Linux Audio

Check our new training course

Loading...
v6.2
   1/*
   2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
   3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
   4 *
   5 * This software is available to you under a choice of one of two
   6 * licenses.  You may choose to be licensed under the terms of the GNU
   7 * General Public License (GPL) Version 2, available from the file
   8 * COPYING in the main directory of this source tree, or the
   9 * OpenIB.org BSD license below:
  10 *
  11 *     Redistribution and use in source and binary forms, with or
  12 *     without modification, are permitted provided that the following
  13 *     conditions are met:
  14 *
  15 *      - Redistributions of source code must retain the above
  16 *        copyright notice, this list of conditions and the following
  17 *        disclaimer.
  18 *
  19 *      - Redistributions in binary form must reproduce the above
  20 *        copyright notice, this list of conditions and the following
  21 *        disclaimer in the documentation and/or other materials
  22 *        provided with the distribution.
  23 *
  24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  31 * SOFTWARE.
  32 */
  33
  34#include <linux/module.h>
  35
  36#include <net/tcp.h>
  37#include <net/inet_common.h>
  38#include <linux/highmem.h>
  39#include <linux/netdevice.h>
  40#include <linux/sched/signal.h>
  41#include <linux/inetdevice.h>
  42#include <linux/inet_diag.h>
  43
  44#include <net/snmp.h>
  45#include <net/tls.h>
  46#include <net/tls_toe.h>
  47
  48#include "tls.h"
  49
  50MODULE_AUTHOR("Mellanox Technologies");
  51MODULE_DESCRIPTION("Transport Layer Security Support");
  52MODULE_LICENSE("Dual BSD/GPL");
  53MODULE_ALIAS_TCP_ULP("tls");
  54
  55enum {
  56	TLSV4,
  57	TLSV6,
  58	TLS_NUM_PROTS,
  59};
  60
  61#define CIPHER_SIZE_DESC(cipher) [cipher] = { \
  62	.iv = cipher ## _IV_SIZE, \
  63	.key = cipher ## _KEY_SIZE, \
  64	.salt = cipher ## _SALT_SIZE, \
  65	.tag = cipher ## _TAG_SIZE, \
  66	.rec_seq = cipher ## _REC_SEQ_SIZE, \
  67}
  68
  69const struct tls_cipher_size_desc tls_cipher_size_desc[] = {
  70	CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_128),
  71	CIPHER_SIZE_DESC(TLS_CIPHER_AES_GCM_256),
  72	CIPHER_SIZE_DESC(TLS_CIPHER_AES_CCM_128),
  73	CIPHER_SIZE_DESC(TLS_CIPHER_CHACHA20_POLY1305),
  74	CIPHER_SIZE_DESC(TLS_CIPHER_SM4_GCM),
  75	CIPHER_SIZE_DESC(TLS_CIPHER_SM4_CCM),
  76};
  77
  78static const struct proto *saved_tcpv6_prot;
  79static DEFINE_MUTEX(tcpv6_prot_mutex);
  80static const struct proto *saved_tcpv4_prot;
  81static DEFINE_MUTEX(tcpv4_prot_mutex);
 
 
  82static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
  83static struct proto_ops tls_proto_ops[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
  84static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
  85			 const struct proto *base);
  86
  87void update_sk_prot(struct sock *sk, struct tls_context *ctx)
  88{
  89	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
  90
  91	WRITE_ONCE(sk->sk_prot,
  92		   &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf]);
  93	WRITE_ONCE(sk->sk_socket->ops,
  94		   &tls_proto_ops[ip_ver][ctx->tx_conf][ctx->rx_conf]);
  95}
  96
  97int wait_on_pending_writer(struct sock *sk, long *timeo)
  98{
  99	int rc = 0;
 100	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 101
 102	add_wait_queue(sk_sleep(sk), &wait);
 103	while (1) {
 104		if (!*timeo) {
 105			rc = -EAGAIN;
 106			break;
 107		}
 108
 109		if (signal_pending(current)) {
 110			rc = sock_intr_errno(*timeo);
 111			break;
 112		}
 113
 114		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 115			break;
 116	}
 117	remove_wait_queue(sk_sleep(sk), &wait);
 118	return rc;
 119}
 120
 121int tls_push_sg(struct sock *sk,
 122		struct tls_context *ctx,
 123		struct scatterlist *sg,
 124		u16 first_offset,
 125		int flags)
 126{
 127	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
 128	int ret = 0;
 129	struct page *p;
 130	size_t size;
 131	int offset = first_offset;
 132
 133	size = sg->length - offset;
 134	offset += sg->offset;
 135
 136	ctx->in_tcp_sendpages = true;
 137	while (1) {
 138		if (sg_is_last(sg))
 139			sendpage_flags = flags;
 140
 141		/* is sending application-limited? */
 142		tcp_rate_check_app_limited(sk);
 143		p = sg_page(sg);
 144retry:
 145		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
 146
 147		if (ret != size) {
 148			if (ret > 0) {
 149				offset += ret;
 150				size -= ret;
 151				goto retry;
 152			}
 153
 154			offset -= sg->offset;
 155			ctx->partially_sent_offset = offset;
 156			ctx->partially_sent_record = (void *)sg;
 157			ctx->in_tcp_sendpages = false;
 158			return ret;
 159		}
 160
 161		put_page(p);
 162		sk_mem_uncharge(sk, sg->length);
 163		sg = sg_next(sg);
 164		if (!sg)
 165			break;
 166
 167		offset = sg->offset;
 168		size = sg->length;
 169	}
 170
 171	ctx->in_tcp_sendpages = false;
 172
 173	return 0;
 174}
 175
 176static int tls_handle_open_record(struct sock *sk, int flags)
 177{
 178	struct tls_context *ctx = tls_get_ctx(sk);
 179
 180	if (tls_is_pending_open_record(ctx))
 181		return ctx->push_pending_record(sk, flags);
 182
 183	return 0;
 184}
 185
 186int tls_process_cmsg(struct sock *sk, struct msghdr *msg,
 187		     unsigned char *record_type)
 188{
 189	struct cmsghdr *cmsg;
 190	int rc = -EINVAL;
 191
 192	for_each_cmsghdr(cmsg, msg) {
 193		if (!CMSG_OK(msg, cmsg))
 194			return -EINVAL;
 195		if (cmsg->cmsg_level != SOL_TLS)
 196			continue;
 197
 198		switch (cmsg->cmsg_type) {
 199		case TLS_SET_RECORD_TYPE:
 200			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
 201				return -EINVAL;
 202
 203			if (msg->msg_flags & MSG_MORE)
 204				return -EINVAL;
 205
 206			rc = tls_handle_open_record(sk, msg->msg_flags);
 207			if (rc)
 208				return rc;
 209
 210			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
 211			rc = 0;
 212			break;
 213		default:
 214			return -EINVAL;
 215		}
 216	}
 217
 218	return rc;
 219}
 220
 221int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
 222			    int flags)
 223{
 224	struct scatterlist *sg;
 225	u16 offset;
 226
 227	sg = ctx->partially_sent_record;
 228	offset = ctx->partially_sent_offset;
 229
 230	ctx->partially_sent_record = NULL;
 231	return tls_push_sg(sk, ctx, sg, offset, flags);
 232}
 233
 234void tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
 235{
 236	struct scatterlist *sg;
 237
 238	for (sg = ctx->partially_sent_record; sg; sg = sg_next(sg)) {
 
 
 
 
 239		put_page(sg_page(sg));
 240		sk_mem_uncharge(sk, sg->length);
 
 
 
 
 241	}
 242	ctx->partially_sent_record = NULL;
 
 243}
 244
 245static void tls_write_space(struct sock *sk)
 246{
 247	struct tls_context *ctx = tls_get_ctx(sk);
 248
 249	/* If in_tcp_sendpages call lower protocol write space handler
 250	 * to ensure we wake up any waiting operations there. For example
 251	 * if do_tcp_sendpages where to call sk_wait_event.
 252	 */
 253	if (ctx->in_tcp_sendpages) {
 254		ctx->sk_write_space(sk);
 255		return;
 256	}
 257
 258#ifdef CONFIG_TLS_DEVICE
 259	if (ctx->tx_conf == TLS_HW)
 260		tls_device_write_space(sk, ctx);
 261	else
 262#endif
 263		tls_sw_write_space(sk, ctx);
 264
 265	ctx->sk_write_space(sk);
 266}
 267
 268/**
 269 * tls_ctx_free() - free TLS ULP context
 270 * @sk:  socket to with @ctx is attached
 271 * @ctx: TLS context structure
 272 *
 273 * Free TLS context. If @sk is %NULL caller guarantees that the socket
 274 * to which @ctx was attached has no outstanding references.
 275 */
 276void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
 277{
 278	if (!ctx)
 279		return;
 280
 281	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
 282	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
 283	mutex_destroy(&ctx->tx_lock);
 284
 285	if (sk)
 286		kfree_rcu(ctx, rcu);
 287	else
 288		kfree(ctx);
 289}
 290
 291static void tls_sk_proto_cleanup(struct sock *sk,
 292				 struct tls_context *ctx, long timeo)
 293{
 294	if (unlikely(sk->sk_write_pending) &&
 295	    !wait_on_pending_writer(sk, &timeo))
 296		tls_handle_open_record(sk, 0);
 297
 298	/* We need these for tls_sw_fallback handling of other packets */
 299	if (ctx->tx_conf == TLS_SW) {
 300		kfree(ctx->tx.rec_seq);
 301		kfree(ctx->tx.iv);
 302		tls_sw_release_resources_tx(sk);
 303		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 304	} else if (ctx->tx_conf == TLS_HW) {
 305		tls_device_free_resources_tx(sk);
 306		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 307	}
 308
 309	if (ctx->rx_conf == TLS_SW) {
 310		tls_sw_release_resources_rx(sk);
 311		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 312	} else if (ctx->rx_conf == TLS_HW) {
 313		tls_device_offload_cleanup_rx(sk);
 314		TLS_DEC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 315	}
 316}
 317
 318static void tls_sk_proto_close(struct sock *sk, long timeout)
 319{
 320	struct inet_connection_sock *icsk = inet_csk(sk);
 321	struct tls_context *ctx = tls_get_ctx(sk);
 322	long timeo = sock_sndtimeo(sk, 0);
 323	bool free_ctx;
 324
 325	if (ctx->tx_conf == TLS_SW)
 326		tls_sw_cancel_work_tx(ctx);
 327
 328	lock_sock(sk);
 329	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
 330
 331	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
 332		tls_sk_proto_cleanup(sk, ctx, timeo);
 333
 334	write_lock_bh(&sk->sk_callback_lock);
 335	if (free_ctx)
 336		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
 337	WRITE_ONCE(sk->sk_prot, ctx->sk_proto);
 338	if (sk->sk_write_space == tls_write_space)
 339		sk->sk_write_space = ctx->sk_write_space;
 340	write_unlock_bh(&sk->sk_callback_lock);
 341	release_sock(sk);
 342	if (ctx->tx_conf == TLS_SW)
 343		tls_sw_free_ctx_tx(ctx);
 344	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 345		tls_sw_strparser_done(ctx);
 346	if (ctx->rx_conf == TLS_SW)
 347		tls_sw_free_ctx_rx(ctx);
 348	ctx->sk_proto->close(sk, timeout);
 349
 350	if (free_ctx)
 351		tls_ctx_free(sk, ctx);
 352}
 353
 354static int do_tls_getsockopt_conf(struct sock *sk, char __user *optval,
 355				  int __user *optlen, int tx)
 356{
 357	int rc = 0;
 358	struct tls_context *ctx = tls_get_ctx(sk);
 359	struct tls_crypto_info *crypto_info;
 360	struct cipher_context *cctx;
 361	int len;
 362
 363	if (get_user(len, optlen))
 364		return -EFAULT;
 365
 366	if (!optval || (len < sizeof(*crypto_info))) {
 367		rc = -EINVAL;
 368		goto out;
 369	}
 370
 371	if (!ctx) {
 372		rc = -EBUSY;
 373		goto out;
 374	}
 375
 376	/* get user crypto info */
 377	if (tx) {
 378		crypto_info = &ctx->crypto_send.info;
 379		cctx = &ctx->tx;
 380	} else {
 381		crypto_info = &ctx->crypto_recv.info;
 382		cctx = &ctx->rx;
 383	}
 384
 385	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
 386		rc = -EBUSY;
 387		goto out;
 388	}
 389
 390	if (len == sizeof(*crypto_info)) {
 391		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
 392			rc = -EFAULT;
 393		goto out;
 394	}
 395
 396	switch (crypto_info->cipher_type) {
 397	case TLS_CIPHER_AES_GCM_128: {
 398		struct tls12_crypto_info_aes_gcm_128 *
 399		  crypto_info_aes_gcm_128 =
 400		  container_of(crypto_info,
 401			       struct tls12_crypto_info_aes_gcm_128,
 402			       info);
 403
 404		if (len != sizeof(*crypto_info_aes_gcm_128)) {
 405			rc = -EINVAL;
 406			goto out;
 407		}
 408		lock_sock(sk);
 409		memcpy(crypto_info_aes_gcm_128->iv,
 410		       cctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
 411		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
 412		memcpy(crypto_info_aes_gcm_128->rec_seq, cctx->rec_seq,
 413		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
 414		release_sock(sk);
 415		if (copy_to_user(optval,
 416				 crypto_info_aes_gcm_128,
 417				 sizeof(*crypto_info_aes_gcm_128)))
 418			rc = -EFAULT;
 419		break;
 420	}
 421	case TLS_CIPHER_AES_GCM_256: {
 422		struct tls12_crypto_info_aes_gcm_256 *
 423		  crypto_info_aes_gcm_256 =
 424		  container_of(crypto_info,
 425			       struct tls12_crypto_info_aes_gcm_256,
 426			       info);
 427
 428		if (len != sizeof(*crypto_info_aes_gcm_256)) {
 429			rc = -EINVAL;
 430			goto out;
 431		}
 432		lock_sock(sk);
 433		memcpy(crypto_info_aes_gcm_256->iv,
 434		       cctx->iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
 435		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
 436		memcpy(crypto_info_aes_gcm_256->rec_seq, cctx->rec_seq,
 437		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
 438		release_sock(sk);
 439		if (copy_to_user(optval,
 440				 crypto_info_aes_gcm_256,
 441				 sizeof(*crypto_info_aes_gcm_256)))
 442			rc = -EFAULT;
 443		break;
 444	}
 445	case TLS_CIPHER_AES_CCM_128: {
 446		struct tls12_crypto_info_aes_ccm_128 *aes_ccm_128 =
 447			container_of(crypto_info,
 448				struct tls12_crypto_info_aes_ccm_128, info);
 449
 450		if (len != sizeof(*aes_ccm_128)) {
 451			rc = -EINVAL;
 452			goto out;
 453		}
 454		lock_sock(sk);
 455		memcpy(aes_ccm_128->iv,
 456		       cctx->iv + TLS_CIPHER_AES_CCM_128_SALT_SIZE,
 457		       TLS_CIPHER_AES_CCM_128_IV_SIZE);
 458		memcpy(aes_ccm_128->rec_seq, cctx->rec_seq,
 459		       TLS_CIPHER_AES_CCM_128_REC_SEQ_SIZE);
 460		release_sock(sk);
 461		if (copy_to_user(optval, aes_ccm_128, sizeof(*aes_ccm_128)))
 462			rc = -EFAULT;
 463		break;
 464	}
 465	case TLS_CIPHER_CHACHA20_POLY1305: {
 466		struct tls12_crypto_info_chacha20_poly1305 *chacha20_poly1305 =
 467			container_of(crypto_info,
 468				struct tls12_crypto_info_chacha20_poly1305,
 469				info);
 470
 471		if (len != sizeof(*chacha20_poly1305)) {
 472			rc = -EINVAL;
 473			goto out;
 474		}
 475		lock_sock(sk);
 476		memcpy(chacha20_poly1305->iv,
 477		       cctx->iv + TLS_CIPHER_CHACHA20_POLY1305_SALT_SIZE,
 478		       TLS_CIPHER_CHACHA20_POLY1305_IV_SIZE);
 479		memcpy(chacha20_poly1305->rec_seq, cctx->rec_seq,
 480		       TLS_CIPHER_CHACHA20_POLY1305_REC_SEQ_SIZE);
 481		release_sock(sk);
 482		if (copy_to_user(optval, chacha20_poly1305,
 483				sizeof(*chacha20_poly1305)))
 484			rc = -EFAULT;
 485		break;
 486	}
 487	case TLS_CIPHER_SM4_GCM: {
 488		struct tls12_crypto_info_sm4_gcm *sm4_gcm_info =
 489			container_of(crypto_info,
 490				struct tls12_crypto_info_sm4_gcm, info);
 491
 492		if (len != sizeof(*sm4_gcm_info)) {
 493			rc = -EINVAL;
 494			goto out;
 495		}
 496		lock_sock(sk);
 497		memcpy(sm4_gcm_info->iv,
 498		       cctx->iv + TLS_CIPHER_SM4_GCM_SALT_SIZE,
 499		       TLS_CIPHER_SM4_GCM_IV_SIZE);
 500		memcpy(sm4_gcm_info->rec_seq, cctx->rec_seq,
 501		       TLS_CIPHER_SM4_GCM_REC_SEQ_SIZE);
 502		release_sock(sk);
 503		if (copy_to_user(optval, sm4_gcm_info, sizeof(*sm4_gcm_info)))
 504			rc = -EFAULT;
 505		break;
 506	}
 507	case TLS_CIPHER_SM4_CCM: {
 508		struct tls12_crypto_info_sm4_ccm *sm4_ccm_info =
 509			container_of(crypto_info,
 510				struct tls12_crypto_info_sm4_ccm, info);
 511
 512		if (len != sizeof(*sm4_ccm_info)) {
 513			rc = -EINVAL;
 514			goto out;
 515		}
 516		lock_sock(sk);
 517		memcpy(sm4_ccm_info->iv,
 518		       cctx->iv + TLS_CIPHER_SM4_CCM_SALT_SIZE,
 519		       TLS_CIPHER_SM4_CCM_IV_SIZE);
 520		memcpy(sm4_ccm_info->rec_seq, cctx->rec_seq,
 521		       TLS_CIPHER_SM4_CCM_REC_SEQ_SIZE);
 522		release_sock(sk);
 523		if (copy_to_user(optval, sm4_ccm_info, sizeof(*sm4_ccm_info)))
 524			rc = -EFAULT;
 525		break;
 526	}
 527	case TLS_CIPHER_ARIA_GCM_128: {
 528		struct tls12_crypto_info_aria_gcm_128 *
 529		  crypto_info_aria_gcm_128 =
 530		  container_of(crypto_info,
 531			       struct tls12_crypto_info_aria_gcm_128,
 532			       info);
 533
 534		if (len != sizeof(*crypto_info_aria_gcm_128)) {
 535			rc = -EINVAL;
 536			goto out;
 537		}
 538		lock_sock(sk);
 539		memcpy(crypto_info_aria_gcm_128->iv,
 540		       cctx->iv + TLS_CIPHER_ARIA_GCM_128_SALT_SIZE,
 541		       TLS_CIPHER_ARIA_GCM_128_IV_SIZE);
 542		memcpy(crypto_info_aria_gcm_128->rec_seq, cctx->rec_seq,
 543		       TLS_CIPHER_ARIA_GCM_128_REC_SEQ_SIZE);
 544		release_sock(sk);
 545		if (copy_to_user(optval,
 546				 crypto_info_aria_gcm_128,
 547				 sizeof(*crypto_info_aria_gcm_128)))
 548			rc = -EFAULT;
 549		break;
 550	}
 551	case TLS_CIPHER_ARIA_GCM_256: {
 552		struct tls12_crypto_info_aria_gcm_256 *
 553		  crypto_info_aria_gcm_256 =
 554		  container_of(crypto_info,
 555			       struct tls12_crypto_info_aria_gcm_256,
 556			       info);
 557
 558		if (len != sizeof(*crypto_info_aria_gcm_256)) {
 559			rc = -EINVAL;
 560			goto out;
 561		}
 562		lock_sock(sk);
 563		memcpy(crypto_info_aria_gcm_256->iv,
 564		       cctx->iv + TLS_CIPHER_ARIA_GCM_256_SALT_SIZE,
 565		       TLS_CIPHER_ARIA_GCM_256_IV_SIZE);
 566		memcpy(crypto_info_aria_gcm_256->rec_seq, cctx->rec_seq,
 567		       TLS_CIPHER_ARIA_GCM_256_REC_SEQ_SIZE);
 568		release_sock(sk);
 569		if (copy_to_user(optval,
 570				 crypto_info_aria_gcm_256,
 571				 sizeof(*crypto_info_aria_gcm_256)))
 572			rc = -EFAULT;
 573		break;
 574	}
 575	default:
 576		rc = -EINVAL;
 577	}
 578
 579out:
 580	return rc;
 581}
 582
 583static int do_tls_getsockopt_tx_zc(struct sock *sk, char __user *optval,
 584				   int __user *optlen)
 585{
 586	struct tls_context *ctx = tls_get_ctx(sk);
 587	unsigned int value;
 588	int len;
 589
 590	if (get_user(len, optlen))
 591		return -EFAULT;
 592
 593	if (len != sizeof(value))
 594		return -EINVAL;
 595
 596	value = ctx->zerocopy_sendfile;
 597	if (copy_to_user(optval, &value, sizeof(value)))
 598		return -EFAULT;
 599
 600	return 0;
 601}
 602
 603static int do_tls_getsockopt_no_pad(struct sock *sk, char __user *optval,
 604				    int __user *optlen)
 605{
 606	struct tls_context *ctx = tls_get_ctx(sk);
 607	int value, len;
 608
 609	if (ctx->prot_info.version != TLS_1_3_VERSION)
 610		return -EINVAL;
 611
 612	if (get_user(len, optlen))
 613		return -EFAULT;
 614	if (len < sizeof(value))
 615		return -EINVAL;
 616
 617	lock_sock(sk);
 618	value = -EINVAL;
 619	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
 620		value = ctx->rx_no_pad;
 621	release_sock(sk);
 622	if (value < 0)
 623		return value;
 624
 625	if (put_user(sizeof(value), optlen))
 626		return -EFAULT;
 627	if (copy_to_user(optval, &value, sizeof(value)))
 628		return -EFAULT;
 629
 630	return 0;
 631}
 632
 633static int do_tls_getsockopt(struct sock *sk, int optname,
 634			     char __user *optval, int __user *optlen)
 635{
 636	int rc = 0;
 637
 638	switch (optname) {
 639	case TLS_TX:
 640	case TLS_RX:
 641		rc = do_tls_getsockopt_conf(sk, optval, optlen,
 642					    optname == TLS_TX);
 643		break;
 644	case TLS_TX_ZEROCOPY_RO:
 645		rc = do_tls_getsockopt_tx_zc(sk, optval, optlen);
 646		break;
 647	case TLS_RX_EXPECT_NO_PAD:
 648		rc = do_tls_getsockopt_no_pad(sk, optval, optlen);
 649		break;
 650	default:
 651		rc = -ENOPROTOOPT;
 652		break;
 653	}
 654	return rc;
 655}
 656
 657static int tls_getsockopt(struct sock *sk, int level, int optname,
 658			  char __user *optval, int __user *optlen)
 659{
 660	struct tls_context *ctx = tls_get_ctx(sk);
 661
 662	if (level != SOL_TLS)
 663		return ctx->sk_proto->getsockopt(sk, level,
 664						 optname, optval, optlen);
 665
 666	return do_tls_getsockopt(sk, optname, optval, optlen);
 667}
 668
 669static int do_tls_setsockopt_conf(struct sock *sk, sockptr_t optval,
 670				  unsigned int optlen, int tx)
 671{
 672	struct tls_crypto_info *crypto_info;
 673	struct tls_crypto_info *alt_crypto_info;
 674	struct tls_context *ctx = tls_get_ctx(sk);
 675	size_t optsize;
 676	int rc = 0;
 677	int conf;
 678
 679	if (sockptr_is_null(optval) || (optlen < sizeof(*crypto_info)))
 680		return -EINVAL;
 
 
 681
 682	if (tx) {
 683		crypto_info = &ctx->crypto_send.info;
 684		alt_crypto_info = &ctx->crypto_recv.info;
 685	} else {
 686		crypto_info = &ctx->crypto_recv.info;
 687		alt_crypto_info = &ctx->crypto_send.info;
 688	}
 689
 690	/* Currently we don't support set crypto info more than one time */
 691	if (TLS_CRYPTO_INFO_READY(crypto_info))
 692		return -EBUSY;
 
 
 693
 694	rc = copy_from_sockptr(crypto_info, optval, sizeof(*crypto_info));
 695	if (rc) {
 696		rc = -EFAULT;
 697		goto err_crypto_info;
 698	}
 699
 700	/* check version */
 701	if (crypto_info->version != TLS_1_2_VERSION &&
 702	    crypto_info->version != TLS_1_3_VERSION) {
 703		rc = -EINVAL;
 704		goto err_crypto_info;
 705	}
 706
 707	/* Ensure that TLS version and ciphers are same in both directions */
 708	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
 709		if (alt_crypto_info->version != crypto_info->version ||
 710		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
 711			rc = -EINVAL;
 712			goto err_crypto_info;
 713		}
 714	}
 715
 716	switch (crypto_info->cipher_type) {
 717	case TLS_CIPHER_AES_GCM_128:
 718		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
 719		break;
 720	case TLS_CIPHER_AES_GCM_256: {
 721		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
 722		break;
 723	}
 724	case TLS_CIPHER_AES_CCM_128:
 725		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
 726		break;
 727	case TLS_CIPHER_CHACHA20_POLY1305:
 728		optsize = sizeof(struct tls12_crypto_info_chacha20_poly1305);
 729		break;
 730	case TLS_CIPHER_SM4_GCM:
 731		optsize = sizeof(struct tls12_crypto_info_sm4_gcm);
 732		break;
 733	case TLS_CIPHER_SM4_CCM:
 734		optsize = sizeof(struct tls12_crypto_info_sm4_ccm);
 735		break;
 736	case TLS_CIPHER_ARIA_GCM_128:
 737		if (crypto_info->version != TLS_1_2_VERSION) {
 738			rc = -EINVAL;
 739			goto err_crypto_info;
 740		}
 741		optsize = sizeof(struct tls12_crypto_info_aria_gcm_128);
 742		break;
 743	case TLS_CIPHER_ARIA_GCM_256:
 744		if (crypto_info->version != TLS_1_2_VERSION) {
 745			rc = -EINVAL;
 746			goto err_crypto_info;
 747		}
 748		optsize = sizeof(struct tls12_crypto_info_aria_gcm_256);
 749		break;
 750	default:
 751		rc = -EINVAL;
 752		goto err_crypto_info;
 753	}
 754
 755	if (optlen != optsize) {
 756		rc = -EINVAL;
 757		goto err_crypto_info;
 758	}
 759
 760	rc = copy_from_sockptr_offset(crypto_info + 1, optval,
 761				      sizeof(*crypto_info),
 762				      optlen - sizeof(*crypto_info));
 763	if (rc) {
 764		rc = -EFAULT;
 765		goto err_crypto_info;
 766	}
 767
 768	if (tx) {
 769		rc = tls_set_device_offload(sk, ctx);
 770		conf = TLS_HW;
 771		if (!rc) {
 772			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXDEVICE);
 773			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXDEVICE);
 774		} else {
 775			rc = tls_set_sw_offload(sk, ctx, 1);
 776			if (rc)
 777				goto err_crypto_info;
 778			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSTXSW);
 779			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRTXSW);
 780			conf = TLS_SW;
 781		}
 782	} else {
 783		rc = tls_set_device_offload_rx(sk, ctx);
 784		conf = TLS_HW;
 785		if (!rc) {
 786			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICE);
 787			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXDEVICE);
 788		} else {
 789			rc = tls_set_sw_offload(sk, ctx, 0);
 790			if (rc)
 791				goto err_crypto_info;
 792			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXSW);
 793			TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSCURRRXSW);
 794			conf = TLS_SW;
 795		}
 796		tls_sw_strparser_arm(sk, ctx);
 797	}
 798
 799	if (tx)
 800		ctx->tx_conf = conf;
 801	else
 802		ctx->rx_conf = conf;
 803	update_sk_prot(sk, ctx);
 804	if (tx) {
 805		ctx->sk_write_space = sk->sk_write_space;
 806		sk->sk_write_space = tls_write_space;
 807	} else {
 808		struct tls_sw_context_rx *rx_ctx = tls_sw_ctx_rx(ctx);
 809
 810		tls_strp_check_rcv(&rx_ctx->strp);
 811	}
 812	return 0;
 813
 814err_crypto_info:
 815	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
 
 816	return rc;
 817}
 818
 819static int do_tls_setsockopt_tx_zc(struct sock *sk, sockptr_t optval,
 820				   unsigned int optlen)
 821{
 822	struct tls_context *ctx = tls_get_ctx(sk);
 823	unsigned int value;
 824
 825	if (sockptr_is_null(optval) || optlen != sizeof(value))
 826		return -EINVAL;
 827
 828	if (copy_from_sockptr(&value, optval, sizeof(value)))
 829		return -EFAULT;
 830
 831	if (value > 1)
 832		return -EINVAL;
 833
 834	ctx->zerocopy_sendfile = value;
 835
 836	return 0;
 837}
 838
 839static int do_tls_setsockopt_no_pad(struct sock *sk, sockptr_t optval,
 840				    unsigned int optlen)
 841{
 842	struct tls_context *ctx = tls_get_ctx(sk);
 843	u32 val;
 844	int rc;
 845
 846	if (ctx->prot_info.version != TLS_1_3_VERSION ||
 847	    sockptr_is_null(optval) || optlen < sizeof(val))
 848		return -EINVAL;
 849
 850	rc = copy_from_sockptr(&val, optval, sizeof(val));
 851	if (rc)
 852		return -EFAULT;
 853	if (val > 1)
 854		return -EINVAL;
 855	rc = check_zeroed_sockptr(optval, sizeof(val), optlen - sizeof(val));
 856	if (rc < 1)
 857		return rc == 0 ? -EINVAL : rc;
 858
 859	lock_sock(sk);
 860	rc = -EINVAL;
 861	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW) {
 862		ctx->rx_no_pad = val;
 863		tls_update_rx_zc_capable(ctx);
 864		rc = 0;
 865	}
 866	release_sock(sk);
 867
 868	return rc;
 869}
 870
 871static int do_tls_setsockopt(struct sock *sk, int optname, sockptr_t optval,
 872			     unsigned int optlen)
 873{
 874	int rc = 0;
 875
 876	switch (optname) {
 877	case TLS_TX:
 878	case TLS_RX:
 879		lock_sock(sk);
 880		rc = do_tls_setsockopt_conf(sk, optval, optlen,
 881					    optname == TLS_TX);
 882		release_sock(sk);
 883		break;
 884	case TLS_TX_ZEROCOPY_RO:
 885		lock_sock(sk);
 886		rc = do_tls_setsockopt_tx_zc(sk, optval, optlen);
 887		release_sock(sk);
 888		break;
 889	case TLS_RX_EXPECT_NO_PAD:
 890		rc = do_tls_setsockopt_no_pad(sk, optval, optlen);
 891		break;
 892	default:
 893		rc = -ENOPROTOOPT;
 894		break;
 895	}
 896	return rc;
 897}
 898
 899static int tls_setsockopt(struct sock *sk, int level, int optname,
 900			  sockptr_t optval, unsigned int optlen)
 901{
 902	struct tls_context *ctx = tls_get_ctx(sk);
 903
 904	if (level != SOL_TLS)
 905		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
 906						 optlen);
 907
 908	return do_tls_setsockopt(sk, optname, optval, optlen);
 909}
 910
 911struct tls_context *tls_ctx_create(struct sock *sk)
 912{
 913	struct inet_connection_sock *icsk = inet_csk(sk);
 914	struct tls_context *ctx;
 915
 916	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
 917	if (!ctx)
 918		return NULL;
 919
 920	mutex_init(&ctx->tx_lock);
 921	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
 922	ctx->sk_proto = READ_ONCE(sk->sk_prot);
 923	ctx->sk = sk;
 924	return ctx;
 925}
 926
 927static void build_proto_ops(struct proto_ops ops[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 928			    const struct proto_ops *base)
 929{
 930	ops[TLS_BASE][TLS_BASE] = *base;
 931
 932	ops[TLS_SW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 933	ops[TLS_SW  ][TLS_BASE].sendpage_locked	= tls_sw_sendpage_locked;
 934
 935	ops[TLS_BASE][TLS_SW  ] = ops[TLS_BASE][TLS_BASE];
 936	ops[TLS_BASE][TLS_SW  ].splice_read	= tls_sw_splice_read;
 937
 938	ops[TLS_SW  ][TLS_SW  ] = ops[TLS_SW  ][TLS_BASE];
 939	ops[TLS_SW  ][TLS_SW  ].splice_read	= tls_sw_splice_read;
 940
 941#ifdef CONFIG_TLS_DEVICE
 942	ops[TLS_HW  ][TLS_BASE] = ops[TLS_BASE][TLS_BASE];
 943	ops[TLS_HW  ][TLS_BASE].sendpage_locked	= NULL;
 944
 945	ops[TLS_HW  ][TLS_SW  ] = ops[TLS_BASE][TLS_SW  ];
 946	ops[TLS_HW  ][TLS_SW  ].sendpage_locked	= NULL;
 947
 948	ops[TLS_BASE][TLS_HW  ] = ops[TLS_BASE][TLS_SW  ];
 949
 950	ops[TLS_SW  ][TLS_HW  ] = ops[TLS_SW  ][TLS_SW  ];
 951
 952	ops[TLS_HW  ][TLS_HW  ] = ops[TLS_HW  ][TLS_SW  ];
 953	ops[TLS_HW  ][TLS_HW  ].sendpage_locked	= NULL;
 954#endif
 955#ifdef CONFIG_TLS_TOE
 956	ops[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
 957#endif
 958}
 959
 960static void tls_build_proto(struct sock *sk)
 961{
 962	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 963	struct proto *prot = READ_ONCE(sk->sk_prot);
 964
 965	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
 966	if (ip_ver == TLSV6 &&
 967	    unlikely(prot != smp_load_acquire(&saved_tcpv6_prot))) {
 968		mutex_lock(&tcpv6_prot_mutex);
 969		if (likely(prot != saved_tcpv6_prot)) {
 970			build_protos(tls_prots[TLSV6], prot);
 971			build_proto_ops(tls_proto_ops[TLSV6],
 972					sk->sk_socket->ops);
 973			smp_store_release(&saved_tcpv6_prot, prot);
 974		}
 975		mutex_unlock(&tcpv6_prot_mutex);
 976	}
 977
 978	if (ip_ver == TLSV4 &&
 979	    unlikely(prot != smp_load_acquire(&saved_tcpv4_prot))) {
 980		mutex_lock(&tcpv4_prot_mutex);
 981		if (likely(prot != saved_tcpv4_prot)) {
 982			build_protos(tls_prots[TLSV4], prot);
 983			build_proto_ops(tls_proto_ops[TLSV4],
 984					sk->sk_socket->ops);
 985			smp_store_release(&saved_tcpv4_prot, prot);
 986		}
 987		mutex_unlock(&tcpv4_prot_mutex);
 988	}
 989}
 990
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 992			 const struct proto *base)
 993{
 994	prot[TLS_BASE][TLS_BASE] = *base;
 995	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
 996	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
 997	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
 998
 999	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1000	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
1001	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
1002
1003	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
1004	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
1005	prot[TLS_BASE][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1006	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
1007
1008	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
1009	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
1010	prot[TLS_SW][TLS_SW].sock_is_readable   = tls_sw_sock_is_readable;
1011	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
1012
1013#ifdef CONFIG_TLS_DEVICE
1014	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
1015	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
1016	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
1017
1018	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
1019	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
1020	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
1021
1022	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
1023
1024	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
1025
1026	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
1027#endif
1028#ifdef CONFIG_TLS_TOE
1029	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
1030	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_toe_hash;
1031	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_toe_unhash;
1032#endif
1033}
1034
1035static int tls_init(struct sock *sk)
1036{
1037	struct tls_context *ctx;
1038	int rc = 0;
1039
1040	tls_build_proto(sk);
1041
1042#ifdef CONFIG_TLS_TOE
1043	if (tls_toe_bypass(sk))
1044		return 0;
1045#endif
1046
1047	/* The TLS ulp is currently supported only for TCP sockets
1048	 * in ESTABLISHED state.
1049	 * Supporting sockets in LISTEN state will require us
1050	 * to modify the accept implementation to clone rather then
1051	 * share the ulp context.
1052	 */
1053	if (sk->sk_state != TCP_ESTABLISHED)
1054		return -ENOTCONN;
 
 
1055
1056	/* allocate tls context */
1057	write_lock_bh(&sk->sk_callback_lock);
1058	ctx = tls_ctx_create(sk);
1059	if (!ctx) {
1060		rc = -ENOMEM;
1061		goto out;
1062	}
1063
1064	ctx->tx_conf = TLS_BASE;
1065	ctx->rx_conf = TLS_BASE;
1066	update_sk_prot(sk, ctx);
1067out:
1068	write_unlock_bh(&sk->sk_callback_lock);
1069	return rc;
1070}
1071
1072static void tls_update(struct sock *sk, struct proto *p,
1073		       void (*write_space)(struct sock *sk))
1074{
1075	struct tls_context *ctx;
1076
1077	WARN_ON_ONCE(sk->sk_prot == p);
1078
1079	ctx = tls_get_ctx(sk);
1080	if (likely(ctx)) {
1081		ctx->sk_write_space = write_space;
1082		ctx->sk_proto = p;
1083	} else {
1084		/* Pairs with lockless read in sk_clone_lock(). */
1085		WRITE_ONCE(sk->sk_prot, p);
1086		sk->sk_write_space = write_space;
1087	}
1088}
1089
1090static u16 tls_user_config(struct tls_context *ctx, bool tx)
1091{
1092	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
1093
1094	switch (config) {
1095	case TLS_BASE:
1096		return TLS_CONF_BASE;
1097	case TLS_SW:
1098		return TLS_CONF_SW;
1099	case TLS_HW:
1100		return TLS_CONF_HW;
1101	case TLS_HW_RECORD:
1102		return TLS_CONF_HW_RECORD;
1103	}
1104	return 0;
1105}
1106
1107static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
1108{
1109	u16 version, cipher_type;
1110	struct tls_context *ctx;
1111	struct nlattr *start;
1112	int err;
1113
1114	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
1115	if (!start)
1116		return -EMSGSIZE;
1117
1118	rcu_read_lock();
1119	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
1120	if (!ctx) {
1121		err = 0;
1122		goto nla_failure;
1123	}
1124	version = ctx->prot_info.version;
1125	if (version) {
1126		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
1127		if (err)
1128			goto nla_failure;
1129	}
1130	cipher_type = ctx->prot_info.cipher_type;
1131	if (cipher_type) {
1132		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
1133		if (err)
1134			goto nla_failure;
1135	}
1136	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
1137	if (err)
1138		goto nla_failure;
1139
1140	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
1141	if (err)
1142		goto nla_failure;
1143
1144	if (ctx->tx_conf == TLS_HW && ctx->zerocopy_sendfile) {
1145		err = nla_put_flag(skb, TLS_INFO_ZC_RO_TX);
1146		if (err)
1147			goto nla_failure;
1148	}
1149	if (ctx->rx_no_pad) {
1150		err = nla_put_flag(skb, TLS_INFO_RX_NO_PAD);
1151		if (err)
1152			goto nla_failure;
1153	}
1154
1155	rcu_read_unlock();
1156	nla_nest_end(skb, start);
1157	return 0;
1158
1159nla_failure:
1160	rcu_read_unlock();
1161	nla_nest_cancel(skb, start);
1162	return err;
1163}
1164
1165static size_t tls_get_info_size(const struct sock *sk)
1166{
1167	size_t size = 0;
1168
1169	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
1170		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
1171		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
1172		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
1173		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
1174		nla_total_size(0) +		/* TLS_INFO_ZC_RO_TX */
1175		nla_total_size(0) +		/* TLS_INFO_RX_NO_PAD */
1176		0;
1177
1178	return size;
1179}
1180
1181static int __net_init tls_init_net(struct net *net)
1182{
1183	int err;
1184
1185	net->mib.tls_statistics = alloc_percpu(struct linux_tls_mib);
1186	if (!net->mib.tls_statistics)
1187		return -ENOMEM;
1188
1189	err = tls_proc_init(net);
1190	if (err)
1191		goto err_free_stats;
1192
1193	return 0;
1194err_free_stats:
1195	free_percpu(net->mib.tls_statistics);
1196	return err;
1197}
 
1198
1199static void __net_exit tls_exit_net(struct net *net)
1200{
1201	tls_proc_fini(net);
1202	free_percpu(net->mib.tls_statistics);
 
1203}
1204
1205static struct pernet_operations tls_proc_ops = {
1206	.init = tls_init_net,
1207	.exit = tls_exit_net,
1208};
1209
1210static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
1211	.name			= "tls",
1212	.owner			= THIS_MODULE,
1213	.init			= tls_init,
1214	.update			= tls_update,
1215	.get_info		= tls_get_info,
1216	.get_info_size		= tls_get_info_size,
1217};
1218
1219static int __init tls_register(void)
1220{
1221	int err;
1222
1223	err = register_pernet_subsys(&tls_proc_ops);
1224	if (err)
1225		return err;
1226
1227	err = tls_strp_dev_init();
1228	if (err)
1229		goto err_pernet;
1230
1231	err = tls_device_init();
1232	if (err)
1233		goto err_strp;
1234
 
1235	tcp_register_ulp(&tcp_tls_ulp_ops);
1236
1237	return 0;
1238err_strp:
1239	tls_strp_dev_exit();
1240err_pernet:
1241	unregister_pernet_subsys(&tls_proc_ops);
1242	return err;
1243}
1244
1245static void __exit tls_unregister(void)
1246{
1247	tcp_unregister_ulp(&tcp_tls_ulp_ops);
1248	tls_strp_dev_exit();
1249	tls_device_cleanup();
1250	unregister_pernet_subsys(&tls_proc_ops);
1251}
1252
1253module_init(tls_register);
1254module_exit(tls_unregister);
v5.4
  1/*
  2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
  3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
  4 *
  5 * This software is available to you under a choice of one of two
  6 * licenses.  You may choose to be licensed under the terms of the GNU
  7 * General Public License (GPL) Version 2, available from the file
  8 * COPYING in the main directory of this source tree, or the
  9 * OpenIB.org BSD license below:
 10 *
 11 *     Redistribution and use in source and binary forms, with or
 12 *     without modification, are permitted provided that the following
 13 *     conditions are met:
 14 *
 15 *      - Redistributions of source code must retain the above
 16 *        copyright notice, this list of conditions and the following
 17 *        disclaimer.
 18 *
 19 *      - Redistributions in binary form must reproduce the above
 20 *        copyright notice, this list of conditions and the following
 21 *        disclaimer in the documentation and/or other materials
 22 *        provided with the distribution.
 23 *
 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 31 * SOFTWARE.
 32 */
 33
 34#include <linux/module.h>
 35
 36#include <net/tcp.h>
 37#include <net/inet_common.h>
 38#include <linux/highmem.h>
 39#include <linux/netdevice.h>
 40#include <linux/sched/signal.h>
 41#include <linux/inetdevice.h>
 42#include <linux/inet_diag.h>
 43
 
 44#include <net/tls.h>
 
 
 
 45
 46MODULE_AUTHOR("Mellanox Technologies");
 47MODULE_DESCRIPTION("Transport Layer Security Support");
 48MODULE_LICENSE("Dual BSD/GPL");
 49MODULE_ALIAS_TCP_ULP("tls");
 50
 51enum {
 52	TLSV4,
 53	TLSV6,
 54	TLS_NUM_PROTS,
 55};
 56
 57static struct proto *saved_tcpv6_prot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 58static DEFINE_MUTEX(tcpv6_prot_mutex);
 59static struct proto *saved_tcpv4_prot;
 60static DEFINE_MUTEX(tcpv4_prot_mutex);
 61static LIST_HEAD(device_list);
 62static DEFINE_SPINLOCK(device_spinlock);
 63static struct proto tls_prots[TLS_NUM_PROTS][TLS_NUM_CONFIG][TLS_NUM_CONFIG];
 64static struct proto_ops tls_sw_proto_ops;
 65static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
 66			 struct proto *base);
 67
 68static void update_sk_prot(struct sock *sk, struct tls_context *ctx)
 69{
 70	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 71
 72	sk->sk_prot = &tls_prots[ip_ver][ctx->tx_conf][ctx->rx_conf];
 
 
 
 73}
 74
 75int wait_on_pending_writer(struct sock *sk, long *timeo)
 76{
 77	int rc = 0;
 78	DEFINE_WAIT_FUNC(wait, woken_wake_function);
 79
 80	add_wait_queue(sk_sleep(sk), &wait);
 81	while (1) {
 82		if (!*timeo) {
 83			rc = -EAGAIN;
 84			break;
 85		}
 86
 87		if (signal_pending(current)) {
 88			rc = sock_intr_errno(*timeo);
 89			break;
 90		}
 91
 92		if (sk_wait_event(sk, timeo, !sk->sk_write_pending, &wait))
 93			break;
 94	}
 95	remove_wait_queue(sk_sleep(sk), &wait);
 96	return rc;
 97}
 98
 99int tls_push_sg(struct sock *sk,
100		struct tls_context *ctx,
101		struct scatterlist *sg,
102		u16 first_offset,
103		int flags)
104{
105	int sendpage_flags = flags | MSG_SENDPAGE_NOTLAST;
106	int ret = 0;
107	struct page *p;
108	size_t size;
109	int offset = first_offset;
110
111	size = sg->length - offset;
112	offset += sg->offset;
113
114	ctx->in_tcp_sendpages = true;
115	while (1) {
116		if (sg_is_last(sg))
117			sendpage_flags = flags;
118
119		/* is sending application-limited? */
120		tcp_rate_check_app_limited(sk);
121		p = sg_page(sg);
122retry:
123		ret = do_tcp_sendpages(sk, p, offset, size, sendpage_flags);
124
125		if (ret != size) {
126			if (ret > 0) {
127				offset += ret;
128				size -= ret;
129				goto retry;
130			}
131
132			offset -= sg->offset;
133			ctx->partially_sent_offset = offset;
134			ctx->partially_sent_record = (void *)sg;
135			ctx->in_tcp_sendpages = false;
136			return ret;
137		}
138
139		put_page(p);
140		sk_mem_uncharge(sk, sg->length);
141		sg = sg_next(sg);
142		if (!sg)
143			break;
144
145		offset = sg->offset;
146		size = sg->length;
147	}
148
149	ctx->in_tcp_sendpages = false;
150
151	return 0;
152}
153
154static int tls_handle_open_record(struct sock *sk, int flags)
155{
156	struct tls_context *ctx = tls_get_ctx(sk);
157
158	if (tls_is_pending_open_record(ctx))
159		return ctx->push_pending_record(sk, flags);
160
161	return 0;
162}
163
164int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
165		      unsigned char *record_type)
166{
167	struct cmsghdr *cmsg;
168	int rc = -EINVAL;
169
170	for_each_cmsghdr(cmsg, msg) {
171		if (!CMSG_OK(msg, cmsg))
172			return -EINVAL;
173		if (cmsg->cmsg_level != SOL_TLS)
174			continue;
175
176		switch (cmsg->cmsg_type) {
177		case TLS_SET_RECORD_TYPE:
178			if (cmsg->cmsg_len < CMSG_LEN(sizeof(*record_type)))
179				return -EINVAL;
180
181			if (msg->msg_flags & MSG_MORE)
182				return -EINVAL;
183
184			rc = tls_handle_open_record(sk, msg->msg_flags);
185			if (rc)
186				return rc;
187
188			*record_type = *(unsigned char *)CMSG_DATA(cmsg);
189			rc = 0;
190			break;
191		default:
192			return -EINVAL;
193		}
194	}
195
196	return rc;
197}
198
199int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
200			    int flags)
201{
202	struct scatterlist *sg;
203	u16 offset;
204
205	sg = ctx->partially_sent_record;
206	offset = ctx->partially_sent_offset;
207
208	ctx->partially_sent_record = NULL;
209	return tls_push_sg(sk, ctx, sg, offset, flags);
210}
211
212bool tls_free_partial_record(struct sock *sk, struct tls_context *ctx)
213{
214	struct scatterlist *sg;
215
216	sg = ctx->partially_sent_record;
217	if (!sg)
218		return false;
219
220	while (1) {
221		put_page(sg_page(sg));
222		sk_mem_uncharge(sk, sg->length);
223
224		if (sg_is_last(sg))
225			break;
226		sg++;
227	}
228	ctx->partially_sent_record = NULL;
229	return true;
230}
231
232static void tls_write_space(struct sock *sk)
233{
234	struct tls_context *ctx = tls_get_ctx(sk);
235
236	/* If in_tcp_sendpages call lower protocol write space handler
237	 * to ensure we wake up any waiting operations there. For example
238	 * if do_tcp_sendpages where to call sk_wait_event.
239	 */
240	if (ctx->in_tcp_sendpages) {
241		ctx->sk_write_space(sk);
242		return;
243	}
244
245#ifdef CONFIG_TLS_DEVICE
246	if (ctx->tx_conf == TLS_HW)
247		tls_device_write_space(sk, ctx);
248	else
249#endif
250		tls_sw_write_space(sk, ctx);
251
252	ctx->sk_write_space(sk);
253}
254
255/**
256 * tls_ctx_free() - free TLS ULP context
257 * @sk:  socket to with @ctx is attached
258 * @ctx: TLS context structure
259 *
260 * Free TLS context. If @sk is %NULL caller guarantees that the socket
261 * to which @ctx was attached has no outstanding references.
262 */
263void tls_ctx_free(struct sock *sk, struct tls_context *ctx)
264{
265	if (!ctx)
266		return;
267
268	memzero_explicit(&ctx->crypto_send, sizeof(ctx->crypto_send));
269	memzero_explicit(&ctx->crypto_recv, sizeof(ctx->crypto_recv));
270	mutex_destroy(&ctx->tx_lock);
271
272	if (sk)
273		kfree_rcu(ctx, rcu);
274	else
275		kfree(ctx);
276}
277
278static void tls_sk_proto_cleanup(struct sock *sk,
279				 struct tls_context *ctx, long timeo)
280{
281	if (unlikely(sk->sk_write_pending) &&
282	    !wait_on_pending_writer(sk, &timeo))
283		tls_handle_open_record(sk, 0);
284
285	/* We need these for tls_sw_fallback handling of other packets */
286	if (ctx->tx_conf == TLS_SW) {
287		kfree(ctx->tx.rec_seq);
288		kfree(ctx->tx.iv);
289		tls_sw_release_resources_tx(sk);
 
290	} else if (ctx->tx_conf == TLS_HW) {
291		tls_device_free_resources_tx(sk);
 
292	}
293
294	if (ctx->rx_conf == TLS_SW)
295		tls_sw_release_resources_rx(sk);
296	else if (ctx->rx_conf == TLS_HW)
 
297		tls_device_offload_cleanup_rx(sk);
 
 
298}
299
300static void tls_sk_proto_close(struct sock *sk, long timeout)
301{
302	struct inet_connection_sock *icsk = inet_csk(sk);
303	struct tls_context *ctx = tls_get_ctx(sk);
304	long timeo = sock_sndtimeo(sk, 0);
305	bool free_ctx;
306
307	if (ctx->tx_conf == TLS_SW)
308		tls_sw_cancel_work_tx(ctx);
309
310	lock_sock(sk);
311	free_ctx = ctx->tx_conf != TLS_HW && ctx->rx_conf != TLS_HW;
312
313	if (ctx->tx_conf != TLS_BASE || ctx->rx_conf != TLS_BASE)
314		tls_sk_proto_cleanup(sk, ctx, timeo);
315
316	write_lock_bh(&sk->sk_callback_lock);
317	if (free_ctx)
318		rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
319	sk->sk_prot = ctx->sk_proto;
320	if (sk->sk_write_space == tls_write_space)
321		sk->sk_write_space = ctx->sk_write_space;
322	write_unlock_bh(&sk->sk_callback_lock);
323	release_sock(sk);
324	if (ctx->tx_conf == TLS_SW)
325		tls_sw_free_ctx_tx(ctx);
326	if (ctx->rx_conf == TLS_SW || ctx->rx_conf == TLS_HW)
327		tls_sw_strparser_done(ctx);
328	if (ctx->rx_conf == TLS_SW)
329		tls_sw_free_ctx_rx(ctx);
330	ctx->sk_proto->close(sk, timeout);
331
332	if (free_ctx)
333		tls_ctx_free(sk, ctx);
334}
335
336static int do_tls_getsockopt_tx(struct sock *sk, char __user *optval,
337				int __user *optlen)
338{
339	int rc = 0;
340	struct tls_context *ctx = tls_get_ctx(sk);
341	struct tls_crypto_info *crypto_info;
 
342	int len;
343
344	if (get_user(len, optlen))
345		return -EFAULT;
346
347	if (!optval || (len < sizeof(*crypto_info))) {
348		rc = -EINVAL;
349		goto out;
350	}
351
352	if (!ctx) {
353		rc = -EBUSY;
354		goto out;
355	}
356
357	/* get user crypto info */
358	crypto_info = &ctx->crypto_send.info;
 
 
 
 
 
 
359
360	if (!TLS_CRYPTO_INFO_READY(crypto_info)) {
361		rc = -EBUSY;
362		goto out;
363	}
364
365	if (len == sizeof(*crypto_info)) {
366		if (copy_to_user(optval, crypto_info, sizeof(*crypto_info)))
367			rc = -EFAULT;
368		goto out;
369	}
370
371	switch (crypto_info->cipher_type) {
372	case TLS_CIPHER_AES_GCM_128: {
373		struct tls12_crypto_info_aes_gcm_128 *
374		  crypto_info_aes_gcm_128 =
375		  container_of(crypto_info,
376			       struct tls12_crypto_info_aes_gcm_128,
377			       info);
378
379		if (len != sizeof(*crypto_info_aes_gcm_128)) {
380			rc = -EINVAL;
381			goto out;
382		}
383		lock_sock(sk);
384		memcpy(crypto_info_aes_gcm_128->iv,
385		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
386		       TLS_CIPHER_AES_GCM_128_IV_SIZE);
387		memcpy(crypto_info_aes_gcm_128->rec_seq, ctx->tx.rec_seq,
388		       TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE);
389		release_sock(sk);
390		if (copy_to_user(optval,
391				 crypto_info_aes_gcm_128,
392				 sizeof(*crypto_info_aes_gcm_128)))
393			rc = -EFAULT;
394		break;
395	}
396	case TLS_CIPHER_AES_GCM_256: {
397		struct tls12_crypto_info_aes_gcm_256 *
398		  crypto_info_aes_gcm_256 =
399		  container_of(crypto_info,
400			       struct tls12_crypto_info_aes_gcm_256,
401			       info);
402
403		if (len != sizeof(*crypto_info_aes_gcm_256)) {
404			rc = -EINVAL;
405			goto out;
406		}
407		lock_sock(sk);
408		memcpy(crypto_info_aes_gcm_256->iv,
409		       ctx->tx.iv + TLS_CIPHER_AES_GCM_256_SALT_SIZE,
410		       TLS_CIPHER_AES_GCM_256_IV_SIZE);
411		memcpy(crypto_info_aes_gcm_256->rec_seq, ctx->tx.rec_seq,
412		       TLS_CIPHER_AES_GCM_256_REC_SEQ_SIZE);
413		release_sock(sk);
414		if (copy_to_user(optval,
415				 crypto_info_aes_gcm_256,
416				 sizeof(*crypto_info_aes_gcm_256)))
417			rc = -EFAULT;
418		break;
419	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
420	default:
421		rc = -EINVAL;
422	}
423
424out:
425	return rc;
426}
427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428static int do_tls_getsockopt(struct sock *sk, int optname,
429			     char __user *optval, int __user *optlen)
430{
431	int rc = 0;
432
433	switch (optname) {
434	case TLS_TX:
435		rc = do_tls_getsockopt_tx(sk, optval, optlen);
 
 
 
 
 
 
 
 
436		break;
437	default:
438		rc = -ENOPROTOOPT;
439		break;
440	}
441	return rc;
442}
443
444static int tls_getsockopt(struct sock *sk, int level, int optname,
445			  char __user *optval, int __user *optlen)
446{
447	struct tls_context *ctx = tls_get_ctx(sk);
448
449	if (level != SOL_TLS)
450		return ctx->sk_proto->getsockopt(sk, level,
451						 optname, optval, optlen);
452
453	return do_tls_getsockopt(sk, optname, optval, optlen);
454}
455
456static int do_tls_setsockopt_conf(struct sock *sk, char __user *optval,
457				  unsigned int optlen, int tx)
458{
459	struct tls_crypto_info *crypto_info;
460	struct tls_crypto_info *alt_crypto_info;
461	struct tls_context *ctx = tls_get_ctx(sk);
462	size_t optsize;
463	int rc = 0;
464	int conf;
465
466	if (!optval || (optlen < sizeof(*crypto_info))) {
467		rc = -EINVAL;
468		goto out;
469	}
470
471	if (tx) {
472		crypto_info = &ctx->crypto_send.info;
473		alt_crypto_info = &ctx->crypto_recv.info;
474	} else {
475		crypto_info = &ctx->crypto_recv.info;
476		alt_crypto_info = &ctx->crypto_send.info;
477	}
478
479	/* Currently we don't support set crypto info more than one time */
480	if (TLS_CRYPTO_INFO_READY(crypto_info)) {
481		rc = -EBUSY;
482		goto out;
483	}
484
485	rc = copy_from_user(crypto_info, optval, sizeof(*crypto_info));
486	if (rc) {
487		rc = -EFAULT;
488		goto err_crypto_info;
489	}
490
491	/* check version */
492	if (crypto_info->version != TLS_1_2_VERSION &&
493	    crypto_info->version != TLS_1_3_VERSION) {
494		rc = -ENOTSUPP;
495		goto err_crypto_info;
496	}
497
498	/* Ensure that TLS version and ciphers are same in both directions */
499	if (TLS_CRYPTO_INFO_READY(alt_crypto_info)) {
500		if (alt_crypto_info->version != crypto_info->version ||
501		    alt_crypto_info->cipher_type != crypto_info->cipher_type) {
502			rc = -EINVAL;
503			goto err_crypto_info;
504		}
505	}
506
507	switch (crypto_info->cipher_type) {
508	case TLS_CIPHER_AES_GCM_128:
509		optsize = sizeof(struct tls12_crypto_info_aes_gcm_128);
510		break;
511	case TLS_CIPHER_AES_GCM_256: {
512		optsize = sizeof(struct tls12_crypto_info_aes_gcm_256);
513		break;
514	}
515	case TLS_CIPHER_AES_CCM_128:
516		optsize = sizeof(struct tls12_crypto_info_aes_ccm_128);
517		break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
518	default:
519		rc = -EINVAL;
520		goto err_crypto_info;
521	}
522
523	if (optlen != optsize) {
524		rc = -EINVAL;
525		goto err_crypto_info;
526	}
527
528	rc = copy_from_user(crypto_info + 1, optval + sizeof(*crypto_info),
529			    optlen - sizeof(*crypto_info));
 
530	if (rc) {
531		rc = -EFAULT;
532		goto err_crypto_info;
533	}
534
535	if (tx) {
536		rc = tls_set_device_offload(sk, ctx);
537		conf = TLS_HW;
538		if (rc) {
 
 
 
539			rc = tls_set_sw_offload(sk, ctx, 1);
540			if (rc)
541				goto err_crypto_info;
 
 
542			conf = TLS_SW;
543		}
544	} else {
545		rc = tls_set_device_offload_rx(sk, ctx);
546		conf = TLS_HW;
547		if (rc) {
 
 
 
548			rc = tls_set_sw_offload(sk, ctx, 0);
549			if (rc)
550				goto err_crypto_info;
 
 
551			conf = TLS_SW;
552		}
553		tls_sw_strparser_arm(sk, ctx);
554	}
555
556	if (tx)
557		ctx->tx_conf = conf;
558	else
559		ctx->rx_conf = conf;
560	update_sk_prot(sk, ctx);
561	if (tx) {
562		ctx->sk_write_space = sk->sk_write_space;
563		sk->sk_write_space = tls_write_space;
564	} else {
565		sk->sk_socket->ops = &tls_sw_proto_ops;
 
 
566	}
567	goto out;
568
569err_crypto_info:
570	memzero_explicit(crypto_info, sizeof(union tls_crypto_context));
571out:
572	return rc;
573}
574
575static int do_tls_setsockopt(struct sock *sk, int optname,
576			     char __user *optval, unsigned int optlen)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
577{
578	int rc = 0;
579
580	switch (optname) {
581	case TLS_TX:
582	case TLS_RX:
583		lock_sock(sk);
584		rc = do_tls_setsockopt_conf(sk, optval, optlen,
585					    optname == TLS_TX);
586		release_sock(sk);
587		break;
 
 
 
 
 
 
 
 
588	default:
589		rc = -ENOPROTOOPT;
590		break;
591	}
592	return rc;
593}
594
595static int tls_setsockopt(struct sock *sk, int level, int optname,
596			  char __user *optval, unsigned int optlen)
597{
598	struct tls_context *ctx = tls_get_ctx(sk);
599
600	if (level != SOL_TLS)
601		return ctx->sk_proto->setsockopt(sk, level, optname, optval,
602						 optlen);
603
604	return do_tls_setsockopt(sk, optname, optval, optlen);
605}
606
607static struct tls_context *create_ctx(struct sock *sk)
608{
609	struct inet_connection_sock *icsk = inet_csk(sk);
610	struct tls_context *ctx;
611
612	ctx = kzalloc(sizeof(*ctx), GFP_ATOMIC);
613	if (!ctx)
614		return NULL;
615
616	mutex_init(&ctx->tx_lock);
617	rcu_assign_pointer(icsk->icsk_ulp_data, ctx);
618	ctx->sk_proto = sk->sk_prot;
 
619	return ctx;
620}
621
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
622static void tls_build_proto(struct sock *sk)
623{
624	int ip_ver = sk->sk_family == AF_INET6 ? TLSV6 : TLSV4;
 
625
626	/* Build IPv6 TLS whenever the address of tcpv6 _prot changes */
627	if (ip_ver == TLSV6 &&
628	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv6_prot))) {
629		mutex_lock(&tcpv6_prot_mutex);
630		if (likely(sk->sk_prot != saved_tcpv6_prot)) {
631			build_protos(tls_prots[TLSV6], sk->sk_prot);
632			smp_store_release(&saved_tcpv6_prot, sk->sk_prot);
 
 
633		}
634		mutex_unlock(&tcpv6_prot_mutex);
635	}
636
637	if (ip_ver == TLSV4 &&
638	    unlikely(sk->sk_prot != smp_load_acquire(&saved_tcpv4_prot))) {
639		mutex_lock(&tcpv4_prot_mutex);
640		if (likely(sk->sk_prot != saved_tcpv4_prot)) {
641			build_protos(tls_prots[TLSV4], sk->sk_prot);
642			smp_store_release(&saved_tcpv4_prot, sk->sk_prot);
 
 
643		}
644		mutex_unlock(&tcpv4_prot_mutex);
645	}
646}
647
648static void tls_hw_sk_destruct(struct sock *sk)
649{
650	struct tls_context *ctx = tls_get_ctx(sk);
651	struct inet_connection_sock *icsk = inet_csk(sk);
652
653	ctx->sk_destruct(sk);
654	/* Free ctx */
655	rcu_assign_pointer(icsk->icsk_ulp_data, NULL);
656	tls_ctx_free(sk, ctx);
657}
658
659static int tls_hw_prot(struct sock *sk)
660{
661	struct tls_context *ctx;
662	struct tls_device *dev;
663	int rc = 0;
664
665	spin_lock_bh(&device_spinlock);
666	list_for_each_entry(dev, &device_list, dev_list) {
667		if (dev->feature && dev->feature(dev)) {
668			ctx = create_ctx(sk);
669			if (!ctx)
670				goto out;
671
672			spin_unlock_bh(&device_spinlock);
673			tls_build_proto(sk);
674			ctx->sk_destruct = sk->sk_destruct;
675			sk->sk_destruct = tls_hw_sk_destruct;
676			ctx->rx_conf = TLS_HW_RECORD;
677			ctx->tx_conf = TLS_HW_RECORD;
678			update_sk_prot(sk, ctx);
679			spin_lock_bh(&device_spinlock);
680			rc = 1;
681			break;
682		}
683	}
684out:
685	spin_unlock_bh(&device_spinlock);
686	return rc;
687}
688
689static void tls_hw_unhash(struct sock *sk)
690{
691	struct tls_context *ctx = tls_get_ctx(sk);
692	struct tls_device *dev;
693
694	spin_lock_bh(&device_spinlock);
695	list_for_each_entry(dev, &device_list, dev_list) {
696		if (dev->unhash) {
697			kref_get(&dev->kref);
698			spin_unlock_bh(&device_spinlock);
699			dev->unhash(dev, sk);
700			kref_put(&dev->kref, dev->release);
701			spin_lock_bh(&device_spinlock);
702		}
703	}
704	spin_unlock_bh(&device_spinlock);
705	ctx->sk_proto->unhash(sk);
706}
707
708static int tls_hw_hash(struct sock *sk)
709{
710	struct tls_context *ctx = tls_get_ctx(sk);
711	struct tls_device *dev;
712	int err;
713
714	err = ctx->sk_proto->hash(sk);
715	spin_lock_bh(&device_spinlock);
716	list_for_each_entry(dev, &device_list, dev_list) {
717		if (dev->hash) {
718			kref_get(&dev->kref);
719			spin_unlock_bh(&device_spinlock);
720			err |= dev->hash(dev, sk);
721			kref_put(&dev->kref, dev->release);
722			spin_lock_bh(&device_spinlock);
723		}
724	}
725	spin_unlock_bh(&device_spinlock);
726
727	if (err)
728		tls_hw_unhash(sk);
729	return err;
730}
731
732static void build_protos(struct proto prot[TLS_NUM_CONFIG][TLS_NUM_CONFIG],
733			 struct proto *base)
734{
735	prot[TLS_BASE][TLS_BASE] = *base;
736	prot[TLS_BASE][TLS_BASE].setsockopt	= tls_setsockopt;
737	prot[TLS_BASE][TLS_BASE].getsockopt	= tls_getsockopt;
738	prot[TLS_BASE][TLS_BASE].close		= tls_sk_proto_close;
739
740	prot[TLS_SW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
741	prot[TLS_SW][TLS_BASE].sendmsg		= tls_sw_sendmsg;
742	prot[TLS_SW][TLS_BASE].sendpage		= tls_sw_sendpage;
743
744	prot[TLS_BASE][TLS_SW] = prot[TLS_BASE][TLS_BASE];
745	prot[TLS_BASE][TLS_SW].recvmsg		  = tls_sw_recvmsg;
746	prot[TLS_BASE][TLS_SW].stream_memory_read = tls_sw_stream_read;
747	prot[TLS_BASE][TLS_SW].close		  = tls_sk_proto_close;
748
749	prot[TLS_SW][TLS_SW] = prot[TLS_SW][TLS_BASE];
750	prot[TLS_SW][TLS_SW].recvmsg		= tls_sw_recvmsg;
751	prot[TLS_SW][TLS_SW].stream_memory_read	= tls_sw_stream_read;
752	prot[TLS_SW][TLS_SW].close		= tls_sk_proto_close;
753
754#ifdef CONFIG_TLS_DEVICE
755	prot[TLS_HW][TLS_BASE] = prot[TLS_BASE][TLS_BASE];
756	prot[TLS_HW][TLS_BASE].sendmsg		= tls_device_sendmsg;
757	prot[TLS_HW][TLS_BASE].sendpage		= tls_device_sendpage;
758
759	prot[TLS_HW][TLS_SW] = prot[TLS_BASE][TLS_SW];
760	prot[TLS_HW][TLS_SW].sendmsg		= tls_device_sendmsg;
761	prot[TLS_HW][TLS_SW].sendpage		= tls_device_sendpage;
762
763	prot[TLS_BASE][TLS_HW] = prot[TLS_BASE][TLS_SW];
764
765	prot[TLS_SW][TLS_HW] = prot[TLS_SW][TLS_SW];
766
767	prot[TLS_HW][TLS_HW] = prot[TLS_HW][TLS_SW];
768#endif
769
770	prot[TLS_HW_RECORD][TLS_HW_RECORD] = *base;
771	prot[TLS_HW_RECORD][TLS_HW_RECORD].hash		= tls_hw_hash;
772	prot[TLS_HW_RECORD][TLS_HW_RECORD].unhash	= tls_hw_unhash;
 
773}
774
775static int tls_init(struct sock *sk)
776{
777	struct tls_context *ctx;
778	int rc = 0;
779
780	if (tls_hw_prot(sk))
 
 
 
781		return 0;
 
782
783	/* The TLS ulp is currently supported only for TCP sockets
784	 * in ESTABLISHED state.
785	 * Supporting sockets in LISTEN state will require us
786	 * to modify the accept implementation to clone rather then
787	 * share the ulp context.
788	 */
789	if (sk->sk_state != TCP_ESTABLISHED)
790		return -ENOTSUPP;
791
792	tls_build_proto(sk);
793
794	/* allocate tls context */
795	write_lock_bh(&sk->sk_callback_lock);
796	ctx = create_ctx(sk);
797	if (!ctx) {
798		rc = -ENOMEM;
799		goto out;
800	}
801
802	ctx->tx_conf = TLS_BASE;
803	ctx->rx_conf = TLS_BASE;
804	update_sk_prot(sk, ctx);
805out:
806	write_unlock_bh(&sk->sk_callback_lock);
807	return rc;
808}
809
810static void tls_update(struct sock *sk, struct proto *p)
 
811{
812	struct tls_context *ctx;
813
 
 
814	ctx = tls_get_ctx(sk);
815	if (likely(ctx))
 
816		ctx->sk_proto = p;
817	else
818		sk->sk_prot = p;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
819}
820
821static int tls_get_info(const struct sock *sk, struct sk_buff *skb)
822{
823	u16 version, cipher_type;
824	struct tls_context *ctx;
825	struct nlattr *start;
826	int err;
827
828	start = nla_nest_start_noflag(skb, INET_ULP_INFO_TLS);
829	if (!start)
830		return -EMSGSIZE;
831
832	rcu_read_lock();
833	ctx = rcu_dereference(inet_csk(sk)->icsk_ulp_data);
834	if (!ctx) {
835		err = 0;
836		goto nla_failure;
837	}
838	version = ctx->prot_info.version;
839	if (version) {
840		err = nla_put_u16(skb, TLS_INFO_VERSION, version);
841		if (err)
842			goto nla_failure;
843	}
844	cipher_type = ctx->prot_info.cipher_type;
845	if (cipher_type) {
846		err = nla_put_u16(skb, TLS_INFO_CIPHER, cipher_type);
847		if (err)
848			goto nla_failure;
849	}
850	err = nla_put_u16(skb, TLS_INFO_TXCONF, tls_user_config(ctx, true));
851	if (err)
852		goto nla_failure;
853
854	err = nla_put_u16(skb, TLS_INFO_RXCONF, tls_user_config(ctx, false));
855	if (err)
856		goto nla_failure;
857
 
 
 
 
 
 
 
 
 
 
 
858	rcu_read_unlock();
859	nla_nest_end(skb, start);
860	return 0;
861
862nla_failure:
863	rcu_read_unlock();
864	nla_nest_cancel(skb, start);
865	return err;
866}
867
868static size_t tls_get_info_size(const struct sock *sk)
869{
870	size_t size = 0;
871
872	size += nla_total_size(0) +		/* INET_ULP_INFO_TLS */
873		nla_total_size(sizeof(u16)) +	/* TLS_INFO_VERSION */
874		nla_total_size(sizeof(u16)) +	/* TLS_INFO_CIPHER */
875		nla_total_size(sizeof(u16)) +	/* TLS_INFO_RXCONF */
876		nla_total_size(sizeof(u16)) +	/* TLS_INFO_TXCONF */
 
 
877		0;
878
879	return size;
880}
881
882void tls_register_device(struct tls_device *device)
883{
884	spin_lock_bh(&device_spinlock);
885	list_add_tail(&device->dev_list, &device_list);
886	spin_unlock_bh(&device_spinlock);
 
 
 
 
 
 
 
 
 
 
 
887}
888EXPORT_SYMBOL(tls_register_device);
889
890void tls_unregister_device(struct tls_device *device)
891{
892	spin_lock_bh(&device_spinlock);
893	list_del(&device->dev_list);
894	spin_unlock_bh(&device_spinlock);
895}
896EXPORT_SYMBOL(tls_unregister_device);
 
 
 
 
897
898static struct tcp_ulp_ops tcp_tls_ulp_ops __read_mostly = {
899	.name			= "tls",
900	.owner			= THIS_MODULE,
901	.init			= tls_init,
902	.update			= tls_update,
903	.get_info		= tls_get_info,
904	.get_info_size		= tls_get_info_size,
905};
906
907static int __init tls_register(void)
908{
909	tls_sw_proto_ops = inet_stream_ops;
910	tls_sw_proto_ops.splice_read = tls_sw_splice_read;
911	tls_sw_proto_ops.sendpage_locked   = tls_sw_sendpage_locked,
 
 
 
 
 
 
 
 
 
 
912
913	tls_device_init();
914	tcp_register_ulp(&tcp_tls_ulp_ops);
915
916	return 0;
 
 
 
 
 
917}
918
919static void __exit tls_unregister(void)
920{
921	tcp_unregister_ulp(&tcp_tls_ulp_ops);
 
922	tls_device_cleanup();
 
923}
924
925module_init(tls_register);
926module_exit(tls_unregister);