Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/module.h>
  35
  36#include <net/tcp.h>
  37#include <net/inet_common.h>
  38#include <linux/highmem.h>
  39#include <linux/netdevice.h>
  40#include <linux/sched/signal.h>
  41#include <linux/inetdevice.h>
  42#include <linux/inet_diag.h>
  43
  44#include <net/snmp.h>
  45#include <net/tls.h>
  46#include <net/tls_toe.h>
  47
  48#include "tls.h"
  49
  50MODULE_AUTHOR("Mellanox Technologies");
  51MODULE_DESCRIPTION("Transport Layer Security Support");
  52MODULE_LICENSE("Dual BSD/GPL");
  53MODULE_ALIAS_TCP_ULP("tls");
  54
  55enum {
  56	TLSV4,
  57	TLSV6,
  58	TLS_NUM_PROTS,
  59};
  60
  61#define CIPHER_SIZE_DESC(cipher) [cipher] = { \
  62	.iv = cipher ## _IV_SIZE, \
  63	.key = cipher ## _KEY_SIZE, \
  64	.salt = cipher ## _SALT_SIZE, \
  65	.tag = cipher ## _TAG_SIZE, \
  66	.rec_seq = cipher ## _REC_SEQ_SIZE, \
  67}
  68
  69const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
  70	CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
  71	CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
  72	CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
  73	CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
  74	CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
  75	CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
  76};
  77
  78static const struct proto *saved_tcpv6_prot;
  79static DEFINE_MUTEX(tcpv6_prot_mutex);
  80static const struct proto *saved_tcpv4_prot;
  81static DEFINE_MUTEX(tcpv4_prot_mutex);
  82static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
  83static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
  84static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
  85			 const struct proto *base);
  86
  87void update_sk_prot(struct sock *sk, struct tls_context *ctx)
  88{
  89	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
  90
  91	WRITE_ONCE(sk->sk_prot,
  92		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
  93	WRITE_ONCE(sk->sk_socket->ops,
  94		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
  95}
  96
  97int wait_on_pending_writer(struct sock *sk, long *timeo)
  98{
  99	int rc = 0;
 100	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 101
 102	add_wait_queue(sk_sleep(sk), &wait);
 103	while (1) {
 104		if (!*timeo) {
 105			rc = -EAGAIN;
 106			break;
 107		}
 108
 109		if (signal_pending(current)) {
 110			rc = sock_intr_errno(*timeo);
 111			break;
 112		}
 113
 114		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 115			break;
 116	}
 117	remove_wait_queue(sk_sleep(sk), &wait);
 118	return rc;
 119}
 120
 121int tls_push_sg(struct sock *sk,
 122		struct tls_context *ctx,
 123		struct scatterlist *sg,
 124		u16 first_offset,
 125		int flags)
 126{
 127	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
 128	int ret = 0;
 129	struct page *p;
 130	size_t size;
 131	int offset = first_offset;
 132
 133	size = sg->length - offset;
 134	offset += sg->offset;
 135
 136	ctx->in_tcp_sendpages = true;
 137	while (1) {
 138		if (sg_is_last(sg))
 139			sendpage_flags = flags;
 140
 141		/* is sending application-limited? */
 142		tcp_rate_check_app_limited(sk);
 143		p = sg_page(sg);
 144retry:
 145		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
 146
 147		if (ret != size) {
 148			if (ret > 0) {
 149				offset += ret;
 150				size -= ret;
 151				goto retry;
 152			}
 153
 154			offset -= sg->offset;
 155			ctx->partially_sent_offset = offset;
 156			ctx->partially_sent_record = (void *)sg;
 157			ctx->in_tcp_sendpages = false;
 158			return ret;
 159		}
 160
 161		put_page(p);
 162		sk_mem_uncharge(sk, sg->length);
 163		sg = sg_next(sg);
 164		if (!sg)
 165			break;
 166
 167		offset = sg->offset;
 168		size = sg->length;
 169	}
 170
 171	ctx->in_tcp_sendpages = false;
 172
 173	return 0;
 174}
 175
 176static int tls_handle_open_record(struct sock *sk, int flags)
 177{
 178	struct tls_context *ctx = tls_get_ctx(sk);
 179
 180	if (tls_is_pending_open_record(ctx))
 181		return ctx->push_pending_record(sk, flags);
 182
 183	return 0;
 184}
 185
 186int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
 187		     unsigned char *record_type)
 188{
 189	struct cmsghdr *cmsg;
 190	int rc = -EINVAL;
 191
 192	for_each_cmsghdr(cmsg, msg) {
 193		if (!CMSG_OK(msg, cmsg))
 194			return -EINVAL;
 195		if (cmsg->cmsg_level != SOL_TLS)
 196			continue;
 197
 198		switch (cmsg->cmsg_type) {
 199		case TLS_SET_RECORD_TYPE:
 200			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
 201				return -EINVAL;
 202
 203			if (msg->msg_flags & MSG_MORE)
 204				return -EINVAL;
 205
 206			rc = tls_handle_open_record(sk, msg->msg_flags);
 207			if (rc)
 208				return rc;
 209
 210			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
 211			rc = 0;
 212			break;
 213		default:
 214			return -EINVAL;
 215		}
 216	}
 217
 218	return rc;
 219}
 220
 221int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
 222			    int flags)
 223{
 224	struct scatterlist *sg;
 225	u16 offset;
 226
 227	sg = ctx->partially_sent_record;
 228	offset = ctx->partially_sent_offset;
 229
 230	ctx->partially_sent_record = NULL;
 231	return tls_push_sg(sk, ctx, sg, offset, flags);
 232}
 233
 234void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
 235{
 236	struct scatterlist *sg;
 237
 238	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
 239		put_page(sg_page(sg));
 240		sk_mem_uncharge(sk, sg->length);
 241	}
 242	ctx->partially_sent_record = NULL;
 243}
 244
 245static void tls_write_space(struct sock *sk)
 246{
 247	struct tls_context *ctx = tls_get_ctx(sk);
 248
 249	/* If in_tcp_sendpages call lower protocol write space handler
 250	 * to ensure we wake up any waiting operations there. For example
 251	 * if do_tcp_sendpages where to call sk_wait_event.
 252	 */
 253	if (ctx->in_tcp_sendpages) {
 254		ctx->sk_write_space(sk);
 255		return;
 256	}
 257
 258#ifdef CONFIG_TLS_DEVICE
 259	if (ctx->tx_conf == TLS_HW)
 260		tls_device_write_space(sk, ctx);
 261	else
 262#endif
 263		tls_sw_write_space(sk, ctx);
 264
 265	ctx->sk_write_space(sk);
 266}
 267
 268/**
 269 * tls_ctx_free() - free TLS ULP context
 270 * @sk:  socket to with @ctx is attached
 271 * @ctx: TLS context structure
 272 *
 273 * Free TLS context. If @sk is %NULL caller guarantees that the socket
 274 * to which @ctx was attached has no outstanding references.
 275 */
 276void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
 277{
 278	if (!ctx)
 279		return;
 280
 281	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
 282	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
 283	mutex_destroy(&ctx->tx_lock);
 284
 285	if (sk)
 286		kfree_rcu(ctx, rcu);
 287	else
 288		kfree(ctx);
 289}
 290
 291static void tls_sk_proto_cleanup(struct sock *sk,
 292				 struct tls_context *ctx, long timeo)
 293{
 294	if (unlikely(sk->sk_write_pending) &&
 295	    !wait_on_pending_writer(sk, &timeo))
 296		tls_handle_open_record(sk, 0);
 297
 298	/* We need these for tls_sw_fallback handling of other packets */
 299	if (ctx->tx_conf == TLS_SW) {
 300		kfree(ctx->tx.rec_seq);
 301		kfree(ctx->tx.iv);
 302		tls_sw_release_resources_tx(sk);
 303		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 304	} else if (ctx->tx_conf == TLS_HW) {
 305		tls_device_free_resources_tx(sk);
 306		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 307	}
 308
 309	if (ctx->rx_conf == TLS_SW) {
 310		tls_sw_release_resources_rx(sk);
 311		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 312	} else if (ctx->rx_conf == TLS_HW) {
 313		tls_device_offload_cleanup_rx(sk);
 314		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 315	}
 316}
 317
 318static void tls_sk_proto_close(struct sock *sk, long timeout)
 319{
 320	struct inet_connection_sock *icsk = inet_csk(sk);
 321	struct tls_context *ctx = tls_get_ctx(sk);
 322	long timeo = sock_sndtimeo(sk, 0);
 323	bool free_ctx;
 324
 325	if (ctx->tx_conf == TLS_SW)
 326		tls_sw_cancel_work_tx(ctx);
 327
 328	lock_sock(sk);
 329	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
 330
 331	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
 332		tls_sk_proto_cleanup(sk, ctx, timeo);
 333
 334	write_lock_bh(&sk->sk_callback_lock);
 335	if (free_ctx)
 336		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
 337	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
 338	if (sk->sk_write_space == tls_write_space)
 339		sk->sk_write_space = ctx->sk_write_space;
 340	write_unlock_bh(&sk->sk_callback_lock);
 341	release_sock(sk);
 342	if (ctx->tx_conf == TLS_SW)
 343		tls_sw_free_ctx_tx(ctx);
 344	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 345		tls_sw_strparser_done(ctx);
 346	if (ctx->rx_conf == TLS_SW)
 347		tls_sw_free_ctx_rx(ctx);
 348	ctx->sk_proto->close(sk, timeout);
 349
 350	if (free_ctx)
 351		tls_ctx_free(sk, ctx);
 352}
 353
 354static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
 355				  int __user *optlen, int tx)
 356{
 357	int rc = 0;
 358	struct tls_context *ctx = tls_get_ctx(sk);
 359	struct tls_crypto_info *crypto_info;
 360	struct cipher_context *cctx;
 361	int len;
 362
 363	if (get_user(len, optlen))
 364		return -EFAULT;
 365
 366	if (!optval || (len < sizeof(*crypto_info))) {
 367		rc = -EINVAL;
 368		goto out;
 369	}
 370
 371	if (!ctx) {
 372		rc = -EBUSY;
 373		goto out;
 374	}
 375
 376	/* get user crypto info */
 377	if (tx) {
 378		crypto_info = &ctx->crypto_send.info;
 379		cctx = &ctx->tx;
 380	} else {
 381		crypto_info = &ctx->crypto_recv.info;
 382		cctx = &ctx->rx;
 383	}
 384
 385	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
 386		rc = -EBUSY;
 387		goto out;
 388	}
 389
 390	if (len == sizeof(*crypto_info)) {
 391		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
 392			rc = -EFAULT;
 393		goto out;
 394	}
 395
 396	switch (crypto_info->cipher_type) {
 397	case TLS_CIPHER_AES_GCM_128: {
 398		struct tls12_crypto_info_aes_gcm_128 *
 399		  crypto_info_aes_gcm_128 =
 400		  container_of(crypto_info,
 401			       struct tls12_crypto_info_aes_gcm_128,
 402			       info);
 403
 404		if (len != sizeof(*crypto_info_aes_gcm_128)) {
 405			rc = -EINVAL;
 406			goto out;
 407		}
 408		lock_sock(sk);
 409		memcpy(crypto_info_aes_gcm_128->iv,
 410		       cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
 411		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
 412		memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
 413		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
 414		release_sock(sk);
 415		if (copy_to_user(optval,
 416				 crypto_info_aes_gcm_128,
 417				 sizeof(*crypto_info_aes_gcm_128)))
 418			rc = -EFAULT;
 419		break;
 420	}
 421	case TLS_CIPHER_AES_GCM_256: {
 422		struct tls12_crypto_info_aes_gcm_256 *
 423		  crypto_info_aes_gcm_256 =
 424		  container_of(crypto_info,
 425			       struct tls12_crypto_info_aes_gcm_256,
 426			       info);
 427
 428		if (len != sizeof(*crypto_info_aes_gcm_256)) {
 429			rc = -EINVAL;
 430			goto out;
 431		}
 432		lock_sock(sk);
 433		memcpy(crypto_info_aes_gcm_256->iv,
 434		       cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
 435		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
 436		memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
 437		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
 438		release_sock(sk);
 439		if (copy_to_user(optval,
 440				 crypto_info_aes_gcm_256,
 441				 sizeof(*crypto_info_aes_gcm_256)))
 442			rc = -EFAULT;
 443		break;
 444	}
 445	case TLS_CIPHER_AES_CCM_128: {
 446		struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
 447			container_of(crypto_info,
 448				struct tls12_crypto_info_aes_ccm_128, info);
 449
 450		if (len != sizeof(*aes_ccm_128)) {
 451			rc = -EINVAL;
 452			goto out;
 453		}
 454		lock_sock(sk);
 455		memcpy(aes_ccm_128->iv,
 456		       cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
 457		       TLS_CIPHER_AES_CCM_128_IV_SIZE);
 458		memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
 459		       TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
 460		release_sock(sk);
 461		if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
 462			rc = -EFAULT;
 463		break;
 464	}
 465	case TLS_CIPHER_CHACHA20_POLY1305: {
 466		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
 467			container_of(crypto_info,
 468				struct tls12_crypto_info_chacha20_poly1305,
 469				info);
 470
 471		if (len != sizeof(*chacha20_poly1305)) {
 472			rc = -EINVAL;
 473			goto out;
 474		}
 475		lock_sock(sk);
 476		memcpy(chacha20_poly1305->iv,
 477		       cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
 478		       TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
 479		memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
 480		       TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
 481		release_sock(sk);
 482		if (copy_to_user(optval, chacha20_poly1305,
 483				sizeof(*chacha20_poly1305)))
 484			rc = -EFAULT;
 485		break;
 486	}
 487	case TLS_CIPHER_SM4_GCM: {
 488		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
 489			container_of(crypto_info,
 490				struct tls12_crypto_info_sm4_gcm, info);
 491
 492		if (len != sizeof(*sm4_gcm_info)) {
 493			rc = -EINVAL;
 494			goto out;
 495		}
 496		lock_sock(sk);
 497		memcpy(sm4_gcm_info->iv,
 498		       cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
 499		       TLS_CIPHER_SM4_GCM_IV_SIZE);
 500		memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
 501		       TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
 502		release_sock(sk);
 503		if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
 504			rc = -EFAULT;
 505		break;
 506	}
 507	case TLS_CIPHER_SM4_CCM: {
 508		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
 509			container_of(crypto_info,
 510				struct tls12_crypto_info_sm4_ccm, info);
 511
 512		if (len != sizeof(*sm4_ccm_info)) {
 513			rc = -EINVAL;
 514			goto out;
 515		}
 516		lock_sock(sk);
 517		memcpy(sm4_ccm_info->iv,
 518		       cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
 519		       TLS_CIPHER_SM4_CCM_IV_SIZE);
 520		memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
 521		       TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
 522		release_sock(sk);
 523		if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
 524			rc = -EFAULT;
 525		break;
 526	}
 527	case TLS_CIPHER_ARIA_GCM_128: {
 528		struct tls12_crypto_info_aria_gcm_128 *
 529		  crypto_info_aria_gcm_128 =
 530		  container_of(crypto_info,
 531			       struct tls12_crypto_info_aria_gcm_128,
 532			       info);
 533
 534		if (len != sizeof(*crypto_info_aria_gcm_128)) {
 535			rc = -EINVAL;
 536			goto out;
 537		}
 538		lock_sock(sk);
 539		memcpy(crypto_info_aria_gcm_128->iv,
 540		       cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
 541		       TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
 542		memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
 543		       TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
 544		release_sock(sk);
 545		if (copy_to_user(optval,
 546				 crypto_info_aria_gcm_128,
 547				 sizeof(*crypto_info_aria_gcm_128)))
 548			rc = -EFAULT;
 549		break;
 550	}
 551	case TLS_CIPHER_ARIA_GCM_256: {
 552		struct tls12_crypto_info_aria_gcm_256 *
 553		  crypto_info_aria_gcm_256 =
 554		  container_of(crypto_info,
 555			       struct tls12_crypto_info_aria_gcm_256,
 556			       info);
 557
 558		if (len != sizeof(*crypto_info_aria_gcm_256)) {
 559			rc = -EINVAL;
 560			goto out;
 561		}
 562		lock_sock(sk);
 563		memcpy(crypto_info_aria_gcm_256->iv,
 564		       cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
 565		       TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
 566		memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
 567		       TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
 568		release_sock(sk);
 569		if (copy_to_user(optval,
 570				 crypto_info_aria_gcm_256,
 571				 sizeof(*crypto_info_aria_gcm_256)))
 572			rc = -EFAULT;
 573		break;
 574	}
 575	default:
 576		rc = -EINVAL;
 577	}
 578
 579out:
 580	return rc;
 581}
 582
 583static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
 584				   int __user *optlen)
 585{
 586	struct tls_context *ctx = tls_get_ctx(sk);
 587	unsigned int value;
 588	int len;
 589
 590	if (get_user(len, optlen))
 591		return -EFAULT;
 592
 593	if (len != sizeof(value))
 594		return -EINVAL;
 595
 596	value = ctx->zerocopy_sendfile;
 597	if (copy_to_user(optval, &value, sizeof(value)))
 598		return -EFAULT;
 599
 600	return 0;
 601}
 602
 603static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
 604				    int __user *optlen)
 605{
 606	struct tls_context *ctx = tls_get_ctx(sk);
 607	int value, len;
 608
 609	if (ctx->prot_info.version != TLS_1_3_VERSION)
 610		return -EINVAL;
 611
 612	if (get_user(len, optlen))
 613		return -EFAULT;
 614	if (len < sizeof(value))
 615		return -EINVAL;
 616
 617	lock_sock(sk);
 618	value = -EINVAL;
 619	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 620		value = ctx->rx_no_pad;
 621	release_sock(sk);
 622	if (value < 0)
 623		return value;
 624
 625	if (put_user(sizeof(value), optlen))
 626		return -EFAULT;
 627	if (copy_to_user(optval, &value, sizeof(value)))
 628		return -EFAULT;
 629
 630	return 0;
 631}
 632
 633static int do_tls_getsockopt(struct sock *sk, int optname,
 634			     char __user *optval, int __user *optlen)
 635{
 636	int rc = 0;
 637
 638	switch (optname) {
 639	case TLS_TX:
 640	case TLS_RX:
 641		rc = do_tls_getsockopt_conf(sk, optval, optlen,
 642					    optname == TLS_TX);
 643		break;
 644	case TLS_TX_ZEROCOPY_RO:
 645		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
 646		break;
 647	case TLS_RX_EXPECT_NO_PAD:
 648		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
 649		break;
 650	default:
 651		rc = -ENOPROTOOPT;
 652		break;
 653	}
 654	return rc;
 655}
 656
 657static int tls_getsockopt(struct sock *sk, int level, int optname,
 658			  char __user *optval, int __user *optlen)
 659{
 660	struct tls_context *ctx = tls_get_ctx(sk);
 661
 662	if (level != SOL_TLS)
 663		return ctx->sk_proto->getsockopt(sk, level,
 664						 optname, optval, optlen);
 665
 666	return do_tls_getsockopt(sk, optname, optval, optlen);
 667}
 668
 669static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
 670				  unsigned int optlen, int tx)
 671{
 672	struct tls_crypto_info *crypto_info;
 673	struct tls_crypto_info *alt_crypto_info;
 674	struct tls_context *ctx = tls_get_ctx(sk);
 675	size_t optsize;
 676	int rc = 0;
 677	int conf;
 678
 679	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
 680		return -EINVAL;
 
 
 681
 682	if (tx) {
 683		crypto_info = &ctx->crypto_send.info;
 684		alt_crypto_info = &ctx->crypto_recv.info;
 685	} else {
 686		crypto_info = &ctx->crypto_recv.info;
 687		alt_crypto_info = &ctx->crypto_send.info;
 688	}
 689
 690	/* Currently we don't support set crypto info more than one time */
 691	if (TLS_CRYPTO_INFO_READY(crypto_info))
 692		return -EBUSY;
 
 
 693
 694	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
 695	if (rc) {
 696		rc = -EFAULT;
 697		goto err_crypto_info;
 698	}
 699
 700	/* check version */
 701	if (crypto_info->version != TLS_1_2_VERSION &&
 702	    crypto_info->version != TLS_1_3_VERSION) {
 703		rc = -EINVAL;
 704		goto err_crypto_info;
 705	}
 706
 707	/* Ensure that TLS version and ciphers are same in both directions */
 708	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
 709		if (alt_crypto_info->version != crypto_info->version ||
 710		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
 711			rc = -EINVAL;
 712			goto err_crypto_info;
 713		}
 714	}
 715
 716	switch (crypto_info->cipher_type) {
 717	case TLS_CIPHER_AES_GCM_128:
 718		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
 719		break;
 720	case TLS_CIPHER_AES_GCM_256: {
 721		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
 722		break;
 723	}
 724	case TLS_CIPHER_AES_CCM_128:
 725		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
 726		break;
 727	case TLS_CIPHER_CHACHA20_POLY1305:
 728		optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
 729		break;
 730	case TLS_CIPHER_SM4_GCM:
 731		optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
 732		break;
 733	case TLS_CIPHER_SM4_CCM:
 734		optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
 735		break;
 736	case TLS_CIPHER_ARIA_GCM_128:
 737		if (crypto_info->version != TLS_1_2_VERSION) {
 738			rc = -EINVAL;
 739			goto err_crypto_info;
 740		}
 741		optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
 742		break;
 743	case TLS_CIPHER_ARIA_GCM_256:
 744		if (crypto_info->version != TLS_1_2_VERSION) {
 745			rc = -EINVAL;
 746			goto err_crypto_info;
 747		}
 748		optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
 749		break;
 750	default:
 751		rc = -EINVAL;
 752		goto err_crypto_info;
 753	}
 754
 755	if (optlen != optsize) {
 756		rc = -EINVAL;
 757		goto err_crypto_info;
 758	}
 759
 760	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
 761				      sizeof(*crypto_info),
 762				      optlen - sizeof(*crypto_info));
 763	if (rc) {
 764		rc = -EFAULT;
 765		goto err_crypto_info;
 766	}
 767
 768	if (tx) {
 769		rc = tls_set_device_offload(sk, ctx);
 770		conf = TLS_HW;
 771		if (!rc) {
 772			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
 773			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 774		} else {
 775			rc = tls_set_sw_offload(sk, ctx, 1);
 776			if (rc)
 777				goto err_crypto_info;
 778			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
 779			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 780			conf = TLS_SW;
 781		}
 782	} else {
 783		rc = tls_set_device_offload_rx(sk, ctx);
 784		conf = TLS_HW;
 785		if (!rc) {
 786			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
 787			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 788		} else {
 789			rc = tls_set_sw_offload(sk, ctx, 0);
 790			if (rc)
 791				goto err_crypto_info;
 792			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
 793			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 794			conf = TLS_SW;
 795		}
 796		tls_sw_strparser_arm(sk, ctx);
 797	}
 798
 799	if (tx)
 800		ctx->tx_conf = conf;
 801	else
 802		ctx->rx_conf = conf;
 803	update_sk_prot(sk, ctx);
 804	if (tx) {
 805		ctx->sk_write_space = sk->sk_write_space;
 806		sk->sk_write_space = tls_write_space;
 807	} else {
 808		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
 809
 810		tls_strp_check_rcv(&rx_ctx->strp);
 811	}
 812	return 0;
 813
 814err_crypto_info:
 815	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
 816	return rc;
 817}
 818
 819static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
 820				   unsigned int optlen)
 821{
 822	struct tls_context *ctx = tls_get_ctx(sk);
 823	unsigned int value;
 824
 825	if (sockptr_is_null(optval) || optlen != sizeof(value))
 826		return -EINVAL;
 827
 828	if (copy_from_sockptr(&value, optval, sizeof(value)))
 829		return -EFAULT;
 830
 831	if (value > 1)
 832		return -EINVAL;
 833
 834	ctx->zerocopy_sendfile = value;
 835
 836	return 0;
 837}
 838
 839static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
 840				    unsigned int optlen)
 841{
 842	struct tls_context *ctx = tls_get_ctx(sk);
 843	u32 val;
 844	int rc;
 845
 846	if (ctx->prot_info.version != TLS_1_3_VERSION ||
 847	    sockptr_is_null(optval) || optlen < sizeof(val))
 848		return -EINVAL;
 849
 850	rc = copy_from_sockptr(&val, optval, sizeof(val));
 851	if (rc)
 852		return -EFAULT;
 853	if (val > 1)
 854		return -EINVAL;
 855	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
 856	if (rc < 1)
 857		return rc == 0 ? -EINVAL : rc;
 858
 859	lock_sock(sk);
 860	rc = -EINVAL;
 861	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
 862		ctx->rx_no_pad = val;
 863		tls_update_rx_zc_capable(ctx);
 864		rc = 0;
 865	}
 866	release_sock(sk);
 867
 868	return rc;
 869}
 870
 871static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
 872			     unsigned int optlen)
 873{
 874	int rc = 0;
 875
 876	switch (optname) {
 877	case TLS_TX:
 878	case TLS_RX:
 879		lock_sock(sk);
 880		rc = do_tls_setsockopt_conf(sk, optval, optlen,
 881					    optname == TLS_TX);
 882		release_sock(sk);
 883		break;
 884	case TLS_TX_ZEROCOPY_RO:
 885		lock_sock(sk);
 886		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
 887		release_sock(sk);
 888		break;
 889	case TLS_RX_EXPECT_NO_PAD:
 890		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
 891		break;
 892	default:
 893		rc = -ENOPROTOOPT;
 894		break;
 895	}
 896	return rc;
 897}
 898
 899static int tls_setsockopt(struct sock *sk, int level, int optname,
 900			  sockptr_t optval, unsigned int optlen)
 901{
 902	struct tls_context *ctx = tls_get_ctx(sk);
 903
 904	if (level != SOL_TLS)
 905		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
 906						 optlen);
 907
 908	return do_tls_setsockopt(sk, optname, optval, optlen);
 909}
 910
 911struct tls_context *tls_ctx_create(struct sock *sk)
 912{
 913	struct inet_connection_sock *icsk = inet_csk(sk);
 914	struct tls_context *ctx;
 915
 916	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
 917	if (!ctx)
 918		return NULL;
 919
 920	mutex_init(&ctx->tx_lock);
 921	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
 922	ctx->sk_proto = READ_ONCE(sk->sk_prot);
 923	ctx->sk = sk;
 924	return ctx;
 925}
 926
 927static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 928			    const struct proto_ops *base)
 929{
 930	ops[TLS_BASE][TLS_BASE] = *base;
 931
 932	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 933	ops[TLS_SW  ][TLS_BASE].sendpage_locked	= tls_sw_sendpage_locked;
 934
 935	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
 936	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
 937
 938	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
 939	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
 940
 941#ifdef CONFIG_TLS_DEVICE
 942	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 943	ops[TLS_HW  ][TLS_BASE].sendpage_locked	= NULL;
 944
 945	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
 946	ops[TLS_HW  ][TLS_SW  ].sendpage_locked	= NULL;
 947
 948	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
 949
 950	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
 951
 952	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
 953	ops[TLS_HW  ][TLS_HW  ].sendpage_locked	= NULL;
 954#endif
 955#ifdef CONFIG_TLS_TOE
 956	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
 957#endif
 958}
 959
 960static void tls_build_proto(struct sock *sk)
 961{
 962	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 963	struct proto *prot = READ_ONCE(sk->sk_prot);
 964
 965	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
 966	if (ip_ver == TLSV6 &&
 967	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
 968		mutex_lock(&tcpv6_prot_mutex);
 969		if (likely(prot != saved_tcpv6_prot)) {
 970			build_protos(tls_prots[TLSV6], prot);
 971			build_proto_ops(tls_proto_ops[TLSV6],
 972					sk->sk_socket->ops);
 973			smp_store_release(&saved_tcpv6_prot, prot);
 974		}
 975		mutex_unlock(&tcpv6_prot_mutex);
 976	}
 977
 978	if (ip_ver == TLSV4 &&
 979	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
 980		mutex_lock(&tcpv4_prot_mutex);
 981		if (likely(prot != saved_tcpv4_prot)) {
 982			build_protos(tls_prots[TLSV4], prot);
 983			build_proto_ops(tls_proto_ops[TLSV4],
 984					sk->sk_socket->ops);
 985			smp_store_release(&saved_tcpv4_prot, prot);
 986		}
 987		mutex_unlock(&tcpv4_prot_mutex);
 988	}
 989}
 990
 991static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 992			 const struct proto *base)
 993{
 994	prot[TLS_BASE][TLS_BASE] = *base;
 995	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
 996	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
 997	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
 998
 999	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1000	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
1001	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
1002
1003	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
1004	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
1005	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1006	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
1007
1008	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
1009	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
1010	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1011	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
1012
1013#ifdef CONFIG_TLS_DEVICE
1014	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1015	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
1016	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
1017
1018	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1019	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
1020	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
1021
1022	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1023
1024	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1025
1026	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1027#endif
1028#ifdef CONFIG_TLS_TOE
1029	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1030	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
1031	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
1032#endif
1033}
1034
1035static int tls_init(struct sock *sk)
1036{
1037	struct tls_context *ctx;
1038	int rc = 0;
1039
1040	tls_build_proto(sk);
1041
1042#ifdef CONFIG_TLS_TOE
1043	if (tls_toe_bypass(sk))
1044		return 0;
1045#endif
1046
1047	/* The TLS ulp is currently supported only for TCP sockets
1048	 * in ESTABLISHED state.
1049	 * Supporting sockets in LISTEN state will require us
1050	 * to modify the accept implementation to clone rather then
1051	 * share the ulp context.
1052	 */
1053	if (sk->sk_state != TCP_ESTABLISHED)
1054		return -ENOTCONN;
1055
1056	/* allocate tls context */
1057	write_lock_bh(&sk->sk_callback_lock);
1058	ctx = tls_ctx_create(sk);
1059	if (!ctx) {
1060		rc = -ENOMEM;
1061		goto out;
1062	}
1063
1064	ctx->tx_conf = TLS_BASE;
1065	ctx->rx_conf = TLS_BASE;
1066	update_sk_prot(sk, ctx);
1067out:
1068	write_unlock_bh(&sk->sk_callback_lock);
1069	return rc;
1070}
1071
1072static void tls_update(struct sock *sk, struct proto *p,
1073		       void (*write_space)(struct sock *sk))
1074{
1075	struct tls_context *ctx;
1076
1077	WARN_ON_ONCE(sk->sk_prot == p);
1078
1079	ctx = tls_get_ctx(sk);
1080	if (likely(ctx)) {
1081		ctx->sk_write_space = write_space;
1082		ctx->sk_proto = p;
1083	} else {
1084		/* Pairs with lockless read in sk_clone_lock(). */
1085		WRITE_ONCE(sk->sk_prot, p);
1086		sk->sk_write_space = write_space;
1087	}
1088}
1089
1090static u16 tls_user_config(struct tls_context *ctx, bool tx)
1091{
1092	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1093
1094	switch (config) {
1095	case TLS_BASE:
1096		return TLS_CONF_BASE;
1097	case TLS_SW:
1098		return TLS_CONF_SW;
1099	case TLS_HW:
1100		return TLS_CONF_HW;
1101	case TLS_HW_RECORD:
1102		return TLS_CONF_HW_RECORD;
1103	}
1104	return 0;
1105}
1106
1107static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1108{
1109	u16 version, cipher_type;
1110	struct tls_context *ctx;
1111	struct nlattr *start;
1112	int err;
1113
1114	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1115	if (!start)
1116		return -EMSGSIZE;
1117
1118	rcu_read_lock();
1119	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1120	if (!ctx) {
1121		err = 0;
1122		goto nla_failure;
1123	}
1124	version = ctx->prot_info.version;
1125	if (version) {
1126		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1127		if (err)
1128			goto nla_failure;
1129	}
1130	cipher_type = ctx->prot_info.cipher_type;
1131	if (cipher_type) {
1132		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1133		if (err)
1134			goto nla_failure;
1135	}
1136	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1137	if (err)
1138		goto nla_failure;
1139
1140	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1141	if (err)
1142		goto nla_failure;
1143
1144	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1145		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1146		if (err)
1147			goto nla_failure;
1148	}
1149	if (ctx->rx_no_pad) {
1150		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1151		if (err)
1152			goto nla_failure;
1153	}
1154
1155	rcu_read_unlock();
1156	nla_nest_end(skb, start);
1157	return 0;
1158
1159nla_failure:
1160	rcu_read_unlock();
1161	nla_nest_cancel(skb, start);
1162	return err;
1163}
1164
1165static size_t tls_get_info_size(const struct sock *sk)
1166{
1167	size_t size = 0;
1168
1169	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1170		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1171		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1172		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1173		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1174		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1175		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1176		0;
1177
1178	return size;
1179}
1180
1181static int __net_init tls_init_net(struct net *net)
1182{
1183	int err;
1184
1185	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1186	if (!net->mib.tls_statistics)
1187		return -ENOMEM;
1188
1189	err = tls_proc_init(net);
1190	if (err)
1191		goto err_free_stats;
1192
1193	return 0;
1194err_free_stats:
1195	free_percpu(net->mib.tls_statistics);
1196	return err;
1197}
1198
1199static void __net_exit tls_exit_net(struct net *net)
1200{
1201	tls_proc_fini(net);
1202	free_percpu(net->mib.tls_statistics);
1203}
1204
1205static struct pernet_operations tls_proc_ops = {
1206	.init = tls_init_net,
1207	.exit = tls_exit_net,
1208};
1209
1210static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1211	.name			= "tls",
1212	.owner			= THIS_MODULE,
1213	.init			= tls_init,
1214	.update			= tls_update,
1215	.get_info		= tls_get_info,
1216	.get_info_size		= tls_get_info_size,
1217};
1218
1219static int __init tls_register(void)
1220{
1221	int err;
1222
1223	err = register_pernet_subsys(&tls_proc_ops);
1224	if (err)
1225		return err;
1226
1227	err = tls_strp_dev_init();
1228	if (err)
1229		goto err_pernet;
1230
1231	err = tls_device_init();
1232	if (err)
1233		goto err_strp;
1234
 
1235	tcp_register_ulp(&tcp_tls_ulp_ops);
1236
1237	return 0;
1238err_strp:
1239	tls_strp_dev_exit();
1240err_pernet:
1241	unregister_pernet_subsys(&tls_proc_ops);
1242	return err;
1243}
1244
1245static void __exit tls_unregister(void)
1246{
1247	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1248	tls_strp_dev_exit();
1249	tls_device_cleanup();
1250	unregister_pernet_subsys(&tls_proc_ops);
1251}
1252
1253module_init(tls_register);
1254module_exit(tls_unregister);
v5.9
  1/*
  2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#include <linux/module.h>
 35
 36#include <net/tcp.h>
 37#include <net/inet_common.h>
 38#include <linux/highmem.h>
 39#include <linux/netdevice.h>
 40#include <linux/sched/signal.h>
 41#include <linux/inetdevice.h>
 42#include <linux/inet_diag.h>
 43
 44#include <net/snmp.h>
 45#include <net/tls.h>
 46#include <net/tls_toe.h>
 47
 
 
 48MODULE_AUTHOR("Mellanox Technologies");
 49MODULE_DESCRIPTION("Transport Layer Security Support");
 50MODULE_LICENSE("Dual BSD/GPL");
 51MODULE_ALIAS_TCP_ULP("tls");
 52
 53enum {
 54	TLSV4,
 55	TLSV6,
 56	TLS_NUM_PROTS,
 57};
 58
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 59static const struct proto *saved_tcpv6_prot;
 60static DEFINE_MUTEX(tcpv6_prot_mutex);
 61static const struct proto *saved_tcpv4_prot;
 62static DEFINE_MUTEX(tcpv4_prot_mutex);
 63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 64static struct proto_ops tls_sw_proto_ops;
 65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 66			 const struct proto *base);
 67
 68void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 69{
 70	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 71
 72	WRITE_ONCE(sk->sk_prot,
 73		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
 
 
 74}
 75
 76int wait_on_pending_writer(struct sock *sk, long *timeo)
 77{
 78	int rc = 0;
 79	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 80
 81	add_wait_queue(sk_sleep(sk), &wait);
 82	while (1) {
 83		if (!*timeo) {
 84			rc = -EAGAIN;
 85			break;
 86		}
 87
 88		if (signal_pending(current)) {
 89			rc = sock_intr_errno(*timeo);
 90			break;
 91		}
 92
 93		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 94			break;
 95	}
 96	remove_wait_queue(sk_sleep(sk), &wait);
 97	return rc;
 98}
 99
100int tls_push_sg(struct sock *sk,
101		struct tls_context *ctx,
102		struct scatterlist *sg,
103		u16 first_offset,
104		int flags)
105{
106	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
107	int ret = 0;
108	struct page *p;
109	size_t size;
110	int offset = first_offset;
111
112	size = sg->length - offset;
113	offset += sg->offset;
114
115	ctx->in_tcp_sendpages = true;
116	while (1) {
117		if (sg_is_last(sg))
118			sendpage_flags = flags;
119
120		/* is sending application-limited? */
121		tcp_rate_check_app_limited(sk);
122		p = sg_page(sg);
123retry:
124		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
125
126		if (ret != size) {
127			if (ret > 0) {
128				offset += ret;
129				size -= ret;
130				goto retry;
131			}
132
133			offset -= sg->offset;
134			ctx->partially_sent_offset = offset;
135			ctx->partially_sent_record = (void *)sg;
136			ctx->in_tcp_sendpages = false;
137			return ret;
138		}
139
140		put_page(p);
141		sk_mem_uncharge(sk, sg->length);
142		sg = sg_next(sg);
143		if (!sg)
144			break;
145
146		offset = sg->offset;
147		size = sg->length;
148	}
149
150	ctx->in_tcp_sendpages = false;
151
152	return 0;
153}
154
155static int tls_handle_open_record(struct sock *sk, int flags)
156{
157	struct tls_context *ctx = tls_get_ctx(sk);
158
159	if (tls_is_pending_open_record(ctx))
160		return ctx->push_pending_record(sk, flags);
161
162	return 0;
163}
164
165int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
166		      unsigned char *record_type)
167{
168	struct cmsghdr *cmsg;
169	int rc = -EINVAL;
170
171	for_each_cmsghdr(cmsg, msg) {
172		if (!CMSG_OK(msg, cmsg))
173			return -EINVAL;
174		if (cmsg->cmsg_level != SOL_TLS)
175			continue;
176
177		switch (cmsg->cmsg_type) {
178		case TLS_SET_RECORD_TYPE:
179			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
180				return -EINVAL;
181
182			if (msg->msg_flags & MSG_MORE)
183				return -EINVAL;
184
185			rc = tls_handle_open_record(sk, msg->msg_flags);
186			if (rc)
187				return rc;
188
189			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
190			rc = 0;
191			break;
192		default:
193			return -EINVAL;
194		}
195	}
196
197	return rc;
198}
199
200int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
201			    int flags)
202{
203	struct scatterlist *sg;
204	u16 offset;
205
206	sg = ctx->partially_sent_record;
207	offset = ctx->partially_sent_offset;
208
209	ctx->partially_sent_record = NULL;
210	return tls_push_sg(sk, ctx, sg, offset, flags);
211}
212
213void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
214{
215	struct scatterlist *sg;
216
217	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
218		put_page(sg_page(sg));
219		sk_mem_uncharge(sk, sg->length);
220	}
221	ctx->partially_sent_record = NULL;
222}
223
224static void tls_write_space(struct sock *sk)
225{
226	struct tls_context *ctx = tls_get_ctx(sk);
227
228	/* If in_tcp_sendpages call lower protocol write space handler
229	 * to ensure we wake up any waiting operations there. For example
230	 * if do_tcp_sendpages where to call sk_wait_event.
231	 */
232	if (ctx->in_tcp_sendpages) {
233		ctx->sk_write_space(sk);
234		return;
235	}
236
237#ifdef CONFIG_TLS_DEVICE
238	if (ctx->tx_conf == TLS_HW)
239		tls_device_write_space(sk, ctx);
240	else
241#endif
242		tls_sw_write_space(sk, ctx);
243
244	ctx->sk_write_space(sk);
245}
246
247/**
248 * tls_ctx_free() - free TLS ULP context
249 * @sk:  socket to with @ctx is attached
250 * @ctx: TLS context structure
251 *
252 * Free TLS context. If @sk is %NULL caller guarantees that the socket
253 * to which @ctx was attached has no outstanding references.
254 */
255void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
256{
257	if (!ctx)
258		return;
259
260	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
261	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
262	mutex_destroy(&ctx->tx_lock);
263
264	if (sk)
265		kfree_rcu(ctx, rcu);
266	else
267		kfree(ctx);
268}
269
270static void tls_sk_proto_cleanup(struct sock *sk,
271				 struct tls_context *ctx, long timeo)
272{
273	if (unlikely(sk->sk_write_pending) &&
274	    !wait_on_pending_writer(sk, &timeo))
275		tls_handle_open_record(sk, 0);
276
277	/* We need these for tls_sw_fallback handling of other packets */
278	if (ctx->tx_conf == TLS_SW) {
279		kfree(ctx->tx.rec_seq);
280		kfree(ctx->tx.iv);
281		tls_sw_release_resources_tx(sk);
282		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
283	} else if (ctx->tx_conf == TLS_HW) {
284		tls_device_free_resources_tx(sk);
285		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
286	}
287
288	if (ctx->rx_conf == TLS_SW) {
289		tls_sw_release_resources_rx(sk);
290		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
291	} else if (ctx->rx_conf == TLS_HW) {
292		tls_device_offload_cleanup_rx(sk);
293		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
294	}
295}
296
297static void tls_sk_proto_close(struct sock *sk, long timeout)
298{
299	struct inet_connection_sock *icsk = inet_csk(sk);
300	struct tls_context *ctx = tls_get_ctx(sk);
301	long timeo = sock_sndtimeo(sk, 0);
302	bool free_ctx;
303
304	if (ctx->tx_conf == TLS_SW)
305		tls_sw_cancel_work_tx(ctx);
306
307	lock_sock(sk);
308	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
309
310	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
311		tls_sk_proto_cleanup(sk, ctx, timeo);
312
313	write_lock_bh(&sk->sk_callback_lock);
314	if (free_ctx)
315		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
316	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
317	if (sk->sk_write_space == tls_write_space)
318		sk->sk_write_space = ctx->sk_write_space;
319	write_unlock_bh(&sk->sk_callback_lock);
320	release_sock(sk);
321	if (ctx->tx_conf == TLS_SW)
322		tls_sw_free_ctx_tx(ctx);
323	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
324		tls_sw_strparser_done(ctx);
325	if (ctx->rx_conf == TLS_SW)
326		tls_sw_free_ctx_rx(ctx);
327	ctx->sk_proto->close(sk, timeout);
328
329	if (free_ctx)
330		tls_ctx_free(sk, ctx);
331}
332
333static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
334				int __user *optlen)
335{
336	int rc = 0;
337	struct tls_context *ctx = tls_get_ctx(sk);
338	struct tls_crypto_info *crypto_info;
 
339	int len;
340
341	if (get_user(len, optlen))
342		return -EFAULT;
343
344	if (!optval || (len < sizeof(*crypto_info))) {
345		rc = -EINVAL;
346		goto out;
347	}
348
349	if (!ctx) {
350		rc = -EBUSY;
351		goto out;
352	}
353
354	/* get user crypto info */
355	crypto_info = &ctx->crypto_send.info;
 
 
 
 
 
 
356
357	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
358		rc = -EBUSY;
359		goto out;
360	}
361
362	if (len == sizeof(*crypto_info)) {
363		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
364			rc = -EFAULT;
365		goto out;
366	}
367
368	switch (crypto_info->cipher_type) {
369	case TLS_CIPHER_AES_GCM_128: {
370		struct tls12_crypto_info_aes_gcm_128 *
371		  crypto_info_aes_gcm_128 =
372		  container_of(crypto_info,
373			       struct tls12_crypto_info_aes_gcm_128,
374			       info);
375
376		if (len != sizeof(*crypto_info_aes_gcm_128)) {
377			rc = -EINVAL;
378			goto out;
379		}
380		lock_sock(sk);
381		memcpy(crypto_info_aes_gcm_128->iv,
382		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
383		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
384		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
385		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
386		release_sock(sk);
387		if (copy_to_user(optval,
388				 crypto_info_aes_gcm_128,
389				 sizeof(*crypto_info_aes_gcm_128)))
390			rc = -EFAULT;
391		break;
392	}
393	case TLS_CIPHER_AES_GCM_256: {
394		struct tls12_crypto_info_aes_gcm_256 *
395		  crypto_info_aes_gcm_256 =
396		  container_of(crypto_info,
397			       struct tls12_crypto_info_aes_gcm_256,
398			       info);
399
400		if (len != sizeof(*crypto_info_aes_gcm_256)) {
401			rc = -EINVAL;
402			goto out;
403		}
404		lock_sock(sk);
405		memcpy(crypto_info_aes_gcm_256->iv,
406		       ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
407		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
408		memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
409		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
410		release_sock(sk);
411		if (copy_to_user(optval,
412				 crypto_info_aes_gcm_256,
413				 sizeof(*crypto_info_aes_gcm_256)))
414			rc = -EFAULT;
415		break;
416	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417	default:
418		rc = -EINVAL;
419	}
420
421out:
422	return rc;
423}
424
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
425static int do_tls_getsockopt(struct sock *sk, int optname,
426			     char __user *optval, int __user *optlen)
427{
428	int rc = 0;
429
430	switch (optname) {
431	case TLS_TX:
432		rc = do_tls_getsockopt_tx(sk, optval, optlen);
 
 
 
 
 
 
 
 
433		break;
434	default:
435		rc = -ENOPROTOOPT;
436		break;
437	}
438	return rc;
439}
440
441static int tls_getsockopt(struct sock *sk, int level, int optname,
442			  char __user *optval, int __user *optlen)
443{
444	struct tls_context *ctx = tls_get_ctx(sk);
445
446	if (level != SOL_TLS)
447		return ctx->sk_proto->getsockopt(sk, level,
448						 optname, optval, optlen);
449
450	return do_tls_getsockopt(sk, optname, optval, optlen);
451}
452
453static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
454				  unsigned int optlen, int tx)
455{
456	struct tls_crypto_info *crypto_info;
457	struct tls_crypto_info *alt_crypto_info;
458	struct tls_context *ctx = tls_get_ctx(sk);
459	size_t optsize;
460	int rc = 0;
461	int conf;
462
463	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info))) {
464		rc = -EINVAL;
465		goto out;
466	}
467
468	if (tx) {
469		crypto_info = &ctx->crypto_send.info;
470		alt_crypto_info = &ctx->crypto_recv.info;
471	} else {
472		crypto_info = &ctx->crypto_recv.info;
473		alt_crypto_info = &ctx->crypto_send.info;
474	}
475
476	/* Currently we don't support set crypto info more than one time */
477	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
478		rc = -EBUSY;
479		goto out;
480	}
481
482	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
483	if (rc) {
484		rc = -EFAULT;
485		goto err_crypto_info;
486	}
487
488	/* check version */
489	if (crypto_info->version != TLS_1_2_VERSION &&
490	    crypto_info->version != TLS_1_3_VERSION) {
491		rc = -EINVAL;
492		goto err_crypto_info;
493	}
494
495	/* Ensure that TLS version and ciphers are same in both directions */
496	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
497		if (alt_crypto_info->version != crypto_info->version ||
498		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
499			rc = -EINVAL;
500			goto err_crypto_info;
501		}
502	}
503
504	switch (crypto_info->cipher_type) {
505	case TLS_CIPHER_AES_GCM_128:
506		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
507		break;
508	case TLS_CIPHER_AES_GCM_256: {
509		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
510		break;
511	}
512	case TLS_CIPHER_AES_CCM_128:
513		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
514		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
515	default:
516		rc = -EINVAL;
517		goto err_crypto_info;
518	}
519
520	if (optlen != optsize) {
521		rc = -EINVAL;
522		goto err_crypto_info;
523	}
524
525	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
526				      sizeof(*crypto_info),
527				      optlen - sizeof(*crypto_info));
528	if (rc) {
529		rc = -EFAULT;
530		goto err_crypto_info;
531	}
532
533	if (tx) {
534		rc = tls_set_device_offload(sk, ctx);
535		conf = TLS_HW;
536		if (!rc) {
537			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
538			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
539		} else {
540			rc = tls_set_sw_offload(sk, ctx, 1);
541			if (rc)
542				goto err_crypto_info;
543			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
544			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
545			conf = TLS_SW;
546		}
547	} else {
548		rc = tls_set_device_offload_rx(sk, ctx);
549		conf = TLS_HW;
550		if (!rc) {
551			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
552			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
553		} else {
554			rc = tls_set_sw_offload(sk, ctx, 0);
555			if (rc)
556				goto err_crypto_info;
557			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
558			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
559			conf = TLS_SW;
560		}
561		tls_sw_strparser_arm(sk, ctx);
562	}
563
564	if (tx)
565		ctx->tx_conf = conf;
566	else
567		ctx->rx_conf = conf;
568	update_sk_prot(sk, ctx);
569	if (tx) {
570		ctx->sk_write_space = sk->sk_write_space;
571		sk->sk_write_space = tls_write_space;
572	} else {
573		sk->sk_socket->ops = &tls_sw_proto_ops;
 
 
574	}
575	goto out;
576
577err_crypto_info:
578	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
579out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
580	return rc;
581}
582
583static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
584			     unsigned int optlen)
585{
586	int rc = 0;
587
588	switch (optname) {
589	case TLS_TX:
590	case TLS_RX:
591		lock_sock(sk);
592		rc = do_tls_setsockopt_conf(sk, optval, optlen,
593					    optname == TLS_TX);
594		release_sock(sk);
595		break;
 
 
 
 
 
 
 
 
596	default:
597		rc = -ENOPROTOOPT;
598		break;
599	}
600	return rc;
601}
602
603static int tls_setsockopt(struct sock *sk, int level, int optname,
604			  sockptr_t optval, unsigned int optlen)
605{
606	struct tls_context *ctx = tls_get_ctx(sk);
607
608	if (level != SOL_TLS)
609		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
610						 optlen);
611
612	return do_tls_setsockopt(sk, optname, optval, optlen);
613}
614
615struct tls_context *tls_ctx_create(struct sock *sk)
616{
617	struct inet_connection_sock *icsk = inet_csk(sk);
618	struct tls_context *ctx;
619
620	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
621	if (!ctx)
622		return NULL;
623
624	mutex_init(&ctx->tx_lock);
625	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
626	ctx->sk_proto = READ_ONCE(sk->sk_prot);
 
627	return ctx;
628}
629
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
630static void tls_build_proto(struct sock *sk)
631{
632	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
633	struct proto *prot = READ_ONCE(sk->sk_prot);
634
635	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
636	if (ip_ver == TLSV6 &&
637	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
638		mutex_lock(&tcpv6_prot_mutex);
639		if (likely(prot != saved_tcpv6_prot)) {
640			build_protos(tls_prots[TLSV6], prot);
 
 
641			smp_store_release(&saved_tcpv6_prot, prot);
642		}
643		mutex_unlock(&tcpv6_prot_mutex);
644	}
645
646	if (ip_ver == TLSV4 &&
647	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
648		mutex_lock(&tcpv4_prot_mutex);
649		if (likely(prot != saved_tcpv4_prot)) {
650			build_protos(tls_prots[TLSV4], prot);
 
 
651			smp_store_release(&saved_tcpv4_prot, prot);
652		}
653		mutex_unlock(&tcpv4_prot_mutex);
654	}
655}
656
657static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
658			 const struct proto *base)
659{
660	prot[TLS_BASE][TLS_BASE] = *base;
661	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
662	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
663	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
664
665	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
666	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
667	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
668
669	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
670	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
671	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
672	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
673
674	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
675	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
676	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
677	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
678
679#ifdef CONFIG_TLS_DEVICE
680	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
681	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
682	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
683
684	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
685	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
686	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
687
688	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
689
690	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
691
692	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
693#endif
694#ifdef CONFIG_TLS_TOE
695	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
696	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
697	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
698#endif
699}
700
701static int tls_init(struct sock *sk)
702{
703	struct tls_context *ctx;
704	int rc = 0;
705
706	tls_build_proto(sk);
707
708#ifdef CONFIG_TLS_TOE
709	if (tls_toe_bypass(sk))
710		return 0;
711#endif
712
713	/* The TLS ulp is currently supported only for TCP sockets
714	 * in ESTABLISHED state.
715	 * Supporting sockets in LISTEN state will require us
716	 * to modify the accept implementation to clone rather then
717	 * share the ulp context.
718	 */
719	if (sk->sk_state != TCP_ESTABLISHED)
720		return -ENOTCONN;
721
722	/* allocate tls context */
723	write_lock_bh(&sk->sk_callback_lock);
724	ctx = tls_ctx_create(sk);
725	if (!ctx) {
726		rc = -ENOMEM;
727		goto out;
728	}
729
730	ctx->tx_conf = TLS_BASE;
731	ctx->rx_conf = TLS_BASE;
732	update_sk_prot(sk, ctx);
733out:
734	write_unlock_bh(&sk->sk_callback_lock);
735	return rc;
736}
737
738static void tls_update(struct sock *sk, struct proto *p,
739		       void (*write_space)(struct sock *sk))
740{
741	struct tls_context *ctx;
742
 
 
743	ctx = tls_get_ctx(sk);
744	if (likely(ctx)) {
745		ctx->sk_write_space = write_space;
746		ctx->sk_proto = p;
747	} else {
748		/* Pairs with lockless read in sk_clone_lock(). */
749		WRITE_ONCE(sk->sk_prot, p);
750		sk->sk_write_space = write_space;
751	}
752}
753
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
754static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
755{
756	u16 version, cipher_type;
757	struct tls_context *ctx;
758	struct nlattr *start;
759	int err;
760
761	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
762	if (!start)
763		return -EMSGSIZE;
764
765	rcu_read_lock();
766	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
767	if (!ctx) {
768		err = 0;
769		goto nla_failure;
770	}
771	version = ctx->prot_info.version;
772	if (version) {
773		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
774		if (err)
775			goto nla_failure;
776	}
777	cipher_type = ctx->prot_info.cipher_type;
778	if (cipher_type) {
779		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
780		if (err)
781			goto nla_failure;
782	}
783	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
784	if (err)
785		goto nla_failure;
786
787	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
788	if (err)
789		goto nla_failure;
790
 
 
 
 
 
 
 
 
 
 
 
791	rcu_read_unlock();
792	nla_nest_end(skb, start);
793	return 0;
794
795nla_failure:
796	rcu_read_unlock();
797	nla_nest_cancel(skb, start);
798	return err;
799}
800
801static size_t tls_get_info_size(const struct sock *sk)
802{
803	size_t size = 0;
804
805	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
806		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
807		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
808		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
809		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
 
 
810		0;
811
812	return size;
813}
814
815static int __net_init tls_init_net(struct net *net)
816{
817	int err;
818
819	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
820	if (!net->mib.tls_statistics)
821		return -ENOMEM;
822
823	err = tls_proc_init(net);
824	if (err)
825		goto err_free_stats;
826
827	return 0;
828err_free_stats:
829	free_percpu(net->mib.tls_statistics);
830	return err;
831}
832
833static void __net_exit tls_exit_net(struct net *net)
834{
835	tls_proc_fini(net);
836	free_percpu(net->mib.tls_statistics);
837}
838
839static struct pernet_operations tls_proc_ops = {
840	.init = tls_init_net,
841	.exit = tls_exit_net,
842};
843
844static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
845	.name			= "tls",
846	.owner			= THIS_MODULE,
847	.init			= tls_init,
848	.update			= tls_update,
849	.get_info		= tls_get_info,
850	.get_info_size		= tls_get_info_size,
851};
852
853static int __init tls_register(void)
854{
855	int err;
856
857	err = register_pernet_subsys(&tls_proc_ops);
858	if (err)
859		return err;
860
861	tls_sw_proto_ops = inet_stream_ops;
862	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
863	tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked,
 
 
 
 
864
865	tls_device_init();
866	tcp_register_ulp(&tcp_tls_ulp_ops);
867
868	return 0;
 
 
 
 
 
869}
870
871static void __exit tls_unregister(void)
872{
873	tcp_unregister_ulp(&tcp_tls_ulp_ops);
 
874	tls_device_cleanup();
875	unregister_pernet_subsys(&tls_proc_ops);
876}
877
878module_init(tls_register);
879module_exit(tls_unregister);