Loading...
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42#include <linux/inet_diag.h>
43
44#include <net/snmp.h>
45#include <net/tls.h>
46#include <net/tls_toe.h>
47
48#include "tls.h"
49
50MODULE_AUTHOR("Mellanox Technologies");
51MODULE_DESCRIPTION("Transport Layer Security Support");
52MODULE_LICENSE("Dual BSD/GPL");
53MODULE_ALIAS_TCP_ULP("tls");
54
55enum {
56 TLSV4,
57 TLSV6,
58 TLS_NUM_PROTS,
59};
60
61#define CIPHER_SIZE_DESC(cipher) [cipher] = { \
62 .iv = cipher ## _IV_SIZE, \
63 .key = cipher ## _KEY_SIZE, \
64 .salt = cipher ## _SALT_SIZE, \
65 .tag = cipher ## _TAG_SIZE, \
66 .rec_seq = cipher ## _REC_SEQ_SIZE, \
67}
68
69const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
70 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
71 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
72 CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
73 CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
74 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
75 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
76};
77
78static const struct proto *saved_tcpv6_prot;
79static DEFINE_MUTEX(tcpv6_prot_mutex);
80static const struct proto *saved_tcpv4_prot;
81static DEFINE_MUTEX(tcpv4_prot_mutex);
82static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
83static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
84static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
85 const struct proto *base);
86
87void update_sk_prot(struct sock *sk, struct tls_context *ctx)
88{
89 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
90
91 WRITE_ONCE(sk->sk_prot,
92 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
93 WRITE_ONCE(sk->sk_socket->ops,
94 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
95}
96
97int wait_on_pending_writer(struct sock *sk, long *timeo)
98{
99 int rc = 0;
100 DEFINE_WAIT_FUNC(wait, woken_wake_function);
101
102 add_wait_queue(sk_sleep(sk), &wait);
103 while (1) {
104 if (!*timeo) {
105 rc = -EAGAIN;
106 break;
107 }
108
109 if (signal_pending(current)) {
110 rc = sock_intr_errno(*timeo);
111 break;
112 }
113
114 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
115 break;
116 }
117 remove_wait_queue(sk_sleep(sk), &wait);
118 return rc;
119}
120
121int tls_push_sg(struct sock *sk,
122 struct tls_context *ctx,
123 struct scatterlist *sg,
124 u16 first_offset,
125 int flags)
126{
127 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
128 int ret = 0;
129 struct page *p;
130 size_t size;
131 int offset = first_offset;
132
133 size = sg->length - offset;
134 offset += sg->offset;
135
136 ctx->in_tcp_sendpages = true;
137 while (1) {
138 if (sg_is_last(sg))
139 sendpage_flags = flags;
140
141 /* is sending application-limited? */
142 tcp_rate_check_app_limited(sk);
143 p = sg_page(sg);
144retry:
145 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
146
147 if (ret != size) {
148 if (ret > 0) {
149 offset += ret;
150 size -= ret;
151 goto retry;
152 }
153
154 offset -= sg->offset;
155 ctx->partially_sent_offset = offset;
156 ctx->partially_sent_record = (void *)sg;
157 ctx->in_tcp_sendpages = false;
158 return ret;
159 }
160
161 put_page(p);
162 sk_mem_uncharge(sk, sg->length);
163 sg = sg_next(sg);
164 if (!sg)
165 break;
166
167 offset = sg->offset;
168 size = sg->length;
169 }
170
171 ctx->in_tcp_sendpages = false;
172
173 return 0;
174}
175
176static int tls_handle_open_record(struct sock *sk, int flags)
177{
178 struct tls_context *ctx = tls_get_ctx(sk);
179
180 if (tls_is_pending_open_record(ctx))
181 return ctx->push_pending_record(sk, flags);
182
183 return 0;
184}
185
186int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
187 unsigned char *record_type)
188{
189 struct cmsghdr *cmsg;
190 int rc = -EINVAL;
191
192 for_each_cmsghdr(cmsg, msg) {
193 if (!CMSG_OK(msg, cmsg))
194 return -EINVAL;
195 if (cmsg->cmsg_level != SOL_TLS)
196 continue;
197
198 switch (cmsg->cmsg_type) {
199 case TLS_SET_RECORD_TYPE:
200 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
201 return -EINVAL;
202
203 if (msg->msg_flags & MSG_MORE)
204 return -EINVAL;
205
206 rc = tls_handle_open_record(sk, msg->msg_flags);
207 if (rc)
208 return rc;
209
210 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
211 rc = 0;
212 break;
213 default:
214 return -EINVAL;
215 }
216 }
217
218 return rc;
219}
220
221int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
222 int flags)
223{
224 struct scatterlist *sg;
225 u16 offset;
226
227 sg = ctx->partially_sent_record;
228 offset = ctx->partially_sent_offset;
229
230 ctx->partially_sent_record = NULL;
231 return tls_push_sg(sk, ctx, sg, offset, flags);
232}
233
234void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
235{
236 struct scatterlist *sg;
237
238 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
239 put_page(sg_page(sg));
240 sk_mem_uncharge(sk, sg->length);
241 }
242 ctx->partially_sent_record = NULL;
243}
244
245static void tls_write_space(struct sock *sk)
246{
247 struct tls_context *ctx = tls_get_ctx(sk);
248
249 /* If in_tcp_sendpages call lower protocol write space handler
250 * to ensure we wake up any waiting operations there. For example
251 * if do_tcp_sendpages where to call sk_wait_event.
252 */
253 if (ctx->in_tcp_sendpages) {
254 ctx->sk_write_space(sk);
255 return;
256 }
257
258#ifdef CONFIG_TLS_DEVICE
259 if (ctx->tx_conf == TLS_HW)
260 tls_device_write_space(sk, ctx);
261 else
262#endif
263 tls_sw_write_space(sk, ctx);
264
265 ctx->sk_write_space(sk);
266}
267
268/**
269 * tls_ctx_free() - free TLS ULP context
270 * @sk: socket to with @ctx is attached
271 * @ctx: TLS context structure
272 *
273 * Free TLS context. If @sk is %NULL caller guarantees that the socket
274 * to which @ctx was attached has no outstanding references.
275 */
276void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
277{
278 if (!ctx)
279 return;
280
281 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
282 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
283 mutex_destroy(&ctx->tx_lock);
284
285 if (sk)
286 kfree_rcu(ctx, rcu);
287 else
288 kfree(ctx);
289}
290
291static void tls_sk_proto_cleanup(struct sock *sk,
292 struct tls_context *ctx, long timeo)
293{
294 if (unlikely(sk->sk_write_pending) &&
295 !wait_on_pending_writer(sk, &timeo))
296 tls_handle_open_record(sk, 0);
297
298 /* We need these for tls_sw_fallback handling of other packets */
299 if (ctx->tx_conf == TLS_SW) {
300 kfree(ctx->tx.rec_seq);
301 kfree(ctx->tx.iv);
302 tls_sw_release_resources_tx(sk);
303 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
304 } else if (ctx->tx_conf == TLS_HW) {
305 tls_device_free_resources_tx(sk);
306 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
307 }
308
309 if (ctx->rx_conf == TLS_SW) {
310 tls_sw_release_resources_rx(sk);
311 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
312 } else if (ctx->rx_conf == TLS_HW) {
313 tls_device_offload_cleanup_rx(sk);
314 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
315 }
316}
317
318static void tls_sk_proto_close(struct sock *sk, long timeout)
319{
320 struct inet_connection_sock *icsk = inet_csk(sk);
321 struct tls_context *ctx = tls_get_ctx(sk);
322 long timeo = sock_sndtimeo(sk, 0);
323 bool free_ctx;
324
325 if (ctx->tx_conf == TLS_SW)
326 tls_sw_cancel_work_tx(ctx);
327
328 lock_sock(sk);
329 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
330
331 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
332 tls_sk_proto_cleanup(sk, ctx, timeo);
333
334 write_lock_bh(&sk->sk_callback_lock);
335 if (free_ctx)
336 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
337 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
338 if (sk->sk_write_space == tls_write_space)
339 sk->sk_write_space = ctx->sk_write_space;
340 write_unlock_bh(&sk->sk_callback_lock);
341 release_sock(sk);
342 if (ctx->tx_conf == TLS_SW)
343 tls_sw_free_ctx_tx(ctx);
344 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
345 tls_sw_strparser_done(ctx);
346 if (ctx->rx_conf == TLS_SW)
347 tls_sw_free_ctx_rx(ctx);
348 ctx->sk_proto->close(sk, timeout);
349
350 if (free_ctx)
351 tls_ctx_free(sk, ctx);
352}
353
354static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
355 int __user *optlen, int tx)
356{
357 int rc = 0;
358 struct tls_context *ctx = tls_get_ctx(sk);
359 struct tls_crypto_info *crypto_info;
360 struct cipher_context *cctx;
361 int len;
362
363 if (get_user(len, optlen))
364 return -EFAULT;
365
366 if (!optval || (len < sizeof(*crypto_info))) {
367 rc = -EINVAL;
368 goto out;
369 }
370
371 if (!ctx) {
372 rc = -EBUSY;
373 goto out;
374 }
375
376 /* get user crypto info */
377 if (tx) {
378 crypto_info = &ctx->crypto_send.info;
379 cctx = &ctx->tx;
380 } else {
381 crypto_info = &ctx->crypto_recv.info;
382 cctx = &ctx->rx;
383 }
384
385 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
386 rc = -EBUSY;
387 goto out;
388 }
389
390 if (len == sizeof(*crypto_info)) {
391 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
392 rc = -EFAULT;
393 goto out;
394 }
395
396 switch (crypto_info->cipher_type) {
397 case TLS_CIPHER_AES_GCM_128: {
398 struct tls12_crypto_info_aes_gcm_128 *
399 crypto_info_aes_gcm_128 =
400 container_of(crypto_info,
401 struct tls12_crypto_info_aes_gcm_128,
402 info);
403
404 if (len != sizeof(*crypto_info_aes_gcm_128)) {
405 rc = -EINVAL;
406 goto out;
407 }
408 lock_sock(sk);
409 memcpy(crypto_info_aes_gcm_128->iv,
410 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
411 TLS_CIPHER_AES_GCM_128_IV_SIZE);
412 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
413 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
414 release_sock(sk);
415 if (copy_to_user(optval,
416 crypto_info_aes_gcm_128,
417 sizeof(*crypto_info_aes_gcm_128)))
418 rc = -EFAULT;
419 break;
420 }
421 case TLS_CIPHER_AES_GCM_256: {
422 struct tls12_crypto_info_aes_gcm_256 *
423 crypto_info_aes_gcm_256 =
424 container_of(crypto_info,
425 struct tls12_crypto_info_aes_gcm_256,
426 info);
427
428 if (len != sizeof(*crypto_info_aes_gcm_256)) {
429 rc = -EINVAL;
430 goto out;
431 }
432 lock_sock(sk);
433 memcpy(crypto_info_aes_gcm_256->iv,
434 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
435 TLS_CIPHER_AES_GCM_256_IV_SIZE);
436 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
437 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
438 release_sock(sk);
439 if (copy_to_user(optval,
440 crypto_info_aes_gcm_256,
441 sizeof(*crypto_info_aes_gcm_256)))
442 rc = -EFAULT;
443 break;
444 }
445 case TLS_CIPHER_AES_CCM_128: {
446 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
447 container_of(crypto_info,
448 struct tls12_crypto_info_aes_ccm_128, info);
449
450 if (len != sizeof(*aes_ccm_128)) {
451 rc = -EINVAL;
452 goto out;
453 }
454 lock_sock(sk);
455 memcpy(aes_ccm_128->iv,
456 cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
457 TLS_CIPHER_AES_CCM_128_IV_SIZE);
458 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
459 TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
460 release_sock(sk);
461 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
462 rc = -EFAULT;
463 break;
464 }
465 case TLS_CIPHER_CHACHA20_POLY1305: {
466 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
467 container_of(crypto_info,
468 struct tls12_crypto_info_chacha20_poly1305,
469 info);
470
471 if (len != sizeof(*chacha20_poly1305)) {
472 rc = -EINVAL;
473 goto out;
474 }
475 lock_sock(sk);
476 memcpy(chacha20_poly1305->iv,
477 cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
478 TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
479 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
480 TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
481 release_sock(sk);
482 if (copy_to_user(optval, chacha20_poly1305,
483 sizeof(*chacha20_poly1305)))
484 rc = -EFAULT;
485 break;
486 }
487 case TLS_CIPHER_SM4_GCM: {
488 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
489 container_of(crypto_info,
490 struct tls12_crypto_info_sm4_gcm, info);
491
492 if (len != sizeof(*sm4_gcm_info)) {
493 rc = -EINVAL;
494 goto out;
495 }
496 lock_sock(sk);
497 memcpy(sm4_gcm_info->iv,
498 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
499 TLS_CIPHER_SM4_GCM_IV_SIZE);
500 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
501 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
502 release_sock(sk);
503 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
504 rc = -EFAULT;
505 break;
506 }
507 case TLS_CIPHER_SM4_CCM: {
508 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
509 container_of(crypto_info,
510 struct tls12_crypto_info_sm4_ccm, info);
511
512 if (len != sizeof(*sm4_ccm_info)) {
513 rc = -EINVAL;
514 goto out;
515 }
516 lock_sock(sk);
517 memcpy(sm4_ccm_info->iv,
518 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
519 TLS_CIPHER_SM4_CCM_IV_SIZE);
520 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
521 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
522 release_sock(sk);
523 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
524 rc = -EFAULT;
525 break;
526 }
527 case TLS_CIPHER_ARIA_GCM_128: {
528 struct tls12_crypto_info_aria_gcm_128 *
529 crypto_info_aria_gcm_128 =
530 container_of(crypto_info,
531 struct tls12_crypto_info_aria_gcm_128,
532 info);
533
534 if (len != sizeof(*crypto_info_aria_gcm_128)) {
535 rc = -EINVAL;
536 goto out;
537 }
538 lock_sock(sk);
539 memcpy(crypto_info_aria_gcm_128->iv,
540 cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
541 TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
542 memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
543 TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
544 release_sock(sk);
545 if (copy_to_user(optval,
546 crypto_info_aria_gcm_128,
547 sizeof(*crypto_info_aria_gcm_128)))
548 rc = -EFAULT;
549 break;
550 }
551 case TLS_CIPHER_ARIA_GCM_256: {
552 struct tls12_crypto_info_aria_gcm_256 *
553 crypto_info_aria_gcm_256 =
554 container_of(crypto_info,
555 struct tls12_crypto_info_aria_gcm_256,
556 info);
557
558 if (len != sizeof(*crypto_info_aria_gcm_256)) {
559 rc = -EINVAL;
560 goto out;
561 }
562 lock_sock(sk);
563 memcpy(crypto_info_aria_gcm_256->iv,
564 cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
565 TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
566 memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
567 TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
568 release_sock(sk);
569 if (copy_to_user(optval,
570 crypto_info_aria_gcm_256,
571 sizeof(*crypto_info_aria_gcm_256)))
572 rc = -EFAULT;
573 break;
574 }
575 default:
576 rc = -EINVAL;
577 }
578
579out:
580 return rc;
581}
582
583static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
584 int __user *optlen)
585{
586 struct tls_context *ctx = tls_get_ctx(sk);
587 unsigned int value;
588 int len;
589
590 if (get_user(len, optlen))
591 return -EFAULT;
592
593 if (len != sizeof(value))
594 return -EINVAL;
595
596 value = ctx->zerocopy_sendfile;
597 if (copy_to_user(optval, &value, sizeof(value)))
598 return -EFAULT;
599
600 return 0;
601}
602
603static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
604 int __user *optlen)
605{
606 struct tls_context *ctx = tls_get_ctx(sk);
607 int value, len;
608
609 if (ctx->prot_info.version != TLS_1_3_VERSION)
610 return -EINVAL;
611
612 if (get_user(len, optlen))
613 return -EFAULT;
614 if (len < sizeof(value))
615 return -EINVAL;
616
617 lock_sock(sk);
618 value = -EINVAL;
619 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
620 value = ctx->rx_no_pad;
621 release_sock(sk);
622 if (value < 0)
623 return value;
624
625 if (put_user(sizeof(value), optlen))
626 return -EFAULT;
627 if (copy_to_user(optval, &value, sizeof(value)))
628 return -EFAULT;
629
630 return 0;
631}
632
633static int do_tls_getsockopt(struct sock *sk, int optname,
634 char __user *optval, int __user *optlen)
635{
636 int rc = 0;
637
638 switch (optname) {
639 case TLS_TX:
640 case TLS_RX:
641 rc = do_tls_getsockopt_conf(sk, optval, optlen,
642 optname == TLS_TX);
643 break;
644 case TLS_TX_ZEROCOPY_RO:
645 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
646 break;
647 case TLS_RX_EXPECT_NO_PAD:
648 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
649 break;
650 default:
651 rc = -ENOPROTOOPT;
652 break;
653 }
654 return rc;
655}
656
657static int tls_getsockopt(struct sock *sk, int level, int optname,
658 char __user *optval, int __user *optlen)
659{
660 struct tls_context *ctx = tls_get_ctx(sk);
661
662 if (level != SOL_TLS)
663 return ctx->sk_proto->getsockopt(sk, level,
664 optname, optval, optlen);
665
666 return do_tls_getsockopt(sk, optname, optval, optlen);
667}
668
669static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
670 unsigned int optlen, int tx)
671{
672 struct tls_crypto_info *crypto_info;
673 struct tls_crypto_info *alt_crypto_info;
674 struct tls_context *ctx = tls_get_ctx(sk);
675 size_t optsize;
676 int rc = 0;
677 int conf;
678
679 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
680 return -EINVAL;
681
682 if (tx) {
683 crypto_info = &ctx->crypto_send.info;
684 alt_crypto_info = &ctx->crypto_recv.info;
685 } else {
686 crypto_info = &ctx->crypto_recv.info;
687 alt_crypto_info = &ctx->crypto_send.info;
688 }
689
690 /* Currently we don't support set crypto info more than one time */
691 if (TLS_CRYPTO_INFO_READY(crypto_info))
692 return -EBUSY;
693
694 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
695 if (rc) {
696 rc = -EFAULT;
697 goto err_crypto_info;
698 }
699
700 /* check version */
701 if (crypto_info->version != TLS_1_2_VERSION &&
702 crypto_info->version != TLS_1_3_VERSION) {
703 rc = -EINVAL;
704 goto err_crypto_info;
705 }
706
707 /* Ensure that TLS version and ciphers are same in both directions */
708 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
709 if (alt_crypto_info->version != crypto_info->version ||
710 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
711 rc = -EINVAL;
712 goto err_crypto_info;
713 }
714 }
715
716 switch (crypto_info->cipher_type) {
717 case TLS_CIPHER_AES_GCM_128:
718 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
719 break;
720 case TLS_CIPHER_AES_GCM_256: {
721 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
722 break;
723 }
724 case TLS_CIPHER_AES_CCM_128:
725 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
726 break;
727 case TLS_CIPHER_CHACHA20_POLY1305:
728 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
729 break;
730 case TLS_CIPHER_SM4_GCM:
731 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
732 break;
733 case TLS_CIPHER_SM4_CCM:
734 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
735 break;
736 case TLS_CIPHER_ARIA_GCM_128:
737 if (crypto_info->version != TLS_1_2_VERSION) {
738 rc = -EINVAL;
739 goto err_crypto_info;
740 }
741 optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
742 break;
743 case TLS_CIPHER_ARIA_GCM_256:
744 if (crypto_info->version != TLS_1_2_VERSION) {
745 rc = -EINVAL;
746 goto err_crypto_info;
747 }
748 optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
749 break;
750 default:
751 rc = -EINVAL;
752 goto err_crypto_info;
753 }
754
755 if (optlen != optsize) {
756 rc = -EINVAL;
757 goto err_crypto_info;
758 }
759
760 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
761 sizeof(*crypto_info),
762 optlen - sizeof(*crypto_info));
763 if (rc) {
764 rc = -EFAULT;
765 goto err_crypto_info;
766 }
767
768 if (tx) {
769 rc = tls_set_device_offload(sk, ctx);
770 conf = TLS_HW;
771 if (!rc) {
772 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
773 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
774 } else {
775 rc = tls_set_sw_offload(sk, ctx, 1);
776 if (rc)
777 goto err_crypto_info;
778 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
779 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
780 conf = TLS_SW;
781 }
782 } else {
783 rc = tls_set_device_offload_rx(sk, ctx);
784 conf = TLS_HW;
785 if (!rc) {
786 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
787 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
788 } else {
789 rc = tls_set_sw_offload(sk, ctx, 0);
790 if (rc)
791 goto err_crypto_info;
792 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
793 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
794 conf = TLS_SW;
795 }
796 tls_sw_strparser_arm(sk, ctx);
797 }
798
799 if (tx)
800 ctx->tx_conf = conf;
801 else
802 ctx->rx_conf = conf;
803 update_sk_prot(sk, ctx);
804 if (tx) {
805 ctx->sk_write_space = sk->sk_write_space;
806 sk->sk_write_space = tls_write_space;
807 } else {
808 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
809
810 tls_strp_check_rcv(&rx_ctx->strp);
811 }
812 return 0;
813
814err_crypto_info:
815 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
816 return rc;
817}
818
819static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
820 unsigned int optlen)
821{
822 struct tls_context *ctx = tls_get_ctx(sk);
823 unsigned int value;
824
825 if (sockptr_is_null(optval) || optlen != sizeof(value))
826 return -EINVAL;
827
828 if (copy_from_sockptr(&value, optval, sizeof(value)))
829 return -EFAULT;
830
831 if (value > 1)
832 return -EINVAL;
833
834 ctx->zerocopy_sendfile = value;
835
836 return 0;
837}
838
839static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
840 unsigned int optlen)
841{
842 struct tls_context *ctx = tls_get_ctx(sk);
843 u32 val;
844 int rc;
845
846 if (ctx->prot_info.version != TLS_1_3_VERSION ||
847 sockptr_is_null(optval) || optlen < sizeof(val))
848 return -EINVAL;
849
850 rc = copy_from_sockptr(&val, optval, sizeof(val));
851 if (rc)
852 return -EFAULT;
853 if (val > 1)
854 return -EINVAL;
855 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
856 if (rc < 1)
857 return rc == 0 ? -EINVAL : rc;
858
859 lock_sock(sk);
860 rc = -EINVAL;
861 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
862 ctx->rx_no_pad = val;
863 tls_update_rx_zc_capable(ctx);
864 rc = 0;
865 }
866 release_sock(sk);
867
868 return rc;
869}
870
871static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
872 unsigned int optlen)
873{
874 int rc = 0;
875
876 switch (optname) {
877 case TLS_TX:
878 case TLS_RX:
879 lock_sock(sk);
880 rc = do_tls_setsockopt_conf(sk, optval, optlen,
881 optname == TLS_TX);
882 release_sock(sk);
883 break;
884 case TLS_TX_ZEROCOPY_RO:
885 lock_sock(sk);
886 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
887 release_sock(sk);
888 break;
889 case TLS_RX_EXPECT_NO_PAD:
890 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
891 break;
892 default:
893 rc = -ENOPROTOOPT;
894 break;
895 }
896 return rc;
897}
898
899static int tls_setsockopt(struct sock *sk, int level, int optname,
900 sockptr_t optval, unsigned int optlen)
901{
902 struct tls_context *ctx = tls_get_ctx(sk);
903
904 if (level != SOL_TLS)
905 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
906 optlen);
907
908 return do_tls_setsockopt(sk, optname, optval, optlen);
909}
910
911struct tls_context *tls_ctx_create(struct sock *sk)
912{
913 struct inet_connection_sock *icsk = inet_csk(sk);
914 struct tls_context *ctx;
915
916 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
917 if (!ctx)
918 return NULL;
919
920 mutex_init(&ctx->tx_lock);
921 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
922 ctx->sk_proto = READ_ONCE(sk->sk_prot);
923 ctx->sk = sk;
924 return ctx;
925}
926
927static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
928 const struct proto_ops *base)
929{
930 ops[TLS_BASE][TLS_BASE] = *base;
931
932 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
933 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
934
935 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
936 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
937
938 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
939 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
940
941#ifdef CONFIG_TLS_DEVICE
942 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
943 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL;
944
945 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
946 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL;
947
948 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
949
950 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
951
952 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
953 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL;
954#endif
955#ifdef CONFIG_TLS_TOE
956 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
957#endif
958}
959
960static void tls_build_proto(struct sock *sk)
961{
962 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
963 struct proto *prot = READ_ONCE(sk->sk_prot);
964
965 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
966 if (ip_ver == TLSV6 &&
967 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
968 mutex_lock(&tcpv6_prot_mutex);
969 if (likely(prot != saved_tcpv6_prot)) {
970 build_protos(tls_prots[TLSV6], prot);
971 build_proto_ops(tls_proto_ops[TLSV6],
972 sk->sk_socket->ops);
973 smp_store_release(&saved_tcpv6_prot, prot);
974 }
975 mutex_unlock(&tcpv6_prot_mutex);
976 }
977
978 if (ip_ver == TLSV4 &&
979 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
980 mutex_lock(&tcpv4_prot_mutex);
981 if (likely(prot != saved_tcpv4_prot)) {
982 build_protos(tls_prots[TLSV4], prot);
983 build_proto_ops(tls_proto_ops[TLSV4],
984 sk->sk_socket->ops);
985 smp_store_release(&saved_tcpv4_prot, prot);
986 }
987 mutex_unlock(&tcpv4_prot_mutex);
988 }
989}
990
991static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
992 const struct proto *base)
993{
994 prot[TLS_BASE][TLS_BASE] = *base;
995 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
996 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
997 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
998
999 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1000 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
1001 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
1002
1003 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
1004 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
1005 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
1006 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
1007
1008 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
1009 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
1010 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
1011 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
1012
1013#ifdef CONFIG_TLS_DEVICE
1014 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1015 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
1016 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
1017
1018 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1019 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
1020 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
1021
1022 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1023
1024 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1025
1026 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1027#endif
1028#ifdef CONFIG_TLS_TOE
1029 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1030 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
1031 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
1032#endif
1033}
1034
1035static int tls_init(struct sock *sk)
1036{
1037 struct tls_context *ctx;
1038 int rc = 0;
1039
1040 tls_build_proto(sk);
1041
1042#ifdef CONFIG_TLS_TOE
1043 if (tls_toe_bypass(sk))
1044 return 0;
1045#endif
1046
1047 /* The TLS ulp is currently supported only for TCP sockets
1048 * in ESTABLISHED state.
1049 * Supporting sockets in LISTEN state will require us
1050 * to modify the accept implementation to clone rather then
1051 * share the ulp context.
1052 */
1053 if (sk->sk_state != TCP_ESTABLISHED)
1054 return -ENOTCONN;
1055
1056 /* allocate tls context */
1057 write_lock_bh(&sk->sk_callback_lock);
1058 ctx = tls_ctx_create(sk);
1059 if (!ctx) {
1060 rc = -ENOMEM;
1061 goto out;
1062 }
1063
1064 ctx->tx_conf = TLS_BASE;
1065 ctx->rx_conf = TLS_BASE;
1066 update_sk_prot(sk, ctx);
1067out:
1068 write_unlock_bh(&sk->sk_callback_lock);
1069 return rc;
1070}
1071
1072static void tls_update(struct sock *sk, struct proto *p,
1073 void (*write_space)(struct sock *sk))
1074{
1075 struct tls_context *ctx;
1076
1077 WARN_ON_ONCE(sk->sk_prot == p);
1078
1079 ctx = tls_get_ctx(sk);
1080 if (likely(ctx)) {
1081 ctx->sk_write_space = write_space;
1082 ctx->sk_proto = p;
1083 } else {
1084 /* Pairs with lockless read in sk_clone_lock(). */
1085 WRITE_ONCE(sk->sk_prot, p);
1086 sk->sk_write_space = write_space;
1087 }
1088}
1089
1090static u16 tls_user_config(struct tls_context *ctx, bool tx)
1091{
1092 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1093
1094 switch (config) {
1095 case TLS_BASE:
1096 return TLS_CONF_BASE;
1097 case TLS_SW:
1098 return TLS_CONF_SW;
1099 case TLS_HW:
1100 return TLS_CONF_HW;
1101 case TLS_HW_RECORD:
1102 return TLS_CONF_HW_RECORD;
1103 }
1104 return 0;
1105}
1106
1107static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1108{
1109 u16 version, cipher_type;
1110 struct tls_context *ctx;
1111 struct nlattr *start;
1112 int err;
1113
1114 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1115 if (!start)
1116 return -EMSGSIZE;
1117
1118 rcu_read_lock();
1119 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1120 if (!ctx) {
1121 err = 0;
1122 goto nla_failure;
1123 }
1124 version = ctx->prot_info.version;
1125 if (version) {
1126 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1127 if (err)
1128 goto nla_failure;
1129 }
1130 cipher_type = ctx->prot_info.cipher_type;
1131 if (cipher_type) {
1132 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1133 if (err)
1134 goto nla_failure;
1135 }
1136 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1137 if (err)
1138 goto nla_failure;
1139
1140 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1141 if (err)
1142 goto nla_failure;
1143
1144 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1145 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1146 if (err)
1147 goto nla_failure;
1148 }
1149 if (ctx->rx_no_pad) {
1150 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1151 if (err)
1152 goto nla_failure;
1153 }
1154
1155 rcu_read_unlock();
1156 nla_nest_end(skb, start);
1157 return 0;
1158
1159nla_failure:
1160 rcu_read_unlock();
1161 nla_nest_cancel(skb, start);
1162 return err;
1163}
1164
1165static size_t tls_get_info_size(const struct sock *sk)
1166{
1167 size_t size = 0;
1168
1169 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
1170 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
1171 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
1172 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
1173 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
1174 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */
1175 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */
1176 0;
1177
1178 return size;
1179}
1180
1181static int __net_init tls_init_net(struct net *net)
1182{
1183 int err;
1184
1185 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1186 if (!net->mib.tls_statistics)
1187 return -ENOMEM;
1188
1189 err = tls_proc_init(net);
1190 if (err)
1191 goto err_free_stats;
1192
1193 return 0;
1194err_free_stats:
1195 free_percpu(net->mib.tls_statistics);
1196 return err;
1197}
1198
1199static void __net_exit tls_exit_net(struct net *net)
1200{
1201 tls_proc_fini(net);
1202 free_percpu(net->mib.tls_statistics);
1203}
1204
1205static struct pernet_operations tls_proc_ops = {
1206 .init = tls_init_net,
1207 .exit = tls_exit_net,
1208};
1209
1210static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1211 .name = "tls",
1212 .owner = THIS_MODULE,
1213 .init = tls_init,
1214 .update = tls_update,
1215 .get_info = tls_get_info,
1216 .get_info_size = tls_get_info_size,
1217};
1218
1219static int __init tls_register(void)
1220{
1221 int err;
1222
1223 err = register_pernet_subsys(&tls_proc_ops);
1224 if (err)
1225 return err;
1226
1227 err = tls_strp_dev_init();
1228 if (err)
1229 goto err_pernet;
1230
1231 err = tls_device_init();
1232 if (err)
1233 goto err_strp;
1234
1235 tcp_register_ulp(&tcp_tls_ulp_ops);
1236
1237 return 0;
1238err_strp:
1239 tls_strp_dev_exit();
1240err_pernet:
1241 unregister_pernet_subsys(&tls_proc_ops);
1242 return err;
1243}
1244
1245static void __exit tls_unregister(void)
1246{
1247 tcp_unregister_ulp(&tcp_tls_ulp_ops);
1248 tls_strp_dev_exit();
1249 tls_device_cleanup();
1250 unregister_pernet_subsys(&tls_proc_ops);
1251}
1252
1253module_init(tls_register);
1254module_exit(tls_unregister);
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42#include <linux/inet_diag.h>
43
44#include <net/snmp.h>
45#include <net/tls.h>
46#include <net/tls_toe.h>
47
48MODULE_AUTHOR("Mellanox Technologies");
49MODULE_DESCRIPTION("Transport Layer Security Support");
50MODULE_LICENSE("Dual BSD/GPL");
51MODULE_ALIAS_TCP_ULP("tls");
52
53enum {
54 TLSV4,
55 TLSV6,
56 TLS_NUM_PROTS,
57};
58
59static const struct proto *saved_tcpv6_prot;
60static DEFINE_MUTEX(tcpv6_prot_mutex);
61static const struct proto *saved_tcpv4_prot;
62static DEFINE_MUTEX(tcpv4_prot_mutex);
63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
64static struct proto_ops tls_sw_proto_ops;
65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
66 const struct proto *base);
67
68void update_sk_prot(struct sock *sk, struct tls_context *ctx)
69{
70 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
71
72 WRITE_ONCE(sk->sk_prot,
73 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
74}
75
76int wait_on_pending_writer(struct sock *sk, long *timeo)
77{
78 int rc = 0;
79 DEFINE_WAIT_FUNC(wait, woken_wake_function);
80
81 add_wait_queue(sk_sleep(sk), &wait);
82 while (1) {
83 if (!*timeo) {
84 rc = -EAGAIN;
85 break;
86 }
87
88 if (signal_pending(current)) {
89 rc = sock_intr_errno(*timeo);
90 break;
91 }
92
93 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
94 break;
95 }
96 remove_wait_queue(sk_sleep(sk), &wait);
97 return rc;
98}
99
100int tls_push_sg(struct sock *sk,
101 struct tls_context *ctx,
102 struct scatterlist *sg,
103 u16 first_offset,
104 int flags)
105{
106 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107 int ret = 0;
108 struct page *p;
109 size_t size;
110 int offset = first_offset;
111
112 size = sg->length - offset;
113 offset += sg->offset;
114
115 ctx->in_tcp_sendpages = true;
116 while (1) {
117 if (sg_is_last(sg))
118 sendpage_flags = flags;
119
120 /* is sending application-limited? */
121 tcp_rate_check_app_limited(sk);
122 p = sg_page(sg);
123retry:
124 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126 if (ret != size) {
127 if (ret > 0) {
128 offset += ret;
129 size -= ret;
130 goto retry;
131 }
132
133 offset -= sg->offset;
134 ctx->partially_sent_offset = offset;
135 ctx->partially_sent_record = (void *)sg;
136 ctx->in_tcp_sendpages = false;
137 return ret;
138 }
139
140 put_page(p);
141 sk_mem_uncharge(sk, sg->length);
142 sg = sg_next(sg);
143 if (!sg)
144 break;
145
146 offset = sg->offset;
147 size = sg->length;
148 }
149
150 ctx->in_tcp_sendpages = false;
151
152 return 0;
153}
154
155static int tls_handle_open_record(struct sock *sk, int flags)
156{
157 struct tls_context *ctx = tls_get_ctx(sk);
158
159 if (tls_is_pending_open_record(ctx))
160 return ctx->push_pending_record(sk, flags);
161
162 return 0;
163}
164
165int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166 unsigned char *record_type)
167{
168 struct cmsghdr *cmsg;
169 int rc = -EINVAL;
170
171 for_each_cmsghdr(cmsg, msg) {
172 if (!CMSG_OK(msg, cmsg))
173 return -EINVAL;
174 if (cmsg->cmsg_level != SOL_TLS)
175 continue;
176
177 switch (cmsg->cmsg_type) {
178 case TLS_SET_RECORD_TYPE:
179 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180 return -EINVAL;
181
182 if (msg->msg_flags & MSG_MORE)
183 return -EINVAL;
184
185 rc = tls_handle_open_record(sk, msg->msg_flags);
186 if (rc)
187 return rc;
188
189 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
190 rc = 0;
191 break;
192 default:
193 return -EINVAL;
194 }
195 }
196
197 return rc;
198}
199
200int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201 int flags)
202{
203 struct scatterlist *sg;
204 u16 offset;
205
206 sg = ctx->partially_sent_record;
207 offset = ctx->partially_sent_offset;
208
209 ctx->partially_sent_record = NULL;
210 return tls_push_sg(sk, ctx, sg, offset, flags);
211}
212
213void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214{
215 struct scatterlist *sg;
216
217 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218 put_page(sg_page(sg));
219 sk_mem_uncharge(sk, sg->length);
220 }
221 ctx->partially_sent_record = NULL;
222}
223
224static void tls_write_space(struct sock *sk)
225{
226 struct tls_context *ctx = tls_get_ctx(sk);
227
228 /* If in_tcp_sendpages call lower protocol write space handler
229 * to ensure we wake up any waiting operations there. For example
230 * if do_tcp_sendpages where to call sk_wait_event.
231 */
232 if (ctx->in_tcp_sendpages) {
233 ctx->sk_write_space(sk);
234 return;
235 }
236
237#ifdef CONFIG_TLS_DEVICE
238 if (ctx->tx_conf == TLS_HW)
239 tls_device_write_space(sk, ctx);
240 else
241#endif
242 tls_sw_write_space(sk, ctx);
243
244 ctx->sk_write_space(sk);
245}
246
247/**
248 * tls_ctx_free() - free TLS ULP context
249 * @sk: socket to with @ctx is attached
250 * @ctx: TLS context structure
251 *
252 * Free TLS context. If @sk is %NULL caller guarantees that the socket
253 * to which @ctx was attached has no outstanding references.
254 */
255void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256{
257 if (!ctx)
258 return;
259
260 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262 mutex_destroy(&ctx->tx_lock);
263
264 if (sk)
265 kfree_rcu(ctx, rcu);
266 else
267 kfree(ctx);
268}
269
270static void tls_sk_proto_cleanup(struct sock *sk,
271 struct tls_context *ctx, long timeo)
272{
273 if (unlikely(sk->sk_write_pending) &&
274 !wait_on_pending_writer(sk, &timeo))
275 tls_handle_open_record(sk, 0);
276
277 /* We need these for tls_sw_fallback handling of other packets */
278 if (ctx->tx_conf == TLS_SW) {
279 kfree(ctx->tx.rec_seq);
280 kfree(ctx->tx.iv);
281 tls_sw_release_resources_tx(sk);
282 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283 } else if (ctx->tx_conf == TLS_HW) {
284 tls_device_free_resources_tx(sk);
285 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286 }
287
288 if (ctx->rx_conf == TLS_SW) {
289 tls_sw_release_resources_rx(sk);
290 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291 } else if (ctx->rx_conf == TLS_HW) {
292 tls_device_offload_cleanup_rx(sk);
293 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294 }
295}
296
297static void tls_sk_proto_close(struct sock *sk, long timeout)
298{
299 struct inet_connection_sock *icsk = inet_csk(sk);
300 struct tls_context *ctx = tls_get_ctx(sk);
301 long timeo = sock_sndtimeo(sk, 0);
302 bool free_ctx;
303
304 if (ctx->tx_conf == TLS_SW)
305 tls_sw_cancel_work_tx(ctx);
306
307 lock_sock(sk);
308 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
309
310 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311 tls_sk_proto_cleanup(sk, ctx, timeo);
312
313 write_lock_bh(&sk->sk_callback_lock);
314 if (free_ctx)
315 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317 if (sk->sk_write_space == tls_write_space)
318 sk->sk_write_space = ctx->sk_write_space;
319 write_unlock_bh(&sk->sk_callback_lock);
320 release_sock(sk);
321 if (ctx->tx_conf == TLS_SW)
322 tls_sw_free_ctx_tx(ctx);
323 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324 tls_sw_strparser_done(ctx);
325 if (ctx->rx_conf == TLS_SW)
326 tls_sw_free_ctx_rx(ctx);
327 ctx->sk_proto->close(sk, timeout);
328
329 if (free_ctx)
330 tls_ctx_free(sk, ctx);
331}
332
333static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
334 int __user *optlen, int tx)
335{
336 int rc = 0;
337 struct tls_context *ctx = tls_get_ctx(sk);
338 struct tls_crypto_info *crypto_info;
339 struct cipher_context *cctx;
340 int len;
341
342 if (get_user(len, optlen))
343 return -EFAULT;
344
345 if (!optval || (len < sizeof(*crypto_info))) {
346 rc = -EINVAL;
347 goto out;
348 }
349
350 if (!ctx) {
351 rc = -EBUSY;
352 goto out;
353 }
354
355 /* get user crypto info */
356 if (tx) {
357 crypto_info = &ctx->crypto_send.info;
358 cctx = &ctx->tx;
359 } else {
360 crypto_info = &ctx->crypto_recv.info;
361 cctx = &ctx->rx;
362 }
363
364 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
365 rc = -EBUSY;
366 goto out;
367 }
368
369 if (len == sizeof(*crypto_info)) {
370 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
371 rc = -EFAULT;
372 goto out;
373 }
374
375 switch (crypto_info->cipher_type) {
376 case TLS_CIPHER_AES_GCM_128: {
377 struct tls12_crypto_info_aes_gcm_128 *
378 crypto_info_aes_gcm_128 =
379 container_of(crypto_info,
380 struct tls12_crypto_info_aes_gcm_128,
381 info);
382
383 if (len != sizeof(*crypto_info_aes_gcm_128)) {
384 rc = -EINVAL;
385 goto out;
386 }
387 lock_sock(sk);
388 memcpy(crypto_info_aes_gcm_128->iv,
389 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
390 TLS_CIPHER_AES_GCM_128_IV_SIZE);
391 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
392 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
393 release_sock(sk);
394 if (copy_to_user(optval,
395 crypto_info_aes_gcm_128,
396 sizeof(*crypto_info_aes_gcm_128)))
397 rc = -EFAULT;
398 break;
399 }
400 case TLS_CIPHER_AES_GCM_256: {
401 struct tls12_crypto_info_aes_gcm_256 *
402 crypto_info_aes_gcm_256 =
403 container_of(crypto_info,
404 struct tls12_crypto_info_aes_gcm_256,
405 info);
406
407 if (len != sizeof(*crypto_info_aes_gcm_256)) {
408 rc = -EINVAL;
409 goto out;
410 }
411 lock_sock(sk);
412 memcpy(crypto_info_aes_gcm_256->iv,
413 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
414 TLS_CIPHER_AES_GCM_256_IV_SIZE);
415 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
416 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
417 release_sock(sk);
418 if (copy_to_user(optval,
419 crypto_info_aes_gcm_256,
420 sizeof(*crypto_info_aes_gcm_256)))
421 rc = -EFAULT;
422 break;
423 }
424 default:
425 rc = -EINVAL;
426 }
427
428out:
429 return rc;
430}
431
432static int do_tls_getsockopt(struct sock *sk, int optname,
433 char __user *optval, int __user *optlen)
434{
435 int rc = 0;
436
437 switch (optname) {
438 case TLS_TX:
439 case TLS_RX:
440 rc = do_tls_getsockopt_conf(sk, optval, optlen,
441 optname == TLS_TX);
442 break;
443 default:
444 rc = -ENOPROTOOPT;
445 break;
446 }
447 return rc;
448}
449
450static int tls_getsockopt(struct sock *sk, int level, int optname,
451 char __user *optval, int __user *optlen)
452{
453 struct tls_context *ctx = tls_get_ctx(sk);
454
455 if (level != SOL_TLS)
456 return ctx->sk_proto->getsockopt(sk, level,
457 optname, optval, optlen);
458
459 return do_tls_getsockopt(sk, optname, optval, optlen);
460}
461
462static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
463 unsigned int optlen, int tx)
464{
465 struct tls_crypto_info *crypto_info;
466 struct tls_crypto_info *alt_crypto_info;
467 struct tls_context *ctx = tls_get_ctx(sk);
468 size_t optsize;
469 int rc = 0;
470 int conf;
471
472 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
473 rc = -EINVAL;
474 goto out;
475 }
476
477 if (tx) {
478 crypto_info = &ctx->crypto_send.info;
479 alt_crypto_info = &ctx->crypto_recv.info;
480 } else {
481 crypto_info = &ctx->crypto_recv.info;
482 alt_crypto_info = &ctx->crypto_send.info;
483 }
484
485 /* Currently we don't support set crypto info more than one time */
486 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
487 rc = -EBUSY;
488 goto out;
489 }
490
491 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
492 if (rc) {
493 rc = -EFAULT;
494 goto err_crypto_info;
495 }
496
497 /* check version */
498 if (crypto_info->version != TLS_1_2_VERSION &&
499 crypto_info->version != TLS_1_3_VERSION) {
500 rc = -EINVAL;
501 goto err_crypto_info;
502 }
503
504 /* Ensure that TLS version and ciphers are same in both directions */
505 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
506 if (alt_crypto_info->version != crypto_info->version ||
507 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
508 rc = -EINVAL;
509 goto err_crypto_info;
510 }
511 }
512
513 switch (crypto_info->cipher_type) {
514 case TLS_CIPHER_AES_GCM_128:
515 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
516 break;
517 case TLS_CIPHER_AES_GCM_256: {
518 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
519 break;
520 }
521 case TLS_CIPHER_AES_CCM_128:
522 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
523 break;
524 case TLS_CIPHER_CHACHA20_POLY1305:
525 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
526 break;
527 default:
528 rc = -EINVAL;
529 goto err_crypto_info;
530 }
531
532 if (optlen != optsize) {
533 rc = -EINVAL;
534 goto err_crypto_info;
535 }
536
537 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
538 sizeof(*crypto_info),
539 optlen - sizeof(*crypto_info));
540 if (rc) {
541 rc = -EFAULT;
542 goto err_crypto_info;
543 }
544
545 if (tx) {
546 rc = tls_set_device_offload(sk, ctx);
547 conf = TLS_HW;
548 if (!rc) {
549 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
550 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
551 } else {
552 rc = tls_set_sw_offload(sk, ctx, 1);
553 if (rc)
554 goto err_crypto_info;
555 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
556 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
557 conf = TLS_SW;
558 }
559 } else {
560 rc = tls_set_device_offload_rx(sk, ctx);
561 conf = TLS_HW;
562 if (!rc) {
563 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
564 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
565 } else {
566 rc = tls_set_sw_offload(sk, ctx, 0);
567 if (rc)
568 goto err_crypto_info;
569 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
570 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
571 conf = TLS_SW;
572 }
573 tls_sw_strparser_arm(sk, ctx);
574 }
575
576 if (tx)
577 ctx->tx_conf = conf;
578 else
579 ctx->rx_conf = conf;
580 update_sk_prot(sk, ctx);
581 if (tx) {
582 ctx->sk_write_space = sk->sk_write_space;
583 sk->sk_write_space = tls_write_space;
584 } else {
585 sk->sk_socket->ops = &tls_sw_proto_ops;
586 }
587 goto out;
588
589err_crypto_info:
590 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
591out:
592 return rc;
593}
594
595static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
596 unsigned int optlen)
597{
598 int rc = 0;
599
600 switch (optname) {
601 case TLS_TX:
602 case TLS_RX:
603 lock_sock(sk);
604 rc = do_tls_setsockopt_conf(sk, optval, optlen,
605 optname == TLS_TX);
606 release_sock(sk);
607 break;
608 default:
609 rc = -ENOPROTOOPT;
610 break;
611 }
612 return rc;
613}
614
615static int tls_setsockopt(struct sock *sk, int level, int optname,
616 sockptr_t optval, unsigned int optlen)
617{
618 struct tls_context *ctx = tls_get_ctx(sk);
619
620 if (level != SOL_TLS)
621 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
622 optlen);
623
624 return do_tls_setsockopt(sk, optname, optval, optlen);
625}
626
627struct tls_context *tls_ctx_create(struct sock *sk)
628{
629 struct inet_connection_sock *icsk = inet_csk(sk);
630 struct tls_context *ctx;
631
632 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
633 if (!ctx)
634 return NULL;
635
636 mutex_init(&ctx->tx_lock);
637 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
638 ctx->sk_proto = READ_ONCE(sk->sk_prot);
639 ctx->sk = sk;
640 return ctx;
641}
642
643static void tls_build_proto(struct sock *sk)
644{
645 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
646 struct proto *prot = READ_ONCE(sk->sk_prot);
647
648 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
649 if (ip_ver == TLSV6 &&
650 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
651 mutex_lock(&tcpv6_prot_mutex);
652 if (likely(prot != saved_tcpv6_prot)) {
653 build_protos(tls_prots[TLSV6], prot);
654 smp_store_release(&saved_tcpv6_prot, prot);
655 }
656 mutex_unlock(&tcpv6_prot_mutex);
657 }
658
659 if (ip_ver == TLSV4 &&
660 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
661 mutex_lock(&tcpv4_prot_mutex);
662 if (likely(prot != saved_tcpv4_prot)) {
663 build_protos(tls_prots[TLSV4], prot);
664 smp_store_release(&saved_tcpv4_prot, prot);
665 }
666 mutex_unlock(&tcpv4_prot_mutex);
667 }
668}
669
670static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
671 const struct proto *base)
672{
673 prot[TLS_BASE][TLS_BASE] = *base;
674 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
675 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
676 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
677
678 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
679 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
680 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
681
682 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
683 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
684 prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
685 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
686
687 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
688 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
689 prot[TLS_SW][TLS_SW].stream_memory_read = tls_sw_stream_read;
690 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
691
692#ifdef CONFIG_TLS_DEVICE
693 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
694 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
695 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
696
697 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
698 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
699 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
700
701 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
702
703 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
704
705 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
706#endif
707#ifdef CONFIG_TLS_TOE
708 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
709 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
710 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
711#endif
712}
713
714static int tls_init(struct sock *sk)
715{
716 struct tls_context *ctx;
717 int rc = 0;
718
719 tls_build_proto(sk);
720
721#ifdef CONFIG_TLS_TOE
722 if (tls_toe_bypass(sk))
723 return 0;
724#endif
725
726 /* The TLS ulp is currently supported only for TCP sockets
727 * in ESTABLISHED state.
728 * Supporting sockets in LISTEN state will require us
729 * to modify the accept implementation to clone rather then
730 * share the ulp context.
731 */
732 if (sk->sk_state != TCP_ESTABLISHED)
733 return -ENOTCONN;
734
735 /* allocate tls context */
736 write_lock_bh(&sk->sk_callback_lock);
737 ctx = tls_ctx_create(sk);
738 if (!ctx) {
739 rc = -ENOMEM;
740 goto out;
741 }
742
743 ctx->tx_conf = TLS_BASE;
744 ctx->rx_conf = TLS_BASE;
745 update_sk_prot(sk, ctx);
746out:
747 write_unlock_bh(&sk->sk_callback_lock);
748 return rc;
749}
750
751static void tls_update(struct sock *sk, struct proto *p,
752 void (*write_space)(struct sock *sk))
753{
754 struct tls_context *ctx;
755
756 ctx = tls_get_ctx(sk);
757 if (likely(ctx)) {
758 ctx->sk_write_space = write_space;
759 ctx->sk_proto = p;
760 } else {
761 /* Pairs with lockless read in sk_clone_lock(). */
762 WRITE_ONCE(sk->sk_prot, p);
763 sk->sk_write_space = write_space;
764 }
765}
766
767static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
768{
769 u16 version, cipher_type;
770 struct tls_context *ctx;
771 struct nlattr *start;
772 int err;
773
774 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
775 if (!start)
776 return -EMSGSIZE;
777
778 rcu_read_lock();
779 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
780 if (!ctx) {
781 err = 0;
782 goto nla_failure;
783 }
784 version = ctx->prot_info.version;
785 if (version) {
786 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
787 if (err)
788 goto nla_failure;
789 }
790 cipher_type = ctx->prot_info.cipher_type;
791 if (cipher_type) {
792 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
793 if (err)
794 goto nla_failure;
795 }
796 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
797 if (err)
798 goto nla_failure;
799
800 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
801 if (err)
802 goto nla_failure;
803
804 rcu_read_unlock();
805 nla_nest_end(skb, start);
806 return 0;
807
808nla_failure:
809 rcu_read_unlock();
810 nla_nest_cancel(skb, start);
811 return err;
812}
813
814static size_t tls_get_info_size(const struct sock *sk)
815{
816 size_t size = 0;
817
818 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
819 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
820 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
821 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
822 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
823 0;
824
825 return size;
826}
827
828static int __net_init tls_init_net(struct net *net)
829{
830 int err;
831
832 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
833 if (!net->mib.tls_statistics)
834 return -ENOMEM;
835
836 err = tls_proc_init(net);
837 if (err)
838 goto err_free_stats;
839
840 return 0;
841err_free_stats:
842 free_percpu(net->mib.tls_statistics);
843 return err;
844}
845
846static void __net_exit tls_exit_net(struct net *net)
847{
848 tls_proc_fini(net);
849 free_percpu(net->mib.tls_statistics);
850}
851
852static struct pernet_operations tls_proc_ops = {
853 .init = tls_init_net,
854 .exit = tls_exit_net,
855};
856
857static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
858 .name = "tls",
859 .owner = THIS_MODULE,
860 .init = tls_init,
861 .update = tls_update,
862 .get_info = tls_get_info,
863 .get_info_size = tls_get_info_size,
864};
865
866static int __init tls_register(void)
867{
868 int err;
869
870 err = register_pernet_subsys(&tls_proc_ops);
871 if (err)
872 return err;
873
874 tls_sw_proto_ops = inet_stream_ops;
875 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
876 tls_sw_proto_ops.sendpage_locked = tls_sw_sendpage_locked;
877
878 tls_device_init();
879 tcp_register_ulp(&tcp_tls_ulp_ops);
880
881 return 0;
882}
883
884static void __exit tls_unregister(void)
885{
886 tcp_unregister_ulp(&tcp_tls_ulp_ops);
887 tls_device_cleanup();
888 unregister_pernet_subsys(&tls_proc_ops);
889}
890
891module_init(tls_register);
892module_exit(tls_unregister);