Linux Audio

Check our new training course

Linux BSP development engineering services

Need help to port Linux and bootloaders to your hardware?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *	x86 SMP booting functions
   4 *
   5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *	Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *	Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *	whom a great many thanks are extended.
  11 *
  12 *	Thanks to Intel for making available several different Pentium,
  13 *	Pentium Pro and Pentium-II/Xeon MP machines.
  14 *	Original development of Linux SMP code supported by Caldera.
  15 *
  16 *	Fixes
  17 *		Felix Koop	:	NR_CPUS used properly
  18 *		Jose Renau	:	Handle single CPU case.
  19 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  20 *		Greg Wright	:	Fix for kernel stacks panic.
  21 *		Erich Boleyn	:	MP v1.4 and additional changes.
  22 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  23 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  24 *	Michael Chastain	:	Change trampoline.S to gnu as.
  25 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  26 *		Ingo Molnar	:	Added APIC timers, based on code
  27 *					from Jose Renau
  28 *		Ingo Molnar	:	various cleanups and rewrites
  29 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  30 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  31 *	Andi Kleen		:	Changed for SMP boot into long mode.
  32 *		Martin J. Bligh	: 	Added support for multi-quad systems
  33 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  34 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *	Ashok Raj		: 	CPU hotplug support
  37 *	Glauber Costa		:	i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
  56#include <linux/kexec.h>
  57#include <linux/numa.h>
  58#include <linux/pgtable.h>
  59#include <linux/overflow.h>
  60#include <linux/stackprotector.h>
  61#include <linux/cpuhotplug.h>
  62#include <linux/mc146818rtc.h>
  63#include <linux/acpi.h>
  64
  65#include <asm/acpi.h>
  66#include <asm/cacheinfo.h>
  67#include <asm/desc.h>
  68#include <asm/nmi.h>
  69#include <asm/irq.h>
  70#include <asm/realmode.h>
  71#include <asm/cpu.h>
  72#include <asm/numa.h>
  73#include <asm/tlbflush.h>
  74#include <asm/mtrr.h>
  75#include <asm/mwait.h>
  76#include <asm/apic.h>
  77#include <asm/io_apic.h>
  78#include <asm/fpu/api.h>
  79#include <asm/setup.h>
  80#include <asm/uv/uv.h>
  81#include <asm/microcode.h>
  82#include <asm/i8259.h>
  83#include <asm/misc.h>
  84#include <asm/qspinlock.h>
  85#include <asm/intel-family.h>
  86#include <asm/cpu_device_id.h>
  87#include <asm/spec-ctrl.h>
  88#include <asm/hw_irq.h>
  89#include <asm/stackprotector.h>
  90#include <asm/sev.h>
  91#include <asm/spec-ctrl.h>
  92
  93/* representing HT siblings of each logical CPU */
  94DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  95EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  96
  97/* representing HT and core siblings of each logical CPU */
  98DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  99EXPORT_PER_CPU_SYMBOL(cpu_core_map);
 100
 101/* representing HT, core, and die siblings of each logical CPU */
 102DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
 103EXPORT_PER_CPU_SYMBOL(cpu_die_map);
 104
 
 
 
 
 105/* CPUs which are the primary SMT threads */
 106struct cpumask __cpu_primary_thread_mask __read_mostly;
 107
 108/* Representing CPUs for which sibling maps can be computed */
 109static cpumask_var_t cpu_sibling_setup_mask;
 110
 111struct mwait_cpu_dead {
 112	unsigned int	control;
 113	unsigned int	status;
 114};
 115
 116#define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
 117#define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
 118
 119/*
 120 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
 121 * that it's unlikely to be touched by other CPUs.
 122 */
 123static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
 124
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125/* Maximum number of SMT threads on any online core */
 126int __read_mostly __max_smt_threads = 1;
 127
 128/* Flag to indicate if a complete sched domain rebuild is required */
 129bool x86_topology_update;
 130
 131int arch_update_cpu_topology(void)
 132{
 133	int retval = x86_topology_update;
 134
 135	x86_topology_update = false;
 136	return retval;
 137}
 138
 139static unsigned int smpboot_warm_reset_vector_count;
 140
 141static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 142{
 143	unsigned long flags;
 144
 145	spin_lock_irqsave(&rtc_lock, flags);
 146	if (!smpboot_warm_reset_vector_count++) {
 147		CMOS_WRITE(0xa, 0xf);
 148		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
 149		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
 150	}
 151	spin_unlock_irqrestore(&rtc_lock, flags);
 152}
 153
 154static inline void smpboot_restore_warm_reset_vector(void)
 155{
 156	unsigned long flags;
 157
 158	/*
 159	 * Paranoid:  Set warm reset code and vector here back
 160	 * to default values.
 161	 */
 162	spin_lock_irqsave(&rtc_lock, flags);
 163	if (!--smpboot_warm_reset_vector_count) {
 164		CMOS_WRITE(0, 0xf);
 165		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 166	}
 167	spin_unlock_irqrestore(&rtc_lock, flags);
 168
 169}
 170
 171/* Run the next set of setup steps for the upcoming CPU */
 172static void ap_starting(void)
 173{
 174	int cpuid = smp_processor_id();
 175
 176	/* Mop up eventual mwait_play_dead() wreckage */
 177	this_cpu_write(mwait_cpu_dead.status, 0);
 178	this_cpu_write(mwait_cpu_dead.control, 0);
 179
 180	/*
 181	 * If woken up by an INIT in an 82489DX configuration the alive
 182	 * synchronization guarantees that the CPU does not reach this
 183	 * point before an INIT_deassert IPI reaches the local APIC, so it
 184	 * is now safe to touch the local APIC.
 185	 *
 186	 * Set up this CPU, first the APIC, which is probably redundant on
 187	 * most boards.
 188	 */
 189	apic_ap_setup();
 190
 191	/* Save the processor parameters. */
 192	smp_store_cpu_info(cpuid);
 193
 194	/*
 195	 * The topology information must be up to date before
 196	 * notify_cpu_starting().
 197	 */
 198	set_cpu_sibling_map(cpuid);
 199
 200	ap_init_aperfmperf();
 201
 202	pr_debug("Stack at about %p\n", &cpuid);
 203
 204	wmb();
 205
 206	/*
 207	 * This runs the AP through all the cpuhp states to its target
 208	 * state CPUHP_ONLINE.
 209	 */
 210	notify_cpu_starting(cpuid);
 211}
 212
 213static void ap_calibrate_delay(void)
 214{
 215	/*
 216	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
 217	 * smp_store_cpu_info() stored a value that is close but not as
 218	 * accurate as the value just calculated.
 219	 *
 220	 * As this is invoked after the TSC synchronization check,
 221	 * calibrate_delay_is_known() will skip the calibration routine
 222	 * when TSC is synchronized across sockets.
 223	 */
 224	calibrate_delay();
 225	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
 226}
 227
 228/*
 229 * Activate a secondary processor.
 230 */
 231static void notrace start_secondary(void *unused)
 232{
 233	/*
 234	 * Don't put *anything* except direct CPU state initialization
 235	 * before cpu_init(), SMP booting is too fragile that we want to
 236	 * limit the things done here to the most necessary things.
 237	 */
 238	cr4_init();
 239
 240	/*
 241	 * 32-bit specific. 64-bit reaches this code with the correct page
 242	 * table established. Yet another historical divergence.
 243	 */
 244	if (IS_ENABLED(CONFIG_X86_32)) {
 245		/* switch away from the initial page table */
 246		load_cr3(swapper_pg_dir);
 247		__flush_tlb_all();
 248	}
 249
 250	cpu_init_exception_handling(false);
 251
 252	/*
 253	 * Load the microcode before reaching the AP alive synchronization
 254	 * point below so it is not part of the full per CPU serialized
 255	 * bringup part when "parallel" bringup is enabled.
 256	 *
 257	 * That's even safe when hyperthreading is enabled in the CPU as
 258	 * the core code starts the primary threads first and leaves the
 259	 * secondary threads waiting for SIPI. Loading microcode on
 260	 * physical cores concurrently is a safe operation.
 261	 *
 262	 * This covers both the Intel specific issue that concurrent
 263	 * microcode loading on SMT siblings must be prohibited and the
 264	 * vendor independent issue`that microcode loading which changes
 265	 * CPUID, MSRs etc. must be strictly serialized to maintain
 266	 * software state correctness.
 267	 */
 268	load_ucode_ap();
 269
 270	/*
 271	 * Synchronization point with the hotplug core. Sets this CPUs
 272	 * synchronization state to ALIVE and spin-waits for the control CPU to
 273	 * release this CPU for further bringup.
 274	 */
 275	cpuhp_ap_sync_alive();
 276
 277	cpu_init();
 278	fpu__init_cpu();
 279	rcutree_report_cpu_starting(raw_smp_processor_id());
 280	x86_cpuinit.early_percpu_clock_init();
 281
 282	ap_starting();
 283
 284	/* Check TSC synchronization with the control CPU. */
 285	check_tsc_sync_target();
 286
 287	/*
 288	 * Calibrate the delay loop after the TSC synchronization check.
 289	 * This allows to skip the calibration when TSC is synchronized
 290	 * across sockets.
 291	 */
 292	ap_calibrate_delay();
 293
 294	speculative_store_bypass_ht_init();
 295
 296	/*
 297	 * Lock vector_lock, set CPU online and bring the vector
 298	 * allocator online. Online must be set with vector_lock held
 299	 * to prevent a concurrent irq setup/teardown from seeing a
 300	 * half valid vector space.
 301	 */
 302	lock_vector_lock();
 303	set_cpu_online(smp_processor_id(), true);
 304	lapic_online();
 305	unlock_vector_lock();
 306	x86_platform.nmi_init();
 307
 308	/* enable local interrupts */
 309	local_irq_enable();
 310
 311	x86_cpuinit.setup_percpu_clockev();
 312
 313	wmb();
 314	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 315}
 316
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 317/*
 318 * The bootstrap kernel entry code has set these up. Save them for
 319 * a given CPU
 320 */
 321void smp_store_cpu_info(int id)
 322{
 323	struct cpuinfo_x86 *c = &cpu_data(id);
 324
 325	/* Copy boot_cpu_data only on the first bringup */
 326	if (!c->initialized)
 327		*c = boot_cpu_data;
 328	c->cpu_index = id;
 329	/*
 330	 * During boot time, CPU0 has this setup already. Save the info when
 331	 * bringing up an AP.
 332	 */
 333	identify_secondary_cpu(c);
 334	c->initialized = true;
 335}
 336
 337static bool
 338topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 339{
 340	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 341
 342	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 343}
 344
 345static bool
 346topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 347{
 348	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 349
 350	return !WARN_ONCE(!topology_same_node(c, o),
 351		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 352		"[node: %d != %d]. Ignoring dependency.\n",
 353		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 354}
 355
 356#define link_mask(mfunc, c1, c2)					\
 357do {									\
 358	cpumask_set_cpu((c1), mfunc(c2));				\
 359	cpumask_set_cpu((c2), mfunc(c1));				\
 360} while (0)
 361
 362static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 363{
 364	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 365		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 366
 367		if (c->topo.pkg_id == o->topo.pkg_id &&
 368		    c->topo.die_id == o->topo.die_id &&
 369		    c->topo.amd_node_id == o->topo.amd_node_id &&
 370		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
 371			if (c->topo.core_id == o->topo.core_id)
 372				return topology_sane(c, o, "smt");
 373
 374			if ((c->topo.cu_id != 0xff) &&
 375			    (o->topo.cu_id != 0xff) &&
 376			    (c->topo.cu_id == o->topo.cu_id))
 377				return topology_sane(c, o, "smt");
 378		}
 379
 380	} else if (c->topo.pkg_id == o->topo.pkg_id &&
 381		   c->topo.die_id == o->topo.die_id &&
 382		   c->topo.core_id == o->topo.core_id) {
 383		return topology_sane(c, o, "smt");
 384	}
 385
 386	return false;
 387}
 388
 389static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 390{
 391	if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
 392		return false;
 393
 394	if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
 395		return c->topo.amd_node_id == o->topo.amd_node_id;
 396
 397	return true;
 398}
 399
 400static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 401{
 402	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 403
 404	/* If the arch didn't set up l2c_id, fall back to SMT */
 405	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
 406		return match_smt(c, o);
 407
 408	/* Do not match if L2 cache id does not match: */
 409	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
 410		return false;
 411
 412	return topology_sane(c, o, "l2c");
 413}
 414
 415/*
 416 * Unlike the other levels, we do not enforce keeping a
 417 * multicore group inside a NUMA node.  If this happens, we will
 418 * discard the MC level of the topology later.
 419 */
 420static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 421{
 422	if (c->topo.pkg_id == o->topo.pkg_id)
 423		return true;
 424	return false;
 425}
 426
 427/*
 428 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 429 *
 430 * Any Intel CPU that has multiple nodes per package and does not
 431 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 432 *
 433 * When in SNC mode, these CPUs enumerate an LLC that is shared
 434 * by multiple NUMA nodes. The LLC is shared for off-package data
 435 * access but private to the NUMA node (half of the package) for
 436 * on-package access. CPUID (the source of the information about
 437 * the LLC) can only enumerate the cache as shared or unshared,
 438 * but not this particular configuration.
 439 */
 440
 441static const struct x86_cpu_id intel_cod_cpu[] = {
 442	X86_MATCH_VFM(INTEL_HASWELL_X,	 0),	/* COD */
 443	X86_MATCH_VFM(INTEL_BROADWELL_X, 0),	/* COD */
 444	X86_MATCH_VFM(INTEL_ANY,	 1),	/* SNC */
 445	{}
 446};
 447
 448static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 449{
 450	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
 451	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 452	bool intel_snc = id && id->driver_data;
 453
 454	/* Do not match if we do not have a valid APICID for cpu: */
 455	if (per_cpu_llc_id(cpu1) == BAD_APICID)
 456		return false;
 457
 458	/* Do not match if LLC id does not match: */
 459	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
 460		return false;
 461
 462	/*
 463	 * Allow the SNC topology without warning. Return of false
 464	 * means 'c' does not share the LLC of 'o'. This will be
 465	 * reflected to userspace.
 466	 */
 467	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
 468		return false;
 469
 470	return topology_sane(c, o, "llc");
 471}
 472
 473
 474static inline int x86_sched_itmt_flags(void)
 475{
 476	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 477}
 478
 479#ifdef CONFIG_SCHED_MC
 480static int x86_core_flags(void)
 481{
 482	return cpu_core_flags() | x86_sched_itmt_flags();
 483}
 484#endif
 485#ifdef CONFIG_SCHED_SMT
 486static int x86_smt_flags(void)
 487{
 488	return cpu_smt_flags();
 489}
 490#endif
 491#ifdef CONFIG_SCHED_CLUSTER
 492static int x86_cluster_flags(void)
 493{
 494	return cpu_cluster_flags() | x86_sched_itmt_flags();
 495}
 496#endif
 497
 
 
 
 
 
 
 
 
 498/*
 499 * Set if a package/die has multiple NUMA nodes inside.
 500 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 501 * Sub-NUMA Clustering have this.
 502 */
 503static bool x86_has_numa_in_package;
 504
 505static struct sched_domain_topology_level x86_topology[6];
 506
 507static void __init build_sched_topology(void)
 508{
 509	int i = 0;
 510
 511#ifdef CONFIG_SCHED_SMT
 512	x86_topology[i++] = (struct sched_domain_topology_level){
 513		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
 514	};
 515#endif
 516#ifdef CONFIG_SCHED_CLUSTER
 517	x86_topology[i++] = (struct sched_domain_topology_level){
 518		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
 519	};
 520#endif
 521#ifdef CONFIG_SCHED_MC
 522	x86_topology[i++] = (struct sched_domain_topology_level){
 523		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
 524	};
 525#endif
 526	/*
 527	 * When there is NUMA topology inside the package skip the PKG domain
 528	 * since the NUMA domains will auto-magically create the right spanning
 529	 * domains based on the SLIT.
 530	 */
 531	if (!x86_has_numa_in_package) {
 532		x86_topology[i++] = (struct sched_domain_topology_level){
 533			cpu_cpu_mask, x86_sched_itmt_flags, SD_INIT_NAME(PKG)
 534		};
 535	}
 536
 537	/*
 538	 * There must be one trailing NULL entry left.
 539	 */
 540	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
 541
 542	set_sched_topology(x86_topology);
 543}
 544
 545void set_cpu_sibling_map(int cpu)
 546{
 547	bool has_smt = __max_threads_per_core > 1;
 548	bool has_mp = has_smt || topology_num_cores_per_package() > 1;
 549	struct cpuinfo_x86 *c = &cpu_data(cpu);
 550	struct cpuinfo_x86 *o;
 551	int i, threads;
 552
 553	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 554
 555	if (!has_mp) {
 556		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 557		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 558		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
 559		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 560		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 561		c->booted_cores = 1;
 562		return;
 563	}
 564
 565	for_each_cpu(i, cpu_sibling_setup_mask) {
 566		o = &cpu_data(i);
 567
 568		if (match_pkg(c, o) && !topology_same_node(c, o))
 569			x86_has_numa_in_package = true;
 570
 571		if ((i == cpu) || (has_smt && match_smt(c, o)))
 572			link_mask(topology_sibling_cpumask, cpu, i);
 573
 574		if ((i == cpu) || (has_mp && match_llc(c, o)))
 575			link_mask(cpu_llc_shared_mask, cpu, i);
 576
 577		if ((i == cpu) || (has_mp && match_l2c(c, o)))
 578			link_mask(cpu_l2c_shared_mask, cpu, i);
 579
 580		if ((i == cpu) || (has_mp && match_die(c, o)))
 581			link_mask(topology_die_cpumask, cpu, i);
 582	}
 583
 584	threads = cpumask_weight(topology_sibling_cpumask(cpu));
 585	if (threads > __max_smt_threads)
 586		__max_smt_threads = threads;
 587
 588	for_each_cpu(i, topology_sibling_cpumask(cpu))
 589		cpu_data(i).smt_active = threads > 1;
 590
 591	/*
 592	 * This needs a separate iteration over the cpus because we rely on all
 593	 * topology_sibling_cpumask links to be set-up.
 594	 */
 595	for_each_cpu(i, cpu_sibling_setup_mask) {
 596		o = &cpu_data(i);
 597
 598		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 599			link_mask(topology_core_cpumask, cpu, i);
 600
 601			/*
 602			 *  Does this new cpu bringup a new core?
 603			 */
 604			if (threads == 1) {
 605				/*
 606				 * for each core in package, increment
 607				 * the booted_cores for this new cpu
 608				 */
 609				if (cpumask_first(
 610				    topology_sibling_cpumask(i)) == i)
 611					c->booted_cores++;
 612				/*
 613				 * increment the core count for all
 614				 * the other cpus in this package
 615				 */
 616				if (i != cpu)
 617					cpu_data(i).booted_cores++;
 618			} else if (i != cpu && !c->booted_cores)
 619				c->booted_cores = cpu_data(i).booted_cores;
 620		}
 621	}
 622}
 623
 624/* maps the cpu to the sched domain representing multi-core */
 625const struct cpumask *cpu_coregroup_mask(int cpu)
 626{
 627	return cpu_llc_shared_mask(cpu);
 628}
 629
 630const struct cpumask *cpu_clustergroup_mask(int cpu)
 631{
 632	return cpu_l2c_shared_mask(cpu);
 633}
 634EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
 635
 636static void impress_friends(void)
 637{
 638	int cpu;
 639	unsigned long bogosum = 0;
 640	/*
 641	 * Allow the user to impress friends.
 642	 */
 643	pr_debug("Before bogomips\n");
 644	for_each_online_cpu(cpu)
 645		bogosum += cpu_data(cpu).loops_per_jiffy;
 646
 647	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 648		num_online_cpus(),
 649		bogosum/(500000/HZ),
 650		(bogosum/(5000/HZ))%100);
 651
 652	pr_debug("Before bogocount - setting activated=1\n");
 653}
 654
 655/*
 656 * The Multiprocessor Specification 1.4 (1997) example code suggests
 657 * that there should be a 10ms delay between the BSP asserting INIT
 658 * and de-asserting INIT, when starting a remote processor.
 659 * But that slows boot and resume on modern processors, which include
 660 * many cores and don't require that delay.
 661 *
 662 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 663 * Modern processor families are quirked to remove the delay entirely.
 664 */
 665#define UDELAY_10MS_DEFAULT 10000
 666
 667static unsigned int init_udelay = UINT_MAX;
 668
 669static int __init cpu_init_udelay(char *str)
 670{
 671	get_option(&str, &init_udelay);
 672
 673	return 0;
 674}
 675early_param("cpu_init_udelay", cpu_init_udelay);
 676
 677static void __init smp_quirk_init_udelay(void)
 678{
 679	/* if cmdline changed it from default, leave it alone */
 680	if (init_udelay != UINT_MAX)
 681		return;
 682
 683	/* if modern processor, use no delay */
 684	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 685	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 686	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 687		init_udelay = 0;
 688		return;
 689	}
 690	/* else, use legacy delay */
 691	init_udelay = UDELAY_10MS_DEFAULT;
 692}
 693
 694/*
 695 * Wake up AP by INIT, INIT, STARTUP sequence.
 696 */
 697static void send_init_sequence(u32 phys_apicid)
 698{
 699	int maxlvt = lapic_get_maxlvt();
 700
 701	/* Be paranoid about clearing APIC errors. */
 702	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 703		/* Due to the Pentium erratum 3AP.  */
 704		if (maxlvt > 3)
 705			apic_write(APIC_ESR, 0);
 706		apic_read(APIC_ESR);
 707	}
 708
 709	/* Assert INIT on the target CPU */
 710	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
 711	safe_apic_wait_icr_idle();
 712
 713	udelay(init_udelay);
 714
 715	/* Deassert INIT on the target CPU */
 716	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 717	safe_apic_wait_icr_idle();
 718}
 719
 720/*
 721 * Wake up AP by INIT, INIT, STARTUP sequence.
 722 */
 723static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
 724{
 725	unsigned long send_status = 0, accept_status = 0;
 726	int num_starts, j, maxlvt;
 727
 728	preempt_disable();
 729	maxlvt = lapic_get_maxlvt();
 730	send_init_sequence(phys_apicid);
 731
 732	mb();
 733
 734	/*
 735	 * Should we send STARTUP IPIs ?
 736	 *
 737	 * Determine this based on the APIC version.
 738	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 739	 */
 740	if (APIC_INTEGRATED(boot_cpu_apic_version))
 741		num_starts = 2;
 742	else
 743		num_starts = 0;
 744
 745	/*
 746	 * Run STARTUP IPI loop.
 747	 */
 748	pr_debug("#startup loops: %d\n", num_starts);
 749
 750	for (j = 1; j <= num_starts; j++) {
 751		pr_debug("Sending STARTUP #%d\n", j);
 752		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 753			apic_write(APIC_ESR, 0);
 754		apic_read(APIC_ESR);
 755		pr_debug("After apic_write\n");
 756
 757		/*
 758		 * STARTUP IPI
 759		 */
 760
 761		/* Target chip */
 762		/* Boot on the stack */
 763		/* Kick the second */
 764		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 765			       phys_apicid);
 766
 767		/*
 768		 * Give the other CPU some time to accept the IPI.
 769		 */
 770		if (init_udelay == 0)
 771			udelay(10);
 772		else
 773			udelay(300);
 774
 775		pr_debug("Startup point 1\n");
 776
 777		pr_debug("Waiting for send to finish...\n");
 778		send_status = safe_apic_wait_icr_idle();
 779
 780		/*
 781		 * Give the other CPU some time to accept the IPI.
 782		 */
 783		if (init_udelay == 0)
 784			udelay(10);
 785		else
 786			udelay(200);
 787
 788		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 789			apic_write(APIC_ESR, 0);
 790		accept_status = (apic_read(APIC_ESR) & 0xEF);
 791		if (send_status || accept_status)
 792			break;
 793	}
 794	pr_debug("After Startup\n");
 795
 796	if (send_status)
 797		pr_err("APIC never delivered???\n");
 798	if (accept_status)
 799		pr_err("APIC delivery error (%lx)\n", accept_status);
 800
 801	preempt_enable();
 802	return (send_status | accept_status);
 803}
 804
 805/* reduce the number of lines printed when booting a large cpu count system */
 806static void announce_cpu(int cpu, int apicid)
 807{
 808	static int width, node_width, first = 1;
 809	static int current_node = NUMA_NO_NODE;
 810	int node = early_cpu_to_node(cpu);
 811
 812	if (!width)
 813		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 814
 815	if (!node_width)
 816		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 817
 818	if (system_state < SYSTEM_RUNNING) {
 819		if (first)
 820			pr_info("x86: Booting SMP configuration:\n");
 821
 822		if (node != current_node) {
 823			if (current_node > (-1))
 824				pr_cont("\n");
 825			current_node = node;
 826
 827			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 828			       node_width - num_digits(node), " ", node);
 829		}
 830
 831		/* Add padding for the BSP */
 832		if (first)
 833			pr_cont("%*s", width + 1, " ");
 834		first = 0;
 835
 836		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 837	} else
 838		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 839			node, cpu, apicid);
 840}
 841
 842int common_cpu_up(unsigned int cpu, struct task_struct *idle)
 843{
 844	int ret;
 845
 846	/* Just in case we booted with a single CPU. */
 847	alternatives_enable_smp();
 848
 849	per_cpu(pcpu_hot.current_task, cpu) = idle;
 850	cpu_init_stack_canary(cpu, idle);
 851
 852	/* Initialize the interrupt stack(s) */
 853	ret = irq_init_percpu_irqstack(cpu);
 854	if (ret)
 855		return ret;
 856
 857#ifdef CONFIG_X86_32
 858	/* Stack for startup_32 can be just as for start_secondary onwards */
 859	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
 860#endif
 861	return 0;
 862}
 863
 864/*
 865 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 866 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 867 * Returns zero if startup was successfully sent, else error code from
 868 * ->wakeup_secondary_cpu.
 869 */
 870static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
 871{
 872	unsigned long start_ip = real_mode_header->trampoline_start;
 873	int ret;
 874
 875#ifdef CONFIG_X86_64
 876	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
 877	if (apic->wakeup_secondary_cpu_64)
 878		start_ip = real_mode_header->trampoline_start64;
 879#endif
 880	idle->thread.sp = (unsigned long)task_pt_regs(idle);
 881	initial_code = (unsigned long)start_secondary;
 882
 883	if (IS_ENABLED(CONFIG_X86_32)) {
 884		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
 885		initial_stack  = idle->thread.sp;
 886	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
 887		smpboot_control = cpu;
 888	}
 889
 890	/* Enable the espfix hack for this CPU */
 891	init_espfix_ap(cpu);
 892
 893	/* So we see what's up */
 894	announce_cpu(cpu, apicid);
 895
 896	/*
 897	 * This grunge runs the startup process for
 898	 * the targeted processor.
 899	 */
 900	if (x86_platform.legacy.warm_reset) {
 901
 902		pr_debug("Setting warm reset code and vector.\n");
 903
 904		smpboot_setup_warm_reset_vector(start_ip);
 905		/*
 906		 * Be paranoid about clearing APIC errors.
 907		*/
 908		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 909			apic_write(APIC_ESR, 0);
 910			apic_read(APIC_ESR);
 911		}
 912	}
 913
 914	smp_mb();
 915
 916	/*
 917	 * Wake up a CPU in difference cases:
 918	 * - Use a method from the APIC driver if one defined, with wakeup
 919	 *   straight to 64-bit mode preferred over wakeup to RM.
 920	 * Otherwise,
 921	 * - Use an INIT boot APIC message
 922	 */
 923	if (apic->wakeup_secondary_cpu_64)
 924		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
 925	else if (apic->wakeup_secondary_cpu)
 926		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
 927	else
 928		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
 929
 930	/* If the wakeup mechanism failed, cleanup the warm reset vector */
 931	if (ret)
 932		arch_cpuhp_cleanup_kick_cpu(cpu);
 933	return ret;
 934}
 935
 936int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
 937{
 938	u32 apicid = apic->cpu_present_to_apicid(cpu);
 939	int err;
 940
 941	lockdep_assert_irqs_enabled();
 942
 943	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
 944
 945	if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
 946		pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
 947		return -EINVAL;
 948	}
 949
 950	if (!test_bit(apicid, phys_cpu_present_map)) {
 951		pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
 952		return -EINVAL;
 953	}
 954
 955	/*
 956	 * Save current MTRR state in case it was changed since early boot
 957	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
 958	 */
 959	mtrr_save_state();
 960
 961	/* the FPU context is blank, nobody can own it */
 962	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
 963
 964	err = common_cpu_up(cpu, tidle);
 965	if (err)
 966		return err;
 967
 968	err = do_boot_cpu(apicid, cpu, tidle);
 969	if (err)
 970		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
 971
 972	return err;
 973}
 974
 975int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
 976{
 977	return smp_ops.kick_ap_alive(cpu, tidle);
 978}
 979
 980void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
 981{
 982	/* Cleanup possible dangling ends... */
 983	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
 984		smpboot_restore_warm_reset_vector();
 985}
 986
 987void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
 988{
 989	if (smp_ops.cleanup_dead_cpu)
 990		smp_ops.cleanup_dead_cpu(cpu);
 991
 992	if (system_state == SYSTEM_RUNNING)
 993		pr_info("CPU %u is now offline\n", cpu);
 994}
 995
 996void arch_cpuhp_sync_state_poll(void)
 997{
 998	if (smp_ops.poll_sync_state)
 999		smp_ops.poll_sync_state();
1000}
1001
1002/**
1003 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1004 */
1005void __init arch_disable_smp_support(void)
1006{
1007	disable_ioapic_support();
1008}
1009
1010/*
1011 * Fall back to non SMP mode after errors.
1012 *
1013 * RED-PEN audit/test this more. I bet there is more state messed up here.
1014 */
1015static __init void disable_smp(void)
1016{
1017	pr_info("SMP disabled\n");
1018
1019	disable_ioapic_support();
1020	topology_reset_possible_cpus_up();
1021
 
 
 
 
 
 
 
1022	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1023	cpumask_set_cpu(0, topology_core_cpumask(0));
1024	cpumask_set_cpu(0, topology_die_cpumask(0));
1025}
1026
1027void __init smp_prepare_cpus_common(void)
1028{
1029	unsigned int cpu, node;
 
1030
1031	/* Mark all except the boot CPU as hotpluggable */
1032	for_each_possible_cpu(cpu) {
1033		if (cpu)
1034			per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids;
1035	}
 
1036
1037	for_each_possible_cpu(cpu) {
1038		node = cpu_to_node(cpu);
 
 
 
1039
1040		zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map,    cpu), GFP_KERNEL, node);
1041		zalloc_cpumask_var_node(&per_cpu(cpu_core_map,       cpu), GFP_KERNEL, node);
1042		zalloc_cpumask_var_node(&per_cpu(cpu_die_map,        cpu), GFP_KERNEL, node);
1043		zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node);
1044		zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node);
 
 
 
 
 
 
 
1045	}
1046
1047	set_cpu_sibling_map(0);
1048}
1049
1050void __init smp_prepare_boot_cpu(void)
1051{
1052	smp_ops.smp_prepare_boot_cpu();
1053}
1054
1055#ifdef CONFIG_X86_64
1056/* Establish whether parallel bringup can be supported. */
1057bool __init arch_cpuhp_init_parallel_bringup(void)
1058{
1059	if (!x86_cpuinit.parallel_bringup) {
1060		pr_info("Parallel CPU startup disabled by the platform\n");
1061		return false;
1062	}
1063
1064	smpboot_control = STARTUP_READ_APICID;
1065	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1066	return true;
1067}
1068#endif
1069
1070/*
1071 * Prepare for SMP bootup.
1072 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1073 *            for common interface support.
1074 */
1075void __init native_smp_prepare_cpus(unsigned int max_cpus)
1076{
1077	smp_prepare_cpus_common();
1078
1079	switch (apic_intr_mode) {
1080	case APIC_PIC:
1081	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1082		disable_smp();
1083		return;
1084	case APIC_SYMMETRIC_IO_NO_ROUTING:
1085		disable_smp();
1086		/* Setup local timer */
1087		x86_init.timers.setup_percpu_clockev();
1088		return;
1089	case APIC_VIRTUAL_WIRE:
1090	case APIC_SYMMETRIC_IO:
1091		break;
1092	}
1093
1094	/* Setup local timer */
1095	x86_init.timers.setup_percpu_clockev();
1096
1097	pr_info("CPU0: ");
1098	print_cpu_info(&cpu_data(0));
1099
1100	uv_system_init();
1101
1102	smp_quirk_init_udelay();
1103
1104	speculative_store_bypass_ht_init();
1105
1106	snp_set_wakeup_secondary_cpu();
1107}
1108
1109void arch_thaw_secondary_cpus_begin(void)
1110{
1111	set_cache_aps_delayed_init(true);
1112}
1113
1114void arch_thaw_secondary_cpus_end(void)
1115{
1116	cache_aps_init();
1117}
1118
1119/*
1120 * Early setup to make printk work.
1121 */
1122void __init native_smp_prepare_boot_cpu(void)
1123{
1124	int me = smp_processor_id();
1125
1126	/* SMP handles this from setup_per_cpu_areas() */
1127	if (!IS_ENABLED(CONFIG_SMP))
1128		switch_gdt_and_percpu_base(me);
1129
1130	native_pv_lock_init();
1131}
1132
 
 
 
 
 
 
 
 
 
 
 
 
 
1133void __init native_smp_cpus_done(unsigned int max_cpus)
1134{
1135	pr_debug("Boot done\n");
1136
 
1137	build_sched_topology();
1138	nmi_selftest();
1139	impress_friends();
1140	cache_aps_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1141}
1142
1143/* correctly size the local cpu masks */
1144void __init setup_cpu_local_masks(void)
1145{
1146	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1147}
1148
1149#ifdef CONFIG_HOTPLUG_CPU
1150
1151/* Recompute SMT state for all CPUs on offline */
1152static void recompute_smt_state(void)
1153{
1154	int max_threads, cpu;
1155
1156	max_threads = 0;
1157	for_each_online_cpu (cpu) {
1158		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1159
1160		if (threads > max_threads)
1161			max_threads = threads;
1162	}
1163	__max_smt_threads = max_threads;
1164}
1165
1166static void remove_siblinginfo(int cpu)
1167{
1168	int sibling;
1169	struct cpuinfo_x86 *c = &cpu_data(cpu);
1170
1171	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1172		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1173		/*/
1174		 * last thread sibling in this cpu core going down
1175		 */
1176		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1177			cpu_data(sibling).booted_cores--;
1178	}
1179
1180	for_each_cpu(sibling, topology_die_cpumask(cpu))
1181		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1182
1183	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1184		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1185		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1186			cpu_data(sibling).smt_active = false;
1187	}
1188
1189	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1190		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1191	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1192		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1193	cpumask_clear(cpu_llc_shared_mask(cpu));
1194	cpumask_clear(cpu_l2c_shared_mask(cpu));
1195	cpumask_clear(topology_sibling_cpumask(cpu));
1196	cpumask_clear(topology_core_cpumask(cpu));
1197	cpumask_clear(topology_die_cpumask(cpu));
1198	c->topo.core_id = 0;
1199	c->booted_cores = 0;
1200	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1201	recompute_smt_state();
1202}
1203
1204static void remove_cpu_from_maps(int cpu)
1205{
1206	set_cpu_online(cpu, false);
1207	numa_remove_cpu(cpu);
1208}
1209
1210void cpu_disable_common(void)
1211{
1212	int cpu = smp_processor_id();
1213
1214	remove_siblinginfo(cpu);
1215
1216	/* It's now safe to remove this processor from the online map */
1217	lock_vector_lock();
1218	remove_cpu_from_maps(cpu);
1219	unlock_vector_lock();
1220	fixup_irqs();
1221	lapic_offline();
1222}
1223
1224int native_cpu_disable(void)
1225{
1226	int ret;
1227
1228	ret = lapic_can_unplug_cpu();
1229	if (ret)
1230		return ret;
1231
1232	cpu_disable_common();
1233
1234        /*
1235         * Disable the local APIC. Otherwise IPI broadcasts will reach
1236         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1237         * messages.
1238         *
1239         * Disabling the APIC must happen after cpu_disable_common()
1240         * which invokes fixup_irqs().
1241         *
1242         * Disabling the APIC preserves already set bits in IRR, but
1243         * an interrupt arriving after disabling the local APIC does not
1244         * set the corresponding IRR bit.
1245         *
1246         * fixup_irqs() scans IRR for set bits so it can raise a not
1247         * yet handled interrupt on the new destination CPU via an IPI
1248         * but obviously it can't do so for IRR bits which are not set.
1249         * IOW, interrupts arriving after disabling the local APIC will
1250         * be lost.
1251         */
1252	apic_soft_disable();
1253
1254	return 0;
1255}
1256
1257void play_dead_common(void)
1258{
1259	idle_task_exit();
1260
1261	cpuhp_ap_report_dead();
1262
1263	local_irq_disable();
1264}
1265
1266/*
1267 * We need to flush the caches before going to sleep, lest we have
1268 * dirty data in our caches when we come back up.
1269 */
1270static inline void mwait_play_dead(void)
1271{
1272	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1273	unsigned int eax, ebx, ecx, edx;
1274	unsigned int highest_cstate = 0;
1275	unsigned int highest_subcstate = 0;
1276	int i;
1277
1278	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1279	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1280		return;
1281	if (!this_cpu_has(X86_FEATURE_MWAIT))
1282		return;
1283	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1284		return;
1285	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1286		return;
1287
1288	eax = CPUID_MWAIT_LEAF;
1289	ecx = 0;
1290	native_cpuid(&eax, &ebx, &ecx, &edx);
1291
1292	/*
1293	 * eax will be 0 if EDX enumeration is not valid.
1294	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1295	 */
1296	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1297		eax = 0;
1298	} else {
1299		edx >>= MWAIT_SUBSTATE_SIZE;
1300		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1301			if (edx & MWAIT_SUBSTATE_MASK) {
1302				highest_cstate = i;
1303				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1304			}
1305		}
1306		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1307			(highest_subcstate - 1);
1308	}
1309
1310	/* Set up state for the kexec() hack below */
1311	md->status = CPUDEAD_MWAIT_WAIT;
1312	md->control = CPUDEAD_MWAIT_WAIT;
1313
1314	wbinvd();
1315
1316	while (1) {
1317		/*
1318		 * The CLFLUSH is a workaround for erratum AAI65 for
1319		 * the Xeon 7400 series.  It's not clear it is actually
1320		 * needed, but it should be harmless in either case.
1321		 * The WBINVD is insufficient due to the spurious-wakeup
1322		 * case where we return around the loop.
1323		 */
1324		mb();
1325		clflush(md);
1326		mb();
1327		__monitor(md, 0, 0);
1328		mb();
1329		__mwait(eax, 0);
1330
1331		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1332			/*
1333			 * Kexec is about to happen. Don't go back into mwait() as
1334			 * the kexec kernel might overwrite text and data including
1335			 * page tables and stack. So mwait() would resume when the
1336			 * monitor cache line is written to and then the CPU goes
1337			 * south due to overwritten text, page tables and stack.
1338			 *
1339			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1340			 * SMI. They will resume execution at the instruction
1341			 * following the HLT instruction and run into the problem
1342			 * which this is trying to prevent.
1343			 */
1344			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1345			while(1)
1346				native_halt();
1347		}
1348	}
1349}
1350
1351/*
1352 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1353 * mwait_play_dead().
1354 */
1355void smp_kick_mwait_play_dead(void)
1356{
1357	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1358	struct mwait_cpu_dead *md;
1359	unsigned int cpu, i;
1360
1361	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1362		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1363
1364		/* Does it sit in mwait_play_dead() ? */
1365		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1366			continue;
1367
1368		/* Wait up to 5ms */
1369		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1370			/* Bring it out of mwait */
1371			WRITE_ONCE(md->control, newstate);
1372			udelay(5);
1373		}
1374
1375		if (READ_ONCE(md->status) != newstate)
1376			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1377	}
1378}
1379
1380void __noreturn hlt_play_dead(void)
1381{
1382	if (__this_cpu_read(cpu_info.x86) >= 4)
1383		wbinvd();
1384
1385	while (1)
1386		native_halt();
1387}
1388
1389/*
1390 * native_play_dead() is essentially a __noreturn function, but it can't
1391 * be marked as such as the compiler may complain about it.
1392 */
1393void native_play_dead(void)
1394{
1395	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1396		__update_spec_ctrl(0);
1397
1398	play_dead_common();
1399	tboot_shutdown(TB_SHUTDOWN_WFS);
1400
1401	mwait_play_dead();
1402	if (cpuidle_play_dead())
1403		hlt_play_dead();
1404}
1405
1406#else /* ... !CONFIG_HOTPLUG_CPU */
1407int native_cpu_disable(void)
1408{
1409	return -ENOSYS;
1410}
1411
1412void native_play_dead(void)
1413{
1414	BUG();
1415}
1416
1417#endif
v6.8
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2 /*
   3 *	x86 SMP booting functions
   4 *
   5 *	(c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
   6 *	(c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
   7 *	Copyright 2001 Andi Kleen, SuSE Labs.
   8 *
   9 *	Much of the core SMP work is based on previous work by Thomas Radke, to
  10 *	whom a great many thanks are extended.
  11 *
  12 *	Thanks to Intel for making available several different Pentium,
  13 *	Pentium Pro and Pentium-II/Xeon MP machines.
  14 *	Original development of Linux SMP code supported by Caldera.
  15 *
  16 *	Fixes
  17 *		Felix Koop	:	NR_CPUS used properly
  18 *		Jose Renau	:	Handle single CPU case.
  19 *		Alan Cox	:	By repeated request 8) - Total BogoMIPS report.
  20 *		Greg Wright	:	Fix for kernel stacks panic.
  21 *		Erich Boleyn	:	MP v1.4 and additional changes.
  22 *	Matthias Sattler	:	Changes for 2.1 kernel map.
  23 *	Michel Lespinasse	:	Changes for 2.1 kernel map.
  24 *	Michael Chastain	:	Change trampoline.S to gnu as.
  25 *		Alan Cox	:	Dumb bug: 'B' step PPro's are fine
  26 *		Ingo Molnar	:	Added APIC timers, based on code
  27 *					from Jose Renau
  28 *		Ingo Molnar	:	various cleanups and rewrites
  29 *		Tigran Aivazian	:	fixed "0.00 in /proc/uptime on SMP" bug.
  30 *	Maciej W. Rozycki	:	Bits for genuine 82489DX APICs
  31 *	Andi Kleen		:	Changed for SMP boot into long mode.
  32 *		Martin J. Bligh	: 	Added support for multi-quad systems
  33 *		Dave Jones	:	Report invalid combinations of Athlon CPUs.
  34 *		Rusty Russell	:	Hacked into shape for new "hotplug" boot process.
  35 *      Andi Kleen              :       Converted to new state machine.
  36 *	Ashok Raj		: 	CPU hotplug support
  37 *	Glauber Costa		:	i386 and x86_64 integration
  38 */
  39
  40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  41
  42#include <linux/init.h>
  43#include <linux/smp.h>
  44#include <linux/export.h>
  45#include <linux/sched.h>
  46#include <linux/sched/topology.h>
  47#include <linux/sched/hotplug.h>
  48#include <linux/sched/task_stack.h>
  49#include <linux/percpu.h>
  50#include <linux/memblock.h>
  51#include <linux/err.h>
  52#include <linux/nmi.h>
  53#include <linux/tboot.h>
  54#include <linux/gfp.h>
  55#include <linux/cpuidle.h>
  56#include <linux/kexec.h>
  57#include <linux/numa.h>
  58#include <linux/pgtable.h>
  59#include <linux/overflow.h>
  60#include <linux/stackprotector.h>
  61#include <linux/cpuhotplug.h>
  62#include <linux/mc146818rtc.h>
 
  63
  64#include <asm/acpi.h>
  65#include <asm/cacheinfo.h>
  66#include <asm/desc.h>
  67#include <asm/nmi.h>
  68#include <asm/irq.h>
  69#include <asm/realmode.h>
  70#include <asm/cpu.h>
  71#include <asm/numa.h>
  72#include <asm/tlbflush.h>
  73#include <asm/mtrr.h>
  74#include <asm/mwait.h>
  75#include <asm/apic.h>
  76#include <asm/io_apic.h>
  77#include <asm/fpu/api.h>
  78#include <asm/setup.h>
  79#include <asm/uv/uv.h>
  80#include <asm/microcode.h>
  81#include <asm/i8259.h>
  82#include <asm/misc.h>
  83#include <asm/qspinlock.h>
  84#include <asm/intel-family.h>
  85#include <asm/cpu_device_id.h>
  86#include <asm/spec-ctrl.h>
  87#include <asm/hw_irq.h>
  88#include <asm/stackprotector.h>
  89#include <asm/sev.h>
  90#include <asm/spec-ctrl.h>
  91
  92/* representing HT siblings of each logical CPU */
  93DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
  94EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
  95
  96/* representing HT and core siblings of each logical CPU */
  97DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
  98EXPORT_PER_CPU_SYMBOL(cpu_core_map);
  99
 100/* representing HT, core, and die siblings of each logical CPU */
 101DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
 102EXPORT_PER_CPU_SYMBOL(cpu_die_map);
 103
 104/* Per CPU bogomips and other parameters */
 105DEFINE_PER_CPU_READ_MOSTLY(struct cpuinfo_x86, cpu_info);
 106EXPORT_PER_CPU_SYMBOL(cpu_info);
 107
 108/* CPUs which are the primary SMT threads */
 109struct cpumask __cpu_primary_thread_mask __read_mostly;
 110
 111/* Representing CPUs for which sibling maps can be computed */
 112static cpumask_var_t cpu_sibling_setup_mask;
 113
 114struct mwait_cpu_dead {
 115	unsigned int	control;
 116	unsigned int	status;
 117};
 118
 119#define CPUDEAD_MWAIT_WAIT	0xDEADBEEF
 120#define CPUDEAD_MWAIT_KEXEC_HLT	0x4A17DEAD
 121
 122/*
 123 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
 124 * that it's unlikely to be touched by other CPUs.
 125 */
 126static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
 127
 128/* Logical package management. */
 129struct logical_maps {
 130	u32	phys_pkg_id;
 131	u32	phys_die_id;
 132	u32	logical_pkg_id;
 133	u32	logical_die_id;
 134};
 135
 136/* Temporary workaround until the full topology mechanics is in place */
 137static DEFINE_PER_CPU_READ_MOSTLY(struct logical_maps, logical_maps) = {
 138	.phys_pkg_id	= U32_MAX,
 139	.phys_die_id	= U32_MAX,
 140};
 141
 142unsigned int __max_logical_packages __read_mostly;
 143EXPORT_SYMBOL(__max_logical_packages);
 144static unsigned int logical_packages __read_mostly;
 145static unsigned int logical_die __read_mostly;
 146
 147/* Maximum number of SMT threads on any online core */
 148int __read_mostly __max_smt_threads = 1;
 149
 150/* Flag to indicate if a complete sched domain rebuild is required */
 151bool x86_topology_update;
 152
 153int arch_update_cpu_topology(void)
 154{
 155	int retval = x86_topology_update;
 156
 157	x86_topology_update = false;
 158	return retval;
 159}
 160
 161static unsigned int smpboot_warm_reset_vector_count;
 162
 163static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
 164{
 165	unsigned long flags;
 166
 167	spin_lock_irqsave(&rtc_lock, flags);
 168	if (!smpboot_warm_reset_vector_count++) {
 169		CMOS_WRITE(0xa, 0xf);
 170		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
 171		*((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
 172	}
 173	spin_unlock_irqrestore(&rtc_lock, flags);
 174}
 175
 176static inline void smpboot_restore_warm_reset_vector(void)
 177{
 178	unsigned long flags;
 179
 180	/*
 181	 * Paranoid:  Set warm reset code and vector here back
 182	 * to default values.
 183	 */
 184	spin_lock_irqsave(&rtc_lock, flags);
 185	if (!--smpboot_warm_reset_vector_count) {
 186		CMOS_WRITE(0, 0xf);
 187		*((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
 188	}
 189	spin_unlock_irqrestore(&rtc_lock, flags);
 190
 191}
 192
 193/* Run the next set of setup steps for the upcoming CPU */
 194static void ap_starting(void)
 195{
 196	int cpuid = smp_processor_id();
 197
 198	/* Mop up eventual mwait_play_dead() wreckage */
 199	this_cpu_write(mwait_cpu_dead.status, 0);
 200	this_cpu_write(mwait_cpu_dead.control, 0);
 201
 202	/*
 203	 * If woken up by an INIT in an 82489DX configuration the alive
 204	 * synchronization guarantees that the CPU does not reach this
 205	 * point before an INIT_deassert IPI reaches the local APIC, so it
 206	 * is now safe to touch the local APIC.
 207	 *
 208	 * Set up this CPU, first the APIC, which is probably redundant on
 209	 * most boards.
 210	 */
 211	apic_ap_setup();
 212
 213	/* Save the processor parameters. */
 214	smp_store_cpu_info(cpuid);
 215
 216	/*
 217	 * The topology information must be up to date before
 218	 * notify_cpu_starting().
 219	 */
 220	set_cpu_sibling_map(cpuid);
 221
 222	ap_init_aperfmperf();
 223
 224	pr_debug("Stack at about %p\n", &cpuid);
 225
 226	wmb();
 227
 228	/*
 229	 * This runs the AP through all the cpuhp states to its target
 230	 * state CPUHP_ONLINE.
 231	 */
 232	notify_cpu_starting(cpuid);
 233}
 234
 235static void ap_calibrate_delay(void)
 236{
 237	/*
 238	 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
 239	 * smp_store_cpu_info() stored a value that is close but not as
 240	 * accurate as the value just calculated.
 241	 *
 242	 * As this is invoked after the TSC synchronization check,
 243	 * calibrate_delay_is_known() will skip the calibration routine
 244	 * when TSC is synchronized across sockets.
 245	 */
 246	calibrate_delay();
 247	cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
 248}
 249
 250/*
 251 * Activate a secondary processor.
 252 */
 253static void notrace start_secondary(void *unused)
 254{
 255	/*
 256	 * Don't put *anything* except direct CPU state initialization
 257	 * before cpu_init(), SMP booting is too fragile that we want to
 258	 * limit the things done here to the most necessary things.
 259	 */
 260	cr4_init();
 261
 262	/*
 263	 * 32-bit specific. 64-bit reaches this code with the correct page
 264	 * table established. Yet another historical divergence.
 265	 */
 266	if (IS_ENABLED(CONFIG_X86_32)) {
 267		/* switch away from the initial page table */
 268		load_cr3(swapper_pg_dir);
 269		__flush_tlb_all();
 270	}
 271
 272	cpu_init_exception_handling();
 273
 274	/*
 275	 * Load the microcode before reaching the AP alive synchronization
 276	 * point below so it is not part of the full per CPU serialized
 277	 * bringup part when "parallel" bringup is enabled.
 278	 *
 279	 * That's even safe when hyperthreading is enabled in the CPU as
 280	 * the core code starts the primary threads first and leaves the
 281	 * secondary threads waiting for SIPI. Loading microcode on
 282	 * physical cores concurrently is a safe operation.
 283	 *
 284	 * This covers both the Intel specific issue that concurrent
 285	 * microcode loading on SMT siblings must be prohibited and the
 286	 * vendor independent issue`that microcode loading which changes
 287	 * CPUID, MSRs etc. must be strictly serialized to maintain
 288	 * software state correctness.
 289	 */
 290	load_ucode_ap();
 291
 292	/*
 293	 * Synchronization point with the hotplug core. Sets this CPUs
 294	 * synchronization state to ALIVE and spin-waits for the control CPU to
 295	 * release this CPU for further bringup.
 296	 */
 297	cpuhp_ap_sync_alive();
 298
 299	cpu_init();
 300	fpu__init_cpu();
 301	rcutree_report_cpu_starting(raw_smp_processor_id());
 302	x86_cpuinit.early_percpu_clock_init();
 303
 304	ap_starting();
 305
 306	/* Check TSC synchronization with the control CPU. */
 307	check_tsc_sync_target();
 308
 309	/*
 310	 * Calibrate the delay loop after the TSC synchronization check.
 311	 * This allows to skip the calibration when TSC is synchronized
 312	 * across sockets.
 313	 */
 314	ap_calibrate_delay();
 315
 316	speculative_store_bypass_ht_init();
 317
 318	/*
 319	 * Lock vector_lock, set CPU online and bring the vector
 320	 * allocator online. Online must be set with vector_lock held
 321	 * to prevent a concurrent irq setup/teardown from seeing a
 322	 * half valid vector space.
 323	 */
 324	lock_vector_lock();
 325	set_cpu_online(smp_processor_id(), true);
 326	lapic_online();
 327	unlock_vector_lock();
 328	x86_platform.nmi_init();
 329
 330	/* enable local interrupts */
 331	local_irq_enable();
 332
 333	x86_cpuinit.setup_percpu_clockev();
 334
 335	wmb();
 336	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
 337}
 338
 339/**
 340 * topology_phys_to_logical_pkg - Map a physical package id to a logical
 341 * @phys_pkg:	The physical package id to map
 342 *
 343 * Returns logical package id or -1 if not found
 344 */
 345int topology_phys_to_logical_pkg(unsigned int phys_pkg)
 346{
 347	int cpu;
 348
 349	for_each_possible_cpu(cpu) {
 350		if (per_cpu(logical_maps.phys_pkg_id, cpu) == phys_pkg)
 351			return per_cpu(logical_maps.logical_pkg_id, cpu);
 352	}
 353	return -1;
 354}
 355EXPORT_SYMBOL(topology_phys_to_logical_pkg);
 356
 357/**
 358 * topology_phys_to_logical_die - Map a physical die id to logical
 359 * @die_id:	The physical die id to map
 360 * @cur_cpu:	The CPU for which the mapping is done
 361 *
 362 * Returns logical die id or -1 if not found
 363 */
 364static int topology_phys_to_logical_die(unsigned int die_id, unsigned int cur_cpu)
 365{
 366	int cpu, proc_id = cpu_data(cur_cpu).topo.pkg_id;
 367
 368	for_each_possible_cpu(cpu) {
 369		if (per_cpu(logical_maps.phys_pkg_id, cpu) == proc_id &&
 370		    per_cpu(logical_maps.phys_die_id, cpu) == die_id)
 371			return per_cpu(logical_maps.logical_die_id, cpu);
 372	}
 373	return -1;
 374}
 375
 376/**
 377 * topology_update_package_map - Update the physical to logical package map
 378 * @pkg:	The physical package id as retrieved via CPUID
 379 * @cpu:	The cpu for which this is updated
 380 */
 381int topology_update_package_map(unsigned int pkg, unsigned int cpu)
 382{
 383	int new;
 384
 385	/* Already available somewhere? */
 386	new = topology_phys_to_logical_pkg(pkg);
 387	if (new >= 0)
 388		goto found;
 389
 390	new = logical_packages++;
 391	if (new != pkg) {
 392		pr_info("CPU %u Converting physical %u to logical package %u\n",
 393			cpu, pkg, new);
 394	}
 395found:
 396	per_cpu(logical_maps.phys_pkg_id, cpu) = pkg;
 397	per_cpu(logical_maps.logical_pkg_id, cpu) = new;
 398	cpu_data(cpu).topo.logical_pkg_id = new;
 399	return 0;
 400}
 401/**
 402 * topology_update_die_map - Update the physical to logical die map
 403 * @die:	The die id as retrieved via CPUID
 404 * @cpu:	The cpu for which this is updated
 405 */
 406int topology_update_die_map(unsigned int die, unsigned int cpu)
 407{
 408	int new;
 409
 410	/* Already available somewhere? */
 411	new = topology_phys_to_logical_die(die, cpu);
 412	if (new >= 0)
 413		goto found;
 414
 415	new = logical_die++;
 416	if (new != die) {
 417		pr_info("CPU %u Converting physical %u to logical die %u\n",
 418			cpu, die, new);
 419	}
 420found:
 421	per_cpu(logical_maps.phys_die_id, cpu) = die;
 422	per_cpu(logical_maps.logical_die_id, cpu) = new;
 423	cpu_data(cpu).topo.logical_die_id = new;
 424	return 0;
 425}
 426
 427static void __init smp_store_boot_cpu_info(void)
 428{
 429	int id = 0; /* CPU 0 */
 430	struct cpuinfo_x86 *c = &cpu_data(id);
 431
 432	*c = boot_cpu_data;
 433	c->cpu_index = id;
 434	topology_update_package_map(c->topo.pkg_id, id);
 435	topology_update_die_map(c->topo.die_id, id);
 436	c->initialized = true;
 437}
 438
 439/*
 440 * The bootstrap kernel entry code has set these up. Save them for
 441 * a given CPU
 442 */
 443void smp_store_cpu_info(int id)
 444{
 445	struct cpuinfo_x86 *c = &cpu_data(id);
 446
 447	/* Copy boot_cpu_data only on the first bringup */
 448	if (!c->initialized)
 449		*c = boot_cpu_data;
 450	c->cpu_index = id;
 451	/*
 452	 * During boot time, CPU0 has this setup already. Save the info when
 453	 * bringing up an AP.
 454	 */
 455	identify_secondary_cpu(c);
 456	c->initialized = true;
 457}
 458
 459static bool
 460topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 461{
 462	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 463
 464	return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
 465}
 466
 467static bool
 468topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
 469{
 470	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 471
 472	return !WARN_ONCE(!topology_same_node(c, o),
 473		"sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
 474		"[node: %d != %d]. Ignoring dependency.\n",
 475		cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
 476}
 477
 478#define link_mask(mfunc, c1, c2)					\
 479do {									\
 480	cpumask_set_cpu((c1), mfunc(c2));				\
 481	cpumask_set_cpu((c2), mfunc(c1));				\
 482} while (0)
 483
 484static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 485{
 486	if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
 487		int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 488
 489		if (c->topo.pkg_id == o->topo.pkg_id &&
 490		    c->topo.die_id == o->topo.die_id &&
 
 491		    per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
 492			if (c->topo.core_id == o->topo.core_id)
 493				return topology_sane(c, o, "smt");
 494
 495			if ((c->topo.cu_id != 0xff) &&
 496			    (o->topo.cu_id != 0xff) &&
 497			    (c->topo.cu_id == o->topo.cu_id))
 498				return topology_sane(c, o, "smt");
 499		}
 500
 501	} else if (c->topo.pkg_id == o->topo.pkg_id &&
 502		   c->topo.die_id == o->topo.die_id &&
 503		   c->topo.core_id == o->topo.core_id) {
 504		return topology_sane(c, o, "smt");
 505	}
 506
 507	return false;
 508}
 509
 510static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 511{
 512	if (c->topo.pkg_id == o->topo.pkg_id &&
 513	    c->topo.die_id == o->topo.die_id)
 514		return true;
 515	return false;
 
 
 
 516}
 517
 518static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 519{
 520	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 521
 522	/* If the arch didn't set up l2c_id, fall back to SMT */
 523	if (per_cpu_l2c_id(cpu1) == BAD_APICID)
 524		return match_smt(c, o);
 525
 526	/* Do not match if L2 cache id does not match: */
 527	if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
 528		return false;
 529
 530	return topology_sane(c, o, "l2c");
 531}
 532
 533/*
 534 * Unlike the other levels, we do not enforce keeping a
 535 * multicore group inside a NUMA node.  If this happens, we will
 536 * discard the MC level of the topology later.
 537 */
 538static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 539{
 540	if (c->topo.pkg_id == o->topo.pkg_id)
 541		return true;
 542	return false;
 543}
 544
 545/*
 546 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
 547 *
 548 * Any Intel CPU that has multiple nodes per package and does not
 549 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
 550 *
 551 * When in SNC mode, these CPUs enumerate an LLC that is shared
 552 * by multiple NUMA nodes. The LLC is shared for off-package data
 553 * access but private to the NUMA node (half of the package) for
 554 * on-package access. CPUID (the source of the information about
 555 * the LLC) can only enumerate the cache as shared or unshared,
 556 * but not this particular configuration.
 557 */
 558
 559static const struct x86_cpu_id intel_cod_cpu[] = {
 560	X86_MATCH_INTEL_FAM6_MODEL(HASWELL_X, 0),	/* COD */
 561	X86_MATCH_INTEL_FAM6_MODEL(BROADWELL_X, 0),	/* COD */
 562	X86_MATCH_INTEL_FAM6_MODEL(ANY, 1),		/* SNC */
 563	{}
 564};
 565
 566static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
 567{
 568	const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
 569	int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
 570	bool intel_snc = id && id->driver_data;
 571
 572	/* Do not match if we do not have a valid APICID for cpu: */
 573	if (per_cpu_llc_id(cpu1) == BAD_APICID)
 574		return false;
 575
 576	/* Do not match if LLC id does not match: */
 577	if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
 578		return false;
 579
 580	/*
 581	 * Allow the SNC topology without warning. Return of false
 582	 * means 'c' does not share the LLC of 'o'. This will be
 583	 * reflected to userspace.
 584	 */
 585	if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
 586		return false;
 587
 588	return topology_sane(c, o, "llc");
 589}
 590
 591
 592static inline int x86_sched_itmt_flags(void)
 593{
 594	return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
 595}
 596
 597#ifdef CONFIG_SCHED_MC
 598static int x86_core_flags(void)
 599{
 600	return cpu_core_flags() | x86_sched_itmt_flags();
 601}
 602#endif
 603#ifdef CONFIG_SCHED_SMT
 604static int x86_smt_flags(void)
 605{
 606	return cpu_smt_flags();
 607}
 608#endif
 609#ifdef CONFIG_SCHED_CLUSTER
 610static int x86_cluster_flags(void)
 611{
 612	return cpu_cluster_flags() | x86_sched_itmt_flags();
 613}
 614#endif
 615
 616static int x86_die_flags(void)
 617{
 618	if (cpu_feature_enabled(X86_FEATURE_HYBRID_CPU))
 619	       return x86_sched_itmt_flags();
 620
 621	return 0;
 622}
 623
 624/*
 625 * Set if a package/die has multiple NUMA nodes inside.
 626 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
 627 * Sub-NUMA Clustering have this.
 628 */
 629static bool x86_has_numa_in_package;
 630
 631static struct sched_domain_topology_level x86_topology[6];
 632
 633static void __init build_sched_topology(void)
 634{
 635	int i = 0;
 636
 637#ifdef CONFIG_SCHED_SMT
 638	x86_topology[i++] = (struct sched_domain_topology_level){
 639		cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
 640	};
 641#endif
 642#ifdef CONFIG_SCHED_CLUSTER
 643	x86_topology[i++] = (struct sched_domain_topology_level){
 644		cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
 645	};
 646#endif
 647#ifdef CONFIG_SCHED_MC
 648	x86_topology[i++] = (struct sched_domain_topology_level){
 649		cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
 650	};
 651#endif
 652	/*
 653	 * When there is NUMA topology inside the package skip the PKG domain
 654	 * since the NUMA domains will auto-magically create the right spanning
 655	 * domains based on the SLIT.
 656	 */
 657	if (!x86_has_numa_in_package) {
 658		x86_topology[i++] = (struct sched_domain_topology_level){
 659			cpu_cpu_mask, x86_die_flags, SD_INIT_NAME(PKG)
 660		};
 661	}
 662
 663	/*
 664	 * There must be one trailing NULL entry left.
 665	 */
 666	BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
 667
 668	set_sched_topology(x86_topology);
 669}
 670
 671void set_cpu_sibling_map(int cpu)
 672{
 673	bool has_smt = smp_num_siblings > 1;
 674	bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
 675	struct cpuinfo_x86 *c = &cpu_data(cpu);
 676	struct cpuinfo_x86 *o;
 677	int i, threads;
 678
 679	cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
 680
 681	if (!has_mp) {
 682		cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
 683		cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
 684		cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
 685		cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
 686		cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
 687		c->booted_cores = 1;
 688		return;
 689	}
 690
 691	for_each_cpu(i, cpu_sibling_setup_mask) {
 692		o = &cpu_data(i);
 693
 694		if (match_pkg(c, o) && !topology_same_node(c, o))
 695			x86_has_numa_in_package = true;
 696
 697		if ((i == cpu) || (has_smt && match_smt(c, o)))
 698			link_mask(topology_sibling_cpumask, cpu, i);
 699
 700		if ((i == cpu) || (has_mp && match_llc(c, o)))
 701			link_mask(cpu_llc_shared_mask, cpu, i);
 702
 703		if ((i == cpu) || (has_mp && match_l2c(c, o)))
 704			link_mask(cpu_l2c_shared_mask, cpu, i);
 705
 706		if ((i == cpu) || (has_mp && match_die(c, o)))
 707			link_mask(topology_die_cpumask, cpu, i);
 708	}
 709
 710	threads = cpumask_weight(topology_sibling_cpumask(cpu));
 711	if (threads > __max_smt_threads)
 712		__max_smt_threads = threads;
 713
 714	for_each_cpu(i, topology_sibling_cpumask(cpu))
 715		cpu_data(i).smt_active = threads > 1;
 716
 717	/*
 718	 * This needs a separate iteration over the cpus because we rely on all
 719	 * topology_sibling_cpumask links to be set-up.
 720	 */
 721	for_each_cpu(i, cpu_sibling_setup_mask) {
 722		o = &cpu_data(i);
 723
 724		if ((i == cpu) || (has_mp && match_pkg(c, o))) {
 725			link_mask(topology_core_cpumask, cpu, i);
 726
 727			/*
 728			 *  Does this new cpu bringup a new core?
 729			 */
 730			if (threads == 1) {
 731				/*
 732				 * for each core in package, increment
 733				 * the booted_cores for this new cpu
 734				 */
 735				if (cpumask_first(
 736				    topology_sibling_cpumask(i)) == i)
 737					c->booted_cores++;
 738				/*
 739				 * increment the core count for all
 740				 * the other cpus in this package
 741				 */
 742				if (i != cpu)
 743					cpu_data(i).booted_cores++;
 744			} else if (i != cpu && !c->booted_cores)
 745				c->booted_cores = cpu_data(i).booted_cores;
 746		}
 747	}
 748}
 749
 750/* maps the cpu to the sched domain representing multi-core */
 751const struct cpumask *cpu_coregroup_mask(int cpu)
 752{
 753	return cpu_llc_shared_mask(cpu);
 754}
 755
 756const struct cpumask *cpu_clustergroup_mask(int cpu)
 757{
 758	return cpu_l2c_shared_mask(cpu);
 759}
 760EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
 761
 762static void impress_friends(void)
 763{
 764	int cpu;
 765	unsigned long bogosum = 0;
 766	/*
 767	 * Allow the user to impress friends.
 768	 */
 769	pr_debug("Before bogomips\n");
 770	for_each_online_cpu(cpu)
 771		bogosum += cpu_data(cpu).loops_per_jiffy;
 772
 773	pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
 774		num_online_cpus(),
 775		bogosum/(500000/HZ),
 776		(bogosum/(5000/HZ))%100);
 777
 778	pr_debug("Before bogocount - setting activated=1\n");
 779}
 780
 781/*
 782 * The Multiprocessor Specification 1.4 (1997) example code suggests
 783 * that there should be a 10ms delay between the BSP asserting INIT
 784 * and de-asserting INIT, when starting a remote processor.
 785 * But that slows boot and resume on modern processors, which include
 786 * many cores and don't require that delay.
 787 *
 788 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
 789 * Modern processor families are quirked to remove the delay entirely.
 790 */
 791#define UDELAY_10MS_DEFAULT 10000
 792
 793static unsigned int init_udelay = UINT_MAX;
 794
 795static int __init cpu_init_udelay(char *str)
 796{
 797	get_option(&str, &init_udelay);
 798
 799	return 0;
 800}
 801early_param("cpu_init_udelay", cpu_init_udelay);
 802
 803static void __init smp_quirk_init_udelay(void)
 804{
 805	/* if cmdline changed it from default, leave it alone */
 806	if (init_udelay != UINT_MAX)
 807		return;
 808
 809	/* if modern processor, use no delay */
 810	if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
 811	    ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
 812	    ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
 813		init_udelay = 0;
 814		return;
 815	}
 816	/* else, use legacy delay */
 817	init_udelay = UDELAY_10MS_DEFAULT;
 818}
 819
 820/*
 821 * Wake up AP by INIT, INIT, STARTUP sequence.
 822 */
 823static void send_init_sequence(u32 phys_apicid)
 824{
 825	int maxlvt = lapic_get_maxlvt();
 826
 827	/* Be paranoid about clearing APIC errors. */
 828	if (APIC_INTEGRATED(boot_cpu_apic_version)) {
 829		/* Due to the Pentium erratum 3AP.  */
 830		if (maxlvt > 3)
 831			apic_write(APIC_ESR, 0);
 832		apic_read(APIC_ESR);
 833	}
 834
 835	/* Assert INIT on the target CPU */
 836	apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
 837	safe_apic_wait_icr_idle();
 838
 839	udelay(init_udelay);
 840
 841	/* Deassert INIT on the target CPU */
 842	apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
 843	safe_apic_wait_icr_idle();
 844}
 845
 846/*
 847 * Wake up AP by INIT, INIT, STARTUP sequence.
 848 */
 849static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
 850{
 851	unsigned long send_status = 0, accept_status = 0;
 852	int num_starts, j, maxlvt;
 853
 854	preempt_disable();
 855	maxlvt = lapic_get_maxlvt();
 856	send_init_sequence(phys_apicid);
 857
 858	mb();
 859
 860	/*
 861	 * Should we send STARTUP IPIs ?
 862	 *
 863	 * Determine this based on the APIC version.
 864	 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
 865	 */
 866	if (APIC_INTEGRATED(boot_cpu_apic_version))
 867		num_starts = 2;
 868	else
 869		num_starts = 0;
 870
 871	/*
 872	 * Run STARTUP IPI loop.
 873	 */
 874	pr_debug("#startup loops: %d\n", num_starts);
 875
 876	for (j = 1; j <= num_starts; j++) {
 877		pr_debug("Sending STARTUP #%d\n", j);
 878		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 879			apic_write(APIC_ESR, 0);
 880		apic_read(APIC_ESR);
 881		pr_debug("After apic_write\n");
 882
 883		/*
 884		 * STARTUP IPI
 885		 */
 886
 887		/* Target chip */
 888		/* Boot on the stack */
 889		/* Kick the second */
 890		apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
 891			       phys_apicid);
 892
 893		/*
 894		 * Give the other CPU some time to accept the IPI.
 895		 */
 896		if (init_udelay == 0)
 897			udelay(10);
 898		else
 899			udelay(300);
 900
 901		pr_debug("Startup point 1\n");
 902
 903		pr_debug("Waiting for send to finish...\n");
 904		send_status = safe_apic_wait_icr_idle();
 905
 906		/*
 907		 * Give the other CPU some time to accept the IPI.
 908		 */
 909		if (init_udelay == 0)
 910			udelay(10);
 911		else
 912			udelay(200);
 913
 914		if (maxlvt > 3)		/* Due to the Pentium erratum 3AP.  */
 915			apic_write(APIC_ESR, 0);
 916		accept_status = (apic_read(APIC_ESR) & 0xEF);
 917		if (send_status || accept_status)
 918			break;
 919	}
 920	pr_debug("After Startup\n");
 921
 922	if (send_status)
 923		pr_err("APIC never delivered???\n");
 924	if (accept_status)
 925		pr_err("APIC delivery error (%lx)\n", accept_status);
 926
 927	preempt_enable();
 928	return (send_status | accept_status);
 929}
 930
 931/* reduce the number of lines printed when booting a large cpu count system */
 932static void announce_cpu(int cpu, int apicid)
 933{
 934	static int width, node_width, first = 1;
 935	static int current_node = NUMA_NO_NODE;
 936	int node = early_cpu_to_node(cpu);
 937
 938	if (!width)
 939		width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
 940
 941	if (!node_width)
 942		node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
 943
 944	if (system_state < SYSTEM_RUNNING) {
 945		if (first)
 946			pr_info("x86: Booting SMP configuration:\n");
 947
 948		if (node != current_node) {
 949			if (current_node > (-1))
 950				pr_cont("\n");
 951			current_node = node;
 952
 953			printk(KERN_INFO ".... node %*s#%d, CPUs:  ",
 954			       node_width - num_digits(node), " ", node);
 955		}
 956
 957		/* Add padding for the BSP */
 958		if (first)
 959			pr_cont("%*s", width + 1, " ");
 960		first = 0;
 961
 962		pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
 963	} else
 964		pr_info("Booting Node %d Processor %d APIC 0x%x\n",
 965			node, cpu, apicid);
 966}
 967
 968int common_cpu_up(unsigned int cpu, struct task_struct *idle)
 969{
 970	int ret;
 971
 972	/* Just in case we booted with a single CPU. */
 973	alternatives_enable_smp();
 974
 975	per_cpu(pcpu_hot.current_task, cpu) = idle;
 976	cpu_init_stack_canary(cpu, idle);
 977
 978	/* Initialize the interrupt stack(s) */
 979	ret = irq_init_percpu_irqstack(cpu);
 980	if (ret)
 981		return ret;
 982
 983#ifdef CONFIG_X86_32
 984	/* Stack for startup_32 can be just as for start_secondary onwards */
 985	per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
 986#endif
 987	return 0;
 988}
 989
 990/*
 991 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
 992 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
 993 * Returns zero if startup was successfully sent, else error code from
 994 * ->wakeup_secondary_cpu.
 995 */
 996static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
 997{
 998	unsigned long start_ip = real_mode_header->trampoline_start;
 999	int ret;
1000
1001#ifdef CONFIG_X86_64
1002	/* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
1003	if (apic->wakeup_secondary_cpu_64)
1004		start_ip = real_mode_header->trampoline_start64;
1005#endif
1006	idle->thread.sp = (unsigned long)task_pt_regs(idle);
1007	initial_code = (unsigned long)start_secondary;
1008
1009	if (IS_ENABLED(CONFIG_X86_32)) {
1010		early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
1011		initial_stack  = idle->thread.sp;
1012	} else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
1013		smpboot_control = cpu;
1014	}
1015
1016	/* Enable the espfix hack for this CPU */
1017	init_espfix_ap(cpu);
1018
1019	/* So we see what's up */
1020	announce_cpu(cpu, apicid);
1021
1022	/*
1023	 * This grunge runs the startup process for
1024	 * the targeted processor.
1025	 */
1026	if (x86_platform.legacy.warm_reset) {
1027
1028		pr_debug("Setting warm reset code and vector.\n");
1029
1030		smpboot_setup_warm_reset_vector(start_ip);
1031		/*
1032		 * Be paranoid about clearing APIC errors.
1033		*/
1034		if (APIC_INTEGRATED(boot_cpu_apic_version)) {
1035			apic_write(APIC_ESR, 0);
1036			apic_read(APIC_ESR);
1037		}
1038	}
1039
1040	smp_mb();
1041
1042	/*
1043	 * Wake up a CPU in difference cases:
1044	 * - Use a method from the APIC driver if one defined, with wakeup
1045	 *   straight to 64-bit mode preferred over wakeup to RM.
1046	 * Otherwise,
1047	 * - Use an INIT boot APIC message
1048	 */
1049	if (apic->wakeup_secondary_cpu_64)
1050		ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
1051	else if (apic->wakeup_secondary_cpu)
1052		ret = apic->wakeup_secondary_cpu(apicid, start_ip);
1053	else
1054		ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
1055
1056	/* If the wakeup mechanism failed, cleanup the warm reset vector */
1057	if (ret)
1058		arch_cpuhp_cleanup_kick_cpu(cpu);
1059	return ret;
1060}
1061
1062int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
1063{
1064	u32 apicid = apic->cpu_present_to_apicid(cpu);
1065	int err;
1066
1067	lockdep_assert_irqs_enabled();
1068
1069	pr_debug("++++++++++++++++++++=_---CPU UP  %u\n", cpu);
1070
1071	if (apicid == BAD_APICID || !physid_isset(apicid, phys_cpu_present_map) ||
1072	    !apic_id_valid(apicid)) {
1073		pr_err("%s: bad cpu %d\n", __func__, cpu);
 
 
 
 
1074		return -EINVAL;
1075	}
1076
1077	/*
1078	 * Save current MTRR state in case it was changed since early boot
1079	 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
1080	 */
1081	mtrr_save_state();
1082
1083	/* the FPU context is blank, nobody can own it */
1084	per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
1085
1086	err = common_cpu_up(cpu, tidle);
1087	if (err)
1088		return err;
1089
1090	err = do_boot_cpu(apicid, cpu, tidle);
1091	if (err)
1092		pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
1093
1094	return err;
1095}
1096
1097int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
1098{
1099	return smp_ops.kick_ap_alive(cpu, tidle);
1100}
1101
1102void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
1103{
1104	/* Cleanup possible dangling ends... */
1105	if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
1106		smpboot_restore_warm_reset_vector();
1107}
1108
1109void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
1110{
1111	if (smp_ops.cleanup_dead_cpu)
1112		smp_ops.cleanup_dead_cpu(cpu);
1113
1114	if (system_state == SYSTEM_RUNNING)
1115		pr_info("CPU %u is now offline\n", cpu);
1116}
1117
1118void arch_cpuhp_sync_state_poll(void)
1119{
1120	if (smp_ops.poll_sync_state)
1121		smp_ops.poll_sync_state();
1122}
1123
1124/**
1125 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1126 */
1127void __init arch_disable_smp_support(void)
1128{
1129	disable_ioapic_support();
1130}
1131
1132/*
1133 * Fall back to non SMP mode after errors.
1134 *
1135 * RED-PEN audit/test this more. I bet there is more state messed up here.
1136 */
1137static __init void disable_smp(void)
1138{
1139	pr_info("SMP disabled\n");
1140
1141	disable_ioapic_support();
 
1142
1143	init_cpu_present(cpumask_of(0));
1144	init_cpu_possible(cpumask_of(0));
1145
1146	if (smp_found_config)
1147		physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
1148	else
1149		physid_set_mask_of_physid(0, &phys_cpu_present_map);
1150	cpumask_set_cpu(0, topology_sibling_cpumask(0));
1151	cpumask_set_cpu(0, topology_core_cpumask(0));
1152	cpumask_set_cpu(0, topology_die_cpumask(0));
1153}
1154
1155static void __init smp_cpu_index_default(void)
1156{
1157	int i;
1158	struct cpuinfo_x86 *c;
1159
1160	for_each_possible_cpu(i) {
1161		c = &cpu_data(i);
1162		/* mark all to hotplug */
1163		c->cpu_index = nr_cpu_ids;
1164	}
1165}
1166
1167void __init smp_prepare_cpus_common(void)
1168{
1169	unsigned int i;
1170
1171	smp_cpu_index_default();
1172
1173	/*
1174	 * Setup boot CPU information
1175	 */
1176	smp_store_boot_cpu_info(); /* Final full version of the data */
1177	mb();
1178
1179	for_each_possible_cpu(i) {
1180		zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1181		zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1182		zalloc_cpumask_var(&per_cpu(cpu_die_map, i), GFP_KERNEL);
1183		zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1184		zalloc_cpumask_var(&per_cpu(cpu_l2c_shared_map, i), GFP_KERNEL);
1185	}
1186
1187	set_cpu_sibling_map(0);
1188}
1189
 
 
 
 
 
1190#ifdef CONFIG_X86_64
1191/* Establish whether parallel bringup can be supported. */
1192bool __init arch_cpuhp_init_parallel_bringup(void)
1193{
1194	if (!x86_cpuinit.parallel_bringup) {
1195		pr_info("Parallel CPU startup disabled by the platform\n");
1196		return false;
1197	}
1198
1199	smpboot_control = STARTUP_READ_APICID;
1200	pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1201	return true;
1202}
1203#endif
1204
1205/*
1206 * Prepare for SMP bootup.
1207 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1208 *            for common interface support.
1209 */
1210void __init native_smp_prepare_cpus(unsigned int max_cpus)
1211{
1212	smp_prepare_cpus_common();
1213
1214	switch (apic_intr_mode) {
1215	case APIC_PIC:
1216	case APIC_VIRTUAL_WIRE_NO_CONFIG:
1217		disable_smp();
1218		return;
1219	case APIC_SYMMETRIC_IO_NO_ROUTING:
1220		disable_smp();
1221		/* Setup local timer */
1222		x86_init.timers.setup_percpu_clockev();
1223		return;
1224	case APIC_VIRTUAL_WIRE:
1225	case APIC_SYMMETRIC_IO:
1226		break;
1227	}
1228
1229	/* Setup local timer */
1230	x86_init.timers.setup_percpu_clockev();
1231
1232	pr_info("CPU0: ");
1233	print_cpu_info(&cpu_data(0));
1234
1235	uv_system_init();
1236
1237	smp_quirk_init_udelay();
1238
1239	speculative_store_bypass_ht_init();
1240
1241	snp_set_wakeup_secondary_cpu();
1242}
1243
1244void arch_thaw_secondary_cpus_begin(void)
1245{
1246	set_cache_aps_delayed_init(true);
1247}
1248
1249void arch_thaw_secondary_cpus_end(void)
1250{
1251	cache_aps_init();
1252}
1253
1254/*
1255 * Early setup to make printk work.
1256 */
1257void __init native_smp_prepare_boot_cpu(void)
1258{
1259	int me = smp_processor_id();
1260
1261	/* SMP handles this from setup_per_cpu_areas() */
1262	if (!IS_ENABLED(CONFIG_SMP))
1263		switch_gdt_and_percpu_base(me);
1264
1265	native_pv_lock_init();
1266}
1267
1268void __init calculate_max_logical_packages(void)
1269{
1270	int ncpus;
1271
1272	/*
1273	 * Today neither Intel nor AMD support heterogeneous systems so
1274	 * extrapolate the boot cpu's data to all packages.
1275	 */
1276	ncpus = cpu_data(0).booted_cores * topology_max_smt_threads();
1277	__max_logical_packages = DIV_ROUND_UP(total_cpus, ncpus);
1278	pr_info("Max logical packages: %u\n", __max_logical_packages);
1279}
1280
1281void __init native_smp_cpus_done(unsigned int max_cpus)
1282{
1283	pr_debug("Boot done\n");
1284
1285	calculate_max_logical_packages();
1286	build_sched_topology();
1287	nmi_selftest();
1288	impress_friends();
1289	cache_aps_init();
1290}
1291
1292static int __initdata setup_possible_cpus = -1;
1293static int __init _setup_possible_cpus(char *str)
1294{
1295	get_option(&str, &setup_possible_cpus);
1296	return 0;
1297}
1298early_param("possible_cpus", _setup_possible_cpus);
1299
1300
1301/*
1302 * cpu_possible_mask should be static, it cannot change as cpu's
1303 * are onlined, or offlined. The reason is per-cpu data-structures
1304 * are allocated by some modules at init time, and don't expect to
1305 * do this dynamically on cpu arrival/departure.
1306 * cpu_present_mask on the other hand can change dynamically.
1307 * In case when cpu_hotplug is not compiled, then we resort to current
1308 * behaviour, which is cpu_possible == cpu_present.
1309 * - Ashok Raj
1310 *
1311 * Three ways to find out the number of additional hotplug CPUs:
1312 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1313 * - The user can overwrite it with possible_cpus=NUM
1314 * - Otherwise don't reserve additional CPUs.
1315 * We do this because additional CPUs waste a lot of memory.
1316 * -AK
1317 */
1318__init void prefill_possible_map(void)
1319{
1320	int i, possible;
1321
1322	i = setup_max_cpus ?: 1;
1323	if (setup_possible_cpus == -1) {
1324		possible = num_processors;
1325#ifdef CONFIG_HOTPLUG_CPU
1326		if (setup_max_cpus)
1327			possible += disabled_cpus;
1328#else
1329		if (possible > i)
1330			possible = i;
1331#endif
1332	} else
1333		possible = setup_possible_cpus;
1334
1335	total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1336
1337	/* nr_cpu_ids could be reduced via nr_cpus= */
1338	if (possible > nr_cpu_ids) {
1339		pr_warn("%d Processors exceeds NR_CPUS limit of %u\n",
1340			possible, nr_cpu_ids);
1341		possible = nr_cpu_ids;
1342	}
1343
1344#ifdef CONFIG_HOTPLUG_CPU
1345	if (!setup_max_cpus)
1346#endif
1347	if (possible > i) {
1348		pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1349			possible, setup_max_cpus);
1350		possible = i;
1351	}
1352
1353	set_nr_cpu_ids(possible);
1354
1355	pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1356		possible, max_t(int, possible - num_processors, 0));
1357
1358	reset_cpu_possible_mask();
1359
1360	for (i = 0; i < possible; i++)
1361		set_cpu_possible(i, true);
1362}
1363
1364/* correctly size the local cpu masks */
1365void __init setup_cpu_local_masks(void)
1366{
1367	alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1368}
1369
1370#ifdef CONFIG_HOTPLUG_CPU
1371
1372/* Recompute SMT state for all CPUs on offline */
1373static void recompute_smt_state(void)
1374{
1375	int max_threads, cpu;
1376
1377	max_threads = 0;
1378	for_each_online_cpu (cpu) {
1379		int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1380
1381		if (threads > max_threads)
1382			max_threads = threads;
1383	}
1384	__max_smt_threads = max_threads;
1385}
1386
1387static void remove_siblinginfo(int cpu)
1388{
1389	int sibling;
1390	struct cpuinfo_x86 *c = &cpu_data(cpu);
1391
1392	for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1393		cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1394		/*/
1395		 * last thread sibling in this cpu core going down
1396		 */
1397		if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1398			cpu_data(sibling).booted_cores--;
1399	}
1400
1401	for_each_cpu(sibling, topology_die_cpumask(cpu))
1402		cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1403
1404	for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1405		cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1406		if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1407			cpu_data(sibling).smt_active = false;
1408	}
1409
1410	for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1411		cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1412	for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1413		cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1414	cpumask_clear(cpu_llc_shared_mask(cpu));
1415	cpumask_clear(cpu_l2c_shared_mask(cpu));
1416	cpumask_clear(topology_sibling_cpumask(cpu));
1417	cpumask_clear(topology_core_cpumask(cpu));
1418	cpumask_clear(topology_die_cpumask(cpu));
1419	c->topo.core_id = 0;
1420	c->booted_cores = 0;
1421	cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1422	recompute_smt_state();
1423}
1424
1425static void remove_cpu_from_maps(int cpu)
1426{
1427	set_cpu_online(cpu, false);
1428	numa_remove_cpu(cpu);
1429}
1430
1431void cpu_disable_common(void)
1432{
1433	int cpu = smp_processor_id();
1434
1435	remove_siblinginfo(cpu);
1436
1437	/* It's now safe to remove this processor from the online map */
1438	lock_vector_lock();
1439	remove_cpu_from_maps(cpu);
1440	unlock_vector_lock();
1441	fixup_irqs();
1442	lapic_offline();
1443}
1444
1445int native_cpu_disable(void)
1446{
1447	int ret;
1448
1449	ret = lapic_can_unplug_cpu();
1450	if (ret)
1451		return ret;
1452
1453	cpu_disable_common();
1454
1455        /*
1456         * Disable the local APIC. Otherwise IPI broadcasts will reach
1457         * it. It still responds normally to INIT, NMI, SMI, and SIPI
1458         * messages.
1459         *
1460         * Disabling the APIC must happen after cpu_disable_common()
1461         * which invokes fixup_irqs().
1462         *
1463         * Disabling the APIC preserves already set bits in IRR, but
1464         * an interrupt arriving after disabling the local APIC does not
1465         * set the corresponding IRR bit.
1466         *
1467         * fixup_irqs() scans IRR for set bits so it can raise a not
1468         * yet handled interrupt on the new destination CPU via an IPI
1469         * but obviously it can't do so for IRR bits which are not set.
1470         * IOW, interrupts arriving after disabling the local APIC will
1471         * be lost.
1472         */
1473	apic_soft_disable();
1474
1475	return 0;
1476}
1477
1478void play_dead_common(void)
1479{
1480	idle_task_exit();
1481
1482	cpuhp_ap_report_dead();
1483
1484	local_irq_disable();
1485}
1486
1487/*
1488 * We need to flush the caches before going to sleep, lest we have
1489 * dirty data in our caches when we come back up.
1490 */
1491static inline void mwait_play_dead(void)
1492{
1493	struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1494	unsigned int eax, ebx, ecx, edx;
1495	unsigned int highest_cstate = 0;
1496	unsigned int highest_subcstate = 0;
1497	int i;
1498
1499	if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1500	    boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1501		return;
1502	if (!this_cpu_has(X86_FEATURE_MWAIT))
1503		return;
1504	if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1505		return;
1506	if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1507		return;
1508
1509	eax = CPUID_MWAIT_LEAF;
1510	ecx = 0;
1511	native_cpuid(&eax, &ebx, &ecx, &edx);
1512
1513	/*
1514	 * eax will be 0 if EDX enumeration is not valid.
1515	 * Initialized below to cstate, sub_cstate value when EDX is valid.
1516	 */
1517	if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1518		eax = 0;
1519	} else {
1520		edx >>= MWAIT_SUBSTATE_SIZE;
1521		for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1522			if (edx & MWAIT_SUBSTATE_MASK) {
1523				highest_cstate = i;
1524				highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1525			}
1526		}
1527		eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1528			(highest_subcstate - 1);
1529	}
1530
1531	/* Set up state for the kexec() hack below */
1532	md->status = CPUDEAD_MWAIT_WAIT;
1533	md->control = CPUDEAD_MWAIT_WAIT;
1534
1535	wbinvd();
1536
1537	while (1) {
1538		/*
1539		 * The CLFLUSH is a workaround for erratum AAI65 for
1540		 * the Xeon 7400 series.  It's not clear it is actually
1541		 * needed, but it should be harmless in either case.
1542		 * The WBINVD is insufficient due to the spurious-wakeup
1543		 * case where we return around the loop.
1544		 */
1545		mb();
1546		clflush(md);
1547		mb();
1548		__monitor(md, 0, 0);
1549		mb();
1550		__mwait(eax, 0);
1551
1552		if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1553			/*
1554			 * Kexec is about to happen. Don't go back into mwait() as
1555			 * the kexec kernel might overwrite text and data including
1556			 * page tables and stack. So mwait() would resume when the
1557			 * monitor cache line is written to and then the CPU goes
1558			 * south due to overwritten text, page tables and stack.
1559			 *
1560			 * Note: This does _NOT_ protect against a stray MCE, NMI,
1561			 * SMI. They will resume execution at the instruction
1562			 * following the HLT instruction and run into the problem
1563			 * which this is trying to prevent.
1564			 */
1565			WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1566			while(1)
1567				native_halt();
1568		}
1569	}
1570}
1571
1572/*
1573 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1574 * mwait_play_dead().
1575 */
1576void smp_kick_mwait_play_dead(void)
1577{
1578	u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1579	struct mwait_cpu_dead *md;
1580	unsigned int cpu, i;
1581
1582	for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1583		md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1584
1585		/* Does it sit in mwait_play_dead() ? */
1586		if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1587			continue;
1588
1589		/* Wait up to 5ms */
1590		for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1591			/* Bring it out of mwait */
1592			WRITE_ONCE(md->control, newstate);
1593			udelay(5);
1594		}
1595
1596		if (READ_ONCE(md->status) != newstate)
1597			pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1598	}
1599}
1600
1601void __noreturn hlt_play_dead(void)
1602{
1603	if (__this_cpu_read(cpu_info.x86) >= 4)
1604		wbinvd();
1605
1606	while (1)
1607		native_halt();
1608}
1609
1610/*
1611 * native_play_dead() is essentially a __noreturn function, but it can't
1612 * be marked as such as the compiler may complain about it.
1613 */
1614void native_play_dead(void)
1615{
1616	if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1617		__update_spec_ctrl(0);
1618
1619	play_dead_common();
1620	tboot_shutdown(TB_SHUTDOWN_WFS);
1621
1622	mwait_play_dead();
1623	if (cpuidle_play_dead())
1624		hlt_play_dead();
1625}
1626
1627#else /* ... !CONFIG_HOTPLUG_CPU */
1628int native_cpu_disable(void)
1629{
1630	return -ENOSYS;
1631}
1632
1633void native_play_dead(void)
1634{
1635	BUG();
1636}
1637
1638#endif