Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * BPF Jit compiler for s390.
   4 *
   5 * Minimum build requirements:
   6 *
   7 *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
   8 *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
   9 *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
 
  10 *  - 64BIT
  11 *
  12 * Copyright IBM Corp. 2012,2015
  13 *
  14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  15 *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
  16 */
  17
  18#define KMSG_COMPONENT "bpf_jit"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/netdevice.h>
  22#include <linux/filter.h>
  23#include <linux/init.h>
  24#include <linux/bpf.h>
  25#include <linux/mm.h>
  26#include <linux/kernel.h>
  27#include <asm/cacheflush.h>
  28#include <asm/extable.h>
  29#include <asm/dis.h>
  30#include <asm/facility.h>
  31#include <asm/nospec-branch.h>
  32#include <asm/set_memory.h>
  33#include "bpf_jit.h"
  34
  35struct bpf_jit {
  36	u32 seen;		/* Flags to remember seen eBPF instructions */
  37	u32 seen_reg[16];	/* Array to remember which registers are used */
  38	u32 *addrs;		/* Array with relative instruction addresses */
  39	u8 *prg_buf;		/* Start of program */
  40	int size;		/* Size of program and literal pool */
  41	int size_prg;		/* Size of program */
  42	int prg;		/* Current position in program */
  43	int lit32_start;	/* Start of 32-bit literal pool */
  44	int lit32;		/* Current position in 32-bit literal pool */
  45	int lit64_start;	/* Start of 64-bit literal pool */
  46	int lit64;		/* Current position in 64-bit literal pool */
  47	int base_ip;		/* Base address for literal pool */
 
  48	int exit_ip;		/* Address of exit */
  49	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
  50	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
  51	int tail_call_start;	/* Tail call start offset */
  52	int excnt;		/* Number of exception table entries */
  53};
  54
  55#define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
  56#define SEEN_LITERAL	BIT(1)		/* code uses literals */
  57#define SEEN_FUNC	BIT(2)		/* calls C functions */
  58#define SEEN_TAIL_CALL	BIT(3)		/* code uses tail calls */
 
 
 
 
  59#define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
  60
  61/*
  62 * s390 registers
  63 */
  64#define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
  65#define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
  66#define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
  67#define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
  68#define REG_0		REG_W0			/* Register 0 */
  69#define REG_1		REG_W1			/* Register 1 */
  70#define REG_2		BPF_REG_1		/* Register 2 */
  71#define REG_14		BPF_REG_0		/* Register 14 */
  72
  73/*
  74 * Mapping of BPF registers to s390 registers
  75 */
  76static const int reg2hex[] = {
  77	/* Return code */
  78	[BPF_REG_0]	= 14,
  79	/* Function parameters */
  80	[BPF_REG_1]	= 2,
  81	[BPF_REG_2]	= 3,
  82	[BPF_REG_3]	= 4,
  83	[BPF_REG_4]	= 5,
  84	[BPF_REG_5]	= 6,
  85	/* Call saved registers */
  86	[BPF_REG_6]	= 7,
  87	[BPF_REG_7]	= 8,
  88	[BPF_REG_8]	= 9,
  89	[BPF_REG_9]	= 10,
  90	/* BPF stack pointer */
  91	[BPF_REG_FP]	= 13,
  92	/* Register for blinding */
  93	[BPF_REG_AX]	= 12,
  94	/* Work registers for s390x backend */
  95	[REG_W0]	= 0,
  96	[REG_W1]	= 1,
  97	[REG_L]		= 11,
  98	[REG_15]	= 15,
  99};
 100
 101static inline u32 reg(u32 dst_reg, u32 src_reg)
 102{
 103	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
 104}
 105
 106static inline u32 reg_high(u32 reg)
 107{
 108	return reg2hex[reg] << 4;
 109}
 110
 111static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
 112{
 113	u32 r1 = reg2hex[b1];
 114
 115	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
 116		jit->seen_reg[r1] = 1;
 117}
 118
 119#define REG_SET_SEEN(b1)					\
 120({								\
 121	reg_set_seen(jit, b1);					\
 122})
 123
 124#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
 125
 126/*
 127 * EMIT macros for code generation
 128 */
 129
 130#define _EMIT2(op)						\
 131({								\
 132	if (jit->prg_buf)					\
 133		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
 134	jit->prg += 2;						\
 135})
 136
 137#define EMIT2(op, b1, b2)					\
 138({								\
 139	_EMIT2((op) | reg(b1, b2));				\
 140	REG_SET_SEEN(b1);					\
 141	REG_SET_SEEN(b2);					\
 142})
 143
 144#define _EMIT4(op)						\
 145({								\
 146	if (jit->prg_buf)					\
 147		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
 148	jit->prg += 4;						\
 149})
 150
 151#define EMIT4(op, b1, b2)					\
 152({								\
 153	_EMIT4((op) | reg(b1, b2));				\
 154	REG_SET_SEEN(b1);					\
 155	REG_SET_SEEN(b2);					\
 156})
 157
 158#define EMIT4_RRF(op, b1, b2, b3)				\
 159({								\
 160	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
 161	REG_SET_SEEN(b1);					\
 162	REG_SET_SEEN(b2);					\
 163	REG_SET_SEEN(b3);					\
 164})
 165
 166#define _EMIT4_DISP(op, disp)					\
 167({								\
 168	unsigned int __disp = (disp) & 0xfff;			\
 169	_EMIT4((op) | __disp);					\
 170})
 171
 172#define EMIT4_DISP(op, b1, b2, disp)				\
 173({								\
 174	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
 175		    reg_high(b2) << 8, (disp));			\
 176	REG_SET_SEEN(b1);					\
 177	REG_SET_SEEN(b2);					\
 178})
 179
 180#define EMIT4_IMM(op, b1, imm)					\
 181({								\
 182	unsigned int __imm = (imm) & 0xffff;			\
 183	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
 184	REG_SET_SEEN(b1);					\
 185})
 186
 187#define EMIT4_PCREL(op, pcrel)					\
 188({								\
 189	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
 190	_EMIT4((op) | __pcrel);					\
 191})
 192
 193#define EMIT4_PCREL_RIC(op, mask, target)			\
 194({								\
 195	int __rel = ((target) - jit->prg) / 2;			\
 196	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
 197})
 198
 199#define _EMIT6(op1, op2)					\
 200({								\
 201	if (jit->prg_buf) {					\
 202		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
 203		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
 204	}							\
 205	jit->prg += 6;						\
 206})
 207
 208#define _EMIT6_DISP(op1, op2, disp)				\
 209({								\
 210	unsigned int __disp = (disp) & 0xfff;			\
 211	_EMIT6((op1) | __disp, op2);				\
 212})
 213
 214#define _EMIT6_DISP_LH(op1, op2, disp)				\
 215({								\
 216	u32 _disp = (u32) (disp);				\
 217	unsigned int __disp_h = _disp & 0xff000;		\
 218	unsigned int __disp_l = _disp & 0x00fff;		\
 219	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
 220})
 221
 222#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
 223({								\
 224	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
 225		       reg_high(b3) << 8, op2, disp);		\
 226	REG_SET_SEEN(b1);					\
 227	REG_SET_SEEN(b2);					\
 228	REG_SET_SEEN(b3);					\
 229})
 230
 231#define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
 232({								\
 233	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 234	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
 235	       (op2) | (mask) << 12);				\
 236	REG_SET_SEEN(b1);					\
 237	REG_SET_SEEN(b2);					\
 238})
 239
 240#define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
 241({								\
 242	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 243	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
 244		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
 245	REG_SET_SEEN(b1);					\
 246	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
 247})
 248
 249#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
 250({								\
 251	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
 252	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
 
 253	REG_SET_SEEN(b1);					\
 254	REG_SET_SEEN(b2);					\
 255})
 256
 257#define EMIT6_PCREL_RILB(op, b, target)				\
 258({								\
 259	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 260	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
 261	REG_SET_SEEN(b);					\
 262})
 263
 264#define EMIT6_PCREL_RIL(op, target)				\
 265({								\
 266	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 267	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
 268})
 269
 270#define EMIT6_PCREL_RILC(op, mask, target)			\
 271({								\
 272	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
 273})
 274
 275#define _EMIT6_IMM(op, imm)					\
 276({								\
 277	unsigned int __imm = (imm);				\
 278	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
 279})
 280
 281#define EMIT6_IMM(op, b1, imm)					\
 282({								\
 283	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
 284	REG_SET_SEEN(b1);					\
 285})
 286
 287#define _EMIT_CONST_U32(val)					\
 288({								\
 289	unsigned int ret;					\
 290	ret = jit->lit32;					\
 291	if (jit->prg_buf)					\
 292		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
 293	jit->lit32 += 4;					\
 294	ret;							\
 295})
 296
 297#define EMIT_CONST_U32(val)					\
 298({								\
 299	jit->seen |= SEEN_LITERAL;				\
 300	_EMIT_CONST_U32(val) - jit->base_ip;			\
 301})
 302
 303#define _EMIT_CONST_U64(val)					\
 304({								\
 305	unsigned int ret;					\
 306	ret = jit->lit64;					\
 
 307	if (jit->prg_buf)					\
 308		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
 309	jit->lit64 += 8;					\
 310	ret;							\
 311})
 312
 313#define EMIT_CONST_U64(val)					\
 314({								\
 
 
 315	jit->seen |= SEEN_LITERAL;				\
 316	_EMIT_CONST_U64(val) - jit->base_ip;			\
 
 
 
 317})
 318
 319#define EMIT_ZERO(b1)						\
 320({								\
 321	if (!fp->aux->verifier_zext) {				\
 322		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
 323		EMIT4(0xb9160000, b1, b1);			\
 324		REG_SET_SEEN(b1);				\
 325	}							\
 326})
 327
 328/*
 329 * Return whether this is the first pass. The first pass is special, since we
 330 * don't know any sizes yet, and thus must be conservative.
 331 */
 332static bool is_first_pass(struct bpf_jit *jit)
 333{
 334	return jit->size == 0;
 335}
 336
 337/*
 338 * Return whether this is the code generation pass. The code generation pass is
 339 * special, since we should change as little as possible.
 340 */
 341static bool is_codegen_pass(struct bpf_jit *jit)
 342{
 343	return jit->prg_buf;
 344}
 345
 346/*
 347 * Return whether "rel" can be encoded as a short PC-relative offset
 348 */
 349static bool is_valid_rel(int rel)
 350{
 351	return rel >= -65536 && rel <= 65534;
 352}
 353
 354/*
 355 * Return whether "off" can be reached using a short PC-relative offset
 356 */
 357static bool can_use_rel(struct bpf_jit *jit, int off)
 358{
 359	return is_valid_rel(off - jit->prg);
 360}
 361
 362/*
 363 * Return whether given displacement can be encoded using
 364 * Long-Displacement Facility
 365 */
 366static bool is_valid_ldisp(int disp)
 367{
 368	return disp >= -524288 && disp <= 524287;
 369}
 370
 371/*
 372 * Return whether the next 32-bit literal pool entry can be referenced using
 373 * Long-Displacement Facility
 374 */
 375static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
 376{
 377	return is_valid_ldisp(jit->lit32 - jit->base_ip);
 378}
 379
 380/*
 381 * Return whether the next 64-bit literal pool entry can be referenced using
 382 * Long-Displacement Facility
 383 */
 384static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
 385{
 386	return is_valid_ldisp(jit->lit64 - jit->base_ip);
 387}
 388
 389/*
 390 * Fill whole space with illegal instructions
 391 */
 392static void jit_fill_hole(void *area, unsigned int size)
 393{
 394	memset(area, 0, size);
 395}
 396
 397/*
 398 * Save registers from "rs" (register start) to "re" (register end) on stack
 399 */
 400static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
 401{
 402	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 403
 404	if (rs == re)
 405		/* stg %rs,off(%r15) */
 406		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
 407	else
 408		/* stmg %rs,%re,off(%r15) */
 409		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
 410}
 411
 412/*
 413 * Restore registers from "rs" (register start) to "re" (register end) on stack
 414 */
 415static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
 416{
 417	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 418
 419	if (jit->seen & SEEN_STACK)
 420		off += STK_OFF + stack_depth;
 421
 422	if (rs == re)
 423		/* lg %rs,off(%r15) */
 424		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
 425	else
 426		/* lmg %rs,%re,off(%r15) */
 427		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
 428}
 429
 430/*
 431 * Return first seen register (from start)
 432 */
 433static int get_start(struct bpf_jit *jit, int start)
 434{
 435	int i;
 436
 437	for (i = start; i <= 15; i++) {
 438		if (jit->seen_reg[i])
 439			return i;
 440	}
 441	return 0;
 442}
 443
 444/*
 445 * Return last seen register (from start) (gap >= 2)
 446 */
 447static int get_end(struct bpf_jit *jit, int start)
 448{
 449	int i;
 450
 451	for (i = start; i < 15; i++) {
 452		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
 453			return i - 1;
 454	}
 455	return jit->seen_reg[15] ? 15 : 14;
 456}
 457
 458#define REGS_SAVE	1
 459#define REGS_RESTORE	0
 460/*
 461 * Save and restore clobbered registers (6-15) on stack.
 462 * We save/restore registers in chunks with gap >= 2 registers.
 463 */
 464static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
 465{
 466	const int last = 15, save_restore_size = 6;
 467	int re = 6, rs;
 468
 469	if (is_first_pass(jit)) {
 470		/*
 471		 * We don't know yet which registers are used. Reserve space
 472		 * conservatively.
 473		 */
 474		jit->prg += (last - re + 1) * save_restore_size;
 475		return;
 476	}
 477
 478	do {
 479		rs = get_start(jit, re);
 480		if (!rs)
 481			break;
 482		re = get_end(jit, rs + 1);
 483		if (op == REGS_SAVE)
 484			save_regs(jit, rs, re);
 485		else
 486			restore_regs(jit, rs, re, stack_depth);
 487		re++;
 488	} while (re <= last);
 489}
 490
 491static void bpf_skip(struct bpf_jit *jit, int size)
 492{
 493	if (size >= 6 && !is_valid_rel(size)) {
 494		/* brcl 0xf,size */
 495		EMIT6_PCREL_RIL(0xc0f4000000, size);
 496		size -= 6;
 497	} else if (size >= 4 && is_valid_rel(size)) {
 498		/* brc 0xf,size */
 499		EMIT4_PCREL(0xa7f40000, size);
 500		size -= 4;
 501	}
 502	while (size >= 2) {
 503		/* bcr 0,%0 */
 504		_EMIT2(0x0700);
 505		size -= 2;
 506	}
 507}
 508
 509/*
 510 * Emit function prologue
 511 *
 512 * Save registers and create stack frame if necessary.
 513 * See stack frame layout desription in "bpf_jit.h"!
 514 */
 515static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
 516{
 517	if (jit->seen & SEEN_TAIL_CALL) {
 518		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
 519		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
 520	} else {
 521		/*
 522		 * There are no tail calls. Insert nops in order to have
 523		 * tail_call_start at a predictable offset.
 524		 */
 525		bpf_skip(jit, 6);
 526	}
 527	/* Tail calls have to skip above initialization */
 528	jit->tail_call_start = jit->prg;
 529	/* Save registers */
 530	save_restore_regs(jit, REGS_SAVE, stack_depth);
 531	/* Setup literal pool */
 532	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
 533		if (!is_first_pass(jit) &&
 534		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
 535			/* basr %l,0 */
 536			EMIT2(0x0d00, REG_L, REG_0);
 537			jit->base_ip = jit->prg;
 538		} else {
 539			/* larl %l,lit32_start */
 540			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
 541			jit->base_ip = jit->lit32_start;
 542		}
 543	}
 544	/* Setup stack and backchain */
 545	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
 546		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
 547			/* lgr %w1,%r15 (backchain) */
 548			EMIT4(0xb9040000, REG_W1, REG_15);
 549		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
 550		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
 551		/* aghi %r15,-STK_OFF */
 552		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
 553		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
 554			/* stg %w1,152(%r15) (backchain) */
 555			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
 556				      REG_15, 152);
 557	}
 558}
 559
 560/*
 561 * Function epilogue
 562 */
 563static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
 564{
 
 
 
 
 
 
 565	jit->exit_ip = jit->prg;
 566	/* Load exit code: lgr %r2,%b0 */
 567	EMIT4(0xb9040000, REG_2, BPF_REG_0);
 568	/* Restore registers */
 569	save_restore_regs(jit, REGS_RESTORE, stack_depth);
 570	if (nospec_uses_trampoline()) {
 571		jit->r14_thunk_ip = jit->prg;
 572		/* Generate __s390_indirect_jump_r14 thunk */
 573		/* exrl %r0,.+10 */
 574		EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 
 
 
 
 
 
 
 575		/* j . */
 576		EMIT4_PCREL(0xa7f40000, 0);
 577	}
 578	/* br %r14 */
 579	_EMIT2(0x07fe);
 580
 581	if ((nospec_uses_trampoline()) &&
 582	    (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
 583		jit->r1_thunk_ip = jit->prg;
 584		/* Generate __s390_indirect_jump_r1 thunk */
 585		/* exrl %r0,.+10 */
 586		EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 587		/* j . */
 588		EMIT4_PCREL(0xa7f40000, 0);
 589		/* br %r1 */
 590		_EMIT2(0x07f1);
 591	}
 592}
 593
 594static int get_probe_mem_regno(const u8 *insn)
 595{
 596	/*
 597	 * insn must point to llgc, llgh, llgf or lg, which have destination
 598	 * register at the same position.
 599	 */
 600	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
 601		return -1;
 602	if (insn[5] != 0x90 && /* llgc */
 603	    insn[5] != 0x91 && /* llgh */
 604	    insn[5] != 0x16 && /* llgf */
 605	    insn[5] != 0x04) /* lg */
 606		return -1;
 607	return insn[1] >> 4;
 608}
 609
 610bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
 611{
 612	regs->psw.addr = extable_fixup(x);
 613	regs->gprs[x->data] = 0;
 614	return true;
 615}
 616
 617static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
 618			     int probe_prg, int nop_prg)
 619{
 620	struct exception_table_entry *ex;
 621	int reg, prg;
 622	s64 delta;
 623	u8 *insn;
 624	int i;
 625
 626	if (!fp->aux->extable)
 627		/* Do nothing during early JIT passes. */
 628		return 0;
 629	insn = jit->prg_buf + probe_prg;
 630	reg = get_probe_mem_regno(insn);
 631	if (WARN_ON_ONCE(reg < 0))
 632		/* JIT bug - unexpected probe instruction. */
 633		return -1;
 634	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
 635		/* JIT bug - gap between probe and nop instructions. */
 636		return -1;
 637	for (i = 0; i < 2; i++) {
 638		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
 639			/* Verifier bug - not enough entries. */
 640			return -1;
 641		ex = &fp->aux->extable[jit->excnt];
 642		/* Add extable entries for probe and nop instructions. */
 643		prg = i == 0 ? probe_prg : nop_prg;
 644		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
 645		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
 646			/* JIT bug - code and extable must be close. */
 647			return -1;
 648		ex->insn = delta;
 649		/*
 650		 * Always land on the nop. Note that extable infrastructure
 651		 * ignores fixup field, it is handled by ex_handler_bpf().
 652		 */
 653		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
 654		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
 655			/* JIT bug - landing pad and extable must be close. */
 656			return -1;
 657		ex->fixup = delta;
 658		ex->type = EX_TYPE_BPF;
 659		ex->data = reg;
 660		jit->excnt++;
 661	}
 662	return 0;
 663}
 664
 665/*
 666 * Compile one eBPF instruction into s390x code
 667 *
 668 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
 669 * stack space for the large switch statement.
 670 */
 671static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
 672				 int i, bool extra_pass, u32 stack_depth)
 673{
 674	struct bpf_insn *insn = &fp->insnsi[i];
 
 675	u32 dst_reg = insn->dst_reg;
 676	u32 src_reg = insn->src_reg;
 677	int last, insn_count = 1;
 678	u32 *addrs = jit->addrs;
 679	s32 imm = insn->imm;
 680	s16 off = insn->off;
 681	int probe_prg = -1;
 682	unsigned int mask;
 683	int nop_prg;
 684	int err;
 685
 686	if (BPF_CLASS(insn->code) == BPF_LDX &&
 687	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
 688		probe_prg = jit->prg;
 689
 
 
 690	switch (insn->code) {
 691	/*
 692	 * BPF_MOV
 693	 */
 694	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
 695		/* llgfr %dst,%src */
 696		EMIT4(0xb9160000, dst_reg, src_reg);
 697		if (insn_is_zext(&insn[1]))
 698			insn_count = 2;
 699		break;
 700	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
 701		/* lgr %dst,%src */
 702		EMIT4(0xb9040000, dst_reg, src_reg);
 703		break;
 704	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
 705		/* llilf %dst,imm */
 706		EMIT6_IMM(0xc00f0000, dst_reg, imm);
 707		if (insn_is_zext(&insn[1]))
 708			insn_count = 2;
 709		break;
 710	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
 711		/* lgfi %dst,imm */
 712		EMIT6_IMM(0xc0010000, dst_reg, imm);
 713		break;
 714	/*
 715	 * BPF_LD 64
 716	 */
 717	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
 718	{
 719		/* 16 byte instruction that uses two 'struct bpf_insn' */
 720		u64 imm64;
 721
 722		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
 723		/* lgrl %dst,imm */
 724		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
 
 725		insn_count = 2;
 726		break;
 727	}
 728	/*
 729	 * BPF_ADD
 730	 */
 731	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
 732		/* ar %dst,%src */
 733		EMIT2(0x1a00, dst_reg, src_reg);
 734		EMIT_ZERO(dst_reg);
 735		break;
 736	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
 737		/* agr %dst,%src */
 738		EMIT4(0xb9080000, dst_reg, src_reg);
 739		break;
 740	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
 741		if (imm != 0) {
 742			/* alfi %dst,imm */
 743			EMIT6_IMM(0xc20b0000, dst_reg, imm);
 744		}
 745		EMIT_ZERO(dst_reg);
 746		break;
 747	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
 748		if (!imm)
 749			break;
 750		/* agfi %dst,imm */
 751		EMIT6_IMM(0xc2080000, dst_reg, imm);
 752		break;
 753	/*
 754	 * BPF_SUB
 755	 */
 756	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
 757		/* sr %dst,%src */
 758		EMIT2(0x1b00, dst_reg, src_reg);
 759		EMIT_ZERO(dst_reg);
 760		break;
 761	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
 762		/* sgr %dst,%src */
 763		EMIT4(0xb9090000, dst_reg, src_reg);
 764		break;
 765	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
 766		if (imm != 0) {
 767			/* alfi %dst,-imm */
 768			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
 769		}
 770		EMIT_ZERO(dst_reg);
 771		break;
 772	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
 773		if (!imm)
 774			break;
 775		if (imm == -0x80000000) {
 776			/* algfi %dst,0x80000000 */
 777			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
 778		} else {
 779			/* agfi %dst,-imm */
 780			EMIT6_IMM(0xc2080000, dst_reg, -imm);
 781		}
 782		break;
 783	/*
 784	 * BPF_MUL
 785	 */
 786	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
 787		/* msr %dst,%src */
 788		EMIT4(0xb2520000, dst_reg, src_reg);
 789		EMIT_ZERO(dst_reg);
 790		break;
 791	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
 792		/* msgr %dst,%src */
 793		EMIT4(0xb90c0000, dst_reg, src_reg);
 794		break;
 795	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
 796		if (imm != 1) {
 797			/* msfi %r5,imm */
 798			EMIT6_IMM(0xc2010000, dst_reg, imm);
 799		}
 800		EMIT_ZERO(dst_reg);
 801		break;
 802	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
 803		if (imm == 1)
 804			break;
 805		/* msgfi %dst,imm */
 806		EMIT6_IMM(0xc2000000, dst_reg, imm);
 807		break;
 808	/*
 809	 * BPF_DIV / BPF_MOD
 810	 */
 811	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
 812	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
 813	{
 814		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 815
 816		/* lhi %w0,0 */
 817		EMIT4_IMM(0xa7080000, REG_W0, 0);
 818		/* lr %w1,%dst */
 819		EMIT2(0x1800, REG_W1, dst_reg);
 820		/* dlr %w0,%src */
 821		EMIT4(0xb9970000, REG_W0, src_reg);
 822		/* llgfr %dst,%rc */
 823		EMIT4(0xb9160000, dst_reg, rc_reg);
 824		if (insn_is_zext(&insn[1]))
 825			insn_count = 2;
 826		break;
 827	}
 828	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
 829	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
 830	{
 831		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 832
 833		/* lghi %w0,0 */
 834		EMIT4_IMM(0xa7090000, REG_W0, 0);
 835		/* lgr %w1,%dst */
 836		EMIT4(0xb9040000, REG_W1, dst_reg);
 837		/* dlgr %w0,%dst */
 838		EMIT4(0xb9870000, REG_W0, src_reg);
 839		/* lgr %dst,%rc */
 840		EMIT4(0xb9040000, dst_reg, rc_reg);
 841		break;
 842	}
 843	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
 844	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
 845	{
 846		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 847
 848		if (imm == 1) {
 849			if (BPF_OP(insn->code) == BPF_MOD)
 850				/* lhgi %dst,0 */
 851				EMIT4_IMM(0xa7090000, dst_reg, 0);
 852			else
 853				EMIT_ZERO(dst_reg);
 854			break;
 855		}
 856		/* lhi %w0,0 */
 857		EMIT4_IMM(0xa7080000, REG_W0, 0);
 858		/* lr %w1,%dst */
 859		EMIT2(0x1800, REG_W1, dst_reg);
 860		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
 861			/* dl %w0,<d(imm)>(%l) */
 862			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
 863				      EMIT_CONST_U32(imm));
 864		} else {
 865			/* lgfrl %dst,imm */
 866			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
 867					 _EMIT_CONST_U32(imm));
 868			jit->seen |= SEEN_LITERAL;
 869			/* dlr %w0,%dst */
 870			EMIT4(0xb9970000, REG_W0, dst_reg);
 871		}
 872		/* llgfr %dst,%rc */
 873		EMIT4(0xb9160000, dst_reg, rc_reg);
 874		if (insn_is_zext(&insn[1]))
 875			insn_count = 2;
 876		break;
 877	}
 878	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
 879	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
 880	{
 881		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 882
 883		if (imm == 1) {
 884			if (BPF_OP(insn->code) == BPF_MOD)
 885				/* lhgi %dst,0 */
 886				EMIT4_IMM(0xa7090000, dst_reg, 0);
 887			break;
 888		}
 889		/* lghi %w0,0 */
 890		EMIT4_IMM(0xa7090000, REG_W0, 0);
 891		/* lgr %w1,%dst */
 892		EMIT4(0xb9040000, REG_W1, dst_reg);
 893		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 894			/* dlg %w0,<d(imm)>(%l) */
 895			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
 896				      EMIT_CONST_U64(imm));
 897		} else {
 898			/* lgrl %dst,imm */
 899			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
 900					 _EMIT_CONST_U64(imm));
 901			jit->seen |= SEEN_LITERAL;
 902			/* dlgr %w0,%dst */
 903			EMIT4(0xb9870000, REG_W0, dst_reg);
 904		}
 905		/* lgr %dst,%rc */
 906		EMIT4(0xb9040000, dst_reg, rc_reg);
 907		break;
 908	}
 909	/*
 910	 * BPF_AND
 911	 */
 912	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
 913		/* nr %dst,%src */
 914		EMIT2(0x1400, dst_reg, src_reg);
 915		EMIT_ZERO(dst_reg);
 916		break;
 917	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
 918		/* ngr %dst,%src */
 919		EMIT4(0xb9800000, dst_reg, src_reg);
 920		break;
 921	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
 922		/* nilf %dst,imm */
 923		EMIT6_IMM(0xc00b0000, dst_reg, imm);
 924		EMIT_ZERO(dst_reg);
 925		break;
 926	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
 927		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 928			/* ng %dst,<d(imm)>(%l) */
 929			EMIT6_DISP_LH(0xe3000000, 0x0080,
 930				      dst_reg, REG_0, REG_L,
 931				      EMIT_CONST_U64(imm));
 932		} else {
 933			/* lgrl %w0,imm */
 934			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
 935					 _EMIT_CONST_U64(imm));
 936			jit->seen |= SEEN_LITERAL;
 937			/* ngr %dst,%w0 */
 938			EMIT4(0xb9800000, dst_reg, REG_W0);
 939		}
 940		break;
 941	/*
 942	 * BPF_OR
 943	 */
 944	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
 945		/* or %dst,%src */
 946		EMIT2(0x1600, dst_reg, src_reg);
 947		EMIT_ZERO(dst_reg);
 948		break;
 949	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
 950		/* ogr %dst,%src */
 951		EMIT4(0xb9810000, dst_reg, src_reg);
 952		break;
 953	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
 954		/* oilf %dst,imm */
 955		EMIT6_IMM(0xc00d0000, dst_reg, imm);
 956		EMIT_ZERO(dst_reg);
 957		break;
 958	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
 959		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 960			/* og %dst,<d(imm)>(%l) */
 961			EMIT6_DISP_LH(0xe3000000, 0x0081,
 962				      dst_reg, REG_0, REG_L,
 963				      EMIT_CONST_U64(imm));
 964		} else {
 965			/* lgrl %w0,imm */
 966			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
 967					 _EMIT_CONST_U64(imm));
 968			jit->seen |= SEEN_LITERAL;
 969			/* ogr %dst,%w0 */
 970			EMIT4(0xb9810000, dst_reg, REG_W0);
 971		}
 972		break;
 973	/*
 974	 * BPF_XOR
 975	 */
 976	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
 977		/* xr %dst,%src */
 978		EMIT2(0x1700, dst_reg, src_reg);
 979		EMIT_ZERO(dst_reg);
 980		break;
 981	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
 982		/* xgr %dst,%src */
 983		EMIT4(0xb9820000, dst_reg, src_reg);
 984		break;
 985	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
 986		if (imm != 0) {
 987			/* xilf %dst,imm */
 988			EMIT6_IMM(0xc0070000, dst_reg, imm);
 989		}
 990		EMIT_ZERO(dst_reg);
 991		break;
 992	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
 993		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 994			/* xg %dst,<d(imm)>(%l) */
 995			EMIT6_DISP_LH(0xe3000000, 0x0082,
 996				      dst_reg, REG_0, REG_L,
 997				      EMIT_CONST_U64(imm));
 998		} else {
 999			/* lgrl %w0,imm */
1000			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1001					 _EMIT_CONST_U64(imm));
1002			jit->seen |= SEEN_LITERAL;
1003			/* xgr %dst,%w0 */
1004			EMIT4(0xb9820000, dst_reg, REG_W0);
1005		}
1006		break;
1007	/*
1008	 * BPF_LSH
1009	 */
1010	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1011		/* sll %dst,0(%src) */
1012		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1013		EMIT_ZERO(dst_reg);
1014		break;
1015	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1016		/* sllg %dst,%dst,0(%src) */
1017		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1018		break;
1019	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1020		if (imm != 0) {
1021			/* sll %dst,imm(%r0) */
1022			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1023		}
1024		EMIT_ZERO(dst_reg);
1025		break;
1026	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1027		if (imm == 0)
1028			break;
1029		/* sllg %dst,%dst,imm(%r0) */
1030		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1031		break;
1032	/*
1033	 * BPF_RSH
1034	 */
1035	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1036		/* srl %dst,0(%src) */
1037		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1038		EMIT_ZERO(dst_reg);
1039		break;
1040	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1041		/* srlg %dst,%dst,0(%src) */
1042		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1043		break;
1044	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1045		if (imm != 0) {
1046			/* srl %dst,imm(%r0) */
1047			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1048		}
1049		EMIT_ZERO(dst_reg);
1050		break;
1051	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1052		if (imm == 0)
1053			break;
1054		/* srlg %dst,%dst,imm(%r0) */
1055		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1056		break;
1057	/*
1058	 * BPF_ARSH
1059	 */
1060	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1061		/* sra %dst,%dst,0(%src) */
1062		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1063		EMIT_ZERO(dst_reg);
1064		break;
1065	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1066		/* srag %dst,%dst,0(%src) */
1067		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1068		break;
1069	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1070		if (imm != 0) {
1071			/* sra %dst,imm(%r0) */
1072			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1073		}
1074		EMIT_ZERO(dst_reg);
1075		break;
1076	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1077		if (imm == 0)
1078			break;
1079		/* srag %dst,%dst,imm(%r0) */
1080		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1081		break;
1082	/*
1083	 * BPF_NEG
1084	 */
1085	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1086		/* lcr %dst,%dst */
1087		EMIT2(0x1300, dst_reg, dst_reg);
1088		EMIT_ZERO(dst_reg);
1089		break;
1090	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1091		/* lcgr %dst,%dst */
1092		EMIT4(0xb9030000, dst_reg, dst_reg);
1093		break;
1094	/*
1095	 * BPF_FROM_BE/LE
1096	 */
1097	case BPF_ALU | BPF_END | BPF_FROM_BE:
1098		/* s390 is big endian, therefore only clear high order bytes */
1099		switch (imm) {
1100		case 16: /* dst = (u16) cpu_to_be16(dst) */
1101			/* llghr %dst,%dst */
1102			EMIT4(0xb9850000, dst_reg, dst_reg);
1103			if (insn_is_zext(&insn[1]))
1104				insn_count = 2;
1105			break;
1106		case 32: /* dst = (u32) cpu_to_be32(dst) */
1107			if (!fp->aux->verifier_zext)
1108				/* llgfr %dst,%dst */
1109				EMIT4(0xb9160000, dst_reg, dst_reg);
1110			break;
1111		case 64: /* dst = (u64) cpu_to_be64(dst) */
1112			break;
1113		}
1114		break;
1115	case BPF_ALU | BPF_END | BPF_FROM_LE:
1116		switch (imm) {
1117		case 16: /* dst = (u16) cpu_to_le16(dst) */
1118			/* lrvr %dst,%dst */
1119			EMIT4(0xb91f0000, dst_reg, dst_reg);
1120			/* srl %dst,16(%r0) */
1121			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1122			/* llghr %dst,%dst */
1123			EMIT4(0xb9850000, dst_reg, dst_reg);
1124			if (insn_is_zext(&insn[1]))
1125				insn_count = 2;
1126			break;
1127		case 32: /* dst = (u32) cpu_to_le32(dst) */
1128			/* lrvr %dst,%dst */
1129			EMIT4(0xb91f0000, dst_reg, dst_reg);
1130			if (!fp->aux->verifier_zext)
1131				/* llgfr %dst,%dst */
1132				EMIT4(0xb9160000, dst_reg, dst_reg);
1133			break;
1134		case 64: /* dst = (u64) cpu_to_le64(dst) */
1135			/* lrvgr %dst,%dst */
1136			EMIT4(0xb90f0000, dst_reg, dst_reg);
1137			break;
1138		}
1139		break;
1140	/*
1141	 * BPF_NOSPEC (speculation barrier)
1142	 */
1143	case BPF_ST | BPF_NOSPEC:
1144		break;
1145	/*
1146	 * BPF_ST(X)
1147	 */
1148	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1149		/* stcy %src,off(%dst) */
1150		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1151		jit->seen |= SEEN_MEM;
1152		break;
1153	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1154		/* sthy %src,off(%dst) */
1155		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1156		jit->seen |= SEEN_MEM;
1157		break;
1158	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1159		/* sty %src,off(%dst) */
1160		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1161		jit->seen |= SEEN_MEM;
1162		break;
1163	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1164		/* stg %src,off(%dst) */
1165		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1166		jit->seen |= SEEN_MEM;
1167		break;
1168	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1169		/* lhi %w0,imm */
1170		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1171		/* stcy %w0,off(dst) */
1172		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1173		jit->seen |= SEEN_MEM;
1174		break;
1175	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1176		/* lhi %w0,imm */
1177		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1178		/* sthy %w0,off(dst) */
1179		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1180		jit->seen |= SEEN_MEM;
1181		break;
1182	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1183		/* llilf %w0,imm  */
1184		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1185		/* sty %w0,off(%dst) */
1186		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1187		jit->seen |= SEEN_MEM;
1188		break;
1189	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1190		/* lgfi %w0,imm */
1191		EMIT6_IMM(0xc0010000, REG_W0, imm);
1192		/* stg %w0,off(%dst) */
1193		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1194		jit->seen |= SEEN_MEM;
1195		break;
1196	/*
1197	 * BPF_ATOMIC
1198	 */
1199	case BPF_STX | BPF_ATOMIC | BPF_DW:
1200	case BPF_STX | BPF_ATOMIC | BPF_W:
1201	{
1202		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1203
1204		switch (insn->imm) {
1205/* {op32|op64} {%w0|%src},%src,off(%dst) */
1206#define EMIT_ATOMIC(op32, op64) do {					\
1207	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1208		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1209		      src_reg, dst_reg, off);				\
1210	if (is32 && (insn->imm & BPF_FETCH))				\
1211		EMIT_ZERO(src_reg);					\
1212} while (0)
1213		case BPF_ADD:
1214		case BPF_ADD | BPF_FETCH:
1215			/* {laal|laalg} */
1216			EMIT_ATOMIC(0x00fa, 0x00ea);
1217			break;
1218		case BPF_AND:
1219		case BPF_AND | BPF_FETCH:
1220			/* {lan|lang} */
1221			EMIT_ATOMIC(0x00f4, 0x00e4);
1222			break;
1223		case BPF_OR:
1224		case BPF_OR | BPF_FETCH:
1225			/* {lao|laog} */
1226			EMIT_ATOMIC(0x00f6, 0x00e6);
1227			break;
1228		case BPF_XOR:
1229		case BPF_XOR | BPF_FETCH:
1230			/* {lax|laxg} */
1231			EMIT_ATOMIC(0x00f7, 0x00e7);
1232			break;
1233#undef EMIT_ATOMIC
1234		case BPF_XCHG:
1235			/* {ly|lg} %w0,off(%dst) */
1236			EMIT6_DISP_LH(0xe3000000,
1237				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1238				      dst_reg, off);
1239			/* 0: {csy|csg} %w0,%src,off(%dst) */
1240			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1241				      REG_W0, src_reg, dst_reg, off);
1242			/* brc 4,0b */
1243			EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1244			/* {llgfr|lgr} %src,%w0 */
1245			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1246			if (is32 && insn_is_zext(&insn[1]))
1247				insn_count = 2;
1248			break;
1249		case BPF_CMPXCHG:
1250			/* 0: {csy|csg} %b0,%src,off(%dst) */
1251			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1252				      BPF_REG_0, src_reg, dst_reg, off);
1253			break;
1254		default:
1255			pr_err("Unknown atomic operation %02x\n", insn->imm);
1256			return -1;
1257		}
1258
1259		jit->seen |= SEEN_MEM;
1260		break;
1261	}
1262	/*
1263	 * BPF_LDX
1264	 */
1265	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1266	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1267		/* llgc %dst,0(off,%src) */
1268		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1269		jit->seen |= SEEN_MEM;
1270		if (insn_is_zext(&insn[1]))
1271			insn_count = 2;
1272		break;
1273	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1274	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1275		/* llgh %dst,0(off,%src) */
1276		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1277		jit->seen |= SEEN_MEM;
1278		if (insn_is_zext(&insn[1]))
1279			insn_count = 2;
1280		break;
1281	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1282	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1283		/* llgf %dst,off(%src) */
1284		jit->seen |= SEEN_MEM;
1285		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1286		if (insn_is_zext(&insn[1]))
1287			insn_count = 2;
1288		break;
1289	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1290	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1291		/* lg %dst,0(off,%src) */
1292		jit->seen |= SEEN_MEM;
1293		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1294		break;
1295	/*
1296	 * BPF_JMP / CALL
1297	 */
1298	case BPF_JMP | BPF_CALL:
1299	{
1300		u64 func;
1301		bool func_addr_fixed;
1302		int ret;
1303
1304		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1305					    &func, &func_addr_fixed);
1306		if (ret < 0)
1307			return -1;
1308
1309		REG_SET_SEEN(BPF_REG_5);
1310		jit->seen |= SEEN_FUNC;
1311		/* lgrl %w1,func */
1312		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1313		if (nospec_uses_trampoline()) {
 
1314			/* brasl %r14,__s390_indirect_jump_r1 */
1315			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1316		} else {
1317			/* basr %r14,%w1 */
1318			EMIT2(0x0d00, REG_14, REG_W1);
1319		}
1320		/* lgr %b0,%r2: load return value into %b0 */
1321		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1322		break;
1323	}
1324	case BPF_JMP | BPF_TAIL_CALL: {
1325		int patch_1_clrj, patch_2_clij, patch_3_brc;
1326
1327		/*
1328		 * Implicit input:
1329		 *  B1: pointer to ctx
1330		 *  B2: pointer to bpf_array
1331		 *  B3: index in bpf_array
1332		 */
1333		jit->seen |= SEEN_TAIL_CALL;
1334
1335		/*
1336		 * if (index >= array->map.max_entries)
1337		 *         goto out;
1338		 */
1339
1340		/* llgf %w1,map.max_entries(%b2) */
1341		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1342			      offsetof(struct bpf_array, map.max_entries));
1343		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1344		/* clrj %b3,%w1,0xa,out */
1345		patch_1_clrj = jit->prg;
1346		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1347				 jit->prg);
1348
1349		/*
1350		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1351		 *         goto out;
1352		 */
1353
1354		if (jit->seen & SEEN_STACK)
1355			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1356		else
1357			off = STK_OFF_TCCNT;
1358		/* lhi %w0,1 */
1359		EMIT4_IMM(0xa7080000, REG_W0, 1);
1360		/* laal %w1,%w0,off(%r15) */
1361		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1362		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1363		patch_2_clij = jit->prg;
1364		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1365				 2, jit->prg);
1366
1367		/*
1368		 * prog = array->ptrs[index];
1369		 * if (prog == NULL)
1370		 *         goto out;
1371		 */
1372
1373		/* llgfr %r1,%b3: %r1 = (u32) index */
1374		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1375		/* sllg %r1,%r1,3: %r1 *= 8 */
1376		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1377		/* ltg %r1,prog(%b2,%r1) */
1378		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1379			      REG_1, offsetof(struct bpf_array, ptrs));
1380		/* brc 0x8,out */
1381		patch_3_brc = jit->prg;
1382		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1383
1384		/*
1385		 * Restore registers before calling function
1386		 */
1387		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1388
1389		/*
1390		 * goto *(prog->bpf_func + tail_call_start);
1391		 */
1392
1393		/* lg %r1,bpf_func(%r1) */
1394		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1395			      offsetof(struct bpf_prog, bpf_func));
1396		/* bc 0xf,tail_call_start(%r1) */
1397		_EMIT4(0x47f01000 + jit->tail_call_start);
1398		/* out: */
1399		if (jit->prg_buf) {
1400			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1401				(jit->prg - patch_1_clrj) >> 1;
1402			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1403				(jit->prg - patch_2_clij) >> 1;
1404			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1405				(jit->prg - patch_3_brc) >> 1;
1406		}
1407		break;
1408	}
1409	case BPF_JMP | BPF_EXIT: /* return b0 */
1410		last = (i == fp->len - 1) ? 1 : 0;
1411		if (last)
1412			break;
1413		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1414			/* brc 0xf, <exit> */
1415			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1416		else
1417			/* brcl 0xf, <exit> */
1418			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1419		break;
1420	/*
1421	 * Branch relative (number of skipped instructions) to offset on
1422	 * condition.
1423	 *
1424	 * Condition code to mask mapping:
1425	 *
1426	 * CC | Description	   | Mask
1427	 * ------------------------------
1428	 * 0  | Operands equal	   |	8
1429	 * 1  | First operand low  |	4
1430	 * 2  | First operand high |	2
1431	 * 3  | Unused		   |	1
1432	 *
1433	 * For s390x relative branches: ip = ip + off_bytes
1434	 * For BPF relative branches:	insn = insn + off_insns + 1
1435	 *
1436	 * For example for s390x with offset 0 we jump to the branch
1437	 * instruction itself (loop) and for BPF with offset 0 we
1438	 * branch to the instruction behind the branch.
1439	 */
1440	case BPF_JMP | BPF_JA: /* if (true) */
1441		mask = 0xf000; /* j */
1442		goto branch_oc;
1443	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1444	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1445		mask = 0x2000; /* jh */
1446		goto branch_ks;
1447	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1448	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1449		mask = 0x4000; /* jl */
1450		goto branch_ks;
1451	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1452	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1453		mask = 0xa000; /* jhe */
1454		goto branch_ks;
1455	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1456	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1457		mask = 0xc000; /* jle */
1458		goto branch_ks;
1459	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1460	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1461		mask = 0x2000; /* jh */
1462		goto branch_ku;
1463	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1464	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1465		mask = 0x4000; /* jl */
1466		goto branch_ku;
1467	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1468	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1469		mask = 0xa000; /* jhe */
1470		goto branch_ku;
1471	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1472	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1473		mask = 0xc000; /* jle */
1474		goto branch_ku;
1475	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1476	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1477		mask = 0x7000; /* jne */
1478		goto branch_ku;
1479	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1480	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1481		mask = 0x8000; /* je */
1482		goto branch_ku;
1483	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1484	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1485		mask = 0x7000; /* jnz */
1486		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1487			/* llilf %w1,imm (load zero extend imm) */
1488			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1489			/* nr %w1,%dst */
1490			EMIT2(0x1400, REG_W1, dst_reg);
1491		} else {
1492			/* lgfi %w1,imm (load sign extend imm) */
1493			EMIT6_IMM(0xc0010000, REG_W1, imm);
1494			/* ngr %w1,%dst */
1495			EMIT4(0xb9800000, REG_W1, dst_reg);
1496		}
1497		goto branch_oc;
1498
1499	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1500	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1501		mask = 0x2000; /* jh */
1502		goto branch_xs;
1503	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1504	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1505		mask = 0x4000; /* jl */
1506		goto branch_xs;
1507	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1508	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1509		mask = 0xa000; /* jhe */
1510		goto branch_xs;
1511	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1512	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1513		mask = 0xc000; /* jle */
1514		goto branch_xs;
1515	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1516	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1517		mask = 0x2000; /* jh */
1518		goto branch_xu;
1519	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1520	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1521		mask = 0x4000; /* jl */
1522		goto branch_xu;
1523	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1524	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1525		mask = 0xa000; /* jhe */
1526		goto branch_xu;
1527	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1528	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1529		mask = 0xc000; /* jle */
1530		goto branch_xu;
1531	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1532	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1533		mask = 0x7000; /* jne */
1534		goto branch_xu;
1535	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1536	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1537		mask = 0x8000; /* je */
1538		goto branch_xu;
1539	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1540	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1541	{
1542		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1543
1544		mask = 0x7000; /* jnz */
1545		/* nrk or ngrk %w1,%dst,%src */
1546		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1547			  REG_W1, dst_reg, src_reg);
1548		goto branch_oc;
1549branch_ks:
1550		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1551		/* cfi or cgfi %dst,imm */
1552		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1553			  dst_reg, imm);
1554		if (!is_first_pass(jit) &&
1555		    can_use_rel(jit, addrs[i + off + 1])) {
1556			/* brc mask,off */
1557			EMIT4_PCREL_RIC(0xa7040000,
1558					mask >> 12, addrs[i + off + 1]);
1559		} else {
1560			/* brcl mask,off */
1561			EMIT6_PCREL_RILC(0xc0040000,
1562					 mask >> 12, addrs[i + off + 1]);
1563		}
1564		break;
1565branch_ku:
 
1566		/* lgfi %w1,imm (load sign extend imm) */
1567		src_reg = REG_1;
1568		EMIT6_IMM(0xc0010000, src_reg, imm);
1569		goto branch_xu;
 
 
1570branch_xs:
1571		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1572		if (!is_first_pass(jit) &&
1573		    can_use_rel(jit, addrs[i + off + 1])) {
1574			/* crj or cgrj %dst,%src,mask,off */
1575			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1576				    dst_reg, src_reg, i, off, mask);
1577		} else {
1578			/* cr or cgr %dst,%src */
1579			if (is_jmp32)
1580				EMIT2(0x1900, dst_reg, src_reg);
1581			else
1582				EMIT4(0xb9200000, dst_reg, src_reg);
1583			/* brcl mask,off */
1584			EMIT6_PCREL_RILC(0xc0040000,
1585					 mask >> 12, addrs[i + off + 1]);
1586		}
1587		break;
1588branch_xu:
1589		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1590		if (!is_first_pass(jit) &&
1591		    can_use_rel(jit, addrs[i + off + 1])) {
1592			/* clrj or clgrj %dst,%src,mask,off */
1593			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1594				    dst_reg, src_reg, i, off, mask);
1595		} else {
1596			/* clr or clgr %dst,%src */
1597			if (is_jmp32)
1598				EMIT2(0x1500, dst_reg, src_reg);
1599			else
1600				EMIT4(0xb9210000, dst_reg, src_reg);
1601			/* brcl mask,off */
1602			EMIT6_PCREL_RILC(0xc0040000,
1603					 mask >> 12, addrs[i + off + 1]);
1604		}
1605		break;
1606branch_oc:
1607		if (!is_first_pass(jit) &&
1608		    can_use_rel(jit, addrs[i + off + 1])) {
1609			/* brc mask,off */
1610			EMIT4_PCREL_RIC(0xa7040000,
1611					mask >> 12, addrs[i + off + 1]);
1612		} else {
1613			/* brcl mask,off */
1614			EMIT6_PCREL_RILC(0xc0040000,
1615					 mask >> 12, addrs[i + off + 1]);
1616		}
1617		break;
1618	}
1619	default: /* too complex, give up */
1620		pr_err("Unknown opcode %02x\n", insn->code);
1621		return -1;
1622	}
1623
1624	if (probe_prg != -1) {
1625		/*
1626		 * Handlers of certain exceptions leave psw.addr pointing to
1627		 * the instruction directly after the failing one. Therefore,
1628		 * create two exception table entries and also add a nop in
1629		 * case two probing instructions come directly after each
1630		 * other.
1631		 */
1632		nop_prg = jit->prg;
1633		/* bcr 0,%0 */
1634		_EMIT2(0x0700);
1635		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1636		if (err < 0)
1637			return err;
1638	}
1639
1640	return insn_count;
1641}
1642
1643/*
1644 * Return whether new i-th instruction address does not violate any invariant
1645 */
1646static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1647{
1648	/* On the first pass anything goes */
1649	if (is_first_pass(jit))
1650		return true;
1651
1652	/* The codegen pass must not change anything */
1653	if (is_codegen_pass(jit))
1654		return jit->addrs[i] == jit->prg;
1655
1656	/* Passes in between must not increase code size */
1657	return jit->addrs[i] >= jit->prg;
1658}
1659
1660/*
1661 * Update the address of i-th instruction
1662 */
1663static int bpf_set_addr(struct bpf_jit *jit, int i)
1664{
1665	int delta;
1666
1667	if (is_codegen_pass(jit)) {
1668		delta = jit->prg - jit->addrs[i];
1669		if (delta < 0)
1670			bpf_skip(jit, -delta);
1671	}
1672	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1673		return -1;
1674	jit->addrs[i] = jit->prg;
1675	return 0;
1676}
1677
1678/*
1679 * Compile eBPF program into s390x code
1680 */
1681static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1682			bool extra_pass, u32 stack_depth)
1683{
1684	int i, insn_count, lit32_size, lit64_size;
1685
1686	jit->lit32 = jit->lit32_start;
1687	jit->lit64 = jit->lit64_start;
1688	jit->prg = 0;
1689	jit->excnt = 0;
1690
1691	bpf_jit_prologue(jit, stack_depth);
1692	if (bpf_set_addr(jit, 0) < 0)
1693		return -1;
1694	for (i = 0; i < fp->len; i += insn_count) {
1695		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1696		if (insn_count < 0)
1697			return -1;
1698		/* Next instruction address */
1699		if (bpf_set_addr(jit, i + insn_count) < 0)
1700			return -1;
1701	}
1702	bpf_jit_epilogue(jit, stack_depth);
1703
1704	lit32_size = jit->lit32 - jit->lit32_start;
1705	lit64_size = jit->lit64 - jit->lit64_start;
1706	jit->lit32_start = jit->prg;
1707	if (lit32_size)
1708		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1709	jit->lit64_start = jit->lit32_start + lit32_size;
1710	if (lit64_size)
1711		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1712	jit->size = jit->lit64_start + lit64_size;
1713	jit->size_prg = jit->prg;
1714
1715	if (WARN_ON_ONCE(fp->aux->extable &&
1716			 jit->excnt != fp->aux->num_exentries))
1717		/* Verifier bug - too many entries. */
1718		return -1;
1719
1720	return 0;
1721}
1722
1723bool bpf_jit_needs_zext(void)
1724{
1725	return true;
1726}
1727
1728struct s390_jit_data {
1729	struct bpf_binary_header *header;
1730	struct bpf_jit ctx;
1731	int pass;
1732};
1733
1734static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1735					       struct bpf_prog *fp)
1736{
1737	struct bpf_binary_header *header;
1738	u32 extable_size;
1739	u32 code_size;
1740
1741	/* We need two entries per insn. */
1742	fp->aux->num_exentries *= 2;
1743
1744	code_size = roundup(jit->size,
1745			    __alignof__(struct exception_table_entry));
1746	extable_size = fp->aux->num_exentries *
1747		sizeof(struct exception_table_entry);
1748	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1749				      8, jit_fill_hole);
1750	if (!header)
1751		return NULL;
1752	fp->aux->extable = (struct exception_table_entry *)
1753		(jit->prg_buf + code_size);
1754	return header;
1755}
1756
1757/*
1758 * Compile eBPF program "fp"
1759 */
1760struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1761{
1762	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1763	struct bpf_prog *tmp, *orig_fp = fp;
1764	struct bpf_binary_header *header;
1765	struct s390_jit_data *jit_data;
1766	bool tmp_blinded = false;
1767	bool extra_pass = false;
1768	struct bpf_jit jit;
1769	int pass;
1770
1771	if (!fp->jit_requested)
1772		return orig_fp;
1773
1774	tmp = bpf_jit_blind_constants(fp);
1775	/*
1776	 * If blinding was requested and we failed during blinding,
1777	 * we must fall back to the interpreter.
1778	 */
1779	if (IS_ERR(tmp))
1780		return orig_fp;
1781	if (tmp != fp) {
1782		tmp_blinded = true;
1783		fp = tmp;
1784	}
1785
1786	jit_data = fp->aux->jit_data;
1787	if (!jit_data) {
1788		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1789		if (!jit_data) {
1790			fp = orig_fp;
1791			goto out;
1792		}
1793		fp->aux->jit_data = jit_data;
1794	}
1795	if (jit_data->ctx.addrs) {
1796		jit = jit_data->ctx;
1797		header = jit_data->header;
1798		extra_pass = true;
1799		pass = jit_data->pass + 1;
1800		goto skip_init_ctx;
1801	}
1802
1803	memset(&jit, 0, sizeof(jit));
1804	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1805	if (jit.addrs == NULL) {
1806		fp = orig_fp;
1807		goto free_addrs;
1808	}
1809	/*
1810	 * Three initial passes:
1811	 *   - 1/2: Determine clobbered registers
1812	 *   - 3:   Calculate program size and addrs array
1813	 */
1814	for (pass = 1; pass <= 3; pass++) {
1815		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1816			fp = orig_fp;
1817			goto free_addrs;
1818		}
1819	}
1820	/*
1821	 * Final pass: Allocate and generate program
1822	 */
1823	header = bpf_jit_alloc(&jit, fp);
 
 
 
 
 
1824	if (!header) {
1825		fp = orig_fp;
1826		goto free_addrs;
1827	}
1828skip_init_ctx:
1829	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1830		bpf_jit_binary_free(header);
1831		fp = orig_fp;
1832		goto free_addrs;
1833	}
1834	if (bpf_jit_enable > 1) {
1835		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1836		print_fn_code(jit.prg_buf, jit.size_prg);
1837	}
1838	if (!fp->is_func || extra_pass) {
1839		bpf_jit_binary_lock_ro(header);
1840	} else {
1841		jit_data->header = header;
1842		jit_data->ctx = jit;
1843		jit_data->pass = pass;
1844	}
1845	fp->bpf_func = (void *) jit.prg_buf;
1846	fp->jited = 1;
1847	fp->jited_len = jit.size;
1848
1849	if (!fp->is_func || extra_pass) {
1850		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1851free_addrs:
1852		kvfree(jit.addrs);
1853		kfree(jit_data);
1854		fp->aux->jit_data = NULL;
1855	}
1856out:
1857	if (tmp_blinded)
1858		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1859					   tmp : orig_fp);
1860	return fp;
1861}
v5.4
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * BPF Jit compiler for s390.
   4 *
   5 * Minimum build requirements:
   6 *
   7 *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
   8 *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
   9 *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
  10 *  - PACK_STACK
  11 *  - 64BIT
  12 *
  13 * Copyright IBM Corp. 2012,2015
  14 *
  15 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  16 *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
  17 */
  18
  19#define KMSG_COMPONENT "bpf_jit"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/netdevice.h>
  23#include <linux/filter.h>
  24#include <linux/init.h>
  25#include <linux/bpf.h>
 
 
  26#include <asm/cacheflush.h>
 
  27#include <asm/dis.h>
  28#include <asm/facility.h>
  29#include <asm/nospec-branch.h>
  30#include <asm/set_memory.h>
  31#include "bpf_jit.h"
  32
  33struct bpf_jit {
  34	u32 seen;		/* Flags to remember seen eBPF instructions */
  35	u32 seen_reg[16];	/* Array to remember which registers are used */
  36	u32 *addrs;		/* Array with relative instruction addresses */
  37	u8 *prg_buf;		/* Start of program */
  38	int size;		/* Size of program and literal pool */
  39	int size_prg;		/* Size of program */
  40	int prg;		/* Current position in program */
  41	int lit_start;		/* Start of literal pool */
  42	int lit;		/* Current position in literal pool */
 
 
  43	int base_ip;		/* Base address for literal pool */
  44	int ret0_ip;		/* Address of return 0 */
  45	int exit_ip;		/* Address of exit */
  46	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
  47	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
  48	int tail_call_start;	/* Tail call start offset */
  49	int labels[1];		/* Labels for local jumps */
  50};
  51
  52#define BPF_SIZE_MAX	0xffff	/* Max size for program (16 bit branches) */
  53
  54#define SEEN_MEM	(1 << 0)	/* use mem[] for temporary storage */
  55#define SEEN_RET0	(1 << 1)	/* ret0_ip points to a valid return 0 */
  56#define SEEN_LITERAL	(1 << 2)	/* code uses literals */
  57#define SEEN_FUNC	(1 << 3)	/* calls C functions */
  58#define SEEN_TAIL_CALL	(1 << 4)	/* code uses tail calls */
  59#define SEEN_REG_AX	(1 << 5)	/* code uses constant blinding */
  60#define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
  61
  62/*
  63 * s390 registers
  64 */
  65#define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
  66#define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
  67#define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
  68#define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
  69#define REG_0		REG_W0			/* Register 0 */
  70#define REG_1		REG_W1			/* Register 1 */
  71#define REG_2		BPF_REG_1		/* Register 2 */
  72#define REG_14		BPF_REG_0		/* Register 14 */
  73
  74/*
  75 * Mapping of BPF registers to s390 registers
  76 */
  77static const int reg2hex[] = {
  78	/* Return code */
  79	[BPF_REG_0]	= 14,
  80	/* Function parameters */
  81	[BPF_REG_1]	= 2,
  82	[BPF_REG_2]	= 3,
  83	[BPF_REG_3]	= 4,
  84	[BPF_REG_4]	= 5,
  85	[BPF_REG_5]	= 6,
  86	/* Call saved registers */
  87	[BPF_REG_6]	= 7,
  88	[BPF_REG_7]	= 8,
  89	[BPF_REG_8]	= 9,
  90	[BPF_REG_9]	= 10,
  91	/* BPF stack pointer */
  92	[BPF_REG_FP]	= 13,
  93	/* Register for blinding */
  94	[BPF_REG_AX]	= 12,
  95	/* Work registers for s390x backend */
  96	[REG_W0]	= 0,
  97	[REG_W1]	= 1,
  98	[REG_L]		= 11,
  99	[REG_15]	= 15,
 100};
 101
 102static inline u32 reg(u32 dst_reg, u32 src_reg)
 103{
 104	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
 105}
 106
 107static inline u32 reg_high(u32 reg)
 108{
 109	return reg2hex[reg] << 4;
 110}
 111
 112static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
 113{
 114	u32 r1 = reg2hex[b1];
 115
 116	if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
 117		jit->seen_reg[r1] = 1;
 118}
 119
 120#define REG_SET_SEEN(b1)					\
 121({								\
 122	reg_set_seen(jit, b1);					\
 123})
 124
 125#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
 126
 127/*
 128 * EMIT macros for code generation
 129 */
 130
 131#define _EMIT2(op)						\
 132({								\
 133	if (jit->prg_buf)					\
 134		*(u16 *) (jit->prg_buf + jit->prg) = op;	\
 135	jit->prg += 2;						\
 136})
 137
 138#define EMIT2(op, b1, b2)					\
 139({								\
 140	_EMIT2(op | reg(b1, b2));				\
 141	REG_SET_SEEN(b1);					\
 142	REG_SET_SEEN(b2);					\
 143})
 144
 145#define _EMIT4(op)						\
 146({								\
 147	if (jit->prg_buf)					\
 148		*(u32 *) (jit->prg_buf + jit->prg) = op;	\
 149	jit->prg += 4;						\
 150})
 151
 152#define EMIT4(op, b1, b2)					\
 153({								\
 154	_EMIT4(op | reg(b1, b2));				\
 155	REG_SET_SEEN(b1);					\
 156	REG_SET_SEEN(b2);					\
 157})
 158
 159#define EMIT4_RRF(op, b1, b2, b3)				\
 160({								\
 161	_EMIT4(op | reg_high(b3) << 8 | reg(b1, b2));		\
 162	REG_SET_SEEN(b1);					\
 163	REG_SET_SEEN(b2);					\
 164	REG_SET_SEEN(b3);					\
 165})
 166
 167#define _EMIT4_DISP(op, disp)					\
 168({								\
 169	unsigned int __disp = (disp) & 0xfff;			\
 170	_EMIT4(op | __disp);					\
 171})
 172
 173#define EMIT4_DISP(op, b1, b2, disp)				\
 174({								\
 175	_EMIT4_DISP(op | reg_high(b1) << 16 |			\
 176		    reg_high(b2) << 8, disp);			\
 177	REG_SET_SEEN(b1);					\
 178	REG_SET_SEEN(b2);					\
 179})
 180
 181#define EMIT4_IMM(op, b1, imm)					\
 182({								\
 183	unsigned int __imm = (imm) & 0xffff;			\
 184	_EMIT4(op | reg_high(b1) << 16 | __imm);		\
 185	REG_SET_SEEN(b1);					\
 186})
 187
 188#define EMIT4_PCREL(op, pcrel)					\
 189({								\
 190	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
 191	_EMIT4(op | __pcrel);					\
 
 
 
 
 
 
 192})
 193
 194#define _EMIT6(op1, op2)					\
 195({								\
 196	if (jit->prg_buf) {					\
 197		*(u32 *) (jit->prg_buf + jit->prg) = op1;	\
 198		*(u16 *) (jit->prg_buf + jit->prg + 4) = op2;	\
 199	}							\
 200	jit->prg += 6;						\
 201})
 202
 203#define _EMIT6_DISP(op1, op2, disp)				\
 204({								\
 205	unsigned int __disp = (disp) & 0xfff;			\
 206	_EMIT6(op1 | __disp, op2);				\
 207})
 208
 209#define _EMIT6_DISP_LH(op1, op2, disp)				\
 210({								\
 211	u32 _disp = (u32) disp;					\
 212	unsigned int __disp_h = _disp & 0xff000;		\
 213	unsigned int __disp_l = _disp & 0x00fff;		\
 214	_EMIT6(op1 | __disp_l, op2 | __disp_h >> 4);		\
 215})
 216
 217#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
 218({								\
 219	_EMIT6_DISP_LH(op1 | reg(b1, b2) << 16 |		\
 220		       reg_high(b3) << 8, op2, disp);		\
 221	REG_SET_SEEN(b1);					\
 222	REG_SET_SEEN(b2);					\
 223	REG_SET_SEEN(b3);					\
 224})
 225
 226#define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask)	\
 227({								\
 228	int rel = (jit->labels[label] - jit->prg) >> 1;		\
 229	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff),	\
 230	       op2 | mask << 12);				\
 231	REG_SET_SEEN(b1);					\
 232	REG_SET_SEEN(b2);					\
 233})
 234
 235#define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask)	\
 236({								\
 237	int rel = (jit->labels[label] - jit->prg) >> 1;		\
 238	_EMIT6(op1 | (reg_high(b1) | mask) << 16 |		\
 239		(rel & 0xffff), op2 | (imm & 0xff) << 8);	\
 240	REG_SET_SEEN(b1);					\
 241	BUILD_BUG_ON(((unsigned long) imm) > 0xff);		\
 242})
 243
 244#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
 245({								\
 246	/* Branch instruction needs 6 bytes */			\
 247	int rel = (addrs[i + off + 1] - (addrs[i + 1] - 6)) / 2;\
 248	_EMIT6(op1 | reg(b1, b2) << 16 | (rel & 0xffff), op2 | mask);	\
 249	REG_SET_SEEN(b1);					\
 250	REG_SET_SEEN(b2);					\
 251})
 252
 253#define EMIT6_PCREL_RILB(op, b, target)				\
 254({								\
 255	int rel = (target - jit->prg) / 2;			\
 256	_EMIT6(op | reg_high(b) << 16 | rel >> 16, rel & 0xffff);	\
 257	REG_SET_SEEN(b);					\
 258})
 259
 260#define EMIT6_PCREL_RIL(op, target)				\
 261({								\
 262	int rel = (target - jit->prg) / 2;			\
 263	_EMIT6(op | rel >> 16, rel & 0xffff);			\
 
 
 
 
 
 264})
 265
 266#define _EMIT6_IMM(op, imm)					\
 267({								\
 268	unsigned int __imm = (imm);				\
 269	_EMIT6(op | (__imm >> 16), __imm & 0xffff);		\
 270})
 271
 272#define EMIT6_IMM(op, b1, imm)					\
 273({								\
 274	_EMIT6_IMM(op | reg_high(b1) << 16, imm);		\
 275	REG_SET_SEEN(b1);					\
 276})
 277
 
 
 
 
 
 
 
 
 
 
 278#define EMIT_CONST_U32(val)					\
 279({								\
 
 
 
 
 
 
 280	unsigned int ret;					\
 281	ret = jit->lit - jit->base_ip;				\
 282	jit->seen |= SEEN_LITERAL;				\
 283	if (jit->prg_buf)					\
 284		*(u32 *) (jit->prg_buf + jit->lit) = (u32) val;	\
 285	jit->lit += 4;						\
 286	ret;							\
 287})
 288
 289#define EMIT_CONST_U64(val)					\
 290({								\
 291	unsigned int ret;					\
 292	ret = jit->lit - jit->base_ip;				\
 293	jit->seen |= SEEN_LITERAL;				\
 294	if (jit->prg_buf)					\
 295		*(u64 *) (jit->prg_buf + jit->lit) = (u64) val;	\
 296	jit->lit += 8;						\
 297	ret;							\
 298})
 299
 300#define EMIT_ZERO(b1)						\
 301({								\
 302	if (!fp->aux->verifier_zext) {				\
 303		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
 304		EMIT4(0xb9160000, b1, b1);			\
 305		REG_SET_SEEN(b1);				\
 306	}							\
 307})
 308
 309/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 310 * Fill whole space with illegal instructions
 311 */
 312static void jit_fill_hole(void *area, unsigned int size)
 313{
 314	memset(area, 0, size);
 315}
 316
 317/*
 318 * Save registers from "rs" (register start) to "re" (register end) on stack
 319 */
 320static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
 321{
 322	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 323
 324	if (rs == re)
 325		/* stg %rs,off(%r15) */
 326		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
 327	else
 328		/* stmg %rs,%re,off(%r15) */
 329		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
 330}
 331
 332/*
 333 * Restore registers from "rs" (register start) to "re" (register end) on stack
 334 */
 335static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
 336{
 337	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 338
 339	if (jit->seen & SEEN_STACK)
 340		off += STK_OFF + stack_depth;
 341
 342	if (rs == re)
 343		/* lg %rs,off(%r15) */
 344		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
 345	else
 346		/* lmg %rs,%re,off(%r15) */
 347		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
 348}
 349
 350/*
 351 * Return first seen register (from start)
 352 */
 353static int get_start(struct bpf_jit *jit, int start)
 354{
 355	int i;
 356
 357	for (i = start; i <= 15; i++) {
 358		if (jit->seen_reg[i])
 359			return i;
 360	}
 361	return 0;
 362}
 363
 364/*
 365 * Return last seen register (from start) (gap >= 2)
 366 */
 367static int get_end(struct bpf_jit *jit, int start)
 368{
 369	int i;
 370
 371	for (i = start; i < 15; i++) {
 372		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
 373			return i - 1;
 374	}
 375	return jit->seen_reg[15] ? 15 : 14;
 376}
 377
 378#define REGS_SAVE	1
 379#define REGS_RESTORE	0
 380/*
 381 * Save and restore clobbered registers (6-15) on stack.
 382 * We save/restore registers in chunks with gap >= 2 registers.
 383 */
 384static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
 385{
 
 
 386
 387	int re = 6, rs;
 
 
 
 
 
 
 
 388
 389	do {
 390		rs = get_start(jit, re);
 391		if (!rs)
 392			break;
 393		re = get_end(jit, rs + 1);
 394		if (op == REGS_SAVE)
 395			save_regs(jit, rs, re);
 396		else
 397			restore_regs(jit, rs, re, stack_depth);
 398		re++;
 399	} while (re <= 15);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 400}
 401
 402/*
 403 * Emit function prologue
 404 *
 405 * Save registers and create stack frame if necessary.
 406 * See stack frame layout desription in "bpf_jit.h"!
 407 */
 408static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
 409{
 410	if (jit->seen & SEEN_TAIL_CALL) {
 411		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
 412		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
 413	} else {
 414		/* j tail_call_start: NOP if no tail calls are used */
 415		EMIT4_PCREL(0xa7f40000, 6);
 416		_EMIT2(0);
 
 
 417	}
 418	/* Tail calls have to skip above initialization */
 419	jit->tail_call_start = jit->prg;
 420	/* Save registers */
 421	save_restore_regs(jit, REGS_SAVE, stack_depth);
 422	/* Setup literal pool */
 423	if (jit->seen & SEEN_LITERAL) {
 424		/* basr %r13,0 */
 425		EMIT2(0x0d00, REG_L, REG_0);
 426		jit->base_ip = jit->prg;
 
 
 
 
 
 
 
 427	}
 428	/* Setup stack and backchain */
 429	if (jit->seen & SEEN_STACK) {
 430		if (jit->seen & SEEN_FUNC)
 431			/* lgr %w1,%r15 (backchain) */
 432			EMIT4(0xb9040000, REG_W1, REG_15);
 433		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
 434		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
 435		/* aghi %r15,-STK_OFF */
 436		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
 437		if (jit->seen & SEEN_FUNC)
 438			/* stg %w1,152(%r15) (backchain) */
 439			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
 440				      REG_15, 152);
 441	}
 442}
 443
 444/*
 445 * Function epilogue
 446 */
 447static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
 448{
 449	/* Return 0 */
 450	if (jit->seen & SEEN_RET0) {
 451		jit->ret0_ip = jit->prg;
 452		/* lghi %b0,0 */
 453		EMIT4_IMM(0xa7090000, BPF_REG_0, 0);
 454	}
 455	jit->exit_ip = jit->prg;
 456	/* Load exit code: lgr %r2,%b0 */
 457	EMIT4(0xb9040000, REG_2, BPF_REG_0);
 458	/* Restore registers */
 459	save_restore_regs(jit, REGS_RESTORE, stack_depth);
 460	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
 461		jit->r14_thunk_ip = jit->prg;
 462		/* Generate __s390_indirect_jump_r14 thunk */
 463		if (test_facility(35)) {
 464			/* exrl %r0,.+10 */
 465			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 466		} else {
 467			/* larl %r1,.+14 */
 468			EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
 469			/* ex 0,0(%r1) */
 470			EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
 471		}
 472		/* j . */
 473		EMIT4_PCREL(0xa7f40000, 0);
 474	}
 475	/* br %r14 */
 476	_EMIT2(0x07fe);
 477
 478	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
 479	    (jit->seen & SEEN_FUNC)) {
 480		jit->r1_thunk_ip = jit->prg;
 481		/* Generate __s390_indirect_jump_r1 thunk */
 482		if (test_facility(35)) {
 483			/* exrl %r0,.+10 */
 484			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 485			/* j . */
 486			EMIT4_PCREL(0xa7f40000, 0);
 487			/* br %r1 */
 488			_EMIT2(0x07f1);
 489		} else {
 490			/* ex 0,S390_lowcore.br_r1_tampoline */
 491			EMIT4_DISP(0x44000000, REG_0, REG_0,
 492				   offsetof(struct lowcore, br_r1_trampoline));
 493			/* j . */
 494			EMIT4_PCREL(0xa7f40000, 0);
 495		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496	}
 
 497}
 498
 499/*
 500 * Compile one eBPF instruction into s390x code
 501 *
 502 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
 503 * stack space for the large switch statement.
 504 */
 505static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
 506				 int i, bool extra_pass)
 507{
 508	struct bpf_insn *insn = &fp->insnsi[i];
 509	int jmp_off, last, insn_count = 1;
 510	u32 dst_reg = insn->dst_reg;
 511	u32 src_reg = insn->src_reg;
 
 512	u32 *addrs = jit->addrs;
 513	s32 imm = insn->imm;
 514	s16 off = insn->off;
 
 515	unsigned int mask;
 
 
 
 
 
 
 516
 517	if (dst_reg == BPF_REG_AX || src_reg == BPF_REG_AX)
 518		jit->seen |= SEEN_REG_AX;
 519	switch (insn->code) {
 520	/*
 521	 * BPF_MOV
 522	 */
 523	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
 524		/* llgfr %dst,%src */
 525		EMIT4(0xb9160000, dst_reg, src_reg);
 526		if (insn_is_zext(&insn[1]))
 527			insn_count = 2;
 528		break;
 529	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
 530		/* lgr %dst,%src */
 531		EMIT4(0xb9040000, dst_reg, src_reg);
 532		break;
 533	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
 534		/* llilf %dst,imm */
 535		EMIT6_IMM(0xc00f0000, dst_reg, imm);
 536		if (insn_is_zext(&insn[1]))
 537			insn_count = 2;
 538		break;
 539	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
 540		/* lgfi %dst,imm */
 541		EMIT6_IMM(0xc0010000, dst_reg, imm);
 542		break;
 543	/*
 544	 * BPF_LD 64
 545	 */
 546	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
 547	{
 548		/* 16 byte instruction that uses two 'struct bpf_insn' */
 549		u64 imm64;
 550
 551		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
 552		/* lg %dst,<d(imm)>(%l) */
 553		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, REG_0, REG_L,
 554			      EMIT_CONST_U64(imm64));
 555		insn_count = 2;
 556		break;
 557	}
 558	/*
 559	 * BPF_ADD
 560	 */
 561	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
 562		/* ar %dst,%src */
 563		EMIT2(0x1a00, dst_reg, src_reg);
 564		EMIT_ZERO(dst_reg);
 565		break;
 566	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
 567		/* agr %dst,%src */
 568		EMIT4(0xb9080000, dst_reg, src_reg);
 569		break;
 570	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
 571		if (!imm)
 572			break;
 573		/* alfi %dst,imm */
 574		EMIT6_IMM(0xc20b0000, dst_reg, imm);
 575		EMIT_ZERO(dst_reg);
 576		break;
 577	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
 578		if (!imm)
 579			break;
 580		/* agfi %dst,imm */
 581		EMIT6_IMM(0xc2080000, dst_reg, imm);
 582		break;
 583	/*
 584	 * BPF_SUB
 585	 */
 586	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
 587		/* sr %dst,%src */
 588		EMIT2(0x1b00, dst_reg, src_reg);
 589		EMIT_ZERO(dst_reg);
 590		break;
 591	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
 592		/* sgr %dst,%src */
 593		EMIT4(0xb9090000, dst_reg, src_reg);
 594		break;
 595	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
 596		if (!imm)
 597			break;
 598		/* alfi %dst,-imm */
 599		EMIT6_IMM(0xc20b0000, dst_reg, -imm);
 600		EMIT_ZERO(dst_reg);
 601		break;
 602	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
 603		if (!imm)
 604			break;
 605		/* agfi %dst,-imm */
 606		EMIT6_IMM(0xc2080000, dst_reg, -imm);
 
 
 
 
 
 607		break;
 608	/*
 609	 * BPF_MUL
 610	 */
 611	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
 612		/* msr %dst,%src */
 613		EMIT4(0xb2520000, dst_reg, src_reg);
 614		EMIT_ZERO(dst_reg);
 615		break;
 616	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
 617		/* msgr %dst,%src */
 618		EMIT4(0xb90c0000, dst_reg, src_reg);
 619		break;
 620	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
 621		if (imm == 1)
 622			break;
 623		/* msfi %r5,imm */
 624		EMIT6_IMM(0xc2010000, dst_reg, imm);
 625		EMIT_ZERO(dst_reg);
 626		break;
 627	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
 628		if (imm == 1)
 629			break;
 630		/* msgfi %dst,imm */
 631		EMIT6_IMM(0xc2000000, dst_reg, imm);
 632		break;
 633	/*
 634	 * BPF_DIV / BPF_MOD
 635	 */
 636	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
 637	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
 638	{
 639		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 640
 641		/* lhi %w0,0 */
 642		EMIT4_IMM(0xa7080000, REG_W0, 0);
 643		/* lr %w1,%dst */
 644		EMIT2(0x1800, REG_W1, dst_reg);
 645		/* dlr %w0,%src */
 646		EMIT4(0xb9970000, REG_W0, src_reg);
 647		/* llgfr %dst,%rc */
 648		EMIT4(0xb9160000, dst_reg, rc_reg);
 649		if (insn_is_zext(&insn[1]))
 650			insn_count = 2;
 651		break;
 652	}
 653	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
 654	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
 655	{
 656		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 657
 658		/* lghi %w0,0 */
 659		EMIT4_IMM(0xa7090000, REG_W0, 0);
 660		/* lgr %w1,%dst */
 661		EMIT4(0xb9040000, REG_W1, dst_reg);
 662		/* dlgr %w0,%dst */
 663		EMIT4(0xb9870000, REG_W0, src_reg);
 664		/* lgr %dst,%rc */
 665		EMIT4(0xb9040000, dst_reg, rc_reg);
 666		break;
 667	}
 668	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
 669	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
 670	{
 671		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 672
 673		if (imm == 1) {
 674			if (BPF_OP(insn->code) == BPF_MOD)
 675				/* lhgi %dst,0 */
 676				EMIT4_IMM(0xa7090000, dst_reg, 0);
 
 
 677			break;
 678		}
 679		/* lhi %w0,0 */
 680		EMIT4_IMM(0xa7080000, REG_W0, 0);
 681		/* lr %w1,%dst */
 682		EMIT2(0x1800, REG_W1, dst_reg);
 683		/* dl %w0,<d(imm)>(%l) */
 684		EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
 685			      EMIT_CONST_U32(imm));
 
 
 
 
 
 
 
 
 
 686		/* llgfr %dst,%rc */
 687		EMIT4(0xb9160000, dst_reg, rc_reg);
 688		if (insn_is_zext(&insn[1]))
 689			insn_count = 2;
 690		break;
 691	}
 692	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
 693	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
 694	{
 695		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 696
 697		if (imm == 1) {
 698			if (BPF_OP(insn->code) == BPF_MOD)
 699				/* lhgi %dst,0 */
 700				EMIT4_IMM(0xa7090000, dst_reg, 0);
 701			break;
 702		}
 703		/* lghi %w0,0 */
 704		EMIT4_IMM(0xa7090000, REG_W0, 0);
 705		/* lgr %w1,%dst */
 706		EMIT4(0xb9040000, REG_W1, dst_reg);
 707		/* dlg %w0,<d(imm)>(%l) */
 708		EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
 709			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 710		/* lgr %dst,%rc */
 711		EMIT4(0xb9040000, dst_reg, rc_reg);
 712		break;
 713	}
 714	/*
 715	 * BPF_AND
 716	 */
 717	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
 718		/* nr %dst,%src */
 719		EMIT2(0x1400, dst_reg, src_reg);
 720		EMIT_ZERO(dst_reg);
 721		break;
 722	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
 723		/* ngr %dst,%src */
 724		EMIT4(0xb9800000, dst_reg, src_reg);
 725		break;
 726	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
 727		/* nilf %dst,imm */
 728		EMIT6_IMM(0xc00b0000, dst_reg, imm);
 729		EMIT_ZERO(dst_reg);
 730		break;
 731	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
 732		/* ng %dst,<d(imm)>(%l) */
 733		EMIT6_DISP_LH(0xe3000000, 0x0080, dst_reg, REG_0, REG_L,
 734			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 
 735		break;
 736	/*
 737	 * BPF_OR
 738	 */
 739	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
 740		/* or %dst,%src */
 741		EMIT2(0x1600, dst_reg, src_reg);
 742		EMIT_ZERO(dst_reg);
 743		break;
 744	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
 745		/* ogr %dst,%src */
 746		EMIT4(0xb9810000, dst_reg, src_reg);
 747		break;
 748	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
 749		/* oilf %dst,imm */
 750		EMIT6_IMM(0xc00d0000, dst_reg, imm);
 751		EMIT_ZERO(dst_reg);
 752		break;
 753	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
 754		/* og %dst,<d(imm)>(%l) */
 755		EMIT6_DISP_LH(0xe3000000, 0x0081, dst_reg, REG_0, REG_L,
 756			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 
 757		break;
 758	/*
 759	 * BPF_XOR
 760	 */
 761	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
 762		/* xr %dst,%src */
 763		EMIT2(0x1700, dst_reg, src_reg);
 764		EMIT_ZERO(dst_reg);
 765		break;
 766	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
 767		/* xgr %dst,%src */
 768		EMIT4(0xb9820000, dst_reg, src_reg);
 769		break;
 770	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
 771		if (!imm)
 772			break;
 773		/* xilf %dst,imm */
 774		EMIT6_IMM(0xc0070000, dst_reg, imm);
 775		EMIT_ZERO(dst_reg);
 776		break;
 777	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
 778		/* xg %dst,<d(imm)>(%l) */
 779		EMIT6_DISP_LH(0xe3000000, 0x0082, dst_reg, REG_0, REG_L,
 780			      EMIT_CONST_U64(imm));
 
 
 
 
 
 
 
 
 
 
 781		break;
 782	/*
 783	 * BPF_LSH
 784	 */
 785	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
 786		/* sll %dst,0(%src) */
 787		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
 788		EMIT_ZERO(dst_reg);
 789		break;
 790	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
 791		/* sllg %dst,%dst,0(%src) */
 792		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
 793		break;
 794	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
 795		if (imm == 0)
 796			break;
 797		/* sll %dst,imm(%r0) */
 798		EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
 799		EMIT_ZERO(dst_reg);
 800		break;
 801	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
 802		if (imm == 0)
 803			break;
 804		/* sllg %dst,%dst,imm(%r0) */
 805		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
 806		break;
 807	/*
 808	 * BPF_RSH
 809	 */
 810	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
 811		/* srl %dst,0(%src) */
 812		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
 813		EMIT_ZERO(dst_reg);
 814		break;
 815	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
 816		/* srlg %dst,%dst,0(%src) */
 817		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
 818		break;
 819	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
 820		if (imm == 0)
 821			break;
 822		/* srl %dst,imm(%r0) */
 823		EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
 824		EMIT_ZERO(dst_reg);
 825		break;
 826	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
 827		if (imm == 0)
 828			break;
 829		/* srlg %dst,%dst,imm(%r0) */
 830		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
 831		break;
 832	/*
 833	 * BPF_ARSH
 834	 */
 835	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
 836		/* sra %dst,%dst,0(%src) */
 837		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
 838		EMIT_ZERO(dst_reg);
 839		break;
 840	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
 841		/* srag %dst,%dst,0(%src) */
 842		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
 843		break;
 844	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
 845		if (imm == 0)
 846			break;
 847		/* sra %dst,imm(%r0) */
 848		EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
 849		EMIT_ZERO(dst_reg);
 850		break;
 851	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
 852		if (imm == 0)
 853			break;
 854		/* srag %dst,%dst,imm(%r0) */
 855		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
 856		break;
 857	/*
 858	 * BPF_NEG
 859	 */
 860	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
 861		/* lcr %dst,%dst */
 862		EMIT2(0x1300, dst_reg, dst_reg);
 863		EMIT_ZERO(dst_reg);
 864		break;
 865	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
 866		/* lcgr %dst,%dst */
 867		EMIT4(0xb9030000, dst_reg, dst_reg);
 868		break;
 869	/*
 870	 * BPF_FROM_BE/LE
 871	 */
 872	case BPF_ALU | BPF_END | BPF_FROM_BE:
 873		/* s390 is big endian, therefore only clear high order bytes */
 874		switch (imm) {
 875		case 16: /* dst = (u16) cpu_to_be16(dst) */
 876			/* llghr %dst,%dst */
 877			EMIT4(0xb9850000, dst_reg, dst_reg);
 878			if (insn_is_zext(&insn[1]))
 879				insn_count = 2;
 880			break;
 881		case 32: /* dst = (u32) cpu_to_be32(dst) */
 882			if (!fp->aux->verifier_zext)
 883				/* llgfr %dst,%dst */
 884				EMIT4(0xb9160000, dst_reg, dst_reg);
 885			break;
 886		case 64: /* dst = (u64) cpu_to_be64(dst) */
 887			break;
 888		}
 889		break;
 890	case BPF_ALU | BPF_END | BPF_FROM_LE:
 891		switch (imm) {
 892		case 16: /* dst = (u16) cpu_to_le16(dst) */
 893			/* lrvr %dst,%dst */
 894			EMIT4(0xb91f0000, dst_reg, dst_reg);
 895			/* srl %dst,16(%r0) */
 896			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
 897			/* llghr %dst,%dst */
 898			EMIT4(0xb9850000, dst_reg, dst_reg);
 899			if (insn_is_zext(&insn[1]))
 900				insn_count = 2;
 901			break;
 902		case 32: /* dst = (u32) cpu_to_le32(dst) */
 903			/* lrvr %dst,%dst */
 904			EMIT4(0xb91f0000, dst_reg, dst_reg);
 905			if (!fp->aux->verifier_zext)
 906				/* llgfr %dst,%dst */
 907				EMIT4(0xb9160000, dst_reg, dst_reg);
 908			break;
 909		case 64: /* dst = (u64) cpu_to_le64(dst) */
 910			/* lrvgr %dst,%dst */
 911			EMIT4(0xb90f0000, dst_reg, dst_reg);
 912			break;
 913		}
 914		break;
 915	/*
 
 
 
 
 
 916	 * BPF_ST(X)
 917	 */
 918	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
 919		/* stcy %src,off(%dst) */
 920		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
 921		jit->seen |= SEEN_MEM;
 922		break;
 923	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
 924		/* sthy %src,off(%dst) */
 925		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
 926		jit->seen |= SEEN_MEM;
 927		break;
 928	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
 929		/* sty %src,off(%dst) */
 930		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
 931		jit->seen |= SEEN_MEM;
 932		break;
 933	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
 934		/* stg %src,off(%dst) */
 935		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
 936		jit->seen |= SEEN_MEM;
 937		break;
 938	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
 939		/* lhi %w0,imm */
 940		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
 941		/* stcy %w0,off(dst) */
 942		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
 943		jit->seen |= SEEN_MEM;
 944		break;
 945	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
 946		/* lhi %w0,imm */
 947		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
 948		/* sthy %w0,off(dst) */
 949		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
 950		jit->seen |= SEEN_MEM;
 951		break;
 952	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
 953		/* llilf %w0,imm  */
 954		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
 955		/* sty %w0,off(%dst) */
 956		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
 957		jit->seen |= SEEN_MEM;
 958		break;
 959	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
 960		/* lgfi %w0,imm */
 961		EMIT6_IMM(0xc0010000, REG_W0, imm);
 962		/* stg %w0,off(%dst) */
 963		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
 964		jit->seen |= SEEN_MEM;
 965		break;
 966	/*
 967	 * BPF_STX XADD (atomic_add)
 968	 */
 969	case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
 970		/* laal %w0,%src,off(%dst) */
 971		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
 972			      dst_reg, off);
 973		jit->seen |= SEEN_MEM;
 974		break;
 975	case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
 976		/* laalg %w0,%src,off(%dst) */
 977		EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
 978			      dst_reg, off);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 979		jit->seen |= SEEN_MEM;
 980		break;
 
 981	/*
 982	 * BPF_LDX
 983	 */
 984	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
 
 985		/* llgc %dst,0(off,%src) */
 986		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
 987		jit->seen |= SEEN_MEM;
 988		if (insn_is_zext(&insn[1]))
 989			insn_count = 2;
 990		break;
 991	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
 
 992		/* llgh %dst,0(off,%src) */
 993		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
 994		jit->seen |= SEEN_MEM;
 995		if (insn_is_zext(&insn[1]))
 996			insn_count = 2;
 997		break;
 998	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
 
 999		/* llgf %dst,off(%src) */
1000		jit->seen |= SEEN_MEM;
1001		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1002		if (insn_is_zext(&insn[1]))
1003			insn_count = 2;
1004		break;
1005	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
 
1006		/* lg %dst,0(off,%src) */
1007		jit->seen |= SEEN_MEM;
1008		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1009		break;
1010	/*
1011	 * BPF_JMP / CALL
1012	 */
1013	case BPF_JMP | BPF_CALL:
1014	{
1015		u64 func;
1016		bool func_addr_fixed;
1017		int ret;
1018
1019		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1020					    &func, &func_addr_fixed);
1021		if (ret < 0)
1022			return -1;
1023
1024		REG_SET_SEEN(BPF_REG_5);
1025		jit->seen |= SEEN_FUNC;
1026		/* lg %w1,<d(imm)>(%l) */
1027		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_W1, REG_0, REG_L,
1028			      EMIT_CONST_U64(func));
1029		if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1030			/* brasl %r14,__s390_indirect_jump_r1 */
1031			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1032		} else {
1033			/* basr %r14,%w1 */
1034			EMIT2(0x0d00, REG_14, REG_W1);
1035		}
1036		/* lgr %b0,%r2: load return value into %b0 */
1037		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1038		break;
1039	}
1040	case BPF_JMP | BPF_TAIL_CALL:
 
 
1041		/*
1042		 * Implicit input:
1043		 *  B1: pointer to ctx
1044		 *  B2: pointer to bpf_array
1045		 *  B3: index in bpf_array
1046		 */
1047		jit->seen |= SEEN_TAIL_CALL;
1048
1049		/*
1050		 * if (index >= array->map.max_entries)
1051		 *         goto out;
1052		 */
1053
1054		/* llgf %w1,map.max_entries(%b2) */
1055		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1056			      offsetof(struct bpf_array, map.max_entries));
1057		/* clrj %b3,%w1,0xa,label0: if (u32)%b3 >= (u32)%w1 goto out */
1058		EMIT6_PCREL_LABEL(0xec000000, 0x0077, BPF_REG_3,
1059				  REG_W1, 0, 0xa);
 
 
1060
1061		/*
1062		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1063		 *         goto out;
1064		 */
1065
1066		if (jit->seen & SEEN_STACK)
1067			off = STK_OFF_TCCNT + STK_OFF + fp->aux->stack_depth;
1068		else
1069			off = STK_OFF_TCCNT;
1070		/* lhi %w0,1 */
1071		EMIT4_IMM(0xa7080000, REG_W0, 1);
1072		/* laal %w1,%w0,off(%r15) */
1073		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1074		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1075		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1076				      MAX_TAIL_CALL_CNT, 0, 0x2);
 
1077
1078		/*
1079		 * prog = array->ptrs[index];
1080		 * if (prog == NULL)
1081		 *         goto out;
1082		 */
1083
1084		/* llgfr %r1,%b3: %r1 = (u32) index */
1085		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1086		/* sllg %r1,%r1,3: %r1 *= 8 */
1087		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1088		/* lg %r1,prog(%b2,%r1) */
1089		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, BPF_REG_2,
1090			      REG_1, offsetof(struct bpf_array, ptrs));
1091		/* clgij %r1,0,0x8,label0 */
1092		EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007d, REG_1, 0, 0, 0x8);
 
1093
1094		/*
1095		 * Restore registers before calling function
1096		 */
1097		save_restore_regs(jit, REGS_RESTORE, fp->aux->stack_depth);
1098
1099		/*
1100		 * goto *(prog->bpf_func + tail_call_start);
1101		 */
1102
1103		/* lg %r1,bpf_func(%r1) */
1104		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1105			      offsetof(struct bpf_prog, bpf_func));
1106		/* bc 0xf,tail_call_start(%r1) */
1107		_EMIT4(0x47f01000 + jit->tail_call_start);
1108		/* out: */
1109		jit->labels[0] = jit->prg;
 
 
 
 
 
 
 
1110		break;
 
1111	case BPF_JMP | BPF_EXIT: /* return b0 */
1112		last = (i == fp->len - 1) ? 1 : 0;
1113		if (last && !(jit->seen & SEEN_RET0))
1114			break;
1115		/* j <exit> */
1116		EMIT4_PCREL(0xa7f40000, jit->exit_ip - jit->prg);
 
 
 
 
1117		break;
1118	/*
1119	 * Branch relative (number of skipped instructions) to offset on
1120	 * condition.
1121	 *
1122	 * Condition code to mask mapping:
1123	 *
1124	 * CC | Description	   | Mask
1125	 * ------------------------------
1126	 * 0  | Operands equal	   |	8
1127	 * 1  | First operand low  |	4
1128	 * 2  | First operand high |	2
1129	 * 3  | Unused		   |	1
1130	 *
1131	 * For s390x relative branches: ip = ip + off_bytes
1132	 * For BPF relative branches:	insn = insn + off_insns + 1
1133	 *
1134	 * For example for s390x with offset 0 we jump to the branch
1135	 * instruction itself (loop) and for BPF with offset 0 we
1136	 * branch to the instruction behind the branch.
1137	 */
1138	case BPF_JMP | BPF_JA: /* if (true) */
1139		mask = 0xf000; /* j */
1140		goto branch_oc;
1141	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1142	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1143		mask = 0x2000; /* jh */
1144		goto branch_ks;
1145	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1146	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1147		mask = 0x4000; /* jl */
1148		goto branch_ks;
1149	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1150	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1151		mask = 0xa000; /* jhe */
1152		goto branch_ks;
1153	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1154	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1155		mask = 0xc000; /* jle */
1156		goto branch_ks;
1157	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1158	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1159		mask = 0x2000; /* jh */
1160		goto branch_ku;
1161	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1162	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1163		mask = 0x4000; /* jl */
1164		goto branch_ku;
1165	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1166	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1167		mask = 0xa000; /* jhe */
1168		goto branch_ku;
1169	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1170	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1171		mask = 0xc000; /* jle */
1172		goto branch_ku;
1173	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1174	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1175		mask = 0x7000; /* jne */
1176		goto branch_ku;
1177	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1178	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1179		mask = 0x8000; /* je */
1180		goto branch_ku;
1181	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1182	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1183		mask = 0x7000; /* jnz */
1184		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1185			/* llilf %w1,imm (load zero extend imm) */
1186			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1187			/* nr %w1,%dst */
1188			EMIT2(0x1400, REG_W1, dst_reg);
1189		} else {
1190			/* lgfi %w1,imm (load sign extend imm) */
1191			EMIT6_IMM(0xc0010000, REG_W1, imm);
1192			/* ngr %w1,%dst */
1193			EMIT4(0xb9800000, REG_W1, dst_reg);
1194		}
1195		goto branch_oc;
1196
1197	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1198	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1199		mask = 0x2000; /* jh */
1200		goto branch_xs;
1201	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1202	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1203		mask = 0x4000; /* jl */
1204		goto branch_xs;
1205	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1206	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1207		mask = 0xa000; /* jhe */
1208		goto branch_xs;
1209	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1210	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1211		mask = 0xc000; /* jle */
1212		goto branch_xs;
1213	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1214	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1215		mask = 0x2000; /* jh */
1216		goto branch_xu;
1217	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1218	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1219		mask = 0x4000; /* jl */
1220		goto branch_xu;
1221	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1222	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1223		mask = 0xa000; /* jhe */
1224		goto branch_xu;
1225	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1226	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1227		mask = 0xc000; /* jle */
1228		goto branch_xu;
1229	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1230	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1231		mask = 0x7000; /* jne */
1232		goto branch_xu;
1233	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1234	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1235		mask = 0x8000; /* je */
1236		goto branch_xu;
1237	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1238	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1239	{
1240		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1241
1242		mask = 0x7000; /* jnz */
1243		/* nrk or ngrk %w1,%dst,%src */
1244		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1245			  REG_W1, dst_reg, src_reg);
1246		goto branch_oc;
1247branch_ks:
1248		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1249		/* lgfi %w1,imm (load sign extend imm) */
1250		EMIT6_IMM(0xc0010000, REG_W1, imm);
1251		/* crj or cgrj %dst,%w1,mask,off */
1252		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1253			    dst_reg, REG_W1, i, off, mask);
 
 
 
 
 
 
 
 
1254		break;
1255branch_ku:
1256		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1257		/* lgfi %w1,imm (load sign extend imm) */
1258		EMIT6_IMM(0xc0010000, REG_W1, imm);
1259		/* clrj or clgrj %dst,%w1,mask,off */
1260		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1261			    dst_reg, REG_W1, i, off, mask);
1262		break;
1263branch_xs:
1264		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1265		/* crj or cgrj %dst,%src,mask,off */
1266		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1267			    dst_reg, src_reg, i, off, mask);
 
 
 
 
 
 
 
 
 
 
 
 
1268		break;
1269branch_xu:
1270		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1271		/* clrj or clgrj %dst,%src,mask,off */
1272		EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1273			    dst_reg, src_reg, i, off, mask);
 
 
 
 
 
 
 
 
 
 
 
 
1274		break;
1275branch_oc:
1276		/* brc mask,jmp_off (branch instruction needs 4 bytes) */
1277		jmp_off = addrs[i + off + 1] - (addrs[i + 1] - 4);
1278		EMIT4_PCREL(0xa7040000 | mask << 8, jmp_off);
 
 
 
 
 
 
 
1279		break;
1280	}
1281	default: /* too complex, give up */
1282		pr_err("Unknown opcode %02x\n", insn->code);
1283		return -1;
1284	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1285	return insn_count;
1286}
1287
1288/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289 * Compile eBPF program into s390x code
1290 */
1291static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1292			bool extra_pass)
1293{
1294	int i, insn_count;
1295
1296	jit->lit = jit->lit_start;
 
1297	jit->prg = 0;
 
1298
1299	bpf_jit_prologue(jit, fp->aux->stack_depth);
 
 
1300	for (i = 0; i < fp->len; i += insn_count) {
1301		insn_count = bpf_jit_insn(jit, fp, i, extra_pass);
1302		if (insn_count < 0)
1303			return -1;
1304		/* Next instruction address */
1305		jit->addrs[i + insn_count] = jit->prg;
 
1306	}
1307	bpf_jit_epilogue(jit, fp->aux->stack_depth);
1308
1309	jit->lit_start = jit->prg;
1310	jit->size = jit->lit;
 
 
 
 
 
 
 
1311	jit->size_prg = jit->prg;
 
 
 
 
 
 
1312	return 0;
1313}
1314
1315bool bpf_jit_needs_zext(void)
1316{
1317	return true;
1318}
1319
1320struct s390_jit_data {
1321	struct bpf_binary_header *header;
1322	struct bpf_jit ctx;
1323	int pass;
1324};
1325
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1326/*
1327 * Compile eBPF program "fp"
1328 */
1329struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1330{
 
1331	struct bpf_prog *tmp, *orig_fp = fp;
1332	struct bpf_binary_header *header;
1333	struct s390_jit_data *jit_data;
1334	bool tmp_blinded = false;
1335	bool extra_pass = false;
1336	struct bpf_jit jit;
1337	int pass;
1338
1339	if (!fp->jit_requested)
1340		return orig_fp;
1341
1342	tmp = bpf_jit_blind_constants(fp);
1343	/*
1344	 * If blinding was requested and we failed during blinding,
1345	 * we must fall back to the interpreter.
1346	 */
1347	if (IS_ERR(tmp))
1348		return orig_fp;
1349	if (tmp != fp) {
1350		tmp_blinded = true;
1351		fp = tmp;
1352	}
1353
1354	jit_data = fp->aux->jit_data;
1355	if (!jit_data) {
1356		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1357		if (!jit_data) {
1358			fp = orig_fp;
1359			goto out;
1360		}
1361		fp->aux->jit_data = jit_data;
1362	}
1363	if (jit_data->ctx.addrs) {
1364		jit = jit_data->ctx;
1365		header = jit_data->header;
1366		extra_pass = true;
1367		pass = jit_data->pass + 1;
1368		goto skip_init_ctx;
1369	}
1370
1371	memset(&jit, 0, sizeof(jit));
1372	jit.addrs = kcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1373	if (jit.addrs == NULL) {
1374		fp = orig_fp;
1375		goto out;
1376	}
1377	/*
1378	 * Three initial passes:
1379	 *   - 1/2: Determine clobbered registers
1380	 *   - 3:   Calculate program size and addrs arrray
1381	 */
1382	for (pass = 1; pass <= 3; pass++) {
1383		if (bpf_jit_prog(&jit, fp, extra_pass)) {
1384			fp = orig_fp;
1385			goto free_addrs;
1386		}
1387	}
1388	/*
1389	 * Final pass: Allocate and generate program
1390	 */
1391	if (jit.size >= BPF_SIZE_MAX) {
1392		fp = orig_fp;
1393		goto free_addrs;
1394	}
1395
1396	header = bpf_jit_binary_alloc(jit.size, &jit.prg_buf, 2, jit_fill_hole);
1397	if (!header) {
1398		fp = orig_fp;
1399		goto free_addrs;
1400	}
1401skip_init_ctx:
1402	if (bpf_jit_prog(&jit, fp, extra_pass)) {
1403		bpf_jit_binary_free(header);
1404		fp = orig_fp;
1405		goto free_addrs;
1406	}
1407	if (bpf_jit_enable > 1) {
1408		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1409		print_fn_code(jit.prg_buf, jit.size_prg);
1410	}
1411	if (!fp->is_func || extra_pass) {
1412		bpf_jit_binary_lock_ro(header);
1413	} else {
1414		jit_data->header = header;
1415		jit_data->ctx = jit;
1416		jit_data->pass = pass;
1417	}
1418	fp->bpf_func = (void *) jit.prg_buf;
1419	fp->jited = 1;
1420	fp->jited_len = jit.size;
1421
1422	if (!fp->is_func || extra_pass) {
1423		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1424free_addrs:
1425		kfree(jit.addrs);
1426		kfree(jit_data);
1427		fp->aux->jit_data = NULL;
1428	}
1429out:
1430	if (tmp_blinded)
1431		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1432					   tmp : orig_fp);
1433	return fp;
1434}