Linux Audio

Check our new training course

Loading...
v6.2
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * BPF Jit compiler for s390.
   4 *
   5 * Minimum build requirements:
   6 *
   7 *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
   8 *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
   9 *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
 
  10 *  - 64BIT
  11 *
  12 * Copyright IBM Corp. 2012,2015
  13 *
  14 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  15 *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
  16 */
  17
  18#define KMSG_COMPONENT "bpf_jit"
  19#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  20
  21#include <linux/netdevice.h>
  22#include <linux/filter.h>
  23#include <linux/init.h>
  24#include <linux/bpf.h>
  25#include <linux/mm.h>
  26#include <linux/kernel.h>
  27#include <asm/cacheflush.h>
  28#include <asm/extable.h>
  29#include <asm/dis.h>
  30#include <asm/facility.h>
  31#include <asm/nospec-branch.h>
  32#include <asm/set_memory.h>
  33#include "bpf_jit.h"
  34
  35struct bpf_jit {
  36	u32 seen;		/* Flags to remember seen eBPF instructions */
  37	u32 seen_reg[16];	/* Array to remember which registers are used */
  38	u32 *addrs;		/* Array with relative instruction addresses */
  39	u8 *prg_buf;		/* Start of program */
  40	int size;		/* Size of program and literal pool */
  41	int size_prg;		/* Size of program */
  42	int prg;		/* Current position in program */
  43	int lit32_start;	/* Start of 32-bit literal pool */
  44	int lit32;		/* Current position in 32-bit literal pool */
  45	int lit64_start;	/* Start of 64-bit literal pool */
  46	int lit64;		/* Current position in 64-bit literal pool */
  47	int base_ip;		/* Base address for literal pool */
  48	int exit_ip;		/* Address of exit */
  49	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
  50	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
  51	int tail_call_start;	/* Tail call start offset */
  52	int excnt;		/* Number of exception table entries */
  53};
  54
  55#define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
  56#define SEEN_LITERAL	BIT(1)		/* code uses literals */
  57#define SEEN_FUNC	BIT(2)		/* calls C functions */
  58#define SEEN_TAIL_CALL	BIT(3)		/* code uses tail calls */
  59#define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
  60
  61/*
  62 * s390 registers
  63 */
  64#define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
  65#define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
  66#define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
  67#define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
  68#define REG_0		REG_W0			/* Register 0 */
  69#define REG_1		REG_W1			/* Register 1 */
  70#define REG_2		BPF_REG_1		/* Register 2 */
  71#define REG_14		BPF_REG_0		/* Register 14 */
  72
  73/*
  74 * Mapping of BPF registers to s390 registers
  75 */
  76static const int reg2hex[] = {
  77	/* Return code */
  78	[BPF_REG_0]	= 14,
  79	/* Function parameters */
  80	[BPF_REG_1]	= 2,
  81	[BPF_REG_2]	= 3,
  82	[BPF_REG_3]	= 4,
  83	[BPF_REG_4]	= 5,
  84	[BPF_REG_5]	= 6,
  85	/* Call saved registers */
  86	[BPF_REG_6]	= 7,
  87	[BPF_REG_7]	= 8,
  88	[BPF_REG_8]	= 9,
  89	[BPF_REG_9]	= 10,
  90	/* BPF stack pointer */
  91	[BPF_REG_FP]	= 13,
  92	/* Register for blinding */
  93	[BPF_REG_AX]	= 12,
  94	/* Work registers for s390x backend */
  95	[REG_W0]	= 0,
  96	[REG_W1]	= 1,
  97	[REG_L]		= 11,
  98	[REG_15]	= 15,
  99};
 100
 101static inline u32 reg(u32 dst_reg, u32 src_reg)
 102{
 103	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
 104}
 105
 106static inline u32 reg_high(u32 reg)
 107{
 108	return reg2hex[reg] << 4;
 109}
 110
 111static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
 112{
 113	u32 r1 = reg2hex[b1];
 114
 115	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
 116		jit->seen_reg[r1] = 1;
 117}
 118
 119#define REG_SET_SEEN(b1)					\
 120({								\
 121	reg_set_seen(jit, b1);					\
 122})
 123
 124#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
 125
 126/*
 127 * EMIT macros for code generation
 128 */
 129
 130#define _EMIT2(op)						\
 131({								\
 132	if (jit->prg_buf)					\
 133		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
 134	jit->prg += 2;						\
 135})
 136
 137#define EMIT2(op, b1, b2)					\
 138({								\
 139	_EMIT2((op) | reg(b1, b2));				\
 140	REG_SET_SEEN(b1);					\
 141	REG_SET_SEEN(b2);					\
 142})
 143
 144#define _EMIT4(op)						\
 145({								\
 146	if (jit->prg_buf)					\
 147		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
 148	jit->prg += 4;						\
 149})
 150
 151#define EMIT4(op, b1, b2)					\
 152({								\
 153	_EMIT4((op) | reg(b1, b2));				\
 154	REG_SET_SEEN(b1);					\
 155	REG_SET_SEEN(b2);					\
 156})
 157
 158#define EMIT4_RRF(op, b1, b2, b3)				\
 159({								\
 160	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
 161	REG_SET_SEEN(b1);					\
 162	REG_SET_SEEN(b2);					\
 163	REG_SET_SEEN(b3);					\
 164})
 165
 166#define _EMIT4_DISP(op, disp)					\
 167({								\
 168	unsigned int __disp = (disp) & 0xfff;			\
 169	_EMIT4((op) | __disp);					\
 170})
 171
 172#define EMIT4_DISP(op, b1, b2, disp)				\
 173({								\
 174	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
 175		    reg_high(b2) << 8, (disp));			\
 176	REG_SET_SEEN(b1);					\
 177	REG_SET_SEEN(b2);					\
 178})
 179
 180#define EMIT4_IMM(op, b1, imm)					\
 181({								\
 182	unsigned int __imm = (imm) & 0xffff;			\
 183	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
 184	REG_SET_SEEN(b1);					\
 185})
 186
 187#define EMIT4_PCREL(op, pcrel)					\
 188({								\
 189	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
 190	_EMIT4((op) | __pcrel);					\
 191})
 192
 193#define EMIT4_PCREL_RIC(op, mask, target)			\
 194({								\
 195	int __rel = ((target) - jit->prg) / 2;			\
 196	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
 197})
 198
 199#define _EMIT6(op1, op2)					\
 200({								\
 201	if (jit->prg_buf) {					\
 202		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
 203		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
 204	}							\
 205	jit->prg += 6;						\
 206})
 207
 208#define _EMIT6_DISP(op1, op2, disp)				\
 209({								\
 210	unsigned int __disp = (disp) & 0xfff;			\
 211	_EMIT6((op1) | __disp, op2);				\
 212})
 213
 214#define _EMIT6_DISP_LH(op1, op2, disp)				\
 215({								\
 216	u32 _disp = (u32) (disp);				\
 217	unsigned int __disp_h = _disp & 0xff000;		\
 218	unsigned int __disp_l = _disp & 0x00fff;		\
 219	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
 220})
 221
 222#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
 223({								\
 224	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
 225		       reg_high(b3) << 8, op2, disp);		\
 226	REG_SET_SEEN(b1);					\
 227	REG_SET_SEEN(b2);					\
 228	REG_SET_SEEN(b3);					\
 229})
 230
 231#define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
 232({								\
 233	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 234	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
 235	       (op2) | (mask) << 12);				\
 236	REG_SET_SEEN(b1);					\
 237	REG_SET_SEEN(b2);					\
 238})
 239
 240#define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
 241({								\
 242	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 243	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
 244		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
 245	REG_SET_SEEN(b1);					\
 246	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
 247})
 248
 249#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
 250({								\
 251	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
 252	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
 253	REG_SET_SEEN(b1);					\
 254	REG_SET_SEEN(b2);					\
 255})
 256
 257#define EMIT6_PCREL_RILB(op, b, target)				\
 258({								\
 259	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 260	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
 261	REG_SET_SEEN(b);					\
 262})
 263
 264#define EMIT6_PCREL_RIL(op, target)				\
 265({								\
 266	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 267	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
 268})
 269
 270#define EMIT6_PCREL_RILC(op, mask, target)			\
 271({								\
 272	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
 273})
 274
 275#define _EMIT6_IMM(op, imm)					\
 276({								\
 277	unsigned int __imm = (imm);				\
 278	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
 279})
 280
 281#define EMIT6_IMM(op, b1, imm)					\
 282({								\
 283	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
 284	REG_SET_SEEN(b1);					\
 285})
 286
 287#define _EMIT_CONST_U32(val)					\
 288({								\
 289	unsigned int ret;					\
 290	ret = jit->lit32;					\
 291	if (jit->prg_buf)					\
 292		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
 293	jit->lit32 += 4;					\
 294	ret;							\
 295})
 296
 297#define EMIT_CONST_U32(val)					\
 298({								\
 299	jit->seen |= SEEN_LITERAL;				\
 300	_EMIT_CONST_U32(val) - jit->base_ip;			\
 301})
 302
 303#define _EMIT_CONST_U64(val)					\
 304({								\
 305	unsigned int ret;					\
 306	ret = jit->lit64;					\
 307	if (jit->prg_buf)					\
 308		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
 309	jit->lit64 += 8;					\
 310	ret;							\
 311})
 312
 313#define EMIT_CONST_U64(val)					\
 314({								\
 315	jit->seen |= SEEN_LITERAL;				\
 316	_EMIT_CONST_U64(val) - jit->base_ip;			\
 317})
 318
 319#define EMIT_ZERO(b1)						\
 320({								\
 321	if (!fp->aux->verifier_zext) {				\
 322		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
 323		EMIT4(0xb9160000, b1, b1);			\
 324		REG_SET_SEEN(b1);				\
 325	}							\
 326})
 327
 328/*
 329 * Return whether this is the first pass. The first pass is special, since we
 330 * don't know any sizes yet, and thus must be conservative.
 331 */
 332static bool is_first_pass(struct bpf_jit *jit)
 333{
 334	return jit->size == 0;
 335}
 336
 337/*
 338 * Return whether this is the code generation pass. The code generation pass is
 339 * special, since we should change as little as possible.
 340 */
 341static bool is_codegen_pass(struct bpf_jit *jit)
 342{
 343	return jit->prg_buf;
 344}
 345
 346/*
 347 * Return whether "rel" can be encoded as a short PC-relative offset
 348 */
 349static bool is_valid_rel(int rel)
 350{
 351	return rel >= -65536 && rel <= 65534;
 352}
 353
 354/*
 355 * Return whether "off" can be reached using a short PC-relative offset
 356 */
 357static bool can_use_rel(struct bpf_jit *jit, int off)
 358{
 359	return is_valid_rel(off - jit->prg);
 360}
 361
 362/*
 363 * Return whether given displacement can be encoded using
 364 * Long-Displacement Facility
 365 */
 366static bool is_valid_ldisp(int disp)
 367{
 368	return disp >= -524288 && disp <= 524287;
 369}
 370
 371/*
 372 * Return whether the next 32-bit literal pool entry can be referenced using
 373 * Long-Displacement Facility
 374 */
 375static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
 376{
 377	return is_valid_ldisp(jit->lit32 - jit->base_ip);
 378}
 379
 380/*
 381 * Return whether the next 64-bit literal pool entry can be referenced using
 382 * Long-Displacement Facility
 383 */
 384static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
 385{
 386	return is_valid_ldisp(jit->lit64 - jit->base_ip);
 387}
 388
 389/*
 390 * Fill whole space with illegal instructions
 391 */
 392static void jit_fill_hole(void *area, unsigned int size)
 393{
 394	memset(area, 0, size);
 395}
 396
 397/*
 398 * Save registers from "rs" (register start) to "re" (register end) on stack
 399 */
 400static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
 401{
 402	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 403
 404	if (rs == re)
 405		/* stg %rs,off(%r15) */
 406		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
 407	else
 408		/* stmg %rs,%re,off(%r15) */
 409		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
 410}
 411
 412/*
 413 * Restore registers from "rs" (register start) to "re" (register end) on stack
 414 */
 415static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
 416{
 417	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 418
 419	if (jit->seen & SEEN_STACK)
 420		off += STK_OFF + stack_depth;
 421
 422	if (rs == re)
 423		/* lg %rs,off(%r15) */
 424		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
 425	else
 426		/* lmg %rs,%re,off(%r15) */
 427		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
 428}
 429
 430/*
 431 * Return first seen register (from start)
 432 */
 433static int get_start(struct bpf_jit *jit, int start)
 434{
 435	int i;
 436
 437	for (i = start; i <= 15; i++) {
 438		if (jit->seen_reg[i])
 439			return i;
 440	}
 441	return 0;
 442}
 443
 444/*
 445 * Return last seen register (from start) (gap >= 2)
 446 */
 447static int get_end(struct bpf_jit *jit, int start)
 448{
 449	int i;
 450
 451	for (i = start; i < 15; i++) {
 452		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
 453			return i - 1;
 454	}
 455	return jit->seen_reg[15] ? 15 : 14;
 456}
 457
 458#define REGS_SAVE	1
 459#define REGS_RESTORE	0
 460/*
 461 * Save and restore clobbered registers (6-15) on stack.
 462 * We save/restore registers in chunks with gap >= 2 registers.
 463 */
 464static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
 465{
 466	const int last = 15, save_restore_size = 6;
 467	int re = 6, rs;
 468
 469	if (is_first_pass(jit)) {
 470		/*
 471		 * We don't know yet which registers are used. Reserve space
 472		 * conservatively.
 473		 */
 474		jit->prg += (last - re + 1) * save_restore_size;
 475		return;
 476	}
 477
 478	do {
 479		rs = get_start(jit, re);
 480		if (!rs)
 481			break;
 482		re = get_end(jit, rs + 1);
 483		if (op == REGS_SAVE)
 484			save_regs(jit, rs, re);
 485		else
 486			restore_regs(jit, rs, re, stack_depth);
 487		re++;
 488	} while (re <= last);
 489}
 490
 491static void bpf_skip(struct bpf_jit *jit, int size)
 492{
 493	if (size >= 6 && !is_valid_rel(size)) {
 494		/* brcl 0xf,size */
 495		EMIT6_PCREL_RIL(0xc0f4000000, size);
 496		size -= 6;
 497	} else if (size >= 4 && is_valid_rel(size)) {
 498		/* brc 0xf,size */
 499		EMIT4_PCREL(0xa7f40000, size);
 500		size -= 4;
 501	}
 502	while (size >= 2) {
 503		/* bcr 0,%0 */
 504		_EMIT2(0x0700);
 505		size -= 2;
 506	}
 507}
 508
 509/*
 510 * Emit function prologue
 511 *
 512 * Save registers and create stack frame if necessary.
 513 * See stack frame layout desription in "bpf_jit.h"!
 514 */
 515static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
 516{
 517	if (jit->seen & SEEN_TAIL_CALL) {
 518		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
 519		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
 520	} else {
 521		/*
 522		 * There are no tail calls. Insert nops in order to have
 523		 * tail_call_start at a predictable offset.
 524		 */
 525		bpf_skip(jit, 6);
 526	}
 527	/* Tail calls have to skip above initialization */
 528	jit->tail_call_start = jit->prg;
 529	/* Save registers */
 530	save_restore_regs(jit, REGS_SAVE, stack_depth);
 531	/* Setup literal pool */
 532	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
 533		if (!is_first_pass(jit) &&
 534		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
 535			/* basr %l,0 */
 536			EMIT2(0x0d00, REG_L, REG_0);
 537			jit->base_ip = jit->prg;
 538		} else {
 539			/* larl %l,lit32_start */
 540			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
 541			jit->base_ip = jit->lit32_start;
 542		}
 543	}
 544	/* Setup stack and backchain */
 545	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
 546		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
 547			/* lgr %w1,%r15 (backchain) */
 548			EMIT4(0xb9040000, REG_W1, REG_15);
 549		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
 550		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
 551		/* aghi %r15,-STK_OFF */
 552		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
 553		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
 554			/* stg %w1,152(%r15) (backchain) */
 555			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
 556				      REG_15, 152);
 557	}
 558}
 559
 560/*
 561 * Function epilogue
 562 */
 563static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
 564{
 565	jit->exit_ip = jit->prg;
 566	/* Load exit code: lgr %r2,%b0 */
 567	EMIT4(0xb9040000, REG_2, BPF_REG_0);
 568	/* Restore registers */
 569	save_restore_regs(jit, REGS_RESTORE, stack_depth);
 570	if (nospec_uses_trampoline()) {
 571		jit->r14_thunk_ip = jit->prg;
 572		/* Generate __s390_indirect_jump_r14 thunk */
 573		/* exrl %r0,.+10 */
 574		EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 
 
 
 
 
 
 
 575		/* j . */
 576		EMIT4_PCREL(0xa7f40000, 0);
 577	}
 578	/* br %r14 */
 579	_EMIT2(0x07fe);
 580
 581	if ((nospec_uses_trampoline()) &&
 582	    (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
 583		jit->r1_thunk_ip = jit->prg;
 584		/* Generate __s390_indirect_jump_r1 thunk */
 585		/* exrl %r0,.+10 */
 586		EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 587		/* j . */
 588		EMIT4_PCREL(0xa7f40000, 0);
 589		/* br %r1 */
 590		_EMIT2(0x07f1);
 
 
 
 
 
 
 
 
 591	}
 592}
 593
 594static int get_probe_mem_regno(const u8 *insn)
 595{
 596	/*
 597	 * insn must point to llgc, llgh, llgf or lg, which have destination
 598	 * register at the same position.
 599	 */
 600	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
 601		return -1;
 602	if (insn[5] != 0x90 && /* llgc */
 603	    insn[5] != 0x91 && /* llgh */
 604	    insn[5] != 0x16 && /* llgf */
 605	    insn[5] != 0x04) /* lg */
 606		return -1;
 607	return insn[1] >> 4;
 608}
 609
 610bool ex_handler_bpf(const struct exception_table_entry *x, struct pt_regs *regs)
 
 611{
 
 
 
 612	regs->psw.addr = extable_fixup(x);
 613	regs->gprs[x->data] = 0;
 
 
 
 
 
 614	return true;
 615}
 616
 617static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
 618			     int probe_prg, int nop_prg)
 619{
 620	struct exception_table_entry *ex;
 621	int reg, prg;
 622	s64 delta;
 623	u8 *insn;
 
 624	int i;
 625
 626	if (!fp->aux->extable)
 627		/* Do nothing during early JIT passes. */
 628		return 0;
 629	insn = jit->prg_buf + probe_prg;
 630	reg = get_probe_mem_regno(insn);
 631	if (WARN_ON_ONCE(reg < 0))
 632		/* JIT bug - unexpected probe instruction. */
 633		return -1;
 634	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
 635		/* JIT bug - gap between probe and nop instructions. */
 636		return -1;
 637	for (i = 0; i < 2; i++) {
 638		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
 639			/* Verifier bug - not enough entries. */
 640			return -1;
 641		ex = &fp->aux->extable[jit->excnt];
 642		/* Add extable entries for probe and nop instructions. */
 643		prg = i == 0 ? probe_prg : nop_prg;
 644		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
 645		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
 646			/* JIT bug - code and extable must be close. */
 647			return -1;
 648		ex->insn = delta;
 649		/*
 650		 * Always land on the nop. Note that extable infrastructure
 651		 * ignores fixup field, it is handled by ex_handler_bpf().
 652		 */
 653		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
 654		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
 655			/* JIT bug - landing pad and extable must be close. */
 656			return -1;
 657		ex->fixup = delta;
 658		ex->type = EX_TYPE_BPF;
 659		ex->data = reg;
 660		jit->excnt++;
 661	}
 662	return 0;
 663}
 664
 665/*
 666 * Compile one eBPF instruction into s390x code
 667 *
 668 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
 669 * stack space for the large switch statement.
 670 */
 671static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
 672				 int i, bool extra_pass, u32 stack_depth)
 673{
 674	struct bpf_insn *insn = &fp->insnsi[i];
 675	u32 dst_reg = insn->dst_reg;
 676	u32 src_reg = insn->src_reg;
 677	int last, insn_count = 1;
 678	u32 *addrs = jit->addrs;
 679	s32 imm = insn->imm;
 680	s16 off = insn->off;
 681	int probe_prg = -1;
 682	unsigned int mask;
 683	int nop_prg;
 684	int err;
 685
 686	if (BPF_CLASS(insn->code) == BPF_LDX &&
 687	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
 688		probe_prg = jit->prg;
 689
 690	switch (insn->code) {
 691	/*
 692	 * BPF_MOV
 693	 */
 694	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
 695		/* llgfr %dst,%src */
 696		EMIT4(0xb9160000, dst_reg, src_reg);
 697		if (insn_is_zext(&insn[1]))
 698			insn_count = 2;
 699		break;
 700	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
 701		/* lgr %dst,%src */
 702		EMIT4(0xb9040000, dst_reg, src_reg);
 703		break;
 704	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
 705		/* llilf %dst,imm */
 706		EMIT6_IMM(0xc00f0000, dst_reg, imm);
 707		if (insn_is_zext(&insn[1]))
 708			insn_count = 2;
 709		break;
 710	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
 711		/* lgfi %dst,imm */
 712		EMIT6_IMM(0xc0010000, dst_reg, imm);
 713		break;
 714	/*
 715	 * BPF_LD 64
 716	 */
 717	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
 718	{
 719		/* 16 byte instruction that uses two 'struct bpf_insn' */
 720		u64 imm64;
 721
 722		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
 723		/* lgrl %dst,imm */
 724		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
 725		insn_count = 2;
 726		break;
 727	}
 728	/*
 729	 * BPF_ADD
 730	 */
 731	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
 732		/* ar %dst,%src */
 733		EMIT2(0x1a00, dst_reg, src_reg);
 734		EMIT_ZERO(dst_reg);
 735		break;
 736	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
 737		/* agr %dst,%src */
 738		EMIT4(0xb9080000, dst_reg, src_reg);
 739		break;
 740	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
 741		if (imm != 0) {
 742			/* alfi %dst,imm */
 743			EMIT6_IMM(0xc20b0000, dst_reg, imm);
 744		}
 745		EMIT_ZERO(dst_reg);
 746		break;
 747	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
 748		if (!imm)
 749			break;
 750		/* agfi %dst,imm */
 751		EMIT6_IMM(0xc2080000, dst_reg, imm);
 752		break;
 753	/*
 754	 * BPF_SUB
 755	 */
 756	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
 757		/* sr %dst,%src */
 758		EMIT2(0x1b00, dst_reg, src_reg);
 759		EMIT_ZERO(dst_reg);
 760		break;
 761	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
 762		/* sgr %dst,%src */
 763		EMIT4(0xb9090000, dst_reg, src_reg);
 764		break;
 765	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
 766		if (imm != 0) {
 767			/* alfi %dst,-imm */
 768			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
 769		}
 770		EMIT_ZERO(dst_reg);
 771		break;
 772	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
 773		if (!imm)
 774			break;
 775		if (imm == -0x80000000) {
 776			/* algfi %dst,0x80000000 */
 777			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
 778		} else {
 779			/* agfi %dst,-imm */
 780			EMIT6_IMM(0xc2080000, dst_reg, -imm);
 781		}
 782		break;
 783	/*
 784	 * BPF_MUL
 785	 */
 786	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
 787		/* msr %dst,%src */
 788		EMIT4(0xb2520000, dst_reg, src_reg);
 789		EMIT_ZERO(dst_reg);
 790		break;
 791	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
 792		/* msgr %dst,%src */
 793		EMIT4(0xb90c0000, dst_reg, src_reg);
 794		break;
 795	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
 796		if (imm != 1) {
 797			/* msfi %r5,imm */
 798			EMIT6_IMM(0xc2010000, dst_reg, imm);
 799		}
 800		EMIT_ZERO(dst_reg);
 801		break;
 802	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
 803		if (imm == 1)
 804			break;
 805		/* msgfi %dst,imm */
 806		EMIT6_IMM(0xc2000000, dst_reg, imm);
 807		break;
 808	/*
 809	 * BPF_DIV / BPF_MOD
 810	 */
 811	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
 812	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
 813	{
 814		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 815
 816		/* lhi %w0,0 */
 817		EMIT4_IMM(0xa7080000, REG_W0, 0);
 818		/* lr %w1,%dst */
 819		EMIT2(0x1800, REG_W1, dst_reg);
 820		/* dlr %w0,%src */
 821		EMIT4(0xb9970000, REG_W0, src_reg);
 822		/* llgfr %dst,%rc */
 823		EMIT4(0xb9160000, dst_reg, rc_reg);
 824		if (insn_is_zext(&insn[1]))
 825			insn_count = 2;
 826		break;
 827	}
 828	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
 829	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
 830	{
 831		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 832
 833		/* lghi %w0,0 */
 834		EMIT4_IMM(0xa7090000, REG_W0, 0);
 835		/* lgr %w1,%dst */
 836		EMIT4(0xb9040000, REG_W1, dst_reg);
 837		/* dlgr %w0,%dst */
 838		EMIT4(0xb9870000, REG_W0, src_reg);
 839		/* lgr %dst,%rc */
 840		EMIT4(0xb9040000, dst_reg, rc_reg);
 841		break;
 842	}
 843	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
 844	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
 845	{
 846		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 847
 848		if (imm == 1) {
 849			if (BPF_OP(insn->code) == BPF_MOD)
 850				/* lhgi %dst,0 */
 851				EMIT4_IMM(0xa7090000, dst_reg, 0);
 852			else
 853				EMIT_ZERO(dst_reg);
 854			break;
 855		}
 856		/* lhi %w0,0 */
 857		EMIT4_IMM(0xa7080000, REG_W0, 0);
 858		/* lr %w1,%dst */
 859		EMIT2(0x1800, REG_W1, dst_reg);
 860		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
 861			/* dl %w0,<d(imm)>(%l) */
 862			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
 863				      EMIT_CONST_U32(imm));
 864		} else {
 865			/* lgfrl %dst,imm */
 866			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
 867					 _EMIT_CONST_U32(imm));
 868			jit->seen |= SEEN_LITERAL;
 869			/* dlr %w0,%dst */
 870			EMIT4(0xb9970000, REG_W0, dst_reg);
 871		}
 872		/* llgfr %dst,%rc */
 873		EMIT4(0xb9160000, dst_reg, rc_reg);
 874		if (insn_is_zext(&insn[1]))
 875			insn_count = 2;
 876		break;
 877	}
 878	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
 879	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
 880	{
 881		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 882
 883		if (imm == 1) {
 884			if (BPF_OP(insn->code) == BPF_MOD)
 885				/* lhgi %dst,0 */
 886				EMIT4_IMM(0xa7090000, dst_reg, 0);
 887			break;
 888		}
 889		/* lghi %w0,0 */
 890		EMIT4_IMM(0xa7090000, REG_W0, 0);
 891		/* lgr %w1,%dst */
 892		EMIT4(0xb9040000, REG_W1, dst_reg);
 893		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 894			/* dlg %w0,<d(imm)>(%l) */
 895			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
 896				      EMIT_CONST_U64(imm));
 897		} else {
 898			/* lgrl %dst,imm */
 899			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
 900					 _EMIT_CONST_U64(imm));
 901			jit->seen |= SEEN_LITERAL;
 902			/* dlgr %w0,%dst */
 903			EMIT4(0xb9870000, REG_W0, dst_reg);
 904		}
 905		/* lgr %dst,%rc */
 906		EMIT4(0xb9040000, dst_reg, rc_reg);
 907		break;
 908	}
 909	/*
 910	 * BPF_AND
 911	 */
 912	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
 913		/* nr %dst,%src */
 914		EMIT2(0x1400, dst_reg, src_reg);
 915		EMIT_ZERO(dst_reg);
 916		break;
 917	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
 918		/* ngr %dst,%src */
 919		EMIT4(0xb9800000, dst_reg, src_reg);
 920		break;
 921	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
 922		/* nilf %dst,imm */
 923		EMIT6_IMM(0xc00b0000, dst_reg, imm);
 924		EMIT_ZERO(dst_reg);
 925		break;
 926	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
 927		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 928			/* ng %dst,<d(imm)>(%l) */
 929			EMIT6_DISP_LH(0xe3000000, 0x0080,
 930				      dst_reg, REG_0, REG_L,
 931				      EMIT_CONST_U64(imm));
 932		} else {
 933			/* lgrl %w0,imm */
 934			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
 935					 _EMIT_CONST_U64(imm));
 936			jit->seen |= SEEN_LITERAL;
 937			/* ngr %dst,%w0 */
 938			EMIT4(0xb9800000, dst_reg, REG_W0);
 939		}
 940		break;
 941	/*
 942	 * BPF_OR
 943	 */
 944	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
 945		/* or %dst,%src */
 946		EMIT2(0x1600, dst_reg, src_reg);
 947		EMIT_ZERO(dst_reg);
 948		break;
 949	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
 950		/* ogr %dst,%src */
 951		EMIT4(0xb9810000, dst_reg, src_reg);
 952		break;
 953	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
 954		/* oilf %dst,imm */
 955		EMIT6_IMM(0xc00d0000, dst_reg, imm);
 956		EMIT_ZERO(dst_reg);
 957		break;
 958	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
 959		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 960			/* og %dst,<d(imm)>(%l) */
 961			EMIT6_DISP_LH(0xe3000000, 0x0081,
 962				      dst_reg, REG_0, REG_L,
 963				      EMIT_CONST_U64(imm));
 964		} else {
 965			/* lgrl %w0,imm */
 966			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
 967					 _EMIT_CONST_U64(imm));
 968			jit->seen |= SEEN_LITERAL;
 969			/* ogr %dst,%w0 */
 970			EMIT4(0xb9810000, dst_reg, REG_W0);
 971		}
 972		break;
 973	/*
 974	 * BPF_XOR
 975	 */
 976	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
 977		/* xr %dst,%src */
 978		EMIT2(0x1700, dst_reg, src_reg);
 979		EMIT_ZERO(dst_reg);
 980		break;
 981	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
 982		/* xgr %dst,%src */
 983		EMIT4(0xb9820000, dst_reg, src_reg);
 984		break;
 985	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
 986		if (imm != 0) {
 987			/* xilf %dst,imm */
 988			EMIT6_IMM(0xc0070000, dst_reg, imm);
 989		}
 990		EMIT_ZERO(dst_reg);
 991		break;
 992	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
 993		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 994			/* xg %dst,<d(imm)>(%l) */
 995			EMIT6_DISP_LH(0xe3000000, 0x0082,
 996				      dst_reg, REG_0, REG_L,
 997				      EMIT_CONST_U64(imm));
 998		} else {
 999			/* lgrl %w0,imm */
1000			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1001					 _EMIT_CONST_U64(imm));
1002			jit->seen |= SEEN_LITERAL;
1003			/* xgr %dst,%w0 */
1004			EMIT4(0xb9820000, dst_reg, REG_W0);
1005		}
1006		break;
1007	/*
1008	 * BPF_LSH
1009	 */
1010	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1011		/* sll %dst,0(%src) */
1012		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1013		EMIT_ZERO(dst_reg);
1014		break;
1015	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1016		/* sllg %dst,%dst,0(%src) */
1017		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1018		break;
1019	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1020		if (imm != 0) {
1021			/* sll %dst,imm(%r0) */
1022			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1023		}
1024		EMIT_ZERO(dst_reg);
1025		break;
1026	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1027		if (imm == 0)
1028			break;
1029		/* sllg %dst,%dst,imm(%r0) */
1030		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1031		break;
1032	/*
1033	 * BPF_RSH
1034	 */
1035	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1036		/* srl %dst,0(%src) */
1037		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1038		EMIT_ZERO(dst_reg);
1039		break;
1040	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1041		/* srlg %dst,%dst,0(%src) */
1042		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1043		break;
1044	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1045		if (imm != 0) {
1046			/* srl %dst,imm(%r0) */
1047			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1048		}
1049		EMIT_ZERO(dst_reg);
1050		break;
1051	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1052		if (imm == 0)
1053			break;
1054		/* srlg %dst,%dst,imm(%r0) */
1055		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1056		break;
1057	/*
1058	 * BPF_ARSH
1059	 */
1060	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1061		/* sra %dst,%dst,0(%src) */
1062		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1063		EMIT_ZERO(dst_reg);
1064		break;
1065	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1066		/* srag %dst,%dst,0(%src) */
1067		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1068		break;
1069	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1070		if (imm != 0) {
1071			/* sra %dst,imm(%r0) */
1072			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1073		}
1074		EMIT_ZERO(dst_reg);
1075		break;
1076	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1077		if (imm == 0)
1078			break;
1079		/* srag %dst,%dst,imm(%r0) */
1080		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1081		break;
1082	/*
1083	 * BPF_NEG
1084	 */
1085	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1086		/* lcr %dst,%dst */
1087		EMIT2(0x1300, dst_reg, dst_reg);
1088		EMIT_ZERO(dst_reg);
1089		break;
1090	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1091		/* lcgr %dst,%dst */
1092		EMIT4(0xb9030000, dst_reg, dst_reg);
1093		break;
1094	/*
1095	 * BPF_FROM_BE/LE
1096	 */
1097	case BPF_ALU | BPF_END | BPF_FROM_BE:
1098		/* s390 is big endian, therefore only clear high order bytes */
1099		switch (imm) {
1100		case 16: /* dst = (u16) cpu_to_be16(dst) */
1101			/* llghr %dst,%dst */
1102			EMIT4(0xb9850000, dst_reg, dst_reg);
1103			if (insn_is_zext(&insn[1]))
1104				insn_count = 2;
1105			break;
1106		case 32: /* dst = (u32) cpu_to_be32(dst) */
1107			if (!fp->aux->verifier_zext)
1108				/* llgfr %dst,%dst */
1109				EMIT4(0xb9160000, dst_reg, dst_reg);
1110			break;
1111		case 64: /* dst = (u64) cpu_to_be64(dst) */
1112			break;
1113		}
1114		break;
1115	case BPF_ALU | BPF_END | BPF_FROM_LE:
1116		switch (imm) {
1117		case 16: /* dst = (u16) cpu_to_le16(dst) */
1118			/* lrvr %dst,%dst */
1119			EMIT4(0xb91f0000, dst_reg, dst_reg);
1120			/* srl %dst,16(%r0) */
1121			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1122			/* llghr %dst,%dst */
1123			EMIT4(0xb9850000, dst_reg, dst_reg);
1124			if (insn_is_zext(&insn[1]))
1125				insn_count = 2;
1126			break;
1127		case 32: /* dst = (u32) cpu_to_le32(dst) */
1128			/* lrvr %dst,%dst */
1129			EMIT4(0xb91f0000, dst_reg, dst_reg);
1130			if (!fp->aux->verifier_zext)
1131				/* llgfr %dst,%dst */
1132				EMIT4(0xb9160000, dst_reg, dst_reg);
1133			break;
1134		case 64: /* dst = (u64) cpu_to_le64(dst) */
1135			/* lrvgr %dst,%dst */
1136			EMIT4(0xb90f0000, dst_reg, dst_reg);
1137			break;
1138		}
1139		break;
1140	/*
1141	 * BPF_NOSPEC (speculation barrier)
1142	 */
1143	case BPF_ST | BPF_NOSPEC:
1144		break;
1145	/*
1146	 * BPF_ST(X)
1147	 */
1148	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1149		/* stcy %src,off(%dst) */
1150		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1151		jit->seen |= SEEN_MEM;
1152		break;
1153	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1154		/* sthy %src,off(%dst) */
1155		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1156		jit->seen |= SEEN_MEM;
1157		break;
1158	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1159		/* sty %src,off(%dst) */
1160		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1161		jit->seen |= SEEN_MEM;
1162		break;
1163	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1164		/* stg %src,off(%dst) */
1165		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1166		jit->seen |= SEEN_MEM;
1167		break;
1168	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1169		/* lhi %w0,imm */
1170		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1171		/* stcy %w0,off(dst) */
1172		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1173		jit->seen |= SEEN_MEM;
1174		break;
1175	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1176		/* lhi %w0,imm */
1177		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1178		/* sthy %w0,off(dst) */
1179		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1180		jit->seen |= SEEN_MEM;
1181		break;
1182	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1183		/* llilf %w0,imm  */
1184		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1185		/* sty %w0,off(%dst) */
1186		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1187		jit->seen |= SEEN_MEM;
1188		break;
1189	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1190		/* lgfi %w0,imm */
1191		EMIT6_IMM(0xc0010000, REG_W0, imm);
1192		/* stg %w0,off(%dst) */
1193		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1194		jit->seen |= SEEN_MEM;
1195		break;
1196	/*
1197	 * BPF_ATOMIC
1198	 */
1199	case BPF_STX | BPF_ATOMIC | BPF_DW:
1200	case BPF_STX | BPF_ATOMIC | BPF_W:
1201	{
1202		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1203
1204		switch (insn->imm) {
1205/* {op32|op64} {%w0|%src},%src,off(%dst) */
1206#define EMIT_ATOMIC(op32, op64) do {					\
1207	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1208		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1209		      src_reg, dst_reg, off);				\
1210	if (is32 && (insn->imm & BPF_FETCH))				\
1211		EMIT_ZERO(src_reg);					\
1212} while (0)
1213		case BPF_ADD:
1214		case BPF_ADD | BPF_FETCH:
1215			/* {laal|laalg} */
1216			EMIT_ATOMIC(0x00fa, 0x00ea);
1217			break;
1218		case BPF_AND:
1219		case BPF_AND | BPF_FETCH:
1220			/* {lan|lang} */
1221			EMIT_ATOMIC(0x00f4, 0x00e4);
1222			break;
1223		case BPF_OR:
1224		case BPF_OR | BPF_FETCH:
1225			/* {lao|laog} */
1226			EMIT_ATOMIC(0x00f6, 0x00e6);
1227			break;
1228		case BPF_XOR:
1229		case BPF_XOR | BPF_FETCH:
1230			/* {lax|laxg} */
1231			EMIT_ATOMIC(0x00f7, 0x00e7);
1232			break;
1233#undef EMIT_ATOMIC
1234		case BPF_XCHG:
1235			/* {ly|lg} %w0,off(%dst) */
1236			EMIT6_DISP_LH(0xe3000000,
1237				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1238				      dst_reg, off);
1239			/* 0: {csy|csg} %w0,%src,off(%dst) */
1240			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1241				      REG_W0, src_reg, dst_reg, off);
1242			/* brc 4,0b */
1243			EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1244			/* {llgfr|lgr} %src,%w0 */
1245			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1246			if (is32 && insn_is_zext(&insn[1]))
1247				insn_count = 2;
1248			break;
1249		case BPF_CMPXCHG:
1250			/* 0: {csy|csg} %b0,%src,off(%dst) */
1251			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1252				      BPF_REG_0, src_reg, dst_reg, off);
1253			break;
1254		default:
1255			pr_err("Unknown atomic operation %02x\n", insn->imm);
1256			return -1;
1257		}
1258
1259		jit->seen |= SEEN_MEM;
1260		break;
1261	}
1262	/*
1263	 * BPF_LDX
1264	 */
1265	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1266	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1267		/* llgc %dst,0(off,%src) */
1268		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1269		jit->seen |= SEEN_MEM;
1270		if (insn_is_zext(&insn[1]))
1271			insn_count = 2;
1272		break;
1273	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1274	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1275		/* llgh %dst,0(off,%src) */
1276		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1277		jit->seen |= SEEN_MEM;
1278		if (insn_is_zext(&insn[1]))
1279			insn_count = 2;
1280		break;
1281	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1282	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1283		/* llgf %dst,off(%src) */
1284		jit->seen |= SEEN_MEM;
1285		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1286		if (insn_is_zext(&insn[1]))
1287			insn_count = 2;
1288		break;
1289	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1290	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1291		/* lg %dst,0(off,%src) */
1292		jit->seen |= SEEN_MEM;
1293		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1294		break;
1295	/*
1296	 * BPF_JMP / CALL
1297	 */
1298	case BPF_JMP | BPF_CALL:
1299	{
1300		u64 func;
1301		bool func_addr_fixed;
1302		int ret;
1303
1304		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1305					    &func, &func_addr_fixed);
1306		if (ret < 0)
1307			return -1;
1308
1309		REG_SET_SEEN(BPF_REG_5);
1310		jit->seen |= SEEN_FUNC;
1311		/* lgrl %w1,func */
1312		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1313		if (nospec_uses_trampoline()) {
1314			/* brasl %r14,__s390_indirect_jump_r1 */
1315			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1316		} else {
1317			/* basr %r14,%w1 */
1318			EMIT2(0x0d00, REG_14, REG_W1);
1319		}
1320		/* lgr %b0,%r2: load return value into %b0 */
1321		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1322		break;
1323	}
1324	case BPF_JMP | BPF_TAIL_CALL: {
1325		int patch_1_clrj, patch_2_clij, patch_3_brc;
1326
1327		/*
1328		 * Implicit input:
1329		 *  B1: pointer to ctx
1330		 *  B2: pointer to bpf_array
1331		 *  B3: index in bpf_array
1332		 */
1333		jit->seen |= SEEN_TAIL_CALL;
1334
1335		/*
1336		 * if (index >= array->map.max_entries)
1337		 *         goto out;
1338		 */
1339
1340		/* llgf %w1,map.max_entries(%b2) */
1341		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1342			      offsetof(struct bpf_array, map.max_entries));
1343		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1344		/* clrj %b3,%w1,0xa,out */
1345		patch_1_clrj = jit->prg;
1346		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1347				 jit->prg);
1348
1349		/*
1350		 * if (tail_call_cnt++ >= MAX_TAIL_CALL_CNT)
1351		 *         goto out;
1352		 */
1353
1354		if (jit->seen & SEEN_STACK)
1355			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1356		else
1357			off = STK_OFF_TCCNT;
1358		/* lhi %w0,1 */
1359		EMIT4_IMM(0xa7080000, REG_W0, 1);
1360		/* laal %w1,%w0,off(%r15) */
1361		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1362		/* clij %w1,MAX_TAIL_CALL_CNT-1,0x2,out */
1363		patch_2_clij = jit->prg;
1364		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT - 1,
1365				 2, jit->prg);
1366
1367		/*
1368		 * prog = array->ptrs[index];
1369		 * if (prog == NULL)
1370		 *         goto out;
1371		 */
1372
1373		/* llgfr %r1,%b3: %r1 = (u32) index */
1374		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1375		/* sllg %r1,%r1,3: %r1 *= 8 */
1376		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1377		/* ltg %r1,prog(%b2,%r1) */
1378		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1379			      REG_1, offsetof(struct bpf_array, ptrs));
1380		/* brc 0x8,out */
1381		patch_3_brc = jit->prg;
1382		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1383
1384		/*
1385		 * Restore registers before calling function
1386		 */
1387		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1388
1389		/*
1390		 * goto *(prog->bpf_func + tail_call_start);
1391		 */
1392
1393		/* lg %r1,bpf_func(%r1) */
1394		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1395			      offsetof(struct bpf_prog, bpf_func));
1396		/* bc 0xf,tail_call_start(%r1) */
1397		_EMIT4(0x47f01000 + jit->tail_call_start);
1398		/* out: */
1399		if (jit->prg_buf) {
1400			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1401				(jit->prg - patch_1_clrj) >> 1;
1402			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1403				(jit->prg - patch_2_clij) >> 1;
1404			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1405				(jit->prg - patch_3_brc) >> 1;
1406		}
1407		break;
1408	}
1409	case BPF_JMP | BPF_EXIT: /* return b0 */
1410		last = (i == fp->len - 1) ? 1 : 0;
1411		if (last)
1412			break;
1413		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1414			/* brc 0xf, <exit> */
1415			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1416		else
1417			/* brcl 0xf, <exit> */
1418			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1419		break;
1420	/*
1421	 * Branch relative (number of skipped instructions) to offset on
1422	 * condition.
1423	 *
1424	 * Condition code to mask mapping:
1425	 *
1426	 * CC | Description	   | Mask
1427	 * ------------------------------
1428	 * 0  | Operands equal	   |	8
1429	 * 1  | First operand low  |	4
1430	 * 2  | First operand high |	2
1431	 * 3  | Unused		   |	1
1432	 *
1433	 * For s390x relative branches: ip = ip + off_bytes
1434	 * For BPF relative branches:	insn = insn + off_insns + 1
1435	 *
1436	 * For example for s390x with offset 0 we jump to the branch
1437	 * instruction itself (loop) and for BPF with offset 0 we
1438	 * branch to the instruction behind the branch.
1439	 */
1440	case BPF_JMP | BPF_JA: /* if (true) */
1441		mask = 0xf000; /* j */
1442		goto branch_oc;
1443	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1444	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1445		mask = 0x2000; /* jh */
1446		goto branch_ks;
1447	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1448	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1449		mask = 0x4000; /* jl */
1450		goto branch_ks;
1451	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1452	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1453		mask = 0xa000; /* jhe */
1454		goto branch_ks;
1455	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1456	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1457		mask = 0xc000; /* jle */
1458		goto branch_ks;
1459	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1460	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1461		mask = 0x2000; /* jh */
1462		goto branch_ku;
1463	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1464	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1465		mask = 0x4000; /* jl */
1466		goto branch_ku;
1467	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1468	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1469		mask = 0xa000; /* jhe */
1470		goto branch_ku;
1471	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1472	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1473		mask = 0xc000; /* jle */
1474		goto branch_ku;
1475	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1476	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1477		mask = 0x7000; /* jne */
1478		goto branch_ku;
1479	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1480	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1481		mask = 0x8000; /* je */
1482		goto branch_ku;
1483	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1484	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1485		mask = 0x7000; /* jnz */
1486		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1487			/* llilf %w1,imm (load zero extend imm) */
1488			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1489			/* nr %w1,%dst */
1490			EMIT2(0x1400, REG_W1, dst_reg);
1491		} else {
1492			/* lgfi %w1,imm (load sign extend imm) */
1493			EMIT6_IMM(0xc0010000, REG_W1, imm);
1494			/* ngr %w1,%dst */
1495			EMIT4(0xb9800000, REG_W1, dst_reg);
1496		}
1497		goto branch_oc;
1498
1499	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1500	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1501		mask = 0x2000; /* jh */
1502		goto branch_xs;
1503	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1504	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1505		mask = 0x4000; /* jl */
1506		goto branch_xs;
1507	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1508	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1509		mask = 0xa000; /* jhe */
1510		goto branch_xs;
1511	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1512	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1513		mask = 0xc000; /* jle */
1514		goto branch_xs;
1515	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1516	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1517		mask = 0x2000; /* jh */
1518		goto branch_xu;
1519	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1520	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1521		mask = 0x4000; /* jl */
1522		goto branch_xu;
1523	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1524	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1525		mask = 0xa000; /* jhe */
1526		goto branch_xu;
1527	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1528	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1529		mask = 0xc000; /* jle */
1530		goto branch_xu;
1531	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1532	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1533		mask = 0x7000; /* jne */
1534		goto branch_xu;
1535	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1536	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1537		mask = 0x8000; /* je */
1538		goto branch_xu;
1539	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1540	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1541	{
1542		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1543
1544		mask = 0x7000; /* jnz */
1545		/* nrk or ngrk %w1,%dst,%src */
1546		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1547			  REG_W1, dst_reg, src_reg);
1548		goto branch_oc;
1549branch_ks:
1550		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1551		/* cfi or cgfi %dst,imm */
1552		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1553			  dst_reg, imm);
1554		if (!is_first_pass(jit) &&
1555		    can_use_rel(jit, addrs[i + off + 1])) {
1556			/* brc mask,off */
1557			EMIT4_PCREL_RIC(0xa7040000,
1558					mask >> 12, addrs[i + off + 1]);
1559		} else {
1560			/* brcl mask,off */
1561			EMIT6_PCREL_RILC(0xc0040000,
1562					 mask >> 12, addrs[i + off + 1]);
1563		}
1564		break;
1565branch_ku:
1566		/* lgfi %w1,imm (load sign extend imm) */
1567		src_reg = REG_1;
1568		EMIT6_IMM(0xc0010000, src_reg, imm);
1569		goto branch_xu;
1570branch_xs:
1571		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1572		if (!is_first_pass(jit) &&
1573		    can_use_rel(jit, addrs[i + off + 1])) {
1574			/* crj or cgrj %dst,%src,mask,off */
1575			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1576				    dst_reg, src_reg, i, off, mask);
1577		} else {
1578			/* cr or cgr %dst,%src */
1579			if (is_jmp32)
1580				EMIT2(0x1900, dst_reg, src_reg);
1581			else
1582				EMIT4(0xb9200000, dst_reg, src_reg);
1583			/* brcl mask,off */
1584			EMIT6_PCREL_RILC(0xc0040000,
1585					 mask >> 12, addrs[i + off + 1]);
1586		}
1587		break;
1588branch_xu:
1589		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1590		if (!is_first_pass(jit) &&
1591		    can_use_rel(jit, addrs[i + off + 1])) {
1592			/* clrj or clgrj %dst,%src,mask,off */
1593			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1594				    dst_reg, src_reg, i, off, mask);
1595		} else {
1596			/* clr or clgr %dst,%src */
1597			if (is_jmp32)
1598				EMIT2(0x1500, dst_reg, src_reg);
1599			else
1600				EMIT4(0xb9210000, dst_reg, src_reg);
1601			/* brcl mask,off */
1602			EMIT6_PCREL_RILC(0xc0040000,
1603					 mask >> 12, addrs[i + off + 1]);
1604		}
1605		break;
1606branch_oc:
1607		if (!is_first_pass(jit) &&
1608		    can_use_rel(jit, addrs[i + off + 1])) {
1609			/* brc mask,off */
1610			EMIT4_PCREL_RIC(0xa7040000,
1611					mask >> 12, addrs[i + off + 1]);
1612		} else {
1613			/* brcl mask,off */
1614			EMIT6_PCREL_RILC(0xc0040000,
1615					 mask >> 12, addrs[i + off + 1]);
1616		}
1617		break;
1618	}
1619	default: /* too complex, give up */
1620		pr_err("Unknown opcode %02x\n", insn->code);
1621		return -1;
1622	}
1623
1624	if (probe_prg != -1) {
1625		/*
1626		 * Handlers of certain exceptions leave psw.addr pointing to
1627		 * the instruction directly after the failing one. Therefore,
1628		 * create two exception table entries and also add a nop in
1629		 * case two probing instructions come directly after each
1630		 * other.
1631		 */
1632		nop_prg = jit->prg;
1633		/* bcr 0,%0 */
1634		_EMIT2(0x0700);
1635		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1636		if (err < 0)
1637			return err;
1638	}
1639
1640	return insn_count;
1641}
1642
1643/*
1644 * Return whether new i-th instruction address does not violate any invariant
1645 */
1646static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1647{
1648	/* On the first pass anything goes */
1649	if (is_first_pass(jit))
1650		return true;
1651
1652	/* The codegen pass must not change anything */
1653	if (is_codegen_pass(jit))
1654		return jit->addrs[i] == jit->prg;
1655
1656	/* Passes in between must not increase code size */
1657	return jit->addrs[i] >= jit->prg;
1658}
1659
1660/*
1661 * Update the address of i-th instruction
1662 */
1663static int bpf_set_addr(struct bpf_jit *jit, int i)
1664{
1665	int delta;
1666
1667	if (is_codegen_pass(jit)) {
1668		delta = jit->prg - jit->addrs[i];
1669		if (delta < 0)
1670			bpf_skip(jit, -delta);
1671	}
1672	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1673		return -1;
1674	jit->addrs[i] = jit->prg;
1675	return 0;
1676}
1677
1678/*
1679 * Compile eBPF program into s390x code
1680 */
1681static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1682			bool extra_pass, u32 stack_depth)
1683{
1684	int i, insn_count, lit32_size, lit64_size;
1685
1686	jit->lit32 = jit->lit32_start;
1687	jit->lit64 = jit->lit64_start;
1688	jit->prg = 0;
1689	jit->excnt = 0;
1690
1691	bpf_jit_prologue(jit, stack_depth);
1692	if (bpf_set_addr(jit, 0) < 0)
1693		return -1;
1694	for (i = 0; i < fp->len; i += insn_count) {
1695		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1696		if (insn_count < 0)
1697			return -1;
1698		/* Next instruction address */
1699		if (bpf_set_addr(jit, i + insn_count) < 0)
1700			return -1;
1701	}
1702	bpf_jit_epilogue(jit, stack_depth);
1703
1704	lit32_size = jit->lit32 - jit->lit32_start;
1705	lit64_size = jit->lit64 - jit->lit64_start;
1706	jit->lit32_start = jit->prg;
1707	if (lit32_size)
1708		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1709	jit->lit64_start = jit->lit32_start + lit32_size;
1710	if (lit64_size)
1711		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1712	jit->size = jit->lit64_start + lit64_size;
1713	jit->size_prg = jit->prg;
1714
1715	if (WARN_ON_ONCE(fp->aux->extable &&
1716			 jit->excnt != fp->aux->num_exentries))
1717		/* Verifier bug - too many entries. */
1718		return -1;
1719
1720	return 0;
1721}
1722
1723bool bpf_jit_needs_zext(void)
1724{
1725	return true;
1726}
1727
1728struct s390_jit_data {
1729	struct bpf_binary_header *header;
1730	struct bpf_jit ctx;
1731	int pass;
1732};
1733
1734static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1735					       struct bpf_prog *fp)
1736{
1737	struct bpf_binary_header *header;
1738	u32 extable_size;
1739	u32 code_size;
1740
1741	/* We need two entries per insn. */
1742	fp->aux->num_exentries *= 2;
1743
1744	code_size = roundup(jit->size,
1745			    __alignof__(struct exception_table_entry));
1746	extable_size = fp->aux->num_exentries *
1747		sizeof(struct exception_table_entry);
1748	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1749				      8, jit_fill_hole);
1750	if (!header)
1751		return NULL;
1752	fp->aux->extable = (struct exception_table_entry *)
1753		(jit->prg_buf + code_size);
1754	return header;
1755}
1756
1757/*
1758 * Compile eBPF program "fp"
1759 */
1760struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1761{
1762	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1763	struct bpf_prog *tmp, *orig_fp = fp;
1764	struct bpf_binary_header *header;
1765	struct s390_jit_data *jit_data;
1766	bool tmp_blinded = false;
1767	bool extra_pass = false;
1768	struct bpf_jit jit;
1769	int pass;
1770
1771	if (!fp->jit_requested)
1772		return orig_fp;
1773
1774	tmp = bpf_jit_blind_constants(fp);
1775	/*
1776	 * If blinding was requested and we failed during blinding,
1777	 * we must fall back to the interpreter.
1778	 */
1779	if (IS_ERR(tmp))
1780		return orig_fp;
1781	if (tmp != fp) {
1782		tmp_blinded = true;
1783		fp = tmp;
1784	}
1785
1786	jit_data = fp->aux->jit_data;
1787	if (!jit_data) {
1788		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1789		if (!jit_data) {
1790			fp = orig_fp;
1791			goto out;
1792		}
1793		fp->aux->jit_data = jit_data;
1794	}
1795	if (jit_data->ctx.addrs) {
1796		jit = jit_data->ctx;
1797		header = jit_data->header;
1798		extra_pass = true;
1799		pass = jit_data->pass + 1;
1800		goto skip_init_ctx;
1801	}
1802
1803	memset(&jit, 0, sizeof(jit));
1804	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1805	if (jit.addrs == NULL) {
1806		fp = orig_fp;
1807		goto free_addrs;
1808	}
1809	/*
1810	 * Three initial passes:
1811	 *   - 1/2: Determine clobbered registers
1812	 *   - 3:   Calculate program size and addrs array
1813	 */
1814	for (pass = 1; pass <= 3; pass++) {
1815		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1816			fp = orig_fp;
1817			goto free_addrs;
1818		}
1819	}
1820	/*
1821	 * Final pass: Allocate and generate program
1822	 */
1823	header = bpf_jit_alloc(&jit, fp);
1824	if (!header) {
1825		fp = orig_fp;
1826		goto free_addrs;
1827	}
1828skip_init_ctx:
1829	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1830		bpf_jit_binary_free(header);
1831		fp = orig_fp;
1832		goto free_addrs;
1833	}
1834	if (bpf_jit_enable > 1) {
1835		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1836		print_fn_code(jit.prg_buf, jit.size_prg);
1837	}
1838	if (!fp->is_func || extra_pass) {
1839		bpf_jit_binary_lock_ro(header);
1840	} else {
1841		jit_data->header = header;
1842		jit_data->ctx = jit;
1843		jit_data->pass = pass;
1844	}
1845	fp->bpf_func = (void *) jit.prg_buf;
1846	fp->jited = 1;
1847	fp->jited_len = jit.size;
1848
1849	if (!fp->is_func || extra_pass) {
1850		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1851free_addrs:
1852		kvfree(jit.addrs);
1853		kfree(jit_data);
1854		fp->aux->jit_data = NULL;
1855	}
1856out:
1857	if (tmp_blinded)
1858		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1859					   tmp : orig_fp);
1860	return fp;
1861}
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * BPF Jit compiler for s390.
   4 *
   5 * Minimum build requirements:
   6 *
   7 *  - HAVE_MARCH_Z196_FEATURES: laal, laalg
   8 *  - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
   9 *  - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
  10 *  - PACK_STACK
  11 *  - 64BIT
  12 *
  13 * Copyright IBM Corp. 2012,2015
  14 *
  15 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
  16 *	      Michael Holzheu <holzheu@linux.vnet.ibm.com>
  17 */
  18
  19#define KMSG_COMPONENT "bpf_jit"
  20#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
  21
  22#include <linux/netdevice.h>
  23#include <linux/filter.h>
  24#include <linux/init.h>
  25#include <linux/bpf.h>
  26#include <linux/mm.h>
  27#include <linux/kernel.h>
  28#include <asm/cacheflush.h>
 
  29#include <asm/dis.h>
  30#include <asm/facility.h>
  31#include <asm/nospec-branch.h>
  32#include <asm/set_memory.h>
  33#include "bpf_jit.h"
  34
  35struct bpf_jit {
  36	u32 seen;		/* Flags to remember seen eBPF instructions */
  37	u32 seen_reg[16];	/* Array to remember which registers are used */
  38	u32 *addrs;		/* Array with relative instruction addresses */
  39	u8 *prg_buf;		/* Start of program */
  40	int size;		/* Size of program and literal pool */
  41	int size_prg;		/* Size of program */
  42	int prg;		/* Current position in program */
  43	int lit32_start;	/* Start of 32-bit literal pool */
  44	int lit32;		/* Current position in 32-bit literal pool */
  45	int lit64_start;	/* Start of 64-bit literal pool */
  46	int lit64;		/* Current position in 64-bit literal pool */
  47	int base_ip;		/* Base address for literal pool */
  48	int exit_ip;		/* Address of exit */
  49	int r1_thunk_ip;	/* Address of expoline thunk for 'br %r1' */
  50	int r14_thunk_ip;	/* Address of expoline thunk for 'br %r14' */
  51	int tail_call_start;	/* Tail call start offset */
  52	int excnt;		/* Number of exception table entries */
  53};
  54
  55#define SEEN_MEM	BIT(0)		/* use mem[] for temporary storage */
  56#define SEEN_LITERAL	BIT(1)		/* code uses literals */
  57#define SEEN_FUNC	BIT(2)		/* calls C functions */
  58#define SEEN_TAIL_CALL	BIT(3)		/* code uses tail calls */
  59#define SEEN_STACK	(SEEN_FUNC | SEEN_MEM)
  60
  61/*
  62 * s390 registers
  63 */
  64#define REG_W0		(MAX_BPF_JIT_REG + 0)	/* Work register 1 (even) */
  65#define REG_W1		(MAX_BPF_JIT_REG + 1)	/* Work register 2 (odd) */
  66#define REG_L		(MAX_BPF_JIT_REG + 2)	/* Literal pool register */
  67#define REG_15		(MAX_BPF_JIT_REG + 3)	/* Register 15 */
  68#define REG_0		REG_W0			/* Register 0 */
  69#define REG_1		REG_W1			/* Register 1 */
  70#define REG_2		BPF_REG_1		/* Register 2 */
  71#define REG_14		BPF_REG_0		/* Register 14 */
  72
  73/*
  74 * Mapping of BPF registers to s390 registers
  75 */
  76static const int reg2hex[] = {
  77	/* Return code */
  78	[BPF_REG_0]	= 14,
  79	/* Function parameters */
  80	[BPF_REG_1]	= 2,
  81	[BPF_REG_2]	= 3,
  82	[BPF_REG_3]	= 4,
  83	[BPF_REG_4]	= 5,
  84	[BPF_REG_5]	= 6,
  85	/* Call saved registers */
  86	[BPF_REG_6]	= 7,
  87	[BPF_REG_7]	= 8,
  88	[BPF_REG_8]	= 9,
  89	[BPF_REG_9]	= 10,
  90	/* BPF stack pointer */
  91	[BPF_REG_FP]	= 13,
  92	/* Register for blinding */
  93	[BPF_REG_AX]	= 12,
  94	/* Work registers for s390x backend */
  95	[REG_W0]	= 0,
  96	[REG_W1]	= 1,
  97	[REG_L]		= 11,
  98	[REG_15]	= 15,
  99};
 100
 101static inline u32 reg(u32 dst_reg, u32 src_reg)
 102{
 103	return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
 104}
 105
 106static inline u32 reg_high(u32 reg)
 107{
 108	return reg2hex[reg] << 4;
 109}
 110
 111static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
 112{
 113	u32 r1 = reg2hex[b1];
 114
 115	if (r1 >= 6 && r1 <= 15 && !jit->seen_reg[r1])
 116		jit->seen_reg[r1] = 1;
 117}
 118
 119#define REG_SET_SEEN(b1)					\
 120({								\
 121	reg_set_seen(jit, b1);					\
 122})
 123
 124#define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
 125
 126/*
 127 * EMIT macros for code generation
 128 */
 129
 130#define _EMIT2(op)						\
 131({								\
 132	if (jit->prg_buf)					\
 133		*(u16 *) (jit->prg_buf + jit->prg) = (op);	\
 134	jit->prg += 2;						\
 135})
 136
 137#define EMIT2(op, b1, b2)					\
 138({								\
 139	_EMIT2((op) | reg(b1, b2));				\
 140	REG_SET_SEEN(b1);					\
 141	REG_SET_SEEN(b2);					\
 142})
 143
 144#define _EMIT4(op)						\
 145({								\
 146	if (jit->prg_buf)					\
 147		*(u32 *) (jit->prg_buf + jit->prg) = (op);	\
 148	jit->prg += 4;						\
 149})
 150
 151#define EMIT4(op, b1, b2)					\
 152({								\
 153	_EMIT4((op) | reg(b1, b2));				\
 154	REG_SET_SEEN(b1);					\
 155	REG_SET_SEEN(b2);					\
 156})
 157
 158#define EMIT4_RRF(op, b1, b2, b3)				\
 159({								\
 160	_EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2));		\
 161	REG_SET_SEEN(b1);					\
 162	REG_SET_SEEN(b2);					\
 163	REG_SET_SEEN(b3);					\
 164})
 165
 166#define _EMIT4_DISP(op, disp)					\
 167({								\
 168	unsigned int __disp = (disp) & 0xfff;			\
 169	_EMIT4((op) | __disp);					\
 170})
 171
 172#define EMIT4_DISP(op, b1, b2, disp)				\
 173({								\
 174	_EMIT4_DISP((op) | reg_high(b1) << 16 |			\
 175		    reg_high(b2) << 8, (disp));			\
 176	REG_SET_SEEN(b1);					\
 177	REG_SET_SEEN(b2);					\
 178})
 179
 180#define EMIT4_IMM(op, b1, imm)					\
 181({								\
 182	unsigned int __imm = (imm) & 0xffff;			\
 183	_EMIT4((op) | reg_high(b1) << 16 | __imm);		\
 184	REG_SET_SEEN(b1);					\
 185})
 186
 187#define EMIT4_PCREL(op, pcrel)					\
 188({								\
 189	long __pcrel = ((pcrel) >> 1) & 0xffff;			\
 190	_EMIT4((op) | __pcrel);					\
 191})
 192
 193#define EMIT4_PCREL_RIC(op, mask, target)			\
 194({								\
 195	int __rel = ((target) - jit->prg) / 2;			\
 196	_EMIT4((op) | (mask) << 20 | (__rel & 0xffff));		\
 197})
 198
 199#define _EMIT6(op1, op2)					\
 200({								\
 201	if (jit->prg_buf) {					\
 202		*(u32 *) (jit->prg_buf + jit->prg) = (op1);	\
 203		*(u16 *) (jit->prg_buf + jit->prg + 4) = (op2);	\
 204	}							\
 205	jit->prg += 6;						\
 206})
 207
 208#define _EMIT6_DISP(op1, op2, disp)				\
 209({								\
 210	unsigned int __disp = (disp) & 0xfff;			\
 211	_EMIT6((op1) | __disp, op2);				\
 212})
 213
 214#define _EMIT6_DISP_LH(op1, op2, disp)				\
 215({								\
 216	u32 _disp = (u32) (disp);				\
 217	unsigned int __disp_h = _disp & 0xff000;		\
 218	unsigned int __disp_l = _disp & 0x00fff;		\
 219	_EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4);	\
 220})
 221
 222#define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp)		\
 223({								\
 224	_EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 |		\
 225		       reg_high(b3) << 8, op2, disp);		\
 226	REG_SET_SEEN(b1);					\
 227	REG_SET_SEEN(b2);					\
 228	REG_SET_SEEN(b3);					\
 229})
 230
 231#define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target)	\
 232({								\
 233	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 234	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff),	\
 235	       (op2) | (mask) << 12);				\
 236	REG_SET_SEEN(b1);					\
 237	REG_SET_SEEN(b2);					\
 238})
 239
 240#define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target)	\
 241({								\
 242	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 243	_EMIT6((op1) | (reg_high(b1) | (mask)) << 16 |		\
 244		(rel & 0xffff), (op2) | ((imm) & 0xff) << 8);	\
 245	REG_SET_SEEN(b1);					\
 246	BUILD_BUG_ON(((unsigned long) (imm)) > 0xff);		\
 247})
 248
 249#define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask)		\
 250({								\
 251	int rel = (addrs[(i) + (off) + 1] - jit->prg) / 2;	\
 252	_EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
 253	REG_SET_SEEN(b1);					\
 254	REG_SET_SEEN(b2);					\
 255})
 256
 257#define EMIT6_PCREL_RILB(op, b, target)				\
 258({								\
 259	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 260	_EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
 261	REG_SET_SEEN(b);					\
 262})
 263
 264#define EMIT6_PCREL_RIL(op, target)				\
 265({								\
 266	unsigned int rel = (int)((target) - jit->prg) / 2;	\
 267	_EMIT6((op) | rel >> 16, rel & 0xffff);			\
 268})
 269
 270#define EMIT6_PCREL_RILC(op, mask, target)			\
 271({								\
 272	EMIT6_PCREL_RIL((op) | (mask) << 20, (target));		\
 273})
 274
 275#define _EMIT6_IMM(op, imm)					\
 276({								\
 277	unsigned int __imm = (imm);				\
 278	_EMIT6((op) | (__imm >> 16), __imm & 0xffff);		\
 279})
 280
 281#define EMIT6_IMM(op, b1, imm)					\
 282({								\
 283	_EMIT6_IMM((op) | reg_high(b1) << 16, imm);		\
 284	REG_SET_SEEN(b1);					\
 285})
 286
 287#define _EMIT_CONST_U32(val)					\
 288({								\
 289	unsigned int ret;					\
 290	ret = jit->lit32;					\
 291	if (jit->prg_buf)					\
 292		*(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
 293	jit->lit32 += 4;					\
 294	ret;							\
 295})
 296
 297#define EMIT_CONST_U32(val)					\
 298({								\
 299	jit->seen |= SEEN_LITERAL;				\
 300	_EMIT_CONST_U32(val) - jit->base_ip;			\
 301})
 302
 303#define _EMIT_CONST_U64(val)					\
 304({								\
 305	unsigned int ret;					\
 306	ret = jit->lit64;					\
 307	if (jit->prg_buf)					\
 308		*(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
 309	jit->lit64 += 8;					\
 310	ret;							\
 311})
 312
 313#define EMIT_CONST_U64(val)					\
 314({								\
 315	jit->seen |= SEEN_LITERAL;				\
 316	_EMIT_CONST_U64(val) - jit->base_ip;			\
 317})
 318
 319#define EMIT_ZERO(b1)						\
 320({								\
 321	if (!fp->aux->verifier_zext) {				\
 322		/* llgfr %dst,%dst (zero extend to 64 bit) */	\
 323		EMIT4(0xb9160000, b1, b1);			\
 324		REG_SET_SEEN(b1);				\
 325	}							\
 326})
 327
 328/*
 329 * Return whether this is the first pass. The first pass is special, since we
 330 * don't know any sizes yet, and thus must be conservative.
 331 */
 332static bool is_first_pass(struct bpf_jit *jit)
 333{
 334	return jit->size == 0;
 335}
 336
 337/*
 338 * Return whether this is the code generation pass. The code generation pass is
 339 * special, since we should change as little as possible.
 340 */
 341static bool is_codegen_pass(struct bpf_jit *jit)
 342{
 343	return jit->prg_buf;
 344}
 345
 346/*
 347 * Return whether "rel" can be encoded as a short PC-relative offset
 348 */
 349static bool is_valid_rel(int rel)
 350{
 351	return rel >= -65536 && rel <= 65534;
 352}
 353
 354/*
 355 * Return whether "off" can be reached using a short PC-relative offset
 356 */
 357static bool can_use_rel(struct bpf_jit *jit, int off)
 358{
 359	return is_valid_rel(off - jit->prg);
 360}
 361
 362/*
 363 * Return whether given displacement can be encoded using
 364 * Long-Displacement Facility
 365 */
 366static bool is_valid_ldisp(int disp)
 367{
 368	return disp >= -524288 && disp <= 524287;
 369}
 370
 371/*
 372 * Return whether the next 32-bit literal pool entry can be referenced using
 373 * Long-Displacement Facility
 374 */
 375static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
 376{
 377	return is_valid_ldisp(jit->lit32 - jit->base_ip);
 378}
 379
 380/*
 381 * Return whether the next 64-bit literal pool entry can be referenced using
 382 * Long-Displacement Facility
 383 */
 384static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
 385{
 386	return is_valid_ldisp(jit->lit64 - jit->base_ip);
 387}
 388
 389/*
 390 * Fill whole space with illegal instructions
 391 */
 392static void jit_fill_hole(void *area, unsigned int size)
 393{
 394	memset(area, 0, size);
 395}
 396
 397/*
 398 * Save registers from "rs" (register start) to "re" (register end) on stack
 399 */
 400static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
 401{
 402	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 403
 404	if (rs == re)
 405		/* stg %rs,off(%r15) */
 406		_EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
 407	else
 408		/* stmg %rs,%re,off(%r15) */
 409		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
 410}
 411
 412/*
 413 * Restore registers from "rs" (register start) to "re" (register end) on stack
 414 */
 415static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
 416{
 417	u32 off = STK_OFF_R6 + (rs - 6) * 8;
 418
 419	if (jit->seen & SEEN_STACK)
 420		off += STK_OFF + stack_depth;
 421
 422	if (rs == re)
 423		/* lg %rs,off(%r15) */
 424		_EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
 425	else
 426		/* lmg %rs,%re,off(%r15) */
 427		_EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
 428}
 429
 430/*
 431 * Return first seen register (from start)
 432 */
 433static int get_start(struct bpf_jit *jit, int start)
 434{
 435	int i;
 436
 437	for (i = start; i <= 15; i++) {
 438		if (jit->seen_reg[i])
 439			return i;
 440	}
 441	return 0;
 442}
 443
 444/*
 445 * Return last seen register (from start) (gap >= 2)
 446 */
 447static int get_end(struct bpf_jit *jit, int start)
 448{
 449	int i;
 450
 451	for (i = start; i < 15; i++) {
 452		if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
 453			return i - 1;
 454	}
 455	return jit->seen_reg[15] ? 15 : 14;
 456}
 457
 458#define REGS_SAVE	1
 459#define REGS_RESTORE	0
 460/*
 461 * Save and restore clobbered registers (6-15) on stack.
 462 * We save/restore registers in chunks with gap >= 2 registers.
 463 */
 464static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
 465{
 466	const int last = 15, save_restore_size = 6;
 467	int re = 6, rs;
 468
 469	if (is_first_pass(jit)) {
 470		/*
 471		 * We don't know yet which registers are used. Reserve space
 472		 * conservatively.
 473		 */
 474		jit->prg += (last - re + 1) * save_restore_size;
 475		return;
 476	}
 477
 478	do {
 479		rs = get_start(jit, re);
 480		if (!rs)
 481			break;
 482		re = get_end(jit, rs + 1);
 483		if (op == REGS_SAVE)
 484			save_regs(jit, rs, re);
 485		else
 486			restore_regs(jit, rs, re, stack_depth);
 487		re++;
 488	} while (re <= last);
 489}
 490
 491static void bpf_skip(struct bpf_jit *jit, int size)
 492{
 493	if (size >= 6 && !is_valid_rel(size)) {
 494		/* brcl 0xf,size */
 495		EMIT6_PCREL_RIL(0xc0f4000000, size);
 496		size -= 6;
 497	} else if (size >= 4 && is_valid_rel(size)) {
 498		/* brc 0xf,size */
 499		EMIT4_PCREL(0xa7f40000, size);
 500		size -= 4;
 501	}
 502	while (size >= 2) {
 503		/* bcr 0,%0 */
 504		_EMIT2(0x0700);
 505		size -= 2;
 506	}
 507}
 508
 509/*
 510 * Emit function prologue
 511 *
 512 * Save registers and create stack frame if necessary.
 513 * See stack frame layout desription in "bpf_jit.h"!
 514 */
 515static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
 516{
 517	if (jit->seen & SEEN_TAIL_CALL) {
 518		/* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
 519		_EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
 520	} else {
 521		/*
 522		 * There are no tail calls. Insert nops in order to have
 523		 * tail_call_start at a predictable offset.
 524		 */
 525		bpf_skip(jit, 6);
 526	}
 527	/* Tail calls have to skip above initialization */
 528	jit->tail_call_start = jit->prg;
 529	/* Save registers */
 530	save_restore_regs(jit, REGS_SAVE, stack_depth);
 531	/* Setup literal pool */
 532	if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
 533		if (!is_first_pass(jit) &&
 534		    is_valid_ldisp(jit->size - (jit->prg + 2))) {
 535			/* basr %l,0 */
 536			EMIT2(0x0d00, REG_L, REG_0);
 537			jit->base_ip = jit->prg;
 538		} else {
 539			/* larl %l,lit32_start */
 540			EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
 541			jit->base_ip = jit->lit32_start;
 542		}
 543	}
 544	/* Setup stack and backchain */
 545	if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
 546		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
 547			/* lgr %w1,%r15 (backchain) */
 548			EMIT4(0xb9040000, REG_W1, REG_15);
 549		/* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
 550		EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
 551		/* aghi %r15,-STK_OFF */
 552		EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
 553		if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
 554			/* stg %w1,152(%r15) (backchain) */
 555			EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
 556				      REG_15, 152);
 557	}
 558}
 559
 560/*
 561 * Function epilogue
 562 */
 563static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
 564{
 565	jit->exit_ip = jit->prg;
 566	/* Load exit code: lgr %r2,%b0 */
 567	EMIT4(0xb9040000, REG_2, BPF_REG_0);
 568	/* Restore registers */
 569	save_restore_regs(jit, REGS_RESTORE, stack_depth);
 570	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
 571		jit->r14_thunk_ip = jit->prg;
 572		/* Generate __s390_indirect_jump_r14 thunk */
 573		if (test_facility(35)) {
 574			/* exrl %r0,.+10 */
 575			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 576		} else {
 577			/* larl %r1,.+14 */
 578			EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
 579			/* ex 0,0(%r1) */
 580			EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
 581		}
 582		/* j . */
 583		EMIT4_PCREL(0xa7f40000, 0);
 584	}
 585	/* br %r14 */
 586	_EMIT2(0x07fe);
 587
 588	if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
 589	    (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
 590		jit->r1_thunk_ip = jit->prg;
 591		/* Generate __s390_indirect_jump_r1 thunk */
 592		if (test_facility(35)) {
 593			/* exrl %r0,.+10 */
 594			EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
 595			/* j . */
 596			EMIT4_PCREL(0xa7f40000, 0);
 597			/* br %r1 */
 598			_EMIT2(0x07f1);
 599		} else {
 600			/* ex 0,S390_lowcore.br_r1_tampoline */
 601			EMIT4_DISP(0x44000000, REG_0, REG_0,
 602				   offsetof(struct lowcore, br_r1_trampoline));
 603			/* j . */
 604			EMIT4_PCREL(0xa7f40000, 0);
 605		}
 606	}
 607}
 608
 609static int get_probe_mem_regno(const u8 *insn)
 610{
 611	/*
 612	 * insn must point to llgc, llgh, llgf or lg, which have destination
 613	 * register at the same position.
 614	 */
 615	if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
 616		return -1;
 617	if (insn[5] != 0x90 && /* llgc */
 618	    insn[5] != 0x91 && /* llgh */
 619	    insn[5] != 0x16 && /* llgf */
 620	    insn[5] != 0x04) /* lg */
 621		return -1;
 622	return insn[1] >> 4;
 623}
 624
 625static bool ex_handler_bpf(const struct exception_table_entry *x,
 626			   struct pt_regs *regs)
 627{
 628	int regno;
 629	u8 *insn;
 630
 631	regs->psw.addr = extable_fixup(x);
 632	insn = (u8 *)__rewind_psw(regs->psw, regs->int_code >> 16);
 633	regno = get_probe_mem_regno(insn);
 634	if (WARN_ON_ONCE(regno < 0))
 635		/* JIT bug - unexpected instruction. */
 636		return false;
 637	regs->gprs[regno] = 0;
 638	return true;
 639}
 640
 641static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
 642			     int probe_prg, int nop_prg)
 643{
 644	struct exception_table_entry *ex;
 
 645	s64 delta;
 646	u8 *insn;
 647	int prg;
 648	int i;
 649
 650	if (!fp->aux->extable)
 651		/* Do nothing during early JIT passes. */
 652		return 0;
 653	insn = jit->prg_buf + probe_prg;
 654	if (WARN_ON_ONCE(get_probe_mem_regno(insn) < 0))
 
 655		/* JIT bug - unexpected probe instruction. */
 656		return -1;
 657	if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
 658		/* JIT bug - gap between probe and nop instructions. */
 659		return -1;
 660	for (i = 0; i < 2; i++) {
 661		if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
 662			/* Verifier bug - not enough entries. */
 663			return -1;
 664		ex = &fp->aux->extable[jit->excnt];
 665		/* Add extable entries for probe and nop instructions. */
 666		prg = i == 0 ? probe_prg : nop_prg;
 667		delta = jit->prg_buf + prg - (u8 *)&ex->insn;
 668		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
 669			/* JIT bug - code and extable must be close. */
 670			return -1;
 671		ex->insn = delta;
 672		/*
 673		 * Always land on the nop. Note that extable infrastructure
 674		 * ignores fixup field, it is handled by ex_handler_bpf().
 675		 */
 676		delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
 677		if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
 678			/* JIT bug - landing pad and extable must be close. */
 679			return -1;
 680		ex->fixup = delta;
 681		ex->handler = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
 
 682		jit->excnt++;
 683	}
 684	return 0;
 685}
 686
 687/*
 688 * Compile one eBPF instruction into s390x code
 689 *
 690 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
 691 * stack space for the large switch statement.
 692 */
 693static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
 694				 int i, bool extra_pass, u32 stack_depth)
 695{
 696	struct bpf_insn *insn = &fp->insnsi[i];
 697	u32 dst_reg = insn->dst_reg;
 698	u32 src_reg = insn->src_reg;
 699	int last, insn_count = 1;
 700	u32 *addrs = jit->addrs;
 701	s32 imm = insn->imm;
 702	s16 off = insn->off;
 703	int probe_prg = -1;
 704	unsigned int mask;
 705	int nop_prg;
 706	int err;
 707
 708	if (BPF_CLASS(insn->code) == BPF_LDX &&
 709	    BPF_MODE(insn->code) == BPF_PROBE_MEM)
 710		probe_prg = jit->prg;
 711
 712	switch (insn->code) {
 713	/*
 714	 * BPF_MOV
 715	 */
 716	case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
 717		/* llgfr %dst,%src */
 718		EMIT4(0xb9160000, dst_reg, src_reg);
 719		if (insn_is_zext(&insn[1]))
 720			insn_count = 2;
 721		break;
 722	case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
 723		/* lgr %dst,%src */
 724		EMIT4(0xb9040000, dst_reg, src_reg);
 725		break;
 726	case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
 727		/* llilf %dst,imm */
 728		EMIT6_IMM(0xc00f0000, dst_reg, imm);
 729		if (insn_is_zext(&insn[1]))
 730			insn_count = 2;
 731		break;
 732	case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
 733		/* lgfi %dst,imm */
 734		EMIT6_IMM(0xc0010000, dst_reg, imm);
 735		break;
 736	/*
 737	 * BPF_LD 64
 738	 */
 739	case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
 740	{
 741		/* 16 byte instruction that uses two 'struct bpf_insn' */
 742		u64 imm64;
 743
 744		imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
 745		/* lgrl %dst,imm */
 746		EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
 747		insn_count = 2;
 748		break;
 749	}
 750	/*
 751	 * BPF_ADD
 752	 */
 753	case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
 754		/* ar %dst,%src */
 755		EMIT2(0x1a00, dst_reg, src_reg);
 756		EMIT_ZERO(dst_reg);
 757		break;
 758	case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
 759		/* agr %dst,%src */
 760		EMIT4(0xb9080000, dst_reg, src_reg);
 761		break;
 762	case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
 763		if (imm != 0) {
 764			/* alfi %dst,imm */
 765			EMIT6_IMM(0xc20b0000, dst_reg, imm);
 766		}
 767		EMIT_ZERO(dst_reg);
 768		break;
 769	case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
 770		if (!imm)
 771			break;
 772		/* agfi %dst,imm */
 773		EMIT6_IMM(0xc2080000, dst_reg, imm);
 774		break;
 775	/*
 776	 * BPF_SUB
 777	 */
 778	case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
 779		/* sr %dst,%src */
 780		EMIT2(0x1b00, dst_reg, src_reg);
 781		EMIT_ZERO(dst_reg);
 782		break;
 783	case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
 784		/* sgr %dst,%src */
 785		EMIT4(0xb9090000, dst_reg, src_reg);
 786		break;
 787	case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
 788		if (imm != 0) {
 789			/* alfi %dst,-imm */
 790			EMIT6_IMM(0xc20b0000, dst_reg, -imm);
 791		}
 792		EMIT_ZERO(dst_reg);
 793		break;
 794	case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
 795		if (!imm)
 796			break;
 797		if (imm == -0x80000000) {
 798			/* algfi %dst,0x80000000 */
 799			EMIT6_IMM(0xc20a0000, dst_reg, 0x80000000);
 800		} else {
 801			/* agfi %dst,-imm */
 802			EMIT6_IMM(0xc2080000, dst_reg, -imm);
 803		}
 804		break;
 805	/*
 806	 * BPF_MUL
 807	 */
 808	case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
 809		/* msr %dst,%src */
 810		EMIT4(0xb2520000, dst_reg, src_reg);
 811		EMIT_ZERO(dst_reg);
 812		break;
 813	case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
 814		/* msgr %dst,%src */
 815		EMIT4(0xb90c0000, dst_reg, src_reg);
 816		break;
 817	case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
 818		if (imm != 1) {
 819			/* msfi %r5,imm */
 820			EMIT6_IMM(0xc2010000, dst_reg, imm);
 821		}
 822		EMIT_ZERO(dst_reg);
 823		break;
 824	case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
 825		if (imm == 1)
 826			break;
 827		/* msgfi %dst,imm */
 828		EMIT6_IMM(0xc2000000, dst_reg, imm);
 829		break;
 830	/*
 831	 * BPF_DIV / BPF_MOD
 832	 */
 833	case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
 834	case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
 835	{
 836		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 837
 838		/* lhi %w0,0 */
 839		EMIT4_IMM(0xa7080000, REG_W0, 0);
 840		/* lr %w1,%dst */
 841		EMIT2(0x1800, REG_W1, dst_reg);
 842		/* dlr %w0,%src */
 843		EMIT4(0xb9970000, REG_W0, src_reg);
 844		/* llgfr %dst,%rc */
 845		EMIT4(0xb9160000, dst_reg, rc_reg);
 846		if (insn_is_zext(&insn[1]))
 847			insn_count = 2;
 848		break;
 849	}
 850	case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
 851	case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
 852	{
 853		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 854
 855		/* lghi %w0,0 */
 856		EMIT4_IMM(0xa7090000, REG_W0, 0);
 857		/* lgr %w1,%dst */
 858		EMIT4(0xb9040000, REG_W1, dst_reg);
 859		/* dlgr %w0,%dst */
 860		EMIT4(0xb9870000, REG_W0, src_reg);
 861		/* lgr %dst,%rc */
 862		EMIT4(0xb9040000, dst_reg, rc_reg);
 863		break;
 864	}
 865	case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
 866	case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
 867	{
 868		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 869
 870		if (imm == 1) {
 871			if (BPF_OP(insn->code) == BPF_MOD)
 872				/* lhgi %dst,0 */
 873				EMIT4_IMM(0xa7090000, dst_reg, 0);
 874			else
 875				EMIT_ZERO(dst_reg);
 876			break;
 877		}
 878		/* lhi %w0,0 */
 879		EMIT4_IMM(0xa7080000, REG_W0, 0);
 880		/* lr %w1,%dst */
 881		EMIT2(0x1800, REG_W1, dst_reg);
 882		if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
 883			/* dl %w0,<d(imm)>(%l) */
 884			EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
 885				      EMIT_CONST_U32(imm));
 886		} else {
 887			/* lgfrl %dst,imm */
 888			EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
 889					 _EMIT_CONST_U32(imm));
 890			jit->seen |= SEEN_LITERAL;
 891			/* dlr %w0,%dst */
 892			EMIT4(0xb9970000, REG_W0, dst_reg);
 893		}
 894		/* llgfr %dst,%rc */
 895		EMIT4(0xb9160000, dst_reg, rc_reg);
 896		if (insn_is_zext(&insn[1]))
 897			insn_count = 2;
 898		break;
 899	}
 900	case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
 901	case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
 902	{
 903		int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
 904
 905		if (imm == 1) {
 906			if (BPF_OP(insn->code) == BPF_MOD)
 907				/* lhgi %dst,0 */
 908				EMIT4_IMM(0xa7090000, dst_reg, 0);
 909			break;
 910		}
 911		/* lghi %w0,0 */
 912		EMIT4_IMM(0xa7090000, REG_W0, 0);
 913		/* lgr %w1,%dst */
 914		EMIT4(0xb9040000, REG_W1, dst_reg);
 915		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 916			/* dlg %w0,<d(imm)>(%l) */
 917			EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
 918				      EMIT_CONST_U64(imm));
 919		} else {
 920			/* lgrl %dst,imm */
 921			EMIT6_PCREL_RILB(0xc4080000, dst_reg,
 922					 _EMIT_CONST_U64(imm));
 923			jit->seen |= SEEN_LITERAL;
 924			/* dlgr %w0,%dst */
 925			EMIT4(0xb9870000, REG_W0, dst_reg);
 926		}
 927		/* lgr %dst,%rc */
 928		EMIT4(0xb9040000, dst_reg, rc_reg);
 929		break;
 930	}
 931	/*
 932	 * BPF_AND
 933	 */
 934	case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
 935		/* nr %dst,%src */
 936		EMIT2(0x1400, dst_reg, src_reg);
 937		EMIT_ZERO(dst_reg);
 938		break;
 939	case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
 940		/* ngr %dst,%src */
 941		EMIT4(0xb9800000, dst_reg, src_reg);
 942		break;
 943	case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
 944		/* nilf %dst,imm */
 945		EMIT6_IMM(0xc00b0000, dst_reg, imm);
 946		EMIT_ZERO(dst_reg);
 947		break;
 948	case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
 949		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 950			/* ng %dst,<d(imm)>(%l) */
 951			EMIT6_DISP_LH(0xe3000000, 0x0080,
 952				      dst_reg, REG_0, REG_L,
 953				      EMIT_CONST_U64(imm));
 954		} else {
 955			/* lgrl %w0,imm */
 956			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
 957					 _EMIT_CONST_U64(imm));
 958			jit->seen |= SEEN_LITERAL;
 959			/* ngr %dst,%w0 */
 960			EMIT4(0xb9800000, dst_reg, REG_W0);
 961		}
 962		break;
 963	/*
 964	 * BPF_OR
 965	 */
 966	case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
 967		/* or %dst,%src */
 968		EMIT2(0x1600, dst_reg, src_reg);
 969		EMIT_ZERO(dst_reg);
 970		break;
 971	case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
 972		/* ogr %dst,%src */
 973		EMIT4(0xb9810000, dst_reg, src_reg);
 974		break;
 975	case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
 976		/* oilf %dst,imm */
 977		EMIT6_IMM(0xc00d0000, dst_reg, imm);
 978		EMIT_ZERO(dst_reg);
 979		break;
 980	case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
 981		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
 982			/* og %dst,<d(imm)>(%l) */
 983			EMIT6_DISP_LH(0xe3000000, 0x0081,
 984				      dst_reg, REG_0, REG_L,
 985				      EMIT_CONST_U64(imm));
 986		} else {
 987			/* lgrl %w0,imm */
 988			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
 989					 _EMIT_CONST_U64(imm));
 990			jit->seen |= SEEN_LITERAL;
 991			/* ogr %dst,%w0 */
 992			EMIT4(0xb9810000, dst_reg, REG_W0);
 993		}
 994		break;
 995	/*
 996	 * BPF_XOR
 997	 */
 998	case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
 999		/* xr %dst,%src */
1000		EMIT2(0x1700, dst_reg, src_reg);
1001		EMIT_ZERO(dst_reg);
1002		break;
1003	case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
1004		/* xgr %dst,%src */
1005		EMIT4(0xb9820000, dst_reg, src_reg);
1006		break;
1007	case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1008		if (imm != 0) {
1009			/* xilf %dst,imm */
1010			EMIT6_IMM(0xc0070000, dst_reg, imm);
1011		}
1012		EMIT_ZERO(dst_reg);
1013		break;
1014	case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1015		if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1016			/* xg %dst,<d(imm)>(%l) */
1017			EMIT6_DISP_LH(0xe3000000, 0x0082,
1018				      dst_reg, REG_0, REG_L,
1019				      EMIT_CONST_U64(imm));
1020		} else {
1021			/* lgrl %w0,imm */
1022			EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1023					 _EMIT_CONST_U64(imm));
1024			jit->seen |= SEEN_LITERAL;
1025			/* xgr %dst,%w0 */
1026			EMIT4(0xb9820000, dst_reg, REG_W0);
1027		}
1028		break;
1029	/*
1030	 * BPF_LSH
1031	 */
1032	case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1033		/* sll %dst,0(%src) */
1034		EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1035		EMIT_ZERO(dst_reg);
1036		break;
1037	case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1038		/* sllg %dst,%dst,0(%src) */
1039		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1040		break;
1041	case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1042		if (imm != 0) {
1043			/* sll %dst,imm(%r0) */
1044			EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1045		}
1046		EMIT_ZERO(dst_reg);
1047		break;
1048	case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1049		if (imm == 0)
1050			break;
1051		/* sllg %dst,%dst,imm(%r0) */
1052		EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1053		break;
1054	/*
1055	 * BPF_RSH
1056	 */
1057	case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1058		/* srl %dst,0(%src) */
1059		EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1060		EMIT_ZERO(dst_reg);
1061		break;
1062	case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1063		/* srlg %dst,%dst,0(%src) */
1064		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1065		break;
1066	case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1067		if (imm != 0) {
1068			/* srl %dst,imm(%r0) */
1069			EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1070		}
1071		EMIT_ZERO(dst_reg);
1072		break;
1073	case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1074		if (imm == 0)
1075			break;
1076		/* srlg %dst,%dst,imm(%r0) */
1077		EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1078		break;
1079	/*
1080	 * BPF_ARSH
1081	 */
1082	case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1083		/* sra %dst,%dst,0(%src) */
1084		EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1085		EMIT_ZERO(dst_reg);
1086		break;
1087	case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1088		/* srag %dst,%dst,0(%src) */
1089		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1090		break;
1091	case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1092		if (imm != 0) {
1093			/* sra %dst,imm(%r0) */
1094			EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1095		}
1096		EMIT_ZERO(dst_reg);
1097		break;
1098	case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1099		if (imm == 0)
1100			break;
1101		/* srag %dst,%dst,imm(%r0) */
1102		EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1103		break;
1104	/*
1105	 * BPF_NEG
1106	 */
1107	case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1108		/* lcr %dst,%dst */
1109		EMIT2(0x1300, dst_reg, dst_reg);
1110		EMIT_ZERO(dst_reg);
1111		break;
1112	case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1113		/* lcgr %dst,%dst */
1114		EMIT4(0xb9030000, dst_reg, dst_reg);
1115		break;
1116	/*
1117	 * BPF_FROM_BE/LE
1118	 */
1119	case BPF_ALU | BPF_END | BPF_FROM_BE:
1120		/* s390 is big endian, therefore only clear high order bytes */
1121		switch (imm) {
1122		case 16: /* dst = (u16) cpu_to_be16(dst) */
1123			/* llghr %dst,%dst */
1124			EMIT4(0xb9850000, dst_reg, dst_reg);
1125			if (insn_is_zext(&insn[1]))
1126				insn_count = 2;
1127			break;
1128		case 32: /* dst = (u32) cpu_to_be32(dst) */
1129			if (!fp->aux->verifier_zext)
1130				/* llgfr %dst,%dst */
1131				EMIT4(0xb9160000, dst_reg, dst_reg);
1132			break;
1133		case 64: /* dst = (u64) cpu_to_be64(dst) */
1134			break;
1135		}
1136		break;
1137	case BPF_ALU | BPF_END | BPF_FROM_LE:
1138		switch (imm) {
1139		case 16: /* dst = (u16) cpu_to_le16(dst) */
1140			/* lrvr %dst,%dst */
1141			EMIT4(0xb91f0000, dst_reg, dst_reg);
1142			/* srl %dst,16(%r0) */
1143			EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1144			/* llghr %dst,%dst */
1145			EMIT4(0xb9850000, dst_reg, dst_reg);
1146			if (insn_is_zext(&insn[1]))
1147				insn_count = 2;
1148			break;
1149		case 32: /* dst = (u32) cpu_to_le32(dst) */
1150			/* lrvr %dst,%dst */
1151			EMIT4(0xb91f0000, dst_reg, dst_reg);
1152			if (!fp->aux->verifier_zext)
1153				/* llgfr %dst,%dst */
1154				EMIT4(0xb9160000, dst_reg, dst_reg);
1155			break;
1156		case 64: /* dst = (u64) cpu_to_le64(dst) */
1157			/* lrvgr %dst,%dst */
1158			EMIT4(0xb90f0000, dst_reg, dst_reg);
1159			break;
1160		}
1161		break;
1162	/*
1163	 * BPF_NOSPEC (speculation barrier)
1164	 */
1165	case BPF_ST | BPF_NOSPEC:
1166		break;
1167	/*
1168	 * BPF_ST(X)
1169	 */
1170	case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1171		/* stcy %src,off(%dst) */
1172		EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1173		jit->seen |= SEEN_MEM;
1174		break;
1175	case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1176		/* sthy %src,off(%dst) */
1177		EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1178		jit->seen |= SEEN_MEM;
1179		break;
1180	case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1181		/* sty %src,off(%dst) */
1182		EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1183		jit->seen |= SEEN_MEM;
1184		break;
1185	case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1186		/* stg %src,off(%dst) */
1187		EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1188		jit->seen |= SEEN_MEM;
1189		break;
1190	case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1191		/* lhi %w0,imm */
1192		EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1193		/* stcy %w0,off(dst) */
1194		EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1195		jit->seen |= SEEN_MEM;
1196		break;
1197	case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1198		/* lhi %w0,imm */
1199		EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1200		/* sthy %w0,off(dst) */
1201		EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1202		jit->seen |= SEEN_MEM;
1203		break;
1204	case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1205		/* llilf %w0,imm  */
1206		EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1207		/* sty %w0,off(%dst) */
1208		EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1209		jit->seen |= SEEN_MEM;
1210		break;
1211	case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1212		/* lgfi %w0,imm */
1213		EMIT6_IMM(0xc0010000, REG_W0, imm);
1214		/* stg %w0,off(%dst) */
1215		EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1216		jit->seen |= SEEN_MEM;
1217		break;
1218	/*
1219	 * BPF_ATOMIC
1220	 */
1221	case BPF_STX | BPF_ATOMIC | BPF_DW:
1222	case BPF_STX | BPF_ATOMIC | BPF_W:
1223	{
1224		bool is32 = BPF_SIZE(insn->code) == BPF_W;
1225
1226		switch (insn->imm) {
1227/* {op32|op64} {%w0|%src},%src,off(%dst) */
1228#define EMIT_ATOMIC(op32, op64) do {					\
1229	EMIT6_DISP_LH(0xeb000000, is32 ? (op32) : (op64),		\
1230		      (insn->imm & BPF_FETCH) ? src_reg : REG_W0,	\
1231		      src_reg, dst_reg, off);				\
1232	if (is32 && (insn->imm & BPF_FETCH))				\
1233		EMIT_ZERO(src_reg);					\
1234} while (0)
1235		case BPF_ADD:
1236		case BPF_ADD | BPF_FETCH:
1237			/* {laal|laalg} */
1238			EMIT_ATOMIC(0x00fa, 0x00ea);
1239			break;
1240		case BPF_AND:
1241		case BPF_AND | BPF_FETCH:
1242			/* {lan|lang} */
1243			EMIT_ATOMIC(0x00f4, 0x00e4);
1244			break;
1245		case BPF_OR:
1246		case BPF_OR | BPF_FETCH:
1247			/* {lao|laog} */
1248			EMIT_ATOMIC(0x00f6, 0x00e6);
1249			break;
1250		case BPF_XOR:
1251		case BPF_XOR | BPF_FETCH:
1252			/* {lax|laxg} */
1253			EMIT_ATOMIC(0x00f7, 0x00e7);
1254			break;
1255#undef EMIT_ATOMIC
1256		case BPF_XCHG:
1257			/* {ly|lg} %w0,off(%dst) */
1258			EMIT6_DISP_LH(0xe3000000,
1259				      is32 ? 0x0058 : 0x0004, REG_W0, REG_0,
1260				      dst_reg, off);
1261			/* 0: {csy|csg} %w0,%src,off(%dst) */
1262			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1263				      REG_W0, src_reg, dst_reg, off);
1264			/* brc 4,0b */
1265			EMIT4_PCREL_RIC(0xa7040000, 4, jit->prg - 6);
1266			/* {llgfr|lgr} %src,%w0 */
1267			EMIT4(is32 ? 0xb9160000 : 0xb9040000, src_reg, REG_W0);
1268			if (is32 && insn_is_zext(&insn[1]))
1269				insn_count = 2;
1270			break;
1271		case BPF_CMPXCHG:
1272			/* 0: {csy|csg} %b0,%src,off(%dst) */
1273			EMIT6_DISP_LH(0xeb000000, is32 ? 0x0014 : 0x0030,
1274				      BPF_REG_0, src_reg, dst_reg, off);
1275			break;
1276		default:
1277			pr_err("Unknown atomic operation %02x\n", insn->imm);
1278			return -1;
1279		}
1280
1281		jit->seen |= SEEN_MEM;
1282		break;
1283	}
1284	/*
1285	 * BPF_LDX
1286	 */
1287	case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1288	case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1289		/* llgc %dst,0(off,%src) */
1290		EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1291		jit->seen |= SEEN_MEM;
1292		if (insn_is_zext(&insn[1]))
1293			insn_count = 2;
1294		break;
1295	case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1296	case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1297		/* llgh %dst,0(off,%src) */
1298		EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1299		jit->seen |= SEEN_MEM;
1300		if (insn_is_zext(&insn[1]))
1301			insn_count = 2;
1302		break;
1303	case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1304	case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1305		/* llgf %dst,off(%src) */
1306		jit->seen |= SEEN_MEM;
1307		EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1308		if (insn_is_zext(&insn[1]))
1309			insn_count = 2;
1310		break;
1311	case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1312	case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1313		/* lg %dst,0(off,%src) */
1314		jit->seen |= SEEN_MEM;
1315		EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1316		break;
1317	/*
1318	 * BPF_JMP / CALL
1319	 */
1320	case BPF_JMP | BPF_CALL:
1321	{
1322		u64 func;
1323		bool func_addr_fixed;
1324		int ret;
1325
1326		ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1327					    &func, &func_addr_fixed);
1328		if (ret < 0)
1329			return -1;
1330
1331		REG_SET_SEEN(BPF_REG_5);
1332		jit->seen |= SEEN_FUNC;
1333		/* lgrl %w1,func */
1334		EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1335		if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1336			/* brasl %r14,__s390_indirect_jump_r1 */
1337			EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1338		} else {
1339			/* basr %r14,%w1 */
1340			EMIT2(0x0d00, REG_14, REG_W1);
1341		}
1342		/* lgr %b0,%r2: load return value into %b0 */
1343		EMIT4(0xb9040000, BPF_REG_0, REG_2);
1344		break;
1345	}
1346	case BPF_JMP | BPF_TAIL_CALL: {
1347		int patch_1_clrj, patch_2_clij, patch_3_brc;
1348
1349		/*
1350		 * Implicit input:
1351		 *  B1: pointer to ctx
1352		 *  B2: pointer to bpf_array
1353		 *  B3: index in bpf_array
1354		 */
1355		jit->seen |= SEEN_TAIL_CALL;
1356
1357		/*
1358		 * if (index >= array->map.max_entries)
1359		 *         goto out;
1360		 */
1361
1362		/* llgf %w1,map.max_entries(%b2) */
1363		EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1364			      offsetof(struct bpf_array, map.max_entries));
1365		/* if ((u32)%b3 >= (u32)%w1) goto out; */
1366		/* clrj %b3,%w1,0xa,out */
1367		patch_1_clrj = jit->prg;
1368		EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1369				 jit->prg);
1370
1371		/*
1372		 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1373		 *         goto out;
1374		 */
1375
1376		if (jit->seen & SEEN_STACK)
1377			off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1378		else
1379			off = STK_OFF_TCCNT;
1380		/* lhi %w0,1 */
1381		EMIT4_IMM(0xa7080000, REG_W0, 1);
1382		/* laal %w1,%w0,off(%r15) */
1383		EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1384		/* clij %w1,MAX_TAIL_CALL_CNT,0x2,out */
1385		patch_2_clij = jit->prg;
1386		EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT,
1387				 2, jit->prg);
1388
1389		/*
1390		 * prog = array->ptrs[index];
1391		 * if (prog == NULL)
1392		 *         goto out;
1393		 */
1394
1395		/* llgfr %r1,%b3: %r1 = (u32) index */
1396		EMIT4(0xb9160000, REG_1, BPF_REG_3);
1397		/* sllg %r1,%r1,3: %r1 *= 8 */
1398		EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1399		/* ltg %r1,prog(%b2,%r1) */
1400		EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1401			      REG_1, offsetof(struct bpf_array, ptrs));
1402		/* brc 0x8,out */
1403		patch_3_brc = jit->prg;
1404		EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1405
1406		/*
1407		 * Restore registers before calling function
1408		 */
1409		save_restore_regs(jit, REGS_RESTORE, stack_depth);
1410
1411		/*
1412		 * goto *(prog->bpf_func + tail_call_start);
1413		 */
1414
1415		/* lg %r1,bpf_func(%r1) */
1416		EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1417			      offsetof(struct bpf_prog, bpf_func));
1418		/* bc 0xf,tail_call_start(%r1) */
1419		_EMIT4(0x47f01000 + jit->tail_call_start);
1420		/* out: */
1421		if (jit->prg_buf) {
1422			*(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1423				(jit->prg - patch_1_clrj) >> 1;
1424			*(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1425				(jit->prg - patch_2_clij) >> 1;
1426			*(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1427				(jit->prg - patch_3_brc) >> 1;
1428		}
1429		break;
1430	}
1431	case BPF_JMP | BPF_EXIT: /* return b0 */
1432		last = (i == fp->len - 1) ? 1 : 0;
1433		if (last)
1434			break;
1435		if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1436			/* brc 0xf, <exit> */
1437			EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1438		else
1439			/* brcl 0xf, <exit> */
1440			EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1441		break;
1442	/*
1443	 * Branch relative (number of skipped instructions) to offset on
1444	 * condition.
1445	 *
1446	 * Condition code to mask mapping:
1447	 *
1448	 * CC | Description	   | Mask
1449	 * ------------------------------
1450	 * 0  | Operands equal	   |	8
1451	 * 1  | First operand low  |	4
1452	 * 2  | First operand high |	2
1453	 * 3  | Unused		   |	1
1454	 *
1455	 * For s390x relative branches: ip = ip + off_bytes
1456	 * For BPF relative branches:	insn = insn + off_insns + 1
1457	 *
1458	 * For example for s390x with offset 0 we jump to the branch
1459	 * instruction itself (loop) and for BPF with offset 0 we
1460	 * branch to the instruction behind the branch.
1461	 */
1462	case BPF_JMP | BPF_JA: /* if (true) */
1463		mask = 0xf000; /* j */
1464		goto branch_oc;
1465	case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1466	case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1467		mask = 0x2000; /* jh */
1468		goto branch_ks;
1469	case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1470	case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1471		mask = 0x4000; /* jl */
1472		goto branch_ks;
1473	case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1474	case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1475		mask = 0xa000; /* jhe */
1476		goto branch_ks;
1477	case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1478	case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1479		mask = 0xc000; /* jle */
1480		goto branch_ks;
1481	case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1482	case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1483		mask = 0x2000; /* jh */
1484		goto branch_ku;
1485	case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1486	case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1487		mask = 0x4000; /* jl */
1488		goto branch_ku;
1489	case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1490	case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1491		mask = 0xa000; /* jhe */
1492		goto branch_ku;
1493	case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1494	case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1495		mask = 0xc000; /* jle */
1496		goto branch_ku;
1497	case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1498	case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1499		mask = 0x7000; /* jne */
1500		goto branch_ku;
1501	case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1502	case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1503		mask = 0x8000; /* je */
1504		goto branch_ku;
1505	case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1506	case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1507		mask = 0x7000; /* jnz */
1508		if (BPF_CLASS(insn->code) == BPF_JMP32) {
1509			/* llilf %w1,imm (load zero extend imm) */
1510			EMIT6_IMM(0xc00f0000, REG_W1, imm);
1511			/* nr %w1,%dst */
1512			EMIT2(0x1400, REG_W1, dst_reg);
1513		} else {
1514			/* lgfi %w1,imm (load sign extend imm) */
1515			EMIT6_IMM(0xc0010000, REG_W1, imm);
1516			/* ngr %w1,%dst */
1517			EMIT4(0xb9800000, REG_W1, dst_reg);
1518		}
1519		goto branch_oc;
1520
1521	case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1522	case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1523		mask = 0x2000; /* jh */
1524		goto branch_xs;
1525	case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1526	case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1527		mask = 0x4000; /* jl */
1528		goto branch_xs;
1529	case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1530	case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1531		mask = 0xa000; /* jhe */
1532		goto branch_xs;
1533	case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1534	case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1535		mask = 0xc000; /* jle */
1536		goto branch_xs;
1537	case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1538	case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1539		mask = 0x2000; /* jh */
1540		goto branch_xu;
1541	case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1542	case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1543		mask = 0x4000; /* jl */
1544		goto branch_xu;
1545	case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1546	case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1547		mask = 0xa000; /* jhe */
1548		goto branch_xu;
1549	case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1550	case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1551		mask = 0xc000; /* jle */
1552		goto branch_xu;
1553	case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1554	case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1555		mask = 0x7000; /* jne */
1556		goto branch_xu;
1557	case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1558	case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1559		mask = 0x8000; /* je */
1560		goto branch_xu;
1561	case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1562	case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1563	{
1564		bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1565
1566		mask = 0x7000; /* jnz */
1567		/* nrk or ngrk %w1,%dst,%src */
1568		EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1569			  REG_W1, dst_reg, src_reg);
1570		goto branch_oc;
1571branch_ks:
1572		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1573		/* cfi or cgfi %dst,imm */
1574		EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1575			  dst_reg, imm);
1576		if (!is_first_pass(jit) &&
1577		    can_use_rel(jit, addrs[i + off + 1])) {
1578			/* brc mask,off */
1579			EMIT4_PCREL_RIC(0xa7040000,
1580					mask >> 12, addrs[i + off + 1]);
1581		} else {
1582			/* brcl mask,off */
1583			EMIT6_PCREL_RILC(0xc0040000,
1584					 mask >> 12, addrs[i + off + 1]);
1585		}
1586		break;
1587branch_ku:
1588		/* lgfi %w1,imm (load sign extend imm) */
1589		src_reg = REG_1;
1590		EMIT6_IMM(0xc0010000, src_reg, imm);
1591		goto branch_xu;
1592branch_xs:
1593		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1594		if (!is_first_pass(jit) &&
1595		    can_use_rel(jit, addrs[i + off + 1])) {
1596			/* crj or cgrj %dst,%src,mask,off */
1597			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1598				    dst_reg, src_reg, i, off, mask);
1599		} else {
1600			/* cr or cgr %dst,%src */
1601			if (is_jmp32)
1602				EMIT2(0x1900, dst_reg, src_reg);
1603			else
1604				EMIT4(0xb9200000, dst_reg, src_reg);
1605			/* brcl mask,off */
1606			EMIT6_PCREL_RILC(0xc0040000,
1607					 mask >> 12, addrs[i + off + 1]);
1608		}
1609		break;
1610branch_xu:
1611		is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1612		if (!is_first_pass(jit) &&
1613		    can_use_rel(jit, addrs[i + off + 1])) {
1614			/* clrj or clgrj %dst,%src,mask,off */
1615			EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1616				    dst_reg, src_reg, i, off, mask);
1617		} else {
1618			/* clr or clgr %dst,%src */
1619			if (is_jmp32)
1620				EMIT2(0x1500, dst_reg, src_reg);
1621			else
1622				EMIT4(0xb9210000, dst_reg, src_reg);
1623			/* brcl mask,off */
1624			EMIT6_PCREL_RILC(0xc0040000,
1625					 mask >> 12, addrs[i + off + 1]);
1626		}
1627		break;
1628branch_oc:
1629		if (!is_first_pass(jit) &&
1630		    can_use_rel(jit, addrs[i + off + 1])) {
1631			/* brc mask,off */
1632			EMIT4_PCREL_RIC(0xa7040000,
1633					mask >> 12, addrs[i + off + 1]);
1634		} else {
1635			/* brcl mask,off */
1636			EMIT6_PCREL_RILC(0xc0040000,
1637					 mask >> 12, addrs[i + off + 1]);
1638		}
1639		break;
1640	}
1641	default: /* too complex, give up */
1642		pr_err("Unknown opcode %02x\n", insn->code);
1643		return -1;
1644	}
1645
1646	if (probe_prg != -1) {
1647		/*
1648		 * Handlers of certain exceptions leave psw.addr pointing to
1649		 * the instruction directly after the failing one. Therefore,
1650		 * create two exception table entries and also add a nop in
1651		 * case two probing instructions come directly after each
1652		 * other.
1653		 */
1654		nop_prg = jit->prg;
1655		/* bcr 0,%0 */
1656		_EMIT2(0x0700);
1657		err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1658		if (err < 0)
1659			return err;
1660	}
1661
1662	return insn_count;
1663}
1664
1665/*
1666 * Return whether new i-th instruction address does not violate any invariant
1667 */
1668static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1669{
1670	/* On the first pass anything goes */
1671	if (is_first_pass(jit))
1672		return true;
1673
1674	/* The codegen pass must not change anything */
1675	if (is_codegen_pass(jit))
1676		return jit->addrs[i] == jit->prg;
1677
1678	/* Passes in between must not increase code size */
1679	return jit->addrs[i] >= jit->prg;
1680}
1681
1682/*
1683 * Update the address of i-th instruction
1684 */
1685static int bpf_set_addr(struct bpf_jit *jit, int i)
1686{
1687	int delta;
1688
1689	if (is_codegen_pass(jit)) {
1690		delta = jit->prg - jit->addrs[i];
1691		if (delta < 0)
1692			bpf_skip(jit, -delta);
1693	}
1694	if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1695		return -1;
1696	jit->addrs[i] = jit->prg;
1697	return 0;
1698}
1699
1700/*
1701 * Compile eBPF program into s390x code
1702 */
1703static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1704			bool extra_pass, u32 stack_depth)
1705{
1706	int i, insn_count, lit32_size, lit64_size;
1707
1708	jit->lit32 = jit->lit32_start;
1709	jit->lit64 = jit->lit64_start;
1710	jit->prg = 0;
1711	jit->excnt = 0;
1712
1713	bpf_jit_prologue(jit, stack_depth);
1714	if (bpf_set_addr(jit, 0) < 0)
1715		return -1;
1716	for (i = 0; i < fp->len; i += insn_count) {
1717		insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1718		if (insn_count < 0)
1719			return -1;
1720		/* Next instruction address */
1721		if (bpf_set_addr(jit, i + insn_count) < 0)
1722			return -1;
1723	}
1724	bpf_jit_epilogue(jit, stack_depth);
1725
1726	lit32_size = jit->lit32 - jit->lit32_start;
1727	lit64_size = jit->lit64 - jit->lit64_start;
1728	jit->lit32_start = jit->prg;
1729	if (lit32_size)
1730		jit->lit32_start = ALIGN(jit->lit32_start, 4);
1731	jit->lit64_start = jit->lit32_start + lit32_size;
1732	if (lit64_size)
1733		jit->lit64_start = ALIGN(jit->lit64_start, 8);
1734	jit->size = jit->lit64_start + lit64_size;
1735	jit->size_prg = jit->prg;
1736
1737	if (WARN_ON_ONCE(fp->aux->extable &&
1738			 jit->excnt != fp->aux->num_exentries))
1739		/* Verifier bug - too many entries. */
1740		return -1;
1741
1742	return 0;
1743}
1744
1745bool bpf_jit_needs_zext(void)
1746{
1747	return true;
1748}
1749
1750struct s390_jit_data {
1751	struct bpf_binary_header *header;
1752	struct bpf_jit ctx;
1753	int pass;
1754};
1755
1756static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1757					       struct bpf_prog *fp)
1758{
1759	struct bpf_binary_header *header;
1760	u32 extable_size;
1761	u32 code_size;
1762
1763	/* We need two entries per insn. */
1764	fp->aux->num_exentries *= 2;
1765
1766	code_size = roundup(jit->size,
1767			    __alignof__(struct exception_table_entry));
1768	extable_size = fp->aux->num_exentries *
1769		sizeof(struct exception_table_entry);
1770	header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1771				      8, jit_fill_hole);
1772	if (!header)
1773		return NULL;
1774	fp->aux->extable = (struct exception_table_entry *)
1775		(jit->prg_buf + code_size);
1776	return header;
1777}
1778
1779/*
1780 * Compile eBPF program "fp"
1781 */
1782struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1783{
1784	u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1785	struct bpf_prog *tmp, *orig_fp = fp;
1786	struct bpf_binary_header *header;
1787	struct s390_jit_data *jit_data;
1788	bool tmp_blinded = false;
1789	bool extra_pass = false;
1790	struct bpf_jit jit;
1791	int pass;
1792
1793	if (!fp->jit_requested)
1794		return orig_fp;
1795
1796	tmp = bpf_jit_blind_constants(fp);
1797	/*
1798	 * If blinding was requested and we failed during blinding,
1799	 * we must fall back to the interpreter.
1800	 */
1801	if (IS_ERR(tmp))
1802		return orig_fp;
1803	if (tmp != fp) {
1804		tmp_blinded = true;
1805		fp = tmp;
1806	}
1807
1808	jit_data = fp->aux->jit_data;
1809	if (!jit_data) {
1810		jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1811		if (!jit_data) {
1812			fp = orig_fp;
1813			goto out;
1814		}
1815		fp->aux->jit_data = jit_data;
1816	}
1817	if (jit_data->ctx.addrs) {
1818		jit = jit_data->ctx;
1819		header = jit_data->header;
1820		extra_pass = true;
1821		pass = jit_data->pass + 1;
1822		goto skip_init_ctx;
1823	}
1824
1825	memset(&jit, 0, sizeof(jit));
1826	jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1827	if (jit.addrs == NULL) {
1828		fp = orig_fp;
1829		goto free_addrs;
1830	}
1831	/*
1832	 * Three initial passes:
1833	 *   - 1/2: Determine clobbered registers
1834	 *   - 3:   Calculate program size and addrs arrray
1835	 */
1836	for (pass = 1; pass <= 3; pass++) {
1837		if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1838			fp = orig_fp;
1839			goto free_addrs;
1840		}
1841	}
1842	/*
1843	 * Final pass: Allocate and generate program
1844	 */
1845	header = bpf_jit_alloc(&jit, fp);
1846	if (!header) {
1847		fp = orig_fp;
1848		goto free_addrs;
1849	}
1850skip_init_ctx:
1851	if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1852		bpf_jit_binary_free(header);
1853		fp = orig_fp;
1854		goto free_addrs;
1855	}
1856	if (bpf_jit_enable > 1) {
1857		bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1858		print_fn_code(jit.prg_buf, jit.size_prg);
1859	}
1860	if (!fp->is_func || extra_pass) {
1861		bpf_jit_binary_lock_ro(header);
1862	} else {
1863		jit_data->header = header;
1864		jit_data->ctx = jit;
1865		jit_data->pass = pass;
1866	}
1867	fp->bpf_func = (void *) jit.prg_buf;
1868	fp->jited = 1;
1869	fp->jited_len = jit.size;
1870
1871	if (!fp->is_func || extra_pass) {
1872		bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1873free_addrs:
1874		kvfree(jit.addrs);
1875		kfree(jit_data);
1876		fp->aux->jit_data = NULL;
1877	}
1878out:
1879	if (tmp_blinded)
1880		bpf_jit_prog_release_other(fp, fp == orig_fp ?
1881					   tmp : orig_fp);
1882	return fp;
1883}