Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/module.h>
  35
  36#include <net/tcp.h>
  37#include <net/inet_common.h>
  38#include <linux/highmem.h>
  39#include <linux/netdevice.h>
  40#include <linux/sched/signal.h>
  41#include <linux/inetdevice.h>
  42#include <linux/inet_diag.h>
  43
  44#include <net/snmp.h>
  45#include <net/tls.h>
  46#include <net/tls_toe.h>
  47
  48#include "tls.h"
  49
  50MODULE_AUTHOR("Mellanox Technologies");
  51MODULE_DESCRIPTION("Transport Layer Security Support");
  52MODULE_LICENSE("Dual BSD/GPL");
  53MODULE_ALIAS_TCP_ULP("tls");
  54
  55enum {
  56	TLSV4,
  57	TLSV6,
  58	TLS_NUM_PROTS,
  59};
  60
  61#define CIPHER_SIZE_DESC(cipher) [cipher] = { \
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  62	.iv = cipher ## _IV_SIZE, \
  63	.key = cipher ## _KEY_SIZE, \
  64	.salt = cipher ## _SALT_SIZE, \
  65	.tag = cipher ## _TAG_SIZE, \
  66	.rec_seq = cipher ## _REC_SEQ_SIZE, \
 
 
 
  67}
  68
  69const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
  70	CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
  71	CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
  72	CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
  73	CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
  74	CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
  75	CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
 
 
  76};
  77
 
 
 
 
 
 
 
 
 
  78static const struct proto *saved_tcpv6_prot;
  79static DEFINE_MUTEX(tcpv6_prot_mutex);
  80static const struct proto *saved_tcpv4_prot;
  81static DEFINE_MUTEX(tcpv4_prot_mutex);
  82static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
  83static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
  84static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
  85			 const struct proto *base);
  86
  87void update_sk_prot(struct sock *sk, struct tls_context *ctx)
  88{
  89	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
  90
  91	WRITE_ONCE(sk->sk_prot,
  92		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
  93	WRITE_ONCE(sk->sk_socket->ops,
  94		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
  95}
  96
  97int wait_on_pending_writer(struct sock *sk, long *timeo)
  98{
  99	int rc = 0;
 100	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 
 101
 102	add_wait_queue(sk_sleep(sk), &wait);
 103	while (1) {
 104		if (!*timeo) {
 105			rc = -EAGAIN;
 106			break;
 107		}
 108
 109		if (signal_pending(current)) {
 110			rc = sock_intr_errno(*timeo);
 111			break;
 112		}
 113
 114		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 
 
 
 
 115			break;
 
 116	}
 117	remove_wait_queue(sk_sleep(sk), &wait);
 118	return rc;
 119}
 120
 121int tls_push_sg(struct sock *sk,
 122		struct tls_context *ctx,
 123		struct scatterlist *sg,
 124		u16 first_offset,
 125		int flags)
 126{
 127	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
 
 
 
 128	int ret = 0;
 129	struct page *p;
 130	size_t size;
 131	int offset = first_offset;
 132
 133	size = sg->length - offset;
 134	offset += sg->offset;
 135
 136	ctx->in_tcp_sendpages = true;
 137	while (1) {
 138		if (sg_is_last(sg))
 139			sendpage_flags = flags;
 140
 141		/* is sending application-limited? */
 142		tcp_rate_check_app_limited(sk);
 143		p = sg_page(sg);
 144retry:
 145		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
 
 
 
 146
 147		if (ret != size) {
 148			if (ret > 0) {
 149				offset += ret;
 150				size -= ret;
 151				goto retry;
 152			}
 153
 154			offset -= sg->offset;
 155			ctx->partially_sent_offset = offset;
 156			ctx->partially_sent_record = (void *)sg;
 157			ctx->in_tcp_sendpages = false;
 158			return ret;
 159		}
 160
 161		put_page(p);
 162		sk_mem_uncharge(sk, sg->length);
 163		sg = sg_next(sg);
 164		if (!sg)
 165			break;
 166
 167		offset = sg->offset;
 168		size = sg->length;
 169	}
 170
 171	ctx->in_tcp_sendpages = false;
 172
 173	return 0;
 174}
 175
 176static int tls_handle_open_record(struct sock *sk, int flags)
 177{
 178	struct tls_context *ctx = tls_get_ctx(sk);
 179
 180	if (tls_is_pending_open_record(ctx))
 181		return ctx->push_pending_record(sk, flags);
 182
 183	return 0;
 184}
 185
 186int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
 187		     unsigned char *record_type)
 188{
 189	struct cmsghdr *cmsg;
 190	int rc = -EINVAL;
 191
 192	for_each_cmsghdr(cmsg, msg) {
 193		if (!CMSG_OK(msg, cmsg))
 194			return -EINVAL;
 195		if (cmsg->cmsg_level != SOL_TLS)
 196			continue;
 197
 198		switch (cmsg->cmsg_type) {
 199		case TLS_SET_RECORD_TYPE:
 200			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
 201				return -EINVAL;
 202
 203			if (msg->msg_flags & MSG_MORE)
 204				return -EINVAL;
 205
 206			rc = tls_handle_open_record(sk, msg->msg_flags);
 207			if (rc)
 208				return rc;
 209
 210			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
 211			rc = 0;
 212			break;
 213		default:
 214			return -EINVAL;
 215		}
 216	}
 217
 218	return rc;
 219}
 220
 221int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
 222			    int flags)
 223{
 224	struct scatterlist *sg;
 225	u16 offset;
 226
 227	sg = ctx->partially_sent_record;
 228	offset = ctx->partially_sent_offset;
 229
 230	ctx->partially_sent_record = NULL;
 231	return tls_push_sg(sk, ctx, sg, offset, flags);
 232}
 233
 234void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
 235{
 236	struct scatterlist *sg;
 237
 238	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
 239		put_page(sg_page(sg));
 240		sk_mem_uncharge(sk, sg->length);
 241	}
 242	ctx->partially_sent_record = NULL;
 243}
 244
 245static void tls_write_space(struct sock *sk)
 246{
 247	struct tls_context *ctx = tls_get_ctx(sk);
 248
 249	/* If in_tcp_sendpages call lower protocol write space handler
 250	 * to ensure we wake up any waiting operations there. For example
 251	 * if do_tcp_sendpages where to call sk_wait_event.
 252	 */
 253	if (ctx->in_tcp_sendpages) {
 254		ctx->sk_write_space(sk);
 255		return;
 256	}
 257
 258#ifdef CONFIG_TLS_DEVICE
 259	if (ctx->tx_conf == TLS_HW)
 260		tls_device_write_space(sk, ctx);
 261	else
 262#endif
 263		tls_sw_write_space(sk, ctx);
 264
 265	ctx->sk_write_space(sk);
 266}
 267
 268/**
 269 * tls_ctx_free() - free TLS ULP context
 270 * @sk:  socket to with @ctx is attached
 271 * @ctx: TLS context structure
 272 *
 273 * Free TLS context. If @sk is %NULL caller guarantees that the socket
 274 * to which @ctx was attached has no outstanding references.
 275 */
 276void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
 277{
 278	if (!ctx)
 279		return;
 280
 281	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
 282	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
 283	mutex_destroy(&ctx->tx_lock);
 284
 285	if (sk)
 286		kfree_rcu(ctx, rcu);
 287	else
 288		kfree(ctx);
 289}
 290
 291static void tls_sk_proto_cleanup(struct sock *sk,
 292				 struct tls_context *ctx, long timeo)
 293{
 294	if (unlikely(sk->sk_write_pending) &&
 295	    !wait_on_pending_writer(sk, &timeo))
 296		tls_handle_open_record(sk, 0);
 297
 298	/* We need these for tls_sw_fallback handling of other packets */
 299	if (ctx->tx_conf == TLS_SW) {
 300		kfree(ctx->tx.rec_seq);
 301		kfree(ctx->tx.iv);
 302		tls_sw_release_resources_tx(sk);
 303		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 304	} else if (ctx->tx_conf == TLS_HW) {
 305		tls_device_free_resources_tx(sk);
 306		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 307	}
 308
 309	if (ctx->rx_conf == TLS_SW) {
 310		tls_sw_release_resources_rx(sk);
 311		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 312	} else if (ctx->rx_conf == TLS_HW) {
 313		tls_device_offload_cleanup_rx(sk);
 314		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 315	}
 316}
 317
 318static void tls_sk_proto_close(struct sock *sk, long timeout)
 319{
 320	struct inet_connection_sock *icsk = inet_csk(sk);
 321	struct tls_context *ctx = tls_get_ctx(sk);
 322	long timeo = sock_sndtimeo(sk, 0);
 323	bool free_ctx;
 324
 325	if (ctx->tx_conf == TLS_SW)
 326		tls_sw_cancel_work_tx(ctx);
 327
 328	lock_sock(sk);
 329	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
 330
 331	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
 332		tls_sk_proto_cleanup(sk, ctx, timeo);
 333
 334	write_lock_bh(&sk->sk_callback_lock);
 335	if (free_ctx)
 336		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
 337	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
 338	if (sk->sk_write_space == tls_write_space)
 339		sk->sk_write_space = ctx->sk_write_space;
 340	write_unlock_bh(&sk->sk_callback_lock);
 341	release_sock(sk);
 342	if (ctx->tx_conf == TLS_SW)
 343		tls_sw_free_ctx_tx(ctx);
 344	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 345		tls_sw_strparser_done(ctx);
 346	if (ctx->rx_conf == TLS_SW)
 347		tls_sw_free_ctx_rx(ctx);
 348	ctx->sk_proto->close(sk, timeout);
 349
 350	if (free_ctx)
 351		tls_ctx_free(sk, ctx);
 352}
 353
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 354static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
 355				  int __user *optlen, int tx)
 356{
 357	int rc = 0;
 
 358	struct tls_context *ctx = tls_get_ctx(sk);
 359	struct tls_crypto_info *crypto_info;
 360	struct cipher_context *cctx;
 361	int len;
 362
 363	if (get_user(len, optlen))
 364		return -EFAULT;
 365
 366	if (!optval || (len < sizeof(*crypto_info))) {
 367		rc = -EINVAL;
 368		goto out;
 369	}
 370
 371	if (!ctx) {
 372		rc = -EBUSY;
 373		goto out;
 374	}
 375
 376	/* get user crypto info */
 377	if (tx) {
 378		crypto_info = &ctx->crypto_send.info;
 379		cctx = &ctx->tx;
 380	} else {
 381		crypto_info = &ctx->crypto_recv.info;
 382		cctx = &ctx->rx;
 383	}
 384
 385	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
 386		rc = -EBUSY;
 387		goto out;
 388	}
 389
 390	if (len == sizeof(*crypto_info)) {
 391		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
 392			rc = -EFAULT;
 393		goto out;
 394	}
 395
 396	switch (crypto_info->cipher_type) {
 397	case TLS_CIPHER_AES_GCM_128: {
 398		struct tls12_crypto_info_aes_gcm_128 *
 399		  crypto_info_aes_gcm_128 =
 400		  container_of(crypto_info,
 401			       struct tls12_crypto_info_aes_gcm_128,
 402			       info);
 403
 404		if (len != sizeof(*crypto_info_aes_gcm_128)) {
 405			rc = -EINVAL;
 406			goto out;
 407		}
 408		lock_sock(sk);
 409		memcpy(crypto_info_aes_gcm_128->iv,
 410		       cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
 411		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
 412		memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
 413		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
 414		release_sock(sk);
 415		if (copy_to_user(optval,
 416				 crypto_info_aes_gcm_128,
 417				 sizeof(*crypto_info_aes_gcm_128)))
 418			rc = -EFAULT;
 419		break;
 420	}
 421	case TLS_CIPHER_AES_GCM_256: {
 422		struct tls12_crypto_info_aes_gcm_256 *
 423		  crypto_info_aes_gcm_256 =
 424		  container_of(crypto_info,
 425			       struct tls12_crypto_info_aes_gcm_256,
 426			       info);
 427
 428		if (len != sizeof(*crypto_info_aes_gcm_256)) {
 429			rc = -EINVAL;
 430			goto out;
 431		}
 432		lock_sock(sk);
 433		memcpy(crypto_info_aes_gcm_256->iv,
 434		       cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
 435		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
 436		memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
 437		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
 438		release_sock(sk);
 439		if (copy_to_user(optval,
 440				 crypto_info_aes_gcm_256,
 441				 sizeof(*crypto_info_aes_gcm_256)))
 442			rc = -EFAULT;
 443		break;
 444	}
 445	case TLS_CIPHER_AES_CCM_128: {
 446		struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
 447			container_of(crypto_info,
 448				struct tls12_crypto_info_aes_ccm_128, info);
 449
 450		if (len != sizeof(*aes_ccm_128)) {
 451			rc = -EINVAL;
 452			goto out;
 453		}
 454		lock_sock(sk);
 455		memcpy(aes_ccm_128->iv,
 456		       cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
 457		       TLS_CIPHER_AES_CCM_128_IV_SIZE);
 458		memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
 459		       TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
 460		release_sock(sk);
 461		if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
 462			rc = -EFAULT;
 463		break;
 464	}
 465	case TLS_CIPHER_CHACHA20_POLY1305: {
 466		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
 467			container_of(crypto_info,
 468				struct tls12_crypto_info_chacha20_poly1305,
 469				info);
 470
 471		if (len != sizeof(*chacha20_poly1305)) {
 472			rc = -EINVAL;
 473			goto out;
 474		}
 475		lock_sock(sk);
 476		memcpy(chacha20_poly1305->iv,
 477		       cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
 478		       TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
 479		memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
 480		       TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
 481		release_sock(sk);
 482		if (copy_to_user(optval, chacha20_poly1305,
 483				sizeof(*chacha20_poly1305)))
 484			rc = -EFAULT;
 485		break;
 486	}
 487	case TLS_CIPHER_SM4_GCM: {
 488		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
 489			container_of(crypto_info,
 490				struct tls12_crypto_info_sm4_gcm, info);
 491
 492		if (len != sizeof(*sm4_gcm_info)) {
 493			rc = -EINVAL;
 494			goto out;
 495		}
 496		lock_sock(sk);
 497		memcpy(sm4_gcm_info->iv,
 498		       cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
 499		       TLS_CIPHER_SM4_GCM_IV_SIZE);
 500		memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
 501		       TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
 502		release_sock(sk);
 503		if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
 504			rc = -EFAULT;
 505		break;
 506	}
 507	case TLS_CIPHER_SM4_CCM: {
 508		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
 509			container_of(crypto_info,
 510				struct tls12_crypto_info_sm4_ccm, info);
 511
 512		if (len != sizeof(*sm4_ccm_info)) {
 513			rc = -EINVAL;
 514			goto out;
 515		}
 516		lock_sock(sk);
 517		memcpy(sm4_ccm_info->iv,
 518		       cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
 519		       TLS_CIPHER_SM4_CCM_IV_SIZE);
 520		memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
 521		       TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
 522		release_sock(sk);
 523		if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
 524			rc = -EFAULT;
 525		break;
 526	}
 527	case TLS_CIPHER_ARIA_GCM_128: {
 528		struct tls12_crypto_info_aria_gcm_128 *
 529		  crypto_info_aria_gcm_128 =
 530		  container_of(crypto_info,
 531			       struct tls12_crypto_info_aria_gcm_128,
 532			       info);
 533
 534		if (len != sizeof(*crypto_info_aria_gcm_128)) {
 535			rc = -EINVAL;
 536			goto out;
 537		}
 538		lock_sock(sk);
 539		memcpy(crypto_info_aria_gcm_128->iv,
 540		       cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
 541		       TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
 542		memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
 543		       TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
 544		release_sock(sk);
 545		if (copy_to_user(optval,
 546				 crypto_info_aria_gcm_128,
 547				 sizeof(*crypto_info_aria_gcm_128)))
 548			rc = -EFAULT;
 549		break;
 550	}
 551	case TLS_CIPHER_ARIA_GCM_256: {
 552		struct tls12_crypto_info_aria_gcm_256 *
 553		  crypto_info_aria_gcm_256 =
 554		  container_of(crypto_info,
 555			       struct tls12_crypto_info_aria_gcm_256,
 556			       info);
 557
 558		if (len != sizeof(*crypto_info_aria_gcm_256)) {
 559			rc = -EINVAL;
 560			goto out;
 561		}
 562		lock_sock(sk);
 563		memcpy(crypto_info_aria_gcm_256->iv,
 564		       cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
 565		       TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
 566		memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
 567		       TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
 568		release_sock(sk);
 569		if (copy_to_user(optval,
 570				 crypto_info_aria_gcm_256,
 571				 sizeof(*crypto_info_aria_gcm_256)))
 572			rc = -EFAULT;
 573		break;
 574	}
 575	default:
 576		rc = -EINVAL;
 
 577	}
 578
 
 
 
 
 
 
 
 
 579out:
 580	return rc;
 581}
 582
 583static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
 584				   int __user *optlen)
 585{
 586	struct tls_context *ctx = tls_get_ctx(sk);
 587	unsigned int value;
 588	int len;
 589
 590	if (get_user(len, optlen))
 591		return -EFAULT;
 592
 593	if (len != sizeof(value))
 594		return -EINVAL;
 595
 596	value = ctx->zerocopy_sendfile;
 597	if (copy_to_user(optval, &value, sizeof(value)))
 598		return -EFAULT;
 599
 600	return 0;
 601}
 602
 603static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
 604				    int __user *optlen)
 605{
 606	struct tls_context *ctx = tls_get_ctx(sk);
 607	int value, len;
 608
 609	if (ctx->prot_info.version != TLS_1_3_VERSION)
 610		return -EINVAL;
 611
 612	if (get_user(len, optlen))
 613		return -EFAULT;
 614	if (len < sizeof(value))
 615		return -EINVAL;
 616
 617	lock_sock(sk);
 618	value = -EINVAL;
 619	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 620		value = ctx->rx_no_pad;
 621	release_sock(sk);
 622	if (value < 0)
 623		return value;
 624
 625	if (put_user(sizeof(value), optlen))
 626		return -EFAULT;
 627	if (copy_to_user(optval, &value, sizeof(value)))
 628		return -EFAULT;
 629
 630	return 0;
 631}
 632
 633static int do_tls_getsockopt(struct sock *sk, int optname,
 634			     char __user *optval, int __user *optlen)
 635{
 636	int rc = 0;
 637
 
 
 638	switch (optname) {
 639	case TLS_TX:
 640	case TLS_RX:
 641		rc = do_tls_getsockopt_conf(sk, optval, optlen,
 642					    optname == TLS_TX);
 643		break;
 644	case TLS_TX_ZEROCOPY_RO:
 645		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
 646		break;
 647	case TLS_RX_EXPECT_NO_PAD:
 648		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
 649		break;
 650	default:
 651		rc = -ENOPROTOOPT;
 652		break;
 653	}
 
 
 
 654	return rc;
 655}
 656
 657static int tls_getsockopt(struct sock *sk, int level, int optname,
 658			  char __user *optval, int __user *optlen)
 659{
 660	struct tls_context *ctx = tls_get_ctx(sk);
 661
 662	if (level != SOL_TLS)
 663		return ctx->sk_proto->getsockopt(sk, level,
 664						 optname, optval, optlen);
 665
 666	return do_tls_getsockopt(sk, optname, optval, optlen);
 667}
 668
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 669static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
 670				  unsigned int optlen, int tx)
 671{
 672	struct tls_crypto_info *crypto_info;
 673	struct tls_crypto_info *alt_crypto_info;
 674	struct tls_context *ctx = tls_get_ctx(sk);
 675	size_t optsize;
 676	int rc = 0;
 677	int conf;
 678
 679	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
 680		return -EINVAL;
 681
 682	if (tx) {
 683		crypto_info = &ctx->crypto_send.info;
 684		alt_crypto_info = &ctx->crypto_recv.info;
 685	} else {
 686		crypto_info = &ctx->crypto_recv.info;
 687		alt_crypto_info = &ctx->crypto_send.info;
 688	}
 689
 690	/* Currently we don't support set crypto info more than one time */
 691	if (TLS_CRYPTO_INFO_READY(crypto_info))
 692		return -EBUSY;
 693
 694	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
 695	if (rc) {
 696		rc = -EFAULT;
 697		goto err_crypto_info;
 698	}
 699
 700	/* check version */
 701	if (crypto_info->version != TLS_1_2_VERSION &&
 702	    crypto_info->version != TLS_1_3_VERSION) {
 703		rc = -EINVAL;
 704		goto err_crypto_info;
 705	}
 706
 707	/* Ensure that TLS version and ciphers are same in both directions */
 708	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
 709		if (alt_crypto_info->version != crypto_info->version ||
 710		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
 711			rc = -EINVAL;
 712			goto err_crypto_info;
 713		}
 714	}
 715
 716	switch (crypto_info->cipher_type) {
 717	case TLS_CIPHER_AES_GCM_128:
 718		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
 719		break;
 720	case TLS_CIPHER_AES_GCM_256: {
 721		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
 722		break;
 723	}
 724	case TLS_CIPHER_AES_CCM_128:
 725		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
 726		break;
 727	case TLS_CIPHER_CHACHA20_POLY1305:
 728		optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
 729		break;
 730	case TLS_CIPHER_SM4_GCM:
 731		optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
 732		break;
 733	case TLS_CIPHER_SM4_CCM:
 734		optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
 735		break;
 736	case TLS_CIPHER_ARIA_GCM_128:
 737		if (crypto_info->version != TLS_1_2_VERSION) {
 738			rc = -EINVAL;
 739			goto err_crypto_info;
 740		}
 741		optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
 742		break;
 743	case TLS_CIPHER_ARIA_GCM_256:
 744		if (crypto_info->version != TLS_1_2_VERSION) {
 745			rc = -EINVAL;
 746			goto err_crypto_info;
 747		}
 748		optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
 749		break;
 750	default:
 751		rc = -EINVAL;
 752		goto err_crypto_info;
 753	}
 754
 755	if (optlen != optsize) {
 756		rc = -EINVAL;
 757		goto err_crypto_info;
 758	}
 759
 760	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
 761				      sizeof(*crypto_info),
 762				      optlen - sizeof(*crypto_info));
 763	if (rc) {
 764		rc = -EFAULT;
 765		goto err_crypto_info;
 766	}
 767
 768	if (tx) {
 769		rc = tls_set_device_offload(sk, ctx);
 770		conf = TLS_HW;
 771		if (!rc) {
 772			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
 773			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 774		} else {
 775			rc = tls_set_sw_offload(sk, ctx, 1);
 776			if (rc)
 777				goto err_crypto_info;
 778			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
 779			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 780			conf = TLS_SW;
 781		}
 782	} else {
 783		rc = tls_set_device_offload_rx(sk, ctx);
 784		conf = TLS_HW;
 785		if (!rc) {
 786			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
 787			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 788		} else {
 789			rc = tls_set_sw_offload(sk, ctx, 0);
 790			if (rc)
 791				goto err_crypto_info;
 792			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
 793			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 794			conf = TLS_SW;
 795		}
 796		tls_sw_strparser_arm(sk, ctx);
 797	}
 798
 799	if (tx)
 800		ctx->tx_conf = conf;
 801	else
 802		ctx->rx_conf = conf;
 803	update_sk_prot(sk, ctx);
 804	if (tx) {
 805		ctx->sk_write_space = sk->sk_write_space;
 806		sk->sk_write_space = tls_write_space;
 807	} else {
 808		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
 809
 810		tls_strp_check_rcv(&rx_ctx->strp);
 811	}
 812	return 0;
 813
 814err_crypto_info:
 815	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
 816	return rc;
 817}
 818
 819static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
 820				   unsigned int optlen)
 821{
 822	struct tls_context *ctx = tls_get_ctx(sk);
 823	unsigned int value;
 824
 825	if (sockptr_is_null(optval) || optlen != sizeof(value))
 826		return -EINVAL;
 827
 828	if (copy_from_sockptr(&value, optval, sizeof(value)))
 829		return -EFAULT;
 830
 831	if (value > 1)
 832		return -EINVAL;
 833
 834	ctx->zerocopy_sendfile = value;
 835
 836	return 0;
 837}
 838
 839static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
 840				    unsigned int optlen)
 841{
 842	struct tls_context *ctx = tls_get_ctx(sk);
 843	u32 val;
 844	int rc;
 845
 846	if (ctx->prot_info.version != TLS_1_3_VERSION ||
 847	    sockptr_is_null(optval) || optlen < sizeof(val))
 848		return -EINVAL;
 849
 850	rc = copy_from_sockptr(&val, optval, sizeof(val));
 851	if (rc)
 852		return -EFAULT;
 853	if (val > 1)
 854		return -EINVAL;
 855	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
 856	if (rc < 1)
 857		return rc == 0 ? -EINVAL : rc;
 858
 859	lock_sock(sk);
 860	rc = -EINVAL;
 861	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
 862		ctx->rx_no_pad = val;
 863		tls_update_rx_zc_capable(ctx);
 864		rc = 0;
 865	}
 866	release_sock(sk);
 867
 868	return rc;
 869}
 870
 871static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
 872			     unsigned int optlen)
 873{
 874	int rc = 0;
 875
 876	switch (optname) {
 877	case TLS_TX:
 878	case TLS_RX:
 879		lock_sock(sk);
 880		rc = do_tls_setsockopt_conf(sk, optval, optlen,
 881					    optname == TLS_TX);
 882		release_sock(sk);
 883		break;
 884	case TLS_TX_ZEROCOPY_RO:
 885		lock_sock(sk);
 886		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
 887		release_sock(sk);
 888		break;
 889	case TLS_RX_EXPECT_NO_PAD:
 890		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
 891		break;
 892	default:
 893		rc = -ENOPROTOOPT;
 894		break;
 895	}
 896	return rc;
 897}
 898
 899static int tls_setsockopt(struct sock *sk, int level, int optname,
 900			  sockptr_t optval, unsigned int optlen)
 901{
 902	struct tls_context *ctx = tls_get_ctx(sk);
 903
 904	if (level != SOL_TLS)
 905		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
 906						 optlen);
 907
 908	return do_tls_setsockopt(sk, optname, optval, optlen);
 909}
 910
 911struct tls_context *tls_ctx_create(struct sock *sk)
 912{
 913	struct inet_connection_sock *icsk = inet_csk(sk);
 914	struct tls_context *ctx;
 915
 916	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
 917	if (!ctx)
 918		return NULL;
 919
 920	mutex_init(&ctx->tx_lock);
 921	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
 922	ctx->sk_proto = READ_ONCE(sk->sk_prot);
 923	ctx->sk = sk;
 
 
 
 
 
 
 
 
 
 924	return ctx;
 925}
 926
 927static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 928			    const struct proto_ops *base)
 929{
 930	ops[TLS_BASE][TLS_BASE] = *base;
 931
 932	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 933	ops[TLS_SW  ][TLS_BASE].sendpage_locked	= tls_sw_sendpage_locked;
 934
 935	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
 936	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
 
 
 937
 938	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
 939	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
 
 
 940
 941#ifdef CONFIG_TLS_DEVICE
 942	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 943	ops[TLS_HW  ][TLS_BASE].sendpage_locked	= NULL;
 944
 945	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
 946	ops[TLS_HW  ][TLS_SW  ].sendpage_locked	= NULL;
 947
 948	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
 949
 950	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
 951
 952	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
 953	ops[TLS_HW  ][TLS_HW  ].sendpage_locked	= NULL;
 954#endif
 955#ifdef CONFIG_TLS_TOE
 956	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
 957#endif
 958}
 959
 960static void tls_build_proto(struct sock *sk)
 961{
 962	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 963	struct proto *prot = READ_ONCE(sk->sk_prot);
 964
 965	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
 966	if (ip_ver == TLSV6 &&
 967	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
 968		mutex_lock(&tcpv6_prot_mutex);
 969		if (likely(prot != saved_tcpv6_prot)) {
 970			build_protos(tls_prots[TLSV6], prot);
 971			build_proto_ops(tls_proto_ops[TLSV6],
 972					sk->sk_socket->ops);
 973			smp_store_release(&saved_tcpv6_prot, prot);
 974		}
 975		mutex_unlock(&tcpv6_prot_mutex);
 976	}
 977
 978	if (ip_ver == TLSV4 &&
 979	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
 980		mutex_lock(&tcpv4_prot_mutex);
 981		if (likely(prot != saved_tcpv4_prot)) {
 982			build_protos(tls_prots[TLSV4], prot);
 983			build_proto_ops(tls_proto_ops[TLSV4],
 984					sk->sk_socket->ops);
 985			smp_store_release(&saved_tcpv4_prot, prot);
 986		}
 987		mutex_unlock(&tcpv4_prot_mutex);
 988	}
 989}
 990
 991static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 992			 const struct proto *base)
 993{
 994	prot[TLS_BASE][TLS_BASE] = *base;
 995	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
 996	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
 997	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
 998
 999	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1000	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
1001	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
1002
1003	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
1004	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
1005	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1006	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
1007
1008	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
1009	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
1010	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1011	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
1012
1013#ifdef CONFIG_TLS_DEVICE
1014	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1015	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
1016	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
1017
1018	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1019	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
1020	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
1021
1022	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1023
1024	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1025
1026	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1027#endif
1028#ifdef CONFIG_TLS_TOE
1029	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1030	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
1031	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
1032#endif
1033}
1034
1035static int tls_init(struct sock *sk)
1036{
1037	struct tls_context *ctx;
1038	int rc = 0;
1039
1040	tls_build_proto(sk);
1041
1042#ifdef CONFIG_TLS_TOE
1043	if (tls_toe_bypass(sk))
1044		return 0;
1045#endif
1046
1047	/* The TLS ulp is currently supported only for TCP sockets
1048	 * in ESTABLISHED state.
1049	 * Supporting sockets in LISTEN state will require us
1050	 * to modify the accept implementation to clone rather then
1051	 * share the ulp context.
1052	 */
1053	if (sk->sk_state != TCP_ESTABLISHED)
1054		return -ENOTCONN;
1055
1056	/* allocate tls context */
1057	write_lock_bh(&sk->sk_callback_lock);
1058	ctx = tls_ctx_create(sk);
1059	if (!ctx) {
1060		rc = -ENOMEM;
1061		goto out;
1062	}
1063
1064	ctx->tx_conf = TLS_BASE;
1065	ctx->rx_conf = TLS_BASE;
1066	update_sk_prot(sk, ctx);
1067out:
1068	write_unlock_bh(&sk->sk_callback_lock);
1069	return rc;
1070}
1071
1072static void tls_update(struct sock *sk, struct proto *p,
1073		       void (*write_space)(struct sock *sk))
1074{
1075	struct tls_context *ctx;
1076
1077	WARN_ON_ONCE(sk->sk_prot == p);
1078
1079	ctx = tls_get_ctx(sk);
1080	if (likely(ctx)) {
1081		ctx->sk_write_space = write_space;
1082		ctx->sk_proto = p;
1083	} else {
1084		/* Pairs with lockless read in sk_clone_lock(). */
1085		WRITE_ONCE(sk->sk_prot, p);
1086		sk->sk_write_space = write_space;
1087	}
1088}
1089
1090static u16 tls_user_config(struct tls_context *ctx, bool tx)
1091{
1092	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1093
1094	switch (config) {
1095	case TLS_BASE:
1096		return TLS_CONF_BASE;
1097	case TLS_SW:
1098		return TLS_CONF_SW;
1099	case TLS_HW:
1100		return TLS_CONF_HW;
1101	case TLS_HW_RECORD:
1102		return TLS_CONF_HW_RECORD;
1103	}
1104	return 0;
1105}
1106
1107static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1108{
1109	u16 version, cipher_type;
1110	struct tls_context *ctx;
1111	struct nlattr *start;
1112	int err;
1113
1114	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1115	if (!start)
1116		return -EMSGSIZE;
1117
1118	rcu_read_lock();
1119	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1120	if (!ctx) {
1121		err = 0;
1122		goto nla_failure;
1123	}
1124	version = ctx->prot_info.version;
1125	if (version) {
1126		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1127		if (err)
1128			goto nla_failure;
1129	}
1130	cipher_type = ctx->prot_info.cipher_type;
1131	if (cipher_type) {
1132		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1133		if (err)
1134			goto nla_failure;
1135	}
1136	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1137	if (err)
1138		goto nla_failure;
1139
1140	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1141	if (err)
1142		goto nla_failure;
1143
1144	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1145		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1146		if (err)
1147			goto nla_failure;
1148	}
1149	if (ctx->rx_no_pad) {
1150		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1151		if (err)
1152			goto nla_failure;
1153	}
1154
1155	rcu_read_unlock();
1156	nla_nest_end(skb, start);
1157	return 0;
1158
1159nla_failure:
1160	rcu_read_unlock();
1161	nla_nest_cancel(skb, start);
1162	return err;
1163}
1164
1165static size_t tls_get_info_size(const struct sock *sk)
1166{
1167	size_t size = 0;
1168
1169	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1170		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1171		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1172		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1173		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1174		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1175		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1176		0;
1177
1178	return size;
1179}
1180
1181static int __net_init tls_init_net(struct net *net)
1182{
1183	int err;
1184
1185	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1186	if (!net->mib.tls_statistics)
1187		return -ENOMEM;
1188
1189	err = tls_proc_init(net);
1190	if (err)
1191		goto err_free_stats;
1192
1193	return 0;
1194err_free_stats:
1195	free_percpu(net->mib.tls_statistics);
1196	return err;
1197}
1198
1199static void __net_exit tls_exit_net(struct net *net)
1200{
1201	tls_proc_fini(net);
1202	free_percpu(net->mib.tls_statistics);
1203}
1204
1205static struct pernet_operations tls_proc_ops = {
1206	.init = tls_init_net,
1207	.exit = tls_exit_net,
1208};
1209
1210static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1211	.name			= "tls",
1212	.owner			= THIS_MODULE,
1213	.init			= tls_init,
1214	.update			= tls_update,
1215	.get_info		= tls_get_info,
1216	.get_info_size		= tls_get_info_size,
1217};
1218
1219static int __init tls_register(void)
1220{
1221	int err;
1222
1223	err = register_pernet_subsys(&tls_proc_ops);
1224	if (err)
1225		return err;
1226
1227	err = tls_strp_dev_init();
1228	if (err)
1229		goto err_pernet;
1230
1231	err = tls_device_init();
1232	if (err)
1233		goto err_strp;
1234
1235	tcp_register_ulp(&tcp_tls_ulp_ops);
1236
1237	return 0;
1238err_strp:
1239	tls_strp_dev_exit();
1240err_pernet:
1241	unregister_pernet_subsys(&tls_proc_ops);
1242	return err;
1243}
1244
1245static void __exit tls_unregister(void)
1246{
1247	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1248	tls_strp_dev_exit();
1249	tls_device_cleanup();
1250	unregister_pernet_subsys(&tls_proc_ops);
1251}
1252
1253module_init(tls_register);
1254module_exit(tls_unregister);
v6.9.4
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/module.h>
  35
  36#include <net/tcp.h>
  37#include <net/inet_common.h>
  38#include <linux/highmem.h>
  39#include <linux/netdevice.h>
  40#include <linux/sched/signal.h>
  41#include <linux/inetdevice.h>
  42#include <linux/inet_diag.h>
  43
  44#include <net/snmp.h>
  45#include <net/tls.h>
  46#include <net/tls_toe.h>
  47
  48#include "tls.h"
  49
  50MODULE_AUTHOR("Mellanox Technologies");
  51MODULE_DESCRIPTION("Transport Layer Security Support");
  52MODULE_LICENSE("Dual BSD/GPL");
  53MODULE_ALIAS_TCP_ULP("tls");
  54
  55enum {
  56	TLSV4,
  57	TLSV6,
  58	TLS_NUM_PROTS,
  59};
  60
  61#define CHECK_CIPHER_DESC(cipher,ci)				\
  62	static_assert(cipher ## _IV_SIZE <= TLS_MAX_IV_SIZE);		\
  63	static_assert(cipher ## _SALT_SIZE <= TLS_MAX_SALT_SIZE);		\
  64	static_assert(cipher ## _REC_SEQ_SIZE <= TLS_MAX_REC_SEQ_SIZE);	\
  65	static_assert(cipher ## _TAG_SIZE == TLS_TAG_SIZE);		\
  66	static_assert(sizeof_field(struct ci, iv) == cipher ## _IV_SIZE);	\
  67	static_assert(sizeof_field(struct ci, key) == cipher ## _KEY_SIZE);	\
  68	static_assert(sizeof_field(struct ci, salt) == cipher ## _SALT_SIZE);	\
  69	static_assert(sizeof_field(struct ci, rec_seq) == cipher ## _REC_SEQ_SIZE);
  70
  71#define __CIPHER_DESC(ci) \
  72	.iv_offset = offsetof(struct ci, iv), \
  73	.key_offset = offsetof(struct ci, key), \
  74	.salt_offset = offsetof(struct ci, salt), \
  75	.rec_seq_offset = offsetof(struct ci, rec_seq), \
  76	.crypto_info = sizeof(struct ci)
  77
  78#define CIPHER_DESC(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = {	\
  79	.nonce = cipher ## _IV_SIZE, \
  80	.iv = cipher ## _IV_SIZE, \
  81	.key = cipher ## _KEY_SIZE, \
  82	.salt = cipher ## _SALT_SIZE, \
  83	.tag = cipher ## _TAG_SIZE, \
  84	.rec_seq = cipher ## _REC_SEQ_SIZE, \
  85	.cipher_name = algname,	\
  86	.offloadable = _offloadable, \
  87	__CIPHER_DESC(ci), \
  88}
  89
  90#define CIPHER_DESC_NONCE0(cipher,ci,algname,_offloadable) [cipher - TLS_CIPHER_MIN] = { \
  91	.nonce = 0, \
  92	.iv = cipher ## _IV_SIZE, \
  93	.key = cipher ## _KEY_SIZE, \
  94	.salt = cipher ## _SALT_SIZE, \
  95	.tag = cipher ## _TAG_SIZE, \
  96	.rec_seq = cipher ## _REC_SEQ_SIZE, \
  97	.cipher_name = algname,	\
  98	.offloadable = _offloadable, \
  99	__CIPHER_DESC(ci), \
 100}
 101
 102const struct tls_cipher_desc tls_cipher_desc[TLS_CIPHER_MAX + 1 - TLS_CIPHER_MIN] = {
 103	CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128, "gcm(aes)", true),
 104	CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256, "gcm(aes)", true),
 105	CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128, "ccm(aes)", false),
 106	CIPHER_DESC_NONCE0(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305, "rfc7539(chacha20,poly1305)", false),
 107	CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm, "gcm(sm4)", false),
 108	CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm, "ccm(sm4)", false),
 109	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128, "gcm(aria)", false),
 110	CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256, "gcm(aria)", false),
 111};
 112
 113CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_128, tls12_crypto_info_aes_gcm_128);
 114CHECK_CIPHER_DESC(TLS_CIPHER_AES_GCM_256, tls12_crypto_info_aes_gcm_256);
 115CHECK_CIPHER_DESC(TLS_CIPHER_AES_CCM_128, tls12_crypto_info_aes_ccm_128);
 116CHECK_CIPHER_DESC(TLS_CIPHER_CHACHA20_POLY1305, tls12_crypto_info_chacha20_poly1305);
 117CHECK_CIPHER_DESC(TLS_CIPHER_SM4_GCM, tls12_crypto_info_sm4_gcm);
 118CHECK_CIPHER_DESC(TLS_CIPHER_SM4_CCM, tls12_crypto_info_sm4_ccm);
 119CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_128, tls12_crypto_info_aria_gcm_128);
 120CHECK_CIPHER_DESC(TLS_CIPHER_ARIA_GCM_256, tls12_crypto_info_aria_gcm_256);
 121
 122static const struct proto *saved_tcpv6_prot;
 123static DEFINE_MUTEX(tcpv6_prot_mutex);
 124static const struct proto *saved_tcpv4_prot;
 125static DEFINE_MUTEX(tcpv4_prot_mutex);
 126static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 127static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 128static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 129			 const struct proto *base);
 130
 131void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 132{
 133	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 134
 135	WRITE_ONCE(sk->sk_prot,
 136		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
 137	WRITE_ONCE(sk->sk_socket->ops,
 138		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
 139}
 140
 141int wait_on_pending_writer(struct sock *sk, long *timeo)
 142{
 
 143	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 144	int ret, rc = 0;
 145
 146	add_wait_queue(sk_sleep(sk), &wait);
 147	while (1) {
 148		if (!*timeo) {
 149			rc = -EAGAIN;
 150			break;
 151		}
 152
 153		if (signal_pending(current)) {
 154			rc = sock_intr_errno(*timeo);
 155			break;
 156		}
 157
 158		ret = sk_wait_event(sk, timeo,
 159				    !READ_ONCE(sk->sk_write_pending), &wait);
 160		if (ret) {
 161			if (ret < 0)
 162				rc = ret;
 163			break;
 164		}
 165	}
 166	remove_wait_queue(sk_sleep(sk), &wait);
 167	return rc;
 168}
 169
 170int tls_push_sg(struct sock *sk,
 171		struct tls_context *ctx,
 172		struct scatterlist *sg,
 173		u16 first_offset,
 174		int flags)
 175{
 176	struct bio_vec bvec;
 177	struct msghdr msg = {
 178		.msg_flags = MSG_SPLICE_PAGES | flags,
 179	};
 180	int ret = 0;
 181	struct page *p;
 182	size_t size;
 183	int offset = first_offset;
 184
 185	size = sg->length - offset;
 186	offset += sg->offset;
 187
 188	ctx->splicing_pages = true;
 189	while (1) {
 
 
 
 190		/* is sending application-limited? */
 191		tcp_rate_check_app_limited(sk);
 192		p = sg_page(sg);
 193retry:
 194		bvec_set_page(&bvec, p, size, offset);
 195		iov_iter_bvec(&msg.msg_iter, ITER_SOURCE, &bvec, 1, size);
 196
 197		ret = tcp_sendmsg_locked(sk, &msg, size);
 198
 199		if (ret != size) {
 200			if (ret > 0) {
 201				offset += ret;
 202				size -= ret;
 203				goto retry;
 204			}
 205
 206			offset -= sg->offset;
 207			ctx->partially_sent_offset = offset;
 208			ctx->partially_sent_record = (void *)sg;
 209			ctx->splicing_pages = false;
 210			return ret;
 211		}
 212
 213		put_page(p);
 214		sk_mem_uncharge(sk, sg->length);
 215		sg = sg_next(sg);
 216		if (!sg)
 217			break;
 218
 219		offset = sg->offset;
 220		size = sg->length;
 221	}
 222
 223	ctx->splicing_pages = false;
 224
 225	return 0;
 226}
 227
 228static int tls_handle_open_record(struct sock *sk, int flags)
 229{
 230	struct tls_context *ctx = tls_get_ctx(sk);
 231
 232	if (tls_is_pending_open_record(ctx))
 233		return ctx->push_pending_record(sk, flags);
 234
 235	return 0;
 236}
 237
 238int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
 239		     unsigned char *record_type)
 240{
 241	struct cmsghdr *cmsg;
 242	int rc = -EINVAL;
 243
 244	for_each_cmsghdr(cmsg, msg) {
 245		if (!CMSG_OK(msg, cmsg))
 246			return -EINVAL;
 247		if (cmsg->cmsg_level != SOL_TLS)
 248			continue;
 249
 250		switch (cmsg->cmsg_type) {
 251		case TLS_SET_RECORD_TYPE:
 252			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
 253				return -EINVAL;
 254
 255			if (msg->msg_flags & MSG_MORE)
 256				return -EINVAL;
 257
 258			rc = tls_handle_open_record(sk, msg->msg_flags);
 259			if (rc)
 260				return rc;
 261
 262			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
 263			rc = 0;
 264			break;
 265		default:
 266			return -EINVAL;
 267		}
 268	}
 269
 270	return rc;
 271}
 272
 273int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
 274			    int flags)
 275{
 276	struct scatterlist *sg;
 277	u16 offset;
 278
 279	sg = ctx->partially_sent_record;
 280	offset = ctx->partially_sent_offset;
 281
 282	ctx->partially_sent_record = NULL;
 283	return tls_push_sg(sk, ctx, sg, offset, flags);
 284}
 285
 286void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
 287{
 288	struct scatterlist *sg;
 289
 290	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
 291		put_page(sg_page(sg));
 292		sk_mem_uncharge(sk, sg->length);
 293	}
 294	ctx->partially_sent_record = NULL;
 295}
 296
 297static void tls_write_space(struct sock *sk)
 298{
 299	struct tls_context *ctx = tls_get_ctx(sk);
 300
 301	/* If splicing_pages call lower protocol write space handler
 302	 * to ensure we wake up any waiting operations there. For example
 303	 * if splicing pages where to call sk_wait_event.
 304	 */
 305	if (ctx->splicing_pages) {
 306		ctx->sk_write_space(sk);
 307		return;
 308	}
 309
 310#ifdef CONFIG_TLS_DEVICE
 311	if (ctx->tx_conf == TLS_HW)
 312		tls_device_write_space(sk, ctx);
 313	else
 314#endif
 315		tls_sw_write_space(sk, ctx);
 316
 317	ctx->sk_write_space(sk);
 318}
 319
 320/**
 321 * tls_ctx_free() - free TLS ULP context
 322 * @sk:  socket to with @ctx is attached
 323 * @ctx: TLS context structure
 324 *
 325 * Free TLS context. If @sk is %NULL caller guarantees that the socket
 326 * to which @ctx was attached has no outstanding references.
 327 */
 328void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
 329{
 330	if (!ctx)
 331		return;
 332
 333	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
 334	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
 335	mutex_destroy(&ctx->tx_lock);
 336
 337	if (sk)
 338		kfree_rcu(ctx, rcu);
 339	else
 340		kfree(ctx);
 341}
 342
 343static void tls_sk_proto_cleanup(struct sock *sk,
 344				 struct tls_context *ctx, long timeo)
 345{
 346	if (unlikely(sk->sk_write_pending) &&
 347	    !wait_on_pending_writer(sk, &timeo))
 348		tls_handle_open_record(sk, 0);
 349
 350	/* We need these for tls_sw_fallback handling of other packets */
 351	if (ctx->tx_conf == TLS_SW) {
 
 
 352		tls_sw_release_resources_tx(sk);
 353		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 354	} else if (ctx->tx_conf == TLS_HW) {
 355		tls_device_free_resources_tx(sk);
 356		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 357	}
 358
 359	if (ctx->rx_conf == TLS_SW) {
 360		tls_sw_release_resources_rx(sk);
 361		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 362	} else if (ctx->rx_conf == TLS_HW) {
 363		tls_device_offload_cleanup_rx(sk);
 364		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 365	}
 366}
 367
 368static void tls_sk_proto_close(struct sock *sk, long timeout)
 369{
 370	struct inet_connection_sock *icsk = inet_csk(sk);
 371	struct tls_context *ctx = tls_get_ctx(sk);
 372	long timeo = sock_sndtimeo(sk, 0);
 373	bool free_ctx;
 374
 375	if (ctx->tx_conf == TLS_SW)
 376		tls_sw_cancel_work_tx(ctx);
 377
 378	lock_sock(sk);
 379	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
 380
 381	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
 382		tls_sk_proto_cleanup(sk, ctx, timeo);
 383
 384	write_lock_bh(&sk->sk_callback_lock);
 385	if (free_ctx)
 386		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
 387	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
 388	if (sk->sk_write_space == tls_write_space)
 389		sk->sk_write_space = ctx->sk_write_space;
 390	write_unlock_bh(&sk->sk_callback_lock);
 391	release_sock(sk);
 392	if (ctx->tx_conf == TLS_SW)
 393		tls_sw_free_ctx_tx(ctx);
 394	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 395		tls_sw_strparser_done(ctx);
 396	if (ctx->rx_conf == TLS_SW)
 397		tls_sw_free_ctx_rx(ctx);
 398	ctx->sk_proto->close(sk, timeout);
 399
 400	if (free_ctx)
 401		tls_ctx_free(sk, ctx);
 402}
 403
 404static __poll_t tls_sk_poll(struct file *file, struct socket *sock,
 405			    struct poll_table_struct *wait)
 406{
 407	struct tls_sw_context_rx *ctx;
 408	struct tls_context *tls_ctx;
 409	struct sock *sk = sock->sk;
 410	struct sk_psock *psock;
 411	__poll_t mask = 0;
 412	u8 shutdown;
 413	int state;
 414
 415	mask = tcp_poll(file, sock, wait);
 416
 417	state = inet_sk_state_load(sk);
 418	shutdown = READ_ONCE(sk->sk_shutdown);
 419	if (unlikely(state != TCP_ESTABLISHED || shutdown & RCV_SHUTDOWN))
 420		return mask;
 421
 422	tls_ctx = tls_get_ctx(sk);
 423	ctx = tls_sw_ctx_rx(tls_ctx);
 424	psock = sk_psock_get(sk);
 425
 426	if (skb_queue_empty_lockless(&ctx->rx_list) &&
 427	    !tls_strp_msg_ready(ctx) &&
 428	    sk_psock_queue_empty(psock))
 429		mask &= ~(EPOLLIN | EPOLLRDNORM);
 430
 431	if (psock)
 432		sk_psock_put(sk, psock);
 433
 434	return mask;
 435}
 436
 437static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
 438				  int __user *optlen, int tx)
 439{
 440	int rc = 0;
 441	const struct tls_cipher_desc *cipher_desc;
 442	struct tls_context *ctx = tls_get_ctx(sk);
 443	struct tls_crypto_info *crypto_info;
 444	struct cipher_context *cctx;
 445	int len;
 446
 447	if (get_user(len, optlen))
 448		return -EFAULT;
 449
 450	if (!optval || (len < sizeof(*crypto_info))) {
 451		rc = -EINVAL;
 452		goto out;
 453	}
 454
 455	if (!ctx) {
 456		rc = -EBUSY;
 457		goto out;
 458	}
 459
 460	/* get user crypto info */
 461	if (tx) {
 462		crypto_info = &ctx->crypto_send.info;
 463		cctx = &ctx->tx;
 464	} else {
 465		crypto_info = &ctx->crypto_recv.info;
 466		cctx = &ctx->rx;
 467	}
 468
 469	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
 470		rc = -EBUSY;
 471		goto out;
 472	}
 473
 474	if (len == sizeof(*crypto_info)) {
 475		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
 476			rc = -EFAULT;
 477		goto out;
 478	}
 479
 480	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
 481	if (!cipher_desc || len != cipher_desc->crypto_info) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 482		rc = -EINVAL;
 483		goto out;
 484	}
 485
 486	memcpy(crypto_info_iv(crypto_info, cipher_desc),
 487	       cctx->iv + cipher_desc->salt, cipher_desc->iv);
 488	memcpy(crypto_info_rec_seq(crypto_info, cipher_desc),
 489	       cctx->rec_seq, cipher_desc->rec_seq);
 490
 491	if (copy_to_user(optval, crypto_info, cipher_desc->crypto_info))
 492		rc = -EFAULT;
 493
 494out:
 495	return rc;
 496}
 497
 498static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
 499				   int __user *optlen)
 500{
 501	struct tls_context *ctx = tls_get_ctx(sk);
 502	unsigned int value;
 503	int len;
 504
 505	if (get_user(len, optlen))
 506		return -EFAULT;
 507
 508	if (len != sizeof(value))
 509		return -EINVAL;
 510
 511	value = ctx->zerocopy_sendfile;
 512	if (copy_to_user(optval, &value, sizeof(value)))
 513		return -EFAULT;
 514
 515	return 0;
 516}
 517
 518static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
 519				    int __user *optlen)
 520{
 521	struct tls_context *ctx = tls_get_ctx(sk);
 522	int value, len;
 523
 524	if (ctx->prot_info.version != TLS_1_3_VERSION)
 525		return -EINVAL;
 526
 527	if (get_user(len, optlen))
 528		return -EFAULT;
 529	if (len < sizeof(value))
 530		return -EINVAL;
 531
 
 532	value = -EINVAL;
 533	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 534		value = ctx->rx_no_pad;
 
 535	if (value < 0)
 536		return value;
 537
 538	if (put_user(sizeof(value), optlen))
 539		return -EFAULT;
 540	if (copy_to_user(optval, &value, sizeof(value)))
 541		return -EFAULT;
 542
 543	return 0;
 544}
 545
 546static int do_tls_getsockopt(struct sock *sk, int optname,
 547			     char __user *optval, int __user *optlen)
 548{
 549	int rc = 0;
 550
 551	lock_sock(sk);
 552
 553	switch (optname) {
 554	case TLS_TX:
 555	case TLS_RX:
 556		rc = do_tls_getsockopt_conf(sk, optval, optlen,
 557					    optname == TLS_TX);
 558		break;
 559	case TLS_TX_ZEROCOPY_RO:
 560		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
 561		break;
 562	case TLS_RX_EXPECT_NO_PAD:
 563		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
 564		break;
 565	default:
 566		rc = -ENOPROTOOPT;
 567		break;
 568	}
 569
 570	release_sock(sk);
 571
 572	return rc;
 573}
 574
 575static int tls_getsockopt(struct sock *sk, int level, int optname,
 576			  char __user *optval, int __user *optlen)
 577{
 578	struct tls_context *ctx = tls_get_ctx(sk);
 579
 580	if (level != SOL_TLS)
 581		return ctx->sk_proto->getsockopt(sk, level,
 582						 optname, optval, optlen);
 583
 584	return do_tls_getsockopt(sk, optname, optval, optlen);
 585}
 586
 587static int validate_crypto_info(const struct tls_crypto_info *crypto_info,
 588				const struct tls_crypto_info *alt_crypto_info)
 589{
 590	if (crypto_info->version != TLS_1_2_VERSION &&
 591	    crypto_info->version != TLS_1_3_VERSION)
 592		return -EINVAL;
 593
 594	switch (crypto_info->cipher_type) {
 595	case TLS_CIPHER_ARIA_GCM_128:
 596	case TLS_CIPHER_ARIA_GCM_256:
 597		if (crypto_info->version != TLS_1_2_VERSION)
 598			return -EINVAL;
 599		break;
 600	}
 601
 602	/* Ensure that TLS version and ciphers are same in both directions */
 603	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
 604		if (alt_crypto_info->version != crypto_info->version ||
 605		    alt_crypto_info->cipher_type != crypto_info->cipher_type)
 606			return -EINVAL;
 607	}
 608
 609	return 0;
 610}
 611
 612static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
 613				  unsigned int optlen, int tx)
 614{
 615	struct tls_crypto_info *crypto_info;
 616	struct tls_crypto_info *alt_crypto_info;
 617	struct tls_context *ctx = tls_get_ctx(sk);
 618	const struct tls_cipher_desc *cipher_desc;
 619	int rc = 0;
 620	int conf;
 621
 622	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
 623		return -EINVAL;
 624
 625	if (tx) {
 626		crypto_info = &ctx->crypto_send.info;
 627		alt_crypto_info = &ctx->crypto_recv.info;
 628	} else {
 629		crypto_info = &ctx->crypto_recv.info;
 630		alt_crypto_info = &ctx->crypto_send.info;
 631	}
 632
 633	/* Currently we don't support set crypto info more than one time */
 634	if (TLS_CRYPTO_INFO_READY(crypto_info))
 635		return -EBUSY;
 636
 637	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
 638	if (rc) {
 639		rc = -EFAULT;
 640		goto err_crypto_info;
 641	}
 642
 643	rc = validate_crypto_info(crypto_info, alt_crypto_info);
 644	if (rc)
 
 
 645		goto err_crypto_info;
 
 
 
 
 
 
 
 
 
 
 646
 647	cipher_desc = get_cipher_desc(crypto_info->cipher_type);
 648	if (!cipher_desc) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 649		rc = -EINVAL;
 650		goto err_crypto_info;
 651	}
 652
 653	if (optlen != cipher_desc->crypto_info) {
 654		rc = -EINVAL;
 655		goto err_crypto_info;
 656	}
 657
 658	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
 659				      sizeof(*crypto_info),
 660				      optlen - sizeof(*crypto_info));
 661	if (rc) {
 662		rc = -EFAULT;
 663		goto err_crypto_info;
 664	}
 665
 666	if (tx) {
 667		rc = tls_set_device_offload(sk);
 668		conf = TLS_HW;
 669		if (!rc) {
 670			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
 671			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 672		} else {
 673			rc = tls_set_sw_offload(sk, 1);
 674			if (rc)
 675				goto err_crypto_info;
 676			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
 677			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 678			conf = TLS_SW;
 679		}
 680	} else {
 681		rc = tls_set_device_offload_rx(sk, ctx);
 682		conf = TLS_HW;
 683		if (!rc) {
 684			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
 685			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 686		} else {
 687			rc = tls_set_sw_offload(sk, 0);
 688			if (rc)
 689				goto err_crypto_info;
 690			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
 691			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 692			conf = TLS_SW;
 693		}
 694		tls_sw_strparser_arm(sk, ctx);
 695	}
 696
 697	if (tx)
 698		ctx->tx_conf = conf;
 699	else
 700		ctx->rx_conf = conf;
 701	update_sk_prot(sk, ctx);
 702	if (tx) {
 703		ctx->sk_write_space = sk->sk_write_space;
 704		sk->sk_write_space = tls_write_space;
 705	} else {
 706		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
 707
 708		tls_strp_check_rcv(&rx_ctx->strp);
 709	}
 710	return 0;
 711
 712err_crypto_info:
 713	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
 714	return rc;
 715}
 716
 717static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
 718				   unsigned int optlen)
 719{
 720	struct tls_context *ctx = tls_get_ctx(sk);
 721	unsigned int value;
 722
 723	if (sockptr_is_null(optval) || optlen != sizeof(value))
 724		return -EINVAL;
 725
 726	if (copy_from_sockptr(&value, optval, sizeof(value)))
 727		return -EFAULT;
 728
 729	if (value > 1)
 730		return -EINVAL;
 731
 732	ctx->zerocopy_sendfile = value;
 733
 734	return 0;
 735}
 736
 737static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
 738				    unsigned int optlen)
 739{
 740	struct tls_context *ctx = tls_get_ctx(sk);
 741	u32 val;
 742	int rc;
 743
 744	if (ctx->prot_info.version != TLS_1_3_VERSION ||
 745	    sockptr_is_null(optval) || optlen < sizeof(val))
 746		return -EINVAL;
 747
 748	rc = copy_from_sockptr(&val, optval, sizeof(val));
 749	if (rc)
 750		return -EFAULT;
 751	if (val > 1)
 752		return -EINVAL;
 753	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
 754	if (rc < 1)
 755		return rc == 0 ? -EINVAL : rc;
 756
 757	lock_sock(sk);
 758	rc = -EINVAL;
 759	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
 760		ctx->rx_no_pad = val;
 761		tls_update_rx_zc_capable(ctx);
 762		rc = 0;
 763	}
 764	release_sock(sk);
 765
 766	return rc;
 767}
 768
 769static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
 770			     unsigned int optlen)
 771{
 772	int rc = 0;
 773
 774	switch (optname) {
 775	case TLS_TX:
 776	case TLS_RX:
 777		lock_sock(sk);
 778		rc = do_tls_setsockopt_conf(sk, optval, optlen,
 779					    optname == TLS_TX);
 780		release_sock(sk);
 781		break;
 782	case TLS_TX_ZEROCOPY_RO:
 783		lock_sock(sk);
 784		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
 785		release_sock(sk);
 786		break;
 787	case TLS_RX_EXPECT_NO_PAD:
 788		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
 789		break;
 790	default:
 791		rc = -ENOPROTOOPT;
 792		break;
 793	}
 794	return rc;
 795}
 796
 797static int tls_setsockopt(struct sock *sk, int level, int optname,
 798			  sockptr_t optval, unsigned int optlen)
 799{
 800	struct tls_context *ctx = tls_get_ctx(sk);
 801
 802	if (level != SOL_TLS)
 803		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
 804						 optlen);
 805
 806	return do_tls_setsockopt(sk, optname, optval, optlen);
 807}
 808
 809struct tls_context *tls_ctx_create(struct sock *sk)
 810{
 811	struct inet_connection_sock *icsk = inet_csk(sk);
 812	struct tls_context *ctx;
 813
 814	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
 815	if (!ctx)
 816		return NULL;
 817
 818	mutex_init(&ctx->tx_lock);
 
 819	ctx->sk_proto = READ_ONCE(sk->sk_prot);
 820	ctx->sk = sk;
 821	/* Release semantic of rcu_assign_pointer() ensures that
 822	 * ctx->sk_proto is visible before changing sk->sk_prot in
 823	 * update_sk_prot(), and prevents reading uninitialized value in
 824	 * tls_{getsockopt, setsockopt}. Note that we do not need a
 825	 * read barrier in tls_{getsockopt,setsockopt} as there is an
 826	 * address dependency between sk->sk_proto->{getsockopt,setsockopt}
 827	 * and ctx->sk_proto.
 828	 */
 829	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
 830	return ctx;
 831}
 832
 833static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 834			    const struct proto_ops *base)
 835{
 836	ops[TLS_BASE][TLS_BASE] = *base;
 837
 838	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 839	ops[TLS_SW  ][TLS_BASE].splice_eof	= tls_sw_splice_eof;
 840
 841	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
 842	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
 843	ops[TLS_BASE][TLS_SW  ].poll		= tls_sk_poll;
 844	ops[TLS_BASE][TLS_SW  ].read_sock	= tls_sw_read_sock;
 845
 846	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
 847	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
 848	ops[TLS_SW  ][TLS_SW  ].poll		= tls_sk_poll;
 849	ops[TLS_SW  ][TLS_SW  ].read_sock	= tls_sw_read_sock;
 850
 851#ifdef CONFIG_TLS_DEVICE
 852	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 
 853
 854	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
 
 855
 856	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
 857
 858	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
 859
 860	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
 
 861#endif
 862#ifdef CONFIG_TLS_TOE
 863	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
 864#endif
 865}
 866
 867static void tls_build_proto(struct sock *sk)
 868{
 869	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 870	struct proto *prot = READ_ONCE(sk->sk_prot);
 871
 872	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
 873	if (ip_ver == TLSV6 &&
 874	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
 875		mutex_lock(&tcpv6_prot_mutex);
 876		if (likely(prot != saved_tcpv6_prot)) {
 877			build_protos(tls_prots[TLSV6], prot);
 878			build_proto_ops(tls_proto_ops[TLSV6],
 879					sk->sk_socket->ops);
 880			smp_store_release(&saved_tcpv6_prot, prot);
 881		}
 882		mutex_unlock(&tcpv6_prot_mutex);
 883	}
 884
 885	if (ip_ver == TLSV4 &&
 886	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
 887		mutex_lock(&tcpv4_prot_mutex);
 888		if (likely(prot != saved_tcpv4_prot)) {
 889			build_protos(tls_prots[TLSV4], prot);
 890			build_proto_ops(tls_proto_ops[TLSV4],
 891					sk->sk_socket->ops);
 892			smp_store_release(&saved_tcpv4_prot, prot);
 893		}
 894		mutex_unlock(&tcpv4_prot_mutex);
 895	}
 896}
 897
 898static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 899			 const struct proto *base)
 900{
 901	prot[TLS_BASE][TLS_BASE] = *base;
 902	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
 903	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
 904	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
 905
 906	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
 907	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
 908	prot[TLS_SW][TLS_BASE].splice_eof	= tls_sw_splice_eof;
 909
 910	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
 911	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
 912	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
 913	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
 914
 915	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
 916	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
 917	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
 918	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
 919
 920#ifdef CONFIG_TLS_DEVICE
 921	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
 922	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
 923	prot[TLS_HW][TLS_BASE].splice_eof	= tls_device_splice_eof;
 924
 925	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
 926	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
 927	prot[TLS_HW][TLS_SW].splice_eof		= tls_device_splice_eof;
 928
 929	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
 930
 931	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
 932
 933	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
 934#endif
 935#ifdef CONFIG_TLS_TOE
 936	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
 937	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
 938	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
 939#endif
 940}
 941
 942static int tls_init(struct sock *sk)
 943{
 944	struct tls_context *ctx;
 945	int rc = 0;
 946
 947	tls_build_proto(sk);
 948
 949#ifdef CONFIG_TLS_TOE
 950	if (tls_toe_bypass(sk))
 951		return 0;
 952#endif
 953
 954	/* The TLS ulp is currently supported only for TCP sockets
 955	 * in ESTABLISHED state.
 956	 * Supporting sockets in LISTEN state will require us
 957	 * to modify the accept implementation to clone rather then
 958	 * share the ulp context.
 959	 */
 960	if (sk->sk_state != TCP_ESTABLISHED)
 961		return -ENOTCONN;
 962
 963	/* allocate tls context */
 964	write_lock_bh(&sk->sk_callback_lock);
 965	ctx = tls_ctx_create(sk);
 966	if (!ctx) {
 967		rc = -ENOMEM;
 968		goto out;
 969	}
 970
 971	ctx->tx_conf = TLS_BASE;
 972	ctx->rx_conf = TLS_BASE;
 973	update_sk_prot(sk, ctx);
 974out:
 975	write_unlock_bh(&sk->sk_callback_lock);
 976	return rc;
 977}
 978
 979static void tls_update(struct sock *sk, struct proto *p,
 980		       void (*write_space)(struct sock *sk))
 981{
 982	struct tls_context *ctx;
 983
 984	WARN_ON_ONCE(sk->sk_prot == p);
 985
 986	ctx = tls_get_ctx(sk);
 987	if (likely(ctx)) {
 988		ctx->sk_write_space = write_space;
 989		ctx->sk_proto = p;
 990	} else {
 991		/* Pairs with lockless read in sk_clone_lock(). */
 992		WRITE_ONCE(sk->sk_prot, p);
 993		sk->sk_write_space = write_space;
 994	}
 995}
 996
 997static u16 tls_user_config(struct tls_context *ctx, bool tx)
 998{
 999	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1000
1001	switch (config) {
1002	case TLS_BASE:
1003		return TLS_CONF_BASE;
1004	case TLS_SW:
1005		return TLS_CONF_SW;
1006	case TLS_HW:
1007		return TLS_CONF_HW;
1008	case TLS_HW_RECORD:
1009		return TLS_CONF_HW_RECORD;
1010	}
1011	return 0;
1012}
1013
1014static int tls_get_info(struct sock *sk, struct sk_buff *skb)
1015{
1016	u16 version, cipher_type;
1017	struct tls_context *ctx;
1018	struct nlattr *start;
1019	int err;
1020
1021	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1022	if (!start)
1023		return -EMSGSIZE;
1024
1025	rcu_read_lock();
1026	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1027	if (!ctx) {
1028		err = 0;
1029		goto nla_failure;
1030	}
1031	version = ctx->prot_info.version;
1032	if (version) {
1033		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1034		if (err)
1035			goto nla_failure;
1036	}
1037	cipher_type = ctx->prot_info.cipher_type;
1038	if (cipher_type) {
1039		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1040		if (err)
1041			goto nla_failure;
1042	}
1043	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1044	if (err)
1045		goto nla_failure;
1046
1047	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1048	if (err)
1049		goto nla_failure;
1050
1051	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1052		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1053		if (err)
1054			goto nla_failure;
1055	}
1056	if (ctx->rx_no_pad) {
1057		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1058		if (err)
1059			goto nla_failure;
1060	}
1061
1062	rcu_read_unlock();
1063	nla_nest_end(skb, start);
1064	return 0;
1065
1066nla_failure:
1067	rcu_read_unlock();
1068	nla_nest_cancel(skb, start);
1069	return err;
1070}
1071
1072static size_t tls_get_info_size(const struct sock *sk)
1073{
1074	size_t size = 0;
1075
1076	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1077		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1078		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1079		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1080		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1081		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1082		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1083		0;
1084
1085	return size;
1086}
1087
1088static int __net_init tls_init_net(struct net *net)
1089{
1090	int err;
1091
1092	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1093	if (!net->mib.tls_statistics)
1094		return -ENOMEM;
1095
1096	err = tls_proc_init(net);
1097	if (err)
1098		goto err_free_stats;
1099
1100	return 0;
1101err_free_stats:
1102	free_percpu(net->mib.tls_statistics);
1103	return err;
1104}
1105
1106static void __net_exit tls_exit_net(struct net *net)
1107{
1108	tls_proc_fini(net);
1109	free_percpu(net->mib.tls_statistics);
1110}
1111
1112static struct pernet_operations tls_proc_ops = {
1113	.init = tls_init_net,
1114	.exit = tls_exit_net,
1115};
1116
1117static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1118	.name			= "tls",
1119	.owner			= THIS_MODULE,
1120	.init			= tls_init,
1121	.update			= tls_update,
1122	.get_info		= tls_get_info,
1123	.get_info_size		= tls_get_info_size,
1124};
1125
1126static int __init tls_register(void)
1127{
1128	int err;
1129
1130	err = register_pernet_subsys(&tls_proc_ops);
1131	if (err)
1132		return err;
1133
1134	err = tls_strp_dev_init();
1135	if (err)
1136		goto err_pernet;
1137
1138	err = tls_device_init();
1139	if (err)
1140		goto err_strp;
1141
1142	tcp_register_ulp(&tcp_tls_ulp_ops);
1143
1144	return 0;
1145err_strp:
1146	tls_strp_dev_exit();
1147err_pernet:
1148	unregister_pernet_subsys(&tls_proc_ops);
1149	return err;
1150}
1151
1152static void __exit tls_unregister(void)
1153{
1154	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1155	tls_strp_dev_exit();
1156	tls_device_cleanup();
1157	unregister_pernet_subsys(&tls_proc_ops);
1158}
1159
1160module_init(tls_register);
1161module_exit(tls_unregister);