Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Apr 14-17, 2025
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *	x86 SMP booting functions
   4 *
   5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *	Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *	Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *	whom a great many thanks are extended.
  11 *
  12 *	Thanks to Intel for making available several different Pentium,
  13 *	Pentium Pro and Pentium-II/Xeon MP machines.
  14 *	Original development of Linux SMP code supported by Caldera.
  15 *
  16 *	Fixes
  17 *		Felix Koop	:	NR_CPUS used properly
  18 *		Jose Renau	:	Handle single CPU case.
  19 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  20 *		Greg Wright	:	Fix for kernel stacks panic.
  21 *		Erich Boleyn	:	MP v1.4 and additional changes.
  22 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  23 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  24 *	Michael Chastain	:	Change trampoline.S to gnu as.
  25 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  26 *		Ingo Molnar	:	Added APIC timers, based on code
  27 *					from Jose Renau
  28 *		Ingo Molnar	:	various cleanups and rewrites
  29 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  30 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  31 *	Andi Kleen		:	Changed for SMP boot into long mode.
  32 *		Martin J. Bligh	: 	Added support for multi-quad systems
  33 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  34 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *	Ashok Raj		: 	CPU hotplug support
  37 *	Glauber Costa		:	i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
  56#include <linux/kexec.h>
  57#include <linux/numa.h>
  58#include <linux/pgtable.h>
  59#include <linux/overflow.h>
  60#include <linux/stackprotector.h>
  61#include <linux/cpuhotplug.h>
  62#include <linux/mc146818rtc.h>
  63#include <linux/acpi.h>
  64
  65#include <asm/acpi.h>
  66#include <asm/cacheinfo.h>
  67#include <asm/desc.h>
  68#include <asm/nmi.h>
  69#include <asm/irq.h>
  70#include <asm/realmode.h>
  71#include <asm/cpu.h>
  72#include <asm/numa.h>
  73#include <asm/tlbflush.h>
  74#include <asm/mtrr.h>
  75#include <asm/mwait.h>
  76#include <asm/apic.h>
  77#include <asm/io_apic.h>
  78#include <asm/fpu/api.h>
  79#include <asm/setup.h>
  80#include <asm/uv/uv.h>
  81#include <asm/microcode.h>
  82#include <asm/i8259.h>
  83#include <asm/misc.h>
  84#include <asm/qspinlock.h>
  85#include <asm/intel-family.h>
  86#include <asm/cpu_device_id.h>
  87#include <asm/spec-ctrl.h>
  88#include <asm/hw_irq.h>
  89#include <asm/stackprotector.h>
  90#include <asm/sev.h>
  91#include <asm/spec-ctrl.h>
  92
  93/* representing HT siblings of each logical CPU */
  94DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  95EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  96
  97/* representing HT and core siblings of each logical CPU */
  98DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  99EXPORT_PER_CPU_SYMBOL(cpu_core_map);
 100
 101/* representing HT, core, and die siblings of each logical CPU */
 102DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
 103EXPORT_PER_CPU_SYMBOL(cpu_die_map);
 104
 105/* CPUs which are the primary SMT threads */
 106struct cpumask __cpu_primary_thread_mask __read_mostly;
 107
 108/* Representing CPUs for which sibling maps can be computed */
 109static cpumask_var_t cpu_sibling_setup_mask;
 110
 111struct mwait_cpu_dead {
 112	unsigned int	control;
 113	unsigned int	status;
 114};
 115
 116#define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
 117#define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
 118
 119/*
 120 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
 121 * that it's unlikely to be touched by other CPUs.
 122 */
 123static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
 124
 125/* Maximum number of SMT threads on any online core */
 126int __read_mostly __max_smt_threads = 1;
 127
 128/* Flag to indicate if a complete sched domain rebuild is required */
 129bool x86_topology_update;
 130
 131int arch_update_cpu_topology(void)
 132{
 133	int retval = x86_topology_update;
 134
 135	x86_topology_update = false;
 136	return retval;
 137}
 138
 139static unsigned int smpboot_warm_reset_vector_count;
 140
 141static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 142{
 143	unsigned long flags;
 144
 145	spin_lock_irqsave(&rtc_lock, flags);
 146	if (!smpboot_warm_reset_vector_count++) {
 147		CMOS_WRITE(0xa, 0xf);
 148		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
 149		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
 150	}
 151	spin_unlock_irqrestore(&rtc_lock, flags);
 152}
 153
 154static inline void smpboot_restore_warm_reset_vector(void)
 155{
 156	unsigned long flags;
 157
 158	/*
 159	 * Paranoid:  Set warm reset code and vector here back
 160	 * to default values.
 161	 */
 162	spin_lock_irqsave(&rtc_lock, flags);
 163	if (!--smpboot_warm_reset_vector_count) {
 164		CMOS_WRITE(0, 0xf);
 165		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 166	}
 167	spin_unlock_irqrestore(&rtc_lock, flags);
 168
 169}
 170
 171/* Run the next set of setup steps for the upcoming CPU */
 172static void ap_starting(void)
 173{
 174	int cpuid = smp_processor_id();
 175
 176	/* Mop up eventual mwait_play_dead() wreckage */
 177	this_cpu_write(mwait_cpu_dead.status, 0);
 178	this_cpu_write(mwait_cpu_dead.control, 0);
 179
 180	/*
 181	 * If woken up by an INIT in an 82489DX configuration the alive
 182	 * synchronization guarantees that the CPU does not reach this
 183	 * point before an INIT_deassert IPI reaches the local APIC, so it
 184	 * is now safe to touch the local APIC.
 185	 *
 186	 * Set up this CPU, first the APIC, which is probably redundant on
 187	 * most boards.
 188	 */
 189	apic_ap_setup();
 190
 191	/* Save the processor parameters. */
 192	smp_store_cpu_info(cpuid);
 193
 194	/*
 195	 * The topology information must be up to date before
 196	 * notify_cpu_starting().
 197	 */
 198	set_cpu_sibling_map(cpuid);
 199
 200	ap_init_aperfmperf();
 201
 202	pr_debug("Stack at about %p\n", &cpuid);
 203
 204	wmb();
 205
 206	/*
 207	 * This runs the AP through all the cpuhp states to its target
 208	 * state CPUHP_ONLINE.
 209	 */
 210	notify_cpu_starting(cpuid);
 211}
 212
 213static void ap_calibrate_delay(void)
 214{
 215	/*
 216	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
 217	 * smp_store_cpu_info() stored a value that is close but not as
 218	 * accurate as the value just calculated.
 219	 *
 220	 * As this is invoked after the TSC synchronization check,
 221	 * calibrate_delay_is_known() will skip the calibration routine
 222	 * when TSC is synchronized across sockets.
 223	 */
 224	calibrate_delay();
 225	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
 226}
 227
 228/*
 229 * Activate a secondary processor.
 230 */
 231static void notrace start_secondary(void *unused)
 232{
 233	/*
 234	 * Don't put *anything* except direct CPU state initialization
 235	 * before cpu_init(), SMP booting is too fragile that we want to
 236	 * limit the things done here to the most necessary things.
 237	 */
 238	cr4_init();
 239
 240	/*
 241	 * 32-bit specific. 64-bit reaches this code with the correct page
 242	 * table established. Yet another historical divergence.
 243	 */
 244	if (IS_ENABLED(CONFIG_X86_32)) {
 245		/* switch away from the initial page table */
 246		load_cr3(swapper_pg_dir);
 247		__flush_tlb_all();
 248	}
 249
 250	cpu_init_exception_handling(false);
 251
 252	/*
 253	 * Load the microcode before reaching the AP alive synchronization
 254	 * point below so it is not part of the full per CPU serialized
 255	 * bringup part when "parallel" bringup is enabled.
 256	 *
 257	 * That's even safe when hyperthreading is enabled in the CPU as
 258	 * the core code starts the primary threads first and leaves the
 259	 * secondary threads waiting for SIPI. Loading microcode on
 260	 * physical cores concurrently is a safe operation.
 261	 *
 262	 * This covers both the Intel specific issue that concurrent
 263	 * microcode loading on SMT siblings must be prohibited and the
 264	 * vendor independent issue`that microcode loading which changes
 265	 * CPUID, MSRs etc. must be strictly serialized to maintain
 266	 * software state correctness.
 267	 */
 268	load_ucode_ap();
 269
 270	/*
 271	 * Synchronization point with the hotplug core. Sets this CPUs
 272	 * synchronization state to ALIVE and spin-waits for the control CPU to
 273	 * release this CPU for further bringup.
 274	 */
 275	cpuhp_ap_sync_alive();
 276
 277	cpu_init();
 278	fpu__init_cpu();
 279	rcutree_report_cpu_starting(raw_smp_processor_id());
 280	x86_cpuinit.early_percpu_clock_init();
 281
 282	ap_starting();
 283
 284	/* Check TSC synchronization with the control CPU. */
 285	check_tsc_sync_target();
 286
 287	/*
 288	 * Calibrate the delay loop after the TSC synchronization check.
 289	 * This allows to skip the calibration when TSC is synchronized
 290	 * across sockets.
 291	 */
 292	ap_calibrate_delay();
 293
 294	speculative_store_bypass_ht_init();
 295
 296	/*
 297	 * Lock vector_lock, set CPU online and bring the vector
 298	 * allocator online. Online must be set with vector_lock held
 299	 * to prevent a concurrent irq setup/teardown from seeing a
 300	 * half valid vector space.
 301	 */
 302	lock_vector_lock();
 303	set_cpu_online(smp_processor_id(), true);
 304	lapic_online();
 305	unlock_vector_lock();
 306	x86_platform.nmi_init();
 307
 308	/* enable local interrupts */
 309	local_irq_enable();
 310
 311	x86_cpuinit.setup_percpu_clockev();
 312
 313	wmb();
 314	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 315}
 316
 317/*
 318 * The bootstrap kernel entry code has set these up. Save them for
 319 * a given CPU
 320 */
 321void smp_store_cpu_info(int id)
 322{
 323	struct cpuinfo_x86 *c = &cpu_data(id);
 324
 325	/* Copy boot_cpu_data only on the first bringup */
 326	if (!c->initialized)
 327		*c = boot_cpu_data;
 328	c->cpu_index = id;
 329	/*
 330	 * During boot time, CPU0 has this setup already. Save the info when
 331	 * bringing up an AP.
 332	 */
 333	identify_secondary_cpu(c);
 334	c->initialized = true;
 335}
 336
 337static bool
 338topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 339{
 340	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 341
 342	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 343}
 344
 345static bool
 346topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 347{
 348	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 349
 350	return !WARN_ONCE(!topology_same_node(c, o),
 351		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 352		"[node: %d != %d]. Ignoring dependency.\n",
 353		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 354}
 355
 356#define link_mask(mfunc, c1, c2)					\
 357do {									\
 358	cpumask_set_cpu((c1), mfunc(c2));				\
 359	cpumask_set_cpu((c2), mfunc(c1));				\
 360} while (0)
 361
 362static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 363{
 364	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 365		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 366
 367		if (c->topo.pkg_id == o->topo.pkg_id &&
 368		    c->topo.die_id == o->topo.die_id &&
 369		    c->topo.amd_node_id == o->topo.amd_node_id &&
 370		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
 371			if (c->topo.core_id == o->topo.core_id)
 372				return topology_sane(c, o, "smt");
 373
 374			if ((c->topo.cu_id != 0xff) &&
 375			    (o->topo.cu_id != 0xff) &&
 376			    (c->topo.cu_id == o->topo.cu_id))
 377				return topology_sane(c, o, "smt");
 378		}
 379
 380	} else if (c->topo.pkg_id == o->topo.pkg_id &&
 381		   c->topo.die_id == o->topo.die_id &&
 382		   c->topo.core_id == o->topo.core_id) {
 383		return topology_sane(c, o, "smt");
 384	}
 385
 386	return false;
 387}
 388
 389static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 390{
 391	if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
 392		return false;
 393
 394	if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
 395		return c->topo.amd_node_id == o->topo.amd_node_id;
 396
 397	return true;
 398}
 399
 400static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 401{
 402	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 403
 404	/* If the arch didn't set up l2c_id, fall back to SMT */
 405	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
 406		return match_smt(c, o);
 407
 408	/* Do not match if L2 cache id does not match: */
 409	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
 410		return false;
 411
 412	return topology_sane(c, o, "l2c");
 413}
 414
 415/*
 416 * Unlike the other levels, we do not enforce keeping a
 417 * multicore group inside a NUMA node.  If this happens, we will
 418 * discard the MC level of the topology later.
 419 */
 420static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 421{
 422	if (c->topo.pkg_id == o->topo.pkg_id)
 423		return true;
 424	return false;
 425}
 426
 427/*
 428 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 429 *
 430 * Any Intel CPU that has multiple nodes per package and does not
 431 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 432 *
 433 * When in SNC mode, these CPUs enumerate an LLC that is shared
 434 * by multiple NUMA nodes. The LLC is shared for off-package data
 435 * access but private to the NUMA node (half of the package) for
 436 * on-package access. CPUID (the source of the information about
 437 * the LLC) can only enumerate the cache as shared or unshared,
 438 * but not this particular configuration.
 439 */
 440
 441static const struct x86_cpu_id intel_cod_cpu[] = {
 442	X86_MATCH_VFM(INTEL_HASWELL_X,	 0),	/* COD */
 443	X86_MATCH_VFM(INTEL_BROADWELL_X, 0),	/* COD */
 444	X86_MATCH_VFM(INTEL_ANY,	 1),	/* SNC */
 445	{}
 446};
 447
 448static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 449{
 450	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
 451	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 452	bool intel_snc = id && id->driver_data;
 453
 454	/* Do not match if we do not have a valid APICID for cpu: */
 455	if (per_cpu_llc_id(cpu1) == BAD_APICID)
 456		return false;
 457
 458	/* Do not match if LLC id does not match: */
 459	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
 460		return false;
 461
 462	/*
 463	 * Allow the SNC topology without warning. Return of false
 464	 * means 'c' does not share the LLC of 'o'. This will be
 465	 * reflected to userspace.
 466	 */
 467	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
 468		return false;
 469
 470	return topology_sane(c, o, "llc");
 471}
 472
 473
 474static inline int x86_sched_itmt_flags(void)
 475{
 476	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 477}
 478
 479#ifdef CONFIG_SCHED_MC
 480static int x86_core_flags(void)
 481{
 482	return cpu_core_flags() | x86_sched_itmt_flags();
 483}
 484#endif
 485#ifdef CONFIG_SCHED_SMT
 486static int x86_smt_flags(void)
 487{
 488	return cpu_smt_flags();
 489}
 490#endif
 491#ifdef CONFIG_SCHED_CLUSTER
 492static int x86_cluster_flags(void)
 493{
 494	return cpu_cluster_flags() | x86_sched_itmt_flags();
 495}
 496#endif
 497
 
 
 
 
 
 
 
 
 498/*
 499 * Set if a package/die has multiple NUMA nodes inside.
 500 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 501 * Sub-NUMA Clustering have this.
 502 */
 503static bool x86_has_numa_in_package;
 504
 505static struct sched_domain_topology_level x86_topology[6];
 506
 507static void __init build_sched_topology(void)
 508{
 509	int i = 0;
 510
 511#ifdef CONFIG_SCHED_SMT
 512	x86_topology[i++] = (struct sched_domain_topology_level){
 513		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
 514	};
 515#endif
 516#ifdef CONFIG_SCHED_CLUSTER
 517	x86_topology[i++] = (struct sched_domain_topology_level){
 518		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
 519	};
 520#endif
 521#ifdef CONFIG_SCHED_MC
 522	x86_topology[i++] = (struct sched_domain_topology_level){
 523		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
 524	};
 525#endif
 526	/*
 527	 * When there is NUMA topology inside the package skip the PKG domain
 528	 * since the NUMA domains will auto-magically create the right spanning
 529	 * domains based on the SLIT.
 530	 */
 531	if (!x86_has_numa_in_package) {
 532		x86_topology[i++] = (struct sched_domain_topology_level){
 533			cpu_cpu_mask, x86_sched_itmt_flags, SD_INIT_NAME(PKG)
 534		};
 535	}
 536
 537	/*
 538	 * There must be one trailing NULL entry left.
 539	 */
 540	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
 541
 542	set_sched_topology(x86_topology);
 543}
 544
 545void set_cpu_sibling_map(int cpu)
 546{
 547	bool has_smt = __max_threads_per_core > 1;
 548	bool has_mp = has_smt || topology_num_cores_per_package() > 1;
 549	struct cpuinfo_x86 *c = &cpu_data(cpu);
 550	struct cpuinfo_x86 *o;
 551	int i, threads;
 552
 553	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 554
 555	if (!has_mp) {
 556		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 557		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 558		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
 559		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 560		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 561		c->booted_cores = 1;
 562		return;
 563	}
 564
 565	for_each_cpu(i, cpu_sibling_setup_mask) {
 566		o = &cpu_data(i);
 567
 568		if (match_pkg(c, o) && !topology_same_node(c, o))
 569			x86_has_numa_in_package = true;
 570
 571		if ((i == cpu) || (has_smt && match_smt(c, o)))
 572			link_mask(topology_sibling_cpumask, cpu, i);
 573
 574		if ((i == cpu) || (has_mp && match_llc(c, o)))
 575			link_mask(cpu_llc_shared_mask, cpu, i);
 576
 577		if ((i == cpu) || (has_mp && match_l2c(c, o)))
 578			link_mask(cpu_l2c_shared_mask, cpu, i);
 579
 580		if ((i == cpu) || (has_mp && match_die(c, o)))
 581			link_mask(topology_die_cpumask, cpu, i);
 582	}
 583
 584	threads = cpumask_weight(topology_sibling_cpumask(cpu));
 585	if (threads > __max_smt_threads)
 586		__max_smt_threads = threads;
 587
 588	for_each_cpu(i, topology_sibling_cpumask(cpu))
 589		cpu_data(i).smt_active = threads > 1;
 590
 591	/*
 592	 * This needs a separate iteration over the cpus because we rely on all
 593	 * topology_sibling_cpumask links to be set-up.
 594	 */
 595	for_each_cpu(i, cpu_sibling_setup_mask) {
 596		o = &cpu_data(i);
 597
 598		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 599			link_mask(topology_core_cpumask, cpu, i);
 600
 601			/*
 602			 *  Does this new cpu bringup a new core?
 603			 */
 604			if (threads == 1) {
 605				/*
 606				 * for each core in package, increment
 607				 * the booted_cores for this new cpu
 608				 */
 609				if (cpumask_first(
 610				    topology_sibling_cpumask(i)) == i)
 611					c->booted_cores++;
 612				/*
 613				 * increment the core count for all
 614				 * the other cpus in this package
 615				 */
 616				if (i != cpu)
 617					cpu_data(i).booted_cores++;
 618			} else if (i != cpu && !c->booted_cores)
 619				c->booted_cores = cpu_data(i).booted_cores;
 620		}
 621	}
 622}
 623
 624/* maps the cpu to the sched domain representing multi-core */
 625const struct cpumask *cpu_coregroup_mask(int cpu)
 626{
 627	return cpu_llc_shared_mask(cpu);
 628}
 629
 630const struct cpumask *cpu_clustergroup_mask(int cpu)
 631{
 632	return cpu_l2c_shared_mask(cpu);
 633}
 634EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
 635
 636static void impress_friends(void)
 637{
 638	int cpu;
 639	unsigned long bogosum = 0;
 640	/*
 641	 * Allow the user to impress friends.
 642	 */
 643	pr_debug("Before bogomips\n");
 644	for_each_online_cpu(cpu)
 645		bogosum += cpu_data(cpu).loops_per_jiffy;
 646
 647	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 648		num_online_cpus(),
 649		bogosum/(500000/HZ),
 650		(bogosum/(5000/HZ))%100);
 651
 652	pr_debug("Before bogocount - setting activated=1\n");
 653}
 654
 655/*
 656 * The Multiprocessor Specification 1.4 (1997) example code suggests
 657 * that there should be a 10ms delay between the BSP asserting INIT
 658 * and de-asserting INIT, when starting a remote processor.
 659 * But that slows boot and resume on modern processors, which include
 660 * many cores and don't require that delay.
 661 *
 662 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 663 * Modern processor families are quirked to remove the delay entirely.
 664 */
 665#define UDELAY_10MS_DEFAULT 10000
 666
 667static unsigned int init_udelay = UINT_MAX;
 668
 669static int __init cpu_init_udelay(char *str)
 670{
 671	get_option(&str, &init_udelay);
 672
 673	return 0;
 674}
 675early_param("cpu_init_udelay", cpu_init_udelay);
 676
 677static void __init smp_quirk_init_udelay(void)
 678{
 679	/* if cmdline changed it from default, leave it alone */
 680	if (init_udelay != UINT_MAX)
 681		return;
 682
 683	/* if modern processor, use no delay */
 684	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 685	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 686	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 687		init_udelay = 0;
 688		return;
 689	}
 690	/* else, use legacy delay */
 691	init_udelay = UDELAY_10MS_DEFAULT;
 692}
 693
 694/*
 695 * Wake up AP by INIT, INIT, STARTUP sequence.
 696 */
 697static void send_init_sequence(u32 phys_apicid)
 698{
 699	int maxlvt = lapic_get_maxlvt();
 700
 701	/* Be paranoid about clearing APIC errors. */
 702	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 703		/* Due to the Pentium erratum 3AP.  */
 704		if (maxlvt > 3)
 705			apic_write(APIC_ESR, 0);
 706		apic_read(APIC_ESR);
 707	}
 708
 709	/* Assert INIT on the target CPU */
 710	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
 711	safe_apic_wait_icr_idle();
 712
 713	udelay(init_udelay);
 714
 715	/* Deassert INIT on the target CPU */
 716	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 717	safe_apic_wait_icr_idle();
 718}
 719
 720/*
 721 * Wake up AP by INIT, INIT, STARTUP sequence.
 722 */
 723static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
 724{
 725	unsigned long send_status = 0, accept_status = 0;
 726	int num_starts, j, maxlvt;
 727
 728	preempt_disable();
 729	maxlvt = lapic_get_maxlvt();
 730	send_init_sequence(phys_apicid);
 731
 732	mb();
 733
 734	/*
 735	 * Should we send STARTUP IPIs ?
 736	 *
 737	 * Determine this based on the APIC version.
 738	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 739	 */
 740	if (APIC_INTEGRATED(boot_cpu_apic_version))
 741		num_starts = 2;
 742	else
 743		num_starts = 0;
 744
 745	/*
 746	 * Run STARTUP IPI loop.
 747	 */
 748	pr_debug("#startup loops: %d\n", num_starts);
 749
 750	for (j = 1; j <= num_starts; j++) {
 751		pr_debug("Sending STARTUP #%d\n", j);
 752		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 753			apic_write(APIC_ESR, 0);
 754		apic_read(APIC_ESR);
 755		pr_debug("After apic_write\n");
 756
 757		/*
 758		 * STARTUP IPI
 759		 */
 760
 761		/* Target chip */
 762		/* Boot on the stack */
 763		/* Kick the second */
 764		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 765			       phys_apicid);
 766
 767		/*
 768		 * Give the other CPU some time to accept the IPI.
 769		 */
 770		if (init_udelay == 0)
 771			udelay(10);
 772		else
 773			udelay(300);
 774
 775		pr_debug("Startup point 1\n");
 776
 777		pr_debug("Waiting for send to finish...\n");
 778		send_status = safe_apic_wait_icr_idle();
 779
 780		/*
 781		 * Give the other CPU some time to accept the IPI.
 782		 */
 783		if (init_udelay == 0)
 784			udelay(10);
 785		else
 786			udelay(200);
 787
 788		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 789			apic_write(APIC_ESR, 0);
 790		accept_status = (apic_read(APIC_ESR) & 0xEF);
 791		if (send_status || accept_status)
 792			break;
 793	}
 794	pr_debug("After Startup\n");
 795
 796	if (send_status)
 797		pr_err("APIC never delivered???\n");
 798	if (accept_status)
 799		pr_err("APIC delivery error (%lx)\n", accept_status);
 800
 801	preempt_enable();
 802	return (send_status | accept_status);
 803}
 804
 805/* reduce the number of lines printed when booting a large cpu count system */
 806static void announce_cpu(int cpu, int apicid)
 807{
 808	static int width, node_width, first = 1;
 809	static int current_node = NUMA_NO_NODE;
 810	int node = early_cpu_to_node(cpu);
 811
 812	if (!width)
 813		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 814
 815	if (!node_width)
 816		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 817
 818	if (system_state < SYSTEM_RUNNING) {
 819		if (first)
 820			pr_info("x86: Booting SMP configuration:\n");
 821
 822		if (node != current_node) {
 823			if (current_node > (-1))
 824				pr_cont("\n");
 825			current_node = node;
 826
 827			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 828			       node_width - num_digits(node), " ", node);
 829		}
 830
 831		/* Add padding for the BSP */
 832		if (first)
 833			pr_cont("%*s", width + 1, " ");
 834		first = 0;
 835
 836		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 837	} else
 838		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 839			node, cpu, apicid);
 840}
 841
 842int common_cpu_up(unsigned int cpu, struct task_struct *idle)
 843{
 844	int ret;
 845
 846	/* Just in case we booted with a single CPU. */
 847	alternatives_enable_smp();
 848
 849	per_cpu(pcpu_hot.current_task, cpu) = idle;
 850	cpu_init_stack_canary(cpu, idle);
 851
 852	/* Initialize the interrupt stack(s) */
 853	ret = irq_init_percpu_irqstack(cpu);
 854	if (ret)
 855		return ret;
 856
 857#ifdef CONFIG_X86_32
 858	/* Stack for startup_32 can be just as for start_secondary onwards */
 859	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
 860#endif
 861	return 0;
 862}
 863
 864/*
 865 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 866 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 867 * Returns zero if startup was successfully sent, else error code from
 868 * ->wakeup_secondary_cpu.
 869 */
 870static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
 871{
 872	unsigned long start_ip = real_mode_header->trampoline_start;
 873	int ret;
 874
 875#ifdef CONFIG_X86_64
 876	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
 877	if (apic->wakeup_secondary_cpu_64)
 878		start_ip = real_mode_header->trampoline_start64;
 879#endif
 880	idle->thread.sp = (unsigned long)task_pt_regs(idle);
 881	initial_code = (unsigned long)start_secondary;
 882
 883	if (IS_ENABLED(CONFIG_X86_32)) {
 884		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
 885		initial_stack  = idle->thread.sp;
 886	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
 887		smpboot_control = cpu;
 888	}
 889
 890	/* Enable the espfix hack for this CPU */
 891	init_espfix_ap(cpu);
 892
 893	/* So we see what's up */
 894	announce_cpu(cpu, apicid);
 895
 896	/*
 897	 * This grunge runs the startup process for
 898	 * the targeted processor.
 899	 */
 900	if (x86_platform.legacy.warm_reset) {
 901
 902		pr_debug("Setting warm reset code and vector.\n");
 903
 904		smpboot_setup_warm_reset_vector(start_ip);
 905		/*
 906		 * Be paranoid about clearing APIC errors.
 907		*/
 908		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 909			apic_write(APIC_ESR, 0);
 910			apic_read(APIC_ESR);
 911		}
 912	}
 913
 914	smp_mb();
 915
 916	/*
 917	 * Wake up a CPU in difference cases:
 918	 * - Use a method from the APIC driver if one defined, with wakeup
 919	 *   straight to 64-bit mode preferred over wakeup to RM.
 920	 * Otherwise,
 921	 * - Use an INIT boot APIC message
 922	 */
 923	if (apic->wakeup_secondary_cpu_64)
 924		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
 925	else if (apic->wakeup_secondary_cpu)
 926		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
 927	else
 928		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
 929
 930	/* If the wakeup mechanism failed, cleanup the warm reset vector */
 931	if (ret)
 932		arch_cpuhp_cleanup_kick_cpu(cpu);
 933	return ret;
 934}
 935
 936int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
 937{
 938	u32 apicid = apic->cpu_present_to_apicid(cpu);
 939	int err;
 940
 941	lockdep_assert_irqs_enabled();
 942
 943	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
 944
 945	if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
 946		pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
 947		return -EINVAL;
 948	}
 949
 950	if (!test_bit(apicid, phys_cpu_present_map)) {
 951		pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
 952		return -EINVAL;
 953	}
 954
 955	/*
 956	 * Save current MTRR state in case it was changed since early boot
 957	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
 958	 */
 959	mtrr_save_state();
 960
 961	/* the FPU context is blank, nobody can own it */
 962	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
 963
 964	err = common_cpu_up(cpu, tidle);
 965	if (err)
 966		return err;
 967
 968	err = do_boot_cpu(apicid, cpu, tidle);
 969	if (err)
 970		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
 971
 972	return err;
 973}
 974
 975int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
 976{
 977	return smp_ops.kick_ap_alive(cpu, tidle);
 978}
 979
 980void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
 981{
 982	/* Cleanup possible dangling ends... */
 983	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
 984		smpboot_restore_warm_reset_vector();
 985}
 986
 987void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
 988{
 989	if (smp_ops.cleanup_dead_cpu)
 990		smp_ops.cleanup_dead_cpu(cpu);
 991
 992	if (system_state == SYSTEM_RUNNING)
 993		pr_info("CPU %u is now offline\n", cpu);
 994}
 995
 996void arch_cpuhp_sync_state_poll(void)
 997{
 998	if (smp_ops.poll_sync_state)
 999		smp_ops.poll_sync_state();
1000}
1001
1002/**
1003 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1004 */
1005void __init arch_disable_smp_support(void)
1006{
1007	disable_ioapic_support();
1008}
1009
1010/*
1011 * Fall back to non SMP mode after errors.
1012 *
1013 * RED-PEN audit/test this more. I bet there is more state messed up here.
1014 */
1015static __init void disable_smp(void)
1016{
1017	pr_info("SMP disabled\n");
1018
1019	disable_ioapic_support();
1020	topology_reset_possible_cpus_up();
1021
1022	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1023	cpumask_set_cpu(0, topology_core_cpumask(0));
1024	cpumask_set_cpu(0, topology_die_cpumask(0));
1025}
1026
1027void __init smp_prepare_cpus_common(void)
1028{
1029	unsigned int cpu, node;
1030
1031	/* Mark all except the boot CPU as hotpluggable */
1032	for_each_possible_cpu(cpu) {
1033		if (cpu)
1034			per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids;
1035	}
1036
1037	for_each_possible_cpu(cpu) {
1038		node = cpu_to_node(cpu);
1039
1040		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map,    cpu), GFP_KERNEL, node);
1041		zalloc_cpumask_var_node(&per_cpu(cpu_core_map,       cpu), GFP_KERNEL, node);
1042		zalloc_cpumask_var_node(&per_cpu(cpu_die_map,        cpu), GFP_KERNEL, node);
1043		zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node);
1044		zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node);
1045	}
1046
1047	set_cpu_sibling_map(0);
1048}
1049
1050void __init smp_prepare_boot_cpu(void)
1051{
1052	smp_ops.smp_prepare_boot_cpu();
1053}
1054
1055#ifdef CONFIG_X86_64
1056/* Establish whether parallel bringup can be supported. */
1057bool __init arch_cpuhp_init_parallel_bringup(void)
1058{
1059	if (!x86_cpuinit.parallel_bringup) {
1060		pr_info("Parallel CPU startup disabled by the platform\n");
1061		return false;
1062	}
1063
1064	smpboot_control = STARTUP_READ_APICID;
1065	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1066	return true;
1067}
1068#endif
1069
1070/*
1071 * Prepare for SMP bootup.
1072 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1073 *            for common interface support.
1074 */
1075void __init native_smp_prepare_cpus(unsigned int max_cpus)
1076{
1077	smp_prepare_cpus_common();
1078
1079	switch (apic_intr_mode) {
1080	case APIC_PIC:
1081	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1082		disable_smp();
1083		return;
1084	case APIC_SYMMETRIC_IO_NO_ROUTING:
1085		disable_smp();
1086		/* Setup local timer */
1087		x86_init.timers.setup_percpu_clockev();
1088		return;
1089	case APIC_VIRTUAL_WIRE:
1090	case APIC_SYMMETRIC_IO:
1091		break;
1092	}
1093
1094	/* Setup local timer */
1095	x86_init.timers.setup_percpu_clockev();
1096
1097	pr_info("CPU0: ");
1098	print_cpu_info(&cpu_data(0));
1099
1100	uv_system_init();
1101
1102	smp_quirk_init_udelay();
1103
1104	speculative_store_bypass_ht_init();
1105
1106	snp_set_wakeup_secondary_cpu();
1107}
1108
1109void arch_thaw_secondary_cpus_begin(void)
1110{
1111	set_cache_aps_delayed_init(true);
1112}
1113
1114void arch_thaw_secondary_cpus_end(void)
1115{
1116	cache_aps_init();
1117}
1118
1119/*
1120 * Early setup to make printk work.
1121 */
1122void __init native_smp_prepare_boot_cpu(void)
1123{
1124	int me = smp_processor_id();
1125
1126	/* SMP handles this from setup_per_cpu_areas() */
1127	if (!IS_ENABLED(CONFIG_SMP))
1128		switch_gdt_and_percpu_base(me);
1129
1130	native_pv_lock_init();
1131}
1132
1133void __init native_smp_cpus_done(unsigned int max_cpus)
1134{
1135	pr_debug("Boot done\n");
1136
1137	build_sched_topology();
1138	nmi_selftest();
1139	impress_friends();
1140	cache_aps_init();
1141}
1142
1143/* correctly size the local cpu masks */
1144void __init setup_cpu_local_masks(void)
1145{
1146	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1147}
1148
1149#ifdef CONFIG_HOTPLUG_CPU
1150
1151/* Recompute SMT state for all CPUs on offline */
1152static void recompute_smt_state(void)
1153{
1154	int max_threads, cpu;
1155
1156	max_threads = 0;
1157	for_each_online_cpu (cpu) {
1158		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1159
1160		if (threads > max_threads)
1161			max_threads = threads;
1162	}
1163	__max_smt_threads = max_threads;
1164}
1165
1166static void remove_siblinginfo(int cpu)
1167{
1168	int sibling;
1169	struct cpuinfo_x86 *c = &cpu_data(cpu);
1170
1171	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1172		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1173		/*/
1174		 * last thread sibling in this cpu core going down
1175		 */
1176		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1177			cpu_data(sibling).booted_cores--;
1178	}
1179
1180	for_each_cpu(sibling, topology_die_cpumask(cpu))
1181		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1182
1183	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1184		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1185		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1186			cpu_data(sibling).smt_active = false;
1187	}
1188
1189	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1190		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1191	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1192		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1193	cpumask_clear(cpu_llc_shared_mask(cpu));
1194	cpumask_clear(cpu_l2c_shared_mask(cpu));
1195	cpumask_clear(topology_sibling_cpumask(cpu));
1196	cpumask_clear(topology_core_cpumask(cpu));
1197	cpumask_clear(topology_die_cpumask(cpu));
1198	c->topo.core_id = 0;
1199	c->booted_cores = 0;
1200	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1201	recompute_smt_state();
1202}
1203
1204static void remove_cpu_from_maps(int cpu)
1205{
1206	set_cpu_online(cpu, false);
1207	numa_remove_cpu(cpu);
1208}
1209
1210void cpu_disable_common(void)
1211{
1212	int cpu = smp_processor_id();
1213
1214	remove_siblinginfo(cpu);
1215
1216	/* It's now safe to remove this processor from the online map */
1217	lock_vector_lock();
1218	remove_cpu_from_maps(cpu);
1219	unlock_vector_lock();
1220	fixup_irqs();
1221	lapic_offline();
1222}
1223
1224int native_cpu_disable(void)
1225{
1226	int ret;
1227
1228	ret = lapic_can_unplug_cpu();
1229	if (ret)
1230		return ret;
1231
1232	cpu_disable_common();
1233
1234        /*
1235         * Disable the local APIC. Otherwise IPI broadcasts will reach
1236         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1237         * messages.
1238         *
1239         * Disabling the APIC must happen after cpu_disable_common()
1240         * which invokes fixup_irqs().
1241         *
1242         * Disabling the APIC preserves already set bits in IRR, but
1243         * an interrupt arriving after disabling the local APIC does not
1244         * set the corresponding IRR bit.
1245         *
1246         * fixup_irqs() scans IRR for set bits so it can raise a not
1247         * yet handled interrupt on the new destination CPU via an IPI
1248         * but obviously it can't do so for IRR bits which are not set.
1249         * IOW, interrupts arriving after disabling the local APIC will
1250         * be lost.
1251         */
1252	apic_soft_disable();
1253
1254	return 0;
1255}
1256
1257void play_dead_common(void)
1258{
1259	idle_task_exit();
1260
1261	cpuhp_ap_report_dead();
1262
1263	local_irq_disable();
1264}
1265
1266/*
1267 * We need to flush the caches before going to sleep, lest we have
1268 * dirty data in our caches when we come back up.
1269 */
1270static inline void mwait_play_dead(void)
1271{
1272	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1273	unsigned int eax, ebx, ecx, edx;
1274	unsigned int highest_cstate = 0;
1275	unsigned int highest_subcstate = 0;
1276	int i;
1277
1278	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1279	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1280		return;
1281	if (!this_cpu_has(X86_FEATURE_MWAIT))
1282		return;
1283	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1284		return;
1285	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1286		return;
1287
1288	eax = CPUID_MWAIT_LEAF;
1289	ecx = 0;
1290	native_cpuid(&eax, &ebx, &ecx, &edx);
1291
1292	/*
1293	 * eax will be 0 if EDX enumeration is not valid.
1294	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1295	 */
1296	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1297		eax = 0;
1298	} else {
1299		edx >>= MWAIT_SUBSTATE_SIZE;
1300		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1301			if (edx & MWAIT_SUBSTATE_MASK) {
1302				highest_cstate = i;
1303				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1304			}
1305		}
1306		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1307			(highest_subcstate - 1);
1308	}
1309
1310	/* Set up state for the kexec() hack below */
1311	md->status = CPUDEAD_MWAIT_WAIT;
1312	md->control = CPUDEAD_MWAIT_WAIT;
1313
1314	wbinvd();
1315
1316	while (1) {
1317		/*
1318		 * The CLFLUSH is a workaround for erratum AAI65 for
1319		 * the Xeon 7400 series.  It's not clear it is actually
1320		 * needed, but it should be harmless in either case.
1321		 * The WBINVD is insufficient due to the spurious-wakeup
1322		 * case where we return around the loop.
1323		 */
1324		mb();
1325		clflush(md);
1326		mb();
1327		__monitor(md, 0, 0);
1328		mb();
1329		__mwait(eax, 0);
1330
1331		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1332			/*
1333			 * Kexec is about to happen. Don't go back into mwait() as
1334			 * the kexec kernel might overwrite text and data including
1335			 * page tables and stack. So mwait() would resume when the
1336			 * monitor cache line is written to and then the CPU goes
1337			 * south due to overwritten text, page tables and stack.
1338			 *
1339			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1340			 * SMI. They will resume execution at the instruction
1341			 * following the HLT instruction and run into the problem
1342			 * which this is trying to prevent.
1343			 */
1344			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1345			while(1)
1346				native_halt();
1347		}
1348	}
1349}
1350
1351/*
1352 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1353 * mwait_play_dead().
1354 */
1355void smp_kick_mwait_play_dead(void)
1356{
1357	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1358	struct mwait_cpu_dead *md;
1359	unsigned int cpu, i;
1360
1361	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1362		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1363
1364		/* Does it sit in mwait_play_dead() ? */
1365		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1366			continue;
1367
1368		/* Wait up to 5ms */
1369		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1370			/* Bring it out of mwait */
1371			WRITE_ONCE(md->control, newstate);
1372			udelay(5);
1373		}
1374
1375		if (READ_ONCE(md->status) != newstate)
1376			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1377	}
1378}
1379
1380void __noreturn hlt_play_dead(void)
1381{
1382	if (__this_cpu_read(cpu_info.x86) >= 4)
1383		wbinvd();
1384
1385	while (1)
1386		native_halt();
1387}
1388
1389/*
1390 * native_play_dead() is essentially a __noreturn function, but it can't
1391 * be marked as such as the compiler may complain about it.
1392 */
1393void native_play_dead(void)
1394{
1395	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1396		__update_spec_ctrl(0);
1397
1398	play_dead_common();
1399	tboot_shutdown(TB_SHUTDOWN_WFS);
1400
1401	mwait_play_dead();
1402	if (cpuidle_play_dead())
1403		hlt_play_dead();
1404}
1405
1406#else /* ... !CONFIG_HOTPLUG_CPU */
1407int native_cpu_disable(void)
1408{
1409	return -ENOSYS;
1410}
1411
1412void native_play_dead(void)
1413{
1414	BUG();
1415}
1416
1417#endif
v6.9.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *	x86 SMP booting functions
   4 *
   5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *	Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *	Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *	whom a great many thanks are extended.
  11 *
  12 *	Thanks to Intel for making available several different Pentium,
  13 *	Pentium Pro and Pentium-II/Xeon MP machines.
  14 *	Original development of Linux SMP code supported by Caldera.
  15 *
  16 *	Fixes
  17 *		Felix Koop	:	NR_CPUS used properly
  18 *		Jose Renau	:	Handle single CPU case.
  19 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  20 *		Greg Wright	:	Fix for kernel stacks panic.
  21 *		Erich Boleyn	:	MP v1.4 and additional changes.
  22 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  23 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  24 *	Michael Chastain	:	Change trampoline.S to gnu as.
  25 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  26 *		Ingo Molnar	:	Added APIC timers, based on code
  27 *					from Jose Renau
  28 *		Ingo Molnar	:	various cleanups and rewrites
  29 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  30 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  31 *	Andi Kleen		:	Changed for SMP boot into long mode.
  32 *		Martin J. Bligh	: 	Added support for multi-quad systems
  33 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  34 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *	Ashok Raj		: 	CPU hotplug support
  37 *	Glauber Costa		:	i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
  56#include <linux/kexec.h>
  57#include <linux/numa.h>
  58#include <linux/pgtable.h>
  59#include <linux/overflow.h>
  60#include <linux/stackprotector.h>
  61#include <linux/cpuhotplug.h>
  62#include <linux/mc146818rtc.h>
 
  63
  64#include <asm/acpi.h>
  65#include <asm/cacheinfo.h>
  66#include <asm/desc.h>
  67#include <asm/nmi.h>
  68#include <asm/irq.h>
  69#include <asm/realmode.h>
  70#include <asm/cpu.h>
  71#include <asm/numa.h>
  72#include <asm/tlbflush.h>
  73#include <asm/mtrr.h>
  74#include <asm/mwait.h>
  75#include <asm/apic.h>
  76#include <asm/io_apic.h>
  77#include <asm/fpu/api.h>
  78#include <asm/setup.h>
  79#include <asm/uv/uv.h>
  80#include <asm/microcode.h>
  81#include <asm/i8259.h>
  82#include <asm/misc.h>
  83#include <asm/qspinlock.h>
  84#include <asm/intel-family.h>
  85#include <asm/cpu_device_id.h>
  86#include <asm/spec-ctrl.h>
  87#include <asm/hw_irq.h>
  88#include <asm/stackprotector.h>
  89#include <asm/sev.h>
  90#include <asm/spec-ctrl.h>
  91
  92/* representing HT siblings of each logical CPU */
  93DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  94EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  95
  96/* representing HT and core siblings of each logical CPU */
  97DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  98EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  99
 100/* representing HT, core, and die siblings of each logical CPU */
 101DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
 102EXPORT_PER_CPU_SYMBOL(cpu_die_map);
 103
 104/* CPUs which are the primary SMT threads */
 105struct cpumask __cpu_primary_thread_mask __read_mostly;
 106
 107/* Representing CPUs for which sibling maps can be computed */
 108static cpumask_var_t cpu_sibling_setup_mask;
 109
 110struct mwait_cpu_dead {
 111	unsigned int	control;
 112	unsigned int	status;
 113};
 114
 115#define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
 116#define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
 117
 118/*
 119 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
 120 * that it's unlikely to be touched by other CPUs.
 121 */
 122static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
 123
 124/* Maximum number of SMT threads on any online core */
 125int __read_mostly __max_smt_threads = 1;
 126
 127/* Flag to indicate if a complete sched domain rebuild is required */
 128bool x86_topology_update;
 129
 130int arch_update_cpu_topology(void)
 131{
 132	int retval = x86_topology_update;
 133
 134	x86_topology_update = false;
 135	return retval;
 136}
 137
 138static unsigned int smpboot_warm_reset_vector_count;
 139
 140static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 141{
 142	unsigned long flags;
 143
 144	spin_lock_irqsave(&rtc_lock, flags);
 145	if (!smpboot_warm_reset_vector_count++) {
 146		CMOS_WRITE(0xa, 0xf);
 147		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
 148		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
 149	}
 150	spin_unlock_irqrestore(&rtc_lock, flags);
 151}
 152
 153static inline void smpboot_restore_warm_reset_vector(void)
 154{
 155	unsigned long flags;
 156
 157	/*
 158	 * Paranoid:  Set warm reset code and vector here back
 159	 * to default values.
 160	 */
 161	spin_lock_irqsave(&rtc_lock, flags);
 162	if (!--smpboot_warm_reset_vector_count) {
 163		CMOS_WRITE(0, 0xf);
 164		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 165	}
 166	spin_unlock_irqrestore(&rtc_lock, flags);
 167
 168}
 169
 170/* Run the next set of setup steps for the upcoming CPU */
 171static void ap_starting(void)
 172{
 173	int cpuid = smp_processor_id();
 174
 175	/* Mop up eventual mwait_play_dead() wreckage */
 176	this_cpu_write(mwait_cpu_dead.status, 0);
 177	this_cpu_write(mwait_cpu_dead.control, 0);
 178
 179	/*
 180	 * If woken up by an INIT in an 82489DX configuration the alive
 181	 * synchronization guarantees that the CPU does not reach this
 182	 * point before an INIT_deassert IPI reaches the local APIC, so it
 183	 * is now safe to touch the local APIC.
 184	 *
 185	 * Set up this CPU, first the APIC, which is probably redundant on
 186	 * most boards.
 187	 */
 188	apic_ap_setup();
 189
 190	/* Save the processor parameters. */
 191	smp_store_cpu_info(cpuid);
 192
 193	/*
 194	 * The topology information must be up to date before
 195	 * notify_cpu_starting().
 196	 */
 197	set_cpu_sibling_map(cpuid);
 198
 199	ap_init_aperfmperf();
 200
 201	pr_debug("Stack at about %p\n", &cpuid);
 202
 203	wmb();
 204
 205	/*
 206	 * This runs the AP through all the cpuhp states to its target
 207	 * state CPUHP_ONLINE.
 208	 */
 209	notify_cpu_starting(cpuid);
 210}
 211
 212static void ap_calibrate_delay(void)
 213{
 214	/*
 215	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
 216	 * smp_store_cpu_info() stored a value that is close but not as
 217	 * accurate as the value just calculated.
 218	 *
 219	 * As this is invoked after the TSC synchronization check,
 220	 * calibrate_delay_is_known() will skip the calibration routine
 221	 * when TSC is synchronized across sockets.
 222	 */
 223	calibrate_delay();
 224	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
 225}
 226
 227/*
 228 * Activate a secondary processor.
 229 */
 230static void notrace start_secondary(void *unused)
 231{
 232	/*
 233	 * Don't put *anything* except direct CPU state initialization
 234	 * before cpu_init(), SMP booting is too fragile that we want to
 235	 * limit the things done here to the most necessary things.
 236	 */
 237	cr4_init();
 238
 239	/*
 240	 * 32-bit specific. 64-bit reaches this code with the correct page
 241	 * table established. Yet another historical divergence.
 242	 */
 243	if (IS_ENABLED(CONFIG_X86_32)) {
 244		/* switch away from the initial page table */
 245		load_cr3(swapper_pg_dir);
 246		__flush_tlb_all();
 247	}
 248
 249	cpu_init_exception_handling();
 250
 251	/*
 252	 * Load the microcode before reaching the AP alive synchronization
 253	 * point below so it is not part of the full per CPU serialized
 254	 * bringup part when "parallel" bringup is enabled.
 255	 *
 256	 * That's even safe when hyperthreading is enabled in the CPU as
 257	 * the core code starts the primary threads first and leaves the
 258	 * secondary threads waiting for SIPI. Loading microcode on
 259	 * physical cores concurrently is a safe operation.
 260	 *
 261	 * This covers both the Intel specific issue that concurrent
 262	 * microcode loading on SMT siblings must be prohibited and the
 263	 * vendor independent issue`that microcode loading which changes
 264	 * CPUID, MSRs etc. must be strictly serialized to maintain
 265	 * software state correctness.
 266	 */
 267	load_ucode_ap();
 268
 269	/*
 270	 * Synchronization point with the hotplug core. Sets this CPUs
 271	 * synchronization state to ALIVE and spin-waits for the control CPU to
 272	 * release this CPU for further bringup.
 273	 */
 274	cpuhp_ap_sync_alive();
 275
 276	cpu_init();
 277	fpu__init_cpu();
 278	rcutree_report_cpu_starting(raw_smp_processor_id());
 279	x86_cpuinit.early_percpu_clock_init();
 280
 281	ap_starting();
 282
 283	/* Check TSC synchronization with the control CPU. */
 284	check_tsc_sync_target();
 285
 286	/*
 287	 * Calibrate the delay loop after the TSC synchronization check.
 288	 * This allows to skip the calibration when TSC is synchronized
 289	 * across sockets.
 290	 */
 291	ap_calibrate_delay();
 292
 293	speculative_store_bypass_ht_init();
 294
 295	/*
 296	 * Lock vector_lock, set CPU online and bring the vector
 297	 * allocator online. Online must be set with vector_lock held
 298	 * to prevent a concurrent irq setup/teardown from seeing a
 299	 * half valid vector space.
 300	 */
 301	lock_vector_lock();
 302	set_cpu_online(smp_processor_id(), true);
 303	lapic_online();
 304	unlock_vector_lock();
 305	x86_platform.nmi_init();
 306
 307	/* enable local interrupts */
 308	local_irq_enable();
 309
 310	x86_cpuinit.setup_percpu_clockev();
 311
 312	wmb();
 313	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 314}
 315
 316/*
 317 * The bootstrap kernel entry code has set these up. Save them for
 318 * a given CPU
 319 */
 320void smp_store_cpu_info(int id)
 321{
 322	struct cpuinfo_x86 *c = &cpu_data(id);
 323
 324	/* Copy boot_cpu_data only on the first bringup */
 325	if (!c->initialized)
 326		*c = boot_cpu_data;
 327	c->cpu_index = id;
 328	/*
 329	 * During boot time, CPU0 has this setup already. Save the info when
 330	 * bringing up an AP.
 331	 */
 332	identify_secondary_cpu(c);
 333	c->initialized = true;
 334}
 335
 336static bool
 337topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 338{
 339	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 340
 341	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 342}
 343
 344static bool
 345topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 346{
 347	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 348
 349	return !WARN_ONCE(!topology_same_node(c, o),
 350		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 351		"[node: %d != %d]. Ignoring dependency.\n",
 352		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 353}
 354
 355#define link_mask(mfunc, c1, c2)					\
 356do {									\
 357	cpumask_set_cpu((c1), mfunc(c2));				\
 358	cpumask_set_cpu((c2), mfunc(c1));				\
 359} while (0)
 360
 361static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 362{
 363	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 364		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 365
 366		if (c->topo.pkg_id == o->topo.pkg_id &&
 367		    c->topo.die_id == o->topo.die_id &&
 368		    c->topo.amd_node_id == o->topo.amd_node_id &&
 369		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
 370			if (c->topo.core_id == o->topo.core_id)
 371				return topology_sane(c, o, "smt");
 372
 373			if ((c->topo.cu_id != 0xff) &&
 374			    (o->topo.cu_id != 0xff) &&
 375			    (c->topo.cu_id == o->topo.cu_id))
 376				return topology_sane(c, o, "smt");
 377		}
 378
 379	} else if (c->topo.pkg_id == o->topo.pkg_id &&
 380		   c->topo.die_id == o->topo.die_id &&
 381		   c->topo.core_id == o->topo.core_id) {
 382		return topology_sane(c, o, "smt");
 383	}
 384
 385	return false;
 386}
 387
 388static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 389{
 390	if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
 391		return false;
 392
 393	if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
 394		return c->topo.amd_node_id == o->topo.amd_node_id;
 395
 396	return true;
 397}
 398
 399static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 400{
 401	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 402
 403	/* If the arch didn't set up l2c_id, fall back to SMT */
 404	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
 405		return match_smt(c, o);
 406
 407	/* Do not match if L2 cache id does not match: */
 408	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
 409		return false;
 410
 411	return topology_sane(c, o, "l2c");
 412}
 413
 414/*
 415 * Unlike the other levels, we do not enforce keeping a
 416 * multicore group inside a NUMA node.  If this happens, we will
 417 * discard the MC level of the topology later.
 418 */
 419static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 420{
 421	if (c->topo.pkg_id == o->topo.pkg_id)
 422		return true;
 423	return false;
 424}
 425
 426/*
 427 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 428 *
 429 * Any Intel CPU that has multiple nodes per package and does not
 430 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 431 *
 432 * When in SNC mode, these CPUs enumerate an LLC that is shared
 433 * by multiple NUMA nodes. The LLC is shared for off-package data
 434 * access but private to the NUMA node (half of the package) for
 435 * on-package access. CPUID (the source of the information about
 436 * the LLC) can only enumerate the cache as shared or unshared,
 437 * but not this particular configuration.
 438 */
 439
 440static const struct x86_cpu_id intel_cod_cpu[] = {
 441	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
 442	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
 443	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
 444	{}
 445};
 446
 447static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 448{
 449	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
 450	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 451	bool intel_snc = id && id->driver_data;
 452
 453	/* Do not match if we do not have a valid APICID for cpu: */
 454	if (per_cpu_llc_id(cpu1) == BAD_APICID)
 455		return false;
 456
 457	/* Do not match if LLC id does not match: */
 458	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
 459		return false;
 460
 461	/*
 462	 * Allow the SNC topology without warning. Return of false
 463	 * means 'c' does not share the LLC of 'o'. This will be
 464	 * reflected to userspace.
 465	 */
 466	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
 467		return false;
 468
 469	return topology_sane(c, o, "llc");
 470}
 471
 472
 473static inline int x86_sched_itmt_flags(void)
 474{
 475	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 476}
 477
 478#ifdef CONFIG_SCHED_MC
 479static int x86_core_flags(void)
 480{
 481	return cpu_core_flags() | x86_sched_itmt_flags();
 482}
 483#endif
 484#ifdef CONFIG_SCHED_SMT
 485static int x86_smt_flags(void)
 486{
 487	return cpu_smt_flags();
 488}
 489#endif
 490#ifdef CONFIG_SCHED_CLUSTER
 491static int x86_cluster_flags(void)
 492{
 493	return cpu_cluster_flags() | x86_sched_itmt_flags();
 494}
 495#endif
 496
 497static int x86_die_flags(void)
 498{
 499	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
 500	       return x86_sched_itmt_flags();
 501
 502	return 0;
 503}
 504
 505/*
 506 * Set if a package/die has multiple NUMA nodes inside.
 507 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 508 * Sub-NUMA Clustering have this.
 509 */
 510static bool x86_has_numa_in_package;
 511
 512static struct sched_domain_topology_level x86_topology[6];
 513
 514static void __init build_sched_topology(void)
 515{
 516	int i = 0;
 517
 518#ifdef CONFIG_SCHED_SMT
 519	x86_topology[i++] = (struct sched_domain_topology_level){
 520		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
 521	};
 522#endif
 523#ifdef CONFIG_SCHED_CLUSTER
 524	x86_topology[i++] = (struct sched_domain_topology_level){
 525		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
 526	};
 527#endif
 528#ifdef CONFIG_SCHED_MC
 529	x86_topology[i++] = (struct sched_domain_topology_level){
 530		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
 531	};
 532#endif
 533	/*
 534	 * When there is NUMA topology inside the package skip the PKG domain
 535	 * since the NUMA domains will auto-magically create the right spanning
 536	 * domains based on the SLIT.
 537	 */
 538	if (!x86_has_numa_in_package) {
 539		x86_topology[i++] = (struct sched_domain_topology_level){
 540			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
 541		};
 542	}
 543
 544	/*
 545	 * There must be one trailing NULL entry left.
 546	 */
 547	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
 548
 549	set_sched_topology(x86_topology);
 550}
 551
 552void set_cpu_sibling_map(int cpu)
 553{
 554	bool has_smt = __max_threads_per_core > 1;
 555	bool has_mp = has_smt || topology_num_cores_per_package() > 1;
 556	struct cpuinfo_x86 *c = &cpu_data(cpu);
 557	struct cpuinfo_x86 *o;
 558	int i, threads;
 559
 560	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 561
 562	if (!has_mp) {
 563		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 564		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 565		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
 566		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 567		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 568		c->booted_cores = 1;
 569		return;
 570	}
 571
 572	for_each_cpu(i, cpu_sibling_setup_mask) {
 573		o = &cpu_data(i);
 574
 575		if (match_pkg(c, o) && !topology_same_node(c, o))
 576			x86_has_numa_in_package = true;
 577
 578		if ((i == cpu) || (has_smt && match_smt(c, o)))
 579			link_mask(topology_sibling_cpumask, cpu, i);
 580
 581		if ((i == cpu) || (has_mp && match_llc(c, o)))
 582			link_mask(cpu_llc_shared_mask, cpu, i);
 583
 584		if ((i == cpu) || (has_mp && match_l2c(c, o)))
 585			link_mask(cpu_l2c_shared_mask, cpu, i);
 586
 587		if ((i == cpu) || (has_mp && match_die(c, o)))
 588			link_mask(topology_die_cpumask, cpu, i);
 589	}
 590
 591	threads = cpumask_weight(topology_sibling_cpumask(cpu));
 592	if (threads > __max_smt_threads)
 593		__max_smt_threads = threads;
 594
 595	for_each_cpu(i, topology_sibling_cpumask(cpu))
 596		cpu_data(i).smt_active = threads > 1;
 597
 598	/*
 599	 * This needs a separate iteration over the cpus because we rely on all
 600	 * topology_sibling_cpumask links to be set-up.
 601	 */
 602	for_each_cpu(i, cpu_sibling_setup_mask) {
 603		o = &cpu_data(i);
 604
 605		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 606			link_mask(topology_core_cpumask, cpu, i);
 607
 608			/*
 609			 *  Does this new cpu bringup a new core?
 610			 */
 611			if (threads == 1) {
 612				/*
 613				 * for each core in package, increment
 614				 * the booted_cores for this new cpu
 615				 */
 616				if (cpumask_first(
 617				    topology_sibling_cpumask(i)) == i)
 618					c->booted_cores++;
 619				/*
 620				 * increment the core count for all
 621				 * the other cpus in this package
 622				 */
 623				if (i != cpu)
 624					cpu_data(i).booted_cores++;
 625			} else if (i != cpu && !c->booted_cores)
 626				c->booted_cores = cpu_data(i).booted_cores;
 627		}
 628	}
 629}
 630
 631/* maps the cpu to the sched domain representing multi-core */
 632const struct cpumask *cpu_coregroup_mask(int cpu)
 633{
 634	return cpu_llc_shared_mask(cpu);
 635}
 636
 637const struct cpumask *cpu_clustergroup_mask(int cpu)
 638{
 639	return cpu_l2c_shared_mask(cpu);
 640}
 641EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
 642
 643static void impress_friends(void)
 644{
 645	int cpu;
 646	unsigned long bogosum = 0;
 647	/*
 648	 * Allow the user to impress friends.
 649	 */
 650	pr_debug("Before bogomips\n");
 651	for_each_online_cpu(cpu)
 652		bogosum += cpu_data(cpu).loops_per_jiffy;
 653
 654	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 655		num_online_cpus(),
 656		bogosum/(500000/HZ),
 657		(bogosum/(5000/HZ))%100);
 658
 659	pr_debug("Before bogocount - setting activated=1\n");
 660}
 661
 662/*
 663 * The Multiprocessor Specification 1.4 (1997) example code suggests
 664 * that there should be a 10ms delay between the BSP asserting INIT
 665 * and de-asserting INIT, when starting a remote processor.
 666 * But that slows boot and resume on modern processors, which include
 667 * many cores and don't require that delay.
 668 *
 669 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 670 * Modern processor families are quirked to remove the delay entirely.
 671 */
 672#define UDELAY_10MS_DEFAULT 10000
 673
 674static unsigned int init_udelay = UINT_MAX;
 675
 676static int __init cpu_init_udelay(char *str)
 677{
 678	get_option(&str, &init_udelay);
 679
 680	return 0;
 681}
 682early_param("cpu_init_udelay", cpu_init_udelay);
 683
 684static void __init smp_quirk_init_udelay(void)
 685{
 686	/* if cmdline changed it from default, leave it alone */
 687	if (init_udelay != UINT_MAX)
 688		return;
 689
 690	/* if modern processor, use no delay */
 691	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 692	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 693	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 694		init_udelay = 0;
 695		return;
 696	}
 697	/* else, use legacy delay */
 698	init_udelay = UDELAY_10MS_DEFAULT;
 699}
 700
 701/*
 702 * Wake up AP by INIT, INIT, STARTUP sequence.
 703 */
 704static void send_init_sequence(u32 phys_apicid)
 705{
 706	int maxlvt = lapic_get_maxlvt();
 707
 708	/* Be paranoid about clearing APIC errors. */
 709	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 710		/* Due to the Pentium erratum 3AP.  */
 711		if (maxlvt > 3)
 712			apic_write(APIC_ESR, 0);
 713		apic_read(APIC_ESR);
 714	}
 715
 716	/* Assert INIT on the target CPU */
 717	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
 718	safe_apic_wait_icr_idle();
 719
 720	udelay(init_udelay);
 721
 722	/* Deassert INIT on the target CPU */
 723	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 724	safe_apic_wait_icr_idle();
 725}
 726
 727/*
 728 * Wake up AP by INIT, INIT, STARTUP sequence.
 729 */
 730static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
 731{
 732	unsigned long send_status = 0, accept_status = 0;
 733	int num_starts, j, maxlvt;
 734
 735	preempt_disable();
 736	maxlvt = lapic_get_maxlvt();
 737	send_init_sequence(phys_apicid);
 738
 739	mb();
 740
 741	/*
 742	 * Should we send STARTUP IPIs ?
 743	 *
 744	 * Determine this based on the APIC version.
 745	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 746	 */
 747	if (APIC_INTEGRATED(boot_cpu_apic_version))
 748		num_starts = 2;
 749	else
 750		num_starts = 0;
 751
 752	/*
 753	 * Run STARTUP IPI loop.
 754	 */
 755	pr_debug("#startup loops: %d\n", num_starts);
 756
 757	for (j = 1; j <= num_starts; j++) {
 758		pr_debug("Sending STARTUP #%d\n", j);
 759		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 760			apic_write(APIC_ESR, 0);
 761		apic_read(APIC_ESR);
 762		pr_debug("After apic_write\n");
 763
 764		/*
 765		 * STARTUP IPI
 766		 */
 767
 768		/* Target chip */
 769		/* Boot on the stack */
 770		/* Kick the second */
 771		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 772			       phys_apicid);
 773
 774		/*
 775		 * Give the other CPU some time to accept the IPI.
 776		 */
 777		if (init_udelay == 0)
 778			udelay(10);
 779		else
 780			udelay(300);
 781
 782		pr_debug("Startup point 1\n");
 783
 784		pr_debug("Waiting for send to finish...\n");
 785		send_status = safe_apic_wait_icr_idle();
 786
 787		/*
 788		 * Give the other CPU some time to accept the IPI.
 789		 */
 790		if (init_udelay == 0)
 791			udelay(10);
 792		else
 793			udelay(200);
 794
 795		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 796			apic_write(APIC_ESR, 0);
 797		accept_status = (apic_read(APIC_ESR) & 0xEF);
 798		if (send_status || accept_status)
 799			break;
 800	}
 801	pr_debug("After Startup\n");
 802
 803	if (send_status)
 804		pr_err("APIC never delivered???\n");
 805	if (accept_status)
 806		pr_err("APIC delivery error (%lx)\n", accept_status);
 807
 808	preempt_enable();
 809	return (send_status | accept_status);
 810}
 811
 812/* reduce the number of lines printed when booting a large cpu count system */
 813static void announce_cpu(int cpu, int apicid)
 814{
 815	static int width, node_width, first = 1;
 816	static int current_node = NUMA_NO_NODE;
 817	int node = early_cpu_to_node(cpu);
 818
 819	if (!width)
 820		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 821
 822	if (!node_width)
 823		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 824
 825	if (system_state < SYSTEM_RUNNING) {
 826		if (first)
 827			pr_info("x86: Booting SMP configuration:\n");
 828
 829		if (node != current_node) {
 830			if (current_node > (-1))
 831				pr_cont("\n");
 832			current_node = node;
 833
 834			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 835			       node_width - num_digits(node), " ", node);
 836		}
 837
 838		/* Add padding for the BSP */
 839		if (first)
 840			pr_cont("%*s", width + 1, " ");
 841		first = 0;
 842
 843		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 844	} else
 845		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 846			node, cpu, apicid);
 847}
 848
 849int common_cpu_up(unsigned int cpu, struct task_struct *idle)
 850{
 851	int ret;
 852
 853	/* Just in case we booted with a single CPU. */
 854	alternatives_enable_smp();
 855
 856	per_cpu(pcpu_hot.current_task, cpu) = idle;
 857	cpu_init_stack_canary(cpu, idle);
 858
 859	/* Initialize the interrupt stack(s) */
 860	ret = irq_init_percpu_irqstack(cpu);
 861	if (ret)
 862		return ret;
 863
 864#ifdef CONFIG_X86_32
 865	/* Stack for startup_32 can be just as for start_secondary onwards */
 866	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
 867#endif
 868	return 0;
 869}
 870
 871/*
 872 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 873 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 874 * Returns zero if startup was successfully sent, else error code from
 875 * ->wakeup_secondary_cpu.
 876 */
 877static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
 878{
 879	unsigned long start_ip = real_mode_header->trampoline_start;
 880	int ret;
 881
 882#ifdef CONFIG_X86_64
 883	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
 884	if (apic->wakeup_secondary_cpu_64)
 885		start_ip = real_mode_header->trampoline_start64;
 886#endif
 887	idle->thread.sp = (unsigned long)task_pt_regs(idle);
 888	initial_code = (unsigned long)start_secondary;
 889
 890	if (IS_ENABLED(CONFIG_X86_32)) {
 891		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
 892		initial_stack  = idle->thread.sp;
 893	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
 894		smpboot_control = cpu;
 895	}
 896
 897	/* Enable the espfix hack for this CPU */
 898	init_espfix_ap(cpu);
 899
 900	/* So we see what's up */
 901	announce_cpu(cpu, apicid);
 902
 903	/*
 904	 * This grunge runs the startup process for
 905	 * the targeted processor.
 906	 */
 907	if (x86_platform.legacy.warm_reset) {
 908
 909		pr_debug("Setting warm reset code and vector.\n");
 910
 911		smpboot_setup_warm_reset_vector(start_ip);
 912		/*
 913		 * Be paranoid about clearing APIC errors.
 914		*/
 915		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 916			apic_write(APIC_ESR, 0);
 917			apic_read(APIC_ESR);
 918		}
 919	}
 920
 921	smp_mb();
 922
 923	/*
 924	 * Wake up a CPU in difference cases:
 925	 * - Use a method from the APIC driver if one defined, with wakeup
 926	 *   straight to 64-bit mode preferred over wakeup to RM.
 927	 * Otherwise,
 928	 * - Use an INIT boot APIC message
 929	 */
 930	if (apic->wakeup_secondary_cpu_64)
 931		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
 932	else if (apic->wakeup_secondary_cpu)
 933		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
 934	else
 935		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
 936
 937	/* If the wakeup mechanism failed, cleanup the warm reset vector */
 938	if (ret)
 939		arch_cpuhp_cleanup_kick_cpu(cpu);
 940	return ret;
 941}
 942
 943int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
 944{
 945	u32 apicid = apic->cpu_present_to_apicid(cpu);
 946	int err;
 947
 948	lockdep_assert_irqs_enabled();
 949
 950	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
 951
 952	if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
 953		pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
 954		return -EINVAL;
 955	}
 956
 957	if (!test_bit(apicid, phys_cpu_present_map)) {
 958		pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
 959		return -EINVAL;
 960	}
 961
 962	/*
 963	 * Save current MTRR state in case it was changed since early boot
 964	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
 965	 */
 966	mtrr_save_state();
 967
 968	/* the FPU context is blank, nobody can own it */
 969	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
 970
 971	err = common_cpu_up(cpu, tidle);
 972	if (err)
 973		return err;
 974
 975	err = do_boot_cpu(apicid, cpu, tidle);
 976	if (err)
 977		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
 978
 979	return err;
 980}
 981
 982int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
 983{
 984	return smp_ops.kick_ap_alive(cpu, tidle);
 985}
 986
 987void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
 988{
 989	/* Cleanup possible dangling ends... */
 990	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
 991		smpboot_restore_warm_reset_vector();
 992}
 993
 994void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
 995{
 996	if (smp_ops.cleanup_dead_cpu)
 997		smp_ops.cleanup_dead_cpu(cpu);
 998
 999	if (system_state == SYSTEM_RUNNING)
1000		pr_info("CPU %u is now offline\n", cpu);
1001}
1002
1003void arch_cpuhp_sync_state_poll(void)
1004{
1005	if (smp_ops.poll_sync_state)
1006		smp_ops.poll_sync_state();
1007}
1008
1009/**
1010 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1011 */
1012void __init arch_disable_smp_support(void)
1013{
1014	disable_ioapic_support();
1015}
1016
1017/*
1018 * Fall back to non SMP mode after errors.
1019 *
1020 * RED-PEN audit/test this more. I bet there is more state messed up here.
1021 */
1022static __init void disable_smp(void)
1023{
1024	pr_info("SMP disabled\n");
1025
1026	disable_ioapic_support();
1027	topology_reset_possible_cpus_up();
1028
1029	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1030	cpumask_set_cpu(0, topology_core_cpumask(0));
1031	cpumask_set_cpu(0, topology_die_cpumask(0));
1032}
1033
1034void __init smp_prepare_cpus_common(void)
1035{
1036	unsigned int i;
1037
1038	/* Mark all except the boot CPU as hotpluggable */
1039	for_each_possible_cpu(i) {
1040		if (i)
1041			per_cpu(cpu_info.cpu_index, i) = nr_cpu_ids;
1042	}
1043
1044	for_each_possible_cpu(i) {
1045		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1046		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1047		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1048		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1049		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
 
 
1050	}
1051
1052	set_cpu_sibling_map(0);
1053}
1054
1055void __init smp_prepare_boot_cpu(void)
1056{
1057	smp_ops.smp_prepare_boot_cpu();
1058}
1059
1060#ifdef CONFIG_X86_64
1061/* Establish whether parallel bringup can be supported. */
1062bool __init arch_cpuhp_init_parallel_bringup(void)
1063{
1064	if (!x86_cpuinit.parallel_bringup) {
1065		pr_info("Parallel CPU startup disabled by the platform\n");
1066		return false;
1067	}
1068
1069	smpboot_control = STARTUP_READ_APICID;
1070	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1071	return true;
1072}
1073#endif
1074
1075/*
1076 * Prepare for SMP bootup.
1077 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1078 *            for common interface support.
1079 */
1080void __init native_smp_prepare_cpus(unsigned int max_cpus)
1081{
1082	smp_prepare_cpus_common();
1083
1084	switch (apic_intr_mode) {
1085	case APIC_PIC:
1086	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1087		disable_smp();
1088		return;
1089	case APIC_SYMMETRIC_IO_NO_ROUTING:
1090		disable_smp();
1091		/* Setup local timer */
1092		x86_init.timers.setup_percpu_clockev();
1093		return;
1094	case APIC_VIRTUAL_WIRE:
1095	case APIC_SYMMETRIC_IO:
1096		break;
1097	}
1098
1099	/* Setup local timer */
1100	x86_init.timers.setup_percpu_clockev();
1101
1102	pr_info("CPU0: ");
1103	print_cpu_info(&cpu_data(0));
1104
1105	uv_system_init();
1106
1107	smp_quirk_init_udelay();
1108
1109	speculative_store_bypass_ht_init();
1110
1111	snp_set_wakeup_secondary_cpu();
1112}
1113
1114void arch_thaw_secondary_cpus_begin(void)
1115{
1116	set_cache_aps_delayed_init(true);
1117}
1118
1119void arch_thaw_secondary_cpus_end(void)
1120{
1121	cache_aps_init();
1122}
1123
1124/*
1125 * Early setup to make printk work.
1126 */
1127void __init native_smp_prepare_boot_cpu(void)
1128{
1129	int me = smp_processor_id();
1130
1131	/* SMP handles this from setup_per_cpu_areas() */
1132	if (!IS_ENABLED(CONFIG_SMP))
1133		switch_gdt_and_percpu_base(me);
1134
1135	native_pv_lock_init();
1136}
1137
1138void __init native_smp_cpus_done(unsigned int max_cpus)
1139{
1140	pr_debug("Boot done\n");
1141
1142	build_sched_topology();
1143	nmi_selftest();
1144	impress_friends();
1145	cache_aps_init();
1146}
1147
1148/* correctly size the local cpu masks */
1149void __init setup_cpu_local_masks(void)
1150{
1151	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1152}
1153
1154#ifdef CONFIG_HOTPLUG_CPU
1155
1156/* Recompute SMT state for all CPUs on offline */
1157static void recompute_smt_state(void)
1158{
1159	int max_threads, cpu;
1160
1161	max_threads = 0;
1162	for_each_online_cpu (cpu) {
1163		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1164
1165		if (threads > max_threads)
1166			max_threads = threads;
1167	}
1168	__max_smt_threads = max_threads;
1169}
1170
1171static void remove_siblinginfo(int cpu)
1172{
1173	int sibling;
1174	struct cpuinfo_x86 *c = &cpu_data(cpu);
1175
1176	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1177		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1178		/*/
1179		 * last thread sibling in this cpu core going down
1180		 */
1181		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1182			cpu_data(sibling).booted_cores--;
1183	}
1184
1185	for_each_cpu(sibling, topology_die_cpumask(cpu))
1186		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1187
1188	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1189		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1190		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1191			cpu_data(sibling).smt_active = false;
1192	}
1193
1194	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1195		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1196	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1197		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1198	cpumask_clear(cpu_llc_shared_mask(cpu));
1199	cpumask_clear(cpu_l2c_shared_mask(cpu));
1200	cpumask_clear(topology_sibling_cpumask(cpu));
1201	cpumask_clear(topology_core_cpumask(cpu));
1202	cpumask_clear(topology_die_cpumask(cpu));
1203	c->topo.core_id = 0;
1204	c->booted_cores = 0;
1205	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1206	recompute_smt_state();
1207}
1208
1209static void remove_cpu_from_maps(int cpu)
1210{
1211	set_cpu_online(cpu, false);
1212	numa_remove_cpu(cpu);
1213}
1214
1215void cpu_disable_common(void)
1216{
1217	int cpu = smp_processor_id();
1218
1219	remove_siblinginfo(cpu);
1220
1221	/* It's now safe to remove this processor from the online map */
1222	lock_vector_lock();
1223	remove_cpu_from_maps(cpu);
1224	unlock_vector_lock();
1225	fixup_irqs();
1226	lapic_offline();
1227}
1228
1229int native_cpu_disable(void)
1230{
1231	int ret;
1232
1233	ret = lapic_can_unplug_cpu();
1234	if (ret)
1235		return ret;
1236
1237	cpu_disable_common();
1238
1239        /*
1240         * Disable the local APIC. Otherwise IPI broadcasts will reach
1241         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1242         * messages.
1243         *
1244         * Disabling the APIC must happen after cpu_disable_common()
1245         * which invokes fixup_irqs().
1246         *
1247         * Disabling the APIC preserves already set bits in IRR, but
1248         * an interrupt arriving after disabling the local APIC does not
1249         * set the corresponding IRR bit.
1250         *
1251         * fixup_irqs() scans IRR for set bits so it can raise a not
1252         * yet handled interrupt on the new destination CPU via an IPI
1253         * but obviously it can't do so for IRR bits which are not set.
1254         * IOW, interrupts arriving after disabling the local APIC will
1255         * be lost.
1256         */
1257	apic_soft_disable();
1258
1259	return 0;
1260}
1261
1262void play_dead_common(void)
1263{
1264	idle_task_exit();
1265
1266	cpuhp_ap_report_dead();
1267
1268	local_irq_disable();
1269}
1270
1271/*
1272 * We need to flush the caches before going to sleep, lest we have
1273 * dirty data in our caches when we come back up.
1274 */
1275static inline void mwait_play_dead(void)
1276{
1277	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1278	unsigned int eax, ebx, ecx, edx;
1279	unsigned int highest_cstate = 0;
1280	unsigned int highest_subcstate = 0;
1281	int i;
1282
1283	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1284	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1285		return;
1286	if (!this_cpu_has(X86_FEATURE_MWAIT))
1287		return;
1288	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1289		return;
1290	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1291		return;
1292
1293	eax = CPUID_MWAIT_LEAF;
1294	ecx = 0;
1295	native_cpuid(&eax, &ebx, &ecx, &edx);
1296
1297	/*
1298	 * eax will be 0 if EDX enumeration is not valid.
1299	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1300	 */
1301	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1302		eax = 0;
1303	} else {
1304		edx >>= MWAIT_SUBSTATE_SIZE;
1305		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1306			if (edx & MWAIT_SUBSTATE_MASK) {
1307				highest_cstate = i;
1308				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1309			}
1310		}
1311		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1312			(highest_subcstate - 1);
1313	}
1314
1315	/* Set up state for the kexec() hack below */
1316	md->status = CPUDEAD_MWAIT_WAIT;
1317	md->control = CPUDEAD_MWAIT_WAIT;
1318
1319	wbinvd();
1320
1321	while (1) {
1322		/*
1323		 * The CLFLUSH is a workaround for erratum AAI65 for
1324		 * the Xeon 7400 series.  It's not clear it is actually
1325		 * needed, but it should be harmless in either case.
1326		 * The WBINVD is insufficient due to the spurious-wakeup
1327		 * case where we return around the loop.
1328		 */
1329		mb();
1330		clflush(md);
1331		mb();
1332		__monitor(md, 0, 0);
1333		mb();
1334		__mwait(eax, 0);
1335
1336		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1337			/*
1338			 * Kexec is about to happen. Don't go back into mwait() as
1339			 * the kexec kernel might overwrite text and data including
1340			 * page tables and stack. So mwait() would resume when the
1341			 * monitor cache line is written to and then the CPU goes
1342			 * south due to overwritten text, page tables and stack.
1343			 *
1344			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1345			 * SMI. They will resume execution at the instruction
1346			 * following the HLT instruction and run into the problem
1347			 * which this is trying to prevent.
1348			 */
1349			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1350			while(1)
1351				native_halt();
1352		}
1353	}
1354}
1355
1356/*
1357 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1358 * mwait_play_dead().
1359 */
1360void smp_kick_mwait_play_dead(void)
1361{
1362	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1363	struct mwait_cpu_dead *md;
1364	unsigned int cpu, i;
1365
1366	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1367		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1368
1369		/* Does it sit in mwait_play_dead() ? */
1370		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1371			continue;
1372
1373		/* Wait up to 5ms */
1374		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1375			/* Bring it out of mwait */
1376			WRITE_ONCE(md->control, newstate);
1377			udelay(5);
1378		}
1379
1380		if (READ_ONCE(md->status) != newstate)
1381			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1382	}
1383}
1384
1385void __noreturn hlt_play_dead(void)
1386{
1387	if (__this_cpu_read(cpu_info.x86) >= 4)
1388		wbinvd();
1389
1390	while (1)
1391		native_halt();
1392}
1393
1394/*
1395 * native_play_dead() is essentially a __noreturn function, but it can't
1396 * be marked as such as the compiler may complain about it.
1397 */
1398void native_play_dead(void)
1399{
1400	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1401		__update_spec_ctrl(0);
1402
1403	play_dead_common();
1404	tboot_shutdown(TB_SHUTDOWN_WFS);
1405
1406	mwait_play_dead();
1407	if (cpuidle_play_dead())
1408		hlt_play_dead();
1409}
1410
1411#else /* ... !CONFIG_HOTPLUG_CPU */
1412int native_cpu_disable(void)
1413{
1414	return -ENOSYS;
1415}
1416
1417void native_play_dead(void)
1418{
1419	BUG();
1420}
1421
1422#endif