 927		}
 928	}
 929
 930	*dds = mul;
 931	return q - 1;
 932}
 933
 934static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 935{
 936	unsigned long ssp_clk = drv_data->master->max_speed_hz;
 937	const struct ssp_device *ssp = drv_data->ssp;
 938
 939	rate = min_t(int, ssp_clk, rate);
 940
 
 
 
 
 941	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 942		return (ssp_clk / (2 * rate) - 1) & 0xff;
 943	else
 944		return (ssp_clk / rate - 1) & 0xfff;
 945}
 946
 947static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 948					   int rate)
 949{
 950	struct chip_data *chip =
 951		spi_get_ctldata(drv_data->master->cur_msg->spi);
 952	unsigned int clk_div;
 953
 954	switch (drv_data->ssp_type) {
 955	case QUARK_X1000_SSP:
 956		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 957		break;
 958	default:
 959		clk_div = ssp_get_clk_div(drv_data, rate);
 960		break;
 961	}
 962	return clk_div << 8;
 963}
 964
 965static bool pxa2xx_spi_can_dma(struct spi_controller *master,
 966			       struct spi_device *spi,
 967			       struct spi_transfer *xfer)
 968{
 969	struct chip_data *chip = spi_get_ctldata(spi);
 970
 971	return chip->enable_dma &&
 972	       xfer->len <= MAX_DMA_LEN &&
 973	       xfer->len >= chip->dma_burst_size;
 974}
 975
 976static void pump_transfers(unsigned long data)
 
 
 977{
 978	struct driver_data *drv_data = (struct driver_data *)data;
 979	struct spi_controller *master = drv_data->master;
 980	struct spi_message *message = master->cur_msg;
 981	struct chip_data *chip = spi_get_ctldata(message->spi);
 982	u32 dma_thresh = chip->dma_threshold;
 983	u32 dma_burst = chip->dma_burst_size;
 984	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 985	struct spi_transfer *transfer;
 986	struct spi_transfer *previous;
 987	u32 clk_div;
 988	u8 bits;
 989	u32 speed;
 990	u32 cr0;
 991	u32 cr1;
 992	int err;
 993	int dma_mapped;
 994
 995	/* Get current state information */
 996	transfer = drv_data->cur_transfer;
 997
 998	/* Handle for abort */
 999	if (message->state == ERROR_STATE) {
1000		message->status = -EIO;
1001		giveback(drv_data);
1002		return;
1003	}
1004
1005	/* Handle end of message */
1006	if (message->state == DONE_STATE) {
1007		message->status = 0;
1008		giveback(drv_data);
1009		return;
1010	}
1011
1012	/* Delay if requested at end of transfer before CS change */
1013	if (message->state == RUNNING_STATE) {
1014		previous = list_entry(transfer->transfer_list.prev,
1015					struct spi_transfer,
1016					transfer_list);
1017		if (previous->delay_usecs)
1018			udelay(previous->delay_usecs);
1019
1020		/* Drop chip select only if cs_change is requested */
1021		if (previous->cs_change)
1022			cs_deassert(drv_data);
1023	}
1024
1025	/* Check if we can DMA this transfer */
1026	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
1027
1028		/* reject already-mapped transfers; PIO won't always work */
1029		if (message->is_dma_mapped
1030				|| transfer->rx_dma || transfer->tx_dma) {
1031			dev_err(&drv_data->pdev->dev,
1032				"pump_transfers: mapped transfer length of "
1033				"%u is greater than %d\n",
1034				transfer->len, MAX_DMA_LEN);
1035			message->status = -EINVAL;
1036			giveback(drv_data);
1037			return;
1038		}
1039
1040		/* warn ... we force this to PIO mode */
1041		dev_warn_ratelimited(&message->spi->dev,
1042				     "pump_transfers: DMA disabled for transfer length %ld "
1043				     "greater than %d\n",
1044				     (long)drv_data->len, MAX_DMA_LEN);
1045	}
1046
1047	/* Setup the transfer state based on the type of transfer */
1048	if (pxa2xx_spi_flush(drv_data) == 0) {
1049		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1050		message->status = -EIO;
1051		giveback(drv_data);
1052		return;
1053	}
1054	drv_data->n_bytes = chip->n_bytes;
1055	drv_data->tx = (void *)transfer->tx_buf;
1056	drv_data->tx_end = drv_data->tx + transfer->len;
1057	drv_data->rx = transfer->rx_buf;
1058	drv_data->rx_end = drv_data->rx + transfer->len;
1059	drv_data->len = transfer->len;
1060	drv_data->write = drv_data->tx ? chip->write : null_writer;
1061	drv_data->read = drv_data->rx ? chip->read : null_reader;
1062
1063	/* Change speed and bit per word on a per transfer */
1064	bits = transfer->bits_per_word;
1065	speed = transfer->speed_hz;
1066
1067	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1068
1069	if (bits <= 8) {
1070		drv_data->n_bytes = 1;
1071		drv_data->read = drv_data->read != null_reader ?
1072					u8_reader : null_reader;
1073		drv_data->write = drv_data->write != null_writer ?
1074					u8_writer : null_writer;
1075	} else if (bits <= 16) {
1076		drv_data->n_bytes = 2;
1077		drv_data->read = drv_data->read != null_reader ?
1078					u16_reader : null_reader;
1079		drv_data->write = drv_data->write != null_writer ?
1080					u16_writer : null_writer;
1081	} else if (bits <= 32) {
1082		drv_data->n_bytes = 4;
1083		drv_data->read = drv_data->read != null_reader ?
1084					u32_reader : null_reader;
1085		drv_data->write = drv_data->write != null_writer ?
1086					u32_writer : null_writer;
1087	}
1088	/*
1089	 * if bits/word is changed in dma mode, then must check the
1090	 * thresholds and burst also
1091	 */
1092	if (chip->enable_dma) {
1093		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1094						message->spi,
1095						bits, &dma_burst,
1096						&dma_thresh))
1097			dev_warn_ratelimited(&message->spi->dev,
1098					     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1099	}
1100
1101	message->state = RUNNING_STATE;
1102
1103	dma_mapped = master->can_dma &&
1104		     master->can_dma(master, message->spi, transfer) &&
1105		     master->cur_msg_mapped;
1106	if (dma_mapped) {
1107
1108		/* Ensure we have the correct interrupt handler */
1109		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1110
1111		err = pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1112		if (err) {
1113			message->status = err;
1114			giveback(drv_data);
1115			return;
1116		}
1117
1118		/* Clear status and start DMA engine */
1119		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1120		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1121
1122		pxa2xx_spi_dma_start(drv_data);
1123	} else {
1124		/* Ensure we have the correct interrupt handler	*/
1125		drv_data->transfer_handler = interrupt_transfer;
1126
1127		/* Clear status  */
1128		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1129		write_SSSR_CS(drv_data, drv_data->clear_sr);
1130	}
1131
1132	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1133	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1134	if (!pxa25x_ssp_comp(drv_data))
1135		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1136			master->max_speed_hz
1137				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1138			dma_mapped ? "DMA" : "PIO");
1139	else
1140		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1141			master->max_speed_hz / 2
1142				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1143			dma_mapped ? "DMA" : "PIO");
1144
1145	if (is_lpss_ssp(drv_data)) {
1146		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1147		    != chip->lpss_rx_threshold)
1148			pxa2xx_spi_write(drv_data, SSIRF,
1149					 chip->lpss_rx_threshold);
1150		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1151		    != chip->lpss_tx_threshold)
1152			pxa2xx_spi_write(drv_data, SSITF,
1153					 chip->lpss_tx_threshold);
1154	}
1155
1156	if (is_quark_x1000_ssp(drv_data) &&
1157	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1158		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1159
1160	/* see if we need to reload the config registers */
1161	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1162	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1163	    != (cr1 & change_mask)) {
1164		/* stop the SSP, and update the other bits */
1165		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1166		if (!pxa25x_ssp_comp(drv_data))
1167			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1168		/* first set CR1 without interrupt and service enables */
1169		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1170		/* restart the SSP */
1171		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1172
1173	} else {
1174		if (!pxa25x_ssp_comp(drv_data))
1175			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
 
 
 
 
 
1176	}
1177
1178	cs_assert(drv_data);
 
1179
1180	/* after chip select, release the data by enabling service
1181	 * requests and interrupts, without changing any mode bits */
1182	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1183}
 
 
 
 
 
 
 
 
1184
1185static int pxa2xx_spi_transfer_one_message(struct spi_controller *master,
1186					   struct spi_message *msg)
1187{
1188	struct driver_data *drv_data = spi_controller_get_devdata(master);
 
 
 
 
 
 
 
 
 
 
1189
1190	/* Initial message state*/
1191	msg->state = START_STATE;
1192	drv_data->cur_transfer = list_entry(msg->transfers.next,
1193						struct spi_transfer,
1194						transfer_list);
 
 
 
 
1195
1196	/* Mark as busy and launch transfers */
1197	tasklet_schedule(&drv_data->pump_transfers);
1198	return 0;
 
 
 
 
1199}
1200
1201static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
1202{
1203	struct driver_data *drv_data = spi_controller_get_devdata(master);
1204
1205	/* Disable the SSP now */
1206	pxa2xx_spi_write(drv_data, SSCR0,
1207			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1208
1209	return 0;
1210}
1211
1212static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1213		    struct pxa2xx_spi_chip *chip_info)
1214{
1215	struct driver_data *drv_data =
1216		spi_controller_get_devdata(spi->controller);
1217	struct gpio_desc *gpiod;
1218	int err = 0;
1219
1220	if (chip == NULL)
1221		return 0;
1222
1223	if (drv_data->cs_gpiods) {
1224		gpiod = drv_data->cs_gpiods[spi->chip_select];
1225		if (gpiod) {
1226			chip->gpiod_cs = gpiod;
1227			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1228			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1229		}
1230
1231		return 0;
1232	}
1233
1234	if (chip_info == NULL)
1235		return 0;
1236
1237	/* NOTE: setup() can be called multiple times, possibly with
1238	 * different chip_info, release previously requested GPIO
 
1239	 */
1240	if (chip->gpiod_cs) {
1241		gpiod_put(chip->gpiod_cs);
1242		chip->gpiod_cs = NULL;
1243	}
1244
1245	/* If (*cs_control) is provided, ignore GPIO chip select */
1246	if (chip_info->cs_control) {
1247		chip->cs_control = chip_info->cs_control;
1248		return 0;
1249	}
1250
1251	if (gpio_is_valid(chip_info->gpio_cs)) {
1252		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1253		if (err) {
1254			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1255				chip_info->gpio_cs);
1256			return err;
1257		}
1258
1259		gpiod = gpio_to_desc(chip_info->gpio_cs);
1260		chip->gpiod_cs = gpiod;
1261		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1262
1263		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1264	}
1265
1266	return err;
1267}
1268
1269static int setup(struct spi_device *spi)
1270{
1271	struct pxa2xx_spi_chip *chip_info;
1272	struct chip_data *chip;
1273	const struct lpss_config *config;
1274	struct driver_data *drv_data =
1275		spi_controller_get_devdata(spi->controller);
1276	uint tx_thres, tx_hi_thres, rx_thres;
1277
1278	switch (drv_data->ssp_type) {
1279	case QUARK_X1000_SSP:
1280		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1281		tx_hi_thres = 0;
1282		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1283		break;
 
 
 
 
 
1284	case CE4100_SSP:
1285		tx_thres = TX_THRESH_CE4100_DFLT;
1286		tx_hi_thres = 0;
1287		rx_thres = RX_THRESH_CE4100_DFLT;
1288		break;
1289	case LPSS_LPT_SSP:
1290	case LPSS_BYT_SSP:
1291	case LPSS_BSW_SSP:
1292	case LPSS_SPT_SSP:
1293	case LPSS_BXT_SSP:
1294	case LPSS_CNL_SSP:
1295		config = lpss_get_config(drv_data);
1296		tx_thres = config->tx_threshold_lo;
1297		tx_hi_thres = config->tx_threshold_hi;
1298		rx_thres = config->rx_threshold;
1299		break;
1300	default:
1301		tx_thres = TX_THRESH_DFLT;
1302		tx_hi_thres = 0;
1303		rx_thres = RX_THRESH_DFLT;
 
 
 
 
 
 
1304		break;
1305	}
1306
1307	/* Only alloc on first setup */
1308	chip = spi_get_ctldata(spi);
1309	if (!chip) {
1310		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1311		if (!chip)
1312			return -ENOMEM;
1313
1314		if (drv_data->ssp_type == CE4100_SSP) {
1315			if (spi->chip_select > 4) {
1316				dev_err(&spi->dev,
1317					"failed setup: cs number must not be > 4.\n");
1318				kfree(chip);
1319				return -EINVAL;
1320			}
1321
1322			chip->frm = spi->chip_select;
1323		}
1324		chip->enable_dma = drv_data->master_info->enable_dma;
1325		chip->timeout = TIMOUT_DFLT;
1326	}
1327
1328	/* protocol drivers may change the chip settings, so...
1329	 * if chip_info exists, use it */
 
 
1330	chip_info = spi->controller_data;
1331
1332	/* chip_info isn't always needed */
1333	chip->cr1 = 0;
1334	if (chip_info) {
1335		if (chip_info->timeout)
1336			chip->timeout = chip_info->timeout;
1337		if (chip_info->tx_threshold)
1338			tx_thres = chip_info->tx_threshold;
1339		if (chip_info->tx_hi_threshold)
1340			tx_hi_thres = chip_info->tx_hi_threshold;
1341		if (chip_info->rx_threshold)
1342			rx_thres = chip_info->rx_threshold;
1343		chip->dma_threshold = 0;
1344		if (chip_info->enable_loopback)
1345			chip->cr1 = SSCR1_LBM;
1346	}
1347
1348	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1349	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1350				| SSITF_TxHiThresh(tx_hi_thres);
 
 
 
 
 
 
 
 
 
 
1351
1352	/* set dma burst and threshold outside of chip_info path so that if
1353	 * chip_info goes away after setting chip->enable_dma, the
1354	 * burst and threshold can still respond to changes in bits_per_word */
 
 
 
 
 
 
 
1355	if (chip->enable_dma) {
1356		/* set up legal burst and threshold for dma */
1357		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1358						spi->bits_per_word,
1359						&chip->dma_burst_size,
1360						&chip->dma_threshold)) {
1361			dev_warn(&spi->dev,
1362				 "in setup: DMA burst size reduced to match bits_per_word\n");
1363		}
 
 
 
1364	}
1365
1366	switch (drv_data->ssp_type) {
1367	case QUARK_X1000_SSP:
1368		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1369				   & QUARK_X1000_SSCR1_RFT)
1370				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1371				   & QUARK_X1000_SSCR1_TFT);
1372		break;
1373	case CE4100_SSP:
1374		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1375			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1376		break;
1377	default:
1378		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1379			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1380		break;
1381	}
1382
1383	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1384	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1385			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1386
1387	if (spi->mode & SPI_LOOP)
1388		chip->cr1 |= SSCR1_LBM;
1389
1390	if (spi->bits_per_word <= 8) {
1391		chip->n_bytes = 1;
1392		chip->read = u8_reader;
1393		chip->write = u8_writer;
1394	} else if (spi->bits_per_word <= 16) {
1395		chip->n_bytes = 2;
1396		chip->read = u16_reader;
1397		chip->write = u16_writer;
1398	} else if (spi->bits_per_word <= 32) {
1399		chip->n_bytes = 4;
1400		chip->read = u32_reader;
1401		chip->write = u32_writer;
1402	}
1403
1404	spi_set_ctldata(spi, chip);
1405
1406	if (drv_data->ssp_type == CE4100_SSP)
1407		return 0;
1408
1409	return setup_cs(spi, chip, chip_info);
1410}
1411
1412static void cleanup(struct spi_device *spi)
1413{
1414	struct chip_data *chip = spi_get_ctldata(spi);
1415	struct driver_data *drv_data =
1416		spi_controller_get_devdata(spi->controller);
1417
1418	if (!chip)
1419		return;
1420
1421	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1422	    chip->gpiod_cs)
1423		gpiod_put(chip->gpiod_cs);
1424
1425	kfree(chip);
1426}
1427
1428#ifdef CONFIG_PCI
1429#ifdef CONFIG_ACPI
1430
1431static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1432	{ "INT33C0", LPSS_LPT_SSP },
1433	{ "INT33C1", LPSS_LPT_SSP },
1434	{ "INT3430", LPSS_LPT_SSP },
1435	{ "INT3431", LPSS_LPT_SSP },
1436	{ "80860F0E", LPSS_BYT_SSP },
1437	{ "8086228E", LPSS_BSW_SSP },
1438	{ },
1439};
1440MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1441
1442static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1443{
1444	unsigned int devid;
1445	int port_id = -1;
1446
1447	if (adev && adev->pnp.unique_id &&
1448	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1449		port_id = devid;
1450	return port_id;
1451}
1452#else /* !CONFIG_ACPI */
1453static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1454{
1455	return -1;
1456}
1457#endif
1458
1459/*
1460 * PCI IDs of compound devices that integrate both host controller and private
1461 * integrated DMA engine. Please note these are not used in module
1462 * autoloading and probing in this module but matching the LPSS SSP type.
1463 */
1464static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1465	/* SPT-LP */
1466	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1467	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1468	/* SPT-H */
1469	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1470	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1471	/* KBL-H */
1472	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1473	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1474	/* BXT A-Step */
1475	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1476	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1477	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1478	/* BXT B-Step */
1479	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1480	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1481	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1482	/* GLK */
1483	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1484	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1485	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1486	/* APL */
1487	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1488	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1489	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1490	/* CNL-LP */
1491	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1492	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1493	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1494	/* CNL-H */
1495	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1496	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1497	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1498	{ },
1499};
1500
1501static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1502{
1503	struct device *dev = param;
1504
1505	if (dev != chan->device->dev->parent)
1506		return false;
1507
1508	return true;
1509}
1510
1511static struct pxa2xx_spi_master *
1512pxa2xx_spi_init_pdata(struct platform_device *pdev)
1513{
1514	struct pxa2xx_spi_master *pdata;
1515	struct acpi_device *adev;
 
1516	struct ssp_device *ssp;
1517	struct resource *res;
1518	const struct acpi_device_id *adev_id = NULL;
1519	const struct pci_device_id *pcidev_id = NULL;
1520	int type;
1521
1522	adev = ACPI_COMPANION(&pdev->dev);
1523
1524	if (dev_is_pci(pdev->dev.parent))
1525		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1526					 to_pci_dev(pdev->dev.parent));
1527	else if (adev)
1528		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1529					    &pdev->dev);
1530	else
1531		return NULL;
 
 
 
 
 
 
1532
1533	if (adev_id)
1534		type = (int)adev_id->driver_data;
1535	else if (pcidev_id)
1536		type = (int)pcidev_id->driver_data;
1537	else
1538		return NULL;
1539
1540	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1541	if (!pdata)
1542		return NULL;
1543
1544	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1545	if (!res)
1546		return NULL;
1547
1548	ssp = &pdata->ssp;
 
 
1549
1550	ssp->phys_base = res->start;
1551	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1552	if (IS_ERR(ssp->mmio_base))
1553		return NULL;
1554
1555	if (pcidev_id) {
1556		pdata->tx_param = pdev->dev.parent;
1557		pdata->rx_param = pdev->dev.parent;
 
1558		pdata->dma_filter = pxa2xx_spi_idma_filter;
1559	}
1560
1561	ssp->clk = devm_clk_get(&pdev->dev, NULL);
 
 
 
1562	ssp->irq = platform_get_irq(pdev, 0);
 
 
 
1563	ssp->type = type;
1564	ssp->pdev = pdev;
1565	ssp->port_id = pxa2xx_spi_get_port_id(adev);
 
 
 
 
 
1566
 
1567	pdata->num_chipselect = 1;
1568	pdata->enable_dma = true;
 
1569
1570	return pdata;
1571}
1572
1573#else /* !CONFIG_PCI */
1574static inline struct pxa2xx_spi_master *
1575pxa2xx_spi_init_pdata(struct platform_device *pdev)
1576{
1577	return NULL;
1578}
1579#endif
1580
1581static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
1582				      unsigned int cs)
1583{
1584	struct driver_data *drv_data = spi_controller_get_devdata(master);
1585
1586	if (has_acpi_companion(&drv_data->pdev->dev)) {
1587		switch (drv_data->ssp_type) {
1588		/*
1589		 * For Atoms the ACPI DeviceSelection used by the Windows
1590		 * driver starts from 1 instead of 0 so translate it here
1591		 * to match what Linux expects.
1592		 */
1593		case LPSS_BYT_SSP:
1594		case LPSS_BSW_SSP:
1595			return cs - 1;
1596
1597		default:
1598			break;
1599		}
1600	}
1601
1602	return cs;
1603}
1604
 
 
 
 
 
1605static int pxa2xx_spi_probe(struct platform_device *pdev)
1606{
1607	struct device *dev = &pdev->dev;
1608	struct pxa2xx_spi_master *platform_info;
1609	struct spi_controller *master;
1610	struct driver_data *drv_data;
1611	struct ssp_device *ssp;
1612	const struct lpss_config *config;
1613	int status, count;
1614	u32 tmp;
1615
1616	platform_info = dev_get_platdata(dev);
1617	if (!platform_info) {
1618		platform_info = pxa2xx_spi_init_pdata(pdev);
1619		if (!platform_info) {
1620			dev_err(&pdev->dev, "missing platform data\n");
1621			return -ENODEV;
1622		}
1623	}
1624
1625	ssp = pxa_ssp_request(pdev->id, pdev->name);
1626	if (!ssp)
1627		ssp = &platform_info->ssp;
1628
1629	if (!ssp->mmio_base) {
1630		dev_err(&pdev->dev, "failed to get ssp\n");
1631		return -ENODEV;
1632	}
1633
1634	master = spi_alloc_master(dev, sizeof(struct driver_data));
1635	if (!master) {
1636		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1637		pxa_ssp_free(ssp);
1638		return -ENOMEM;
1639	}
1640	drv_data = spi_controller_get_devdata(master);
1641	drv_data->master = master;
1642	drv_data->master_info = platform_info;
1643	drv_data->pdev = pdev;
 
 
 
1644	drv_data->ssp = ssp;
1645
1646	master->dev.of_node = pdev->dev.of_node;
1647	/* the spi->mode bits understood by this driver: */
1648	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1649
1650	master->bus_num = ssp->port_id;
1651	master->dma_alignment = DMA_ALIGNMENT;
1652	master->cleanup = cleanup;
1653	master->setup = setup;
1654	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1655	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1656	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1657	master->auto_runtime_pm = true;
1658	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
 
 
 
 
1659
1660	drv_data->ssp_type = ssp->type;
1661
1662	drv_data->ioaddr = ssp->mmio_base;
1663	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1664	if (pxa25x_ssp_comp(drv_data)) {
1665		switch (drv_data->ssp_type) {
1666		case QUARK_X1000_SSP:
1667			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1668			break;
1669		default:
1670			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1671			break;
1672		}
1673
1674		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1675		drv_data->dma_cr1 = 0;
1676		drv_data->clear_sr = SSSR_ROR;
1677		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1678	} else {
1679		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1680		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1681		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1682		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1683		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
 
1684	}
1685
1686	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1687			drv_data);
1688	if (status < 0) {
1689		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1690		goto out_error_master_alloc;
1691	}
1692
1693	/* Setup DMA if requested */
1694	if (platform_info->enable_dma) {
1695		status = pxa2xx_spi_dma_setup(drv_data);
1696		if (status) {
1697			dev_dbg(dev, "no DMA channels available, using PIO\n");
1698			platform_info->enable_dma = false;
1699		} else {
1700			master->can_dma = pxa2xx_spi_can_dma;
 
 
 
1701		}
1702	}
1703
1704	/* Enable SOC clock */
1705	clk_prepare_enable(ssp->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1706
1707	master->max_speed_hz = clk_get_rate(ssp->clk);
1708
1709	/* Load default SSP configuration */
1710	pxa2xx_spi_write(drv_data, SSCR0, 0);
1711	switch (drv_data->ssp_type) {
1712	case QUARK_X1000_SSP:
1713		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1714		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1715		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1716
1717		/* using the Motorola SPI protocol and use 8 bit frame */
1718		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1719		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1720		break;
1721	case CE4100_SSP:
1722		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1723		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1724		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1725		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1726		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1727		break;
1728	default:
1729		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1730		      SSCR1_TxTresh(TX_THRESH_DFLT);
 
 
 
 
 
 
 
 
 
 
1731		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1732		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
 
 
1733		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1734		break;
1735	}
1736
1737	if (!pxa25x_ssp_comp(drv_data))
1738		pxa2xx_spi_write(drv_data, SSTO, 0);
1739
1740	if (!is_quark_x1000_ssp(drv_data))
1741		pxa2xx_spi_write(drv_data, SSPSP, 0);
1742
1743	if (is_lpss_ssp(drv_data)) {
1744		lpss_ssp_setup(drv_data);
1745		config = lpss_get_config(drv_data);
1746		if (config->reg_capabilities >= 0) {
1747			tmp = __lpss_ssp_read_priv(drv_data,
1748						   config->reg_capabilities);
1749			tmp &= LPSS_CAPS_CS_EN_MASK;
1750			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1751			platform_info->num_chipselect = ffz(tmp);
1752		} else if (config->cs_num) {
1753			platform_info->num_chipselect = config->cs_num;
1754		}
1755	}
1756	master->num_chipselect = platform_info->num_chipselect;
 
1757
1758	count = gpiod_count(&pdev->dev, "cs");
1759	if (count > 0) {
1760		int i;
1761
1762		master->num_chipselect = max_t(int, count,
1763			master->num_chipselect);
1764
1765		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1766			master->num_chipselect, sizeof(struct gpio_desc *),
1767			GFP_KERNEL);
1768		if (!drv_data->cs_gpiods) {
1769			status = -ENOMEM;
1770			goto out_error_clock_enabled;
1771		}
1772
1773		for (i = 0; i < master->num_chipselect; i++) {
1774			struct gpio_desc *gpiod;
1775
1776			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1777			if (IS_ERR(gpiod)) {
1778				/* Means use native chip select */
1779				if (PTR_ERR(gpiod) == -ENOENT)
1780					continue;
1781
1782				status = (int)PTR_ERR(gpiod);
1783				goto out_error_clock_enabled;
1784			} else {
1785				drv_data->cs_gpiods[i] = gpiod;
1786			}
1787		}
1788	}
1789
1790	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1791		     (unsigned long)drv_data);
1792
1793	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1794	pm_runtime_use_autosuspend(&pdev->dev);
1795	pm_runtime_set_active(&pdev->dev);
1796	pm_runtime_enable(&pdev->dev);
1797
1798	/* Register with the SPI framework */
1799	platform_set_drvdata(pdev, drv_data);
1800	status = devm_spi_register_controller(&pdev->dev, master);
1801	if (status != 0) {
1802		dev_err(&pdev->dev, "problem registering spi master\n");
1803		goto out_error_clock_enabled;
1804	}
1805
1806	return status;
1807
 
 
 
1808out_error_clock_enabled:
1809	pm_runtime_put_noidle(&pdev->dev);
1810	pm_runtime_disable(&pdev->dev);
1811	clk_disable_unprepare(ssp->clk);
 
 
1812	pxa2xx_spi_dma_release(drv_data);
1813	free_irq(ssp->irq, drv_data);
1814
1815out_error_master_alloc:
1816	spi_controller_put(master);
1817	pxa_ssp_free(ssp);
1818	return status;
1819}
1820
1821static int pxa2xx_spi_remove(struct platform_device *pdev)
1822{
1823	struct driver_data *drv_data = platform_get_drvdata(pdev);
1824	struct ssp_device *ssp;
1825
1826	if (!drv_data)
1827		return 0;
1828	ssp = drv_data->ssp;
1829
1830	pm_runtime_get_sync(&pdev->dev);
1831
1832	/* Disable the SSP at the peripheral and SOC level */
1833	pxa2xx_spi_write(drv_data, SSCR0, 0);
1834	clk_disable_unprepare(ssp->clk);
1835
1836	/* Release DMA */
1837	if (drv_data->master_info->enable_dma)
1838		pxa2xx_spi_dma_release(drv_data);
1839
1840	pm_runtime_put_noidle(&pdev->dev);
1841	pm_runtime_disable(&pdev->dev);
1842
1843	/* Release IRQ */
1844	free_irq(ssp->irq, drv_data);
1845
1846	/* Release SSP */
1847	pxa_ssp_free(ssp);
1848
1849	return 0;
1850}
1851
1852static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1853{
1854	int status = 0;
1855
1856	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1857		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1858}
1859
1860#ifdef CONFIG_PM_SLEEP
1861static int pxa2xx_spi_suspend(struct device *dev)
1862{
1863	struct driver_data *drv_data = dev_get_drvdata(dev);
1864	struct ssp_device *ssp = drv_data->ssp;
1865	int status;
1866
1867	status = spi_controller_suspend(drv_data->master);
1868	if (status != 0)
1869		return status;
1870	pxa2xx_spi_write(drv_data, SSCR0, 0);
 
1871
1872	if (!pm_runtime_suspended(dev))
1873		clk_disable_unprepare(ssp->clk);
1874
1875	return 0;
1876}
1877
1878static int pxa2xx_spi_resume(struct device *dev)
1879{
1880	struct driver_data *drv_data = dev_get_drvdata(dev);
1881	struct ssp_device *ssp = drv_data->ssp;
1882	int status;
1883
1884	/* Enable the SSP clock */
1885	if (!pm_runtime_suspended(dev))
1886		clk_prepare_enable(ssp->clk);
1887
1888	/* Restore LPSS private register bits */
1889	if (is_lpss_ssp(drv_data))
1890		lpss_ssp_setup(drv_data);
1891
1892	/* Start the queue running */
1893	status = spi_controller_resume(drv_data->master);
1894	if (status != 0) {
1895		dev_err(dev, "problem starting queue (%d)\n", status);
1896		return status;
1897	}
1898
1899	return 0;
1900}
1901#endif
1902
1903#ifdef CONFIG_PM
1904static int pxa2xx_spi_runtime_suspend(struct device *dev)
1905{
1906	struct driver_data *drv_data = dev_get_drvdata(dev);
1907
1908	clk_disable_unprepare(drv_data->ssp->clk);
1909	return 0;
1910}
1911
1912static int pxa2xx_spi_runtime_resume(struct device *dev)
1913{
1914	struct driver_data *drv_data = dev_get_drvdata(dev);
1915
1916	clk_prepare_enable(drv_data->ssp->clk);
1917	return 0;
1918}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1919#endif
1920
1921static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1922	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1923	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1924			   pxa2xx_spi_runtime_resume, NULL)
1925};
 
1926
1927static struct platform_driver driver = {
1928	.driver = {
1929		.name	= "pxa2xx-spi",
1930		.pm	= &pxa2xx_spi_pm_ops,
1931		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
 
1932	},
1933	.probe = pxa2xx_spi_probe,
1934	.remove = pxa2xx_spi_remove,
1935	.shutdown = pxa2xx_spi_shutdown,
1936};
1937
1938static int __init pxa2xx_spi_init(void)
1939{
1940	return platform_driver_register(&driver);
1941}
1942subsys_initcall(pxa2xx_spi_init);
1943
1944static void __exit pxa2xx_spi_exit(void)
1945{
1946	platform_driver_unregister(&driver);
1947}
1948module_exit(pxa2xx_spi_exit);