Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * BPF Jit compiler for s390.
   4 *
   5 * Minimum build requirements:
   6 *
   7 *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
   8 *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
   9 *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
 
  10 *  - 64BIT
  11 *
  12 * Copyright IBM Corp. 2012,2015
  13 *
  14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  15 *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
  16 */
  17
  18#define KMSG_COMPONENT "bpf_jit"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/netdevice.h>
  22#include <linux/filter.h>
  23#include <linux/init.h>
  24#include <linux/bpf.h>
  25#include <linux/mm.h>
  26#include <linux/kernel.h>
  27#include <asm/cacheflush.h>
  28#include <asm/extable.h>
  29#include <asm/dis.h>
  30#include <asm/facility.h>
  31#include <asm/nospec-branch.h>
  32#include <asm/set_memory.h>
  33#include "bpf_jit.h"
  34
 
 
  35struct bpf_jit {
  36	u32 seen;		/* Flags to remember seen eBPF instructions */
  37	u32 seen_reg[16];	/* Array to remember which registers are used */
  38	u32 *addrs;		/* Array with relative instruction addresses */
  39	u8 *prg_buf;		/* Start of program */
  40	int size;		/* Size of program and literal pool */
  41	int size_prg;		/* Size of program */
  42	int prg;		/* Current position in program */
  43	int lit32_start;	/* Start of 32-bit literal pool */
  44	int lit32;		/* Current position in 32-bit literal pool */
  45	int lit64_start;	/* Start of 64-bit literal pool */
  46	int lit64;		/* Current position in 64-bit literal pool */
  47	int base_ip;		/* Base address for literal pool */
 
  48	int exit_ip;		/* Address of exit */
  49	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
  50	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
  51	int tail_call_start;	/* Tail call start offset */
  52	int excnt;		/* Number of exception table entries */
  53};
  54
  55#define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
  56#define SEEN_LITERAL	BIT(1)		/* code uses literals */
  57#define SEEN_FUNC	BIT(2)		/* calls C functions */
  58#define SEEN_TAIL_CALL	BIT(3)		/* code uses tail calls */
  59#define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
 
 
 
 
 
 
  60
  61/*
  62 * s390 registers
  63 */
  64#define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
  65#define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
  66#define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
  67#define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
 
  68#define REG_0		REG_W0			/* Register 0 */
  69#define REG_1		REG_W1			/* Register 1 */
  70#define REG_2		BPF_REG_1		/* Register 2 */
  71#define REG_14		BPF_REG_0		/* Register 14 */
  72
  73/*
  74 * Mapping of BPF registers to s390 registers
  75 */
  76static const int reg2hex[] = {
  77	/* Return code */
  78	[BPF_REG_0]	= 14,
  79	/* Function parameters */
  80	[BPF_REG_1]	= 2,
  81	[BPF_REG_2]	= 3,
  82	[BPF_REG_3]	= 4,
  83	[BPF_REG_4]	= 5,
  84	[BPF_REG_5]	= 6,
  85	/* Call saved registers */
  86	[BPF_REG_6]	= 7,
  87	[BPF_REG_7]	= 8,
  88	[BPF_REG_8]	= 9,
  89	[BPF_REG_9]	= 10,
  90	/* BPF stack pointer */
  91	[BPF_REG_FP]	= 13,
  92	/* Register for blinding */
  93	[BPF_REG_AX]	= 12,
 
 
  94	/* Work registers for s390x backend */
  95	[REG_W0]	= 0,
  96	[REG_W1]	= 1,
  97	[REG_L]		= 11,
  98	[REG_15]	= 15,
  99};
 100
 101static inline u32 reg(u32 dst_reg, u32 src_reg)
 102{
 103	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
 104}
 105
 106static inline u32 reg_high(u32 reg)
 107{
 108	return reg2hex[reg] << 4;
 109}
 110
 111static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
 112{
 113	u32 r1 = reg2hex[b1];
 114
 115	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
 116		jit->seen_reg[r1] = 1;
 117}
 118
 119#define REG_SET_SEEN(b1)					\
 120({								\
 121	reg_set_seen(jit, b1);					\
 122})
 123
 124#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
 125
 126/*
 127 * EMIT macros for code generation
 128 */
 129
 130#define _EMIT2(op)						\
 131({								\
 132	if (jit->prg_buf)					\
 133		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
 134	jit->prg += 2;						\
 135})
 136
 137#define EMIT2(op, b1, b2)					\
 138({								\
 139	_EMIT2((op) | reg(b1, b2));				\
 140	REG_SET_SEEN(b1);					\
 141	REG_SET_SEEN(b2);					\
 142})
 143
 144#define _EMIT4(op)						\
 145({								\
 146	if (jit->prg_buf)					\
 147		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
 148	jit->prg += 4;						\
 149})
 150
 151#define EMIT4(op, b1, b2)					\
 152({								\
 153	_EMIT4((op) | reg(b1, b2));				\
 154	REG_SET_SEEN(b1);					\
 155	REG_SET_SEEN(b2);					\
 156})
 157
 158#define EMIT4_RRF(op, b1, b2, b3)				\
 159({								\
 160	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
 161	REG_SET_SEEN(b1);					\
 162	REG_SET_SEEN(b2);					\
 163	REG_SET_SEEN(b3);					\
 164})
 165
 166#define _EMIT4_DISP(op, disp)					\
 167({								\
 168	unsigned int __disp = (disp) & 0xfff;			\
 169	_EMIT4((op) | __disp);					\
 170})
 171
 172#define EMIT4_DISP(op, b1, b2, disp)				\
 173({								\
 174	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
 175		    reg_high(b2) << 8, (disp));			\
 176	REG_SET_SEEN(b1);					\
 177	REG_SET_SEEN(b2);					\
 178})
 179
 180#define EMIT4_IMM(op, b1, imm)					\
 181({								\
 182	unsigned int __imm = (imm) & 0xffff;			\
 183	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
 184	REG_SET_SEEN(b1);					\
 185})
 186
 187#define EMIT4_PCREL(op, pcrel)					\
 188({								\
 189	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
 190	_EMIT4((op) | __pcrel);					\
 191})
 192
 193#define EMIT4_PCREL_RIC(op, mask, target)			\
 194({								\
 195	int __rel = ((target) - jit->prg) / 2;			\
 196	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
 197})
 198
 199#define _EMIT6(op1, op2)					\
 200({								\
 201	if (jit->prg_buf) {					\
 202		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
 203		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
 204	}							\
 205	jit->prg += 6;						\
 206})
 207
 208#define _EMIT6_DISP(op1, op2, disp)				\
 209({								\
 210	unsigned int __disp = (disp) & 0xfff;			\
 211	_EMIT6((op1) | __disp, op2);				\
 212})
 213
 214#define _EMIT6_DISP_LH(op1, op2, disp)				\
 215({								\
 216	u32 _disp = (u32) (disp);				\
 217	unsigned int __disp_h = _disp & 0xff000;		\
 218	unsigned int __disp_l = _disp & 0x00fff;		\
 219	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
 220})
 221
 222#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
 223({								\
 224	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
 225		       reg_high(b3) << 8, op2, disp);		\
 226	REG_SET_SEEN(b1);					\
 227	REG_SET_SEEN(b2);					\
 228	REG_SET_SEEN(b3);					\
 229})
 230
 231#define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
 232({								\
 233	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 234	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
 235	       (op2) | (mask) << 12);				\
 236	REG_SET_SEEN(b1);					\
 237	REG_SET_SEEN(b2);					\
 238})
 239
 240#define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
 241({								\
 242	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 243	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
 244		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
 245	REG_SET_SEEN(b1);					\
 246	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
 247})
 248
 249#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
 250({								\
 251	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
 252	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
 
 253	REG_SET_SEEN(b1);					\
 254	REG_SET_SEEN(b2);					\
 255})
 256
 257#define EMIT6_PCREL_RILB(op, b, target)				\
 258({								\
 259	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 260	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
 261	REG_SET_SEEN(b);					\
 262})
 263
 264#define EMIT6_PCREL_RIL(op, target)				\
 265({								\
 266	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 267	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
 268})
 269
 270#define EMIT6_PCREL_RILC(op, mask, target)			\
 271({								\
 272	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
 273})
 274
 275#define _EMIT6_IMM(op, imm)					\
 276({								\
 277	unsigned int __imm = (imm);				\
 278	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
 279})
 280
 281#define EMIT6_IMM(op, b1, imm)					\
 282({								\
 283	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
 284	REG_SET_SEEN(b1);					\
 285})
 286
 287#define _EMIT_CONST_U32(val)					\
 288({								\
 289	unsigned int ret;					\
 290	ret = jit->lit32;					\
 291	if (jit->prg_buf)					\
 292		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
 293	jit->lit32 += 4;					\
 294	ret;							\
 295})
 296
 297#define EMIT_CONST_U32(val)					\
 298({								\
 299	jit->seen |= SEEN_LITERAL;				\
 300	_EMIT_CONST_U32(val) - jit->base_ip;			\
 301})
 302
 303#define _EMIT_CONST_U64(val)					\
 304({								\
 305	unsigned int ret;					\
 306	ret = jit->lit64;					\
 
 307	if (jit->prg_buf)					\
 308		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
 309	jit->lit64 += 8;					\
 310	ret;							\
 311})
 312
 313#define EMIT_CONST_U64(val)					\
 314({								\
 
 
 315	jit->seen |= SEEN_LITERAL;				\
 316	_EMIT_CONST_U64(val) - jit->base_ip;			\
 
 
 
 317})
 318
 319#define EMIT_ZERO(b1)						\
 320({								\
 321	if (!fp->aux->verifier_zext) {				\
 322		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
 323		EMIT4(0xb9160000, b1, b1);			\
 324		REG_SET_SEEN(b1);				\
 325	}							\
 326})
 327
 328/*
 329 * Return whether this is the first pass. The first pass is special, since we
 330 * don't know any sizes yet, and thus must be conservative.
 331 */
 332static bool is_first_pass(struct bpf_jit *jit)
 333{
 334	return jit->size == 0;
 335}
 336
 337/*
 338 * Return whether this is the code generation pass. The code generation pass is
 339 * special, since we should change as little as possible.
 340 */
 341static bool is_codegen_pass(struct bpf_jit *jit)
 342{
 343	return jit->prg_buf;
 344}
 345
 346/*
 347 * Return whether "rel" can be encoded as a short PC-relative offset
 348 */
 349static bool is_valid_rel(int rel)
 350{
 351	return rel >= -65536 && rel <= 65534;
 352}
 353
 354/*
 355 * Return whether "off" can be reached using a short PC-relative offset
 356 */
 357static bool can_use_rel(struct bpf_jit *jit, int off)
 358{
 359	return is_valid_rel(off - jit->prg);
 360}
 361
 362/*
 363 * Return whether given displacement can be encoded using
 364 * Long-Displacement Facility
 365 */
 366static bool is_valid_ldisp(int disp)
 367{
 368	return disp >= -524288 && disp <= 524287;
 369}
 370
 371/*
 372 * Return whether the next 32-bit literal pool entry can be referenced using
 373 * Long-Displacement Facility
 374 */
 375static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
 376{
 377	return is_valid_ldisp(jit->lit32 - jit->base_ip);
 378}
 379
 380/*
 381 * Return whether the next 64-bit literal pool entry can be referenced using
 382 * Long-Displacement Facility
 383 */
 384static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
 385{
 386	return is_valid_ldisp(jit->lit64 - jit->base_ip);
 387}
 388
 389/*
 390 * Fill whole space with illegal instructions
 391 */
 392static void jit_fill_hole(void *area, unsigned int size)
 393{
 394	memset(area, 0, size);
 395}
 396
 397/*
 398 * Save registers from "rs" (register start) to "re" (register end) on stack
 399 */
 400static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
 401{
 402	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 403
 404	if (rs == re)
 405		/* stg %rs,off(%r15) */
 406		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
 407	else
 408		/* stmg %rs,%re,off(%r15) */
 409		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
 410}
 411
 412/*
 413 * Restore registers from "rs" (register start) to "re" (register end) on stack
 414 */
 415static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
 416{
 417	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 418
 419	if (jit->seen & SEEN_STACK)
 420		off += STK_OFF + stack_depth;
 421
 422	if (rs == re)
 423		/* lg %rs,off(%r15) */
 424		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
 425	else
 426		/* lmg %rs,%re,off(%r15) */
 427		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
 428}
 429
 430/*
 431 * Return first seen register (from start)
 432 */
 433static int get_start(struct bpf_jit *jit, int start)
 434{
 435	int i;
 436
 437	for (i = start; i <= 15; i++) {
 438		if (jit->seen_reg[i])
 439			return i;
 440	}
 441	return 0;
 442}
 443
 444/*
 445 * Return last seen register (from start) (gap >= 2)
 446 */
 447static int get_end(struct bpf_jit *jit, int start)
 448{
 449	int i;
 450
 451	for (i = start; i < 15; i++) {
 452		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
 453			return i - 1;
 454	}
 455	return jit->seen_reg[15] ? 15 : 14;
 456}
 457
 458#define REGS_SAVE	1
 459#define REGS_RESTORE	0
 460/*
 461 * Save and restore clobbered registers (6-15) on stack.
 462 * We save/restore registers in chunks with gap >= 2 registers.
 463 */
 464static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
 465{
 466	const int last = 15, save_restore_size = 6;
 467	int re = 6, rs;
 468
 469	if (is_first_pass(jit)) {
 470		/*
 471		 * We don't know yet which registers are used. Reserve space
 472		 * conservatively.
 473		 */
 474		jit->prg += (last - re + 1) * save_restore_size;
 475		return;
 476	}
 477
 478	do {
 479		rs = get_start(jit, re);
 480		if (!rs)
 481			break;
 482		re = get_end(jit, rs + 1);
 483		if (op == REGS_SAVE)
 484			save_regs(jit, rs, re);
 485		else
 486			restore_regs(jit, rs, re, stack_depth);
 487		re++;
 488	} while (re <= last);
 489}
 490
 491static void bpf_skip(struct bpf_jit *jit, int size)
 492{
 493	if (size >= 6 && !is_valid_rel(size)) {
 494		/* brcl 0xf,size */
 495		EMIT6_PCREL_RIL(0xc0f4000000, size);
 496		size -= 6;
 497	} else if (size >= 4 && is_valid_rel(size)) {
 498		/* brc 0xf,size */
 499		EMIT4_PCREL(0xa7f40000, size);
 500		size -= 4;
 501	}
 502	while (size >= 2) {
 503		/* bcr 0,%0 */
 504		_EMIT2(0x0700);
 505		size -= 2;
 506	}
 
 
 
 507}
 508
 509/*
 510 * Emit function prologue
 511 *
 512 * Save registers and create stack frame if necessary.
 513 * See stack frame layout desription in "bpf_jit.h"!
 514 */
 515static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
 516{
 517	if (jit->seen & SEEN_TAIL_CALL) {
 518		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
 519		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
 520	} else {
 521		/*
 522		 * There are no tail calls. Insert nops in order to have
 523		 * tail_call_start at a predictable offset.
 524		 */
 525		bpf_skip(jit, 6);
 526	}
 527	/* Tail calls have to skip above initialization */
 528	jit->tail_call_start = jit->prg;
 529	/* Save registers */
 530	save_restore_regs(jit, REGS_SAVE, stack_depth);
 531	/* Setup literal pool */
 532	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
 533		if (!is_first_pass(jit) &&
 534		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
 535			/* basr %l,0 */
 536			EMIT2(0x0d00, REG_L, REG_0);
 537			jit->base_ip = jit->prg;
 538		} else {
 539			/* larl %l,lit32_start */
 540			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
 541			jit->base_ip = jit->lit32_start;
 542		}
 543	}
 544	/* Setup stack and backchain */
 545	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
 546		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
 547			/* lgr %w1,%r15 (backchain) */
 548			EMIT4(0xb9040000, REG_W1, REG_15);
 549		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
 550		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
 551		/* aghi %r15,-STK_OFF */
 552		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
 553		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
 554			/* stg %w1,152(%r15) (backchain) */
 555			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
 556				      REG_15, 152);
 557	}
 
 
 
 
 
 
 558}
 559
 560/*
 561 * Function epilogue
 562 */
 563static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
 564{
 
 
 
 
 
 
 565	jit->exit_ip = jit->prg;
 566	/* Load exit code: lgr %r2,%b0 */
 567	EMIT4(0xb9040000, REG_2, BPF_REG_0);
 568	/* Restore registers */
 569	save_restore_regs(jit, REGS_RESTORE, stack_depth);
 570	if (nospec_uses_trampoline()) {
 571		jit->r14_thunk_ip = jit->prg;
 572		/* Generate __s390_indirect_jump_r14 thunk */
 573		/* exrl %r0,.+10 */
 574		EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 575		/* j . */
 576		EMIT4_PCREL(0xa7f40000, 0);
 577	}
 578	/* br %r14 */
 579	_EMIT2(0x07fe);
 580
 581	if ((nospec_uses_trampoline()) &&
 582	    (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
 583		jit->r1_thunk_ip = jit->prg;
 584		/* Generate __s390_indirect_jump_r1 thunk */
 585		/* exrl %r0,.+10 */
 586		EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 587		/* j . */
 588		EMIT4_PCREL(0xa7f40000, 0);
 589		/* br %r1 */
 590		_EMIT2(0x07f1);
 591	}
 592}
 593
 594static int get_probe_mem_regno(const u8 *insn)
 595{
 596	/*
 597	 * insn must point to llgc, llgh, llgf or lg, which have destination
 598	 * register at the same position.
 599	 */
 600	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
 601		return -1;
 602	if (insn[5] != 0x90 && /* llgc */
 603	    insn[5] != 0x91 && /* llgh */
 604	    insn[5] != 0x16 && /* llgf */
 605	    insn[5] != 0x04) /* lg */
 606		return -1;
 607	return insn[1] >> 4;
 608}
 609
 610bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
 611{
 612	regs->psw.addr = extable_fixup(x);
 613	regs->gprs[x->data] = 0;
 614	return true;
 615}
 616
 617static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
 618			     int probe_prg, int nop_prg)
 619{
 620	struct exception_table_entry *ex;
 621	int reg, prg;
 622	s64 delta;
 623	u8 *insn;
 624	int i;
 625
 626	if (!fp->aux->extable)
 627		/* Do nothing during early JIT passes. */
 628		return 0;
 629	insn = jit->prg_buf + probe_prg;
 630	reg = get_probe_mem_regno(insn);
 631	if (WARN_ON_ONCE(reg < 0))
 632		/* JIT bug - unexpected probe instruction. */
 633		return -1;
 634	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
 635		/* JIT bug - gap between probe and nop instructions. */
 636		return -1;
 637	for (i = 0; i < 2; i++) {
 638		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
 639			/* Verifier bug - not enough entries. */
 640			return -1;
 641		ex = &fp->aux->extable[jit->excnt];
 642		/* Add extable entries for probe and nop instructions. */
 643		prg = i == 0 ? probe_prg : nop_prg;
 644		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
 645		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
 646			/* JIT bug - code and extable must be close. */
 647			return -1;
 648		ex->insn = delta;
 649		/*
 650		 * Always land on the nop. Note that extable infrastructure
 651		 * ignores fixup field, it is handled by ex_handler_bpf().
 652		 */
 653		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
 654		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
 655			/* JIT bug - landing pad and extable must be close. */
 656			return -1;
 657		ex->fixup = delta;
 658		ex->type = EX_TYPE_BPF;
 659		ex->data = reg;
 660		jit->excnt++;
 661	}
 662	return 0;
 663}
 664
 665/*
 666 * Compile one eBPF instruction into s390x code
 667 *
 668 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
 669 * stack space for the large switch statement.
 670 */
 671static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
 672				 int i, bool extra_pass, u32 stack_depth)
 673{
 674	struct bpf_insn *insn = &fp->insnsi[i];
 
 
 675	u32 dst_reg = insn->dst_reg;
 676	u32 src_reg = insn->src_reg;
 677	int last, insn_count = 1;
 678	u32 *addrs = jit->addrs;
 679	s32 imm = insn->imm;
 680	s16 off = insn->off;
 681	int probe_prg = -1;
 682	unsigned int mask;
 683	int nop_prg;
 684	int err;
 685
 686	if (BPF_CLASS(insn->code) == BPF_LDX &&
 687	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
 688		probe_prg = jit->prg;
 689
 
 
 690	switch (insn->code) {
 691	/*
 692	 * BPF_MOV
 693	 */
 694	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
 695		/* llgfr %dst,%src */
 696		EMIT4(0xb9160000, dst_reg, src_reg);
 697		if (insn_is_zext(&insn[1]))
 698			insn_count = 2;
 699		break;
 700	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
 701		/* lgr %dst,%src */
 702		EMIT4(0xb9040000, dst_reg, src_reg);
 703		break;
 704	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
 705		/* llilf %dst,imm */
 706		EMIT6_IMM(0xc00f0000, dst_reg, imm);
 707		if (insn_is_zext(&insn[1]))
 708			insn_count = 2;
 709		break;
 710	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
 711		/* lgfi %dst,imm */
 712		EMIT6_IMM(0xc0010000, dst_reg, imm);
 713		break;
 714	/*
 715	 * BPF_LD 64
 716	 */
 717	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
 718	{
 719		/* 16 byte instruction that uses two 'struct bpf_insn' */
 720		u64 imm64;
 721
 722		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
 723		/* lgrl %dst,imm */
 724		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
 
 725		insn_count = 2;
 726		break;
 727	}
 728	/*
 729	 * BPF_ADD
 730	 */
 731	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
 732		/* ar %dst,%src */
 733		EMIT2(0x1a00, dst_reg, src_reg);
 734		EMIT_ZERO(dst_reg);
 735		break;
 736	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
 737		/* agr %dst,%src */
 738		EMIT4(0xb9080000, dst_reg, src_reg);
 739		break;
 740	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
 741		if (imm != 0) {
 742			/* alfi %dst,imm */
 743			EMIT6_IMM(0xc20b0000, dst_reg, imm);
 744		}
 745		EMIT_ZERO(dst_reg);
 746		break;
 747	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
 748		if (!imm)
 749			break;
 750		/* agfi %dst,imm */
 751		EMIT6_IMM(0xc2080000, dst_reg, imm);
 752		break;
 753	/*
 754	 * BPF_SUB
 755	 */
 756	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
 757		/* sr %dst,%src */
 758		EMIT2(0x1b00, dst_reg, src_reg);
 759		EMIT_ZERO(dst_reg);
 760		break;
 761	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
 762		/* sgr %dst,%src */
 763		EMIT4(0xb9090000, dst_reg, src_reg);
 764		break;
 765	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
 766		if (imm != 0) {
 767			/* alfi %dst,-imm */
 768			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
 769		}
 770		EMIT_ZERO(dst_reg);
 771		break;
 772	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
 773		if (!imm)
 774			break;
 775		if (imm == -0x80000000) {
 776			/* algfi %dst,0x80000000 */
 777			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
 778		} else {
 779			/* agfi %dst,-imm */
 780			EMIT6_IMM(0xc2080000, dst_reg, -imm);
 781		}
 782		break;
 783	/*
 784	 * BPF_MUL
 785	 */
 786	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
 787		/* msr %dst,%src */
 788		EMIT4(0xb2520000, dst_reg, src_reg);
 789		EMIT_ZERO(dst_reg);
 790		break;
 791	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
 792		/* msgr %dst,%src */
 793		EMIT4(0xb90c0000, dst_reg, src_reg);
 794		break;
 795	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
 796		if (imm != 1) {
 797			/* msfi %r5,imm */
 798			EMIT6_IMM(0xc2010000, dst_reg, imm);
 799		}
 800		EMIT_ZERO(dst_reg);
 801		break;
 802	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
 803		if (imm == 1)
 804			break;
 805		/* msgfi %dst,imm */
 806		EMIT6_IMM(0xc2000000, dst_reg, imm);
 807		break;
 808	/*
 809	 * BPF_DIV / BPF_MOD
 810	 */
 811	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
 812	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
 813	{
 814		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 815
 
 
 
 
 
 816		/* lhi %w0,0 */
 817		EMIT4_IMM(0xa7080000, REG_W0, 0);
 818		/* lr %w1,%dst */
 819		EMIT2(0x1800, REG_W1, dst_reg);
 820		/* dlr %w0,%src */
 821		EMIT4(0xb9970000, REG_W0, src_reg);
 822		/* llgfr %dst,%rc */
 823		EMIT4(0xb9160000, dst_reg, rc_reg);
 824		if (insn_is_zext(&insn[1]))
 825			insn_count = 2;
 826		break;
 827	}
 828	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
 829	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
 830	{
 831		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 832
 
 
 
 
 
 833		/* lghi %w0,0 */
 834		EMIT4_IMM(0xa7090000, REG_W0, 0);
 835		/* lgr %w1,%dst */
 836		EMIT4(0xb9040000, REG_W1, dst_reg);
 837		/* dlgr %w0,%dst */
 838		EMIT4(0xb9870000, REG_W0, src_reg);
 839		/* lgr %dst,%rc */
 840		EMIT4(0xb9040000, dst_reg, rc_reg);
 841		break;
 842	}
 843	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
 844	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
 845	{
 846		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 847
 848		if (imm == 1) {
 849			if (BPF_OP(insn->code) == BPF_MOD)
 850				/* lhgi %dst,0 */
 851				EMIT4_IMM(0xa7090000, dst_reg, 0);
 852			else
 853				EMIT_ZERO(dst_reg);
 854			break;
 855		}
 856		/* lhi %w0,0 */
 857		EMIT4_IMM(0xa7080000, REG_W0, 0);
 858		/* lr %w1,%dst */
 859		EMIT2(0x1800, REG_W1, dst_reg);
 860		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
 861			/* dl %w0,<d(imm)>(%l) */
 862			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
 863				      EMIT_CONST_U32(imm));
 864		} else {
 865			/* lgfrl %dst,imm */
 866			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
 867					 _EMIT_CONST_U32(imm));
 868			jit->seen |= SEEN_LITERAL;
 869			/* dlr %w0,%dst */
 870			EMIT4(0xb9970000, REG_W0, dst_reg);
 871		}
 872		/* llgfr %dst,%rc */
 873		EMIT4(0xb9160000, dst_reg, rc_reg);
 874		if (insn_is_zext(&insn[1]))
 875			insn_count = 2;
 876		break;
 877	}
 878	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
 879	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
 880	{
 881		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 882
 883		if (imm == 1) {
 884			if (BPF_OP(insn->code) == BPF_MOD)
 885				/* lhgi %dst,0 */
 886				EMIT4_IMM(0xa7090000, dst_reg, 0);
 887			break;
 888		}
 889		/* lghi %w0,0 */
 890		EMIT4_IMM(0xa7090000, REG_W0, 0);
 891		/* lgr %w1,%dst */
 892		EMIT4(0xb9040000, REG_W1, dst_reg);
 893		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 894			/* dlg %w0,<d(imm)>(%l) */
 895			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
 896				      EMIT_CONST_U64(imm));
 897		} else {
 898			/* lgrl %dst,imm */
 899			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
 900					 _EMIT_CONST_U64(imm));
 901			jit->seen |= SEEN_LITERAL;
 902			/* dlgr %w0,%dst */
 903			EMIT4(0xb9870000, REG_W0, dst_reg);
 904		}
 905		/* lgr %dst,%rc */
 906		EMIT4(0xb9040000, dst_reg, rc_reg);
 907		break;
 908	}
 909	/*
 910	 * BPF_AND
 911	 */
 912	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
 913		/* nr %dst,%src */
 914		EMIT2(0x1400, dst_reg, src_reg);
 915		EMIT_ZERO(dst_reg);
 916		break;
 917	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
 918		/* ngr %dst,%src */
 919		EMIT4(0xb9800000, dst_reg, src_reg);
 920		break;
 921	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
 922		/* nilf %dst,imm */
 923		EMIT6_IMM(0xc00b0000, dst_reg, imm);
 924		EMIT_ZERO(dst_reg);
 925		break;
 926	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
 927		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 928			/* ng %dst,<d(imm)>(%l) */
 929			EMIT6_DISP_LH(0xe3000000, 0x0080,
 930				      dst_reg, REG_0, REG_L,
 931				      EMIT_CONST_U64(imm));
 932		} else {
 933			/* lgrl %w0,imm */
 934			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
 935					 _EMIT_CONST_U64(imm));
 936			jit->seen |= SEEN_LITERAL;
 937			/* ngr %dst,%w0 */
 938			EMIT4(0xb9800000, dst_reg, REG_W0);
 939		}
 940		break;
 941	/*
 942	 * BPF_OR
 943	 */
 944	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
 945		/* or %dst,%src */
 946		EMIT2(0x1600, dst_reg, src_reg);
 947		EMIT_ZERO(dst_reg);
 948		break;
 949	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
 950		/* ogr %dst,%src */
 951		EMIT4(0xb9810000, dst_reg, src_reg);
 952		break;
 953	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
 954		/* oilf %dst,imm */
 955		EMIT6_IMM(0xc00d0000, dst_reg, imm);
 956		EMIT_ZERO(dst_reg);
 957		break;
 958	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
 959		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 960			/* og %dst,<d(imm)>(%l) */
 961			EMIT6_DISP_LH(0xe3000000, 0x0081,
 962				      dst_reg, REG_0, REG_L,
 963				      EMIT_CONST_U64(imm));
 964		} else {
 965			/* lgrl %w0,imm */
 966			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
 967					 _EMIT_CONST_U64(imm));
 968			jit->seen |= SEEN_LITERAL;
 969			/* ogr %dst,%w0 */
 970			EMIT4(0xb9810000, dst_reg, REG_W0);
 971		}
 972		break;
 973	/*
 974	 * BPF_XOR
 975	 */
 976	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
 977		/* xr %dst,%src */
 978		EMIT2(0x1700, dst_reg, src_reg);
 979		EMIT_ZERO(dst_reg);
 980		break;
 981	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
 982		/* xgr %dst,%src */
 983		EMIT4(0xb9820000, dst_reg, src_reg);
 984		break;
 985	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
 986		if (imm != 0) {
 987			/* xilf %dst,imm */
 988			EMIT6_IMM(0xc0070000, dst_reg, imm);
 989		}
 990		EMIT_ZERO(dst_reg);
 991		break;
 992	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
 993		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 994			/* xg %dst,<d(imm)>(%l) */
 995			EMIT6_DISP_LH(0xe3000000, 0x0082,
 996				      dst_reg, REG_0, REG_L,
 997				      EMIT_CONST_U64(imm));
 998		} else {
 999			/* lgrl %w0,imm */
1000			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1001					 _EMIT_CONST_U64(imm));
1002			jit->seen |= SEEN_LITERAL;
1003			/* xgr %dst,%w0 */
1004			EMIT4(0xb9820000, dst_reg, REG_W0);
1005		}
1006		break;
1007	/*
1008	 * BPF_LSH
1009	 */
1010	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1011		/* sll %dst,0(%src) */
1012		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1013		EMIT_ZERO(dst_reg);
1014		break;
1015	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1016		/* sllg %dst,%dst,0(%src) */
1017		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1018		break;
1019	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1020		if (imm != 0) {
1021			/* sll %dst,imm(%r0) */
1022			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1023		}
1024		EMIT_ZERO(dst_reg);
1025		break;
1026	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1027		if (imm == 0)
1028			break;
1029		/* sllg %dst,%dst,imm(%r0) */
1030		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1031		break;
1032	/*
1033	 * BPF_RSH
1034	 */
1035	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1036		/* srl %dst,0(%src) */
1037		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1038		EMIT_ZERO(dst_reg);
1039		break;
1040	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1041		/* srlg %dst,%dst,0(%src) */
1042		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1043		break;
1044	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1045		if (imm != 0) {
1046			/* srl %dst,imm(%r0) */
1047			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1048		}
1049		EMIT_ZERO(dst_reg);
1050		break;
1051	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1052		if (imm == 0)
1053			break;
1054		/* srlg %dst,%dst,imm(%r0) */
1055		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1056		break;
1057	/*
1058	 * BPF_ARSH
1059	 */
1060	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1061		/* sra %dst,%dst,0(%src) */
1062		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1063		EMIT_ZERO(dst_reg);
1064		break;
1065	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1066		/* srag %dst,%dst,0(%src) */
1067		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1068		break;
1069	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1070		if (imm != 0) {
1071			/* sra %dst,imm(%r0) */
1072			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1073		}
1074		EMIT_ZERO(dst_reg);
1075		break;
1076	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1077		if (imm == 0)
1078			break;
1079		/* srag %dst,%dst,imm(%r0) */
1080		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1081		break;
1082	/*
1083	 * BPF_NEG
1084	 */
1085	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1086		/* lcr %dst,%dst */
1087		EMIT2(0x1300, dst_reg, dst_reg);
1088		EMIT_ZERO(dst_reg);
1089		break;
1090	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1091		/* lcgr %dst,%dst */
1092		EMIT4(0xb9030000, dst_reg, dst_reg);
1093		break;
1094	/*
1095	 * BPF_FROM_BE/LE
1096	 */
1097	case BPF_ALU | BPF_END | BPF_FROM_BE:
1098		/* s390 is big endian, therefore only clear high order bytes */
1099		switch (imm) {
1100		case 16: /* dst = (u16) cpu_to_be16(dst) */
1101			/* llghr %dst,%dst */
1102			EMIT4(0xb9850000, dst_reg, dst_reg);
1103			if (insn_is_zext(&insn[1]))
1104				insn_count = 2;
1105			break;
1106		case 32: /* dst = (u32) cpu_to_be32(dst) */
1107			if (!fp->aux->verifier_zext)
1108				/* llgfr %dst,%dst */
1109				EMIT4(0xb9160000, dst_reg, dst_reg);
1110			break;
1111		case 64: /* dst = (u64) cpu_to_be64(dst) */
1112			break;
1113		}
1114		break;
1115	case BPF_ALU | BPF_END | BPF_FROM_LE:
1116		switch (imm) {
1117		case 16: /* dst = (u16) cpu_to_le16(dst) */
1118			/* lrvr %dst,%dst */
1119			EMIT4(0xb91f0000, dst_reg, dst_reg);
1120			/* srl %dst,16(%r0) */
1121			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1122			/* llghr %dst,%dst */
1123			EMIT4(0xb9850000, dst_reg, dst_reg);
1124			if (insn_is_zext(&insn[1]))
1125				insn_count = 2;
1126			break;
1127		case 32: /* dst = (u32) cpu_to_le32(dst) */
1128			/* lrvr %dst,%dst */
1129			EMIT4(0xb91f0000, dst_reg, dst_reg);
1130			if (!fp->aux->verifier_zext)
1131				/* llgfr %dst,%dst */
1132				EMIT4(0xb9160000, dst_reg, dst_reg);
1133			break;
1134		case 64: /* dst = (u64) cpu_to_le64(dst) */
1135			/* lrvgr %dst,%dst */
1136			EMIT4(0xb90f0000, dst_reg, dst_reg);
1137			break;
1138		}
1139		break;
1140	/*
1141	 * BPF_NOSPEC (speculation barrier)
1142	 */
1143	case BPF_ST | BPF_NOSPEC:
1144		break;
1145	/*
1146	 * BPF_ST(X)
1147	 */
1148	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1149		/* stcy %src,off(%dst) */
1150		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1151		jit->seen |= SEEN_MEM;
1152		break;
1153	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1154		/* sthy %src,off(%dst) */
1155		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1156		jit->seen |= SEEN_MEM;
1157		break;
1158	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1159		/* sty %src,off(%dst) */
1160		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1161		jit->seen |= SEEN_MEM;
1162		break;
1163	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1164		/* stg %src,off(%dst) */
1165		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1166		jit->seen |= SEEN_MEM;
1167		break;
1168	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1169		/* lhi %w0,imm */
1170		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1171		/* stcy %w0,off(dst) */
1172		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1173		jit->seen |= SEEN_MEM;
1174		break;
1175	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1176		/* lhi %w0,imm */
1177		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1178		/* sthy %w0,off(dst) */
1179		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1180		jit->seen |= SEEN_MEM;
1181		break;
1182	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1183		/* llilf %w0,imm  */
1184		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1185		/* sty %w0,off(%dst) */
1186		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1187		jit->seen |= SEEN_MEM;
1188		break;
1189	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1190		/* lgfi %w0,imm */
1191		EMIT6_IMM(0xc0010000, REG_W0, imm);
1192		/* stg %w0,off(%dst) */
1193		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1194		jit->seen |= SEEN_MEM;
1195		break;
1196	/*
1197	 * BPF_ATOMIC
1198	 */
1199	case BPF_STX | BPF_ATOMIC | BPF_DW:
1200	case BPF_STX | BPF_ATOMIC | BPF_W:
1201	{
1202		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1203
1204		switch (insn->imm) {
1205/* {op32|op64} {%w0|%src},%src,off(%dst) */
1206#define EMIT_ATOMIC(op32, op64) do {					\
1207	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1208		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1209		      src_reg, dst_reg, off);				\
1210	if (is32 && (insn->imm & BPF_FETCH))				\
1211		EMIT_ZERO(src_reg);					\
1212} while (0)
1213		case BPF_ADD:
1214		case BPF_ADD | BPF_FETCH:
1215			/* {laal|laalg} */
1216			EMIT_ATOMIC(0x00fa, 0x00ea);
1217			break;
1218		case BPF_AND:
1219		case BPF_AND | BPF_FETCH:
1220			/* {lan|lang} */
1221			EMIT_ATOMIC(0x00f4, 0x00e4);
1222			break;
1223		case BPF_OR:
1224		case BPF_OR | BPF_FETCH:
1225			/* {lao|laog} */
1226			EMIT_ATOMIC(0x00f6, 0x00e6);
1227			break;
1228		case BPF_XOR:
1229		case BPF_XOR | BPF_FETCH:
1230			/* {lax|laxg} */
1231			EMIT_ATOMIC(0x00f7, 0x00e7);
1232			break;
1233#undef EMIT_ATOMIC
1234		case BPF_XCHG:
1235			/* {ly|lg} %w0,off(%dst) */
1236			EMIT6_DISP_LH(0xe3000000,
1237				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1238				      dst_reg, off);
1239			/* 0: {csy|csg} %w0,%src,off(%dst) */
1240			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1241				      REG_W0, src_reg, dst_reg, off);
1242			/* brc 4,0b */
1243			EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1244			/* {llgfr|lgr} %src,%w0 */
1245			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1246			if (is32 && insn_is_zext(&insn[1]))
1247				insn_count = 2;
1248			break;
1249		case BPF_CMPXCHG:
1250			/* 0: {csy|csg} %b0,%src,off(%dst) */
1251			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1252				      BPF_REG_0, src_reg, dst_reg, off);
1253			break;
1254		default:
1255			pr_err("Unknown atomic operation %02x\n", insn->imm);
1256			return -1;
1257		}
1258
1259		jit->seen |= SEEN_MEM;
1260		break;
1261	}
1262	/*
1263	 * BPF_LDX
1264	 */
1265	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1266	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1267		/* llgc %dst,0(off,%src) */
1268		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1269		jit->seen |= SEEN_MEM;
1270		if (insn_is_zext(&insn[1]))
1271			insn_count = 2;
1272		break;
1273	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1274	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1275		/* llgh %dst,0(off,%src) */
1276		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1277		jit->seen |= SEEN_MEM;
1278		if (insn_is_zext(&insn[1]))
1279			insn_count = 2;
1280		break;
1281	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1282	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1283		/* llgf %dst,off(%src) */
1284		jit->seen |= SEEN_MEM;
1285		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1286		if (insn_is_zext(&insn[1]))
1287			insn_count = 2;
1288		break;
1289	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1290	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1291		/* lg %dst,0(off,%src) */
1292		jit->seen |= SEEN_MEM;
1293		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1294		break;
1295	/*
1296	 * BPF_JMP / CALL
1297	 */
1298	case BPF_JMP | BPF_CALL:
1299	{
1300		u64 func;
1301		bool func_addr_fixed;
1302		int ret;
1303
1304		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1305					    &func, &func_addr_fixed);
1306		if (ret < 0)
1307			return -1;
1308
1309		REG_SET_SEEN(BPF_REG_5);
1310		jit->seen |= SEEN_FUNC;
1311		/* lgrl %w1,func */
1312		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1313		if (nospec_uses_trampoline()) {
1314			/* brasl %r14,__s390_indirect_jump_r1 */
1315			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1316		} else {
1317			/* basr %r14,%w1 */
1318			EMIT2(0x0d00, REG_14, REG_W1);
1319		}
1320		/* lgr %b0,%r2: load return value into %b0 */
1321		EMIT4(0xb9040000, BPF_REG_0, REG_2);
 
 
 
 
 
 
 
1322		break;
1323	}
1324	case BPF_JMP | BPF_TAIL_CALL: {
1325		int patch_1_clrj, patch_2_clij, patch_3_brc;
1326
1327		/*
1328		 * Implicit input:
1329		 *  B1: pointer to ctx
1330		 *  B2: pointer to bpf_array
1331		 *  B3: index in bpf_array
1332		 */
1333		jit->seen |= SEEN_TAIL_CALL;
1334
1335		/*
1336		 * if (index >= array->map.max_entries)
1337		 *         goto out;
1338		 */
1339
1340		/* llgf %w1,map.max_entries(%b2) */
1341		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1342			      offsetof(struct bpf_array, map.max_entries));
1343		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1344		/* clrj %b3,%w1,0xa,out */
1345		patch_1_clrj = jit->prg;
1346		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1347				 jit->prg);
1348
1349		/*
1350		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1351		 *         goto out;
1352		 */
1353
1354		if (jit->seen & SEEN_STACK)
1355			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1356		else
1357			off = STK_OFF_TCCNT;
1358		/* lhi %w0,1 */
1359		EMIT4_IMM(0xa7080000, REG_W0, 1);
1360		/* laal %w1,%w0,off(%r15) */
1361		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1362		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1363		patch_2_clij = jit->prg;
1364		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1365				 2, jit->prg);
1366
1367		/*
1368		 * prog = array->ptrs[index];
1369		 * if (prog == NULL)
1370		 *         goto out;
1371		 */
1372
1373		/* llgfr %r1,%b3: %r1 = (u32) index */
1374		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1375		/* sllg %r1,%r1,3: %r1 *= 8 */
1376		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1377		/* ltg %r1,prog(%b2,%r1) */
1378		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1379			      REG_1, offsetof(struct bpf_array, ptrs));
1380		/* brc 0x8,out */
1381		patch_3_brc = jit->prg;
1382		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1383
1384		/*
1385		 * Restore registers before calling function
1386		 */
1387		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1388
1389		/*
1390		 * goto *(prog->bpf_func + tail_call_start);
1391		 */
1392
1393		/* lg %r1,bpf_func(%r1) */
1394		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1395			      offsetof(struct bpf_prog, bpf_func));
1396		/* bc 0xf,tail_call_start(%r1) */
1397		_EMIT4(0x47f01000 + jit->tail_call_start);
1398		/* out: */
1399		if (jit->prg_buf) {
1400			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1401				(jit->prg - patch_1_clrj) >> 1;
1402			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1403				(jit->prg - patch_2_clij) >> 1;
1404			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1405				(jit->prg - patch_3_brc) >> 1;
1406		}
1407		break;
1408	}
1409	case BPF_JMP | BPF_EXIT: /* return b0 */
1410		last = (i == fp->len - 1) ? 1 : 0;
1411		if (last)
1412			break;
1413		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1414			/* brc 0xf, <exit> */
1415			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1416		else
1417			/* brcl 0xf, <exit> */
1418			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1419		break;
1420	/*
1421	 * Branch relative (number of skipped instructions) to offset on
1422	 * condition.
1423	 *
1424	 * Condition code to mask mapping:
1425	 *
1426	 * CC | Description	   | Mask
1427	 * ------------------------------
1428	 * 0  | Operands equal	   |	8
1429	 * 1  | First operand low  |	4
1430	 * 2  | First operand high |	2
1431	 * 3  | Unused		   |	1
1432	 *
1433	 * For s390x relative branches: ip = ip + off_bytes
1434	 * For BPF relative branches:	insn = insn + off_insns + 1
1435	 *
1436	 * For example for s390x with offset 0 we jump to the branch
1437	 * instruction itself (loop) and for BPF with offset 0 we
1438	 * branch to the instruction behind the branch.
1439	 */
1440	case BPF_JMP | BPF_JA: /* if (true) */
1441		mask = 0xf000; /* j */
1442		goto branch_oc;
1443	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1444	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1445		mask = 0x2000; /* jh */
1446		goto branch_ks;
1447	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1448	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1449		mask = 0x4000; /* jl */
1450		goto branch_ks;
1451	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1452	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1453		mask = 0xa000; /* jhe */
1454		goto branch_ks;
1455	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1456	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1457		mask = 0xc000; /* jle */
1458		goto branch_ks;
1459	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1460	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1461		mask = 0x2000; /* jh */
1462		goto branch_ku;
1463	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1464	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1465		mask = 0x4000; /* jl */
1466		goto branch_ku;
1467	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1468	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1469		mask = 0xa000; /* jhe */
1470		goto branch_ku;
1471	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1472	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1473		mask = 0xc000; /* jle */
1474		goto branch_ku;
1475	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1476	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1477		mask = 0x7000; /* jne */
1478		goto branch_ku;
1479	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1480	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1481		mask = 0x8000; /* je */
1482		goto branch_ku;
1483	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1484	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1485		mask = 0x7000; /* jnz */
1486		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1487			/* llilf %w1,imm (load zero extend imm) */
1488			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1489			/* nr %w1,%dst */
1490			EMIT2(0x1400, REG_W1, dst_reg);
1491		} else {
1492			/* lgfi %w1,imm (load sign extend imm) */
1493			EMIT6_IMM(0xc0010000, REG_W1, imm);
1494			/* ngr %w1,%dst */
1495			EMIT4(0xb9800000, REG_W1, dst_reg);
1496		}
1497		goto branch_oc;
1498
1499	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1500	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1501		mask = 0x2000; /* jh */
1502		goto branch_xs;
1503	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1504	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1505		mask = 0x4000; /* jl */
1506		goto branch_xs;
1507	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1508	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1509		mask = 0xa000; /* jhe */
1510		goto branch_xs;
1511	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1512	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1513		mask = 0xc000; /* jle */
1514		goto branch_xs;
1515	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1516	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1517		mask = 0x2000; /* jh */
1518		goto branch_xu;
1519	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1520	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1521		mask = 0x4000; /* jl */
1522		goto branch_xu;
1523	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1524	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1525		mask = 0xa000; /* jhe */
1526		goto branch_xu;
1527	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1528	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1529		mask = 0xc000; /* jle */
1530		goto branch_xu;
1531	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1532	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1533		mask = 0x7000; /* jne */
1534		goto branch_xu;
1535	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1536	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1537		mask = 0x8000; /* je */
1538		goto branch_xu;
1539	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1540	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1541	{
1542		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1543
1544		mask = 0x7000; /* jnz */
1545		/* nrk or ngrk %w1,%dst,%src */
1546		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1547			  REG_W1, dst_reg, src_reg);
1548		goto branch_oc;
1549branch_ks:
1550		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1551		/* cfi or cgfi %dst,imm */
1552		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1553			  dst_reg, imm);
1554		if (!is_first_pass(jit) &&
1555		    can_use_rel(jit, addrs[i + off + 1])) {
1556			/* brc mask,off */
1557			EMIT4_PCREL_RIC(0xa7040000,
1558					mask >> 12, addrs[i + off + 1]);
1559		} else {
1560			/* brcl mask,off */
1561			EMIT6_PCREL_RILC(0xc0040000,
1562					 mask >> 12, addrs[i + off + 1]);
1563		}
1564		break;
1565branch_ku:
1566		/* lgfi %w1,imm (load sign extend imm) */
1567		src_reg = REG_1;
1568		EMIT6_IMM(0xc0010000, src_reg, imm);
1569		goto branch_xu;
 
1570branch_xs:
1571		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1572		if (!is_first_pass(jit) &&
1573		    can_use_rel(jit, addrs[i + off + 1])) {
1574			/* crj or cgrj %dst,%src,mask,off */
1575			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1576				    dst_reg, src_reg, i, off, mask);
1577		} else {
1578			/* cr or cgr %dst,%src */
1579			if (is_jmp32)
1580				EMIT2(0x1900, dst_reg, src_reg);
1581			else
1582				EMIT4(0xb9200000, dst_reg, src_reg);
1583			/* brcl mask,off */
1584			EMIT6_PCREL_RILC(0xc0040000,
1585					 mask >> 12, addrs[i + off + 1]);
1586		}
1587		break;
1588branch_xu:
1589		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1590		if (!is_first_pass(jit) &&
1591		    can_use_rel(jit, addrs[i + off + 1])) {
1592			/* clrj or clgrj %dst,%src,mask,off */
1593			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1594				    dst_reg, src_reg, i, off, mask);
1595		} else {
1596			/* clr or clgr %dst,%src */
1597			if (is_jmp32)
1598				EMIT2(0x1500, dst_reg, src_reg);
1599			else
1600				EMIT4(0xb9210000, dst_reg, src_reg);
1601			/* brcl mask,off */
1602			EMIT6_PCREL_RILC(0xc0040000,
1603					 mask >> 12, addrs[i + off + 1]);
1604		}
1605		break;
1606branch_oc:
1607		if (!is_first_pass(jit) &&
1608		    can_use_rel(jit, addrs[i + off + 1])) {
1609			/* brc mask,off */
1610			EMIT4_PCREL_RIC(0xa7040000,
1611					mask >> 12, addrs[i + off + 1]);
1612		} else {
1613			/* brcl mask,off */
1614			EMIT6_PCREL_RILC(0xc0040000,
1615					 mask >> 12, addrs[i + off + 1]);
1616		}
1617		break;
1618	}
1619	default: /* too complex, give up */
1620		pr_err("Unknown opcode %02x\n", insn->code);
1621		return -1;
1622	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1623
1624	if (probe_prg != -1) {
1625		/*
1626		 * Handlers of certain exceptions leave psw.addr pointing to
1627		 * the instruction directly after the failing one. Therefore,
1628		 * create two exception table entries and also add a nop in
1629		 * case two probing instructions come directly after each
1630		 * other.
 
 
 
 
 
 
 
1631		 */
1632		nop_prg = jit->prg;
1633		/* bcr 0,%0 */
1634		_EMIT2(0x0700);
1635		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1636		if (err < 0)
1637			return err;
1638	}
1639
1640	return insn_count;
1641}
1642
1643/*
1644 * Return whether new i-th instruction address does not violate any invariant
1645 */
1646static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1647{
1648	/* On the first pass anything goes */
1649	if (is_first_pass(jit))
1650		return true;
1651
1652	/* The codegen pass must not change anything */
1653	if (is_codegen_pass(jit))
1654		return jit->addrs[i] == jit->prg;
 
1655
1656	/* Passes in between must not increase code size */
1657	return jit->addrs[i] >= jit->prg;
1658}
1659
1660/*
1661 * Update the address of i-th instruction
1662 */
1663static int bpf_set_addr(struct bpf_jit *jit, int i)
1664{
1665	int delta;
1666
1667	if (is_codegen_pass(jit)) {
1668		delta = jit->prg - jit->addrs[i];
1669		if (delta < 0)
1670			bpf_skip(jit, -delta);
1671	}
1672	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1673		return -1;
1674	jit->addrs[i] = jit->prg;
1675	return 0;
1676}
1677
1678/*
1679 * Compile eBPF program into s390x code
1680 */
1681static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1682			bool extra_pass, u32 stack_depth)
1683{
1684	int i, insn_count, lit32_size, lit64_size;
1685
1686	jit->lit32 = jit->lit32_start;
1687	jit->lit64 = jit->lit64_start;
1688	jit->prg = 0;
1689	jit->excnt = 0;
1690
1691	bpf_jit_prologue(jit, stack_depth);
1692	if (bpf_set_addr(jit, 0) < 0)
1693		return -1;
1694	for (i = 0; i < fp->len; i += insn_count) {
1695		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1696		if (insn_count < 0)
1697			return -1;
1698		/* Next instruction address */
1699		if (bpf_set_addr(jit, i + insn_count) < 0)
1700			return -1;
1701	}
1702	bpf_jit_epilogue(jit, stack_depth);
1703
1704	lit32_size = jit->lit32 - jit->lit32_start;
1705	lit64_size = jit->lit64 - jit->lit64_start;
1706	jit->lit32_start = jit->prg;
1707	if (lit32_size)
1708		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1709	jit->lit64_start = jit->lit32_start + lit32_size;
1710	if (lit64_size)
1711		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1712	jit->size = jit->lit64_start + lit64_size;
1713	jit->size_prg = jit->prg;
1714
1715	if (WARN_ON_ONCE(fp->aux->extable &&
1716			 jit->excnt != fp->aux->num_exentries))
1717		/* Verifier bug - too many entries. */
1718		return -1;
1719
1720	return 0;
1721}
1722
1723bool bpf_jit_needs_zext(void)
1724{
1725	return true;
1726}
1727
1728struct s390_jit_data {
1729	struct bpf_binary_header *header;
1730	struct bpf_jit ctx;
1731	int pass;
1732};
1733
1734static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1735					       struct bpf_prog *fp)
1736{
1737	struct bpf_binary_header *header;
1738	u32 extable_size;
1739	u32 code_size;
1740
1741	/* We need two entries per insn. */
1742	fp->aux->num_exentries *= 2;
1743
1744	code_size = roundup(jit->size,
1745			    __alignof__(struct exception_table_entry));
1746	extable_size = fp->aux->num_exentries *
1747		sizeof(struct exception_table_entry);
1748	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1749				      8, jit_fill_hole);
1750	if (!header)
1751		return NULL;
1752	fp->aux->extable = (struct exception_table_entry *)
1753		(jit->prg_buf + code_size);
1754	return header;
1755}
1756
1757/*
1758 * Compile eBPF program "fp"
1759 */
1760struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1761{
1762	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1763	struct bpf_prog *tmp, *orig_fp = fp;
1764	struct bpf_binary_header *header;
1765	struct s390_jit_data *jit_data;
1766	bool tmp_blinded = false;
1767	bool extra_pass = false;
1768	struct bpf_jit jit;
1769	int pass;
1770
1771	if (!fp->jit_requested)
1772		return orig_fp;
1773
1774	tmp = bpf_jit_blind_constants(fp);
1775	/*
1776	 * If blinding was requested and we failed during blinding,
1777	 * we must fall back to the interpreter.
1778	 */
1779	if (IS_ERR(tmp))
1780		return orig_fp;
1781	if (tmp != fp) {
1782		tmp_blinded = true;
1783		fp = tmp;
1784	}
1785
1786	jit_data = fp->aux->jit_data;
1787	if (!jit_data) {
1788		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1789		if (!jit_data) {
1790			fp = orig_fp;
1791			goto out;
1792		}
1793		fp->aux->jit_data = jit_data;
1794	}
1795	if (jit_data->ctx.addrs) {
1796		jit = jit_data->ctx;
1797		header = jit_data->header;
1798		extra_pass = true;
1799		pass = jit_data->pass + 1;
1800		goto skip_init_ctx;
1801	}
1802
1803	memset(&jit, 0, sizeof(jit));
1804	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1805	if (jit.addrs == NULL) {
1806		fp = orig_fp;
1807		goto free_addrs;
1808	}
1809	/*
1810	 * Three initial passes:
1811	 *   - 1/2: Determine clobbered registers
1812	 *   - 3:   Calculate program size and addrs array
1813	 */
1814	for (pass = 1; pass <= 3; pass++) {
1815		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1816			fp = orig_fp;
1817			goto free_addrs;
1818		}
1819	}
1820	/*
1821	 * Final pass: Allocate and generate program
1822	 */
1823	header = bpf_jit_alloc(&jit, fp);
 
 
 
 
1824	if (!header) {
1825		fp = orig_fp;
1826		goto free_addrs;
1827	}
1828skip_init_ctx:
1829	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1830		bpf_jit_binary_free(header);
1831		fp = orig_fp;
1832		goto free_addrs;
1833	}
1834	if (bpf_jit_enable > 1) {
1835		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1836		print_fn_code(jit.prg_buf, jit.size_prg);
 
1837	}
1838	if (!fp->is_func || extra_pass) {
1839		bpf_jit_binary_lock_ro(header);
1840	} else {
1841		jit_data->header = header;
1842		jit_data->ctx = jit;
1843		jit_data->pass = pass;
1844	}
1845	fp->bpf_func = (void *) jit.prg_buf;
1846	fp->jited = 1;
1847	fp->jited_len = jit.size;
1848
1849	if (!fp->is_func || extra_pass) {
1850		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1851free_addrs:
1852		kvfree(jit.addrs);
1853		kfree(jit_data);
1854		fp->aux->jit_data = NULL;
1855	}
 
 
1856out:
1857	if (tmp_blinded)
1858		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1859					   tmp : orig_fp);
1860	return fp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1861}
v4.10.11
 
   1/*
   2 * BPF Jit compiler for s390.
   3 *
   4 * Minimum build requirements:
   5 *
   6 *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
   7 *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
   8 *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
   9 *  - PACK_STACK
  10 *  - 64BIT
  11 *
  12 * Copyright IBM Corp. 2012,2015
  13 *
  14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  15 *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
  16 */
  17
  18#define KMSG_COMPONENT "bpf_jit"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/netdevice.h>
  22#include <linux/filter.h>
  23#include <linux/init.h>
  24#include <linux/bpf.h>
 
 
  25#include <asm/cacheflush.h>
 
  26#include <asm/dis.h>
 
 
 
  27#include "bpf_jit.h"
  28
  29int bpf_jit_enable __read_mostly;
  30
  31struct bpf_jit {
  32	u32 seen;		/* Flags to remember seen eBPF instructions */
  33	u32 seen_reg[16];	/* Array to remember which registers are used */
  34	u32 *addrs;		/* Array with relative instruction addresses */
  35	u8 *prg_buf;		/* Start of program */
  36	int size;		/* Size of program and literal pool */
  37	int size_prg;		/* Size of program */
  38	int prg;		/* Current position in program */
  39	int lit_start;		/* Start of literal pool */
  40	int lit;		/* Current position in literal pool */
 
 
  41	int base_ip;		/* Base address for literal pool */
  42	int ret0_ip;		/* Address of return 0 */
  43	int exit_ip;		/* Address of exit */
 
 
  44	int tail_call_start;	/* Tail call start offset */
  45	int labels[1];		/* Labels for local jumps */
  46};
  47
  48#define BPF_SIZE_MAX	0xffff	/* Max size for program (16 bit branches) */
  49
  50#define SEEN_SKB	1	/* skb access */
  51#define SEEN_MEM	2	/* use mem[] for temporary storage */
  52#define SEEN_RET0	4	/* ret0_ip points to a valid return 0 */
  53#define SEEN_LITERAL	8	/* code uses literals */
  54#define SEEN_FUNC	16	/* calls C functions */
  55#define SEEN_TAIL_CALL	32	/* code uses tail calls */
  56#define SEEN_SKB_CHANGE	64	/* code changes skb data */
  57#define SEEN_REG_AX	128	/* code uses constant blinding */
  58#define SEEN_STACK	(SEEN_FUNC | SEEN_MEM | SEEN_SKB)
  59
  60/*
  61 * s390 registers
  62 */
  63#define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
  64#define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
  65#define REG_SKB_DATA	(MAX_BPF_JIT_REG + 2)	/* SKB data register */
  66#define REG_L		(MAX_BPF_JIT_REG + 3)	/* Literal pool register */
  67#define REG_15		(MAX_BPF_JIT_REG + 4)	/* Register 15 */
  68#define REG_0		REG_W0			/* Register 0 */
  69#define REG_1		REG_W1			/* Register 1 */
  70#define REG_2		BPF_REG_1		/* Register 2 */
  71#define REG_14		BPF_REG_0		/* Register 14 */
  72
  73/*
  74 * Mapping of BPF registers to s390 registers
  75 */
  76static const int reg2hex[] = {
  77	/* Return code */
  78	[BPF_REG_0]	= 14,
  79	/* Function parameters */
  80	[BPF_REG_1]	= 2,
  81	[BPF_REG_2]	= 3,
  82	[BPF_REG_3]	= 4,
  83	[BPF_REG_4]	= 5,
  84	[BPF_REG_5]	= 6,
  85	/* Call saved registers */
  86	[BPF_REG_6]	= 7,
  87	[BPF_REG_7]	= 8,
  88	[BPF_REG_8]	= 9,
  89	[BPF_REG_9]	= 10,
  90	/* BPF stack pointer */
  91	[BPF_REG_FP]	= 13,
  92	/* Register for blinding (shared with REG_SKB_DATA) */
  93	[BPF_REG_AX]	= 12,
  94	/* SKB data pointer */
  95	[REG_SKB_DATA]	= 12,
  96	/* Work registers for s390x backend */
  97	[REG_W0]	= 0,
  98	[REG_W1]	= 1,
  99	[REG_L]		= 11,
 100	[REG_15]	= 15,
 101};
 102
 103static inline u32 reg(u32 dst_reg, u32 src_reg)
 104{
 105	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
 106}
 107
 108static inline u32 reg_high(u32 reg)
 109{
 110	return reg2hex[reg] << 4;
 111}
 112
 113static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
 114{
 115	u32 r1 = reg2hex[b1];
 116
 117	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
 118		jit->seen_reg[r1] = 1;
 119}
 120
 121#define REG_SET_SEEN(b1)					\
 122({								\
 123	reg_set_seen(jit, b1);					\
 124})
 125
 126#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
 127
 128/*
 129 * EMIT macros for code generation
 130 */
 131
 132#define _EMIT2(op)						\
 133({								\
 134	if (jit->prg_buf)					\
 135		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
 136	jit->prg += 2;						\
 137})
 138
 139#define EMIT2(op, b1, b2)					\
 140({								\
 141	_EMIT2(op | reg(b1, b2));				\
 142	REG_SET_SEEN(b1);					\
 143	REG_SET_SEEN(b2);					\
 144})
 145
 146#define _EMIT4(op)						\
 147({								\
 148	if (jit->prg_buf)					\
 149		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
 150	jit->prg += 4;						\
 151})
 152
 153#define EMIT4(op, b1, b2)					\
 154({								\
 155	_EMIT4(op | reg(b1, b2));				\
 156	REG_SET_SEEN(b1);					\
 157	REG_SET_SEEN(b2);					\
 158})
 159
 160#define EMIT4_RRF(op, b1, b2, b3)				\
 161({								\
 162	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
 163	REG_SET_SEEN(b1);					\
 164	REG_SET_SEEN(b2);					\
 165	REG_SET_SEEN(b3);					\
 166})
 167
 168#define _EMIT4_DISP(op, disp)					\
 169({								\
 170	unsigned int __disp = (disp) & 0xfff;			\
 171	_EMIT4(op | __disp);					\
 172})
 173
 174#define EMIT4_DISP(op, b1, b2, disp)				\
 175({								\
 176	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
 177		    reg_high(b2) << 8, disp);			\
 178	REG_SET_SEEN(b1);					\
 179	REG_SET_SEEN(b2);					\
 180})
 181
 182#define EMIT4_IMM(op, b1, imm)					\
 183({								\
 184	unsigned int __imm = (imm) & 0xffff;			\
 185	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
 186	REG_SET_SEEN(b1);					\
 187})
 188
 189#define EMIT4_PCREL(op, pcrel)					\
 190({								\
 191	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
 192	_EMIT4(op | __pcrel);					\
 
 
 
 
 
 
 193})
 194
 195#define _EMIT6(op1, op2)					\
 196({								\
 197	if (jit->prg_buf) {					\
 198		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
 199		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
 200	}							\
 201	jit->prg += 6;						\
 202})
 203
 204#define _EMIT6_DISP(op1, op2, disp)				\
 205({								\
 206	unsigned int __disp = (disp) & 0xfff;			\
 207	_EMIT6(op1 | __disp, op2);				\
 208})
 209
 210#define _EMIT6_DISP_LH(op1, op2, disp)				\
 211({								\
 212	u32 _disp = (u32) disp;					\
 213	unsigned int __disp_h = _disp & 0xff000;		\
 214	unsigned int __disp_l = _disp & 0x00fff;		\
 215	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
 216})
 217
 218#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
 219({								\
 220	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
 221		       reg_high(b3) << 8, op2, disp);		\
 222	REG_SET_SEEN(b1);					\
 223	REG_SET_SEEN(b2);					\
 224	REG_SET_SEEN(b3);					\
 225})
 226
 227#define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
 228({								\
 229	int rel = (jit->labels[label] - jit->prg) >> 1;		\
 230	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff),	\
 231	       op2 | mask << 12);				\
 232	REG_SET_SEEN(b1);					\
 233	REG_SET_SEEN(b2);					\
 234})
 235
 236#define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
 237({								\
 238	int rel = (jit->labels[label] - jit->prg) >> 1;		\
 239	_EMIT6(op1 | (reg_high(b1) | mask) << 16 |		\
 240		(rel & 0xffff), op2 | (imm & 0xff) << 8);	\
 241	REG_SET_SEEN(b1);					\
 242	BUILD_BUG_ON(((unsigned long) imm) > 0xff);		\
 243})
 244
 245#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
 246({								\
 247	/* Branch instruction needs 6 bytes */			\
 248	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
 249	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask);	\
 250	REG_SET_SEEN(b1);					\
 251	REG_SET_SEEN(b2);					\
 252})
 253
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254#define _EMIT6_IMM(op, imm)					\
 255({								\
 256	unsigned int __imm = (imm);				\
 257	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
 258})
 259
 260#define EMIT6_IMM(op, b1, imm)					\
 261({								\
 262	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
 263	REG_SET_SEEN(b1);					\
 264})
 265
 
 
 
 
 
 
 
 
 
 
 266#define EMIT_CONST_U32(val)					\
 267({								\
 
 
 
 
 
 
 268	unsigned int ret;					\
 269	ret = jit->lit - jit->base_ip;				\
 270	jit->seen |= SEEN_LITERAL;				\
 271	if (jit->prg_buf)					\
 272		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
 273	jit->lit += 4;						\
 274	ret;							\
 275})
 276
 277#define EMIT_CONST_U64(val)					\
 278({								\
 279	unsigned int ret;					\
 280	ret = jit->lit - jit->base_ip;				\
 281	jit->seen |= SEEN_LITERAL;				\
 282	if (jit->prg_buf)					\
 283		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
 284	jit->lit += 8;						\
 285	ret;							\
 286})
 287
 288#define EMIT_ZERO(b1)						\
 289({								\
 290	/* llgfr %dst,%dst (zero extend to 64 bit) */		\
 291	EMIT4(0xb9160000, b1, b1);				\
 292	REG_SET_SEEN(b1);					\
 
 
 293})
 294
 295/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296 * Fill whole space with illegal instructions
 297 */
 298static void jit_fill_hole(void *area, unsigned int size)
 299{
 300	memset(area, 0, size);
 301}
 302
 303/*
 304 * Save registers from "rs" (register start) to "re" (register end) on stack
 305 */
 306static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
 307{
 308	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 309
 310	if (rs == re)
 311		/* stg %rs,off(%r15) */
 312		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
 313	else
 314		/* stmg %rs,%re,off(%r15) */
 315		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
 316}
 317
 318/*
 319 * Restore registers from "rs" (register start) to "re" (register end) on stack
 320 */
 321static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re)
 322{
 323	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 324
 325	if (jit->seen & SEEN_STACK)
 326		off += STK_OFF;
 327
 328	if (rs == re)
 329		/* lg %rs,off(%r15) */
 330		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
 331	else
 332		/* lmg %rs,%re,off(%r15) */
 333		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
 334}
 335
 336/*
 337 * Return first seen register (from start)
 338 */
 339static int get_start(struct bpf_jit *jit, int start)
 340{
 341	int i;
 342
 343	for (i = start; i <= 15; i++) {
 344		if (jit->seen_reg[i])
 345			return i;
 346	}
 347	return 0;
 348}
 349
 350/*
 351 * Return last seen register (from start) (gap >= 2)
 352 */
 353static int get_end(struct bpf_jit *jit, int start)
 354{
 355	int i;
 356
 357	for (i = start; i < 15; i++) {
 358		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
 359			return i - 1;
 360	}
 361	return jit->seen_reg[15] ? 15 : 14;
 362}
 363
 364#define REGS_SAVE	1
 365#define REGS_RESTORE	0
 366/*
 367 * Save and restore clobbered registers (6-15) on stack.
 368 * We save/restore registers in chunks with gap >= 2 registers.
 369 */
 370static void save_restore_regs(struct bpf_jit *jit, int op)
 371{
 
 
 372
 373	int re = 6, rs;
 
 
 
 
 
 
 
 374
 375	do {
 376		rs = get_start(jit, re);
 377		if (!rs)
 378			break;
 379		re = get_end(jit, rs + 1);
 380		if (op == REGS_SAVE)
 381			save_regs(jit, rs, re);
 382		else
 383			restore_regs(jit, rs, re);
 384		re++;
 385	} while (re <= 15);
 386}
 387
 388/*
 389 * For SKB access %b1 contains the SKB pointer. For "bpf_jit.S"
 390 * we store the SKB header length on the stack and the SKB data
 391 * pointer in REG_SKB_DATA if BPF_REG_AX is not used.
 392 */
 393static void emit_load_skb_data_hlen(struct bpf_jit *jit)
 394{
 395	/* Header length: llgf %w1,<len>(%b1) */
 396	EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_1,
 397		      offsetof(struct sk_buff, len));
 398	/* s %w1,<data_len>(%b1) */
 399	EMIT4_DISP(0x5b000000, REG_W1, BPF_REG_1,
 400		   offsetof(struct sk_buff, data_len));
 401	/* stg %w1,ST_OFF_HLEN(%r0,%r15) */
 402	EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0, REG_15, STK_OFF_HLEN);
 403	if (!(jit->seen & SEEN_REG_AX))
 404		/* lg %skb_data,data_off(%b1) */
 405		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
 406			      BPF_REG_1, offsetof(struct sk_buff, data));
 407}
 408
 409/*
 410 * Emit function prologue
 411 *
 412 * Save registers and create stack frame if necessary.
 413 * See stack frame layout desription in "bpf_jit.h"!
 414 */
 415static void bpf_jit_prologue(struct bpf_jit *jit)
 416{
 417	if (jit->seen & SEEN_TAIL_CALL) {
 418		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
 419		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
 420	} else {
 421		/* j tail_call_start: NOP if no tail calls are used */
 422		EMIT4_PCREL(0xa7f40000, 6);
 423		_EMIT2(0);
 
 
 424	}
 425	/* Tail calls have to skip above initialization */
 426	jit->tail_call_start = jit->prg;
 427	/* Save registers */
 428	save_restore_regs(jit, REGS_SAVE);
 429	/* Setup literal pool */
 430	if (jit->seen & SEEN_LITERAL) {
 431		/* basr %r13,0 */
 432		EMIT2(0x0d00, REG_L, REG_0);
 433		jit->base_ip = jit->prg;
 
 
 
 
 
 
 
 434	}
 435	/* Setup stack and backchain */
 436	if (jit->seen & SEEN_STACK) {
 437		if (jit->seen & SEEN_FUNC)
 438			/* lgr %w1,%r15 (backchain) */
 439			EMIT4(0xb9040000, REG_W1, REG_15);
 440		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
 441		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
 442		/* aghi %r15,-STK_OFF */
 443		EMIT4_IMM(0xa70b0000, REG_15, -STK_OFF);
 444		if (jit->seen & SEEN_FUNC)
 445			/* stg %w1,152(%r15) (backchain) */
 446			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
 447				      REG_15, 152);
 448	}
 449	if (jit->seen & SEEN_SKB)
 450		emit_load_skb_data_hlen(jit);
 451	if (jit->seen & SEEN_SKB_CHANGE)
 452		/* stg %b1,ST_OFF_SKBP(%r0,%r15) */
 453		EMIT6_DISP_LH(0xe3000000, 0x0024, BPF_REG_1, REG_0, REG_15,
 454			      STK_OFF_SKBP);
 455}
 456
 457/*
 458 * Function epilogue
 459 */
 460static void bpf_jit_epilogue(struct bpf_jit *jit)
 461{
 462	/* Return 0 */
 463	if (jit->seen & SEEN_RET0) {
 464		jit->ret0_ip = jit->prg;
 465		/* lghi %b0,0 */
 466		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
 467	}
 468	jit->exit_ip = jit->prg;
 469	/* Load exit code: lgr %r2,%b0 */
 470	EMIT4(0xb9040000, REG_2, BPF_REG_0);
 471	/* Restore registers */
 472	save_restore_regs(jit, REGS_RESTORE);
 
 
 
 
 
 
 
 
 473	/* br %r14 */
 474	_EMIT2(0x07fe);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 475}
 476
 477/*
 478 * Compile one eBPF instruction into s390x code
 479 *
 480 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
 481 * stack space for the large switch statement.
 482 */
 483static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp, int i)
 
 484{
 485	struct bpf_insn *insn = &fp->insnsi[i];
 486	int jmp_off, last, insn_count = 1;
 487	unsigned int func_addr, mask;
 488	u32 dst_reg = insn->dst_reg;
 489	u32 src_reg = insn->src_reg;
 
 490	u32 *addrs = jit->addrs;
 491	s32 imm = insn->imm;
 492	s16 off = insn->off;
 
 
 
 
 
 
 
 
 493
 494	if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
 495		jit->seen |= SEEN_REG_AX;
 496	switch (insn->code) {
 497	/*
 498	 * BPF_MOV
 499	 */
 500	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
 501		/* llgfr %dst,%src */
 502		EMIT4(0xb9160000, dst_reg, src_reg);
 
 
 503		break;
 504	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
 505		/* lgr %dst,%src */
 506		EMIT4(0xb9040000, dst_reg, src_reg);
 507		break;
 508	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
 509		/* llilf %dst,imm */
 510		EMIT6_IMM(0xc00f0000, dst_reg, imm);
 
 
 511		break;
 512	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
 513		/* lgfi %dst,imm */
 514		EMIT6_IMM(0xc0010000, dst_reg, imm);
 515		break;
 516	/*
 517	 * BPF_LD 64
 518	 */
 519	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
 520	{
 521		/* 16 byte instruction that uses two 'struct bpf_insn' */
 522		u64 imm64;
 523
 524		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
 525		/* lg %dst,<d(imm)>(%l) */
 526		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
 527			      EMIT_CONST_U64(imm64));
 528		insn_count = 2;
 529		break;
 530	}
 531	/*
 532	 * BPF_ADD
 533	 */
 534	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
 535		/* ar %dst,%src */
 536		EMIT2(0x1a00, dst_reg, src_reg);
 537		EMIT_ZERO(dst_reg);
 538		break;
 539	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
 540		/* agr %dst,%src */
 541		EMIT4(0xb9080000, dst_reg, src_reg);
 542		break;
 543	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
 544		if (!imm)
 545			break;
 546		/* alfi %dst,imm */
 547		EMIT6_IMM(0xc20b0000, dst_reg, imm);
 548		EMIT_ZERO(dst_reg);
 549		break;
 550	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
 551		if (!imm)
 552			break;
 553		/* agfi %dst,imm */
 554		EMIT6_IMM(0xc2080000, dst_reg, imm);
 555		break;
 556	/*
 557	 * BPF_SUB
 558	 */
 559	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
 560		/* sr %dst,%src */
 561		EMIT2(0x1b00, dst_reg, src_reg);
 562		EMIT_ZERO(dst_reg);
 563		break;
 564	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
 565		/* sgr %dst,%src */
 566		EMIT4(0xb9090000, dst_reg, src_reg);
 567		break;
 568	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
 569		if (!imm)
 570			break;
 571		/* alfi %dst,-imm */
 572		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
 573		EMIT_ZERO(dst_reg);
 574		break;
 575	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
 576		if (!imm)
 577			break;
 578		/* agfi %dst,-imm */
 579		EMIT6_IMM(0xc2080000, dst_reg, -imm);
 
 
 
 
 
 580		break;
 581	/*
 582	 * BPF_MUL
 583	 */
 584	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
 585		/* msr %dst,%src */
 586		EMIT4(0xb2520000, dst_reg, src_reg);
 587		EMIT_ZERO(dst_reg);
 588		break;
 589	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
 590		/* msgr %dst,%src */
 591		EMIT4(0xb90c0000, dst_reg, src_reg);
 592		break;
 593	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
 594		if (imm == 1)
 595			break;
 596		/* msfi %r5,imm */
 597		EMIT6_IMM(0xc2010000, dst_reg, imm);
 598		EMIT_ZERO(dst_reg);
 599		break;
 600	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
 601		if (imm == 1)
 602			break;
 603		/* msgfi %dst,imm */
 604		EMIT6_IMM(0xc2000000, dst_reg, imm);
 605		break;
 606	/*
 607	 * BPF_DIV / BPF_MOD
 608	 */
 609	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
 610	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
 611	{
 612		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 613
 614		jit->seen |= SEEN_RET0;
 615		/* ltr %src,%src (if src == 0 goto fail) */
 616		EMIT2(0x1200, src_reg, src_reg);
 617		/* jz <ret0> */
 618		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
 619		/* lhi %w0,0 */
 620		EMIT4_IMM(0xa7080000, REG_W0, 0);
 621		/* lr %w1,%dst */
 622		EMIT2(0x1800, REG_W1, dst_reg);
 623		/* dlr %w0,%src */
 624		EMIT4(0xb9970000, REG_W0, src_reg);
 625		/* llgfr %dst,%rc */
 626		EMIT4(0xb9160000, dst_reg, rc_reg);
 
 
 627		break;
 628	}
 629	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
 630	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
 631	{
 632		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 633
 634		jit->seen |= SEEN_RET0;
 635		/* ltgr %src,%src (if src == 0 goto fail) */
 636		EMIT4(0xb9020000, src_reg, src_reg);
 637		/* jz <ret0> */
 638		EMIT4_PCREL(0xa7840000, jit->ret0_ip - jit->prg);
 639		/* lghi %w0,0 */
 640		EMIT4_IMM(0xa7090000, REG_W0, 0);
 641		/* lgr %w1,%dst */
 642		EMIT4(0xb9040000, REG_W1, dst_reg);
 643		/* dlgr %w0,%dst */
 644		EMIT4(0xb9870000, REG_W0, src_reg);
 645		/* lgr %dst,%rc */
 646		EMIT4(0xb9040000, dst_reg, rc_reg);
 647		break;
 648	}
 649	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
 650	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
 651	{
 652		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 653
 654		if (imm == 1) {
 655			if (BPF_OP(insn->code) == BPF_MOD)
 656				/* lhgi %dst,0 */
 657				EMIT4_IMM(0xa7090000, dst_reg, 0);
 
 
 658			break;
 659		}
 660		/* lhi %w0,0 */
 661		EMIT4_IMM(0xa7080000, REG_W0, 0);
 662		/* lr %w1,%dst */
 663		EMIT2(0x1800, REG_W1, dst_reg);
 664		/* dl %w0,<d(imm)>(%l) */
 665		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
 666			      EMIT_CONST_U32(imm));
 
 
 
 
 
 
 
 
 
 667		/* llgfr %dst,%rc */
 668		EMIT4(0xb9160000, dst_reg, rc_reg);
 
 
 669		break;
 670	}
 671	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
 672	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
 673	{
 674		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 675
 676		if (imm == 1) {
 677			if (BPF_OP(insn->code) == BPF_MOD)
 678				/* lhgi %dst,0 */
 679				EMIT4_IMM(0xa7090000, dst_reg, 0);
 680			break;
 681		}
 682		/* lghi %w0,0 */
 683		EMIT4_IMM(0xa7090000, REG_W0, 0);
 684		/* lgr %w1,%dst */
 685		EMIT4(0xb9040000, REG_W1, dst_reg);
 686		/* dlg %w0,<d(imm)>(%l) */
 687		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
 688			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 689		/* lgr %dst,%rc */
 690		EMIT4(0xb9040000, dst_reg, rc_reg);
 691		break;
 692	}
 693	/*
 694	 * BPF_AND
 695	 */
 696	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
 697		/* nr %dst,%src */
 698		EMIT2(0x1400, dst_reg, src_reg);
 699		EMIT_ZERO(dst_reg);
 700		break;
 701	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
 702		/* ngr %dst,%src */
 703		EMIT4(0xb9800000, dst_reg, src_reg);
 704		break;
 705	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
 706		/* nilf %dst,imm */
 707		EMIT6_IMM(0xc00b0000, dst_reg, imm);
 708		EMIT_ZERO(dst_reg);
 709		break;
 710	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
 711		/* ng %dst,<d(imm)>(%l) */
 712		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
 713			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 
 714		break;
 715	/*
 716	 * BPF_OR
 717	 */
 718	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
 719		/* or %dst,%src */
 720		EMIT2(0x1600, dst_reg, src_reg);
 721		EMIT_ZERO(dst_reg);
 722		break;
 723	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
 724		/* ogr %dst,%src */
 725		EMIT4(0xb9810000, dst_reg, src_reg);
 726		break;
 727	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
 728		/* oilf %dst,imm */
 729		EMIT6_IMM(0xc00d0000, dst_reg, imm);
 730		EMIT_ZERO(dst_reg);
 731		break;
 732	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
 733		/* og %dst,<d(imm)>(%l) */
 734		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
 735			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 
 736		break;
 737	/*
 738	 * BPF_XOR
 739	 */
 740	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
 741		/* xr %dst,%src */
 742		EMIT2(0x1700, dst_reg, src_reg);
 743		EMIT_ZERO(dst_reg);
 744		break;
 745	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
 746		/* xgr %dst,%src */
 747		EMIT4(0xb9820000, dst_reg, src_reg);
 748		break;
 749	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
 750		if (!imm)
 751			break;
 752		/* xilf %dst,imm */
 753		EMIT6_IMM(0xc0070000, dst_reg, imm);
 754		EMIT_ZERO(dst_reg);
 755		break;
 756	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
 757		/* xg %dst,<d(imm)>(%l) */
 758		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
 759			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 
 760		break;
 761	/*
 762	 * BPF_LSH
 763	 */
 764	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
 765		/* sll %dst,0(%src) */
 766		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
 767		EMIT_ZERO(dst_reg);
 768		break;
 769	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
 770		/* sllg %dst,%dst,0(%src) */
 771		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
 772		break;
 773	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
 774		if (imm == 0)
 775			break;
 776		/* sll %dst,imm(%r0) */
 777		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
 778		EMIT_ZERO(dst_reg);
 779		break;
 780	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
 781		if (imm == 0)
 782			break;
 783		/* sllg %dst,%dst,imm(%r0) */
 784		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
 785		break;
 786	/*
 787	 * BPF_RSH
 788	 */
 789	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
 790		/* srl %dst,0(%src) */
 791		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
 792		EMIT_ZERO(dst_reg);
 793		break;
 794	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
 795		/* srlg %dst,%dst,0(%src) */
 796		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
 797		break;
 798	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
 799		if (imm == 0)
 800			break;
 801		/* srl %dst,imm(%r0) */
 802		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
 803		EMIT_ZERO(dst_reg);
 804		break;
 805	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
 806		if (imm == 0)
 807			break;
 808		/* srlg %dst,%dst,imm(%r0) */
 809		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
 810		break;
 811	/*
 812	 * BPF_ARSH
 813	 */
 
 
 
 
 
 814	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
 815		/* srag %dst,%dst,0(%src) */
 816		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
 817		break;
 
 
 
 
 
 
 
 818	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
 819		if (imm == 0)
 820			break;
 821		/* srag %dst,%dst,imm(%r0) */
 822		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
 823		break;
 824	/*
 825	 * BPF_NEG
 826	 */
 827	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
 828		/* lcr %dst,%dst */
 829		EMIT2(0x1300, dst_reg, dst_reg);
 830		EMIT_ZERO(dst_reg);
 831		break;
 832	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
 833		/* lcgr %dst,%dst */
 834		EMIT4(0xb9130000, dst_reg, dst_reg);
 835		break;
 836	/*
 837	 * BPF_FROM_BE/LE
 838	 */
 839	case BPF_ALU | BPF_END | BPF_FROM_BE:
 840		/* s390 is big endian, therefore only clear high order bytes */
 841		switch (imm) {
 842		case 16: /* dst = (u16) cpu_to_be16(dst) */
 843			/* llghr %dst,%dst */
 844			EMIT4(0xb9850000, dst_reg, dst_reg);
 
 
 845			break;
 846		case 32: /* dst = (u32) cpu_to_be32(dst) */
 847			/* llgfr %dst,%dst */
 848			EMIT4(0xb9160000, dst_reg, dst_reg);
 
 849			break;
 850		case 64: /* dst = (u64) cpu_to_be64(dst) */
 851			break;
 852		}
 853		break;
 854	case BPF_ALU | BPF_END | BPF_FROM_LE:
 855		switch (imm) {
 856		case 16: /* dst = (u16) cpu_to_le16(dst) */
 857			/* lrvr %dst,%dst */
 858			EMIT4(0xb91f0000, dst_reg, dst_reg);
 859			/* srl %dst,16(%r0) */
 860			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
 861			/* llghr %dst,%dst */
 862			EMIT4(0xb9850000, dst_reg, dst_reg);
 
 
 863			break;
 864		case 32: /* dst = (u32) cpu_to_le32(dst) */
 865			/* lrvr %dst,%dst */
 866			EMIT4(0xb91f0000, dst_reg, dst_reg);
 867			/* llgfr %dst,%dst */
 868			EMIT4(0xb9160000, dst_reg, dst_reg);
 
 869			break;
 870		case 64: /* dst = (u64) cpu_to_le64(dst) */
 871			/* lrvgr %dst,%dst */
 872			EMIT4(0xb90f0000, dst_reg, dst_reg);
 873			break;
 874		}
 875		break;
 876	/*
 
 
 
 
 
 877	 * BPF_ST(X)
 878	 */
 879	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
 880		/* stcy %src,off(%dst) */
 881		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
 882		jit->seen |= SEEN_MEM;
 883		break;
 884	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
 885		/* sthy %src,off(%dst) */
 886		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
 887		jit->seen |= SEEN_MEM;
 888		break;
 889	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
 890		/* sty %src,off(%dst) */
 891		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
 892		jit->seen |= SEEN_MEM;
 893		break;
 894	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
 895		/* stg %src,off(%dst) */
 896		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
 897		jit->seen |= SEEN_MEM;
 898		break;
 899	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
 900		/* lhi %w0,imm */
 901		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
 902		/* stcy %w0,off(dst) */
 903		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
 904		jit->seen |= SEEN_MEM;
 905		break;
 906	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
 907		/* lhi %w0,imm */
 908		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
 909		/* sthy %w0,off(dst) */
 910		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
 911		jit->seen |= SEEN_MEM;
 912		break;
 913	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
 914		/* llilf %w0,imm  */
 915		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
 916		/* sty %w0,off(%dst) */
 917		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
 918		jit->seen |= SEEN_MEM;
 919		break;
 920	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
 921		/* lgfi %w0,imm */
 922		EMIT6_IMM(0xc0010000, REG_W0, imm);
 923		/* stg %w0,off(%dst) */
 924		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
 925		jit->seen |= SEEN_MEM;
 926		break;
 927	/*
 928	 * BPF_STX XADD (atomic_add)
 929	 */
 930	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
 931		/* laal %w0,%src,off(%dst) */
 932		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
 933			      dst_reg, off);
 934		jit->seen |= SEEN_MEM;
 935		break;
 936	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
 937		/* laalg %w0,%src,off(%dst) */
 938		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
 939			      dst_reg, off);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 940		jit->seen |= SEEN_MEM;
 941		break;
 
 942	/*
 943	 * BPF_LDX
 944	 */
 945	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
 
 946		/* llgc %dst,0(off,%src) */
 947		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
 948		jit->seen |= SEEN_MEM;
 
 
 949		break;
 950	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
 
 951		/* llgh %dst,0(off,%src) */
 952		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
 953		jit->seen |= SEEN_MEM;
 
 
 954		break;
 955	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
 
 956		/* llgf %dst,off(%src) */
 957		jit->seen |= SEEN_MEM;
 958		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
 
 
 959		break;
 960	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
 
 961		/* lg %dst,0(off,%src) */
 962		jit->seen |= SEEN_MEM;
 963		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
 964		break;
 965	/*
 966	 * BPF_JMP / CALL
 967	 */
 968	case BPF_JMP | BPF_CALL:
 969	{
 970		/*
 971		 * b0 = (__bpf_call_base + imm)(b1, b2, b3, b4, b5)
 972		 */
 973		const u64 func = (u64)__bpf_call_base + imm;
 
 
 
 
 974
 975		REG_SET_SEEN(BPF_REG_5);
 976		jit->seen |= SEEN_FUNC;
 977		/* lg %w1,<d(imm)>(%l) */
 978		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
 979			      EMIT_CONST_U64(func));
 980		/* basr %r14,%w1 */
 981		EMIT2(0x0d00, REG_14, REG_W1);
 
 
 
 
 982		/* lgr %b0,%r2: load return value into %b0 */
 983		EMIT4(0xb9040000, BPF_REG_0, REG_2);
 984		if (bpf_helper_changes_pkt_data((void *)func)) {
 985			jit->seen |= SEEN_SKB_CHANGE;
 986			/* lg %b1,ST_OFF_SKBP(%r15) */
 987			EMIT6_DISP_LH(0xe3000000, 0x0004, BPF_REG_1, REG_0,
 988				      REG_15, STK_OFF_SKBP);
 989			emit_load_skb_data_hlen(jit);
 990		}
 991		break;
 992	}
 993	case BPF_JMP | BPF_CALL | BPF_X:
 
 
 994		/*
 995		 * Implicit input:
 996		 *  B1: pointer to ctx
 997		 *  B2: pointer to bpf_array
 998		 *  B3: index in bpf_array
 999		 */
1000		jit->seen |= SEEN_TAIL_CALL;
1001
1002		/*
1003		 * if (index >= array->map.max_entries)
1004		 *         goto out;
1005		 */
1006
1007		/* llgf %w1,map.max_entries(%b2) */
1008		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1009			      offsetof(struct bpf_array, map.max_entries));
1010		/* clgrj %b3,%w1,0xa,label0: if %b3 >= %w1 goto out */
1011		EMIT6_PCREL_LABEL(0xec000000, 0x0065, BPF_REG_3,
1012				  REG_W1, 0, 0xa);
 
 
1013
1014		/*
1015		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1016		 *         goto out;
1017		 */
1018
1019		if (jit->seen & SEEN_STACK)
1020			off = STK_OFF_TCCNT + STK_OFF;
1021		else
1022			off = STK_OFF_TCCNT;
1023		/* lhi %w0,1 */
1024		EMIT4_IMM(0xa7080000, REG_W0, 1);
1025		/* laal %w1,%w0,off(%r15) */
1026		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1027		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1028		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1029				      MAX_TAIL_CALL_CNT, 0, 0x2);
 
1030
1031		/*
1032		 * prog = array->ptrs[index];
1033		 * if (prog == NULL)
1034		 *         goto out;
1035		 */
1036
1037		/* sllg %r1,%b3,3: %r1 = index * 8 */
1038		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, BPF_REG_3, REG_0, 3);
1039		/* lg %r1,prog(%b2,%r1) */
1040		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
 
 
1041			      REG_1, offsetof(struct bpf_array, ptrs));
1042		/* clgij %r1,0,0x8,label0 */
1043		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
 
1044
1045		/*
1046		 * Restore registers before calling function
1047		 */
1048		save_restore_regs(jit, REGS_RESTORE);
1049
1050		/*
1051		 * goto *(prog->bpf_func + tail_call_start);
1052		 */
1053
1054		/* lg %r1,bpf_func(%r1) */
1055		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1056			      offsetof(struct bpf_prog, bpf_func));
1057		/* bc 0xf,tail_call_start(%r1) */
1058		_EMIT4(0x47f01000 + jit->tail_call_start);
1059		/* out: */
1060		jit->labels[0] = jit->prg;
 
 
 
 
 
 
 
1061		break;
 
1062	case BPF_JMP | BPF_EXIT: /* return b0 */
1063		last = (i == fp->len - 1) ? 1 : 0;
1064		if (last && !(jit->seen & SEEN_RET0))
1065			break;
1066		/* j <exit> */
1067		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
 
 
 
 
1068		break;
1069	/*
1070	 * Branch relative (number of skipped instructions) to offset on
1071	 * condition.
1072	 *
1073	 * Condition code to mask mapping:
1074	 *
1075	 * CC | Description	   | Mask
1076	 * ------------------------------
1077	 * 0  | Operands equal	   |	8
1078	 * 1  | First operand low  |	4
1079	 * 2  | First operand high |	2
1080	 * 3  | Unused		   |	1
1081	 *
1082	 * For s390x relative branches: ip = ip + off_bytes
1083	 * For BPF relative branches:	insn = insn + off_insns + 1
1084	 *
1085	 * For example for s390x with offset 0 we jump to the branch
1086	 * instruction itself (loop) and for BPF with offset 0 we
1087	 * branch to the instruction behind the branch.
1088	 */
1089	case BPF_JMP | BPF_JA: /* if (true) */
1090		mask = 0xf000; /* j */
1091		goto branch_oc;
1092	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
 
1093		mask = 0x2000; /* jh */
1094		goto branch_ks;
 
 
 
 
1095	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
 
1096		mask = 0xa000; /* jhe */
1097		goto branch_ks;
 
 
 
 
1098	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
 
1099		mask = 0x2000; /* jh */
1100		goto branch_ku;
 
 
 
 
1101	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
 
1102		mask = 0xa000; /* jhe */
1103		goto branch_ku;
 
 
 
 
1104	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
 
1105		mask = 0x7000; /* jne */
1106		goto branch_ku;
1107	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
 
1108		mask = 0x8000; /* je */
1109		goto branch_ku;
1110	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
 
1111		mask = 0x7000; /* jnz */
1112		/* lgfi %w1,imm (load sign extend imm) */
1113		EMIT6_IMM(0xc0010000, REG_W1, imm);
1114		/* ngr %w1,%dst */
1115		EMIT4(0xb9800000, REG_W1, dst_reg);
 
 
 
 
 
 
 
1116		goto branch_oc;
1117
1118	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
 
1119		mask = 0x2000; /* jh */
1120		goto branch_xs;
 
 
 
 
1121	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
 
1122		mask = 0xa000; /* jhe */
1123		goto branch_xs;
 
 
 
 
1124	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
 
1125		mask = 0x2000; /* jh */
1126		goto branch_xu;
 
 
 
 
1127	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
 
1128		mask = 0xa000; /* jhe */
1129		goto branch_xu;
 
 
 
 
1130	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
 
1131		mask = 0x7000; /* jne */
1132		goto branch_xu;
1133	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
 
1134		mask = 0x8000; /* je */
1135		goto branch_xu;
1136	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
 
 
 
 
1137		mask = 0x7000; /* jnz */
1138		/* ngrk %w1,%dst,%src */
1139		EMIT4_RRF(0xb9e40000, REG_W1, dst_reg, src_reg);
 
1140		goto branch_oc;
1141branch_ks:
1142		/* lgfi %w1,imm (load sign extend imm) */
1143		EMIT6_IMM(0xc0010000, REG_W1, imm);
1144		/* cgrj %dst,%w1,mask,off */
1145		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, REG_W1, i, off, mask);
 
 
 
 
 
 
 
 
 
 
1146		break;
1147branch_ku:
1148		/* lgfi %w1,imm (load sign extend imm) */
1149		EMIT6_IMM(0xc0010000, REG_W1, imm);
1150		/* clgrj %dst,%w1,mask,off */
1151		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, REG_W1, i, off, mask);
1152		break;
1153branch_xs:
1154		/* cgrj %dst,%src,mask,off */
1155		EMIT6_PCREL(0xec000000, 0x0064, dst_reg, src_reg, i, off, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1156		break;
1157branch_xu:
1158		/* clgrj %dst,%src,mask,off */
1159		EMIT6_PCREL(0xec000000, 0x0065, dst_reg, src_reg, i, off, mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1160		break;
1161branch_oc:
1162		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1163		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1164		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
 
 
 
 
 
 
 
1165		break;
1166	/*
1167	 * BPF_LD
1168	 */
1169	case BPF_LD | BPF_ABS | BPF_B: /* b0 = *(u8 *) (skb->data+imm) */
1170	case BPF_LD | BPF_IND | BPF_B: /* b0 = *(u8 *) (skb->data+imm+src) */
1171		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1172			func_addr = __pa(sk_load_byte_pos);
1173		else
1174			func_addr = __pa(sk_load_byte);
1175		goto call_fn;
1176	case BPF_LD | BPF_ABS | BPF_H: /* b0 = *(u16 *) (skb->data+imm) */
1177	case BPF_LD | BPF_IND | BPF_H: /* b0 = *(u16 *) (skb->data+imm+src) */
1178		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1179			func_addr = __pa(sk_load_half_pos);
1180		else
1181			func_addr = __pa(sk_load_half);
1182		goto call_fn;
1183	case BPF_LD | BPF_ABS | BPF_W: /* b0 = *(u32 *) (skb->data+imm) */
1184	case BPF_LD | BPF_IND | BPF_W: /* b0 = *(u32 *) (skb->data+imm+src) */
1185		if ((BPF_MODE(insn->code) == BPF_ABS) && (imm >= 0))
1186			func_addr = __pa(sk_load_word_pos);
1187		else
1188			func_addr = __pa(sk_load_word);
1189		goto call_fn;
1190call_fn:
1191		jit->seen |= SEEN_SKB | SEEN_RET0 | SEEN_FUNC;
1192		REG_SET_SEEN(REG_14); /* Return address of possible func call */
1193
 
1194		/*
1195		 * Implicit input:
1196		 *  BPF_REG_6	 (R7) : skb pointer
1197		 *  REG_SKB_DATA (R12): skb data pointer (if no BPF_REG_AX)
1198		 *
1199		 * Calculated input:
1200		 *  BPF_REG_2	 (R3) : offset of byte(s) to fetch in skb
1201		 *  BPF_REG_5	 (R6) : return address
1202		 *
1203		 * Output:
1204		 *  BPF_REG_0	 (R14): data read from skb
1205		 *
1206		 * Scratch registers (BPF_REG_1-5)
1207		 */
 
 
 
 
 
 
 
1208
1209		/* Call function: llilf %w1,func_addr  */
1210		EMIT6_IMM(0xc00f0000, REG_W1, func_addr);
1211
1212		/* Offset: lgfi %b2,imm */
1213		EMIT6_IMM(0xc0010000, BPF_REG_2, imm);
1214		if (BPF_MODE(insn->code) == BPF_IND)
1215			/* agfr %b2,%src (%src is s32 here) */
1216			EMIT4(0xb9180000, BPF_REG_2, src_reg);
1217
1218		/* Reload REG_SKB_DATA if BPF_REG_AX is used */
1219		if (jit->seen & SEEN_REG_AX)
1220			/* lg %skb_data,data_off(%b6) */
1221			EMIT6_DISP_LH(0xe3000000, 0x0004, REG_SKB_DATA, REG_0,
1222				      BPF_REG_6, offsetof(struct sk_buff, data));
1223		/* basr %b5,%w1 (%b5 is call saved) */
1224		EMIT2(0x0d00, BPF_REG_5, REG_W1);
1225
1226		/*
1227		 * Note: For fast access we jump directly after the
1228		 * jnz instruction from bpf_jit.S
1229		 */
1230		/* jnz <ret0> */
1231		EMIT4_PCREL(0xa7740000, jit->ret0_ip - jit->prg);
1232		break;
1233	default: /* too complex, give up */
1234		pr_err("Unknown opcode %02x\n", insn->code);
 
 
 
 
 
 
 
 
1235		return -1;
1236	}
1237	return insn_count;
1238}
1239
1240/*
1241 * Compile eBPF program into s390x code
1242 */
1243static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp)
 
1244{
1245	int i, insn_count;
1246
1247	jit->lit = jit->lit_start;
 
1248	jit->prg = 0;
 
1249
1250	bpf_jit_prologue(jit);
 
 
1251	for (i = 0; i < fp->len; i += insn_count) {
1252		insn_count = bpf_jit_insn(jit, fp, i);
1253		if (insn_count < 0)
1254			return -1;
1255		jit->addrs[i + 1] = jit->prg; /* Next instruction address */
 
 
1256	}
1257	bpf_jit_epilogue(jit);
1258
1259	jit->lit_start = jit->prg;
1260	jit->size = jit->lit;
 
 
 
 
 
 
 
1261	jit->size_prg = jit->prg;
 
 
 
 
 
 
1262	return 0;
1263}
1264
1265/*
1266 * Classic BPF function stub. BPF programs will be converted into
1267 * eBPF and then bpf_int_jit_compile() will be called.
1268 */
1269void bpf_jit_compile(struct bpf_prog *fp)
 
 
 
 
 
 
 
 
1270{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1271}
1272
1273/*
1274 * Compile eBPF program "fp"
1275 */
1276struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1277{
 
1278	struct bpf_prog *tmp, *orig_fp = fp;
1279	struct bpf_binary_header *header;
 
1280	bool tmp_blinded = false;
 
1281	struct bpf_jit jit;
1282	int pass;
1283
1284	if (!bpf_jit_enable)
1285		return orig_fp;
1286
1287	tmp = bpf_jit_blind_constants(fp);
1288	/*
1289	 * If blinding was requested and we failed during blinding,
1290	 * we must fall back to the interpreter.
1291	 */
1292	if (IS_ERR(tmp))
1293		return orig_fp;
1294	if (tmp != fp) {
1295		tmp_blinded = true;
1296		fp = tmp;
1297	}
1298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299	memset(&jit, 0, sizeof(jit));
1300	jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1301	if (jit.addrs == NULL) {
1302		fp = orig_fp;
1303		goto out;
1304	}
1305	/*
1306	 * Three initial passes:
1307	 *   - 1/2: Determine clobbered registers
1308	 *   - 3:   Calculate program size and addrs arrray
1309	 */
1310	for (pass = 1; pass <= 3; pass++) {
1311		if (bpf_jit_prog(&jit, fp)) {
1312			fp = orig_fp;
1313			goto free_addrs;
1314		}
1315	}
1316	/*
1317	 * Final pass: Allocate and generate program
1318	 */
1319	if (jit.size >= BPF_SIZE_MAX) {
1320		fp = orig_fp;
1321		goto free_addrs;
1322	}
1323	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1324	if (!header) {
1325		fp = orig_fp;
1326		goto free_addrs;
1327	}
1328	if (bpf_jit_prog(&jit, fp)) {
 
 
1329		fp = orig_fp;
1330		goto free_addrs;
1331	}
1332	if (bpf_jit_enable > 1) {
1333		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1334		if (jit.prg_buf)
1335			print_fn_code(jit.prg_buf, jit.size_prg);
1336	}
1337	if (jit.prg_buf) {
1338		set_memory_ro((unsigned long)header, header->pages);
1339		fp->bpf_func = (void *) jit.prg_buf;
1340		fp->jited = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
1341	}
1342free_addrs:
1343	kfree(jit.addrs);
1344out:
1345	if (tmp_blinded)
1346		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1347					   tmp : orig_fp);
1348	return fp;
1349}
1350
1351/*
1352 * Free eBPF program
1353 */
1354void bpf_jit_free(struct bpf_prog *fp)
1355{
1356	unsigned long addr = (unsigned long)fp->bpf_func & PAGE_MASK;
1357	struct bpf_binary_header *header = (void *)addr;
1358
1359	if (!fp->jited)
1360		goto free_filter;
1361
1362	set_memory_rw(addr, header->pages);
1363	bpf_jit_binary_free(header);
1364
1365free_filter:
1366	bpf_prog_unlock_free(fp);
1367}