Loading...
1// SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * x86 SMP booting functions
4 *
5 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
6 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
7 * Copyright 2001 Andi Kleen, SuSE Labs.
8 *
9 * Much of the core SMP work is based on previous work by Thomas Radke, to
10 * whom a great many thanks are extended.
11 *
12 * Thanks to Intel for making available several different Pentium,
13 * Pentium Pro and Pentium-II/Xeon MP machines.
14 * Original development of Linux SMP code supported by Caldera.
15 *
16 * Fixes
17 * Felix Koop : NR_CPUS used properly
18 * Jose Renau : Handle single CPU case.
19 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
20 * Greg Wright : Fix for kernel stacks panic.
21 * Erich Boleyn : MP v1.4 and additional changes.
22 * Matthias Sattler : Changes for 2.1 kernel map.
23 * Michel Lespinasse : Changes for 2.1 kernel map.
24 * Michael Chastain : Change trampoline.S to gnu as.
25 * Alan Cox : Dumb bug: 'B' step PPro's are fine
26 * Ingo Molnar : Added APIC timers, based on code
27 * from Jose Renau
28 * Ingo Molnar : various cleanups and rewrites
29 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
30 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
31 * Andi Kleen : Changed for SMP boot into long mode.
32 * Martin J. Bligh : Added support for multi-quad systems
33 * Dave Jones : Report invalid combinations of Athlon CPUs.
34 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
35 * Andi Kleen : Converted to new state machine.
36 * Ashok Raj : CPU hotplug support
37 * Glauber Costa : i386 and x86_64 integration
38 */
39
40#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41
42#include <linux/init.h>
43#include <linux/smp.h>
44#include <linux/export.h>
45#include <linux/sched.h>
46#include <linux/sched/topology.h>
47#include <linux/sched/hotplug.h>
48#include <linux/sched/task_stack.h>
49#include <linux/percpu.h>
50#include <linux/memblock.h>
51#include <linux/err.h>
52#include <linux/nmi.h>
53#include <linux/tboot.h>
54#include <linux/gfp.h>
55#include <linux/cpuidle.h>
56#include <linux/kexec.h>
57#include <linux/numa.h>
58#include <linux/pgtable.h>
59#include <linux/overflow.h>
60#include <linux/stackprotector.h>
61#include <linux/cpuhotplug.h>
62#include <linux/mc146818rtc.h>
63#include <linux/acpi.h>
64
65#include <asm/acpi.h>
66#include <asm/cacheinfo.h>
67#include <asm/desc.h>
68#include <asm/nmi.h>
69#include <asm/irq.h>
70#include <asm/realmode.h>
71#include <asm/cpu.h>
72#include <asm/numa.h>
73#include <asm/tlbflush.h>
74#include <asm/mtrr.h>
75#include <asm/mwait.h>
76#include <asm/apic.h>
77#include <asm/io_apic.h>
78#include <asm/fpu/api.h>
79#include <asm/setup.h>
80#include <asm/uv/uv.h>
81#include <asm/microcode.h>
82#include <asm/i8259.h>
83#include <asm/misc.h>
84#include <asm/qspinlock.h>
85#include <asm/intel-family.h>
86#include <asm/cpu_device_id.h>
87#include <asm/spec-ctrl.h>
88#include <asm/hw_irq.h>
89#include <asm/stackprotector.h>
90#include <asm/sev.h>
91#include <asm/spec-ctrl.h>
92
93/* representing HT siblings of each logical CPU */
94DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
95EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
96
97/* representing HT and core siblings of each logical CPU */
98DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
99EXPORT_PER_CPU_SYMBOL(cpu_core_map);
100
101/* representing HT, core, and die siblings of each logical CPU */
102DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_die_map);
103EXPORT_PER_CPU_SYMBOL(cpu_die_map);
104
105/* CPUs which are the primary SMT threads */
106struct cpumask __cpu_primary_thread_mask __read_mostly;
107
108/* Representing CPUs for which sibling maps can be computed */
109static cpumask_var_t cpu_sibling_setup_mask;
110
111struct mwait_cpu_dead {
112 unsigned int control;
113 unsigned int status;
114};
115
116#define CPUDEAD_MWAIT_WAIT 0xDEADBEEF
117#define CPUDEAD_MWAIT_KEXEC_HLT 0x4A17DEAD
118
119/*
120 * Cache line aligned data for mwait_play_dead(). Separate on purpose so
121 * that it's unlikely to be touched by other CPUs.
122 */
123static DEFINE_PER_CPU_ALIGNED(struct mwait_cpu_dead, mwait_cpu_dead);
124
125/* Maximum number of SMT threads on any online core */
126int __read_mostly __max_smt_threads = 1;
127
128/* Flag to indicate if a complete sched domain rebuild is required */
129bool x86_topology_update;
130
131int arch_update_cpu_topology(void)
132{
133 int retval = x86_topology_update;
134
135 x86_topology_update = false;
136 return retval;
137}
138
139static unsigned int smpboot_warm_reset_vector_count;
140
141static inline void smpboot_setup_warm_reset_vector(unsigned long start_eip)
142{
143 unsigned long flags;
144
145 spin_lock_irqsave(&rtc_lock, flags);
146 if (!smpboot_warm_reset_vector_count++) {
147 CMOS_WRITE(0xa, 0xf);
148 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_HIGH)) = start_eip >> 4;
149 *((volatile unsigned short *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = start_eip & 0xf;
150 }
151 spin_unlock_irqrestore(&rtc_lock, flags);
152}
153
154static inline void smpboot_restore_warm_reset_vector(void)
155{
156 unsigned long flags;
157
158 /*
159 * Paranoid: Set warm reset code and vector here back
160 * to default values.
161 */
162 spin_lock_irqsave(&rtc_lock, flags);
163 if (!--smpboot_warm_reset_vector_count) {
164 CMOS_WRITE(0, 0xf);
165 *((volatile u32 *)phys_to_virt(TRAMPOLINE_PHYS_LOW)) = 0;
166 }
167 spin_unlock_irqrestore(&rtc_lock, flags);
168
169}
170
171/* Run the next set of setup steps for the upcoming CPU */
172static void ap_starting(void)
173{
174 int cpuid = smp_processor_id();
175
176 /* Mop up eventual mwait_play_dead() wreckage */
177 this_cpu_write(mwait_cpu_dead.status, 0);
178 this_cpu_write(mwait_cpu_dead.control, 0);
179
180 /*
181 * If woken up by an INIT in an 82489DX configuration the alive
182 * synchronization guarantees that the CPU does not reach this
183 * point before an INIT_deassert IPI reaches the local APIC, so it
184 * is now safe to touch the local APIC.
185 *
186 * Set up this CPU, first the APIC, which is probably redundant on
187 * most boards.
188 */
189 apic_ap_setup();
190
191 /* Save the processor parameters. */
192 smp_store_cpu_info(cpuid);
193
194 /*
195 * The topology information must be up to date before
196 * notify_cpu_starting().
197 */
198 set_cpu_sibling_map(cpuid);
199
200 ap_init_aperfmperf();
201
202 pr_debug("Stack at about %p\n", &cpuid);
203
204 wmb();
205
206 /*
207 * This runs the AP through all the cpuhp states to its target
208 * state CPUHP_ONLINE.
209 */
210 notify_cpu_starting(cpuid);
211}
212
213static void ap_calibrate_delay(void)
214{
215 /*
216 * Calibrate the delay loop and update loops_per_jiffy in cpu_data.
217 * smp_store_cpu_info() stored a value that is close but not as
218 * accurate as the value just calculated.
219 *
220 * As this is invoked after the TSC synchronization check,
221 * calibrate_delay_is_known() will skip the calibration routine
222 * when TSC is synchronized across sockets.
223 */
224 calibrate_delay();
225 cpu_data(smp_processor_id()).loops_per_jiffy = loops_per_jiffy;
226}
227
228/*
229 * Activate a secondary processor.
230 */
231static void notrace start_secondary(void *unused)
232{
233 /*
234 * Don't put *anything* except direct CPU state initialization
235 * before cpu_init(), SMP booting is too fragile that we want to
236 * limit the things done here to the most necessary things.
237 */
238 cr4_init();
239
240 /*
241 * 32-bit specific. 64-bit reaches this code with the correct page
242 * table established. Yet another historical divergence.
243 */
244 if (IS_ENABLED(CONFIG_X86_32)) {
245 /* switch away from the initial page table */
246 load_cr3(swapper_pg_dir);
247 __flush_tlb_all();
248 }
249
250 cpu_init_exception_handling(false);
251
252 /*
253 * Load the microcode before reaching the AP alive synchronization
254 * point below so it is not part of the full per CPU serialized
255 * bringup part when "parallel" bringup is enabled.
256 *
257 * That's even safe when hyperthreading is enabled in the CPU as
258 * the core code starts the primary threads first and leaves the
259 * secondary threads waiting for SIPI. Loading microcode on
260 * physical cores concurrently is a safe operation.
261 *
262 * This covers both the Intel specific issue that concurrent
263 * microcode loading on SMT siblings must be prohibited and the
264 * vendor independent issue`that microcode loading which changes
265 * CPUID, MSRs etc. must be strictly serialized to maintain
266 * software state correctness.
267 */
268 load_ucode_ap();
269
270 /*
271 * Synchronization point with the hotplug core. Sets this CPUs
272 * synchronization state to ALIVE and spin-waits for the control CPU to
273 * release this CPU for further bringup.
274 */
275 cpuhp_ap_sync_alive();
276
277 cpu_init();
278 fpu__init_cpu();
279 rcutree_report_cpu_starting(raw_smp_processor_id());
280 x86_cpuinit.early_percpu_clock_init();
281
282 ap_starting();
283
284 /* Check TSC synchronization with the control CPU. */
285 check_tsc_sync_target();
286
287 /*
288 * Calibrate the delay loop after the TSC synchronization check.
289 * This allows to skip the calibration when TSC is synchronized
290 * across sockets.
291 */
292 ap_calibrate_delay();
293
294 speculative_store_bypass_ht_init();
295
296 /*
297 * Lock vector_lock, set CPU online and bring the vector
298 * allocator online. Online must be set with vector_lock held
299 * to prevent a concurrent irq setup/teardown from seeing a
300 * half valid vector space.
301 */
302 lock_vector_lock();
303 set_cpu_online(smp_processor_id(), true);
304 lapic_online();
305 unlock_vector_lock();
306 x86_platform.nmi_init();
307
308 /* enable local interrupts */
309 local_irq_enable();
310
311 x86_cpuinit.setup_percpu_clockev();
312
313 wmb();
314 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
315}
316
317/*
318 * The bootstrap kernel entry code has set these up. Save them for
319 * a given CPU
320 */
321void smp_store_cpu_info(int id)
322{
323 struct cpuinfo_x86 *c = &cpu_data(id);
324
325 /* Copy boot_cpu_data only on the first bringup */
326 if (!c->initialized)
327 *c = boot_cpu_data;
328 c->cpu_index = id;
329 /*
330 * During boot time, CPU0 has this setup already. Save the info when
331 * bringing up an AP.
332 */
333 identify_secondary_cpu(c);
334 c->initialized = true;
335}
336
337static bool
338topology_same_node(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
339{
340 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
341
342 return (cpu_to_node(cpu1) == cpu_to_node(cpu2));
343}
344
345static bool
346topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
347{
348 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
349
350 return !WARN_ONCE(!topology_same_node(c, o),
351 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
352 "[node: %d != %d]. Ignoring dependency.\n",
353 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
354}
355
356#define link_mask(mfunc, c1, c2) \
357do { \
358 cpumask_set_cpu((c1), mfunc(c2)); \
359 cpumask_set_cpu((c2), mfunc(c1)); \
360} while (0)
361
362static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
363{
364 if (boot_cpu_has(X86_FEATURE_TOPOEXT)) {
365 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
366
367 if (c->topo.pkg_id == o->topo.pkg_id &&
368 c->topo.die_id == o->topo.die_id &&
369 c->topo.amd_node_id == o->topo.amd_node_id &&
370 per_cpu_llc_id(cpu1) == per_cpu_llc_id(cpu2)) {
371 if (c->topo.core_id == o->topo.core_id)
372 return topology_sane(c, o, "smt");
373
374 if ((c->topo.cu_id != 0xff) &&
375 (o->topo.cu_id != 0xff) &&
376 (c->topo.cu_id == o->topo.cu_id))
377 return topology_sane(c, o, "smt");
378 }
379
380 } else if (c->topo.pkg_id == o->topo.pkg_id &&
381 c->topo.die_id == o->topo.die_id &&
382 c->topo.core_id == o->topo.core_id) {
383 return topology_sane(c, o, "smt");
384 }
385
386 return false;
387}
388
389static bool match_die(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
390{
391 if (c->topo.pkg_id != o->topo.pkg_id || c->topo.die_id != o->topo.die_id)
392 return false;
393
394 if (cpu_feature_enabled(X86_FEATURE_TOPOEXT) && topology_amd_nodes_per_pkg() > 1)
395 return c->topo.amd_node_id == o->topo.amd_node_id;
396
397 return true;
398}
399
400static bool match_l2c(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
401{
402 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
403
404 /* If the arch didn't set up l2c_id, fall back to SMT */
405 if (per_cpu_l2c_id(cpu1) == BAD_APICID)
406 return match_smt(c, o);
407
408 /* Do not match if L2 cache id does not match: */
409 if (per_cpu_l2c_id(cpu1) != per_cpu_l2c_id(cpu2))
410 return false;
411
412 return topology_sane(c, o, "l2c");
413}
414
415/*
416 * Unlike the other levels, we do not enforce keeping a
417 * multicore group inside a NUMA node. If this happens, we will
418 * discard the MC level of the topology later.
419 */
420static bool match_pkg(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
421{
422 if (c->topo.pkg_id == o->topo.pkg_id)
423 return true;
424 return false;
425}
426
427/*
428 * Define intel_cod_cpu[] for Intel COD (Cluster-on-Die) CPUs.
429 *
430 * Any Intel CPU that has multiple nodes per package and does not
431 * match intel_cod_cpu[] has the SNC (Sub-NUMA Cluster) topology.
432 *
433 * When in SNC mode, these CPUs enumerate an LLC that is shared
434 * by multiple NUMA nodes. The LLC is shared for off-package data
435 * access but private to the NUMA node (half of the package) for
436 * on-package access. CPUID (the source of the information about
437 * the LLC) can only enumerate the cache as shared or unshared,
438 * but not this particular configuration.
439 */
440
441static const struct x86_cpu_id intel_cod_cpu[] = {
442 X86_MATCH_VFM(INTEL_HASWELL_X, 0), /* COD */
443 X86_MATCH_VFM(INTEL_BROADWELL_X, 0), /* COD */
444 X86_MATCH_VFM(INTEL_ANY, 1), /* SNC */
445 {}
446};
447
448static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
449{
450 const struct x86_cpu_id *id = x86_match_cpu(intel_cod_cpu);
451 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
452 bool intel_snc = id && id->driver_data;
453
454 /* Do not match if we do not have a valid APICID for cpu: */
455 if (per_cpu_llc_id(cpu1) == BAD_APICID)
456 return false;
457
458 /* Do not match if LLC id does not match: */
459 if (per_cpu_llc_id(cpu1) != per_cpu_llc_id(cpu2))
460 return false;
461
462 /*
463 * Allow the SNC topology without warning. Return of false
464 * means 'c' does not share the LLC of 'o'. This will be
465 * reflected to userspace.
466 */
467 if (match_pkg(c, o) && !topology_same_node(c, o) && intel_snc)
468 return false;
469
470 return topology_sane(c, o, "llc");
471}
472
473
474static inline int x86_sched_itmt_flags(void)
475{
476 return sysctl_sched_itmt_enabled ? SD_ASYM_PACKING : 0;
477}
478
479#ifdef CONFIG_SCHED_MC
480static int x86_core_flags(void)
481{
482 return cpu_core_flags() | x86_sched_itmt_flags();
483}
484#endif
485#ifdef CONFIG_SCHED_SMT
486static int x86_smt_flags(void)
487{
488 return cpu_smt_flags();
489}
490#endif
491#ifdef CONFIG_SCHED_CLUSTER
492static int x86_cluster_flags(void)
493{
494 return cpu_cluster_flags() | x86_sched_itmt_flags();
495}
496#endif
497
498/*
499 * Set if a package/die has multiple NUMA nodes inside.
500 * AMD Magny-Cours, Intel Cluster-on-Die, and Intel
501 * Sub-NUMA Clustering have this.
502 */
503static bool x86_has_numa_in_package;
504
505static struct sched_domain_topology_level x86_topology[6];
506
507static void __init build_sched_topology(void)
508{
509 int i = 0;
510
511#ifdef CONFIG_SCHED_SMT
512 x86_topology[i++] = (struct sched_domain_topology_level){
513 cpu_smt_mask, x86_smt_flags, SD_INIT_NAME(SMT)
514 };
515#endif
516#ifdef CONFIG_SCHED_CLUSTER
517 x86_topology[i++] = (struct sched_domain_topology_level){
518 cpu_clustergroup_mask, x86_cluster_flags, SD_INIT_NAME(CLS)
519 };
520#endif
521#ifdef CONFIG_SCHED_MC
522 x86_topology[i++] = (struct sched_domain_topology_level){
523 cpu_coregroup_mask, x86_core_flags, SD_INIT_NAME(MC)
524 };
525#endif
526 /*
527 * When there is NUMA topology inside the package skip the PKG domain
528 * since the NUMA domains will auto-magically create the right spanning
529 * domains based on the SLIT.
530 */
531 if (!x86_has_numa_in_package) {
532 x86_topology[i++] = (struct sched_domain_topology_level){
533 cpu_cpu_mask, x86_sched_itmt_flags, SD_INIT_NAME(PKG)
534 };
535 }
536
537 /*
538 * There must be one trailing NULL entry left.
539 */
540 BUG_ON(i >= ARRAY_SIZE(x86_topology)-1);
541
542 set_sched_topology(x86_topology);
543}
544
545void set_cpu_sibling_map(int cpu)
546{
547 bool has_smt = __max_threads_per_core > 1;
548 bool has_mp = has_smt || topology_num_cores_per_package() > 1;
549 struct cpuinfo_x86 *c = &cpu_data(cpu);
550 struct cpuinfo_x86 *o;
551 int i, threads;
552
553 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
554
555 if (!has_mp) {
556 cpumask_set_cpu(cpu, topology_sibling_cpumask(cpu));
557 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
558 cpumask_set_cpu(cpu, cpu_l2c_shared_mask(cpu));
559 cpumask_set_cpu(cpu, topology_core_cpumask(cpu));
560 cpumask_set_cpu(cpu, topology_die_cpumask(cpu));
561 c->booted_cores = 1;
562 return;
563 }
564
565 for_each_cpu(i, cpu_sibling_setup_mask) {
566 o = &cpu_data(i);
567
568 if (match_pkg(c, o) && !topology_same_node(c, o))
569 x86_has_numa_in_package = true;
570
571 if ((i == cpu) || (has_smt && match_smt(c, o)))
572 link_mask(topology_sibling_cpumask, cpu, i);
573
574 if ((i == cpu) || (has_mp && match_llc(c, o)))
575 link_mask(cpu_llc_shared_mask, cpu, i);
576
577 if ((i == cpu) || (has_mp && match_l2c(c, o)))
578 link_mask(cpu_l2c_shared_mask, cpu, i);
579
580 if ((i == cpu) || (has_mp && match_die(c, o)))
581 link_mask(topology_die_cpumask, cpu, i);
582 }
583
584 threads = cpumask_weight(topology_sibling_cpumask(cpu));
585 if (threads > __max_smt_threads)
586 __max_smt_threads = threads;
587
588 for_each_cpu(i, topology_sibling_cpumask(cpu))
589 cpu_data(i).smt_active = threads > 1;
590
591 /*
592 * This needs a separate iteration over the cpus because we rely on all
593 * topology_sibling_cpumask links to be set-up.
594 */
595 for_each_cpu(i, cpu_sibling_setup_mask) {
596 o = &cpu_data(i);
597
598 if ((i == cpu) || (has_mp && match_pkg(c, o))) {
599 link_mask(topology_core_cpumask, cpu, i);
600
601 /*
602 * Does this new cpu bringup a new core?
603 */
604 if (threads == 1) {
605 /*
606 * for each core in package, increment
607 * the booted_cores for this new cpu
608 */
609 if (cpumask_first(
610 topology_sibling_cpumask(i)) == i)
611 c->booted_cores++;
612 /*
613 * increment the core count for all
614 * the other cpus in this package
615 */
616 if (i != cpu)
617 cpu_data(i).booted_cores++;
618 } else if (i != cpu && !c->booted_cores)
619 c->booted_cores = cpu_data(i).booted_cores;
620 }
621 }
622}
623
624/* maps the cpu to the sched domain representing multi-core */
625const struct cpumask *cpu_coregroup_mask(int cpu)
626{
627 return cpu_llc_shared_mask(cpu);
628}
629
630const struct cpumask *cpu_clustergroup_mask(int cpu)
631{
632 return cpu_l2c_shared_mask(cpu);
633}
634EXPORT_SYMBOL_GPL(cpu_clustergroup_mask);
635
636static void impress_friends(void)
637{
638 int cpu;
639 unsigned long bogosum = 0;
640 /*
641 * Allow the user to impress friends.
642 */
643 pr_debug("Before bogomips\n");
644 for_each_online_cpu(cpu)
645 bogosum += cpu_data(cpu).loops_per_jiffy;
646
647 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
648 num_online_cpus(),
649 bogosum/(500000/HZ),
650 (bogosum/(5000/HZ))%100);
651
652 pr_debug("Before bogocount - setting activated=1\n");
653}
654
655/*
656 * The Multiprocessor Specification 1.4 (1997) example code suggests
657 * that there should be a 10ms delay between the BSP asserting INIT
658 * and de-asserting INIT, when starting a remote processor.
659 * But that slows boot and resume on modern processors, which include
660 * many cores and don't require that delay.
661 *
662 * Cmdline "init_cpu_udelay=" is available to over-ride this delay.
663 * Modern processor families are quirked to remove the delay entirely.
664 */
665#define UDELAY_10MS_DEFAULT 10000
666
667static unsigned int init_udelay = UINT_MAX;
668
669static int __init cpu_init_udelay(char *str)
670{
671 get_option(&str, &init_udelay);
672
673 return 0;
674}
675early_param("cpu_init_udelay", cpu_init_udelay);
676
677static void __init smp_quirk_init_udelay(void)
678{
679 /* if cmdline changed it from default, leave it alone */
680 if (init_udelay != UINT_MAX)
681 return;
682
683 /* if modern processor, use no delay */
684 if (((boot_cpu_data.x86_vendor == X86_VENDOR_INTEL) && (boot_cpu_data.x86 == 6)) ||
685 ((boot_cpu_data.x86_vendor == X86_VENDOR_HYGON) && (boot_cpu_data.x86 >= 0x18)) ||
686 ((boot_cpu_data.x86_vendor == X86_VENDOR_AMD) && (boot_cpu_data.x86 >= 0xF))) {
687 init_udelay = 0;
688 return;
689 }
690 /* else, use legacy delay */
691 init_udelay = UDELAY_10MS_DEFAULT;
692}
693
694/*
695 * Wake up AP by INIT, INIT, STARTUP sequence.
696 */
697static void send_init_sequence(u32 phys_apicid)
698{
699 int maxlvt = lapic_get_maxlvt();
700
701 /* Be paranoid about clearing APIC errors. */
702 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
703 /* Due to the Pentium erratum 3AP. */
704 if (maxlvt > 3)
705 apic_write(APIC_ESR, 0);
706 apic_read(APIC_ESR);
707 }
708
709 /* Assert INIT on the target CPU */
710 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT, phys_apicid);
711 safe_apic_wait_icr_idle();
712
713 udelay(init_udelay);
714
715 /* Deassert INIT on the target CPU */
716 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
717 safe_apic_wait_icr_idle();
718}
719
720/*
721 * Wake up AP by INIT, INIT, STARTUP sequence.
722 */
723static int wakeup_secondary_cpu_via_init(u32 phys_apicid, unsigned long start_eip)
724{
725 unsigned long send_status = 0, accept_status = 0;
726 int num_starts, j, maxlvt;
727
728 preempt_disable();
729 maxlvt = lapic_get_maxlvt();
730 send_init_sequence(phys_apicid);
731
732 mb();
733
734 /*
735 * Should we send STARTUP IPIs ?
736 *
737 * Determine this based on the APIC version.
738 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
739 */
740 if (APIC_INTEGRATED(boot_cpu_apic_version))
741 num_starts = 2;
742 else
743 num_starts = 0;
744
745 /*
746 * Run STARTUP IPI loop.
747 */
748 pr_debug("#startup loops: %d\n", num_starts);
749
750 for (j = 1; j <= num_starts; j++) {
751 pr_debug("Sending STARTUP #%d\n", j);
752 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
753 apic_write(APIC_ESR, 0);
754 apic_read(APIC_ESR);
755 pr_debug("After apic_write\n");
756
757 /*
758 * STARTUP IPI
759 */
760
761 /* Target chip */
762 /* Boot on the stack */
763 /* Kick the second */
764 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
765 phys_apicid);
766
767 /*
768 * Give the other CPU some time to accept the IPI.
769 */
770 if (init_udelay == 0)
771 udelay(10);
772 else
773 udelay(300);
774
775 pr_debug("Startup point 1\n");
776
777 pr_debug("Waiting for send to finish...\n");
778 send_status = safe_apic_wait_icr_idle();
779
780 /*
781 * Give the other CPU some time to accept the IPI.
782 */
783 if (init_udelay == 0)
784 udelay(10);
785 else
786 udelay(200);
787
788 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
789 apic_write(APIC_ESR, 0);
790 accept_status = (apic_read(APIC_ESR) & 0xEF);
791 if (send_status || accept_status)
792 break;
793 }
794 pr_debug("After Startup\n");
795
796 if (send_status)
797 pr_err("APIC never delivered???\n");
798 if (accept_status)
799 pr_err("APIC delivery error (%lx)\n", accept_status);
800
801 preempt_enable();
802 return (send_status | accept_status);
803}
804
805/* reduce the number of lines printed when booting a large cpu count system */
806static void announce_cpu(int cpu, int apicid)
807{
808 static int width, node_width, first = 1;
809 static int current_node = NUMA_NO_NODE;
810 int node = early_cpu_to_node(cpu);
811
812 if (!width)
813 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
814
815 if (!node_width)
816 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
817
818 if (system_state < SYSTEM_RUNNING) {
819 if (first)
820 pr_info("x86: Booting SMP configuration:\n");
821
822 if (node != current_node) {
823 if (current_node > (-1))
824 pr_cont("\n");
825 current_node = node;
826
827 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
828 node_width - num_digits(node), " ", node);
829 }
830
831 /* Add padding for the BSP */
832 if (first)
833 pr_cont("%*s", width + 1, " ");
834 first = 0;
835
836 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
837 } else
838 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
839 node, cpu, apicid);
840}
841
842int common_cpu_up(unsigned int cpu, struct task_struct *idle)
843{
844 int ret;
845
846 /* Just in case we booted with a single CPU. */
847 alternatives_enable_smp();
848
849 per_cpu(pcpu_hot.current_task, cpu) = idle;
850 cpu_init_stack_canary(cpu, idle);
851
852 /* Initialize the interrupt stack(s) */
853 ret = irq_init_percpu_irqstack(cpu);
854 if (ret)
855 return ret;
856
857#ifdef CONFIG_X86_32
858 /* Stack for startup_32 can be just as for start_secondary onwards */
859 per_cpu(pcpu_hot.top_of_stack, cpu) = task_top_of_stack(idle);
860#endif
861 return 0;
862}
863
864/*
865 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
866 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
867 * Returns zero if startup was successfully sent, else error code from
868 * ->wakeup_secondary_cpu.
869 */
870static int do_boot_cpu(u32 apicid, int cpu, struct task_struct *idle)
871{
872 unsigned long start_ip = real_mode_header->trampoline_start;
873 int ret;
874
875#ifdef CONFIG_X86_64
876 /* If 64-bit wakeup method exists, use the 64-bit mode trampoline IP */
877 if (apic->wakeup_secondary_cpu_64)
878 start_ip = real_mode_header->trampoline_start64;
879#endif
880 idle->thread.sp = (unsigned long)task_pt_regs(idle);
881 initial_code = (unsigned long)start_secondary;
882
883 if (IS_ENABLED(CONFIG_X86_32)) {
884 early_gdt_descr.address = (unsigned long)get_cpu_gdt_rw(cpu);
885 initial_stack = idle->thread.sp;
886 } else if (!(smpboot_control & STARTUP_PARALLEL_MASK)) {
887 smpboot_control = cpu;
888 }
889
890 /* Enable the espfix hack for this CPU */
891 init_espfix_ap(cpu);
892
893 /* So we see what's up */
894 announce_cpu(cpu, apicid);
895
896 /*
897 * This grunge runs the startup process for
898 * the targeted processor.
899 */
900 if (x86_platform.legacy.warm_reset) {
901
902 pr_debug("Setting warm reset code and vector.\n");
903
904 smpboot_setup_warm_reset_vector(start_ip);
905 /*
906 * Be paranoid about clearing APIC errors.
907 */
908 if (APIC_INTEGRATED(boot_cpu_apic_version)) {
909 apic_write(APIC_ESR, 0);
910 apic_read(APIC_ESR);
911 }
912 }
913
914 smp_mb();
915
916 /*
917 * Wake up a CPU in difference cases:
918 * - Use a method from the APIC driver if one defined, with wakeup
919 * straight to 64-bit mode preferred over wakeup to RM.
920 * Otherwise,
921 * - Use an INIT boot APIC message
922 */
923 if (apic->wakeup_secondary_cpu_64)
924 ret = apic->wakeup_secondary_cpu_64(apicid, start_ip);
925 else if (apic->wakeup_secondary_cpu)
926 ret = apic->wakeup_secondary_cpu(apicid, start_ip);
927 else
928 ret = wakeup_secondary_cpu_via_init(apicid, start_ip);
929
930 /* If the wakeup mechanism failed, cleanup the warm reset vector */
931 if (ret)
932 arch_cpuhp_cleanup_kick_cpu(cpu);
933 return ret;
934}
935
936int native_kick_ap(unsigned int cpu, struct task_struct *tidle)
937{
938 u32 apicid = apic->cpu_present_to_apicid(cpu);
939 int err;
940
941 lockdep_assert_irqs_enabled();
942
943 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
944
945 if (apicid == BAD_APICID || !apic_id_valid(apicid)) {
946 pr_err("CPU %u has invalid APIC ID %x. Aborting bringup\n", cpu, apicid);
947 return -EINVAL;
948 }
949
950 if (!test_bit(apicid, phys_cpu_present_map)) {
951 pr_err("CPU %u APIC ID %x is not present. Aborting bringup\n", cpu, apicid);
952 return -EINVAL;
953 }
954
955 /*
956 * Save current MTRR state in case it was changed since early boot
957 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
958 */
959 mtrr_save_state();
960
961 /* the FPU context is blank, nobody can own it */
962 per_cpu(fpu_fpregs_owner_ctx, cpu) = NULL;
963
964 err = common_cpu_up(cpu, tidle);
965 if (err)
966 return err;
967
968 err = do_boot_cpu(apicid, cpu, tidle);
969 if (err)
970 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
971
972 return err;
973}
974
975int arch_cpuhp_kick_ap_alive(unsigned int cpu, struct task_struct *tidle)
976{
977 return smp_ops.kick_ap_alive(cpu, tidle);
978}
979
980void arch_cpuhp_cleanup_kick_cpu(unsigned int cpu)
981{
982 /* Cleanup possible dangling ends... */
983 if (smp_ops.kick_ap_alive == native_kick_ap && x86_platform.legacy.warm_reset)
984 smpboot_restore_warm_reset_vector();
985}
986
987void arch_cpuhp_cleanup_dead_cpu(unsigned int cpu)
988{
989 if (smp_ops.cleanup_dead_cpu)
990 smp_ops.cleanup_dead_cpu(cpu);
991
992 if (system_state == SYSTEM_RUNNING)
993 pr_info("CPU %u is now offline\n", cpu);
994}
995
996void arch_cpuhp_sync_state_poll(void)
997{
998 if (smp_ops.poll_sync_state)
999 smp_ops.poll_sync_state();
1000}
1001
1002/**
1003 * arch_disable_smp_support() - Disables SMP support for x86 at boottime
1004 */
1005void __init arch_disable_smp_support(void)
1006{
1007 disable_ioapic_support();
1008}
1009
1010/*
1011 * Fall back to non SMP mode after errors.
1012 *
1013 * RED-PEN audit/test this more. I bet there is more state messed up here.
1014 */
1015static __init void disable_smp(void)
1016{
1017 pr_info("SMP disabled\n");
1018
1019 disable_ioapic_support();
1020 topology_reset_possible_cpus_up();
1021
1022 cpumask_set_cpu(0, topology_sibling_cpumask(0));
1023 cpumask_set_cpu(0, topology_core_cpumask(0));
1024 cpumask_set_cpu(0, topology_die_cpumask(0));
1025}
1026
1027void __init smp_prepare_cpus_common(void)
1028{
1029 unsigned int cpu, node;
1030
1031 /* Mark all except the boot CPU as hotpluggable */
1032 for_each_possible_cpu(cpu) {
1033 if (cpu)
1034 per_cpu(cpu_info.cpu_index, cpu) = nr_cpu_ids;
1035 }
1036
1037 for_each_possible_cpu(cpu) {
1038 node = cpu_to_node(cpu);
1039
1040 zalloc_cpumask_var_node(&per_cpu(cpu_sibling_map, cpu), GFP_KERNEL, node);
1041 zalloc_cpumask_var_node(&per_cpu(cpu_core_map, cpu), GFP_KERNEL, node);
1042 zalloc_cpumask_var_node(&per_cpu(cpu_die_map, cpu), GFP_KERNEL, node);
1043 zalloc_cpumask_var_node(&per_cpu(cpu_llc_shared_map, cpu), GFP_KERNEL, node);
1044 zalloc_cpumask_var_node(&per_cpu(cpu_l2c_shared_map, cpu), GFP_KERNEL, node);
1045 }
1046
1047 set_cpu_sibling_map(0);
1048}
1049
1050void __init smp_prepare_boot_cpu(void)
1051{
1052 smp_ops.smp_prepare_boot_cpu();
1053}
1054
1055#ifdef CONFIG_X86_64
1056/* Establish whether parallel bringup can be supported. */
1057bool __init arch_cpuhp_init_parallel_bringup(void)
1058{
1059 if (!x86_cpuinit.parallel_bringup) {
1060 pr_info("Parallel CPU startup disabled by the platform\n");
1061 return false;
1062 }
1063
1064 smpboot_control = STARTUP_READ_APICID;
1065 pr_debug("Parallel CPU startup enabled: 0x%08x\n", smpboot_control);
1066 return true;
1067}
1068#endif
1069
1070/*
1071 * Prepare for SMP bootup.
1072 * @max_cpus: configured maximum number of CPUs, It is a legacy parameter
1073 * for common interface support.
1074 */
1075void __init native_smp_prepare_cpus(unsigned int max_cpus)
1076{
1077 smp_prepare_cpus_common();
1078
1079 switch (apic_intr_mode) {
1080 case APIC_PIC:
1081 case APIC_VIRTUAL_WIRE_NO_CONFIG:
1082 disable_smp();
1083 return;
1084 case APIC_SYMMETRIC_IO_NO_ROUTING:
1085 disable_smp();
1086 /* Setup local timer */
1087 x86_init.timers.setup_percpu_clockev();
1088 return;
1089 case APIC_VIRTUAL_WIRE:
1090 case APIC_SYMMETRIC_IO:
1091 break;
1092 }
1093
1094 /* Setup local timer */
1095 x86_init.timers.setup_percpu_clockev();
1096
1097 pr_info("CPU0: ");
1098 print_cpu_info(&cpu_data(0));
1099
1100 uv_system_init();
1101
1102 smp_quirk_init_udelay();
1103
1104 speculative_store_bypass_ht_init();
1105
1106 snp_set_wakeup_secondary_cpu();
1107}
1108
1109void arch_thaw_secondary_cpus_begin(void)
1110{
1111 set_cache_aps_delayed_init(true);
1112}
1113
1114void arch_thaw_secondary_cpus_end(void)
1115{
1116 cache_aps_init();
1117}
1118
1119/*
1120 * Early setup to make printk work.
1121 */
1122void __init native_smp_prepare_boot_cpu(void)
1123{
1124 int me = smp_processor_id();
1125
1126 /* SMP handles this from setup_per_cpu_areas() */
1127 if (!IS_ENABLED(CONFIG_SMP))
1128 switch_gdt_and_percpu_base(me);
1129
1130 native_pv_lock_init();
1131}
1132
1133void __init native_smp_cpus_done(unsigned int max_cpus)
1134{
1135 pr_debug("Boot done\n");
1136
1137 build_sched_topology();
1138 nmi_selftest();
1139 impress_friends();
1140 cache_aps_init();
1141}
1142
1143/* correctly size the local cpu masks */
1144void __init setup_cpu_local_masks(void)
1145{
1146 alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
1147}
1148
1149#ifdef CONFIG_HOTPLUG_CPU
1150
1151/* Recompute SMT state for all CPUs on offline */
1152static void recompute_smt_state(void)
1153{
1154 int max_threads, cpu;
1155
1156 max_threads = 0;
1157 for_each_online_cpu (cpu) {
1158 int threads = cpumask_weight(topology_sibling_cpumask(cpu));
1159
1160 if (threads > max_threads)
1161 max_threads = threads;
1162 }
1163 __max_smt_threads = max_threads;
1164}
1165
1166static void remove_siblinginfo(int cpu)
1167{
1168 int sibling;
1169 struct cpuinfo_x86 *c = &cpu_data(cpu);
1170
1171 for_each_cpu(sibling, topology_core_cpumask(cpu)) {
1172 cpumask_clear_cpu(cpu, topology_core_cpumask(sibling));
1173 /*/
1174 * last thread sibling in this cpu core going down
1175 */
1176 if (cpumask_weight(topology_sibling_cpumask(cpu)) == 1)
1177 cpu_data(sibling).booted_cores--;
1178 }
1179
1180 for_each_cpu(sibling, topology_die_cpumask(cpu))
1181 cpumask_clear_cpu(cpu, topology_die_cpumask(sibling));
1182
1183 for_each_cpu(sibling, topology_sibling_cpumask(cpu)) {
1184 cpumask_clear_cpu(cpu, topology_sibling_cpumask(sibling));
1185 if (cpumask_weight(topology_sibling_cpumask(sibling)) == 1)
1186 cpu_data(sibling).smt_active = false;
1187 }
1188
1189 for_each_cpu(sibling, cpu_llc_shared_mask(cpu))
1190 cpumask_clear_cpu(cpu, cpu_llc_shared_mask(sibling));
1191 for_each_cpu(sibling, cpu_l2c_shared_mask(cpu))
1192 cpumask_clear_cpu(cpu, cpu_l2c_shared_mask(sibling));
1193 cpumask_clear(cpu_llc_shared_mask(cpu));
1194 cpumask_clear(cpu_l2c_shared_mask(cpu));
1195 cpumask_clear(topology_sibling_cpumask(cpu));
1196 cpumask_clear(topology_core_cpumask(cpu));
1197 cpumask_clear(topology_die_cpumask(cpu));
1198 c->topo.core_id = 0;
1199 c->booted_cores = 0;
1200 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1201 recompute_smt_state();
1202}
1203
1204static void remove_cpu_from_maps(int cpu)
1205{
1206 set_cpu_online(cpu, false);
1207 numa_remove_cpu(cpu);
1208}
1209
1210void cpu_disable_common(void)
1211{
1212 int cpu = smp_processor_id();
1213
1214 remove_siblinginfo(cpu);
1215
1216 /* It's now safe to remove this processor from the online map */
1217 lock_vector_lock();
1218 remove_cpu_from_maps(cpu);
1219 unlock_vector_lock();
1220 fixup_irqs();
1221 lapic_offline();
1222}
1223
1224int native_cpu_disable(void)
1225{
1226 int ret;
1227
1228 ret = lapic_can_unplug_cpu();
1229 if (ret)
1230 return ret;
1231
1232 cpu_disable_common();
1233
1234 /*
1235 * Disable the local APIC. Otherwise IPI broadcasts will reach
1236 * it. It still responds normally to INIT, NMI, SMI, and SIPI
1237 * messages.
1238 *
1239 * Disabling the APIC must happen after cpu_disable_common()
1240 * which invokes fixup_irqs().
1241 *
1242 * Disabling the APIC preserves already set bits in IRR, but
1243 * an interrupt arriving after disabling the local APIC does not
1244 * set the corresponding IRR bit.
1245 *
1246 * fixup_irqs() scans IRR for set bits so it can raise a not
1247 * yet handled interrupt on the new destination CPU via an IPI
1248 * but obviously it can't do so for IRR bits which are not set.
1249 * IOW, interrupts arriving after disabling the local APIC will
1250 * be lost.
1251 */
1252 apic_soft_disable();
1253
1254 return 0;
1255}
1256
1257void play_dead_common(void)
1258{
1259 idle_task_exit();
1260
1261 cpuhp_ap_report_dead();
1262
1263 local_irq_disable();
1264}
1265
1266/*
1267 * We need to flush the caches before going to sleep, lest we have
1268 * dirty data in our caches when we come back up.
1269 */
1270static inline void mwait_play_dead(void)
1271{
1272 struct mwait_cpu_dead *md = this_cpu_ptr(&mwait_cpu_dead);
1273 unsigned int eax, ebx, ecx, edx;
1274 unsigned int highest_cstate = 0;
1275 unsigned int highest_subcstate = 0;
1276 int i;
1277
1278 if (boot_cpu_data.x86_vendor == X86_VENDOR_AMD ||
1279 boot_cpu_data.x86_vendor == X86_VENDOR_HYGON)
1280 return;
1281 if (!this_cpu_has(X86_FEATURE_MWAIT))
1282 return;
1283 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1284 return;
1285 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1286 return;
1287
1288 eax = CPUID_MWAIT_LEAF;
1289 ecx = 0;
1290 native_cpuid(&eax, &ebx, &ecx, &edx);
1291
1292 /*
1293 * eax will be 0 if EDX enumeration is not valid.
1294 * Initialized below to cstate, sub_cstate value when EDX is valid.
1295 */
1296 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1297 eax = 0;
1298 } else {
1299 edx >>= MWAIT_SUBSTATE_SIZE;
1300 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1301 if (edx & MWAIT_SUBSTATE_MASK) {
1302 highest_cstate = i;
1303 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1304 }
1305 }
1306 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1307 (highest_subcstate - 1);
1308 }
1309
1310 /* Set up state for the kexec() hack below */
1311 md->status = CPUDEAD_MWAIT_WAIT;
1312 md->control = CPUDEAD_MWAIT_WAIT;
1313
1314 wbinvd();
1315
1316 while (1) {
1317 /*
1318 * The CLFLUSH is a workaround for erratum AAI65 for
1319 * the Xeon 7400 series. It's not clear it is actually
1320 * needed, but it should be harmless in either case.
1321 * The WBINVD is insufficient due to the spurious-wakeup
1322 * case where we return around the loop.
1323 */
1324 mb();
1325 clflush(md);
1326 mb();
1327 __monitor(md, 0, 0);
1328 mb();
1329 __mwait(eax, 0);
1330
1331 if (READ_ONCE(md->control) == CPUDEAD_MWAIT_KEXEC_HLT) {
1332 /*
1333 * Kexec is about to happen. Don't go back into mwait() as
1334 * the kexec kernel might overwrite text and data including
1335 * page tables and stack. So mwait() would resume when the
1336 * monitor cache line is written to and then the CPU goes
1337 * south due to overwritten text, page tables and stack.
1338 *
1339 * Note: This does _NOT_ protect against a stray MCE, NMI,
1340 * SMI. They will resume execution at the instruction
1341 * following the HLT instruction and run into the problem
1342 * which this is trying to prevent.
1343 */
1344 WRITE_ONCE(md->status, CPUDEAD_MWAIT_KEXEC_HLT);
1345 while(1)
1346 native_halt();
1347 }
1348 }
1349}
1350
1351/*
1352 * Kick all "offline" CPUs out of mwait on kexec(). See comment in
1353 * mwait_play_dead().
1354 */
1355void smp_kick_mwait_play_dead(void)
1356{
1357 u32 newstate = CPUDEAD_MWAIT_KEXEC_HLT;
1358 struct mwait_cpu_dead *md;
1359 unsigned int cpu, i;
1360
1361 for_each_cpu_andnot(cpu, cpu_present_mask, cpu_online_mask) {
1362 md = per_cpu_ptr(&mwait_cpu_dead, cpu);
1363
1364 /* Does it sit in mwait_play_dead() ? */
1365 if (READ_ONCE(md->status) != CPUDEAD_MWAIT_WAIT)
1366 continue;
1367
1368 /* Wait up to 5ms */
1369 for (i = 0; READ_ONCE(md->status) != newstate && i < 1000; i++) {
1370 /* Bring it out of mwait */
1371 WRITE_ONCE(md->control, newstate);
1372 udelay(5);
1373 }
1374
1375 if (READ_ONCE(md->status) != newstate)
1376 pr_err_once("CPU%u is stuck in mwait_play_dead()\n", cpu);
1377 }
1378}
1379
1380void __noreturn hlt_play_dead(void)
1381{
1382 if (__this_cpu_read(cpu_info.x86) >= 4)
1383 wbinvd();
1384
1385 while (1)
1386 native_halt();
1387}
1388
1389/*
1390 * native_play_dead() is essentially a __noreturn function, but it can't
1391 * be marked as such as the compiler may complain about it.
1392 */
1393void native_play_dead(void)
1394{
1395 if (cpu_feature_enabled(X86_FEATURE_KERNEL_IBRS))
1396 __update_spec_ctrl(0);
1397
1398 play_dead_common();
1399 tboot_shutdown(TB_SHUTDOWN_WFS);
1400
1401 mwait_play_dead();
1402 if (cpuidle_play_dead())
1403 hlt_play_dead();
1404}
1405
1406#else /* ... !CONFIG_HOTPLUG_CPU */
1407int native_cpu_disable(void)
1408{
1409 return -ENOSYS;
1410}
1411
1412void native_play_dead(void)
1413{
1414 BUG();
1415}
1416
1417#endif
1 /*
2 * x86 SMP booting functions
3 *
4 * (c) 1995 Alan Cox, Building #3 <alan@lxorguk.ukuu.org.uk>
5 * (c) 1998, 1999, 2000, 2009 Ingo Molnar <mingo@redhat.com>
6 * Copyright 2001 Andi Kleen, SuSE Labs.
7 *
8 * Much of the core SMP work is based on previous work by Thomas Radke, to
9 * whom a great many thanks are extended.
10 *
11 * Thanks to Intel for making available several different Pentium,
12 * Pentium Pro and Pentium-II/Xeon MP machines.
13 * Original development of Linux SMP code supported by Caldera.
14 *
15 * This code is released under the GNU General Public License version 2 or
16 * later.
17 *
18 * Fixes
19 * Felix Koop : NR_CPUS used properly
20 * Jose Renau : Handle single CPU case.
21 * Alan Cox : By repeated request 8) - Total BogoMIPS report.
22 * Greg Wright : Fix for kernel stacks panic.
23 * Erich Boleyn : MP v1.4 and additional changes.
24 * Matthias Sattler : Changes for 2.1 kernel map.
25 * Michel Lespinasse : Changes for 2.1 kernel map.
26 * Michael Chastain : Change trampoline.S to gnu as.
27 * Alan Cox : Dumb bug: 'B' step PPro's are fine
28 * Ingo Molnar : Added APIC timers, based on code
29 * from Jose Renau
30 * Ingo Molnar : various cleanups and rewrites
31 * Tigran Aivazian : fixed "0.00 in /proc/uptime on SMP" bug.
32 * Maciej W. Rozycki : Bits for genuine 82489DX APICs
33 * Andi Kleen : Changed for SMP boot into long mode.
34 * Martin J. Bligh : Added support for multi-quad systems
35 * Dave Jones : Report invalid combinations of Athlon CPUs.
36 * Rusty Russell : Hacked into shape for new "hotplug" boot process.
37 * Andi Kleen : Converted to new state machine.
38 * Ashok Raj : CPU hotplug support
39 * Glauber Costa : i386 and x86_64 integration
40 */
41
42#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
43
44#include <linux/init.h>
45#include <linux/smp.h>
46#include <linux/module.h>
47#include <linux/sched.h>
48#include <linux/percpu.h>
49#include <linux/bootmem.h>
50#include <linux/err.h>
51#include <linux/nmi.h>
52#include <linux/tboot.h>
53#include <linux/stackprotector.h>
54#include <linux/gfp.h>
55#include <linux/cpuidle.h>
56
57#include <asm/acpi.h>
58#include <asm/desc.h>
59#include <asm/nmi.h>
60#include <asm/irq.h>
61#include <asm/idle.h>
62#include <asm/realmode.h>
63#include <asm/cpu.h>
64#include <asm/numa.h>
65#include <asm/pgtable.h>
66#include <asm/tlbflush.h>
67#include <asm/mtrr.h>
68#include <asm/mwait.h>
69#include <asm/apic.h>
70#include <asm/io_apic.h>
71#include <asm/i387.h>
72#include <asm/fpu-internal.h>
73#include <asm/setup.h>
74#include <asm/uv/uv.h>
75#include <linux/mc146818rtc.h>
76#include <asm/smpboot_hooks.h>
77#include <asm/i8259.h>
78#include <asm/realmode.h>
79#include <asm/misc.h>
80
81/* State of each CPU */
82DEFINE_PER_CPU(int, cpu_state) = { 0 };
83
84/* Number of siblings per CPU package */
85int smp_num_siblings = 1;
86EXPORT_SYMBOL(smp_num_siblings);
87
88/* Last level cache ID of each logical CPU */
89DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
90
91/* representing HT siblings of each logical CPU */
92DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_sibling_map);
93EXPORT_PER_CPU_SYMBOL(cpu_sibling_map);
94
95/* representing HT and core siblings of each logical CPU */
96DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_core_map);
97EXPORT_PER_CPU_SYMBOL(cpu_core_map);
98
99DEFINE_PER_CPU_READ_MOSTLY(cpumask_var_t, cpu_llc_shared_map);
100
101/* Per CPU bogomips and other parameters */
102DEFINE_PER_CPU_SHARED_ALIGNED(struct cpuinfo_x86, cpu_info);
103EXPORT_PER_CPU_SYMBOL(cpu_info);
104
105atomic_t init_deasserted;
106
107/*
108 * Report back to the Boot Processor during boot time or to the caller processor
109 * during CPU online.
110 */
111static void smp_callin(void)
112{
113 int cpuid, phys_id;
114 unsigned long timeout;
115
116 /*
117 * If waken up by an INIT in an 82489DX configuration
118 * we may get here before an INIT-deassert IPI reaches
119 * our local APIC. We have to wait for the IPI or we'll
120 * lock up on an APIC access.
121 *
122 * Since CPU0 is not wakened up by INIT, it doesn't wait for the IPI.
123 */
124 cpuid = smp_processor_id();
125 if (apic->wait_for_init_deassert && cpuid)
126 while (!atomic_read(&init_deasserted))
127 cpu_relax();
128
129 /*
130 * (This works even if the APIC is not enabled.)
131 */
132 phys_id = read_apic_id();
133 if (cpumask_test_cpu(cpuid, cpu_callin_mask)) {
134 panic("%s: phys CPU#%d, CPU#%d already present??\n", __func__,
135 phys_id, cpuid);
136 }
137 pr_debug("CPU#%d (phys ID: %d) waiting for CALLOUT\n", cpuid, phys_id);
138
139 /*
140 * STARTUP IPIs are fragile beasts as they might sometimes
141 * trigger some glue motherboard logic. Complete APIC bus
142 * silence for 1 second, this overestimates the time the
143 * boot CPU is spending to send the up to 2 STARTUP IPIs
144 * by a factor of two. This should be enough.
145 */
146
147 /*
148 * Waiting 2s total for startup (udelay is not yet working)
149 */
150 timeout = jiffies + 2*HZ;
151 while (time_before(jiffies, timeout)) {
152 /*
153 * Has the boot CPU finished it's STARTUP sequence?
154 */
155 if (cpumask_test_cpu(cpuid, cpu_callout_mask))
156 break;
157 cpu_relax();
158 }
159
160 if (!time_before(jiffies, timeout)) {
161 panic("%s: CPU%d started up but did not get a callout!\n",
162 __func__, cpuid);
163 }
164
165 /*
166 * the boot CPU has finished the init stage and is spinning
167 * on callin_map until we finish. We are free to set up this
168 * CPU, first the APIC. (this is probably redundant on most
169 * boards)
170 */
171
172 pr_debug("CALLIN, before setup_local_APIC()\n");
173 if (apic->smp_callin_clear_local_apic)
174 apic->smp_callin_clear_local_apic();
175 setup_local_APIC();
176 end_local_APIC_setup();
177
178 /*
179 * Need to setup vector mappings before we enable interrupts.
180 */
181 setup_vector_irq(smp_processor_id());
182
183 /*
184 * Save our processor parameters. Note: this information
185 * is needed for clock calibration.
186 */
187 smp_store_cpu_info(cpuid);
188
189 /*
190 * Get our bogomips.
191 * Update loops_per_jiffy in cpu_data. Previous call to
192 * smp_store_cpu_info() stored a value that is close but not as
193 * accurate as the value just calculated.
194 */
195 calibrate_delay();
196 cpu_data(cpuid).loops_per_jiffy = loops_per_jiffy;
197 pr_debug("Stack at about %p\n", &cpuid);
198
199 /*
200 * This must be done before setting cpu_online_mask
201 * or calling notify_cpu_starting.
202 */
203 set_cpu_sibling_map(raw_smp_processor_id());
204 wmb();
205
206 notify_cpu_starting(cpuid);
207
208 /*
209 * Allow the master to continue.
210 */
211 cpumask_set_cpu(cpuid, cpu_callin_mask);
212}
213
214static int cpu0_logical_apicid;
215static int enable_start_cpu0;
216/*
217 * Activate a secondary processor.
218 */
219static void notrace start_secondary(void *unused)
220{
221 /*
222 * Don't put *anything* before cpu_init(), SMP booting is too
223 * fragile that we want to limit the things done here to the
224 * most necessary things.
225 */
226 cpu_init();
227 x86_cpuinit.early_percpu_clock_init();
228 preempt_disable();
229 smp_callin();
230
231 enable_start_cpu0 = 0;
232
233#ifdef CONFIG_X86_32
234 /* switch away from the initial page table */
235 load_cr3(swapper_pg_dir);
236 __flush_tlb_all();
237#endif
238
239 /* otherwise gcc will move up smp_processor_id before the cpu_init */
240 barrier();
241 /*
242 * Check TSC synchronization with the BP:
243 */
244 check_tsc_sync_target();
245
246 /*
247 * We need to hold vector_lock so there the set of online cpus
248 * does not change while we are assigning vectors to cpus. Holding
249 * this lock ensures we don't half assign or remove an irq from a cpu.
250 */
251 lock_vector_lock();
252 set_cpu_online(smp_processor_id(), true);
253 unlock_vector_lock();
254 per_cpu(cpu_state, smp_processor_id()) = CPU_ONLINE;
255 x86_platform.nmi_init();
256
257 /* enable local interrupts */
258 local_irq_enable();
259
260 /* to prevent fake stack check failure in clock setup */
261 boot_init_stack_canary();
262
263 x86_cpuinit.setup_percpu_clockev();
264
265 wmb();
266 cpu_startup_entry(CPUHP_ONLINE);
267}
268
269void __init smp_store_boot_cpu_info(void)
270{
271 int id = 0; /* CPU 0 */
272 struct cpuinfo_x86 *c = &cpu_data(id);
273
274 *c = boot_cpu_data;
275 c->cpu_index = id;
276}
277
278/*
279 * The bootstrap kernel entry code has set these up. Save them for
280 * a given CPU
281 */
282void smp_store_cpu_info(int id)
283{
284 struct cpuinfo_x86 *c = &cpu_data(id);
285
286 *c = boot_cpu_data;
287 c->cpu_index = id;
288 /*
289 * During boot time, CPU0 has this setup already. Save the info when
290 * bringing up AP or offlined CPU0.
291 */
292 identify_secondary_cpu(c);
293}
294
295static bool
296topology_sane(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o, const char *name)
297{
298 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
299
300 return !WARN_ONCE(cpu_to_node(cpu1) != cpu_to_node(cpu2),
301 "sched: CPU #%d's %s-sibling CPU #%d is not on the same node! "
302 "[node: %d != %d]. Ignoring dependency.\n",
303 cpu1, name, cpu2, cpu_to_node(cpu1), cpu_to_node(cpu2));
304}
305
306#define link_mask(_m, c1, c2) \
307do { \
308 cpumask_set_cpu((c1), cpu_##_m##_mask(c2)); \
309 cpumask_set_cpu((c2), cpu_##_m##_mask(c1)); \
310} while (0)
311
312static bool match_smt(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
313{
314 if (cpu_has_topoext) {
315 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
316
317 if (c->phys_proc_id == o->phys_proc_id &&
318 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2) &&
319 c->compute_unit_id == o->compute_unit_id)
320 return topology_sane(c, o, "smt");
321
322 } else if (c->phys_proc_id == o->phys_proc_id &&
323 c->cpu_core_id == o->cpu_core_id) {
324 return topology_sane(c, o, "smt");
325 }
326
327 return false;
328}
329
330static bool match_llc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
331{
332 int cpu1 = c->cpu_index, cpu2 = o->cpu_index;
333
334 if (per_cpu(cpu_llc_id, cpu1) != BAD_APICID &&
335 per_cpu(cpu_llc_id, cpu1) == per_cpu(cpu_llc_id, cpu2))
336 return topology_sane(c, o, "llc");
337
338 return false;
339}
340
341static bool match_mc(struct cpuinfo_x86 *c, struct cpuinfo_x86 *o)
342{
343 if (c->phys_proc_id == o->phys_proc_id) {
344 if (cpu_has(c, X86_FEATURE_AMD_DCM))
345 return true;
346
347 return topology_sane(c, o, "mc");
348 }
349 return false;
350}
351
352void set_cpu_sibling_map(int cpu)
353{
354 bool has_smt = smp_num_siblings > 1;
355 bool has_mp = has_smt || boot_cpu_data.x86_max_cores > 1;
356 struct cpuinfo_x86 *c = &cpu_data(cpu);
357 struct cpuinfo_x86 *o;
358 int i;
359
360 cpumask_set_cpu(cpu, cpu_sibling_setup_mask);
361
362 if (!has_mp) {
363 cpumask_set_cpu(cpu, cpu_sibling_mask(cpu));
364 cpumask_set_cpu(cpu, cpu_llc_shared_mask(cpu));
365 cpumask_set_cpu(cpu, cpu_core_mask(cpu));
366 c->booted_cores = 1;
367 return;
368 }
369
370 for_each_cpu(i, cpu_sibling_setup_mask) {
371 o = &cpu_data(i);
372
373 if ((i == cpu) || (has_smt && match_smt(c, o)))
374 link_mask(sibling, cpu, i);
375
376 if ((i == cpu) || (has_mp && match_llc(c, o)))
377 link_mask(llc_shared, cpu, i);
378
379 }
380
381 /*
382 * This needs a separate iteration over the cpus because we rely on all
383 * cpu_sibling_mask links to be set-up.
384 */
385 for_each_cpu(i, cpu_sibling_setup_mask) {
386 o = &cpu_data(i);
387
388 if ((i == cpu) || (has_mp && match_mc(c, o))) {
389 link_mask(core, cpu, i);
390
391 /*
392 * Does this new cpu bringup a new core?
393 */
394 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1) {
395 /*
396 * for each core in package, increment
397 * the booted_cores for this new cpu
398 */
399 if (cpumask_first(cpu_sibling_mask(i)) == i)
400 c->booted_cores++;
401 /*
402 * increment the core count for all
403 * the other cpus in this package
404 */
405 if (i != cpu)
406 cpu_data(i).booted_cores++;
407 } else if (i != cpu && !c->booted_cores)
408 c->booted_cores = cpu_data(i).booted_cores;
409 }
410 }
411}
412
413/* maps the cpu to the sched domain representing multi-core */
414const struct cpumask *cpu_coregroup_mask(int cpu)
415{
416 return cpu_llc_shared_mask(cpu);
417}
418
419static void impress_friends(void)
420{
421 int cpu;
422 unsigned long bogosum = 0;
423 /*
424 * Allow the user to impress friends.
425 */
426 pr_debug("Before bogomips\n");
427 for_each_possible_cpu(cpu)
428 if (cpumask_test_cpu(cpu, cpu_callout_mask))
429 bogosum += cpu_data(cpu).loops_per_jiffy;
430 pr_info("Total of %d processors activated (%lu.%02lu BogoMIPS)\n",
431 num_online_cpus(),
432 bogosum/(500000/HZ),
433 (bogosum/(5000/HZ))%100);
434
435 pr_debug("Before bogocount - setting activated=1\n");
436}
437
438void __inquire_remote_apic(int apicid)
439{
440 unsigned i, regs[] = { APIC_ID >> 4, APIC_LVR >> 4, APIC_SPIV >> 4 };
441 const char * const names[] = { "ID", "VERSION", "SPIV" };
442 int timeout;
443 u32 status;
444
445 pr_info("Inquiring remote APIC 0x%x...\n", apicid);
446
447 for (i = 0; i < ARRAY_SIZE(regs); i++) {
448 pr_info("... APIC 0x%x %s: ", apicid, names[i]);
449
450 /*
451 * Wait for idle.
452 */
453 status = safe_apic_wait_icr_idle();
454 if (status)
455 pr_cont("a previous APIC delivery may have failed\n");
456
457 apic_icr_write(APIC_DM_REMRD | regs[i], apicid);
458
459 timeout = 0;
460 do {
461 udelay(100);
462 status = apic_read(APIC_ICR) & APIC_ICR_RR_MASK;
463 } while (status == APIC_ICR_RR_INPROG && timeout++ < 1000);
464
465 switch (status) {
466 case APIC_ICR_RR_VALID:
467 status = apic_read(APIC_RRR);
468 pr_cont("%08x\n", status);
469 break;
470 default:
471 pr_cont("failed\n");
472 }
473 }
474}
475
476/*
477 * Poke the other CPU in the eye via NMI to wake it up. Remember that the normal
478 * INIT, INIT, STARTUP sequence will reset the chip hard for us, and this
479 * won't ... remember to clear down the APIC, etc later.
480 */
481int
482wakeup_secondary_cpu_via_nmi(int apicid, unsigned long start_eip)
483{
484 unsigned long send_status, accept_status = 0;
485 int maxlvt;
486
487 /* Target chip */
488 /* Boot on the stack */
489 /* Kick the second */
490 apic_icr_write(APIC_DM_NMI | apic->dest_logical, apicid);
491
492 pr_debug("Waiting for send to finish...\n");
493 send_status = safe_apic_wait_icr_idle();
494
495 /*
496 * Give the other CPU some time to accept the IPI.
497 */
498 udelay(200);
499 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
500 maxlvt = lapic_get_maxlvt();
501 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
502 apic_write(APIC_ESR, 0);
503 accept_status = (apic_read(APIC_ESR) & 0xEF);
504 }
505 pr_debug("NMI sent\n");
506
507 if (send_status)
508 pr_err("APIC never delivered???\n");
509 if (accept_status)
510 pr_err("APIC delivery error (%lx)\n", accept_status);
511
512 return (send_status | accept_status);
513}
514
515static int
516wakeup_secondary_cpu_via_init(int phys_apicid, unsigned long start_eip)
517{
518 unsigned long send_status, accept_status = 0;
519 int maxlvt, num_starts, j;
520
521 maxlvt = lapic_get_maxlvt();
522
523 /*
524 * Be paranoid about clearing APIC errors.
525 */
526 if (APIC_INTEGRATED(apic_version[phys_apicid])) {
527 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
528 apic_write(APIC_ESR, 0);
529 apic_read(APIC_ESR);
530 }
531
532 pr_debug("Asserting INIT\n");
533
534 /*
535 * Turn INIT on target chip
536 */
537 /*
538 * Send IPI
539 */
540 apic_icr_write(APIC_INT_LEVELTRIG | APIC_INT_ASSERT | APIC_DM_INIT,
541 phys_apicid);
542
543 pr_debug("Waiting for send to finish...\n");
544 send_status = safe_apic_wait_icr_idle();
545
546 mdelay(10);
547
548 pr_debug("Deasserting INIT\n");
549
550 /* Target chip */
551 /* Send IPI */
552 apic_icr_write(APIC_INT_LEVELTRIG | APIC_DM_INIT, phys_apicid);
553
554 pr_debug("Waiting for send to finish...\n");
555 send_status = safe_apic_wait_icr_idle();
556
557 mb();
558 atomic_set(&init_deasserted, 1);
559
560 /*
561 * Should we send STARTUP IPIs ?
562 *
563 * Determine this based on the APIC version.
564 * If we don't have an integrated APIC, don't send the STARTUP IPIs.
565 */
566 if (APIC_INTEGRATED(apic_version[phys_apicid]))
567 num_starts = 2;
568 else
569 num_starts = 0;
570
571 /*
572 * Paravirt / VMI wants a startup IPI hook here to set up the
573 * target processor state.
574 */
575 startup_ipi_hook(phys_apicid, (unsigned long) start_secondary,
576 stack_start);
577
578 /*
579 * Run STARTUP IPI loop.
580 */
581 pr_debug("#startup loops: %d\n", num_starts);
582
583 for (j = 1; j <= num_starts; j++) {
584 pr_debug("Sending STARTUP #%d\n", j);
585 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
586 apic_write(APIC_ESR, 0);
587 apic_read(APIC_ESR);
588 pr_debug("After apic_write\n");
589
590 /*
591 * STARTUP IPI
592 */
593
594 /* Target chip */
595 /* Boot on the stack */
596 /* Kick the second */
597 apic_icr_write(APIC_DM_STARTUP | (start_eip >> 12),
598 phys_apicid);
599
600 /*
601 * Give the other CPU some time to accept the IPI.
602 */
603 udelay(300);
604
605 pr_debug("Startup point 1\n");
606
607 pr_debug("Waiting for send to finish...\n");
608 send_status = safe_apic_wait_icr_idle();
609
610 /*
611 * Give the other CPU some time to accept the IPI.
612 */
613 udelay(200);
614 if (maxlvt > 3) /* Due to the Pentium erratum 3AP. */
615 apic_write(APIC_ESR, 0);
616 accept_status = (apic_read(APIC_ESR) & 0xEF);
617 if (send_status || accept_status)
618 break;
619 }
620 pr_debug("After Startup\n");
621
622 if (send_status)
623 pr_err("APIC never delivered???\n");
624 if (accept_status)
625 pr_err("APIC delivery error (%lx)\n", accept_status);
626
627 return (send_status | accept_status);
628}
629
630void smp_announce(void)
631{
632 int num_nodes = num_online_nodes();
633
634 printk(KERN_INFO "x86: Booted up %d node%s, %d CPUs\n",
635 num_nodes, (num_nodes > 1 ? "s" : ""), num_online_cpus());
636}
637
638/* reduce the number of lines printed when booting a large cpu count system */
639static void announce_cpu(int cpu, int apicid)
640{
641 static int current_node = -1;
642 int node = early_cpu_to_node(cpu);
643 static int width, node_width;
644
645 if (!width)
646 width = num_digits(num_possible_cpus()) + 1; /* + '#' sign */
647
648 if (!node_width)
649 node_width = num_digits(num_possible_nodes()) + 1; /* + '#' */
650
651 if (cpu == 1)
652 printk(KERN_INFO "x86: Booting SMP configuration:\n");
653
654 if (system_state == SYSTEM_BOOTING) {
655 if (node != current_node) {
656 if (current_node > (-1))
657 pr_cont("\n");
658 current_node = node;
659
660 printk(KERN_INFO ".... node %*s#%d, CPUs: ",
661 node_width - num_digits(node), " ", node);
662 }
663
664 /* Add padding for the BSP */
665 if (cpu == 1)
666 pr_cont("%*s", width + 1, " ");
667
668 pr_cont("%*s#%d", width - num_digits(cpu), " ", cpu);
669
670 } else
671 pr_info("Booting Node %d Processor %d APIC 0x%x\n",
672 node, cpu, apicid);
673}
674
675static int wakeup_cpu0_nmi(unsigned int cmd, struct pt_regs *regs)
676{
677 int cpu;
678
679 cpu = smp_processor_id();
680 if (cpu == 0 && !cpu_online(cpu) && enable_start_cpu0)
681 return NMI_HANDLED;
682
683 return NMI_DONE;
684}
685
686/*
687 * Wake up AP by INIT, INIT, STARTUP sequence.
688 *
689 * Instead of waiting for STARTUP after INITs, BSP will execute the BIOS
690 * boot-strap code which is not a desired behavior for waking up BSP. To
691 * void the boot-strap code, wake up CPU0 by NMI instead.
692 *
693 * This works to wake up soft offlined CPU0 only. If CPU0 is hard offlined
694 * (i.e. physically hot removed and then hot added), NMI won't wake it up.
695 * We'll change this code in the future to wake up hard offlined CPU0 if
696 * real platform and request are available.
697 */
698static int
699wakeup_cpu_via_init_nmi(int cpu, unsigned long start_ip, int apicid,
700 int *cpu0_nmi_registered)
701{
702 int id;
703 int boot_error;
704
705 preempt_disable();
706
707 /*
708 * Wake up AP by INIT, INIT, STARTUP sequence.
709 */
710 if (cpu) {
711 boot_error = wakeup_secondary_cpu_via_init(apicid, start_ip);
712 goto out;
713 }
714
715 /*
716 * Wake up BSP by nmi.
717 *
718 * Register a NMI handler to help wake up CPU0.
719 */
720 boot_error = register_nmi_handler(NMI_LOCAL,
721 wakeup_cpu0_nmi, 0, "wake_cpu0");
722
723 if (!boot_error) {
724 enable_start_cpu0 = 1;
725 *cpu0_nmi_registered = 1;
726 if (apic->dest_logical == APIC_DEST_LOGICAL)
727 id = cpu0_logical_apicid;
728 else
729 id = apicid;
730 boot_error = wakeup_secondary_cpu_via_nmi(id, start_ip);
731 }
732
733out:
734 preempt_enable();
735
736 return boot_error;
737}
738
739/*
740 * NOTE - on most systems this is a PHYSICAL apic ID, but on multiquad
741 * (ie clustered apic addressing mode), this is a LOGICAL apic ID.
742 * Returns zero if CPU booted OK, else error code from
743 * ->wakeup_secondary_cpu.
744 */
745static int do_boot_cpu(int apicid, int cpu, struct task_struct *idle)
746{
747 volatile u32 *trampoline_status =
748 (volatile u32 *) __va(real_mode_header->trampoline_status);
749 /* start_ip had better be page-aligned! */
750 unsigned long start_ip = real_mode_header->trampoline_start;
751
752 unsigned long boot_error = 0;
753 int timeout;
754 int cpu0_nmi_registered = 0;
755
756 /* Just in case we booted with a single CPU. */
757 alternatives_enable_smp();
758
759 idle->thread.sp = (unsigned long) (((struct pt_regs *)
760 (THREAD_SIZE + task_stack_page(idle))) - 1);
761 per_cpu(current_task, cpu) = idle;
762
763#ifdef CONFIG_X86_32
764 /* Stack for startup_32 can be just as for start_secondary onwards */
765 irq_ctx_init(cpu);
766#else
767 clear_tsk_thread_flag(idle, TIF_FORK);
768 initial_gs = per_cpu_offset(cpu);
769#endif
770 per_cpu(kernel_stack, cpu) =
771 (unsigned long)task_stack_page(idle) -
772 KERNEL_STACK_OFFSET + THREAD_SIZE;
773 early_gdt_descr.address = (unsigned long)get_cpu_gdt_table(cpu);
774 initial_code = (unsigned long)start_secondary;
775 stack_start = idle->thread.sp;
776
777 /* So we see what's up */
778 announce_cpu(cpu, apicid);
779
780 /*
781 * This grunge runs the startup process for
782 * the targeted processor.
783 */
784
785 atomic_set(&init_deasserted, 0);
786
787 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
788
789 pr_debug("Setting warm reset code and vector.\n");
790
791 smpboot_setup_warm_reset_vector(start_ip);
792 /*
793 * Be paranoid about clearing APIC errors.
794 */
795 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid])) {
796 apic_write(APIC_ESR, 0);
797 apic_read(APIC_ESR);
798 }
799 }
800
801 /*
802 * Wake up a CPU in difference cases:
803 * - Use the method in the APIC driver if it's defined
804 * Otherwise,
805 * - Use an INIT boot APIC message for APs or NMI for BSP.
806 */
807 if (apic->wakeup_secondary_cpu)
808 boot_error = apic->wakeup_secondary_cpu(apicid, start_ip);
809 else
810 boot_error = wakeup_cpu_via_init_nmi(cpu, start_ip, apicid,
811 &cpu0_nmi_registered);
812
813 if (!boot_error) {
814 /*
815 * allow APs to start initializing.
816 */
817 pr_debug("Before Callout %d\n", cpu);
818 cpumask_set_cpu(cpu, cpu_callout_mask);
819 pr_debug("After Callout %d\n", cpu);
820
821 /*
822 * Wait 5s total for a response
823 */
824 for (timeout = 0; timeout < 50000; timeout++) {
825 if (cpumask_test_cpu(cpu, cpu_callin_mask))
826 break; /* It has booted */
827 udelay(100);
828 /*
829 * Allow other tasks to run while we wait for the
830 * AP to come online. This also gives a chance
831 * for the MTRR work(triggered by the AP coming online)
832 * to be completed in the stop machine context.
833 */
834 schedule();
835 }
836
837 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
838 print_cpu_msr(&cpu_data(cpu));
839 pr_debug("CPU%d: has booted.\n", cpu);
840 } else {
841 boot_error = 1;
842 if (*trampoline_status == 0xA5A5A5A5)
843 /* trampoline started but...? */
844 pr_err("CPU%d: Stuck ??\n", cpu);
845 else
846 /* trampoline code not run */
847 pr_err("CPU%d: Not responding\n", cpu);
848 if (apic->inquire_remote_apic)
849 apic->inquire_remote_apic(apicid);
850 }
851 }
852
853 if (boot_error) {
854 /* Try to put things back the way they were before ... */
855 numa_remove_cpu(cpu); /* was set by numa_add_cpu */
856
857 /* was set by do_boot_cpu() */
858 cpumask_clear_cpu(cpu, cpu_callout_mask);
859
860 /* was set by cpu_init() */
861 cpumask_clear_cpu(cpu, cpu_initialized_mask);
862 }
863
864 /* mark "stuck" area as not stuck */
865 *trampoline_status = 0;
866
867 if (get_uv_system_type() != UV_NON_UNIQUE_APIC) {
868 /*
869 * Cleanup possible dangling ends...
870 */
871 smpboot_restore_warm_reset_vector();
872 }
873 /*
874 * Clean up the nmi handler. Do this after the callin and callout sync
875 * to avoid impact of possible long unregister time.
876 */
877 if (cpu0_nmi_registered)
878 unregister_nmi_handler(NMI_LOCAL, "wake_cpu0");
879
880 return boot_error;
881}
882
883int native_cpu_up(unsigned int cpu, struct task_struct *tidle)
884{
885 int apicid = apic->cpu_present_to_apicid(cpu);
886 unsigned long flags;
887 int err;
888
889 WARN_ON(irqs_disabled());
890
891 pr_debug("++++++++++++++++++++=_---CPU UP %u\n", cpu);
892
893 if (apicid == BAD_APICID ||
894 !physid_isset(apicid, phys_cpu_present_map) ||
895 !apic->apic_id_valid(apicid)) {
896 pr_err("%s: bad cpu %d\n", __func__, cpu);
897 return -EINVAL;
898 }
899
900 /*
901 * Already booted CPU?
902 */
903 if (cpumask_test_cpu(cpu, cpu_callin_mask)) {
904 pr_debug("do_boot_cpu %d Already started\n", cpu);
905 return -ENOSYS;
906 }
907
908 /*
909 * Save current MTRR state in case it was changed since early boot
910 * (e.g. by the ACPI SMI) to initialize new CPUs with MTRRs in sync:
911 */
912 mtrr_save_state();
913
914 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
915
916 /* the FPU context is blank, nobody can own it */
917 __cpu_disable_lazy_restore(cpu);
918
919 err = do_boot_cpu(apicid, cpu, tidle);
920 if (err) {
921 pr_err("do_boot_cpu failed(%d) to wakeup CPU#%u\n", err, cpu);
922 return -EIO;
923 }
924
925 /*
926 * Check TSC synchronization with the AP (keep irqs disabled
927 * while doing so):
928 */
929 local_irq_save(flags);
930 check_tsc_sync_source(cpu);
931 local_irq_restore(flags);
932
933 while (!cpu_online(cpu)) {
934 cpu_relax();
935 touch_nmi_watchdog();
936 }
937
938 return 0;
939}
940
941/**
942 * arch_disable_smp_support() - disables SMP support for x86 at runtime
943 */
944void arch_disable_smp_support(void)
945{
946 disable_ioapic_support();
947}
948
949/*
950 * Fall back to non SMP mode after errors.
951 *
952 * RED-PEN audit/test this more. I bet there is more state messed up here.
953 */
954static __init void disable_smp(void)
955{
956 init_cpu_present(cpumask_of(0));
957 init_cpu_possible(cpumask_of(0));
958 smpboot_clear_io_apic_irqs();
959
960 if (smp_found_config)
961 physid_set_mask_of_physid(boot_cpu_physical_apicid, &phys_cpu_present_map);
962 else
963 physid_set_mask_of_physid(0, &phys_cpu_present_map);
964 cpumask_set_cpu(0, cpu_sibling_mask(0));
965 cpumask_set_cpu(0, cpu_core_mask(0));
966}
967
968/*
969 * Various sanity checks.
970 */
971static int __init smp_sanity_check(unsigned max_cpus)
972{
973 preempt_disable();
974
975#if !defined(CONFIG_X86_BIGSMP) && defined(CONFIG_X86_32)
976 if (def_to_bigsmp && nr_cpu_ids > 8) {
977 unsigned int cpu;
978 unsigned nr;
979
980 pr_warn("More than 8 CPUs detected - skipping them\n"
981 "Use CONFIG_X86_BIGSMP\n");
982
983 nr = 0;
984 for_each_present_cpu(cpu) {
985 if (nr >= 8)
986 set_cpu_present(cpu, false);
987 nr++;
988 }
989
990 nr = 0;
991 for_each_possible_cpu(cpu) {
992 if (nr >= 8)
993 set_cpu_possible(cpu, false);
994 nr++;
995 }
996
997 nr_cpu_ids = 8;
998 }
999#endif
1000
1001 if (!physid_isset(hard_smp_processor_id(), phys_cpu_present_map)) {
1002 pr_warn("weird, boot CPU (#%d) not listed by the BIOS\n",
1003 hard_smp_processor_id());
1004
1005 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1006 }
1007
1008 /*
1009 * If we couldn't find an SMP configuration at boot time,
1010 * get out of here now!
1011 */
1012 if (!smp_found_config && !acpi_lapic) {
1013 preempt_enable();
1014 pr_notice("SMP motherboard not detected\n");
1015 disable_smp();
1016 if (APIC_init_uniprocessor())
1017 pr_notice("Local APIC not detected. Using dummy APIC emulation.\n");
1018 return -1;
1019 }
1020
1021 /*
1022 * Should not be necessary because the MP table should list the boot
1023 * CPU too, but we do it for the sake of robustness anyway.
1024 */
1025 if (!apic->check_phys_apicid_present(boot_cpu_physical_apicid)) {
1026 pr_notice("weird, boot CPU (#%d) not listed by the BIOS\n",
1027 boot_cpu_physical_apicid);
1028 physid_set(hard_smp_processor_id(), phys_cpu_present_map);
1029 }
1030 preempt_enable();
1031
1032 /*
1033 * If we couldn't find a local APIC, then get out of here now!
1034 */
1035 if (APIC_INTEGRATED(apic_version[boot_cpu_physical_apicid]) &&
1036 !cpu_has_apic) {
1037 if (!disable_apic) {
1038 pr_err("BIOS bug, local APIC #%d not detected!...\n",
1039 boot_cpu_physical_apicid);
1040 pr_err("... forcing use of dummy APIC emulation (tell your hw vendor)\n");
1041 }
1042 smpboot_clear_io_apic();
1043 disable_ioapic_support();
1044 return -1;
1045 }
1046
1047 verify_local_APIC();
1048
1049 /*
1050 * If SMP should be disabled, then really disable it!
1051 */
1052 if (!max_cpus) {
1053 pr_info("SMP mode deactivated\n");
1054 smpboot_clear_io_apic();
1055
1056 connect_bsp_APIC();
1057 setup_local_APIC();
1058 bsp_end_local_APIC_setup();
1059 return -1;
1060 }
1061
1062 return 0;
1063}
1064
1065static void __init smp_cpu_index_default(void)
1066{
1067 int i;
1068 struct cpuinfo_x86 *c;
1069
1070 for_each_possible_cpu(i) {
1071 c = &cpu_data(i);
1072 /* mark all to hotplug */
1073 c->cpu_index = nr_cpu_ids;
1074 }
1075}
1076
1077/*
1078 * Prepare for SMP bootup. The MP table or ACPI has been read
1079 * earlier. Just do some sanity checking here and enable APIC mode.
1080 */
1081void __init native_smp_prepare_cpus(unsigned int max_cpus)
1082{
1083 unsigned int i;
1084
1085 preempt_disable();
1086 smp_cpu_index_default();
1087
1088 /*
1089 * Setup boot CPU information
1090 */
1091 smp_store_boot_cpu_info(); /* Final full version of the data */
1092 cpumask_copy(cpu_callin_mask, cpumask_of(0));
1093 mb();
1094
1095 current_thread_info()->cpu = 0; /* needed? */
1096 for_each_possible_cpu(i) {
1097 zalloc_cpumask_var(&per_cpu(cpu_sibling_map, i), GFP_KERNEL);
1098 zalloc_cpumask_var(&per_cpu(cpu_core_map, i), GFP_KERNEL);
1099 zalloc_cpumask_var(&per_cpu(cpu_llc_shared_map, i), GFP_KERNEL);
1100 }
1101 set_cpu_sibling_map(0);
1102
1103
1104 if (smp_sanity_check(max_cpus) < 0) {
1105 pr_info("SMP disabled\n");
1106 disable_smp();
1107 goto out;
1108 }
1109
1110 default_setup_apic_routing();
1111
1112 preempt_disable();
1113 if (read_apic_id() != boot_cpu_physical_apicid) {
1114 panic("Boot APIC ID in local APIC unexpected (%d vs %d)",
1115 read_apic_id(), boot_cpu_physical_apicid);
1116 /* Or can we switch back to PIC here? */
1117 }
1118 preempt_enable();
1119
1120 connect_bsp_APIC();
1121
1122 /*
1123 * Switch from PIC to APIC mode.
1124 */
1125 setup_local_APIC();
1126
1127 if (x2apic_mode)
1128 cpu0_logical_apicid = apic_read(APIC_LDR);
1129 else
1130 cpu0_logical_apicid = GET_APIC_LOGICAL_ID(apic_read(APIC_LDR));
1131
1132 /*
1133 * Enable IO APIC before setting up error vector
1134 */
1135 if (!skip_ioapic_setup && nr_ioapics)
1136 enable_IO_APIC();
1137
1138 bsp_end_local_APIC_setup();
1139
1140 if (apic->setup_portio_remap)
1141 apic->setup_portio_remap();
1142
1143 smpboot_setup_io_apic();
1144 /*
1145 * Set up local APIC timer on boot CPU.
1146 */
1147
1148 pr_info("CPU%d: ", 0);
1149 print_cpu_info(&cpu_data(0));
1150 x86_init.timers.setup_percpu_clockev();
1151
1152 if (is_uv_system())
1153 uv_system_init();
1154
1155 set_mtrr_aps_delayed_init();
1156out:
1157 preempt_enable();
1158}
1159
1160void arch_enable_nonboot_cpus_begin(void)
1161{
1162 set_mtrr_aps_delayed_init();
1163}
1164
1165void arch_enable_nonboot_cpus_end(void)
1166{
1167 mtrr_aps_init();
1168}
1169
1170/*
1171 * Early setup to make printk work.
1172 */
1173void __init native_smp_prepare_boot_cpu(void)
1174{
1175 int me = smp_processor_id();
1176 switch_to_new_gdt(me);
1177 /* already set me in cpu_online_mask in boot_cpu_init() */
1178 cpumask_set_cpu(me, cpu_callout_mask);
1179 per_cpu(cpu_state, me) = CPU_ONLINE;
1180}
1181
1182void __init native_smp_cpus_done(unsigned int max_cpus)
1183{
1184 pr_debug("Boot done\n");
1185
1186 nmi_selftest();
1187 impress_friends();
1188#ifdef CONFIG_X86_IO_APIC
1189 setup_ioapic_dest();
1190#endif
1191 mtrr_aps_init();
1192}
1193
1194static int __initdata setup_possible_cpus = -1;
1195static int __init _setup_possible_cpus(char *str)
1196{
1197 get_option(&str, &setup_possible_cpus);
1198 return 0;
1199}
1200early_param("possible_cpus", _setup_possible_cpus);
1201
1202
1203/*
1204 * cpu_possible_mask should be static, it cannot change as cpu's
1205 * are onlined, or offlined. The reason is per-cpu data-structures
1206 * are allocated by some modules at init time, and dont expect to
1207 * do this dynamically on cpu arrival/departure.
1208 * cpu_present_mask on the other hand can change dynamically.
1209 * In case when cpu_hotplug is not compiled, then we resort to current
1210 * behaviour, which is cpu_possible == cpu_present.
1211 * - Ashok Raj
1212 *
1213 * Three ways to find out the number of additional hotplug CPUs:
1214 * - If the BIOS specified disabled CPUs in ACPI/mptables use that.
1215 * - The user can overwrite it with possible_cpus=NUM
1216 * - Otherwise don't reserve additional CPUs.
1217 * We do this because additional CPUs waste a lot of memory.
1218 * -AK
1219 */
1220__init void prefill_possible_map(void)
1221{
1222 int i, possible;
1223
1224 /* no processor from mptable or madt */
1225 if (!num_processors)
1226 num_processors = 1;
1227
1228 i = setup_max_cpus ?: 1;
1229 if (setup_possible_cpus == -1) {
1230 possible = num_processors;
1231#ifdef CONFIG_HOTPLUG_CPU
1232 if (setup_max_cpus)
1233 possible += disabled_cpus;
1234#else
1235 if (possible > i)
1236 possible = i;
1237#endif
1238 } else
1239 possible = setup_possible_cpus;
1240
1241 total_cpus = max_t(int, possible, num_processors + disabled_cpus);
1242
1243 /* nr_cpu_ids could be reduced via nr_cpus= */
1244 if (possible > nr_cpu_ids) {
1245 pr_warn("%d Processors exceeds NR_CPUS limit of %d\n",
1246 possible, nr_cpu_ids);
1247 possible = nr_cpu_ids;
1248 }
1249
1250#ifdef CONFIG_HOTPLUG_CPU
1251 if (!setup_max_cpus)
1252#endif
1253 if (possible > i) {
1254 pr_warn("%d Processors exceeds max_cpus limit of %u\n",
1255 possible, setup_max_cpus);
1256 possible = i;
1257 }
1258
1259 pr_info("Allowing %d CPUs, %d hotplug CPUs\n",
1260 possible, max_t(int, possible - num_processors, 0));
1261
1262 for (i = 0; i < possible; i++)
1263 set_cpu_possible(i, true);
1264 for (; i < NR_CPUS; i++)
1265 set_cpu_possible(i, false);
1266
1267 nr_cpu_ids = possible;
1268}
1269
1270#ifdef CONFIG_HOTPLUG_CPU
1271
1272static void remove_siblinginfo(int cpu)
1273{
1274 int sibling;
1275 struct cpuinfo_x86 *c = &cpu_data(cpu);
1276
1277 for_each_cpu(sibling, cpu_core_mask(cpu)) {
1278 cpumask_clear_cpu(cpu, cpu_core_mask(sibling));
1279 /*/
1280 * last thread sibling in this cpu core going down
1281 */
1282 if (cpumask_weight(cpu_sibling_mask(cpu)) == 1)
1283 cpu_data(sibling).booted_cores--;
1284 }
1285
1286 for_each_cpu(sibling, cpu_sibling_mask(cpu))
1287 cpumask_clear_cpu(cpu, cpu_sibling_mask(sibling));
1288 cpumask_clear(cpu_sibling_mask(cpu));
1289 cpumask_clear(cpu_core_mask(cpu));
1290 c->phys_proc_id = 0;
1291 c->cpu_core_id = 0;
1292 cpumask_clear_cpu(cpu, cpu_sibling_setup_mask);
1293}
1294
1295static void __ref remove_cpu_from_maps(int cpu)
1296{
1297 set_cpu_online(cpu, false);
1298 cpumask_clear_cpu(cpu, cpu_callout_mask);
1299 cpumask_clear_cpu(cpu, cpu_callin_mask);
1300 /* was set by cpu_init() */
1301 cpumask_clear_cpu(cpu, cpu_initialized_mask);
1302 numa_remove_cpu(cpu);
1303}
1304
1305void cpu_disable_common(void)
1306{
1307 int cpu = smp_processor_id();
1308
1309 remove_siblinginfo(cpu);
1310
1311 /* It's now safe to remove this processor from the online map */
1312 lock_vector_lock();
1313 remove_cpu_from_maps(cpu);
1314 unlock_vector_lock();
1315 fixup_irqs();
1316}
1317
1318int native_cpu_disable(void)
1319{
1320 int ret;
1321
1322 ret = check_irq_vectors_for_cpu_disable();
1323 if (ret)
1324 return ret;
1325
1326 clear_local_APIC();
1327
1328 cpu_disable_common();
1329 return 0;
1330}
1331
1332void native_cpu_die(unsigned int cpu)
1333{
1334 /* We don't do anything here: idle task is faking death itself. */
1335 unsigned int i;
1336
1337 for (i = 0; i < 10; i++) {
1338 /* They ack this in play_dead by setting CPU_DEAD */
1339 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
1340 if (system_state == SYSTEM_RUNNING)
1341 pr_info("CPU %u is now offline\n", cpu);
1342 return;
1343 }
1344 msleep(100);
1345 }
1346 pr_err("CPU %u didn't die...\n", cpu);
1347}
1348
1349void play_dead_common(void)
1350{
1351 idle_task_exit();
1352 reset_lazy_tlbstate();
1353 amd_e400_remove_cpu(raw_smp_processor_id());
1354
1355 mb();
1356 /* Ack it */
1357 __this_cpu_write(cpu_state, CPU_DEAD);
1358
1359 /*
1360 * With physical CPU hotplug, we should halt the cpu
1361 */
1362 local_irq_disable();
1363}
1364
1365static bool wakeup_cpu0(void)
1366{
1367 if (smp_processor_id() == 0 && enable_start_cpu0)
1368 return true;
1369
1370 return false;
1371}
1372
1373/*
1374 * We need to flush the caches before going to sleep, lest we have
1375 * dirty data in our caches when we come back up.
1376 */
1377static inline void mwait_play_dead(void)
1378{
1379 unsigned int eax, ebx, ecx, edx;
1380 unsigned int highest_cstate = 0;
1381 unsigned int highest_subcstate = 0;
1382 void *mwait_ptr;
1383 int i;
1384
1385 if (!this_cpu_has(X86_FEATURE_MWAIT))
1386 return;
1387 if (!this_cpu_has(X86_FEATURE_CLFLUSH))
1388 return;
1389 if (__this_cpu_read(cpu_info.cpuid_level) < CPUID_MWAIT_LEAF)
1390 return;
1391
1392 eax = CPUID_MWAIT_LEAF;
1393 ecx = 0;
1394 native_cpuid(&eax, &ebx, &ecx, &edx);
1395
1396 /*
1397 * eax will be 0 if EDX enumeration is not valid.
1398 * Initialized below to cstate, sub_cstate value when EDX is valid.
1399 */
1400 if (!(ecx & CPUID5_ECX_EXTENSIONS_SUPPORTED)) {
1401 eax = 0;
1402 } else {
1403 edx >>= MWAIT_SUBSTATE_SIZE;
1404 for (i = 0; i < 7 && edx; i++, edx >>= MWAIT_SUBSTATE_SIZE) {
1405 if (edx & MWAIT_SUBSTATE_MASK) {
1406 highest_cstate = i;
1407 highest_subcstate = edx & MWAIT_SUBSTATE_MASK;
1408 }
1409 }
1410 eax = (highest_cstate << MWAIT_SUBSTATE_SIZE) |
1411 (highest_subcstate - 1);
1412 }
1413
1414 /*
1415 * This should be a memory location in a cache line which is
1416 * unlikely to be touched by other processors. The actual
1417 * content is immaterial as it is not actually modified in any way.
1418 */
1419 mwait_ptr = ¤t_thread_info()->flags;
1420
1421 wbinvd();
1422
1423 while (1) {
1424 /*
1425 * The CLFLUSH is a workaround for erratum AAI65 for
1426 * the Xeon 7400 series. It's not clear it is actually
1427 * needed, but it should be harmless in either case.
1428 * The WBINVD is insufficient due to the spurious-wakeup
1429 * case where we return around the loop.
1430 */
1431 mb();
1432 clflush(mwait_ptr);
1433 mb();
1434 __monitor(mwait_ptr, 0, 0);
1435 mb();
1436 __mwait(eax, 0);
1437 /*
1438 * If NMI wants to wake up CPU0, start CPU0.
1439 */
1440 if (wakeup_cpu0())
1441 start_cpu0();
1442 }
1443}
1444
1445static inline void hlt_play_dead(void)
1446{
1447 if (__this_cpu_read(cpu_info.x86) >= 4)
1448 wbinvd();
1449
1450 while (1) {
1451 native_halt();
1452 /*
1453 * If NMI wants to wake up CPU0, start CPU0.
1454 */
1455 if (wakeup_cpu0())
1456 start_cpu0();
1457 }
1458}
1459
1460void native_play_dead(void)
1461{
1462 play_dead_common();
1463 tboot_shutdown(TB_SHUTDOWN_WFS);
1464
1465 mwait_play_dead(); /* Only returns on failure */
1466 if (cpuidle_play_dead())
1467 hlt_play_dead();
1468}
1469
1470#else /* ... !CONFIG_HOTPLUG_CPU */
1471int native_cpu_disable(void)
1472{
1473 return -ENOSYS;
1474}
1475
1476void native_cpu_die(unsigned int cpu)
1477{
1478 /* We said "no" in __cpu_disable */
1479 BUG();
1480}
1481
1482void native_play_dead(void)
1483{
1484 BUG();
1485}
1486
1487#endif