Loading...
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42#include <linux/inet_diag.h>
43
44#include <net/snmp.h>
45#include <net/tls.h>
46#include <net/tls_toe.h>
47
48#include "tls.h"
49
50MODULE_AUTHOR("Mellanox Technologies");
51MODULE_DESCRIPTION("Transport Layer Security Support");
52MODULE_LICENSE("Dual BSD/GPL");
53MODULE_ALIAS_TCP_ULP("tls");
54
55enum {
56 TLSV4,
57 TLSV6,
58 TLS_NUM_PROTS,
59};
60
61#define CIPHER_SIZE_DESC(cipher) [cipher] = { \
62 .iv = cipher ## _IV_SIZE, \
63 .key = cipher ## _KEY_SIZE, \
64 .salt = cipher ## _SALT_SIZE, \
65 .tag = cipher ## _TAG_SIZE, \
66 .rec_seq = cipher ## _REC_SEQ_SIZE, \
67}
68
69const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
70 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
71 CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
72 CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
73 CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
74 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
75 CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
76};
77
78static const struct proto *saved_tcpv6_prot;
79static DEFINE_MUTEX(tcpv6_prot_mutex);
80static const struct proto *saved_tcpv4_prot;
81static DEFINE_MUTEX(tcpv4_prot_mutex);
82static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
83static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
84static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
85 const struct proto *base);
86
87void update_sk_prot(struct sock *sk, struct tls_context *ctx)
88{
89 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
90
91 WRITE_ONCE(sk->sk_prot,
92 &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
93 WRITE_ONCE(sk->sk_socket->ops,
94 &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
95}
96
97int wait_on_pending_writer(struct sock *sk, long *timeo)
98{
99 int rc = 0;
100 DEFINE_WAIT_FUNC(wait, woken_wake_function);
101
102 add_wait_queue(sk_sleep(sk), &wait);
103 while (1) {
104 if (!*timeo) {
105 rc = -EAGAIN;
106 break;
107 }
108
109 if (signal_pending(current)) {
110 rc = sock_intr_errno(*timeo);
111 break;
112 }
113
114 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
115 break;
116 }
117 remove_wait_queue(sk_sleep(sk), &wait);
118 return rc;
119}
120
121int tls_push_sg(struct sock *sk,
122 struct tls_context *ctx,
123 struct scatterlist *sg,
124 u16 first_offset,
125 int flags)
126{
127 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
128 int ret = 0;
129 struct page *p;
130 size_t size;
131 int offset = first_offset;
132
133 size = sg->length - offset;
134 offset += sg->offset;
135
136 ctx->in_tcp_sendpages = true;
137 while (1) {
138 if (sg_is_last(sg))
139 sendpage_flags = flags;
140
141 /* is sending application-limited? */
142 tcp_rate_check_app_limited(sk);
143 p = sg_page(sg);
144retry:
145 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
146
147 if (ret != size) {
148 if (ret > 0) {
149 offset += ret;
150 size -= ret;
151 goto retry;
152 }
153
154 offset -= sg->offset;
155 ctx->partially_sent_offset = offset;
156 ctx->partially_sent_record = (void *)sg;
157 ctx->in_tcp_sendpages = false;
158 return ret;
159 }
160
161 put_page(p);
162 sk_mem_uncharge(sk, sg->length);
163 sg = sg_next(sg);
164 if (!sg)
165 break;
166
167 offset = sg->offset;
168 size = sg->length;
169 }
170
171 ctx->in_tcp_sendpages = false;
172
173 return 0;
174}
175
176static int tls_handle_open_record(struct sock *sk, int flags)
177{
178 struct tls_context *ctx = tls_get_ctx(sk);
179
180 if (tls_is_pending_open_record(ctx))
181 return ctx->push_pending_record(sk, flags);
182
183 return 0;
184}
185
186int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
187 unsigned char *record_type)
188{
189 struct cmsghdr *cmsg;
190 int rc = -EINVAL;
191
192 for_each_cmsghdr(cmsg, msg) {
193 if (!CMSG_OK(msg, cmsg))
194 return -EINVAL;
195 if (cmsg->cmsg_level != SOL_TLS)
196 continue;
197
198 switch (cmsg->cmsg_type) {
199 case TLS_SET_RECORD_TYPE:
200 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
201 return -EINVAL;
202
203 if (msg->msg_flags & MSG_MORE)
204 return -EINVAL;
205
206 rc = tls_handle_open_record(sk, msg->msg_flags);
207 if (rc)
208 return rc;
209
210 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
211 rc = 0;
212 break;
213 default:
214 return -EINVAL;
215 }
216 }
217
218 return rc;
219}
220
221int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
222 int flags)
223{
224 struct scatterlist *sg;
225 u16 offset;
226
227 sg = ctx->partially_sent_record;
228 offset = ctx->partially_sent_offset;
229
230 ctx->partially_sent_record = NULL;
231 return tls_push_sg(sk, ctx, sg, offset, flags);
232}
233
234void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
235{
236 struct scatterlist *sg;
237
238 for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
239 put_page(sg_page(sg));
240 sk_mem_uncharge(sk, sg->length);
241 }
242 ctx->partially_sent_record = NULL;
243}
244
245static void tls_write_space(struct sock *sk)
246{
247 struct tls_context *ctx = tls_get_ctx(sk);
248
249 /* If in_tcp_sendpages call lower protocol write space handler
250 * to ensure we wake up any waiting operations there. For example
251 * if do_tcp_sendpages where to call sk_wait_event.
252 */
253 if (ctx->in_tcp_sendpages) {
254 ctx->sk_write_space(sk);
255 return;
256 }
257
258#ifdef CONFIG_TLS_DEVICE
259 if (ctx->tx_conf == TLS_HW)
260 tls_device_write_space(sk, ctx);
261 else
262#endif
263 tls_sw_write_space(sk, ctx);
264
265 ctx->sk_write_space(sk);
266}
267
268/**
269 * tls_ctx_free() - free TLS ULP context
270 * @sk: socket to with @ctx is attached
271 * @ctx: TLS context structure
272 *
273 * Free TLS context. If @sk is %NULL caller guarantees that the socket
274 * to which @ctx was attached has no outstanding references.
275 */
276void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
277{
278 if (!ctx)
279 return;
280
281 memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
282 memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
283 mutex_destroy(&ctx->tx_lock);
284
285 if (sk)
286 kfree_rcu(ctx, rcu);
287 else
288 kfree(ctx);
289}
290
291static void tls_sk_proto_cleanup(struct sock *sk,
292 struct tls_context *ctx, long timeo)
293{
294 if (unlikely(sk->sk_write_pending) &&
295 !wait_on_pending_writer(sk, &timeo))
296 tls_handle_open_record(sk, 0);
297
298 /* We need these for tls_sw_fallback handling of other packets */
299 if (ctx->tx_conf == TLS_SW) {
300 kfree(ctx->tx.rec_seq);
301 kfree(ctx->tx.iv);
302 tls_sw_release_resources_tx(sk);
303 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
304 } else if (ctx->tx_conf == TLS_HW) {
305 tls_device_free_resources_tx(sk);
306 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
307 }
308
309 if (ctx->rx_conf == TLS_SW) {
310 tls_sw_release_resources_rx(sk);
311 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
312 } else if (ctx->rx_conf == TLS_HW) {
313 tls_device_offload_cleanup_rx(sk);
314 TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
315 }
316}
317
318static void tls_sk_proto_close(struct sock *sk, long timeout)
319{
320 struct inet_connection_sock *icsk = inet_csk(sk);
321 struct tls_context *ctx = tls_get_ctx(sk);
322 long timeo = sock_sndtimeo(sk, 0);
323 bool free_ctx;
324
325 if (ctx->tx_conf == TLS_SW)
326 tls_sw_cancel_work_tx(ctx);
327
328 lock_sock(sk);
329 free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
330
331 if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
332 tls_sk_proto_cleanup(sk, ctx, timeo);
333
334 write_lock_bh(&sk->sk_callback_lock);
335 if (free_ctx)
336 rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
337 WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
338 if (sk->sk_write_space == tls_write_space)
339 sk->sk_write_space = ctx->sk_write_space;
340 write_unlock_bh(&sk->sk_callback_lock);
341 release_sock(sk);
342 if (ctx->tx_conf == TLS_SW)
343 tls_sw_free_ctx_tx(ctx);
344 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
345 tls_sw_strparser_done(ctx);
346 if (ctx->rx_conf == TLS_SW)
347 tls_sw_free_ctx_rx(ctx);
348 ctx->sk_proto->close(sk, timeout);
349
350 if (free_ctx)
351 tls_ctx_free(sk, ctx);
352}
353
354static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
355 int __user *optlen, int tx)
356{
357 int rc = 0;
358 struct tls_context *ctx = tls_get_ctx(sk);
359 struct tls_crypto_info *crypto_info;
360 struct cipher_context *cctx;
361 int len;
362
363 if (get_user(len, optlen))
364 return -EFAULT;
365
366 if (!optval || (len < sizeof(*crypto_info))) {
367 rc = -EINVAL;
368 goto out;
369 }
370
371 if (!ctx) {
372 rc = -EBUSY;
373 goto out;
374 }
375
376 /* get user crypto info */
377 if (tx) {
378 crypto_info = &ctx->crypto_send.info;
379 cctx = &ctx->tx;
380 } else {
381 crypto_info = &ctx->crypto_recv.info;
382 cctx = &ctx->rx;
383 }
384
385 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
386 rc = -EBUSY;
387 goto out;
388 }
389
390 if (len == sizeof(*crypto_info)) {
391 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
392 rc = -EFAULT;
393 goto out;
394 }
395
396 switch (crypto_info->cipher_type) {
397 case TLS_CIPHER_AES_GCM_128: {
398 struct tls12_crypto_info_aes_gcm_128 *
399 crypto_info_aes_gcm_128 =
400 container_of(crypto_info,
401 struct tls12_crypto_info_aes_gcm_128,
402 info);
403
404 if (len != sizeof(*crypto_info_aes_gcm_128)) {
405 rc = -EINVAL;
406 goto out;
407 }
408 lock_sock(sk);
409 memcpy(crypto_info_aes_gcm_128->iv,
410 cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
411 TLS_CIPHER_AES_GCM_128_IV_SIZE);
412 memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
413 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
414 release_sock(sk);
415 if (copy_to_user(optval,
416 crypto_info_aes_gcm_128,
417 sizeof(*crypto_info_aes_gcm_128)))
418 rc = -EFAULT;
419 break;
420 }
421 case TLS_CIPHER_AES_GCM_256: {
422 struct tls12_crypto_info_aes_gcm_256 *
423 crypto_info_aes_gcm_256 =
424 container_of(crypto_info,
425 struct tls12_crypto_info_aes_gcm_256,
426 info);
427
428 if (len != sizeof(*crypto_info_aes_gcm_256)) {
429 rc = -EINVAL;
430 goto out;
431 }
432 lock_sock(sk);
433 memcpy(crypto_info_aes_gcm_256->iv,
434 cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
435 TLS_CIPHER_AES_GCM_256_IV_SIZE);
436 memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
437 TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
438 release_sock(sk);
439 if (copy_to_user(optval,
440 crypto_info_aes_gcm_256,
441 sizeof(*crypto_info_aes_gcm_256)))
442 rc = -EFAULT;
443 break;
444 }
445 case TLS_CIPHER_AES_CCM_128: {
446 struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
447 container_of(crypto_info,
448 struct tls12_crypto_info_aes_ccm_128, info);
449
450 if (len != sizeof(*aes_ccm_128)) {
451 rc = -EINVAL;
452 goto out;
453 }
454 lock_sock(sk);
455 memcpy(aes_ccm_128->iv,
456 cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
457 TLS_CIPHER_AES_CCM_128_IV_SIZE);
458 memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
459 TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
460 release_sock(sk);
461 if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
462 rc = -EFAULT;
463 break;
464 }
465 case TLS_CIPHER_CHACHA20_POLY1305: {
466 struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
467 container_of(crypto_info,
468 struct tls12_crypto_info_chacha20_poly1305,
469 info);
470
471 if (len != sizeof(*chacha20_poly1305)) {
472 rc = -EINVAL;
473 goto out;
474 }
475 lock_sock(sk);
476 memcpy(chacha20_poly1305->iv,
477 cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
478 TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
479 memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
480 TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
481 release_sock(sk);
482 if (copy_to_user(optval, chacha20_poly1305,
483 sizeof(*chacha20_poly1305)))
484 rc = -EFAULT;
485 break;
486 }
487 case TLS_CIPHER_SM4_GCM: {
488 struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
489 container_of(crypto_info,
490 struct tls12_crypto_info_sm4_gcm, info);
491
492 if (len != sizeof(*sm4_gcm_info)) {
493 rc = -EINVAL;
494 goto out;
495 }
496 lock_sock(sk);
497 memcpy(sm4_gcm_info->iv,
498 cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
499 TLS_CIPHER_SM4_GCM_IV_SIZE);
500 memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
501 TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
502 release_sock(sk);
503 if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
504 rc = -EFAULT;
505 break;
506 }
507 case TLS_CIPHER_SM4_CCM: {
508 struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
509 container_of(crypto_info,
510 struct tls12_crypto_info_sm4_ccm, info);
511
512 if (len != sizeof(*sm4_ccm_info)) {
513 rc = -EINVAL;
514 goto out;
515 }
516 lock_sock(sk);
517 memcpy(sm4_ccm_info->iv,
518 cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
519 TLS_CIPHER_SM4_CCM_IV_SIZE);
520 memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
521 TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
522 release_sock(sk);
523 if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
524 rc = -EFAULT;
525 break;
526 }
527 case TLS_CIPHER_ARIA_GCM_128: {
528 struct tls12_crypto_info_aria_gcm_128 *
529 crypto_info_aria_gcm_128 =
530 container_of(crypto_info,
531 struct tls12_crypto_info_aria_gcm_128,
532 info);
533
534 if (len != sizeof(*crypto_info_aria_gcm_128)) {
535 rc = -EINVAL;
536 goto out;
537 }
538 lock_sock(sk);
539 memcpy(crypto_info_aria_gcm_128->iv,
540 cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
541 TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
542 memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
543 TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
544 release_sock(sk);
545 if (copy_to_user(optval,
546 crypto_info_aria_gcm_128,
547 sizeof(*crypto_info_aria_gcm_128)))
548 rc = -EFAULT;
549 break;
550 }
551 case TLS_CIPHER_ARIA_GCM_256: {
552 struct tls12_crypto_info_aria_gcm_256 *
553 crypto_info_aria_gcm_256 =
554 container_of(crypto_info,
555 struct tls12_crypto_info_aria_gcm_256,
556 info);
557
558 if (len != sizeof(*crypto_info_aria_gcm_256)) {
559 rc = -EINVAL;
560 goto out;
561 }
562 lock_sock(sk);
563 memcpy(crypto_info_aria_gcm_256->iv,
564 cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
565 TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
566 memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
567 TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
568 release_sock(sk);
569 if (copy_to_user(optval,
570 crypto_info_aria_gcm_256,
571 sizeof(*crypto_info_aria_gcm_256)))
572 rc = -EFAULT;
573 break;
574 }
575 default:
576 rc = -EINVAL;
577 }
578
579out:
580 return rc;
581}
582
583static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
584 int __user *optlen)
585{
586 struct tls_context *ctx = tls_get_ctx(sk);
587 unsigned int value;
588 int len;
589
590 if (get_user(len, optlen))
591 return -EFAULT;
592
593 if (len != sizeof(value))
594 return -EINVAL;
595
596 value = ctx->zerocopy_sendfile;
597 if (copy_to_user(optval, &value, sizeof(value)))
598 return -EFAULT;
599
600 return 0;
601}
602
603static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
604 int __user *optlen)
605{
606 struct tls_context *ctx = tls_get_ctx(sk);
607 int value, len;
608
609 if (ctx->prot_info.version != TLS_1_3_VERSION)
610 return -EINVAL;
611
612 if (get_user(len, optlen))
613 return -EFAULT;
614 if (len < sizeof(value))
615 return -EINVAL;
616
617 lock_sock(sk);
618 value = -EINVAL;
619 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
620 value = ctx->rx_no_pad;
621 release_sock(sk);
622 if (value < 0)
623 return value;
624
625 if (put_user(sizeof(value), optlen))
626 return -EFAULT;
627 if (copy_to_user(optval, &value, sizeof(value)))
628 return -EFAULT;
629
630 return 0;
631}
632
633static int do_tls_getsockopt(struct sock *sk, int optname,
634 char __user *optval, int __user *optlen)
635{
636 int rc = 0;
637
638 switch (optname) {
639 case TLS_TX:
640 case TLS_RX:
641 rc = do_tls_getsockopt_conf(sk, optval, optlen,
642 optname == TLS_TX);
643 break;
644 case TLS_TX_ZEROCOPY_RO:
645 rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
646 break;
647 case TLS_RX_EXPECT_NO_PAD:
648 rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
649 break;
650 default:
651 rc = -ENOPROTOOPT;
652 break;
653 }
654 return rc;
655}
656
657static int tls_getsockopt(struct sock *sk, int level, int optname,
658 char __user *optval, int __user *optlen)
659{
660 struct tls_context *ctx = tls_get_ctx(sk);
661
662 if (level != SOL_TLS)
663 return ctx->sk_proto->getsockopt(sk, level,
664 optname, optval, optlen);
665
666 return do_tls_getsockopt(sk, optname, optval, optlen);
667}
668
669static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
670 unsigned int optlen, int tx)
671{
672 struct tls_crypto_info *crypto_info;
673 struct tls_crypto_info *alt_crypto_info;
674 struct tls_context *ctx = tls_get_ctx(sk);
675 size_t optsize;
676 int rc = 0;
677 int conf;
678
679 if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
680 return -EINVAL;
681
682 if (tx) {
683 crypto_info = &ctx->crypto_send.info;
684 alt_crypto_info = &ctx->crypto_recv.info;
685 } else {
686 crypto_info = &ctx->crypto_recv.info;
687 alt_crypto_info = &ctx->crypto_send.info;
688 }
689
690 /* Currently we don't support set crypto info more than one time */
691 if (TLS_CRYPTO_INFO_READY(crypto_info))
692 return -EBUSY;
693
694 rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
695 if (rc) {
696 rc = -EFAULT;
697 goto err_crypto_info;
698 }
699
700 /* check version */
701 if (crypto_info->version != TLS_1_2_VERSION &&
702 crypto_info->version != TLS_1_3_VERSION) {
703 rc = -EINVAL;
704 goto err_crypto_info;
705 }
706
707 /* Ensure that TLS version and ciphers are same in both directions */
708 if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
709 if (alt_crypto_info->version != crypto_info->version ||
710 alt_crypto_info->cipher_type != crypto_info->cipher_type) {
711 rc = -EINVAL;
712 goto err_crypto_info;
713 }
714 }
715
716 switch (crypto_info->cipher_type) {
717 case TLS_CIPHER_AES_GCM_128:
718 optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
719 break;
720 case TLS_CIPHER_AES_GCM_256: {
721 optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
722 break;
723 }
724 case TLS_CIPHER_AES_CCM_128:
725 optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
726 break;
727 case TLS_CIPHER_CHACHA20_POLY1305:
728 optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
729 break;
730 case TLS_CIPHER_SM4_GCM:
731 optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
732 break;
733 case TLS_CIPHER_SM4_CCM:
734 optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
735 break;
736 case TLS_CIPHER_ARIA_GCM_128:
737 if (crypto_info->version != TLS_1_2_VERSION) {
738 rc = -EINVAL;
739 goto err_crypto_info;
740 }
741 optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
742 break;
743 case TLS_CIPHER_ARIA_GCM_256:
744 if (crypto_info->version != TLS_1_2_VERSION) {
745 rc = -EINVAL;
746 goto err_crypto_info;
747 }
748 optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
749 break;
750 default:
751 rc = -EINVAL;
752 goto err_crypto_info;
753 }
754
755 if (optlen != optsize) {
756 rc = -EINVAL;
757 goto err_crypto_info;
758 }
759
760 rc = copy_from_sockptr_offset(crypto_info + 1, optval,
761 sizeof(*crypto_info),
762 optlen - sizeof(*crypto_info));
763 if (rc) {
764 rc = -EFAULT;
765 goto err_crypto_info;
766 }
767
768 if (tx) {
769 rc = tls_set_device_offload(sk, ctx);
770 conf = TLS_HW;
771 if (!rc) {
772 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
773 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
774 } else {
775 rc = tls_set_sw_offload(sk, ctx, 1);
776 if (rc)
777 goto err_crypto_info;
778 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
779 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
780 conf = TLS_SW;
781 }
782 } else {
783 rc = tls_set_device_offload_rx(sk, ctx);
784 conf = TLS_HW;
785 if (!rc) {
786 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
787 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
788 } else {
789 rc = tls_set_sw_offload(sk, ctx, 0);
790 if (rc)
791 goto err_crypto_info;
792 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
793 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
794 conf = TLS_SW;
795 }
796 tls_sw_strparser_arm(sk, ctx);
797 }
798
799 if (tx)
800 ctx->tx_conf = conf;
801 else
802 ctx->rx_conf = conf;
803 update_sk_prot(sk, ctx);
804 if (tx) {
805 ctx->sk_write_space = sk->sk_write_space;
806 sk->sk_write_space = tls_write_space;
807 } else {
808 struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
809
810 tls_strp_check_rcv(&rx_ctx->strp);
811 }
812 return 0;
813
814err_crypto_info:
815 memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
816 return rc;
817}
818
819static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
820 unsigned int optlen)
821{
822 struct tls_context *ctx = tls_get_ctx(sk);
823 unsigned int value;
824
825 if (sockptr_is_null(optval) || optlen != sizeof(value))
826 return -EINVAL;
827
828 if (copy_from_sockptr(&value, optval, sizeof(value)))
829 return -EFAULT;
830
831 if (value > 1)
832 return -EINVAL;
833
834 ctx->zerocopy_sendfile = value;
835
836 return 0;
837}
838
839static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
840 unsigned int optlen)
841{
842 struct tls_context *ctx = tls_get_ctx(sk);
843 u32 val;
844 int rc;
845
846 if (ctx->prot_info.version != TLS_1_3_VERSION ||
847 sockptr_is_null(optval) || optlen < sizeof(val))
848 return -EINVAL;
849
850 rc = copy_from_sockptr(&val, optval, sizeof(val));
851 if (rc)
852 return -EFAULT;
853 if (val > 1)
854 return -EINVAL;
855 rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
856 if (rc < 1)
857 return rc == 0 ? -EINVAL : rc;
858
859 lock_sock(sk);
860 rc = -EINVAL;
861 if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
862 ctx->rx_no_pad = val;
863 tls_update_rx_zc_capable(ctx);
864 rc = 0;
865 }
866 release_sock(sk);
867
868 return rc;
869}
870
871static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
872 unsigned int optlen)
873{
874 int rc = 0;
875
876 switch (optname) {
877 case TLS_TX:
878 case TLS_RX:
879 lock_sock(sk);
880 rc = do_tls_setsockopt_conf(sk, optval, optlen,
881 optname == TLS_TX);
882 release_sock(sk);
883 break;
884 case TLS_TX_ZEROCOPY_RO:
885 lock_sock(sk);
886 rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
887 release_sock(sk);
888 break;
889 case TLS_RX_EXPECT_NO_PAD:
890 rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
891 break;
892 default:
893 rc = -ENOPROTOOPT;
894 break;
895 }
896 return rc;
897}
898
899static int tls_setsockopt(struct sock *sk, int level, int optname,
900 sockptr_t optval, unsigned int optlen)
901{
902 struct tls_context *ctx = tls_get_ctx(sk);
903
904 if (level != SOL_TLS)
905 return ctx->sk_proto->setsockopt(sk, level, optname, optval,
906 optlen);
907
908 return do_tls_setsockopt(sk, optname, optval, optlen);
909}
910
911struct tls_context *tls_ctx_create(struct sock *sk)
912{
913 struct inet_connection_sock *icsk = inet_csk(sk);
914 struct tls_context *ctx;
915
916 ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
917 if (!ctx)
918 return NULL;
919
920 mutex_init(&ctx->tx_lock);
921 rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
922 ctx->sk_proto = READ_ONCE(sk->sk_prot);
923 ctx->sk = sk;
924 return ctx;
925}
926
927static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
928 const struct proto_ops *base)
929{
930 ops[TLS_BASE][TLS_BASE] = *base;
931
932 ops[TLS_SW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
933 ops[TLS_SW ][TLS_BASE].sendpage_locked = tls_sw_sendpage_locked;
934
935 ops[TLS_BASE][TLS_SW ] = ops[TLS_BASE][TLS_BASE];
936 ops[TLS_BASE][TLS_SW ].splice_read = tls_sw_splice_read;
937
938 ops[TLS_SW ][TLS_SW ] = ops[TLS_SW ][TLS_BASE];
939 ops[TLS_SW ][TLS_SW ].splice_read = tls_sw_splice_read;
940
941#ifdef CONFIG_TLS_DEVICE
942 ops[TLS_HW ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
943 ops[TLS_HW ][TLS_BASE].sendpage_locked = NULL;
944
945 ops[TLS_HW ][TLS_SW ] = ops[TLS_BASE][TLS_SW ];
946 ops[TLS_HW ][TLS_SW ].sendpage_locked = NULL;
947
948 ops[TLS_BASE][TLS_HW ] = ops[TLS_BASE][TLS_SW ];
949
950 ops[TLS_SW ][TLS_HW ] = ops[TLS_SW ][TLS_SW ];
951
952 ops[TLS_HW ][TLS_HW ] = ops[TLS_HW ][TLS_SW ];
953 ops[TLS_HW ][TLS_HW ].sendpage_locked = NULL;
954#endif
955#ifdef CONFIG_TLS_TOE
956 ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
957#endif
958}
959
960static void tls_build_proto(struct sock *sk)
961{
962 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
963 struct proto *prot = READ_ONCE(sk->sk_prot);
964
965 /* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
966 if (ip_ver == TLSV6 &&
967 unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
968 mutex_lock(&tcpv6_prot_mutex);
969 if (likely(prot != saved_tcpv6_prot)) {
970 build_protos(tls_prots[TLSV6], prot);
971 build_proto_ops(tls_proto_ops[TLSV6],
972 sk->sk_socket->ops);
973 smp_store_release(&saved_tcpv6_prot, prot);
974 }
975 mutex_unlock(&tcpv6_prot_mutex);
976 }
977
978 if (ip_ver == TLSV4 &&
979 unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
980 mutex_lock(&tcpv4_prot_mutex);
981 if (likely(prot != saved_tcpv4_prot)) {
982 build_protos(tls_prots[TLSV4], prot);
983 build_proto_ops(tls_proto_ops[TLSV4],
984 sk->sk_socket->ops);
985 smp_store_release(&saved_tcpv4_prot, prot);
986 }
987 mutex_unlock(&tcpv4_prot_mutex);
988 }
989}
990
991static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
992 const struct proto *base)
993{
994 prot[TLS_BASE][TLS_BASE] = *base;
995 prot[TLS_BASE][TLS_BASE].setsockopt = tls_setsockopt;
996 prot[TLS_BASE][TLS_BASE].getsockopt = tls_getsockopt;
997 prot[TLS_BASE][TLS_BASE].close = tls_sk_proto_close;
998
999 prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1000 prot[TLS_SW][TLS_BASE].sendmsg = tls_sw_sendmsg;
1001 prot[TLS_SW][TLS_BASE].sendpage = tls_sw_sendpage;
1002
1003 prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
1004 prot[TLS_BASE][TLS_SW].recvmsg = tls_sw_recvmsg;
1005 prot[TLS_BASE][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
1006 prot[TLS_BASE][TLS_SW].close = tls_sk_proto_close;
1007
1008 prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
1009 prot[TLS_SW][TLS_SW].recvmsg = tls_sw_recvmsg;
1010 prot[TLS_SW][TLS_SW].sock_is_readable = tls_sw_sock_is_readable;
1011 prot[TLS_SW][TLS_SW].close = tls_sk_proto_close;
1012
1013#ifdef CONFIG_TLS_DEVICE
1014 prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1015 prot[TLS_HW][TLS_BASE].sendmsg = tls_device_sendmsg;
1016 prot[TLS_HW][TLS_BASE].sendpage = tls_device_sendpage;
1017
1018 prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1019 prot[TLS_HW][TLS_SW].sendmsg = tls_device_sendmsg;
1020 prot[TLS_HW][TLS_SW].sendpage = tls_device_sendpage;
1021
1022 prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1023
1024 prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1025
1026 prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1027#endif
1028#ifdef CONFIG_TLS_TOE
1029 prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1030 prot[TLS_HW_RECORD][TLS_HW_RECORD].hash = tls_toe_hash;
1031 prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash = tls_toe_unhash;
1032#endif
1033}
1034
1035static int tls_init(struct sock *sk)
1036{
1037 struct tls_context *ctx;
1038 int rc = 0;
1039
1040 tls_build_proto(sk);
1041
1042#ifdef CONFIG_TLS_TOE
1043 if (tls_toe_bypass(sk))
1044 return 0;
1045#endif
1046
1047 /* The TLS ulp is currently supported only for TCP sockets
1048 * in ESTABLISHED state.
1049 * Supporting sockets in LISTEN state will require us
1050 * to modify the accept implementation to clone rather then
1051 * share the ulp context.
1052 */
1053 if (sk->sk_state != TCP_ESTABLISHED)
1054 return -ENOTCONN;
1055
1056 /* allocate tls context */
1057 write_lock_bh(&sk->sk_callback_lock);
1058 ctx = tls_ctx_create(sk);
1059 if (!ctx) {
1060 rc = -ENOMEM;
1061 goto out;
1062 }
1063
1064 ctx->tx_conf = TLS_BASE;
1065 ctx->rx_conf = TLS_BASE;
1066 update_sk_prot(sk, ctx);
1067out:
1068 write_unlock_bh(&sk->sk_callback_lock);
1069 return rc;
1070}
1071
1072static void tls_update(struct sock *sk, struct proto *p,
1073 void (*write_space)(struct sock *sk))
1074{
1075 struct tls_context *ctx;
1076
1077 WARN_ON_ONCE(sk->sk_prot == p);
1078
1079 ctx = tls_get_ctx(sk);
1080 if (likely(ctx)) {
1081 ctx->sk_write_space = write_space;
1082 ctx->sk_proto = p;
1083 } else {
1084 /* Pairs with lockless read in sk_clone_lock(). */
1085 WRITE_ONCE(sk->sk_prot, p);
1086 sk->sk_write_space = write_space;
1087 }
1088}
1089
1090static u16 tls_user_config(struct tls_context *ctx, bool tx)
1091{
1092 u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1093
1094 switch (config) {
1095 case TLS_BASE:
1096 return TLS_CONF_BASE;
1097 case TLS_SW:
1098 return TLS_CONF_SW;
1099 case TLS_HW:
1100 return TLS_CONF_HW;
1101 case TLS_HW_RECORD:
1102 return TLS_CONF_HW_RECORD;
1103 }
1104 return 0;
1105}
1106
1107static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1108{
1109 u16 version, cipher_type;
1110 struct tls_context *ctx;
1111 struct nlattr *start;
1112 int err;
1113
1114 start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1115 if (!start)
1116 return -EMSGSIZE;
1117
1118 rcu_read_lock();
1119 ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1120 if (!ctx) {
1121 err = 0;
1122 goto nla_failure;
1123 }
1124 version = ctx->prot_info.version;
1125 if (version) {
1126 err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1127 if (err)
1128 goto nla_failure;
1129 }
1130 cipher_type = ctx->prot_info.cipher_type;
1131 if (cipher_type) {
1132 err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1133 if (err)
1134 goto nla_failure;
1135 }
1136 err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1137 if (err)
1138 goto nla_failure;
1139
1140 err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1141 if (err)
1142 goto nla_failure;
1143
1144 if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1145 err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1146 if (err)
1147 goto nla_failure;
1148 }
1149 if (ctx->rx_no_pad) {
1150 err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1151 if (err)
1152 goto nla_failure;
1153 }
1154
1155 rcu_read_unlock();
1156 nla_nest_end(skb, start);
1157 return 0;
1158
1159nla_failure:
1160 rcu_read_unlock();
1161 nla_nest_cancel(skb, start);
1162 return err;
1163}
1164
1165static size_t tls_get_info_size(const struct sock *sk)
1166{
1167 size_t size = 0;
1168
1169 size += nla_total_size(0) + /* INET_ULP_INFO_TLS */
1170 nla_total_size(sizeof(u16)) + /* TLS_INFO_VERSION */
1171 nla_total_size(sizeof(u16)) + /* TLS_INFO_CIPHER */
1172 nla_total_size(sizeof(u16)) + /* TLS_INFO_RXCONF */
1173 nla_total_size(sizeof(u16)) + /* TLS_INFO_TXCONF */
1174 nla_total_size(0) + /* TLS_INFO_ZC_RO_TX */
1175 nla_total_size(0) + /* TLS_INFO_RX_NO_PAD */
1176 0;
1177
1178 return size;
1179}
1180
1181static int __net_init tls_init_net(struct net *net)
1182{
1183 int err;
1184
1185 net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1186 if (!net->mib.tls_statistics)
1187 return -ENOMEM;
1188
1189 err = tls_proc_init(net);
1190 if (err)
1191 goto err_free_stats;
1192
1193 return 0;
1194err_free_stats:
1195 free_percpu(net->mib.tls_statistics);
1196 return err;
1197}
1198
1199static void __net_exit tls_exit_net(struct net *net)
1200{
1201 tls_proc_fini(net);
1202 free_percpu(net->mib.tls_statistics);
1203}
1204
1205static struct pernet_operations tls_proc_ops = {
1206 .init = tls_init_net,
1207 .exit = tls_exit_net,
1208};
1209
1210static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1211 .name = "tls",
1212 .owner = THIS_MODULE,
1213 .init = tls_init,
1214 .update = tls_update,
1215 .get_info = tls_get_info,
1216 .get_info_size = tls_get_info_size,
1217};
1218
1219static int __init tls_register(void)
1220{
1221 int err;
1222
1223 err = register_pernet_subsys(&tls_proc_ops);
1224 if (err)
1225 return err;
1226
1227 err = tls_strp_dev_init();
1228 if (err)
1229 goto err_pernet;
1230
1231 err = tls_device_init();
1232 if (err)
1233 goto err_strp;
1234
1235 tcp_register_ulp(&tcp_tls_ulp_ops);
1236
1237 return 0;
1238err_strp:
1239 tls_strp_dev_exit();
1240err_pernet:
1241 unregister_pernet_subsys(&tls_proc_ops);
1242 return err;
1243}
1244
1245static void __exit tls_unregister(void)
1246{
1247 tcp_unregister_ulp(&tcp_tls_ulp_ops);
1248 tls_strp_dev_exit();
1249 tls_device_cleanup();
1250 unregister_pernet_subsys(&tls_proc_ops);
1251}
1252
1253module_init(tls_register);
1254module_exit(tls_unregister);
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses. You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 * Redistribution and use in source and binary forms, with or
12 * without modification, are permitted provided that the following
13 * conditions are met:
14 *
15 * - Redistributions of source code must retain the above
16 * copyright notice, this list of conditions and the following
17 * disclaimer.
18 *
19 * - Redistributions in binary form must reproduce the above
20 * copyright notice, this list of conditions and the following
21 * disclaimer in the documentation and/or other materials
22 * provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#include <linux/module.h>
35
36#include <net/tcp.h>
37#include <net/inet_common.h>
38#include <linux/highmem.h>
39#include <linux/netdevice.h>
40#include <linux/sched/signal.h>
41#include <linux/inetdevice.h>
42
43#include <net/tls.h>
44
45MODULE_AUTHOR("Mellanox Technologies");
46MODULE_DESCRIPTION("Transport Layer Security Support");
47MODULE_LICENSE("Dual BSD/GPL");
48
49enum {
50 TLSV4,
51 TLSV6,
52 TLS_NUM_PROTS,
53};
54
55enum {
56 TLS_BASE,
57 TLS_SW_TX,
58 TLS_SW_RX,
59 TLS_SW_RXTX,
60 TLS_HW_RECORD,
61 TLS_NUM_CONFIG,
62};
63
64static struct proto *saved_tcpv6_prot;
65static DEFINE_MUTEX(tcpv6_prot_mutex);
66static LIST_HEAD(device_list);
67static DEFINE_MUTEX(device_mutex);
68static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG];
69static struct proto_ops tls_sw_proto_ops;
70
71static inline void update_sk_prot(struct sock *sk, struct tls_context *ctx)
72{
73 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
74
75 sk->sk_prot = &tls_prots[ip_ver][ctx->conf];
76}
77
78int wait_on_pending_writer(struct sock *sk, long *timeo)
79{
80 int rc = 0;
81 DEFINE_WAIT_FUNC(wait, woken_wake_function);
82
83 add_wait_queue(sk_sleep(sk), &wait);
84 while (1) {
85 if (!*timeo) {
86 rc = -EAGAIN;
87 break;
88 }
89
90 if (signal_pending(current)) {
91 rc = sock_intr_errno(*timeo);
92 break;
93 }
94
95 if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
96 break;
97 }
98 remove_wait_queue(sk_sleep(sk), &wait);
99 return rc;
100}
101
102int tls_push_sg(struct sock *sk,
103 struct tls_context *ctx,
104 struct scatterlist *sg,
105 u16 first_offset,
106 int flags)
107{
108 int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
109 int ret = 0;
110 struct page *p;
111 size_t size;
112 int offset = first_offset;
113
114 size = sg->length - offset;
115 offset += sg->offset;
116
117 ctx->in_tcp_sendpages = true;
118 while (1) {
119 if (sg_is_last(sg))
120 sendpage_flags = flags;
121
122 /* is sending application-limited? */
123 tcp_rate_check_app_limited(sk);
124 p = sg_page(sg);
125retry:
126 ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
127
128 if (ret != size) {
129 if (ret > 0) {
130 offset += ret;
131 size -= ret;
132 goto retry;
133 }
134
135 offset -= sg->offset;
136 ctx->partially_sent_offset = offset;
137 ctx->partially_sent_record = (void *)sg;
138 ctx->in_tcp_sendpages = false;
139 return ret;
140 }
141
142 put_page(p);
143 sk_mem_uncharge(sk, sg->length);
144 sg = sg_next(sg);
145 if (!sg)
146 break;
147
148 offset = sg->offset;
149 size = sg->length;
150 }
151
152 clear_bit(TLS_PENDING_CLOSED_RECORD, &ctx->flags);
153 ctx->in_tcp_sendpages = false;
154 ctx->sk_write_space(sk);
155
156 return 0;
157}
158
159static int tls_handle_open_record(struct sock *sk, int flags)
160{
161 struct tls_context *ctx = tls_get_ctx(sk);
162
163 if (tls_is_pending_open_record(ctx))
164 return ctx->push_pending_record(sk, flags);
165
166 return 0;
167}
168
169int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
170 unsigned char *record_type)
171{
172 struct cmsghdr *cmsg;
173 int rc = -EINVAL;
174
175 for_each_cmsghdr(cmsg, msg) {
176 if (!CMSG_OK(msg, cmsg))
177 return -EINVAL;
178 if (cmsg->cmsg_level != SOL_TLS)
179 continue;
180
181 switch (cmsg->cmsg_type) {
182 case TLS_SET_RECORD_TYPE:
183 if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
184 return -EINVAL;
185
186 if (msg->msg_flags & MSG_MORE)
187 return -EINVAL;
188
189 rc = tls_handle_open_record(sk, msg->msg_flags);
190 if (rc)
191 return rc;
192
193 *record_type = *(unsigned char *)CMSG_DATA(cmsg);
194 rc = 0;
195 break;
196 default:
197 return -EINVAL;
198 }
199 }
200
201 return rc;
202}
203
204int tls_push_pending_closed_record(struct sock *sk, struct tls_context *ctx,
205 int flags, long *timeo)
206{
207 struct scatterlist *sg;
208 u16 offset;
209
210 if (!tls_is_partially_sent_record(ctx))
211 return ctx->push_pending_record(sk, flags);
212
213 sg = ctx->partially_sent_record;
214 offset = ctx->partially_sent_offset;
215
216 ctx->partially_sent_record = NULL;
217 return tls_push_sg(sk, ctx, sg, offset, flags);
218}
219
220static void tls_write_space(struct sock *sk)
221{
222 struct tls_context *ctx = tls_get_ctx(sk);
223
224 /* We are already sending pages, ignore notification */
225 if (ctx->in_tcp_sendpages)
226 return;
227
228 if (!sk->sk_write_pending && tls_is_pending_closed_record(ctx)) {
229 gfp_t sk_allocation = sk->sk_allocation;
230 int rc;
231 long timeo = 0;
232
233 sk->sk_allocation = GFP_ATOMIC;
234 rc = tls_push_pending_closed_record(sk, ctx,
235 MSG_DONTWAIT |
236 MSG_NOSIGNAL,
237 &timeo);
238 sk->sk_allocation = sk_allocation;
239
240 if (rc < 0)
241 return;
242 }
243
244 ctx->sk_write_space(sk);
245}
246
247static void tls_sk_proto_close(struct sock *sk, long timeout)
248{
249 struct tls_context *ctx = tls_get_ctx(sk);
250 long timeo = sock_sndtimeo(sk, 0);
251 void (*sk_proto_close)(struct sock *sk, long timeout);
252 bool free_ctx = false;
253
254 lock_sock(sk);
255 sk_proto_close = ctx->sk_proto_close;
256
257 if (ctx->conf == TLS_BASE || ctx->conf == TLS_HW_RECORD) {
258 free_ctx = true;
259 goto skip_tx_cleanup;
260 }
261
262 if (!tls_complete_pending_work(sk, ctx, 0, &timeo))
263 tls_handle_open_record(sk, 0);
264
265 if (ctx->partially_sent_record) {
266 struct scatterlist *sg = ctx->partially_sent_record;
267
268 while (1) {
269 put_page(sg_page(sg));
270 sk_mem_uncharge(sk, sg->length);
271
272 if (sg_is_last(sg))
273 break;
274 sg++;
275 }
276 }
277
278 kfree(ctx->tx.rec_seq);
279 kfree(ctx->tx.iv);
280 kfree(ctx->rx.rec_seq);
281 kfree(ctx->rx.iv);
282
283 if (ctx->conf == TLS_SW_TX ||
284 ctx->conf == TLS_SW_RX ||
285 ctx->conf == TLS_SW_RXTX) {
286 tls_sw_free_resources(sk);
287 }
288
289skip_tx_cleanup:
290 release_sock(sk);
291 sk_proto_close(sk, timeout);
292 /* free ctx for TLS_HW_RECORD, used by tcp_set_state
293 * for sk->sk_prot->unhash [tls_hw_unhash]
294 */
295 if (free_ctx)
296 kfree(ctx);
297}
298
299static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
300 int __user *optlen)
301{
302 int rc = 0;
303 struct tls_context *ctx = tls_get_ctx(sk);
304 struct tls_crypto_info *crypto_info;
305 int len;
306
307 if (get_user(len, optlen))
308 return -EFAULT;
309
310 if (!optval || (len < sizeof(*crypto_info))) {
311 rc = -EINVAL;
312 goto out;
313 }
314
315 if (!ctx) {
316 rc = -EBUSY;
317 goto out;
318 }
319
320 /* get user crypto info */
321 crypto_info = &ctx->crypto_send;
322
323 if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
324 rc = -EBUSY;
325 goto out;
326 }
327
328 if (len == sizeof(*crypto_info)) {
329 if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
330 rc = -EFAULT;
331 goto out;
332 }
333
334 switch (crypto_info->cipher_type) {
335 case TLS_CIPHER_AES_GCM_128: {
336 struct tls12_crypto_info_aes_gcm_128 *
337 crypto_info_aes_gcm_128 =
338 container_of(crypto_info,
339 struct tls12_crypto_info_aes_gcm_128,
340 info);
341
342 if (len != sizeof(*crypto_info_aes_gcm_128)) {
343 rc = -EINVAL;
344 goto out;
345 }
346 lock_sock(sk);
347 memcpy(crypto_info_aes_gcm_128->iv,
348 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
349 TLS_CIPHER_AES_GCM_128_IV_SIZE);
350 memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
351 TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
352 release_sock(sk);
353 if (copy_to_user(optval,
354 crypto_info_aes_gcm_128,
355 sizeof(*crypto_info_aes_gcm_128)))
356 rc = -EFAULT;
357 break;
358 }
359 default:
360 rc = -EINVAL;
361 }
362
363out:
364 return rc;
365}
366
367static int do_tls_getsockopt(struct sock *sk, int optname,
368 char __user *optval, int __user *optlen)
369{
370 int rc = 0;
371
372 switch (optname) {
373 case TLS_TX:
374 rc = do_tls_getsockopt_tx(sk, optval, optlen);
375 break;
376 default:
377 rc = -ENOPROTOOPT;
378 break;
379 }
380 return rc;
381}
382
383static int tls_getsockopt(struct sock *sk, int level, int optname,
384 char __user *optval, int __user *optlen)
385{
386 struct tls_context *ctx = tls_get_ctx(sk);
387
388 if (level != SOL_TLS)
389 return ctx->getsockopt(sk, level, optname, optval, optlen);
390
391 return do_tls_getsockopt(sk, optname, optval, optlen);
392}
393
394static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
395 unsigned int optlen, int tx)
396{
397 struct tls_crypto_info *crypto_info;
398 struct tls_context *ctx = tls_get_ctx(sk);
399 int rc = 0;
400 int conf;
401
402 if (!optval || (optlen < sizeof(*crypto_info))) {
403 rc = -EINVAL;
404 goto out;
405 }
406
407 if (tx)
408 crypto_info = &ctx->crypto_send;
409 else
410 crypto_info = &ctx->crypto_recv;
411
412 /* Currently we don't support set crypto info more than one time */
413 if (TLS_CRYPTO_INFO_READY(crypto_info)) {
414 rc = -EBUSY;
415 goto out;
416 }
417
418 rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
419 if (rc) {
420 rc = -EFAULT;
421 goto err_crypto_info;
422 }
423
424 /* check version */
425 if (crypto_info->version != TLS_1_2_VERSION) {
426 rc = -ENOTSUPP;
427 goto err_crypto_info;
428 }
429
430 switch (crypto_info->cipher_type) {
431 case TLS_CIPHER_AES_GCM_128: {
432 if (optlen != sizeof(struct tls12_crypto_info_aes_gcm_128)) {
433 rc = -EINVAL;
434 goto err_crypto_info;
435 }
436 rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
437 optlen - sizeof(*crypto_info));
438 if (rc) {
439 rc = -EFAULT;
440 goto err_crypto_info;
441 }
442 break;
443 }
444 default:
445 rc = -EINVAL;
446 goto err_crypto_info;
447 }
448
449 /* currently SW is default, we will have ethtool in future */
450 if (tx) {
451 rc = tls_set_sw_offload(sk, ctx, 1);
452 if (ctx->conf == TLS_SW_RX)
453 conf = TLS_SW_RXTX;
454 else
455 conf = TLS_SW_TX;
456 } else {
457 rc = tls_set_sw_offload(sk, ctx, 0);
458 if (ctx->conf == TLS_SW_TX)
459 conf = TLS_SW_RXTX;
460 else
461 conf = TLS_SW_RX;
462 }
463
464 if (rc)
465 goto err_crypto_info;
466
467 ctx->conf = conf;
468 update_sk_prot(sk, ctx);
469 if (tx) {
470 ctx->sk_write_space = sk->sk_write_space;
471 sk->sk_write_space = tls_write_space;
472 } else {
473 sk->sk_socket->ops = &tls_sw_proto_ops;
474 }
475 goto out;
476
477err_crypto_info:
478 memset(crypto_info, 0, sizeof(*crypto_info));
479out:
480 return rc;
481}
482
483static int do_tls_setsockopt(struct sock *sk, int optname,
484 char __user *optval, unsigned int optlen)
485{
486 int rc = 0;
487
488 switch (optname) {
489 case TLS_TX:
490 case TLS_RX:
491 lock_sock(sk);
492 rc = do_tls_setsockopt_conf(sk, optval, optlen,
493 optname == TLS_TX);
494 release_sock(sk);
495 break;
496 default:
497 rc = -ENOPROTOOPT;
498 break;
499 }
500 return rc;
501}
502
503static int tls_setsockopt(struct sock *sk, int level, int optname,
504 char __user *optval, unsigned int optlen)
505{
506 struct tls_context *ctx = tls_get_ctx(sk);
507
508 if (level != SOL_TLS)
509 return ctx->setsockopt(sk, level, optname, optval, optlen);
510
511 return do_tls_setsockopt(sk, optname, optval, optlen);
512}
513
514static struct tls_context *create_ctx(struct sock *sk)
515{
516 struct inet_connection_sock *icsk = inet_csk(sk);
517 struct tls_context *ctx;
518
519 ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
520 if (!ctx)
521 return NULL;
522
523 icsk->icsk_ulp_data = ctx;
524 return ctx;
525}
526
527static int tls_hw_prot(struct sock *sk)
528{
529 struct tls_context *ctx;
530 struct tls_device *dev;
531 int rc = 0;
532
533 mutex_lock(&device_mutex);
534 list_for_each_entry(dev, &device_list, dev_list) {
535 if (dev->feature && dev->feature(dev)) {
536 ctx = create_ctx(sk);
537 if (!ctx)
538 goto out;
539
540 ctx->hash = sk->sk_prot->hash;
541 ctx->unhash = sk->sk_prot->unhash;
542 ctx->sk_proto_close = sk->sk_prot->close;
543 ctx->conf = TLS_HW_RECORD;
544 update_sk_prot(sk, ctx);
545 rc = 1;
546 break;
547 }
548 }
549out:
550 mutex_unlock(&device_mutex);
551 return rc;
552}
553
554static void tls_hw_unhash(struct sock *sk)
555{
556 struct tls_context *ctx = tls_get_ctx(sk);
557 struct tls_device *dev;
558
559 mutex_lock(&device_mutex);
560 list_for_each_entry(dev, &device_list, dev_list) {
561 if (dev->unhash)
562 dev->unhash(dev, sk);
563 }
564 mutex_unlock(&device_mutex);
565 ctx->unhash(sk);
566}
567
568static int tls_hw_hash(struct sock *sk)
569{
570 struct tls_context *ctx = tls_get_ctx(sk);
571 struct tls_device *dev;
572 int err;
573
574 err = ctx->hash(sk);
575 mutex_lock(&device_mutex);
576 list_for_each_entry(dev, &device_list, dev_list) {
577 if (dev->hash)
578 err |= dev->hash(dev, sk);
579 }
580 mutex_unlock(&device_mutex);
581
582 if (err)
583 tls_hw_unhash(sk);
584 return err;
585}
586
587static void build_protos(struct proto *prot, struct proto *base)
588{
589 prot[TLS_BASE] = *base;
590 prot[TLS_BASE].setsockopt = tls_setsockopt;
591 prot[TLS_BASE].getsockopt = tls_getsockopt;
592 prot[TLS_BASE].close = tls_sk_proto_close;
593
594 prot[TLS_SW_TX] = prot[TLS_BASE];
595 prot[TLS_SW_TX].sendmsg = tls_sw_sendmsg;
596 prot[TLS_SW_TX].sendpage = tls_sw_sendpage;
597
598 prot[TLS_SW_RX] = prot[TLS_BASE];
599 prot[TLS_SW_RX].recvmsg = tls_sw_recvmsg;
600 prot[TLS_SW_RX].close = tls_sk_proto_close;
601
602 prot[TLS_SW_RXTX] = prot[TLS_SW_TX];
603 prot[TLS_SW_RXTX].recvmsg = tls_sw_recvmsg;
604 prot[TLS_SW_RXTX].close = tls_sk_proto_close;
605
606 prot[TLS_HW_RECORD] = *base;
607 prot[TLS_HW_RECORD].hash = tls_hw_hash;
608 prot[TLS_HW_RECORD].unhash = tls_hw_unhash;
609 prot[TLS_HW_RECORD].close = tls_sk_proto_close;
610}
611
612static int tls_init(struct sock *sk)
613{
614 int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
615 struct tls_context *ctx;
616 int rc = 0;
617
618 if (tls_hw_prot(sk))
619 goto out;
620
621 /* The TLS ulp is currently supported only for TCP sockets
622 * in ESTABLISHED state.
623 * Supporting sockets in LISTEN state will require us
624 * to modify the accept implementation to clone rather then
625 * share the ulp context.
626 */
627 if (sk->sk_state != TCP_ESTABLISHED)
628 return -ENOTSUPP;
629
630 /* allocate tls context */
631 ctx = create_ctx(sk);
632 if (!ctx) {
633 rc = -ENOMEM;
634 goto out;
635 }
636 ctx->setsockopt = sk->sk_prot->setsockopt;
637 ctx->getsockopt = sk->sk_prot->getsockopt;
638 ctx->sk_proto_close = sk->sk_prot->close;
639
640 /* Build IPv6 TLS whenever the address of tcpv6_prot changes */
641 if (ip_ver == TLSV6 &&
642 unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
643 mutex_lock(&tcpv6_prot_mutex);
644 if (likely(sk->sk_prot != saved_tcpv6_prot)) {
645 build_protos(tls_prots[TLSV6], sk->sk_prot);
646 smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
647 }
648 mutex_unlock(&tcpv6_prot_mutex);
649 }
650
651 ctx->conf = TLS_BASE;
652 update_sk_prot(sk, ctx);
653out:
654 return rc;
655}
656
657void tls_register_device(struct tls_device *device)
658{
659 mutex_lock(&device_mutex);
660 list_add_tail(&device->dev_list, &device_list);
661 mutex_unlock(&device_mutex);
662}
663EXPORT_SYMBOL(tls_register_device);
664
665void tls_unregister_device(struct tls_device *device)
666{
667 mutex_lock(&device_mutex);
668 list_del(&device->dev_list);
669 mutex_unlock(&device_mutex);
670}
671EXPORT_SYMBOL(tls_unregister_device);
672
673static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
674 .name = "tls",
675 .uid = TCP_ULP_TLS,
676 .user_visible = true,
677 .owner = THIS_MODULE,
678 .init = tls_init,
679};
680
681static int __init tls_register(void)
682{
683 build_protos(tls_prots[TLSV4], &tcp_prot);
684
685 tls_sw_proto_ops = inet_stream_ops;
686 tls_sw_proto_ops.poll = tls_sw_poll;
687 tls_sw_proto_ops.splice_read = tls_sw_splice_read;
688
689 tcp_register_ulp(&tcp_tls_ulp_ops);
690
691 return 0;
692}
693
694static void __exit tls_unregister(void)
695{
696 tcp_unregister_ulp(&tcp_tls_ulp_ops);
697}
698
699module_init(tls_register);
700module_exit(tls_unregister);