Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   4 * Copyright (C) 2013, 2021 Intel Corporation
 
 
 
 
 
 
 
 
 
 
   5 */
   6
   7#include <linux/acpi.h>
   8#include <linux/bitops.h>
   9#include <linux/clk.h>
  10#include <linux/delay.h>
  11#include <linux/device.h>
  12#include <linux/dmaengine.h>
  13#include <linux/err.h>
  14#include <linux/errno.h>
  15#include <linux/gpio/consumer.h>
  16#include <linux/init.h>
  17#include <linux/interrupt.h>
  18#include <linux/ioport.h>
  19#include <linux/kernel.h>
  20#include <linux/module.h>
  21#include <linux/mod_devicetable.h>
  22#include <linux/of.h>
  23#include <linux/platform_device.h>
  24#include <linux/pm_runtime.h>
  25#include <linux/property.h>
  26#include <linux/slab.h>
  27
  28#include <linux/spi/pxa2xx_spi.h>
  29#include <linux/spi/spi.h>
 
 
 
 
 
 
  30
  31#include "spi-pxa2xx.h"
  32
  33MODULE_AUTHOR("Stephen Street");
  34MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  35MODULE_LICENSE("GPL");
  36MODULE_ALIAS("platform:pxa2xx-spi");
  37
  38#define TIMOUT_DFLT		1000
  39
  40/*
  41 * For testing SSCR1 changes that require SSP restart, basically
  42 * everything except the service and interrupt enables, the PXA270 developer
  43 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  44 * list, but the PXA255 developer manual says all bits without really meaning
  45 * the service and interrupt enables.
  46 */
  47#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  48				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  49				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  50				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  51				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  52				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  53
  54#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  55				| QUARK_X1000_SSCR1_EFWR	\
  56				| QUARK_X1000_SSCR1_RFT		\
  57				| QUARK_X1000_SSCR1_TFT		\
  58				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  59
  60#define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  61				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  62				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  63				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  64				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
  65				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  66
  67#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  68#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  69#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  70#define LPSS_CAPS_CS_EN_SHIFT			9
  71#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  72
  73#define LPSS_PRIV_CLOCK_GATE 0x38
  74#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
  75#define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
  76
  77struct lpss_config {
  78	/* LPSS offset from drv_data->ioaddr */
  79	unsigned offset;
  80	/* Register offsets from drv_data->lpss_base or -1 */
  81	int reg_general;
  82	int reg_ssp;
  83	int reg_cs_ctrl;
  84	int reg_capabilities;
  85	/* FIFO thresholds */
  86	u32 rx_threshold;
  87	u32 tx_threshold_lo;
  88	u32 tx_threshold_hi;
  89	/* Chip select control */
  90	unsigned cs_sel_shift;
  91	unsigned cs_sel_mask;
  92	unsigned cs_num;
  93	/* Quirks */
  94	unsigned cs_clk_stays_gated : 1;
  95};
  96
  97/* Keep these sorted with enum pxa_ssp_type */
  98static const struct lpss_config lpss_platforms[] = {
  99	{	/* LPSS_LPT_SSP */
 100		.offset = 0x800,
 101		.reg_general = 0x08,
 102		.reg_ssp = 0x0c,
 103		.reg_cs_ctrl = 0x18,
 104		.reg_capabilities = -1,
 105		.rx_threshold = 64,
 106		.tx_threshold_lo = 160,
 107		.tx_threshold_hi = 224,
 108	},
 109	{	/* LPSS_BYT_SSP */
 110		.offset = 0x400,
 111		.reg_general = 0x08,
 112		.reg_ssp = 0x0c,
 113		.reg_cs_ctrl = 0x18,
 114		.reg_capabilities = -1,
 115		.rx_threshold = 64,
 116		.tx_threshold_lo = 160,
 117		.tx_threshold_hi = 224,
 118	},
 119	{	/* LPSS_BSW_SSP */
 120		.offset = 0x400,
 121		.reg_general = 0x08,
 122		.reg_ssp = 0x0c,
 123		.reg_cs_ctrl = 0x18,
 124		.reg_capabilities = -1,
 125		.rx_threshold = 64,
 126		.tx_threshold_lo = 160,
 127		.tx_threshold_hi = 224,
 128		.cs_sel_shift = 2,
 129		.cs_sel_mask = 1 << 2,
 130		.cs_num = 2,
 131	},
 132	{	/* LPSS_SPT_SSP */
 133		.offset = 0x200,
 134		.reg_general = -1,
 135		.reg_ssp = 0x20,
 136		.reg_cs_ctrl = 0x24,
 137		.reg_capabilities = -1,
 138		.rx_threshold = 1,
 139		.tx_threshold_lo = 32,
 140		.tx_threshold_hi = 56,
 141	},
 142	{	/* LPSS_BXT_SSP */
 143		.offset = 0x200,
 144		.reg_general = -1,
 145		.reg_ssp = 0x20,
 146		.reg_cs_ctrl = 0x24,
 147		.reg_capabilities = 0xfc,
 148		.rx_threshold = 1,
 149		.tx_threshold_lo = 16,
 150		.tx_threshold_hi = 48,
 151		.cs_sel_shift = 8,
 152		.cs_sel_mask = 3 << 8,
 153		.cs_clk_stays_gated = true,
 154	},
 155	{	/* LPSS_CNL_SSP */
 156		.offset = 0x200,
 157		.reg_general = -1,
 158		.reg_ssp = 0x20,
 159		.reg_cs_ctrl = 0x24,
 160		.reg_capabilities = 0xfc,
 161		.rx_threshold = 1,
 162		.tx_threshold_lo = 32,
 163		.tx_threshold_hi = 56,
 164		.cs_sel_shift = 8,
 165		.cs_sel_mask = 3 << 8,
 166		.cs_clk_stays_gated = true,
 167	},
 168};
 169
 170static inline const struct lpss_config
 171*lpss_get_config(const struct driver_data *drv_data)
 172{
 173	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 174}
 175
 176static bool is_lpss_ssp(const struct driver_data *drv_data)
 177{
 178	switch (drv_data->ssp_type) {
 179	case LPSS_LPT_SSP:
 180	case LPSS_BYT_SSP:
 181	case LPSS_BSW_SSP:
 182	case LPSS_SPT_SSP:
 183	case LPSS_BXT_SSP:
 184	case LPSS_CNL_SSP:
 185		return true;
 186	default:
 187		return false;
 188	}
 189}
 190
 191static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 192{
 193	return drv_data->ssp_type == QUARK_X1000_SSP;
 194}
 195
 196static bool is_mmp2_ssp(const struct driver_data *drv_data)
 197{
 198	return drv_data->ssp_type == MMP2_SSP;
 199}
 200
 201static bool is_mrfld_ssp(const struct driver_data *drv_data)
 202{
 203	return drv_data->ssp_type == MRFLD_SSP;
 204}
 205
 206static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
 207{
 208	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
 209		pxa2xx_spi_write(drv_data, reg, value & mask);
 210}
 211
 212static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 213{
 214	switch (drv_data->ssp_type) {
 215	case QUARK_X1000_SSP:
 216		return QUARK_X1000_SSCR1_CHANGE_MASK;
 217	case CE4100_SSP:
 218		return CE4100_SSCR1_CHANGE_MASK;
 219	default:
 220		return SSCR1_CHANGE_MASK;
 221	}
 222}
 223
 224static u32
 225pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 226{
 227	switch (drv_data->ssp_type) {
 228	case QUARK_X1000_SSP:
 229		return RX_THRESH_QUARK_X1000_DFLT;
 230	case CE4100_SSP:
 231		return RX_THRESH_CE4100_DFLT;
 232	default:
 233		return RX_THRESH_DFLT;
 234	}
 235}
 236
 237static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 238{
 239	u32 mask;
 240
 241	switch (drv_data->ssp_type) {
 242	case QUARK_X1000_SSP:
 243		mask = QUARK_X1000_SSSR_TFL_MASK;
 244		break;
 245	case CE4100_SSP:
 246		mask = CE4100_SSSR_TFL_MASK;
 247		break;
 248	default:
 249		mask = SSSR_TFL_MASK;
 250		break;
 251	}
 252
 253	return read_SSSR_bits(drv_data, mask) == mask;
 254}
 255
 256static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 257				     u32 *sccr1_reg)
 258{
 259	u32 mask;
 260
 261	switch (drv_data->ssp_type) {
 262	case QUARK_X1000_SSP:
 263		mask = QUARK_X1000_SSCR1_RFT;
 264		break;
 265	case CE4100_SSP:
 266		mask = CE4100_SSCR1_RFT;
 267		break;
 268	default:
 269		mask = SSCR1_RFT;
 270		break;
 271	}
 272	*sccr1_reg &= ~mask;
 273}
 274
 275static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 276				   u32 *sccr1_reg, u32 threshold)
 277{
 278	switch (drv_data->ssp_type) {
 279	case QUARK_X1000_SSP:
 280		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 281		break;
 282	case CE4100_SSP:
 283		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
 284		break;
 285	default:
 286		*sccr1_reg |= SSCR1_RxTresh(threshold);
 287		break;
 288	}
 289}
 290
 291static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 292				  u32 clk_div, u8 bits)
 293{
 294	switch (drv_data->ssp_type) {
 295	case QUARK_X1000_SSP:
 296		return clk_div
 297			| QUARK_X1000_SSCR0_Motorola
 298			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
 
 299	default:
 300		return clk_div
 301			| SSCR0_Motorola
 302			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 
 303			| (bits > 16 ? SSCR0_EDSS : 0);
 304	}
 305}
 306
 307/*
 308 * Read and write LPSS SSP private registers. Caller must first check that
 309 * is_lpss_ssp() returns true before these can be called.
 310 */
 311static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 312{
 313	WARN_ON(!drv_data->lpss_base);
 314	return readl(drv_data->lpss_base + offset);
 315}
 316
 317static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 318				  unsigned offset, u32 value)
 319{
 320	WARN_ON(!drv_data->lpss_base);
 321	writel(value, drv_data->lpss_base + offset);
 322}
 323
 324/*
 325 * lpss_ssp_setup - perform LPSS SSP specific setup
 326 * @drv_data: pointer to the driver private data
 327 *
 328 * Perform LPSS SSP specific setup. This function must be called first if
 329 * one is going to use LPSS SSP private registers.
 330 */
 331static void lpss_ssp_setup(struct driver_data *drv_data)
 332{
 333	const struct lpss_config *config;
 334	u32 value;
 335
 336	config = lpss_get_config(drv_data);
 337	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
 338
 339	/* Enable software chip select control */
 340	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 341	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 342	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 343	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 344
 345	/* Enable multiblock DMA transfers */
 346	if (drv_data->controller_info->enable_dma) {
 347		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 348
 349		if (config->reg_general >= 0) {
 350			value = __lpss_ssp_read_priv(drv_data,
 351						     config->reg_general);
 352			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 353			__lpss_ssp_write_priv(drv_data,
 354					      config->reg_general, value);
 355		}
 356	}
 357}
 358
 359static void lpss_ssp_select_cs(struct spi_device *spi,
 360			       const struct lpss_config *config)
 361{
 362	struct driver_data *drv_data =
 363		spi_controller_get_devdata(spi->controller);
 364	u32 value, cs;
 365
 366	if (!config->cs_sel_mask)
 367		return;
 368
 369	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 370
 371	cs = spi->chip_select;
 372	cs <<= config->cs_sel_shift;
 373	if (cs != (value & config->cs_sel_mask)) {
 374		/*
 375		 * When switching another chip select output active the
 376		 * output must be selected first and wait 2 ssp_clk cycles
 377		 * before changing state to active. Otherwise a short
 378		 * glitch will occur on the previous chip select since
 379		 * output select is latched but state control is not.
 380		 */
 381		value &= ~config->cs_sel_mask;
 382		value |= cs;
 383		__lpss_ssp_write_priv(drv_data,
 384				      config->reg_cs_ctrl, value);
 385		ndelay(1000000000 /
 386		       (drv_data->controller->max_speed_hz / 2));
 387	}
 388}
 389
 390static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
 391{
 392	struct driver_data *drv_data =
 393		spi_controller_get_devdata(spi->controller);
 394	const struct lpss_config *config;
 395	u32 value;
 396
 397	config = lpss_get_config(drv_data);
 398
 399	if (enable)
 400		lpss_ssp_select_cs(spi, config);
 401
 402	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 403	if (enable)
 404		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 405	else
 406		value |= LPSS_CS_CONTROL_CS_HIGH;
 407	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 408	if (config->cs_clk_stays_gated) {
 409		u32 clkgate;
 410
 411		/*
 412		 * Changing CS alone when dynamic clock gating is on won't
 413		 * actually flip CS at that time. This ruins SPI transfers
 414		 * that specify delays, or have no data. Toggle the clock mode
 415		 * to force on briefly to poke the CS pin to move.
 416		 */
 417		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
 418		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
 419			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
 420
 421		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
 422		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
 423	}
 424}
 425
 426static void cs_assert(struct spi_device *spi)
 427{
 428	struct driver_data *drv_data =
 429		spi_controller_get_devdata(spi->controller);
 430
 431	if (drv_data->ssp_type == CE4100_SSP) {
 432		pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
 
 
 
 
 
 
 
 
 
 
 433		return;
 434	}
 435
 436	if (is_lpss_ssp(drv_data))
 437		lpss_ssp_cs_control(spi, true);
 438}
 439
 440static void cs_deassert(struct spi_device *spi)
 441{
 442	struct driver_data *drv_data =
 443		spi_controller_get_devdata(spi->controller);
 444	unsigned long timeout;
 445
 446	if (drv_data->ssp_type == CE4100_SSP)
 447		return;
 448
 449	/* Wait until SSP becomes idle before deasserting the CS */
 450	timeout = jiffies + msecs_to_jiffies(10);
 451	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 452	       !time_after(jiffies, timeout))
 453		cpu_relax();
 454
 455	if (is_lpss_ssp(drv_data))
 456		lpss_ssp_cs_control(spi, false);
 457}
 
 458
 459static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
 460{
 461	if (level)
 462		cs_deassert(spi);
 463	else
 464		cs_assert(spi);
 465}
 466
 467int pxa2xx_spi_flush(struct driver_data *drv_data)
 468{
 469	unsigned long limit = loops_per_jiffy << 1;
 470
 471	do {
 472		while (read_SSSR_bits(drv_data, SSSR_RNE))
 473			pxa2xx_spi_read(drv_data, SSDR);
 474	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 475	write_SSSR_CS(drv_data, SSSR_ROR);
 476
 477	return limit;
 478}
 479
 480static void pxa2xx_spi_off(struct driver_data *drv_data)
 481{
 482	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
 483	if (is_mmp2_ssp(drv_data))
 484		return;
 485
 486	pxa_ssp_disable(drv_data->ssp);
 487}
 488
 489static int null_writer(struct driver_data *drv_data)
 490{
 491	u8 n_bytes = drv_data->n_bytes;
 492
 493	if (pxa2xx_spi_txfifo_full(drv_data)
 494		|| (drv_data->tx == drv_data->tx_end))
 495		return 0;
 496
 497	pxa2xx_spi_write(drv_data, SSDR, 0);
 498	drv_data->tx += n_bytes;
 499
 500	return 1;
 501}
 502
 503static int null_reader(struct driver_data *drv_data)
 504{
 505	u8 n_bytes = drv_data->n_bytes;
 506
 507	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 508		pxa2xx_spi_read(drv_data, SSDR);
 509		drv_data->rx += n_bytes;
 510	}
 511
 512	return drv_data->rx == drv_data->rx_end;
 513}
 514
 515static int u8_writer(struct driver_data *drv_data)
 516{
 517	if (pxa2xx_spi_txfifo_full(drv_data)
 518		|| (drv_data->tx == drv_data->tx_end))
 519		return 0;
 520
 521	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 522	++drv_data->tx;
 523
 524	return 1;
 525}
 526
 527static int u8_reader(struct driver_data *drv_data)
 528{
 529	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 530		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 531		++drv_data->rx;
 532	}
 533
 534	return drv_data->rx == drv_data->rx_end;
 535}
 536
 537static int u16_writer(struct driver_data *drv_data)
 538{
 539	if (pxa2xx_spi_txfifo_full(drv_data)
 540		|| (drv_data->tx == drv_data->tx_end))
 541		return 0;
 542
 543	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 544	drv_data->tx += 2;
 545
 546	return 1;
 547}
 548
 549static int u16_reader(struct driver_data *drv_data)
 550{
 551	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 552		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 553		drv_data->rx += 2;
 554	}
 555
 556	return drv_data->rx == drv_data->rx_end;
 557}
 558
 559static int u32_writer(struct driver_data *drv_data)
 560{
 561	if (pxa2xx_spi_txfifo_full(drv_data)
 562		|| (drv_data->tx == drv_data->tx_end))
 563		return 0;
 564
 565	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 566	drv_data->tx += 4;
 567
 568	return 1;
 569}
 570
 571static int u32_reader(struct driver_data *drv_data)
 572{
 573	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
 
 574		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 575		drv_data->rx += 4;
 576	}
 577
 578	return drv_data->rx == drv_data->rx_end;
 579}
 580
 581static void reset_sccr1(struct driver_data *drv_data)
 582{
 583	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
 584	struct chip_data *chip;
 585
 586	if (drv_data->controller->cur_msg) {
 587		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
 588		threshold = chip->threshold;
 589	} else {
 590		threshold = 0;
 591	}
 
 
 
 
 592
 593	switch (drv_data->ssp_type) {
 594	case QUARK_X1000_SSP:
 595		mask |= QUARK_X1000_SSCR1_RFT;
 596		break;
 597	case CE4100_SSP:
 598		mask |= CE4100_SSCR1_RFT;
 599		break;
 600	default:
 601		mask |= SSCR1_RFT;
 602		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 603	}
 604
 605	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
 
 606}
 607
 608static void int_stop_and_reset(struct driver_data *drv_data)
 609{
 610	/* Clear and disable interrupts */
 611	write_SSSR_CS(drv_data, drv_data->clear_sr);
 612	reset_sccr1(drv_data);
 613	if (pxa25x_ssp_comp(drv_data))
 614		return;
 615
 616	pxa2xx_spi_write(drv_data, SSTO, 0);
 
 
 
 617}
 618
 619static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
 620{
 621	int_stop_and_reset(drv_data);
 
 
 
 
 622	pxa2xx_spi_flush(drv_data);
 623	pxa2xx_spi_off(drv_data);
 
 624
 625	dev_err(drv_data->ssp->dev, "%s\n", msg);
 626
 627	drv_data->controller->cur_msg->status = err;
 628	spi_finalize_current_transfer(drv_data->controller);
 629}
 630
 631static void int_transfer_complete(struct driver_data *drv_data)
 632{
 633	int_stop_and_reset(drv_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634
 635	spi_finalize_current_transfer(drv_data->controller);
 
 636}
 637
 638static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 639{
 640	u32 irq_status;
 
 641
 642	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
 643	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
 644		irq_status &= ~SSSR_TFS;
 645
 646	if (irq_status & SSSR_ROR) {
 647		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
 648		return IRQ_HANDLED;
 649	}
 650
 651	if (irq_status & SSSR_TUR) {
 652		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
 653		return IRQ_HANDLED;
 654	}
 655
 656	if (irq_status & SSSR_TINT) {
 657		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 658		if (drv_data->read(drv_data)) {
 659			int_transfer_complete(drv_data);
 660			return IRQ_HANDLED;
 661		}
 662	}
 663
 664	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
 665	do {
 666		if (drv_data->read(drv_data)) {
 667			int_transfer_complete(drv_data);
 668			return IRQ_HANDLED;
 669		}
 670	} while (drv_data->write(drv_data));
 671
 672	if (drv_data->read(drv_data)) {
 673		int_transfer_complete(drv_data);
 674		return IRQ_HANDLED;
 675	}
 676
 677	if (drv_data->tx == drv_data->tx_end) {
 678		u32 bytes_left;
 679		u32 sccr1_reg;
 680
 681		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 682		sccr1_reg &= ~SSCR1_TIE;
 683
 684		/*
 685		 * PXA25x_SSP has no timeout, set up Rx threshold for
 686		 * the remaining Rx bytes.
 687		 */
 688		if (pxa25x_ssp_comp(drv_data)) {
 689			u32 rx_thre;
 690
 691			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 692
 693			bytes_left = drv_data->rx_end - drv_data->rx;
 694			switch (drv_data->n_bytes) {
 695			case 4:
 696				bytes_left >>= 2;
 697				break;
 698			case 2:
 699				bytes_left >>= 1;
 700				break;
 701			}
 702
 703			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 704			if (rx_thre > bytes_left)
 705				rx_thre = bytes_left;
 706
 707			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 708		}
 709		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 710	}
 711
 712	/* We did something */
 713	return IRQ_HANDLED;
 714}
 715
 716static void handle_bad_msg(struct driver_data *drv_data)
 717{
 718	int_stop_and_reset(drv_data);
 719	pxa2xx_spi_off(drv_data);
 720
 721	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
 722}
 723
 724static irqreturn_t ssp_int(int irq, void *dev_id)
 725{
 726	struct driver_data *drv_data = dev_id;
 727	u32 sccr1_reg;
 728	u32 mask = drv_data->mask_sr;
 729	u32 status;
 730
 731	/*
 732	 * The IRQ might be shared with other peripherals so we must first
 733	 * check that are we RPM suspended or not. If we are we assume that
 734	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 735	 * interrupt is enabled).
 736	 */
 737	if (pm_runtime_suspended(drv_data->ssp->dev))
 738		return IRQ_NONE;
 739
 740	/*
 741	 * If the device is not yet in RPM suspended state and we get an
 742	 * interrupt that is meant for another device, check if status bits
 743	 * are all set to one. That means that the device is already
 744	 * powered off.
 745	 */
 746	status = pxa2xx_spi_read(drv_data, SSSR);
 747	if (status == ~0)
 748		return IRQ_NONE;
 749
 750	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 751
 752	/* Ignore possible writes if we don't need to write */
 753	if (!(sccr1_reg & SSCR1_TIE))
 754		mask &= ~SSSR_TFS;
 755
 756	/* Ignore RX timeout interrupt if it is disabled */
 757	if (!(sccr1_reg & SSCR1_TINTE))
 758		mask &= ~SSSR_TINT;
 759
 760	if (!(status & mask))
 761		return IRQ_NONE;
 762
 763	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
 764	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 
 
 
 
 
 
 
 
 
 
 
 
 765
 766	if (!drv_data->controller->cur_msg) {
 767		handle_bad_msg(drv_data);
 768		/* Never fail */
 769		return IRQ_HANDLED;
 770	}
 771
 772	return drv_data->transfer_handler(drv_data);
 773}
 774
 775/*
 776 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 777 * input frequency by fractions of 2^24. It also has a divider by 5.
 778 *
 779 * There are formulas to get baud rate value for given input frequency and
 780 * divider parameters, such as DDS_CLK_RATE and SCR:
 781 *
 782 * Fsys = 200MHz
 783 *
 784 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 785 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 786 *
 787 * DDS_CLK_RATE either 2^n or 2^n / 5.
 788 * SCR is in range 0 .. 255
 789 *
 790 * Divisor = 5^i * 2^j * 2 * k
 791 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 792 *       j = [0, 23]     j = 0 iff i = 1
 793 *       k = [1, 256]
 794 * Special case: j = 0, i = 1: Divisor = 2 / 5
 795 *
 796 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 797 * are:
 798 *	Case 1:		2^n, n = [0, 23]
 799 *	Case 2:		2^24 * 2 / 5 (0x666666)
 800 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 801 *
 802 * In all cases the lowest possible value is better.
 803 *
 804 * The function calculates parameters for all cases and chooses the one closest
 805 * to the asked baud rate.
 806 */
 807static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 808{
 809	unsigned long xtal = 200000000;
 810	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 811						   see (2) */
 812						/* case 3 */
 813	unsigned long fref1 = fref / 2;		/* case 1 */
 814	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 815	unsigned long scale;
 816	unsigned long q, q1, q2;
 817	long r, r1, r2;
 818	u32 mul;
 819
 820	/* Case 1 */
 821
 822	/* Set initial value for DDS_CLK_RATE */
 823	mul = (1 << 24) >> 1;
 824
 825	/* Calculate initial quot */
 826	q1 = DIV_ROUND_UP(fref1, rate);
 827
 828	/* Scale q1 if it's too big */
 829	if (q1 > 256) {
 830		/* Scale q1 to range [1, 512] */
 831		scale = fls_long(q1 - 1);
 832		if (scale > 9) {
 833			q1 >>= scale - 9;
 834			mul >>= scale - 9;
 835		}
 836
 837		/* Round the result if we have a remainder */
 838		q1 += q1 & 1;
 839	}
 840
 841	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 842	scale = __ffs(q1);
 843	q1 >>= scale;
 844	mul >>= scale;
 845
 846	/* Get the remainder */
 847	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 848
 849	/* Case 2 */
 850
 851	q2 = DIV_ROUND_UP(fref2, rate);
 852	r2 = abs(fref2 / q2 - rate);
 853
 854	/*
 855	 * Choose the best between two: less remainder we have the better. We
 856	 * can't go case 2 if q2 is greater than 256 since SCR register can
 857	 * hold only values 0 .. 255.
 858	 */
 859	if (r2 >= r1 || q2 > 256) {
 860		/* case 1 is better */
 861		r = r1;
 862		q = q1;
 863	} else {
 864		/* case 2 is better */
 865		r = r2;
 866		q = q2;
 867		mul = (1 << 24) * 2 / 5;
 868	}
 869
 870	/* Check case 3 only if the divisor is big enough */
 871	if (fref / rate >= 80) {
 872		u64 fssp;
 873		u32 m;
 874
 875		/* Calculate initial quot */
 876		q1 = DIV_ROUND_UP(fref, rate);
 877		m = (1 << 24) / q1;
 878
 879		/* Get the remainder */
 880		fssp = (u64)fref * m;
 881		do_div(fssp, 1 << 24);
 882		r1 = abs(fssp - rate);
 883
 884		/* Choose this one if it suits better */
 885		if (r1 < r) {
 886			/* case 3 is better */
 887			q = 1;
 888			mul = m;
 889		}
 890	}
 891
 892	*dds = mul;
 893	return q - 1;
 894}
 895
 896static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 897{
 898	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
 899	const struct ssp_device *ssp = drv_data->ssp;
 900
 901	rate = min_t(int, ssp_clk, rate);
 902
 903	/*
 904	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
 905	 * that the SSP transmission rate can be greater than the device rate.
 906	 */
 907	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 908		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
 909	else
 910		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
 911}
 912
 913static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 914					   int rate)
 915{
 916	struct chip_data *chip =
 917		spi_get_ctldata(drv_data->controller->cur_msg->spi);
 918	unsigned int clk_div;
 919
 920	switch (drv_data->ssp_type) {
 921	case QUARK_X1000_SSP:
 922		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 923		break;
 924	default:
 925		clk_div = ssp_get_clk_div(drv_data, rate);
 926		break;
 927	}
 928	return clk_div << 8;
 929}
 930
 931static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
 932			       struct spi_device *spi,
 933			       struct spi_transfer *xfer)
 934{
 935	struct chip_data *chip = spi_get_ctldata(spi);
 936
 937	return chip->enable_dma &&
 938	       xfer->len <= MAX_DMA_LEN &&
 939	       xfer->len >= chip->dma_burst_size;
 940}
 941
 942static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
 943				   struct spi_device *spi,
 944				   struct spi_transfer *transfer)
 945{
 946	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 947	struct spi_message *message = controller->cur_msg;
 948	struct chip_data *chip = spi_get_ctldata(spi);
 949	u32 dma_thresh = chip->dma_threshold;
 950	u32 dma_burst = chip->dma_burst_size;
 951	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 952	u32 clk_div;
 953	u8 bits;
 954	u32 speed;
 955	u32 cr0;
 956	u32 cr1;
 957	int err;
 958	int dma_mapped;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 959
 960	/* Check if we can DMA this transfer */
 961	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
 962
 963		/* Reject already-mapped transfers; PIO won't always work */
 964		if (message->is_dma_mapped
 965				|| transfer->rx_dma || transfer->tx_dma) {
 966			dev_err(&spi->dev,
 967				"Mapped transfer length of %u is greater than %d\n",
 
 968				transfer->len, MAX_DMA_LEN);
 969			return -EINVAL;
 
 
 970		}
 971
 972		/* Warn ... we force this to PIO mode */
 973		dev_warn_ratelimited(&spi->dev,
 974				     "DMA disabled for transfer length %u greater than %d\n",
 975				     transfer->len, MAX_DMA_LEN);
 
 976	}
 977
 978	/* Setup the transfer state based on the type of transfer */
 979	if (pxa2xx_spi_flush(drv_data) == 0) {
 980		dev_err(&spi->dev, "Flush failed\n");
 981		return -EIO;
 
 
 982	}
 
 983	drv_data->tx = (void *)transfer->tx_buf;
 984	drv_data->tx_end = drv_data->tx + transfer->len;
 985	drv_data->rx = transfer->rx_buf;
 986	drv_data->rx_end = drv_data->rx + transfer->len;
 
 
 
 987
 988	/* Change speed and bit per word on a per transfer */
 989	bits = transfer->bits_per_word;
 990	speed = transfer->speed_hz;
 991
 992	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
 993
 994	if (bits <= 8) {
 995		drv_data->n_bytes = 1;
 996		drv_data->read = drv_data->rx ? u8_reader : null_reader;
 997		drv_data->write = drv_data->tx ? u8_writer : null_writer;
 
 
 998	} else if (bits <= 16) {
 999		drv_data->n_bytes = 2;
1000		drv_data->read = drv_data->rx ? u16_reader : null_reader;
1001		drv_data->write = drv_data->tx ? u16_writer : null_writer;
 
 
1002	} else if (bits <= 32) {
1003		drv_data->n_bytes = 4;
1004		drv_data->read = drv_data->rx ? u32_reader : null_reader;
1005		drv_data->write = drv_data->tx ? u32_writer : null_writer;
 
 
1006	}
1007	/*
1008	 * If bits per word is changed in DMA mode, then must check
1009	 * the thresholds and burst also.
1010	 */
1011	if (chip->enable_dma) {
1012		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1013						spi,
1014						bits, &dma_burst,
1015						&dma_thresh))
1016			dev_warn_ratelimited(&spi->dev,
1017					     "DMA burst size reduced to match bits_per_word\n");
1018	}
1019
1020	dma_mapped = controller->can_dma &&
1021		     controller->can_dma(controller, spi, transfer) &&
1022		     controller->cur_msg_mapped;
1023	if (dma_mapped) {
 
 
1024
1025		/* Ensure we have the correct interrupt handler */
1026		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1027
1028		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1029		if (err)
1030			return err;
1031
1032		/* Clear status and start DMA engine */
1033		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1034		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1035
1036		pxa2xx_spi_dma_start(drv_data);
1037	} else {
1038		/* Ensure we have the correct interrupt handler	*/
1039		drv_data->transfer_handler = interrupt_transfer;
1040
1041		/* Clear status  */
1042		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1043		write_SSSR_CS(drv_data, drv_data->clear_sr);
1044	}
1045
1046	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1047	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1048	if (!pxa25x_ssp_comp(drv_data))
1049		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1050			controller->max_speed_hz
1051				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1052			dma_mapped ? "DMA" : "PIO");
1053	else
1054		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1055			controller->max_speed_hz / 2
1056				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1057			dma_mapped ? "DMA" : "PIO");
1058
1059	if (is_lpss_ssp(drv_data)) {
1060		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1061		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1062	}
1063
1064	if (is_mrfld_ssp(drv_data)) {
1065		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1066		u32 thresh = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1067
1068		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1069		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1070
1071		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1072	}
1073
1074	if (is_quark_x1000_ssp(drv_data))
1075		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1076
1077	/* Stop the SSP */
1078	if (!is_mmp2_ssp(drv_data))
1079		pxa_ssp_disable(drv_data->ssp);
1080
1081	if (!pxa25x_ssp_comp(drv_data))
1082		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1083
1084	/* First set CR1 without interrupt and service enables */
1085	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1086
1087	/* See if we need to reload the configuration registers */
1088	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1089
1090	/* Restart the SSP */
1091	pxa_ssp_enable(drv_data->ssp);
1092
1093	if (is_mmp2_ssp(drv_data)) {
1094		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1095
1096		if (tx_level) {
1097			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1098			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1099			if (tx_level > transfer->len)
1100				tx_level = transfer->len;
1101			drv_data->tx += tx_level;
1102		}
1103	}
1104
1105	if (spi_controller_is_slave(controller)) {
1106		while (drv_data->write(drv_data))
1107			;
1108		if (drv_data->gpiod_ready) {
1109			gpiod_set_value(drv_data->gpiod_ready, 1);
1110			udelay(1);
1111			gpiod_set_value(drv_data->gpiod_ready, 0);
1112		}
1113	}
1114
1115	/*
1116	 * Release the data by enabling service requests and interrupts,
1117	 * without changing any mode bits.
1118	 */
1119	pxa2xx_spi_write(drv_data, SSCR1, cr1);
 
 
 
 
 
1120
1121	return 1;
 
 
1122}
1123
1124static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1125{
1126	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1127
1128	int_error_stop(drv_data, "transfer aborted", -EINTR);
 
 
1129
1130	return 0;
1131}
1132
1133static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1134				 struct spi_message *msg)
1135{
1136	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1137
1138	int_stop_and_reset(drv_data);
1139
1140	/* Disable the SSP */
1141	pxa2xx_spi_off(drv_data);
1142
1143	/*
1144	 * Stop the DMA if running. Note DMA callback handler may have unset
1145	 * the dma_running already, which is fine as stopping is not needed
1146	 * then but we shouldn't rely this flag for anything else than
1147	 * stopping. For instance to differentiate between PIO and DMA
1148	 * transfers.
1149	 */
1150	if (atomic_read(&drv_data->dma_running))
1151		pxa2xx_spi_dma_stop(drv_data);
1152}
1153
1154static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1155{
1156	struct driver_data *drv_data = spi_controller_get_devdata(controller);
 
 
1157
1158	/* Disable the SSP now */
1159	pxa2xx_spi_off(drv_data);
 
 
 
 
 
1160
1161	return 0;
 
 
 
 
 
 
 
1162}
1163
1164static int setup(struct spi_device *spi)
1165{
1166	struct pxa2xx_spi_chip *chip_info;
1167	struct chip_data *chip;
1168	const struct lpss_config *config;
1169	struct driver_data *drv_data =
1170		spi_controller_get_devdata(spi->controller);
1171	uint tx_thres, tx_hi_thres, rx_thres;
1172
1173	switch (drv_data->ssp_type) {
1174	case QUARK_X1000_SSP:
1175		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1176		tx_hi_thres = 0;
1177		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1178		break;
1179	case MRFLD_SSP:
1180		tx_thres = TX_THRESH_MRFLD_DFLT;
1181		tx_hi_thres = 0;
1182		rx_thres = RX_THRESH_MRFLD_DFLT;
1183		break;
1184	case CE4100_SSP:
1185		tx_thres = TX_THRESH_CE4100_DFLT;
1186		tx_hi_thres = 0;
1187		rx_thres = RX_THRESH_CE4100_DFLT;
1188		break;
1189	case LPSS_LPT_SSP:
1190	case LPSS_BYT_SSP:
1191	case LPSS_BSW_SSP:
1192	case LPSS_SPT_SSP:
1193	case LPSS_BXT_SSP:
1194	case LPSS_CNL_SSP:
1195		config = lpss_get_config(drv_data);
1196		tx_thres = config->tx_threshold_lo;
1197		tx_hi_thres = config->tx_threshold_hi;
1198		rx_thres = config->rx_threshold;
1199		break;
1200	default:
 
1201		tx_hi_thres = 0;
1202		if (spi_controller_is_slave(drv_data->controller)) {
1203			tx_thres = 1;
1204			rx_thres = 2;
1205		} else {
1206			tx_thres = TX_THRESH_DFLT;
1207			rx_thres = RX_THRESH_DFLT;
1208		}
1209		break;
1210	}
1211
1212	/* Only allocate on the first setup */
1213	chip = spi_get_ctldata(spi);
1214	if (!chip) {
1215		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1216		if (!chip)
1217			return -ENOMEM;
1218
1219		if (drv_data->ssp_type == CE4100_SSP) {
1220			if (spi->chip_select > 4) {
1221				dev_err(&spi->dev,
1222					"failed setup: cs number must not be > 4.\n");
1223				kfree(chip);
1224				return -EINVAL;
1225			}
1226		}
1227		chip->enable_dma = drv_data->controller_info->enable_dma;
 
 
 
1228		chip->timeout = TIMOUT_DFLT;
1229	}
1230
1231	/*
1232	 * Protocol drivers may change the chip settings, so...
1233	 * if chip_info exists, use it.
1234	 */
1235	chip_info = spi->controller_data;
1236
1237	/* chip_info isn't always needed */
 
1238	if (chip_info) {
1239		if (chip_info->timeout)
1240			chip->timeout = chip_info->timeout;
1241		if (chip_info->tx_threshold)
1242			tx_thres = chip_info->tx_threshold;
1243		if (chip_info->tx_hi_threshold)
1244			tx_hi_thres = chip_info->tx_hi_threshold;
1245		if (chip_info->rx_threshold)
1246			rx_thres = chip_info->rx_threshold;
 
1247		chip->dma_threshold = 0;
 
 
 
 
 
 
 
 
 
1248	}
1249
1250	chip->cr1 = 0;
1251	if (spi_controller_is_slave(drv_data->controller)) {
1252		chip->cr1 |= SSCR1_SCFR;
1253		chip->cr1 |= SSCR1_SCLKDIR;
1254		chip->cr1 |= SSCR1_SFRMDIR;
1255		chip->cr1 |= SSCR1_SPH;
1256	}
1257
1258	if (is_lpss_ssp(drv_data)) {
1259		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1260		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1261					  SSITF_TxHiThresh(tx_hi_thres);
1262	}
1263
1264	if (is_mrfld_ssp(drv_data)) {
1265		chip->lpss_rx_threshold = rx_thres;
1266		chip->lpss_tx_threshold = tx_thres;
1267	}
1268
1269	/*
1270	 * Set DMA burst and threshold outside of chip_info path so that if
1271	 * chip_info goes away after setting chip->enable_dma, the burst and
1272	 * threshold can still respond to changes in bits_per_word.
1273	 */
1274	if (chip->enable_dma) {
1275		/* Set up legal burst and threshold for DMA */
1276		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1277						spi->bits_per_word,
1278						&chip->dma_burst_size,
1279						&chip->dma_threshold)) {
1280			dev_warn(&spi->dev,
1281				 "in setup: DMA burst size reduced to match bits_per_word\n");
1282		}
1283		dev_dbg(&spi->dev,
1284			"in setup: DMA burst size set to %u\n",
1285			chip->dma_burst_size);
1286	}
1287
1288	switch (drv_data->ssp_type) {
1289	case QUARK_X1000_SSP:
1290		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1291				   & QUARK_X1000_SSCR1_RFT)
1292				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1293				   & QUARK_X1000_SSCR1_TFT);
1294		break;
1295	case CE4100_SSP:
1296		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1297			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1298		break;
1299	default:
1300		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1301			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1302		break;
1303	}
1304
1305	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1306	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1307		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1308
1309	if (spi->mode & SPI_LOOP)
1310		chip->cr1 |= SSCR1_LBM;
1311
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1312	spi_set_ctldata(spi, chip);
1313
1314	return 0;
 
 
 
1315}
1316
1317static void cleanup(struct spi_device *spi)
1318{
1319	struct chip_data *chip = spi_get_ctldata(spi);
 
 
 
 
 
 
 
1320
1321	kfree(chip);
1322}
1323
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1324static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1325{
1326	return param == chan->device->dev;
 
 
 
 
 
1327}
1328
1329static struct pxa2xx_spi_controller *
1330pxa2xx_spi_init_pdata(struct platform_device *pdev)
1331{
1332	struct pxa2xx_spi_controller *pdata;
1333	struct device *dev = &pdev->dev;
1334	struct device *parent = dev->parent;
1335	struct ssp_device *ssp;
1336	struct resource *res;
1337	enum pxa_ssp_type type = SSP_UNDEFINED;
1338	const void *match;
1339	bool is_lpss_priv;
1340	int status;
1341	u64 uid;
1342
1343	is_lpss_priv = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpss_priv");
1344
1345	match = device_get_match_data(dev);
1346	if (match)
1347		type = (enum pxa_ssp_type)match;
1348	else if (is_lpss_priv) {
1349		u32 value;
1350
1351		status = device_property_read_u32(dev, "intel,spi-pxa2xx-type", &value);
1352		if (status)
1353			return ERR_PTR(status);
1354
1355		type = (enum pxa_ssp_type)value;
1356	}
1357
1358	/* Validate the SSP type correctness */
1359	if (!(type > SSP_UNDEFINED && type < SSP_MAX))
1360		return ERR_PTR(-EINVAL);
 
 
 
1361
1362	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1363	if (!pdata)
1364		return ERR_PTR(-ENOMEM);
1365
1366	ssp = &pdata->ssp;
 
 
1367
1368	ssp->mmio_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1369	if (IS_ERR(ssp->mmio_base))
1370		return ERR_CAST(ssp->mmio_base);
1371
1372	ssp->phys_base = res->start;
 
 
 
1373
1374	/* Platforms with iDMA 64-bit */
1375	if (is_lpss_priv) {
1376		pdata->tx_param = parent;
1377		pdata->rx_param = parent;
1378		pdata->dma_filter = pxa2xx_spi_idma_filter;
1379	}
1380
1381	ssp->clk = devm_clk_get(dev, NULL);
1382	if (IS_ERR(ssp->clk))
1383		return ERR_CAST(ssp->clk);
1384
1385	ssp->irq = platform_get_irq(pdev, 0);
1386	if (ssp->irq < 0)
1387		return ERR_PTR(ssp->irq);
1388
1389	ssp->type = type;
1390	ssp->dev = dev;
1391
1392	status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid);
1393	if (status)
1394		ssp->port_id = -1;
1395	else
1396		ssp->port_id = uid;
1397
1398	pdata->is_slave = device_property_read_bool(dev, "spi-slave");
1399	pdata->num_chipselect = 1;
1400	pdata->enable_dma = true;
1401	pdata->dma_burst_size = 1;
1402
1403	return pdata;
1404}
1405
1406static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1407				      unsigned int cs)
 
 
 
 
 
 
 
1408{
1409	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1410
1411	if (has_acpi_companion(drv_data->ssp->dev)) {
1412		switch (drv_data->ssp_type) {
1413		/*
1414		 * For Atoms the ACPI DeviceSelection used by the Windows
1415		 * driver starts from 1 instead of 0 so translate it here
1416		 * to match what Linux expects.
1417		 */
1418		case LPSS_BYT_SSP:
1419		case LPSS_BSW_SSP:
1420			return cs - 1;
1421
1422		default:
1423			break;
1424		}
1425	}
1426
1427	return cs;
1428}
1429
1430static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1431{
1432	return MAX_DMA_LEN;
1433}
1434
1435static int pxa2xx_spi_probe(struct platform_device *pdev)
1436{
1437	struct device *dev = &pdev->dev;
1438	struct pxa2xx_spi_controller *platform_info;
1439	struct spi_controller *controller;
1440	struct driver_data *drv_data;
1441	struct ssp_device *ssp;
1442	const struct lpss_config *config;
1443	int status;
1444	u32 tmp;
1445
1446	platform_info = dev_get_platdata(dev);
1447	if (!platform_info) {
1448		platform_info = pxa2xx_spi_init_pdata(pdev);
1449		if (IS_ERR(platform_info)) {
1450			dev_err(&pdev->dev, "missing platform data\n");
1451			return PTR_ERR(platform_info);
1452		}
1453	}
1454
1455	ssp = pxa_ssp_request(pdev->id, pdev->name);
1456	if (!ssp)
1457		ssp = &platform_info->ssp;
1458
1459	if (!ssp->mmio_base) {
1460		dev_err(&pdev->dev, "failed to get SSP\n");
1461		return -ENODEV;
1462	}
1463
1464	if (platform_info->is_slave)
1465		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1466	else
1467		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1468
1469	if (!controller) {
1470		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1471		status = -ENOMEM;
1472		goto out_error_controller_alloc;
1473	}
1474	drv_data = spi_controller_get_devdata(controller);
1475	drv_data->controller = controller;
1476	drv_data->controller_info = platform_info;
1477	drv_data->ssp = ssp;
1478
1479	device_set_node(&controller->dev, dev_fwnode(dev));
1480
1481	/* The spi->mode bits understood by this driver: */
1482	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1483
1484	controller->bus_num = ssp->port_id;
1485	controller->dma_alignment = DMA_ALIGNMENT;
1486	controller->cleanup = cleanup;
1487	controller->setup = setup;
1488	controller->set_cs = pxa2xx_spi_set_cs;
1489	controller->transfer_one = pxa2xx_spi_transfer_one;
1490	controller->slave_abort = pxa2xx_spi_slave_abort;
1491	controller->handle_err = pxa2xx_spi_handle_err;
1492	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1493	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1494	controller->auto_runtime_pm = true;
1495	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1496
1497	drv_data->ssp_type = ssp->type;
1498
 
 
1499	if (pxa25x_ssp_comp(drv_data)) {
1500		switch (drv_data->ssp_type) {
1501		case QUARK_X1000_SSP:
1502			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1503			break;
1504		default:
1505			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1506			break;
1507		}
1508
1509		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1510		drv_data->dma_cr1 = 0;
1511		drv_data->clear_sr = SSSR_ROR;
1512		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1513	} else {
1514		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1515		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1516		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1517		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1518		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1519						| SSSR_ROR | SSSR_TUR;
1520	}
1521
1522	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1523			drv_data);
1524	if (status < 0) {
1525		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1526		goto out_error_controller_alloc;
1527	}
1528
1529	/* Setup DMA if requested */
1530	if (platform_info->enable_dma) {
1531		status = pxa2xx_spi_dma_setup(drv_data);
1532		if (status) {
1533			dev_warn(dev, "no DMA channels available, using PIO\n");
1534			platform_info->enable_dma = false;
1535		} else {
1536			controller->can_dma = pxa2xx_spi_can_dma;
1537			controller->max_dma_len = MAX_DMA_LEN;
1538			controller->max_transfer_size =
1539				pxa2xx_spi_max_dma_transfer_size;
1540		}
1541	}
1542
1543	/* Enable SOC clock */
1544	status = clk_prepare_enable(ssp->clk);
1545	if (status)
1546		goto out_error_dma_irq_alloc;
1547
1548	controller->max_speed_hz = clk_get_rate(ssp->clk);
1549	/*
1550	 * Set minimum speed for all other platforms than Intel Quark which is
1551	 * able do under 1 Hz transfers.
1552	 */
1553	if (!pxa25x_ssp_comp(drv_data))
1554		controller->min_speed_hz =
1555			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1556	else if (!is_quark_x1000_ssp(drv_data))
1557		controller->min_speed_hz =
1558			DIV_ROUND_UP(controller->max_speed_hz, 512);
1559
1560	pxa_ssp_disable(ssp);
1561
1562	/* Load default SSP configuration */
 
1563	switch (drv_data->ssp_type) {
1564	case QUARK_X1000_SSP:
1565		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1566		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1567		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1568
1569		/* Using the Motorola SPI protocol and use 8 bit frame */
1570		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1571		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1572		break;
1573	case CE4100_SSP:
1574		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1575		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1576		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1577		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1578		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1579		break;
1580	default:
1581
1582		if (spi_controller_is_slave(controller)) {
1583			tmp = SSCR1_SCFR |
1584			      SSCR1_SCLKDIR |
1585			      SSCR1_SFRMDIR |
1586			      SSCR1_RxTresh(2) |
1587			      SSCR1_TxTresh(1) |
1588			      SSCR1_SPH;
1589		} else {
1590			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1591			      SSCR1_TxTresh(TX_THRESH_DFLT);
1592		}
1593		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1594		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1595		if (!spi_controller_is_slave(controller))
1596			tmp |= SSCR0_SCR(2);
1597		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1598		break;
1599	}
1600
1601	if (!pxa25x_ssp_comp(drv_data))
1602		pxa2xx_spi_write(drv_data, SSTO, 0);
1603
1604	if (!is_quark_x1000_ssp(drv_data))
1605		pxa2xx_spi_write(drv_data, SSPSP, 0);
1606
1607	if (is_lpss_ssp(drv_data)) {
1608		lpss_ssp_setup(drv_data);
1609		config = lpss_get_config(drv_data);
1610		if (config->reg_capabilities >= 0) {
1611			tmp = __lpss_ssp_read_priv(drv_data,
1612						   config->reg_capabilities);
1613			tmp &= LPSS_CAPS_CS_EN_MASK;
1614			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1615			platform_info->num_chipselect = ffz(tmp);
1616		} else if (config->cs_num) {
1617			platform_info->num_chipselect = config->cs_num;
1618		}
1619	}
1620	controller->num_chipselect = platform_info->num_chipselect;
1621	controller->use_gpio_descriptors = true;
1622
1623	if (platform_info->is_slave) {
1624		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1625						"ready", GPIOD_OUT_LOW);
1626		if (IS_ERR(drv_data->gpiod_ready)) {
1627			status = PTR_ERR(drv_data->gpiod_ready);
1628			goto out_error_clock_enabled;
1629		}
1630	}
1631
1632	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1633	pm_runtime_use_autosuspend(&pdev->dev);
1634	pm_runtime_set_active(&pdev->dev);
1635	pm_runtime_enable(&pdev->dev);
1636
1637	/* Register with the SPI framework */
1638	platform_set_drvdata(pdev, drv_data);
1639	status = spi_register_controller(controller);
1640	if (status) {
1641		dev_err(&pdev->dev, "problem registering SPI controller\n");
1642		goto out_error_pm_runtime_enabled;
1643	}
1644
1645	return status;
1646
1647out_error_pm_runtime_enabled:
1648	pm_runtime_disable(&pdev->dev);
1649
1650out_error_clock_enabled:
1651	clk_disable_unprepare(ssp->clk);
1652
1653out_error_dma_irq_alloc:
1654	pxa2xx_spi_dma_release(drv_data);
1655	free_irq(ssp->irq, drv_data);
1656
1657out_error_controller_alloc:
 
1658	pxa_ssp_free(ssp);
1659	return status;
1660}
1661
1662static int pxa2xx_spi_remove(struct platform_device *pdev)
1663{
1664	struct driver_data *drv_data = platform_get_drvdata(pdev);
1665	struct ssp_device *ssp = drv_data->ssp;
1666
1667	pm_runtime_get_sync(&pdev->dev);
 
 
1668
1669	spi_unregister_controller(drv_data->controller);
1670
1671	/* Disable the SSP at the peripheral and SOC level */
1672	pxa_ssp_disable(ssp);
1673	clk_disable_unprepare(ssp->clk);
1674
1675	/* Release DMA */
1676	if (drv_data->controller_info->enable_dma)
1677		pxa2xx_spi_dma_release(drv_data);
1678
1679	pm_runtime_put_noidle(&pdev->dev);
1680	pm_runtime_disable(&pdev->dev);
1681
1682	/* Release IRQ */
1683	free_irq(ssp->irq, drv_data);
1684
1685	/* Release SSP */
1686	pxa_ssp_free(ssp);
1687
1688	return 0;
1689}
1690
 
 
 
 
 
 
 
 
 
1691static int pxa2xx_spi_suspend(struct device *dev)
1692{
1693	struct driver_data *drv_data = dev_get_drvdata(dev);
1694	struct ssp_device *ssp = drv_data->ssp;
1695	int status;
1696
1697	status = spi_controller_suspend(drv_data->controller);
1698	if (status)
1699		return status;
1700
1701	pxa_ssp_disable(ssp);
1702
1703	if (!pm_runtime_suspended(dev))
1704		clk_disable_unprepare(ssp->clk);
1705
1706	return 0;
1707}
1708
1709static int pxa2xx_spi_resume(struct device *dev)
1710{
1711	struct driver_data *drv_data = dev_get_drvdata(dev);
1712	struct ssp_device *ssp = drv_data->ssp;
1713	int status;
1714
1715	/* Enable the SSP clock */
1716	if (!pm_runtime_suspended(dev)) {
1717		status = clk_prepare_enable(ssp->clk);
1718		if (status)
1719			return status;
1720	}
 
1721
1722	/* Start the queue running */
1723	return spi_controller_resume(drv_data->controller);
 
 
 
 
 
 
1724}
 
1725
 
1726static int pxa2xx_spi_runtime_suspend(struct device *dev)
1727{
1728	struct driver_data *drv_data = dev_get_drvdata(dev);
1729
1730	clk_disable_unprepare(drv_data->ssp->clk);
1731	return 0;
1732}
1733
1734static int pxa2xx_spi_runtime_resume(struct device *dev)
1735{
1736	struct driver_data *drv_data = dev_get_drvdata(dev);
1737
1738	return clk_prepare_enable(drv_data->ssp->clk);
 
1739}
1740
1741static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1742	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1743	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
1744};
1745
1746#ifdef CONFIG_ACPI
1747static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1748	{ "80860F0E", LPSS_BYT_SSP },
1749	{ "8086228E", LPSS_BSW_SSP },
1750	{ "INT33C0", LPSS_LPT_SSP },
1751	{ "INT33C1", LPSS_LPT_SSP },
1752	{ "INT3430", LPSS_LPT_SSP },
1753	{ "INT3431", LPSS_LPT_SSP },
1754	{}
1755};
1756MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1757#endif
1758
1759static const struct of_device_id pxa2xx_spi_of_match[] = {
1760	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1761	{}
 
1762};
1763MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1764
1765static struct platform_driver driver = {
1766	.driver = {
1767		.name	= "pxa2xx-spi",
1768		.pm	= pm_ptr(&pxa2xx_spi_pm_ops),
1769		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1770		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1771	},
1772	.probe = pxa2xx_spi_probe,
1773	.remove = pxa2xx_spi_remove,
 
1774};
1775
1776static int __init pxa2xx_spi_init(void)
1777{
1778	return platform_driver_register(&driver);
1779}
1780subsys_initcall(pxa2xx_spi_init);
1781
1782static void __exit pxa2xx_spi_exit(void)
1783{
1784	platform_driver_unregister(&driver);
1785}
1786module_exit(pxa2xx_spi_exit);
1787
1788MODULE_SOFTDEP("pre: dw_dmac");
v4.6
 
   1/*
   2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
   3 * Copyright (C) 2013, Intel Corporation
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License as published by
   7 * the Free Software Foundation; either version 2 of the License, or
   8 * (at your option) any later version.
   9 *
  10 * This program is distributed in the hope that it will be useful,
  11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  13 * GNU General Public License for more details.
  14 */
  15
 
  16#include <linux/bitops.h>
  17#include <linux/init.h>
  18#include <linux/module.h>
  19#include <linux/device.h>
  20#include <linux/ioport.h>
 
  21#include <linux/errno.h>
  22#include <linux/err.h>
 
  23#include <linux/interrupt.h>
 
  24#include <linux/kernel.h>
  25#include <linux/pci.h>
 
 
  26#include <linux/platform_device.h>
 
 
 
 
  27#include <linux/spi/pxa2xx_spi.h>
  28#include <linux/spi/spi.h>
  29#include <linux/delay.h>
  30#include <linux/gpio.h>
  31#include <linux/slab.h>
  32#include <linux/clk.h>
  33#include <linux/pm_runtime.h>
  34#include <linux/acpi.h>
  35
  36#include "spi-pxa2xx.h"
  37
  38MODULE_AUTHOR("Stephen Street");
  39MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
  40MODULE_LICENSE("GPL");
  41MODULE_ALIAS("platform:pxa2xx-spi");
  42
  43#define TIMOUT_DFLT		1000
  44
  45/*
  46 * for testing SSCR1 changes that require SSP restart, basically
  47 * everything except the service and interrupt enables, the pxa270 developer
  48 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
  49 * list, but the PXA255 dev man says all bits without really meaning the
  50 * service and interrupt enables
  51 */
  52#define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
  53				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
  54				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
  55				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
  56				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
  57				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  58
  59#define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
  60				| QUARK_X1000_SSCR1_EFWR	\
  61				| QUARK_X1000_SSCR1_RFT		\
  62				| QUARK_X1000_SSCR1_TFT		\
  63				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
  64
 
 
 
 
 
 
 
  65#define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
  66#define LPSS_CS_CONTROL_SW_MODE			BIT(0)
  67#define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
  68#define LPSS_CAPS_CS_EN_SHIFT			9
  69#define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
  70
 
 
 
 
  71struct lpss_config {
  72	/* LPSS offset from drv_data->ioaddr */
  73	unsigned offset;
  74	/* Register offsets from drv_data->lpss_base or -1 */
  75	int reg_general;
  76	int reg_ssp;
  77	int reg_cs_ctrl;
  78	int reg_capabilities;
  79	/* FIFO thresholds */
  80	u32 rx_threshold;
  81	u32 tx_threshold_lo;
  82	u32 tx_threshold_hi;
  83	/* Chip select control */
  84	unsigned cs_sel_shift;
  85	unsigned cs_sel_mask;
  86	unsigned cs_num;
 
 
  87};
  88
  89/* Keep these sorted with enum pxa_ssp_type */
  90static const struct lpss_config lpss_platforms[] = {
  91	{	/* LPSS_LPT_SSP */
  92		.offset = 0x800,
  93		.reg_general = 0x08,
  94		.reg_ssp = 0x0c,
  95		.reg_cs_ctrl = 0x18,
  96		.reg_capabilities = -1,
  97		.rx_threshold = 64,
  98		.tx_threshold_lo = 160,
  99		.tx_threshold_hi = 224,
 100	},
 101	{	/* LPSS_BYT_SSP */
 102		.offset = 0x400,
 103		.reg_general = 0x08,
 104		.reg_ssp = 0x0c,
 105		.reg_cs_ctrl = 0x18,
 106		.reg_capabilities = -1,
 107		.rx_threshold = 64,
 108		.tx_threshold_lo = 160,
 109		.tx_threshold_hi = 224,
 110	},
 111	{	/* LPSS_BSW_SSP */
 112		.offset = 0x400,
 113		.reg_general = 0x08,
 114		.reg_ssp = 0x0c,
 115		.reg_cs_ctrl = 0x18,
 116		.reg_capabilities = -1,
 117		.rx_threshold = 64,
 118		.tx_threshold_lo = 160,
 119		.tx_threshold_hi = 224,
 120		.cs_sel_shift = 2,
 121		.cs_sel_mask = 1 << 2,
 122		.cs_num = 2,
 123	},
 124	{	/* LPSS_SPT_SSP */
 125		.offset = 0x200,
 126		.reg_general = -1,
 127		.reg_ssp = 0x20,
 128		.reg_cs_ctrl = 0x24,
 129		.reg_capabilities = -1,
 130		.rx_threshold = 1,
 131		.tx_threshold_lo = 32,
 132		.tx_threshold_hi = 56,
 133	},
 134	{	/* LPSS_BXT_SSP */
 135		.offset = 0x200,
 136		.reg_general = -1,
 137		.reg_ssp = 0x20,
 138		.reg_cs_ctrl = 0x24,
 139		.reg_capabilities = 0xfc,
 140		.rx_threshold = 1,
 141		.tx_threshold_lo = 16,
 142		.tx_threshold_hi = 48,
 143		.cs_sel_shift = 8,
 144		.cs_sel_mask = 3 << 8,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 145	},
 146};
 147
 148static inline const struct lpss_config
 149*lpss_get_config(const struct driver_data *drv_data)
 150{
 151	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
 152}
 153
 154static bool is_lpss_ssp(const struct driver_data *drv_data)
 155{
 156	switch (drv_data->ssp_type) {
 157	case LPSS_LPT_SSP:
 158	case LPSS_BYT_SSP:
 159	case LPSS_BSW_SSP:
 160	case LPSS_SPT_SSP:
 161	case LPSS_BXT_SSP:
 
 162		return true;
 163	default:
 164		return false;
 165	}
 166}
 167
 168static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
 169{
 170	return drv_data->ssp_type == QUARK_X1000_SSP;
 171}
 172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 173static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
 174{
 175	switch (drv_data->ssp_type) {
 176	case QUARK_X1000_SSP:
 177		return QUARK_X1000_SSCR1_CHANGE_MASK;
 
 
 178	default:
 179		return SSCR1_CHANGE_MASK;
 180	}
 181}
 182
 183static u32
 184pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
 185{
 186	switch (drv_data->ssp_type) {
 187	case QUARK_X1000_SSP:
 188		return RX_THRESH_QUARK_X1000_DFLT;
 
 
 189	default:
 190		return RX_THRESH_DFLT;
 191	}
 192}
 193
 194static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
 195{
 196	u32 mask;
 197
 198	switch (drv_data->ssp_type) {
 199	case QUARK_X1000_SSP:
 200		mask = QUARK_X1000_SSSR_TFL_MASK;
 201		break;
 
 
 
 202	default:
 203		mask = SSSR_TFL_MASK;
 204		break;
 205	}
 206
 207	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
 208}
 209
 210static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
 211				     u32 *sccr1_reg)
 212{
 213	u32 mask;
 214
 215	switch (drv_data->ssp_type) {
 216	case QUARK_X1000_SSP:
 217		mask = QUARK_X1000_SSCR1_RFT;
 218		break;
 
 
 
 219	default:
 220		mask = SSCR1_RFT;
 221		break;
 222	}
 223	*sccr1_reg &= ~mask;
 224}
 225
 226static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
 227				   u32 *sccr1_reg, u32 threshold)
 228{
 229	switch (drv_data->ssp_type) {
 230	case QUARK_X1000_SSP:
 231		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
 232		break;
 
 
 
 233	default:
 234		*sccr1_reg |= SSCR1_RxTresh(threshold);
 235		break;
 236	}
 237}
 238
 239static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
 240				  u32 clk_div, u8 bits)
 241{
 242	switch (drv_data->ssp_type) {
 243	case QUARK_X1000_SSP:
 244		return clk_div
 245			| QUARK_X1000_SSCR0_Motorola
 246			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
 247			| SSCR0_SSE;
 248	default:
 249		return clk_div
 250			| SSCR0_Motorola
 251			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
 252			| SSCR0_SSE
 253			| (bits > 16 ? SSCR0_EDSS : 0);
 254	}
 255}
 256
 257/*
 258 * Read and write LPSS SSP private registers. Caller must first check that
 259 * is_lpss_ssp() returns true before these can be called.
 260 */
 261static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
 262{
 263	WARN_ON(!drv_data->lpss_base);
 264	return readl(drv_data->lpss_base + offset);
 265}
 266
 267static void __lpss_ssp_write_priv(struct driver_data *drv_data,
 268				  unsigned offset, u32 value)
 269{
 270	WARN_ON(!drv_data->lpss_base);
 271	writel(value, drv_data->lpss_base + offset);
 272}
 273
 274/*
 275 * lpss_ssp_setup - perform LPSS SSP specific setup
 276 * @drv_data: pointer to the driver private data
 277 *
 278 * Perform LPSS SSP specific setup. This function must be called first if
 279 * one is going to use LPSS SSP private registers.
 280 */
 281static void lpss_ssp_setup(struct driver_data *drv_data)
 282{
 283	const struct lpss_config *config;
 284	u32 value;
 285
 286	config = lpss_get_config(drv_data);
 287	drv_data->lpss_base = drv_data->ioaddr + config->offset;
 288
 289	/* Enable software chip select control */
 290	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 291	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
 292	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
 293	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 294
 295	/* Enable multiblock DMA transfers */
 296	if (drv_data->master_info->enable_dma) {
 297		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
 298
 299		if (config->reg_general >= 0) {
 300			value = __lpss_ssp_read_priv(drv_data,
 301						     config->reg_general);
 302			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
 303			__lpss_ssp_write_priv(drv_data,
 304					      config->reg_general, value);
 305		}
 306	}
 307}
 308
 309static void lpss_ssp_select_cs(struct driver_data *drv_data,
 310			       const struct lpss_config *config)
 311{
 
 
 312	u32 value, cs;
 313
 314	if (!config->cs_sel_mask)
 315		return;
 316
 317	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 318
 319	cs = drv_data->cur_msg->spi->chip_select;
 320	cs <<= config->cs_sel_shift;
 321	if (cs != (value & config->cs_sel_mask)) {
 322		/*
 323		 * When switching another chip select output active the
 324		 * output must be selected first and wait 2 ssp_clk cycles
 325		 * before changing state to active. Otherwise a short
 326		 * glitch will occur on the previous chip select since
 327		 * output select is latched but state control is not.
 328		 */
 329		value &= ~config->cs_sel_mask;
 330		value |= cs;
 331		__lpss_ssp_write_priv(drv_data,
 332				      config->reg_cs_ctrl, value);
 333		ndelay(1000000000 /
 334		       (drv_data->master->max_speed_hz / 2));
 335	}
 336}
 337
 338static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
 339{
 
 
 340	const struct lpss_config *config;
 341	u32 value;
 342
 343	config = lpss_get_config(drv_data);
 344
 345	if (enable)
 346		lpss_ssp_select_cs(drv_data, config);
 347
 348	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
 349	if (enable)
 350		value &= ~LPSS_CS_CONTROL_CS_HIGH;
 351	else
 352		value |= LPSS_CS_CONTROL_CS_HIGH;
 353	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354}
 355
 356static void cs_assert(struct driver_data *drv_data)
 357{
 358	struct chip_data *chip = drv_data->cur_chip;
 
 359
 360	if (drv_data->ssp_type == CE4100_SSP) {
 361		pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
 362		return;
 363	}
 364
 365	if (chip->cs_control) {
 366		chip->cs_control(PXA2XX_CS_ASSERT);
 367		return;
 368	}
 369
 370	if (gpio_is_valid(chip->gpio_cs)) {
 371		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
 372		return;
 373	}
 374
 375	if (is_lpss_ssp(drv_data))
 376		lpss_ssp_cs_control(drv_data, true);
 377}
 378
 379static void cs_deassert(struct driver_data *drv_data)
 380{
 381	struct chip_data *chip = drv_data->cur_chip;
 
 
 382
 383	if (drv_data->ssp_type == CE4100_SSP)
 384		return;
 385
 386	if (chip->cs_control) {
 387		chip->cs_control(PXA2XX_CS_DEASSERT);
 388		return;
 389	}
 
 390
 391	if (gpio_is_valid(chip->gpio_cs)) {
 392		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
 393		return;
 394	}
 395
 396	if (is_lpss_ssp(drv_data))
 397		lpss_ssp_cs_control(drv_data, false);
 
 
 
 
 398}
 399
 400int pxa2xx_spi_flush(struct driver_data *drv_data)
 401{
 402	unsigned long limit = loops_per_jiffy << 1;
 403
 404	do {
 405		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 406			pxa2xx_spi_read(drv_data, SSDR);
 407	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
 408	write_SSSR_CS(drv_data, SSSR_ROR);
 409
 410	return limit;
 411}
 412
 
 
 
 
 
 
 
 
 
 413static int null_writer(struct driver_data *drv_data)
 414{
 415	u8 n_bytes = drv_data->n_bytes;
 416
 417	if (pxa2xx_spi_txfifo_full(drv_data)
 418		|| (drv_data->tx == drv_data->tx_end))
 419		return 0;
 420
 421	pxa2xx_spi_write(drv_data, SSDR, 0);
 422	drv_data->tx += n_bytes;
 423
 424	return 1;
 425}
 426
 427static int null_reader(struct driver_data *drv_data)
 428{
 429	u8 n_bytes = drv_data->n_bytes;
 430
 431	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 432	       && (drv_data->rx < drv_data->rx_end)) {
 433		pxa2xx_spi_read(drv_data, SSDR);
 434		drv_data->rx += n_bytes;
 435	}
 436
 437	return drv_data->rx == drv_data->rx_end;
 438}
 439
 440static int u8_writer(struct driver_data *drv_data)
 441{
 442	if (pxa2xx_spi_txfifo_full(drv_data)
 443		|| (drv_data->tx == drv_data->tx_end))
 444		return 0;
 445
 446	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
 447	++drv_data->tx;
 448
 449	return 1;
 450}
 451
 452static int u8_reader(struct driver_data *drv_data)
 453{
 454	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 455	       && (drv_data->rx < drv_data->rx_end)) {
 456		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 457		++drv_data->rx;
 458	}
 459
 460	return drv_data->rx == drv_data->rx_end;
 461}
 462
 463static int u16_writer(struct driver_data *drv_data)
 464{
 465	if (pxa2xx_spi_txfifo_full(drv_data)
 466		|| (drv_data->tx == drv_data->tx_end))
 467		return 0;
 468
 469	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
 470	drv_data->tx += 2;
 471
 472	return 1;
 473}
 474
 475static int u16_reader(struct driver_data *drv_data)
 476{
 477	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 478	       && (drv_data->rx < drv_data->rx_end)) {
 479		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 480		drv_data->rx += 2;
 481	}
 482
 483	return drv_data->rx == drv_data->rx_end;
 484}
 485
 486static int u32_writer(struct driver_data *drv_data)
 487{
 488	if (pxa2xx_spi_txfifo_full(drv_data)
 489		|| (drv_data->tx == drv_data->tx_end))
 490		return 0;
 491
 492	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
 493	drv_data->tx += 4;
 494
 495	return 1;
 496}
 497
 498static int u32_reader(struct driver_data *drv_data)
 499{
 500	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
 501	       && (drv_data->rx < drv_data->rx_end)) {
 502		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
 503		drv_data->rx += 4;
 504	}
 505
 506	return drv_data->rx == drv_data->rx_end;
 507}
 508
 509void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
 510{
 511	struct spi_message *msg = drv_data->cur_msg;
 512	struct spi_transfer *trans = drv_data->cur_transfer;
 513
 514	/* Move to next transfer */
 515	if (trans->transfer_list.next != &msg->transfers) {
 516		drv_data->cur_transfer =
 517			list_entry(trans->transfer_list.next,
 518					struct spi_transfer,
 519					transfer_list);
 520		return RUNNING_STATE;
 521	} else
 522		return DONE_STATE;
 523}
 524
 525/* caller already set message->status; dma and pio irqs are blocked */
 526static void giveback(struct driver_data *drv_data)
 527{
 528	struct spi_transfer* last_transfer;
 529	struct spi_message *msg;
 530	unsigned long timeout;
 531
 532	msg = drv_data->cur_msg;
 533	drv_data->cur_msg = NULL;
 534	drv_data->cur_transfer = NULL;
 535
 536	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
 537					transfer_list);
 538
 539	/* Delay if requested before any change in chip select */
 540	if (last_transfer->delay_usecs)
 541		udelay(last_transfer->delay_usecs);
 542
 543	/* Wait until SSP becomes idle before deasserting the CS */
 544	timeout = jiffies + msecs_to_jiffies(10);
 545	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
 546	       !time_after(jiffies, timeout))
 547		cpu_relax();
 548
 549	/* Drop chip select UNLESS cs_change is true or we are returning
 550	 * a message with an error, or next message is for another chip
 551	 */
 552	if (!last_transfer->cs_change)
 553		cs_deassert(drv_data);
 554	else {
 555		struct spi_message *next_msg;
 556
 557		/* Holding of cs was hinted, but we need to make sure
 558		 * the next message is for the same chip.  Don't waste
 559		 * time with the following tests unless this was hinted.
 560		 *
 561		 * We cannot postpone this until pump_messages, because
 562		 * after calling msg->complete (below) the driver that
 563		 * sent the current message could be unloaded, which
 564		 * could invalidate the cs_control() callback...
 565		 */
 566
 567		/* get a pointer to the next message, if any */
 568		next_msg = spi_get_next_queued_message(drv_data->master);
 569
 570		/* see if the next and current messages point
 571		 * to the same chip
 572		 */
 573		if (next_msg && next_msg->spi != msg->spi)
 574			next_msg = NULL;
 575		if (!next_msg || msg->state == ERROR_STATE)
 576			cs_deassert(drv_data);
 577	}
 578
 579	drv_data->cur_chip = NULL;
 580	spi_finalize_current_message(drv_data->master);
 581}
 582
 583static void reset_sccr1(struct driver_data *drv_data)
 584{
 585	struct chip_data *chip = drv_data->cur_chip;
 586	u32 sccr1_reg;
 
 
 
 587
 588	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
 589	sccr1_reg &= ~SSCR1_RFT;
 590	sccr1_reg |= chip->threshold;
 591	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 592}
 593
 594static void int_error_stop(struct driver_data *drv_data, const char* msg)
 595{
 596	/* Stop and reset SSP */
 597	write_SSSR_CS(drv_data, drv_data->clear_sr);
 598	reset_sccr1(drv_data);
 599	if (!pxa25x_ssp_comp(drv_data))
 600		pxa2xx_spi_write(drv_data, SSTO, 0);
 601	pxa2xx_spi_flush(drv_data);
 602	pxa2xx_spi_write(drv_data, SSCR0,
 603			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
 604
 605	dev_err(&drv_data->pdev->dev, "%s\n", msg);
 606
 607	drv_data->cur_msg->state = ERROR_STATE;
 608	tasklet_schedule(&drv_data->pump_transfers);
 609}
 610
 611static void int_transfer_complete(struct driver_data *drv_data)
 612{
 613	/* Clear and disable interrupts */
 614	write_SSSR_CS(drv_data, drv_data->clear_sr);
 615	reset_sccr1(drv_data);
 616	if (!pxa25x_ssp_comp(drv_data))
 617		pxa2xx_spi_write(drv_data, SSTO, 0);
 618
 619	/* Update total byte transferred return count actual bytes read */
 620	drv_data->cur_msg->actual_length += drv_data->len -
 621				(drv_data->rx_end - drv_data->rx);
 622
 623	/* Transfer delays and chip select release are
 624	 * handled in pump_transfers or giveback
 625	 */
 626
 627	/* Move to next transfer */
 628	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
 629
 630	/* Schedule transfer tasklet */
 631	tasklet_schedule(&drv_data->pump_transfers);
 632}
 633
 634static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
 635{
 636	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
 637		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
 638
 639	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
 
 
 640
 641	if (irq_status & SSSR_ROR) {
 642		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
 
 
 
 
 
 643		return IRQ_HANDLED;
 644	}
 645
 646	if (irq_status & SSSR_TINT) {
 647		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
 648		if (drv_data->read(drv_data)) {
 649			int_transfer_complete(drv_data);
 650			return IRQ_HANDLED;
 651		}
 652	}
 653
 654	/* Drain rx fifo, Fill tx fifo and prevent overruns */
 655	do {
 656		if (drv_data->read(drv_data)) {
 657			int_transfer_complete(drv_data);
 658			return IRQ_HANDLED;
 659		}
 660	} while (drv_data->write(drv_data));
 661
 662	if (drv_data->read(drv_data)) {
 663		int_transfer_complete(drv_data);
 664		return IRQ_HANDLED;
 665	}
 666
 667	if (drv_data->tx == drv_data->tx_end) {
 668		u32 bytes_left;
 669		u32 sccr1_reg;
 670
 671		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 672		sccr1_reg &= ~SSCR1_TIE;
 673
 674		/*
 675		 * PXA25x_SSP has no timeout, set up rx threshould for the
 676		 * remaining RX bytes.
 677		 */
 678		if (pxa25x_ssp_comp(drv_data)) {
 679			u32 rx_thre;
 680
 681			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
 682
 683			bytes_left = drv_data->rx_end - drv_data->rx;
 684			switch (drv_data->n_bytes) {
 685			case 4:
 686				bytes_left >>= 1;
 
 687			case 2:
 688				bytes_left >>= 1;
 
 689			}
 690
 691			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
 692			if (rx_thre > bytes_left)
 693				rx_thre = bytes_left;
 694
 695			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
 696		}
 697		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
 698	}
 699
 700	/* We did something */
 701	return IRQ_HANDLED;
 702}
 703
 
 
 
 
 
 
 
 
 704static irqreturn_t ssp_int(int irq, void *dev_id)
 705{
 706	struct driver_data *drv_data = dev_id;
 707	u32 sccr1_reg;
 708	u32 mask = drv_data->mask_sr;
 709	u32 status;
 710
 711	/*
 712	 * The IRQ might be shared with other peripherals so we must first
 713	 * check that are we RPM suspended or not. If we are we assume that
 714	 * the IRQ was not for us (we shouldn't be RPM suspended when the
 715	 * interrupt is enabled).
 716	 */
 717	if (pm_runtime_suspended(&drv_data->pdev->dev))
 718		return IRQ_NONE;
 719
 720	/*
 721	 * If the device is not yet in RPM suspended state and we get an
 722	 * interrupt that is meant for another device, check if status bits
 723	 * are all set to one. That means that the device is already
 724	 * powered off.
 725	 */
 726	status = pxa2xx_spi_read(drv_data, SSSR);
 727	if (status == ~0)
 728		return IRQ_NONE;
 729
 730	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
 731
 732	/* Ignore possible writes if we don't need to write */
 733	if (!(sccr1_reg & SSCR1_TIE))
 734		mask &= ~SSSR_TFS;
 735
 736	/* Ignore RX timeout interrupt if it is disabled */
 737	if (!(sccr1_reg & SSCR1_TINTE))
 738		mask &= ~SSSR_TINT;
 739
 740	if (!(status & mask))
 741		return IRQ_NONE;
 742
 743	if (!drv_data->cur_msg) {
 744
 745		pxa2xx_spi_write(drv_data, SSCR0,
 746				 pxa2xx_spi_read(drv_data, SSCR0)
 747				 & ~SSCR0_SSE);
 748		pxa2xx_spi_write(drv_data, SSCR1,
 749				 pxa2xx_spi_read(drv_data, SSCR1)
 750				 & ~drv_data->int_cr1);
 751		if (!pxa25x_ssp_comp(drv_data))
 752			pxa2xx_spi_write(drv_data, SSTO, 0);
 753		write_SSSR_CS(drv_data, drv_data->clear_sr);
 754
 755		dev_err(&drv_data->pdev->dev,
 756			"bad message state in interrupt handler\n");
 757
 
 
 758		/* Never fail */
 759		return IRQ_HANDLED;
 760	}
 761
 762	return drv_data->transfer_handler(drv_data);
 763}
 764
 765/*
 766 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
 767 * input frequency by fractions of 2^24. It also has a divider by 5.
 768 *
 769 * There are formulas to get baud rate value for given input frequency and
 770 * divider parameters, such as DDS_CLK_RATE and SCR:
 771 *
 772 * Fsys = 200MHz
 773 *
 774 * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
 775 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
 776 *
 777 * DDS_CLK_RATE either 2^n or 2^n / 5.
 778 * SCR is in range 0 .. 255
 779 *
 780 * Divisor = 5^i * 2^j * 2 * k
 781 *       i = [0, 1]      i = 1 iff j = 0 or j > 3
 782 *       j = [0, 23]     j = 0 iff i = 1
 783 *       k = [1, 256]
 784 * Special case: j = 0, i = 1: Divisor = 2 / 5
 785 *
 786 * Accordingly to the specification the recommended values for DDS_CLK_RATE
 787 * are:
 788 *	Case 1:		2^n, n = [0, 23]
 789 *	Case 2:		2^24 * 2 / 5 (0x666666)
 790 *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
 791 *
 792 * In all cases the lowest possible value is better.
 793 *
 794 * The function calculates parameters for all cases and chooses the one closest
 795 * to the asked baud rate.
 796 */
 797static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
 798{
 799	unsigned long xtal = 200000000;
 800	unsigned long fref = xtal / 2;		/* mandatory division by 2,
 801						   see (2) */
 802						/* case 3 */
 803	unsigned long fref1 = fref / 2;		/* case 1 */
 804	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
 805	unsigned long scale;
 806	unsigned long q, q1, q2;
 807	long r, r1, r2;
 808	u32 mul;
 809
 810	/* Case 1 */
 811
 812	/* Set initial value for DDS_CLK_RATE */
 813	mul = (1 << 24) >> 1;
 814
 815	/* Calculate initial quot */
 816	q1 = DIV_ROUND_UP(fref1, rate);
 817
 818	/* Scale q1 if it's too big */
 819	if (q1 > 256) {
 820		/* Scale q1 to range [1, 512] */
 821		scale = fls_long(q1 - 1);
 822		if (scale > 9) {
 823			q1 >>= scale - 9;
 824			mul >>= scale - 9;
 825		}
 826
 827		/* Round the result if we have a remainder */
 828		q1 += q1 & 1;
 829	}
 830
 831	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
 832	scale = __ffs(q1);
 833	q1 >>= scale;
 834	mul >>= scale;
 835
 836	/* Get the remainder */
 837	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
 838
 839	/* Case 2 */
 840
 841	q2 = DIV_ROUND_UP(fref2, rate);
 842	r2 = abs(fref2 / q2 - rate);
 843
 844	/*
 845	 * Choose the best between two: less remainder we have the better. We
 846	 * can't go case 2 if q2 is greater than 256 since SCR register can
 847	 * hold only values 0 .. 255.
 848	 */
 849	if (r2 >= r1 || q2 > 256) {
 850		/* case 1 is better */
 851		r = r1;
 852		q = q1;
 853	} else {
 854		/* case 2 is better */
 855		r = r2;
 856		q = q2;
 857		mul = (1 << 24) * 2 / 5;
 858	}
 859
 860	/* Check case 3 only if the divisor is big enough */
 861	if (fref / rate >= 80) {
 862		u64 fssp;
 863		u32 m;
 864
 865		/* Calculate initial quot */
 866		q1 = DIV_ROUND_UP(fref, rate);
 867		m = (1 << 24) / q1;
 868
 869		/* Get the remainder */
 870		fssp = (u64)fref * m;
 871		do_div(fssp, 1 << 24);
 872		r1 = abs(fssp - rate);
 873
 874		/* Choose this one if it suits better */
 875		if (r1 < r) {
 876			/* case 3 is better */
 877			q = 1;
 878			mul = m;
 879		}
 880	}
 881
 882	*dds = mul;
 883	return q - 1;
 884}
 885
 886static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
 887{
 888	unsigned long ssp_clk = drv_data->master->max_speed_hz;
 889	const struct ssp_device *ssp = drv_data->ssp;
 890
 891	rate = min_t(int, ssp_clk, rate);
 892
 
 
 
 
 893	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
 894		return (ssp_clk / (2 * rate) - 1) & 0xff;
 895	else
 896		return (ssp_clk / rate - 1) & 0xfff;
 897}
 898
 899static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
 900					   int rate)
 901{
 902	struct chip_data *chip = drv_data->cur_chip;
 
 903	unsigned int clk_div;
 904
 905	switch (drv_data->ssp_type) {
 906	case QUARK_X1000_SSP:
 907		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
 908		break;
 909	default:
 910		clk_div = ssp_get_clk_div(drv_data, rate);
 911		break;
 912	}
 913	return clk_div << 8;
 914}
 915
 916static void pump_transfers(unsigned long data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 917{
 918	struct driver_data *drv_data = (struct driver_data *)data;
 919	struct spi_message *message = NULL;
 920	struct spi_transfer *transfer = NULL;
 921	struct spi_transfer *previous = NULL;
 922	struct chip_data *chip = NULL;
 923	u32 clk_div = 0;
 924	u8 bits = 0;
 925	u32 speed = 0;
 
 926	u32 cr0;
 927	u32 cr1;
 928	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
 929	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
 930	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
 931
 932	/* Get current state information */
 933	message = drv_data->cur_msg;
 934	transfer = drv_data->cur_transfer;
 935	chip = drv_data->cur_chip;
 936
 937	/* Handle for abort */
 938	if (message->state == ERROR_STATE) {
 939		message->status = -EIO;
 940		giveback(drv_data);
 941		return;
 942	}
 943
 944	/* Handle end of message */
 945	if (message->state == DONE_STATE) {
 946		message->status = 0;
 947		giveback(drv_data);
 948		return;
 949	}
 950
 951	/* Delay if requested at end of transfer before CS change */
 952	if (message->state == RUNNING_STATE) {
 953		previous = list_entry(transfer->transfer_list.prev,
 954					struct spi_transfer,
 955					transfer_list);
 956		if (previous->delay_usecs)
 957			udelay(previous->delay_usecs);
 958
 959		/* Drop chip select only if cs_change is requested */
 960		if (previous->cs_change)
 961			cs_deassert(drv_data);
 962	}
 963
 964	/* Check if we can DMA this transfer */
 965	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
 966
 967		/* reject already-mapped transfers; PIO won't always work */
 968		if (message->is_dma_mapped
 969				|| transfer->rx_dma || transfer->tx_dma) {
 970			dev_err(&drv_data->pdev->dev,
 971				"pump_transfers: mapped transfer length of "
 972				"%u is greater than %d\n",
 973				transfer->len, MAX_DMA_LEN);
 974			message->status = -EINVAL;
 975			giveback(drv_data);
 976			return;
 977		}
 978
 979		/* warn ... we force this to PIO mode */
 980		dev_warn_ratelimited(&message->spi->dev,
 981				     "pump_transfers: DMA disabled for transfer length %ld "
 982				     "greater than %d\n",
 983				     (long)drv_data->len, MAX_DMA_LEN);
 984	}
 985
 986	/* Setup the transfer state based on the type of transfer */
 987	if (pxa2xx_spi_flush(drv_data) == 0) {
 988		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
 989		message->status = -EIO;
 990		giveback(drv_data);
 991		return;
 992	}
 993	drv_data->n_bytes = chip->n_bytes;
 994	drv_data->tx = (void *)transfer->tx_buf;
 995	drv_data->tx_end = drv_data->tx + transfer->len;
 996	drv_data->rx = transfer->rx_buf;
 997	drv_data->rx_end = drv_data->rx + transfer->len;
 998	drv_data->len = transfer->len;
 999	drv_data->write = drv_data->tx ? chip->write : null_writer;
1000	drv_data->read = drv_data->rx ? chip->read : null_reader;
1001
1002	/* Change speed and bit per word on a per transfer */
1003	bits = transfer->bits_per_word;
1004	speed = transfer->speed_hz;
1005
1006	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1007
1008	if (bits <= 8) {
1009		drv_data->n_bytes = 1;
1010		drv_data->read = drv_data->read != null_reader ?
1011					u8_reader : null_reader;
1012		drv_data->write = drv_data->write != null_writer ?
1013					u8_writer : null_writer;
1014	} else if (bits <= 16) {
1015		drv_data->n_bytes = 2;
1016		drv_data->read = drv_data->read != null_reader ?
1017					u16_reader : null_reader;
1018		drv_data->write = drv_data->write != null_writer ?
1019					u16_writer : null_writer;
1020	} else if (bits <= 32) {
1021		drv_data->n_bytes = 4;
1022		drv_data->read = drv_data->read != null_reader ?
1023					u32_reader : null_reader;
1024		drv_data->write = drv_data->write != null_writer ?
1025					u32_writer : null_writer;
1026	}
1027	/*
1028	 * if bits/word is changed in dma mode, then must check the
1029	 * thresholds and burst also
1030	 */
1031	if (chip->enable_dma) {
1032		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1033						message->spi,
1034						bits, &dma_burst,
1035						&dma_thresh))
1036			dev_warn_ratelimited(&message->spi->dev,
1037					     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1038	}
1039
1040	message->state = RUNNING_STATE;
1041
1042	drv_data->dma_mapped = 0;
1043	if (pxa2xx_spi_dma_is_possible(drv_data->len))
1044		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
1045	if (drv_data->dma_mapped) {
1046
1047		/* Ensure we have the correct interrupt handler */
1048		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1049
1050		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
 
 
1051
1052		/* Clear status and start DMA engine */
1053		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1054		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1055
1056		pxa2xx_spi_dma_start(drv_data);
1057	} else {
1058		/* Ensure we have the correct interrupt handler	*/
1059		drv_data->transfer_handler = interrupt_transfer;
1060
1061		/* Clear status  */
1062		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1063		write_SSSR_CS(drv_data, drv_data->clear_sr);
1064	}
1065
1066	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1067	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1068	if (!pxa25x_ssp_comp(drv_data))
1069		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1070			drv_data->master->max_speed_hz
1071				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1072			drv_data->dma_mapped ? "DMA" : "PIO");
1073	else
1074		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1075			drv_data->master->max_speed_hz / 2
1076				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1077			drv_data->dma_mapped ? "DMA" : "PIO");
1078
1079	if (is_lpss_ssp(drv_data)) {
1080		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1081		    != chip->lpss_rx_threshold)
1082			pxa2xx_spi_write(drv_data, SSIRF,
1083					 chip->lpss_rx_threshold);
1084		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1085		    != chip->lpss_tx_threshold)
1086			pxa2xx_spi_write(drv_data, SSITF,
1087					 chip->lpss_tx_threshold);
1088	}
1089
1090	if (is_quark_x1000_ssp(drv_data) &&
1091	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1092		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1093
1094	/* see if we need to reload the config registers */
1095	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1096	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1097	    != (cr1 & change_mask)) {
1098		/* stop the SSP, and update the other bits */
1099		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1100		if (!pxa25x_ssp_comp(drv_data))
1101			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1102		/* first set CR1 without interrupt and service enables */
1103		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1104		/* restart the SSP */
1105		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1106
1107	} else {
1108		if (!pxa25x_ssp_comp(drv_data))
1109			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
 
1110	}
1111
1112	cs_assert(drv_data);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1113
1114	/* after chip select, release the data by enabling service
1115	 * requests and interrupts, without changing any mode bits */
1116	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1117}
 
 
 
 
 
 
 
 
 
 
1118
1119static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1120					   struct spi_message *msg)
1121{
1122	struct driver_data *drv_data = spi_master_get_devdata(master);
 
 
 
 
 
1123
1124	drv_data->cur_msg = msg;
1125	/* Initial message state*/
1126	drv_data->cur_msg->state = START_STATE;
1127	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1128						struct spi_transfer,
1129						transfer_list);
1130
1131	/* prepare to setup the SSP, in pump_transfers, using the per
1132	 * chip configuration */
1133	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1134
1135	/* Mark as busy and launch transfers */
1136	tasklet_schedule(&drv_data->pump_transfers);
1137	return 0;
1138}
1139
1140static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1141{
1142	struct driver_data *drv_data = spi_master_get_devdata(master);
1143
1144	/* Disable the SSP now */
1145	pxa2xx_spi_write(drv_data, SSCR0,
1146			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1147
1148	return 0;
1149}
1150
1151static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1152		    struct pxa2xx_spi_chip *chip_info)
1153{
1154	int err = 0;
 
 
1155
1156	if (chip == NULL || chip_info == NULL)
1157		return 0;
1158
1159	/* NOTE: setup() can be called multiple times, possibly with
1160	 * different chip_info, release previously requested GPIO
 
 
 
 
1161	 */
1162	if (gpio_is_valid(chip->gpio_cs))
1163		gpio_free(chip->gpio_cs);
 
1164
1165	/* If (*cs_control) is provided, ignore GPIO chip select */
1166	if (chip_info->cs_control) {
1167		chip->cs_control = chip_info->cs_control;
1168		return 0;
1169	}
1170
1171	if (gpio_is_valid(chip_info->gpio_cs)) {
1172		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1173		if (err) {
1174			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1175				chip_info->gpio_cs);
1176			return err;
1177		}
1178
1179		chip->gpio_cs = chip_info->gpio_cs;
1180		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1181
1182		err = gpio_direction_output(chip->gpio_cs,
1183					!chip->gpio_cs_inverted);
1184	}
1185
1186	return err;
1187}
1188
1189static int setup(struct spi_device *spi)
1190{
1191	struct pxa2xx_spi_chip *chip_info = NULL;
1192	struct chip_data *chip;
1193	const struct lpss_config *config;
1194	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
 
1195	uint tx_thres, tx_hi_thres, rx_thres;
1196
1197	switch (drv_data->ssp_type) {
1198	case QUARK_X1000_SSP:
1199		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1200		tx_hi_thres = 0;
1201		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1202		break;
 
 
 
 
 
 
 
 
 
 
1203	case LPSS_LPT_SSP:
1204	case LPSS_BYT_SSP:
1205	case LPSS_BSW_SSP:
1206	case LPSS_SPT_SSP:
1207	case LPSS_BXT_SSP:
 
1208		config = lpss_get_config(drv_data);
1209		tx_thres = config->tx_threshold_lo;
1210		tx_hi_thres = config->tx_threshold_hi;
1211		rx_thres = config->rx_threshold;
1212		break;
1213	default:
1214		tx_thres = TX_THRESH_DFLT;
1215		tx_hi_thres = 0;
1216		rx_thres = RX_THRESH_DFLT;
 
 
 
 
 
 
1217		break;
1218	}
1219
1220	/* Only alloc on first setup */
1221	chip = spi_get_ctldata(spi);
1222	if (!chip) {
1223		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1224		if (!chip)
1225			return -ENOMEM;
1226
1227		if (drv_data->ssp_type == CE4100_SSP) {
1228			if (spi->chip_select > 4) {
1229				dev_err(&spi->dev,
1230					"failed setup: cs number must not be > 4.\n");
1231				kfree(chip);
1232				return -EINVAL;
1233			}
1234
1235			chip->frm = spi->chip_select;
1236		} else
1237			chip->gpio_cs = -1;
1238		chip->enable_dma = 0;
1239		chip->timeout = TIMOUT_DFLT;
1240	}
1241
1242	/* protocol drivers may change the chip settings, so...
1243	 * if chip_info exists, use it */
 
 
1244	chip_info = spi->controller_data;
1245
1246	/* chip_info isn't always needed */
1247	chip->cr1 = 0;
1248	if (chip_info) {
1249		if (chip_info->timeout)
1250			chip->timeout = chip_info->timeout;
1251		if (chip_info->tx_threshold)
1252			tx_thres = chip_info->tx_threshold;
1253		if (chip_info->tx_hi_threshold)
1254			tx_hi_thres = chip_info->tx_hi_threshold;
1255		if (chip_info->rx_threshold)
1256			rx_thres = chip_info->rx_threshold;
1257		chip->enable_dma = drv_data->master_info->enable_dma;
1258		chip->dma_threshold = 0;
1259		if (chip_info->enable_loopback)
1260			chip->cr1 = SSCR1_LBM;
1261	} else if (ACPI_HANDLE(&spi->dev)) {
1262		/*
1263		 * Slave devices enumerated from ACPI namespace don't
1264		 * usually have chip_info but we still might want to use
1265		 * DMA with them.
1266		 */
1267		chip->enable_dma = drv_data->master_info->enable_dma;
1268	}
1269
1270	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1271	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1272				| SSITF_TxHiThresh(tx_hi_thres);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273
1274	/* set dma burst and threshold outside of chip_info path so that if
1275	 * chip_info goes away after setting chip->enable_dma, the
1276	 * burst and threshold can still respond to changes in bits_per_word */
 
 
1277	if (chip->enable_dma) {
1278		/* set up legal burst and threshold for dma */
1279		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1280						spi->bits_per_word,
1281						&chip->dma_burst_size,
1282						&chip->dma_threshold)) {
1283			dev_warn(&spi->dev,
1284				 "in setup: DMA burst size reduced to match bits_per_word\n");
1285		}
 
 
 
1286	}
1287
1288	switch (drv_data->ssp_type) {
1289	case QUARK_X1000_SSP:
1290		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1291				   & QUARK_X1000_SSCR1_RFT)
1292				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1293				   & QUARK_X1000_SSCR1_TFT);
1294		break;
 
 
 
 
1295	default:
1296		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1297			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1298		break;
1299	}
1300
1301	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1302	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1303			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1304
1305	if (spi->mode & SPI_LOOP)
1306		chip->cr1 |= SSCR1_LBM;
1307
1308	if (spi->bits_per_word <= 8) {
1309		chip->n_bytes = 1;
1310		chip->read = u8_reader;
1311		chip->write = u8_writer;
1312	} else if (spi->bits_per_word <= 16) {
1313		chip->n_bytes = 2;
1314		chip->read = u16_reader;
1315		chip->write = u16_writer;
1316	} else if (spi->bits_per_word <= 32) {
1317		chip->n_bytes = 4;
1318		chip->read = u32_reader;
1319		chip->write = u32_writer;
1320	}
1321
1322	spi_set_ctldata(spi, chip);
1323
1324	if (drv_data->ssp_type == CE4100_SSP)
1325		return 0;
1326
1327	return setup_cs(spi, chip, chip_info);
1328}
1329
1330static void cleanup(struct spi_device *spi)
1331{
1332	struct chip_data *chip = spi_get_ctldata(spi);
1333	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1334
1335	if (!chip)
1336		return;
1337
1338	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1339		gpio_free(chip->gpio_cs);
1340
1341	kfree(chip);
1342}
1343
1344#ifdef CONFIG_PCI
1345#ifdef CONFIG_ACPI
1346
1347static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1348	{ "INT33C0", LPSS_LPT_SSP },
1349	{ "INT33C1", LPSS_LPT_SSP },
1350	{ "INT3430", LPSS_LPT_SSP },
1351	{ "INT3431", LPSS_LPT_SSP },
1352	{ "80860F0E", LPSS_BYT_SSP },
1353	{ "8086228E", LPSS_BSW_SSP },
1354	{ },
1355};
1356MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1357
1358static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1359{
1360	unsigned int devid;
1361	int port_id = -1;
1362
1363	if (adev && adev->pnp.unique_id &&
1364	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1365		port_id = devid;
1366	return port_id;
1367}
1368#else /* !CONFIG_ACPI */
1369static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1370{
1371	return -1;
1372}
1373#endif
1374
1375/*
1376 * PCI IDs of compound devices that integrate both host controller and private
1377 * integrated DMA engine. Please note these are not used in module
1378 * autoloading and probing in this module but matching the LPSS SSP type.
1379 */
1380static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1381	/* SPT-LP */
1382	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1383	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1384	/* SPT-H */
1385	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1386	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1387	/* BXT A-Step */
1388	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1389	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1390	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1391	/* BXT B-Step */
1392	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1393	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1394	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1395	/* APL */
1396	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1397	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1398	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1399	{ },
1400};
1401
1402static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1403{
1404	struct device *dev = param;
1405
1406	if (dev != chan->device->dev->parent)
1407		return false;
1408
1409	return true;
1410}
1411
1412static struct pxa2xx_spi_master *
1413pxa2xx_spi_init_pdata(struct platform_device *pdev)
1414{
1415	struct pxa2xx_spi_master *pdata;
1416	struct acpi_device *adev;
 
1417	struct ssp_device *ssp;
1418	struct resource *res;
1419	const struct acpi_device_id *adev_id = NULL;
1420	const struct pci_device_id *pcidev_id = NULL;
1421	int type;
1422
1423	adev = ACPI_COMPANION(&pdev->dev);
1424
1425	if (dev_is_pci(pdev->dev.parent))
1426		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1427					 to_pci_dev(pdev->dev.parent));
1428	else if (adev)
1429		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1430					    &pdev->dev);
1431	else
1432		return NULL;
 
 
 
 
 
 
1433
1434	if (adev_id)
1435		type = (int)adev_id->driver_data;
1436	else if (pcidev_id)
1437		type = (int)pcidev_id->driver_data;
1438	else
1439		return NULL;
1440
1441	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1442	if (!pdata)
1443		return NULL;
1444
1445	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1446	if (!res)
1447		return NULL;
1448
1449	ssp = &pdata->ssp;
 
 
1450
1451	ssp->phys_base = res->start;
1452	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1453	if (IS_ERR(ssp->mmio_base))
1454		return NULL;
1455
1456	if (pcidev_id) {
1457		pdata->tx_param = pdev->dev.parent;
1458		pdata->rx_param = pdev->dev.parent;
 
1459		pdata->dma_filter = pxa2xx_spi_idma_filter;
1460	}
1461
1462	ssp->clk = devm_clk_get(&pdev->dev, NULL);
 
 
 
1463	ssp->irq = platform_get_irq(pdev, 0);
 
 
 
1464	ssp->type = type;
1465	ssp->pdev = pdev;
1466	ssp->port_id = pxa2xx_spi_get_port_id(adev);
 
 
 
 
 
1467
 
1468	pdata->num_chipselect = 1;
1469	pdata->enable_dma = true;
 
1470
1471	return pdata;
1472}
1473
1474#else /* !CONFIG_PCI */
1475static inline struct pxa2xx_spi_master *
1476pxa2xx_spi_init_pdata(struct platform_device *pdev)
1477{
1478	return NULL;
1479}
1480#endif
1481
1482static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs)
1483{
1484	struct driver_data *drv_data = spi_master_get_devdata(master);
1485
1486	if (has_acpi_companion(&drv_data->pdev->dev)) {
1487		switch (drv_data->ssp_type) {
1488		/*
1489		 * For Atoms the ACPI DeviceSelection used by the Windows
1490		 * driver starts from 1 instead of 0 so translate it here
1491		 * to match what Linux expects.
1492		 */
1493		case LPSS_BYT_SSP:
1494		case LPSS_BSW_SSP:
1495			return cs - 1;
1496
1497		default:
1498			break;
1499		}
1500	}
1501
1502	return cs;
1503}
1504
 
 
 
 
 
1505static int pxa2xx_spi_probe(struct platform_device *pdev)
1506{
1507	struct device *dev = &pdev->dev;
1508	struct pxa2xx_spi_master *platform_info;
1509	struct spi_master *master;
1510	struct driver_data *drv_data;
1511	struct ssp_device *ssp;
1512	const struct lpss_config *config;
1513	int status;
1514	u32 tmp;
1515
1516	platform_info = dev_get_platdata(dev);
1517	if (!platform_info) {
1518		platform_info = pxa2xx_spi_init_pdata(pdev);
1519		if (!platform_info) {
1520			dev_err(&pdev->dev, "missing platform data\n");
1521			return -ENODEV;
1522		}
1523	}
1524
1525	ssp = pxa_ssp_request(pdev->id, pdev->name);
1526	if (!ssp)
1527		ssp = &platform_info->ssp;
1528
1529	if (!ssp->mmio_base) {
1530		dev_err(&pdev->dev, "failed to get ssp\n");
1531		return -ENODEV;
1532	}
1533
1534	master = spi_alloc_master(dev, sizeof(struct driver_data));
1535	if (!master) {
1536		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1537		pxa_ssp_free(ssp);
1538		return -ENOMEM;
1539	}
1540	drv_data = spi_master_get_devdata(master);
1541	drv_data->master = master;
1542	drv_data->master_info = platform_info;
1543	drv_data->pdev = pdev;
 
 
 
1544	drv_data->ssp = ssp;
1545
1546	master->dev.parent = &pdev->dev;
1547	master->dev.of_node = pdev->dev.of_node;
1548	/* the spi->mode bits understood by this driver: */
1549	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1550
1551	master->bus_num = ssp->port_id;
1552	master->dma_alignment = DMA_ALIGNMENT;
1553	master->cleanup = cleanup;
1554	master->setup = setup;
1555	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1556	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1557	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1558	master->auto_runtime_pm = true;
 
 
 
 
1559
1560	drv_data->ssp_type = ssp->type;
1561
1562	drv_data->ioaddr = ssp->mmio_base;
1563	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1564	if (pxa25x_ssp_comp(drv_data)) {
1565		switch (drv_data->ssp_type) {
1566		case QUARK_X1000_SSP:
1567			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1568			break;
1569		default:
1570			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1571			break;
1572		}
1573
1574		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1575		drv_data->dma_cr1 = 0;
1576		drv_data->clear_sr = SSSR_ROR;
1577		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1578	} else {
1579		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1580		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1581		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1582		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1583		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
 
1584	}
1585
1586	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1587			drv_data);
1588	if (status < 0) {
1589		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1590		goto out_error_master_alloc;
1591	}
1592
1593	/* Setup DMA if requested */
1594	if (platform_info->enable_dma) {
1595		status = pxa2xx_spi_dma_setup(drv_data);
1596		if (status) {
1597			dev_dbg(dev, "no DMA channels available, using PIO\n");
1598			platform_info->enable_dma = false;
 
 
 
 
 
1599		}
1600	}
1601
1602	/* Enable SOC clock */
1603	clk_prepare_enable(ssp->clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1604
1605	master->max_speed_hz = clk_get_rate(ssp->clk);
1606
1607	/* Load default SSP configuration */
1608	pxa2xx_spi_write(drv_data, SSCR0, 0);
1609	switch (drv_data->ssp_type) {
1610	case QUARK_X1000_SSP:
1611		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
1612		      | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1613		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1614
1615		/* using the Motorola SPI protocol and use 8 bit frame */
1616		pxa2xx_spi_write(drv_data, SSCR0,
1617				 QUARK_X1000_SSCR0_Motorola
1618				 | QUARK_X1000_SSCR0_DataSize(8));
 
 
 
 
 
 
1619		break;
1620	default:
1621		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1622		      SSCR1_TxTresh(TX_THRESH_DFLT);
 
 
 
 
 
 
 
 
 
 
1623		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1624		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
 
 
1625		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1626		break;
1627	}
1628
1629	if (!pxa25x_ssp_comp(drv_data))
1630		pxa2xx_spi_write(drv_data, SSTO, 0);
1631
1632	if (!is_quark_x1000_ssp(drv_data))
1633		pxa2xx_spi_write(drv_data, SSPSP, 0);
1634
1635	if (is_lpss_ssp(drv_data)) {
1636		lpss_ssp_setup(drv_data);
1637		config = lpss_get_config(drv_data);
1638		if (config->reg_capabilities >= 0) {
1639			tmp = __lpss_ssp_read_priv(drv_data,
1640						   config->reg_capabilities);
1641			tmp &= LPSS_CAPS_CS_EN_MASK;
1642			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1643			platform_info->num_chipselect = ffz(tmp);
1644		} else if (config->cs_num) {
1645			platform_info->num_chipselect = config->cs_num;
1646		}
1647	}
1648	master->num_chipselect = platform_info->num_chipselect;
 
1649
1650	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1651		     (unsigned long)drv_data);
 
 
 
 
 
 
1652
1653	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1654	pm_runtime_use_autosuspend(&pdev->dev);
1655	pm_runtime_set_active(&pdev->dev);
1656	pm_runtime_enable(&pdev->dev);
1657
1658	/* Register with the SPI framework */
1659	platform_set_drvdata(pdev, drv_data);
1660	status = devm_spi_register_master(&pdev->dev, master);
1661	if (status != 0) {
1662		dev_err(&pdev->dev, "problem registering spi master\n");
1663		goto out_error_clock_enabled;
1664	}
1665
1666	return status;
1667
 
 
 
1668out_error_clock_enabled:
1669	clk_disable_unprepare(ssp->clk);
 
 
1670	pxa2xx_spi_dma_release(drv_data);
1671	free_irq(ssp->irq, drv_data);
1672
1673out_error_master_alloc:
1674	spi_master_put(master);
1675	pxa_ssp_free(ssp);
1676	return status;
1677}
1678
1679static int pxa2xx_spi_remove(struct platform_device *pdev)
1680{
1681	struct driver_data *drv_data = platform_get_drvdata(pdev);
1682	struct ssp_device *ssp;
1683
1684	if (!drv_data)
1685		return 0;
1686	ssp = drv_data->ssp;
1687
1688	pm_runtime_get_sync(&pdev->dev);
1689
1690	/* Disable the SSP at the peripheral and SOC level */
1691	pxa2xx_spi_write(drv_data, SSCR0, 0);
1692	clk_disable_unprepare(ssp->clk);
1693
1694	/* Release DMA */
1695	if (drv_data->master_info->enable_dma)
1696		pxa2xx_spi_dma_release(drv_data);
1697
1698	pm_runtime_put_noidle(&pdev->dev);
1699	pm_runtime_disable(&pdev->dev);
1700
1701	/* Release IRQ */
1702	free_irq(ssp->irq, drv_data);
1703
1704	/* Release SSP */
1705	pxa_ssp_free(ssp);
1706
1707	return 0;
1708}
1709
1710static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1711{
1712	int status = 0;
1713
1714	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1715		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1716}
1717
1718#ifdef CONFIG_PM_SLEEP
1719static int pxa2xx_spi_suspend(struct device *dev)
1720{
1721	struct driver_data *drv_data = dev_get_drvdata(dev);
1722	struct ssp_device *ssp = drv_data->ssp;
1723	int status = 0;
1724
1725	status = spi_master_suspend(drv_data->master);
1726	if (status != 0)
1727		return status;
1728	pxa2xx_spi_write(drv_data, SSCR0, 0);
 
1729
1730	if (!pm_runtime_suspended(dev))
1731		clk_disable_unprepare(ssp->clk);
1732
1733	return 0;
1734}
1735
1736static int pxa2xx_spi_resume(struct device *dev)
1737{
1738	struct driver_data *drv_data = dev_get_drvdata(dev);
1739	struct ssp_device *ssp = drv_data->ssp;
1740	int status = 0;
1741
1742	/* Enable the SSP clock */
1743	if (!pm_runtime_suspended(dev))
1744		clk_prepare_enable(ssp->clk);
1745
1746	/* Restore LPSS private register bits */
1747	if (is_lpss_ssp(drv_data))
1748		lpss_ssp_setup(drv_data);
1749
1750	/* Start the queue running */
1751	status = spi_master_resume(drv_data->master);
1752	if (status != 0) {
1753		dev_err(dev, "problem starting queue (%d)\n", status);
1754		return status;
1755	}
1756
1757	return 0;
1758}
1759#endif
1760
1761#ifdef CONFIG_PM
1762static int pxa2xx_spi_runtime_suspend(struct device *dev)
1763{
1764	struct driver_data *drv_data = dev_get_drvdata(dev);
1765
1766	clk_disable_unprepare(drv_data->ssp->clk);
1767	return 0;
1768}
1769
1770static int pxa2xx_spi_runtime_resume(struct device *dev)
1771{
1772	struct driver_data *drv_data = dev_get_drvdata(dev);
1773
1774	clk_prepare_enable(drv_data->ssp->clk);
1775	return 0;
1776}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1777#endif
1778
1779static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1780	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1781	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1782			   pxa2xx_spi_runtime_resume, NULL)
1783};
 
1784
1785static struct platform_driver driver = {
1786	.driver = {
1787		.name	= "pxa2xx-spi",
1788		.pm	= &pxa2xx_spi_pm_ops,
1789		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
 
1790	},
1791	.probe = pxa2xx_spi_probe,
1792	.remove = pxa2xx_spi_remove,
1793	.shutdown = pxa2xx_spi_shutdown,
1794};
1795
1796static int __init pxa2xx_spi_init(void)
1797{
1798	return platform_driver_register(&driver);
1799}
1800subsys_initcall(pxa2xx_spi_init);
1801
1802static void __exit pxa2xx_spi_exit(void)
1803{
1804	platform_driver_unregister(&driver);
1805}
1806module_exit(pxa2xx_spi_exit);