Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
  88#include <uapi/linux/shm.h>
  89#include <linux/bpf.h>
  90#include <linux/kernfs.h>
  91#include <linux/stringhash.h>	/* for hashlen_string() */
  92#include <uapi/linux/mount.h>
  93#include <linux/fsnotify.h>
  94#include <linux/fanotify.h>
  95#include <linux/io_uring/cmd.h>
  96#include <uapi/linux/lsm.h>
  97
  98#include "avc.h"
  99#include "objsec.h"
 100#include "netif.h"
 101#include "netnode.h"
 102#include "netport.h"
 103#include "ibpkey.h"
 104#include "xfrm.h"
 105#include "netlabel.h"
 106#include "audit.h"
 107#include "avc_ss.h"
 108
 109#define SELINUX_INODE_INIT_XATTRS 1
 110
 111struct selinux_state selinux_state;
 112
 113/* SECMARK reference count */
 114static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 115
 116#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 117static int selinux_enforcing_boot __initdata;
 118
 119static int __init enforcing_setup(char *str)
 120{
 121	unsigned long enforcing;
 122	if (!kstrtoul(str, 0, &enforcing))
 123		selinux_enforcing_boot = enforcing ? 1 : 0;
 124	return 1;
 125}
 126__setup("enforcing=", enforcing_setup);
 127#else
 128#define selinux_enforcing_boot 1
 129#endif
 130
 131int selinux_enabled_boot __initdata = 1;
 132#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 133static int __init selinux_enabled_setup(char *str)
 134{
 135	unsigned long enabled;
 136	if (!kstrtoul(str, 0, &enabled))
 137		selinux_enabled_boot = enabled ? 1 : 0;
 138	return 1;
 139}
 140__setup("selinux=", selinux_enabled_setup);
 141#endif
 142
 
 
 
 143static int __init checkreqprot_setup(char *str)
 144{
 145	unsigned long checkreqprot;
 146
 147	if (!kstrtoul(str, 0, &checkreqprot)) {
 
 148		if (checkreqprot)
 149			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 214	struct task_security_struct *tsec;
 215
 216	tsec = selinux_cred(unrcu_pointer(current->real_cred));
 217	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 218}
 219
 220/*
 221 * get the security ID of a set of credentials
 222 */
 223static inline u32 cred_sid(const struct cred *cred)
 224{
 225	const struct task_security_struct *tsec;
 226
 227	tsec = selinux_cred(cred);
 228	return tsec->sid;
 229}
 230
 231static void __ad_net_init(struct common_audit_data *ad,
 232			  struct lsm_network_audit *net,
 233			  int ifindex, struct sock *sk, u16 family)
 234{
 235	ad->type = LSM_AUDIT_DATA_NET;
 236	ad->u.net = net;
 237	net->netif = ifindex;
 238	net->sk = sk;
 239	net->family = family;
 240}
 241
 242static void ad_net_init_from_sk(struct common_audit_data *ad,
 243				struct lsm_network_audit *net,
 244				struct sock *sk)
 245{
 246	__ad_net_init(ad, net, 0, sk, 0);
 247}
 248
 249static void ad_net_init_from_iif(struct common_audit_data *ad,
 250				 struct lsm_network_audit *net,
 251				 int ifindex, u16 family)
 252{
 253	__ad_net_init(ad, net, ifindex, NULL, family);
 254}
 255
 256/*
 257 * get the objective security ID of a task
 258 */
 259static inline u32 task_sid_obj(const struct task_struct *task)
 260{
 261	u32 sid;
 262
 263	rcu_read_lock();
 264	sid = cred_sid(__task_cred(task));
 265	rcu_read_unlock();
 266	return sid;
 267}
 268
 269static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 270
 271/*
 272 * Try reloading inode security labels that have been marked as invalid.  The
 273 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 274 * allowed; when set to false, returns -ECHILD when the label is
 275 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 276 */
 277static int __inode_security_revalidate(struct inode *inode,
 278				       struct dentry *dentry,
 279				       bool may_sleep)
 280{
 281	struct inode_security_struct *isec = selinux_inode(inode);
 282
 283	might_sleep_if(may_sleep);
 284
 285	/*
 286	 * The check of isec->initialized below is racy but
 287	 * inode_doinit_with_dentry() will recheck with
 288	 * isec->lock held.
 289	 */
 290	if (selinux_initialized() &&
 291	    data_race(isec->initialized != LABEL_INITIALIZED)) {
 292		if (!may_sleep)
 293			return -ECHILD;
 294
 295		/*
 296		 * Try reloading the inode security label.  This will fail if
 297		 * @opt_dentry is NULL and no dentry for this inode can be
 298		 * found; in that case, continue using the old label.
 299		 */
 300		inode_doinit_with_dentry(inode, dentry);
 301	}
 302	return 0;
 303}
 304
 305static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 306{
 307	return selinux_inode(inode);
 308}
 309
 310static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 311{
 312	int error;
 313
 314	error = __inode_security_revalidate(inode, NULL, !rcu);
 315	if (error)
 316		return ERR_PTR(error);
 317	return selinux_inode(inode);
 318}
 319
 320/*
 321 * Get the security label of an inode.
 322 */
 323static struct inode_security_struct *inode_security(struct inode *inode)
 324{
 325	__inode_security_revalidate(inode, NULL, true);
 326	return selinux_inode(inode);
 327}
 328
 329static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 330{
 331	struct inode *inode = d_backing_inode(dentry);
 332
 333	return selinux_inode(inode);
 334}
 335
 336/*
 337 * Get the security label of a dentry's backing inode.
 338 */
 339static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 340{
 341	struct inode *inode = d_backing_inode(dentry);
 342
 343	__inode_security_revalidate(inode, dentry, true);
 344	return selinux_inode(inode);
 345}
 346
 347static void inode_free_security(struct inode *inode)
 348{
 349	struct inode_security_struct *isec = selinux_inode(inode);
 350	struct superblock_security_struct *sbsec;
 351
 352	if (!isec)
 353		return;
 354	sbsec = selinux_superblock(inode->i_sb);
 355	/*
 356	 * As not all inode security structures are in a list, we check for
 357	 * empty list outside of the lock to make sure that we won't waste
 358	 * time taking a lock doing nothing.
 359	 *
 360	 * The list_del_init() function can be safely called more than once.
 361	 * It should not be possible for this function to be called with
 362	 * concurrent list_add(), but for better safety against future changes
 363	 * in the code, we use list_empty_careful() here.
 364	 */
 365	if (!list_empty_careful(&isec->list)) {
 366		spin_lock(&sbsec->isec_lock);
 367		list_del_init(&isec->list);
 368		spin_unlock(&sbsec->isec_lock);
 369	}
 370}
 371
 372struct selinux_mnt_opts {
 373	u32 fscontext_sid;
 374	u32 context_sid;
 375	u32 rootcontext_sid;
 376	u32 defcontext_sid;
 377};
 378
 379static void selinux_free_mnt_opts(void *mnt_opts)
 380{
 381	kfree(mnt_opts);
 382}
 383
 384enum {
 385	Opt_error = -1,
 386	Opt_context = 0,
 387	Opt_defcontext = 1,
 388	Opt_fscontext = 2,
 389	Opt_rootcontext = 3,
 390	Opt_seclabel = 4,
 391};
 392
 393#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 394static const struct {
 395	const char *name;
 396	int len;
 397	int opt;
 398	bool has_arg;
 399} tokens[] = {
 400	A(context, true),
 401	A(fscontext, true),
 402	A(defcontext, true),
 403	A(rootcontext, true),
 404	A(seclabel, false),
 405};
 406#undef A
 407
 408static int match_opt_prefix(char *s, int l, char **arg)
 409{
 410	int i;
 411
 412	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 413		size_t len = tokens[i].len;
 414		if (len > l || memcmp(s, tokens[i].name, len))
 415			continue;
 416		if (tokens[i].has_arg) {
 417			if (len == l || s[len] != '=')
 418				continue;
 419			*arg = s + len + 1;
 420		} else if (len != l)
 421			continue;
 422		return tokens[i].opt;
 423	}
 424	return Opt_error;
 425}
 426
 427#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 428
 429static int may_context_mount_sb_relabel(u32 sid,
 430			struct superblock_security_struct *sbsec,
 431			const struct cred *cred)
 432{
 433	const struct task_security_struct *tsec = selinux_cred(cred);
 434	int rc;
 435
 436	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 437			  FILESYSTEM__RELABELFROM, NULL);
 438	if (rc)
 439		return rc;
 440
 441	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
 
 442			  FILESYSTEM__RELABELTO, NULL);
 443	return rc;
 444}
 445
 446static int may_context_mount_inode_relabel(u32 sid,
 447			struct superblock_security_struct *sbsec,
 448			const struct cred *cred)
 449{
 450	const struct task_security_struct *tsec = selinux_cred(cred);
 451	int rc;
 452	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 453			  FILESYSTEM__RELABELFROM, NULL);
 454	if (rc)
 455		return rc;
 456
 457	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
 
 458			  FILESYSTEM__ASSOCIATE, NULL);
 459	return rc;
 460}
 461
 462static int selinux_is_genfs_special_handling(struct super_block *sb)
 463{
 464	/* Special handling. Genfs but also in-core setxattr handler */
 465	return	!strcmp(sb->s_type->name, "sysfs") ||
 466		!strcmp(sb->s_type->name, "pstore") ||
 467		!strcmp(sb->s_type->name, "debugfs") ||
 468		!strcmp(sb->s_type->name, "tracefs") ||
 469		!strcmp(sb->s_type->name, "rootfs") ||
 470		(selinux_policycap_cgroupseclabel() &&
 471		 (!strcmp(sb->s_type->name, "cgroup") ||
 472		  !strcmp(sb->s_type->name, "cgroup2")));
 473}
 474
 475static int selinux_is_sblabel_mnt(struct super_block *sb)
 476{
 477	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 478
 479	/*
 480	 * IMPORTANT: Double-check logic in this function when adding a new
 481	 * SECURITY_FS_USE_* definition!
 482	 */
 483	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 484
 485	switch (sbsec->behavior) {
 486	case SECURITY_FS_USE_XATTR:
 487	case SECURITY_FS_USE_TRANS:
 488	case SECURITY_FS_USE_TASK:
 489	case SECURITY_FS_USE_NATIVE:
 490		return 1;
 491
 492	case SECURITY_FS_USE_GENFS:
 493		return selinux_is_genfs_special_handling(sb);
 494
 495	/* Never allow relabeling on context mounts */
 496	case SECURITY_FS_USE_MNTPOINT:
 497	case SECURITY_FS_USE_NONE:
 498	default:
 499		return 0;
 500	}
 501}
 502
 503static int sb_check_xattr_support(struct super_block *sb)
 504{
 505	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 506	struct dentry *root = sb->s_root;
 507	struct inode *root_inode = d_backing_inode(root);
 508	u32 sid;
 509	int rc;
 510
 511	/*
 512	 * Make sure that the xattr handler exists and that no
 513	 * error other than -ENODATA is returned by getxattr on
 514	 * the root directory.  -ENODATA is ok, as this may be
 515	 * the first boot of the SELinux kernel before we have
 516	 * assigned xattr values to the filesystem.
 517	 */
 518	if (!(root_inode->i_opflags & IOP_XATTR)) {
 519		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 520			sb->s_id, sb->s_type->name);
 521		goto fallback;
 522	}
 523
 524	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 525	if (rc < 0 && rc != -ENODATA) {
 526		if (rc == -EOPNOTSUPP) {
 527			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 528				sb->s_id, sb->s_type->name);
 529			goto fallback;
 530		} else {
 531			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 532				sb->s_id, sb->s_type->name, -rc);
 533			return rc;
 534		}
 535	}
 536	return 0;
 537
 538fallback:
 539	/* No xattr support - try to fallback to genfs if possible. */
 540	rc = security_genfs_sid(sb->s_type->name, "/",
 541				SECCLASS_DIR, &sid);
 542	if (rc)
 543		return -EOPNOTSUPP;
 544
 545	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 546		sb->s_id, sb->s_type->name);
 547	sbsec->behavior = SECURITY_FS_USE_GENFS;
 548	sbsec->sid = sid;
 549	return 0;
 550}
 551
 552static int sb_finish_set_opts(struct super_block *sb)
 553{
 554	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 555	struct dentry *root = sb->s_root;
 556	struct inode *root_inode = d_backing_inode(root);
 557	int rc = 0;
 558
 559	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 560		rc = sb_check_xattr_support(sb);
 561		if (rc)
 562			return rc;
 563	}
 564
 565	sbsec->flags |= SE_SBINITIALIZED;
 566
 567	/*
 568	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 569	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 570	 * us a superblock that needs the flag to be cleared.
 571	 */
 572	if (selinux_is_sblabel_mnt(sb))
 573		sbsec->flags |= SBLABEL_MNT;
 574	else
 575		sbsec->flags &= ~SBLABEL_MNT;
 576
 577	/* Initialize the root inode. */
 578	rc = inode_doinit_with_dentry(root_inode, root);
 579
 580	/* Initialize any other inodes associated with the superblock, e.g.
 581	   inodes created prior to initial policy load or inodes created
 582	   during get_sb by a pseudo filesystem that directly
 583	   populates itself. */
 584	spin_lock(&sbsec->isec_lock);
 585	while (!list_empty(&sbsec->isec_head)) {
 586		struct inode_security_struct *isec =
 587				list_first_entry(&sbsec->isec_head,
 588					   struct inode_security_struct, list);
 589		struct inode *inode = isec->inode;
 590		list_del_init(&isec->list);
 591		spin_unlock(&sbsec->isec_lock);
 592		inode = igrab(inode);
 593		if (inode) {
 594			if (!IS_PRIVATE(inode))
 595				inode_doinit_with_dentry(inode, NULL);
 596			iput(inode);
 597		}
 598		spin_lock(&sbsec->isec_lock);
 599	}
 600	spin_unlock(&sbsec->isec_lock);
 601	return rc;
 602}
 603
 604static int bad_option(struct superblock_security_struct *sbsec, char flag,
 605		      u32 old_sid, u32 new_sid)
 606{
 607	char mnt_flags = sbsec->flags & SE_MNTMASK;
 608
 609	/* check if the old mount command had the same options */
 610	if (sbsec->flags & SE_SBINITIALIZED)
 611		if (!(sbsec->flags & flag) ||
 612		    (old_sid != new_sid))
 613			return 1;
 614
 615	/* check if we were passed the same options twice,
 616	 * aka someone passed context=a,context=b
 617	 */
 618	if (!(sbsec->flags & SE_SBINITIALIZED))
 619		if (mnt_flags & flag)
 620			return 1;
 621	return 0;
 622}
 623
 624/*
 625 * Allow filesystems with binary mount data to explicitly set mount point
 626 * labeling information.
 627 */
 628static int selinux_set_mnt_opts(struct super_block *sb,
 629				void *mnt_opts,
 630				unsigned long kern_flags,
 631				unsigned long *set_kern_flags)
 632{
 633	const struct cred *cred = current_cred();
 634	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 635	struct dentry *root = sb->s_root;
 636	struct selinux_mnt_opts *opts = mnt_opts;
 637	struct inode_security_struct *root_isec;
 638	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 639	u32 defcontext_sid = 0;
 640	int rc = 0;
 641
 642	/*
 643	 * Specifying internal flags without providing a place to
 644	 * place the results is not allowed
 645	 */
 646	if (kern_flags && !set_kern_flags)
 647		return -EINVAL;
 648
 649	mutex_lock(&sbsec->lock);
 650
 651	if (!selinux_initialized()) {
 652		if (!opts) {
 653			/* Defer initialization until selinux_complete_init,
 654			   after the initial policy is loaded and the security
 655			   server is ready to handle calls. */
 656			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
 657				sbsec->flags |= SE_SBNATIVE;
 658				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 659			}
 660			goto out;
 661		}
 662		rc = -EINVAL;
 663		pr_warn("SELinux: Unable to set superblock options "
 664			"before the security server is initialized\n");
 665		goto out;
 666	}
 
 
 
 
 
 
 667
 668	/*
 669	 * Binary mount data FS will come through this function twice.  Once
 670	 * from an explicit call and once from the generic calls from the vfs.
 671	 * Since the generic VFS calls will not contain any security mount data
 672	 * we need to skip the double mount verification.
 673	 *
 674	 * This does open a hole in which we will not notice if the first
 675	 * mount using this sb set explicit options and a second mount using
 676	 * this sb does not set any security options.  (The first options
 677	 * will be used for both mounts)
 678	 */
 679	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 680	    && !opts)
 681		goto out;
 682
 683	root_isec = backing_inode_security_novalidate(root);
 684
 685	/*
 686	 * parse the mount options, check if they are valid sids.
 687	 * also check if someone is trying to mount the same sb more
 688	 * than once with different security options.
 689	 */
 690	if (opts) {
 691		if (opts->fscontext_sid) {
 692			fscontext_sid = opts->fscontext_sid;
 693			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 694					fscontext_sid))
 695				goto out_double_mount;
 696			sbsec->flags |= FSCONTEXT_MNT;
 697		}
 698		if (opts->context_sid) {
 699			context_sid = opts->context_sid;
 700			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 701					context_sid))
 702				goto out_double_mount;
 703			sbsec->flags |= CONTEXT_MNT;
 704		}
 705		if (opts->rootcontext_sid) {
 706			rootcontext_sid = opts->rootcontext_sid;
 707			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 708					rootcontext_sid))
 709				goto out_double_mount;
 710			sbsec->flags |= ROOTCONTEXT_MNT;
 711		}
 712		if (opts->defcontext_sid) {
 713			defcontext_sid = opts->defcontext_sid;
 714			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 715					defcontext_sid))
 716				goto out_double_mount;
 717			sbsec->flags |= DEFCONTEXT_MNT;
 718		}
 719	}
 720
 721	if (sbsec->flags & SE_SBINITIALIZED) {
 722		/* previously mounted with options, but not on this attempt? */
 723		if ((sbsec->flags & SE_MNTMASK) && !opts)
 724			goto out_double_mount;
 725		rc = 0;
 726		goto out;
 727	}
 728
 729	if (strcmp(sb->s_type->name, "proc") == 0)
 730		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 731
 732	if (!strcmp(sb->s_type->name, "debugfs") ||
 733	    !strcmp(sb->s_type->name, "tracefs") ||
 734	    !strcmp(sb->s_type->name, "binder") ||
 735	    !strcmp(sb->s_type->name, "bpf") ||
 736	    !strcmp(sb->s_type->name, "pstore") ||
 737	    !strcmp(sb->s_type->name, "securityfs"))
 738		sbsec->flags |= SE_SBGENFS;
 739
 740	if (!strcmp(sb->s_type->name, "sysfs") ||
 741	    !strcmp(sb->s_type->name, "cgroup") ||
 742	    !strcmp(sb->s_type->name, "cgroup2"))
 743		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 744
 745	if (!sbsec->behavior) {
 746		/*
 747		 * Determine the labeling behavior to use for this
 748		 * filesystem type.
 749		 */
 750		rc = security_fs_use(sb);
 751		if (rc) {
 752			pr_warn("%s: security_fs_use(%s) returned %d\n",
 753					__func__, sb->s_type->name, rc);
 754			goto out;
 755		}
 756	}
 757
 758	/*
 759	 * If this is a user namespace mount and the filesystem type is not
 760	 * explicitly whitelisted, then no contexts are allowed on the command
 761	 * line and security labels must be ignored.
 762	 */
 763	if (sb->s_user_ns != &init_user_ns &&
 764	    strcmp(sb->s_type->name, "tmpfs") &&
 765	    strcmp(sb->s_type->name, "ramfs") &&
 766	    strcmp(sb->s_type->name, "devpts") &&
 767	    strcmp(sb->s_type->name, "overlay")) {
 768		if (context_sid || fscontext_sid || rootcontext_sid ||
 769		    defcontext_sid) {
 770			rc = -EACCES;
 771			goto out;
 772		}
 773		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 774			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 775			rc = security_transition_sid(current_sid(),
 
 776						     current_sid(),
 777						     SECCLASS_FILE, NULL,
 778						     &sbsec->mntpoint_sid);
 779			if (rc)
 780				goto out;
 781		}
 782		goto out_set_opts;
 783	}
 784
 785	/* sets the context of the superblock for the fs being mounted. */
 786	if (fscontext_sid) {
 787		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 788		if (rc)
 789			goto out;
 790
 791		sbsec->sid = fscontext_sid;
 792	}
 793
 794	/*
 795	 * Switch to using mount point labeling behavior.
 796	 * sets the label used on all file below the mountpoint, and will set
 797	 * the superblock context if not already set.
 798	 */
 799	if (sbsec->flags & SE_SBNATIVE) {
 800		/*
 801		 * This means we are initializing a superblock that has been
 802		 * mounted before the SELinux was initialized and the
 803		 * filesystem requested native labeling. We had already
 804		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
 805		 * in the original mount attempt, so now we just need to set
 806		 * the SECURITY_FS_USE_NATIVE behavior.
 807		 */
 808		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 809	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 810		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 811		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 812	}
 813
 814	if (context_sid) {
 815		if (!fscontext_sid) {
 816			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 817							  cred);
 818			if (rc)
 819				goto out;
 820			sbsec->sid = context_sid;
 821		} else {
 822			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 823							     cred);
 824			if (rc)
 825				goto out;
 826		}
 827		if (!rootcontext_sid)
 828			rootcontext_sid = context_sid;
 829
 830		sbsec->mntpoint_sid = context_sid;
 831		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 832	}
 833
 834	if (rootcontext_sid) {
 835		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 836						     cred);
 837		if (rc)
 838			goto out;
 839
 840		root_isec->sid = rootcontext_sid;
 841		root_isec->initialized = LABEL_INITIALIZED;
 842	}
 843
 844	if (defcontext_sid) {
 845		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 846			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 847			rc = -EINVAL;
 848			pr_warn("SELinux: defcontext option is "
 849			       "invalid for this filesystem type\n");
 850			goto out;
 851		}
 852
 853		if (defcontext_sid != sbsec->def_sid) {
 854			rc = may_context_mount_inode_relabel(defcontext_sid,
 855							     sbsec, cred);
 856			if (rc)
 857				goto out;
 858		}
 859
 860		sbsec->def_sid = defcontext_sid;
 861	}
 862
 863out_set_opts:
 864	rc = sb_finish_set_opts(sb);
 865out:
 866	mutex_unlock(&sbsec->lock);
 867	return rc;
 868out_double_mount:
 869	rc = -EINVAL;
 870	pr_warn("SELinux: mount invalid.  Same superblock, different "
 871	       "security settings for (dev %s, type %s)\n", sb->s_id,
 872	       sb->s_type->name);
 873	goto out;
 874}
 875
 876static int selinux_cmp_sb_context(const struct super_block *oldsb,
 877				    const struct super_block *newsb)
 878{
 879	struct superblock_security_struct *old = selinux_superblock(oldsb);
 880	struct superblock_security_struct *new = selinux_superblock(newsb);
 881	char oldflags = old->flags & SE_MNTMASK;
 882	char newflags = new->flags & SE_MNTMASK;
 883
 884	if (oldflags != newflags)
 885		goto mismatch;
 886	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 887		goto mismatch;
 888	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 889		goto mismatch;
 890	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 891		goto mismatch;
 892	if (oldflags & ROOTCONTEXT_MNT) {
 893		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 894		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 895		if (oldroot->sid != newroot->sid)
 896			goto mismatch;
 897	}
 898	return 0;
 899mismatch:
 900	pr_warn("SELinux: mount invalid.  Same superblock, "
 901			    "different security settings for (dev %s, "
 902			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 903	return -EBUSY;
 904}
 905
 906static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 907					struct super_block *newsb,
 908					unsigned long kern_flags,
 909					unsigned long *set_kern_flags)
 910{
 911	int rc = 0;
 912	const struct superblock_security_struct *oldsbsec =
 913						selinux_superblock(oldsb);
 914	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 915
 916	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 917	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 918	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 919
 920	/*
 
 
 
 
 
 
 
 921	 * Specifying internal flags without providing a place to
 922	 * place the results is not allowed.
 923	 */
 924	if (kern_flags && !set_kern_flags)
 925		return -EINVAL;
 926
 927	mutex_lock(&newsbsec->lock);
 928
 929	/*
 930	 * if the parent was able to be mounted it clearly had no special lsm
 931	 * mount options.  thus we can safely deal with this superblock later
 932	 */
 933	if (!selinux_initialized()) {
 934		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
 935			newsbsec->flags |= SE_SBNATIVE;
 936			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 937		}
 938		goto out;
 939	}
 940
 941	/* how can we clone if the old one wasn't set up?? */
 942	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 943
 944	/* if fs is reusing a sb, make sure that the contexts match */
 945	if (newsbsec->flags & SE_SBINITIALIZED) {
 946		mutex_unlock(&newsbsec->lock);
 947		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 948			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 949		return selinux_cmp_sb_context(oldsb, newsb);
 950	}
 951
 
 
 952	newsbsec->flags = oldsbsec->flags;
 953
 954	newsbsec->sid = oldsbsec->sid;
 955	newsbsec->def_sid = oldsbsec->def_sid;
 956	newsbsec->behavior = oldsbsec->behavior;
 957
 958	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 959		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 960		rc = security_fs_use(newsb);
 961		if (rc)
 962			goto out;
 963	}
 964
 965	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 966		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 967		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 968	}
 969
 970	if (set_context) {
 971		u32 sid = oldsbsec->mntpoint_sid;
 972
 973		if (!set_fscontext)
 974			newsbsec->sid = sid;
 975		if (!set_rootcontext) {
 976			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 977			newisec->sid = sid;
 978		}
 979		newsbsec->mntpoint_sid = sid;
 980	}
 981	if (set_rootcontext) {
 982		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 983		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 984
 985		newisec->sid = oldisec->sid;
 986	}
 987
 988	sb_finish_set_opts(newsb);
 989out:
 990	mutex_unlock(&newsbsec->lock);
 991	return rc;
 992}
 993
 994/*
 995 * NOTE: the caller is responsible for freeing the memory even if on error.
 996 */
 997static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 998{
 999	struct selinux_mnt_opts *opts = *mnt_opts;
1000	u32 *dst_sid;
1001	int rc;
1002
1003	if (token == Opt_seclabel)
1004		/* eaten and completely ignored */
1005		return 0;
1006	if (!s)
1007		return -EINVAL;
1008
1009	if (!selinux_initialized()) {
1010		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1011		return -EINVAL;
1012	}
1013
1014	if (!opts) {
1015		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1016		if (!opts)
1017			return -ENOMEM;
1018		*mnt_opts = opts;
1019	}
1020
1021	switch (token) {
1022	case Opt_context:
1023		if (opts->context_sid || opts->defcontext_sid)
1024			goto err;
1025		dst_sid = &opts->context_sid;
1026		break;
1027	case Opt_fscontext:
1028		if (opts->fscontext_sid)
1029			goto err;
1030		dst_sid = &opts->fscontext_sid;
1031		break;
1032	case Opt_rootcontext:
1033		if (opts->rootcontext_sid)
1034			goto err;
1035		dst_sid = &opts->rootcontext_sid;
1036		break;
1037	case Opt_defcontext:
1038		if (opts->context_sid || opts->defcontext_sid)
1039			goto err;
1040		dst_sid = &opts->defcontext_sid;
1041		break;
1042	default:
1043		WARN_ON(1);
1044		return -EINVAL;
1045	}
1046	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1047	if (rc)
1048		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1049			s, rc);
1050	return rc;
1051
1052err:
1053	pr_warn(SEL_MOUNT_FAIL_MSG);
1054	return -EINVAL;
1055}
1056
1057static int show_sid(struct seq_file *m, u32 sid)
1058{
1059	char *context = NULL;
1060	u32 len;
1061	int rc;
1062
1063	rc = security_sid_to_context(sid, &context, &len);
 
1064	if (!rc) {
1065		bool has_comma = strchr(context, ',');
1066
1067		seq_putc(m, '=');
1068		if (has_comma)
1069			seq_putc(m, '\"');
1070		seq_escape(m, context, "\"\n\\");
1071		if (has_comma)
1072			seq_putc(m, '\"');
1073	}
1074	kfree(context);
1075	return rc;
1076}
1077
1078static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1079{
1080	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1081	int rc;
1082
1083	if (!(sbsec->flags & SE_SBINITIALIZED))
1084		return 0;
1085
1086	if (!selinux_initialized())
1087		return 0;
1088
1089	if (sbsec->flags & FSCONTEXT_MNT) {
1090		seq_putc(m, ',');
1091		seq_puts(m, FSCONTEXT_STR);
1092		rc = show_sid(m, sbsec->sid);
1093		if (rc)
1094			return rc;
1095	}
1096	if (sbsec->flags & CONTEXT_MNT) {
1097		seq_putc(m, ',');
1098		seq_puts(m, CONTEXT_STR);
1099		rc = show_sid(m, sbsec->mntpoint_sid);
1100		if (rc)
1101			return rc;
1102	}
1103	if (sbsec->flags & DEFCONTEXT_MNT) {
1104		seq_putc(m, ',');
1105		seq_puts(m, DEFCONTEXT_STR);
1106		rc = show_sid(m, sbsec->def_sid);
1107		if (rc)
1108			return rc;
1109	}
1110	if (sbsec->flags & ROOTCONTEXT_MNT) {
1111		struct dentry *root = sb->s_root;
1112		struct inode_security_struct *isec = backing_inode_security(root);
1113		seq_putc(m, ',');
1114		seq_puts(m, ROOTCONTEXT_STR);
1115		rc = show_sid(m, isec->sid);
1116		if (rc)
1117			return rc;
1118	}
1119	if (sbsec->flags & SBLABEL_MNT) {
1120		seq_putc(m, ',');
1121		seq_puts(m, SECLABEL_STR);
1122	}
1123	return 0;
1124}
1125
1126static inline u16 inode_mode_to_security_class(umode_t mode)
1127{
1128	switch (mode & S_IFMT) {
1129	case S_IFSOCK:
1130		return SECCLASS_SOCK_FILE;
1131	case S_IFLNK:
1132		return SECCLASS_LNK_FILE;
1133	case S_IFREG:
1134		return SECCLASS_FILE;
1135	case S_IFBLK:
1136		return SECCLASS_BLK_FILE;
1137	case S_IFDIR:
1138		return SECCLASS_DIR;
1139	case S_IFCHR:
1140		return SECCLASS_CHR_FILE;
1141	case S_IFIFO:
1142		return SECCLASS_FIFO_FILE;
1143
1144	}
1145
1146	return SECCLASS_FILE;
1147}
1148
1149static inline int default_protocol_stream(int protocol)
1150{
1151	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1152		protocol == IPPROTO_MPTCP);
1153}
1154
1155static inline int default_protocol_dgram(int protocol)
1156{
1157	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1158}
1159
1160static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1161{
1162	bool extsockclass = selinux_policycap_extsockclass();
1163
1164	switch (family) {
1165	case PF_UNIX:
1166		switch (type) {
1167		case SOCK_STREAM:
1168		case SOCK_SEQPACKET:
1169			return SECCLASS_UNIX_STREAM_SOCKET;
1170		case SOCK_DGRAM:
1171		case SOCK_RAW:
1172			return SECCLASS_UNIX_DGRAM_SOCKET;
1173		}
1174		break;
1175	case PF_INET:
1176	case PF_INET6:
1177		switch (type) {
1178		case SOCK_STREAM:
1179		case SOCK_SEQPACKET:
1180			if (default_protocol_stream(protocol))
1181				return SECCLASS_TCP_SOCKET;
1182			else if (extsockclass && protocol == IPPROTO_SCTP)
1183				return SECCLASS_SCTP_SOCKET;
1184			else
1185				return SECCLASS_RAWIP_SOCKET;
1186		case SOCK_DGRAM:
1187			if (default_protocol_dgram(protocol))
1188				return SECCLASS_UDP_SOCKET;
1189			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1190						  protocol == IPPROTO_ICMPV6))
1191				return SECCLASS_ICMP_SOCKET;
1192			else
1193				return SECCLASS_RAWIP_SOCKET;
1194		case SOCK_DCCP:
1195			return SECCLASS_DCCP_SOCKET;
1196		default:
1197			return SECCLASS_RAWIP_SOCKET;
1198		}
1199		break;
1200	case PF_NETLINK:
1201		switch (protocol) {
1202		case NETLINK_ROUTE:
1203			return SECCLASS_NETLINK_ROUTE_SOCKET;
1204		case NETLINK_SOCK_DIAG:
1205			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1206		case NETLINK_NFLOG:
1207			return SECCLASS_NETLINK_NFLOG_SOCKET;
1208		case NETLINK_XFRM:
1209			return SECCLASS_NETLINK_XFRM_SOCKET;
1210		case NETLINK_SELINUX:
1211			return SECCLASS_NETLINK_SELINUX_SOCKET;
1212		case NETLINK_ISCSI:
1213			return SECCLASS_NETLINK_ISCSI_SOCKET;
1214		case NETLINK_AUDIT:
1215			return SECCLASS_NETLINK_AUDIT_SOCKET;
1216		case NETLINK_FIB_LOOKUP:
1217			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1218		case NETLINK_CONNECTOR:
1219			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1220		case NETLINK_NETFILTER:
1221			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1222		case NETLINK_DNRTMSG:
1223			return SECCLASS_NETLINK_DNRT_SOCKET;
1224		case NETLINK_KOBJECT_UEVENT:
1225			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1226		case NETLINK_GENERIC:
1227			return SECCLASS_NETLINK_GENERIC_SOCKET;
1228		case NETLINK_SCSITRANSPORT:
1229			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1230		case NETLINK_RDMA:
1231			return SECCLASS_NETLINK_RDMA_SOCKET;
1232		case NETLINK_CRYPTO:
1233			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1234		default:
1235			return SECCLASS_NETLINK_SOCKET;
1236		}
1237	case PF_PACKET:
1238		return SECCLASS_PACKET_SOCKET;
1239	case PF_KEY:
1240		return SECCLASS_KEY_SOCKET;
1241	case PF_APPLETALK:
1242		return SECCLASS_APPLETALK_SOCKET;
1243	}
1244
1245	if (extsockclass) {
1246		switch (family) {
1247		case PF_AX25:
1248			return SECCLASS_AX25_SOCKET;
1249		case PF_IPX:
1250			return SECCLASS_IPX_SOCKET;
1251		case PF_NETROM:
1252			return SECCLASS_NETROM_SOCKET;
1253		case PF_ATMPVC:
1254			return SECCLASS_ATMPVC_SOCKET;
1255		case PF_X25:
1256			return SECCLASS_X25_SOCKET;
1257		case PF_ROSE:
1258			return SECCLASS_ROSE_SOCKET;
1259		case PF_DECnet:
1260			return SECCLASS_DECNET_SOCKET;
1261		case PF_ATMSVC:
1262			return SECCLASS_ATMSVC_SOCKET;
1263		case PF_RDS:
1264			return SECCLASS_RDS_SOCKET;
1265		case PF_IRDA:
1266			return SECCLASS_IRDA_SOCKET;
1267		case PF_PPPOX:
1268			return SECCLASS_PPPOX_SOCKET;
1269		case PF_LLC:
1270			return SECCLASS_LLC_SOCKET;
1271		case PF_CAN:
1272			return SECCLASS_CAN_SOCKET;
1273		case PF_TIPC:
1274			return SECCLASS_TIPC_SOCKET;
1275		case PF_BLUETOOTH:
1276			return SECCLASS_BLUETOOTH_SOCKET;
1277		case PF_IUCV:
1278			return SECCLASS_IUCV_SOCKET;
1279		case PF_RXRPC:
1280			return SECCLASS_RXRPC_SOCKET;
1281		case PF_ISDN:
1282			return SECCLASS_ISDN_SOCKET;
1283		case PF_PHONET:
1284			return SECCLASS_PHONET_SOCKET;
1285		case PF_IEEE802154:
1286			return SECCLASS_IEEE802154_SOCKET;
1287		case PF_CAIF:
1288			return SECCLASS_CAIF_SOCKET;
1289		case PF_ALG:
1290			return SECCLASS_ALG_SOCKET;
1291		case PF_NFC:
1292			return SECCLASS_NFC_SOCKET;
1293		case PF_VSOCK:
1294			return SECCLASS_VSOCK_SOCKET;
1295		case PF_KCM:
1296			return SECCLASS_KCM_SOCKET;
1297		case PF_QIPCRTR:
1298			return SECCLASS_QIPCRTR_SOCKET;
1299		case PF_SMC:
1300			return SECCLASS_SMC_SOCKET;
1301		case PF_XDP:
1302			return SECCLASS_XDP_SOCKET;
1303		case PF_MCTP:
1304			return SECCLASS_MCTP_SOCKET;
1305#if PF_MAX > 46
1306#error New address family defined, please update this function.
1307#endif
1308		}
1309	}
1310
1311	return SECCLASS_SOCKET;
1312}
1313
1314static int selinux_genfs_get_sid(struct dentry *dentry,
1315				 u16 tclass,
1316				 u16 flags,
1317				 u32 *sid)
1318{
1319	int rc;
1320	struct super_block *sb = dentry->d_sb;
1321	char *buffer, *path;
1322
1323	buffer = (char *)__get_free_page(GFP_KERNEL);
1324	if (!buffer)
1325		return -ENOMEM;
1326
1327	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1328	if (IS_ERR(path))
1329		rc = PTR_ERR(path);
1330	else {
1331		if (flags & SE_SBPROC) {
1332			/* each process gets a /proc/PID/ entry. Strip off the
1333			 * PID part to get a valid selinux labeling.
1334			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1335			while (path[1] >= '0' && path[1] <= '9') {
1336				path[1] = '/';
1337				path++;
1338			}
1339		}
1340		rc = security_genfs_sid(sb->s_type->name,
1341					path, tclass, sid);
1342		if (rc == -ENOENT) {
1343			/* No match in policy, mark as unlabeled. */
1344			*sid = SECINITSID_UNLABELED;
1345			rc = 0;
1346		}
1347	}
1348	free_page((unsigned long)buffer);
1349	return rc;
1350}
1351
1352static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1353				  u32 def_sid, u32 *sid)
1354{
1355#define INITCONTEXTLEN 255
1356	char *context;
1357	unsigned int len;
1358	int rc;
1359
1360	len = INITCONTEXTLEN;
1361	context = kmalloc(len + 1, GFP_NOFS);
1362	if (!context)
1363		return -ENOMEM;
1364
1365	context[len] = '\0';
1366	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1367	if (rc == -ERANGE) {
1368		kfree(context);
1369
1370		/* Need a larger buffer.  Query for the right size. */
1371		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1372		if (rc < 0)
1373			return rc;
1374
1375		len = rc;
1376		context = kmalloc(len + 1, GFP_NOFS);
1377		if (!context)
1378			return -ENOMEM;
1379
1380		context[len] = '\0';
1381		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1382				    context, len);
1383	}
1384	if (rc < 0) {
1385		kfree(context);
1386		if (rc != -ENODATA) {
1387			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1388				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1389			return rc;
1390		}
1391		*sid = def_sid;
1392		return 0;
1393	}
1394
1395	rc = security_context_to_sid_default(context, rc, sid,
1396					     def_sid, GFP_NOFS);
1397	if (rc) {
1398		char *dev = inode->i_sb->s_id;
1399		unsigned long ino = inode->i_ino;
1400
1401		if (rc == -EINVAL) {
1402			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1403					      ino, dev, context);
1404		} else {
1405			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1406				__func__, context, -rc, dev, ino);
1407		}
1408	}
1409	kfree(context);
1410	return 0;
1411}
1412
1413/* The inode's security attributes must be initialized before first use. */
1414static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1415{
1416	struct superblock_security_struct *sbsec = NULL;
1417	struct inode_security_struct *isec = selinux_inode(inode);
1418	u32 task_sid, sid = 0;
1419	u16 sclass;
1420	struct dentry *dentry;
1421	int rc = 0;
1422
1423	if (isec->initialized == LABEL_INITIALIZED)
1424		return 0;
1425
1426	spin_lock(&isec->lock);
1427	if (isec->initialized == LABEL_INITIALIZED)
1428		goto out_unlock;
1429
1430	if (isec->sclass == SECCLASS_FILE)
1431		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1432
1433	sbsec = selinux_superblock(inode->i_sb);
1434	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1435		/* Defer initialization until selinux_complete_init,
1436		   after the initial policy is loaded and the security
1437		   server is ready to handle calls. */
1438		spin_lock(&sbsec->isec_lock);
1439		if (list_empty(&isec->list))
1440			list_add(&isec->list, &sbsec->isec_head);
1441		spin_unlock(&sbsec->isec_lock);
1442		goto out_unlock;
1443	}
1444
1445	sclass = isec->sclass;
1446	task_sid = isec->task_sid;
1447	sid = isec->sid;
1448	isec->initialized = LABEL_PENDING;
1449	spin_unlock(&isec->lock);
1450
1451	switch (sbsec->behavior) {
1452	/*
1453	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1454	 * via xattr when called from delayed_superblock_init().
1455	 */
1456	case SECURITY_FS_USE_NATIVE:
 
1457	case SECURITY_FS_USE_XATTR:
1458		if (!(inode->i_opflags & IOP_XATTR)) {
1459			sid = sbsec->def_sid;
1460			break;
1461		}
1462		/* Need a dentry, since the xattr API requires one.
1463		   Life would be simpler if we could just pass the inode. */
1464		if (opt_dentry) {
1465			/* Called from d_instantiate or d_splice_alias. */
1466			dentry = dget(opt_dentry);
1467		} else {
1468			/*
1469			 * Called from selinux_complete_init, try to find a dentry.
1470			 * Some filesystems really want a connected one, so try
1471			 * that first.  We could split SECURITY_FS_USE_XATTR in
1472			 * two, depending upon that...
1473			 */
1474			dentry = d_find_alias(inode);
1475			if (!dentry)
1476				dentry = d_find_any_alias(inode);
1477		}
1478		if (!dentry) {
1479			/*
1480			 * this is can be hit on boot when a file is accessed
1481			 * before the policy is loaded.  When we load policy we
1482			 * may find inodes that have no dentry on the
1483			 * sbsec->isec_head list.  No reason to complain as these
1484			 * will get fixed up the next time we go through
1485			 * inode_doinit with a dentry, before these inodes could
1486			 * be used again by userspace.
1487			 */
1488			goto out_invalid;
1489		}
1490
1491		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1492					    &sid);
1493		dput(dentry);
1494		if (rc)
1495			goto out;
1496		break;
1497	case SECURITY_FS_USE_TASK:
1498		sid = task_sid;
1499		break;
1500	case SECURITY_FS_USE_TRANS:
1501		/* Default to the fs SID. */
1502		sid = sbsec->sid;
1503
1504		/* Try to obtain a transition SID. */
1505		rc = security_transition_sid(task_sid, sid,
1506					     sclass, NULL, &sid);
1507		if (rc)
1508			goto out;
1509		break;
1510	case SECURITY_FS_USE_MNTPOINT:
1511		sid = sbsec->mntpoint_sid;
1512		break;
1513	default:
1514		/* Default to the fs superblock SID. */
1515		sid = sbsec->sid;
1516
1517		if ((sbsec->flags & SE_SBGENFS) &&
1518		     (!S_ISLNK(inode->i_mode) ||
1519		      selinux_policycap_genfs_seclabel_symlinks())) {
1520			/* We must have a dentry to determine the label on
1521			 * procfs inodes */
1522			if (opt_dentry) {
1523				/* Called from d_instantiate or
1524				 * d_splice_alias. */
1525				dentry = dget(opt_dentry);
1526			} else {
1527				/* Called from selinux_complete_init, try to
1528				 * find a dentry.  Some filesystems really want
1529				 * a connected one, so try that first.
1530				 */
1531				dentry = d_find_alias(inode);
1532				if (!dentry)
1533					dentry = d_find_any_alias(inode);
1534			}
1535			/*
1536			 * This can be hit on boot when a file is accessed
1537			 * before the policy is loaded.  When we load policy we
1538			 * may find inodes that have no dentry on the
1539			 * sbsec->isec_head list.  No reason to complain as
1540			 * these will get fixed up the next time we go through
1541			 * inode_doinit() with a dentry, before these inodes
1542			 * could be used again by userspace.
1543			 */
1544			if (!dentry)
1545				goto out_invalid;
1546			rc = selinux_genfs_get_sid(dentry, sclass,
1547						   sbsec->flags, &sid);
1548			if (rc) {
1549				dput(dentry);
1550				goto out;
1551			}
1552
1553			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1554			    (inode->i_opflags & IOP_XATTR)) {
1555				rc = inode_doinit_use_xattr(inode, dentry,
1556							    sid, &sid);
1557				if (rc) {
1558					dput(dentry);
1559					goto out;
1560				}
1561			}
1562			dput(dentry);
1563		}
1564		break;
1565	}
1566
1567out:
1568	spin_lock(&isec->lock);
1569	if (isec->initialized == LABEL_PENDING) {
1570		if (rc) {
1571			isec->initialized = LABEL_INVALID;
1572			goto out_unlock;
1573		}
1574		isec->initialized = LABEL_INITIALIZED;
1575		isec->sid = sid;
1576	}
1577
1578out_unlock:
1579	spin_unlock(&isec->lock);
1580	return rc;
1581
1582out_invalid:
1583	spin_lock(&isec->lock);
1584	if (isec->initialized == LABEL_PENDING) {
1585		isec->initialized = LABEL_INVALID;
1586		isec->sid = sid;
1587	}
1588	spin_unlock(&isec->lock);
1589	return 0;
1590}
1591
1592/* Convert a Linux signal to an access vector. */
1593static inline u32 signal_to_av(int sig)
1594{
1595	u32 perm = 0;
1596
1597	switch (sig) {
1598	case SIGCHLD:
1599		/* Commonly granted from child to parent. */
1600		perm = PROCESS__SIGCHLD;
1601		break;
1602	case SIGKILL:
1603		/* Cannot be caught or ignored */
1604		perm = PROCESS__SIGKILL;
1605		break;
1606	case SIGSTOP:
1607		/* Cannot be caught or ignored */
1608		perm = PROCESS__SIGSTOP;
1609		break;
1610	default:
1611		/* All other signals. */
1612		perm = PROCESS__SIGNAL;
1613		break;
1614	}
1615
1616	return perm;
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625			       int cap, unsigned int opts, bool initns)
1626{
1627	struct common_audit_data ad;
1628	struct av_decision avd;
1629	u16 sclass;
1630	u32 sid = cred_sid(cred);
1631	u32 av = CAP_TO_MASK(cap);
1632	int rc;
1633
1634	ad.type = LSM_AUDIT_DATA_CAP;
1635	ad.u.cap = cap;
1636
1637	switch (CAP_TO_INDEX(cap)) {
1638	case 0:
1639		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1640		break;
1641	case 1:
1642		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1643		break;
1644	default:
1645		pr_err("SELinux:  out of range capability %d\n", cap);
1646		BUG();
1647		return -EINVAL;
1648	}
1649
1650	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
 
1651	if (!(opts & CAP_OPT_NOAUDIT)) {
1652		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
 
1653		if (rc2)
1654			return rc2;
1655	}
1656	return rc;
1657}
1658
1659/* Check whether a task has a particular permission to an inode.
1660   The 'adp' parameter is optional and allows other audit
1661   data to be passed (e.g. the dentry). */
1662static int inode_has_perm(const struct cred *cred,
1663			  struct inode *inode,
1664			  u32 perms,
1665			  struct common_audit_data *adp)
1666{
1667	struct inode_security_struct *isec;
1668	u32 sid;
1669
 
 
1670	if (unlikely(IS_PRIVATE(inode)))
1671		return 0;
1672
1673	sid = cred_sid(cred);
1674	isec = selinux_inode(inode);
1675
1676	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
 
1677}
1678
1679/* Same as inode_has_perm, but pass explicit audit data containing
1680   the dentry to help the auditing code to more easily generate the
1681   pathname if needed. */
1682static inline int dentry_has_perm(const struct cred *cred,
1683				  struct dentry *dentry,
1684				  u32 av)
1685{
1686	struct inode *inode = d_backing_inode(dentry);
1687	struct common_audit_data ad;
1688
1689	ad.type = LSM_AUDIT_DATA_DENTRY;
1690	ad.u.dentry = dentry;
1691	__inode_security_revalidate(inode, dentry, true);
1692	return inode_has_perm(cred, inode, av, &ad);
1693}
1694
1695/* Same as inode_has_perm, but pass explicit audit data containing
1696   the path to help the auditing code to more easily generate the
1697   pathname if needed. */
1698static inline int path_has_perm(const struct cred *cred,
1699				const struct path *path,
1700				u32 av)
1701{
1702	struct inode *inode = d_backing_inode(path->dentry);
1703	struct common_audit_data ad;
1704
1705	ad.type = LSM_AUDIT_DATA_PATH;
1706	ad.u.path = *path;
1707	__inode_security_revalidate(inode, path->dentry, true);
1708	return inode_has_perm(cred, inode, av, &ad);
1709}
1710
1711/* Same as path_has_perm, but uses the inode from the file struct. */
1712static inline int file_path_has_perm(const struct cred *cred,
1713				     struct file *file,
1714				     u32 av)
1715{
1716	struct common_audit_data ad;
1717
1718	ad.type = LSM_AUDIT_DATA_FILE;
1719	ad.u.file = file;
1720	return inode_has_perm(cred, file_inode(file), av, &ad);
1721}
1722
1723#ifdef CONFIG_BPF_SYSCALL
1724static int bpf_fd_pass(const struct file *file, u32 sid);
1725#endif
1726
1727/* Check whether a task can use an open file descriptor to
1728   access an inode in a given way.  Check access to the
1729   descriptor itself, and then use dentry_has_perm to
1730   check a particular permission to the file.
1731   Access to the descriptor is implicitly granted if it
1732   has the same SID as the process.  If av is zero, then
1733   access to the file is not checked, e.g. for cases
1734   where only the descriptor is affected like seek. */
1735static int file_has_perm(const struct cred *cred,
1736			 struct file *file,
1737			 u32 av)
1738{
1739	struct file_security_struct *fsec = selinux_file(file);
1740	struct inode *inode = file_inode(file);
1741	struct common_audit_data ad;
1742	u32 sid = cred_sid(cred);
1743	int rc;
1744
1745	ad.type = LSM_AUDIT_DATA_FILE;
1746	ad.u.file = file;
1747
1748	if (sid != fsec->sid) {
1749		rc = avc_has_perm(sid, fsec->sid,
 
1750				  SECCLASS_FD,
1751				  FD__USE,
1752				  &ad);
1753		if (rc)
1754			goto out;
1755	}
1756
1757#ifdef CONFIG_BPF_SYSCALL
1758	rc = bpf_fd_pass(file, cred_sid(cred));
1759	if (rc)
1760		return rc;
1761#endif
1762
1763	/* av is zero if only checking access to the descriptor. */
1764	rc = 0;
1765	if (av)
1766		rc = inode_has_perm(cred, inode, av, &ad);
1767
1768out:
1769	return rc;
1770}
1771
1772/*
1773 * Determine the label for an inode that might be unioned.
1774 */
1775static int
1776selinux_determine_inode_label(const struct task_security_struct *tsec,
1777				 struct inode *dir,
1778				 const struct qstr *name, u16 tclass,
1779				 u32 *_new_isid)
1780{
1781	const struct superblock_security_struct *sbsec =
1782						selinux_superblock(dir->i_sb);
1783
1784	if ((sbsec->flags & SE_SBINITIALIZED) &&
1785	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1786		*_new_isid = sbsec->mntpoint_sid;
1787	} else if ((sbsec->flags & SBLABEL_MNT) &&
1788		   tsec->create_sid) {
1789		*_new_isid = tsec->create_sid;
1790	} else {
1791		const struct inode_security_struct *dsec = inode_security(dir);
1792		return security_transition_sid(tsec->sid,
1793					       dsec->sid, tclass,
1794					       name, _new_isid);
1795	}
1796
1797	return 0;
1798}
1799
1800/* Check whether a task can create a file. */
1801static int may_create(struct inode *dir,
1802		      struct dentry *dentry,
1803		      u16 tclass)
1804{
1805	const struct task_security_struct *tsec = selinux_cred(current_cred());
1806	struct inode_security_struct *dsec;
1807	struct superblock_security_struct *sbsec;
1808	u32 sid, newsid;
1809	struct common_audit_data ad;
1810	int rc;
1811
1812	dsec = inode_security(dir);
1813	sbsec = selinux_superblock(dir->i_sb);
1814
1815	sid = tsec->sid;
1816
1817	ad.type = LSM_AUDIT_DATA_DENTRY;
1818	ad.u.dentry = dentry;
1819
1820	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
 
1821			  DIR__ADD_NAME | DIR__SEARCH,
1822			  &ad);
1823	if (rc)
1824		return rc;
1825
1826	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1827					   &newsid);
1828	if (rc)
1829		return rc;
1830
1831	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
 
1832	if (rc)
1833		return rc;
1834
1835	return avc_has_perm(newsid, sbsec->sid,
 
1836			    SECCLASS_FILESYSTEM,
1837			    FILESYSTEM__ASSOCIATE, &ad);
1838}
1839
1840#define MAY_LINK	0
1841#define MAY_UNLINK	1
1842#define MAY_RMDIR	2
1843
1844/* Check whether a task can link, unlink, or rmdir a file/directory. */
1845static int may_link(struct inode *dir,
1846		    struct dentry *dentry,
1847		    int kind)
1848
1849{
1850	struct inode_security_struct *dsec, *isec;
1851	struct common_audit_data ad;
1852	u32 sid = current_sid();
1853	u32 av;
1854	int rc;
1855
1856	dsec = inode_security(dir);
1857	isec = backing_inode_security(dentry);
1858
1859	ad.type = LSM_AUDIT_DATA_DENTRY;
1860	ad.u.dentry = dentry;
1861
1862	av = DIR__SEARCH;
1863	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1864	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
 
1865	if (rc)
1866		return rc;
1867
1868	switch (kind) {
1869	case MAY_LINK:
1870		av = FILE__LINK;
1871		break;
1872	case MAY_UNLINK:
1873		av = FILE__UNLINK;
1874		break;
1875	case MAY_RMDIR:
1876		av = DIR__RMDIR;
1877		break;
1878	default:
1879		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1880			__func__, kind);
1881		return 0;
1882	}
1883
1884	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
 
1885	return rc;
1886}
1887
1888static inline int may_rename(struct inode *old_dir,
1889			     struct dentry *old_dentry,
1890			     struct inode *new_dir,
1891			     struct dentry *new_dentry)
1892{
1893	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1894	struct common_audit_data ad;
1895	u32 sid = current_sid();
1896	u32 av;
1897	int old_is_dir, new_is_dir;
1898	int rc;
1899
1900	old_dsec = inode_security(old_dir);
1901	old_isec = backing_inode_security(old_dentry);
1902	old_is_dir = d_is_dir(old_dentry);
1903	new_dsec = inode_security(new_dir);
1904
1905	ad.type = LSM_AUDIT_DATA_DENTRY;
1906
1907	ad.u.dentry = old_dentry;
1908	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
 
1909			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1910	if (rc)
1911		return rc;
1912	rc = avc_has_perm(sid, old_isec->sid,
 
1913			  old_isec->sclass, FILE__RENAME, &ad);
1914	if (rc)
1915		return rc;
1916	if (old_is_dir && new_dir != old_dir) {
1917		rc = avc_has_perm(sid, old_isec->sid,
 
1918				  old_isec->sclass, DIR__REPARENT, &ad);
1919		if (rc)
1920			return rc;
1921	}
1922
1923	ad.u.dentry = new_dentry;
1924	av = DIR__ADD_NAME | DIR__SEARCH;
1925	if (d_is_positive(new_dentry))
1926		av |= DIR__REMOVE_NAME;
1927	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
 
1928	if (rc)
1929		return rc;
1930	if (d_is_positive(new_dentry)) {
1931		new_isec = backing_inode_security(new_dentry);
1932		new_is_dir = d_is_dir(new_dentry);
1933		rc = avc_has_perm(sid, new_isec->sid,
 
1934				  new_isec->sclass,
1935				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1936		if (rc)
1937			return rc;
1938	}
1939
1940	return 0;
1941}
1942
1943/* Check whether a task can perform a filesystem operation. */
1944static int superblock_has_perm(const struct cred *cred,
1945			       const struct super_block *sb,
1946			       u32 perms,
1947			       struct common_audit_data *ad)
1948{
1949	struct superblock_security_struct *sbsec;
1950	u32 sid = cred_sid(cred);
1951
1952	sbsec = selinux_superblock(sb);
1953	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
 
1954}
1955
1956/* Convert a Linux mode and permission mask to an access vector. */
1957static inline u32 file_mask_to_av(int mode, int mask)
1958{
1959	u32 av = 0;
1960
1961	if (!S_ISDIR(mode)) {
1962		if (mask & MAY_EXEC)
1963			av |= FILE__EXECUTE;
1964		if (mask & MAY_READ)
1965			av |= FILE__READ;
1966
1967		if (mask & MAY_APPEND)
1968			av |= FILE__APPEND;
1969		else if (mask & MAY_WRITE)
1970			av |= FILE__WRITE;
1971
1972	} else {
1973		if (mask & MAY_EXEC)
1974			av |= DIR__SEARCH;
1975		if (mask & MAY_WRITE)
1976			av |= DIR__WRITE;
1977		if (mask & MAY_READ)
1978			av |= DIR__READ;
1979	}
1980
1981	return av;
1982}
1983
1984/* Convert a Linux file to an access vector. */
1985static inline u32 file_to_av(const struct file *file)
1986{
1987	u32 av = 0;
1988
1989	if (file->f_mode & FMODE_READ)
1990		av |= FILE__READ;
1991	if (file->f_mode & FMODE_WRITE) {
1992		if (file->f_flags & O_APPEND)
1993			av |= FILE__APPEND;
1994		else
1995			av |= FILE__WRITE;
1996	}
1997	if (!av) {
1998		/*
1999		 * Special file opened with flags 3 for ioctl-only use.
2000		 */
2001		av = FILE__IOCTL;
2002	}
2003
2004	return av;
2005}
2006
2007/*
2008 * Convert a file to an access vector and include the correct
2009 * open permission.
2010 */
2011static inline u32 open_file_to_av(struct file *file)
2012{
2013	u32 av = file_to_av(file);
2014	struct inode *inode = file_inode(file);
2015
2016	if (selinux_policycap_openperm() &&
2017	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2018		av |= FILE__OPEN;
2019
2020	return av;
2021}
2022
2023/* Hook functions begin here. */
2024
2025static int selinux_binder_set_context_mgr(const struct cred *mgr)
2026{
2027	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
 
2028			    BINDER__SET_CONTEXT_MGR, NULL);
2029}
2030
2031static int selinux_binder_transaction(const struct cred *from,
2032				      const struct cred *to)
2033{
2034	u32 mysid = current_sid();
2035	u32 fromsid = cred_sid(from);
2036	u32 tosid = cred_sid(to);
2037	int rc;
2038
2039	if (mysid != fromsid) {
2040		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
 
2041				  BINDER__IMPERSONATE, NULL);
2042		if (rc)
2043			return rc;
2044	}
2045
2046	return avc_has_perm(fromsid, tosid,
2047			    SECCLASS_BINDER, BINDER__CALL, NULL);
2048}
2049
2050static int selinux_binder_transfer_binder(const struct cred *from,
2051					  const struct cred *to)
2052{
2053	return avc_has_perm(cred_sid(from), cred_sid(to),
 
2054			    SECCLASS_BINDER, BINDER__TRANSFER,
2055			    NULL);
2056}
2057
2058static int selinux_binder_transfer_file(const struct cred *from,
2059					const struct cred *to,
2060					const struct file *file)
2061{
2062	u32 sid = cred_sid(to);
2063	struct file_security_struct *fsec = selinux_file(file);
2064	struct dentry *dentry = file->f_path.dentry;
2065	struct inode_security_struct *isec;
2066	struct common_audit_data ad;
2067	int rc;
2068
2069	ad.type = LSM_AUDIT_DATA_PATH;
2070	ad.u.path = file->f_path;
2071
2072	if (sid != fsec->sid) {
2073		rc = avc_has_perm(sid, fsec->sid,
 
2074				  SECCLASS_FD,
2075				  FD__USE,
2076				  &ad);
2077		if (rc)
2078			return rc;
2079	}
2080
2081#ifdef CONFIG_BPF_SYSCALL
2082	rc = bpf_fd_pass(file, sid);
2083	if (rc)
2084		return rc;
2085#endif
2086
2087	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2088		return 0;
2089
2090	isec = backing_inode_security(dentry);
2091	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
 
2092			    &ad);
2093}
2094
2095static int selinux_ptrace_access_check(struct task_struct *child,
2096				       unsigned int mode)
2097{
2098	u32 sid = current_sid();
2099	u32 csid = task_sid_obj(child);
2100
2101	if (mode & PTRACE_MODE_READ)
2102		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2103				NULL);
2104
2105	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2106			NULL);
2107}
2108
2109static int selinux_ptrace_traceme(struct task_struct *parent)
2110{
2111	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
 
2112			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2113}
2114
2115static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2116			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2117{
2118	return avc_has_perm(current_sid(), task_sid_obj(target),
2119			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
 
2120}
2121
2122static int selinux_capset(struct cred *new, const struct cred *old,
2123			  const kernel_cap_t *effective,
2124			  const kernel_cap_t *inheritable,
2125			  const kernel_cap_t *permitted)
2126{
2127	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
 
2128			    PROCESS__SETCAP, NULL);
2129}
2130
2131/*
2132 * (This comment used to live with the selinux_task_setuid hook,
2133 * which was removed).
2134 *
2135 * Since setuid only affects the current process, and since the SELinux
2136 * controls are not based on the Linux identity attributes, SELinux does not
2137 * need to control this operation.  However, SELinux does control the use of
2138 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2139 */
2140
2141static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2142			   int cap, unsigned int opts)
2143{
2144	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2145}
2146
2147static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2148{
2149	const struct cred *cred = current_cred();
2150	int rc = 0;
2151
2152	if (!sb)
2153		return 0;
2154
2155	switch (cmds) {
2156	case Q_SYNC:
2157	case Q_QUOTAON:
2158	case Q_QUOTAOFF:
2159	case Q_SETINFO:
2160	case Q_SETQUOTA:
2161	case Q_XQUOTAOFF:
2162	case Q_XQUOTAON:
2163	case Q_XSETQLIM:
2164		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2165		break;
2166	case Q_GETFMT:
2167	case Q_GETINFO:
2168	case Q_GETQUOTA:
2169	case Q_XGETQUOTA:
2170	case Q_XGETQSTAT:
2171	case Q_XGETQSTATV:
2172	case Q_XGETNEXTQUOTA:
2173		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2174		break;
2175	default:
2176		rc = 0;  /* let the kernel handle invalid cmds */
2177		break;
2178	}
2179	return rc;
2180}
2181
2182static int selinux_quota_on(struct dentry *dentry)
2183{
2184	const struct cred *cred = current_cred();
2185
2186	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2187}
2188
2189static int selinux_syslog(int type)
2190{
2191	switch (type) {
2192	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2193	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2194		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2195				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2196	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2197	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2198	/* Set level of messages printed to console */
2199	case SYSLOG_ACTION_CONSOLE_LEVEL:
2200		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2201				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2202				    NULL);
2203	}
2204	/* All other syslog types */
2205	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
2206			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2207}
2208
2209/*
2210 * Check permission for allocating a new virtual mapping. Returns
2211 * 0 if permission is granted, negative error code if not.
 
2212 *
2213 * Do not audit the selinux permission check, as this is applied to all
2214 * processes that allocate mappings.
2215 */
2216static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2217{
2218	return cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2219				   CAP_OPT_NOAUDIT, true);
 
 
 
 
 
 
2220}
2221
2222/* binprm security operations */
2223
2224static u32 ptrace_parent_sid(void)
2225{
2226	u32 sid = 0;
2227	struct task_struct *tracer;
2228
2229	rcu_read_lock();
2230	tracer = ptrace_parent(current);
2231	if (tracer)
2232		sid = task_sid_obj(tracer);
2233	rcu_read_unlock();
2234
2235	return sid;
2236}
2237
2238static int check_nnp_nosuid(const struct linux_binprm *bprm,
2239			    const struct task_security_struct *old_tsec,
2240			    const struct task_security_struct *new_tsec)
2241{
2242	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2243	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2244	int rc;
2245	u32 av;
2246
2247	if (!nnp && !nosuid)
2248		return 0; /* neither NNP nor nosuid */
2249
2250	if (new_tsec->sid == old_tsec->sid)
2251		return 0; /* No change in credentials */
2252
2253	/*
2254	 * If the policy enables the nnp_nosuid_transition policy capability,
2255	 * then we permit transitions under NNP or nosuid if the
2256	 * policy allows the corresponding permission between
2257	 * the old and new contexts.
2258	 */
2259	if (selinux_policycap_nnp_nosuid_transition()) {
2260		av = 0;
2261		if (nnp)
2262			av |= PROCESS2__NNP_TRANSITION;
2263		if (nosuid)
2264			av |= PROCESS2__NOSUID_TRANSITION;
2265		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2266				  SECCLASS_PROCESS2, av, NULL);
2267		if (!rc)
2268			return 0;
2269	}
2270
2271	/*
2272	 * We also permit NNP or nosuid transitions to bounded SIDs,
2273	 * i.e. SIDs that are guaranteed to only be allowed a subset
2274	 * of the permissions of the current SID.
2275	 */
2276	rc = security_bounded_transition(old_tsec->sid,
2277					 new_tsec->sid);
2278	if (!rc)
2279		return 0;
2280
2281	/*
2282	 * On failure, preserve the errno values for NNP vs nosuid.
2283	 * NNP:  Operation not permitted for caller.
2284	 * nosuid:  Permission denied to file.
2285	 */
2286	if (nnp)
2287		return -EPERM;
2288	return -EACCES;
2289}
2290
2291static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2292{
2293	const struct task_security_struct *old_tsec;
2294	struct task_security_struct *new_tsec;
2295	struct inode_security_struct *isec;
2296	struct common_audit_data ad;
2297	struct inode *inode = file_inode(bprm->file);
2298	int rc;
2299
2300	/* SELinux context only depends on initial program or script and not
2301	 * the script interpreter */
2302
2303	old_tsec = selinux_cred(current_cred());
2304	new_tsec = selinux_cred(bprm->cred);
2305	isec = inode_security(inode);
2306
2307	/* Default to the current task SID. */
2308	new_tsec->sid = old_tsec->sid;
2309	new_tsec->osid = old_tsec->sid;
2310
2311	/* Reset fs, key, and sock SIDs on execve. */
2312	new_tsec->create_sid = 0;
2313	new_tsec->keycreate_sid = 0;
2314	new_tsec->sockcreate_sid = 0;
2315
2316	/*
2317	 * Before policy is loaded, label any task outside kernel space
2318	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2319	 * early boot end up with a label different from SECINITSID_KERNEL
2320	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2321	 */
2322	if (!selinux_initialized()) {
2323		new_tsec->sid = SECINITSID_INIT;
2324		/* also clear the exec_sid just in case */
2325		new_tsec->exec_sid = 0;
2326		return 0;
2327	}
2328
2329	if (old_tsec->exec_sid) {
2330		new_tsec->sid = old_tsec->exec_sid;
2331		/* Reset exec SID on execve. */
2332		new_tsec->exec_sid = 0;
2333
2334		/* Fail on NNP or nosuid if not an allowed transition. */
2335		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336		if (rc)
2337			return rc;
2338	} else {
2339		/* Check for a default transition on this program. */
2340		rc = security_transition_sid(old_tsec->sid,
2341					     isec->sid, SECCLASS_PROCESS, NULL,
2342					     &new_tsec->sid);
2343		if (rc)
2344			return rc;
2345
2346		/*
2347		 * Fallback to old SID on NNP or nosuid if not an allowed
2348		 * transition.
2349		 */
2350		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2351		if (rc)
2352			new_tsec->sid = old_tsec->sid;
2353	}
2354
2355	ad.type = LSM_AUDIT_DATA_FILE;
2356	ad.u.file = bprm->file;
2357
2358	if (new_tsec->sid == old_tsec->sid) {
2359		rc = avc_has_perm(old_tsec->sid, isec->sid,
 
2360				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2361		if (rc)
2362			return rc;
2363	} else {
2364		/* Check permissions for the transition. */
2365		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2366				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2367		if (rc)
2368			return rc;
2369
2370		rc = avc_has_perm(new_tsec->sid, isec->sid,
 
2371				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2372		if (rc)
2373			return rc;
2374
2375		/* Check for shared state */
2376		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2377			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2378					  SECCLASS_PROCESS, PROCESS__SHARE,
2379					  NULL);
2380			if (rc)
2381				return -EPERM;
2382		}
2383
2384		/* Make sure that anyone attempting to ptrace over a task that
2385		 * changes its SID has the appropriate permit */
2386		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2387			u32 ptsid = ptrace_parent_sid();
2388			if (ptsid != 0) {
2389				rc = avc_has_perm(ptsid, new_tsec->sid,
 
2390						  SECCLASS_PROCESS,
2391						  PROCESS__PTRACE, NULL);
2392				if (rc)
2393					return -EPERM;
2394			}
2395		}
2396
2397		/* Clear any possibly unsafe personality bits on exec: */
2398		bprm->per_clear |= PER_CLEAR_ON_SETID;
2399
2400		/* Enable secure mode for SIDs transitions unless
2401		   the noatsecure permission is granted between
2402		   the two SIDs, i.e. ahp returns 0. */
2403		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
 
2404				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2405				  NULL);
2406		bprm->secureexec |= !!rc;
2407	}
2408
2409	return 0;
2410}
2411
2412static int match_file(const void *p, struct file *file, unsigned fd)
2413{
2414	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2415}
2416
2417/* Derived from fs/exec.c:flush_old_files. */
2418static inline void flush_unauthorized_files(const struct cred *cred,
2419					    struct files_struct *files)
2420{
2421	struct file *file, *devnull = NULL;
2422	struct tty_struct *tty;
2423	int drop_tty = 0;
2424	unsigned n;
2425
2426	tty = get_current_tty();
2427	if (tty) {
2428		spin_lock(&tty->files_lock);
2429		if (!list_empty(&tty->tty_files)) {
2430			struct tty_file_private *file_priv;
2431
2432			/* Revalidate access to controlling tty.
2433			   Use file_path_has_perm on the tty path directly
2434			   rather than using file_has_perm, as this particular
2435			   open file may belong to another process and we are
2436			   only interested in the inode-based check here. */
2437			file_priv = list_first_entry(&tty->tty_files,
2438						struct tty_file_private, list);
2439			file = file_priv->file;
2440			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2441				drop_tty = 1;
2442		}
2443		spin_unlock(&tty->files_lock);
2444		tty_kref_put(tty);
2445	}
2446	/* Reset controlling tty. */
2447	if (drop_tty)
2448		no_tty();
2449
2450	/* Revalidate access to inherited open files. */
2451	n = iterate_fd(files, 0, match_file, cred);
2452	if (!n) /* none found? */
2453		return;
2454
2455	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2456	if (IS_ERR(devnull))
2457		devnull = NULL;
2458	/* replace all the matching ones with this */
2459	do {
2460		replace_fd(n - 1, devnull, 0);
2461	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2462	if (devnull)
2463		fput(devnull);
2464}
2465
2466/*
2467 * Prepare a process for imminent new credential changes due to exec
2468 */
2469static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2470{
2471	struct task_security_struct *new_tsec;
2472	struct rlimit *rlim, *initrlim;
2473	int rc, i;
2474
2475	new_tsec = selinux_cred(bprm->cred);
2476	if (new_tsec->sid == new_tsec->osid)
2477		return;
2478
2479	/* Close files for which the new task SID is not authorized. */
2480	flush_unauthorized_files(bprm->cred, current->files);
2481
2482	/* Always clear parent death signal on SID transitions. */
2483	current->pdeath_signal = 0;
2484
2485	/* Check whether the new SID can inherit resource limits from the old
2486	 * SID.  If not, reset all soft limits to the lower of the current
2487	 * task's hard limit and the init task's soft limit.
2488	 *
2489	 * Note that the setting of hard limits (even to lower them) can be
2490	 * controlled by the setrlimit check.  The inclusion of the init task's
2491	 * soft limit into the computation is to avoid resetting soft limits
2492	 * higher than the default soft limit for cases where the default is
2493	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2494	 */
2495	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
 
2496			  PROCESS__RLIMITINH, NULL);
2497	if (rc) {
2498		/* protect against do_prlimit() */
2499		task_lock(current);
2500		for (i = 0; i < RLIM_NLIMITS; i++) {
2501			rlim = current->signal->rlim + i;
2502			initrlim = init_task.signal->rlim + i;
2503			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2504		}
2505		task_unlock(current);
2506		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2507			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2508	}
2509}
2510
2511/*
2512 * Clean up the process immediately after the installation of new credentials
2513 * due to exec
2514 */
2515static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2516{
2517	const struct task_security_struct *tsec = selinux_cred(current_cred());
2518	u32 osid, sid;
2519	int rc;
2520
2521	osid = tsec->osid;
2522	sid = tsec->sid;
2523
2524	if (sid == osid)
2525		return;
2526
2527	/* Check whether the new SID can inherit signal state from the old SID.
2528	 * If not, clear itimers to avoid subsequent signal generation and
2529	 * flush and unblock signals.
2530	 *
2531	 * This must occur _after_ the task SID has been updated so that any
2532	 * kill done after the flush will be checked against the new SID.
2533	 */
2534	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
 
2535	if (rc) {
2536		clear_itimer();
2537
2538		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2539		if (!fatal_signal_pending(current)) {
2540			flush_sigqueue(&current->pending);
2541			flush_sigqueue(&current->signal->shared_pending);
2542			flush_signal_handlers(current, 1);
2543			sigemptyset(&current->blocked);
2544			recalc_sigpending();
2545		}
2546		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2547	}
2548
2549	/* Wake up the parent if it is waiting so that it can recheck
2550	 * wait permission to the new task SID. */
2551	read_lock(&tasklist_lock);
2552	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2553	read_unlock(&tasklist_lock);
2554}
2555
2556/* superblock security operations */
2557
2558static int selinux_sb_alloc_security(struct super_block *sb)
2559{
2560	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2561
2562	mutex_init(&sbsec->lock);
2563	INIT_LIST_HEAD(&sbsec->isec_head);
2564	spin_lock_init(&sbsec->isec_lock);
2565	sbsec->sid = SECINITSID_UNLABELED;
2566	sbsec->def_sid = SECINITSID_FILE;
2567	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2568
2569	return 0;
2570}
2571
2572static inline int opt_len(const char *s)
2573{
2574	bool open_quote = false;
2575	int len;
2576	char c;
2577
2578	for (len = 0; (c = s[len]) != '\0'; len++) {
2579		if (c == '"')
2580			open_quote = !open_quote;
2581		if (c == ',' && !open_quote)
2582			break;
2583	}
2584	return len;
2585}
2586
2587static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2588{
2589	char *from = options;
2590	char *to = options;
2591	bool first = true;
2592	int rc;
2593
2594	while (1) {
2595		int len = opt_len(from);
2596		int token;
2597		char *arg = NULL;
2598
2599		token = match_opt_prefix(from, len, &arg);
2600
2601		if (token != Opt_error) {
2602			char *p, *q;
2603
2604			/* strip quotes */
2605			if (arg) {
2606				for (p = q = arg; p < from + len; p++) {
2607					char c = *p;
2608					if (c != '"')
2609						*q++ = c;
2610				}
2611				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2612				if (!arg) {
2613					rc = -ENOMEM;
2614					goto free_opt;
2615				}
2616			}
2617			rc = selinux_add_opt(token, arg, mnt_opts);
2618			kfree(arg);
2619			arg = NULL;
2620			if (unlikely(rc)) {
2621				goto free_opt;
2622			}
2623		} else {
2624			if (!first) {	// copy with preceding comma
2625				from--;
2626				len++;
2627			}
2628			if (to != from)
2629				memmove(to, from, len);
2630			to += len;
2631			first = false;
2632		}
2633		if (!from[len])
2634			break;
2635		from += len + 1;
2636	}
2637	*to = '\0';
2638	return 0;
2639
2640free_opt:
2641	if (*mnt_opts) {
2642		selinux_free_mnt_opts(*mnt_opts);
2643		*mnt_opts = NULL;
2644	}
2645	return rc;
2646}
2647
2648static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2649{
2650	struct selinux_mnt_opts *opts = mnt_opts;
2651	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2652
2653	/*
2654	 * Superblock not initialized (i.e. no options) - reject if any
2655	 * options specified, otherwise accept.
2656	 */
2657	if (!(sbsec->flags & SE_SBINITIALIZED))
2658		return opts ? 1 : 0;
2659
2660	/*
2661	 * Superblock initialized and no options specified - reject if
2662	 * superblock has any options set, otherwise accept.
2663	 */
2664	if (!opts)
2665		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2666
2667	if (opts->fscontext_sid) {
2668		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2669			       opts->fscontext_sid))
2670			return 1;
2671	}
2672	if (opts->context_sid) {
2673		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2674			       opts->context_sid))
2675			return 1;
2676	}
2677	if (opts->rootcontext_sid) {
2678		struct inode_security_struct *root_isec;
2679
2680		root_isec = backing_inode_security(sb->s_root);
2681		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2682			       opts->rootcontext_sid))
2683			return 1;
2684	}
2685	if (opts->defcontext_sid) {
2686		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2687			       opts->defcontext_sid))
2688			return 1;
2689	}
2690	return 0;
2691}
2692
2693static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2694{
2695	struct selinux_mnt_opts *opts = mnt_opts;
2696	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2697
2698	if (!(sbsec->flags & SE_SBINITIALIZED))
2699		return 0;
2700
2701	if (!opts)
2702		return 0;
2703
2704	if (opts->fscontext_sid) {
2705		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2706			       opts->fscontext_sid))
2707			goto out_bad_option;
2708	}
2709	if (opts->context_sid) {
2710		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2711			       opts->context_sid))
2712			goto out_bad_option;
2713	}
2714	if (opts->rootcontext_sid) {
2715		struct inode_security_struct *root_isec;
2716		root_isec = backing_inode_security(sb->s_root);
2717		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2718			       opts->rootcontext_sid))
2719			goto out_bad_option;
2720	}
2721	if (opts->defcontext_sid) {
2722		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2723			       opts->defcontext_sid))
2724			goto out_bad_option;
2725	}
2726	return 0;
2727
2728out_bad_option:
2729	pr_warn("SELinux: unable to change security options "
2730	       "during remount (dev %s, type=%s)\n", sb->s_id,
2731	       sb->s_type->name);
2732	return -EINVAL;
2733}
2734
2735static int selinux_sb_kern_mount(const struct super_block *sb)
2736{
2737	const struct cred *cred = current_cred();
2738	struct common_audit_data ad;
2739
2740	ad.type = LSM_AUDIT_DATA_DENTRY;
2741	ad.u.dentry = sb->s_root;
2742	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2743}
2744
2745static int selinux_sb_statfs(struct dentry *dentry)
2746{
2747	const struct cred *cred = current_cred();
2748	struct common_audit_data ad;
2749
2750	ad.type = LSM_AUDIT_DATA_DENTRY;
2751	ad.u.dentry = dentry->d_sb->s_root;
2752	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2753}
2754
2755static int selinux_mount(const char *dev_name,
2756			 const struct path *path,
2757			 const char *type,
2758			 unsigned long flags,
2759			 void *data)
2760{
2761	const struct cred *cred = current_cred();
2762
2763	if (flags & MS_REMOUNT)
2764		return superblock_has_perm(cred, path->dentry->d_sb,
2765					   FILESYSTEM__REMOUNT, NULL);
2766	else
2767		return path_has_perm(cred, path, FILE__MOUNTON);
2768}
2769
2770static int selinux_move_mount(const struct path *from_path,
2771			      const struct path *to_path)
2772{
2773	const struct cred *cred = current_cred();
2774
2775	return path_has_perm(cred, to_path, FILE__MOUNTON);
2776}
2777
2778static int selinux_umount(struct vfsmount *mnt, int flags)
2779{
2780	const struct cred *cred = current_cred();
2781
2782	return superblock_has_perm(cred, mnt->mnt_sb,
2783				   FILESYSTEM__UNMOUNT, NULL);
2784}
2785
2786static int selinux_fs_context_submount(struct fs_context *fc,
2787				   struct super_block *reference)
2788{
2789	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2790	struct selinux_mnt_opts *opts;
2791
2792	/*
2793	 * Ensure that fc->security remains NULL when no options are set
2794	 * as expected by selinux_set_mnt_opts().
2795	 */
2796	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2797		return 0;
2798
2799	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2800	if (!opts)
2801		return -ENOMEM;
2802
2803	if (sbsec->flags & FSCONTEXT_MNT)
2804		opts->fscontext_sid = sbsec->sid;
2805	if (sbsec->flags & CONTEXT_MNT)
2806		opts->context_sid = sbsec->mntpoint_sid;
2807	if (sbsec->flags & DEFCONTEXT_MNT)
2808		opts->defcontext_sid = sbsec->def_sid;
2809	fc->security = opts;
2810	return 0;
2811}
2812
2813static int selinux_fs_context_dup(struct fs_context *fc,
2814				  struct fs_context *src_fc)
2815{
2816	const struct selinux_mnt_opts *src = src_fc->security;
2817
2818	if (!src)
2819		return 0;
2820
2821	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2822	return fc->security ? 0 : -ENOMEM;
2823}
2824
2825static const struct fs_parameter_spec selinux_fs_parameters[] = {
2826	fsparam_string(CONTEXT_STR,	Opt_context),
2827	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2828	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2829	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2830	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2831	{}
2832};
2833
2834static int selinux_fs_context_parse_param(struct fs_context *fc,
2835					  struct fs_parameter *param)
2836{
2837	struct fs_parse_result result;
2838	int opt;
2839
2840	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2841	if (opt < 0)
2842		return opt;
2843
2844	return selinux_add_opt(opt, param->string, &fc->security);
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851	struct inode_security_struct *isec = selinux_inode(inode);
2852	u32 sid = current_sid();
2853
2854	spin_lock_init(&isec->lock);
2855	INIT_LIST_HEAD(&isec->list);
2856	isec->inode = inode;
2857	isec->sid = SECINITSID_UNLABELED;
2858	isec->sclass = SECCLASS_FILE;
2859	isec->task_sid = sid;
2860	isec->initialized = LABEL_INVALID;
2861
2862	return 0;
2863}
2864
2865static void selinux_inode_free_security(struct inode *inode)
2866{
2867	inode_free_security(inode);
2868}
2869
2870static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2871					const struct qstr *name,
2872					const char **xattr_name, void **ctx,
2873					u32 *ctxlen)
2874{
2875	u32 newsid;
2876	int rc;
2877
2878	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2879					   d_inode(dentry->d_parent), name,
2880					   inode_mode_to_security_class(mode),
2881					   &newsid);
2882	if (rc)
2883		return rc;
2884
2885	if (xattr_name)
2886		*xattr_name = XATTR_NAME_SELINUX;
2887
2888	return security_sid_to_context(newsid, (char **)ctx,
2889				       ctxlen);
2890}
2891
2892static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2893					  struct qstr *name,
2894					  const struct cred *old,
2895					  struct cred *new)
2896{
2897	u32 newsid;
2898	int rc;
2899	struct task_security_struct *tsec;
2900
2901	rc = selinux_determine_inode_label(selinux_cred(old),
2902					   d_inode(dentry->d_parent), name,
2903					   inode_mode_to_security_class(mode),
2904					   &newsid);
2905	if (rc)
2906		return rc;
2907
2908	tsec = selinux_cred(new);
2909	tsec->create_sid = newsid;
2910	return 0;
2911}
2912
2913static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2914				       const struct qstr *qstr,
2915				       struct xattr *xattrs, int *xattr_count)
 
2916{
2917	const struct task_security_struct *tsec = selinux_cred(current_cred());
2918	struct superblock_security_struct *sbsec;
2919	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2920	u32 newsid, clen;
2921	u16 newsclass;
2922	int rc;
2923	char *context;
2924
2925	sbsec = selinux_superblock(dir->i_sb);
2926
2927	newsid = tsec->create_sid;
2928	newsclass = inode_mode_to_security_class(inode->i_mode);
2929	rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
 
 
2930	if (rc)
2931		return rc;
2932
2933	/* Possibly defer initialization to selinux_complete_init. */
2934	if (sbsec->flags & SE_SBINITIALIZED) {
2935		struct inode_security_struct *isec = selinux_inode(inode);
2936		isec->sclass = newsclass;
2937		isec->sid = newsid;
2938		isec->initialized = LABEL_INITIALIZED;
2939	}
2940
2941	if (!selinux_initialized() ||
2942	    !(sbsec->flags & SBLABEL_MNT))
2943		return -EOPNOTSUPP;
2944
2945	if (xattr) {
2946		rc = security_sid_to_context_force(newsid,
 
 
 
2947						   &context, &clen);
2948		if (rc)
2949			return rc;
2950		xattr->value = context;
2951		xattr->value_len = clen;
2952		xattr->name = XATTR_SELINUX_SUFFIX;
2953	}
2954
2955	return 0;
2956}
2957
2958static int selinux_inode_init_security_anon(struct inode *inode,
2959					    const struct qstr *name,
2960					    const struct inode *context_inode)
2961{
2962	u32 sid = current_sid();
2963	struct common_audit_data ad;
2964	struct inode_security_struct *isec;
2965	int rc;
2966
2967	if (unlikely(!selinux_initialized()))
2968		return 0;
2969
2970	isec = selinux_inode(inode);
2971
2972	/*
2973	 * We only get here once per ephemeral inode.  The inode has
2974	 * been initialized via inode_alloc_security but is otherwise
2975	 * untouched.
2976	 */
2977
2978	if (context_inode) {
2979		struct inode_security_struct *context_isec =
2980			selinux_inode(context_inode);
2981		if (context_isec->initialized != LABEL_INITIALIZED) {
2982			pr_err("SELinux:  context_inode is not initialized\n");
2983			return -EACCES;
2984		}
2985
2986		isec->sclass = context_isec->sclass;
2987		isec->sid = context_isec->sid;
2988	} else {
2989		isec->sclass = SECCLASS_ANON_INODE;
2990		rc = security_transition_sid(
2991			sid, sid,
2992			isec->sclass, name, &isec->sid);
2993		if (rc)
2994			return rc;
2995	}
2996
2997	isec->initialized = LABEL_INITIALIZED;
2998	/*
2999	 * Now that we've initialized security, check whether we're
3000	 * allowed to actually create this type of anonymous inode.
3001	 */
3002
3003	ad.type = LSM_AUDIT_DATA_ANONINODE;
3004	ad.u.anonclass = name ? (const char *)name->name : "?";
3005
3006	return avc_has_perm(sid,
 
3007			    isec->sid,
3008			    isec->sclass,
3009			    FILE__CREATE,
3010			    &ad);
3011}
3012
3013static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3014{
3015	return may_create(dir, dentry, SECCLASS_FILE);
3016}
3017
3018static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3019{
3020	return may_link(dir, old_dentry, MAY_LINK);
3021}
3022
3023static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3024{
3025	return may_link(dir, dentry, MAY_UNLINK);
3026}
3027
3028static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3029{
3030	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3031}
3032
3033static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3034{
3035	return may_create(dir, dentry, SECCLASS_DIR);
3036}
3037
3038static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3039{
3040	return may_link(dir, dentry, MAY_RMDIR);
3041}
3042
3043static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3044{
3045	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3046}
3047
3048static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3049				struct inode *new_inode, struct dentry *new_dentry)
3050{
3051	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3052}
3053
3054static int selinux_inode_readlink(struct dentry *dentry)
3055{
3056	const struct cred *cred = current_cred();
3057
3058	return dentry_has_perm(cred, dentry, FILE__READ);
3059}
3060
3061static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3062				     bool rcu)
3063{
 
3064	struct common_audit_data ad;
3065	struct inode_security_struct *isec;
3066	u32 sid = current_sid();
 
 
3067
3068	ad.type = LSM_AUDIT_DATA_DENTRY;
3069	ad.u.dentry = dentry;
 
3070	isec = inode_security_rcu(inode, rcu);
3071	if (IS_ERR(isec))
3072		return PTR_ERR(isec);
3073
3074	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
 
3075}
3076
3077static noinline int audit_inode_permission(struct inode *inode,
3078					   u32 perms, u32 audited, u32 denied,
3079					   int result)
3080{
3081	struct common_audit_data ad;
3082	struct inode_security_struct *isec = selinux_inode(inode);
3083
3084	ad.type = LSM_AUDIT_DATA_INODE;
3085	ad.u.inode = inode;
3086
3087	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
 
3088			    audited, denied, result, &ad);
3089}
3090
3091static int selinux_inode_permission(struct inode *inode, int mask)
3092{
 
3093	u32 perms;
3094	bool from_access;
3095	bool no_block = mask & MAY_NOT_BLOCK;
3096	struct inode_security_struct *isec;
3097	u32 sid = current_sid();
3098	struct av_decision avd;
3099	int rc, rc2;
3100	u32 audited, denied;
3101
3102	from_access = mask & MAY_ACCESS;
3103	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3104
3105	/* No permission to check.  Existence test. */
3106	if (!mask)
3107		return 0;
3108
 
 
3109	if (unlikely(IS_PRIVATE(inode)))
3110		return 0;
3111
3112	perms = file_mask_to_av(inode->i_mode, mask);
3113
 
3114	isec = inode_security_rcu(inode, no_block);
3115	if (IS_ERR(isec))
3116		return PTR_ERR(isec);
3117
3118	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
 
3119				  &avd);
3120	audited = avc_audit_required(perms, &avd, rc,
3121				     from_access ? FILE__AUDIT_ACCESS : 0,
3122				     &denied);
3123	if (likely(!audited))
3124		return rc;
3125
3126	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3127	if (rc2)
3128		return rc2;
3129	return rc;
3130}
3131
3132static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3133				 struct iattr *iattr)
3134{
3135	const struct cred *cred = current_cred();
3136	struct inode *inode = d_backing_inode(dentry);
3137	unsigned int ia_valid = iattr->ia_valid;
3138	__u32 av = FILE__WRITE;
3139
3140	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3141	if (ia_valid & ATTR_FORCE) {
3142		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3143			      ATTR_FORCE);
3144		if (!ia_valid)
3145			return 0;
3146	}
3147
3148	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3149			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3150		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3151
3152	if (selinux_policycap_openperm() &&
3153	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3154	    (ia_valid & ATTR_SIZE) &&
3155	    !(ia_valid & ATTR_FILE))
3156		av |= FILE__OPEN;
3157
3158	return dentry_has_perm(cred, dentry, av);
3159}
3160
3161static int selinux_inode_getattr(const struct path *path)
3162{
3163	return path_has_perm(current_cred(), path, FILE__GETATTR);
3164}
3165
3166static bool has_cap_mac_admin(bool audit)
3167{
3168	const struct cred *cred = current_cred();
3169	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3170
3171	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3172		return false;
3173	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3174		return false;
3175	return true;
3176}
3177
3178/**
3179 * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3180 * @name: name of the xattr
3181 *
3182 * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3183 * named @name; the LSM layer should avoid enforcing any traditional
3184 * capability based access controls on this xattr.  Returns 0 to indicate that
3185 * SELinux does not "own" the access control rights to xattrs named @name and is
3186 * deferring to the LSM layer for further access controls, including capability
3187 * based controls.
3188 */
3189static int selinux_inode_xattr_skipcap(const char *name)
3190{
3191	/* require capability check if not a selinux xattr */
3192	return !strcmp(name, XATTR_NAME_SELINUX);
3193}
3194
3195static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3196				  struct dentry *dentry, const char *name,
3197				  const void *value, size_t size, int flags)
3198{
3199	struct inode *inode = d_backing_inode(dentry);
3200	struct inode_security_struct *isec;
3201	struct superblock_security_struct *sbsec;
3202	struct common_audit_data ad;
3203	u32 newsid, sid = current_sid();
3204	int rc = 0;
3205
3206	/* if not a selinux xattr, only check the ordinary setattr perm */
3207	if (strcmp(name, XATTR_NAME_SELINUX))
 
 
 
 
 
3208		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
 
3209
3210	if (!selinux_initialized())
3211		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3212
3213	sbsec = selinux_superblock(inode->i_sb);
3214	if (!(sbsec->flags & SBLABEL_MNT))
3215		return -EOPNOTSUPP;
3216
3217	if (!inode_owner_or_capable(idmap, inode))
3218		return -EPERM;
3219
3220	ad.type = LSM_AUDIT_DATA_DENTRY;
3221	ad.u.dentry = dentry;
3222
3223	isec = backing_inode_security(dentry);
3224	rc = avc_has_perm(sid, isec->sid, isec->sclass,
 
3225			  FILE__RELABELFROM, &ad);
3226	if (rc)
3227		return rc;
3228
3229	rc = security_context_to_sid(value, size, &newsid,
3230				     GFP_KERNEL);
3231	if (rc == -EINVAL) {
3232		if (!has_cap_mac_admin(true)) {
3233			struct audit_buffer *ab;
3234			size_t audit_size;
3235
3236			/* We strip a nul only if it is at the end, otherwise the
3237			 * context contains a nul and we should audit that */
3238			if (value) {
3239				const char *str = value;
3240
3241				if (str[size - 1] == '\0')
3242					audit_size = size - 1;
3243				else
3244					audit_size = size;
3245			} else {
3246				audit_size = 0;
3247			}
3248			ab = audit_log_start(audit_context(),
3249					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3250			if (!ab)
3251				return rc;
3252			audit_log_format(ab, "op=setxattr invalid_context=");
3253			audit_log_n_untrustedstring(ab, value, audit_size);
3254			audit_log_end(ab);
3255
3256			return rc;
3257		}
3258		rc = security_context_to_sid_force(value,
3259						   size, &newsid);
3260	}
3261	if (rc)
3262		return rc;
3263
3264	rc = avc_has_perm(sid, newsid, isec->sclass,
 
3265			  FILE__RELABELTO, &ad);
3266	if (rc)
3267		return rc;
3268
3269	rc = security_validate_transition(isec->sid, newsid,
3270					  sid, isec->sclass);
3271	if (rc)
3272		return rc;
3273
3274	return avc_has_perm(newsid,
 
3275			    sbsec->sid,
3276			    SECCLASS_FILESYSTEM,
3277			    FILESYSTEM__ASSOCIATE,
3278			    &ad);
3279}
3280
3281static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3282				 struct dentry *dentry, const char *acl_name,
3283				 struct posix_acl *kacl)
3284{
3285	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3286}
3287
3288static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3289				 struct dentry *dentry, const char *acl_name)
3290{
3291	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3292}
3293
3294static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3295				    struct dentry *dentry, const char *acl_name)
3296{
3297	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3298}
3299
3300static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3301					const void *value, size_t size,
3302					int flags)
3303{
3304	struct inode *inode = d_backing_inode(dentry);
3305	struct inode_security_struct *isec;
3306	u32 newsid;
3307	int rc;
3308
3309	if (strcmp(name, XATTR_NAME_SELINUX)) {
3310		/* Not an attribute we recognize, so nothing to do. */
3311		return;
3312	}
3313
3314	if (!selinux_initialized()) {
3315		/* If we haven't even been initialized, then we can't validate
3316		 * against a policy, so leave the label as invalid. It may
3317		 * resolve to a valid label on the next revalidation try if
3318		 * we've since initialized.
3319		 */
3320		return;
3321	}
3322
3323	rc = security_context_to_sid_force(value, size,
3324					   &newsid);
3325	if (rc) {
3326		pr_err("SELinux:  unable to map context to SID"
3327		       "for (%s, %lu), rc=%d\n",
3328		       inode->i_sb->s_id, inode->i_ino, -rc);
3329		return;
3330	}
3331
3332	isec = backing_inode_security(dentry);
3333	spin_lock(&isec->lock);
3334	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3335	isec->sid = newsid;
3336	isec->initialized = LABEL_INITIALIZED;
3337	spin_unlock(&isec->lock);
3338}
3339
3340static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3341{
3342	const struct cred *cred = current_cred();
3343
3344	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3345}
3346
3347static int selinux_inode_listxattr(struct dentry *dentry)
3348{
3349	const struct cred *cred = current_cred();
3350
3351	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3352}
3353
3354static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3355				     struct dentry *dentry, const char *name)
3356{
3357	/* if not a selinux xattr, only check the ordinary setattr perm */
3358	if (strcmp(name, XATTR_NAME_SELINUX))
 
 
 
 
 
3359		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
 
3360
3361	if (!selinux_initialized())
3362		return 0;
3363
3364	/* No one is allowed to remove a SELinux security label.
3365	   You can change the label, but all data must be labeled. */
3366	return -EACCES;
3367}
3368
3369static int selinux_path_notify(const struct path *path, u64 mask,
3370						unsigned int obj_type)
3371{
3372	int ret;
3373	u32 perm;
3374
3375	struct common_audit_data ad;
3376
3377	ad.type = LSM_AUDIT_DATA_PATH;
3378	ad.u.path = *path;
3379
3380	/*
3381	 * Set permission needed based on the type of mark being set.
3382	 * Performs an additional check for sb watches.
3383	 */
3384	switch (obj_type) {
3385	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3386		perm = FILE__WATCH_MOUNT;
3387		break;
3388	case FSNOTIFY_OBJ_TYPE_SB:
3389		perm = FILE__WATCH_SB;
3390		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3391						FILESYSTEM__WATCH, &ad);
3392		if (ret)
3393			return ret;
3394		break;
3395	case FSNOTIFY_OBJ_TYPE_INODE:
3396		perm = FILE__WATCH;
3397		break;
3398	default:
3399		return -EINVAL;
3400	}
3401
3402	/* blocking watches require the file:watch_with_perm permission */
3403	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3404		perm |= FILE__WATCH_WITH_PERM;
3405
3406	/* watches on read-like events need the file:watch_reads permission */
3407	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3408		perm |= FILE__WATCH_READS;
3409
3410	return path_has_perm(current_cred(), path, perm);
3411}
3412
3413/*
3414 * Copy the inode security context value to the user.
3415 *
3416 * Permission check is handled by selinux_inode_getxattr hook.
3417 */
3418static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3419				     struct inode *inode, const char *name,
3420				     void **buffer, bool alloc)
3421{
3422	u32 size;
3423	int error;
3424	char *context = NULL;
3425	struct inode_security_struct *isec;
3426
3427	/*
3428	 * If we're not initialized yet, then we can't validate contexts, so
3429	 * just let vfs_getxattr fall back to using the on-disk xattr.
3430	 */
3431	if (!selinux_initialized() ||
3432	    strcmp(name, XATTR_SELINUX_SUFFIX))
3433		return -EOPNOTSUPP;
3434
3435	/*
3436	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3437	 * value even if it is not defined by current policy; otherwise,
3438	 * use the in-core value under current policy.
3439	 * Use the non-auditing forms of the permission checks since
3440	 * getxattr may be called by unprivileged processes commonly
3441	 * and lack of permission just means that we fall back to the
3442	 * in-core context value, not a denial.
3443	 */
3444	isec = inode_security(inode);
3445	if (has_cap_mac_admin(false))
3446		error = security_sid_to_context_force(isec->sid, &context,
 
3447						      &size);
3448	else
3449		error = security_sid_to_context(isec->sid,
3450						&context, &size);
3451	if (error)
3452		return error;
3453	error = size;
3454	if (alloc) {
3455		*buffer = context;
3456		goto out_nofree;
3457	}
3458	kfree(context);
3459out_nofree:
3460	return error;
3461}
3462
3463static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3464				     const void *value, size_t size, int flags)
3465{
3466	struct inode_security_struct *isec = inode_security_novalidate(inode);
3467	struct superblock_security_struct *sbsec;
3468	u32 newsid;
3469	int rc;
3470
3471	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3472		return -EOPNOTSUPP;
3473
3474	sbsec = selinux_superblock(inode->i_sb);
3475	if (!(sbsec->flags & SBLABEL_MNT))
3476		return -EOPNOTSUPP;
3477
3478	if (!value || !size)
3479		return -EACCES;
3480
3481	rc = security_context_to_sid(value, size, &newsid,
3482				     GFP_KERNEL);
3483	if (rc)
3484		return rc;
3485
3486	spin_lock(&isec->lock);
3487	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3488	isec->sid = newsid;
3489	isec->initialized = LABEL_INITIALIZED;
3490	spin_unlock(&isec->lock);
3491	return 0;
3492}
3493
3494static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3495{
3496	const int len = sizeof(XATTR_NAME_SELINUX);
3497
3498	if (!selinux_initialized())
3499		return 0;
3500
3501	if (buffer && len <= buffer_size)
3502		memcpy(buffer, XATTR_NAME_SELINUX, len);
3503	return len;
3504}
3505
3506static void selinux_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
3507{
3508	struct inode_security_struct *isec = inode_security_novalidate(inode);
3509
3510	prop->selinux.secid = isec->sid;
3511}
3512
3513static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514{
3515	struct lsm_prop prop;
3516	struct task_security_struct *tsec;
3517	struct cred *new_creds = *new;
3518
3519	if (new_creds == NULL) {
3520		new_creds = prepare_creds();
3521		if (!new_creds)
3522			return -ENOMEM;
3523	}
3524
3525	tsec = selinux_cred(new_creds);
3526	/* Get label from overlay inode and set it in create_sid */
3527	selinux_inode_getlsmprop(d_inode(src), &prop);
3528	tsec->create_sid = prop.selinux.secid;
3529	*new = new_creds;
3530	return 0;
3531}
3532
3533static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3534{
3535	/* The copy_up hook above sets the initial context on an inode, but we
3536	 * don't then want to overwrite it by blindly copying all the lower
3537	 * xattrs up.  Instead, filter out SELinux-related xattrs following
3538	 * policy load.
3539	 */
3540	if (selinux_initialized() && !strcmp(name, XATTR_NAME_SELINUX))
3541		return -ECANCELED; /* Discard */
3542	/*
3543	 * Any other attribute apart from SELINUX is not claimed, supported
3544	 * by selinux.
3545	 */
3546	return -EOPNOTSUPP;
3547}
3548
3549/* kernfs node operations */
3550
3551static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552					struct kernfs_node *kn)
3553{
3554	const struct task_security_struct *tsec = selinux_cred(current_cred());
3555	u32 parent_sid, newsid, clen;
3556	int rc;
3557	char *context;
3558
3559	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560	if (rc == -ENODATA)
3561		return 0;
3562	else if (rc < 0)
3563		return rc;
3564
3565	clen = (u32)rc;
3566	context = kmalloc(clen, GFP_KERNEL);
3567	if (!context)
3568		return -ENOMEM;
3569
3570	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571	if (rc < 0) {
3572		kfree(context);
3573		return rc;
3574	}
3575
3576	rc = security_context_to_sid(context, clen, &parent_sid,
3577				     GFP_KERNEL);
3578	kfree(context);
3579	if (rc)
3580		return rc;
3581
3582	if (tsec->create_sid) {
3583		newsid = tsec->create_sid;
3584	} else {
3585		u16 secclass = inode_mode_to_security_class(kn->mode);
3586		struct qstr q;
3587
3588		q.name = kn->name;
3589		q.hash_len = hashlen_string(kn_dir, kn->name);
3590
3591		rc = security_transition_sid(tsec->sid,
3592					     parent_sid, secclass, &q,
3593					     &newsid);
3594		if (rc)
3595			return rc;
3596	}
3597
3598	rc = security_sid_to_context_force(newsid,
3599					   &context, &clen);
3600	if (rc)
3601		return rc;
3602
3603	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604			      XATTR_CREATE);
3605	kfree(context);
3606	return rc;
3607}
3608
3609
3610/* file security operations */
3611
3612static int selinux_revalidate_file_permission(struct file *file, int mask)
3613{
3614	const struct cred *cred = current_cred();
3615	struct inode *inode = file_inode(file);
3616
3617	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619		mask |= MAY_APPEND;
3620
3621	return file_has_perm(cred, file,
3622			     file_mask_to_av(inode->i_mode, mask));
3623}
3624
3625static int selinux_file_permission(struct file *file, int mask)
3626{
3627	struct inode *inode = file_inode(file);
3628	struct file_security_struct *fsec = selinux_file(file);
3629	struct inode_security_struct *isec;
3630	u32 sid = current_sid();
3631
3632	if (!mask)
3633		/* No permission to check.  Existence test. */
3634		return 0;
3635
3636	isec = inode_security(inode);
3637	if (sid == fsec->sid && fsec->isid == isec->sid &&
3638	    fsec->pseqno == avc_policy_seqno())
3639		/* No change since file_open check. */
3640		return 0;
3641
3642	return selinux_revalidate_file_permission(file, mask);
3643}
3644
3645static int selinux_file_alloc_security(struct file *file)
3646{
3647	struct file_security_struct *fsec = selinux_file(file);
3648	u32 sid = current_sid();
3649
3650	fsec->sid = sid;
3651	fsec->fown_sid = sid;
3652
3653	return 0;
3654}
3655
3656/*
3657 * Check whether a task has the ioctl permission and cmd
3658 * operation to an inode.
3659 */
3660static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661		u32 requested, u16 cmd)
3662{
3663	struct common_audit_data ad;
3664	struct file_security_struct *fsec = selinux_file(file);
3665	struct inode *inode = file_inode(file);
3666	struct inode_security_struct *isec;
3667	struct lsm_ioctlop_audit ioctl;
3668	u32 ssid = cred_sid(cred);
3669	int rc;
3670	u8 driver = cmd >> 8;
3671	u8 xperm = cmd & 0xff;
3672
3673	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674	ad.u.op = &ioctl;
3675	ad.u.op->cmd = cmd;
3676	ad.u.op->path = file->f_path;
3677
3678	if (ssid != fsec->sid) {
3679		rc = avc_has_perm(ssid, fsec->sid,
 
3680				SECCLASS_FD,
3681				FD__USE,
3682				&ad);
3683		if (rc)
3684			goto out;
3685	}
3686
3687	if (unlikely(IS_PRIVATE(inode)))
3688		return 0;
3689
3690	isec = inode_security(inode);
3691	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, requested,
3692				    driver, AVC_EXT_IOCTL, xperm, &ad);
 
3693out:
3694	return rc;
3695}
3696
3697static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698			      unsigned long arg)
3699{
3700	const struct cred *cred = current_cred();
3701	int error = 0;
3702
3703	switch (cmd) {
3704	case FIONREAD:
3705	case FIBMAP:
3706	case FIGETBSZ:
3707	case FS_IOC_GETFLAGS:
3708	case FS_IOC_GETVERSION:
3709		error = file_has_perm(cred, file, FILE__GETATTR);
3710		break;
3711
3712	case FS_IOC_SETFLAGS:
3713	case FS_IOC_SETVERSION:
3714		error = file_has_perm(cred, file, FILE__SETATTR);
3715		break;
3716
3717	/* sys_ioctl() checks */
3718	case FIONBIO:
3719	case FIOASYNC:
3720		error = file_has_perm(cred, file, 0);
3721		break;
3722
3723	case KDSKBENT:
3724	case KDSKBSENT:
3725		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726					    CAP_OPT_NONE, true);
3727		break;
3728
3729	case FIOCLEX:
3730	case FIONCLEX:
3731		if (!selinux_policycap_ioctl_skip_cloexec())
3732			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733		break;
3734
3735	/* default case assumes that the command will go
3736	 * to the file's ioctl() function.
3737	 */
3738	default:
3739		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740	}
3741	return error;
3742}
3743
3744static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745			      unsigned long arg)
3746{
3747	/*
3748	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749	 * make sure we don't compare 32-bit flags to 64-bit flags.
3750	 */
3751	switch (cmd) {
3752	case FS_IOC32_GETFLAGS:
3753		cmd = FS_IOC_GETFLAGS;
3754		break;
3755	case FS_IOC32_SETFLAGS:
3756		cmd = FS_IOC_SETFLAGS;
3757		break;
3758	case FS_IOC32_GETVERSION:
3759		cmd = FS_IOC_GETVERSION;
3760		break;
3761	case FS_IOC32_SETVERSION:
3762		cmd = FS_IOC_SETVERSION;
3763		break;
3764	default:
3765		break;
3766	}
3767
3768	return selinux_file_ioctl(file, cmd, arg);
3769}
3770
3771static int default_noexec __ro_after_init;
3772
3773static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774{
3775	const struct cred *cred = current_cred();
3776	u32 sid = cred_sid(cred);
3777	int rc = 0;
3778
3779	if (default_noexec &&
3780	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781				   (!shared && (prot & PROT_WRITE)))) {
3782		/*
3783		 * We are making executable an anonymous mapping or a
3784		 * private file mapping that will also be writable.
3785		 * This has an additional check.
3786		 */
3787		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
3788				  PROCESS__EXECMEM, NULL);
3789		if (rc)
3790			goto error;
3791	}
3792
3793	if (file) {
3794		/* read access is always possible with a mapping */
3795		u32 av = FILE__READ;
3796
3797		/* write access only matters if the mapping is shared */
3798		if (shared && (prot & PROT_WRITE))
3799			av |= FILE__WRITE;
3800
3801		if (prot & PROT_EXEC)
3802			av |= FILE__EXECUTE;
3803
3804		return file_has_perm(cred, file, av);
3805	}
3806
3807error:
3808	return rc;
3809}
3810
3811static int selinux_mmap_addr(unsigned long addr)
3812{
3813	int rc = 0;
3814
3815	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816		u32 sid = current_sid();
3817		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
 
3818				  MEMPROTECT__MMAP_ZERO, NULL);
3819	}
3820
3821	return rc;
3822}
3823
3824static int selinux_mmap_file(struct file *file,
3825			     unsigned long reqprot __always_unused,
3826			     unsigned long prot, unsigned long flags)
3827{
3828	struct common_audit_data ad;
3829	int rc;
3830
3831	if (file) {
3832		ad.type = LSM_AUDIT_DATA_FILE;
3833		ad.u.file = file;
3834		rc = inode_has_perm(current_cred(), file_inode(file),
3835				    FILE__MAP, &ad);
3836		if (rc)
3837			return rc;
3838	}
3839
 
 
 
3840	return file_map_prot_check(file, prot,
3841				   (flags & MAP_TYPE) == MAP_SHARED);
3842}
3843
3844static int selinux_file_mprotect(struct vm_area_struct *vma,
3845				 unsigned long reqprot __always_unused,
3846				 unsigned long prot)
3847{
3848	const struct cred *cred = current_cred();
3849	u32 sid = cred_sid(cred);
3850
 
 
 
3851	if (default_noexec &&
3852	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853		int rc = 0;
3854		/*
3855		 * We don't use the vma_is_initial_heap() helper as it has
3856		 * a history of problems and is currently broken on systems
3857		 * where there is no heap, e.g. brk == start_brk.  Before
3858		 * replacing the conditional below with vma_is_initial_heap(),
3859		 * or something similar, please ensure that the logic is the
3860		 * same as what we have below or you have tested every possible
3861		 * corner case you can think to test.
3862		 */
3863		if (vma->vm_start >= vma->vm_mm->start_brk &&
3864		    vma->vm_end <= vma->vm_mm->brk) {
3865			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
3866					  PROCESS__EXECHEAP, NULL);
3867		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
 
 
3868			    vma_is_stack_for_current(vma))) {
3869			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
 
3870					  PROCESS__EXECSTACK, NULL);
3871		} else if (vma->vm_file && vma->anon_vma) {
3872			/*
3873			 * We are making executable a file mapping that has
3874			 * had some COW done. Since pages might have been
3875			 * written, check ability to execute the possibly
3876			 * modified content.  This typically should only
3877			 * occur for text relocations.
3878			 */
3879			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3880		}
3881		if (rc)
3882			return rc;
3883	}
3884
3885	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3886}
3887
3888static int selinux_file_lock(struct file *file, unsigned int cmd)
3889{
3890	const struct cred *cred = current_cred();
3891
3892	return file_has_perm(cred, file, FILE__LOCK);
3893}
3894
3895static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3896			      unsigned long arg)
3897{
3898	const struct cred *cred = current_cred();
3899	int err = 0;
3900
3901	switch (cmd) {
3902	case F_SETFL:
3903		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3904			err = file_has_perm(cred, file, FILE__WRITE);
3905			break;
3906		}
3907		fallthrough;
3908	case F_SETOWN:
3909	case F_SETSIG:
3910	case F_GETFL:
3911	case F_GETOWN:
3912	case F_GETSIG:
3913	case F_GETOWNER_UIDS:
3914		/* Just check FD__USE permission */
3915		err = file_has_perm(cred, file, 0);
3916		break;
3917	case F_GETLK:
3918	case F_SETLK:
3919	case F_SETLKW:
3920	case F_OFD_GETLK:
3921	case F_OFD_SETLK:
3922	case F_OFD_SETLKW:
3923#if BITS_PER_LONG == 32
3924	case F_GETLK64:
3925	case F_SETLK64:
3926	case F_SETLKW64:
3927#endif
3928		err = file_has_perm(cred, file, FILE__LOCK);
3929		break;
3930	}
3931
3932	return err;
3933}
3934
3935static void selinux_file_set_fowner(struct file *file)
3936{
3937	struct file_security_struct *fsec;
3938
3939	fsec = selinux_file(file);
3940	fsec->fown_sid = current_sid();
3941}
3942
3943static int selinux_file_send_sigiotask(struct task_struct *tsk,
3944				       struct fown_struct *fown, int signum)
3945{
3946	struct file *file;
3947	u32 sid = task_sid_obj(tsk);
3948	u32 perm;
3949	struct file_security_struct *fsec;
3950
3951	/* struct fown_struct is never outside the context of a struct file */
3952	file = fown->file;
3953
3954	fsec = selinux_file(file);
3955
3956	if (!signum)
3957		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3958	else
3959		perm = signal_to_av(signum);
3960
3961	return avc_has_perm(fsec->fown_sid, sid,
 
3962			    SECCLASS_PROCESS, perm, NULL);
3963}
3964
3965static int selinux_file_receive(struct file *file)
3966{
3967	const struct cred *cred = current_cred();
3968
3969	return file_has_perm(cred, file, file_to_av(file));
3970}
3971
3972static int selinux_file_open(struct file *file)
3973{
3974	struct file_security_struct *fsec;
3975	struct inode_security_struct *isec;
3976
3977	fsec = selinux_file(file);
3978	isec = inode_security(file_inode(file));
3979	/*
3980	 * Save inode label and policy sequence number
3981	 * at open-time so that selinux_file_permission
3982	 * can determine whether revalidation is necessary.
3983	 * Task label is already saved in the file security
3984	 * struct as its SID.
3985	 */
3986	fsec->isid = isec->sid;
3987	fsec->pseqno = avc_policy_seqno();
3988	/*
3989	 * Since the inode label or policy seqno may have changed
3990	 * between the selinux_inode_permission check and the saving
3991	 * of state above, recheck that access is still permitted.
3992	 * Otherwise, access might never be revalidated against the
3993	 * new inode label or new policy.
3994	 * This check is not redundant - do not remove.
3995	 */
3996	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3997}
3998
3999/* task security operations */
4000
4001static int selinux_task_alloc(struct task_struct *task,
4002			      unsigned long clone_flags)
4003{
4004	u32 sid = current_sid();
4005
4006	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
 
4007}
4008
4009/*
4010 * prepare a new set of credentials for modification
4011 */
4012static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4013				gfp_t gfp)
4014{
4015	const struct task_security_struct *old_tsec = selinux_cred(old);
4016	struct task_security_struct *tsec = selinux_cred(new);
4017
4018	*tsec = *old_tsec;
4019	return 0;
4020}
4021
4022/*
4023 * transfer the SELinux data to a blank set of creds
4024 */
4025static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4026{
4027	const struct task_security_struct *old_tsec = selinux_cred(old);
4028	struct task_security_struct *tsec = selinux_cred(new);
4029
4030	*tsec = *old_tsec;
4031}
4032
4033static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4034{
4035	*secid = cred_sid(c);
4036}
4037
4038static void selinux_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
4039{
4040	prop->selinux.secid = cred_sid(c);
4041}
4042
4043/*
4044 * set the security data for a kernel service
4045 * - all the creation contexts are set to unlabelled
4046 */
4047static int selinux_kernel_act_as(struct cred *new, u32 secid)
4048{
4049	struct task_security_struct *tsec = selinux_cred(new);
4050	u32 sid = current_sid();
4051	int ret;
4052
4053	ret = avc_has_perm(sid, secid,
 
4054			   SECCLASS_KERNEL_SERVICE,
4055			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4056			   NULL);
4057	if (ret == 0) {
4058		tsec->sid = secid;
4059		tsec->create_sid = 0;
4060		tsec->keycreate_sid = 0;
4061		tsec->sockcreate_sid = 0;
4062	}
4063	return ret;
4064}
4065
4066/*
4067 * set the file creation context in a security record to the same as the
4068 * objective context of the specified inode
4069 */
4070static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4071{
4072	struct inode_security_struct *isec = inode_security(inode);
4073	struct task_security_struct *tsec = selinux_cred(new);
4074	u32 sid = current_sid();
4075	int ret;
4076
4077	ret = avc_has_perm(sid, isec->sid,
 
4078			   SECCLASS_KERNEL_SERVICE,
4079			   KERNEL_SERVICE__CREATE_FILES_AS,
4080			   NULL);
4081
4082	if (ret == 0)
4083		tsec->create_sid = isec->sid;
4084	return ret;
4085}
4086
4087static int selinux_kernel_module_request(char *kmod_name)
4088{
4089	struct common_audit_data ad;
4090
4091	ad.type = LSM_AUDIT_DATA_KMOD;
4092	ad.u.kmod_name = kmod_name;
4093
4094	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
 
4095			    SYSTEM__MODULE_REQUEST, &ad);
4096}
4097
4098static int selinux_kernel_module_from_file(struct file *file)
4099{
4100	struct common_audit_data ad;
4101	struct inode_security_struct *isec;
4102	struct file_security_struct *fsec;
4103	u32 sid = current_sid();
4104	int rc;
4105
4106	/* init_module */
4107	if (file == NULL)
4108		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
 
4109					SYSTEM__MODULE_LOAD, NULL);
4110
4111	/* finit_module */
4112
4113	ad.type = LSM_AUDIT_DATA_FILE;
4114	ad.u.file = file;
4115
4116	fsec = selinux_file(file);
4117	if (sid != fsec->sid) {
4118		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
 
4119		if (rc)
4120			return rc;
4121	}
4122
4123	isec = inode_security(file_inode(file));
4124	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
 
4125				SYSTEM__MODULE_LOAD, &ad);
4126}
4127
4128static int selinux_kernel_read_file(struct file *file,
4129				    enum kernel_read_file_id id,
4130				    bool contents)
4131{
4132	int rc = 0;
4133
4134	switch (id) {
4135	case READING_MODULE:
4136		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4137		break;
4138	default:
4139		break;
4140	}
4141
4142	return rc;
4143}
4144
4145static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4146{
4147	int rc = 0;
4148
4149	switch (id) {
4150	case LOADING_MODULE:
4151		rc = selinux_kernel_module_from_file(NULL);
4152		break;
4153	default:
4154		break;
4155	}
4156
4157	return rc;
4158}
4159
4160static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4161{
4162	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4163			    PROCESS__SETPGID, NULL);
4164}
4165
4166static int selinux_task_getpgid(struct task_struct *p)
4167{
4168	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4169			    PROCESS__GETPGID, NULL);
4170}
4171
4172static int selinux_task_getsid(struct task_struct *p)
4173{
4174	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4175			    PROCESS__GETSESSION, NULL);
4176}
4177
4178static void selinux_current_getlsmprop_subj(struct lsm_prop *prop)
4179{
4180	prop->selinux.secid = current_sid();
4181}
4182
4183static void selinux_task_getlsmprop_obj(struct task_struct *p,
4184					struct lsm_prop *prop)
4185{
4186	prop->selinux.secid = task_sid_obj(p);
4187}
4188
4189static int selinux_task_setnice(struct task_struct *p, int nice)
4190{
4191	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4192			    PROCESS__SETSCHED, NULL);
4193}
4194
4195static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4196{
4197	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4198			    PROCESS__SETSCHED, NULL);
4199}
4200
4201static int selinux_task_getioprio(struct task_struct *p)
4202{
4203	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4204			    PROCESS__GETSCHED, NULL);
4205}
4206
4207static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4208				unsigned int flags)
4209{
4210	u32 av = 0;
4211
4212	if (!flags)
4213		return 0;
4214	if (flags & LSM_PRLIMIT_WRITE)
4215		av |= PROCESS__SETRLIMIT;
4216	if (flags & LSM_PRLIMIT_READ)
4217		av |= PROCESS__GETRLIMIT;
4218	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
 
4219			    SECCLASS_PROCESS, av, NULL);
4220}
4221
4222static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4223		struct rlimit *new_rlim)
4224{
4225	struct rlimit *old_rlim = p->signal->rlim + resource;
4226
4227	/* Control the ability to change the hard limit (whether
4228	   lowering or raising it), so that the hard limit can
4229	   later be used as a safe reset point for the soft limit
4230	   upon context transitions.  See selinux_bprm_committing_creds. */
4231	if (old_rlim->rlim_max != new_rlim->rlim_max)
4232		return avc_has_perm(current_sid(), task_sid_obj(p),
 
4233				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4234
4235	return 0;
4236}
4237
4238static int selinux_task_setscheduler(struct task_struct *p)
4239{
4240	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4241			    PROCESS__SETSCHED, NULL);
4242}
4243
4244static int selinux_task_getscheduler(struct task_struct *p)
4245{
4246	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4247			    PROCESS__GETSCHED, NULL);
4248}
4249
4250static int selinux_task_movememory(struct task_struct *p)
4251{
4252	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
 
4253			    PROCESS__SETSCHED, NULL);
4254}
4255
4256static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4257				int sig, const struct cred *cred)
4258{
4259	u32 secid;
4260	u32 perm;
4261
4262	if (!sig)
4263		perm = PROCESS__SIGNULL; /* null signal; existence test */
4264	else
4265		perm = signal_to_av(sig);
4266	if (!cred)
4267		secid = current_sid();
4268	else
4269		secid = cred_sid(cred);
4270	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
 
4271}
4272
4273static void selinux_task_to_inode(struct task_struct *p,
4274				  struct inode *inode)
4275{
4276	struct inode_security_struct *isec = selinux_inode(inode);
4277	u32 sid = task_sid_obj(p);
4278
4279	spin_lock(&isec->lock);
4280	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4281	isec->sid = sid;
4282	isec->initialized = LABEL_INITIALIZED;
4283	spin_unlock(&isec->lock);
4284}
4285
4286static int selinux_userns_create(const struct cred *cred)
4287{
4288	u32 sid = current_sid();
4289
4290	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4291			USER_NAMESPACE__CREATE, NULL);
4292}
4293
4294/* Returns error only if unable to parse addresses */
4295static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4296			struct common_audit_data *ad, u8 *proto)
4297{
4298	int offset, ihlen, ret = -EINVAL;
4299	struct iphdr _iph, *ih;
4300
4301	offset = skb_network_offset(skb);
4302	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4303	if (ih == NULL)
4304		goto out;
4305
4306	ihlen = ih->ihl * 4;
4307	if (ihlen < sizeof(_iph))
4308		goto out;
4309
4310	ad->u.net->v4info.saddr = ih->saddr;
4311	ad->u.net->v4info.daddr = ih->daddr;
4312	ret = 0;
4313
4314	if (proto)
4315		*proto = ih->protocol;
4316
4317	switch (ih->protocol) {
4318	case IPPROTO_TCP: {
4319		struct tcphdr _tcph, *th;
4320
4321		if (ntohs(ih->frag_off) & IP_OFFSET)
4322			break;
4323
4324		offset += ihlen;
4325		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4326		if (th == NULL)
4327			break;
4328
4329		ad->u.net->sport = th->source;
4330		ad->u.net->dport = th->dest;
4331		break;
4332	}
4333
4334	case IPPROTO_UDP: {
4335		struct udphdr _udph, *uh;
4336
4337		if (ntohs(ih->frag_off) & IP_OFFSET)
4338			break;
4339
4340		offset += ihlen;
4341		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4342		if (uh == NULL)
4343			break;
4344
4345		ad->u.net->sport = uh->source;
4346		ad->u.net->dport = uh->dest;
4347		break;
4348	}
4349
4350	case IPPROTO_DCCP: {
4351		struct dccp_hdr _dccph, *dh;
4352
4353		if (ntohs(ih->frag_off) & IP_OFFSET)
4354			break;
4355
4356		offset += ihlen;
4357		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4358		if (dh == NULL)
4359			break;
4360
4361		ad->u.net->sport = dh->dccph_sport;
4362		ad->u.net->dport = dh->dccph_dport;
4363		break;
4364	}
4365
4366#if IS_ENABLED(CONFIG_IP_SCTP)
4367	case IPPROTO_SCTP: {
4368		struct sctphdr _sctph, *sh;
4369
4370		if (ntohs(ih->frag_off) & IP_OFFSET)
4371			break;
4372
4373		offset += ihlen;
4374		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4375		if (sh == NULL)
4376			break;
4377
4378		ad->u.net->sport = sh->source;
4379		ad->u.net->dport = sh->dest;
4380		break;
4381	}
4382#endif
4383	default:
4384		break;
4385	}
4386out:
4387	return ret;
4388}
4389
4390#if IS_ENABLED(CONFIG_IPV6)
4391
4392/* Returns error only if unable to parse addresses */
4393static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4394			struct common_audit_data *ad, u8 *proto)
4395{
4396	u8 nexthdr;
4397	int ret = -EINVAL, offset;
4398	struct ipv6hdr _ipv6h, *ip6;
4399	__be16 frag_off;
4400
4401	offset = skb_network_offset(skb);
4402	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4403	if (ip6 == NULL)
4404		goto out;
4405
4406	ad->u.net->v6info.saddr = ip6->saddr;
4407	ad->u.net->v6info.daddr = ip6->daddr;
4408	ret = 0;
4409
4410	nexthdr = ip6->nexthdr;
4411	offset += sizeof(_ipv6h);
4412	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4413	if (offset < 0)
4414		goto out;
4415
4416	if (proto)
4417		*proto = nexthdr;
4418
4419	switch (nexthdr) {
4420	case IPPROTO_TCP: {
4421		struct tcphdr _tcph, *th;
4422
4423		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4424		if (th == NULL)
4425			break;
4426
4427		ad->u.net->sport = th->source;
4428		ad->u.net->dport = th->dest;
4429		break;
4430	}
4431
4432	case IPPROTO_UDP: {
4433		struct udphdr _udph, *uh;
4434
4435		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4436		if (uh == NULL)
4437			break;
4438
4439		ad->u.net->sport = uh->source;
4440		ad->u.net->dport = uh->dest;
4441		break;
4442	}
4443
4444	case IPPROTO_DCCP: {
4445		struct dccp_hdr _dccph, *dh;
4446
4447		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4448		if (dh == NULL)
4449			break;
4450
4451		ad->u.net->sport = dh->dccph_sport;
4452		ad->u.net->dport = dh->dccph_dport;
4453		break;
4454	}
4455
4456#if IS_ENABLED(CONFIG_IP_SCTP)
4457	case IPPROTO_SCTP: {
4458		struct sctphdr _sctph, *sh;
4459
4460		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4461		if (sh == NULL)
4462			break;
4463
4464		ad->u.net->sport = sh->source;
4465		ad->u.net->dport = sh->dest;
4466		break;
4467	}
4468#endif
4469	/* includes fragments */
4470	default:
4471		break;
4472	}
4473out:
4474	return ret;
4475}
4476
4477#endif /* IPV6 */
4478
4479static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4480			     char **_addrp, int src, u8 *proto)
4481{
4482	char *addrp;
4483	int ret;
4484
4485	switch (ad->u.net->family) {
4486	case PF_INET:
4487		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4488		if (ret)
4489			goto parse_error;
4490		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4491				       &ad->u.net->v4info.daddr);
4492		goto okay;
4493
4494#if IS_ENABLED(CONFIG_IPV6)
4495	case PF_INET6:
4496		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4497		if (ret)
4498			goto parse_error;
4499		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4500				       &ad->u.net->v6info.daddr);
4501		goto okay;
4502#endif	/* IPV6 */
4503	default:
4504		addrp = NULL;
4505		goto okay;
4506	}
4507
4508parse_error:
4509	pr_warn(
4510	       "SELinux: failure in selinux_parse_skb(),"
4511	       " unable to parse packet\n");
4512	return ret;
4513
4514okay:
4515	if (_addrp)
4516		*_addrp = addrp;
4517	return 0;
4518}
4519
4520/**
4521 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4522 * @skb: the packet
4523 * @family: protocol family
4524 * @sid: the packet's peer label SID
4525 *
4526 * Description:
4527 * Check the various different forms of network peer labeling and determine
4528 * the peer label/SID for the packet; most of the magic actually occurs in
4529 * the security server function security_net_peersid_cmp().  The function
4530 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4531 * or -EACCES if @sid is invalid due to inconsistencies with the different
4532 * peer labels.
4533 *
4534 */
4535static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4536{
4537	int err;
4538	u32 xfrm_sid;
4539	u32 nlbl_sid;
4540	u32 nlbl_type;
4541
4542	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4543	if (unlikely(err))
4544		return -EACCES;
4545	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4546	if (unlikely(err))
4547		return -EACCES;
4548
4549	err = security_net_peersid_resolve(nlbl_sid,
4550					   nlbl_type, xfrm_sid, sid);
4551	if (unlikely(err)) {
4552		pr_warn(
4553		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4554		       " unable to determine packet's peer label\n");
4555		return -EACCES;
4556	}
4557
4558	return 0;
4559}
4560
4561/**
4562 * selinux_conn_sid - Determine the child socket label for a connection
4563 * @sk_sid: the parent socket's SID
4564 * @skb_sid: the packet's SID
4565 * @conn_sid: the resulting connection SID
4566 *
4567 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4568 * combined with the MLS information from @skb_sid in order to create
4569 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4570 * of @sk_sid.  Returns zero on success, negative values on failure.
4571 *
4572 */
4573static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4574{
4575	int err = 0;
4576
4577	if (skb_sid != SECSID_NULL)
4578		err = security_sid_mls_copy(sk_sid, skb_sid,
4579					    conn_sid);
4580	else
4581		*conn_sid = sk_sid;
4582
4583	return err;
4584}
4585
4586/* socket security operations */
4587
4588static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4589				 u16 secclass, u32 *socksid)
4590{
4591	if (tsec->sockcreate_sid > SECSID_NULL) {
4592		*socksid = tsec->sockcreate_sid;
4593		return 0;
4594	}
4595
4596	return security_transition_sid(tsec->sid, tsec->sid,
4597				       secclass, NULL, socksid);
4598}
4599
4600static bool sock_skip_has_perm(u32 sid)
4601{
4602	if (sid == SECINITSID_KERNEL)
4603		return true;
4604
4605	/*
4606	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4607	 * inherited the kernel context from early boot used to be skipped
4608	 * here, so preserve that behavior unless the capability is set.
4609	 *
4610	 * By setting the capability the policy signals that it is ready
4611	 * for this quirk to be fixed. Note that sockets created by a kernel
4612	 * thread or a usermode helper executed without a transition will
4613	 * still be skipped in this check regardless of the policycap
4614	 * setting.
4615	 */
4616	if (!selinux_policycap_userspace_initial_context() &&
4617	    sid == SECINITSID_INIT)
4618		return true;
4619	return false;
4620}
4621
4622
4623static int sock_has_perm(struct sock *sk, u32 perms)
4624{
4625	struct sk_security_struct *sksec = sk->sk_security;
4626	struct common_audit_data ad;
4627	struct lsm_network_audit net;
4628
4629	if (sock_skip_has_perm(sksec->sid))
4630		return 0;
4631
4632	ad_net_init_from_sk(&ad, &net, sk);
 
 
4633
4634	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
 
4635			    &ad);
4636}
4637
4638static int selinux_socket_create(int family, int type,
4639				 int protocol, int kern)
4640{
4641	const struct task_security_struct *tsec = selinux_cred(current_cred());
4642	u32 newsid;
4643	u16 secclass;
4644	int rc;
4645
4646	if (kern)
4647		return 0;
4648
4649	secclass = socket_type_to_security_class(family, type, protocol);
4650	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4651	if (rc)
4652		return rc;
4653
4654	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
 
4655}
4656
4657static int selinux_socket_post_create(struct socket *sock, int family,
4658				      int type, int protocol, int kern)
4659{
4660	const struct task_security_struct *tsec = selinux_cred(current_cred());
4661	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4662	struct sk_security_struct *sksec;
4663	u16 sclass = socket_type_to_security_class(family, type, protocol);
4664	u32 sid = SECINITSID_KERNEL;
4665	int err = 0;
4666
4667	if (!kern) {
4668		err = socket_sockcreate_sid(tsec, sclass, &sid);
4669		if (err)
4670			return err;
4671	}
4672
4673	isec->sclass = sclass;
4674	isec->sid = sid;
4675	isec->initialized = LABEL_INITIALIZED;
4676
4677	if (sock->sk) {
4678		sksec = selinux_sock(sock->sk);
4679		sksec->sclass = sclass;
4680		sksec->sid = sid;
4681		/* Allows detection of the first association on this socket */
4682		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4684
4685		err = selinux_netlbl_socket_post_create(sock->sk, family);
4686	}
4687
4688	return err;
4689}
4690
4691static int selinux_socket_socketpair(struct socket *socka,
4692				     struct socket *sockb)
4693{
4694	struct sk_security_struct *sksec_a = selinux_sock(socka->sk);
4695	struct sk_security_struct *sksec_b = selinux_sock(sockb->sk);
4696
4697	sksec_a->peer_sid = sksec_b->sid;
4698	sksec_b->peer_sid = sksec_a->sid;
4699
4700	return 0;
4701}
4702
4703/* Range of port numbers used to automatically bind.
4704   Need to determine whether we should perform a name_bind
4705   permission check between the socket and the port number. */
4706
4707static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4708{
4709	struct sock *sk = sock->sk;
4710	struct sk_security_struct *sksec = selinux_sock(sk);
4711	u16 family;
4712	int err;
4713
4714	err = sock_has_perm(sk, SOCKET__BIND);
4715	if (err)
4716		goto out;
4717
4718	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4719	family = sk->sk_family;
4720	if (family == PF_INET || family == PF_INET6) {
4721		char *addrp;
4722		struct common_audit_data ad;
4723		struct lsm_network_audit net = {0,};
4724		struct sockaddr_in *addr4 = NULL;
4725		struct sockaddr_in6 *addr6 = NULL;
4726		u16 family_sa;
4727		unsigned short snum;
4728		u32 sid, node_perm;
4729
4730		/*
4731		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4732		 * that validates multiple binding addresses. Because of this
4733		 * need to check address->sa_family as it is possible to have
4734		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4735		 */
4736		if (addrlen < offsetofend(struct sockaddr, sa_family))
4737			return -EINVAL;
4738		family_sa = address->sa_family;
4739		switch (family_sa) {
4740		case AF_UNSPEC:
4741		case AF_INET:
4742			if (addrlen < sizeof(struct sockaddr_in))
4743				return -EINVAL;
4744			addr4 = (struct sockaddr_in *)address;
4745			if (family_sa == AF_UNSPEC) {
4746				if (family == PF_INET6) {
4747					/* Length check from inet6_bind_sk() */
4748					if (addrlen < SIN6_LEN_RFC2133)
4749						return -EINVAL;
4750					/* Family check from __inet6_bind() */
4751					goto err_af;
4752				}
4753				/* see __inet_bind(), we only want to allow
4754				 * AF_UNSPEC if the address is INADDR_ANY
4755				 */
4756				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4757					goto err_af;
4758				family_sa = AF_INET;
4759			}
4760			snum = ntohs(addr4->sin_port);
4761			addrp = (char *)&addr4->sin_addr.s_addr;
4762			break;
4763		case AF_INET6:
4764			if (addrlen < SIN6_LEN_RFC2133)
4765				return -EINVAL;
4766			addr6 = (struct sockaddr_in6 *)address;
4767			snum = ntohs(addr6->sin6_port);
4768			addrp = (char *)&addr6->sin6_addr.s6_addr;
4769			break;
4770		default:
4771			goto err_af;
4772		}
4773
4774		ad.type = LSM_AUDIT_DATA_NET;
4775		ad.u.net = &net;
4776		ad.u.net->sport = htons(snum);
4777		ad.u.net->family = family_sa;
4778
4779		if (snum) {
4780			int low, high;
4781
4782			inet_get_local_port_range(sock_net(sk), &low, &high);
4783
4784			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4785			    snum < low || snum > high) {
4786				err = sel_netport_sid(sk->sk_protocol,
4787						      snum, &sid);
4788				if (err)
4789					goto out;
4790				err = avc_has_perm(sksec->sid, sid,
 
4791						   sksec->sclass,
4792						   SOCKET__NAME_BIND, &ad);
4793				if (err)
4794					goto out;
4795			}
4796		}
4797
4798		switch (sksec->sclass) {
4799		case SECCLASS_TCP_SOCKET:
4800			node_perm = TCP_SOCKET__NODE_BIND;
4801			break;
4802
4803		case SECCLASS_UDP_SOCKET:
4804			node_perm = UDP_SOCKET__NODE_BIND;
4805			break;
4806
4807		case SECCLASS_DCCP_SOCKET:
4808			node_perm = DCCP_SOCKET__NODE_BIND;
4809			break;
4810
4811		case SECCLASS_SCTP_SOCKET:
4812			node_perm = SCTP_SOCKET__NODE_BIND;
4813			break;
4814
4815		default:
4816			node_perm = RAWIP_SOCKET__NODE_BIND;
4817			break;
4818		}
4819
4820		err = sel_netnode_sid(addrp, family_sa, &sid);
4821		if (err)
4822			goto out;
4823
4824		if (family_sa == AF_INET)
4825			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4826		else
4827			ad.u.net->v6info.saddr = addr6->sin6_addr;
4828
4829		err = avc_has_perm(sksec->sid, sid,
 
4830				   sksec->sclass, node_perm, &ad);
4831		if (err)
4832			goto out;
4833	}
4834out:
4835	return err;
4836err_af:
4837	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4838	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4839		return -EINVAL;
4840	return -EAFNOSUPPORT;
4841}
4842
4843/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4844 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4845 */
4846static int selinux_socket_connect_helper(struct socket *sock,
4847					 struct sockaddr *address, int addrlen)
4848{
4849	struct sock *sk = sock->sk;
4850	struct sk_security_struct *sksec = selinux_sock(sk);
4851	int err;
4852
4853	err = sock_has_perm(sk, SOCKET__CONNECT);
4854	if (err)
4855		return err;
4856	if (addrlen < offsetofend(struct sockaddr, sa_family))
4857		return -EINVAL;
4858
4859	/* connect(AF_UNSPEC) has special handling, as it is a documented
4860	 * way to disconnect the socket
4861	 */
4862	if (address->sa_family == AF_UNSPEC)
4863		return 0;
4864
4865	/*
4866	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4867	 * for the port.
4868	 */
4869	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4870	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4871	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4872		struct common_audit_data ad;
4873		struct lsm_network_audit net = {0,};
4874		struct sockaddr_in *addr4 = NULL;
4875		struct sockaddr_in6 *addr6 = NULL;
4876		unsigned short snum;
4877		u32 sid, perm;
4878
4879		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4880		 * that validates multiple connect addresses. Because of this
4881		 * need to check address->sa_family as it is possible to have
4882		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4883		 */
4884		switch (address->sa_family) {
4885		case AF_INET:
4886			addr4 = (struct sockaddr_in *)address;
4887			if (addrlen < sizeof(struct sockaddr_in))
4888				return -EINVAL;
4889			snum = ntohs(addr4->sin_port);
4890			break;
4891		case AF_INET6:
4892			addr6 = (struct sockaddr_in6 *)address;
4893			if (addrlen < SIN6_LEN_RFC2133)
4894				return -EINVAL;
4895			snum = ntohs(addr6->sin6_port);
4896			break;
4897		default:
4898			/* Note that SCTP services expect -EINVAL, whereas
4899			 * others expect -EAFNOSUPPORT.
4900			 */
4901			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4902				return -EINVAL;
4903			else
4904				return -EAFNOSUPPORT;
4905		}
4906
4907		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4908		if (err)
4909			return err;
4910
4911		switch (sksec->sclass) {
4912		case SECCLASS_TCP_SOCKET:
4913			perm = TCP_SOCKET__NAME_CONNECT;
4914			break;
4915		case SECCLASS_DCCP_SOCKET:
4916			perm = DCCP_SOCKET__NAME_CONNECT;
4917			break;
4918		case SECCLASS_SCTP_SOCKET:
4919			perm = SCTP_SOCKET__NAME_CONNECT;
4920			break;
4921		}
4922
4923		ad.type = LSM_AUDIT_DATA_NET;
4924		ad.u.net = &net;
4925		ad.u.net->dport = htons(snum);
4926		ad.u.net->family = address->sa_family;
4927		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
 
4928		if (err)
4929			return err;
4930	}
4931
4932	return 0;
4933}
4934
4935/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4936static int selinux_socket_connect(struct socket *sock,
4937				  struct sockaddr *address, int addrlen)
4938{
4939	int err;
4940	struct sock *sk = sock->sk;
4941
4942	err = selinux_socket_connect_helper(sock, address, addrlen);
4943	if (err)
4944		return err;
4945
4946	return selinux_netlbl_socket_connect(sk, address);
4947}
4948
4949static int selinux_socket_listen(struct socket *sock, int backlog)
4950{
4951	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4952}
4953
4954static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4955{
4956	int err;
4957	struct inode_security_struct *isec;
4958	struct inode_security_struct *newisec;
4959	u16 sclass;
4960	u32 sid;
4961
4962	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4963	if (err)
4964		return err;
4965
4966	isec = inode_security_novalidate(SOCK_INODE(sock));
4967	spin_lock(&isec->lock);
4968	sclass = isec->sclass;
4969	sid = isec->sid;
4970	spin_unlock(&isec->lock);
4971
4972	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4973	newisec->sclass = sclass;
4974	newisec->sid = sid;
4975	newisec->initialized = LABEL_INITIALIZED;
4976
4977	return 0;
4978}
4979
4980static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4981				  int size)
4982{
4983	return sock_has_perm(sock->sk, SOCKET__WRITE);
4984}
4985
4986static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4987				  int size, int flags)
4988{
4989	return sock_has_perm(sock->sk, SOCKET__READ);
4990}
4991
4992static int selinux_socket_getsockname(struct socket *sock)
4993{
4994	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4995}
4996
4997static int selinux_socket_getpeername(struct socket *sock)
4998{
4999	return sock_has_perm(sock->sk, SOCKET__GETATTR);
5000}
5001
5002static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5003{
5004	int err;
5005
5006	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5007	if (err)
5008		return err;
5009
5010	return selinux_netlbl_socket_setsockopt(sock, level, optname);
5011}
5012
5013static int selinux_socket_getsockopt(struct socket *sock, int level,
5014				     int optname)
5015{
5016	return sock_has_perm(sock->sk, SOCKET__GETOPT);
5017}
5018
5019static int selinux_socket_shutdown(struct socket *sock, int how)
5020{
5021	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5022}
5023
5024static int selinux_socket_unix_stream_connect(struct sock *sock,
5025					      struct sock *other,
5026					      struct sock *newsk)
5027{
5028	struct sk_security_struct *sksec_sock = selinux_sock(sock);
5029	struct sk_security_struct *sksec_other = selinux_sock(other);
5030	struct sk_security_struct *sksec_new = selinux_sock(newsk);
5031	struct common_audit_data ad;
5032	struct lsm_network_audit net;
5033	int err;
5034
5035	ad_net_init_from_sk(&ad, &net, other);
 
 
5036
5037	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
 
5038			   sksec_other->sclass,
5039			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5040	if (err)
5041		return err;
5042
5043	/* server child socket */
5044	sksec_new->peer_sid = sksec_sock->sid;
5045	err = security_sid_mls_copy(sksec_other->sid,
5046				    sksec_sock->sid, &sksec_new->sid);
5047	if (err)
5048		return err;
5049
5050	/* connecting socket */
5051	sksec_sock->peer_sid = sksec_new->sid;
5052
5053	return 0;
5054}
5055
5056static int selinux_socket_unix_may_send(struct socket *sock,
5057					struct socket *other)
5058{
5059	struct sk_security_struct *ssec = selinux_sock(sock->sk);
5060	struct sk_security_struct *osec = selinux_sock(other->sk);
5061	struct common_audit_data ad;
5062	struct lsm_network_audit net;
5063
5064	ad_net_init_from_sk(&ad, &net, other->sk);
 
 
5065
5066	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
 
5067			    &ad);
5068}
5069
5070static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5071				    char *addrp, u16 family, u32 peer_sid,
5072				    struct common_audit_data *ad)
5073{
5074	int err;
5075	u32 if_sid;
5076	u32 node_sid;
5077
5078	err = sel_netif_sid(ns, ifindex, &if_sid);
5079	if (err)
5080		return err;
5081	err = avc_has_perm(peer_sid, if_sid,
 
5082			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5083	if (err)
5084		return err;
5085
5086	err = sel_netnode_sid(addrp, family, &node_sid);
5087	if (err)
5088		return err;
5089	return avc_has_perm(peer_sid, node_sid,
 
5090			    SECCLASS_NODE, NODE__RECVFROM, ad);
5091}
5092
5093static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5094				       u16 family)
5095{
5096	int err = 0;
5097	struct sk_security_struct *sksec = selinux_sock(sk);
5098	u32 sk_sid = sksec->sid;
5099	struct common_audit_data ad;
5100	struct lsm_network_audit net;
5101	char *addrp;
5102
5103	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
 
 
 
5104	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5105	if (err)
5106		return err;
5107
5108	if (selinux_secmark_enabled()) {
5109		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
5110				   PACKET__RECV, &ad);
5111		if (err)
5112			return err;
5113	}
5114
5115	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5116	if (err)
5117		return err;
5118	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5119
5120	return err;
5121}
5122
5123static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5124{
5125	int err, peerlbl_active, secmark_active;
5126	struct sk_security_struct *sksec = selinux_sock(sk);
5127	u16 family = sk->sk_family;
5128	u32 sk_sid = sksec->sid;
5129	struct common_audit_data ad;
5130	struct lsm_network_audit net;
5131	char *addrp;
 
 
5132
5133	if (family != PF_INET && family != PF_INET6)
5134		return 0;
5135
5136	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5137	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5138		family = PF_INET;
5139
5140	/* If any sort of compatibility mode is enabled then handoff processing
5141	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5142	 * special handling.  We do this in an attempt to keep this function
5143	 * as fast and as clean as possible. */
5144	if (!selinux_policycap_netpeer())
5145		return selinux_sock_rcv_skb_compat(sk, skb, family);
5146
5147	secmark_active = selinux_secmark_enabled();
5148	peerlbl_active = selinux_peerlbl_enabled();
5149	if (!secmark_active && !peerlbl_active)
5150		return 0;
5151
5152	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
 
 
 
5153	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5154	if (err)
5155		return err;
5156
5157	if (peerlbl_active) {
5158		u32 peer_sid;
5159
5160		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5161		if (err)
5162			return err;
5163		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5164					       addrp, family, peer_sid, &ad);
5165		if (err) {
5166			selinux_netlbl_err(skb, family, err, 0);
5167			return err;
5168		}
5169		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
 
5170				   PEER__RECV, &ad);
5171		if (err) {
5172			selinux_netlbl_err(skb, family, err, 0);
5173			return err;
5174		}
5175	}
5176
5177	if (secmark_active) {
5178		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
 
5179				   PACKET__RECV, &ad);
5180		if (err)
5181			return err;
5182	}
5183
5184	return err;
5185}
5186
5187static int selinux_socket_getpeersec_stream(struct socket *sock,
5188					    sockptr_t optval, sockptr_t optlen,
5189					    unsigned int len)
5190{
5191	int err = 0;
5192	char *scontext = NULL;
5193	u32 scontext_len;
5194	struct sk_security_struct *sksec = selinux_sock(sock->sk);
5195	u32 peer_sid = SECSID_NULL;
5196
5197	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5198	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5199	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5200		peer_sid = sksec->peer_sid;
5201	if (peer_sid == SECSID_NULL)
5202		return -ENOPROTOOPT;
5203
5204	err = security_sid_to_context(peer_sid, &scontext,
5205				      &scontext_len);
5206	if (err)
5207		return err;
5208	if (scontext_len > len) {
5209		err = -ERANGE;
5210		goto out_len;
5211	}
5212
5213	if (copy_to_sockptr(optval, scontext, scontext_len))
5214		err = -EFAULT;
5215out_len:
5216	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5217		err = -EFAULT;
5218	kfree(scontext);
5219	return err;
5220}
5221
5222static int selinux_socket_getpeersec_dgram(struct socket *sock,
5223					   struct sk_buff *skb, u32 *secid)
5224{
5225	u32 peer_secid = SECSID_NULL;
5226	u16 family;
 
5227
5228	if (skb && skb->protocol == htons(ETH_P_IP))
5229		family = PF_INET;
5230	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5231		family = PF_INET6;
5232	else if (sock)
5233		family = sock->sk->sk_family;
5234	else {
5235		*secid = SECSID_NULL;
5236		return -EINVAL;
5237	}
5238
5239	if (sock && family == PF_UNIX) {
5240		struct inode_security_struct *isec;
5241		isec = inode_security_novalidate(SOCK_INODE(sock));
5242		peer_secid = isec->sid;
5243	} else if (skb)
5244		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5245
 
5246	*secid = peer_secid;
5247	if (peer_secid == SECSID_NULL)
5248		return -ENOPROTOOPT;
5249	return 0;
5250}
5251
5252static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5253{
5254	struct sk_security_struct *sksec = selinux_sock(sk);
 
 
 
 
5255
5256	sksec->peer_sid = SECINITSID_UNLABELED;
5257	sksec->sid = SECINITSID_UNLABELED;
5258	sksec->sclass = SECCLASS_SOCKET;
5259	selinux_netlbl_sk_security_reset(sksec);
 
5260
5261	return 0;
5262}
5263
5264static void selinux_sk_free_security(struct sock *sk)
5265{
5266	struct sk_security_struct *sksec = selinux_sock(sk);
5267
 
5268	selinux_netlbl_sk_security_free(sksec);
 
5269}
5270
5271static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5272{
5273	struct sk_security_struct *sksec = selinux_sock(sk);
5274	struct sk_security_struct *newsksec = selinux_sock(newsk);
5275
5276	newsksec->sid = sksec->sid;
5277	newsksec->peer_sid = sksec->peer_sid;
5278	newsksec->sclass = sksec->sclass;
5279
5280	selinux_netlbl_sk_security_reset(newsksec);
5281}
5282
5283static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5284{
5285	if (!sk)
5286		*secid = SECINITSID_ANY_SOCKET;
5287	else {
5288		const struct sk_security_struct *sksec = selinux_sock(sk);
5289
5290		*secid = sksec->sid;
5291	}
5292}
5293
5294static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5295{
5296	struct inode_security_struct *isec =
5297		inode_security_novalidate(SOCK_INODE(parent));
5298	struct sk_security_struct *sksec = selinux_sock(sk);
5299
5300	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5301	    sk->sk_family == PF_UNIX)
5302		isec->sid = sksec->sid;
5303	sksec->sclass = isec->sclass;
5304}
5305
5306/*
5307 * Determines peer_secid for the asoc and updates socket's peer label
5308 * if it's the first association on the socket.
5309 */
5310static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5311					  struct sk_buff *skb)
5312{
5313	struct sock *sk = asoc->base.sk;
5314	u16 family = sk->sk_family;
5315	struct sk_security_struct *sksec = selinux_sock(sk);
5316	struct common_audit_data ad;
5317	struct lsm_network_audit net;
5318	int err;
5319
5320	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5321	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5322		family = PF_INET;
5323
5324	if (selinux_peerlbl_enabled()) {
5325		asoc->peer_secid = SECSID_NULL;
5326
5327		/* This will return peer_sid = SECSID_NULL if there are
5328		 * no peer labels, see security_net_peersid_resolve().
5329		 */
5330		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5331		if (err)
5332			return err;
5333
5334		if (asoc->peer_secid == SECSID_NULL)
5335			asoc->peer_secid = SECINITSID_UNLABELED;
5336	} else {
5337		asoc->peer_secid = SECINITSID_UNLABELED;
5338	}
5339
5340	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5341		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5342
5343		/* Here as first association on socket. As the peer SID
5344		 * was allowed by peer recv (and the netif/node checks),
5345		 * then it is approved by policy and used as the primary
5346		 * peer SID for getpeercon(3).
5347		 */
5348		sksec->peer_sid = asoc->peer_secid;
5349	} else if (sksec->peer_sid != asoc->peer_secid) {
5350		/* Other association peer SIDs are checked to enforce
5351		 * consistency among the peer SIDs.
5352		 */
5353		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5354		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
 
 
 
5355				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5356				   &ad);
5357		if (err)
5358			return err;
5359	}
5360	return 0;
5361}
5362
5363/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5364 * happens on an incoming connect(2), sctp_connectx(3) or
5365 * sctp_sendmsg(3) (with no association already present).
5366 */
5367static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5368				      struct sk_buff *skb)
5369{
5370	struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5371	u32 conn_sid;
5372	int err;
5373
5374	if (!selinux_policycap_extsockclass())
5375		return 0;
5376
5377	err = selinux_sctp_process_new_assoc(asoc, skb);
5378	if (err)
5379		return err;
5380
5381	/* Compute the MLS component for the connection and store
5382	 * the information in asoc. This will be used by SCTP TCP type
5383	 * sockets and peeled off connections as they cause a new
5384	 * socket to be generated. selinux_sctp_sk_clone() will then
5385	 * plug this into the new socket.
5386	 */
5387	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5388	if (err)
5389		return err;
5390
5391	asoc->secid = conn_sid;
5392
5393	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5394	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5395}
5396
5397/* Called when SCTP receives a COOKIE ACK chunk as the final
5398 * response to an association request (initited by us).
5399 */
5400static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5401					  struct sk_buff *skb)
5402{
5403	struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5404
5405	if (!selinux_policycap_extsockclass())
5406		return 0;
5407
5408	/* Inherit secid from the parent socket - this will be picked up
5409	 * by selinux_sctp_sk_clone() if the association gets peeled off
5410	 * into a new socket.
5411	 */
5412	asoc->secid = sksec->sid;
5413
5414	return selinux_sctp_process_new_assoc(asoc, skb);
5415}
5416
5417/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5418 * based on their @optname.
5419 */
5420static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5421				     struct sockaddr *address,
5422				     int addrlen)
5423{
5424	int len, err = 0, walk_size = 0;
5425	void *addr_buf;
5426	struct sockaddr *addr;
5427	struct socket *sock;
5428
5429	if (!selinux_policycap_extsockclass())
5430		return 0;
5431
5432	/* Process one or more addresses that may be IPv4 or IPv6 */
5433	sock = sk->sk_socket;
5434	addr_buf = address;
5435
5436	while (walk_size < addrlen) {
5437		if (walk_size + sizeof(sa_family_t) > addrlen)
5438			return -EINVAL;
5439
5440		addr = addr_buf;
5441		switch (addr->sa_family) {
5442		case AF_UNSPEC:
5443		case AF_INET:
5444			len = sizeof(struct sockaddr_in);
5445			break;
5446		case AF_INET6:
5447			len = sizeof(struct sockaddr_in6);
5448			break;
5449		default:
5450			return -EINVAL;
5451		}
5452
5453		if (walk_size + len > addrlen)
5454			return -EINVAL;
5455
5456		err = -EINVAL;
5457		switch (optname) {
5458		/* Bind checks */
5459		case SCTP_PRIMARY_ADDR:
5460		case SCTP_SET_PEER_PRIMARY_ADDR:
5461		case SCTP_SOCKOPT_BINDX_ADD:
5462			err = selinux_socket_bind(sock, addr, len);
5463			break;
5464		/* Connect checks */
5465		case SCTP_SOCKOPT_CONNECTX:
5466		case SCTP_PARAM_SET_PRIMARY:
5467		case SCTP_PARAM_ADD_IP:
5468		case SCTP_SENDMSG_CONNECT:
5469			err = selinux_socket_connect_helper(sock, addr, len);
5470			if (err)
5471				return err;
5472
5473			/* As selinux_sctp_bind_connect() is called by the
5474			 * SCTP protocol layer, the socket is already locked,
5475			 * therefore selinux_netlbl_socket_connect_locked()
5476			 * is called here. The situations handled are:
5477			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5478			 * whenever a new IP address is added or when a new
5479			 * primary address is selected.
5480			 * Note that an SCTP connect(2) call happens before
5481			 * the SCTP protocol layer and is handled via
5482			 * selinux_socket_connect().
5483			 */
5484			err = selinux_netlbl_socket_connect_locked(sk, addr);
5485			break;
5486		}
5487
5488		if (err)
5489			return err;
5490
5491		addr_buf += len;
5492		walk_size += len;
5493	}
5494
5495	return 0;
5496}
5497
5498/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5499static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5500				  struct sock *newsk)
5501{
5502	struct sk_security_struct *sksec = selinux_sock(sk);
5503	struct sk_security_struct *newsksec = selinux_sock(newsk);
5504
5505	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5506	 * the non-sctp clone version.
5507	 */
5508	if (!selinux_policycap_extsockclass())
5509		return selinux_sk_clone_security(sk, newsk);
5510
5511	newsksec->sid = asoc->secid;
5512	newsksec->peer_sid = asoc->peer_secid;
5513	newsksec->sclass = sksec->sclass;
5514	selinux_netlbl_sctp_sk_clone(sk, newsk);
5515}
5516
5517static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5518{
5519	struct sk_security_struct *ssksec = selinux_sock(ssk);
5520	struct sk_security_struct *sksec = selinux_sock(sk);
5521
5522	ssksec->sclass = sksec->sclass;
5523	ssksec->sid = sksec->sid;
5524
5525	/* replace the existing subflow label deleting the existing one
5526	 * and re-recreating a new label using the updated context
5527	 */
5528	selinux_netlbl_sk_security_free(ssksec);
5529	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5530}
5531
5532static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5533				     struct request_sock *req)
5534{
5535	struct sk_security_struct *sksec = selinux_sock(sk);
5536	int err;
5537	u16 family = req->rsk_ops->family;
5538	u32 connsid;
5539	u32 peersid;
5540
5541	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5542	if (err)
5543		return err;
5544	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5545	if (err)
5546		return err;
5547	req->secid = connsid;
5548	req->peer_secid = peersid;
5549
5550	return selinux_netlbl_inet_conn_request(req, family);
5551}
5552
5553static void selinux_inet_csk_clone(struct sock *newsk,
5554				   const struct request_sock *req)
5555{
5556	struct sk_security_struct *newsksec = selinux_sock(newsk);
5557
5558	newsksec->sid = req->secid;
5559	newsksec->peer_sid = req->peer_secid;
5560	/* NOTE: Ideally, we should also get the isec->sid for the
5561	   new socket in sync, but we don't have the isec available yet.
5562	   So we will wait until sock_graft to do it, by which
5563	   time it will have been created and available. */
5564
5565	/* We don't need to take any sort of lock here as we are the only
5566	 * thread with access to newsksec */
5567	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5568}
5569
5570static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5571{
5572	u16 family = sk->sk_family;
5573	struct sk_security_struct *sksec = selinux_sock(sk);
5574
5575	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5576	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5577		family = PF_INET;
5578
5579	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5580}
5581
5582static int selinux_secmark_relabel_packet(u32 sid)
5583{
5584	return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
 
 
 
 
 
 
 
5585			    NULL);
5586}
5587
5588static void selinux_secmark_refcount_inc(void)
5589{
5590	atomic_inc(&selinux_secmark_refcount);
5591}
5592
5593static void selinux_secmark_refcount_dec(void)
5594{
5595	atomic_dec(&selinux_secmark_refcount);
5596}
5597
5598static void selinux_req_classify_flow(const struct request_sock *req,
5599				      struct flowi_common *flic)
5600{
5601	flic->flowic_secid = req->secid;
5602}
5603
5604static int selinux_tun_dev_alloc_security(void *security)
5605{
5606	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5607
 
 
 
5608	tunsec->sid = current_sid();
 
 
5609	return 0;
5610}
5611
 
 
 
 
 
5612static int selinux_tun_dev_create(void)
5613{
5614	u32 sid = current_sid();
5615
5616	/* we aren't taking into account the "sockcreate" SID since the socket
5617	 * that is being created here is not a socket in the traditional sense,
5618	 * instead it is a private sock, accessible only to the kernel, and
5619	 * representing a wide range of network traffic spanning multiple
5620	 * connections unlike traditional sockets - check the TUN driver to
5621	 * get a better understanding of why this socket is special */
5622
5623	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
 
5624			    NULL);
5625}
5626
5627static int selinux_tun_dev_attach_queue(void *security)
5628{
5629	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5630
5631	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
 
5632			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5633}
5634
5635static int selinux_tun_dev_attach(struct sock *sk, void *security)
5636{
5637	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5638	struct sk_security_struct *sksec = selinux_sock(sk);
5639
5640	/* we don't currently perform any NetLabel based labeling here and it
5641	 * isn't clear that we would want to do so anyway; while we could apply
5642	 * labeling without the support of the TUN user the resulting labeled
5643	 * traffic from the other end of the connection would almost certainly
5644	 * cause confusion to the TUN user that had no idea network labeling
5645	 * protocols were being used */
5646
5647	sksec->sid = tunsec->sid;
5648	sksec->sclass = SECCLASS_TUN_SOCKET;
5649
5650	return 0;
5651}
5652
5653static int selinux_tun_dev_open(void *security)
5654{
5655	struct tun_security_struct *tunsec = selinux_tun_dev(security);
5656	u32 sid = current_sid();
5657	int err;
5658
5659	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
 
5660			   TUN_SOCKET__RELABELFROM, NULL);
5661	if (err)
5662		return err;
5663	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
 
5664			   TUN_SOCKET__RELABELTO, NULL);
5665	if (err)
5666		return err;
5667	tunsec->sid = sid;
5668
5669	return 0;
5670}
5671
5672#ifdef CONFIG_NETFILTER
5673
5674static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5675				       const struct nf_hook_state *state)
5676{
5677	int ifindex;
5678	u16 family;
5679	char *addrp;
5680	u32 peer_sid;
5681	struct common_audit_data ad;
5682	struct lsm_network_audit net;
5683	int secmark_active, peerlbl_active;
5684
5685	if (!selinux_policycap_netpeer())
5686		return NF_ACCEPT;
5687
5688	secmark_active = selinux_secmark_enabled();
5689	peerlbl_active = selinux_peerlbl_enabled();
5690	if (!secmark_active && !peerlbl_active)
5691		return NF_ACCEPT;
5692
5693	family = state->pf;
5694	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5695		return NF_DROP;
5696
5697	ifindex = state->in->ifindex;
5698	ad_net_init_from_iif(&ad, &net, ifindex, family);
 
 
 
5699	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5700		return NF_DROP;
5701
5702	if (peerlbl_active) {
5703		int err;
5704
5705		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5706					       addrp, family, peer_sid, &ad);
5707		if (err) {
5708			selinux_netlbl_err(skb, family, err, 1);
5709			return NF_DROP;
5710		}
5711	}
5712
5713	if (secmark_active)
5714		if (avc_has_perm(peer_sid, skb->secmark,
 
5715				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5716			return NF_DROP;
5717
5718	if (netlbl_enabled())
5719		/* we do this in the FORWARD path and not the POST_ROUTING
5720		 * path because we want to make sure we apply the necessary
5721		 * labeling before IPsec is applied so we can leverage AH
5722		 * protection */
5723		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5724			return NF_DROP;
5725
5726	return NF_ACCEPT;
5727}
5728
5729static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5730				      const struct nf_hook_state *state)
5731{
5732	struct sock *sk;
5733	u32 sid;
5734
5735	if (!netlbl_enabled())
5736		return NF_ACCEPT;
5737
5738	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5739	 * because we want to make sure we apply the necessary labeling
5740	 * before IPsec is applied so we can leverage AH protection */
5741	sk = sk_to_full_sk(skb->sk);
5742	if (sk) {
5743		struct sk_security_struct *sksec;
5744
5745		if (sk_listener(sk))
5746			/* if the socket is the listening state then this
5747			 * packet is a SYN-ACK packet which means it needs to
5748			 * be labeled based on the connection/request_sock and
5749			 * not the parent socket.  unfortunately, we can't
5750			 * lookup the request_sock yet as it isn't queued on
5751			 * the parent socket until after the SYN-ACK is sent.
5752			 * the "solution" is to simply pass the packet as-is
5753			 * as any IP option based labeling should be copied
5754			 * from the initial connection request (in the IP
5755			 * layer).  it is far from ideal, but until we get a
5756			 * security label in the packet itself this is the
5757			 * best we can do. */
5758			return NF_ACCEPT;
5759
5760		/* standard practice, label using the parent socket */
5761		sksec = selinux_sock(sk);
5762		sid = sksec->sid;
5763	} else
5764		sid = SECINITSID_KERNEL;
5765	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5766		return NF_DROP;
5767
5768	return NF_ACCEPT;
5769}
5770
5771
5772static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5773					const struct nf_hook_state *state)
5774{
5775	struct sock *sk;
5776	struct sk_security_struct *sksec;
5777	struct common_audit_data ad;
5778	struct lsm_network_audit net;
5779	u8 proto = 0;
5780
5781	sk = skb_to_full_sk(skb);
5782	if (sk == NULL)
5783		return NF_ACCEPT;
5784	sksec = selinux_sock(sk);
5785
5786	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
 
 
 
5787	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5788		return NF_DROP;
5789
5790	if (selinux_secmark_enabled())
5791		if (avc_has_perm(sksec->sid, skb->secmark,
 
5792				 SECCLASS_PACKET, PACKET__SEND, &ad))
5793			return NF_DROP_ERR(-ECONNREFUSED);
5794
5795	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5796		return NF_DROP_ERR(-ECONNREFUSED);
5797
5798	return NF_ACCEPT;
5799}
5800
5801static unsigned int selinux_ip_postroute(void *priv,
5802					 struct sk_buff *skb,
5803					 const struct nf_hook_state *state)
5804{
5805	u16 family;
5806	u32 secmark_perm;
5807	u32 peer_sid;
5808	int ifindex;
5809	struct sock *sk;
5810	struct common_audit_data ad;
5811	struct lsm_network_audit net;
5812	char *addrp;
5813	int secmark_active, peerlbl_active;
5814
5815	/* If any sort of compatibility mode is enabled then handoff processing
5816	 * to the selinux_ip_postroute_compat() function to deal with the
5817	 * special handling.  We do this in an attempt to keep this function
5818	 * as fast and as clean as possible. */
5819	if (!selinux_policycap_netpeer())
5820		return selinux_ip_postroute_compat(skb, state);
5821
5822	secmark_active = selinux_secmark_enabled();
5823	peerlbl_active = selinux_peerlbl_enabled();
5824	if (!secmark_active && !peerlbl_active)
5825		return NF_ACCEPT;
5826
5827	sk = skb_to_full_sk(skb);
5828
5829#ifdef CONFIG_XFRM
5830	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5831	 * packet transformation so allow the packet to pass without any checks
5832	 * since we'll have another chance to perform access control checks
5833	 * when the packet is on it's final way out.
5834	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5835	 *       is NULL, in this case go ahead and apply access control.
5836	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5837	 *       TCP listening state we cannot wait until the XFRM processing
5838	 *       is done as we will miss out on the SA label if we do;
5839	 *       unfortunately, this means more work, but it is only once per
5840	 *       connection. */
5841	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5842	    !(sk && sk_listener(sk)))
5843		return NF_ACCEPT;
5844#endif
5845
5846	family = state->pf;
5847	if (sk == NULL) {
5848		/* Without an associated socket the packet is either coming
5849		 * from the kernel or it is being forwarded; check the packet
5850		 * to determine which and if the packet is being forwarded
5851		 * query the packet directly to determine the security label. */
5852		if (skb->skb_iif) {
5853			secmark_perm = PACKET__FORWARD_OUT;
5854			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5855				return NF_DROP;
5856		} else {
5857			secmark_perm = PACKET__SEND;
5858			peer_sid = SECINITSID_KERNEL;
5859		}
5860	} else if (sk_listener(sk)) {
5861		/* Locally generated packet but the associated socket is in the
5862		 * listening state which means this is a SYN-ACK packet.  In
5863		 * this particular case the correct security label is assigned
5864		 * to the connection/request_sock but unfortunately we can't
5865		 * query the request_sock as it isn't queued on the parent
5866		 * socket until after the SYN-ACK packet is sent; the only
5867		 * viable choice is to regenerate the label like we do in
5868		 * selinux_inet_conn_request().  See also selinux_ip_output()
5869		 * for similar problems. */
5870		u32 skb_sid;
5871		struct sk_security_struct *sksec;
5872
5873		sksec = selinux_sock(sk);
5874		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5875			return NF_DROP;
5876		/* At this point, if the returned skb peerlbl is SECSID_NULL
5877		 * and the packet has been through at least one XFRM
5878		 * transformation then we must be dealing with the "final"
5879		 * form of labeled IPsec packet; since we've already applied
5880		 * all of our access controls on this packet we can safely
5881		 * pass the packet. */
5882		if (skb_sid == SECSID_NULL) {
5883			switch (family) {
5884			case PF_INET:
5885				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5886					return NF_ACCEPT;
5887				break;
5888			case PF_INET6:
5889				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5890					return NF_ACCEPT;
5891				break;
5892			default:
5893				return NF_DROP_ERR(-ECONNREFUSED);
5894			}
5895		}
5896		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5897			return NF_DROP;
5898		secmark_perm = PACKET__SEND;
5899	} else {
5900		/* Locally generated packet, fetch the security label from the
5901		 * associated socket. */
5902		struct sk_security_struct *sksec = selinux_sock(sk);
5903		peer_sid = sksec->sid;
5904		secmark_perm = PACKET__SEND;
5905	}
5906
5907	ifindex = state->out->ifindex;
5908	ad_net_init_from_iif(&ad, &net, ifindex, family);
 
 
 
5909	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5910		return NF_DROP;
5911
5912	if (secmark_active)
5913		if (avc_has_perm(peer_sid, skb->secmark,
 
5914				 SECCLASS_PACKET, secmark_perm, &ad))
5915			return NF_DROP_ERR(-ECONNREFUSED);
5916
5917	if (peerlbl_active) {
5918		u32 if_sid;
5919		u32 node_sid;
5920
5921		if (sel_netif_sid(state->net, ifindex, &if_sid))
5922			return NF_DROP;
5923		if (avc_has_perm(peer_sid, if_sid,
 
5924				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5925			return NF_DROP_ERR(-ECONNREFUSED);
5926
5927		if (sel_netnode_sid(addrp, family, &node_sid))
5928			return NF_DROP;
5929		if (avc_has_perm(peer_sid, node_sid,
 
5930				 SECCLASS_NODE, NODE__SENDTO, &ad))
5931			return NF_DROP_ERR(-ECONNREFUSED);
5932	}
5933
5934	return NF_ACCEPT;
5935}
5936#endif	/* CONFIG_NETFILTER */
5937
5938static int nlmsg_sock_has_extended_perms(struct sock *sk, u32 perms, u16 nlmsg_type)
5939{
5940	struct sk_security_struct *sksec = sk->sk_security;
5941	struct common_audit_data ad;
5942	struct lsm_network_audit net;
5943	u8 driver;
5944	u8 xperm;
5945
5946	if (sock_skip_has_perm(sksec->sid))
5947		return 0;
5948
5949	ad_net_init_from_sk(&ad, &net, sk);
5950
5951	driver = nlmsg_type >> 8;
5952	xperm = nlmsg_type & 0xff;
5953
5954	return avc_has_extended_perms(current_sid(), sksec->sid, sksec->sclass,
5955				      perms, driver, AVC_EXT_NLMSG, xperm, &ad);
5956}
5957
5958static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5959{
5960	int rc = 0;
5961	unsigned int msg_len;
5962	unsigned int data_len = skb->len;
5963	unsigned char *data = skb->data;
5964	struct nlmsghdr *nlh;
5965	struct sk_security_struct *sksec = selinux_sock(sk);
5966	u16 sclass = sksec->sclass;
5967	u32 perm;
5968
5969	while (data_len >= nlmsg_total_size(0)) {
5970		nlh = (struct nlmsghdr *)data;
5971
5972		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5973		 *       users which means we can't reject skb's with bogus
5974		 *       length fields; our solution is to follow what
5975		 *       netlink_rcv_skb() does and simply skip processing at
5976		 *       messages with length fields that are clearly junk
5977		 */
5978		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5979			return 0;
5980
5981		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5982		if (rc == 0) {
5983			if (selinux_policycap_netlink_xperm()) {
5984				rc = nlmsg_sock_has_extended_perms(
5985					sk, perm, nlh->nlmsg_type);
5986			} else {
5987				rc = sock_has_perm(sk, perm);
5988			}
5989			if (rc)
5990				return rc;
5991		} else if (rc == -EINVAL) {
5992			/* -EINVAL is a missing msg/perm mapping */
5993			pr_warn_ratelimited("SELinux: unrecognized netlink"
5994				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5995				" pid=%d comm=%s\n",
5996				sk->sk_protocol, nlh->nlmsg_type,
5997				secclass_map[sclass - 1].name,
5998				task_pid_nr(current), current->comm);
5999			if (enforcing_enabled() &&
6000			    !security_get_allow_unknown())
6001				return rc;
6002			rc = 0;
6003		} else if (rc == -ENOENT) {
6004			/* -ENOENT is a missing socket/class mapping, ignore */
6005			rc = 0;
6006		} else {
6007			return rc;
6008		}
6009
6010		/* move to the next message after applying netlink padding */
6011		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6012		if (msg_len >= data_len)
6013			return 0;
6014		data_len -= msg_len;
6015		data += msg_len;
6016	}
6017
6018	return rc;
6019}
6020
6021static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6022{
6023	isec->sclass = sclass;
6024	isec->sid = current_sid();
6025}
6026
6027static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6028			u32 perms)
6029{
6030	struct ipc_security_struct *isec;
6031	struct common_audit_data ad;
6032	u32 sid = current_sid();
6033
6034	isec = selinux_ipc(ipc_perms);
6035
6036	ad.type = LSM_AUDIT_DATA_IPC;
6037	ad.u.ipc_id = ipc_perms->key;
6038
6039	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
 
6040}
6041
6042static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6043{
6044	struct msg_security_struct *msec;
6045
6046	msec = selinux_msg_msg(msg);
6047	msec->sid = SECINITSID_UNLABELED;
6048
6049	return 0;
6050}
6051
6052/* message queue security operations */
6053static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6054{
6055	struct ipc_security_struct *isec;
6056	struct common_audit_data ad;
6057	u32 sid = current_sid();
6058
6059	isec = selinux_ipc(msq);
6060	ipc_init_security(isec, SECCLASS_MSGQ);
6061
6062	ad.type = LSM_AUDIT_DATA_IPC;
6063	ad.u.ipc_id = msq->key;
6064
6065	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
6066			    MSGQ__CREATE, &ad);
6067}
6068
6069static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6070{
6071	struct ipc_security_struct *isec;
6072	struct common_audit_data ad;
6073	u32 sid = current_sid();
6074
6075	isec = selinux_ipc(msq);
6076
6077	ad.type = LSM_AUDIT_DATA_IPC;
6078	ad.u.ipc_id = msq->key;
6079
6080	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
6081			    MSGQ__ASSOCIATE, &ad);
6082}
6083
6084static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6085{
6086	u32 perms;
 
6087
6088	switch (cmd) {
6089	case IPC_INFO:
6090	case MSG_INFO:
6091		/* No specific object, just general system-wide information. */
6092		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6093				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6094	case IPC_STAT:
6095	case MSG_STAT:
6096	case MSG_STAT_ANY:
6097		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6098		break;
6099	case IPC_SET:
6100		perms = MSGQ__SETATTR;
6101		break;
6102	case IPC_RMID:
6103		perms = MSGQ__DESTROY;
6104		break;
6105	default:
6106		return 0;
6107	}
6108
6109	return ipc_has_perm(msq, perms);
 
6110}
6111
6112static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6113{
6114	struct ipc_security_struct *isec;
6115	struct msg_security_struct *msec;
6116	struct common_audit_data ad;
6117	u32 sid = current_sid();
6118	int rc;
6119
6120	isec = selinux_ipc(msq);
6121	msec = selinux_msg_msg(msg);
6122
6123	/*
6124	 * First time through, need to assign label to the message
6125	 */
6126	if (msec->sid == SECINITSID_UNLABELED) {
6127		/*
6128		 * Compute new sid based on current process and
6129		 * message queue this message will be stored in
6130		 */
6131		rc = security_transition_sid(sid, isec->sid,
6132					     SECCLASS_MSG, NULL, &msec->sid);
6133		if (rc)
6134			return rc;
6135	}
6136
6137	ad.type = LSM_AUDIT_DATA_IPC;
6138	ad.u.ipc_id = msq->key;
6139
6140	/* Can this process write to the queue? */
6141	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
 
6142			  MSGQ__WRITE, &ad);
6143	if (!rc)
6144		/* Can this process send the message */
6145		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
 
6146				  MSG__SEND, &ad);
6147	if (!rc)
6148		/* Can the message be put in the queue? */
6149		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
 
6150				  MSGQ__ENQUEUE, &ad);
6151
6152	return rc;
6153}
6154
6155static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6156				    struct task_struct *target,
6157				    long type, int mode)
6158{
6159	struct ipc_security_struct *isec;
6160	struct msg_security_struct *msec;
6161	struct common_audit_data ad;
6162	u32 sid = task_sid_obj(target);
6163	int rc;
6164
6165	isec = selinux_ipc(msq);
6166	msec = selinux_msg_msg(msg);
6167
6168	ad.type = LSM_AUDIT_DATA_IPC;
6169	ad.u.ipc_id = msq->key;
6170
6171	rc = avc_has_perm(sid, isec->sid,
 
6172			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6173	if (!rc)
6174		rc = avc_has_perm(sid, msec->sid,
 
6175				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6176	return rc;
6177}
6178
6179/* Shared Memory security operations */
6180static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6181{
6182	struct ipc_security_struct *isec;
6183	struct common_audit_data ad;
6184	u32 sid = current_sid();
6185
6186	isec = selinux_ipc(shp);
6187	ipc_init_security(isec, SECCLASS_SHM);
6188
6189	ad.type = LSM_AUDIT_DATA_IPC;
6190	ad.u.ipc_id = shp->key;
6191
6192	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
6193			    SHM__CREATE, &ad);
6194}
6195
6196static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6197{
6198	struct ipc_security_struct *isec;
6199	struct common_audit_data ad;
6200	u32 sid = current_sid();
6201
6202	isec = selinux_ipc(shp);
6203
6204	ad.type = LSM_AUDIT_DATA_IPC;
6205	ad.u.ipc_id = shp->key;
6206
6207	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
 
6208			    SHM__ASSOCIATE, &ad);
6209}
6210
6211/* Note, at this point, shp is locked down */
6212static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6213{
6214	u32 perms;
 
6215
6216	switch (cmd) {
6217	case IPC_INFO:
6218	case SHM_INFO:
6219		/* No specific object, just general system-wide information. */
6220		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6221				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6222	case IPC_STAT:
6223	case SHM_STAT:
6224	case SHM_STAT_ANY:
6225		perms = SHM__GETATTR | SHM__ASSOCIATE;
6226		break;
6227	case IPC_SET:
6228		perms = SHM__SETATTR;
6229		break;
6230	case SHM_LOCK:
6231	case SHM_UNLOCK:
6232		perms = SHM__LOCK;
6233		break;
6234	case IPC_RMID:
6235		perms = SHM__DESTROY;
6236		break;
6237	default:
6238		return 0;
6239	}
6240
6241	return ipc_has_perm(shp, perms);
 
6242}
6243
6244static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6245			     char __user *shmaddr, int shmflg)
6246{
6247	u32 perms;
6248
6249	if (shmflg & SHM_RDONLY)
6250		perms = SHM__READ;
6251	else
6252		perms = SHM__READ | SHM__WRITE;
6253
6254	return ipc_has_perm(shp, perms);
6255}
6256
6257/* Semaphore security operations */
6258static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6259{
6260	struct ipc_security_struct *isec;
6261	struct common_audit_data ad;
6262	u32 sid = current_sid();
6263
6264	isec = selinux_ipc(sma);
6265	ipc_init_security(isec, SECCLASS_SEM);
6266
6267	ad.type = LSM_AUDIT_DATA_IPC;
6268	ad.u.ipc_id = sma->key;
6269
6270	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
6271			    SEM__CREATE, &ad);
6272}
6273
6274static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6275{
6276	struct ipc_security_struct *isec;
6277	struct common_audit_data ad;
6278	u32 sid = current_sid();
6279
6280	isec = selinux_ipc(sma);
6281
6282	ad.type = LSM_AUDIT_DATA_IPC;
6283	ad.u.ipc_id = sma->key;
6284
6285	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
 
6286			    SEM__ASSOCIATE, &ad);
6287}
6288
6289/* Note, at this point, sma is locked down */
6290static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6291{
6292	int err;
6293	u32 perms;
6294
6295	switch (cmd) {
6296	case IPC_INFO:
6297	case SEM_INFO:
6298		/* No specific object, just general system-wide information. */
6299		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
 
6300				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6301	case GETPID:
6302	case GETNCNT:
6303	case GETZCNT:
6304		perms = SEM__GETATTR;
6305		break;
6306	case GETVAL:
6307	case GETALL:
6308		perms = SEM__READ;
6309		break;
6310	case SETVAL:
6311	case SETALL:
6312		perms = SEM__WRITE;
6313		break;
6314	case IPC_RMID:
6315		perms = SEM__DESTROY;
6316		break;
6317	case IPC_SET:
6318		perms = SEM__SETATTR;
6319		break;
6320	case IPC_STAT:
6321	case SEM_STAT:
6322	case SEM_STAT_ANY:
6323		perms = SEM__GETATTR | SEM__ASSOCIATE;
6324		break;
6325	default:
6326		return 0;
6327	}
6328
6329	err = ipc_has_perm(sma, perms);
6330	return err;
6331}
6332
6333static int selinux_sem_semop(struct kern_ipc_perm *sma,
6334			     struct sembuf *sops, unsigned nsops, int alter)
6335{
6336	u32 perms;
6337
6338	if (alter)
6339		perms = SEM__READ | SEM__WRITE;
6340	else
6341		perms = SEM__READ;
6342
6343	return ipc_has_perm(sma, perms);
6344}
6345
6346static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6347{
6348	u32 av = 0;
6349
6350	av = 0;
6351	if (flag & S_IRUGO)
6352		av |= IPC__UNIX_READ;
6353	if (flag & S_IWUGO)
6354		av |= IPC__UNIX_WRITE;
6355
6356	if (av == 0)
6357		return 0;
6358
6359	return ipc_has_perm(ipcp, av);
6360}
6361
6362static void selinux_ipc_getlsmprop(struct kern_ipc_perm *ipcp,
6363				   struct lsm_prop *prop)
6364{
6365	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6366	prop->selinux.secid = isec->sid;
6367}
6368
6369static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6370{
6371	if (inode)
6372		inode_doinit_with_dentry(inode, dentry);
6373}
6374
6375static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6376			       char **value)
6377{
6378	const struct task_security_struct *tsec;
6379	int error;
6380	u32 sid;
6381	u32 len;
 
6382
6383	rcu_read_lock();
6384	tsec = selinux_cred(__task_cred(p));
6385	if (p != current) {
6386		error = avc_has_perm(current_sid(), tsec->sid,
 
 
6387				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6388		if (error)
6389			goto err_unlock;
6390	}
6391	switch (attr) {
6392	case LSM_ATTR_CURRENT:
6393		sid = tsec->sid;
6394		break;
6395	case LSM_ATTR_PREV:
6396		sid = tsec->osid;
6397		break;
6398	case LSM_ATTR_EXEC:
6399		sid = tsec->exec_sid;
6400		break;
6401	case LSM_ATTR_FSCREATE:
6402		sid = tsec->create_sid;
6403		break;
6404	case LSM_ATTR_KEYCREATE:
6405		sid = tsec->keycreate_sid;
6406		break;
6407	case LSM_ATTR_SOCKCREATE:
6408		sid = tsec->sockcreate_sid;
6409		break;
6410	default:
6411		error = -EOPNOTSUPP;
6412		goto err_unlock;
6413	}
6414	rcu_read_unlock();
6415
6416	if (sid == SECSID_NULL) {
6417		*value = NULL;
6418		return 0;
6419	}
6420
6421	error = security_sid_to_context(sid, value, &len);
6422	if (error)
6423		return error;
6424	return len;
6425
6426err_unlock:
6427	rcu_read_unlock();
6428	return error;
6429}
6430
6431static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6432{
6433	struct task_security_struct *tsec;
6434	struct cred *new;
6435	u32 mysid = current_sid(), sid = 0, ptsid;
6436	int error;
6437	char *str = value;
6438
6439	/*
6440	 * Basic control over ability to set these attributes at all.
6441	 */
6442	switch (attr) {
6443	case LSM_ATTR_EXEC:
6444		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6445				     PROCESS__SETEXEC, NULL);
6446		break;
6447	case LSM_ATTR_FSCREATE:
6448		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6449				     PROCESS__SETFSCREATE, NULL);
6450		break;
6451	case LSM_ATTR_KEYCREATE:
6452		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6453				     PROCESS__SETKEYCREATE, NULL);
6454		break;
6455	case LSM_ATTR_SOCKCREATE:
6456		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6457				     PROCESS__SETSOCKCREATE, NULL);
6458		break;
6459	case LSM_ATTR_CURRENT:
6460		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6461				     PROCESS__SETCURRENT, NULL);
6462		break;
6463	default:
6464		error = -EOPNOTSUPP;
6465		break;
6466	}
6467	if (error)
6468		return error;
6469
6470	/* Obtain a SID for the context, if one was specified. */
6471	if (size && str[0] && str[0] != '\n') {
6472		if (str[size-1] == '\n') {
6473			str[size-1] = 0;
6474			size--;
6475		}
6476		error = security_context_to_sid(value, size,
6477						&sid, GFP_KERNEL);
6478		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6479			if (!has_cap_mac_admin(true)) {
6480				struct audit_buffer *ab;
6481				size_t audit_size;
6482
6483				/* We strip a nul only if it is at the end,
6484				 * otherwise the context contains a nul and
6485				 * we should audit that */
6486				if (str[size - 1] == '\0')
6487					audit_size = size - 1;
6488				else
6489					audit_size = size;
6490				ab = audit_log_start(audit_context(),
6491						     GFP_ATOMIC,
6492						     AUDIT_SELINUX_ERR);
6493				if (!ab)
6494					return error;
6495				audit_log_format(ab, "op=fscreate invalid_context=");
6496				audit_log_n_untrustedstring(ab, value,
6497							    audit_size);
6498				audit_log_end(ab);
6499
6500				return error;
6501			}
6502			error = security_context_to_sid_force(value, size,
6503							&sid);
 
6504		}
6505		if (error)
6506			return error;
6507	}
6508
6509	new = prepare_creds();
6510	if (!new)
6511		return -ENOMEM;
6512
6513	/* Permission checking based on the specified context is
6514	   performed during the actual operation (execve,
6515	   open/mkdir/...), when we know the full context of the
6516	   operation.  See selinux_bprm_creds_for_exec for the execve
6517	   checks and may_create for the file creation checks. The
6518	   operation will then fail if the context is not permitted. */
6519	tsec = selinux_cred(new);
6520	if (attr == LSM_ATTR_EXEC) {
6521		tsec->exec_sid = sid;
6522	} else if (attr == LSM_ATTR_FSCREATE) {
6523		tsec->create_sid = sid;
6524	} else if (attr == LSM_ATTR_KEYCREATE) {
6525		if (sid) {
6526			error = avc_has_perm(mysid, sid,
6527					     SECCLASS_KEY, KEY__CREATE, NULL);
6528			if (error)
6529				goto abort_change;
6530		}
6531		tsec->keycreate_sid = sid;
6532	} else if (attr == LSM_ATTR_SOCKCREATE) {
6533		tsec->sockcreate_sid = sid;
6534	} else if (attr == LSM_ATTR_CURRENT) {
6535		error = -EINVAL;
6536		if (sid == 0)
6537			goto abort_change;
6538
 
6539		if (!current_is_single_threaded()) {
6540			error = security_bounded_transition(tsec->sid, sid);
 
6541			if (error)
6542				goto abort_change;
6543		}
6544
6545		/* Check permissions for the transition. */
6546		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
 
6547				     PROCESS__DYNTRANSITION, NULL);
6548		if (error)
6549			goto abort_change;
6550
6551		/* Check for ptracing, and update the task SID if ok.
6552		   Otherwise, leave SID unchanged and fail. */
6553		ptsid = ptrace_parent_sid();
6554		if (ptsid != 0) {
6555			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
 
6556					     PROCESS__PTRACE, NULL);
6557			if (error)
6558				goto abort_change;
6559		}
6560
6561		tsec->sid = sid;
6562	} else {
6563		error = -EINVAL;
6564		goto abort_change;
6565	}
6566
6567	commit_creds(new);
6568	return size;
6569
6570abort_change:
6571	abort_creds(new);
6572	return error;
6573}
6574
6575/**
6576 * selinux_getselfattr - Get SELinux current task attributes
6577 * @attr: the requested attribute
6578 * @ctx: buffer to receive the result
6579 * @size: buffer size (input), buffer size used (output)
6580 * @flags: unused
6581 *
6582 * Fill the passed user space @ctx with the details of the requested
6583 * attribute.
6584 *
6585 * Returns the number of attributes on success, an error code otherwise.
6586 * There will only ever be one attribute.
6587 */
6588static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6589			       u32 *size, u32 flags)
6590{
6591	int rc;
6592	char *val = NULL;
6593	int val_len;
6594
6595	val_len = selinux_lsm_getattr(attr, current, &val);
6596	if (val_len < 0)
6597		return val_len;
6598	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6599	kfree(val);
6600	return (!rc ? 1 : rc);
6601}
6602
6603static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6604			       u32 size, u32 flags)
6605{
6606	int rc;
6607
6608	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6609	if (rc > 0)
6610		return 0;
6611	return rc;
6612}
6613
6614static int selinux_getprocattr(struct task_struct *p,
6615			       const char *name, char **value)
6616{
6617	unsigned int attr = lsm_name_to_attr(name);
6618	int rc;
6619
6620	if (attr) {
6621		rc = selinux_lsm_getattr(attr, p, value);
6622		if (rc != -EOPNOTSUPP)
6623			return rc;
6624	}
6625
6626	return -EINVAL;
6627}
6628
6629static int selinux_setprocattr(const char *name, void *value, size_t size)
6630{
6631	int attr = lsm_name_to_attr(name);
6632
6633	if (attr)
6634		return selinux_lsm_setattr(attr, value, size);
6635	return -EINVAL;
6636}
6637
6638static int selinux_ismaclabel(const char *name)
6639{
6640	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6641}
6642
6643static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6644{
6645	return security_sid_to_context(secid, secdata, seclen);
6646}
6647
6648static int selinux_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
6649				     u32 *seclen)
6650{
6651	return selinux_secid_to_secctx(prop->selinux.secid, secdata, seclen);
6652}
6653
6654static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6655{
6656	return security_context_to_sid(secdata, seclen,
6657				       secid, GFP_KERNEL);
6658}
6659
6660static void selinux_release_secctx(char *secdata, u32 seclen)
6661{
6662	kfree(secdata);
6663}
6664
6665static void selinux_inode_invalidate_secctx(struct inode *inode)
6666{
6667	struct inode_security_struct *isec = selinux_inode(inode);
6668
6669	spin_lock(&isec->lock);
6670	isec->initialized = LABEL_INVALID;
6671	spin_unlock(&isec->lock);
6672}
6673
6674/*
6675 *	called with inode->i_mutex locked
6676 */
6677static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6678{
6679	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6680					   ctx, ctxlen, 0);
6681	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6682	return rc == -EOPNOTSUPP ? 0 : rc;
6683}
6684
6685/*
6686 *	called with inode->i_mutex locked
6687 */
6688static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6689{
6690	return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6691				     ctx, ctxlen, 0, NULL);
6692}
6693
6694static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6695{
6696	int len = 0;
6697	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6698					XATTR_SELINUX_SUFFIX, ctx, true);
6699	if (len < 0)
6700		return len;
6701	*ctxlen = len;
6702	return 0;
6703}
6704#ifdef CONFIG_KEYS
6705
6706static int selinux_key_alloc(struct key *k, const struct cred *cred,
6707			     unsigned long flags)
6708{
6709	const struct task_security_struct *tsec;
6710	struct key_security_struct *ksec = selinux_key(k);
 
 
 
 
6711
6712	tsec = selinux_cred(cred);
6713	if (tsec->keycreate_sid)
6714		ksec->sid = tsec->keycreate_sid;
6715	else
6716		ksec->sid = tsec->sid;
6717
 
6718	return 0;
6719}
6720
 
 
 
 
 
 
 
 
6721static int selinux_key_permission(key_ref_t key_ref,
6722				  const struct cred *cred,
6723				  enum key_need_perm need_perm)
6724{
6725	struct key *key;
6726	struct key_security_struct *ksec;
6727	u32 perm, sid;
6728
6729	switch (need_perm) {
6730	case KEY_NEED_VIEW:
6731		perm = KEY__VIEW;
6732		break;
6733	case KEY_NEED_READ:
6734		perm = KEY__READ;
6735		break;
6736	case KEY_NEED_WRITE:
6737		perm = KEY__WRITE;
6738		break;
6739	case KEY_NEED_SEARCH:
6740		perm = KEY__SEARCH;
6741		break;
6742	case KEY_NEED_LINK:
6743		perm = KEY__LINK;
6744		break;
6745	case KEY_NEED_SETATTR:
6746		perm = KEY__SETATTR;
6747		break;
6748	case KEY_NEED_UNLINK:
6749	case KEY_SYSADMIN_OVERRIDE:
6750	case KEY_AUTHTOKEN_OVERRIDE:
6751	case KEY_DEFER_PERM_CHECK:
6752		return 0;
6753	default:
6754		WARN_ON(1);
6755		return -EPERM;
6756
6757	}
6758
6759	sid = cred_sid(cred);
6760	key = key_ref_to_ptr(key_ref);
6761	ksec = selinux_key(key);
6762
6763	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
 
6764}
6765
6766static int selinux_key_getsecurity(struct key *key, char **_buffer)
6767{
6768	struct key_security_struct *ksec = selinux_key(key);
6769	char *context = NULL;
6770	unsigned len;
6771	int rc;
6772
6773	rc = security_sid_to_context(ksec->sid,
6774				     &context, &len);
6775	if (!rc)
6776		rc = len;
6777	*_buffer = context;
6778	return rc;
6779}
6780
6781#ifdef CONFIG_KEY_NOTIFICATIONS
6782static int selinux_watch_key(struct key *key)
6783{
6784	struct key_security_struct *ksec = selinux_key(key);
6785	u32 sid = current_sid();
6786
6787	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
 
6788}
6789#endif
6790#endif
6791
6792#ifdef CONFIG_SECURITY_INFINIBAND
6793static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6794{
6795	struct common_audit_data ad;
6796	int err;
6797	u32 sid = 0;
6798	struct ib_security_struct *sec = ib_sec;
6799	struct lsm_ibpkey_audit ibpkey;
6800
6801	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6802	if (err)
6803		return err;
6804
6805	ad.type = LSM_AUDIT_DATA_IBPKEY;
6806	ibpkey.subnet_prefix = subnet_prefix;
6807	ibpkey.pkey = pkey_val;
6808	ad.u.ibpkey = &ibpkey;
6809	return avc_has_perm(sec->sid, sid,
 
6810			    SECCLASS_INFINIBAND_PKEY,
6811			    INFINIBAND_PKEY__ACCESS, &ad);
6812}
6813
6814static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6815					    u8 port_num)
6816{
6817	struct common_audit_data ad;
6818	int err;
6819	u32 sid = 0;
6820	struct ib_security_struct *sec = ib_sec;
6821	struct lsm_ibendport_audit ibendport;
6822
6823	err = security_ib_endport_sid(dev_name, port_num,
6824				      &sid);
6825
6826	if (err)
6827		return err;
6828
6829	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6830	ibendport.dev_name = dev_name;
6831	ibendport.port = port_num;
6832	ad.u.ibendport = &ibendport;
6833	return avc_has_perm(sec->sid, sid,
 
6834			    SECCLASS_INFINIBAND_ENDPORT,
6835			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6836}
6837
6838static int selinux_ib_alloc_security(void *ib_sec)
6839{
6840	struct ib_security_struct *sec = selinux_ib(ib_sec);
6841
 
 
 
6842	sec->sid = current_sid();
 
 
6843	return 0;
6844}
 
 
 
 
 
6845#endif
6846
6847#ifdef CONFIG_BPF_SYSCALL
6848static int selinux_bpf(int cmd, union bpf_attr *attr,
6849				     unsigned int size)
6850{
6851	u32 sid = current_sid();
6852	int ret;
6853
6854	switch (cmd) {
6855	case BPF_MAP_CREATE:
6856		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
 
6857				   NULL);
6858		break;
6859	case BPF_PROG_LOAD:
6860		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
 
6861				   NULL);
6862		break;
6863	default:
6864		ret = 0;
6865		break;
6866	}
6867
6868	return ret;
6869}
6870
6871static u32 bpf_map_fmode_to_av(fmode_t fmode)
6872{
6873	u32 av = 0;
6874
6875	if (fmode & FMODE_READ)
6876		av |= BPF__MAP_READ;
6877	if (fmode & FMODE_WRITE)
6878		av |= BPF__MAP_WRITE;
6879	return av;
6880}
6881
6882/* This function will check the file pass through unix socket or binder to see
6883 * if it is a bpf related object. And apply corresponding checks on the bpf
6884 * object based on the type. The bpf maps and programs, not like other files and
6885 * socket, are using a shared anonymous inode inside the kernel as their inode.
6886 * So checking that inode cannot identify if the process have privilege to
6887 * access the bpf object and that's why we have to add this additional check in
6888 * selinux_file_receive and selinux_binder_transfer_files.
6889 */
6890static int bpf_fd_pass(const struct file *file, u32 sid)
6891{
6892	struct bpf_security_struct *bpfsec;
6893	struct bpf_prog *prog;
6894	struct bpf_map *map;
6895	int ret;
6896
6897	if (file->f_op == &bpf_map_fops) {
6898		map = file->private_data;
6899		bpfsec = map->security;
6900		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6901				   bpf_map_fmode_to_av(file->f_mode), NULL);
6902		if (ret)
6903			return ret;
6904	} else if (file->f_op == &bpf_prog_fops) {
6905		prog = file->private_data;
6906		bpfsec = prog->aux->security;
6907		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6908				   BPF__PROG_RUN, NULL);
6909		if (ret)
6910			return ret;
6911	}
6912	return 0;
6913}
6914
6915static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6916{
6917	u32 sid = current_sid();
6918	struct bpf_security_struct *bpfsec;
6919
6920	bpfsec = map->security;
6921	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6922			    bpf_map_fmode_to_av(fmode), NULL);
6923}
6924
6925static int selinux_bpf_prog(struct bpf_prog *prog)
6926{
6927	u32 sid = current_sid();
6928	struct bpf_security_struct *bpfsec;
6929
6930	bpfsec = prog->aux->security;
6931	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
 
6932			    BPF__PROG_RUN, NULL);
6933}
6934
6935static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6936				  struct bpf_token *token)
6937{
6938	struct bpf_security_struct *bpfsec;
6939
6940	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6941	if (!bpfsec)
6942		return -ENOMEM;
6943
6944	bpfsec->sid = current_sid();
6945	map->security = bpfsec;
6946
6947	return 0;
6948}
6949
6950static void selinux_bpf_map_free(struct bpf_map *map)
6951{
6952	struct bpf_security_struct *bpfsec = map->security;
6953
6954	map->security = NULL;
6955	kfree(bpfsec);
6956}
6957
6958static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6959				 struct bpf_token *token)
6960{
6961	struct bpf_security_struct *bpfsec;
6962
6963	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6964	if (!bpfsec)
6965		return -ENOMEM;
6966
6967	bpfsec->sid = current_sid();
6968	prog->aux->security = bpfsec;
6969
6970	return 0;
6971}
6972
6973static void selinux_bpf_prog_free(struct bpf_prog *prog)
6974{
6975	struct bpf_security_struct *bpfsec = prog->aux->security;
6976
6977	prog->aux->security = NULL;
6978	kfree(bpfsec);
6979}
6980
6981static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6982				    const struct path *path)
6983{
6984	struct bpf_security_struct *bpfsec;
6985
6986	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6987	if (!bpfsec)
6988		return -ENOMEM;
6989
6990	bpfsec->sid = current_sid();
6991	token->security = bpfsec;
6992
6993	return 0;
6994}
6995
6996static void selinux_bpf_token_free(struct bpf_token *token)
6997{
6998	struct bpf_security_struct *bpfsec = token->security;
6999
7000	token->security = NULL;
7001	kfree(bpfsec);
7002}
7003#endif
7004
7005struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
7006	.lbs_cred = sizeof(struct task_security_struct),
7007	.lbs_file = sizeof(struct file_security_struct),
7008	.lbs_inode = sizeof(struct inode_security_struct),
7009	.lbs_ipc = sizeof(struct ipc_security_struct),
7010	.lbs_key = sizeof(struct key_security_struct),
7011	.lbs_msg_msg = sizeof(struct msg_security_struct),
7012#ifdef CONFIG_PERF_EVENTS
7013	.lbs_perf_event = sizeof(struct perf_event_security_struct),
7014#endif
7015	.lbs_sock = sizeof(struct sk_security_struct),
7016	.lbs_superblock = sizeof(struct superblock_security_struct),
7017	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7018	.lbs_tun_dev = sizeof(struct tun_security_struct),
7019	.lbs_ib = sizeof(struct ib_security_struct),
7020};
7021
7022#ifdef CONFIG_PERF_EVENTS
7023static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7024{
7025	u32 requested, sid = current_sid();
7026
7027	if (type == PERF_SECURITY_OPEN)
7028		requested = PERF_EVENT__OPEN;
7029	else if (type == PERF_SECURITY_CPU)
7030		requested = PERF_EVENT__CPU;
7031	else if (type == PERF_SECURITY_KERNEL)
7032		requested = PERF_EVENT__KERNEL;
7033	else if (type == PERF_SECURITY_TRACEPOINT)
7034		requested = PERF_EVENT__TRACEPOINT;
7035	else
7036		return -EINVAL;
7037
7038	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7039			    requested, NULL);
7040}
7041
7042static int selinux_perf_event_alloc(struct perf_event *event)
7043{
7044	struct perf_event_security_struct *perfsec;
7045
7046	perfsec = selinux_perf_event(event->security);
 
 
 
7047	perfsec->sid = current_sid();
 
7048
7049	return 0;
7050}
7051
 
 
 
 
 
 
 
 
7052static int selinux_perf_event_read(struct perf_event *event)
7053{
7054	struct perf_event_security_struct *perfsec = event->security;
7055	u32 sid = current_sid();
7056
7057	return avc_has_perm(sid, perfsec->sid,
7058			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7059}
7060
7061static int selinux_perf_event_write(struct perf_event *event)
7062{
7063	struct perf_event_security_struct *perfsec = event->security;
7064	u32 sid = current_sid();
7065
7066	return avc_has_perm(sid, perfsec->sid,
7067			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7068}
7069#endif
7070
7071#ifdef CONFIG_IO_URING
7072/**
7073 * selinux_uring_override_creds - check the requested cred override
7074 * @new: the target creds
7075 *
7076 * Check to see if the current task is allowed to override it's credentials
7077 * to service an io_uring operation.
7078 */
7079static int selinux_uring_override_creds(const struct cred *new)
7080{
7081	return avc_has_perm(current_sid(), cred_sid(new),
7082			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7083}
7084
7085/**
7086 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7087 *
7088 * Check to see if the current task is allowed to create a new io_uring
7089 * kernel polling thread.
7090 */
7091static int selinux_uring_sqpoll(void)
7092{
7093	u32 sid = current_sid();
7094
7095	return avc_has_perm(sid, sid,
7096			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7097}
7098
7099/**
7100 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7101 * @ioucmd: the io_uring command structure
7102 *
7103 * Check to see if the current domain is allowed to execute an
7104 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7105 *
7106 */
7107static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7108{
7109	struct file *file = ioucmd->file;
7110	struct inode *inode = file_inode(file);
7111	struct inode_security_struct *isec = selinux_inode(inode);
7112	struct common_audit_data ad;
7113
7114	ad.type = LSM_AUDIT_DATA_FILE;
7115	ad.u.file = file;
7116
7117	return avc_has_perm(current_sid(), isec->sid,
7118			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7119}
7120#endif /* CONFIG_IO_URING */
7121
7122static const struct lsm_id selinux_lsmid = {
7123	.name = "selinux",
7124	.id = LSM_ID_SELINUX,
7125};
7126
7127/*
7128 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7129 * 1. any hooks that don't belong to (2.) or (3.) below,
7130 * 2. hooks that both access structures allocated by other hooks, and allocate
7131 *    structures that can be later accessed by other hooks (mostly "cloning"
7132 *    hooks),
7133 * 3. hooks that only allocate structures that can be later accessed by other
7134 *    hooks ("allocating" hooks).
7135 *
7136 * Please follow block comment delimiters in the list to keep this order.
 
 
 
 
7137 */
7138static struct security_hook_list selinux_hooks[] __ro_after_init = {
7139	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7140	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7141	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7142	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7143
7144	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7145	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7146	LSM_HOOK_INIT(capget, selinux_capget),
7147	LSM_HOOK_INIT(capset, selinux_capset),
7148	LSM_HOOK_INIT(capable, selinux_capable),
7149	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7150	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7151	LSM_HOOK_INIT(syslog, selinux_syslog),
7152	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7153
7154	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7155
7156	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7157	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7158	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7159
7160	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7161	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7162	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7163	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7164	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7165	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7166	LSM_HOOK_INIT(sb_mount, selinux_mount),
7167	LSM_HOOK_INIT(sb_umount, selinux_umount),
7168	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7169	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7170
7171	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7172
7173	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7174	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7175
7176	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7177	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7178	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7179	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7180	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7181	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7182	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7183	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7184	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7185	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7186	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7187	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7188	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7189	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7190	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7191	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7192	LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7193	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7194	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7195	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7196	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7197	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7198	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7199	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7200	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7201	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7202	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7203	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7204	LSM_HOOK_INIT(inode_getlsmprop, selinux_inode_getlsmprop),
7205	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7206	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7207	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7208
7209	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7210
7211	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7212	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7213	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7214	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7215	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7216	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7217	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7218	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7219	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7220	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7221	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7222	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7223
7224	LSM_HOOK_INIT(file_open, selinux_file_open),
7225
7226	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7227	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7228	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7229	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7230	LSM_HOOK_INIT(cred_getlsmprop, selinux_cred_getlsmprop),
7231	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7232	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7233	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7234	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7235	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7236	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7237	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7238	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7239	LSM_HOOK_INIT(current_getlsmprop_subj, selinux_current_getlsmprop_subj),
7240	LSM_HOOK_INIT(task_getlsmprop_obj, selinux_task_getlsmprop_obj),
7241	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7242	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7243	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7244	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7245	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7246	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7247	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7248	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7249	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7250	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7251	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7252
7253	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7254	LSM_HOOK_INIT(ipc_getlsmprop, selinux_ipc_getlsmprop),
7255
7256	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7257	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7258	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7259	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7260
7261	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7262	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7263	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7264
7265	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7266	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7267	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7268
7269	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7270
7271	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7272	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7273	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7274	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7275
7276	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7277	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7278	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7279	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7280	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7281	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7282
7283	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7284	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7285
7286	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7287	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7288	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7289	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7290	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7291	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7292	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7293	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7294	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7295	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7296	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7297	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7298	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7299	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7300	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7301	LSM_HOOK_INIT(socket_getpeersec_stream,
7302			selinux_socket_getpeersec_stream),
7303	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7304	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7305	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7306	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7307	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7308	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7309	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7310	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7311	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7312	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7313	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7314	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7315	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7316	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7317	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7318	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7319	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
 
7320	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7321	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7322	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7323	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7324#ifdef CONFIG_SECURITY_INFINIBAND
7325	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7326	LSM_HOOK_INIT(ib_endport_manage_subnet,
7327		      selinux_ib_endport_manage_subnet),
 
7328#endif
7329#ifdef CONFIG_SECURITY_NETWORK_XFRM
7330	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7331	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7332	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7333	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7334	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7335	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7336			selinux_xfrm_state_pol_flow_match),
7337	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7338#endif
7339
7340#ifdef CONFIG_KEYS
 
7341	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7342	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7343#ifdef CONFIG_KEY_NOTIFICATIONS
7344	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7345#endif
7346#endif
7347
7348#ifdef CONFIG_AUDIT
7349	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7350	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7351	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7352#endif
7353
7354#ifdef CONFIG_BPF_SYSCALL
7355	LSM_HOOK_INIT(bpf, selinux_bpf),
7356	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7357	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7358	LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7359	LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7360	LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7361#endif
7362
7363#ifdef CONFIG_PERF_EVENTS
7364	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
 
7365	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7366	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7367#endif
7368
7369#ifdef CONFIG_IO_URING
7370	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7371	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7372	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7373#endif
7374
7375	/*
7376	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7377	 */
7378	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7379	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7380	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7381	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7382#ifdef CONFIG_SECURITY_NETWORK_XFRM
7383	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7384#endif
7385
7386	/*
7387	 * PUT "ALLOCATING" HOOKS HERE
7388	 */
7389	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7390	LSM_HOOK_INIT(msg_queue_alloc_security,
7391		      selinux_msg_queue_alloc_security),
7392	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7393	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7394	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7395	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7396	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7397	LSM_HOOK_INIT(lsmprop_to_secctx, selinux_lsmprop_to_secctx),
7398	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7399	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7400	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7401#ifdef CONFIG_SECURITY_INFINIBAND
7402	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7403#endif
7404#ifdef CONFIG_SECURITY_NETWORK_XFRM
7405	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7406	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7407	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7408		      selinux_xfrm_state_alloc_acquire),
7409#endif
7410#ifdef CONFIG_KEYS
7411	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7412#endif
7413#ifdef CONFIG_AUDIT
7414	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7415#endif
7416#ifdef CONFIG_BPF_SYSCALL
7417	LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7418	LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7419	LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7420#endif
7421#ifdef CONFIG_PERF_EVENTS
7422	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7423#endif
7424};
7425
7426static __init int selinux_init(void)
7427{
7428	pr_info("SELinux:  Initializing.\n");
7429
7430	memset(&selinux_state, 0, sizeof(selinux_state));
7431	enforcing_set(selinux_enforcing_boot);
7432	selinux_avc_init();
 
 
 
7433	mutex_init(&selinux_state.status_lock);
7434	mutex_init(&selinux_state.policy_mutex);
7435
7436	/* Set the security state for the initial task. */
7437	cred_init_security();
7438
7439	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7440	if (!default_noexec)
7441		pr_notice("SELinux:  virtual memory is executable by default\n");
7442
7443	avc_init();
7444
7445	avtab_cache_init();
7446
7447	ebitmap_cache_init();
7448
7449	hashtab_cache_init();
7450
7451	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7452			   &selinux_lsmid);
7453
7454	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7455		panic("SELinux: Unable to register AVC netcache callback\n");
7456
7457	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7458		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7459
7460	if (selinux_enforcing_boot)
7461		pr_debug("SELinux:  Starting in enforcing mode\n");
7462	else
7463		pr_debug("SELinux:  Starting in permissive mode\n");
7464
7465	fs_validate_description("selinux", selinux_fs_parameters);
7466
7467	return 0;
7468}
7469
7470static void delayed_superblock_init(struct super_block *sb, void *unused)
7471{
7472	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7473}
7474
7475void selinux_complete_init(void)
7476{
7477	pr_debug("SELinux:  Completing initialization.\n");
7478
7479	/* Set up any superblocks initialized prior to the policy load. */
7480	pr_debug("SELinux:  Setting up existing superblocks.\n");
7481	iterate_supers(delayed_superblock_init, NULL);
7482}
7483
7484/* SELinux requires early initialization in order to label
7485   all processes and objects when they are created. */
7486DEFINE_LSM(selinux) = {
7487	.name = "selinux",
7488	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7489	.enabled = &selinux_enabled_boot,
7490	.blobs = &selinux_blob_sizes,
7491	.init = selinux_init,
7492};
7493
7494#if defined(CONFIG_NETFILTER)
 
7495static const struct nf_hook_ops selinux_nf_ops[] = {
7496	{
7497		.hook =		selinux_ip_postroute,
7498		.pf =		NFPROTO_IPV4,
7499		.hooknum =	NF_INET_POST_ROUTING,
7500		.priority =	NF_IP_PRI_SELINUX_LAST,
7501	},
7502	{
7503		.hook =		selinux_ip_forward,
7504		.pf =		NFPROTO_IPV4,
7505		.hooknum =	NF_INET_FORWARD,
7506		.priority =	NF_IP_PRI_SELINUX_FIRST,
7507	},
7508	{
7509		.hook =		selinux_ip_output,
7510		.pf =		NFPROTO_IPV4,
7511		.hooknum =	NF_INET_LOCAL_OUT,
7512		.priority =	NF_IP_PRI_SELINUX_FIRST,
7513	},
7514#if IS_ENABLED(CONFIG_IPV6)
7515	{
7516		.hook =		selinux_ip_postroute,
7517		.pf =		NFPROTO_IPV6,
7518		.hooknum =	NF_INET_POST_ROUTING,
7519		.priority =	NF_IP6_PRI_SELINUX_LAST,
7520	},
7521	{
7522		.hook =		selinux_ip_forward,
7523		.pf =		NFPROTO_IPV6,
7524		.hooknum =	NF_INET_FORWARD,
7525		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7526	},
7527	{
7528		.hook =		selinux_ip_output,
7529		.pf =		NFPROTO_IPV6,
7530		.hooknum =	NF_INET_LOCAL_OUT,
7531		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7532	},
7533#endif	/* IPV6 */
7534};
7535
7536static int __net_init selinux_nf_register(struct net *net)
7537{
7538	return nf_register_net_hooks(net, selinux_nf_ops,
7539				     ARRAY_SIZE(selinux_nf_ops));
7540}
7541
7542static void __net_exit selinux_nf_unregister(struct net *net)
7543{
7544	nf_unregister_net_hooks(net, selinux_nf_ops,
7545				ARRAY_SIZE(selinux_nf_ops));
7546}
7547
7548static struct pernet_operations selinux_net_ops = {
7549	.init = selinux_nf_register,
7550	.exit = selinux_nf_unregister,
7551};
7552
7553static int __init selinux_nf_ip_init(void)
7554{
7555	int err;
7556
7557	if (!selinux_enabled_boot)
7558		return 0;
7559
7560	pr_debug("SELinux:  Registering netfilter hooks\n");
7561
7562	err = register_pernet_subsys(&selinux_net_ops);
7563	if (err)
7564		panic("SELinux: register_pernet_subsys: error %d\n", err);
7565
7566	return 0;
7567}
7568__initcall(selinux_nf_ip_init);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7569#endif /* CONFIG_NETFILTER */
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 *  NSA Security-Enhanced Linux (SELinux) security module
   4 *
   5 *  This file contains the SELinux hook function implementations.
   6 *
   7 *  Authors:  Stephen Smalley, <sds@tycho.nsa.gov>
   8 *	      Chris Vance, <cvance@nai.com>
   9 *	      Wayne Salamon, <wsalamon@nai.com>
  10 *	      James Morris <jmorris@redhat.com>
  11 *
  12 *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
  13 *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
  14 *					   Eric Paris <eparis@redhat.com>
  15 *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
  16 *			    <dgoeddel@trustedcs.com>
  17 *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
  18 *	Paul Moore <paul@paul-moore.com>
  19 *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
  20 *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
  21 *  Copyright (C) 2016 Mellanox Technologies
  22 */
  23
  24#include <linux/init.h>
  25#include <linux/kd.h>
  26#include <linux/kernel.h>
  27#include <linux/kernel_read_file.h>
  28#include <linux/errno.h>
  29#include <linux/sched/signal.h>
  30#include <linux/sched/task.h>
  31#include <linux/lsm_hooks.h>
  32#include <linux/xattr.h>
  33#include <linux/capability.h>
  34#include <linux/unistd.h>
  35#include <linux/mm.h>
  36#include <linux/mman.h>
  37#include <linux/slab.h>
  38#include <linux/pagemap.h>
  39#include <linux/proc_fs.h>
  40#include <linux/swap.h>
  41#include <linux/spinlock.h>
  42#include <linux/syscalls.h>
  43#include <linux/dcache.h>
  44#include <linux/file.h>
  45#include <linux/fdtable.h>
  46#include <linux/namei.h>
  47#include <linux/mount.h>
  48#include <linux/fs_context.h>
  49#include <linux/fs_parser.h>
  50#include <linux/netfilter_ipv4.h>
  51#include <linux/netfilter_ipv6.h>
  52#include <linux/tty.h>
  53#include <net/icmp.h>
  54#include <net/ip.h>		/* for local_port_range[] */
  55#include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
  56#include <net/inet_connection_sock.h>
  57#include <net/net_namespace.h>
  58#include <net/netlabel.h>
  59#include <linux/uaccess.h>
  60#include <asm/ioctls.h>
  61#include <linux/atomic.h>
  62#include <linux/bitops.h>
  63#include <linux/interrupt.h>
  64#include <linux/netdevice.h>	/* for network interface checks */
  65#include <net/netlink.h>
  66#include <linux/tcp.h>
  67#include <linux/udp.h>
  68#include <linux/dccp.h>
  69#include <linux/sctp.h>
  70#include <net/sctp/structs.h>
  71#include <linux/quota.h>
  72#include <linux/un.h>		/* for Unix socket types */
  73#include <net/af_unix.h>	/* for Unix socket types */
  74#include <linux/parser.h>
  75#include <linux/nfs_mount.h>
  76#include <net/ipv6.h>
  77#include <linux/hugetlb.h>
  78#include <linux/personality.h>
  79#include <linux/audit.h>
  80#include <linux/string.h>
  81#include <linux/mutex.h>
  82#include <linux/posix-timers.h>
  83#include <linux/syslog.h>
  84#include <linux/user_namespace.h>
  85#include <linux/export.h>
  86#include <linux/msg.h>
  87#include <linux/shm.h>
 
  88#include <linux/bpf.h>
  89#include <linux/kernfs.h>
  90#include <linux/stringhash.h>	/* for hashlen_string() */
  91#include <uapi/linux/mount.h>
  92#include <linux/fsnotify.h>
  93#include <linux/fanotify.h>
  94#include <linux/io_uring.h>
 
  95
  96#include "avc.h"
  97#include "objsec.h"
  98#include "netif.h"
  99#include "netnode.h"
 100#include "netport.h"
 101#include "ibpkey.h"
 102#include "xfrm.h"
 103#include "netlabel.h"
 104#include "audit.h"
 105#include "avc_ss.h"
 106
 
 
 107struct selinux_state selinux_state;
 108
 109/* SECMARK reference count */
 110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
 111
 112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
 113static int selinux_enforcing_boot __initdata;
 114
 115static int __init enforcing_setup(char *str)
 116{
 117	unsigned long enforcing;
 118	if (!kstrtoul(str, 0, &enforcing))
 119		selinux_enforcing_boot = enforcing ? 1 : 0;
 120	return 1;
 121}
 122__setup("enforcing=", enforcing_setup);
 123#else
 124#define selinux_enforcing_boot 1
 125#endif
 126
 127int selinux_enabled_boot __initdata = 1;
 128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
 129static int __init selinux_enabled_setup(char *str)
 130{
 131	unsigned long enabled;
 132	if (!kstrtoul(str, 0, &enabled))
 133		selinux_enabled_boot = enabled ? 1 : 0;
 134	return 1;
 135}
 136__setup("selinux=", selinux_enabled_setup);
 137#endif
 138
 139static unsigned int selinux_checkreqprot_boot =
 140	CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
 141
 142static int __init checkreqprot_setup(char *str)
 143{
 144	unsigned long checkreqprot;
 145
 146	if (!kstrtoul(str, 0, &checkreqprot)) {
 147		selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
 148		if (checkreqprot)
 149			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is deprecated and will be rejected in a future kernel release.\n");
 150	}
 151	return 1;
 152}
 153__setup("checkreqprot=", checkreqprot_setup);
 154
 155/**
 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
 157 *
 158 * Description:
 159 * This function checks the SECMARK reference counter to see if any SECMARK
 160 * targets are currently configured, if the reference counter is greater than
 161 * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
 162 * enabled, false (0) if SECMARK is disabled.  If the always_check_network
 163 * policy capability is enabled, SECMARK is always considered enabled.
 164 *
 165 */
 166static int selinux_secmark_enabled(void)
 167{
 168	return (selinux_policycap_alwaysnetwork() ||
 169		atomic_read(&selinux_secmark_refcount));
 170}
 171
 172/**
 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
 174 *
 175 * Description:
 176 * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
 177 * (1) if any are enabled or false (0) if neither are enabled.  If the
 178 * always_check_network policy capability is enabled, peer labeling
 179 * is always considered enabled.
 180 *
 181 */
 182static int selinux_peerlbl_enabled(void)
 183{
 184	return (selinux_policycap_alwaysnetwork() ||
 185		netlbl_enabled() || selinux_xfrm_enabled());
 186}
 187
 188static int selinux_netcache_avc_callback(u32 event)
 189{
 190	if (event == AVC_CALLBACK_RESET) {
 191		sel_netif_flush();
 192		sel_netnode_flush();
 193		sel_netport_flush();
 194		synchronize_net();
 195	}
 196	return 0;
 197}
 198
 199static int selinux_lsm_notifier_avc_callback(u32 event)
 200{
 201	if (event == AVC_CALLBACK_RESET) {
 202		sel_ib_pkey_flush();
 203		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
 204	}
 205
 206	return 0;
 207}
 208
 209/*
 210 * initialise the security for the init task
 211 */
 212static void cred_init_security(void)
 213{
 214	struct task_security_struct *tsec;
 215
 216	tsec = selinux_cred(unrcu_pointer(current->real_cred));
 217	tsec->osid = tsec->sid = SECINITSID_KERNEL;
 218}
 219
 220/*
 221 * get the security ID of a set of credentials
 222 */
 223static inline u32 cred_sid(const struct cred *cred)
 224{
 225	const struct task_security_struct *tsec;
 226
 227	tsec = selinux_cred(cred);
 228	return tsec->sid;
 229}
 230
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 231/*
 232 * get the objective security ID of a task
 233 */
 234static inline u32 task_sid_obj(const struct task_struct *task)
 235{
 236	u32 sid;
 237
 238	rcu_read_lock();
 239	sid = cred_sid(__task_cred(task));
 240	rcu_read_unlock();
 241	return sid;
 242}
 243
 244static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
 245
 246/*
 247 * Try reloading inode security labels that have been marked as invalid.  The
 248 * @may_sleep parameter indicates when sleeping and thus reloading labels is
 249 * allowed; when set to false, returns -ECHILD when the label is
 250 * invalid.  The @dentry parameter should be set to a dentry of the inode.
 251 */
 252static int __inode_security_revalidate(struct inode *inode,
 253				       struct dentry *dentry,
 254				       bool may_sleep)
 255{
 256	struct inode_security_struct *isec = selinux_inode(inode);
 257
 258	might_sleep_if(may_sleep);
 259
 260	if (selinux_initialized(&selinux_state) &&
 261	    isec->initialized != LABEL_INITIALIZED) {
 
 
 
 
 
 262		if (!may_sleep)
 263			return -ECHILD;
 264
 265		/*
 266		 * Try reloading the inode security label.  This will fail if
 267		 * @opt_dentry is NULL and no dentry for this inode can be
 268		 * found; in that case, continue using the old label.
 269		 */
 270		inode_doinit_with_dentry(inode, dentry);
 271	}
 272	return 0;
 273}
 274
 275static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
 276{
 277	return selinux_inode(inode);
 278}
 279
 280static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
 281{
 282	int error;
 283
 284	error = __inode_security_revalidate(inode, NULL, !rcu);
 285	if (error)
 286		return ERR_PTR(error);
 287	return selinux_inode(inode);
 288}
 289
 290/*
 291 * Get the security label of an inode.
 292 */
 293static struct inode_security_struct *inode_security(struct inode *inode)
 294{
 295	__inode_security_revalidate(inode, NULL, true);
 296	return selinux_inode(inode);
 297}
 298
 299static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
 300{
 301	struct inode *inode = d_backing_inode(dentry);
 302
 303	return selinux_inode(inode);
 304}
 305
 306/*
 307 * Get the security label of a dentry's backing inode.
 308 */
 309static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
 310{
 311	struct inode *inode = d_backing_inode(dentry);
 312
 313	__inode_security_revalidate(inode, dentry, true);
 314	return selinux_inode(inode);
 315}
 316
 317static void inode_free_security(struct inode *inode)
 318{
 319	struct inode_security_struct *isec = selinux_inode(inode);
 320	struct superblock_security_struct *sbsec;
 321
 322	if (!isec)
 323		return;
 324	sbsec = selinux_superblock(inode->i_sb);
 325	/*
 326	 * As not all inode security structures are in a list, we check for
 327	 * empty list outside of the lock to make sure that we won't waste
 328	 * time taking a lock doing nothing.
 329	 *
 330	 * The list_del_init() function can be safely called more than once.
 331	 * It should not be possible for this function to be called with
 332	 * concurrent list_add(), but for better safety against future changes
 333	 * in the code, we use list_empty_careful() here.
 334	 */
 335	if (!list_empty_careful(&isec->list)) {
 336		spin_lock(&sbsec->isec_lock);
 337		list_del_init(&isec->list);
 338		spin_unlock(&sbsec->isec_lock);
 339	}
 340}
 341
 342struct selinux_mnt_opts {
 343	u32 fscontext_sid;
 344	u32 context_sid;
 345	u32 rootcontext_sid;
 346	u32 defcontext_sid;
 347};
 348
 349static void selinux_free_mnt_opts(void *mnt_opts)
 350{
 351	kfree(mnt_opts);
 352}
 353
 354enum {
 355	Opt_error = -1,
 356	Opt_context = 0,
 357	Opt_defcontext = 1,
 358	Opt_fscontext = 2,
 359	Opt_rootcontext = 3,
 360	Opt_seclabel = 4,
 361};
 362
 363#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
 364static struct {
 365	const char *name;
 366	int len;
 367	int opt;
 368	bool has_arg;
 369} tokens[] = {
 370	A(context, true),
 371	A(fscontext, true),
 372	A(defcontext, true),
 373	A(rootcontext, true),
 374	A(seclabel, false),
 375};
 376#undef A
 377
 378static int match_opt_prefix(char *s, int l, char **arg)
 379{
 380	int i;
 381
 382	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
 383		size_t len = tokens[i].len;
 384		if (len > l || memcmp(s, tokens[i].name, len))
 385			continue;
 386		if (tokens[i].has_arg) {
 387			if (len == l || s[len] != '=')
 388				continue;
 389			*arg = s + len + 1;
 390		} else if (len != l)
 391			continue;
 392		return tokens[i].opt;
 393	}
 394	return Opt_error;
 395}
 396
 397#define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
 398
 399static int may_context_mount_sb_relabel(u32 sid,
 400			struct superblock_security_struct *sbsec,
 401			const struct cred *cred)
 402{
 403	const struct task_security_struct *tsec = selinux_cred(cred);
 404	int rc;
 405
 406	rc = avc_has_perm(&selinux_state,
 407			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 408			  FILESYSTEM__RELABELFROM, NULL);
 409	if (rc)
 410		return rc;
 411
 412	rc = avc_has_perm(&selinux_state,
 413			  tsec->sid, sid, SECCLASS_FILESYSTEM,
 414			  FILESYSTEM__RELABELTO, NULL);
 415	return rc;
 416}
 417
 418static int may_context_mount_inode_relabel(u32 sid,
 419			struct superblock_security_struct *sbsec,
 420			const struct cred *cred)
 421{
 422	const struct task_security_struct *tsec = selinux_cred(cred);
 423	int rc;
 424	rc = avc_has_perm(&selinux_state,
 425			  tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
 426			  FILESYSTEM__RELABELFROM, NULL);
 427	if (rc)
 428		return rc;
 429
 430	rc = avc_has_perm(&selinux_state,
 431			  sid, sbsec->sid, SECCLASS_FILESYSTEM,
 432			  FILESYSTEM__ASSOCIATE, NULL);
 433	return rc;
 434}
 435
 436static int selinux_is_genfs_special_handling(struct super_block *sb)
 437{
 438	/* Special handling. Genfs but also in-core setxattr handler */
 439	return	!strcmp(sb->s_type->name, "sysfs") ||
 440		!strcmp(sb->s_type->name, "pstore") ||
 441		!strcmp(sb->s_type->name, "debugfs") ||
 442		!strcmp(sb->s_type->name, "tracefs") ||
 443		!strcmp(sb->s_type->name, "rootfs") ||
 444		(selinux_policycap_cgroupseclabel() &&
 445		 (!strcmp(sb->s_type->name, "cgroup") ||
 446		  !strcmp(sb->s_type->name, "cgroup2")));
 447}
 448
 449static int selinux_is_sblabel_mnt(struct super_block *sb)
 450{
 451	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 452
 453	/*
 454	 * IMPORTANT: Double-check logic in this function when adding a new
 455	 * SECURITY_FS_USE_* definition!
 456	 */
 457	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
 458
 459	switch (sbsec->behavior) {
 460	case SECURITY_FS_USE_XATTR:
 461	case SECURITY_FS_USE_TRANS:
 462	case SECURITY_FS_USE_TASK:
 463	case SECURITY_FS_USE_NATIVE:
 464		return 1;
 465
 466	case SECURITY_FS_USE_GENFS:
 467		return selinux_is_genfs_special_handling(sb);
 468
 469	/* Never allow relabeling on context mounts */
 470	case SECURITY_FS_USE_MNTPOINT:
 471	case SECURITY_FS_USE_NONE:
 472	default:
 473		return 0;
 474	}
 475}
 476
 477static int sb_check_xattr_support(struct super_block *sb)
 478{
 479	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 480	struct dentry *root = sb->s_root;
 481	struct inode *root_inode = d_backing_inode(root);
 482	u32 sid;
 483	int rc;
 484
 485	/*
 486	 * Make sure that the xattr handler exists and that no
 487	 * error other than -ENODATA is returned by getxattr on
 488	 * the root directory.  -ENODATA is ok, as this may be
 489	 * the first boot of the SELinux kernel before we have
 490	 * assigned xattr values to the filesystem.
 491	 */
 492	if (!(root_inode->i_opflags & IOP_XATTR)) {
 493		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
 494			sb->s_id, sb->s_type->name);
 495		goto fallback;
 496	}
 497
 498	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
 499	if (rc < 0 && rc != -ENODATA) {
 500		if (rc == -EOPNOTSUPP) {
 501			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
 502				sb->s_id, sb->s_type->name);
 503			goto fallback;
 504		} else {
 505			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
 506				sb->s_id, sb->s_type->name, -rc);
 507			return rc;
 508		}
 509	}
 510	return 0;
 511
 512fallback:
 513	/* No xattr support - try to fallback to genfs if possible. */
 514	rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
 515				SECCLASS_DIR, &sid);
 516	if (rc)
 517		return -EOPNOTSUPP;
 518
 519	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
 520		sb->s_id, sb->s_type->name);
 521	sbsec->behavior = SECURITY_FS_USE_GENFS;
 522	sbsec->sid = sid;
 523	return 0;
 524}
 525
 526static int sb_finish_set_opts(struct super_block *sb)
 527{
 528	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 529	struct dentry *root = sb->s_root;
 530	struct inode *root_inode = d_backing_inode(root);
 531	int rc = 0;
 532
 533	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 534		rc = sb_check_xattr_support(sb);
 535		if (rc)
 536			return rc;
 537	}
 538
 539	sbsec->flags |= SE_SBINITIALIZED;
 540
 541	/*
 542	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
 543	 * leave the flag untouched because sb_clone_mnt_opts might be handing
 544	 * us a superblock that needs the flag to be cleared.
 545	 */
 546	if (selinux_is_sblabel_mnt(sb))
 547		sbsec->flags |= SBLABEL_MNT;
 548	else
 549		sbsec->flags &= ~SBLABEL_MNT;
 550
 551	/* Initialize the root inode. */
 552	rc = inode_doinit_with_dentry(root_inode, root);
 553
 554	/* Initialize any other inodes associated with the superblock, e.g.
 555	   inodes created prior to initial policy load or inodes created
 556	   during get_sb by a pseudo filesystem that directly
 557	   populates itself. */
 558	spin_lock(&sbsec->isec_lock);
 559	while (!list_empty(&sbsec->isec_head)) {
 560		struct inode_security_struct *isec =
 561				list_first_entry(&sbsec->isec_head,
 562					   struct inode_security_struct, list);
 563		struct inode *inode = isec->inode;
 564		list_del_init(&isec->list);
 565		spin_unlock(&sbsec->isec_lock);
 566		inode = igrab(inode);
 567		if (inode) {
 568			if (!IS_PRIVATE(inode))
 569				inode_doinit_with_dentry(inode, NULL);
 570			iput(inode);
 571		}
 572		spin_lock(&sbsec->isec_lock);
 573	}
 574	spin_unlock(&sbsec->isec_lock);
 575	return rc;
 576}
 577
 578static int bad_option(struct superblock_security_struct *sbsec, char flag,
 579		      u32 old_sid, u32 new_sid)
 580{
 581	char mnt_flags = sbsec->flags & SE_MNTMASK;
 582
 583	/* check if the old mount command had the same options */
 584	if (sbsec->flags & SE_SBINITIALIZED)
 585		if (!(sbsec->flags & flag) ||
 586		    (old_sid != new_sid))
 587			return 1;
 588
 589	/* check if we were passed the same options twice,
 590	 * aka someone passed context=a,context=b
 591	 */
 592	if (!(sbsec->flags & SE_SBINITIALIZED))
 593		if (mnt_flags & flag)
 594			return 1;
 595	return 0;
 596}
 597
 598/*
 599 * Allow filesystems with binary mount data to explicitly set mount point
 600 * labeling information.
 601 */
 602static int selinux_set_mnt_opts(struct super_block *sb,
 603				void *mnt_opts,
 604				unsigned long kern_flags,
 605				unsigned long *set_kern_flags)
 606{
 607	const struct cred *cred = current_cred();
 608	struct superblock_security_struct *sbsec = selinux_superblock(sb);
 609	struct dentry *root = sb->s_root;
 610	struct selinux_mnt_opts *opts = mnt_opts;
 611	struct inode_security_struct *root_isec;
 612	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
 613	u32 defcontext_sid = 0;
 614	int rc = 0;
 615
 
 
 
 
 
 
 
 616	mutex_lock(&sbsec->lock);
 617
 618	if (!selinux_initialized(&selinux_state)) {
 619		if (!opts) {
 620			/* Defer initialization until selinux_complete_init,
 621			   after the initial policy is loaded and the security
 622			   server is ready to handle calls. */
 
 
 
 
 623			goto out;
 624		}
 625		rc = -EINVAL;
 626		pr_warn("SELinux: Unable to set superblock options "
 627			"before the security server is initialized\n");
 628		goto out;
 629	}
 630	if (kern_flags && !set_kern_flags) {
 631		/* Specifying internal flags without providing a place to
 632		 * place the results is not allowed */
 633		rc = -EINVAL;
 634		goto out;
 635	}
 636
 637	/*
 638	 * Binary mount data FS will come through this function twice.  Once
 639	 * from an explicit call and once from the generic calls from the vfs.
 640	 * Since the generic VFS calls will not contain any security mount data
 641	 * we need to skip the double mount verification.
 642	 *
 643	 * This does open a hole in which we will not notice if the first
 644	 * mount using this sb set explicit options and a second mount using
 645	 * this sb does not set any security options.  (The first options
 646	 * will be used for both mounts)
 647	 */
 648	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
 649	    && !opts)
 650		goto out;
 651
 652	root_isec = backing_inode_security_novalidate(root);
 653
 654	/*
 655	 * parse the mount options, check if they are valid sids.
 656	 * also check if someone is trying to mount the same sb more
 657	 * than once with different security options.
 658	 */
 659	if (opts) {
 660		if (opts->fscontext_sid) {
 661			fscontext_sid = opts->fscontext_sid;
 662			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
 663					fscontext_sid))
 664				goto out_double_mount;
 665			sbsec->flags |= FSCONTEXT_MNT;
 666		}
 667		if (opts->context_sid) {
 668			context_sid = opts->context_sid;
 669			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
 670					context_sid))
 671				goto out_double_mount;
 672			sbsec->flags |= CONTEXT_MNT;
 673		}
 674		if (opts->rootcontext_sid) {
 675			rootcontext_sid = opts->rootcontext_sid;
 676			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
 677					rootcontext_sid))
 678				goto out_double_mount;
 679			sbsec->flags |= ROOTCONTEXT_MNT;
 680		}
 681		if (opts->defcontext_sid) {
 682			defcontext_sid = opts->defcontext_sid;
 683			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
 684					defcontext_sid))
 685				goto out_double_mount;
 686			sbsec->flags |= DEFCONTEXT_MNT;
 687		}
 688	}
 689
 690	if (sbsec->flags & SE_SBINITIALIZED) {
 691		/* previously mounted with options, but not on this attempt? */
 692		if ((sbsec->flags & SE_MNTMASK) && !opts)
 693			goto out_double_mount;
 694		rc = 0;
 695		goto out;
 696	}
 697
 698	if (strcmp(sb->s_type->name, "proc") == 0)
 699		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
 700
 701	if (!strcmp(sb->s_type->name, "debugfs") ||
 702	    !strcmp(sb->s_type->name, "tracefs") ||
 703	    !strcmp(sb->s_type->name, "binder") ||
 704	    !strcmp(sb->s_type->name, "bpf") ||
 705	    !strcmp(sb->s_type->name, "pstore") ||
 706	    !strcmp(sb->s_type->name, "securityfs"))
 707		sbsec->flags |= SE_SBGENFS;
 708
 709	if (!strcmp(sb->s_type->name, "sysfs") ||
 710	    !strcmp(sb->s_type->name, "cgroup") ||
 711	    !strcmp(sb->s_type->name, "cgroup2"))
 712		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
 713
 714	if (!sbsec->behavior) {
 715		/*
 716		 * Determine the labeling behavior to use for this
 717		 * filesystem type.
 718		 */
 719		rc = security_fs_use(&selinux_state, sb);
 720		if (rc) {
 721			pr_warn("%s: security_fs_use(%s) returned %d\n",
 722					__func__, sb->s_type->name, rc);
 723			goto out;
 724		}
 725	}
 726
 727	/*
 728	 * If this is a user namespace mount and the filesystem type is not
 729	 * explicitly whitelisted, then no contexts are allowed on the command
 730	 * line and security labels must be ignored.
 731	 */
 732	if (sb->s_user_ns != &init_user_ns &&
 733	    strcmp(sb->s_type->name, "tmpfs") &&
 734	    strcmp(sb->s_type->name, "ramfs") &&
 735	    strcmp(sb->s_type->name, "devpts") &&
 736	    strcmp(sb->s_type->name, "overlay")) {
 737		if (context_sid || fscontext_sid || rootcontext_sid ||
 738		    defcontext_sid) {
 739			rc = -EACCES;
 740			goto out;
 741		}
 742		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
 743			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 744			rc = security_transition_sid(&selinux_state,
 745						     current_sid(),
 746						     current_sid(),
 747						     SECCLASS_FILE, NULL,
 748						     &sbsec->mntpoint_sid);
 749			if (rc)
 750				goto out;
 751		}
 752		goto out_set_opts;
 753	}
 754
 755	/* sets the context of the superblock for the fs being mounted. */
 756	if (fscontext_sid) {
 757		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
 758		if (rc)
 759			goto out;
 760
 761		sbsec->sid = fscontext_sid;
 762	}
 763
 764	/*
 765	 * Switch to using mount point labeling behavior.
 766	 * sets the label used on all file below the mountpoint, and will set
 767	 * the superblock context if not already set.
 768	 */
 769	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
 
 
 
 
 
 
 
 
 
 
 770		sbsec->behavior = SECURITY_FS_USE_NATIVE;
 771		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 772	}
 773
 774	if (context_sid) {
 775		if (!fscontext_sid) {
 776			rc = may_context_mount_sb_relabel(context_sid, sbsec,
 777							  cred);
 778			if (rc)
 779				goto out;
 780			sbsec->sid = context_sid;
 781		} else {
 782			rc = may_context_mount_inode_relabel(context_sid, sbsec,
 783							     cred);
 784			if (rc)
 785				goto out;
 786		}
 787		if (!rootcontext_sid)
 788			rootcontext_sid = context_sid;
 789
 790		sbsec->mntpoint_sid = context_sid;
 791		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
 792	}
 793
 794	if (rootcontext_sid) {
 795		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
 796						     cred);
 797		if (rc)
 798			goto out;
 799
 800		root_isec->sid = rootcontext_sid;
 801		root_isec->initialized = LABEL_INITIALIZED;
 802	}
 803
 804	if (defcontext_sid) {
 805		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
 806			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
 807			rc = -EINVAL;
 808			pr_warn("SELinux: defcontext option is "
 809			       "invalid for this filesystem type\n");
 810			goto out;
 811		}
 812
 813		if (defcontext_sid != sbsec->def_sid) {
 814			rc = may_context_mount_inode_relabel(defcontext_sid,
 815							     sbsec, cred);
 816			if (rc)
 817				goto out;
 818		}
 819
 820		sbsec->def_sid = defcontext_sid;
 821	}
 822
 823out_set_opts:
 824	rc = sb_finish_set_opts(sb);
 825out:
 826	mutex_unlock(&sbsec->lock);
 827	return rc;
 828out_double_mount:
 829	rc = -EINVAL;
 830	pr_warn("SELinux: mount invalid.  Same superblock, different "
 831	       "security settings for (dev %s, type %s)\n", sb->s_id,
 832	       sb->s_type->name);
 833	goto out;
 834}
 835
 836static int selinux_cmp_sb_context(const struct super_block *oldsb,
 837				    const struct super_block *newsb)
 838{
 839	struct superblock_security_struct *old = selinux_superblock(oldsb);
 840	struct superblock_security_struct *new = selinux_superblock(newsb);
 841	char oldflags = old->flags & SE_MNTMASK;
 842	char newflags = new->flags & SE_MNTMASK;
 843
 844	if (oldflags != newflags)
 845		goto mismatch;
 846	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
 847		goto mismatch;
 848	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
 849		goto mismatch;
 850	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
 851		goto mismatch;
 852	if (oldflags & ROOTCONTEXT_MNT) {
 853		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
 854		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
 855		if (oldroot->sid != newroot->sid)
 856			goto mismatch;
 857	}
 858	return 0;
 859mismatch:
 860	pr_warn("SELinux: mount invalid.  Same superblock, "
 861			    "different security settings for (dev %s, "
 862			    "type %s)\n", newsb->s_id, newsb->s_type->name);
 863	return -EBUSY;
 864}
 865
 866static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
 867					struct super_block *newsb,
 868					unsigned long kern_flags,
 869					unsigned long *set_kern_flags)
 870{
 871	int rc = 0;
 872	const struct superblock_security_struct *oldsbsec =
 873						selinux_superblock(oldsb);
 874	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
 875
 876	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
 877	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
 878	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
 879
 880	/*
 881	 * if the parent was able to be mounted it clearly had no special lsm
 882	 * mount options.  thus we can safely deal with this superblock later
 883	 */
 884	if (!selinux_initialized(&selinux_state))
 885		return 0;
 886
 887	/*
 888	 * Specifying internal flags without providing a place to
 889	 * place the results is not allowed.
 890	 */
 891	if (kern_flags && !set_kern_flags)
 892		return -EINVAL;
 893
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894	/* how can we clone if the old one wasn't set up?? */
 895	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
 896
 897	/* if fs is reusing a sb, make sure that the contexts match */
 898	if (newsbsec->flags & SE_SBINITIALIZED) {
 
 899		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
 900			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 901		return selinux_cmp_sb_context(oldsb, newsb);
 902	}
 903
 904	mutex_lock(&newsbsec->lock);
 905
 906	newsbsec->flags = oldsbsec->flags;
 907
 908	newsbsec->sid = oldsbsec->sid;
 909	newsbsec->def_sid = oldsbsec->def_sid;
 910	newsbsec->behavior = oldsbsec->behavior;
 911
 912	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
 913		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
 914		rc = security_fs_use(&selinux_state, newsb);
 915		if (rc)
 916			goto out;
 917	}
 918
 919	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
 920		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
 921		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
 922	}
 923
 924	if (set_context) {
 925		u32 sid = oldsbsec->mntpoint_sid;
 926
 927		if (!set_fscontext)
 928			newsbsec->sid = sid;
 929		if (!set_rootcontext) {
 930			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 931			newisec->sid = sid;
 932		}
 933		newsbsec->mntpoint_sid = sid;
 934	}
 935	if (set_rootcontext) {
 936		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
 937		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
 938
 939		newisec->sid = oldisec->sid;
 940	}
 941
 942	sb_finish_set_opts(newsb);
 943out:
 944	mutex_unlock(&newsbsec->lock);
 945	return rc;
 946}
 947
 948/*
 949 * NOTE: the caller is resposible for freeing the memory even if on error.
 950 */
 951static int selinux_add_opt(int token, const char *s, void **mnt_opts)
 952{
 953	struct selinux_mnt_opts *opts = *mnt_opts;
 954	u32 *dst_sid;
 955	int rc;
 956
 957	if (token == Opt_seclabel)
 958		/* eaten and completely ignored */
 959		return 0;
 960	if (!s)
 961		return -EINVAL;
 962
 963	if (!selinux_initialized(&selinux_state)) {
 964		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
 965		return -EINVAL;
 966	}
 967
 968	if (!opts) {
 969		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
 970		if (!opts)
 971			return -ENOMEM;
 972		*mnt_opts = opts;
 973	}
 974
 975	switch (token) {
 976	case Opt_context:
 977		if (opts->context_sid || opts->defcontext_sid)
 978			goto err;
 979		dst_sid = &opts->context_sid;
 980		break;
 981	case Opt_fscontext:
 982		if (opts->fscontext_sid)
 983			goto err;
 984		dst_sid = &opts->fscontext_sid;
 985		break;
 986	case Opt_rootcontext:
 987		if (opts->rootcontext_sid)
 988			goto err;
 989		dst_sid = &opts->rootcontext_sid;
 990		break;
 991	case Opt_defcontext:
 992		if (opts->context_sid || opts->defcontext_sid)
 993			goto err;
 994		dst_sid = &opts->defcontext_sid;
 995		break;
 996	default:
 997		WARN_ON(1);
 998		return -EINVAL;
 999	}
1000	rc = security_context_str_to_sid(&selinux_state, s, dst_sid, GFP_KERNEL);
1001	if (rc)
1002		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1003			s, rc);
1004	return rc;
1005
1006err:
1007	pr_warn(SEL_MOUNT_FAIL_MSG);
1008	return -EINVAL;
1009}
1010
1011static int show_sid(struct seq_file *m, u32 sid)
1012{
1013	char *context = NULL;
1014	u32 len;
1015	int rc;
1016
1017	rc = security_sid_to_context(&selinux_state, sid,
1018					     &context, &len);
1019	if (!rc) {
1020		bool has_comma = strchr(context, ',');
1021
1022		seq_putc(m, '=');
1023		if (has_comma)
1024			seq_putc(m, '\"');
1025		seq_escape(m, context, "\"\n\\");
1026		if (has_comma)
1027			seq_putc(m, '\"');
1028	}
1029	kfree(context);
1030	return rc;
1031}
1032
1033static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1034{
1035	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1036	int rc;
1037
1038	if (!(sbsec->flags & SE_SBINITIALIZED))
1039		return 0;
1040
1041	if (!selinux_initialized(&selinux_state))
1042		return 0;
1043
1044	if (sbsec->flags & FSCONTEXT_MNT) {
1045		seq_putc(m, ',');
1046		seq_puts(m, FSCONTEXT_STR);
1047		rc = show_sid(m, sbsec->sid);
1048		if (rc)
1049			return rc;
1050	}
1051	if (sbsec->flags & CONTEXT_MNT) {
1052		seq_putc(m, ',');
1053		seq_puts(m, CONTEXT_STR);
1054		rc = show_sid(m, sbsec->mntpoint_sid);
1055		if (rc)
1056			return rc;
1057	}
1058	if (sbsec->flags & DEFCONTEXT_MNT) {
1059		seq_putc(m, ',');
1060		seq_puts(m, DEFCONTEXT_STR);
1061		rc = show_sid(m, sbsec->def_sid);
1062		if (rc)
1063			return rc;
1064	}
1065	if (sbsec->flags & ROOTCONTEXT_MNT) {
1066		struct dentry *root = sb->s_root;
1067		struct inode_security_struct *isec = backing_inode_security(root);
1068		seq_putc(m, ',');
1069		seq_puts(m, ROOTCONTEXT_STR);
1070		rc = show_sid(m, isec->sid);
1071		if (rc)
1072			return rc;
1073	}
1074	if (sbsec->flags & SBLABEL_MNT) {
1075		seq_putc(m, ',');
1076		seq_puts(m, SECLABEL_STR);
1077	}
1078	return 0;
1079}
1080
1081static inline u16 inode_mode_to_security_class(umode_t mode)
1082{
1083	switch (mode & S_IFMT) {
1084	case S_IFSOCK:
1085		return SECCLASS_SOCK_FILE;
1086	case S_IFLNK:
1087		return SECCLASS_LNK_FILE;
1088	case S_IFREG:
1089		return SECCLASS_FILE;
1090	case S_IFBLK:
1091		return SECCLASS_BLK_FILE;
1092	case S_IFDIR:
1093		return SECCLASS_DIR;
1094	case S_IFCHR:
1095		return SECCLASS_CHR_FILE;
1096	case S_IFIFO:
1097		return SECCLASS_FIFO_FILE;
1098
1099	}
1100
1101	return SECCLASS_FILE;
1102}
1103
1104static inline int default_protocol_stream(int protocol)
1105{
1106	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1107		protocol == IPPROTO_MPTCP);
1108}
1109
1110static inline int default_protocol_dgram(int protocol)
1111{
1112	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1113}
1114
1115static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1116{
1117	int extsockclass = selinux_policycap_extsockclass();
1118
1119	switch (family) {
1120	case PF_UNIX:
1121		switch (type) {
1122		case SOCK_STREAM:
1123		case SOCK_SEQPACKET:
1124			return SECCLASS_UNIX_STREAM_SOCKET;
1125		case SOCK_DGRAM:
1126		case SOCK_RAW:
1127			return SECCLASS_UNIX_DGRAM_SOCKET;
1128		}
1129		break;
1130	case PF_INET:
1131	case PF_INET6:
1132		switch (type) {
1133		case SOCK_STREAM:
1134		case SOCK_SEQPACKET:
1135			if (default_protocol_stream(protocol))
1136				return SECCLASS_TCP_SOCKET;
1137			else if (extsockclass && protocol == IPPROTO_SCTP)
1138				return SECCLASS_SCTP_SOCKET;
1139			else
1140				return SECCLASS_RAWIP_SOCKET;
1141		case SOCK_DGRAM:
1142			if (default_protocol_dgram(protocol))
1143				return SECCLASS_UDP_SOCKET;
1144			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1145						  protocol == IPPROTO_ICMPV6))
1146				return SECCLASS_ICMP_SOCKET;
1147			else
1148				return SECCLASS_RAWIP_SOCKET;
1149		case SOCK_DCCP:
1150			return SECCLASS_DCCP_SOCKET;
1151		default:
1152			return SECCLASS_RAWIP_SOCKET;
1153		}
1154		break;
1155	case PF_NETLINK:
1156		switch (protocol) {
1157		case NETLINK_ROUTE:
1158			return SECCLASS_NETLINK_ROUTE_SOCKET;
1159		case NETLINK_SOCK_DIAG:
1160			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1161		case NETLINK_NFLOG:
1162			return SECCLASS_NETLINK_NFLOG_SOCKET;
1163		case NETLINK_XFRM:
1164			return SECCLASS_NETLINK_XFRM_SOCKET;
1165		case NETLINK_SELINUX:
1166			return SECCLASS_NETLINK_SELINUX_SOCKET;
1167		case NETLINK_ISCSI:
1168			return SECCLASS_NETLINK_ISCSI_SOCKET;
1169		case NETLINK_AUDIT:
1170			return SECCLASS_NETLINK_AUDIT_SOCKET;
1171		case NETLINK_FIB_LOOKUP:
1172			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1173		case NETLINK_CONNECTOR:
1174			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1175		case NETLINK_NETFILTER:
1176			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1177		case NETLINK_DNRTMSG:
1178			return SECCLASS_NETLINK_DNRT_SOCKET;
1179		case NETLINK_KOBJECT_UEVENT:
1180			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1181		case NETLINK_GENERIC:
1182			return SECCLASS_NETLINK_GENERIC_SOCKET;
1183		case NETLINK_SCSITRANSPORT:
1184			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1185		case NETLINK_RDMA:
1186			return SECCLASS_NETLINK_RDMA_SOCKET;
1187		case NETLINK_CRYPTO:
1188			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1189		default:
1190			return SECCLASS_NETLINK_SOCKET;
1191		}
1192	case PF_PACKET:
1193		return SECCLASS_PACKET_SOCKET;
1194	case PF_KEY:
1195		return SECCLASS_KEY_SOCKET;
1196	case PF_APPLETALK:
1197		return SECCLASS_APPLETALK_SOCKET;
1198	}
1199
1200	if (extsockclass) {
1201		switch (family) {
1202		case PF_AX25:
1203			return SECCLASS_AX25_SOCKET;
1204		case PF_IPX:
1205			return SECCLASS_IPX_SOCKET;
1206		case PF_NETROM:
1207			return SECCLASS_NETROM_SOCKET;
1208		case PF_ATMPVC:
1209			return SECCLASS_ATMPVC_SOCKET;
1210		case PF_X25:
1211			return SECCLASS_X25_SOCKET;
1212		case PF_ROSE:
1213			return SECCLASS_ROSE_SOCKET;
1214		case PF_DECnet:
1215			return SECCLASS_DECNET_SOCKET;
1216		case PF_ATMSVC:
1217			return SECCLASS_ATMSVC_SOCKET;
1218		case PF_RDS:
1219			return SECCLASS_RDS_SOCKET;
1220		case PF_IRDA:
1221			return SECCLASS_IRDA_SOCKET;
1222		case PF_PPPOX:
1223			return SECCLASS_PPPOX_SOCKET;
1224		case PF_LLC:
1225			return SECCLASS_LLC_SOCKET;
1226		case PF_CAN:
1227			return SECCLASS_CAN_SOCKET;
1228		case PF_TIPC:
1229			return SECCLASS_TIPC_SOCKET;
1230		case PF_BLUETOOTH:
1231			return SECCLASS_BLUETOOTH_SOCKET;
1232		case PF_IUCV:
1233			return SECCLASS_IUCV_SOCKET;
1234		case PF_RXRPC:
1235			return SECCLASS_RXRPC_SOCKET;
1236		case PF_ISDN:
1237			return SECCLASS_ISDN_SOCKET;
1238		case PF_PHONET:
1239			return SECCLASS_PHONET_SOCKET;
1240		case PF_IEEE802154:
1241			return SECCLASS_IEEE802154_SOCKET;
1242		case PF_CAIF:
1243			return SECCLASS_CAIF_SOCKET;
1244		case PF_ALG:
1245			return SECCLASS_ALG_SOCKET;
1246		case PF_NFC:
1247			return SECCLASS_NFC_SOCKET;
1248		case PF_VSOCK:
1249			return SECCLASS_VSOCK_SOCKET;
1250		case PF_KCM:
1251			return SECCLASS_KCM_SOCKET;
1252		case PF_QIPCRTR:
1253			return SECCLASS_QIPCRTR_SOCKET;
1254		case PF_SMC:
1255			return SECCLASS_SMC_SOCKET;
1256		case PF_XDP:
1257			return SECCLASS_XDP_SOCKET;
1258		case PF_MCTP:
1259			return SECCLASS_MCTP_SOCKET;
1260#if PF_MAX > 46
1261#error New address family defined, please update this function.
1262#endif
1263		}
1264	}
1265
1266	return SECCLASS_SOCKET;
1267}
1268
1269static int selinux_genfs_get_sid(struct dentry *dentry,
1270				 u16 tclass,
1271				 u16 flags,
1272				 u32 *sid)
1273{
1274	int rc;
1275	struct super_block *sb = dentry->d_sb;
1276	char *buffer, *path;
1277
1278	buffer = (char *)__get_free_page(GFP_KERNEL);
1279	if (!buffer)
1280		return -ENOMEM;
1281
1282	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1283	if (IS_ERR(path))
1284		rc = PTR_ERR(path);
1285	else {
1286		if (flags & SE_SBPROC) {
1287			/* each process gets a /proc/PID/ entry. Strip off the
1288			 * PID part to get a valid selinux labeling.
1289			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1290			while (path[1] >= '0' && path[1] <= '9') {
1291				path[1] = '/';
1292				path++;
1293			}
1294		}
1295		rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1296					path, tclass, sid);
1297		if (rc == -ENOENT) {
1298			/* No match in policy, mark as unlabeled. */
1299			*sid = SECINITSID_UNLABELED;
1300			rc = 0;
1301		}
1302	}
1303	free_page((unsigned long)buffer);
1304	return rc;
1305}
1306
1307static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1308				  u32 def_sid, u32 *sid)
1309{
1310#define INITCONTEXTLEN 255
1311	char *context;
1312	unsigned int len;
1313	int rc;
1314
1315	len = INITCONTEXTLEN;
1316	context = kmalloc(len + 1, GFP_NOFS);
1317	if (!context)
1318		return -ENOMEM;
1319
1320	context[len] = '\0';
1321	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1322	if (rc == -ERANGE) {
1323		kfree(context);
1324
1325		/* Need a larger buffer.  Query for the right size. */
1326		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1327		if (rc < 0)
1328			return rc;
1329
1330		len = rc;
1331		context = kmalloc(len + 1, GFP_NOFS);
1332		if (!context)
1333			return -ENOMEM;
1334
1335		context[len] = '\0';
1336		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1337				    context, len);
1338	}
1339	if (rc < 0) {
1340		kfree(context);
1341		if (rc != -ENODATA) {
1342			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1343				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1344			return rc;
1345		}
1346		*sid = def_sid;
1347		return 0;
1348	}
1349
1350	rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1351					     def_sid, GFP_NOFS);
1352	if (rc) {
1353		char *dev = inode->i_sb->s_id;
1354		unsigned long ino = inode->i_ino;
1355
1356		if (rc == -EINVAL) {
1357			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1358					      ino, dev, context);
1359		} else {
1360			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1361				__func__, context, -rc, dev, ino);
1362		}
1363	}
1364	kfree(context);
1365	return 0;
1366}
1367
1368/* The inode's security attributes must be initialized before first use. */
1369static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1370{
1371	struct superblock_security_struct *sbsec = NULL;
1372	struct inode_security_struct *isec = selinux_inode(inode);
1373	u32 task_sid, sid = 0;
1374	u16 sclass;
1375	struct dentry *dentry;
1376	int rc = 0;
1377
1378	if (isec->initialized == LABEL_INITIALIZED)
1379		return 0;
1380
1381	spin_lock(&isec->lock);
1382	if (isec->initialized == LABEL_INITIALIZED)
1383		goto out_unlock;
1384
1385	if (isec->sclass == SECCLASS_FILE)
1386		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1387
1388	sbsec = selinux_superblock(inode->i_sb);
1389	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1390		/* Defer initialization until selinux_complete_init,
1391		   after the initial policy is loaded and the security
1392		   server is ready to handle calls. */
1393		spin_lock(&sbsec->isec_lock);
1394		if (list_empty(&isec->list))
1395			list_add(&isec->list, &sbsec->isec_head);
1396		spin_unlock(&sbsec->isec_lock);
1397		goto out_unlock;
1398	}
1399
1400	sclass = isec->sclass;
1401	task_sid = isec->task_sid;
1402	sid = isec->sid;
1403	isec->initialized = LABEL_PENDING;
1404	spin_unlock(&isec->lock);
1405
1406	switch (sbsec->behavior) {
 
 
 
 
1407	case SECURITY_FS_USE_NATIVE:
1408		break;
1409	case SECURITY_FS_USE_XATTR:
1410		if (!(inode->i_opflags & IOP_XATTR)) {
1411			sid = sbsec->def_sid;
1412			break;
1413		}
1414		/* Need a dentry, since the xattr API requires one.
1415		   Life would be simpler if we could just pass the inode. */
1416		if (opt_dentry) {
1417			/* Called from d_instantiate or d_splice_alias. */
1418			dentry = dget(opt_dentry);
1419		} else {
1420			/*
1421			 * Called from selinux_complete_init, try to find a dentry.
1422			 * Some filesystems really want a connected one, so try
1423			 * that first.  We could split SECURITY_FS_USE_XATTR in
1424			 * two, depending upon that...
1425			 */
1426			dentry = d_find_alias(inode);
1427			if (!dentry)
1428				dentry = d_find_any_alias(inode);
1429		}
1430		if (!dentry) {
1431			/*
1432			 * this is can be hit on boot when a file is accessed
1433			 * before the policy is loaded.  When we load policy we
1434			 * may find inodes that have no dentry on the
1435			 * sbsec->isec_head list.  No reason to complain as these
1436			 * will get fixed up the next time we go through
1437			 * inode_doinit with a dentry, before these inodes could
1438			 * be used again by userspace.
1439			 */
1440			goto out_invalid;
1441		}
1442
1443		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1444					    &sid);
1445		dput(dentry);
1446		if (rc)
1447			goto out;
1448		break;
1449	case SECURITY_FS_USE_TASK:
1450		sid = task_sid;
1451		break;
1452	case SECURITY_FS_USE_TRANS:
1453		/* Default to the fs SID. */
1454		sid = sbsec->sid;
1455
1456		/* Try to obtain a transition SID. */
1457		rc = security_transition_sid(&selinux_state, task_sid, sid,
1458					     sclass, NULL, &sid);
1459		if (rc)
1460			goto out;
1461		break;
1462	case SECURITY_FS_USE_MNTPOINT:
1463		sid = sbsec->mntpoint_sid;
1464		break;
1465	default:
1466		/* Default to the fs superblock SID. */
1467		sid = sbsec->sid;
1468
1469		if ((sbsec->flags & SE_SBGENFS) &&
1470		     (!S_ISLNK(inode->i_mode) ||
1471		      selinux_policycap_genfs_seclabel_symlinks())) {
1472			/* We must have a dentry to determine the label on
1473			 * procfs inodes */
1474			if (opt_dentry) {
1475				/* Called from d_instantiate or
1476				 * d_splice_alias. */
1477				dentry = dget(opt_dentry);
1478			} else {
1479				/* Called from selinux_complete_init, try to
1480				 * find a dentry.  Some filesystems really want
1481				 * a connected one, so try that first.
1482				 */
1483				dentry = d_find_alias(inode);
1484				if (!dentry)
1485					dentry = d_find_any_alias(inode);
1486			}
1487			/*
1488			 * This can be hit on boot when a file is accessed
1489			 * before the policy is loaded.  When we load policy we
1490			 * may find inodes that have no dentry on the
1491			 * sbsec->isec_head list.  No reason to complain as
1492			 * these will get fixed up the next time we go through
1493			 * inode_doinit() with a dentry, before these inodes
1494			 * could be used again by userspace.
1495			 */
1496			if (!dentry)
1497				goto out_invalid;
1498			rc = selinux_genfs_get_sid(dentry, sclass,
1499						   sbsec->flags, &sid);
1500			if (rc) {
1501				dput(dentry);
1502				goto out;
1503			}
1504
1505			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1506			    (inode->i_opflags & IOP_XATTR)) {
1507				rc = inode_doinit_use_xattr(inode, dentry,
1508							    sid, &sid);
1509				if (rc) {
1510					dput(dentry);
1511					goto out;
1512				}
1513			}
1514			dput(dentry);
1515		}
1516		break;
1517	}
1518
1519out:
1520	spin_lock(&isec->lock);
1521	if (isec->initialized == LABEL_PENDING) {
1522		if (rc) {
1523			isec->initialized = LABEL_INVALID;
1524			goto out_unlock;
1525		}
1526		isec->initialized = LABEL_INITIALIZED;
1527		isec->sid = sid;
1528	}
1529
1530out_unlock:
1531	spin_unlock(&isec->lock);
1532	return rc;
1533
1534out_invalid:
1535	spin_lock(&isec->lock);
1536	if (isec->initialized == LABEL_PENDING) {
1537		isec->initialized = LABEL_INVALID;
1538		isec->sid = sid;
1539	}
1540	spin_unlock(&isec->lock);
1541	return 0;
1542}
1543
1544/* Convert a Linux signal to an access vector. */
1545static inline u32 signal_to_av(int sig)
1546{
1547	u32 perm = 0;
1548
1549	switch (sig) {
1550	case SIGCHLD:
1551		/* Commonly granted from child to parent. */
1552		perm = PROCESS__SIGCHLD;
1553		break;
1554	case SIGKILL:
1555		/* Cannot be caught or ignored */
1556		perm = PROCESS__SIGKILL;
1557		break;
1558	case SIGSTOP:
1559		/* Cannot be caught or ignored */
1560		perm = PROCESS__SIGSTOP;
1561		break;
1562	default:
1563		/* All other signals. */
1564		perm = PROCESS__SIGNAL;
1565		break;
1566	}
1567
1568	return perm;
1569}
1570
1571#if CAP_LAST_CAP > 63
1572#error Fix SELinux to handle capabilities > 63.
1573#endif
1574
1575/* Check whether a task is allowed to use a capability. */
1576static int cred_has_capability(const struct cred *cred,
1577			       int cap, unsigned int opts, bool initns)
1578{
1579	struct common_audit_data ad;
1580	struct av_decision avd;
1581	u16 sclass;
1582	u32 sid = cred_sid(cred);
1583	u32 av = CAP_TO_MASK(cap);
1584	int rc;
1585
1586	ad.type = LSM_AUDIT_DATA_CAP;
1587	ad.u.cap = cap;
1588
1589	switch (CAP_TO_INDEX(cap)) {
1590	case 0:
1591		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1592		break;
1593	case 1:
1594		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1595		break;
1596	default:
1597		pr_err("SELinux:  out of range capability %d\n", cap);
1598		BUG();
1599		return -EINVAL;
1600	}
1601
1602	rc = avc_has_perm_noaudit(&selinux_state,
1603				  sid, sid, sclass, av, 0, &avd);
1604	if (!(opts & CAP_OPT_NOAUDIT)) {
1605		int rc2 = avc_audit(&selinux_state,
1606				    sid, sid, sclass, av, &avd, rc, &ad);
1607		if (rc2)
1608			return rc2;
1609	}
1610	return rc;
1611}
1612
1613/* Check whether a task has a particular permission to an inode.
1614   The 'adp' parameter is optional and allows other audit
1615   data to be passed (e.g. the dentry). */
1616static int inode_has_perm(const struct cred *cred,
1617			  struct inode *inode,
1618			  u32 perms,
1619			  struct common_audit_data *adp)
1620{
1621	struct inode_security_struct *isec;
1622	u32 sid;
1623
1624	validate_creds(cred);
1625
1626	if (unlikely(IS_PRIVATE(inode)))
1627		return 0;
1628
1629	sid = cred_sid(cred);
1630	isec = selinux_inode(inode);
1631
1632	return avc_has_perm(&selinux_state,
1633			    sid, isec->sid, isec->sclass, perms, adp);
1634}
1635
1636/* Same as inode_has_perm, but pass explicit audit data containing
1637   the dentry to help the auditing code to more easily generate the
1638   pathname if needed. */
1639static inline int dentry_has_perm(const struct cred *cred,
1640				  struct dentry *dentry,
1641				  u32 av)
1642{
1643	struct inode *inode = d_backing_inode(dentry);
1644	struct common_audit_data ad;
1645
1646	ad.type = LSM_AUDIT_DATA_DENTRY;
1647	ad.u.dentry = dentry;
1648	__inode_security_revalidate(inode, dentry, true);
1649	return inode_has_perm(cred, inode, av, &ad);
1650}
1651
1652/* Same as inode_has_perm, but pass explicit audit data containing
1653   the path to help the auditing code to more easily generate the
1654   pathname if needed. */
1655static inline int path_has_perm(const struct cred *cred,
1656				const struct path *path,
1657				u32 av)
1658{
1659	struct inode *inode = d_backing_inode(path->dentry);
1660	struct common_audit_data ad;
1661
1662	ad.type = LSM_AUDIT_DATA_PATH;
1663	ad.u.path = *path;
1664	__inode_security_revalidate(inode, path->dentry, true);
1665	return inode_has_perm(cred, inode, av, &ad);
1666}
1667
1668/* Same as path_has_perm, but uses the inode from the file struct. */
1669static inline int file_path_has_perm(const struct cred *cred,
1670				     struct file *file,
1671				     u32 av)
1672{
1673	struct common_audit_data ad;
1674
1675	ad.type = LSM_AUDIT_DATA_FILE;
1676	ad.u.file = file;
1677	return inode_has_perm(cred, file_inode(file), av, &ad);
1678}
1679
1680#ifdef CONFIG_BPF_SYSCALL
1681static int bpf_fd_pass(struct file *file, u32 sid);
1682#endif
1683
1684/* Check whether a task can use an open file descriptor to
1685   access an inode in a given way.  Check access to the
1686   descriptor itself, and then use dentry_has_perm to
1687   check a particular permission to the file.
1688   Access to the descriptor is implicitly granted if it
1689   has the same SID as the process.  If av is zero, then
1690   access to the file is not checked, e.g. for cases
1691   where only the descriptor is affected like seek. */
1692static int file_has_perm(const struct cred *cred,
1693			 struct file *file,
1694			 u32 av)
1695{
1696	struct file_security_struct *fsec = selinux_file(file);
1697	struct inode *inode = file_inode(file);
1698	struct common_audit_data ad;
1699	u32 sid = cred_sid(cred);
1700	int rc;
1701
1702	ad.type = LSM_AUDIT_DATA_FILE;
1703	ad.u.file = file;
1704
1705	if (sid != fsec->sid) {
1706		rc = avc_has_perm(&selinux_state,
1707				  sid, fsec->sid,
1708				  SECCLASS_FD,
1709				  FD__USE,
1710				  &ad);
1711		if (rc)
1712			goto out;
1713	}
1714
1715#ifdef CONFIG_BPF_SYSCALL
1716	rc = bpf_fd_pass(file, cred_sid(cred));
1717	if (rc)
1718		return rc;
1719#endif
1720
1721	/* av is zero if only checking access to the descriptor. */
1722	rc = 0;
1723	if (av)
1724		rc = inode_has_perm(cred, inode, av, &ad);
1725
1726out:
1727	return rc;
1728}
1729
1730/*
1731 * Determine the label for an inode that might be unioned.
1732 */
1733static int
1734selinux_determine_inode_label(const struct task_security_struct *tsec,
1735				 struct inode *dir,
1736				 const struct qstr *name, u16 tclass,
1737				 u32 *_new_isid)
1738{
1739	const struct superblock_security_struct *sbsec =
1740						selinux_superblock(dir->i_sb);
1741
1742	if ((sbsec->flags & SE_SBINITIALIZED) &&
1743	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1744		*_new_isid = sbsec->mntpoint_sid;
1745	} else if ((sbsec->flags & SBLABEL_MNT) &&
1746		   tsec->create_sid) {
1747		*_new_isid = tsec->create_sid;
1748	} else {
1749		const struct inode_security_struct *dsec = inode_security(dir);
1750		return security_transition_sid(&selinux_state, tsec->sid,
1751					       dsec->sid, tclass,
1752					       name, _new_isid);
1753	}
1754
1755	return 0;
1756}
1757
1758/* Check whether a task can create a file. */
1759static int may_create(struct inode *dir,
1760		      struct dentry *dentry,
1761		      u16 tclass)
1762{
1763	const struct task_security_struct *tsec = selinux_cred(current_cred());
1764	struct inode_security_struct *dsec;
1765	struct superblock_security_struct *sbsec;
1766	u32 sid, newsid;
1767	struct common_audit_data ad;
1768	int rc;
1769
1770	dsec = inode_security(dir);
1771	sbsec = selinux_superblock(dir->i_sb);
1772
1773	sid = tsec->sid;
1774
1775	ad.type = LSM_AUDIT_DATA_DENTRY;
1776	ad.u.dentry = dentry;
1777
1778	rc = avc_has_perm(&selinux_state,
1779			  sid, dsec->sid, SECCLASS_DIR,
1780			  DIR__ADD_NAME | DIR__SEARCH,
1781			  &ad);
1782	if (rc)
1783		return rc;
1784
1785	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1786					   &newsid);
1787	if (rc)
1788		return rc;
1789
1790	rc = avc_has_perm(&selinux_state,
1791			  sid, newsid, tclass, FILE__CREATE, &ad);
1792	if (rc)
1793		return rc;
1794
1795	return avc_has_perm(&selinux_state,
1796			    newsid, sbsec->sid,
1797			    SECCLASS_FILESYSTEM,
1798			    FILESYSTEM__ASSOCIATE, &ad);
1799}
1800
1801#define MAY_LINK	0
1802#define MAY_UNLINK	1
1803#define MAY_RMDIR	2
1804
1805/* Check whether a task can link, unlink, or rmdir a file/directory. */
1806static int may_link(struct inode *dir,
1807		    struct dentry *dentry,
1808		    int kind)
1809
1810{
1811	struct inode_security_struct *dsec, *isec;
1812	struct common_audit_data ad;
1813	u32 sid = current_sid();
1814	u32 av;
1815	int rc;
1816
1817	dsec = inode_security(dir);
1818	isec = backing_inode_security(dentry);
1819
1820	ad.type = LSM_AUDIT_DATA_DENTRY;
1821	ad.u.dentry = dentry;
1822
1823	av = DIR__SEARCH;
1824	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1825	rc = avc_has_perm(&selinux_state,
1826			  sid, dsec->sid, SECCLASS_DIR, av, &ad);
1827	if (rc)
1828		return rc;
1829
1830	switch (kind) {
1831	case MAY_LINK:
1832		av = FILE__LINK;
1833		break;
1834	case MAY_UNLINK:
1835		av = FILE__UNLINK;
1836		break;
1837	case MAY_RMDIR:
1838		av = DIR__RMDIR;
1839		break;
1840	default:
1841		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1842			__func__, kind);
1843		return 0;
1844	}
1845
1846	rc = avc_has_perm(&selinux_state,
1847			  sid, isec->sid, isec->sclass, av, &ad);
1848	return rc;
1849}
1850
1851static inline int may_rename(struct inode *old_dir,
1852			     struct dentry *old_dentry,
1853			     struct inode *new_dir,
1854			     struct dentry *new_dentry)
1855{
1856	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1857	struct common_audit_data ad;
1858	u32 sid = current_sid();
1859	u32 av;
1860	int old_is_dir, new_is_dir;
1861	int rc;
1862
1863	old_dsec = inode_security(old_dir);
1864	old_isec = backing_inode_security(old_dentry);
1865	old_is_dir = d_is_dir(old_dentry);
1866	new_dsec = inode_security(new_dir);
1867
1868	ad.type = LSM_AUDIT_DATA_DENTRY;
1869
1870	ad.u.dentry = old_dentry;
1871	rc = avc_has_perm(&selinux_state,
1872			  sid, old_dsec->sid, SECCLASS_DIR,
1873			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1874	if (rc)
1875		return rc;
1876	rc = avc_has_perm(&selinux_state,
1877			  sid, old_isec->sid,
1878			  old_isec->sclass, FILE__RENAME, &ad);
1879	if (rc)
1880		return rc;
1881	if (old_is_dir && new_dir != old_dir) {
1882		rc = avc_has_perm(&selinux_state,
1883				  sid, old_isec->sid,
1884				  old_isec->sclass, DIR__REPARENT, &ad);
1885		if (rc)
1886			return rc;
1887	}
1888
1889	ad.u.dentry = new_dentry;
1890	av = DIR__ADD_NAME | DIR__SEARCH;
1891	if (d_is_positive(new_dentry))
1892		av |= DIR__REMOVE_NAME;
1893	rc = avc_has_perm(&selinux_state,
1894			  sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1895	if (rc)
1896		return rc;
1897	if (d_is_positive(new_dentry)) {
1898		new_isec = backing_inode_security(new_dentry);
1899		new_is_dir = d_is_dir(new_dentry);
1900		rc = avc_has_perm(&selinux_state,
1901				  sid, new_isec->sid,
1902				  new_isec->sclass,
1903				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1904		if (rc)
1905			return rc;
1906	}
1907
1908	return 0;
1909}
1910
1911/* Check whether a task can perform a filesystem operation. */
1912static int superblock_has_perm(const struct cred *cred,
1913			       struct super_block *sb,
1914			       u32 perms,
1915			       struct common_audit_data *ad)
1916{
1917	struct superblock_security_struct *sbsec;
1918	u32 sid = cred_sid(cred);
1919
1920	sbsec = selinux_superblock(sb);
1921	return avc_has_perm(&selinux_state,
1922			    sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1923}
1924
1925/* Convert a Linux mode and permission mask to an access vector. */
1926static inline u32 file_mask_to_av(int mode, int mask)
1927{
1928	u32 av = 0;
1929
1930	if (!S_ISDIR(mode)) {
1931		if (mask & MAY_EXEC)
1932			av |= FILE__EXECUTE;
1933		if (mask & MAY_READ)
1934			av |= FILE__READ;
1935
1936		if (mask & MAY_APPEND)
1937			av |= FILE__APPEND;
1938		else if (mask & MAY_WRITE)
1939			av |= FILE__WRITE;
1940
1941	} else {
1942		if (mask & MAY_EXEC)
1943			av |= DIR__SEARCH;
1944		if (mask & MAY_WRITE)
1945			av |= DIR__WRITE;
1946		if (mask & MAY_READ)
1947			av |= DIR__READ;
1948	}
1949
1950	return av;
1951}
1952
1953/* Convert a Linux file to an access vector. */
1954static inline u32 file_to_av(struct file *file)
1955{
1956	u32 av = 0;
1957
1958	if (file->f_mode & FMODE_READ)
1959		av |= FILE__READ;
1960	if (file->f_mode & FMODE_WRITE) {
1961		if (file->f_flags & O_APPEND)
1962			av |= FILE__APPEND;
1963		else
1964			av |= FILE__WRITE;
1965	}
1966	if (!av) {
1967		/*
1968		 * Special file opened with flags 3 for ioctl-only use.
1969		 */
1970		av = FILE__IOCTL;
1971	}
1972
1973	return av;
1974}
1975
1976/*
1977 * Convert a file to an access vector and include the correct
1978 * open permission.
1979 */
1980static inline u32 open_file_to_av(struct file *file)
1981{
1982	u32 av = file_to_av(file);
1983	struct inode *inode = file_inode(file);
1984
1985	if (selinux_policycap_openperm() &&
1986	    inode->i_sb->s_magic != SOCKFS_MAGIC)
1987		av |= FILE__OPEN;
1988
1989	return av;
1990}
1991
1992/* Hook functions begin here. */
1993
1994static int selinux_binder_set_context_mgr(const struct cred *mgr)
1995{
1996	return avc_has_perm(&selinux_state,
1997			    current_sid(), cred_sid(mgr), SECCLASS_BINDER,
1998			    BINDER__SET_CONTEXT_MGR, NULL);
1999}
2000
2001static int selinux_binder_transaction(const struct cred *from,
2002				      const struct cred *to)
2003{
2004	u32 mysid = current_sid();
2005	u32 fromsid = cred_sid(from);
2006	u32 tosid = cred_sid(to);
2007	int rc;
2008
2009	if (mysid != fromsid) {
2010		rc = avc_has_perm(&selinux_state,
2011				  mysid, fromsid, SECCLASS_BINDER,
2012				  BINDER__IMPERSONATE, NULL);
2013		if (rc)
2014			return rc;
2015	}
2016
2017	return avc_has_perm(&selinux_state, fromsid, tosid,
2018			    SECCLASS_BINDER, BINDER__CALL, NULL);
2019}
2020
2021static int selinux_binder_transfer_binder(const struct cred *from,
2022					  const struct cred *to)
2023{
2024	return avc_has_perm(&selinux_state,
2025			    cred_sid(from), cred_sid(to),
2026			    SECCLASS_BINDER, BINDER__TRANSFER,
2027			    NULL);
2028}
2029
2030static int selinux_binder_transfer_file(const struct cred *from,
2031					const struct cred *to,
2032					struct file *file)
2033{
2034	u32 sid = cred_sid(to);
2035	struct file_security_struct *fsec = selinux_file(file);
2036	struct dentry *dentry = file->f_path.dentry;
2037	struct inode_security_struct *isec;
2038	struct common_audit_data ad;
2039	int rc;
2040
2041	ad.type = LSM_AUDIT_DATA_PATH;
2042	ad.u.path = file->f_path;
2043
2044	if (sid != fsec->sid) {
2045		rc = avc_has_perm(&selinux_state,
2046				  sid, fsec->sid,
2047				  SECCLASS_FD,
2048				  FD__USE,
2049				  &ad);
2050		if (rc)
2051			return rc;
2052	}
2053
2054#ifdef CONFIG_BPF_SYSCALL
2055	rc = bpf_fd_pass(file, sid);
2056	if (rc)
2057		return rc;
2058#endif
2059
2060	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2061		return 0;
2062
2063	isec = backing_inode_security(dentry);
2064	return avc_has_perm(&selinux_state,
2065			    sid, isec->sid, isec->sclass, file_to_av(file),
2066			    &ad);
2067}
2068
2069static int selinux_ptrace_access_check(struct task_struct *child,
2070				       unsigned int mode)
2071{
2072	u32 sid = current_sid();
2073	u32 csid = task_sid_obj(child);
2074
2075	if (mode & PTRACE_MODE_READ)
2076		return avc_has_perm(&selinux_state,
2077				    sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2078
2079	return avc_has_perm(&selinux_state,
2080			    sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2081}
2082
2083static int selinux_ptrace_traceme(struct task_struct *parent)
2084{
2085	return avc_has_perm(&selinux_state,
2086			    task_sid_obj(parent), task_sid_obj(current),
2087			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2088}
2089
2090static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2091			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2092{
2093	return avc_has_perm(&selinux_state,
2094			    current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2095			    PROCESS__GETCAP, NULL);
2096}
2097
2098static int selinux_capset(struct cred *new, const struct cred *old,
2099			  const kernel_cap_t *effective,
2100			  const kernel_cap_t *inheritable,
2101			  const kernel_cap_t *permitted)
2102{
2103	return avc_has_perm(&selinux_state,
2104			    cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2105			    PROCESS__SETCAP, NULL);
2106}
2107
2108/*
2109 * (This comment used to live with the selinux_task_setuid hook,
2110 * which was removed).
2111 *
2112 * Since setuid only affects the current process, and since the SELinux
2113 * controls are not based on the Linux identity attributes, SELinux does not
2114 * need to control this operation.  However, SELinux does control the use of
2115 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2116 */
2117
2118static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2119			   int cap, unsigned int opts)
2120{
2121	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2122}
2123
2124static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2125{
2126	const struct cred *cred = current_cred();
2127	int rc = 0;
2128
2129	if (!sb)
2130		return 0;
2131
2132	switch (cmds) {
2133	case Q_SYNC:
2134	case Q_QUOTAON:
2135	case Q_QUOTAOFF:
2136	case Q_SETINFO:
2137	case Q_SETQUOTA:
2138	case Q_XQUOTAOFF:
2139	case Q_XQUOTAON:
2140	case Q_XSETQLIM:
2141		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2142		break;
2143	case Q_GETFMT:
2144	case Q_GETINFO:
2145	case Q_GETQUOTA:
2146	case Q_XGETQUOTA:
2147	case Q_XGETQSTAT:
2148	case Q_XGETQSTATV:
2149	case Q_XGETNEXTQUOTA:
2150		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2151		break;
2152	default:
2153		rc = 0;  /* let the kernel handle invalid cmds */
2154		break;
2155	}
2156	return rc;
2157}
2158
2159static int selinux_quota_on(struct dentry *dentry)
2160{
2161	const struct cred *cred = current_cred();
2162
2163	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2164}
2165
2166static int selinux_syslog(int type)
2167{
2168	switch (type) {
2169	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2170	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2171		return avc_has_perm(&selinux_state,
2172				    current_sid(), SECINITSID_KERNEL,
2173				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2174	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2175	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2176	/* Set level of messages printed to console */
2177	case SYSLOG_ACTION_CONSOLE_LEVEL:
2178		return avc_has_perm(&selinux_state,
2179				    current_sid(), SECINITSID_KERNEL,
2180				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2181				    NULL);
2182	}
2183	/* All other syslog types */
2184	return avc_has_perm(&selinux_state,
2185			    current_sid(), SECINITSID_KERNEL,
2186			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2187}
2188
2189/*
2190 * Check that a process has enough memory to allocate a new virtual
2191 * mapping. 0 means there is enough memory for the allocation to
2192 * succeed and -ENOMEM implies there is not.
2193 *
2194 * Do not audit the selinux permission check, as this is applied to all
2195 * processes that allocate mappings.
2196 */
2197static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2198{
2199	int rc, cap_sys_admin = 0;
2200
2201	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2202				 CAP_OPT_NOAUDIT, true);
2203	if (rc == 0)
2204		cap_sys_admin = 1;
2205
2206	return cap_sys_admin;
2207}
2208
2209/* binprm security operations */
2210
2211static u32 ptrace_parent_sid(void)
2212{
2213	u32 sid = 0;
2214	struct task_struct *tracer;
2215
2216	rcu_read_lock();
2217	tracer = ptrace_parent(current);
2218	if (tracer)
2219		sid = task_sid_obj(tracer);
2220	rcu_read_unlock();
2221
2222	return sid;
2223}
2224
2225static int check_nnp_nosuid(const struct linux_binprm *bprm,
2226			    const struct task_security_struct *old_tsec,
2227			    const struct task_security_struct *new_tsec)
2228{
2229	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2230	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2231	int rc;
2232	u32 av;
2233
2234	if (!nnp && !nosuid)
2235		return 0; /* neither NNP nor nosuid */
2236
2237	if (new_tsec->sid == old_tsec->sid)
2238		return 0; /* No change in credentials */
2239
2240	/*
2241	 * If the policy enables the nnp_nosuid_transition policy capability,
2242	 * then we permit transitions under NNP or nosuid if the
2243	 * policy allows the corresponding permission between
2244	 * the old and new contexts.
2245	 */
2246	if (selinux_policycap_nnp_nosuid_transition()) {
2247		av = 0;
2248		if (nnp)
2249			av |= PROCESS2__NNP_TRANSITION;
2250		if (nosuid)
2251			av |= PROCESS2__NOSUID_TRANSITION;
2252		rc = avc_has_perm(&selinux_state,
2253				  old_tsec->sid, new_tsec->sid,
2254				  SECCLASS_PROCESS2, av, NULL);
2255		if (!rc)
2256			return 0;
2257	}
2258
2259	/*
2260	 * We also permit NNP or nosuid transitions to bounded SIDs,
2261	 * i.e. SIDs that are guaranteed to only be allowed a subset
2262	 * of the permissions of the current SID.
2263	 */
2264	rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2265					 new_tsec->sid);
2266	if (!rc)
2267		return 0;
2268
2269	/*
2270	 * On failure, preserve the errno values for NNP vs nosuid.
2271	 * NNP:  Operation not permitted for caller.
2272	 * nosuid:  Permission denied to file.
2273	 */
2274	if (nnp)
2275		return -EPERM;
2276	return -EACCES;
2277}
2278
2279static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2280{
2281	const struct task_security_struct *old_tsec;
2282	struct task_security_struct *new_tsec;
2283	struct inode_security_struct *isec;
2284	struct common_audit_data ad;
2285	struct inode *inode = file_inode(bprm->file);
2286	int rc;
2287
2288	/* SELinux context only depends on initial program or script and not
2289	 * the script interpreter */
2290
2291	old_tsec = selinux_cred(current_cred());
2292	new_tsec = selinux_cred(bprm->cred);
2293	isec = inode_security(inode);
2294
2295	/* Default to the current task SID. */
2296	new_tsec->sid = old_tsec->sid;
2297	new_tsec->osid = old_tsec->sid;
2298
2299	/* Reset fs, key, and sock SIDs on execve. */
2300	new_tsec->create_sid = 0;
2301	new_tsec->keycreate_sid = 0;
2302	new_tsec->sockcreate_sid = 0;
2303
 
 
 
 
 
 
 
 
 
 
 
 
 
2304	if (old_tsec->exec_sid) {
2305		new_tsec->sid = old_tsec->exec_sid;
2306		/* Reset exec SID on execve. */
2307		new_tsec->exec_sid = 0;
2308
2309		/* Fail on NNP or nosuid if not an allowed transition. */
2310		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2311		if (rc)
2312			return rc;
2313	} else {
2314		/* Check for a default transition on this program. */
2315		rc = security_transition_sid(&selinux_state, old_tsec->sid,
2316					     isec->sid, SECCLASS_PROCESS, NULL,
2317					     &new_tsec->sid);
2318		if (rc)
2319			return rc;
2320
2321		/*
2322		 * Fallback to old SID on NNP or nosuid if not an allowed
2323		 * transition.
2324		 */
2325		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2326		if (rc)
2327			new_tsec->sid = old_tsec->sid;
2328	}
2329
2330	ad.type = LSM_AUDIT_DATA_FILE;
2331	ad.u.file = bprm->file;
2332
2333	if (new_tsec->sid == old_tsec->sid) {
2334		rc = avc_has_perm(&selinux_state,
2335				  old_tsec->sid, isec->sid,
2336				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2337		if (rc)
2338			return rc;
2339	} else {
2340		/* Check permissions for the transition. */
2341		rc = avc_has_perm(&selinux_state,
2342				  old_tsec->sid, new_tsec->sid,
2343				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2344		if (rc)
2345			return rc;
2346
2347		rc = avc_has_perm(&selinux_state,
2348				  new_tsec->sid, isec->sid,
2349				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2350		if (rc)
2351			return rc;
2352
2353		/* Check for shared state */
2354		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2355			rc = avc_has_perm(&selinux_state,
2356					  old_tsec->sid, new_tsec->sid,
2357					  SECCLASS_PROCESS, PROCESS__SHARE,
2358					  NULL);
2359			if (rc)
2360				return -EPERM;
2361		}
2362
2363		/* Make sure that anyone attempting to ptrace over a task that
2364		 * changes its SID has the appropriate permit */
2365		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2366			u32 ptsid = ptrace_parent_sid();
2367			if (ptsid != 0) {
2368				rc = avc_has_perm(&selinux_state,
2369						  ptsid, new_tsec->sid,
2370						  SECCLASS_PROCESS,
2371						  PROCESS__PTRACE, NULL);
2372				if (rc)
2373					return -EPERM;
2374			}
2375		}
2376
2377		/* Clear any possibly unsafe personality bits on exec: */
2378		bprm->per_clear |= PER_CLEAR_ON_SETID;
2379
2380		/* Enable secure mode for SIDs transitions unless
2381		   the noatsecure permission is granted between
2382		   the two SIDs, i.e. ahp returns 0. */
2383		rc = avc_has_perm(&selinux_state,
2384				  old_tsec->sid, new_tsec->sid,
2385				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2386				  NULL);
2387		bprm->secureexec |= !!rc;
2388	}
2389
2390	return 0;
2391}
2392
2393static int match_file(const void *p, struct file *file, unsigned fd)
2394{
2395	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2396}
2397
2398/* Derived from fs/exec.c:flush_old_files. */
2399static inline void flush_unauthorized_files(const struct cred *cred,
2400					    struct files_struct *files)
2401{
2402	struct file *file, *devnull = NULL;
2403	struct tty_struct *tty;
2404	int drop_tty = 0;
2405	unsigned n;
2406
2407	tty = get_current_tty();
2408	if (tty) {
2409		spin_lock(&tty->files_lock);
2410		if (!list_empty(&tty->tty_files)) {
2411			struct tty_file_private *file_priv;
2412
2413			/* Revalidate access to controlling tty.
2414			   Use file_path_has_perm on the tty path directly
2415			   rather than using file_has_perm, as this particular
2416			   open file may belong to another process and we are
2417			   only interested in the inode-based check here. */
2418			file_priv = list_first_entry(&tty->tty_files,
2419						struct tty_file_private, list);
2420			file = file_priv->file;
2421			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2422				drop_tty = 1;
2423		}
2424		spin_unlock(&tty->files_lock);
2425		tty_kref_put(tty);
2426	}
2427	/* Reset controlling tty. */
2428	if (drop_tty)
2429		no_tty();
2430
2431	/* Revalidate access to inherited open files. */
2432	n = iterate_fd(files, 0, match_file, cred);
2433	if (!n) /* none found? */
2434		return;
2435
2436	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2437	if (IS_ERR(devnull))
2438		devnull = NULL;
2439	/* replace all the matching ones with this */
2440	do {
2441		replace_fd(n - 1, devnull, 0);
2442	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2443	if (devnull)
2444		fput(devnull);
2445}
2446
2447/*
2448 * Prepare a process for imminent new credential changes due to exec
2449 */
2450static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2451{
2452	struct task_security_struct *new_tsec;
2453	struct rlimit *rlim, *initrlim;
2454	int rc, i;
2455
2456	new_tsec = selinux_cred(bprm->cred);
2457	if (new_tsec->sid == new_tsec->osid)
2458		return;
2459
2460	/* Close files for which the new task SID is not authorized. */
2461	flush_unauthorized_files(bprm->cred, current->files);
2462
2463	/* Always clear parent death signal on SID transitions. */
2464	current->pdeath_signal = 0;
2465
2466	/* Check whether the new SID can inherit resource limits from the old
2467	 * SID.  If not, reset all soft limits to the lower of the current
2468	 * task's hard limit and the init task's soft limit.
2469	 *
2470	 * Note that the setting of hard limits (even to lower them) can be
2471	 * controlled by the setrlimit check.  The inclusion of the init task's
2472	 * soft limit into the computation is to avoid resetting soft limits
2473	 * higher than the default soft limit for cases where the default is
2474	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2475	 */
2476	rc = avc_has_perm(&selinux_state,
2477			  new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2478			  PROCESS__RLIMITINH, NULL);
2479	if (rc) {
2480		/* protect against do_prlimit() */
2481		task_lock(current);
2482		for (i = 0; i < RLIM_NLIMITS; i++) {
2483			rlim = current->signal->rlim + i;
2484			initrlim = init_task.signal->rlim + i;
2485			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2486		}
2487		task_unlock(current);
2488		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2489			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2490	}
2491}
2492
2493/*
2494 * Clean up the process immediately after the installation of new credentials
2495 * due to exec
2496 */
2497static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2498{
2499	const struct task_security_struct *tsec = selinux_cred(current_cred());
2500	u32 osid, sid;
2501	int rc;
2502
2503	osid = tsec->osid;
2504	sid = tsec->sid;
2505
2506	if (sid == osid)
2507		return;
2508
2509	/* Check whether the new SID can inherit signal state from the old SID.
2510	 * If not, clear itimers to avoid subsequent signal generation and
2511	 * flush and unblock signals.
2512	 *
2513	 * This must occur _after_ the task SID has been updated so that any
2514	 * kill done after the flush will be checked against the new SID.
2515	 */
2516	rc = avc_has_perm(&selinux_state,
2517			  osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2518	if (rc) {
2519		clear_itimer();
2520
2521		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2522		if (!fatal_signal_pending(current)) {
2523			flush_sigqueue(&current->pending);
2524			flush_sigqueue(&current->signal->shared_pending);
2525			flush_signal_handlers(current, 1);
2526			sigemptyset(&current->blocked);
2527			recalc_sigpending();
2528		}
2529		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2530	}
2531
2532	/* Wake up the parent if it is waiting so that it can recheck
2533	 * wait permission to the new task SID. */
2534	read_lock(&tasklist_lock);
2535	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2536	read_unlock(&tasklist_lock);
2537}
2538
2539/* superblock security operations */
2540
2541static int selinux_sb_alloc_security(struct super_block *sb)
2542{
2543	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2544
2545	mutex_init(&sbsec->lock);
2546	INIT_LIST_HEAD(&sbsec->isec_head);
2547	spin_lock_init(&sbsec->isec_lock);
2548	sbsec->sid = SECINITSID_UNLABELED;
2549	sbsec->def_sid = SECINITSID_FILE;
2550	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2551
2552	return 0;
2553}
2554
2555static inline int opt_len(const char *s)
2556{
2557	bool open_quote = false;
2558	int len;
2559	char c;
2560
2561	for (len = 0; (c = s[len]) != '\0'; len++) {
2562		if (c == '"')
2563			open_quote = !open_quote;
2564		if (c == ',' && !open_quote)
2565			break;
2566	}
2567	return len;
2568}
2569
2570static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2571{
2572	char *from = options;
2573	char *to = options;
2574	bool first = true;
2575	int rc;
2576
2577	while (1) {
2578		int len = opt_len(from);
2579		int token;
2580		char *arg = NULL;
2581
2582		token = match_opt_prefix(from, len, &arg);
2583
2584		if (token != Opt_error) {
2585			char *p, *q;
2586
2587			/* strip quotes */
2588			if (arg) {
2589				for (p = q = arg; p < from + len; p++) {
2590					char c = *p;
2591					if (c != '"')
2592						*q++ = c;
2593				}
2594				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2595				if (!arg) {
2596					rc = -ENOMEM;
2597					goto free_opt;
2598				}
2599			}
2600			rc = selinux_add_opt(token, arg, mnt_opts);
2601			kfree(arg);
2602			arg = NULL;
2603			if (unlikely(rc)) {
2604				goto free_opt;
2605			}
2606		} else {
2607			if (!first) {	// copy with preceding comma
2608				from--;
2609				len++;
2610			}
2611			if (to != from)
2612				memmove(to, from, len);
2613			to += len;
2614			first = false;
2615		}
2616		if (!from[len])
2617			break;
2618		from += len + 1;
2619	}
2620	*to = '\0';
2621	return 0;
2622
2623free_opt:
2624	if (*mnt_opts) {
2625		selinux_free_mnt_opts(*mnt_opts);
2626		*mnt_opts = NULL;
2627	}
2628	return rc;
2629}
2630
2631static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2632{
2633	struct selinux_mnt_opts *opts = mnt_opts;
2634	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2635
2636	/*
2637	 * Superblock not initialized (i.e. no options) - reject if any
2638	 * options specified, otherwise accept.
2639	 */
2640	if (!(sbsec->flags & SE_SBINITIALIZED))
2641		return opts ? 1 : 0;
2642
2643	/*
2644	 * Superblock initialized and no options specified - reject if
2645	 * superblock has any options set, otherwise accept.
2646	 */
2647	if (!opts)
2648		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2649
2650	if (opts->fscontext_sid) {
2651		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2652			       opts->fscontext_sid))
2653			return 1;
2654	}
2655	if (opts->context_sid) {
2656		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2657			       opts->context_sid))
2658			return 1;
2659	}
2660	if (opts->rootcontext_sid) {
2661		struct inode_security_struct *root_isec;
2662
2663		root_isec = backing_inode_security(sb->s_root);
2664		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2665			       opts->rootcontext_sid))
2666			return 1;
2667	}
2668	if (opts->defcontext_sid) {
2669		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2670			       opts->defcontext_sid))
2671			return 1;
2672	}
2673	return 0;
2674}
2675
2676static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2677{
2678	struct selinux_mnt_opts *opts = mnt_opts;
2679	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2680
2681	if (!(sbsec->flags & SE_SBINITIALIZED))
2682		return 0;
2683
2684	if (!opts)
2685		return 0;
2686
2687	if (opts->fscontext_sid) {
2688		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2689			       opts->fscontext_sid))
2690			goto out_bad_option;
2691	}
2692	if (opts->context_sid) {
2693		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2694			       opts->context_sid))
2695			goto out_bad_option;
2696	}
2697	if (opts->rootcontext_sid) {
2698		struct inode_security_struct *root_isec;
2699		root_isec = backing_inode_security(sb->s_root);
2700		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2701			       opts->rootcontext_sid))
2702			goto out_bad_option;
2703	}
2704	if (opts->defcontext_sid) {
2705		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2706			       opts->defcontext_sid))
2707			goto out_bad_option;
2708	}
2709	return 0;
2710
2711out_bad_option:
2712	pr_warn("SELinux: unable to change security options "
2713	       "during remount (dev %s, type=%s)\n", sb->s_id,
2714	       sb->s_type->name);
2715	return -EINVAL;
2716}
2717
2718static int selinux_sb_kern_mount(struct super_block *sb)
2719{
2720	const struct cred *cred = current_cred();
2721	struct common_audit_data ad;
2722
2723	ad.type = LSM_AUDIT_DATA_DENTRY;
2724	ad.u.dentry = sb->s_root;
2725	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2726}
2727
2728static int selinux_sb_statfs(struct dentry *dentry)
2729{
2730	const struct cred *cred = current_cred();
2731	struct common_audit_data ad;
2732
2733	ad.type = LSM_AUDIT_DATA_DENTRY;
2734	ad.u.dentry = dentry->d_sb->s_root;
2735	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2736}
2737
2738static int selinux_mount(const char *dev_name,
2739			 const struct path *path,
2740			 const char *type,
2741			 unsigned long flags,
2742			 void *data)
2743{
2744	const struct cred *cred = current_cred();
2745
2746	if (flags & MS_REMOUNT)
2747		return superblock_has_perm(cred, path->dentry->d_sb,
2748					   FILESYSTEM__REMOUNT, NULL);
2749	else
2750		return path_has_perm(cred, path, FILE__MOUNTON);
2751}
2752
2753static int selinux_move_mount(const struct path *from_path,
2754			      const struct path *to_path)
2755{
2756	const struct cred *cred = current_cred();
2757
2758	return path_has_perm(cred, to_path, FILE__MOUNTON);
2759}
2760
2761static int selinux_umount(struct vfsmount *mnt, int flags)
2762{
2763	const struct cred *cred = current_cred();
2764
2765	return superblock_has_perm(cred, mnt->mnt_sb,
2766				   FILESYSTEM__UNMOUNT, NULL);
2767}
2768
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2769static int selinux_fs_context_dup(struct fs_context *fc,
2770				  struct fs_context *src_fc)
2771{
2772	const struct selinux_mnt_opts *src = src_fc->security;
2773
2774	if (!src)
2775		return 0;
2776
2777	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2778	return fc->security ? 0 : -ENOMEM;
2779}
2780
2781static const struct fs_parameter_spec selinux_fs_parameters[] = {
2782	fsparam_string(CONTEXT_STR,	Opt_context),
2783	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2784	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2785	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2786	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2787	{}
2788};
2789
2790static int selinux_fs_context_parse_param(struct fs_context *fc,
2791					  struct fs_parameter *param)
2792{
2793	struct fs_parse_result result;
2794	int opt;
2795
2796	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2797	if (opt < 0)
2798		return opt;
2799
2800	return selinux_add_opt(opt, param->string, &fc->security);
2801}
2802
2803/* inode security operations */
2804
2805static int selinux_inode_alloc_security(struct inode *inode)
2806{
2807	struct inode_security_struct *isec = selinux_inode(inode);
2808	u32 sid = current_sid();
2809
2810	spin_lock_init(&isec->lock);
2811	INIT_LIST_HEAD(&isec->list);
2812	isec->inode = inode;
2813	isec->sid = SECINITSID_UNLABELED;
2814	isec->sclass = SECCLASS_FILE;
2815	isec->task_sid = sid;
2816	isec->initialized = LABEL_INVALID;
2817
2818	return 0;
2819}
2820
2821static void selinux_inode_free_security(struct inode *inode)
2822{
2823	inode_free_security(inode);
2824}
2825
2826static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2827					const struct qstr *name,
2828					const char **xattr_name, void **ctx,
2829					u32 *ctxlen)
2830{
2831	u32 newsid;
2832	int rc;
2833
2834	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2835					   d_inode(dentry->d_parent), name,
2836					   inode_mode_to_security_class(mode),
2837					   &newsid);
2838	if (rc)
2839		return rc;
2840
2841	if (xattr_name)
2842		*xattr_name = XATTR_NAME_SELINUX;
2843
2844	return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2845				       ctxlen);
2846}
2847
2848static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2849					  struct qstr *name,
2850					  const struct cred *old,
2851					  struct cred *new)
2852{
2853	u32 newsid;
2854	int rc;
2855	struct task_security_struct *tsec;
2856
2857	rc = selinux_determine_inode_label(selinux_cred(old),
2858					   d_inode(dentry->d_parent), name,
2859					   inode_mode_to_security_class(mode),
2860					   &newsid);
2861	if (rc)
2862		return rc;
2863
2864	tsec = selinux_cred(new);
2865	tsec->create_sid = newsid;
2866	return 0;
2867}
2868
2869static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2870				       const struct qstr *qstr,
2871				       const char **name,
2872				       void **value, size_t *len)
2873{
2874	const struct task_security_struct *tsec = selinux_cred(current_cred());
2875	struct superblock_security_struct *sbsec;
 
2876	u32 newsid, clen;
 
2877	int rc;
2878	char *context;
2879
2880	sbsec = selinux_superblock(dir->i_sb);
2881
2882	newsid = tsec->create_sid;
2883
2884	rc = selinux_determine_inode_label(tsec, dir, qstr,
2885		inode_mode_to_security_class(inode->i_mode),
2886		&newsid);
2887	if (rc)
2888		return rc;
2889
2890	/* Possibly defer initialization to selinux_complete_init. */
2891	if (sbsec->flags & SE_SBINITIALIZED) {
2892		struct inode_security_struct *isec = selinux_inode(inode);
2893		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2894		isec->sid = newsid;
2895		isec->initialized = LABEL_INITIALIZED;
2896	}
2897
2898	if (!selinux_initialized(&selinux_state) ||
2899	    !(sbsec->flags & SBLABEL_MNT))
2900		return -EOPNOTSUPP;
2901
2902	if (name)
2903		*name = XATTR_SELINUX_SUFFIX;
2904
2905	if (value && len) {
2906		rc = security_sid_to_context_force(&selinux_state, newsid,
2907						   &context, &clen);
2908		if (rc)
2909			return rc;
2910		*value = context;
2911		*len = clen;
 
2912	}
2913
2914	return 0;
2915}
2916
2917static int selinux_inode_init_security_anon(struct inode *inode,
2918					    const struct qstr *name,
2919					    const struct inode *context_inode)
2920{
2921	const struct task_security_struct *tsec = selinux_cred(current_cred());
2922	struct common_audit_data ad;
2923	struct inode_security_struct *isec;
2924	int rc;
2925
2926	if (unlikely(!selinux_initialized(&selinux_state)))
2927		return 0;
2928
2929	isec = selinux_inode(inode);
2930
2931	/*
2932	 * We only get here once per ephemeral inode.  The inode has
2933	 * been initialized via inode_alloc_security but is otherwise
2934	 * untouched.
2935	 */
2936
2937	if (context_inode) {
2938		struct inode_security_struct *context_isec =
2939			selinux_inode(context_inode);
2940		if (context_isec->initialized != LABEL_INITIALIZED) {
2941			pr_err("SELinux:  context_inode is not initialized");
2942			return -EACCES;
2943		}
2944
2945		isec->sclass = context_isec->sclass;
2946		isec->sid = context_isec->sid;
2947	} else {
2948		isec->sclass = SECCLASS_ANON_INODE;
2949		rc = security_transition_sid(
2950			&selinux_state, tsec->sid, tsec->sid,
2951			isec->sclass, name, &isec->sid);
2952		if (rc)
2953			return rc;
2954	}
2955
2956	isec->initialized = LABEL_INITIALIZED;
2957	/*
2958	 * Now that we've initialized security, check whether we're
2959	 * allowed to actually create this type of anonymous inode.
2960	 */
2961
2962	ad.type = LSM_AUDIT_DATA_ANONINODE;
2963	ad.u.anonclass = name ? (const char *)name->name : "?";
2964
2965	return avc_has_perm(&selinux_state,
2966			    tsec->sid,
2967			    isec->sid,
2968			    isec->sclass,
2969			    FILE__CREATE,
2970			    &ad);
2971}
2972
2973static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2974{
2975	return may_create(dir, dentry, SECCLASS_FILE);
2976}
2977
2978static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2979{
2980	return may_link(dir, old_dentry, MAY_LINK);
2981}
2982
2983static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2984{
2985	return may_link(dir, dentry, MAY_UNLINK);
2986}
2987
2988static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2989{
2990	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2991}
2992
2993static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2994{
2995	return may_create(dir, dentry, SECCLASS_DIR);
2996}
2997
2998static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2999{
3000	return may_link(dir, dentry, MAY_RMDIR);
3001}
3002
3003static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3004{
3005	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3006}
3007
3008static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3009				struct inode *new_inode, struct dentry *new_dentry)
3010{
3011	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3012}
3013
3014static int selinux_inode_readlink(struct dentry *dentry)
3015{
3016	const struct cred *cred = current_cred();
3017
3018	return dentry_has_perm(cred, dentry, FILE__READ);
3019}
3020
3021static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3022				     bool rcu)
3023{
3024	const struct cred *cred = current_cred();
3025	struct common_audit_data ad;
3026	struct inode_security_struct *isec;
3027	u32 sid;
3028
3029	validate_creds(cred);
3030
3031	ad.type = LSM_AUDIT_DATA_DENTRY;
3032	ad.u.dentry = dentry;
3033	sid = cred_sid(cred);
3034	isec = inode_security_rcu(inode, rcu);
3035	if (IS_ERR(isec))
3036		return PTR_ERR(isec);
3037
3038	return avc_has_perm(&selinux_state,
3039				  sid, isec->sid, isec->sclass, FILE__READ, &ad);
3040}
3041
3042static noinline int audit_inode_permission(struct inode *inode,
3043					   u32 perms, u32 audited, u32 denied,
3044					   int result)
3045{
3046	struct common_audit_data ad;
3047	struct inode_security_struct *isec = selinux_inode(inode);
3048
3049	ad.type = LSM_AUDIT_DATA_INODE;
3050	ad.u.inode = inode;
3051
3052	return slow_avc_audit(&selinux_state,
3053			    current_sid(), isec->sid, isec->sclass, perms,
3054			    audited, denied, result, &ad);
3055}
3056
3057static int selinux_inode_permission(struct inode *inode, int mask)
3058{
3059	const struct cred *cred = current_cred();
3060	u32 perms;
3061	bool from_access;
3062	bool no_block = mask & MAY_NOT_BLOCK;
3063	struct inode_security_struct *isec;
3064	u32 sid;
3065	struct av_decision avd;
3066	int rc, rc2;
3067	u32 audited, denied;
3068
3069	from_access = mask & MAY_ACCESS;
3070	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3071
3072	/* No permission to check.  Existence test. */
3073	if (!mask)
3074		return 0;
3075
3076	validate_creds(cred);
3077
3078	if (unlikely(IS_PRIVATE(inode)))
3079		return 0;
3080
3081	perms = file_mask_to_av(inode->i_mode, mask);
3082
3083	sid = cred_sid(cred);
3084	isec = inode_security_rcu(inode, no_block);
3085	if (IS_ERR(isec))
3086		return PTR_ERR(isec);
3087
3088	rc = avc_has_perm_noaudit(&selinux_state,
3089				  sid, isec->sid, isec->sclass, perms, 0,
3090				  &avd);
3091	audited = avc_audit_required(perms, &avd, rc,
3092				     from_access ? FILE__AUDIT_ACCESS : 0,
3093				     &denied);
3094	if (likely(!audited))
3095		return rc;
3096
3097	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3098	if (rc2)
3099		return rc2;
3100	return rc;
3101}
3102
3103static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
 
3104{
3105	const struct cred *cred = current_cred();
3106	struct inode *inode = d_backing_inode(dentry);
3107	unsigned int ia_valid = iattr->ia_valid;
3108	__u32 av = FILE__WRITE;
3109
3110	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3111	if (ia_valid & ATTR_FORCE) {
3112		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3113			      ATTR_FORCE);
3114		if (!ia_valid)
3115			return 0;
3116	}
3117
3118	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3119			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3120		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3121
3122	if (selinux_policycap_openperm() &&
3123	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3124	    (ia_valid & ATTR_SIZE) &&
3125	    !(ia_valid & ATTR_FILE))
3126		av |= FILE__OPEN;
3127
3128	return dentry_has_perm(cred, dentry, av);
3129}
3130
3131static int selinux_inode_getattr(const struct path *path)
3132{
3133	return path_has_perm(current_cred(), path, FILE__GETATTR);
3134}
3135
3136static bool has_cap_mac_admin(bool audit)
3137{
3138	const struct cred *cred = current_cred();
3139	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3140
3141	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3142		return false;
3143	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3144		return false;
3145	return true;
3146}
3147
3148static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3149				  struct dentry *dentry, const char *name,
3150				  const void *value, size_t size, int flags)
3151{
3152	struct inode *inode = d_backing_inode(dentry);
3153	struct inode_security_struct *isec;
3154	struct superblock_security_struct *sbsec;
3155	struct common_audit_data ad;
3156	u32 newsid, sid = current_sid();
3157	int rc = 0;
3158
3159	if (strcmp(name, XATTR_NAME_SELINUX)) {
3160		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3161		if (rc)
3162			return rc;
3163
3164		/* Not an attribute we recognize, so just check the
3165		   ordinary setattr permission. */
3166		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3167	}
3168
3169	if (!selinux_initialized(&selinux_state))
3170		return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3171
3172	sbsec = selinux_superblock(inode->i_sb);
3173	if (!(sbsec->flags & SBLABEL_MNT))
3174		return -EOPNOTSUPP;
3175
3176	if (!inode_owner_or_capable(mnt_userns, inode))
3177		return -EPERM;
3178
3179	ad.type = LSM_AUDIT_DATA_DENTRY;
3180	ad.u.dentry = dentry;
3181
3182	isec = backing_inode_security(dentry);
3183	rc = avc_has_perm(&selinux_state,
3184			  sid, isec->sid, isec->sclass,
3185			  FILE__RELABELFROM, &ad);
3186	if (rc)
3187		return rc;
3188
3189	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3190				     GFP_KERNEL);
3191	if (rc == -EINVAL) {
3192		if (!has_cap_mac_admin(true)) {
3193			struct audit_buffer *ab;
3194			size_t audit_size;
3195
3196			/* We strip a nul only if it is at the end, otherwise the
3197			 * context contains a nul and we should audit that */
3198			if (value) {
3199				const char *str = value;
3200
3201				if (str[size - 1] == '\0')
3202					audit_size = size - 1;
3203				else
3204					audit_size = size;
3205			} else {
3206				audit_size = 0;
3207			}
3208			ab = audit_log_start(audit_context(),
3209					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3210			if (!ab)
3211				return rc;
3212			audit_log_format(ab, "op=setxattr invalid_context=");
3213			audit_log_n_untrustedstring(ab, value, audit_size);
3214			audit_log_end(ab);
3215
3216			return rc;
3217		}
3218		rc = security_context_to_sid_force(&selinux_state, value,
3219						   size, &newsid);
3220	}
3221	if (rc)
3222		return rc;
3223
3224	rc = avc_has_perm(&selinux_state,
3225			  sid, newsid, isec->sclass,
3226			  FILE__RELABELTO, &ad);
3227	if (rc)
3228		return rc;
3229
3230	rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3231					  sid, isec->sclass);
3232	if (rc)
3233		return rc;
3234
3235	return avc_has_perm(&selinux_state,
3236			    newsid,
3237			    sbsec->sid,
3238			    SECCLASS_FILESYSTEM,
3239			    FILESYSTEM__ASSOCIATE,
3240			    &ad);
3241}
3242
3243static int selinux_inode_set_acl(struct user_namespace *mnt_userns,
3244				 struct dentry *dentry, const char *acl_name,
3245				 struct posix_acl *kacl)
3246{
3247	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3248}
3249
3250static int selinux_inode_get_acl(struct user_namespace *mnt_userns,
3251				 struct dentry *dentry, const char *acl_name)
3252{
3253	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3254}
3255
3256static int selinux_inode_remove_acl(struct user_namespace *mnt_userns,
3257				    struct dentry *dentry, const char *acl_name)
3258{
3259	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3260}
3261
3262static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3263					const void *value, size_t size,
3264					int flags)
3265{
3266	struct inode *inode = d_backing_inode(dentry);
3267	struct inode_security_struct *isec;
3268	u32 newsid;
3269	int rc;
3270
3271	if (strcmp(name, XATTR_NAME_SELINUX)) {
3272		/* Not an attribute we recognize, so nothing to do. */
3273		return;
3274	}
3275
3276	if (!selinux_initialized(&selinux_state)) {
3277		/* If we haven't even been initialized, then we can't validate
3278		 * against a policy, so leave the label as invalid. It may
3279		 * resolve to a valid label on the next revalidation try if
3280		 * we've since initialized.
3281		 */
3282		return;
3283	}
3284
3285	rc = security_context_to_sid_force(&selinux_state, value, size,
3286					   &newsid);
3287	if (rc) {
3288		pr_err("SELinux:  unable to map context to SID"
3289		       "for (%s, %lu), rc=%d\n",
3290		       inode->i_sb->s_id, inode->i_ino, -rc);
3291		return;
3292	}
3293
3294	isec = backing_inode_security(dentry);
3295	spin_lock(&isec->lock);
3296	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3297	isec->sid = newsid;
3298	isec->initialized = LABEL_INITIALIZED;
3299	spin_unlock(&isec->lock);
3300}
3301
3302static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3303{
3304	const struct cred *cred = current_cred();
3305
3306	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3307}
3308
3309static int selinux_inode_listxattr(struct dentry *dentry)
3310{
3311	const struct cred *cred = current_cred();
3312
3313	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3314}
3315
3316static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3317				     struct dentry *dentry, const char *name)
3318{
3319	if (strcmp(name, XATTR_NAME_SELINUX)) {
3320		int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3321		if (rc)
3322			return rc;
3323
3324		/* Not an attribute we recognize, so just check the
3325		   ordinary setattr permission. */
3326		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3327	}
3328
3329	if (!selinux_initialized(&selinux_state))
3330		return 0;
3331
3332	/* No one is allowed to remove a SELinux security label.
3333	   You can change the label, but all data must be labeled. */
3334	return -EACCES;
3335}
3336
3337static int selinux_path_notify(const struct path *path, u64 mask,
3338						unsigned int obj_type)
3339{
3340	int ret;
3341	u32 perm;
3342
3343	struct common_audit_data ad;
3344
3345	ad.type = LSM_AUDIT_DATA_PATH;
3346	ad.u.path = *path;
3347
3348	/*
3349	 * Set permission needed based on the type of mark being set.
3350	 * Performs an additional check for sb watches.
3351	 */
3352	switch (obj_type) {
3353	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3354		perm = FILE__WATCH_MOUNT;
3355		break;
3356	case FSNOTIFY_OBJ_TYPE_SB:
3357		perm = FILE__WATCH_SB;
3358		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3359						FILESYSTEM__WATCH, &ad);
3360		if (ret)
3361			return ret;
3362		break;
3363	case FSNOTIFY_OBJ_TYPE_INODE:
3364		perm = FILE__WATCH;
3365		break;
3366	default:
3367		return -EINVAL;
3368	}
3369
3370	/* blocking watches require the file:watch_with_perm permission */
3371	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3372		perm |= FILE__WATCH_WITH_PERM;
3373
3374	/* watches on read-like events need the file:watch_reads permission */
3375	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3376		perm |= FILE__WATCH_READS;
3377
3378	return path_has_perm(current_cred(), path, perm);
3379}
3380
3381/*
3382 * Copy the inode security context value to the user.
3383 *
3384 * Permission check is handled by selinux_inode_getxattr hook.
3385 */
3386static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3387				     struct inode *inode, const char *name,
3388				     void **buffer, bool alloc)
3389{
3390	u32 size;
3391	int error;
3392	char *context = NULL;
3393	struct inode_security_struct *isec;
3394
3395	/*
3396	 * If we're not initialized yet, then we can't validate contexts, so
3397	 * just let vfs_getxattr fall back to using the on-disk xattr.
3398	 */
3399	if (!selinux_initialized(&selinux_state) ||
3400	    strcmp(name, XATTR_SELINUX_SUFFIX))
3401		return -EOPNOTSUPP;
3402
3403	/*
3404	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3405	 * value even if it is not defined by current policy; otherwise,
3406	 * use the in-core value under current policy.
3407	 * Use the non-auditing forms of the permission checks since
3408	 * getxattr may be called by unprivileged processes commonly
3409	 * and lack of permission just means that we fall back to the
3410	 * in-core context value, not a denial.
3411	 */
3412	isec = inode_security(inode);
3413	if (has_cap_mac_admin(false))
3414		error = security_sid_to_context_force(&selinux_state,
3415						      isec->sid, &context,
3416						      &size);
3417	else
3418		error = security_sid_to_context(&selinux_state, isec->sid,
3419						&context, &size);
3420	if (error)
3421		return error;
3422	error = size;
3423	if (alloc) {
3424		*buffer = context;
3425		goto out_nofree;
3426	}
3427	kfree(context);
3428out_nofree:
3429	return error;
3430}
3431
3432static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3433				     const void *value, size_t size, int flags)
3434{
3435	struct inode_security_struct *isec = inode_security_novalidate(inode);
3436	struct superblock_security_struct *sbsec;
3437	u32 newsid;
3438	int rc;
3439
3440	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3441		return -EOPNOTSUPP;
3442
3443	sbsec = selinux_superblock(inode->i_sb);
3444	if (!(sbsec->flags & SBLABEL_MNT))
3445		return -EOPNOTSUPP;
3446
3447	if (!value || !size)
3448		return -EACCES;
3449
3450	rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3451				     GFP_KERNEL);
3452	if (rc)
3453		return rc;
3454
3455	spin_lock(&isec->lock);
3456	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3457	isec->sid = newsid;
3458	isec->initialized = LABEL_INITIALIZED;
3459	spin_unlock(&isec->lock);
3460	return 0;
3461}
3462
3463static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3464{
3465	const int len = sizeof(XATTR_NAME_SELINUX);
3466
3467	if (!selinux_initialized(&selinux_state))
3468		return 0;
3469
3470	if (buffer && len <= buffer_size)
3471		memcpy(buffer, XATTR_NAME_SELINUX, len);
3472	return len;
3473}
3474
3475static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3476{
3477	struct inode_security_struct *isec = inode_security_novalidate(inode);
3478	*secid = isec->sid;
 
3479}
3480
3481static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3482{
3483	u32 sid;
3484	struct task_security_struct *tsec;
3485	struct cred *new_creds = *new;
3486
3487	if (new_creds == NULL) {
3488		new_creds = prepare_creds();
3489		if (!new_creds)
3490			return -ENOMEM;
3491	}
3492
3493	tsec = selinux_cred(new_creds);
3494	/* Get label from overlay inode and set it in create_sid */
3495	selinux_inode_getsecid(d_inode(src), &sid);
3496	tsec->create_sid = sid;
3497	*new = new_creds;
3498	return 0;
3499}
3500
3501static int selinux_inode_copy_up_xattr(const char *name)
3502{
3503	/* The copy_up hook above sets the initial context on an inode, but we
3504	 * don't then want to overwrite it by blindly copying all the lower
3505	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
 
3506	 */
3507	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3508		return 1; /* Discard */
3509	/*
3510	 * Any other attribute apart from SELINUX is not claimed, supported
3511	 * by selinux.
3512	 */
3513	return -EOPNOTSUPP;
3514}
3515
3516/* kernfs node operations */
3517
3518static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3519					struct kernfs_node *kn)
3520{
3521	const struct task_security_struct *tsec = selinux_cred(current_cred());
3522	u32 parent_sid, newsid, clen;
3523	int rc;
3524	char *context;
3525
3526	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3527	if (rc == -ENODATA)
3528		return 0;
3529	else if (rc < 0)
3530		return rc;
3531
3532	clen = (u32)rc;
3533	context = kmalloc(clen, GFP_KERNEL);
3534	if (!context)
3535		return -ENOMEM;
3536
3537	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3538	if (rc < 0) {
3539		kfree(context);
3540		return rc;
3541	}
3542
3543	rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3544				     GFP_KERNEL);
3545	kfree(context);
3546	if (rc)
3547		return rc;
3548
3549	if (tsec->create_sid) {
3550		newsid = tsec->create_sid;
3551	} else {
3552		u16 secclass = inode_mode_to_security_class(kn->mode);
3553		struct qstr q;
3554
3555		q.name = kn->name;
3556		q.hash_len = hashlen_string(kn_dir, kn->name);
3557
3558		rc = security_transition_sid(&selinux_state, tsec->sid,
3559					     parent_sid, secclass, &q,
3560					     &newsid);
3561		if (rc)
3562			return rc;
3563	}
3564
3565	rc = security_sid_to_context_force(&selinux_state, newsid,
3566					   &context, &clen);
3567	if (rc)
3568		return rc;
3569
3570	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3571			      XATTR_CREATE);
3572	kfree(context);
3573	return rc;
3574}
3575
3576
3577/* file security operations */
3578
3579static int selinux_revalidate_file_permission(struct file *file, int mask)
3580{
3581	const struct cred *cred = current_cred();
3582	struct inode *inode = file_inode(file);
3583
3584	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3585	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3586		mask |= MAY_APPEND;
3587
3588	return file_has_perm(cred, file,
3589			     file_mask_to_av(inode->i_mode, mask));
3590}
3591
3592static int selinux_file_permission(struct file *file, int mask)
3593{
3594	struct inode *inode = file_inode(file);
3595	struct file_security_struct *fsec = selinux_file(file);
3596	struct inode_security_struct *isec;
3597	u32 sid = current_sid();
3598
3599	if (!mask)
3600		/* No permission to check.  Existence test. */
3601		return 0;
3602
3603	isec = inode_security(inode);
3604	if (sid == fsec->sid && fsec->isid == isec->sid &&
3605	    fsec->pseqno == avc_policy_seqno(&selinux_state))
3606		/* No change since file_open check. */
3607		return 0;
3608
3609	return selinux_revalidate_file_permission(file, mask);
3610}
3611
3612static int selinux_file_alloc_security(struct file *file)
3613{
3614	struct file_security_struct *fsec = selinux_file(file);
3615	u32 sid = current_sid();
3616
3617	fsec->sid = sid;
3618	fsec->fown_sid = sid;
3619
3620	return 0;
3621}
3622
3623/*
3624 * Check whether a task has the ioctl permission and cmd
3625 * operation to an inode.
3626 */
3627static int ioctl_has_perm(const struct cred *cred, struct file *file,
3628		u32 requested, u16 cmd)
3629{
3630	struct common_audit_data ad;
3631	struct file_security_struct *fsec = selinux_file(file);
3632	struct inode *inode = file_inode(file);
3633	struct inode_security_struct *isec;
3634	struct lsm_ioctlop_audit ioctl;
3635	u32 ssid = cred_sid(cred);
3636	int rc;
3637	u8 driver = cmd >> 8;
3638	u8 xperm = cmd & 0xff;
3639
3640	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3641	ad.u.op = &ioctl;
3642	ad.u.op->cmd = cmd;
3643	ad.u.op->path = file->f_path;
3644
3645	if (ssid != fsec->sid) {
3646		rc = avc_has_perm(&selinux_state,
3647				  ssid, fsec->sid,
3648				SECCLASS_FD,
3649				FD__USE,
3650				&ad);
3651		if (rc)
3652			goto out;
3653	}
3654
3655	if (unlikely(IS_PRIVATE(inode)))
3656		return 0;
3657
3658	isec = inode_security(inode);
3659	rc = avc_has_extended_perms(&selinux_state,
3660				    ssid, isec->sid, isec->sclass,
3661				    requested, driver, xperm, &ad);
3662out:
3663	return rc;
3664}
3665
3666static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3667			      unsigned long arg)
3668{
3669	const struct cred *cred = current_cred();
3670	int error = 0;
3671
3672	switch (cmd) {
3673	case FIONREAD:
3674	case FIBMAP:
3675	case FIGETBSZ:
3676	case FS_IOC_GETFLAGS:
3677	case FS_IOC_GETVERSION:
3678		error = file_has_perm(cred, file, FILE__GETATTR);
3679		break;
3680
3681	case FS_IOC_SETFLAGS:
3682	case FS_IOC_SETVERSION:
3683		error = file_has_perm(cred, file, FILE__SETATTR);
3684		break;
3685
3686	/* sys_ioctl() checks */
3687	case FIONBIO:
3688	case FIOASYNC:
3689		error = file_has_perm(cred, file, 0);
3690		break;
3691
3692	case KDSKBENT:
3693	case KDSKBSENT:
3694		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3695					    CAP_OPT_NONE, true);
3696		break;
3697
3698	case FIOCLEX:
3699	case FIONCLEX:
3700		if (!selinux_policycap_ioctl_skip_cloexec())
3701			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3702		break;
3703
3704	/* default case assumes that the command will go
3705	 * to the file's ioctl() function.
3706	 */
3707	default:
3708		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3709	}
3710	return error;
3711}
3712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3713static int default_noexec __ro_after_init;
3714
3715static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3716{
3717	const struct cred *cred = current_cred();
3718	u32 sid = cred_sid(cred);
3719	int rc = 0;
3720
3721	if (default_noexec &&
3722	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3723				   (!shared && (prot & PROT_WRITE)))) {
3724		/*
3725		 * We are making executable an anonymous mapping or a
3726		 * private file mapping that will also be writable.
3727		 * This has an additional check.
3728		 */
3729		rc = avc_has_perm(&selinux_state,
3730				  sid, sid, SECCLASS_PROCESS,
3731				  PROCESS__EXECMEM, NULL);
3732		if (rc)
3733			goto error;
3734	}
3735
3736	if (file) {
3737		/* read access is always possible with a mapping */
3738		u32 av = FILE__READ;
3739
3740		/* write access only matters if the mapping is shared */
3741		if (shared && (prot & PROT_WRITE))
3742			av |= FILE__WRITE;
3743
3744		if (prot & PROT_EXEC)
3745			av |= FILE__EXECUTE;
3746
3747		return file_has_perm(cred, file, av);
3748	}
3749
3750error:
3751	return rc;
3752}
3753
3754static int selinux_mmap_addr(unsigned long addr)
3755{
3756	int rc = 0;
3757
3758	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3759		u32 sid = current_sid();
3760		rc = avc_has_perm(&selinux_state,
3761				  sid, sid, SECCLASS_MEMPROTECT,
3762				  MEMPROTECT__MMAP_ZERO, NULL);
3763	}
3764
3765	return rc;
3766}
3767
3768static int selinux_mmap_file(struct file *file, unsigned long reqprot,
 
3769			     unsigned long prot, unsigned long flags)
3770{
3771	struct common_audit_data ad;
3772	int rc;
3773
3774	if (file) {
3775		ad.type = LSM_AUDIT_DATA_FILE;
3776		ad.u.file = file;
3777		rc = inode_has_perm(current_cred(), file_inode(file),
3778				    FILE__MAP, &ad);
3779		if (rc)
3780			return rc;
3781	}
3782
3783	if (checkreqprot_get(&selinux_state))
3784		prot = reqprot;
3785
3786	return file_map_prot_check(file, prot,
3787				   (flags & MAP_TYPE) == MAP_SHARED);
3788}
3789
3790static int selinux_file_mprotect(struct vm_area_struct *vma,
3791				 unsigned long reqprot,
3792				 unsigned long prot)
3793{
3794	const struct cred *cred = current_cred();
3795	u32 sid = cred_sid(cred);
3796
3797	if (checkreqprot_get(&selinux_state))
3798		prot = reqprot;
3799
3800	if (default_noexec &&
3801	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3802		int rc = 0;
 
 
 
 
 
 
 
 
 
3803		if (vma->vm_start >= vma->vm_mm->start_brk &&
3804		    vma->vm_end <= vma->vm_mm->brk) {
3805			rc = avc_has_perm(&selinux_state,
3806					  sid, sid, SECCLASS_PROCESS,
3807					  PROCESS__EXECHEAP, NULL);
3808		} else if (!vma->vm_file &&
3809			   ((vma->vm_start <= vma->vm_mm->start_stack &&
3810			     vma->vm_end >= vma->vm_mm->start_stack) ||
3811			    vma_is_stack_for_current(vma))) {
3812			rc = avc_has_perm(&selinux_state,
3813					  sid, sid, SECCLASS_PROCESS,
3814					  PROCESS__EXECSTACK, NULL);
3815		} else if (vma->vm_file && vma->anon_vma) {
3816			/*
3817			 * We are making executable a file mapping that has
3818			 * had some COW done. Since pages might have been
3819			 * written, check ability to execute the possibly
3820			 * modified content.  This typically should only
3821			 * occur for text relocations.
3822			 */
3823			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3824		}
3825		if (rc)
3826			return rc;
3827	}
3828
3829	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3830}
3831
3832static int selinux_file_lock(struct file *file, unsigned int cmd)
3833{
3834	const struct cred *cred = current_cred();
3835
3836	return file_has_perm(cred, file, FILE__LOCK);
3837}
3838
3839static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3840			      unsigned long arg)
3841{
3842	const struct cred *cred = current_cred();
3843	int err = 0;
3844
3845	switch (cmd) {
3846	case F_SETFL:
3847		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3848			err = file_has_perm(cred, file, FILE__WRITE);
3849			break;
3850		}
3851		fallthrough;
3852	case F_SETOWN:
3853	case F_SETSIG:
3854	case F_GETFL:
3855	case F_GETOWN:
3856	case F_GETSIG:
3857	case F_GETOWNER_UIDS:
3858		/* Just check FD__USE permission */
3859		err = file_has_perm(cred, file, 0);
3860		break;
3861	case F_GETLK:
3862	case F_SETLK:
3863	case F_SETLKW:
3864	case F_OFD_GETLK:
3865	case F_OFD_SETLK:
3866	case F_OFD_SETLKW:
3867#if BITS_PER_LONG == 32
3868	case F_GETLK64:
3869	case F_SETLK64:
3870	case F_SETLKW64:
3871#endif
3872		err = file_has_perm(cred, file, FILE__LOCK);
3873		break;
3874	}
3875
3876	return err;
3877}
3878
3879static void selinux_file_set_fowner(struct file *file)
3880{
3881	struct file_security_struct *fsec;
3882
3883	fsec = selinux_file(file);
3884	fsec->fown_sid = current_sid();
3885}
3886
3887static int selinux_file_send_sigiotask(struct task_struct *tsk,
3888				       struct fown_struct *fown, int signum)
3889{
3890	struct file *file;
3891	u32 sid = task_sid_obj(tsk);
3892	u32 perm;
3893	struct file_security_struct *fsec;
3894
3895	/* struct fown_struct is never outside the context of a struct file */
3896	file = container_of(fown, struct file, f_owner);
3897
3898	fsec = selinux_file(file);
3899
3900	if (!signum)
3901		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3902	else
3903		perm = signal_to_av(signum);
3904
3905	return avc_has_perm(&selinux_state,
3906			    fsec->fown_sid, sid,
3907			    SECCLASS_PROCESS, perm, NULL);
3908}
3909
3910static int selinux_file_receive(struct file *file)
3911{
3912	const struct cred *cred = current_cred();
3913
3914	return file_has_perm(cred, file, file_to_av(file));
3915}
3916
3917static int selinux_file_open(struct file *file)
3918{
3919	struct file_security_struct *fsec;
3920	struct inode_security_struct *isec;
3921
3922	fsec = selinux_file(file);
3923	isec = inode_security(file_inode(file));
3924	/*
3925	 * Save inode label and policy sequence number
3926	 * at open-time so that selinux_file_permission
3927	 * can determine whether revalidation is necessary.
3928	 * Task label is already saved in the file security
3929	 * struct as its SID.
3930	 */
3931	fsec->isid = isec->sid;
3932	fsec->pseqno = avc_policy_seqno(&selinux_state);
3933	/*
3934	 * Since the inode label or policy seqno may have changed
3935	 * between the selinux_inode_permission check and the saving
3936	 * of state above, recheck that access is still permitted.
3937	 * Otherwise, access might never be revalidated against the
3938	 * new inode label or new policy.
3939	 * This check is not redundant - do not remove.
3940	 */
3941	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3942}
3943
3944/* task security operations */
3945
3946static int selinux_task_alloc(struct task_struct *task,
3947			      unsigned long clone_flags)
3948{
3949	u32 sid = current_sid();
3950
3951	return avc_has_perm(&selinux_state,
3952			    sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3953}
3954
3955/*
3956 * prepare a new set of credentials for modification
3957 */
3958static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3959				gfp_t gfp)
3960{
3961	const struct task_security_struct *old_tsec = selinux_cred(old);
3962	struct task_security_struct *tsec = selinux_cred(new);
3963
3964	*tsec = *old_tsec;
3965	return 0;
3966}
3967
3968/*
3969 * transfer the SELinux data to a blank set of creds
3970 */
3971static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3972{
3973	const struct task_security_struct *old_tsec = selinux_cred(old);
3974	struct task_security_struct *tsec = selinux_cred(new);
3975
3976	*tsec = *old_tsec;
3977}
3978
3979static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
3980{
3981	*secid = cred_sid(c);
3982}
3983
 
 
 
 
 
3984/*
3985 * set the security data for a kernel service
3986 * - all the creation contexts are set to unlabelled
3987 */
3988static int selinux_kernel_act_as(struct cred *new, u32 secid)
3989{
3990	struct task_security_struct *tsec = selinux_cred(new);
3991	u32 sid = current_sid();
3992	int ret;
3993
3994	ret = avc_has_perm(&selinux_state,
3995			   sid, secid,
3996			   SECCLASS_KERNEL_SERVICE,
3997			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3998			   NULL);
3999	if (ret == 0) {
4000		tsec->sid = secid;
4001		tsec->create_sid = 0;
4002		tsec->keycreate_sid = 0;
4003		tsec->sockcreate_sid = 0;
4004	}
4005	return ret;
4006}
4007
4008/*
4009 * set the file creation context in a security record to the same as the
4010 * objective context of the specified inode
4011 */
4012static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4013{
4014	struct inode_security_struct *isec = inode_security(inode);
4015	struct task_security_struct *tsec = selinux_cred(new);
4016	u32 sid = current_sid();
4017	int ret;
4018
4019	ret = avc_has_perm(&selinux_state,
4020			   sid, isec->sid,
4021			   SECCLASS_KERNEL_SERVICE,
4022			   KERNEL_SERVICE__CREATE_FILES_AS,
4023			   NULL);
4024
4025	if (ret == 0)
4026		tsec->create_sid = isec->sid;
4027	return ret;
4028}
4029
4030static int selinux_kernel_module_request(char *kmod_name)
4031{
4032	struct common_audit_data ad;
4033
4034	ad.type = LSM_AUDIT_DATA_KMOD;
4035	ad.u.kmod_name = kmod_name;
4036
4037	return avc_has_perm(&selinux_state,
4038			    current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4039			    SYSTEM__MODULE_REQUEST, &ad);
4040}
4041
4042static int selinux_kernel_module_from_file(struct file *file)
4043{
4044	struct common_audit_data ad;
4045	struct inode_security_struct *isec;
4046	struct file_security_struct *fsec;
4047	u32 sid = current_sid();
4048	int rc;
4049
4050	/* init_module */
4051	if (file == NULL)
4052		return avc_has_perm(&selinux_state,
4053				    sid, sid, SECCLASS_SYSTEM,
4054					SYSTEM__MODULE_LOAD, NULL);
4055
4056	/* finit_module */
4057
4058	ad.type = LSM_AUDIT_DATA_FILE;
4059	ad.u.file = file;
4060
4061	fsec = selinux_file(file);
4062	if (sid != fsec->sid) {
4063		rc = avc_has_perm(&selinux_state,
4064				  sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4065		if (rc)
4066			return rc;
4067	}
4068
4069	isec = inode_security(file_inode(file));
4070	return avc_has_perm(&selinux_state,
4071			    sid, isec->sid, SECCLASS_SYSTEM,
4072				SYSTEM__MODULE_LOAD, &ad);
4073}
4074
4075static int selinux_kernel_read_file(struct file *file,
4076				    enum kernel_read_file_id id,
4077				    bool contents)
4078{
4079	int rc = 0;
4080
4081	switch (id) {
4082	case READING_MODULE:
4083		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4084		break;
4085	default:
4086		break;
4087	}
4088
4089	return rc;
4090}
4091
4092static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4093{
4094	int rc = 0;
4095
4096	switch (id) {
4097	case LOADING_MODULE:
4098		rc = selinux_kernel_module_from_file(NULL);
4099		break;
4100	default:
4101		break;
4102	}
4103
4104	return rc;
4105}
4106
4107static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4108{
4109	return avc_has_perm(&selinux_state,
4110			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4111			    PROCESS__SETPGID, NULL);
4112}
4113
4114static int selinux_task_getpgid(struct task_struct *p)
4115{
4116	return avc_has_perm(&selinux_state,
4117			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4118			    PROCESS__GETPGID, NULL);
4119}
4120
4121static int selinux_task_getsid(struct task_struct *p)
4122{
4123	return avc_has_perm(&selinux_state,
4124			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4125			    PROCESS__GETSESSION, NULL);
4126}
4127
4128static void selinux_current_getsecid_subj(u32 *secid)
4129{
4130	*secid = current_sid();
4131}
4132
4133static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
 
4134{
4135	*secid = task_sid_obj(p);
4136}
4137
4138static int selinux_task_setnice(struct task_struct *p, int nice)
4139{
4140	return avc_has_perm(&selinux_state,
4141			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4142			    PROCESS__SETSCHED, NULL);
4143}
4144
4145static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4146{
4147	return avc_has_perm(&selinux_state,
4148			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4149			    PROCESS__SETSCHED, NULL);
4150}
4151
4152static int selinux_task_getioprio(struct task_struct *p)
4153{
4154	return avc_has_perm(&selinux_state,
4155			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4156			    PROCESS__GETSCHED, NULL);
4157}
4158
4159static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4160				unsigned int flags)
4161{
4162	u32 av = 0;
4163
4164	if (!flags)
4165		return 0;
4166	if (flags & LSM_PRLIMIT_WRITE)
4167		av |= PROCESS__SETRLIMIT;
4168	if (flags & LSM_PRLIMIT_READ)
4169		av |= PROCESS__GETRLIMIT;
4170	return avc_has_perm(&selinux_state,
4171			    cred_sid(cred), cred_sid(tcred),
4172			    SECCLASS_PROCESS, av, NULL);
4173}
4174
4175static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4176		struct rlimit *new_rlim)
4177{
4178	struct rlimit *old_rlim = p->signal->rlim + resource;
4179
4180	/* Control the ability to change the hard limit (whether
4181	   lowering or raising it), so that the hard limit can
4182	   later be used as a safe reset point for the soft limit
4183	   upon context transitions.  See selinux_bprm_committing_creds. */
4184	if (old_rlim->rlim_max != new_rlim->rlim_max)
4185		return avc_has_perm(&selinux_state,
4186				    current_sid(), task_sid_obj(p),
4187				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4188
4189	return 0;
4190}
4191
4192static int selinux_task_setscheduler(struct task_struct *p)
4193{
4194	return avc_has_perm(&selinux_state,
4195			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4196			    PROCESS__SETSCHED, NULL);
4197}
4198
4199static int selinux_task_getscheduler(struct task_struct *p)
4200{
4201	return avc_has_perm(&selinux_state,
4202			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4203			    PROCESS__GETSCHED, NULL);
4204}
4205
4206static int selinux_task_movememory(struct task_struct *p)
4207{
4208	return avc_has_perm(&selinux_state,
4209			    current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4210			    PROCESS__SETSCHED, NULL);
4211}
4212
4213static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4214				int sig, const struct cred *cred)
4215{
4216	u32 secid;
4217	u32 perm;
4218
4219	if (!sig)
4220		perm = PROCESS__SIGNULL; /* null signal; existence test */
4221	else
4222		perm = signal_to_av(sig);
4223	if (!cred)
4224		secid = current_sid();
4225	else
4226		secid = cred_sid(cred);
4227	return avc_has_perm(&selinux_state,
4228			    secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4229}
4230
4231static void selinux_task_to_inode(struct task_struct *p,
4232				  struct inode *inode)
4233{
4234	struct inode_security_struct *isec = selinux_inode(inode);
4235	u32 sid = task_sid_obj(p);
4236
4237	spin_lock(&isec->lock);
4238	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4239	isec->sid = sid;
4240	isec->initialized = LABEL_INITIALIZED;
4241	spin_unlock(&isec->lock);
4242}
4243
4244static int selinux_userns_create(const struct cred *cred)
4245{
4246	u32 sid = current_sid();
4247
4248	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_USER_NAMESPACE,
4249						USER_NAMESPACE__CREATE, NULL);
4250}
4251
4252/* Returns error only if unable to parse addresses */
4253static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4254			struct common_audit_data *ad, u8 *proto)
4255{
4256	int offset, ihlen, ret = -EINVAL;
4257	struct iphdr _iph, *ih;
4258
4259	offset = skb_network_offset(skb);
4260	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4261	if (ih == NULL)
4262		goto out;
4263
4264	ihlen = ih->ihl * 4;
4265	if (ihlen < sizeof(_iph))
4266		goto out;
4267
4268	ad->u.net->v4info.saddr = ih->saddr;
4269	ad->u.net->v4info.daddr = ih->daddr;
4270	ret = 0;
4271
4272	if (proto)
4273		*proto = ih->protocol;
4274
4275	switch (ih->protocol) {
4276	case IPPROTO_TCP: {
4277		struct tcphdr _tcph, *th;
4278
4279		if (ntohs(ih->frag_off) & IP_OFFSET)
4280			break;
4281
4282		offset += ihlen;
4283		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4284		if (th == NULL)
4285			break;
4286
4287		ad->u.net->sport = th->source;
4288		ad->u.net->dport = th->dest;
4289		break;
4290	}
4291
4292	case IPPROTO_UDP: {
4293		struct udphdr _udph, *uh;
4294
4295		if (ntohs(ih->frag_off) & IP_OFFSET)
4296			break;
4297
4298		offset += ihlen;
4299		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4300		if (uh == NULL)
4301			break;
4302
4303		ad->u.net->sport = uh->source;
4304		ad->u.net->dport = uh->dest;
4305		break;
4306	}
4307
4308	case IPPROTO_DCCP: {
4309		struct dccp_hdr _dccph, *dh;
4310
4311		if (ntohs(ih->frag_off) & IP_OFFSET)
4312			break;
4313
4314		offset += ihlen;
4315		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4316		if (dh == NULL)
4317			break;
4318
4319		ad->u.net->sport = dh->dccph_sport;
4320		ad->u.net->dport = dh->dccph_dport;
4321		break;
4322	}
4323
4324#if IS_ENABLED(CONFIG_IP_SCTP)
4325	case IPPROTO_SCTP: {
4326		struct sctphdr _sctph, *sh;
4327
4328		if (ntohs(ih->frag_off) & IP_OFFSET)
4329			break;
4330
4331		offset += ihlen;
4332		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4333		if (sh == NULL)
4334			break;
4335
4336		ad->u.net->sport = sh->source;
4337		ad->u.net->dport = sh->dest;
4338		break;
4339	}
4340#endif
4341	default:
4342		break;
4343	}
4344out:
4345	return ret;
4346}
4347
4348#if IS_ENABLED(CONFIG_IPV6)
4349
4350/* Returns error only if unable to parse addresses */
4351static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4352			struct common_audit_data *ad, u8 *proto)
4353{
4354	u8 nexthdr;
4355	int ret = -EINVAL, offset;
4356	struct ipv6hdr _ipv6h, *ip6;
4357	__be16 frag_off;
4358
4359	offset = skb_network_offset(skb);
4360	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4361	if (ip6 == NULL)
4362		goto out;
4363
4364	ad->u.net->v6info.saddr = ip6->saddr;
4365	ad->u.net->v6info.daddr = ip6->daddr;
4366	ret = 0;
4367
4368	nexthdr = ip6->nexthdr;
4369	offset += sizeof(_ipv6h);
4370	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4371	if (offset < 0)
4372		goto out;
4373
4374	if (proto)
4375		*proto = nexthdr;
4376
4377	switch (nexthdr) {
4378	case IPPROTO_TCP: {
4379		struct tcphdr _tcph, *th;
4380
4381		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4382		if (th == NULL)
4383			break;
4384
4385		ad->u.net->sport = th->source;
4386		ad->u.net->dport = th->dest;
4387		break;
4388	}
4389
4390	case IPPROTO_UDP: {
4391		struct udphdr _udph, *uh;
4392
4393		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4394		if (uh == NULL)
4395			break;
4396
4397		ad->u.net->sport = uh->source;
4398		ad->u.net->dport = uh->dest;
4399		break;
4400	}
4401
4402	case IPPROTO_DCCP: {
4403		struct dccp_hdr _dccph, *dh;
4404
4405		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4406		if (dh == NULL)
4407			break;
4408
4409		ad->u.net->sport = dh->dccph_sport;
4410		ad->u.net->dport = dh->dccph_dport;
4411		break;
4412	}
4413
4414#if IS_ENABLED(CONFIG_IP_SCTP)
4415	case IPPROTO_SCTP: {
4416		struct sctphdr _sctph, *sh;
4417
4418		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4419		if (sh == NULL)
4420			break;
4421
4422		ad->u.net->sport = sh->source;
4423		ad->u.net->dport = sh->dest;
4424		break;
4425	}
4426#endif
4427	/* includes fragments */
4428	default:
4429		break;
4430	}
4431out:
4432	return ret;
4433}
4434
4435#endif /* IPV6 */
4436
4437static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4438			     char **_addrp, int src, u8 *proto)
4439{
4440	char *addrp;
4441	int ret;
4442
4443	switch (ad->u.net->family) {
4444	case PF_INET:
4445		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4446		if (ret)
4447			goto parse_error;
4448		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4449				       &ad->u.net->v4info.daddr);
4450		goto okay;
4451
4452#if IS_ENABLED(CONFIG_IPV6)
4453	case PF_INET6:
4454		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4455		if (ret)
4456			goto parse_error;
4457		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4458				       &ad->u.net->v6info.daddr);
4459		goto okay;
4460#endif	/* IPV6 */
4461	default:
4462		addrp = NULL;
4463		goto okay;
4464	}
4465
4466parse_error:
4467	pr_warn(
4468	       "SELinux: failure in selinux_parse_skb(),"
4469	       " unable to parse packet\n");
4470	return ret;
4471
4472okay:
4473	if (_addrp)
4474		*_addrp = addrp;
4475	return 0;
4476}
4477
4478/**
4479 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4480 * @skb: the packet
4481 * @family: protocol family
4482 * @sid: the packet's peer label SID
4483 *
4484 * Description:
4485 * Check the various different forms of network peer labeling and determine
4486 * the peer label/SID for the packet; most of the magic actually occurs in
4487 * the security server function security_net_peersid_cmp().  The function
4488 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4489 * or -EACCES if @sid is invalid due to inconsistencies with the different
4490 * peer labels.
4491 *
4492 */
4493static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4494{
4495	int err;
4496	u32 xfrm_sid;
4497	u32 nlbl_sid;
4498	u32 nlbl_type;
4499
4500	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4501	if (unlikely(err))
4502		return -EACCES;
4503	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4504	if (unlikely(err))
4505		return -EACCES;
4506
4507	err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4508					   nlbl_type, xfrm_sid, sid);
4509	if (unlikely(err)) {
4510		pr_warn(
4511		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4512		       " unable to determine packet's peer label\n");
4513		return -EACCES;
4514	}
4515
4516	return 0;
4517}
4518
4519/**
4520 * selinux_conn_sid - Determine the child socket label for a connection
4521 * @sk_sid: the parent socket's SID
4522 * @skb_sid: the packet's SID
4523 * @conn_sid: the resulting connection SID
4524 *
4525 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4526 * combined with the MLS information from @skb_sid in order to create
4527 * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4528 * of @sk_sid.  Returns zero on success, negative values on failure.
4529 *
4530 */
4531static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4532{
4533	int err = 0;
4534
4535	if (skb_sid != SECSID_NULL)
4536		err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4537					    conn_sid);
4538	else
4539		*conn_sid = sk_sid;
4540
4541	return err;
4542}
4543
4544/* socket security operations */
4545
4546static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4547				 u16 secclass, u32 *socksid)
4548{
4549	if (tsec->sockcreate_sid > SECSID_NULL) {
4550		*socksid = tsec->sockcreate_sid;
4551		return 0;
4552	}
4553
4554	return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4555				       secclass, NULL, socksid);
4556}
4557
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4558static int sock_has_perm(struct sock *sk, u32 perms)
4559{
4560	struct sk_security_struct *sksec = sk->sk_security;
4561	struct common_audit_data ad;
4562	struct lsm_network_audit net = {0,};
4563
4564	if (sksec->sid == SECINITSID_KERNEL)
4565		return 0;
4566
4567	ad.type = LSM_AUDIT_DATA_NET;
4568	ad.u.net = &net;
4569	ad.u.net->sk = sk;
4570
4571	return avc_has_perm(&selinux_state,
4572			    current_sid(), sksec->sid, sksec->sclass, perms,
4573			    &ad);
4574}
4575
4576static int selinux_socket_create(int family, int type,
4577				 int protocol, int kern)
4578{
4579	const struct task_security_struct *tsec = selinux_cred(current_cred());
4580	u32 newsid;
4581	u16 secclass;
4582	int rc;
4583
4584	if (kern)
4585		return 0;
4586
4587	secclass = socket_type_to_security_class(family, type, protocol);
4588	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4589	if (rc)
4590		return rc;
4591
4592	return avc_has_perm(&selinux_state,
4593			    tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4594}
4595
4596static int selinux_socket_post_create(struct socket *sock, int family,
4597				      int type, int protocol, int kern)
4598{
4599	const struct task_security_struct *tsec = selinux_cred(current_cred());
4600	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4601	struct sk_security_struct *sksec;
4602	u16 sclass = socket_type_to_security_class(family, type, protocol);
4603	u32 sid = SECINITSID_KERNEL;
4604	int err = 0;
4605
4606	if (!kern) {
4607		err = socket_sockcreate_sid(tsec, sclass, &sid);
4608		if (err)
4609			return err;
4610	}
4611
4612	isec->sclass = sclass;
4613	isec->sid = sid;
4614	isec->initialized = LABEL_INITIALIZED;
4615
4616	if (sock->sk) {
4617		sksec = sock->sk->sk_security;
4618		sksec->sclass = sclass;
4619		sksec->sid = sid;
4620		/* Allows detection of the first association on this socket */
4621		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4622			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4623
4624		err = selinux_netlbl_socket_post_create(sock->sk, family);
4625	}
4626
4627	return err;
4628}
4629
4630static int selinux_socket_socketpair(struct socket *socka,
4631				     struct socket *sockb)
4632{
4633	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4634	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4635
4636	sksec_a->peer_sid = sksec_b->sid;
4637	sksec_b->peer_sid = sksec_a->sid;
4638
4639	return 0;
4640}
4641
4642/* Range of port numbers used to automatically bind.
4643   Need to determine whether we should perform a name_bind
4644   permission check between the socket and the port number. */
4645
4646static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4647{
4648	struct sock *sk = sock->sk;
4649	struct sk_security_struct *sksec = sk->sk_security;
4650	u16 family;
4651	int err;
4652
4653	err = sock_has_perm(sk, SOCKET__BIND);
4654	if (err)
4655		goto out;
4656
4657	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4658	family = sk->sk_family;
4659	if (family == PF_INET || family == PF_INET6) {
4660		char *addrp;
4661		struct common_audit_data ad;
4662		struct lsm_network_audit net = {0,};
4663		struct sockaddr_in *addr4 = NULL;
4664		struct sockaddr_in6 *addr6 = NULL;
4665		u16 family_sa;
4666		unsigned short snum;
4667		u32 sid, node_perm;
4668
4669		/*
4670		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4671		 * that validates multiple binding addresses. Because of this
4672		 * need to check address->sa_family as it is possible to have
4673		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4674		 */
4675		if (addrlen < offsetofend(struct sockaddr, sa_family))
4676			return -EINVAL;
4677		family_sa = address->sa_family;
4678		switch (family_sa) {
4679		case AF_UNSPEC:
4680		case AF_INET:
4681			if (addrlen < sizeof(struct sockaddr_in))
4682				return -EINVAL;
4683			addr4 = (struct sockaddr_in *)address;
4684			if (family_sa == AF_UNSPEC) {
 
 
 
 
 
 
 
4685				/* see __inet_bind(), we only want to allow
4686				 * AF_UNSPEC if the address is INADDR_ANY
4687				 */
4688				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4689					goto err_af;
4690				family_sa = AF_INET;
4691			}
4692			snum = ntohs(addr4->sin_port);
4693			addrp = (char *)&addr4->sin_addr.s_addr;
4694			break;
4695		case AF_INET6:
4696			if (addrlen < SIN6_LEN_RFC2133)
4697				return -EINVAL;
4698			addr6 = (struct sockaddr_in6 *)address;
4699			snum = ntohs(addr6->sin6_port);
4700			addrp = (char *)&addr6->sin6_addr.s6_addr;
4701			break;
4702		default:
4703			goto err_af;
4704		}
4705
4706		ad.type = LSM_AUDIT_DATA_NET;
4707		ad.u.net = &net;
4708		ad.u.net->sport = htons(snum);
4709		ad.u.net->family = family_sa;
4710
4711		if (snum) {
4712			int low, high;
4713
4714			inet_get_local_port_range(sock_net(sk), &low, &high);
4715
4716			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4717			    snum < low || snum > high) {
4718				err = sel_netport_sid(sk->sk_protocol,
4719						      snum, &sid);
4720				if (err)
4721					goto out;
4722				err = avc_has_perm(&selinux_state,
4723						   sksec->sid, sid,
4724						   sksec->sclass,
4725						   SOCKET__NAME_BIND, &ad);
4726				if (err)
4727					goto out;
4728			}
4729		}
4730
4731		switch (sksec->sclass) {
4732		case SECCLASS_TCP_SOCKET:
4733			node_perm = TCP_SOCKET__NODE_BIND;
4734			break;
4735
4736		case SECCLASS_UDP_SOCKET:
4737			node_perm = UDP_SOCKET__NODE_BIND;
4738			break;
4739
4740		case SECCLASS_DCCP_SOCKET:
4741			node_perm = DCCP_SOCKET__NODE_BIND;
4742			break;
4743
4744		case SECCLASS_SCTP_SOCKET:
4745			node_perm = SCTP_SOCKET__NODE_BIND;
4746			break;
4747
4748		default:
4749			node_perm = RAWIP_SOCKET__NODE_BIND;
4750			break;
4751		}
4752
4753		err = sel_netnode_sid(addrp, family_sa, &sid);
4754		if (err)
4755			goto out;
4756
4757		if (family_sa == AF_INET)
4758			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4759		else
4760			ad.u.net->v6info.saddr = addr6->sin6_addr;
4761
4762		err = avc_has_perm(&selinux_state,
4763				   sksec->sid, sid,
4764				   sksec->sclass, node_perm, &ad);
4765		if (err)
4766			goto out;
4767	}
4768out:
4769	return err;
4770err_af:
4771	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4772	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4773		return -EINVAL;
4774	return -EAFNOSUPPORT;
4775}
4776
4777/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4778 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4779 */
4780static int selinux_socket_connect_helper(struct socket *sock,
4781					 struct sockaddr *address, int addrlen)
4782{
4783	struct sock *sk = sock->sk;
4784	struct sk_security_struct *sksec = sk->sk_security;
4785	int err;
4786
4787	err = sock_has_perm(sk, SOCKET__CONNECT);
4788	if (err)
4789		return err;
4790	if (addrlen < offsetofend(struct sockaddr, sa_family))
4791		return -EINVAL;
4792
4793	/* connect(AF_UNSPEC) has special handling, as it is a documented
4794	 * way to disconnect the socket
4795	 */
4796	if (address->sa_family == AF_UNSPEC)
4797		return 0;
4798
4799	/*
4800	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4801	 * for the port.
4802	 */
4803	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4804	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4805	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4806		struct common_audit_data ad;
4807		struct lsm_network_audit net = {0,};
4808		struct sockaddr_in *addr4 = NULL;
4809		struct sockaddr_in6 *addr6 = NULL;
4810		unsigned short snum;
4811		u32 sid, perm;
4812
4813		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4814		 * that validates multiple connect addresses. Because of this
4815		 * need to check address->sa_family as it is possible to have
4816		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4817		 */
4818		switch (address->sa_family) {
4819		case AF_INET:
4820			addr4 = (struct sockaddr_in *)address;
4821			if (addrlen < sizeof(struct sockaddr_in))
4822				return -EINVAL;
4823			snum = ntohs(addr4->sin_port);
4824			break;
4825		case AF_INET6:
4826			addr6 = (struct sockaddr_in6 *)address;
4827			if (addrlen < SIN6_LEN_RFC2133)
4828				return -EINVAL;
4829			snum = ntohs(addr6->sin6_port);
4830			break;
4831		default:
4832			/* Note that SCTP services expect -EINVAL, whereas
4833			 * others expect -EAFNOSUPPORT.
4834			 */
4835			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4836				return -EINVAL;
4837			else
4838				return -EAFNOSUPPORT;
4839		}
4840
4841		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4842		if (err)
4843			return err;
4844
4845		switch (sksec->sclass) {
4846		case SECCLASS_TCP_SOCKET:
4847			perm = TCP_SOCKET__NAME_CONNECT;
4848			break;
4849		case SECCLASS_DCCP_SOCKET:
4850			perm = DCCP_SOCKET__NAME_CONNECT;
4851			break;
4852		case SECCLASS_SCTP_SOCKET:
4853			perm = SCTP_SOCKET__NAME_CONNECT;
4854			break;
4855		}
4856
4857		ad.type = LSM_AUDIT_DATA_NET;
4858		ad.u.net = &net;
4859		ad.u.net->dport = htons(snum);
4860		ad.u.net->family = address->sa_family;
4861		err = avc_has_perm(&selinux_state,
4862				   sksec->sid, sid, sksec->sclass, perm, &ad);
4863		if (err)
4864			return err;
4865	}
4866
4867	return 0;
4868}
4869
4870/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4871static int selinux_socket_connect(struct socket *sock,
4872				  struct sockaddr *address, int addrlen)
4873{
4874	int err;
4875	struct sock *sk = sock->sk;
4876
4877	err = selinux_socket_connect_helper(sock, address, addrlen);
4878	if (err)
4879		return err;
4880
4881	return selinux_netlbl_socket_connect(sk, address);
4882}
4883
4884static int selinux_socket_listen(struct socket *sock, int backlog)
4885{
4886	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4887}
4888
4889static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4890{
4891	int err;
4892	struct inode_security_struct *isec;
4893	struct inode_security_struct *newisec;
4894	u16 sclass;
4895	u32 sid;
4896
4897	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4898	if (err)
4899		return err;
4900
4901	isec = inode_security_novalidate(SOCK_INODE(sock));
4902	spin_lock(&isec->lock);
4903	sclass = isec->sclass;
4904	sid = isec->sid;
4905	spin_unlock(&isec->lock);
4906
4907	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4908	newisec->sclass = sclass;
4909	newisec->sid = sid;
4910	newisec->initialized = LABEL_INITIALIZED;
4911
4912	return 0;
4913}
4914
4915static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4916				  int size)
4917{
4918	return sock_has_perm(sock->sk, SOCKET__WRITE);
4919}
4920
4921static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4922				  int size, int flags)
4923{
4924	return sock_has_perm(sock->sk, SOCKET__READ);
4925}
4926
4927static int selinux_socket_getsockname(struct socket *sock)
4928{
4929	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4930}
4931
4932static int selinux_socket_getpeername(struct socket *sock)
4933{
4934	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4935}
4936
4937static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4938{
4939	int err;
4940
4941	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4942	if (err)
4943		return err;
4944
4945	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4946}
4947
4948static int selinux_socket_getsockopt(struct socket *sock, int level,
4949				     int optname)
4950{
4951	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4952}
4953
4954static int selinux_socket_shutdown(struct socket *sock, int how)
4955{
4956	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4957}
4958
4959static int selinux_socket_unix_stream_connect(struct sock *sock,
4960					      struct sock *other,
4961					      struct sock *newsk)
4962{
4963	struct sk_security_struct *sksec_sock = sock->sk_security;
4964	struct sk_security_struct *sksec_other = other->sk_security;
4965	struct sk_security_struct *sksec_new = newsk->sk_security;
4966	struct common_audit_data ad;
4967	struct lsm_network_audit net = {0,};
4968	int err;
4969
4970	ad.type = LSM_AUDIT_DATA_NET;
4971	ad.u.net = &net;
4972	ad.u.net->sk = other;
4973
4974	err = avc_has_perm(&selinux_state,
4975			   sksec_sock->sid, sksec_other->sid,
4976			   sksec_other->sclass,
4977			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4978	if (err)
4979		return err;
4980
4981	/* server child socket */
4982	sksec_new->peer_sid = sksec_sock->sid;
4983	err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
4984				    sksec_sock->sid, &sksec_new->sid);
4985	if (err)
4986		return err;
4987
4988	/* connecting socket */
4989	sksec_sock->peer_sid = sksec_new->sid;
4990
4991	return 0;
4992}
4993
4994static int selinux_socket_unix_may_send(struct socket *sock,
4995					struct socket *other)
4996{
4997	struct sk_security_struct *ssec = sock->sk->sk_security;
4998	struct sk_security_struct *osec = other->sk->sk_security;
4999	struct common_audit_data ad;
5000	struct lsm_network_audit net = {0,};
5001
5002	ad.type = LSM_AUDIT_DATA_NET;
5003	ad.u.net = &net;
5004	ad.u.net->sk = other->sk;
5005
5006	return avc_has_perm(&selinux_state,
5007			    ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5008			    &ad);
5009}
5010
5011static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5012				    char *addrp, u16 family, u32 peer_sid,
5013				    struct common_audit_data *ad)
5014{
5015	int err;
5016	u32 if_sid;
5017	u32 node_sid;
5018
5019	err = sel_netif_sid(ns, ifindex, &if_sid);
5020	if (err)
5021		return err;
5022	err = avc_has_perm(&selinux_state,
5023			   peer_sid, if_sid,
5024			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5025	if (err)
5026		return err;
5027
5028	err = sel_netnode_sid(addrp, family, &node_sid);
5029	if (err)
5030		return err;
5031	return avc_has_perm(&selinux_state,
5032			    peer_sid, node_sid,
5033			    SECCLASS_NODE, NODE__RECVFROM, ad);
5034}
5035
5036static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5037				       u16 family)
5038{
5039	int err = 0;
5040	struct sk_security_struct *sksec = sk->sk_security;
5041	u32 sk_sid = sksec->sid;
5042	struct common_audit_data ad;
5043	struct lsm_network_audit net = {0,};
5044	char *addrp;
5045
5046	ad.type = LSM_AUDIT_DATA_NET;
5047	ad.u.net = &net;
5048	ad.u.net->netif = skb->skb_iif;
5049	ad.u.net->family = family;
5050	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5051	if (err)
5052		return err;
5053
5054	if (selinux_secmark_enabled()) {
5055		err = avc_has_perm(&selinux_state,
5056				   sk_sid, skb->secmark, SECCLASS_PACKET,
5057				   PACKET__RECV, &ad);
5058		if (err)
5059			return err;
5060	}
5061
5062	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5063	if (err)
5064		return err;
5065	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5066
5067	return err;
5068}
5069
5070static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5071{
5072	int err;
5073	struct sk_security_struct *sksec = sk->sk_security;
5074	u16 family = sk->sk_family;
5075	u32 sk_sid = sksec->sid;
5076	struct common_audit_data ad;
5077	struct lsm_network_audit net = {0,};
5078	char *addrp;
5079	u8 secmark_active;
5080	u8 peerlbl_active;
5081
5082	if (family != PF_INET && family != PF_INET6)
5083		return 0;
5084
5085	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5086	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5087		family = PF_INET;
5088
5089	/* If any sort of compatibility mode is enabled then handoff processing
5090	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5091	 * special handling.  We do this in an attempt to keep this function
5092	 * as fast and as clean as possible. */
5093	if (!selinux_policycap_netpeer())
5094		return selinux_sock_rcv_skb_compat(sk, skb, family);
5095
5096	secmark_active = selinux_secmark_enabled();
5097	peerlbl_active = selinux_peerlbl_enabled();
5098	if (!secmark_active && !peerlbl_active)
5099		return 0;
5100
5101	ad.type = LSM_AUDIT_DATA_NET;
5102	ad.u.net = &net;
5103	ad.u.net->netif = skb->skb_iif;
5104	ad.u.net->family = family;
5105	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5106	if (err)
5107		return err;
5108
5109	if (peerlbl_active) {
5110		u32 peer_sid;
5111
5112		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5113		if (err)
5114			return err;
5115		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5116					       addrp, family, peer_sid, &ad);
5117		if (err) {
5118			selinux_netlbl_err(skb, family, err, 0);
5119			return err;
5120		}
5121		err = avc_has_perm(&selinux_state,
5122				   sk_sid, peer_sid, SECCLASS_PEER,
5123				   PEER__RECV, &ad);
5124		if (err) {
5125			selinux_netlbl_err(skb, family, err, 0);
5126			return err;
5127		}
5128	}
5129
5130	if (secmark_active) {
5131		err = avc_has_perm(&selinux_state,
5132				   sk_sid, skb->secmark, SECCLASS_PACKET,
5133				   PACKET__RECV, &ad);
5134		if (err)
5135			return err;
5136	}
5137
5138	return err;
5139}
5140
5141static int selinux_socket_getpeersec_stream(struct socket *sock,
5142					    sockptr_t optval, sockptr_t optlen,
5143					    unsigned int len)
5144{
5145	int err = 0;
5146	char *scontext = NULL;
5147	u32 scontext_len;
5148	struct sk_security_struct *sksec = sock->sk->sk_security;
5149	u32 peer_sid = SECSID_NULL;
5150
5151	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5152	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5153	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5154		peer_sid = sksec->peer_sid;
5155	if (peer_sid == SECSID_NULL)
5156		return -ENOPROTOOPT;
5157
5158	err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5159				      &scontext_len);
5160	if (err)
5161		return err;
5162	if (scontext_len > len) {
5163		err = -ERANGE;
5164		goto out_len;
5165	}
5166
5167	if (copy_to_sockptr(optval, scontext, scontext_len))
5168		err = -EFAULT;
5169out_len:
5170	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5171		err = -EFAULT;
5172	kfree(scontext);
5173	return err;
5174}
5175
5176static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
 
5177{
5178	u32 peer_secid = SECSID_NULL;
5179	u16 family;
5180	struct inode_security_struct *isec;
5181
5182	if (skb && skb->protocol == htons(ETH_P_IP))
5183		family = PF_INET;
5184	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5185		family = PF_INET6;
5186	else if (sock)
5187		family = sock->sk->sk_family;
5188	else
5189		goto out;
 
 
5190
5191	if (sock && family == PF_UNIX) {
 
5192		isec = inode_security_novalidate(SOCK_INODE(sock));
5193		peer_secid = isec->sid;
5194	} else if (skb)
5195		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5196
5197out:
5198	*secid = peer_secid;
5199	if (peer_secid == SECSID_NULL)
5200		return -EINVAL;
5201	return 0;
5202}
5203
5204static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5205{
5206	struct sk_security_struct *sksec;
5207
5208	sksec = kzalloc(sizeof(*sksec), priority);
5209	if (!sksec)
5210		return -ENOMEM;
5211
5212	sksec->peer_sid = SECINITSID_UNLABELED;
5213	sksec->sid = SECINITSID_UNLABELED;
5214	sksec->sclass = SECCLASS_SOCKET;
5215	selinux_netlbl_sk_security_reset(sksec);
5216	sk->sk_security = sksec;
5217
5218	return 0;
5219}
5220
5221static void selinux_sk_free_security(struct sock *sk)
5222{
5223	struct sk_security_struct *sksec = sk->sk_security;
5224
5225	sk->sk_security = NULL;
5226	selinux_netlbl_sk_security_free(sksec);
5227	kfree(sksec);
5228}
5229
5230static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5231{
5232	struct sk_security_struct *sksec = sk->sk_security;
5233	struct sk_security_struct *newsksec = newsk->sk_security;
5234
5235	newsksec->sid = sksec->sid;
5236	newsksec->peer_sid = sksec->peer_sid;
5237	newsksec->sclass = sksec->sclass;
5238
5239	selinux_netlbl_sk_security_reset(newsksec);
5240}
5241
5242static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5243{
5244	if (!sk)
5245		*secid = SECINITSID_ANY_SOCKET;
5246	else {
5247		struct sk_security_struct *sksec = sk->sk_security;
5248
5249		*secid = sksec->sid;
5250	}
5251}
5252
5253static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5254{
5255	struct inode_security_struct *isec =
5256		inode_security_novalidate(SOCK_INODE(parent));
5257	struct sk_security_struct *sksec = sk->sk_security;
5258
5259	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5260	    sk->sk_family == PF_UNIX)
5261		isec->sid = sksec->sid;
5262	sksec->sclass = isec->sclass;
5263}
5264
5265/*
5266 * Determines peer_secid for the asoc and updates socket's peer label
5267 * if it's the first association on the socket.
5268 */
5269static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5270					  struct sk_buff *skb)
5271{
5272	struct sock *sk = asoc->base.sk;
5273	u16 family = sk->sk_family;
5274	struct sk_security_struct *sksec = sk->sk_security;
5275	struct common_audit_data ad;
5276	struct lsm_network_audit net = {0,};
5277	int err;
5278
5279	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5280	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5281		family = PF_INET;
5282
5283	if (selinux_peerlbl_enabled()) {
5284		asoc->peer_secid = SECSID_NULL;
5285
5286		/* This will return peer_sid = SECSID_NULL if there are
5287		 * no peer labels, see security_net_peersid_resolve().
5288		 */
5289		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5290		if (err)
5291			return err;
5292
5293		if (asoc->peer_secid == SECSID_NULL)
5294			asoc->peer_secid = SECINITSID_UNLABELED;
5295	} else {
5296		asoc->peer_secid = SECINITSID_UNLABELED;
5297	}
5298
5299	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5300		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5301
5302		/* Here as first association on socket. As the peer SID
5303		 * was allowed by peer recv (and the netif/node checks),
5304		 * then it is approved by policy and used as the primary
5305		 * peer SID for getpeercon(3).
5306		 */
5307		sksec->peer_sid = asoc->peer_secid;
5308	} else if (sksec->peer_sid != asoc->peer_secid) {
5309		/* Other association peer SIDs are checked to enforce
5310		 * consistency among the peer SIDs.
5311		 */
5312		ad.type = LSM_AUDIT_DATA_NET;
5313		ad.u.net = &net;
5314		ad.u.net->sk = asoc->base.sk;
5315		err = avc_has_perm(&selinux_state,
5316				   sksec->peer_sid, asoc->peer_secid,
5317				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5318				   &ad);
5319		if (err)
5320			return err;
5321	}
5322	return 0;
5323}
5324
5325/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5326 * happens on an incoming connect(2), sctp_connectx(3) or
5327 * sctp_sendmsg(3) (with no association already present).
5328 */
5329static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5330				      struct sk_buff *skb)
5331{
5332	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5333	u32 conn_sid;
5334	int err;
5335
5336	if (!selinux_policycap_extsockclass())
5337		return 0;
5338
5339	err = selinux_sctp_process_new_assoc(asoc, skb);
5340	if (err)
5341		return err;
5342
5343	/* Compute the MLS component for the connection and store
5344	 * the information in asoc. This will be used by SCTP TCP type
5345	 * sockets and peeled off connections as they cause a new
5346	 * socket to be generated. selinux_sctp_sk_clone() will then
5347	 * plug this into the new socket.
5348	 */
5349	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5350	if (err)
5351		return err;
5352
5353	asoc->secid = conn_sid;
5354
5355	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5356	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5357}
5358
5359/* Called when SCTP receives a COOKIE ACK chunk as the final
5360 * response to an association request (initited by us).
5361 */
5362static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5363					  struct sk_buff *skb)
5364{
5365	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5366
5367	if (!selinux_policycap_extsockclass())
5368		return 0;
5369
5370	/* Inherit secid from the parent socket - this will be picked up
5371	 * by selinux_sctp_sk_clone() if the association gets peeled off
5372	 * into a new socket.
5373	 */
5374	asoc->secid = sksec->sid;
5375
5376	return selinux_sctp_process_new_assoc(asoc, skb);
5377}
5378
5379/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5380 * based on their @optname.
5381 */
5382static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5383				     struct sockaddr *address,
5384				     int addrlen)
5385{
5386	int len, err = 0, walk_size = 0;
5387	void *addr_buf;
5388	struct sockaddr *addr;
5389	struct socket *sock;
5390
5391	if (!selinux_policycap_extsockclass())
5392		return 0;
5393
5394	/* Process one or more addresses that may be IPv4 or IPv6 */
5395	sock = sk->sk_socket;
5396	addr_buf = address;
5397
5398	while (walk_size < addrlen) {
5399		if (walk_size + sizeof(sa_family_t) > addrlen)
5400			return -EINVAL;
5401
5402		addr = addr_buf;
5403		switch (addr->sa_family) {
5404		case AF_UNSPEC:
5405		case AF_INET:
5406			len = sizeof(struct sockaddr_in);
5407			break;
5408		case AF_INET6:
5409			len = sizeof(struct sockaddr_in6);
5410			break;
5411		default:
5412			return -EINVAL;
5413		}
5414
5415		if (walk_size + len > addrlen)
5416			return -EINVAL;
5417
5418		err = -EINVAL;
5419		switch (optname) {
5420		/* Bind checks */
5421		case SCTP_PRIMARY_ADDR:
5422		case SCTP_SET_PEER_PRIMARY_ADDR:
5423		case SCTP_SOCKOPT_BINDX_ADD:
5424			err = selinux_socket_bind(sock, addr, len);
5425			break;
5426		/* Connect checks */
5427		case SCTP_SOCKOPT_CONNECTX:
5428		case SCTP_PARAM_SET_PRIMARY:
5429		case SCTP_PARAM_ADD_IP:
5430		case SCTP_SENDMSG_CONNECT:
5431			err = selinux_socket_connect_helper(sock, addr, len);
5432			if (err)
5433				return err;
5434
5435			/* As selinux_sctp_bind_connect() is called by the
5436			 * SCTP protocol layer, the socket is already locked,
5437			 * therefore selinux_netlbl_socket_connect_locked()
5438			 * is called here. The situations handled are:
5439			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5440			 * whenever a new IP address is added or when a new
5441			 * primary address is selected.
5442			 * Note that an SCTP connect(2) call happens before
5443			 * the SCTP protocol layer and is handled via
5444			 * selinux_socket_connect().
5445			 */
5446			err = selinux_netlbl_socket_connect_locked(sk, addr);
5447			break;
5448		}
5449
5450		if (err)
5451			return err;
5452
5453		addr_buf += len;
5454		walk_size += len;
5455	}
5456
5457	return 0;
5458}
5459
5460/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5461static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5462				  struct sock *newsk)
5463{
5464	struct sk_security_struct *sksec = sk->sk_security;
5465	struct sk_security_struct *newsksec = newsk->sk_security;
5466
5467	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5468	 * the non-sctp clone version.
5469	 */
5470	if (!selinux_policycap_extsockclass())
5471		return selinux_sk_clone_security(sk, newsk);
5472
5473	newsksec->sid = asoc->secid;
5474	newsksec->peer_sid = asoc->peer_secid;
5475	newsksec->sclass = sksec->sclass;
5476	selinux_netlbl_sctp_sk_clone(sk, newsk);
5477}
5478
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5479static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5480				     struct request_sock *req)
5481{
5482	struct sk_security_struct *sksec = sk->sk_security;
5483	int err;
5484	u16 family = req->rsk_ops->family;
5485	u32 connsid;
5486	u32 peersid;
5487
5488	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5489	if (err)
5490		return err;
5491	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5492	if (err)
5493		return err;
5494	req->secid = connsid;
5495	req->peer_secid = peersid;
5496
5497	return selinux_netlbl_inet_conn_request(req, family);
5498}
5499
5500static void selinux_inet_csk_clone(struct sock *newsk,
5501				   const struct request_sock *req)
5502{
5503	struct sk_security_struct *newsksec = newsk->sk_security;
5504
5505	newsksec->sid = req->secid;
5506	newsksec->peer_sid = req->peer_secid;
5507	/* NOTE: Ideally, we should also get the isec->sid for the
5508	   new socket in sync, but we don't have the isec available yet.
5509	   So we will wait until sock_graft to do it, by which
5510	   time it will have been created and available. */
5511
5512	/* We don't need to take any sort of lock here as we are the only
5513	 * thread with access to newsksec */
5514	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5515}
5516
5517static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5518{
5519	u16 family = sk->sk_family;
5520	struct sk_security_struct *sksec = sk->sk_security;
5521
5522	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5523	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5524		family = PF_INET;
5525
5526	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5527}
5528
5529static int selinux_secmark_relabel_packet(u32 sid)
5530{
5531	const struct task_security_struct *__tsec;
5532	u32 tsid;
5533
5534	__tsec = selinux_cred(current_cred());
5535	tsid = __tsec->sid;
5536
5537	return avc_has_perm(&selinux_state,
5538			    tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5539			    NULL);
5540}
5541
5542static void selinux_secmark_refcount_inc(void)
5543{
5544	atomic_inc(&selinux_secmark_refcount);
5545}
5546
5547static void selinux_secmark_refcount_dec(void)
5548{
5549	atomic_dec(&selinux_secmark_refcount);
5550}
5551
5552static void selinux_req_classify_flow(const struct request_sock *req,
5553				      struct flowi_common *flic)
5554{
5555	flic->flowic_secid = req->secid;
5556}
5557
5558static int selinux_tun_dev_alloc_security(void **security)
5559{
5560	struct tun_security_struct *tunsec;
5561
5562	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5563	if (!tunsec)
5564		return -ENOMEM;
5565	tunsec->sid = current_sid();
5566
5567	*security = tunsec;
5568	return 0;
5569}
5570
5571static void selinux_tun_dev_free_security(void *security)
5572{
5573	kfree(security);
5574}
5575
5576static int selinux_tun_dev_create(void)
5577{
5578	u32 sid = current_sid();
5579
5580	/* we aren't taking into account the "sockcreate" SID since the socket
5581	 * that is being created here is not a socket in the traditional sense,
5582	 * instead it is a private sock, accessible only to the kernel, and
5583	 * representing a wide range of network traffic spanning multiple
5584	 * connections unlike traditional sockets - check the TUN driver to
5585	 * get a better understanding of why this socket is special */
5586
5587	return avc_has_perm(&selinux_state,
5588			    sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5589			    NULL);
5590}
5591
5592static int selinux_tun_dev_attach_queue(void *security)
5593{
5594	struct tun_security_struct *tunsec = security;
5595
5596	return avc_has_perm(&selinux_state,
5597			    current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5598			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5599}
5600
5601static int selinux_tun_dev_attach(struct sock *sk, void *security)
5602{
5603	struct tun_security_struct *tunsec = security;
5604	struct sk_security_struct *sksec = sk->sk_security;
5605
5606	/* we don't currently perform any NetLabel based labeling here and it
5607	 * isn't clear that we would want to do so anyway; while we could apply
5608	 * labeling without the support of the TUN user the resulting labeled
5609	 * traffic from the other end of the connection would almost certainly
5610	 * cause confusion to the TUN user that had no idea network labeling
5611	 * protocols were being used */
5612
5613	sksec->sid = tunsec->sid;
5614	sksec->sclass = SECCLASS_TUN_SOCKET;
5615
5616	return 0;
5617}
5618
5619static int selinux_tun_dev_open(void *security)
5620{
5621	struct tun_security_struct *tunsec = security;
5622	u32 sid = current_sid();
5623	int err;
5624
5625	err = avc_has_perm(&selinux_state,
5626			   sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5627			   TUN_SOCKET__RELABELFROM, NULL);
5628	if (err)
5629		return err;
5630	err = avc_has_perm(&selinux_state,
5631			   sid, sid, SECCLASS_TUN_SOCKET,
5632			   TUN_SOCKET__RELABELTO, NULL);
5633	if (err)
5634		return err;
5635	tunsec->sid = sid;
5636
5637	return 0;
5638}
5639
5640#ifdef CONFIG_NETFILTER
5641
5642static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5643				       const struct nf_hook_state *state)
5644{
5645	int ifindex;
5646	u16 family;
5647	char *addrp;
5648	u32 peer_sid;
5649	struct common_audit_data ad;
5650	struct lsm_network_audit net = {0,};
5651	int secmark_active, peerlbl_active;
5652
5653	if (!selinux_policycap_netpeer())
5654		return NF_ACCEPT;
5655
5656	secmark_active = selinux_secmark_enabled();
5657	peerlbl_active = selinux_peerlbl_enabled();
5658	if (!secmark_active && !peerlbl_active)
5659		return NF_ACCEPT;
5660
5661	family = state->pf;
5662	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5663		return NF_DROP;
5664
5665	ifindex = state->in->ifindex;
5666	ad.type = LSM_AUDIT_DATA_NET;
5667	ad.u.net = &net;
5668	ad.u.net->netif = ifindex;
5669	ad.u.net->family = family;
5670	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5671		return NF_DROP;
5672
5673	if (peerlbl_active) {
5674		int err;
5675
5676		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5677					       addrp, family, peer_sid, &ad);
5678		if (err) {
5679			selinux_netlbl_err(skb, family, err, 1);
5680			return NF_DROP;
5681		}
5682	}
5683
5684	if (secmark_active)
5685		if (avc_has_perm(&selinux_state,
5686				 peer_sid, skb->secmark,
5687				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5688			return NF_DROP;
5689
5690	if (netlbl_enabled())
5691		/* we do this in the FORWARD path and not the POST_ROUTING
5692		 * path because we want to make sure we apply the necessary
5693		 * labeling before IPsec is applied so we can leverage AH
5694		 * protection */
5695		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5696			return NF_DROP;
5697
5698	return NF_ACCEPT;
5699}
5700
5701static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5702				      const struct nf_hook_state *state)
5703{
5704	struct sock *sk;
5705	u32 sid;
5706
5707	if (!netlbl_enabled())
5708		return NF_ACCEPT;
5709
5710	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5711	 * because we want to make sure we apply the necessary labeling
5712	 * before IPsec is applied so we can leverage AH protection */
5713	sk = skb->sk;
5714	if (sk) {
5715		struct sk_security_struct *sksec;
5716
5717		if (sk_listener(sk))
5718			/* if the socket is the listening state then this
5719			 * packet is a SYN-ACK packet which means it needs to
5720			 * be labeled based on the connection/request_sock and
5721			 * not the parent socket.  unfortunately, we can't
5722			 * lookup the request_sock yet as it isn't queued on
5723			 * the parent socket until after the SYN-ACK is sent.
5724			 * the "solution" is to simply pass the packet as-is
5725			 * as any IP option based labeling should be copied
5726			 * from the initial connection request (in the IP
5727			 * layer).  it is far from ideal, but until we get a
5728			 * security label in the packet itself this is the
5729			 * best we can do. */
5730			return NF_ACCEPT;
5731
5732		/* standard practice, label using the parent socket */
5733		sksec = sk->sk_security;
5734		sid = sksec->sid;
5735	} else
5736		sid = SECINITSID_KERNEL;
5737	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5738		return NF_DROP;
5739
5740	return NF_ACCEPT;
5741}
5742
5743
5744static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5745					const struct nf_hook_state *state)
5746{
5747	struct sock *sk;
5748	struct sk_security_struct *sksec;
5749	struct common_audit_data ad;
5750	struct lsm_network_audit net = {0,};
5751	u8 proto = 0;
5752
5753	sk = skb_to_full_sk(skb);
5754	if (sk == NULL)
5755		return NF_ACCEPT;
5756	sksec = sk->sk_security;
5757
5758	ad.type = LSM_AUDIT_DATA_NET;
5759	ad.u.net = &net;
5760	ad.u.net->netif = state->out->ifindex;
5761	ad.u.net->family = state->pf;
5762	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5763		return NF_DROP;
5764
5765	if (selinux_secmark_enabled())
5766		if (avc_has_perm(&selinux_state,
5767				 sksec->sid, skb->secmark,
5768				 SECCLASS_PACKET, PACKET__SEND, &ad))
5769			return NF_DROP_ERR(-ECONNREFUSED);
5770
5771	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5772		return NF_DROP_ERR(-ECONNREFUSED);
5773
5774	return NF_ACCEPT;
5775}
5776
5777static unsigned int selinux_ip_postroute(void *priv,
5778					 struct sk_buff *skb,
5779					 const struct nf_hook_state *state)
5780{
5781	u16 family;
5782	u32 secmark_perm;
5783	u32 peer_sid;
5784	int ifindex;
5785	struct sock *sk;
5786	struct common_audit_data ad;
5787	struct lsm_network_audit net = {0,};
5788	char *addrp;
5789	int secmark_active, peerlbl_active;
5790
5791	/* If any sort of compatibility mode is enabled then handoff processing
5792	 * to the selinux_ip_postroute_compat() function to deal with the
5793	 * special handling.  We do this in an attempt to keep this function
5794	 * as fast and as clean as possible. */
5795	if (!selinux_policycap_netpeer())
5796		return selinux_ip_postroute_compat(skb, state);
5797
5798	secmark_active = selinux_secmark_enabled();
5799	peerlbl_active = selinux_peerlbl_enabled();
5800	if (!secmark_active && !peerlbl_active)
5801		return NF_ACCEPT;
5802
5803	sk = skb_to_full_sk(skb);
5804
5805#ifdef CONFIG_XFRM
5806	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5807	 * packet transformation so allow the packet to pass without any checks
5808	 * since we'll have another chance to perform access control checks
5809	 * when the packet is on it's final way out.
5810	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5811	 *       is NULL, in this case go ahead and apply access control.
5812	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5813	 *       TCP listening state we cannot wait until the XFRM processing
5814	 *       is done as we will miss out on the SA label if we do;
5815	 *       unfortunately, this means more work, but it is only once per
5816	 *       connection. */
5817	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5818	    !(sk && sk_listener(sk)))
5819		return NF_ACCEPT;
5820#endif
5821
5822	family = state->pf;
5823	if (sk == NULL) {
5824		/* Without an associated socket the packet is either coming
5825		 * from the kernel or it is being forwarded; check the packet
5826		 * to determine which and if the packet is being forwarded
5827		 * query the packet directly to determine the security label. */
5828		if (skb->skb_iif) {
5829			secmark_perm = PACKET__FORWARD_OUT;
5830			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5831				return NF_DROP;
5832		} else {
5833			secmark_perm = PACKET__SEND;
5834			peer_sid = SECINITSID_KERNEL;
5835		}
5836	} else if (sk_listener(sk)) {
5837		/* Locally generated packet but the associated socket is in the
5838		 * listening state which means this is a SYN-ACK packet.  In
5839		 * this particular case the correct security label is assigned
5840		 * to the connection/request_sock but unfortunately we can't
5841		 * query the request_sock as it isn't queued on the parent
5842		 * socket until after the SYN-ACK packet is sent; the only
5843		 * viable choice is to regenerate the label like we do in
5844		 * selinux_inet_conn_request().  See also selinux_ip_output()
5845		 * for similar problems. */
5846		u32 skb_sid;
5847		struct sk_security_struct *sksec;
5848
5849		sksec = sk->sk_security;
5850		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5851			return NF_DROP;
5852		/* At this point, if the returned skb peerlbl is SECSID_NULL
5853		 * and the packet has been through at least one XFRM
5854		 * transformation then we must be dealing with the "final"
5855		 * form of labeled IPsec packet; since we've already applied
5856		 * all of our access controls on this packet we can safely
5857		 * pass the packet. */
5858		if (skb_sid == SECSID_NULL) {
5859			switch (family) {
5860			case PF_INET:
5861				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5862					return NF_ACCEPT;
5863				break;
5864			case PF_INET6:
5865				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5866					return NF_ACCEPT;
5867				break;
5868			default:
5869				return NF_DROP_ERR(-ECONNREFUSED);
5870			}
5871		}
5872		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5873			return NF_DROP;
5874		secmark_perm = PACKET__SEND;
5875	} else {
5876		/* Locally generated packet, fetch the security label from the
5877		 * associated socket. */
5878		struct sk_security_struct *sksec = sk->sk_security;
5879		peer_sid = sksec->sid;
5880		secmark_perm = PACKET__SEND;
5881	}
5882
5883	ifindex = state->out->ifindex;
5884	ad.type = LSM_AUDIT_DATA_NET;
5885	ad.u.net = &net;
5886	ad.u.net->netif = ifindex;
5887	ad.u.net->family = family;
5888	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5889		return NF_DROP;
5890
5891	if (secmark_active)
5892		if (avc_has_perm(&selinux_state,
5893				 peer_sid, skb->secmark,
5894				 SECCLASS_PACKET, secmark_perm, &ad))
5895			return NF_DROP_ERR(-ECONNREFUSED);
5896
5897	if (peerlbl_active) {
5898		u32 if_sid;
5899		u32 node_sid;
5900
5901		if (sel_netif_sid(state->net, ifindex, &if_sid))
5902			return NF_DROP;
5903		if (avc_has_perm(&selinux_state,
5904				 peer_sid, if_sid,
5905				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5906			return NF_DROP_ERR(-ECONNREFUSED);
5907
5908		if (sel_netnode_sid(addrp, family, &node_sid))
5909			return NF_DROP;
5910		if (avc_has_perm(&selinux_state,
5911				 peer_sid, node_sid,
5912				 SECCLASS_NODE, NODE__SENDTO, &ad))
5913			return NF_DROP_ERR(-ECONNREFUSED);
5914	}
5915
5916	return NF_ACCEPT;
5917}
5918#endif	/* CONFIG_NETFILTER */
5919
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5920static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5921{
5922	int rc = 0;
5923	unsigned int msg_len;
5924	unsigned int data_len = skb->len;
5925	unsigned char *data = skb->data;
5926	struct nlmsghdr *nlh;
5927	struct sk_security_struct *sksec = sk->sk_security;
5928	u16 sclass = sksec->sclass;
5929	u32 perm;
5930
5931	while (data_len >= nlmsg_total_size(0)) {
5932		nlh = (struct nlmsghdr *)data;
5933
5934		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5935		 *       users which means we can't reject skb's with bogus
5936		 *       length fields; our solution is to follow what
5937		 *       netlink_rcv_skb() does and simply skip processing at
5938		 *       messages with length fields that are clearly junk
5939		 */
5940		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5941			return 0;
5942
5943		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5944		if (rc == 0) {
5945			rc = sock_has_perm(sk, perm);
 
 
 
 
 
5946			if (rc)
5947				return rc;
5948		} else if (rc == -EINVAL) {
5949			/* -EINVAL is a missing msg/perm mapping */
5950			pr_warn_ratelimited("SELinux: unrecognized netlink"
5951				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5952				" pid=%d comm=%s\n",
5953				sk->sk_protocol, nlh->nlmsg_type,
5954				secclass_map[sclass - 1].name,
5955				task_pid_nr(current), current->comm);
5956			if (enforcing_enabled(&selinux_state) &&
5957			    !security_get_allow_unknown(&selinux_state))
5958				return rc;
5959			rc = 0;
5960		} else if (rc == -ENOENT) {
5961			/* -ENOENT is a missing socket/class mapping, ignore */
5962			rc = 0;
5963		} else {
5964			return rc;
5965		}
5966
5967		/* move to the next message after applying netlink padding */
5968		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5969		if (msg_len >= data_len)
5970			return 0;
5971		data_len -= msg_len;
5972		data += msg_len;
5973	}
5974
5975	return rc;
5976}
5977
5978static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5979{
5980	isec->sclass = sclass;
5981	isec->sid = current_sid();
5982}
5983
5984static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5985			u32 perms)
5986{
5987	struct ipc_security_struct *isec;
5988	struct common_audit_data ad;
5989	u32 sid = current_sid();
5990
5991	isec = selinux_ipc(ipc_perms);
5992
5993	ad.type = LSM_AUDIT_DATA_IPC;
5994	ad.u.ipc_id = ipc_perms->key;
5995
5996	return avc_has_perm(&selinux_state,
5997			    sid, isec->sid, isec->sclass, perms, &ad);
5998}
5999
6000static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6001{
6002	struct msg_security_struct *msec;
6003
6004	msec = selinux_msg_msg(msg);
6005	msec->sid = SECINITSID_UNLABELED;
6006
6007	return 0;
6008}
6009
6010/* message queue security operations */
6011static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6012{
6013	struct ipc_security_struct *isec;
6014	struct common_audit_data ad;
6015	u32 sid = current_sid();
6016
6017	isec = selinux_ipc(msq);
6018	ipc_init_security(isec, SECCLASS_MSGQ);
6019
6020	ad.type = LSM_AUDIT_DATA_IPC;
6021	ad.u.ipc_id = msq->key;
6022
6023	return avc_has_perm(&selinux_state,
6024			    sid, isec->sid, SECCLASS_MSGQ,
6025			    MSGQ__CREATE, &ad);
6026}
6027
6028static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6029{
6030	struct ipc_security_struct *isec;
6031	struct common_audit_data ad;
6032	u32 sid = current_sid();
6033
6034	isec = selinux_ipc(msq);
6035
6036	ad.type = LSM_AUDIT_DATA_IPC;
6037	ad.u.ipc_id = msq->key;
6038
6039	return avc_has_perm(&selinux_state,
6040			    sid, isec->sid, SECCLASS_MSGQ,
6041			    MSGQ__ASSOCIATE, &ad);
6042}
6043
6044static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6045{
6046	int err;
6047	int perms;
6048
6049	switch (cmd) {
6050	case IPC_INFO:
6051	case MSG_INFO:
6052		/* No specific object, just general system-wide information. */
6053		return avc_has_perm(&selinux_state,
6054				    current_sid(), SECINITSID_KERNEL,
6055				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6056	case IPC_STAT:
6057	case MSG_STAT:
6058	case MSG_STAT_ANY:
6059		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6060		break;
6061	case IPC_SET:
6062		perms = MSGQ__SETATTR;
6063		break;
6064	case IPC_RMID:
6065		perms = MSGQ__DESTROY;
6066		break;
6067	default:
6068		return 0;
6069	}
6070
6071	err = ipc_has_perm(msq, perms);
6072	return err;
6073}
6074
6075static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6076{
6077	struct ipc_security_struct *isec;
6078	struct msg_security_struct *msec;
6079	struct common_audit_data ad;
6080	u32 sid = current_sid();
6081	int rc;
6082
6083	isec = selinux_ipc(msq);
6084	msec = selinux_msg_msg(msg);
6085
6086	/*
6087	 * First time through, need to assign label to the message
6088	 */
6089	if (msec->sid == SECINITSID_UNLABELED) {
6090		/*
6091		 * Compute new sid based on current process and
6092		 * message queue this message will be stored in
6093		 */
6094		rc = security_transition_sid(&selinux_state, sid, isec->sid,
6095					     SECCLASS_MSG, NULL, &msec->sid);
6096		if (rc)
6097			return rc;
6098	}
6099
6100	ad.type = LSM_AUDIT_DATA_IPC;
6101	ad.u.ipc_id = msq->key;
6102
6103	/* Can this process write to the queue? */
6104	rc = avc_has_perm(&selinux_state,
6105			  sid, isec->sid, SECCLASS_MSGQ,
6106			  MSGQ__WRITE, &ad);
6107	if (!rc)
6108		/* Can this process send the message */
6109		rc = avc_has_perm(&selinux_state,
6110				  sid, msec->sid, SECCLASS_MSG,
6111				  MSG__SEND, &ad);
6112	if (!rc)
6113		/* Can the message be put in the queue? */
6114		rc = avc_has_perm(&selinux_state,
6115				  msec->sid, isec->sid, SECCLASS_MSGQ,
6116				  MSGQ__ENQUEUE, &ad);
6117
6118	return rc;
6119}
6120
6121static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6122				    struct task_struct *target,
6123				    long type, int mode)
6124{
6125	struct ipc_security_struct *isec;
6126	struct msg_security_struct *msec;
6127	struct common_audit_data ad;
6128	u32 sid = task_sid_obj(target);
6129	int rc;
6130
6131	isec = selinux_ipc(msq);
6132	msec = selinux_msg_msg(msg);
6133
6134	ad.type = LSM_AUDIT_DATA_IPC;
6135	ad.u.ipc_id = msq->key;
6136
6137	rc = avc_has_perm(&selinux_state,
6138			  sid, isec->sid,
6139			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6140	if (!rc)
6141		rc = avc_has_perm(&selinux_state,
6142				  sid, msec->sid,
6143				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6144	return rc;
6145}
6146
6147/* Shared Memory security operations */
6148static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6149{
6150	struct ipc_security_struct *isec;
6151	struct common_audit_data ad;
6152	u32 sid = current_sid();
6153
6154	isec = selinux_ipc(shp);
6155	ipc_init_security(isec, SECCLASS_SHM);
6156
6157	ad.type = LSM_AUDIT_DATA_IPC;
6158	ad.u.ipc_id = shp->key;
6159
6160	return avc_has_perm(&selinux_state,
6161			    sid, isec->sid, SECCLASS_SHM,
6162			    SHM__CREATE, &ad);
6163}
6164
6165static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6166{
6167	struct ipc_security_struct *isec;
6168	struct common_audit_data ad;
6169	u32 sid = current_sid();
6170
6171	isec = selinux_ipc(shp);
6172
6173	ad.type = LSM_AUDIT_DATA_IPC;
6174	ad.u.ipc_id = shp->key;
6175
6176	return avc_has_perm(&selinux_state,
6177			    sid, isec->sid, SECCLASS_SHM,
6178			    SHM__ASSOCIATE, &ad);
6179}
6180
6181/* Note, at this point, shp is locked down */
6182static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6183{
6184	int perms;
6185	int err;
6186
6187	switch (cmd) {
6188	case IPC_INFO:
6189	case SHM_INFO:
6190		/* No specific object, just general system-wide information. */
6191		return avc_has_perm(&selinux_state,
6192				    current_sid(), SECINITSID_KERNEL,
6193				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6194	case IPC_STAT:
6195	case SHM_STAT:
6196	case SHM_STAT_ANY:
6197		perms = SHM__GETATTR | SHM__ASSOCIATE;
6198		break;
6199	case IPC_SET:
6200		perms = SHM__SETATTR;
6201		break;
6202	case SHM_LOCK:
6203	case SHM_UNLOCK:
6204		perms = SHM__LOCK;
6205		break;
6206	case IPC_RMID:
6207		perms = SHM__DESTROY;
6208		break;
6209	default:
6210		return 0;
6211	}
6212
6213	err = ipc_has_perm(shp, perms);
6214	return err;
6215}
6216
6217static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6218			     char __user *shmaddr, int shmflg)
6219{
6220	u32 perms;
6221
6222	if (shmflg & SHM_RDONLY)
6223		perms = SHM__READ;
6224	else
6225		perms = SHM__READ | SHM__WRITE;
6226
6227	return ipc_has_perm(shp, perms);
6228}
6229
6230/* Semaphore security operations */
6231static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6232{
6233	struct ipc_security_struct *isec;
6234	struct common_audit_data ad;
6235	u32 sid = current_sid();
6236
6237	isec = selinux_ipc(sma);
6238	ipc_init_security(isec, SECCLASS_SEM);
6239
6240	ad.type = LSM_AUDIT_DATA_IPC;
6241	ad.u.ipc_id = sma->key;
6242
6243	return avc_has_perm(&selinux_state,
6244			    sid, isec->sid, SECCLASS_SEM,
6245			    SEM__CREATE, &ad);
6246}
6247
6248static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6249{
6250	struct ipc_security_struct *isec;
6251	struct common_audit_data ad;
6252	u32 sid = current_sid();
6253
6254	isec = selinux_ipc(sma);
6255
6256	ad.type = LSM_AUDIT_DATA_IPC;
6257	ad.u.ipc_id = sma->key;
6258
6259	return avc_has_perm(&selinux_state,
6260			    sid, isec->sid, SECCLASS_SEM,
6261			    SEM__ASSOCIATE, &ad);
6262}
6263
6264/* Note, at this point, sma is locked down */
6265static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6266{
6267	int err;
6268	u32 perms;
6269
6270	switch (cmd) {
6271	case IPC_INFO:
6272	case SEM_INFO:
6273		/* No specific object, just general system-wide information. */
6274		return avc_has_perm(&selinux_state,
6275				    current_sid(), SECINITSID_KERNEL,
6276				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6277	case GETPID:
6278	case GETNCNT:
6279	case GETZCNT:
6280		perms = SEM__GETATTR;
6281		break;
6282	case GETVAL:
6283	case GETALL:
6284		perms = SEM__READ;
6285		break;
6286	case SETVAL:
6287	case SETALL:
6288		perms = SEM__WRITE;
6289		break;
6290	case IPC_RMID:
6291		perms = SEM__DESTROY;
6292		break;
6293	case IPC_SET:
6294		perms = SEM__SETATTR;
6295		break;
6296	case IPC_STAT:
6297	case SEM_STAT:
6298	case SEM_STAT_ANY:
6299		perms = SEM__GETATTR | SEM__ASSOCIATE;
6300		break;
6301	default:
6302		return 0;
6303	}
6304
6305	err = ipc_has_perm(sma, perms);
6306	return err;
6307}
6308
6309static int selinux_sem_semop(struct kern_ipc_perm *sma,
6310			     struct sembuf *sops, unsigned nsops, int alter)
6311{
6312	u32 perms;
6313
6314	if (alter)
6315		perms = SEM__READ | SEM__WRITE;
6316	else
6317		perms = SEM__READ;
6318
6319	return ipc_has_perm(sma, perms);
6320}
6321
6322static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6323{
6324	u32 av = 0;
6325
6326	av = 0;
6327	if (flag & S_IRUGO)
6328		av |= IPC__UNIX_READ;
6329	if (flag & S_IWUGO)
6330		av |= IPC__UNIX_WRITE;
6331
6332	if (av == 0)
6333		return 0;
6334
6335	return ipc_has_perm(ipcp, av);
6336}
6337
6338static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 
6339{
6340	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6341	*secid = isec->sid;
6342}
6343
6344static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6345{
6346	if (inode)
6347		inode_doinit_with_dentry(inode, dentry);
6348}
6349
6350static int selinux_getprocattr(struct task_struct *p,
6351			       const char *name, char **value)
6352{
6353	const struct task_security_struct *__tsec;
 
6354	u32 sid;
6355	int error;
6356	unsigned len;
6357
6358	rcu_read_lock();
6359	__tsec = selinux_cred(__task_cred(p));
6360
6361	if (current != p) {
6362		error = avc_has_perm(&selinux_state,
6363				     current_sid(), __tsec->sid,
6364				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6365		if (error)
6366			goto bad;
6367	}
6368
6369	if (!strcmp(name, "current"))
6370		sid = __tsec->sid;
6371	else if (!strcmp(name, "prev"))
6372		sid = __tsec->osid;
6373	else if (!strcmp(name, "exec"))
6374		sid = __tsec->exec_sid;
6375	else if (!strcmp(name, "fscreate"))
6376		sid = __tsec->create_sid;
6377	else if (!strcmp(name, "keycreate"))
6378		sid = __tsec->keycreate_sid;
6379	else if (!strcmp(name, "sockcreate"))
6380		sid = __tsec->sockcreate_sid;
6381	else {
6382		error = -EINVAL;
6383		goto bad;
 
 
 
 
 
 
6384	}
6385	rcu_read_unlock();
6386
6387	if (!sid)
 
6388		return 0;
 
6389
6390	error = security_sid_to_context(&selinux_state, sid, value, &len);
6391	if (error)
6392		return error;
6393	return len;
6394
6395bad:
6396	rcu_read_unlock();
6397	return error;
6398}
6399
6400static int selinux_setprocattr(const char *name, void *value, size_t size)
6401{
6402	struct task_security_struct *tsec;
6403	struct cred *new;
6404	u32 mysid = current_sid(), sid = 0, ptsid;
6405	int error;
6406	char *str = value;
6407
6408	/*
6409	 * Basic control over ability to set these attributes at all.
6410	 */
6411	if (!strcmp(name, "exec"))
6412		error = avc_has_perm(&selinux_state,
6413				     mysid, mysid, SECCLASS_PROCESS,
6414				     PROCESS__SETEXEC, NULL);
6415	else if (!strcmp(name, "fscreate"))
6416		error = avc_has_perm(&selinux_state,
6417				     mysid, mysid, SECCLASS_PROCESS,
6418				     PROCESS__SETFSCREATE, NULL);
6419	else if (!strcmp(name, "keycreate"))
6420		error = avc_has_perm(&selinux_state,
6421				     mysid, mysid, SECCLASS_PROCESS,
6422				     PROCESS__SETKEYCREATE, NULL);
6423	else if (!strcmp(name, "sockcreate"))
6424		error = avc_has_perm(&selinux_state,
6425				     mysid, mysid, SECCLASS_PROCESS,
6426				     PROCESS__SETSOCKCREATE, NULL);
6427	else if (!strcmp(name, "current"))
6428		error = avc_has_perm(&selinux_state,
6429				     mysid, mysid, SECCLASS_PROCESS,
6430				     PROCESS__SETCURRENT, NULL);
6431	else
6432		error = -EINVAL;
 
 
 
6433	if (error)
6434		return error;
6435
6436	/* Obtain a SID for the context, if one was specified. */
6437	if (size && str[0] && str[0] != '\n') {
6438		if (str[size-1] == '\n') {
6439			str[size-1] = 0;
6440			size--;
6441		}
6442		error = security_context_to_sid(&selinux_state, value, size,
6443						&sid, GFP_KERNEL);
6444		if (error == -EINVAL && !strcmp(name, "fscreate")) {
6445			if (!has_cap_mac_admin(true)) {
6446				struct audit_buffer *ab;
6447				size_t audit_size;
6448
6449				/* We strip a nul only if it is at the end, otherwise the
6450				 * context contains a nul and we should audit that */
 
6451				if (str[size - 1] == '\0')
6452					audit_size = size - 1;
6453				else
6454					audit_size = size;
6455				ab = audit_log_start(audit_context(),
6456						     GFP_ATOMIC,
6457						     AUDIT_SELINUX_ERR);
6458				if (!ab)
6459					return error;
6460				audit_log_format(ab, "op=fscreate invalid_context=");
6461				audit_log_n_untrustedstring(ab, value, audit_size);
 
6462				audit_log_end(ab);
6463
6464				return error;
6465			}
6466			error = security_context_to_sid_force(
6467						      &selinux_state,
6468						      value, size, &sid);
6469		}
6470		if (error)
6471			return error;
6472	}
6473
6474	new = prepare_creds();
6475	if (!new)
6476		return -ENOMEM;
6477
6478	/* Permission checking based on the specified context is
6479	   performed during the actual operation (execve,
6480	   open/mkdir/...), when we know the full context of the
6481	   operation.  See selinux_bprm_creds_for_exec for the execve
6482	   checks and may_create for the file creation checks. The
6483	   operation will then fail if the context is not permitted. */
6484	tsec = selinux_cred(new);
6485	if (!strcmp(name, "exec")) {
6486		tsec->exec_sid = sid;
6487	} else if (!strcmp(name, "fscreate")) {
6488		tsec->create_sid = sid;
6489	} else if (!strcmp(name, "keycreate")) {
6490		if (sid) {
6491			error = avc_has_perm(&selinux_state, mysid, sid,
6492					     SECCLASS_KEY, KEY__CREATE, NULL);
6493			if (error)
6494				goto abort_change;
6495		}
6496		tsec->keycreate_sid = sid;
6497	} else if (!strcmp(name, "sockcreate")) {
6498		tsec->sockcreate_sid = sid;
6499	} else if (!strcmp(name, "current")) {
6500		error = -EINVAL;
6501		if (sid == 0)
6502			goto abort_change;
6503
6504		/* Only allow single threaded processes to change context */
6505		if (!current_is_single_threaded()) {
6506			error = security_bounded_transition(&selinux_state,
6507							    tsec->sid, sid);
6508			if (error)
6509				goto abort_change;
6510		}
6511
6512		/* Check permissions for the transition. */
6513		error = avc_has_perm(&selinux_state,
6514				     tsec->sid, sid, SECCLASS_PROCESS,
6515				     PROCESS__DYNTRANSITION, NULL);
6516		if (error)
6517			goto abort_change;
6518
6519		/* Check for ptracing, and update the task SID if ok.
6520		   Otherwise, leave SID unchanged and fail. */
6521		ptsid = ptrace_parent_sid();
6522		if (ptsid != 0) {
6523			error = avc_has_perm(&selinux_state,
6524					     ptsid, sid, SECCLASS_PROCESS,
6525					     PROCESS__PTRACE, NULL);
6526			if (error)
6527				goto abort_change;
6528		}
6529
6530		tsec->sid = sid;
6531	} else {
6532		error = -EINVAL;
6533		goto abort_change;
6534	}
6535
6536	commit_creds(new);
6537	return size;
6538
6539abort_change:
6540	abort_creds(new);
6541	return error;
6542}
6543
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6544static int selinux_ismaclabel(const char *name)
6545{
6546	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6547}
6548
6549static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6550{
6551	return security_sid_to_context(&selinux_state, secid,
6552				       secdata, seclen);
 
 
 
 
 
6553}
6554
6555static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6556{
6557	return security_context_to_sid(&selinux_state, secdata, seclen,
6558				       secid, GFP_KERNEL);
6559}
6560
6561static void selinux_release_secctx(char *secdata, u32 seclen)
6562{
6563	kfree(secdata);
6564}
6565
6566static void selinux_inode_invalidate_secctx(struct inode *inode)
6567{
6568	struct inode_security_struct *isec = selinux_inode(inode);
6569
6570	spin_lock(&isec->lock);
6571	isec->initialized = LABEL_INVALID;
6572	spin_unlock(&isec->lock);
6573}
6574
6575/*
6576 *	called with inode->i_mutex locked
6577 */
6578static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6579{
6580	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6581					   ctx, ctxlen, 0);
6582	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6583	return rc == -EOPNOTSUPP ? 0 : rc;
6584}
6585
6586/*
6587 *	called with inode->i_mutex locked
6588 */
6589static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6590{
6591	return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6592				     ctx, ctxlen, 0);
6593}
6594
6595static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6596{
6597	int len = 0;
6598	len = selinux_inode_getsecurity(&init_user_ns, inode,
6599					XATTR_SELINUX_SUFFIX, ctx, true);
6600	if (len < 0)
6601		return len;
6602	*ctxlen = len;
6603	return 0;
6604}
6605#ifdef CONFIG_KEYS
6606
6607static int selinux_key_alloc(struct key *k, const struct cred *cred,
6608			     unsigned long flags)
6609{
6610	const struct task_security_struct *tsec;
6611	struct key_security_struct *ksec;
6612
6613	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6614	if (!ksec)
6615		return -ENOMEM;
6616
6617	tsec = selinux_cred(cred);
6618	if (tsec->keycreate_sid)
6619		ksec->sid = tsec->keycreate_sid;
6620	else
6621		ksec->sid = tsec->sid;
6622
6623	k->security = ksec;
6624	return 0;
6625}
6626
6627static void selinux_key_free(struct key *k)
6628{
6629	struct key_security_struct *ksec = k->security;
6630
6631	k->security = NULL;
6632	kfree(ksec);
6633}
6634
6635static int selinux_key_permission(key_ref_t key_ref,
6636				  const struct cred *cred,
6637				  enum key_need_perm need_perm)
6638{
6639	struct key *key;
6640	struct key_security_struct *ksec;
6641	u32 perm, sid;
6642
6643	switch (need_perm) {
6644	case KEY_NEED_VIEW:
6645		perm = KEY__VIEW;
6646		break;
6647	case KEY_NEED_READ:
6648		perm = KEY__READ;
6649		break;
6650	case KEY_NEED_WRITE:
6651		perm = KEY__WRITE;
6652		break;
6653	case KEY_NEED_SEARCH:
6654		perm = KEY__SEARCH;
6655		break;
6656	case KEY_NEED_LINK:
6657		perm = KEY__LINK;
6658		break;
6659	case KEY_NEED_SETATTR:
6660		perm = KEY__SETATTR;
6661		break;
6662	case KEY_NEED_UNLINK:
6663	case KEY_SYSADMIN_OVERRIDE:
6664	case KEY_AUTHTOKEN_OVERRIDE:
6665	case KEY_DEFER_PERM_CHECK:
6666		return 0;
6667	default:
6668		WARN_ON(1);
6669		return -EPERM;
6670
6671	}
6672
6673	sid = cred_sid(cred);
6674	key = key_ref_to_ptr(key_ref);
6675	ksec = key->security;
6676
6677	return avc_has_perm(&selinux_state,
6678			    sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6679}
6680
6681static int selinux_key_getsecurity(struct key *key, char **_buffer)
6682{
6683	struct key_security_struct *ksec = key->security;
6684	char *context = NULL;
6685	unsigned len;
6686	int rc;
6687
6688	rc = security_sid_to_context(&selinux_state, ksec->sid,
6689				     &context, &len);
6690	if (!rc)
6691		rc = len;
6692	*_buffer = context;
6693	return rc;
6694}
6695
6696#ifdef CONFIG_KEY_NOTIFICATIONS
6697static int selinux_watch_key(struct key *key)
6698{
6699	struct key_security_struct *ksec = key->security;
6700	u32 sid = current_sid();
6701
6702	return avc_has_perm(&selinux_state,
6703			    sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6704}
6705#endif
6706#endif
6707
6708#ifdef CONFIG_SECURITY_INFINIBAND
6709static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6710{
6711	struct common_audit_data ad;
6712	int err;
6713	u32 sid = 0;
6714	struct ib_security_struct *sec = ib_sec;
6715	struct lsm_ibpkey_audit ibpkey;
6716
6717	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6718	if (err)
6719		return err;
6720
6721	ad.type = LSM_AUDIT_DATA_IBPKEY;
6722	ibpkey.subnet_prefix = subnet_prefix;
6723	ibpkey.pkey = pkey_val;
6724	ad.u.ibpkey = &ibpkey;
6725	return avc_has_perm(&selinux_state,
6726			    sec->sid, sid,
6727			    SECCLASS_INFINIBAND_PKEY,
6728			    INFINIBAND_PKEY__ACCESS, &ad);
6729}
6730
6731static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6732					    u8 port_num)
6733{
6734	struct common_audit_data ad;
6735	int err;
6736	u32 sid = 0;
6737	struct ib_security_struct *sec = ib_sec;
6738	struct lsm_ibendport_audit ibendport;
6739
6740	err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6741				      &sid);
6742
6743	if (err)
6744		return err;
6745
6746	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6747	ibendport.dev_name = dev_name;
6748	ibendport.port = port_num;
6749	ad.u.ibendport = &ibendport;
6750	return avc_has_perm(&selinux_state,
6751			    sec->sid, sid,
6752			    SECCLASS_INFINIBAND_ENDPORT,
6753			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6754}
6755
6756static int selinux_ib_alloc_security(void **ib_sec)
6757{
6758	struct ib_security_struct *sec;
6759
6760	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6761	if (!sec)
6762		return -ENOMEM;
6763	sec->sid = current_sid();
6764
6765	*ib_sec = sec;
6766	return 0;
6767}
6768
6769static void selinux_ib_free_security(void *ib_sec)
6770{
6771	kfree(ib_sec);
6772}
6773#endif
6774
6775#ifdef CONFIG_BPF_SYSCALL
6776static int selinux_bpf(int cmd, union bpf_attr *attr,
6777				     unsigned int size)
6778{
6779	u32 sid = current_sid();
6780	int ret;
6781
6782	switch (cmd) {
6783	case BPF_MAP_CREATE:
6784		ret = avc_has_perm(&selinux_state,
6785				   sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6786				   NULL);
6787		break;
6788	case BPF_PROG_LOAD:
6789		ret = avc_has_perm(&selinux_state,
6790				   sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6791				   NULL);
6792		break;
6793	default:
6794		ret = 0;
6795		break;
6796	}
6797
6798	return ret;
6799}
6800
6801static u32 bpf_map_fmode_to_av(fmode_t fmode)
6802{
6803	u32 av = 0;
6804
6805	if (fmode & FMODE_READ)
6806		av |= BPF__MAP_READ;
6807	if (fmode & FMODE_WRITE)
6808		av |= BPF__MAP_WRITE;
6809	return av;
6810}
6811
6812/* This function will check the file pass through unix socket or binder to see
6813 * if it is a bpf related object. And apply corresponding checks on the bpf
6814 * object based on the type. The bpf maps and programs, not like other files and
6815 * socket, are using a shared anonymous inode inside the kernel as their inode.
6816 * So checking that inode cannot identify if the process have privilege to
6817 * access the bpf object and that's why we have to add this additional check in
6818 * selinux_file_receive and selinux_binder_transfer_files.
6819 */
6820static int bpf_fd_pass(struct file *file, u32 sid)
6821{
6822	struct bpf_security_struct *bpfsec;
6823	struct bpf_prog *prog;
6824	struct bpf_map *map;
6825	int ret;
6826
6827	if (file->f_op == &bpf_map_fops) {
6828		map = file->private_data;
6829		bpfsec = map->security;
6830		ret = avc_has_perm(&selinux_state,
6831				   sid, bpfsec->sid, SECCLASS_BPF,
6832				   bpf_map_fmode_to_av(file->f_mode), NULL);
6833		if (ret)
6834			return ret;
6835	} else if (file->f_op == &bpf_prog_fops) {
6836		prog = file->private_data;
6837		bpfsec = prog->aux->security;
6838		ret = avc_has_perm(&selinux_state,
6839				   sid, bpfsec->sid, SECCLASS_BPF,
6840				   BPF__PROG_RUN, NULL);
6841		if (ret)
6842			return ret;
6843	}
6844	return 0;
6845}
6846
6847static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6848{
6849	u32 sid = current_sid();
6850	struct bpf_security_struct *bpfsec;
6851
6852	bpfsec = map->security;
6853	return avc_has_perm(&selinux_state,
6854			    sid, bpfsec->sid, SECCLASS_BPF,
6855			    bpf_map_fmode_to_av(fmode), NULL);
6856}
6857
6858static int selinux_bpf_prog(struct bpf_prog *prog)
6859{
6860	u32 sid = current_sid();
6861	struct bpf_security_struct *bpfsec;
6862
6863	bpfsec = prog->aux->security;
6864	return avc_has_perm(&selinux_state,
6865			    sid, bpfsec->sid, SECCLASS_BPF,
6866			    BPF__PROG_RUN, NULL);
6867}
6868
6869static int selinux_bpf_map_alloc(struct bpf_map *map)
 
6870{
6871	struct bpf_security_struct *bpfsec;
6872
6873	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6874	if (!bpfsec)
6875		return -ENOMEM;
6876
6877	bpfsec->sid = current_sid();
6878	map->security = bpfsec;
6879
6880	return 0;
6881}
6882
6883static void selinux_bpf_map_free(struct bpf_map *map)
6884{
6885	struct bpf_security_struct *bpfsec = map->security;
6886
6887	map->security = NULL;
6888	kfree(bpfsec);
6889}
6890
6891static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
 
6892{
6893	struct bpf_security_struct *bpfsec;
6894
6895	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6896	if (!bpfsec)
6897		return -ENOMEM;
6898
6899	bpfsec->sid = current_sid();
6900	aux->security = bpfsec;
6901
6902	return 0;
6903}
6904
6905static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6906{
6907	struct bpf_security_struct *bpfsec = aux->security;
6908
6909	aux->security = NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6910	kfree(bpfsec);
6911}
6912#endif
6913
6914struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
6915	.lbs_cred = sizeof(struct task_security_struct),
6916	.lbs_file = sizeof(struct file_security_struct),
6917	.lbs_inode = sizeof(struct inode_security_struct),
6918	.lbs_ipc = sizeof(struct ipc_security_struct),
 
6919	.lbs_msg_msg = sizeof(struct msg_security_struct),
 
 
 
 
6920	.lbs_superblock = sizeof(struct superblock_security_struct),
 
 
 
6921};
6922
6923#ifdef CONFIG_PERF_EVENTS
6924static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6925{
6926	u32 requested, sid = current_sid();
6927
6928	if (type == PERF_SECURITY_OPEN)
6929		requested = PERF_EVENT__OPEN;
6930	else if (type == PERF_SECURITY_CPU)
6931		requested = PERF_EVENT__CPU;
6932	else if (type == PERF_SECURITY_KERNEL)
6933		requested = PERF_EVENT__KERNEL;
6934	else if (type == PERF_SECURITY_TRACEPOINT)
6935		requested = PERF_EVENT__TRACEPOINT;
6936	else
6937		return -EINVAL;
6938
6939	return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
6940			    requested, NULL);
6941}
6942
6943static int selinux_perf_event_alloc(struct perf_event *event)
6944{
6945	struct perf_event_security_struct *perfsec;
6946
6947	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
6948	if (!perfsec)
6949		return -ENOMEM;
6950
6951	perfsec->sid = current_sid();
6952	event->security = perfsec;
6953
6954	return 0;
6955}
6956
6957static void selinux_perf_event_free(struct perf_event *event)
6958{
6959	struct perf_event_security_struct *perfsec = event->security;
6960
6961	event->security = NULL;
6962	kfree(perfsec);
6963}
6964
6965static int selinux_perf_event_read(struct perf_event *event)
6966{
6967	struct perf_event_security_struct *perfsec = event->security;
6968	u32 sid = current_sid();
6969
6970	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6971			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
6972}
6973
6974static int selinux_perf_event_write(struct perf_event *event)
6975{
6976	struct perf_event_security_struct *perfsec = event->security;
6977	u32 sid = current_sid();
6978
6979	return avc_has_perm(&selinux_state, sid, perfsec->sid,
6980			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
6981}
6982#endif
6983
6984#ifdef CONFIG_IO_URING
6985/**
6986 * selinux_uring_override_creds - check the requested cred override
6987 * @new: the target creds
6988 *
6989 * Check to see if the current task is allowed to override it's credentials
6990 * to service an io_uring operation.
6991 */
6992static int selinux_uring_override_creds(const struct cred *new)
6993{
6994	return avc_has_perm(&selinux_state, current_sid(), cred_sid(new),
6995			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
6996}
6997
6998/**
6999 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7000 *
7001 * Check to see if the current task is allowed to create a new io_uring
7002 * kernel polling thread.
7003 */
7004static int selinux_uring_sqpoll(void)
7005{
7006	int sid = current_sid();
7007
7008	return avc_has_perm(&selinux_state, sid, sid,
7009			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7010}
7011
7012/**
7013 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7014 * @ioucmd: the io_uring command structure
7015 *
7016 * Check to see if the current domain is allowed to execute an
7017 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7018 *
7019 */
7020static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7021{
7022	struct file *file = ioucmd->file;
7023	struct inode *inode = file_inode(file);
7024	struct inode_security_struct *isec = selinux_inode(inode);
7025	struct common_audit_data ad;
7026
7027	ad.type = LSM_AUDIT_DATA_FILE;
7028	ad.u.file = file;
7029
7030	return avc_has_perm(&selinux_state, current_sid(), isec->sid,
7031			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7032}
7033#endif /* CONFIG_IO_URING */
7034
 
 
 
 
 
7035/*
7036 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7037 * 1. any hooks that don't belong to (2.) or (3.) below,
7038 * 2. hooks that both access structures allocated by other hooks, and allocate
7039 *    structures that can be later accessed by other hooks (mostly "cloning"
7040 *    hooks),
7041 * 3. hooks that only allocate structures that can be later accessed by other
7042 *    hooks ("allocating" hooks).
7043 *
7044 * Please follow block comment delimiters in the list to keep this order.
7045 *
7046 * This ordering is needed for SELinux runtime disable to work at least somewhat
7047 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7048 * when disabling SELinux at runtime.
7049 */
7050static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7051	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7052	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7053	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7054	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7055
7056	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7057	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7058	LSM_HOOK_INIT(capget, selinux_capget),
7059	LSM_HOOK_INIT(capset, selinux_capset),
7060	LSM_HOOK_INIT(capable, selinux_capable),
7061	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7062	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7063	LSM_HOOK_INIT(syslog, selinux_syslog),
7064	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7065
7066	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7067
7068	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7069	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7070	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7071
7072	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7073	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7074	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7075	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7076	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7077	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7078	LSM_HOOK_INIT(sb_mount, selinux_mount),
7079	LSM_HOOK_INIT(sb_umount, selinux_umount),
7080	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7081	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7082
7083	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7084
7085	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7086	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7087
7088	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7089	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7090	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7091	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7092	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7093	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7094	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7095	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7096	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7097	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7098	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7099	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7100	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7101	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7102	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7103	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
 
7104	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7105	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7106	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7107	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7108	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7109	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7110	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7111	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7112	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7113	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7114	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7115	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7116	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7117	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7118	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7119
7120	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7121
7122	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7123	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7124	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
 
7125	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7126	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7127	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7128	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7129	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7130	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7131	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7132	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7133
7134	LSM_HOOK_INIT(file_open, selinux_file_open),
7135
7136	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7137	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7138	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7139	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
 
7140	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7141	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7142	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7143	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7144	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7145	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7146	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7147	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7148	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7149	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7150	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7151	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7152	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7153	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7154	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7155	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7156	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7157	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7158	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7159	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7160	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7161
7162	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7163	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7164
7165	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7166	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7167	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7168	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7169
7170	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7171	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7172	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7173
7174	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7175	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7176	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7177
7178	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7179
 
 
7180	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7181	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7182
7183	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7184	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7185	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7186	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7187	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7188	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7189
7190	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7191	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7192
7193	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7194	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7195	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7196	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7197	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7198	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7199	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7200	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7201	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7202	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7203	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7204	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7205	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7206	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7207	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7208	LSM_HOOK_INIT(socket_getpeersec_stream,
7209			selinux_socket_getpeersec_stream),
7210	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7211	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7212	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7213	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7214	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7215	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7216	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7217	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7218	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
 
7219	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7220	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7221	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7222	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7223	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7224	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7225	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7226	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7227	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7228	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7229	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7230	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7231#ifdef CONFIG_SECURITY_INFINIBAND
7232	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7233	LSM_HOOK_INIT(ib_endport_manage_subnet,
7234		      selinux_ib_endport_manage_subnet),
7235	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7236#endif
7237#ifdef CONFIG_SECURITY_NETWORK_XFRM
7238	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7239	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7240	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7241	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7242	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7243	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7244			selinux_xfrm_state_pol_flow_match),
7245	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7246#endif
7247
7248#ifdef CONFIG_KEYS
7249	LSM_HOOK_INIT(key_free, selinux_key_free),
7250	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7251	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7252#ifdef CONFIG_KEY_NOTIFICATIONS
7253	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7254#endif
7255#endif
7256
7257#ifdef CONFIG_AUDIT
7258	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7259	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7260	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7261#endif
7262
7263#ifdef CONFIG_BPF_SYSCALL
7264	LSM_HOOK_INIT(bpf, selinux_bpf),
7265	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7266	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7267	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7268	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
 
7269#endif
7270
7271#ifdef CONFIG_PERF_EVENTS
7272	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7273	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7274	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7275	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7276#endif
7277
7278#ifdef CONFIG_IO_URING
7279	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7280	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7281	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7282#endif
7283
7284	/*
7285	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7286	 */
 
7287	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7288	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7289	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7290#ifdef CONFIG_SECURITY_NETWORK_XFRM
7291	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7292#endif
7293
7294	/*
7295	 * PUT "ALLOCATING" HOOKS HERE
7296	 */
7297	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7298	LSM_HOOK_INIT(msg_queue_alloc_security,
7299		      selinux_msg_queue_alloc_security),
7300	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7301	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7302	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7303	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7304	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
 
7305	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7306	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7307	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7308#ifdef CONFIG_SECURITY_INFINIBAND
7309	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7310#endif
7311#ifdef CONFIG_SECURITY_NETWORK_XFRM
7312	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7313	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7314	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7315		      selinux_xfrm_state_alloc_acquire),
7316#endif
7317#ifdef CONFIG_KEYS
7318	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7319#endif
7320#ifdef CONFIG_AUDIT
7321	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7322#endif
7323#ifdef CONFIG_BPF_SYSCALL
7324	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7325	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
 
7326#endif
7327#ifdef CONFIG_PERF_EVENTS
7328	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7329#endif
7330};
7331
7332static __init int selinux_init(void)
7333{
7334	pr_info("SELinux:  Initializing.\n");
7335
7336	memset(&selinux_state, 0, sizeof(selinux_state));
7337	enforcing_set(&selinux_state, selinux_enforcing_boot);
7338	if (CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE)
7339		pr_err("SELinux: CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE is non-zero.  This is deprecated and will be rejected in a future kernel release.\n");
7340	checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7341	selinux_avc_init(&selinux_state.avc);
7342	mutex_init(&selinux_state.status_lock);
7343	mutex_init(&selinux_state.policy_mutex);
7344
7345	/* Set the security state for the initial task. */
7346	cred_init_security();
7347
7348	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
 
 
7349
7350	avc_init();
7351
7352	avtab_cache_init();
7353
7354	ebitmap_cache_init();
7355
7356	hashtab_cache_init();
7357
7358	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
 
7359
7360	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7361		panic("SELinux: Unable to register AVC netcache callback\n");
7362
7363	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7364		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7365
7366	if (selinux_enforcing_boot)
7367		pr_debug("SELinux:  Starting in enforcing mode\n");
7368	else
7369		pr_debug("SELinux:  Starting in permissive mode\n");
7370
7371	fs_validate_description("selinux", selinux_fs_parameters);
7372
7373	return 0;
7374}
7375
7376static void delayed_superblock_init(struct super_block *sb, void *unused)
7377{
7378	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7379}
7380
7381void selinux_complete_init(void)
7382{
7383	pr_debug("SELinux:  Completing initialization.\n");
7384
7385	/* Set up any superblocks initialized prior to the policy load. */
7386	pr_debug("SELinux:  Setting up existing superblocks.\n");
7387	iterate_supers(delayed_superblock_init, NULL);
7388}
7389
7390/* SELinux requires early initialization in order to label
7391   all processes and objects when they are created. */
7392DEFINE_LSM(selinux) = {
7393	.name = "selinux",
7394	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7395	.enabled = &selinux_enabled_boot,
7396	.blobs = &selinux_blob_sizes,
7397	.init = selinux_init,
7398};
7399
7400#if defined(CONFIG_NETFILTER)
7401
7402static const struct nf_hook_ops selinux_nf_ops[] = {
7403	{
7404		.hook =		selinux_ip_postroute,
7405		.pf =		NFPROTO_IPV4,
7406		.hooknum =	NF_INET_POST_ROUTING,
7407		.priority =	NF_IP_PRI_SELINUX_LAST,
7408	},
7409	{
7410		.hook =		selinux_ip_forward,
7411		.pf =		NFPROTO_IPV4,
7412		.hooknum =	NF_INET_FORWARD,
7413		.priority =	NF_IP_PRI_SELINUX_FIRST,
7414	},
7415	{
7416		.hook =		selinux_ip_output,
7417		.pf =		NFPROTO_IPV4,
7418		.hooknum =	NF_INET_LOCAL_OUT,
7419		.priority =	NF_IP_PRI_SELINUX_FIRST,
7420	},
7421#if IS_ENABLED(CONFIG_IPV6)
7422	{
7423		.hook =		selinux_ip_postroute,
7424		.pf =		NFPROTO_IPV6,
7425		.hooknum =	NF_INET_POST_ROUTING,
7426		.priority =	NF_IP6_PRI_SELINUX_LAST,
7427	},
7428	{
7429		.hook =		selinux_ip_forward,
7430		.pf =		NFPROTO_IPV6,
7431		.hooknum =	NF_INET_FORWARD,
7432		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7433	},
7434	{
7435		.hook =		selinux_ip_output,
7436		.pf =		NFPROTO_IPV6,
7437		.hooknum =	NF_INET_LOCAL_OUT,
7438		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7439	},
7440#endif	/* IPV6 */
7441};
7442
7443static int __net_init selinux_nf_register(struct net *net)
7444{
7445	return nf_register_net_hooks(net, selinux_nf_ops,
7446				     ARRAY_SIZE(selinux_nf_ops));
7447}
7448
7449static void __net_exit selinux_nf_unregister(struct net *net)
7450{
7451	nf_unregister_net_hooks(net, selinux_nf_ops,
7452				ARRAY_SIZE(selinux_nf_ops));
7453}
7454
7455static struct pernet_operations selinux_net_ops = {
7456	.init = selinux_nf_register,
7457	.exit = selinux_nf_unregister,
7458};
7459
7460static int __init selinux_nf_ip_init(void)
7461{
7462	int err;
7463
7464	if (!selinux_enabled_boot)
7465		return 0;
7466
7467	pr_debug("SELinux:  Registering netfilter hooks\n");
7468
7469	err = register_pernet_subsys(&selinux_net_ops);
7470	if (err)
7471		panic("SELinux: register_pernet_subsys: error %d\n", err);
7472
7473	return 0;
7474}
7475__initcall(selinux_nf_ip_init);
7476
7477#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7478static void selinux_nf_ip_exit(void)
7479{
7480	pr_debug("SELinux:  Unregistering netfilter hooks\n");
7481
7482	unregister_pernet_subsys(&selinux_net_ops);
7483}
7484#endif
7485
7486#else /* CONFIG_NETFILTER */
7487
7488#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7489#define selinux_nf_ip_exit()
7490#endif
7491
7492#endif /* CONFIG_NETFILTER */
7493
7494#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7495int selinux_disable(struct selinux_state *state)
7496{
7497	if (selinux_initialized(state)) {
7498		/* Not permitted after initial policy load. */
7499		return -EINVAL;
7500	}
7501
7502	if (selinux_disabled(state)) {
7503		/* Only do this once. */
7504		return -EINVAL;
7505	}
7506
7507	selinux_mark_disabled(state);
7508
7509	pr_info("SELinux:  Disabled at runtime.\n");
7510
7511	/*
7512	 * Unregister netfilter hooks.
7513	 * Must be done before security_delete_hooks() to avoid breaking
7514	 * runtime disable.
7515	 */
7516	selinux_nf_ip_exit();
7517
7518	security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7519
7520	/* Try to destroy the avc node cache */
7521	avc_disable();
7522
7523	/* Unregister selinuxfs. */
7524	exit_sel_fs();
7525
7526	return 0;
7527}
7528#endif