Loading...
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - 64BIT
11 *
12 * Copyright IBM Corp. 2012,2015
13 *
14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
15 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
16 */
17
18#define KMSG_COMPONENT "bpf_jit"
19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21#include <linux/netdevice.h>
22#include <linux/filter.h>
23#include <linux/init.h>
24#include <linux/bpf.h>
25#include <linux/mm.h>
26#include <linux/kernel.h>
27#include <asm/cacheflush.h>
28#include <asm/extable.h>
29#include <asm/dis.h>
30#include <asm/facility.h>
31#include <asm/nospec-branch.h>
32#include <asm/set_memory.h>
33#include "bpf_jit.h"
34
35struct bpf_jit {
36 u32 seen; /* Flags to remember seen eBPF instructions */
37 u32 seen_reg[16]; /* Array to remember which registers are used */
38 u32 *addrs; /* Array with relative instruction addresses */
39 u8 *prg_buf; /* Start of program */
40 int size; /* Size of program and literal pool */
41 int size_prg; /* Size of program */
42 int prg; /* Current position in program */
43 int lit32_start; /* Start of 32-bit literal pool */
44 int lit32; /* Current position in 32-bit literal pool */
45 int lit64_start; /* Start of 64-bit literal pool */
46 int lit64; /* Current position in 64-bit literal pool */
47 int base_ip; /* Base address for literal pool */
48 int exit_ip; /* Address of exit */
49 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
50 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
51 int tail_call_start; /* Tail call start offset */
52 int excnt; /* Number of exception table entries */
53};
54
55#define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
56#define SEEN_LITERAL BIT(1) /* code uses literals */
57#define SEEN_FUNC BIT(2) /* calls C functions */
58#define SEEN_TAIL_CALL BIT(3) /* code uses tail calls */
59#define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
60
61/*
62 * s390 registers
63 */
64#define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
65#define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
66#define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
67#define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
68#define REG_0 REG_W0 /* Register 0 */
69#define REG_1 REG_W1 /* Register 1 */
70#define REG_2 BPF_REG_1 /* Register 2 */
71#define REG_14 BPF_REG_0 /* Register 14 */
72
73/*
74 * Mapping of BPF registers to s390 registers
75 */
76static const int reg2hex[] = {
77 /* Return code */
78 [BPF_REG_0] = 14,
79 /* Function parameters */
80 [BPF_REG_1] = 2,
81 [BPF_REG_2] = 3,
82 [BPF_REG_3] = 4,
83 [BPF_REG_4] = 5,
84 [BPF_REG_5] = 6,
85 /* Call saved registers */
86 [BPF_REG_6] = 7,
87 [BPF_REG_7] = 8,
88 [BPF_REG_8] = 9,
89 [BPF_REG_9] = 10,
90 /* BPF stack pointer */
91 [BPF_REG_FP] = 13,
92 /* Register for blinding */
93 [BPF_REG_AX] = 12,
94 /* Work registers for s390x backend */
95 [REG_W0] = 0,
96 [REG_W1] = 1,
97 [REG_L] = 11,
98 [REG_15] = 15,
99};
100
101static inline u32 reg(u32 dst_reg, u32 src_reg)
102{
103 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
104}
105
106static inline u32 reg_high(u32 reg)
107{
108 return reg2hex[reg] << 4;
109}
110
111static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
112{
113 u32 r1 = reg2hex[b1];
114
115 if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
116 jit->seen_reg[r1] = 1;
117}
118
119#define REG_SET_SEEN(b1) \
120({ \
121 reg_set_seen(jit, b1); \
122})
123
124#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
125
126/*
127 * EMIT macros for code generation
128 */
129
130#define _EMIT2(op) \
131({ \
132 if (jit->prg_buf) \
133 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
134 jit->prg += 2; \
135})
136
137#define EMIT2(op, b1, b2) \
138({ \
139 _EMIT2((op) | reg(b1, b2)); \
140 REG_SET_SEEN(b1); \
141 REG_SET_SEEN(b2); \
142})
143
144#define _EMIT4(op) \
145({ \
146 if (jit->prg_buf) \
147 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
148 jit->prg += 4; \
149})
150
151#define EMIT4(op, b1, b2) \
152({ \
153 _EMIT4((op) | reg(b1, b2)); \
154 REG_SET_SEEN(b1); \
155 REG_SET_SEEN(b2); \
156})
157
158#define EMIT4_RRF(op, b1, b2, b3) \
159({ \
160 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
161 REG_SET_SEEN(b1); \
162 REG_SET_SEEN(b2); \
163 REG_SET_SEEN(b3); \
164})
165
166#define _EMIT4_DISP(op, disp) \
167({ \
168 unsigned int __disp = (disp) & 0xfff; \
169 _EMIT4((op) | __disp); \
170})
171
172#define EMIT4_DISP(op, b1, b2, disp) \
173({ \
174 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
175 reg_high(b2) << 8, (disp)); \
176 REG_SET_SEEN(b1); \
177 REG_SET_SEEN(b2); \
178})
179
180#define EMIT4_IMM(op, b1, imm) \
181({ \
182 unsigned int __imm = (imm) & 0xffff; \
183 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
184 REG_SET_SEEN(b1); \
185})
186
187#define EMIT4_PCREL(op, pcrel) \
188({ \
189 long __pcrel = ((pcrel) >> 1) & 0xffff; \
190 _EMIT4((op) | __pcrel); \
191})
192
193#define EMIT4_PCREL_RIC(op, mask, target) \
194({ \
195 int __rel = ((target) - jit->prg) / 2; \
196 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
197})
198
199#define _EMIT6(op1, op2) \
200({ \
201 if (jit->prg_buf) { \
202 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
203 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
204 } \
205 jit->prg += 6; \
206})
207
208#define _EMIT6_DISP(op1, op2, disp) \
209({ \
210 unsigned int __disp = (disp) & 0xfff; \
211 _EMIT6((op1) | __disp, op2); \
212})
213
214#define _EMIT6_DISP_LH(op1, op2, disp) \
215({ \
216 u32 _disp = (u32) (disp); \
217 unsigned int __disp_h = _disp & 0xff000; \
218 unsigned int __disp_l = _disp & 0x00fff; \
219 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
220})
221
222#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
223({ \
224 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
225 reg_high(b3) << 8, op2, disp); \
226 REG_SET_SEEN(b1); \
227 REG_SET_SEEN(b2); \
228 REG_SET_SEEN(b3); \
229})
230
231#define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
232({ \
233 unsigned int rel = (int)((target) - jit->prg) / 2; \
234 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
235 (op2) | (mask) << 12); \
236 REG_SET_SEEN(b1); \
237 REG_SET_SEEN(b2); \
238})
239
240#define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
241({ \
242 unsigned int rel = (int)((target) - jit->prg) / 2; \
243 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
244 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
245 REG_SET_SEEN(b1); \
246 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
247})
248
249#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
250({ \
251 int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2; \
252 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
253 REG_SET_SEEN(b1); \
254 REG_SET_SEEN(b2); \
255})
256
257#define EMIT6_PCREL_RILB(op, b, target) \
258({ \
259 unsigned int rel = (int)((target) - jit->prg) / 2; \
260 _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
261 REG_SET_SEEN(b); \
262})
263
264#define EMIT6_PCREL_RIL(op, target) \
265({ \
266 unsigned int rel = (int)((target) - jit->prg) / 2; \
267 _EMIT6((op) | rel >> 16, rel & 0xffff); \
268})
269
270#define EMIT6_PCREL_RILC(op, mask, target) \
271({ \
272 EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \
273})
274
275#define _EMIT6_IMM(op, imm) \
276({ \
277 unsigned int __imm = (imm); \
278 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
279})
280
281#define EMIT6_IMM(op, b1, imm) \
282({ \
283 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
284 REG_SET_SEEN(b1); \
285})
286
287#define _EMIT_CONST_U32(val) \
288({ \
289 unsigned int ret; \
290 ret = jit->lit32; \
291 if (jit->prg_buf) \
292 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
293 jit->lit32 += 4; \
294 ret; \
295})
296
297#define EMIT_CONST_U32(val) \
298({ \
299 jit->seen |= SEEN_LITERAL; \
300 _EMIT_CONST_U32(val) - jit->base_ip; \
301})
302
303#define _EMIT_CONST_U64(val) \
304({ \
305 unsigned int ret; \
306 ret = jit->lit64; \
307 if (jit->prg_buf) \
308 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
309 jit->lit64 += 8; \
310 ret; \
311})
312
313#define EMIT_CONST_U64(val) \
314({ \
315 jit->seen |= SEEN_LITERAL; \
316 _EMIT_CONST_U64(val) - jit->base_ip; \
317})
318
319#define EMIT_ZERO(b1) \
320({ \
321 if (!fp->aux->verifier_zext) { \
322 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
323 EMIT4(0xb9160000, b1, b1); \
324 REG_SET_SEEN(b1); \
325 } \
326})
327
328/*
329 * Return whether this is the first pass. The first pass is special, since we
330 * don't know any sizes yet, and thus must be conservative.
331 */
332static bool is_first_pass(struct bpf_jit *jit)
333{
334 return jit->size == 0;
335}
336
337/*
338 * Return whether this is the code generation pass. The code generation pass is
339 * special, since we should change as little as possible.
340 */
341static bool is_codegen_pass(struct bpf_jit *jit)
342{
343 return jit->prg_buf;
344}
345
346/*
347 * Return whether "rel" can be encoded as a short PC-relative offset
348 */
349static bool is_valid_rel(int rel)
350{
351 return rel >= -65536 && rel <= 65534;
352}
353
354/*
355 * Return whether "off" can be reached using a short PC-relative offset
356 */
357static bool can_use_rel(struct bpf_jit *jit, int off)
358{
359 return is_valid_rel(off - jit->prg);
360}
361
362/*
363 * Return whether given displacement can be encoded using
364 * Long-Displacement Facility
365 */
366static bool is_valid_ldisp(int disp)
367{
368 return disp >= -524288 && disp <= 524287;
369}
370
371/*
372 * Return whether the next 32-bit literal pool entry can be referenced using
373 * Long-Displacement Facility
374 */
375static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
376{
377 return is_valid_ldisp(jit->lit32 - jit->base_ip);
378}
379
380/*
381 * Return whether the next 64-bit literal pool entry can be referenced using
382 * Long-Displacement Facility
383 */
384static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
385{
386 return is_valid_ldisp(jit->lit64 - jit->base_ip);
387}
388
389/*
390 * Fill whole space with illegal instructions
391 */
392static void jit_fill_hole(void *area, unsigned int size)
393{
394 memset(area, 0, size);
395}
396
397/*
398 * Save registers from "rs" (register start) to "re" (register end) on stack
399 */
400static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
401{
402 u32 off = STK_OFF_R6 + (rs - 6) * 8;
403
404 if (rs == re)
405 /* stg %rs,off(%r15) */
406 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
407 else
408 /* stmg %rs,%re,off(%r15) */
409 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
410}
411
412/*
413 * Restore registers from "rs" (register start) to "re" (register end) on stack
414 */
415static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
416{
417 u32 off = STK_OFF_R6 + (rs - 6) * 8;
418
419 if (jit->seen & SEEN_STACK)
420 off += STK_OFF + stack_depth;
421
422 if (rs == re)
423 /* lg %rs,off(%r15) */
424 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
425 else
426 /* lmg %rs,%re,off(%r15) */
427 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
428}
429
430/*
431 * Return first seen register (from start)
432 */
433static int get_start(struct bpf_jit *jit, int start)
434{
435 int i;
436
437 for (i = start; i <= 15; i++) {
438 if (jit->seen_reg[i])
439 return i;
440 }
441 return 0;
442}
443
444/*
445 * Return last seen register (from start) (gap >= 2)
446 */
447static int get_end(struct bpf_jit *jit, int start)
448{
449 int i;
450
451 for (i = start; i < 15; i++) {
452 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
453 return i - 1;
454 }
455 return jit->seen_reg[15] ? 15 : 14;
456}
457
458#define REGS_SAVE 1
459#define REGS_RESTORE 0
460/*
461 * Save and restore clobbered registers (6-15) on stack.
462 * We save/restore registers in chunks with gap >= 2 registers.
463 */
464static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
465{
466 const int last = 15, save_restore_size = 6;
467 int re = 6, rs;
468
469 if (is_first_pass(jit)) {
470 /*
471 * We don't know yet which registers are used. Reserve space
472 * conservatively.
473 */
474 jit->prg += (last - re + 1) * save_restore_size;
475 return;
476 }
477
478 do {
479 rs = get_start(jit, re);
480 if (!rs)
481 break;
482 re = get_end(jit, rs + 1);
483 if (op == REGS_SAVE)
484 save_regs(jit, rs, re);
485 else
486 restore_regs(jit, rs, re, stack_depth);
487 re++;
488 } while (re <= last);
489}
490
491static void bpf_skip(struct bpf_jit *jit, int size)
492{
493 if (size >= 6 && !is_valid_rel(size)) {
494 /* brcl 0xf,size */
495 EMIT6_PCREL_RIL(0xc0f4000000, size);
496 size -= 6;
497 } else if (size >= 4 && is_valid_rel(size)) {
498 /* brc 0xf,size */
499 EMIT4_PCREL(0xa7f40000, size);
500 size -= 4;
501 }
502 while (size >= 2) {
503 /* bcr 0,%0 */
504 _EMIT2(0x0700);
505 size -= 2;
506 }
507}
508
509/*
510 * Emit function prologue
511 *
512 * Save registers and create stack frame if necessary.
513 * See stack frame layout desription in "bpf_jit.h"!
514 */
515static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
516{
517 if (jit->seen & SEEN_TAIL_CALL) {
518 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
519 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
520 } else {
521 /*
522 * There are no tail calls. Insert nops in order to have
523 * tail_call_start at a predictable offset.
524 */
525 bpf_skip(jit, 6);
526 }
527 /* Tail calls have to skip above initialization */
528 jit->tail_call_start = jit->prg;
529 /* Save registers */
530 save_restore_regs(jit, REGS_SAVE, stack_depth);
531 /* Setup literal pool */
532 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
533 if (!is_first_pass(jit) &&
534 is_valid_ldisp(jit->size - (jit->prg + 2))) {
535 /* basr %l,0 */
536 EMIT2(0x0d00, REG_L, REG_0);
537 jit->base_ip = jit->prg;
538 } else {
539 /* larl %l,lit32_start */
540 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
541 jit->base_ip = jit->lit32_start;
542 }
543 }
544 /* Setup stack and backchain */
545 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
546 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
547 /* lgr %w1,%r15 (backchain) */
548 EMIT4(0xb9040000, REG_W1, REG_15);
549 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
550 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
551 /* aghi %r15,-STK_OFF */
552 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
553 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
554 /* stg %w1,152(%r15) (backchain) */
555 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
556 REG_15, 152);
557 }
558}
559
560/*
561 * Function epilogue
562 */
563static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
564{
565 jit->exit_ip = jit->prg;
566 /* Load exit code: lgr %r2,%b0 */
567 EMIT4(0xb9040000, REG_2, BPF_REG_0);
568 /* Restore registers */
569 save_restore_regs(jit, REGS_RESTORE, stack_depth);
570 if (nospec_uses_trampoline()) {
571 jit->r14_thunk_ip = jit->prg;
572 /* Generate __s390_indirect_jump_r14 thunk */
573 /* exrl %r0,.+10 */
574 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
575 /* j . */
576 EMIT4_PCREL(0xa7f40000, 0);
577 }
578 /* br %r14 */
579 _EMIT2(0x07fe);
580
581 if ((nospec_uses_trampoline()) &&
582 (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
583 jit->r1_thunk_ip = jit->prg;
584 /* Generate __s390_indirect_jump_r1 thunk */
585 /* exrl %r0,.+10 */
586 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
587 /* j . */
588 EMIT4_PCREL(0xa7f40000, 0);
589 /* br %r1 */
590 _EMIT2(0x07f1);
591 }
592}
593
594static int get_probe_mem_regno(const u8 *insn)
595{
596 /*
597 * insn must point to llgc, llgh, llgf or lg, which have destination
598 * register at the same position.
599 */
600 if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
601 return -1;
602 if (insn[5] != 0x90 && /* llgc */
603 insn[5] != 0x91 && /* llgh */
604 insn[5] != 0x16 && /* llgf */
605 insn[5] != 0x04) /* lg */
606 return -1;
607 return insn[1] >> 4;
608}
609
610bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
611{
612 regs->psw.addr = extable_fixup(x);
613 regs->gprs[x->data] = 0;
614 return true;
615}
616
617static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
618 int probe_prg, int nop_prg)
619{
620 struct exception_table_entry *ex;
621 int reg, prg;
622 s64 delta;
623 u8 *insn;
624 int i;
625
626 if (!fp->aux->extable)
627 /* Do nothing during early JIT passes. */
628 return 0;
629 insn = jit->prg_buf + probe_prg;
630 reg = get_probe_mem_regno(insn);
631 if (WARN_ON_ONCE(reg < 0))
632 /* JIT bug - unexpected probe instruction. */
633 return -1;
634 if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
635 /* JIT bug - gap between probe and nop instructions. */
636 return -1;
637 for (i = 0; i < 2; i++) {
638 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
639 /* Verifier bug - not enough entries. */
640 return -1;
641 ex = &fp->aux->extable[jit->excnt];
642 /* Add extable entries for probe and nop instructions. */
643 prg = i == 0 ? probe_prg : nop_prg;
644 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
645 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
646 /* JIT bug - code and extable must be close. */
647 return -1;
648 ex->insn = delta;
649 /*
650 * Always land on the nop. Note that extable infrastructure
651 * ignores fixup field, it is handled by ex_handler_bpf().
652 */
653 delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
654 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
655 /* JIT bug - landing pad and extable must be close. */
656 return -1;
657 ex->fixup = delta;
658 ex->type = EX_TYPE_BPF;
659 ex->data = reg;
660 jit->excnt++;
661 }
662 return 0;
663}
664
665/*
666 * Compile one eBPF instruction into s390x code
667 *
668 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
669 * stack space for the large switch statement.
670 */
671static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
672 int i, bool extra_pass, u32 stack_depth)
673{
674 struct bpf_insn *insn = &fp->insnsi[i];
675 u32 dst_reg = insn->dst_reg;
676 u32 src_reg = insn->src_reg;
677 int last, insn_count = 1;
678 u32 *addrs = jit->addrs;
679 s32 imm = insn->imm;
680 s16 off = insn->off;
681 int probe_prg = -1;
682 unsigned int mask;
683 int nop_prg;
684 int err;
685
686 if (BPF_CLASS(insn->code) == BPF_LDX &&
687 BPF_MODE(insn->code) == BPF_PROBE_MEM)
688 probe_prg = jit->prg;
689
690 switch (insn->code) {
691 /*
692 * BPF_MOV
693 */
694 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
695 /* llgfr %dst,%src */
696 EMIT4(0xb9160000, dst_reg, src_reg);
697 if (insn_is_zext(&insn[1]))
698 insn_count = 2;
699 break;
700 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
701 /* lgr %dst,%src */
702 EMIT4(0xb9040000, dst_reg, src_reg);
703 break;
704 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
705 /* llilf %dst,imm */
706 EMIT6_IMM(0xc00f0000, dst_reg, imm);
707 if (insn_is_zext(&insn[1]))
708 insn_count = 2;
709 break;
710 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
711 /* lgfi %dst,imm */
712 EMIT6_IMM(0xc0010000, dst_reg, imm);
713 break;
714 /*
715 * BPF_LD 64
716 */
717 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
718 {
719 /* 16 byte instruction that uses two 'struct bpf_insn' */
720 u64 imm64;
721
722 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
723 /* lgrl %dst,imm */
724 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
725 insn_count = 2;
726 break;
727 }
728 /*
729 * BPF_ADD
730 */
731 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
732 /* ar %dst,%src */
733 EMIT2(0x1a00, dst_reg, src_reg);
734 EMIT_ZERO(dst_reg);
735 break;
736 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
737 /* agr %dst,%src */
738 EMIT4(0xb9080000, dst_reg, src_reg);
739 break;
740 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
741 if (imm != 0) {
742 /* alfi %dst,imm */
743 EMIT6_IMM(0xc20b0000, dst_reg, imm);
744 }
745 EMIT_ZERO(dst_reg);
746 break;
747 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
748 if (!imm)
749 break;
750 /* agfi %dst,imm */
751 EMIT6_IMM(0xc2080000, dst_reg, imm);
752 break;
753 /*
754 * BPF_SUB
755 */
756 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
757 /* sr %dst,%src */
758 EMIT2(0x1b00, dst_reg, src_reg);
759 EMIT_ZERO(dst_reg);
760 break;
761 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
762 /* sgr %dst,%src */
763 EMIT4(0xb9090000, dst_reg, src_reg);
764 break;
765 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
766 if (imm != 0) {
767 /* alfi %dst,-imm */
768 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
769 }
770 EMIT_ZERO(dst_reg);
771 break;
772 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
773 if (!imm)
774 break;
775 if (imm == -0x80000000) {
776 /* algfi %dst,0x80000000 */
777 EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
778 } else {
779 /* agfi %dst,-imm */
780 EMIT6_IMM(0xc2080000, dst_reg, -imm);
781 }
782 break;
783 /*
784 * BPF_MUL
785 */
786 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
787 /* msr %dst,%src */
788 EMIT4(0xb2520000, dst_reg, src_reg);
789 EMIT_ZERO(dst_reg);
790 break;
791 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
792 /* msgr %dst,%src */
793 EMIT4(0xb90c0000, dst_reg, src_reg);
794 break;
795 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
796 if (imm != 1) {
797 /* msfi %r5,imm */
798 EMIT6_IMM(0xc2010000, dst_reg, imm);
799 }
800 EMIT_ZERO(dst_reg);
801 break;
802 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
803 if (imm == 1)
804 break;
805 /* msgfi %dst,imm */
806 EMIT6_IMM(0xc2000000, dst_reg, imm);
807 break;
808 /*
809 * BPF_DIV / BPF_MOD
810 */
811 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
812 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
813 {
814 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
815
816 /* lhi %w0,0 */
817 EMIT4_IMM(0xa7080000, REG_W0, 0);
818 /* lr %w1,%dst */
819 EMIT2(0x1800, REG_W1, dst_reg);
820 /* dlr %w0,%src */
821 EMIT4(0xb9970000, REG_W0, src_reg);
822 /* llgfr %dst,%rc */
823 EMIT4(0xb9160000, dst_reg, rc_reg);
824 if (insn_is_zext(&insn[1]))
825 insn_count = 2;
826 break;
827 }
828 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
829 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
830 {
831 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
832
833 /* lghi %w0,0 */
834 EMIT4_IMM(0xa7090000, REG_W0, 0);
835 /* lgr %w1,%dst */
836 EMIT4(0xb9040000, REG_W1, dst_reg);
837 /* dlgr %w0,%dst */
838 EMIT4(0xb9870000, REG_W0, src_reg);
839 /* lgr %dst,%rc */
840 EMIT4(0xb9040000, dst_reg, rc_reg);
841 break;
842 }
843 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
844 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
845 {
846 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
847
848 if (imm == 1) {
849 if (BPF_OP(insn->code) == BPF_MOD)
850 /* lhgi %dst,0 */
851 EMIT4_IMM(0xa7090000, dst_reg, 0);
852 else
853 EMIT_ZERO(dst_reg);
854 break;
855 }
856 /* lhi %w0,0 */
857 EMIT4_IMM(0xa7080000, REG_W0, 0);
858 /* lr %w1,%dst */
859 EMIT2(0x1800, REG_W1, dst_reg);
860 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
861 /* dl %w0,<d(imm)>(%l) */
862 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
863 EMIT_CONST_U32(imm));
864 } else {
865 /* lgfrl %dst,imm */
866 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
867 _EMIT_CONST_U32(imm));
868 jit->seen |= SEEN_LITERAL;
869 /* dlr %w0,%dst */
870 EMIT4(0xb9970000, REG_W0, dst_reg);
871 }
872 /* llgfr %dst,%rc */
873 EMIT4(0xb9160000, dst_reg, rc_reg);
874 if (insn_is_zext(&insn[1]))
875 insn_count = 2;
876 break;
877 }
878 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
879 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
880 {
881 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
882
883 if (imm == 1) {
884 if (BPF_OP(insn->code) == BPF_MOD)
885 /* lhgi %dst,0 */
886 EMIT4_IMM(0xa7090000, dst_reg, 0);
887 break;
888 }
889 /* lghi %w0,0 */
890 EMIT4_IMM(0xa7090000, REG_W0, 0);
891 /* lgr %w1,%dst */
892 EMIT4(0xb9040000, REG_W1, dst_reg);
893 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
894 /* dlg %w0,<d(imm)>(%l) */
895 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
896 EMIT_CONST_U64(imm));
897 } else {
898 /* lgrl %dst,imm */
899 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
900 _EMIT_CONST_U64(imm));
901 jit->seen |= SEEN_LITERAL;
902 /* dlgr %w0,%dst */
903 EMIT4(0xb9870000, REG_W0, dst_reg);
904 }
905 /* lgr %dst,%rc */
906 EMIT4(0xb9040000, dst_reg, rc_reg);
907 break;
908 }
909 /*
910 * BPF_AND
911 */
912 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
913 /* nr %dst,%src */
914 EMIT2(0x1400, dst_reg, src_reg);
915 EMIT_ZERO(dst_reg);
916 break;
917 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
918 /* ngr %dst,%src */
919 EMIT4(0xb9800000, dst_reg, src_reg);
920 break;
921 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
922 /* nilf %dst,imm */
923 EMIT6_IMM(0xc00b0000, dst_reg, imm);
924 EMIT_ZERO(dst_reg);
925 break;
926 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
927 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
928 /* ng %dst,<d(imm)>(%l) */
929 EMIT6_DISP_LH(0xe3000000, 0x0080,
930 dst_reg, REG_0, REG_L,
931 EMIT_CONST_U64(imm));
932 } else {
933 /* lgrl %w0,imm */
934 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
935 _EMIT_CONST_U64(imm));
936 jit->seen |= SEEN_LITERAL;
937 /* ngr %dst,%w0 */
938 EMIT4(0xb9800000, dst_reg, REG_W0);
939 }
940 break;
941 /*
942 * BPF_OR
943 */
944 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
945 /* or %dst,%src */
946 EMIT2(0x1600, dst_reg, src_reg);
947 EMIT_ZERO(dst_reg);
948 break;
949 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
950 /* ogr %dst,%src */
951 EMIT4(0xb9810000, dst_reg, src_reg);
952 break;
953 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
954 /* oilf %dst,imm */
955 EMIT6_IMM(0xc00d0000, dst_reg, imm);
956 EMIT_ZERO(dst_reg);
957 break;
958 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
959 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
960 /* og %dst,<d(imm)>(%l) */
961 EMIT6_DISP_LH(0xe3000000, 0x0081,
962 dst_reg, REG_0, REG_L,
963 EMIT_CONST_U64(imm));
964 } else {
965 /* lgrl %w0,imm */
966 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
967 _EMIT_CONST_U64(imm));
968 jit->seen |= SEEN_LITERAL;
969 /* ogr %dst,%w0 */
970 EMIT4(0xb9810000, dst_reg, REG_W0);
971 }
972 break;
973 /*
974 * BPF_XOR
975 */
976 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
977 /* xr %dst,%src */
978 EMIT2(0x1700, dst_reg, src_reg);
979 EMIT_ZERO(dst_reg);
980 break;
981 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
982 /* xgr %dst,%src */
983 EMIT4(0xb9820000, dst_reg, src_reg);
984 break;
985 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
986 if (imm != 0) {
987 /* xilf %dst,imm */
988 EMIT6_IMM(0xc0070000, dst_reg, imm);
989 }
990 EMIT_ZERO(dst_reg);
991 break;
992 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
993 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
994 /* xg %dst,<d(imm)>(%l) */
995 EMIT6_DISP_LH(0xe3000000, 0x0082,
996 dst_reg, REG_0, REG_L,
997 EMIT_CONST_U64(imm));
998 } else {
999 /* lgrl %w0,imm */
1000 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1001 _EMIT_CONST_U64(imm));
1002 jit->seen |= SEEN_LITERAL;
1003 /* xgr %dst,%w0 */
1004 EMIT4(0xb9820000, dst_reg, REG_W0);
1005 }
1006 break;
1007 /*
1008 * BPF_LSH
1009 */
1010 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1011 /* sll %dst,0(%src) */
1012 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1013 EMIT_ZERO(dst_reg);
1014 break;
1015 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1016 /* sllg %dst,%dst,0(%src) */
1017 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1018 break;
1019 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1020 if (imm != 0) {
1021 /* sll %dst,imm(%r0) */
1022 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1023 }
1024 EMIT_ZERO(dst_reg);
1025 break;
1026 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1027 if (imm == 0)
1028 break;
1029 /* sllg %dst,%dst,imm(%r0) */
1030 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1031 break;
1032 /*
1033 * BPF_RSH
1034 */
1035 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1036 /* srl %dst,0(%src) */
1037 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1038 EMIT_ZERO(dst_reg);
1039 break;
1040 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1041 /* srlg %dst,%dst,0(%src) */
1042 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1043 break;
1044 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1045 if (imm != 0) {
1046 /* srl %dst,imm(%r0) */
1047 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1048 }
1049 EMIT_ZERO(dst_reg);
1050 break;
1051 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1052 if (imm == 0)
1053 break;
1054 /* srlg %dst,%dst,imm(%r0) */
1055 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1056 break;
1057 /*
1058 * BPF_ARSH
1059 */
1060 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1061 /* sra %dst,%dst,0(%src) */
1062 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1063 EMIT_ZERO(dst_reg);
1064 break;
1065 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1066 /* srag %dst,%dst,0(%src) */
1067 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1068 break;
1069 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1070 if (imm != 0) {
1071 /* sra %dst,imm(%r0) */
1072 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1073 }
1074 EMIT_ZERO(dst_reg);
1075 break;
1076 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1077 if (imm == 0)
1078 break;
1079 /* srag %dst,%dst,imm(%r0) */
1080 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1081 break;
1082 /*
1083 * BPF_NEG
1084 */
1085 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1086 /* lcr %dst,%dst */
1087 EMIT2(0x1300, dst_reg, dst_reg);
1088 EMIT_ZERO(dst_reg);
1089 break;
1090 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1091 /* lcgr %dst,%dst */
1092 EMIT4(0xb9030000, dst_reg, dst_reg);
1093 break;
1094 /*
1095 * BPF_FROM_BE/LE
1096 */
1097 case BPF_ALU | BPF_END | BPF_FROM_BE:
1098 /* s390 is big endian, therefore only clear high order bytes */
1099 switch (imm) {
1100 case 16: /* dst = (u16) cpu_to_be16(dst) */
1101 /* llghr %dst,%dst */
1102 EMIT4(0xb9850000, dst_reg, dst_reg);
1103 if (insn_is_zext(&insn[1]))
1104 insn_count = 2;
1105 break;
1106 case 32: /* dst = (u32) cpu_to_be32(dst) */
1107 if (!fp->aux->verifier_zext)
1108 /* llgfr %dst,%dst */
1109 EMIT4(0xb9160000, dst_reg, dst_reg);
1110 break;
1111 case 64: /* dst = (u64) cpu_to_be64(dst) */
1112 break;
1113 }
1114 break;
1115 case BPF_ALU | BPF_END | BPF_FROM_LE:
1116 switch (imm) {
1117 case 16: /* dst = (u16) cpu_to_le16(dst) */
1118 /* lrvr %dst,%dst */
1119 EMIT4(0xb91f0000, dst_reg, dst_reg);
1120 /* srl %dst,16(%r0) */
1121 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1122 /* llghr %dst,%dst */
1123 EMIT4(0xb9850000, dst_reg, dst_reg);
1124 if (insn_is_zext(&insn[1]))
1125 insn_count = 2;
1126 break;
1127 case 32: /* dst = (u32) cpu_to_le32(dst) */
1128 /* lrvr %dst,%dst */
1129 EMIT4(0xb91f0000, dst_reg, dst_reg);
1130 if (!fp->aux->verifier_zext)
1131 /* llgfr %dst,%dst */
1132 EMIT4(0xb9160000, dst_reg, dst_reg);
1133 break;
1134 case 64: /* dst = (u64) cpu_to_le64(dst) */
1135 /* lrvgr %dst,%dst */
1136 EMIT4(0xb90f0000, dst_reg, dst_reg);
1137 break;
1138 }
1139 break;
1140 /*
1141 * BPF_NOSPEC (speculation barrier)
1142 */
1143 case BPF_ST | BPF_NOSPEC:
1144 break;
1145 /*
1146 * BPF_ST(X)
1147 */
1148 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1149 /* stcy %src,off(%dst) */
1150 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1151 jit->seen |= SEEN_MEM;
1152 break;
1153 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1154 /* sthy %src,off(%dst) */
1155 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1156 jit->seen |= SEEN_MEM;
1157 break;
1158 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1159 /* sty %src,off(%dst) */
1160 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1161 jit->seen |= SEEN_MEM;
1162 break;
1163 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1164 /* stg %src,off(%dst) */
1165 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1166 jit->seen |= SEEN_MEM;
1167 break;
1168 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1169 /* lhi %w0,imm */
1170 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1171 /* stcy %w0,off(dst) */
1172 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1173 jit->seen |= SEEN_MEM;
1174 break;
1175 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1176 /* lhi %w0,imm */
1177 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1178 /* sthy %w0,off(dst) */
1179 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1180 jit->seen |= SEEN_MEM;
1181 break;
1182 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1183 /* llilf %w0,imm */
1184 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1185 /* sty %w0,off(%dst) */
1186 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1187 jit->seen |= SEEN_MEM;
1188 break;
1189 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1190 /* lgfi %w0,imm */
1191 EMIT6_IMM(0xc0010000, REG_W0, imm);
1192 /* stg %w0,off(%dst) */
1193 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1194 jit->seen |= SEEN_MEM;
1195 break;
1196 /*
1197 * BPF_ATOMIC
1198 */
1199 case BPF_STX | BPF_ATOMIC | BPF_DW:
1200 case BPF_STX | BPF_ATOMIC | BPF_W:
1201 {
1202 bool is32 = BPF_SIZE(insn->code) == BPF_W;
1203
1204 switch (insn->imm) {
1205/* {op32|op64} {%w0|%src},%src,off(%dst) */
1206#define EMIT_ATOMIC(op32, op64) do { \
1207 EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64), \
1208 (insn->imm & BPF_FETCH) ? src_reg : REG_W0, \
1209 src_reg, dst_reg, off); \
1210 if (is32 && (insn->imm & BPF_FETCH)) \
1211 EMIT_ZERO(src_reg); \
1212} while (0)
1213 case BPF_ADD:
1214 case BPF_ADD | BPF_FETCH:
1215 /* {laal|laalg} */
1216 EMIT_ATOMIC(0x00fa, 0x00ea);
1217 break;
1218 case BPF_AND:
1219 case BPF_AND | BPF_FETCH:
1220 /* {lan|lang} */
1221 EMIT_ATOMIC(0x00f4, 0x00e4);
1222 break;
1223 case BPF_OR:
1224 case BPF_OR | BPF_FETCH:
1225 /* {lao|laog} */
1226 EMIT_ATOMIC(0x00f6, 0x00e6);
1227 break;
1228 case BPF_XOR:
1229 case BPF_XOR | BPF_FETCH:
1230 /* {lax|laxg} */
1231 EMIT_ATOMIC(0x00f7, 0x00e7);
1232 break;
1233#undef EMIT_ATOMIC
1234 case BPF_XCHG:
1235 /* {ly|lg} %w0,off(%dst) */
1236 EMIT6_DISP_LH(0xe3000000,
1237 is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1238 dst_reg, off);
1239 /* 0: {csy|csg} %w0,%src,off(%dst) */
1240 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1241 REG_W0, src_reg, dst_reg, off);
1242 /* brc 4,0b */
1243 EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1244 /* {llgfr|lgr} %src,%w0 */
1245 EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1246 if (is32 && insn_is_zext(&insn[1]))
1247 insn_count = 2;
1248 break;
1249 case BPF_CMPXCHG:
1250 /* 0: {csy|csg} %b0,%src,off(%dst) */
1251 EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1252 BPF_REG_0, src_reg, dst_reg, off);
1253 break;
1254 default:
1255 pr_err("Unknown atomic operation %02x\n", insn->imm);
1256 return -1;
1257 }
1258
1259 jit->seen |= SEEN_MEM;
1260 break;
1261 }
1262 /*
1263 * BPF_LDX
1264 */
1265 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1266 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1267 /* llgc %dst,0(off,%src) */
1268 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1269 jit->seen |= SEEN_MEM;
1270 if (insn_is_zext(&insn[1]))
1271 insn_count = 2;
1272 break;
1273 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1274 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1275 /* llgh %dst,0(off,%src) */
1276 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1277 jit->seen |= SEEN_MEM;
1278 if (insn_is_zext(&insn[1]))
1279 insn_count = 2;
1280 break;
1281 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1282 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1283 /* llgf %dst,off(%src) */
1284 jit->seen |= SEEN_MEM;
1285 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1286 if (insn_is_zext(&insn[1]))
1287 insn_count = 2;
1288 break;
1289 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1290 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1291 /* lg %dst,0(off,%src) */
1292 jit->seen |= SEEN_MEM;
1293 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1294 break;
1295 /*
1296 * BPF_JMP / CALL
1297 */
1298 case BPF_JMP | BPF_CALL:
1299 {
1300 u64 func;
1301 bool func_addr_fixed;
1302 int ret;
1303
1304 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1305 &func, &func_addr_fixed);
1306 if (ret < 0)
1307 return -1;
1308
1309 REG_SET_SEEN(BPF_REG_5);
1310 jit->seen |= SEEN_FUNC;
1311 /* lgrl %w1,func */
1312 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1313 if (nospec_uses_trampoline()) {
1314 /* brasl %r14,__s390_indirect_jump_r1 */
1315 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1316 } else {
1317 /* basr %r14,%w1 */
1318 EMIT2(0x0d00, REG_14, REG_W1);
1319 }
1320 /* lgr %b0,%r2: load return value into %b0 */
1321 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1322 break;
1323 }
1324 case BPF_JMP | BPF_TAIL_CALL: {
1325 int patch_1_clrj, patch_2_clij, patch_3_brc;
1326
1327 /*
1328 * Implicit input:
1329 * B1: pointer to ctx
1330 * B2: pointer to bpf_array
1331 * B3: index in bpf_array
1332 */
1333 jit->seen |= SEEN_TAIL_CALL;
1334
1335 /*
1336 * if (index >= array->map.max_entries)
1337 * goto out;
1338 */
1339
1340 /* llgf %w1,map.max_entries(%b2) */
1341 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1342 offsetof(struct bpf_array, map.max_entries));
1343 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1344 /* clrj %b3,%w1,0xa,out */
1345 patch_1_clrj = jit->prg;
1346 EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1347 jit->prg);
1348
1349 /*
1350 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1351 * goto out;
1352 */
1353
1354 if (jit->seen & SEEN_STACK)
1355 off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1356 else
1357 off = STK_OFF_TCCNT;
1358 /* lhi %w0,1 */
1359 EMIT4_IMM(0xa7080000, REG_W0, 1);
1360 /* laal %w1,%w0,off(%r15) */
1361 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1362 /* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1363 patch_2_clij = jit->prg;
1364 EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1365 2, jit->prg);
1366
1367 /*
1368 * prog = array->ptrs[index];
1369 * if (prog == NULL)
1370 * goto out;
1371 */
1372
1373 /* llgfr %r1,%b3: %r1 = (u32) index */
1374 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1375 /* sllg %r1,%r1,3: %r1 *= 8 */
1376 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1377 /* ltg %r1,prog(%b2,%r1) */
1378 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1379 REG_1, offsetof(struct bpf_array, ptrs));
1380 /* brc 0x8,out */
1381 patch_3_brc = jit->prg;
1382 EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1383
1384 /*
1385 * Restore registers before calling function
1386 */
1387 save_restore_regs(jit, REGS_RESTORE, stack_depth);
1388
1389 /*
1390 * goto *(prog->bpf_func + tail_call_start);
1391 */
1392
1393 /* lg %r1,bpf_func(%r1) */
1394 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1395 offsetof(struct bpf_prog, bpf_func));
1396 /* bc 0xf,tail_call_start(%r1) */
1397 _EMIT4(0x47f01000 + jit->tail_call_start);
1398 /* out: */
1399 if (jit->prg_buf) {
1400 *(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1401 (jit->prg - patch_1_clrj) >> 1;
1402 *(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1403 (jit->prg - patch_2_clij) >> 1;
1404 *(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1405 (jit->prg - patch_3_brc) >> 1;
1406 }
1407 break;
1408 }
1409 case BPF_JMP | BPF_EXIT: /* return b0 */
1410 last = (i == fp->len - 1) ? 1 : 0;
1411 if (last)
1412 break;
1413 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1414 /* brc 0xf, <exit> */
1415 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1416 else
1417 /* brcl 0xf, <exit> */
1418 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1419 break;
1420 /*
1421 * Branch relative (number of skipped instructions) to offset on
1422 * condition.
1423 *
1424 * Condition code to mask mapping:
1425 *
1426 * CC | Description | Mask
1427 * ------------------------------
1428 * 0 | Operands equal | 8
1429 * 1 | First operand low | 4
1430 * 2 | First operand high | 2
1431 * 3 | Unused | 1
1432 *
1433 * For s390x relative branches: ip = ip + off_bytes
1434 * For BPF relative branches: insn = insn + off_insns + 1
1435 *
1436 * For example for s390x with offset 0 we jump to the branch
1437 * instruction itself (loop) and for BPF with offset 0 we
1438 * branch to the instruction behind the branch.
1439 */
1440 case BPF_JMP | BPF_JA: /* if (true) */
1441 mask = 0xf000; /* j */
1442 goto branch_oc;
1443 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1444 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1445 mask = 0x2000; /* jh */
1446 goto branch_ks;
1447 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1448 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1449 mask = 0x4000; /* jl */
1450 goto branch_ks;
1451 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1452 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1453 mask = 0xa000; /* jhe */
1454 goto branch_ks;
1455 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1456 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1457 mask = 0xc000; /* jle */
1458 goto branch_ks;
1459 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1460 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1461 mask = 0x2000; /* jh */
1462 goto branch_ku;
1463 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1464 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1465 mask = 0x4000; /* jl */
1466 goto branch_ku;
1467 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1468 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1469 mask = 0xa000; /* jhe */
1470 goto branch_ku;
1471 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1472 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1473 mask = 0xc000; /* jle */
1474 goto branch_ku;
1475 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1476 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1477 mask = 0x7000; /* jne */
1478 goto branch_ku;
1479 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1480 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1481 mask = 0x8000; /* je */
1482 goto branch_ku;
1483 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1484 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1485 mask = 0x7000; /* jnz */
1486 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1487 /* llilf %w1,imm (load zero extend imm) */
1488 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1489 /* nr %w1,%dst */
1490 EMIT2(0x1400, REG_W1, dst_reg);
1491 } else {
1492 /* lgfi %w1,imm (load sign extend imm) */
1493 EMIT6_IMM(0xc0010000, REG_W1, imm);
1494 /* ngr %w1,%dst */
1495 EMIT4(0xb9800000, REG_W1, dst_reg);
1496 }
1497 goto branch_oc;
1498
1499 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1500 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1501 mask = 0x2000; /* jh */
1502 goto branch_xs;
1503 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1504 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1505 mask = 0x4000; /* jl */
1506 goto branch_xs;
1507 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1508 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1509 mask = 0xa000; /* jhe */
1510 goto branch_xs;
1511 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1512 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1513 mask = 0xc000; /* jle */
1514 goto branch_xs;
1515 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1516 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1517 mask = 0x2000; /* jh */
1518 goto branch_xu;
1519 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1520 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1521 mask = 0x4000; /* jl */
1522 goto branch_xu;
1523 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1524 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1525 mask = 0xa000; /* jhe */
1526 goto branch_xu;
1527 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1528 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1529 mask = 0xc000; /* jle */
1530 goto branch_xu;
1531 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1532 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1533 mask = 0x7000; /* jne */
1534 goto branch_xu;
1535 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1536 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1537 mask = 0x8000; /* je */
1538 goto branch_xu;
1539 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1540 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1541 {
1542 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1543
1544 mask = 0x7000; /* jnz */
1545 /* nrk or ngrk %w1,%dst,%src */
1546 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1547 REG_W1, dst_reg, src_reg);
1548 goto branch_oc;
1549branch_ks:
1550 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1551 /* cfi or cgfi %dst,imm */
1552 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1553 dst_reg, imm);
1554 if (!is_first_pass(jit) &&
1555 can_use_rel(jit, addrs[i + off + 1])) {
1556 /* brc mask,off */
1557 EMIT4_PCREL_RIC(0xa7040000,
1558 mask >> 12, addrs[i + off + 1]);
1559 } else {
1560 /* brcl mask,off */
1561 EMIT6_PCREL_RILC(0xc0040000,
1562 mask >> 12, addrs[i + off + 1]);
1563 }
1564 break;
1565branch_ku:
1566 /* lgfi %w1,imm (load sign extend imm) */
1567 src_reg = REG_1;
1568 EMIT6_IMM(0xc0010000, src_reg, imm);
1569 goto branch_xu;
1570branch_xs:
1571 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1572 if (!is_first_pass(jit) &&
1573 can_use_rel(jit, addrs[i + off + 1])) {
1574 /* crj or cgrj %dst,%src,mask,off */
1575 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1576 dst_reg, src_reg, i, off, mask);
1577 } else {
1578 /* cr or cgr %dst,%src */
1579 if (is_jmp32)
1580 EMIT2(0x1900, dst_reg, src_reg);
1581 else
1582 EMIT4(0xb9200000, dst_reg, src_reg);
1583 /* brcl mask,off */
1584 EMIT6_PCREL_RILC(0xc0040000,
1585 mask >> 12, addrs[i + off + 1]);
1586 }
1587 break;
1588branch_xu:
1589 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1590 if (!is_first_pass(jit) &&
1591 can_use_rel(jit, addrs[i + off + 1])) {
1592 /* clrj or clgrj %dst,%src,mask,off */
1593 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1594 dst_reg, src_reg, i, off, mask);
1595 } else {
1596 /* clr or clgr %dst,%src */
1597 if (is_jmp32)
1598 EMIT2(0x1500, dst_reg, src_reg);
1599 else
1600 EMIT4(0xb9210000, dst_reg, src_reg);
1601 /* brcl mask,off */
1602 EMIT6_PCREL_RILC(0xc0040000,
1603 mask >> 12, addrs[i + off + 1]);
1604 }
1605 break;
1606branch_oc:
1607 if (!is_first_pass(jit) &&
1608 can_use_rel(jit, addrs[i + off + 1])) {
1609 /* brc mask,off */
1610 EMIT4_PCREL_RIC(0xa7040000,
1611 mask >> 12, addrs[i + off + 1]);
1612 } else {
1613 /* brcl mask,off */
1614 EMIT6_PCREL_RILC(0xc0040000,
1615 mask >> 12, addrs[i + off + 1]);
1616 }
1617 break;
1618 }
1619 default: /* too complex, give up */
1620 pr_err("Unknown opcode %02x\n", insn->code);
1621 return -1;
1622 }
1623
1624 if (probe_prg != -1) {
1625 /*
1626 * Handlers of certain exceptions leave psw.addr pointing to
1627 * the instruction directly after the failing one. Therefore,
1628 * create two exception table entries and also add a nop in
1629 * case two probing instructions come directly after each
1630 * other.
1631 */
1632 nop_prg = jit->prg;
1633 /* bcr 0,%0 */
1634 _EMIT2(0x0700);
1635 err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1636 if (err < 0)
1637 return err;
1638 }
1639
1640 return insn_count;
1641}
1642
1643/*
1644 * Return whether new i-th instruction address does not violate any invariant
1645 */
1646static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1647{
1648 /* On the first pass anything goes */
1649 if (is_first_pass(jit))
1650 return true;
1651
1652 /* The codegen pass must not change anything */
1653 if (is_codegen_pass(jit))
1654 return jit->addrs[i] == jit->prg;
1655
1656 /* Passes in between must not increase code size */
1657 return jit->addrs[i] >= jit->prg;
1658}
1659
1660/*
1661 * Update the address of i-th instruction
1662 */
1663static int bpf_set_addr(struct bpf_jit *jit, int i)
1664{
1665 int delta;
1666
1667 if (is_codegen_pass(jit)) {
1668 delta = jit->prg - jit->addrs[i];
1669 if (delta < 0)
1670 bpf_skip(jit, -delta);
1671 }
1672 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1673 return -1;
1674 jit->addrs[i] = jit->prg;
1675 return 0;
1676}
1677
1678/*
1679 * Compile eBPF program into s390x code
1680 */
1681static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1682 bool extra_pass, u32 stack_depth)
1683{
1684 int i, insn_count, lit32_size, lit64_size;
1685
1686 jit->lit32 = jit->lit32_start;
1687 jit->lit64 = jit->lit64_start;
1688 jit->prg = 0;
1689 jit->excnt = 0;
1690
1691 bpf_jit_prologue(jit, stack_depth);
1692 if (bpf_set_addr(jit, 0) < 0)
1693 return -1;
1694 for (i = 0; i < fp->len; i += insn_count) {
1695 insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1696 if (insn_count < 0)
1697 return -1;
1698 /* Next instruction address */
1699 if (bpf_set_addr(jit, i + insn_count) < 0)
1700 return -1;
1701 }
1702 bpf_jit_epilogue(jit, stack_depth);
1703
1704 lit32_size = jit->lit32 - jit->lit32_start;
1705 lit64_size = jit->lit64 - jit->lit64_start;
1706 jit->lit32_start = jit->prg;
1707 if (lit32_size)
1708 jit->lit32_start = ALIGN(jit->lit32_start, 4);
1709 jit->lit64_start = jit->lit32_start + lit32_size;
1710 if (lit64_size)
1711 jit->lit64_start = ALIGN(jit->lit64_start, 8);
1712 jit->size = jit->lit64_start + lit64_size;
1713 jit->size_prg = jit->prg;
1714
1715 if (WARN_ON_ONCE(fp->aux->extable &&
1716 jit->excnt != fp->aux->num_exentries))
1717 /* Verifier bug - too many entries. */
1718 return -1;
1719
1720 return 0;
1721}
1722
1723bool bpf_jit_needs_zext(void)
1724{
1725 return true;
1726}
1727
1728struct s390_jit_data {
1729 struct bpf_binary_header *header;
1730 struct bpf_jit ctx;
1731 int pass;
1732};
1733
1734static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1735 struct bpf_prog *fp)
1736{
1737 struct bpf_binary_header *header;
1738 u32 extable_size;
1739 u32 code_size;
1740
1741 /* We need two entries per insn. */
1742 fp->aux->num_exentries *= 2;
1743
1744 code_size = roundup(jit->size,
1745 __alignof__(struct exception_table_entry));
1746 extable_size = fp->aux->num_exentries *
1747 sizeof(struct exception_table_entry);
1748 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1749 8, jit_fill_hole);
1750 if (!header)
1751 return NULL;
1752 fp->aux->extable = (struct exception_table_entry *)
1753 (jit->prg_buf + code_size);
1754 return header;
1755}
1756
1757/*
1758 * Compile eBPF program "fp"
1759 */
1760struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1761{
1762 u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1763 struct bpf_prog *tmp, *orig_fp = fp;
1764 struct bpf_binary_header *header;
1765 struct s390_jit_data *jit_data;
1766 bool tmp_blinded = false;
1767 bool extra_pass = false;
1768 struct bpf_jit jit;
1769 int pass;
1770
1771 if (!fp->jit_requested)
1772 return orig_fp;
1773
1774 tmp = bpf_jit_blind_constants(fp);
1775 /*
1776 * If blinding was requested and we failed during blinding,
1777 * we must fall back to the interpreter.
1778 */
1779 if (IS_ERR(tmp))
1780 return orig_fp;
1781 if (tmp != fp) {
1782 tmp_blinded = true;
1783 fp = tmp;
1784 }
1785
1786 jit_data = fp->aux->jit_data;
1787 if (!jit_data) {
1788 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1789 if (!jit_data) {
1790 fp = orig_fp;
1791 goto out;
1792 }
1793 fp->aux->jit_data = jit_data;
1794 }
1795 if (jit_data->ctx.addrs) {
1796 jit = jit_data->ctx;
1797 header = jit_data->header;
1798 extra_pass = true;
1799 pass = jit_data->pass + 1;
1800 goto skip_init_ctx;
1801 }
1802
1803 memset(&jit, 0, sizeof(jit));
1804 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1805 if (jit.addrs == NULL) {
1806 fp = orig_fp;
1807 goto free_addrs;
1808 }
1809 /*
1810 * Three initial passes:
1811 * - 1/2: Determine clobbered registers
1812 * - 3: Calculate program size and addrs array
1813 */
1814 for (pass = 1; pass <= 3; pass++) {
1815 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1816 fp = orig_fp;
1817 goto free_addrs;
1818 }
1819 }
1820 /*
1821 * Final pass: Allocate and generate program
1822 */
1823 header = bpf_jit_alloc(&jit, fp);
1824 if (!header) {
1825 fp = orig_fp;
1826 goto free_addrs;
1827 }
1828skip_init_ctx:
1829 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1830 bpf_jit_binary_free(header);
1831 fp = orig_fp;
1832 goto free_addrs;
1833 }
1834 if (bpf_jit_enable > 1) {
1835 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1836 print_fn_code(jit.prg_buf, jit.size_prg);
1837 }
1838 if (!fp->is_func || extra_pass) {
1839 bpf_jit_binary_lock_ro(header);
1840 } else {
1841 jit_data->header = header;
1842 jit_data->ctx = jit;
1843 jit_data->pass = pass;
1844 }
1845 fp->bpf_func = (void *) jit.prg_buf;
1846 fp->jited = 1;
1847 fp->jited_len = jit.size;
1848
1849 if (!fp->is_func || extra_pass) {
1850 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1851free_addrs:
1852 kvfree(jit.addrs);
1853 kfree(jit_data);
1854 fp->aux->jit_data = NULL;
1855 }
1856out:
1857 if (tmp_blinded)
1858 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1859 tmp : orig_fp);
1860 return fp;
1861}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - PACK_STACK
11 * - 64BIT
12 *
13 * Copyright IBM Corp. 2012,2015
14 *
15 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
17 */
18
19#define KMSG_COMPONENT "bpf_jit"
20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22#include <linux/netdevice.h>
23#include <linux/filter.h>
24#include <linux/init.h>
25#include <linux/bpf.h>
26#include <linux/mm.h>
27#include <linux/kernel.h>
28#include <asm/cacheflush.h>
29#include <asm/dis.h>
30#include <asm/facility.h>
31#include <asm/nospec-branch.h>
32#include <asm/set_memory.h>
33#include "bpf_jit.h"
34
35struct bpf_jit {
36 u32 seen; /* Flags to remember seen eBPF instructions */
37 u32 seen_reg[16]; /* Array to remember which registers are used */
38 u32 *addrs; /* Array with relative instruction addresses */
39 u8 *prg_buf; /* Start of program */
40 int size; /* Size of program and literal pool */
41 int size_prg; /* Size of program */
42 int prg; /* Current position in program */
43 int lit32_start; /* Start of 32-bit literal pool */
44 int lit32; /* Current position in 32-bit literal pool */
45 int lit64_start; /* Start of 64-bit literal pool */
46 int lit64; /* Current position in 64-bit literal pool */
47 int base_ip; /* Base address for literal pool */
48 int exit_ip; /* Address of exit */
49 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
50 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
51 int tail_call_start; /* Tail call start offset */
52 int excnt; /* Number of exception table entries */
53 int labels[1]; /* Labels for local jumps */
54};
55
56#define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
57#define SEEN_LITERAL BIT(1) /* code uses literals */
58#define SEEN_FUNC BIT(2) /* calls C functions */
59#define SEEN_TAIL_CALL BIT(3) /* code uses tail calls */
60#define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
61
62/*
63 * s390 registers
64 */
65#define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
66#define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
67#define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
68#define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
69#define REG_0 REG_W0 /* Register 0 */
70#define REG_1 REG_W1 /* Register 1 */
71#define REG_2 BPF_REG_1 /* Register 2 */
72#define REG_14 BPF_REG_0 /* Register 14 */
73
74/*
75 * Mapping of BPF registers to s390 registers
76 */
77static const int reg2hex[] = {
78 /* Return code */
79 [BPF_REG_0] = 14,
80 /* Function parameters */
81 [BPF_REG_1] = 2,
82 [BPF_REG_2] = 3,
83 [BPF_REG_3] = 4,
84 [BPF_REG_4] = 5,
85 [BPF_REG_5] = 6,
86 /* Call saved registers */
87 [BPF_REG_6] = 7,
88 [BPF_REG_7] = 8,
89 [BPF_REG_8] = 9,
90 [BPF_REG_9] = 10,
91 /* BPF stack pointer */
92 [BPF_REG_FP] = 13,
93 /* Register for blinding */
94 [BPF_REG_AX] = 12,
95 /* Work registers for s390x backend */
96 [REG_W0] = 0,
97 [REG_W1] = 1,
98 [REG_L] = 11,
99 [REG_15] = 15,
100};
101
102static inline u32 reg(u32 dst_reg, u32 src_reg)
103{
104 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
105}
106
107static inline u32 reg_high(u32 reg)
108{
109 return reg2hex[reg] << 4;
110}
111
112static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
113{
114 u32 r1 = reg2hex[b1];
115
116 if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
117 jit->seen_reg[r1] = 1;
118}
119
120#define REG_SET_SEEN(b1) \
121({ \
122 reg_set_seen(jit, b1); \
123})
124
125#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
126
127/*
128 * EMIT macros for code generation
129 */
130
131#define _EMIT2(op) \
132({ \
133 if (jit->prg_buf) \
134 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
135 jit->prg += 2; \
136})
137
138#define EMIT2(op, b1, b2) \
139({ \
140 _EMIT2((op) | reg(b1, b2)); \
141 REG_SET_SEEN(b1); \
142 REG_SET_SEEN(b2); \
143})
144
145#define _EMIT4(op) \
146({ \
147 if (jit->prg_buf) \
148 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
149 jit->prg += 4; \
150})
151
152#define EMIT4(op, b1, b2) \
153({ \
154 _EMIT4((op) | reg(b1, b2)); \
155 REG_SET_SEEN(b1); \
156 REG_SET_SEEN(b2); \
157})
158
159#define EMIT4_RRF(op, b1, b2, b3) \
160({ \
161 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
162 REG_SET_SEEN(b1); \
163 REG_SET_SEEN(b2); \
164 REG_SET_SEEN(b3); \
165})
166
167#define _EMIT4_DISP(op, disp) \
168({ \
169 unsigned int __disp = (disp) & 0xfff; \
170 _EMIT4((op) | __disp); \
171})
172
173#define EMIT4_DISP(op, b1, b2, disp) \
174({ \
175 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
176 reg_high(b2) << 8, (disp)); \
177 REG_SET_SEEN(b1); \
178 REG_SET_SEEN(b2); \
179})
180
181#define EMIT4_IMM(op, b1, imm) \
182({ \
183 unsigned int __imm = (imm) & 0xffff; \
184 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
185 REG_SET_SEEN(b1); \
186})
187
188#define EMIT4_PCREL(op, pcrel) \
189({ \
190 long __pcrel = ((pcrel) >> 1) & 0xffff; \
191 _EMIT4((op) | __pcrel); \
192})
193
194#define EMIT4_PCREL_RIC(op, mask, target) \
195({ \
196 int __rel = ((target) - jit->prg) / 2; \
197 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
198})
199
200#define _EMIT6(op1, op2) \
201({ \
202 if (jit->prg_buf) { \
203 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
204 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
205 } \
206 jit->prg += 6; \
207})
208
209#define _EMIT6_DISP(op1, op2, disp) \
210({ \
211 unsigned int __disp = (disp) & 0xfff; \
212 _EMIT6((op1) | __disp, op2); \
213})
214
215#define _EMIT6_DISP_LH(op1, op2, disp) \
216({ \
217 u32 _disp = (u32) (disp); \
218 unsigned int __disp_h = _disp & 0xff000; \
219 unsigned int __disp_l = _disp & 0x00fff; \
220 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
221})
222
223#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
224({ \
225 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
226 reg_high(b3) << 8, op2, disp); \
227 REG_SET_SEEN(b1); \
228 REG_SET_SEEN(b2); \
229 REG_SET_SEEN(b3); \
230})
231
232#define EMIT6_PCREL_LABEL(op1, op2, b1, b2, label, mask) \
233({ \
234 int rel = (jit->labels[label] - jit->prg) >> 1; \
235 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
236 (op2) | (mask) << 12); \
237 REG_SET_SEEN(b1); \
238 REG_SET_SEEN(b2); \
239})
240
241#define EMIT6_PCREL_IMM_LABEL(op1, op2, b1, imm, label, mask) \
242({ \
243 int rel = (jit->labels[label] - jit->prg) >> 1; \
244 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
245 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
246 REG_SET_SEEN(b1); \
247 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
248})
249
250#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
251({ \
252 /* Branch instruction needs 6 bytes */ \
253 int rel = (addrs[(i) + (off) + 1] - (addrs[(i) + 1] - 6)) / 2;\
254 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
255 REG_SET_SEEN(b1); \
256 REG_SET_SEEN(b2); \
257})
258
259#define EMIT6_PCREL_RILB(op, b, target) \
260({ \
261 unsigned int rel = (int)((target) - jit->prg) / 2; \
262 _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
263 REG_SET_SEEN(b); \
264})
265
266#define EMIT6_PCREL_RIL(op, target) \
267({ \
268 unsigned int rel = (int)((target) - jit->prg) / 2; \
269 _EMIT6((op) | rel >> 16, rel & 0xffff); \
270})
271
272#define EMIT6_PCREL_RILC(op, mask, target) \
273({ \
274 EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \
275})
276
277#define _EMIT6_IMM(op, imm) \
278({ \
279 unsigned int __imm = (imm); \
280 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
281})
282
283#define EMIT6_IMM(op, b1, imm) \
284({ \
285 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
286 REG_SET_SEEN(b1); \
287})
288
289#define _EMIT_CONST_U32(val) \
290({ \
291 unsigned int ret; \
292 ret = jit->lit32; \
293 if (jit->prg_buf) \
294 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
295 jit->lit32 += 4; \
296 ret; \
297})
298
299#define EMIT_CONST_U32(val) \
300({ \
301 jit->seen |= SEEN_LITERAL; \
302 _EMIT_CONST_U32(val) - jit->base_ip; \
303})
304
305#define _EMIT_CONST_U64(val) \
306({ \
307 unsigned int ret; \
308 ret = jit->lit64; \
309 if (jit->prg_buf) \
310 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
311 jit->lit64 += 8; \
312 ret; \
313})
314
315#define EMIT_CONST_U64(val) \
316({ \
317 jit->seen |= SEEN_LITERAL; \
318 _EMIT_CONST_U64(val) - jit->base_ip; \
319})
320
321#define EMIT_ZERO(b1) \
322({ \
323 if (!fp->aux->verifier_zext) { \
324 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
325 EMIT4(0xb9160000, b1, b1); \
326 REG_SET_SEEN(b1); \
327 } \
328})
329
330/*
331 * Return whether this is the first pass. The first pass is special, since we
332 * don't know any sizes yet, and thus must be conservative.
333 */
334static bool is_first_pass(struct bpf_jit *jit)
335{
336 return jit->size == 0;
337}
338
339/*
340 * Return whether this is the code generation pass. The code generation pass is
341 * special, since we should change as little as possible.
342 */
343static bool is_codegen_pass(struct bpf_jit *jit)
344{
345 return jit->prg_buf;
346}
347
348/*
349 * Return whether "rel" can be encoded as a short PC-relative offset
350 */
351static bool is_valid_rel(int rel)
352{
353 return rel >= -65536 && rel <= 65534;
354}
355
356/*
357 * Return whether "off" can be reached using a short PC-relative offset
358 */
359static bool can_use_rel(struct bpf_jit *jit, int off)
360{
361 return is_valid_rel(off - jit->prg);
362}
363
364/*
365 * Return whether given displacement can be encoded using
366 * Long-Displacement Facility
367 */
368static bool is_valid_ldisp(int disp)
369{
370 return disp >= -524288 && disp <= 524287;
371}
372
373/*
374 * Return whether the next 32-bit literal pool entry can be referenced using
375 * Long-Displacement Facility
376 */
377static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
378{
379 return is_valid_ldisp(jit->lit32 - jit->base_ip);
380}
381
382/*
383 * Return whether the next 64-bit literal pool entry can be referenced using
384 * Long-Displacement Facility
385 */
386static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
387{
388 return is_valid_ldisp(jit->lit64 - jit->base_ip);
389}
390
391/*
392 * Fill whole space with illegal instructions
393 */
394static void jit_fill_hole(void *area, unsigned int size)
395{
396 memset(area, 0, size);
397}
398
399/*
400 * Save registers from "rs" (register start) to "re" (register end) on stack
401 */
402static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
403{
404 u32 off = STK_OFF_R6 + (rs - 6) * 8;
405
406 if (rs == re)
407 /* stg %rs,off(%r15) */
408 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
409 else
410 /* stmg %rs,%re,off(%r15) */
411 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
412}
413
414/*
415 * Restore registers from "rs" (register start) to "re" (register end) on stack
416 */
417static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
418{
419 u32 off = STK_OFF_R6 + (rs - 6) * 8;
420
421 if (jit->seen & SEEN_STACK)
422 off += STK_OFF + stack_depth;
423
424 if (rs == re)
425 /* lg %rs,off(%r15) */
426 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
427 else
428 /* lmg %rs,%re,off(%r15) */
429 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
430}
431
432/*
433 * Return first seen register (from start)
434 */
435static int get_start(struct bpf_jit *jit, int start)
436{
437 int i;
438
439 for (i = start; i <= 15; i++) {
440 if (jit->seen_reg[i])
441 return i;
442 }
443 return 0;
444}
445
446/*
447 * Return last seen register (from start) (gap >= 2)
448 */
449static int get_end(struct bpf_jit *jit, int start)
450{
451 int i;
452
453 for (i = start; i < 15; i++) {
454 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
455 return i - 1;
456 }
457 return jit->seen_reg[15] ? 15 : 14;
458}
459
460#define REGS_SAVE 1
461#define REGS_RESTORE 0
462/*
463 * Save and restore clobbered registers (6-15) on stack.
464 * We save/restore registers in chunks with gap >= 2 registers.
465 */
466static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
467{
468 const int last = 15, save_restore_size = 6;
469 int re = 6, rs;
470
471 if (is_first_pass(jit)) {
472 /*
473 * We don't know yet which registers are used. Reserve space
474 * conservatively.
475 */
476 jit->prg += (last - re + 1) * save_restore_size;
477 return;
478 }
479
480 do {
481 rs = get_start(jit, re);
482 if (!rs)
483 break;
484 re = get_end(jit, rs + 1);
485 if (op == REGS_SAVE)
486 save_regs(jit, rs, re);
487 else
488 restore_regs(jit, rs, re, stack_depth);
489 re++;
490 } while (re <= last);
491}
492
493static void bpf_skip(struct bpf_jit *jit, int size)
494{
495 if (size >= 6 && !is_valid_rel(size)) {
496 /* brcl 0xf,size */
497 EMIT6_PCREL_RIL(0xc0f4000000, size);
498 size -= 6;
499 } else if (size >= 4 && is_valid_rel(size)) {
500 /* brc 0xf,size */
501 EMIT4_PCREL(0xa7f40000, size);
502 size -= 4;
503 }
504 while (size >= 2) {
505 /* bcr 0,%0 */
506 _EMIT2(0x0700);
507 size -= 2;
508 }
509}
510
511/*
512 * Emit function prologue
513 *
514 * Save registers and create stack frame if necessary.
515 * See stack frame layout desription in "bpf_jit.h"!
516 */
517static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
518{
519 if (jit->seen & SEEN_TAIL_CALL) {
520 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
521 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
522 } else {
523 /*
524 * There are no tail calls. Insert nops in order to have
525 * tail_call_start at a predictable offset.
526 */
527 bpf_skip(jit, 6);
528 }
529 /* Tail calls have to skip above initialization */
530 jit->tail_call_start = jit->prg;
531 /* Save registers */
532 save_restore_regs(jit, REGS_SAVE, stack_depth);
533 /* Setup literal pool */
534 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
535 if (!is_first_pass(jit) &&
536 is_valid_ldisp(jit->size - (jit->prg + 2))) {
537 /* basr %l,0 */
538 EMIT2(0x0d00, REG_L, REG_0);
539 jit->base_ip = jit->prg;
540 } else {
541 /* larl %l,lit32_start */
542 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
543 jit->base_ip = jit->lit32_start;
544 }
545 }
546 /* Setup stack and backchain */
547 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
548 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
549 /* lgr %w1,%r15 (backchain) */
550 EMIT4(0xb9040000, REG_W1, REG_15);
551 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
552 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
553 /* aghi %r15,-STK_OFF */
554 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
555 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
556 /* stg %w1,152(%r15) (backchain) */
557 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
558 REG_15, 152);
559 }
560}
561
562/*
563 * Function epilogue
564 */
565static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
566{
567 jit->exit_ip = jit->prg;
568 /* Load exit code: lgr %r2,%b0 */
569 EMIT4(0xb9040000, REG_2, BPF_REG_0);
570 /* Restore registers */
571 save_restore_regs(jit, REGS_RESTORE, stack_depth);
572 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
573 jit->r14_thunk_ip = jit->prg;
574 /* Generate __s390_indirect_jump_r14 thunk */
575 if (test_facility(35)) {
576 /* exrl %r0,.+10 */
577 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
578 } else {
579 /* larl %r1,.+14 */
580 EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
581 /* ex 0,0(%r1) */
582 EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
583 }
584 /* j . */
585 EMIT4_PCREL(0xa7f40000, 0);
586 }
587 /* br %r14 */
588 _EMIT2(0x07fe);
589
590 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
591 (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
592 jit->r1_thunk_ip = jit->prg;
593 /* Generate __s390_indirect_jump_r1 thunk */
594 if (test_facility(35)) {
595 /* exrl %r0,.+10 */
596 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
597 /* j . */
598 EMIT4_PCREL(0xa7f40000, 0);
599 /* br %r1 */
600 _EMIT2(0x07f1);
601 } else {
602 /* ex 0,S390_lowcore.br_r1_tampoline */
603 EMIT4_DISP(0x44000000, REG_0, REG_0,
604 offsetof(struct lowcore, br_r1_trampoline));
605 /* j . */
606 EMIT4_PCREL(0xa7f40000, 0);
607 }
608 }
609}
610
611static int get_probe_mem_regno(const u8 *insn)
612{
613 /*
614 * insn must point to llgc, llgh, llgf or lg, which have destination
615 * register at the same position.
616 */
617 if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
618 return -1;
619 if (insn[5] != 0x90 && /* llgc */
620 insn[5] != 0x91 && /* llgh */
621 insn[5] != 0x16 && /* llgf */
622 insn[5] != 0x04) /* lg */
623 return -1;
624 return insn[1] >> 4;
625}
626
627static bool ex_handler_bpf(const struct exception_table_entry *x,
628 struct pt_regs *regs)
629{
630 int regno;
631 u8 *insn;
632
633 regs->psw.addr = extable_fixup(x);
634 insn = (u8 *)__rewind_psw(regs->psw, regs->int_code >> 16);
635 regno = get_probe_mem_regno(insn);
636 if (WARN_ON_ONCE(regno < 0))
637 /* JIT bug - unexpected instruction. */
638 return false;
639 regs->gprs[regno] = 0;
640 return true;
641}
642
643static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
644 int probe_prg, int nop_prg)
645{
646 struct exception_table_entry *ex;
647 s64 delta;
648 u8 *insn;
649 int prg;
650 int i;
651
652 if (!fp->aux->extable)
653 /* Do nothing during early JIT passes. */
654 return 0;
655 insn = jit->prg_buf + probe_prg;
656 if (WARN_ON_ONCE(get_probe_mem_regno(insn) < 0))
657 /* JIT bug - unexpected probe instruction. */
658 return -1;
659 if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
660 /* JIT bug - gap between probe and nop instructions. */
661 return -1;
662 for (i = 0; i < 2; i++) {
663 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
664 /* Verifier bug - not enough entries. */
665 return -1;
666 ex = &fp->aux->extable[jit->excnt];
667 /* Add extable entries for probe and nop instructions. */
668 prg = i == 0 ? probe_prg : nop_prg;
669 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
670 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
671 /* JIT bug - code and extable must be close. */
672 return -1;
673 ex->insn = delta;
674 /*
675 * Always land on the nop. Note that extable infrastructure
676 * ignores fixup field, it is handled by ex_handler_bpf().
677 */
678 delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
679 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
680 /* JIT bug - landing pad and extable must be close. */
681 return -1;
682 ex->fixup = delta;
683 ex->handler = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
684 jit->excnt++;
685 }
686 return 0;
687}
688
689/*
690 * Compile one eBPF instruction into s390x code
691 *
692 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
693 * stack space for the large switch statement.
694 */
695static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
696 int i, bool extra_pass, u32 stack_depth)
697{
698 struct bpf_insn *insn = &fp->insnsi[i];
699 u32 dst_reg = insn->dst_reg;
700 u32 src_reg = insn->src_reg;
701 int last, insn_count = 1;
702 u32 *addrs = jit->addrs;
703 s32 imm = insn->imm;
704 s16 off = insn->off;
705 int probe_prg = -1;
706 unsigned int mask;
707 int nop_prg;
708 int err;
709
710 if (BPF_CLASS(insn->code) == BPF_LDX &&
711 BPF_MODE(insn->code) == BPF_PROBE_MEM)
712 probe_prg = jit->prg;
713
714 switch (insn->code) {
715 /*
716 * BPF_MOV
717 */
718 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
719 /* llgfr %dst,%src */
720 EMIT4(0xb9160000, dst_reg, src_reg);
721 if (insn_is_zext(&insn[1]))
722 insn_count = 2;
723 break;
724 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
725 /* lgr %dst,%src */
726 EMIT4(0xb9040000, dst_reg, src_reg);
727 break;
728 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
729 /* llilf %dst,imm */
730 EMIT6_IMM(0xc00f0000, dst_reg, imm);
731 if (insn_is_zext(&insn[1]))
732 insn_count = 2;
733 break;
734 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
735 /* lgfi %dst,imm */
736 EMIT6_IMM(0xc0010000, dst_reg, imm);
737 break;
738 /*
739 * BPF_LD 64
740 */
741 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
742 {
743 /* 16 byte instruction that uses two 'struct bpf_insn' */
744 u64 imm64;
745
746 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
747 /* lgrl %dst,imm */
748 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
749 insn_count = 2;
750 break;
751 }
752 /*
753 * BPF_ADD
754 */
755 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
756 /* ar %dst,%src */
757 EMIT2(0x1a00, dst_reg, src_reg);
758 EMIT_ZERO(dst_reg);
759 break;
760 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
761 /* agr %dst,%src */
762 EMIT4(0xb9080000, dst_reg, src_reg);
763 break;
764 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
765 if (!imm)
766 break;
767 /* alfi %dst,imm */
768 EMIT6_IMM(0xc20b0000, dst_reg, imm);
769 EMIT_ZERO(dst_reg);
770 break;
771 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
772 if (!imm)
773 break;
774 /* agfi %dst,imm */
775 EMIT6_IMM(0xc2080000, dst_reg, imm);
776 break;
777 /*
778 * BPF_SUB
779 */
780 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
781 /* sr %dst,%src */
782 EMIT2(0x1b00, dst_reg, src_reg);
783 EMIT_ZERO(dst_reg);
784 break;
785 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
786 /* sgr %dst,%src */
787 EMIT4(0xb9090000, dst_reg, src_reg);
788 break;
789 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
790 if (!imm)
791 break;
792 /* alfi %dst,-imm */
793 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
794 EMIT_ZERO(dst_reg);
795 break;
796 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
797 if (!imm)
798 break;
799 /* agfi %dst,-imm */
800 EMIT6_IMM(0xc2080000, dst_reg, -imm);
801 break;
802 /*
803 * BPF_MUL
804 */
805 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
806 /* msr %dst,%src */
807 EMIT4(0xb2520000, dst_reg, src_reg);
808 EMIT_ZERO(dst_reg);
809 break;
810 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
811 /* msgr %dst,%src */
812 EMIT4(0xb90c0000, dst_reg, src_reg);
813 break;
814 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
815 if (imm == 1)
816 break;
817 /* msfi %r5,imm */
818 EMIT6_IMM(0xc2010000, dst_reg, imm);
819 EMIT_ZERO(dst_reg);
820 break;
821 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
822 if (imm == 1)
823 break;
824 /* msgfi %dst,imm */
825 EMIT6_IMM(0xc2000000, dst_reg, imm);
826 break;
827 /*
828 * BPF_DIV / BPF_MOD
829 */
830 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
831 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
832 {
833 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
834
835 /* lhi %w0,0 */
836 EMIT4_IMM(0xa7080000, REG_W0, 0);
837 /* lr %w1,%dst */
838 EMIT2(0x1800, REG_W1, dst_reg);
839 /* dlr %w0,%src */
840 EMIT4(0xb9970000, REG_W0, src_reg);
841 /* llgfr %dst,%rc */
842 EMIT4(0xb9160000, dst_reg, rc_reg);
843 if (insn_is_zext(&insn[1]))
844 insn_count = 2;
845 break;
846 }
847 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
848 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
849 {
850 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
851
852 /* lghi %w0,0 */
853 EMIT4_IMM(0xa7090000, REG_W0, 0);
854 /* lgr %w1,%dst */
855 EMIT4(0xb9040000, REG_W1, dst_reg);
856 /* dlgr %w0,%dst */
857 EMIT4(0xb9870000, REG_W0, src_reg);
858 /* lgr %dst,%rc */
859 EMIT4(0xb9040000, dst_reg, rc_reg);
860 break;
861 }
862 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
863 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
864 {
865 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
866
867 if (imm == 1) {
868 if (BPF_OP(insn->code) == BPF_MOD)
869 /* lhgi %dst,0 */
870 EMIT4_IMM(0xa7090000, dst_reg, 0);
871 break;
872 }
873 /* lhi %w0,0 */
874 EMIT4_IMM(0xa7080000, REG_W0, 0);
875 /* lr %w1,%dst */
876 EMIT2(0x1800, REG_W1, dst_reg);
877 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
878 /* dl %w0,<d(imm)>(%l) */
879 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
880 EMIT_CONST_U32(imm));
881 } else {
882 /* lgfrl %dst,imm */
883 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
884 _EMIT_CONST_U32(imm));
885 jit->seen |= SEEN_LITERAL;
886 /* dlr %w0,%dst */
887 EMIT4(0xb9970000, REG_W0, dst_reg);
888 }
889 /* llgfr %dst,%rc */
890 EMIT4(0xb9160000, dst_reg, rc_reg);
891 if (insn_is_zext(&insn[1]))
892 insn_count = 2;
893 break;
894 }
895 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
896 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
897 {
898 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
899
900 if (imm == 1) {
901 if (BPF_OP(insn->code) == BPF_MOD)
902 /* lhgi %dst,0 */
903 EMIT4_IMM(0xa7090000, dst_reg, 0);
904 break;
905 }
906 /* lghi %w0,0 */
907 EMIT4_IMM(0xa7090000, REG_W0, 0);
908 /* lgr %w1,%dst */
909 EMIT4(0xb9040000, REG_W1, dst_reg);
910 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
911 /* dlg %w0,<d(imm)>(%l) */
912 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
913 EMIT_CONST_U64(imm));
914 } else {
915 /* lgrl %dst,imm */
916 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
917 _EMIT_CONST_U64(imm));
918 jit->seen |= SEEN_LITERAL;
919 /* dlgr %w0,%dst */
920 EMIT4(0xb9870000, REG_W0, dst_reg);
921 }
922 /* lgr %dst,%rc */
923 EMIT4(0xb9040000, dst_reg, rc_reg);
924 break;
925 }
926 /*
927 * BPF_AND
928 */
929 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
930 /* nr %dst,%src */
931 EMIT2(0x1400, dst_reg, src_reg);
932 EMIT_ZERO(dst_reg);
933 break;
934 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
935 /* ngr %dst,%src */
936 EMIT4(0xb9800000, dst_reg, src_reg);
937 break;
938 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
939 /* nilf %dst,imm */
940 EMIT6_IMM(0xc00b0000, dst_reg, imm);
941 EMIT_ZERO(dst_reg);
942 break;
943 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
944 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
945 /* ng %dst,<d(imm)>(%l) */
946 EMIT6_DISP_LH(0xe3000000, 0x0080,
947 dst_reg, REG_0, REG_L,
948 EMIT_CONST_U64(imm));
949 } else {
950 /* lgrl %w0,imm */
951 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
952 _EMIT_CONST_U64(imm));
953 jit->seen |= SEEN_LITERAL;
954 /* ngr %dst,%w0 */
955 EMIT4(0xb9800000, dst_reg, REG_W0);
956 }
957 break;
958 /*
959 * BPF_OR
960 */
961 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
962 /* or %dst,%src */
963 EMIT2(0x1600, dst_reg, src_reg);
964 EMIT_ZERO(dst_reg);
965 break;
966 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
967 /* ogr %dst,%src */
968 EMIT4(0xb9810000, dst_reg, src_reg);
969 break;
970 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
971 /* oilf %dst,imm */
972 EMIT6_IMM(0xc00d0000, dst_reg, imm);
973 EMIT_ZERO(dst_reg);
974 break;
975 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
976 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
977 /* og %dst,<d(imm)>(%l) */
978 EMIT6_DISP_LH(0xe3000000, 0x0081,
979 dst_reg, REG_0, REG_L,
980 EMIT_CONST_U64(imm));
981 } else {
982 /* lgrl %w0,imm */
983 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
984 _EMIT_CONST_U64(imm));
985 jit->seen |= SEEN_LITERAL;
986 /* ogr %dst,%w0 */
987 EMIT4(0xb9810000, dst_reg, REG_W0);
988 }
989 break;
990 /*
991 * BPF_XOR
992 */
993 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
994 /* xr %dst,%src */
995 EMIT2(0x1700, dst_reg, src_reg);
996 EMIT_ZERO(dst_reg);
997 break;
998 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
999 /* xgr %dst,%src */
1000 EMIT4(0xb9820000, dst_reg, src_reg);
1001 break;
1002 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1003 if (!imm)
1004 break;
1005 /* xilf %dst,imm */
1006 EMIT6_IMM(0xc0070000, dst_reg, imm);
1007 EMIT_ZERO(dst_reg);
1008 break;
1009 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1010 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1011 /* xg %dst,<d(imm)>(%l) */
1012 EMIT6_DISP_LH(0xe3000000, 0x0082,
1013 dst_reg, REG_0, REG_L,
1014 EMIT_CONST_U64(imm));
1015 } else {
1016 /* lgrl %w0,imm */
1017 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1018 _EMIT_CONST_U64(imm));
1019 jit->seen |= SEEN_LITERAL;
1020 /* xgr %dst,%w0 */
1021 EMIT4(0xb9820000, dst_reg, REG_W0);
1022 }
1023 break;
1024 /*
1025 * BPF_LSH
1026 */
1027 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1028 /* sll %dst,0(%src) */
1029 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1030 EMIT_ZERO(dst_reg);
1031 break;
1032 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1033 /* sllg %dst,%dst,0(%src) */
1034 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1035 break;
1036 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1037 if (imm == 0)
1038 break;
1039 /* sll %dst,imm(%r0) */
1040 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1041 EMIT_ZERO(dst_reg);
1042 break;
1043 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1044 if (imm == 0)
1045 break;
1046 /* sllg %dst,%dst,imm(%r0) */
1047 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1048 break;
1049 /*
1050 * BPF_RSH
1051 */
1052 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1053 /* srl %dst,0(%src) */
1054 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1055 EMIT_ZERO(dst_reg);
1056 break;
1057 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1058 /* srlg %dst,%dst,0(%src) */
1059 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1060 break;
1061 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1062 if (imm == 0)
1063 break;
1064 /* srl %dst,imm(%r0) */
1065 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1066 EMIT_ZERO(dst_reg);
1067 break;
1068 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1069 if (imm == 0)
1070 break;
1071 /* srlg %dst,%dst,imm(%r0) */
1072 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1073 break;
1074 /*
1075 * BPF_ARSH
1076 */
1077 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1078 /* sra %dst,%dst,0(%src) */
1079 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1080 EMIT_ZERO(dst_reg);
1081 break;
1082 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1083 /* srag %dst,%dst,0(%src) */
1084 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1085 break;
1086 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1087 if (imm == 0)
1088 break;
1089 /* sra %dst,imm(%r0) */
1090 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1091 EMIT_ZERO(dst_reg);
1092 break;
1093 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1094 if (imm == 0)
1095 break;
1096 /* srag %dst,%dst,imm(%r0) */
1097 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1098 break;
1099 /*
1100 * BPF_NEG
1101 */
1102 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1103 /* lcr %dst,%dst */
1104 EMIT2(0x1300, dst_reg, dst_reg);
1105 EMIT_ZERO(dst_reg);
1106 break;
1107 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1108 /* lcgr %dst,%dst */
1109 EMIT4(0xb9030000, dst_reg, dst_reg);
1110 break;
1111 /*
1112 * BPF_FROM_BE/LE
1113 */
1114 case BPF_ALU | BPF_END | BPF_FROM_BE:
1115 /* s390 is big endian, therefore only clear high order bytes */
1116 switch (imm) {
1117 case 16: /* dst = (u16) cpu_to_be16(dst) */
1118 /* llghr %dst,%dst */
1119 EMIT4(0xb9850000, dst_reg, dst_reg);
1120 if (insn_is_zext(&insn[1]))
1121 insn_count = 2;
1122 break;
1123 case 32: /* dst = (u32) cpu_to_be32(dst) */
1124 if (!fp->aux->verifier_zext)
1125 /* llgfr %dst,%dst */
1126 EMIT4(0xb9160000, dst_reg, dst_reg);
1127 break;
1128 case 64: /* dst = (u64) cpu_to_be64(dst) */
1129 break;
1130 }
1131 break;
1132 case BPF_ALU | BPF_END | BPF_FROM_LE:
1133 switch (imm) {
1134 case 16: /* dst = (u16) cpu_to_le16(dst) */
1135 /* lrvr %dst,%dst */
1136 EMIT4(0xb91f0000, dst_reg, dst_reg);
1137 /* srl %dst,16(%r0) */
1138 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1139 /* llghr %dst,%dst */
1140 EMIT4(0xb9850000, dst_reg, dst_reg);
1141 if (insn_is_zext(&insn[1]))
1142 insn_count = 2;
1143 break;
1144 case 32: /* dst = (u32) cpu_to_le32(dst) */
1145 /* lrvr %dst,%dst */
1146 EMIT4(0xb91f0000, dst_reg, dst_reg);
1147 if (!fp->aux->verifier_zext)
1148 /* llgfr %dst,%dst */
1149 EMIT4(0xb9160000, dst_reg, dst_reg);
1150 break;
1151 case 64: /* dst = (u64) cpu_to_le64(dst) */
1152 /* lrvgr %dst,%dst */
1153 EMIT4(0xb90f0000, dst_reg, dst_reg);
1154 break;
1155 }
1156 break;
1157 /*
1158 * BPF_ST(X)
1159 */
1160 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1161 /* stcy %src,off(%dst) */
1162 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1163 jit->seen |= SEEN_MEM;
1164 break;
1165 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1166 /* sthy %src,off(%dst) */
1167 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1168 jit->seen |= SEEN_MEM;
1169 break;
1170 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1171 /* sty %src,off(%dst) */
1172 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1173 jit->seen |= SEEN_MEM;
1174 break;
1175 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1176 /* stg %src,off(%dst) */
1177 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1178 jit->seen |= SEEN_MEM;
1179 break;
1180 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1181 /* lhi %w0,imm */
1182 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1183 /* stcy %w0,off(dst) */
1184 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1185 jit->seen |= SEEN_MEM;
1186 break;
1187 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1188 /* lhi %w0,imm */
1189 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1190 /* sthy %w0,off(dst) */
1191 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1192 jit->seen |= SEEN_MEM;
1193 break;
1194 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1195 /* llilf %w0,imm */
1196 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1197 /* sty %w0,off(%dst) */
1198 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1199 jit->seen |= SEEN_MEM;
1200 break;
1201 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1202 /* lgfi %w0,imm */
1203 EMIT6_IMM(0xc0010000, REG_W0, imm);
1204 /* stg %w0,off(%dst) */
1205 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1206 jit->seen |= SEEN_MEM;
1207 break;
1208 /*
1209 * BPF_STX XADD (atomic_add)
1210 */
1211 case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
1212 /* laal %w0,%src,off(%dst) */
1213 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
1214 dst_reg, off);
1215 jit->seen |= SEEN_MEM;
1216 break;
1217 case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
1218 /* laalg %w0,%src,off(%dst) */
1219 EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
1220 dst_reg, off);
1221 jit->seen |= SEEN_MEM;
1222 break;
1223 /*
1224 * BPF_LDX
1225 */
1226 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1227 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1228 /* llgc %dst,0(off,%src) */
1229 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1230 jit->seen |= SEEN_MEM;
1231 if (insn_is_zext(&insn[1]))
1232 insn_count = 2;
1233 break;
1234 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1235 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1236 /* llgh %dst,0(off,%src) */
1237 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1238 jit->seen |= SEEN_MEM;
1239 if (insn_is_zext(&insn[1]))
1240 insn_count = 2;
1241 break;
1242 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1243 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1244 /* llgf %dst,off(%src) */
1245 jit->seen |= SEEN_MEM;
1246 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1247 if (insn_is_zext(&insn[1]))
1248 insn_count = 2;
1249 break;
1250 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1251 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1252 /* lg %dst,0(off,%src) */
1253 jit->seen |= SEEN_MEM;
1254 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1255 break;
1256 /*
1257 * BPF_JMP / CALL
1258 */
1259 case BPF_JMP | BPF_CALL:
1260 {
1261 u64 func;
1262 bool func_addr_fixed;
1263 int ret;
1264
1265 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1266 &func, &func_addr_fixed);
1267 if (ret < 0)
1268 return -1;
1269
1270 REG_SET_SEEN(BPF_REG_5);
1271 jit->seen |= SEEN_FUNC;
1272 /* lgrl %w1,func */
1273 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1274 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1275 /* brasl %r14,__s390_indirect_jump_r1 */
1276 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1277 } else {
1278 /* basr %r14,%w1 */
1279 EMIT2(0x0d00, REG_14, REG_W1);
1280 }
1281 /* lgr %b0,%r2: load return value into %b0 */
1282 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1283 break;
1284 }
1285 case BPF_JMP | BPF_TAIL_CALL:
1286 /*
1287 * Implicit input:
1288 * B1: pointer to ctx
1289 * B2: pointer to bpf_array
1290 * B3: index in bpf_array
1291 */
1292 jit->seen |= SEEN_TAIL_CALL;
1293
1294 /*
1295 * if (index >= array->map.max_entries)
1296 * goto out;
1297 */
1298
1299 /* llgf %w1,map.max_entries(%b2) */
1300 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1301 offsetof(struct bpf_array, map.max_entries));
1302 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1303 if (!is_first_pass(jit) && can_use_rel(jit, jit->labels[0])) {
1304 /* clrj %b3,%w1,0xa,label0 */
1305 EMIT6_PCREL_LABEL(0xec000000, 0x0077, BPF_REG_3,
1306 REG_W1, 0, 0xa);
1307 } else {
1308 /* clr %b3,%w1 */
1309 EMIT2(0x1500, BPF_REG_3, REG_W1);
1310 /* brcl 0xa,label0 */
1311 EMIT6_PCREL_RILC(0xc0040000, 0xa, jit->labels[0]);
1312 }
1313
1314 /*
1315 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1316 * goto out;
1317 */
1318
1319 if (jit->seen & SEEN_STACK)
1320 off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1321 else
1322 off = STK_OFF_TCCNT;
1323 /* lhi %w0,1 */
1324 EMIT4_IMM(0xa7080000, REG_W0, 1);
1325 /* laal %w1,%w0,off(%r15) */
1326 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1327 if (!is_first_pass(jit) && can_use_rel(jit, jit->labels[0])) {
1328 /* clij %w1,MAX_TAIL_CALL_CNT,0x2,label0 */
1329 EMIT6_PCREL_IMM_LABEL(0xec000000, 0x007f, REG_W1,
1330 MAX_TAIL_CALL_CNT, 0, 0x2);
1331 } else {
1332 /* clfi %w1,MAX_TAIL_CALL_CNT */
1333 EMIT6_IMM(0xc20f0000, REG_W1, MAX_TAIL_CALL_CNT);
1334 /* brcl 0x2,label0 */
1335 EMIT6_PCREL_RILC(0xc0040000, 0x2, jit->labels[0]);
1336 }
1337
1338 /*
1339 * prog = array->ptrs[index];
1340 * if (prog == NULL)
1341 * goto out;
1342 */
1343
1344 /* llgfr %r1,%b3: %r1 = (u32) index */
1345 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1346 /* sllg %r1,%r1,3: %r1 *= 8 */
1347 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1348 /* ltg %r1,prog(%b2,%r1) */
1349 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1350 REG_1, offsetof(struct bpf_array, ptrs));
1351 if (!is_first_pass(jit) && can_use_rel(jit, jit->labels[0])) {
1352 /* brc 0x8,label0 */
1353 EMIT4_PCREL_RIC(0xa7040000, 0x8, jit->labels[0]);
1354 } else {
1355 /* brcl 0x8,label0 */
1356 EMIT6_PCREL_RILC(0xc0040000, 0x8, jit->labels[0]);
1357 }
1358
1359 /*
1360 * Restore registers before calling function
1361 */
1362 save_restore_regs(jit, REGS_RESTORE, stack_depth);
1363
1364 /*
1365 * goto *(prog->bpf_func + tail_call_start);
1366 */
1367
1368 /* lg %r1,bpf_func(%r1) */
1369 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1370 offsetof(struct bpf_prog, bpf_func));
1371 /* bc 0xf,tail_call_start(%r1) */
1372 _EMIT4(0x47f01000 + jit->tail_call_start);
1373 /* out: */
1374 jit->labels[0] = jit->prg;
1375 break;
1376 case BPF_JMP | BPF_EXIT: /* return b0 */
1377 last = (i == fp->len - 1) ? 1 : 0;
1378 if (last)
1379 break;
1380 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1381 /* brc 0xf, <exit> */
1382 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1383 else
1384 /* brcl 0xf, <exit> */
1385 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1386 break;
1387 /*
1388 * Branch relative (number of skipped instructions) to offset on
1389 * condition.
1390 *
1391 * Condition code to mask mapping:
1392 *
1393 * CC | Description | Mask
1394 * ------------------------------
1395 * 0 | Operands equal | 8
1396 * 1 | First operand low | 4
1397 * 2 | First operand high | 2
1398 * 3 | Unused | 1
1399 *
1400 * For s390x relative branches: ip = ip + off_bytes
1401 * For BPF relative branches: insn = insn + off_insns + 1
1402 *
1403 * For example for s390x with offset 0 we jump to the branch
1404 * instruction itself (loop) and for BPF with offset 0 we
1405 * branch to the instruction behind the branch.
1406 */
1407 case BPF_JMP | BPF_JA: /* if (true) */
1408 mask = 0xf000; /* j */
1409 goto branch_oc;
1410 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1411 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1412 mask = 0x2000; /* jh */
1413 goto branch_ks;
1414 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1415 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1416 mask = 0x4000; /* jl */
1417 goto branch_ks;
1418 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1419 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1420 mask = 0xa000; /* jhe */
1421 goto branch_ks;
1422 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1423 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1424 mask = 0xc000; /* jle */
1425 goto branch_ks;
1426 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1427 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1428 mask = 0x2000; /* jh */
1429 goto branch_ku;
1430 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1431 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1432 mask = 0x4000; /* jl */
1433 goto branch_ku;
1434 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1435 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1436 mask = 0xa000; /* jhe */
1437 goto branch_ku;
1438 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1439 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1440 mask = 0xc000; /* jle */
1441 goto branch_ku;
1442 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1443 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1444 mask = 0x7000; /* jne */
1445 goto branch_ku;
1446 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1447 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1448 mask = 0x8000; /* je */
1449 goto branch_ku;
1450 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1451 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1452 mask = 0x7000; /* jnz */
1453 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1454 /* llilf %w1,imm (load zero extend imm) */
1455 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1456 /* nr %w1,%dst */
1457 EMIT2(0x1400, REG_W1, dst_reg);
1458 } else {
1459 /* lgfi %w1,imm (load sign extend imm) */
1460 EMIT6_IMM(0xc0010000, REG_W1, imm);
1461 /* ngr %w1,%dst */
1462 EMIT4(0xb9800000, REG_W1, dst_reg);
1463 }
1464 goto branch_oc;
1465
1466 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1467 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1468 mask = 0x2000; /* jh */
1469 goto branch_xs;
1470 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1471 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1472 mask = 0x4000; /* jl */
1473 goto branch_xs;
1474 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1475 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1476 mask = 0xa000; /* jhe */
1477 goto branch_xs;
1478 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1479 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1480 mask = 0xc000; /* jle */
1481 goto branch_xs;
1482 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1483 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1484 mask = 0x2000; /* jh */
1485 goto branch_xu;
1486 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1487 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1488 mask = 0x4000; /* jl */
1489 goto branch_xu;
1490 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1491 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1492 mask = 0xa000; /* jhe */
1493 goto branch_xu;
1494 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1495 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1496 mask = 0xc000; /* jle */
1497 goto branch_xu;
1498 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1499 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1500 mask = 0x7000; /* jne */
1501 goto branch_xu;
1502 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1503 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1504 mask = 0x8000; /* je */
1505 goto branch_xu;
1506 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1507 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1508 {
1509 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1510
1511 mask = 0x7000; /* jnz */
1512 /* nrk or ngrk %w1,%dst,%src */
1513 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1514 REG_W1, dst_reg, src_reg);
1515 goto branch_oc;
1516branch_ks:
1517 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1518 /* cfi or cgfi %dst,imm */
1519 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1520 dst_reg, imm);
1521 if (!is_first_pass(jit) &&
1522 can_use_rel(jit, addrs[i + off + 1])) {
1523 /* brc mask,off */
1524 EMIT4_PCREL_RIC(0xa7040000,
1525 mask >> 12, addrs[i + off + 1]);
1526 } else {
1527 /* brcl mask,off */
1528 EMIT6_PCREL_RILC(0xc0040000,
1529 mask >> 12, addrs[i + off + 1]);
1530 }
1531 break;
1532branch_ku:
1533 /* lgfi %w1,imm (load sign extend imm) */
1534 src_reg = REG_1;
1535 EMIT6_IMM(0xc0010000, src_reg, imm);
1536 goto branch_xu;
1537branch_xs:
1538 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1539 if (!is_first_pass(jit) &&
1540 can_use_rel(jit, addrs[i + off + 1])) {
1541 /* crj or cgrj %dst,%src,mask,off */
1542 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1543 dst_reg, src_reg, i, off, mask);
1544 } else {
1545 /* cr or cgr %dst,%src */
1546 if (is_jmp32)
1547 EMIT2(0x1900, dst_reg, src_reg);
1548 else
1549 EMIT4(0xb9200000, dst_reg, src_reg);
1550 /* brcl mask,off */
1551 EMIT6_PCREL_RILC(0xc0040000,
1552 mask >> 12, addrs[i + off + 1]);
1553 }
1554 break;
1555branch_xu:
1556 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1557 if (!is_first_pass(jit) &&
1558 can_use_rel(jit, addrs[i + off + 1])) {
1559 /* clrj or clgrj %dst,%src,mask,off */
1560 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1561 dst_reg, src_reg, i, off, mask);
1562 } else {
1563 /* clr or clgr %dst,%src */
1564 if (is_jmp32)
1565 EMIT2(0x1500, dst_reg, src_reg);
1566 else
1567 EMIT4(0xb9210000, dst_reg, src_reg);
1568 /* brcl mask,off */
1569 EMIT6_PCREL_RILC(0xc0040000,
1570 mask >> 12, addrs[i + off + 1]);
1571 }
1572 break;
1573branch_oc:
1574 if (!is_first_pass(jit) &&
1575 can_use_rel(jit, addrs[i + off + 1])) {
1576 /* brc mask,off */
1577 EMIT4_PCREL_RIC(0xa7040000,
1578 mask >> 12, addrs[i + off + 1]);
1579 } else {
1580 /* brcl mask,off */
1581 EMIT6_PCREL_RILC(0xc0040000,
1582 mask >> 12, addrs[i + off + 1]);
1583 }
1584 break;
1585 }
1586 default: /* too complex, give up */
1587 pr_err("Unknown opcode %02x\n", insn->code);
1588 return -1;
1589 }
1590
1591 if (probe_prg != -1) {
1592 /*
1593 * Handlers of certain exceptions leave psw.addr pointing to
1594 * the instruction directly after the failing one. Therefore,
1595 * create two exception table entries and also add a nop in
1596 * case two probing instructions come directly after each
1597 * other.
1598 */
1599 nop_prg = jit->prg;
1600 /* bcr 0,%0 */
1601 _EMIT2(0x0700);
1602 err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1603 if (err < 0)
1604 return err;
1605 }
1606
1607 return insn_count;
1608}
1609
1610/*
1611 * Return whether new i-th instruction address does not violate any invariant
1612 */
1613static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1614{
1615 /* On the first pass anything goes */
1616 if (is_first_pass(jit))
1617 return true;
1618
1619 /* The codegen pass must not change anything */
1620 if (is_codegen_pass(jit))
1621 return jit->addrs[i] == jit->prg;
1622
1623 /* Passes in between must not increase code size */
1624 return jit->addrs[i] >= jit->prg;
1625}
1626
1627/*
1628 * Update the address of i-th instruction
1629 */
1630static int bpf_set_addr(struct bpf_jit *jit, int i)
1631{
1632 int delta;
1633
1634 if (is_codegen_pass(jit)) {
1635 delta = jit->prg - jit->addrs[i];
1636 if (delta < 0)
1637 bpf_skip(jit, -delta);
1638 }
1639 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1640 return -1;
1641 jit->addrs[i] = jit->prg;
1642 return 0;
1643}
1644
1645/*
1646 * Compile eBPF program into s390x code
1647 */
1648static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1649 bool extra_pass, u32 stack_depth)
1650{
1651 int i, insn_count, lit32_size, lit64_size;
1652
1653 jit->lit32 = jit->lit32_start;
1654 jit->lit64 = jit->lit64_start;
1655 jit->prg = 0;
1656 jit->excnt = 0;
1657
1658 bpf_jit_prologue(jit, stack_depth);
1659 if (bpf_set_addr(jit, 0) < 0)
1660 return -1;
1661 for (i = 0; i < fp->len; i += insn_count) {
1662 insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1663 if (insn_count < 0)
1664 return -1;
1665 /* Next instruction address */
1666 if (bpf_set_addr(jit, i + insn_count) < 0)
1667 return -1;
1668 }
1669 bpf_jit_epilogue(jit, stack_depth);
1670
1671 lit32_size = jit->lit32 - jit->lit32_start;
1672 lit64_size = jit->lit64 - jit->lit64_start;
1673 jit->lit32_start = jit->prg;
1674 if (lit32_size)
1675 jit->lit32_start = ALIGN(jit->lit32_start, 4);
1676 jit->lit64_start = jit->lit32_start + lit32_size;
1677 if (lit64_size)
1678 jit->lit64_start = ALIGN(jit->lit64_start, 8);
1679 jit->size = jit->lit64_start + lit64_size;
1680 jit->size_prg = jit->prg;
1681
1682 if (WARN_ON_ONCE(fp->aux->extable &&
1683 jit->excnt != fp->aux->num_exentries))
1684 /* Verifier bug - too many entries. */
1685 return -1;
1686
1687 return 0;
1688}
1689
1690bool bpf_jit_needs_zext(void)
1691{
1692 return true;
1693}
1694
1695struct s390_jit_data {
1696 struct bpf_binary_header *header;
1697 struct bpf_jit ctx;
1698 int pass;
1699};
1700
1701static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1702 struct bpf_prog *fp)
1703{
1704 struct bpf_binary_header *header;
1705 u32 extable_size;
1706 u32 code_size;
1707
1708 /* We need two entries per insn. */
1709 fp->aux->num_exentries *= 2;
1710
1711 code_size = roundup(jit->size,
1712 __alignof__(struct exception_table_entry));
1713 extable_size = fp->aux->num_exentries *
1714 sizeof(struct exception_table_entry);
1715 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1716 8, jit_fill_hole);
1717 if (!header)
1718 return NULL;
1719 fp->aux->extable = (struct exception_table_entry *)
1720 (jit->prg_buf + code_size);
1721 return header;
1722}
1723
1724/*
1725 * Compile eBPF program "fp"
1726 */
1727struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1728{
1729 u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1730 struct bpf_prog *tmp, *orig_fp = fp;
1731 struct bpf_binary_header *header;
1732 struct s390_jit_data *jit_data;
1733 bool tmp_blinded = false;
1734 bool extra_pass = false;
1735 struct bpf_jit jit;
1736 int pass;
1737
1738 if (!fp->jit_requested)
1739 return orig_fp;
1740
1741 tmp = bpf_jit_blind_constants(fp);
1742 /*
1743 * If blinding was requested and we failed during blinding,
1744 * we must fall back to the interpreter.
1745 */
1746 if (IS_ERR(tmp))
1747 return orig_fp;
1748 if (tmp != fp) {
1749 tmp_blinded = true;
1750 fp = tmp;
1751 }
1752
1753 jit_data = fp->aux->jit_data;
1754 if (!jit_data) {
1755 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1756 if (!jit_data) {
1757 fp = orig_fp;
1758 goto out;
1759 }
1760 fp->aux->jit_data = jit_data;
1761 }
1762 if (jit_data->ctx.addrs) {
1763 jit = jit_data->ctx;
1764 header = jit_data->header;
1765 extra_pass = true;
1766 pass = jit_data->pass + 1;
1767 goto skip_init_ctx;
1768 }
1769
1770 memset(&jit, 0, sizeof(jit));
1771 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1772 if (jit.addrs == NULL) {
1773 fp = orig_fp;
1774 goto out;
1775 }
1776 /*
1777 * Three initial passes:
1778 * - 1/2: Determine clobbered registers
1779 * - 3: Calculate program size and addrs arrray
1780 */
1781 for (pass = 1; pass <= 3; pass++) {
1782 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1783 fp = orig_fp;
1784 goto free_addrs;
1785 }
1786 }
1787 /*
1788 * Final pass: Allocate and generate program
1789 */
1790 header = bpf_jit_alloc(&jit, fp);
1791 if (!header) {
1792 fp = orig_fp;
1793 goto free_addrs;
1794 }
1795skip_init_ctx:
1796 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1797 bpf_jit_binary_free(header);
1798 fp = orig_fp;
1799 goto free_addrs;
1800 }
1801 if (bpf_jit_enable > 1) {
1802 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1803 print_fn_code(jit.prg_buf, jit.size_prg);
1804 }
1805 if (!fp->is_func || extra_pass) {
1806 bpf_jit_binary_lock_ro(header);
1807 } else {
1808 jit_data->header = header;
1809 jit_data->ctx = jit;
1810 jit_data->pass = pass;
1811 }
1812 fp->bpf_func = (void *) jit.prg_buf;
1813 fp->jited = 1;
1814 fp->jited_len = jit.size;
1815
1816 if (!fp->is_func || extra_pass) {
1817 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1818free_addrs:
1819 kvfree(jit.addrs);
1820 kfree(jit_data);
1821 fp->aux->jit_data = NULL;
1822 }
1823out:
1824 if (tmp_blinded)
1825 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1826 tmp : orig_fp);
1827 return fp;
1828}