Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - 64BIT
11 *
12 * Copyright IBM Corp. 2012,2015
13 *
14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
16 */
17
18#define KMSG_COMPONENT "bpf_jit"
19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21#include <linux/netdevice.h>
22#include <linux/filter.h>
23#include <linux/init.h>
24#include <linux/bpf.h>
25#include <linux/mm.h>
26#include <linux/kernel.h>
27#include <asm/cacheflush.h>
28#include <asm/extable.h>
29#include <asm/dis.h>
30#include <asm/facility.h>
31#include <asm/nospec-branch.h>
32#include <asm/set_memory.h>
33#include "bpf_jit.h"
34
35struct bpf_jit {
36 u32 seen; /* Flags to remember seen eBPF instructions */
37 u32 seen_reg[16]; /* Array to remember which registers are used */
38 u32 *addrs; /* Array with relative instruction addresses */
39 u8 *prg_buf; /* Start of program */
40 int size; /* Size of program and literal pool */
41 int size_prg; /* Size of program */
42 int prg; /* Current position in program */
43 int lit32_start; /* Start of 32-bit literal pool */
44 int lit32; /* Current position in 32-bit literal pool */
45 int lit64_start; /* Start of 64-bit literal pool */
46 int lit64; /* Current position in 64-bit literal pool */
47 int base_ip; /* Base address for literal pool */
48 int exit_ip; /* Address of exit */
49 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
50 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
51 int tail_call_start; /* Tail call start offset */
52 int excnt; /* Number of exception table entries */
53};
54
55#define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
56#define SEEN_LITERAL BIT(1) /* code uses literals */
57#define SEEN_FUNC BIT(2) /* calls C functions */
58#define SEEN_TAIL_CALL BIT(3) /* code uses tail calls */
59#define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
60
61/*
62 * s390 registers
63 */
64#define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
65#define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
66#define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
67#define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
68#define REG_0 REG_W0 /* Register 0 */
69#define REG_1 REG_W1 /* Register 1 */
70#define REG_2 BPF_REG_1 /* Register 2 */
71#define REG_14 BPF_REG_0 /* Register 14 */
72
73/*
74 * Mapping of BPF registers to s390 registers
75 */
76static const int reg2hex[] = {
77 /* Return code */
78 [BPF_REG_0] = 14,
79 /* Function parameters */
80 [BPF_REG_1] = 2,
81 [BPF_REG_2] = 3,
82 [BPF_REG_3] = 4,
83 [BPF_REG_4] = 5,
84 [BPF_REG_5] = 6,
85 /* Call saved registers */
86 [BPF_REG_6] = 7,
87 [BPF_REG_7] = 8,
88 [BPF_REG_8] = 9,
89 [BPF_REG_9] = 10,
90 /* BPF stack pointer */
91 [BPF_REG_FP] = 13,
92 /* Register for blinding */
93 [BPF_REG_AX] = 12,
94 /* Work registers for s390x backend */
95 [REG_W0] = 0,
96 [REG_W1] = 1,
97 [REG_L] = 11,
98 [REG_15] = 15,
99};
100
101static inline u32 reg(u32 dst_reg, u32 src_reg)
102{
103 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
104}
105
106static inline u32 reg_high(u32 reg)
107{
108 return reg2hex[reg] << 4;
109}
110
111static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
112{
113 u32 r1 = reg2hex[b1];
114
115 if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
116 jit->seen_reg[r1] = 1;
117}
118
119#define REG_SET_SEEN(b1) \
120({ \
121 reg_set_seen(jit, b1); \
122})
123
124#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
125
126/*
127 * EMIT macros for code generation
128 */
129
130#define _EMIT2(op) \
131({ \
132 if (jit->prg_buf) \
133 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
134 jit->prg += 2; \
135})
136
137#define EMIT2(op, b1, b2) \
138({ \
139 _EMIT2((op) | reg(b1, b2)); \
140 REG_SET_SEEN(b1); \
141 REG_SET_SEEN(b2); \
142})
143
144#define _EMIT4(op) \
145({ \
146 if (jit->prg_buf) \
147 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
148 jit->prg += 4; \
149})
150
151#define EMIT4(op, b1, b2) \
152({ \
153 _EMIT4((op) | reg(b1, b2)); \
154 REG_SET_SEEN(b1); \
155 REG_SET_SEEN(b2); \
156})
157
158#define EMIT4_RRF(op, b1, b2, b3) \
159({ \
160 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
161 REG_SET_SEEN(b1); \
162 REG_SET_SEEN(b2); \
163 REG_SET_SEEN(b3); \
164})
165
166#define _EMIT4_DISP(op, disp) \
167({ \
168 unsigned int __disp = (disp) & 0xfff; \
169 _EMIT4((op) | __disp); \
170})
171
172#define EMIT4_DISP(op, b1, b2, disp) \
173({ \
174 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
175 reg_high(b2) << 8, (disp)); \
176 REG_SET_SEEN(b1); \
177 REG_SET_SEEN(b2); \
178})
179
180#define EMIT4_IMM(op, b1, imm) \
181({ \
182 unsigned int __imm = (imm) & 0xffff; \
183 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
184 REG_SET_SEEN(b1); \
185})
186
187#define EMIT4_PCREL(op, pcrel) \
188({ \
189 long __pcrel = ((pcrel) >> 1) & 0xffff; \
190 _EMIT4((op) | __pcrel); \
191})
192
193#define EMIT4_PCREL_RIC(op, mask, target) \
194({ \
195 int __rel = ((target) - jit->prg) / 2; \
196 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
197})
198
199#define _EMIT6(op1, op2) \
200({ \
201 if (jit->prg_buf) { \
202 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
203 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
204 } \
205 jit->prg += 6; \
206})
207
208#define _EMIT6_DISP(op1, op2, disp) \
209({ \
210 unsigned int __disp = (disp) & 0xfff; \
211 _EMIT6((op1) | __disp, op2); \
212})
213
214#define _EMIT6_DISP_LH(op1, op2, disp) \
215({ \
216 u32 _disp = (u32) (disp); \
217 unsigned int __disp_h = _disp & 0xff000; \
218 unsigned int __disp_l = _disp & 0x00fff; \
219 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
220})
221
222#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
223({ \
224 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
225 reg_high(b3) << 8, op2, disp); \
226 REG_SET_SEEN(b1); \
227 REG_SET_SEEN(b2); \
228 REG_SET_SEEN(b3); \
229})
230
231#define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
232({ \
233 unsigned int rel = (int)((target) - jit->prg) / 2; \
234 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
235 (op2) | (mask) << 12); \
236 REG_SET_SEEN(b1); \
237 REG_SET_SEEN(b2); \
238})
239
240#define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
241({ \
242 unsigned int rel = (int)((target) - jit->prg) / 2; \
243 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
244 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
245 REG_SET_SEEN(b1); \
246 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
247})
248
249#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
250({ \
251 int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2; \
252 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
253 REG_SET_SEEN(b1); \
254 REG_SET_SEEN(b2); \
255})
256
257#define EMIT6_PCREL_RILB(op, b, target) \
258({ \
259 unsigned int rel = (int)((target) - jit->prg) / 2; \
260 _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
261 REG_SET_SEEN(b); \
262})
263
264#define EMIT6_PCREL_RIL(op, target) \
265({ \
266 unsigned int rel = (int)((target) - jit->prg) / 2; \
267 _EMIT6((op) | rel >> 16, rel & 0xffff); \
268})
269
270#define EMIT6_PCREL_RILC(op, mask, target) \
271({ \
272 EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \
273})
274
275#define _EMIT6_IMM(op, imm) \
276({ \
277 unsigned int __imm = (imm); \
278 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
279})
280
281#define EMIT6_IMM(op, b1, imm) \
282({ \
283 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
284 REG_SET_SEEN(b1); \
285})
286
287#define _EMIT_CONST_U32(val) \
288({ \
289 unsigned int ret; \
290 ret = jit->lit32; \
291 if (jit->prg_buf) \
292 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
293 jit->lit32 += 4; \
294 ret; \
295})
296
297#define EMIT_CONST_U32(val) \
298({ \
299 jit->seen |= SEEN_LITERAL; \
300 _EMIT_CONST_U32(val) - jit->base_ip; \
301})
302
303#define _EMIT_CONST_U64(val) \
304({ \
305 unsigned int ret; \
306 ret = jit->lit64; \
307 if (jit->prg_buf) \
308 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
309 jit->lit64 += 8; \
310 ret; \
311})
312
313#define EMIT_CONST_U64(val) \
314({ \
315 jit->seen |= SEEN_LITERAL; \
316 _EMIT_CONST_U64(val) - jit->base_ip; \
317})
318
319#define EMIT_ZERO(b1) \
320({ \
321 if (!fp->aux->verifier_zext) { \
322 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
323 EMIT4(0xb9160000, b1, b1); \
324 REG_SET_SEEN(b1); \
325 } \
326})
327
328/*
329 * Return whether this is the first pass. The first pass is special, since we
330 * don't know any sizes yet, and thus must be conservative.
331 */
332static bool is_first_pass(struct bpf_jit *jit)
333{
334 return jit->size == 0;
335}
336
337/*
338 * Return whether this is the code generation pass. The code generation pass is
339 * special, since we should change as little as possible.
340 */
341static bool is_codegen_pass(struct bpf_jit *jit)
342{
343 return jit->prg_buf;
344}
345
346/*
347 * Return whether "rel" can be encoded as a short PC-relative offset
348 */
349static bool is_valid_rel(int rel)
350{
351 return rel >= -65536 && rel <= 65534;
352}
353
354/*
355 * Return whether "off" can be reached using a short PC-relative offset
356 */
357static bool can_use_rel(struct bpf_jit *jit, int off)
358{
359 return is_valid_rel(off - jit->prg);
360}
361
362/*
363 * Return whether given displacement can be encoded using
364 * Long-Displacement Facility
365 */
366static bool is_valid_ldisp(int disp)
367{
368 return disp >= -524288 && disp <= 524287;
369}
370
371/*
372 * Return whether the next 32-bit literal pool entry can be referenced using
373 * Long-Displacement Facility
374 */
375static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
376{
377 return is_valid_ldisp(jit->lit32 - jit->base_ip);
378}
379
380/*
381 * Return whether the next 64-bit literal pool entry can be referenced using
382 * Long-Displacement Facility
383 */
384static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
385{
386 return is_valid_ldisp(jit->lit64 - jit->base_ip);
387}
388
389/*
390 * Fill whole space with illegal instructions
391 */
392static void jit_fill_hole(void *area, unsigned int size)
393{
394 memset(area, 0, size);
395}
396
397/*
398 * Save registers from "rs" (register start) to "re" (register end) on stack
399 */
400static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
401{
402 u32 off = STK_OFF_R6 + (rs - 6) * 8;
403
404 if (rs == re)
405 /* stg %rs,off(%r15) */
406 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
407 else
408 /* stmg %rs,%re,off(%r15) */
409 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
410}
411
412/*
413 * Restore registers from "rs" (register start) to "re" (register end) on stack
414 */
415static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
416{
417 u32 off = STK_OFF_R6 + (rs - 6) * 8;
418
419 if (jit->seen & SEEN_STACK)
420 off += STK_OFF + stack_depth;
421
422 if (rs == re)
423 /* lg %rs,off(%r15) */
424 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
425 else
426 /* lmg %rs,%re,off(%r15) */
427 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
428}
429
430/*
431 * Return first seen register (from start)
432 */
433static int get_start(struct bpf_jit *jit, int start)
434{
435 int i;
436
437 for (i = start; i <= 15; i++) {
438 if (jit->seen_reg[i])
439 return i;
440 }
441 return 0;
442}
443
444/*
445 * Return last seen register (from start) (gap >= 2)
446 */
447static int get_end(struct bpf_jit *jit, int start)
448{
449 int i;
450
451 for (i = start; i < 15; i++) {
452 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
453 return i - 1;
454 }
455 return jit->seen_reg[15] ? 15 : 14;
456}
457
458#define REGS_SAVE 1
459#define REGS_RESTORE 0
460/*
461 * Save and restore clobbered registers (6-15) on stack.
462 * We save/restore registers in chunks with gap >= 2 registers.
463 */
464static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
465{
466 const int last = 15, save_restore_size = 6;
467 int re = 6, rs;
468
469 if (is_first_pass(jit)) {
470 /*
471 * We don't know yet which registers are used. Reserve space
472 * conservatively.
473 */
474 jit->prg += (last - re + 1) * save_restore_size;
475 return;
476 }
477
478 do {
479 rs = get_start(jit, re);
480 if (!rs)
481 break;
482 re = get_end(jit, rs + 1);
483 if (op == REGS_SAVE)
484 save_regs(jit, rs, re);
485 else
486 restore_regs(jit, rs, re, stack_depth);
487 re++;
488 } while (re <= last);
489}
490
491static void bpf_skip(struct bpf_jit *jit, int size)
492{
493 if (size >= 6 && !is_valid_rel(size)) {
494 /* brcl 0xf,size */
495 EMIT6_PCREL_RIL(0xc0f4000000, size);
496 size -= 6;
497 } else if (size >= 4 && is_valid_rel(size)) {
498 /* brc 0xf,size */
499 EMIT4_PCREL(0xa7f40000, size);
500 size -= 4;
501 }
502 while (size >= 2) {
503 /* bcr 0,%0 */
504 _EMIT2(0x0700);
505 size -= 2;
506 }
507}
508
509/*
510 * Emit function prologue
511 *
512 * Save registers and create stack frame if necessary.
513 * See stack frame layout desription in "bpf_jit.h"!
514 */
515static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
516{
517 if (jit->seen & SEEN_TAIL_CALL) {
518 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
519 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
520 } else {
521 /*
522 * There are no tail calls. Insert nops in order to have
523 * tail_call_start at a predictable offset.
524 */
525 bpf_skip(jit, 6);
526 }
527 /* Tail calls have to skip above initialization */
528 jit->tail_call_start = jit->prg;
529 /* Save registers */
530 save_restore_regs(jit, REGS_SAVE, stack_depth);
531 /* Setup literal pool */
532 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
533 if (!is_first_pass(jit) &&
534 is_valid_ldisp(jit->size - (jit->prg + 2))) {
535 /* basr %l,0 */
536 EMIT2(0x0d00, REG_L, REG_0);
537 jit->base_ip = jit->prg;
538 } else {
539 /* larl %l,lit32_start */
540 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
541 jit->base_ip = jit->lit32_start;
542 }
543 }
544 /* Setup stack and backchain */
545 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
546 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
547 /* lgr %w1,%r15 (backchain) */
548 EMIT4(0xb9040000, REG_W1, REG_15);
549 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
550 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
551 /* aghi %r15,-STK_OFF */
552 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
553 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
554 /* stg %w1,152(%r15) (backchain) */
555 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
556 REG_15, 152);
557 }
558}
559
560/*
561 * Function epilogue
562 */
563static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
564{
565 jit->exit_ip = jit->prg;
566 /* Load exit code: lgr %r2,%b0 */
567 EMIT4(0xb9040000, REG_2, BPF_REG_0);
568 /* Restore registers */
569 save_restore_regs(jit, REGS_RESTORE, stack_depth);
570 if (nospec_uses_trampoline()) {
571 jit->r14_thunk_ip = jit->prg;
572 /* Generate __s390_indirect_jump_r14 thunk */
573 /* exrl %r0,.+10 */
574 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
575 /* j . */
576 EMIT4_PCREL(0xa7f40000, 0);
577 }
578 /* br %r14 */
579 _EMIT2(0x07fe);
580
581 if ((nospec_uses_trampoline()) &&
582 (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
583 jit->r1_thunk_ip = jit->prg;
584 /* Generate __s390_indirect_jump_r1 thunk */
585 /* exrl %r0,.+10 */
586 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
587 /* j . */
588 EMIT4_PCREL(0xa7f40000, 0);
589 /* br %r1 */
590 _EMIT2(0x07f1);
591 }
592}
593
594static int get_probe_mem_regno(const u8 *insn)
595{
596 /*
597 * insn must point to llgc, llgh, llgf or lg, which have destination
598 * register at the same position.
599 */
600 if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
601 return -1;
602 if (insn[5] != 0x90 && /* llgc */
603 insn[5] != 0x91 && /* llgh */
604 insn[5] != 0x16 && /* llgf */
605 insn[5] != 0x04) /* lg */
606 return -1;
607 return insn[1] >> 4;
608}
609
610bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
611{
612 regs->psw.addr = extable_fixup(x);
613 regs->gprs[x->data] = 0;
614 return true;
615}
616
617static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
618 int probe_prg, int nop_prg)
619{
620 struct exception_table_entry *ex;
621 int reg, prg;
622 s64 delta;
623 u8 *insn;
624 int i;
625
626 if (!fp->aux->extable)
627 /* Do nothing during early JIT passes. */
628 return 0;
629 insn = jit->prg_buf + probe_prg;
630 reg = get_probe_mem_regno(insn);
631 if (WARN_ON_ONCE(reg < 0))
632 /* JIT bug - unexpected probe instruction. */
633 return -1;
634 if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
635 /* JIT bug - gap between probe and nop instructions. */
636 return -1;
637 for (i = 0; i < 2; i++) {
638 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
639 /* Verifier bug - not enough entries. */
640 return -1;
641 ex = &fp->aux->extable[jit->excnt];
642 /* Add extable entries for probe and nop instructions. */
643 prg = i == 0 ? probe_prg : nop_prg;
644 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
645 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
646 /* JIT bug - code and extable must be close. */
647 return -1;
648 ex->insn = delta;
649 /*
650 * Always land on the nop. Note that extable infrastructure
651 * ignores fixup field, it is handled by ex_handler_bpf().
652 */
653 delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
654 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
655 /* JIT bug - landing pad and extable must be close. */
656 return -1;
657 ex->fixup = delta;
658 ex->type = EX_TYPE_BPF;
659 ex->data = reg;
660 jit->excnt++;
661 }
662 return 0;
663}
664
665/*
666 * Compile one eBPF instruction into s390x code
667 *
668 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
669 * stack space for the large switch statement.
670 */
671static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
672 int i, bool extra_pass, u32 stack_depth)
673{
674 struct bpf_insn *insn = &fp->insnsi[i];
675 u32 dst_reg = insn->dst_reg;
676 u32 src_reg = insn->src_reg;
677 int last, insn_count = 1;
678 u32 *addrs = jit->addrs;
679 s32 imm = insn->imm;
680 s16 off = insn->off;
681 int probe_prg = -1;
682 unsigned int mask;
683 int nop_prg;
684 int err;
685
686 if (BPF_CLASS(insn->code) == BPF_LDX &&
687 BPF_MODE(insn->code) == BPF_PROBE_MEM)
688 probe_prg = jit->prg;
689
690 switch (insn->code) {
691 /*
692 * BPF_MOV
693 */
694 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
695 /* llgfr %dst,%src */
696 EMIT4(0xb9160000, dst_reg, src_reg);
697 if (insn_is_zext(&insn[1]))
698 insn_count = 2;
699 break;
700 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
701 /* lgr %dst,%src */
702 EMIT4(0xb9040000, dst_reg, src_reg);
703 break;
704 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
705 /* llilf %dst,imm */
706 EMIT6_IMM(0xc00f0000, dst_reg, imm);
707 if (insn_is_zext(&insn[1]))
708 insn_count = 2;
709 break;
710 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
711 /* lgfi %dst,imm */
712 EMIT6_IMM(0xc0010000, dst_reg, imm);
713 break;
714 /*
715 * BPF_LD 64
716 */
717 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
718 {
719 /* 16 byte instruction that uses two 'struct bpf_insn' */
720 u64 imm64;
721
722 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
723 /* lgrl %dst,imm */
724 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
725 insn_count = 2;
726 break;
727 }
728 /*
729 * BPF_ADD
730 */
731 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
732 /* ar %dst,%src */
733 EMIT2(0x1a00, dst_reg, src_reg);
734 EMIT_ZERO(dst_reg);
735 break;
736 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
737 /* agr %dst,%src */
738 EMIT4(0xb9080000, dst_reg, src_reg);
739 break;
740 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
741 if (imm != 0) {
742 /* alfi %dst,imm */
743 EMIT6_IMM(0xc20b0000, dst_reg, imm);
744 }
745 EMIT_ZERO(dst_reg);
746 break;
747 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
748 if (!imm)
749 break;
750 /* agfi %dst,imm */
751 EMIT6_IMM(0xc2080000, dst_reg, imm);
752 break;
753 /*
754 * BPF_SUB
755 */
756 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
757 /* sr %dst,%src */
758 EMIT2(0x1b00, dst_reg, src_reg);
759 EMIT_ZERO(dst_reg);
760 break;
761 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
762 /* sgr %dst,%src */
763 EMIT4(0xb9090000, dst_reg, src_reg);
764 break;
765 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
766 if (imm != 0) {
767 /* alfi %dst,-imm */
768 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
769 }
770 EMIT_ZERO(dst_reg);
771 break;
772 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
773 if (!imm)
774 break;
775 if (imm == -0x80000000) {
776 /* algfi %dst,0x80000000 */
777 EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
778 } else {
779 /* agfi %dst,-imm */
780 EMIT6_IMM(0xc2080000, dst_reg, -imm);
781 }
782 break;
783 /*
784 * BPF_MUL
785 */
786 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
787 /* msr %dst,%src */
788 EMIT4(0xb2520000, dst_reg, src_reg);
789 EMIT_ZERO(dst_reg);
790 break;
791 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
792 /* msgr %dst,%src */
793 EMIT4(0xb90c0000, dst_reg, src_reg);
794 break;
795 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
796 if (imm != 1) {
797 /* msfi %r5,imm */
798 EMIT6_IMM(0xc2010000, dst_reg, imm);
799 }
800 EMIT_ZERO(dst_reg);
801 break;
802 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
803 if (imm == 1)
804 break;
805 /* msgfi %dst,imm */
806 EMIT6_IMM(0xc2000000, dst_reg, imm);
807 break;
808 /*
809 * BPF_DIV / BPF_MOD
810 */
811 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
812 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
813 {
814 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
815
816 /* lhi %w0,0 */
817 EMIT4_IMM(0xa7080000, REG_W0, 0);
818 /* lr %w1,%dst */
819 EMIT2(0x1800, REG_W1, dst_reg);
820 /* dlr %w0,%src */
821 EMIT4(0xb9970000, REG_W0, src_reg);
822 /* llgfr %dst,%rc */
823 EMIT4(0xb9160000, dst_reg, rc_reg);
824 if (insn_is_zext(&insn[1]))
825 insn_count = 2;
826 break;
827 }
828 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
829 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
830 {
831 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
832
833 /* lghi %w0,0 */
834 EMIT4_IMM(0xa7090000, REG_W0, 0);
835 /* lgr %w1,%dst */
836 EMIT4(0xb9040000, REG_W1, dst_reg);
837 /* dlgr %w0,%dst */
838 EMIT4(0xb9870000, REG_W0, src_reg);
839 /* lgr %dst,%rc */
840 EMIT4(0xb9040000, dst_reg, rc_reg);
841 break;
842 }
843 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
844 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
845 {
846 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
847
848 if (imm == 1) {
849 if (BPF_OP(insn->code) == BPF_MOD)
850 /* lhgi %dst,0 */
851 EMIT4_IMM(0xa7090000, dst_reg, 0);
852 else
853 EMIT_ZERO(dst_reg);
854 break;
855 }
856 /* lhi %w0,0 */
857 EMIT4_IMM(0xa7080000, REG_W0, 0);
858 /* lr %w1,%dst */
859 EMIT2(0x1800, REG_W1, dst_reg);
860 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
861 /* dl %w0,<d(imm)>(%l) */
862 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
863 EMIT_CONST_U32(imm));
864 } else {
865 /* lgfrl %dst,imm */
866 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
867 _EMIT_CONST_U32(imm));
868 jit->seen |= SEEN_LITERAL;
869 /* dlr %w0,%dst */
870 EMIT4(0xb9970000, REG_W0, dst_reg);
871 }
872 /* llgfr %dst,%rc */
873 EMIT4(0xb9160000, dst_reg, rc_reg);
874 if (insn_is_zext(&insn[1]))
875 insn_count = 2;
876 break;
877 }
878 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
879 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
880 {
881 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
882
883 if (imm == 1) {
884 if (BPF_OP(insn->code) == BPF_MOD)
885 /* lhgi %dst,0 */
886 EMIT4_IMM(0xa7090000, dst_reg, 0);
887 break;
888 }
889 /* lghi %w0,0 */
890 EMIT4_IMM(0xa7090000, REG_W0, 0);
891 /* lgr %w1,%dst */
892 EMIT4(0xb9040000, REG_W1, dst_reg);
893 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
894 /* dlg %w0,<d(imm)>(%l) */
895 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
896 EMIT_CONST_U64(imm));
897 } else {
898 /* lgrl %dst,imm */
899 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
900 _EMIT_CONST_U64(imm));
901 jit->seen |= SEEN_LITERAL;
902 /* dlgr %w0,%dst */
903 EMIT4(0xb9870000, REG_W0, dst_reg);
904 }
905 /* lgr %dst,%rc */
906 EMIT4(0xb9040000, dst_reg, rc_reg);
907 break;
908 }
909 /*
910 * BPF_AND
911 */
912 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
913 /* nr %dst,%src */
914 EMIT2(0x1400, dst_reg, src_reg);
915 EMIT_ZERO(dst_reg);
916 break;
917 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
918 /* ngr %dst,%src */
919 EMIT4(0xb9800000, dst_reg, src_reg);
920 break;
921 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
922 /* nilf %dst,imm */
923 EMIT6_IMM(0xc00b0000, dst_reg, imm);
924 EMIT_ZERO(dst_reg);
925 break;
926 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
927 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
928 /* ng %dst,<d(imm)>(%l) */
929 EMIT6_DISP_LH(0xe3000000, 0x0080,
930 dst_reg, REG_0, REG_L,
931 EMIT_CONST_U64(imm));
932 } else {
933 /* lgrl %w0,imm */
934 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
935 _EMIT_CONST_U64(imm));
936 jit->seen |= SEEN_LITERAL;
937 /* ngr %dst,%w0 */
938 EMIT4(0xb9800000, dst_reg, REG_W0);
939 }
940 break;
941 /*
942 * BPF_OR
943 */
944 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
945 /* or %dst,%src */
946 EMIT2(0x1600, dst_reg, src_reg);
947 EMIT_ZERO(dst_reg);
948 break;
949 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
950 /* ogr %dst,%src */
951 EMIT4(0xb9810000, dst_reg, src_reg);
952 break;
953 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
954 /* oilf %dst,imm */
955 EMIT6_IMM(0xc00d0000, dst_reg, imm);
956 EMIT_ZERO(dst_reg);
957 break;
958 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
959 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
960 /* og %dst,<d(imm)>(%l) */
961 EMIT6_DISP_LH(0xe3000000, 0x0081,
962 dst_reg, REG_0, REG_L,
963 EMIT_CONST_U64(imm));
964 } else {
965 /* lgrl %w0,imm */
966 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
967 _EMIT_CONST_U64(imm));
968 jit->seen |= SEEN_LITERAL;
969 /* ogr %dst,%w0 */
970 EMIT4(0xb9810000, dst_reg, REG_W0);
971 }
972 break;
973 /*
974 * BPF_XOR
975 */
976 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
977 /* xr %dst,%src */
978 EMIT2(0x1700, dst_reg, src_reg);
979 EMIT_ZERO(dst_reg);
980 break;
981 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
982 /* xgr %dst,%src */
983 EMIT4(0xb9820000, dst_reg, src_reg);
984 break;
985 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
986 if (imm != 0) {
987 /* xilf %dst,imm */
988 EMIT6_IMM(0xc0070000, dst_reg, imm);
989 }
990 EMIT_ZERO(dst_reg);
991 break;
992 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
993 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
994 /* xg %dst,<d(imm)>(%l) */
995 EMIT6_DISP_LH(0xe3000000, 0x0082,
996 dst_reg, REG_0, REG_L,
997 EMIT_CONST_U64(imm));
998 } else {
999 /* lgrl %w0,imm */
1000 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1001 _EMIT_CONST_U64(imm));
1002 jit->seen |= SEEN_LITERAL;
1003 /* xgr %dst,%w0 */
1004 EMIT4(0xb9820000, dst_reg, REG_W0);
1005 }
1006 break;
1007 /*
1008 * BPF_LSH
1009 */
1010 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1011 /* sll %dst,0(%src) */
1012 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1013 EMIT_ZERO(dst_reg);
1014 break;
1015 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1016 /* sllg %dst,%dst,0(%src) */
1017 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1018 break;
1019 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1020 if (imm != 0) {
1021 /* sll %dst,imm(%r0) */
1022 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1023 }
1024 EMIT_ZERO(dst_reg);
1025 break;
1026 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1027 if (imm == 0)
1028 break;
1029 /* sllg %dst,%dst,imm(%r0) */
1030 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1031 break;
1032 /*
1033 * BPF_RSH
1034 */
1035 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1036 /* srl %dst,0(%src) */
1037 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1038 EMIT_ZERO(dst_reg);
1039 break;
1040 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1041 /* srlg %dst,%dst,0(%src) */
1042 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1043 break;
1044 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1045 if (imm != 0) {
1046 /* srl %dst,imm(%r0) */
1047 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1048 }
1049 EMIT_ZERO(dst_reg);
1050 break;
1051 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1052 if (imm == 0)
1053 break;
1054 /* srlg %dst,%dst,imm(%r0) */
1055 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1056 break;
1057 /*
1058 * BPF_ARSH
1059 */
1060 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1061 /* sra %dst,%dst,0(%src) */
1062 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1063 EMIT_ZERO(dst_reg);
1064 break;
1065 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1066 /* srag %dst,%dst,0(%src) */
1067 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1068 break;
1069 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1070 if (imm != 0) {
1071 /* sra %dst,imm(%r0) */
1072 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1073 }
1074 EMIT_ZERO(dst_reg);
1075 break;
1076 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1077 if (imm == 0)
1078 break;
1079 /* srag %dst,%dst,imm(%r0) */
1080 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1081 break;
1082 /*
1083 * BPF_NEG
1084 */
1085 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1086 /* lcr %dst,%dst */
1087 EMIT2(0x1300, dst_reg, dst_reg);
1088 EMIT_ZERO(dst_reg);
1089 break;
1090 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1091 /* lcgr %dst,%dst */
1092 EMIT4(0xb9030000, dst_reg, dst_reg);
1093 break;
1094 /*
1095 * BPF_FROM_BE/LE
1096 */
1097 case BPF_ALU | BPF_END | BPF_FROM_BE:
1098 /* s390 is big endian, therefore only clear high order bytes */
1099 switch (imm) {
1100 case 16: /* dst = (u16) cpu_to_be16(dst) */
1101 /* llghr %dst,%dst */
1102 EMIT4(0xb9850000, dst_reg, dst_reg);
1103 if (insn_is_zext(&insn[1]))
1104 insn_count = 2;
1105 break;
1106 case 32: /* dst = (u32) cpu_to_be32(dst) */
1107 if (!fp->aux->verifier_zext)
1108 /* llgfr %dst,%dst */
1109 EMIT4(0xb9160000, dst_reg, dst_reg);
1110 break;
1111 case 64: /* dst = (u64) cpu_to_be64(dst) */
1112 break;
1113 }
1114 break;
1115 case BPF_ALU | BPF_END | BPF_FROM_LE:
1116 switch (imm) {
1117 case 16: /* dst = (u16) cpu_to_le16(dst) */
1118 /* lrvr %dst,%dst */
1119 EMIT4(0xb91f0000, dst_reg, dst_reg);
1120 /* srl %dst,16(%r0) */
1121 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1122 /* llghr %dst,%dst */
1123 EMIT4(0xb9850000, dst_reg, dst_reg);
1124 if (insn_is_zext(&insn[1]))
1125 insn_count = 2;
1126 break;
1127 case 32: /* dst = (u32) cpu_to_le32(dst) */
1128 /* lrvr %dst,%dst */
1129 EMIT4(0xb91f0000, dst_reg, dst_reg);
1130 if (!fp->aux->verifier_zext)
1131 /* llgfr %dst,%dst */
1132 EMIT4(0xb9160000, dst_reg, dst_reg);
1133 break;
1134 case 64: /* dst = (u64) cpu_to_le64(dst) */
1135 /* lrvgr %dst,%dst */
1136 EMIT4(0xb90f0000, dst_reg, dst_reg);
1137 break;
1138 }
1139 break;
1140 /*
1141 * BPF_NOSPEC (speculation barrier)
1142 */
1143 case BPF_ST | BPF_NOSPEC:
1144 break;
1145 /*
1146 * BPF_ST(X)
1147 */
1148 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1149 /* stcy %src,off(%dst) */
1150 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1151 jit->seen |= SEEN_MEM;
1152 break;
1153 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1154 /* sthy %src,off(%dst) */
1155 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1156 jit->seen |= SEEN_MEM;
1157 break;
1158 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1159 /* sty %src,off(%dst) */
1160 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1161 jit->seen |= SEEN_MEM;
1162 break;
1163 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1164 /* stg %src,off(%dst) */
1165 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1166 jit->seen |= SEEN_MEM;
1167 break;
1168 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1169 /* lhi %w0,imm */
1170 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1171 /* stcy %w0,off(dst) */
1172 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1173 jit->seen |= SEEN_MEM;
1174 break;
1175 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1176 /* lhi %w0,imm */
1177 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1178 /* sthy %w0,off(dst) */
1179 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1180 jit->seen |= SEEN_MEM;
1181 break;
1182 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1183 /* llilf %w0,imm */
1184 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1185 /* sty %w0,off(%dst) */
1186 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1187 jit->seen |= SEEN_MEM;
1188 break;
1189 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1190 /* lgfi %w0,imm */
1191 EMIT6_IMM(0xc0010000, REG_W0, imm);
1192 /* stg %w0,off(%dst) */
1193 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1194 jit->seen |= SEEN_MEM;
1195 break;
1196 /*
1197 * BPF_ATOMIC
1198 */
1199 case BPF_STX | BPF_ATOMIC | BPF_DW:
1200 case BPF_STX | BPF_ATOMIC | BPF_W:
1201 {
1202 bool is32 = BPF_SIZE(insn->code) == BPF_W;
1203
1204 switch (insn->imm) {
1205/* {op32|op64} {%w0|%src},%src,off(%dst) */
1206#define EMIT_ATOMIC(op32, op64) do { \
1207 EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1208 (insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1209 src_reg, dst_reg, off); \
1210 if (is32 && (insn->imm & BPF_FETCH)) \
1211 EMIT_ZERO(src_reg); \
1212} while (0)
1213 case BPF_ADD:
1214 case BPF_ADD | BPF_FETCH:
1215 /* {laal|laalg} */
1216 EMIT_ATOMIC(0x00fa, 0x00ea);
1217 break;
1218 case BPF_AND:
1219 case BPF_AND | BPF_FETCH:
1220 /* {lan|lang} */
1221 EMIT_ATOMIC(0x00f4, 0x00e4);
1222 break;
1223 case BPF_OR:
1224 case BPF_OR | BPF_FETCH:
1225 /* {lao|laog} */
1226 EMIT_ATOMIC(0x00f6, 0x00e6);
1227 break;
1228 case BPF_XOR:
1229 case BPF_XOR | BPF_FETCH:
1230 /* {lax|laxg} */
1231 EMIT_ATOMIC(0x00f7, 0x00e7);
1232 break;
1233#undef EMIT_ATOMIC
1234 case BPF_XCHG:
1235 /* {ly|lg} %w0,off(%dst) */
1236 EMIT6_DISP_LH(0xe3000000,
1237 is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1238 dst_reg, off);
1239 /* 0: {csy|csg} %w0,%src,off(%dst) */
1240 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1241 REG_W0, src_reg, dst_reg, off);
1242 /* brc 4,0b */
1243 EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1244 /* {llgfr|lgr} %src,%w0 */
1245 EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1246 if (is32 && insn_is_zext(&insn[1]))
1247 insn_count = 2;
1248 break;
1249 case BPF_CMPXCHG:
1250 /* 0: {csy|csg} %b0,%src,off(%dst) */
1251 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1252 BPF_REG_0, src_reg, dst_reg, off);
1253 break;
1254 default:
1255 pr_err("Unknown atomic operation %02x\n", insn->imm);
1256 return -1;
1257 }
1258
1259 jit->seen |= SEEN_MEM;
1260 break;
1261 }
1262 /*
1263 * BPF_LDX
1264 */
1265 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1266 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1267 /* llgc %dst,0(off,%src) */
1268 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1269 jit->seen |= SEEN_MEM;
1270 if (insn_is_zext(&insn[1]))
1271 insn_count = 2;
1272 break;
1273 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1274 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1275 /* llgh %dst,0(off,%src) */
1276 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1277 jit->seen |= SEEN_MEM;
1278 if (insn_is_zext(&insn[1]))
1279 insn_count = 2;
1280 break;
1281 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1282 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1283 /* llgf %dst,off(%src) */
1284 jit->seen |= SEEN_MEM;
1285 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1286 if (insn_is_zext(&insn[1]))
1287 insn_count = 2;
1288 break;
1289 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1290 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1291 /* lg %dst,0(off,%src) */
1292 jit->seen |= SEEN_MEM;
1293 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1294 break;
1295 /*
1296 * BPF_JMP / CALL
1297 */
1298 case BPF_JMP | BPF_CALL:
1299 {
1300 u64 func;
1301 bool func_addr_fixed;
1302 int ret;
1303
1304 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1305 &func, &func_addr_fixed);
1306 if (ret < 0)
1307 return -1;
1308
1309 REG_SET_SEEN(BPF_REG_5);
1310 jit->seen |= SEEN_FUNC;
1311 /* lgrl %w1,func */
1312 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1313 if (nospec_uses_trampoline()) {
1314 /* brasl %r14,__s390_indirect_jump_r1 */
1315 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1316 } else {
1317 /* basr %r14,%w1 */
1318 EMIT2(0x0d00, REG_14, REG_W1);
1319 }
1320 /* lgr %b0,%r2: load return value into %b0 */
1321 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1322 break;
1323 }
1324 case BPF_JMP | BPF_TAIL_CALL: {
1325 int patch_1_clrj, patch_2_clij, patch_3_brc;
1326
1327 /*
1328 * Implicit input:
1329 * B1: pointer to ctx
1330 * B2: pointer to bpf_array
1331 * B3: index in bpf_array
1332 */
1333 jit->seen |= SEEN_TAIL_CALL;
1334
1335 /*
1336 * if (index >= array->map.max_entries)
1337 * goto out;
1338 */
1339
1340 /* llgf %w1,map.max_entries(%b2) */
1341 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1342 offsetof(struct bpf_array, map.max_entries));
1343 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1344 /* clrj %b3,%w1,0xa,out */
1345 patch_1_clrj = jit->prg;
1346 EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1347 jit->prg);
1348
1349 /*
1350 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1351 * goto out;
1352 */
1353
1354 if (jit->seen & SEEN_STACK)
1355 off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1356 else
1357 off = STK_OFF_TCCNT;
1358 /* lhi %w0,1 */
1359 EMIT4_IMM(0xa7080000, REG_W0, 1);
1360 /* laal %w1,%w0,off(%r15) */
1361 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1362 /* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1363 patch_2_clij = jit->prg;
1364 EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1365 2, jit->prg);
1366
1367 /*
1368 * prog = array->ptrs[index];
1369 * if (prog == NULL)
1370 * goto out;
1371 */
1372
1373 /* llgfr %r1,%b3: %r1 = (u32) index */
1374 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1375 /* sllg %r1,%r1,3: %r1 *= 8 */
1376 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1377 /* ltg %r1,prog(%b2,%r1) */
1378 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1379 REG_1, offsetof(struct bpf_array, ptrs));
1380 /* brc 0x8,out */
1381 patch_3_brc = jit->prg;
1382 EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1383
1384 /*
1385 * Restore registers before calling function
1386 */
1387 save_restore_regs(jit, REGS_RESTORE, stack_depth);
1388
1389 /*
1390 * goto *(prog->bpf_func + tail_call_start);
1391 */
1392
1393 /* lg %r1,bpf_func(%r1) */
1394 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1395 offsetof(struct bpf_prog, bpf_func));
1396 /* bc 0xf,tail_call_start(%r1) */
1397 _EMIT4(0x47f01000 + jit->tail_call_start);
1398 /* out: */
1399 if (jit->prg_buf) {
1400 *(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1401 (jit->prg - patch_1_clrj) >> 1;
1402 *(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1403 (jit->prg - patch_2_clij) >> 1;
1404 *(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1405 (jit->prg - patch_3_brc) >> 1;
1406 }
1407 break;
1408 }
1409 case BPF_JMP | BPF_EXIT: /* return b0 */
1410 last = (i == fp->len - 1) ? 1 : 0;
1411 if (last)
1412 break;
1413 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1414 /* brc 0xf, <exit> */
1415 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1416 else
1417 /* brcl 0xf, <exit> */
1418 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1419 break;
1420 /*
1421 * Branch relative (number of skipped instructions) to offset on
1422 * condition.
1423 *
1424 * Condition code to mask mapping:
1425 *
1426 * CC | Description | Mask
1427 * ------------------------------
1428 * 0 | Operands equal | 8
1429 * 1 | First operand low | 4
1430 * 2 | First operand high | 2
1431 * 3 | Unused | 1
1432 *
1433 * For s390x relative branches: ip = ip + off_bytes
1434 * For BPF relative branches: insn = insn + off_insns + 1
1435 *
1436 * For example for s390x with offset 0 we jump to the branch
1437 * instruction itself (loop) and for BPF with offset 0 we
1438 * branch to the instruction behind the branch.
1439 */
1440 case BPF_JMP | BPF_JA: /* if (true) */
1441 mask = 0xf000; /* j */
1442 goto branch_oc;
1443 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1444 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1445 mask = 0x2000; /* jh */
1446 goto branch_ks;
1447 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1448 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1449 mask = 0x4000; /* jl */
1450 goto branch_ks;
1451 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1452 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1453 mask = 0xa000; /* jhe */
1454 goto branch_ks;
1455 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1456 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1457 mask = 0xc000; /* jle */
1458 goto branch_ks;
1459 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1460 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1461 mask = 0x2000; /* jh */
1462 goto branch_ku;
1463 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1464 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1465 mask = 0x4000; /* jl */
1466 goto branch_ku;
1467 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1468 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1469 mask = 0xa000; /* jhe */
1470 goto branch_ku;
1471 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1472 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1473 mask = 0xc000; /* jle */
1474 goto branch_ku;
1475 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1476 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1477 mask = 0x7000; /* jne */
1478 goto branch_ku;
1479 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1480 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1481 mask = 0x8000; /* je */
1482 goto branch_ku;
1483 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1484 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1485 mask = 0x7000; /* jnz */
1486 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1487 /* llilf %w1,imm (load zero extend imm) */
1488 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1489 /* nr %w1,%dst */
1490 EMIT2(0x1400, REG_W1, dst_reg);
1491 } else {
1492 /* lgfi %w1,imm (load sign extend imm) */
1493 EMIT6_IMM(0xc0010000, REG_W1, imm);
1494 /* ngr %w1,%dst */
1495 EMIT4(0xb9800000, REG_W1, dst_reg);
1496 }
1497 goto branch_oc;
1498
1499 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1500 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1501 mask = 0x2000; /* jh */
1502 goto branch_xs;
1503 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1504 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1505 mask = 0x4000; /* jl */
1506 goto branch_xs;
1507 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1508 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1509 mask = 0xa000; /* jhe */
1510 goto branch_xs;
1511 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1512 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1513 mask = 0xc000; /* jle */
1514 goto branch_xs;
1515 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1516 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1517 mask = 0x2000; /* jh */
1518 goto branch_xu;
1519 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1520 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1521 mask = 0x4000; /* jl */
1522 goto branch_xu;
1523 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1524 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1525 mask = 0xa000; /* jhe */
1526 goto branch_xu;
1527 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1528 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1529 mask = 0xc000; /* jle */
1530 goto branch_xu;
1531 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1532 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1533 mask = 0x7000; /* jne */
1534 goto branch_xu;
1535 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1536 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1537 mask = 0x8000; /* je */
1538 goto branch_xu;
1539 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1540 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1541 {
1542 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1543
1544 mask = 0x7000; /* jnz */
1545 /* nrk or ngrk %w1,%dst,%src */
1546 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1547 REG_W1, dst_reg, src_reg);
1548 goto branch_oc;
1549branch_ks:
1550 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1551 /* cfi or cgfi %dst,imm */
1552 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1553 dst_reg, imm);
1554 if (!is_first_pass(jit) &&
1555 can_use_rel(jit, addrs[i + off + 1])) {
1556 /* brc mask,off */
1557 EMIT4_PCREL_RIC(0xa7040000,
1558 mask >> 12, addrs[i + off + 1]);
1559 } else {
1560 /* brcl mask,off */
1561 EMIT6_PCREL_RILC(0xc0040000,
1562 mask >> 12, addrs[i + off + 1]);
1563 }
1564 break;
1565branch_ku:
1566 /* lgfi %w1,imm (load sign extend imm) */
1567 src_reg = REG_1;
1568 EMIT6_IMM(0xc0010000, src_reg, imm);
1569 goto branch_xu;
1570branch_xs:
1571 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1572 if (!is_first_pass(jit) &&
1573 can_use_rel(jit, addrs[i + off + 1])) {
1574 /* crj or cgrj %dst,%src,mask,off */
1575 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1576 dst_reg, src_reg, i, off, mask);
1577 } else {
1578 /* cr or cgr %dst,%src */
1579 if (is_jmp32)
1580 EMIT2(0x1900, dst_reg, src_reg);
1581 else
1582 EMIT4(0xb9200000, dst_reg, src_reg);
1583 /* brcl mask,off */
1584 EMIT6_PCREL_RILC(0xc0040000,
1585 mask >> 12, addrs[i + off + 1]);
1586 }
1587 break;
1588branch_xu:
1589 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1590 if (!is_first_pass(jit) &&
1591 can_use_rel(jit, addrs[i + off + 1])) {
1592 /* clrj or clgrj %dst,%src,mask,off */
1593 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1594 dst_reg, src_reg, i, off, mask);
1595 } else {
1596 /* clr or clgr %dst,%src */
1597 if (is_jmp32)
1598 EMIT2(0x1500, dst_reg, src_reg);
1599 else
1600 EMIT4(0xb9210000, dst_reg, src_reg);
1601 /* brcl mask,off */
1602 EMIT6_PCREL_RILC(0xc0040000,
1603 mask >> 12, addrs[i + off + 1]);
1604 }
1605 break;
1606branch_oc:
1607 if (!is_first_pass(jit) &&
1608 can_use_rel(jit, addrs[i + off + 1])) {
1609 /* brc mask,off */
1610 EMIT4_PCREL_RIC(0xa7040000,
1611 mask >> 12, addrs[i + off + 1]);
1612 } else {
1613 /* brcl mask,off */
1614 EMIT6_PCREL_RILC(0xc0040000,
1615 mask >> 12, addrs[i + off + 1]);
1616 }
1617 break;
1618 }
1619 default: /* too complex, give up */
1620 pr_err("Unknown opcode %02x\n", insn->code);
1621 return -1;
1622 }
1623
1624 if (probe_prg != -1) {
1625 /*
1626 * Handlers of certain exceptions leave psw.addr pointing to
1627 * the instruction directly after the failing one. Therefore,
1628 * create two exception table entries and also add a nop in
1629 * case two probing instructions come directly after each
1630 * other.
1631 */
1632 nop_prg = jit->prg;
1633 /* bcr 0,%0 */
1634 _EMIT2(0x0700);
1635 err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1636 if (err < 0)
1637 return err;
1638 }
1639
1640 return insn_count;
1641}
1642
1643/*
1644 * Return whether new i-th instruction address does not violate any invariant
1645 */
1646static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1647{
1648 /* On the first pass anything goes */
1649 if (is_first_pass(jit))
1650 return true;
1651
1652 /* The codegen pass must not change anything */
1653 if (is_codegen_pass(jit))
1654 return jit->addrs[i] == jit->prg;
1655
1656 /* Passes in between must not increase code size */
1657 return jit->addrs[i] >= jit->prg;
1658}
1659
1660/*
1661 * Update the address of i-th instruction
1662 */
1663static int bpf_set_addr(struct bpf_jit *jit, int i)
1664{
1665 int delta;
1666
1667 if (is_codegen_pass(jit)) {
1668 delta = jit->prg - jit->addrs[i];
1669 if (delta < 0)
1670 bpf_skip(jit, -delta);
1671 }
1672 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1673 return -1;
1674 jit->addrs[i] = jit->prg;
1675 return 0;
1676}
1677
1678/*
1679 * Compile eBPF program into s390x code
1680 */
1681static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1682 bool extra_pass, u32 stack_depth)
1683{
1684 int i, insn_count, lit32_size, lit64_size;
1685
1686 jit->lit32 = jit->lit32_start;
1687 jit->lit64 = jit->lit64_start;
1688 jit->prg = 0;
1689 jit->excnt = 0;
1690
1691 bpf_jit_prologue(jit, stack_depth);
1692 if (bpf_set_addr(jit, 0) < 0)
1693 return -1;
1694 for (i = 0; i < fp->len; i += insn_count) {
1695 insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1696 if (insn_count < 0)
1697 return -1;
1698 /* Next instruction address */
1699 if (bpf_set_addr(jit, i + insn_count) < 0)
1700 return -1;
1701 }
1702 bpf_jit_epilogue(jit, stack_depth);
1703
1704 lit32_size = jit->lit32 - jit->lit32_start;
1705 lit64_size = jit->lit64 - jit->lit64_start;
1706 jit->lit32_start = jit->prg;
1707 if (lit32_size)
1708 jit->lit32_start = ALIGN(jit->lit32_start, 4);
1709 jit->lit64_start = jit->lit32_start + lit32_size;
1710 if (lit64_size)
1711 jit->lit64_start = ALIGN(jit->lit64_start, 8);
1712 jit->size = jit->lit64_start + lit64_size;
1713 jit->size_prg = jit->prg;
1714
1715 if (WARN_ON_ONCE(fp->aux->extable &&
1716 jit->excnt != fp->aux->num_exentries))
1717 /* Verifier bug - too many entries. */
1718 return -1;
1719
1720 return 0;
1721}
1722
1723bool bpf_jit_needs_zext(void)
1724{
1725 return true;
1726}
1727
1728struct s390_jit_data {
1729 struct bpf_binary_header *header;
1730 struct bpf_jit ctx;
1731 int pass;
1732};
1733
1734static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1735 struct bpf_prog *fp)
1736{
1737 struct bpf_binary_header *header;
1738 u32 extable_size;
1739 u32 code_size;
1740
1741 /* We need two entries per insn. */
1742 fp->aux->num_exentries *= 2;
1743
1744 code_size = roundup(jit->size,
1745 __alignof__(struct exception_table_entry));
1746 extable_size = fp->aux->num_exentries *
1747 sizeof(struct exception_table_entry);
1748 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1749 8, jit_fill_hole);
1750 if (!header)
1751 return NULL;
1752 fp->aux->extable = (struct exception_table_entry *)
1753 (jit->prg_buf + code_size);
1754 return header;
1755}
1756
1757/*
1758 * Compile eBPF program "fp"
1759 */
1760struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1761{
1762 u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1763 struct bpf_prog *tmp, *orig_fp = fp;
1764 struct bpf_binary_header *header;
1765 struct s390_jit_data *jit_data;
1766 bool tmp_blinded = false;
1767 bool extra_pass = false;
1768 struct bpf_jit jit;
1769 int pass;
1770
1771 if (!fp->jit_requested)
1772 return orig_fp;
1773
1774 tmp = bpf_jit_blind_constants(fp);
1775 /*
1776 * If blinding was requested and we failed during blinding,
1777 * we must fall back to the interpreter.
1778 */
1779 if (IS_ERR(tmp))
1780 return orig_fp;
1781 if (tmp != fp) {
1782 tmp_blinded = true;
1783 fp = tmp;
1784 }
1785
1786 jit_data = fp->aux->jit_data;
1787 if (!jit_data) {
1788 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1789 if (!jit_data) {
1790 fp = orig_fp;
1791 goto out;
1792 }
1793 fp->aux->jit_data = jit_data;
1794 }
1795 if (jit_data->ctx.addrs) {
1796 jit = jit_data->ctx;
1797 header = jit_data->header;
1798 extra_pass = true;
1799 pass = jit_data->pass + 1;
1800 goto skip_init_ctx;
1801 }
1802
1803 memset(&jit, 0, sizeof(jit));
1804 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1805 if (jit.addrs == NULL) {
1806 fp = orig_fp;
1807 goto free_addrs;
1808 }
1809 /*
1810 * Three initial passes:
1811 * - 1/2: Determine clobbered registers
1812 * - 3: Calculate program size and addrs array
1813 */
1814 for (pass = 1; pass <= 3; pass++) {
1815 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1816 fp = orig_fp;
1817 goto free_addrs;
1818 }
1819 }
1820 /*
1821 * Final pass: Allocate and generate program
1822 */
1823 header = bpf_jit_alloc(&jit, fp);
1824 if (!header) {
1825 fp = orig_fp;
1826 goto free_addrs;
1827 }
1828skip_init_ctx:
1829 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1830 bpf_jit_binary_free(header);
1831 fp = orig_fp;
1832 goto free_addrs;
1833 }
1834 if (bpf_jit_enable > 1) {
1835 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1836 print_fn_code(jit.prg_buf, jit.size_prg);
1837 }
1838 if (!fp->is_func || extra_pass) {
1839 bpf_jit_binary_lock_ro(header);
1840 } else {
1841 jit_data->header = header;
1842 jit_data->ctx = jit;
1843 jit_data->pass = pass;
1844 }
1845 fp->bpf_func = (void *) jit.prg_buf;
1846 fp->jited = 1;
1847 fp->jited_len = jit.size;
1848
1849 if (!fp->is_func || extra_pass) {
1850 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1851free_addrs:
1852 kvfree(jit.addrs);
1853 kfree(jit_data);
1854 fp->aux->jit_data = NULL;
1855 }
1856out:
1857 if (tmp_blinded)
1858 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1859 tmp : orig_fp);
1860 return fp;
1861}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - PACK_STACK
11 * - 64BIT
12 *
13 * Copyright IBM Corp. 2012,2015
14 *
15 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
17 */
18
19#define KMSG_COMPONENT "bpf_jit"
20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22#include <linux/netdevice.h>
23#include <linux/filter.h>
24#include <linux/init.h>
25#include <linux/bpf.h>
26#include <asm/cacheflush.h>
27#include <asm/dis.h>
28#include <asm/facility.h>
29#include <asm/nospec-branch.h>
30#include <asm/set_memory.h>
31#include "bpf_jit.h"
32
33struct bpf_jit {
34 u32 seen; /* Flags to remember seen eBPF instructions */
35 u32 seen_reg[16]; /* Array to remember which registers are used */
36 u32 *addrs; /* Array with relative instruction addresses */
37 u8 *prg_buf; /* Start of program */
38 int size; /* Size of program and literal pool */
39 int size_prg; /* Size of program */
40 int prg; /* Current position in program */
41 int lit_start; /* Start of literal pool */
42 int lit; /* Current position in literal pool */
43 int base_ip; /* Base address for literal pool */
44 int ret0_ip; /* Address of return 0 */
45 int exit_ip; /* Address of exit */
46 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
47 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
48 int tail_call_start; /* Tail call start offset */
49 int labels[1]; /* Labels for local jumps */
50};
51
52#define BPF_SIZE_MAX 0xffff /* Max size for program (16 bit branches) */
53
54#define SEEN_SKB 1 /* skb access */
55#define SEEN_MEM 2 /* use mem[] for temporary storage */
56#define SEEN_RET0 4 /* ret0_ip points to a valid return 0 */
57#define SEEN_LITERAL 8 /* code uses literals */
58#define SEEN_FUNC 16 /* calls C functions */
59#define SEEN_TAIL_CALL 32 /* code uses tail calls */
60#define SEEN_REG_AX 64 /* code uses constant blinding */
61#define SEEN_STACK (SEEN_FUNC | SEEN_MEM | SEEN_SKB)
62
63/*
64 * s390 registers
65 */
66#define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
67#define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
68#define REG_SKB_DATA (MAX_BPF_JIT_REG + 2) /* SKB data register */
69#define REG_L (MAX_BPF_JIT_REG + 3) /* Literal pool register */
70#define REG_15 (MAX_BPF_JIT_REG + 4) /* Register 15 */
71#define REG_0 REG_W0 /* Register 0 */
72#define REG_1 REG_W1 /* Register 1 */
73#define REG_2 BPF_REG_1 /* Register 2 */
74#define REG_14 BPF_REG_0 /* Register 14 */
75
76/*
77 * Mapping of BPF registers to s390 registers
78 */
79static const int reg2hex[] = {
80 /* Return code */
81 [BPF_REG_0] = 14,
82 /* Function parameters */
83 [BPF_REG_1] = 2,
84 [BPF_REG_2] = 3,
85 [BPF_REG_3] = 4,
86 [BPF_REG_4] = 5,
87 [BPF_REG_5] = 6,
88 /* Call saved registers */
89 [BPF_REG_6] = 7,
90 [BPF_REG_7] = 8,
91 [BPF_REG_8] = 9,
92 [BPF_REG_9] = 10,
93 /* BPF stack pointer */
94 [BPF_REG_FP] = 13,
95 /* Register for blinding (shared with REG_SKB_DATA) */
96 [BPF_REG_AX] = 12,
97 /* SKB data pointer */
98 [REG_SKB_DATA] = 12,
99 /* Work registers for s390x backend */
100 [REG_W0] = 0,
101 [REG_W1] = 1,
102 [REG_L] = 11,
103 [REG_15] = 15,
104};
105
106static inline u32 reg(u32 dst_reg, u32 src_reg)
107{
108 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
109}
110
111static inline u32 reg_high(u32 reg)
112{
113 return reg2hex[reg] << 4;
114}
115
116static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
117{
118 u32 r1 = reg2hex[b1];
119
120 if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
121 jit->seen_reg[r1] = 1;
122}
123
124#define REG_SET_SEEN(b1) \
125({ \
126 reg_set_seen(jit, b1); \
127})
128
129#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
130
131/*
132 * EMIT macros for code generation
133 */
134
135#define _EMIT2(op) \
136({ \
137 if (jit->prg_buf) \
138 *(u16 *) (jit->prg_buf + jit->prg) = op; \
139 jit->prg += 2; \
140})
141
142#define EMIT2(op, b1, b2) \
143({ \
144 _EMIT2(op | reg(b1, b2)); \
145 REG_SET_SEEN(b1); \
146 REG_SET_SEEN(b2); \
147})
148
149#define _EMIT4(op) \
150({ \
151 if (jit->prg_buf) \
152 *(u32 *) (jit->prg_buf + jit->prg) = op; \
153 jit->prg += 4; \
154})
155
156#define EMIT4(op, b1, b2) \
157({ \
158 _EMIT4(op | reg(b1, b2)); \
159 REG_SET_SEEN(b1); \
160 REG_SET_SEEN(b2); \
161})
162
163#define EMIT4_RRF(op, b1, b2, b3) \
164({ \
165 _EMIT4(op | reg_high(b3) << 8 | reg(b1, b2)); \
166 REG_SET_SEEN(b1); \
167 REG_SET_SEEN(b2); \
168 REG_SET_SEEN(b3); \
169})
170
171#define _EMIT4_DISP(op, disp) \
172({ \
173 unsigned int __disp = (disp) & 0xfff; \
174 _EMIT4(op | __disp); \
175})
176
177#define EMIT4_DISP(op, b1, b2, disp) \
178({ \
179 _EMIT4_DISP(op | reg_high(b1) << 16 | \
180 reg_high(b2) << 8, disp); \
181 REG_SET_SEEN(b1); \
182 REG_SET_SEEN(b2); \
183})
184
185#define EMIT4_IMM(op, b1, imm) \
186({ \
187 unsigned int __imm = (imm) & 0xffff; \
188 _EMIT4(op | reg_high(b1) << 16 | __imm); \
189 REG_SET_SEEN(b1); \
190})
191
192#define EMIT4_PCREL(op, pcrel) \
193({ \
194 long __pcrel = ((pcrel) >> 1) & 0xffff; \
195 _EMIT4(op | __pcrel); \
196})
197
198#define _EMIT6(op1, op2) \
199({ \
200 if (jit->prg_buf) { \
201 *(u32 *) (jit->prg_buf + jit->prg) = op1; \
202 *(u16 *) (jit->prg_buf + jit->prg + 4) = op2; \
203 } \
204 jit->prg += 6; \
205})
206
207#define _EMIT6_DISP(op1, op2, disp) \
208({ \
209 unsigned int __disp = (disp) & 0xfff; \
210 _EMIT6(op1 | __disp, op2); \
211})
212
213#define _EMIT6_DISP_LH(op1, op2, disp) \
214({ \
215 u32 _disp = (u32) disp; \
216 unsigned int __disp_h = _disp & 0xff000; \
217 unsigned int __disp_l = _disp & 0x00fff; \
218 _EMIT6(op1 | __disp_l, op2 | __disp_h >> 4); \
219})
220
221#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
222({ \
223 _EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 | \
224 reg_high(b3) << 8, op2, disp); \
225 REG_SET_SEEN(b1); \
226 REG_SET_SEEN(b2); \
227 REG_SET_SEEN(b3); \
228})
229
230#define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask) \
231({ \
232 int rel = (jit->labels[label] - jit->prg) >> 1; \
233 _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), \
234 op2 | mask << 12); \
235 REG_SET_SEEN(b1); \
236 REG_SET_SEEN(b2); \
237})
238
239#define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask) \
240({ \
241 int rel = (jit->labels[label] - jit->prg) >> 1; \
242 _EMIT6(op1 | (reg_high(b1) | mask) << 16 | \
243 (rel & 0xffff), op2 | (imm & 0xff) << 8); \
244 REG_SET_SEEN(b1); \
245 BUILD_BUG_ON(((unsigned long) imm) > 0xff); \
246})
247
248#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
249({ \
250 /* Branch instruction needs 6 bytes */ \
251 int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
252 _EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask); \
253 REG_SET_SEEN(b1); \
254 REG_SET_SEEN(b2); \
255})
256
257#define EMIT6_PCREL_RILB(op, b, target) \
258({ \
259 int rel = (target - jit->prg) / 2; \
260 _EMIT6(op | reg_high(b) << 16 | rel >> 16, rel & 0xffff); \
261 REG_SET_SEEN(b); \
262})
263
264#define EMIT6_PCREL_RIL(op, target) \
265({ \
266 int rel = (target - jit->prg) / 2; \
267 _EMIT6(op | rel >> 16, rel & 0xffff); \
268})
269
270#define _EMIT6_IMM(op, imm) \
271({ \
272 unsigned int __imm = (imm); \
273 _EMIT6(op | (__imm >> 16), __imm & 0xffff); \
274})
275
276#define EMIT6_IMM(op, b1, imm) \
277({ \
278 _EMIT6_IMM(op | reg_high(b1) << 16, imm); \
279 REG_SET_SEEN(b1); \
280})
281
282#define EMIT_CONST_U32(val) \
283({ \
284 unsigned int ret; \
285 ret = jit->lit - jit->base_ip; \
286 jit->seen |= SEEN_LITERAL; \
287 if (jit->prg_buf) \
288 *(u32 *) (jit->prg_buf + jit->lit) = (u32) val; \
289 jit->lit += 4; \
290 ret; \
291})
292
293#define EMIT_CONST_U64(val) \
294({ \
295 unsigned int ret; \
296 ret = jit->lit - jit->base_ip; \
297 jit->seen |= SEEN_LITERAL; \
298 if (jit->prg_buf) \
299 *(u64 *) (jit->prg_buf + jit->lit) = (u64) val; \
300 jit->lit += 8; \
301 ret; \
302})
303
304#define EMIT_ZERO(b1) \
305({ \
306 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
307 EMIT4(0xb9160000, b1, b1); \
308 REG_SET_SEEN(b1); \
309})
310
311/*
312 * Fill whole space with illegal instructions
313 */
314static void jit_fill_hole(void *area, unsigned int size)
315{
316 memset(area, 0, size);
317}
318
319/*
320 * Save registers from "rs" (register start) to "re" (register end) on stack
321 */
322static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
323{
324 u32 off = STK_OFF_R6 + (rs - 6) * 8;
325
326 if (rs == re)
327 /* stg %rs,off(%r15) */
328 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
329 else
330 /* stmg %rs,%re,off(%r15) */
331 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
332}
333
334/*
335 * Restore registers from "rs" (register start) to "re" (register end) on stack
336 */
337static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
338{
339 u32 off = STK_OFF_R6 + (rs - 6) * 8;
340
341 if (jit->seen & SEEN_STACK)
342 off += STK_OFF + stack_depth;
343
344 if (rs == re)
345 /* lg %rs,off(%r15) */
346 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
347 else
348 /* lmg %rs,%re,off(%r15) */
349 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
350}
351
352/*
353 * Return first seen register (from start)
354 */
355static int get_start(struct bpf_jit *jit, int start)
356{
357 int i;
358
359 for (i = start; i <= 15; i++) {
360 if (jit->seen_reg[i])
361 return i;
362 }
363 return 0;
364}
365
366/*
367 * Return last seen register (from start) (gap >= 2)
368 */
369static int get_end(struct bpf_jit *jit, int start)
370{
371 int i;
372
373 for (i = start; i < 15; i++) {
374 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
375 return i - 1;
376 }
377 return jit->seen_reg[15] ? 15 : 14;
378}
379
380#define REGS_SAVE 1
381#define REGS_RESTORE 0
382/*
383 * Save and restore clobbered registers (6-15) on stack.
384 * We save/restore registers in chunks with gap >= 2 registers.
385 */
386static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
387{
388
389 int re = 6, rs;
390
391 do {
392 rs = get_start(jit, re);
393 if (!rs)
394 break;
395 re = get_end(jit, rs + 1);
396 if (op == REGS_SAVE)
397 save_regs(jit, rs, re);
398 else
399 restore_regs(jit, rs, re, stack_depth);
400 re++;
401 } while (re <= 15);
402}
403
404/*
405 * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
406 * we store the SKB header length on the stack and the SKB data
407 * pointer in REG_SKB_DATA if BPF_REG_AX is not used.
408 */
409static void emit_load_skb_data_hlen(struct bpf_jit *jit)
410{
411 /* Header length: llgf %w1,<len>(%b1) */
412 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
413 offsetof(struct sk_buff, len));
414 /* s %w1,<data_len>(%b1) */
415 EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
416 offsetof(struct sk_buff, data_len));
417 /* stg %w1,ST_OFF_HLEN(%r0,%r15) */
418 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, STK_OFF_HLEN);
419 if (!(jit->seen & SEEN_REG_AX))
420 /* lg %skb_data,data_off(%b1) */
421 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
422 BPF_REG_1, offsetof(struct sk_buff, data));
423}
424
425/*
426 * Emit function prologue
427 *
428 * Save registers and create stack frame if necessary.
429 * See stack frame layout desription in "bpf_jit.h"!
430 */
431static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
432{
433 if (jit->seen & SEEN_TAIL_CALL) {
434 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
435 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
436 } else {
437 /* j tail_call_start: NOP if no tail calls are used */
438 EMIT4_PCREL(0xa7f40000, 6);
439 _EMIT2(0);
440 }
441 /* Tail calls have to skip above initialization */
442 jit->tail_call_start = jit->prg;
443 /* Save registers */
444 save_restore_regs(jit, REGS_SAVE, stack_depth);
445 /* Setup literal pool */
446 if (jit->seen & SEEN_LITERAL) {
447 /* basr %r13,0 */
448 EMIT2(0x0d00, REG_L, REG_0);
449 jit->base_ip = jit->prg;
450 }
451 /* Setup stack and backchain */
452 if (jit->seen & SEEN_STACK) {
453 if (jit->seen & SEEN_FUNC)
454 /* lgr %w1,%r15 (backchain) */
455 EMIT4(0xb9040000, REG_W1, REG_15);
456 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
457 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
458 /* aghi %r15,-STK_OFF */
459 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
460 if (jit->seen & SEEN_FUNC)
461 /* stg %w1,152(%r15) (backchain) */
462 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
463 REG_15, 152);
464 }
465 if (jit->seen & SEEN_SKB) {
466 emit_load_skb_data_hlen(jit);
467 /* stg %b1,ST_OFF_SKBP(%r0,%r15) */
468 EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_1, REG_0, REG_15,
469 STK_OFF_SKBP);
470 }
471}
472
473/*
474 * Function epilogue
475 */
476static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
477{
478 /* Return 0 */
479 if (jit->seen & SEEN_RET0) {
480 jit->ret0_ip = jit->prg;
481 /* lghi %b0,0 */
482 EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
483 }
484 jit->exit_ip = jit->prg;
485 /* Load exit code: lgr %r2,%b0 */
486 EMIT4(0xb9040000, REG_2, BPF_REG_0);
487 /* Restore registers */
488 save_restore_regs(jit, REGS_RESTORE, stack_depth);
489 if (IS_ENABLED(CC_USING_EXPOLINE) && !nospec_disable) {
490 jit->r14_thunk_ip = jit->prg;
491 /* Generate __s390_indirect_jump_r14 thunk */
492 if (test_facility(35)) {
493 /* exrl %r0,.+10 */
494 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
495 } else {
496 /* larl %r1,.+14 */
497 EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
498 /* ex 0,0(%r1) */
499 EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
500 }
501 /* j . */
502 EMIT4_PCREL(0xa7f40000, 0);
503 }
504 /* br %r14 */
505 _EMIT2(0x07fe);
506
507 if (IS_ENABLED(CC_USING_EXPOLINE) && !nospec_disable &&
508 (jit->seen & SEEN_FUNC)) {
509 jit->r1_thunk_ip = jit->prg;
510 /* Generate __s390_indirect_jump_r1 thunk */
511 if (test_facility(35)) {
512 /* exrl %r0,.+10 */
513 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
514 /* j . */
515 EMIT4_PCREL(0xa7f40000, 0);
516 /* br %r1 */
517 _EMIT2(0x07f1);
518 } else {
519 /* larl %r1,.+14 */
520 EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
521 /* ex 0,S390_lowcore.br_r1_tampoline */
522 EMIT4_DISP(0x44000000, REG_0, REG_0,
523 offsetof(struct lowcore, br_r1_trampoline));
524 /* j . */
525 EMIT4_PCREL(0xa7f40000, 0);
526 }
527 }
528}
529
530/*
531 * Compile one eBPF instruction into s390x code
532 *
533 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
534 * stack space for the large switch statement.
535 */
536static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
537{
538 struct bpf_insn *insn = &fp->insnsi[i];
539 int jmp_off, last, insn_count = 1;
540 unsigned int func_addr, mask;
541 u32 dst_reg = insn->dst_reg;
542 u32 src_reg = insn->src_reg;
543 u32 *addrs = jit->addrs;
544 s32 imm = insn->imm;
545 s16 off = insn->off;
546
547 if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
548 jit->seen |= SEEN_REG_AX;
549 switch (insn->code) {
550 /*
551 * BPF_MOV
552 */
553 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
554 /* llgfr %dst,%src */
555 EMIT4(0xb9160000, dst_reg, src_reg);
556 break;
557 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
558 /* lgr %dst,%src */
559 EMIT4(0xb9040000, dst_reg, src_reg);
560 break;
561 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
562 /* llilf %dst,imm */
563 EMIT6_IMM(0xc00f0000, dst_reg, imm);
564 break;
565 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
566 /* lgfi %dst,imm */
567 EMIT6_IMM(0xc0010000, dst_reg, imm);
568 break;
569 /*
570 * BPF_LD 64
571 */
572 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
573 {
574 /* 16 byte instruction that uses two 'struct bpf_insn' */
575 u64 imm64;
576
577 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
578 /* lg %dst,<d(imm)>(%l) */
579 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
580 EMIT_CONST_U64(imm64));
581 insn_count = 2;
582 break;
583 }
584 /*
585 * BPF_ADD
586 */
587 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
588 /* ar %dst,%src */
589 EMIT2(0x1a00, dst_reg, src_reg);
590 EMIT_ZERO(dst_reg);
591 break;
592 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
593 /* agr %dst,%src */
594 EMIT4(0xb9080000, dst_reg, src_reg);
595 break;
596 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
597 if (!imm)
598 break;
599 /* alfi %dst,imm */
600 EMIT6_IMM(0xc20b0000, dst_reg, imm);
601 EMIT_ZERO(dst_reg);
602 break;
603 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
604 if (!imm)
605 break;
606 /* agfi %dst,imm */
607 EMIT6_IMM(0xc2080000, dst_reg, imm);
608 break;
609 /*
610 * BPF_SUB
611 */
612 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
613 /* sr %dst,%src */
614 EMIT2(0x1b00, dst_reg, src_reg);
615 EMIT_ZERO(dst_reg);
616 break;
617 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
618 /* sgr %dst,%src */
619 EMIT4(0xb9090000, dst_reg, src_reg);
620 break;
621 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
622 if (!imm)
623 break;
624 /* alfi %dst,-imm */
625 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
626 EMIT_ZERO(dst_reg);
627 break;
628 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
629 if (!imm)
630 break;
631 /* agfi %dst,-imm */
632 EMIT6_IMM(0xc2080000, dst_reg, -imm);
633 break;
634 /*
635 * BPF_MUL
636 */
637 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
638 /* msr %dst,%src */
639 EMIT4(0xb2520000, dst_reg, src_reg);
640 EMIT_ZERO(dst_reg);
641 break;
642 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
643 /* msgr %dst,%src */
644 EMIT4(0xb90c0000, dst_reg, src_reg);
645 break;
646 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
647 if (imm == 1)
648 break;
649 /* msfi %r5,imm */
650 EMIT6_IMM(0xc2010000, dst_reg, imm);
651 EMIT_ZERO(dst_reg);
652 break;
653 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
654 if (imm == 1)
655 break;
656 /* msgfi %dst,imm */
657 EMIT6_IMM(0xc2000000, dst_reg, imm);
658 break;
659 /*
660 * BPF_DIV / BPF_MOD
661 */
662 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
663 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
664 {
665 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
666
667 /* lhi %w0,0 */
668 EMIT4_IMM(0xa7080000, REG_W0, 0);
669 /* lr %w1,%dst */
670 EMIT2(0x1800, REG_W1, dst_reg);
671 /* dlr %w0,%src */
672 EMIT4(0xb9970000, REG_W0, src_reg);
673 /* llgfr %dst,%rc */
674 EMIT4(0xb9160000, dst_reg, rc_reg);
675 break;
676 }
677 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
678 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
679 {
680 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
681
682 /* lghi %w0,0 */
683 EMIT4_IMM(0xa7090000, REG_W0, 0);
684 /* lgr %w1,%dst */
685 EMIT4(0xb9040000, REG_W1, dst_reg);
686 /* dlgr %w0,%dst */
687 EMIT4(0xb9870000, REG_W0, src_reg);
688 /* lgr %dst,%rc */
689 EMIT4(0xb9040000, dst_reg, rc_reg);
690 break;
691 }
692 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
693 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
694 {
695 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
696
697 if (imm == 1) {
698 if (BPF_OP(insn->code) == BPF_MOD)
699 /* lhgi %dst,0 */
700 EMIT4_IMM(0xa7090000, dst_reg, 0);
701 break;
702 }
703 /* lhi %w0,0 */
704 EMIT4_IMM(0xa7080000, REG_W0, 0);
705 /* lr %w1,%dst */
706 EMIT2(0x1800, REG_W1, dst_reg);
707 /* dl %w0,<d(imm)>(%l) */
708 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
709 EMIT_CONST_U32(imm));
710 /* llgfr %dst,%rc */
711 EMIT4(0xb9160000, dst_reg, rc_reg);
712 break;
713 }
714 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
715 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
716 {
717 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
718
719 if (imm == 1) {
720 if (BPF_OP(insn->code) == BPF_MOD)
721 /* lhgi %dst,0 */
722 EMIT4_IMM(0xa7090000, dst_reg, 0);
723 break;
724 }
725 /* lghi %w0,0 */
726 EMIT4_IMM(0xa7090000, REG_W0, 0);
727 /* lgr %w1,%dst */
728 EMIT4(0xb9040000, REG_W1, dst_reg);
729 /* dlg %w0,<d(imm)>(%l) */
730 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
731 EMIT_CONST_U64(imm));
732 /* lgr %dst,%rc */
733 EMIT4(0xb9040000, dst_reg, rc_reg);
734 break;
735 }
736 /*
737 * BPF_AND
738 */
739 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
740 /* nr %dst,%src */
741 EMIT2(0x1400, dst_reg, src_reg);
742 EMIT_ZERO(dst_reg);
743 break;
744 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
745 /* ngr %dst,%src */
746 EMIT4(0xb9800000, dst_reg, src_reg);
747 break;
748 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
749 /* nilf %dst,imm */
750 EMIT6_IMM(0xc00b0000, dst_reg, imm);
751 EMIT_ZERO(dst_reg);
752 break;
753 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
754 /* ng %dst,<d(imm)>(%l) */
755 EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
756 EMIT_CONST_U64(imm));
757 break;
758 /*
759 * BPF_OR
760 */
761 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
762 /* or %dst,%src */
763 EMIT2(0x1600, dst_reg, src_reg);
764 EMIT_ZERO(dst_reg);
765 break;
766 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
767 /* ogr %dst,%src */
768 EMIT4(0xb9810000, dst_reg, src_reg);
769 break;
770 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
771 /* oilf %dst,imm */
772 EMIT6_IMM(0xc00d0000, dst_reg, imm);
773 EMIT_ZERO(dst_reg);
774 break;
775 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
776 /* og %dst,<d(imm)>(%l) */
777 EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
778 EMIT_CONST_U64(imm));
779 break;
780 /*
781 * BPF_XOR
782 */
783 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
784 /* xr %dst,%src */
785 EMIT2(0x1700, dst_reg, src_reg);
786 EMIT_ZERO(dst_reg);
787 break;
788 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
789 /* xgr %dst,%src */
790 EMIT4(0xb9820000, dst_reg, src_reg);
791 break;
792 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
793 if (!imm)
794 break;
795 /* xilf %dst,imm */
796 EMIT6_IMM(0xc0070000, dst_reg, imm);
797 EMIT_ZERO(dst_reg);
798 break;
799 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
800 /* xg %dst,<d(imm)>(%l) */
801 EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
802 EMIT_CONST_U64(imm));
803 break;
804 /*
805 * BPF_LSH
806 */
807 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
808 /* sll %dst,0(%src) */
809 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
810 EMIT_ZERO(dst_reg);
811 break;
812 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
813 /* sllg %dst,%dst,0(%src) */
814 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
815 break;
816 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
817 if (imm == 0)
818 break;
819 /* sll %dst,imm(%r0) */
820 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
821 EMIT_ZERO(dst_reg);
822 break;
823 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
824 if (imm == 0)
825 break;
826 /* sllg %dst,%dst,imm(%r0) */
827 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
828 break;
829 /*
830 * BPF_RSH
831 */
832 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
833 /* srl %dst,0(%src) */
834 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
835 EMIT_ZERO(dst_reg);
836 break;
837 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
838 /* srlg %dst,%dst,0(%src) */
839 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
840 break;
841 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
842 if (imm == 0)
843 break;
844 /* srl %dst,imm(%r0) */
845 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
846 EMIT_ZERO(dst_reg);
847 break;
848 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
849 if (imm == 0)
850 break;
851 /* srlg %dst,%dst,imm(%r0) */
852 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
853 break;
854 /*
855 * BPF_ARSH
856 */
857 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
858 /* srag %dst,%dst,0(%src) */
859 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
860 break;
861 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
862 if (imm == 0)
863 break;
864 /* srag %dst,%dst,imm(%r0) */
865 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
866 break;
867 /*
868 * BPF_NEG
869 */
870 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
871 /* lcr %dst,%dst */
872 EMIT2(0x1300, dst_reg, dst_reg);
873 EMIT_ZERO(dst_reg);
874 break;
875 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
876 /* lcgr %dst,%dst */
877 EMIT4(0xb9130000, dst_reg, dst_reg);
878 break;
879 /*
880 * BPF_FROM_BE/LE
881 */
882 case BPF_ALU | BPF_END | BPF_FROM_BE:
883 /* s390 is big endian, therefore only clear high order bytes */
884 switch (imm) {
885 case 16: /* dst = (u16) cpu_to_be16(dst) */
886 /* llghr %dst,%dst */
887 EMIT4(0xb9850000, dst_reg, dst_reg);
888 break;
889 case 32: /* dst = (u32) cpu_to_be32(dst) */
890 /* llgfr %dst,%dst */
891 EMIT4(0xb9160000, dst_reg, dst_reg);
892 break;
893 case 64: /* dst = (u64) cpu_to_be64(dst) */
894 break;
895 }
896 break;
897 case BPF_ALU | BPF_END | BPF_FROM_LE:
898 switch (imm) {
899 case 16: /* dst = (u16) cpu_to_le16(dst) */
900 /* lrvr %dst,%dst */
901 EMIT4(0xb91f0000, dst_reg, dst_reg);
902 /* srl %dst,16(%r0) */
903 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
904 /* llghr %dst,%dst */
905 EMIT4(0xb9850000, dst_reg, dst_reg);
906 break;
907 case 32: /* dst = (u32) cpu_to_le32(dst) */
908 /* lrvr %dst,%dst */
909 EMIT4(0xb91f0000, dst_reg, dst_reg);
910 /* llgfr %dst,%dst */
911 EMIT4(0xb9160000, dst_reg, dst_reg);
912 break;
913 case 64: /* dst = (u64) cpu_to_le64(dst) */
914 /* lrvgr %dst,%dst */
915 EMIT4(0xb90f0000, dst_reg, dst_reg);
916 break;
917 }
918 break;
919 /*
920 * BPF_ST(X)
921 */
922 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
923 /* stcy %src,off(%dst) */
924 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
925 jit->seen |= SEEN_MEM;
926 break;
927 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
928 /* sthy %src,off(%dst) */
929 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
930 jit->seen |= SEEN_MEM;
931 break;
932 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
933 /* sty %src,off(%dst) */
934 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
935 jit->seen |= SEEN_MEM;
936 break;
937 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
938 /* stg %src,off(%dst) */
939 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
940 jit->seen |= SEEN_MEM;
941 break;
942 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
943 /* lhi %w0,imm */
944 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
945 /* stcy %w0,off(dst) */
946 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
947 jit->seen |= SEEN_MEM;
948 break;
949 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
950 /* lhi %w0,imm */
951 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
952 /* sthy %w0,off(dst) */
953 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
954 jit->seen |= SEEN_MEM;
955 break;
956 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
957 /* llilf %w0,imm */
958 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
959 /* sty %w0,off(%dst) */
960 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
961 jit->seen |= SEEN_MEM;
962 break;
963 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
964 /* lgfi %w0,imm */
965 EMIT6_IMM(0xc0010000, REG_W0, imm);
966 /* stg %w0,off(%dst) */
967 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
968 jit->seen |= SEEN_MEM;
969 break;
970 /*
971 * BPF_STX XADD (atomic_add)
972 */
973 case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
974 /* laal %w0,%src,off(%dst) */
975 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
976 dst_reg, off);
977 jit->seen |= SEEN_MEM;
978 break;
979 case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
980 /* laalg %w0,%src,off(%dst) */
981 EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
982 dst_reg, off);
983 jit->seen |= SEEN_MEM;
984 break;
985 /*
986 * BPF_LDX
987 */
988 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
989 /* llgc %dst,0(off,%src) */
990 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
991 jit->seen |= SEEN_MEM;
992 break;
993 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
994 /* llgh %dst,0(off,%src) */
995 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
996 jit->seen |= SEEN_MEM;
997 break;
998 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
999 /* llgf %dst,off(%src) */
1000 jit->seen |= SEEN_MEM;
1001 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1002 break;
1003 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1004 /* lg %dst,0(off,%src) */
1005 jit->seen |= SEEN_MEM;
1006 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1007 break;
1008 /*
1009 * BPF_JMP / CALL
1010 */
1011 case BPF_JMP | BPF_CALL:
1012 {
1013 /*
1014 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
1015 */
1016 const u64 func = (u64)__bpf_call_base + imm;
1017
1018 REG_SET_SEEN(BPF_REG_5);
1019 jit->seen |= SEEN_FUNC;
1020 /* lg %w1,<d(imm)>(%l) */
1021 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
1022 EMIT_CONST_U64(func));
1023 if (IS_ENABLED(CC_USING_EXPOLINE) && !nospec_disable) {
1024 /* brasl %r14,__s390_indirect_jump_r1 */
1025 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1026 } else {
1027 /* basr %r14,%w1 */
1028 EMIT2(0x0d00, REG_14, REG_W1);
1029 }
1030 /* lgr %b0,%r2: load return value into %b0 */
1031 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1032 if ((jit->seen & SEEN_SKB) &&
1033 bpf_helper_changes_pkt_data((void *)func)) {
1034 /* lg %b1,ST_OFF_SKBP(%r15) */
1035 EMIT6_DISP_LH(0xe3000000, 0x0004, BPF_REG_1, REG_0,
1036 REG_15, STK_OFF_SKBP);
1037 emit_load_skb_data_hlen(jit);
1038 }
1039 break;
1040 }
1041 case BPF_JMP | BPF_TAIL_CALL:
1042 /*
1043 * Implicit input:
1044 * B1: pointer to ctx
1045 * B2: pointer to bpf_array
1046 * B3: index in bpf_array
1047 */
1048 jit->seen |= SEEN_TAIL_CALL;
1049
1050 /*
1051 * if (index >= array->map.max_entries)
1052 * goto out;
1053 */
1054
1055 /* llgf %w1,map.max_entries(%b2) */
1056 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1057 offsetof(struct bpf_array, map.max_entries));
1058 /* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
1059 EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
1060 REG_W1, 0, 0xa);
1061
1062 /*
1063 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1064 * goto out;
1065 */
1066
1067 if (jit->seen & SEEN_STACK)
1068 off = STK_OFF_TCCNT + STK_OFF + fp->aux->stack_depth;
1069 else
1070 off = STK_OFF_TCCNT;
1071 /* lhi %w0,1 */
1072 EMIT4_IMM(0xa7080000, REG_W0, 1);
1073 /* laal %w1,%w0,off(%r15) */
1074 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1075 /* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1076 EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1077 MAX_TAIL_CALL_CNT, 0, 0x2);
1078
1079 /*
1080 * prog = array->ptrs[index];
1081 * if (prog == NULL)
1082 * goto out;
1083 */
1084
1085 /* sllg %r1,%b3,3: %r1 = index * 8 */
1086 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
1087 /* lg %r1,prog(%b2,%r1) */
1088 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1089 REG_1, offsetof(struct bpf_array, ptrs));
1090 /* clgij %r1,0,0x8,label0 */
1091 EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
1092
1093 /*
1094 * Restore registers before calling function
1095 */
1096 save_restore_regs(jit, REGS_RESTORE, fp->aux->stack_depth);
1097
1098 /*
1099 * goto *(prog->bpf_func + tail_call_start);
1100 */
1101
1102 /* lg %r1,bpf_func(%r1) */
1103 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1104 offsetof(struct bpf_prog, bpf_func));
1105 /* bc 0xf,tail_call_start(%r1) */
1106 _EMIT4(0x47f01000 + jit->tail_call_start);
1107 /* out: */
1108 jit->labels[0] = jit->prg;
1109 break;
1110 case BPF_JMP | BPF_EXIT: /* return b0 */
1111 last = (i == fp->len - 1) ? 1 : 0;
1112 if (last && !(jit->seen & SEEN_RET0))
1113 break;
1114 /* j <exit> */
1115 EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
1116 break;
1117 /*
1118 * Branch relative (number of skipped instructions) to offset on
1119 * condition.
1120 *
1121 * Condition code to mask mapping:
1122 *
1123 * CC | Description | Mask
1124 * ------------------------------
1125 * 0 | Operands equal | 8
1126 * 1 | First operand low | 4
1127 * 2 | First operand high | 2
1128 * 3 | Unused | 1
1129 *
1130 * For s390x relative branches: ip = ip + off_bytes
1131 * For BPF relative branches: insn = insn + off_insns + 1
1132 *
1133 * For example for s390x with offset 0 we jump to the branch
1134 * instruction itself (loop) and for BPF with offset 0 we
1135 * branch to the instruction behind the branch.
1136 */
1137 case BPF_JMP | BPF_JA: /* if (true) */
1138 mask = 0xf000; /* j */
1139 goto branch_oc;
1140 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1141 mask = 0x2000; /* jh */
1142 goto branch_ks;
1143 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1144 mask = 0x4000; /* jl */
1145 goto branch_ks;
1146 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1147 mask = 0xa000; /* jhe */
1148 goto branch_ks;
1149 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1150 mask = 0xc000; /* jle */
1151 goto branch_ks;
1152 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1153 mask = 0x2000; /* jh */
1154 goto branch_ku;
1155 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1156 mask = 0x4000; /* jl */
1157 goto branch_ku;
1158 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1159 mask = 0xa000; /* jhe */
1160 goto branch_ku;
1161 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1162 mask = 0xc000; /* jle */
1163 goto branch_ku;
1164 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1165 mask = 0x7000; /* jne */
1166 goto branch_ku;
1167 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1168 mask = 0x8000; /* je */
1169 goto branch_ku;
1170 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1171 mask = 0x7000; /* jnz */
1172 /* lgfi %w1,imm (load sign extend imm) */
1173 EMIT6_IMM(0xc0010000, REG_W1, imm);
1174 /* ngr %w1,%dst */
1175 EMIT4(0xb9800000, REG_W1, dst_reg);
1176 goto branch_oc;
1177
1178 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1179 mask = 0x2000; /* jh */
1180 goto branch_xs;
1181 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1182 mask = 0x4000; /* jl */
1183 goto branch_xs;
1184 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1185 mask = 0xa000; /* jhe */
1186 goto branch_xs;
1187 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1188 mask = 0xc000; /* jle */
1189 goto branch_xs;
1190 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1191 mask = 0x2000; /* jh */
1192 goto branch_xu;
1193 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1194 mask = 0x4000; /* jl */
1195 goto branch_xu;
1196 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1197 mask = 0xa000; /* jhe */
1198 goto branch_xu;
1199 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1200 mask = 0xc000; /* jle */
1201 goto branch_xu;
1202 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1203 mask = 0x7000; /* jne */
1204 goto branch_xu;
1205 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1206 mask = 0x8000; /* je */
1207 goto branch_xu;
1208 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1209 mask = 0x7000; /* jnz */
1210 /* ngrk %w1,%dst,%src */
1211 EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
1212 goto branch_oc;
1213branch_ks:
1214 /* lgfi %w1,imm (load sign extend imm) */
1215 EMIT6_IMM(0xc0010000, REG_W1, imm);
1216 /* cgrj %dst,%w1,mask,off */
1217 EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
1218 break;
1219branch_ku:
1220 /* lgfi %w1,imm (load sign extend imm) */
1221 EMIT6_IMM(0xc0010000, REG_W1, imm);
1222 /* clgrj %dst,%w1,mask,off */
1223 EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1224 break;
1225branch_xs:
1226 /* cgrj %dst,%src,mask,off */
1227 EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
1228 break;
1229branch_xu:
1230 /* clgrj %dst,%src,mask,off */
1231 EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
1232 break;
1233branch_oc:
1234 /* brc mask,jmp_off (branch instruction needs 4 bytes) */
1235 jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1236 EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
1237 break;
1238 /*
1239 * BPF_LD
1240 */
1241 case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1242 case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1243 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1244 func_addr = __pa(sk_load_byte_pos);
1245 else
1246 func_addr = __pa(sk_load_byte);
1247 goto call_fn;
1248 case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1249 case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1250 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1251 func_addr = __pa(sk_load_half_pos);
1252 else
1253 func_addr = __pa(sk_load_half);
1254 goto call_fn;
1255 case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1256 case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1257 if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1258 func_addr = __pa(sk_load_word_pos);
1259 else
1260 func_addr = __pa(sk_load_word);
1261 goto call_fn;
1262call_fn:
1263 jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1264 REG_SET_SEEN(REG_14); /* Return address of possible func call */
1265
1266 /*
1267 * Implicit input:
1268 * BPF_REG_6 (R7) : skb pointer
1269 * REG_SKB_DATA (R12): skb data pointer (if no BPF_REG_AX)
1270 *
1271 * Calculated input:
1272 * BPF_REG_2 (R3) : offset of byte(s) to fetch in skb
1273 * BPF_REG_5 (R6) : return address
1274 *
1275 * Output:
1276 * BPF_REG_0 (R14): data read from skb
1277 *
1278 * Scratch registers (BPF_REG_1-5)
1279 */
1280
1281 /* Call function: llilf %w1,func_addr */
1282 EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
1283
1284 /* Offset: lgfi %b2,imm */
1285 EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1286 if (BPF_MODE(insn->code) == BPF_IND)
1287 /* agfr %b2,%src (%src is s32 here) */
1288 EMIT4(0xb9180000, BPF_REG_2, src_reg);
1289
1290 /* Reload REG_SKB_DATA if BPF_REG_AX is used */
1291 if (jit->seen & SEEN_REG_AX)
1292 /* lg %skb_data,data_off(%b6) */
1293 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
1294 BPF_REG_6, offsetof(struct sk_buff, data));
1295 /* basr %b5,%w1 (%b5 is call saved) */
1296 EMIT2(0x0d00, BPF_REG_5, REG_W1);
1297
1298 /*
1299 * Note: For fast access we jump directly after the
1300 * jnz instruction from bpf_jit.S
1301 */
1302 /* jnz <ret0> */
1303 EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1304 break;
1305 default: /* too complex, give up */
1306 pr_err("Unknown opcode %02x\n", insn->code);
1307 return -1;
1308 }
1309 return insn_count;
1310}
1311
1312/*
1313 * Compile eBPF program into s390x code
1314 */
1315static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
1316{
1317 int i, insn_count;
1318
1319 jit->lit = jit->lit_start;
1320 jit->prg = 0;
1321
1322 bpf_jit_prologue(jit, fp->aux->stack_depth);
1323 for (i = 0; i < fp->len; i += insn_count) {
1324 insn_count = bpf_jit_insn(jit, fp, i);
1325 if (insn_count < 0)
1326 return -1;
1327 /* Next instruction address */
1328 jit->addrs[i + insn_count] = jit->prg;
1329 }
1330 bpf_jit_epilogue(jit, fp->aux->stack_depth);
1331
1332 jit->lit_start = jit->prg;
1333 jit->size = jit->lit;
1334 jit->size_prg = jit->prg;
1335 return 0;
1336}
1337
1338/*
1339 * Compile eBPF program "fp"
1340 */
1341struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1342{
1343 struct bpf_prog *tmp, *orig_fp = fp;
1344 struct bpf_binary_header *header;
1345 bool tmp_blinded = false;
1346 struct bpf_jit jit;
1347 int pass;
1348
1349 if (!fp->jit_requested)
1350 return orig_fp;
1351
1352 tmp = bpf_jit_blind_constants(fp);
1353 /*
1354 * If blinding was requested and we failed during blinding,
1355 * we must fall back to the interpreter.
1356 */
1357 if (IS_ERR(tmp))
1358 return orig_fp;
1359 if (tmp != fp) {
1360 tmp_blinded = true;
1361 fp = tmp;
1362 }
1363
1364 memset(&jit, 0, sizeof(jit));
1365 jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1366 if (jit.addrs == NULL) {
1367 fp = orig_fp;
1368 goto out;
1369 }
1370 /*
1371 * Three initial passes:
1372 * - 1/2: Determine clobbered registers
1373 * - 3: Calculate program size and addrs arrray
1374 */
1375 for (pass = 1; pass <= 3; pass++) {
1376 if (bpf_jit_prog(&jit, fp)) {
1377 fp = orig_fp;
1378 goto free_addrs;
1379 }
1380 }
1381 /*
1382 * Final pass: Allocate and generate program
1383 */
1384 if (jit.size >= BPF_SIZE_MAX) {
1385 fp = orig_fp;
1386 goto free_addrs;
1387 }
1388 header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1389 if (!header) {
1390 fp = orig_fp;
1391 goto free_addrs;
1392 }
1393 if (bpf_jit_prog(&jit, fp)) {
1394 fp = orig_fp;
1395 goto free_addrs;
1396 }
1397 if (bpf_jit_enable > 1) {
1398 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1399 print_fn_code(jit.prg_buf, jit.size_prg);
1400 }
1401 bpf_jit_binary_lock_ro(header);
1402 fp->bpf_func = (void *) jit.prg_buf;
1403 fp->jited = 1;
1404 fp->jited_len = jit.size;
1405free_addrs:
1406 kfree(jit.addrs);
1407out:
1408 if (tmp_blinded)
1409 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1410 tmp : orig_fp);
1411 return fp;
1412}