Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <uapi/linux/shm.h>
89#include <linux/bpf.h>
90#include <linux/kernfs.h>
91#include <linux/stringhash.h> /* for hashlen_string() */
92#include <uapi/linux/mount.h>
93#include <linux/fsnotify.h>
94#include <linux/fanotify.h>
95#include <linux/io_uring/cmd.h>
96#include <uapi/linux/lsm.h>
97
98#include "avc.h"
99#include "objsec.h"
100#include "netif.h"
101#include "netnode.h"
102#include "netport.h"
103#include "ibpkey.h"
104#include "xfrm.h"
105#include "netlabel.h"
106#include "audit.h"
107#include "avc_ss.h"
108
109#define SELINUX_INODE_INIT_XATTRS 1
110
111struct selinux_state selinux_state;
112
113/* SECMARK reference count */
114static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115
116#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117static int selinux_enforcing_boot __initdata;
118
119static int __init enforcing_setup(char *str)
120{
121 unsigned long enforcing;
122 if (!kstrtoul(str, 0, &enforcing))
123 selinux_enforcing_boot = enforcing ? 1 : 0;
124 return 1;
125}
126__setup("enforcing=", enforcing_setup);
127#else
128#define selinux_enforcing_boot 1
129#endif
130
131int selinux_enabled_boot __initdata = 1;
132#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133static int __init selinux_enabled_setup(char *str)
134{
135 unsigned long enabled;
136 if (!kstrtoul(str, 0, &enabled))
137 selinux_enabled_boot = enabled ? 1 : 0;
138 return 1;
139}
140__setup("selinux=", selinux_enabled_setup);
141#endif
142
143static int __init checkreqprot_setup(char *str)
144{
145 unsigned long checkreqprot;
146
147 if (!kstrtoul(str, 0, &checkreqprot)) {
148 if (checkreqprot)
149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218}
219
220/*
221 * get the security ID of a set of credentials
222 */
223static inline u32 cred_sid(const struct cred *cred)
224{
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229}
230
231static void __ad_net_init(struct common_audit_data *ad,
232 struct lsm_network_audit *net,
233 int ifindex, struct sock *sk, u16 family)
234{
235 ad->type = LSM_AUDIT_DATA_NET;
236 ad->u.net = net;
237 net->netif = ifindex;
238 net->sk = sk;
239 net->family = family;
240}
241
242static void ad_net_init_from_sk(struct common_audit_data *ad,
243 struct lsm_network_audit *net,
244 struct sock *sk)
245{
246 __ad_net_init(ad, net, 0, sk, 0);
247}
248
249static void ad_net_init_from_iif(struct common_audit_data *ad,
250 struct lsm_network_audit *net,
251 int ifindex, u16 family)
252{
253 __ad_net_init(ad, net, ifindex, NULL, family);
254}
255
256/*
257 * get the objective security ID of a task
258 */
259static inline u32 task_sid_obj(const struct task_struct *task)
260{
261 u32 sid;
262
263 rcu_read_lock();
264 sid = cred_sid(__task_cred(task));
265 rcu_read_unlock();
266 return sid;
267}
268
269static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270
271/*
272 * Try reloading inode security labels that have been marked as invalid. The
273 * @may_sleep parameter indicates when sleeping and thus reloading labels is
274 * allowed; when set to false, returns -ECHILD when the label is
275 * invalid. The @dentry parameter should be set to a dentry of the inode.
276 */
277static int __inode_security_revalidate(struct inode *inode,
278 struct dentry *dentry,
279 bool may_sleep)
280{
281 struct inode_security_struct *isec = selinux_inode(inode);
282
283 might_sleep_if(may_sleep);
284
285 /*
286 * The check of isec->initialized below is racy but
287 * inode_doinit_with_dentry() will recheck with
288 * isec->lock held.
289 */
290 if (selinux_initialized() &&
291 data_race(isec->initialized != LABEL_INITIALIZED)) {
292 if (!may_sleep)
293 return -ECHILD;
294
295 /*
296 * Try reloading the inode security label. This will fail if
297 * @opt_dentry is NULL and no dentry for this inode can be
298 * found; in that case, continue using the old label.
299 */
300 inode_doinit_with_dentry(inode, dentry);
301 }
302 return 0;
303}
304
305static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
306{
307 return selinux_inode(inode);
308}
309
310static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
311{
312 int error;
313
314 error = __inode_security_revalidate(inode, NULL, !rcu);
315 if (error)
316 return ERR_PTR(error);
317 return selinux_inode(inode);
318}
319
320/*
321 * Get the security label of an inode.
322 */
323static struct inode_security_struct *inode_security(struct inode *inode)
324{
325 __inode_security_revalidate(inode, NULL, true);
326 return selinux_inode(inode);
327}
328
329static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
330{
331 struct inode *inode = d_backing_inode(dentry);
332
333 return selinux_inode(inode);
334}
335
336/*
337 * Get the security label of a dentry's backing inode.
338 */
339static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
340{
341 struct inode *inode = d_backing_inode(dentry);
342
343 __inode_security_revalidate(inode, dentry, true);
344 return selinux_inode(inode);
345}
346
347static void inode_free_security(struct inode *inode)
348{
349 struct inode_security_struct *isec = selinux_inode(inode);
350 struct superblock_security_struct *sbsec;
351
352 if (!isec)
353 return;
354 sbsec = selinux_superblock(inode->i_sb);
355 /*
356 * As not all inode security structures are in a list, we check for
357 * empty list outside of the lock to make sure that we won't waste
358 * time taking a lock doing nothing.
359 *
360 * The list_del_init() function can be safely called more than once.
361 * It should not be possible for this function to be called with
362 * concurrent list_add(), but for better safety against future changes
363 * in the code, we use list_empty_careful() here.
364 */
365 if (!list_empty_careful(&isec->list)) {
366 spin_lock(&sbsec->isec_lock);
367 list_del_init(&isec->list);
368 spin_unlock(&sbsec->isec_lock);
369 }
370}
371
372struct selinux_mnt_opts {
373 u32 fscontext_sid;
374 u32 context_sid;
375 u32 rootcontext_sid;
376 u32 defcontext_sid;
377};
378
379static void selinux_free_mnt_opts(void *mnt_opts)
380{
381 kfree(mnt_opts);
382}
383
384enum {
385 Opt_error = -1,
386 Opt_context = 0,
387 Opt_defcontext = 1,
388 Opt_fscontext = 2,
389 Opt_rootcontext = 3,
390 Opt_seclabel = 4,
391};
392
393#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
394static const struct {
395 const char *name;
396 int len;
397 int opt;
398 bool has_arg;
399} tokens[] = {
400 A(context, true),
401 A(fscontext, true),
402 A(defcontext, true),
403 A(rootcontext, true),
404 A(seclabel, false),
405};
406#undef A
407
408static int match_opt_prefix(char *s, int l, char **arg)
409{
410 int i;
411
412 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
413 size_t len = tokens[i].len;
414 if (len > l || memcmp(s, tokens[i].name, len))
415 continue;
416 if (tokens[i].has_arg) {
417 if (len == l || s[len] != '=')
418 continue;
419 *arg = s + len + 1;
420 } else if (len != l)
421 continue;
422 return tokens[i].opt;
423 }
424 return Opt_error;
425}
426
427#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
428
429static int may_context_mount_sb_relabel(u32 sid,
430 struct superblock_security_struct *sbsec,
431 const struct cred *cred)
432{
433 const struct task_security_struct *tsec = selinux_cred(cred);
434 int rc;
435
436 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
437 FILESYSTEM__RELABELFROM, NULL);
438 if (rc)
439 return rc;
440
441 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
442 FILESYSTEM__RELABELTO, NULL);
443 return rc;
444}
445
446static int may_context_mount_inode_relabel(u32 sid,
447 struct superblock_security_struct *sbsec,
448 const struct cred *cred)
449{
450 const struct task_security_struct *tsec = selinux_cred(cred);
451 int rc;
452 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 FILESYSTEM__RELABELFROM, NULL);
454 if (rc)
455 return rc;
456
457 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
458 FILESYSTEM__ASSOCIATE, NULL);
459 return rc;
460}
461
462static int selinux_is_genfs_special_handling(struct super_block *sb)
463{
464 /* Special handling. Genfs but also in-core setxattr handler */
465 return !strcmp(sb->s_type->name, "sysfs") ||
466 !strcmp(sb->s_type->name, "pstore") ||
467 !strcmp(sb->s_type->name, "debugfs") ||
468 !strcmp(sb->s_type->name, "tracefs") ||
469 !strcmp(sb->s_type->name, "rootfs") ||
470 (selinux_policycap_cgroupseclabel() &&
471 (!strcmp(sb->s_type->name, "cgroup") ||
472 !strcmp(sb->s_type->name, "cgroup2")));
473}
474
475static int selinux_is_sblabel_mnt(struct super_block *sb)
476{
477 struct superblock_security_struct *sbsec = selinux_superblock(sb);
478
479 /*
480 * IMPORTANT: Double-check logic in this function when adding a new
481 * SECURITY_FS_USE_* definition!
482 */
483 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
484
485 switch (sbsec->behavior) {
486 case SECURITY_FS_USE_XATTR:
487 case SECURITY_FS_USE_TRANS:
488 case SECURITY_FS_USE_TASK:
489 case SECURITY_FS_USE_NATIVE:
490 return 1;
491
492 case SECURITY_FS_USE_GENFS:
493 return selinux_is_genfs_special_handling(sb);
494
495 /* Never allow relabeling on context mounts */
496 case SECURITY_FS_USE_MNTPOINT:
497 case SECURITY_FS_USE_NONE:
498 default:
499 return 0;
500 }
501}
502
503static int sb_check_xattr_support(struct super_block *sb)
504{
505 struct superblock_security_struct *sbsec = selinux_superblock(sb);
506 struct dentry *root = sb->s_root;
507 struct inode *root_inode = d_backing_inode(root);
508 u32 sid;
509 int rc;
510
511 /*
512 * Make sure that the xattr handler exists and that no
513 * error other than -ENODATA is returned by getxattr on
514 * the root directory. -ENODATA is ok, as this may be
515 * the first boot of the SELinux kernel before we have
516 * assigned xattr values to the filesystem.
517 */
518 if (!(root_inode->i_opflags & IOP_XATTR)) {
519 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
520 sb->s_id, sb->s_type->name);
521 goto fallback;
522 }
523
524 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
525 if (rc < 0 && rc != -ENODATA) {
526 if (rc == -EOPNOTSUPP) {
527 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
528 sb->s_id, sb->s_type->name);
529 goto fallback;
530 } else {
531 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
532 sb->s_id, sb->s_type->name, -rc);
533 return rc;
534 }
535 }
536 return 0;
537
538fallback:
539 /* No xattr support - try to fallback to genfs if possible. */
540 rc = security_genfs_sid(sb->s_type->name, "/",
541 SECCLASS_DIR, &sid);
542 if (rc)
543 return -EOPNOTSUPP;
544
545 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
546 sb->s_id, sb->s_type->name);
547 sbsec->behavior = SECURITY_FS_USE_GENFS;
548 sbsec->sid = sid;
549 return 0;
550}
551
552static int sb_finish_set_opts(struct super_block *sb)
553{
554 struct superblock_security_struct *sbsec = selinux_superblock(sb);
555 struct dentry *root = sb->s_root;
556 struct inode *root_inode = d_backing_inode(root);
557 int rc = 0;
558
559 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
560 rc = sb_check_xattr_support(sb);
561 if (rc)
562 return rc;
563 }
564
565 sbsec->flags |= SE_SBINITIALIZED;
566
567 /*
568 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
569 * leave the flag untouched because sb_clone_mnt_opts might be handing
570 * us a superblock that needs the flag to be cleared.
571 */
572 if (selinux_is_sblabel_mnt(sb))
573 sbsec->flags |= SBLABEL_MNT;
574 else
575 sbsec->flags &= ~SBLABEL_MNT;
576
577 /* Initialize the root inode. */
578 rc = inode_doinit_with_dentry(root_inode, root);
579
580 /* Initialize any other inodes associated with the superblock, e.g.
581 inodes created prior to initial policy load or inodes created
582 during get_sb by a pseudo filesystem that directly
583 populates itself. */
584 spin_lock(&sbsec->isec_lock);
585 while (!list_empty(&sbsec->isec_head)) {
586 struct inode_security_struct *isec =
587 list_first_entry(&sbsec->isec_head,
588 struct inode_security_struct, list);
589 struct inode *inode = isec->inode;
590 list_del_init(&isec->list);
591 spin_unlock(&sbsec->isec_lock);
592 inode = igrab(inode);
593 if (inode) {
594 if (!IS_PRIVATE(inode))
595 inode_doinit_with_dentry(inode, NULL);
596 iput(inode);
597 }
598 spin_lock(&sbsec->isec_lock);
599 }
600 spin_unlock(&sbsec->isec_lock);
601 return rc;
602}
603
604static int bad_option(struct superblock_security_struct *sbsec, char flag,
605 u32 old_sid, u32 new_sid)
606{
607 char mnt_flags = sbsec->flags & SE_MNTMASK;
608
609 /* check if the old mount command had the same options */
610 if (sbsec->flags & SE_SBINITIALIZED)
611 if (!(sbsec->flags & flag) ||
612 (old_sid != new_sid))
613 return 1;
614
615 /* check if we were passed the same options twice,
616 * aka someone passed context=a,context=b
617 */
618 if (!(sbsec->flags & SE_SBINITIALIZED))
619 if (mnt_flags & flag)
620 return 1;
621 return 0;
622}
623
624/*
625 * Allow filesystems with binary mount data to explicitly set mount point
626 * labeling information.
627 */
628static int selinux_set_mnt_opts(struct super_block *sb,
629 void *mnt_opts,
630 unsigned long kern_flags,
631 unsigned long *set_kern_flags)
632{
633 const struct cred *cred = current_cred();
634 struct superblock_security_struct *sbsec = selinux_superblock(sb);
635 struct dentry *root = sb->s_root;
636 struct selinux_mnt_opts *opts = mnt_opts;
637 struct inode_security_struct *root_isec;
638 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
639 u32 defcontext_sid = 0;
640 int rc = 0;
641
642 /*
643 * Specifying internal flags without providing a place to
644 * place the results is not allowed
645 */
646 if (kern_flags && !set_kern_flags)
647 return -EINVAL;
648
649 mutex_lock(&sbsec->lock);
650
651 if (!selinux_initialized()) {
652 if (!opts) {
653 /* Defer initialization until selinux_complete_init,
654 after the initial policy is loaded and the security
655 server is ready to handle calls. */
656 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
657 sbsec->flags |= SE_SBNATIVE;
658 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
659 }
660 goto out;
661 }
662 rc = -EINVAL;
663 pr_warn("SELinux: Unable to set superblock options "
664 "before the security server is initialized\n");
665 goto out;
666 }
667
668 /*
669 * Binary mount data FS will come through this function twice. Once
670 * from an explicit call and once from the generic calls from the vfs.
671 * Since the generic VFS calls will not contain any security mount data
672 * we need to skip the double mount verification.
673 *
674 * This does open a hole in which we will not notice if the first
675 * mount using this sb set explicit options and a second mount using
676 * this sb does not set any security options. (The first options
677 * will be used for both mounts)
678 */
679 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
680 && !opts)
681 goto out;
682
683 root_isec = backing_inode_security_novalidate(root);
684
685 /*
686 * parse the mount options, check if they are valid sids.
687 * also check if someone is trying to mount the same sb more
688 * than once with different security options.
689 */
690 if (opts) {
691 if (opts->fscontext_sid) {
692 fscontext_sid = opts->fscontext_sid;
693 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
694 fscontext_sid))
695 goto out_double_mount;
696 sbsec->flags |= FSCONTEXT_MNT;
697 }
698 if (opts->context_sid) {
699 context_sid = opts->context_sid;
700 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
701 context_sid))
702 goto out_double_mount;
703 sbsec->flags |= CONTEXT_MNT;
704 }
705 if (opts->rootcontext_sid) {
706 rootcontext_sid = opts->rootcontext_sid;
707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
708 rootcontext_sid))
709 goto out_double_mount;
710 sbsec->flags |= ROOTCONTEXT_MNT;
711 }
712 if (opts->defcontext_sid) {
713 defcontext_sid = opts->defcontext_sid;
714 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
715 defcontext_sid))
716 goto out_double_mount;
717 sbsec->flags |= DEFCONTEXT_MNT;
718 }
719 }
720
721 if (sbsec->flags & SE_SBINITIALIZED) {
722 /* previously mounted with options, but not on this attempt? */
723 if ((sbsec->flags & SE_MNTMASK) && !opts)
724 goto out_double_mount;
725 rc = 0;
726 goto out;
727 }
728
729 if (strcmp(sb->s_type->name, "proc") == 0)
730 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
731
732 if (!strcmp(sb->s_type->name, "debugfs") ||
733 !strcmp(sb->s_type->name, "tracefs") ||
734 !strcmp(sb->s_type->name, "binder") ||
735 !strcmp(sb->s_type->name, "bpf") ||
736 !strcmp(sb->s_type->name, "pstore") ||
737 !strcmp(sb->s_type->name, "securityfs"))
738 sbsec->flags |= SE_SBGENFS;
739
740 if (!strcmp(sb->s_type->name, "sysfs") ||
741 !strcmp(sb->s_type->name, "cgroup") ||
742 !strcmp(sb->s_type->name, "cgroup2"))
743 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
744
745 if (!sbsec->behavior) {
746 /*
747 * Determine the labeling behavior to use for this
748 * filesystem type.
749 */
750 rc = security_fs_use(sb);
751 if (rc) {
752 pr_warn("%s: security_fs_use(%s) returned %d\n",
753 __func__, sb->s_type->name, rc);
754 goto out;
755 }
756 }
757
758 /*
759 * If this is a user namespace mount and the filesystem type is not
760 * explicitly whitelisted, then no contexts are allowed on the command
761 * line and security labels must be ignored.
762 */
763 if (sb->s_user_ns != &init_user_ns &&
764 strcmp(sb->s_type->name, "tmpfs") &&
765 strcmp(sb->s_type->name, "ramfs") &&
766 strcmp(sb->s_type->name, "devpts") &&
767 strcmp(sb->s_type->name, "overlay")) {
768 if (context_sid || fscontext_sid || rootcontext_sid ||
769 defcontext_sid) {
770 rc = -EACCES;
771 goto out;
772 }
773 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
774 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
775 rc = security_transition_sid(current_sid(),
776 current_sid(),
777 SECCLASS_FILE, NULL,
778 &sbsec->mntpoint_sid);
779 if (rc)
780 goto out;
781 }
782 goto out_set_opts;
783 }
784
785 /* sets the context of the superblock for the fs being mounted. */
786 if (fscontext_sid) {
787 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
788 if (rc)
789 goto out;
790
791 sbsec->sid = fscontext_sid;
792 }
793
794 /*
795 * Switch to using mount point labeling behavior.
796 * sets the label used on all file below the mountpoint, and will set
797 * the superblock context if not already set.
798 */
799 if (sbsec->flags & SE_SBNATIVE) {
800 /*
801 * This means we are initializing a superblock that has been
802 * mounted before the SELinux was initialized and the
803 * filesystem requested native labeling. We had already
804 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
805 * in the original mount attempt, so now we just need to set
806 * the SECURITY_FS_USE_NATIVE behavior.
807 */
808 sbsec->behavior = SECURITY_FS_USE_NATIVE;
809 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
810 sbsec->behavior = SECURITY_FS_USE_NATIVE;
811 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
812 }
813
814 if (context_sid) {
815 if (!fscontext_sid) {
816 rc = may_context_mount_sb_relabel(context_sid, sbsec,
817 cred);
818 if (rc)
819 goto out;
820 sbsec->sid = context_sid;
821 } else {
822 rc = may_context_mount_inode_relabel(context_sid, sbsec,
823 cred);
824 if (rc)
825 goto out;
826 }
827 if (!rootcontext_sid)
828 rootcontext_sid = context_sid;
829
830 sbsec->mntpoint_sid = context_sid;
831 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
832 }
833
834 if (rootcontext_sid) {
835 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
836 cred);
837 if (rc)
838 goto out;
839
840 root_isec->sid = rootcontext_sid;
841 root_isec->initialized = LABEL_INITIALIZED;
842 }
843
844 if (defcontext_sid) {
845 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
846 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
847 rc = -EINVAL;
848 pr_warn("SELinux: defcontext option is "
849 "invalid for this filesystem type\n");
850 goto out;
851 }
852
853 if (defcontext_sid != sbsec->def_sid) {
854 rc = may_context_mount_inode_relabel(defcontext_sid,
855 sbsec, cred);
856 if (rc)
857 goto out;
858 }
859
860 sbsec->def_sid = defcontext_sid;
861 }
862
863out_set_opts:
864 rc = sb_finish_set_opts(sb);
865out:
866 mutex_unlock(&sbsec->lock);
867 return rc;
868out_double_mount:
869 rc = -EINVAL;
870 pr_warn("SELinux: mount invalid. Same superblock, different "
871 "security settings for (dev %s, type %s)\n", sb->s_id,
872 sb->s_type->name);
873 goto out;
874}
875
876static int selinux_cmp_sb_context(const struct super_block *oldsb,
877 const struct super_block *newsb)
878{
879 struct superblock_security_struct *old = selinux_superblock(oldsb);
880 struct superblock_security_struct *new = selinux_superblock(newsb);
881 char oldflags = old->flags & SE_MNTMASK;
882 char newflags = new->flags & SE_MNTMASK;
883
884 if (oldflags != newflags)
885 goto mismatch;
886 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
887 goto mismatch;
888 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
889 goto mismatch;
890 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
891 goto mismatch;
892 if (oldflags & ROOTCONTEXT_MNT) {
893 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
894 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
895 if (oldroot->sid != newroot->sid)
896 goto mismatch;
897 }
898 return 0;
899mismatch:
900 pr_warn("SELinux: mount invalid. Same superblock, "
901 "different security settings for (dev %s, "
902 "type %s)\n", newsb->s_id, newsb->s_type->name);
903 return -EBUSY;
904}
905
906static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
907 struct super_block *newsb,
908 unsigned long kern_flags,
909 unsigned long *set_kern_flags)
910{
911 int rc = 0;
912 const struct superblock_security_struct *oldsbsec =
913 selinux_superblock(oldsb);
914 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
915
916 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
917 int set_context = (oldsbsec->flags & CONTEXT_MNT);
918 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
919
920 /*
921 * Specifying internal flags without providing a place to
922 * place the results is not allowed.
923 */
924 if (kern_flags && !set_kern_flags)
925 return -EINVAL;
926
927 mutex_lock(&newsbsec->lock);
928
929 /*
930 * if the parent was able to be mounted it clearly had no special lsm
931 * mount options. thus we can safely deal with this superblock later
932 */
933 if (!selinux_initialized()) {
934 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
935 newsbsec->flags |= SE_SBNATIVE;
936 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
937 }
938 goto out;
939 }
940
941 /* how can we clone if the old one wasn't set up?? */
942 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
943
944 /* if fs is reusing a sb, make sure that the contexts match */
945 if (newsbsec->flags & SE_SBINITIALIZED) {
946 mutex_unlock(&newsbsec->lock);
947 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
948 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
949 return selinux_cmp_sb_context(oldsb, newsb);
950 }
951
952 newsbsec->flags = oldsbsec->flags;
953
954 newsbsec->sid = oldsbsec->sid;
955 newsbsec->def_sid = oldsbsec->def_sid;
956 newsbsec->behavior = oldsbsec->behavior;
957
958 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
959 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
960 rc = security_fs_use(newsb);
961 if (rc)
962 goto out;
963 }
964
965 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
966 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
967 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
968 }
969
970 if (set_context) {
971 u32 sid = oldsbsec->mntpoint_sid;
972
973 if (!set_fscontext)
974 newsbsec->sid = sid;
975 if (!set_rootcontext) {
976 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
977 newisec->sid = sid;
978 }
979 newsbsec->mntpoint_sid = sid;
980 }
981 if (set_rootcontext) {
982 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
983 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
984
985 newisec->sid = oldisec->sid;
986 }
987
988 sb_finish_set_opts(newsb);
989out:
990 mutex_unlock(&newsbsec->lock);
991 return rc;
992}
993
994/*
995 * NOTE: the caller is responsible for freeing the memory even if on error.
996 */
997static int selinux_add_opt(int token, const char *s, void **mnt_opts)
998{
999 struct selinux_mnt_opts *opts = *mnt_opts;
1000 u32 *dst_sid;
1001 int rc;
1002
1003 if (token == Opt_seclabel)
1004 /* eaten and completely ignored */
1005 return 0;
1006 if (!s)
1007 return -EINVAL;
1008
1009 if (!selinux_initialized()) {
1010 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1011 return -EINVAL;
1012 }
1013
1014 if (!opts) {
1015 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1016 if (!opts)
1017 return -ENOMEM;
1018 *mnt_opts = opts;
1019 }
1020
1021 switch (token) {
1022 case Opt_context:
1023 if (opts->context_sid || opts->defcontext_sid)
1024 goto err;
1025 dst_sid = &opts->context_sid;
1026 break;
1027 case Opt_fscontext:
1028 if (opts->fscontext_sid)
1029 goto err;
1030 dst_sid = &opts->fscontext_sid;
1031 break;
1032 case Opt_rootcontext:
1033 if (opts->rootcontext_sid)
1034 goto err;
1035 dst_sid = &opts->rootcontext_sid;
1036 break;
1037 case Opt_defcontext:
1038 if (opts->context_sid || opts->defcontext_sid)
1039 goto err;
1040 dst_sid = &opts->defcontext_sid;
1041 break;
1042 default:
1043 WARN_ON(1);
1044 return -EINVAL;
1045 }
1046 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1047 if (rc)
1048 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1049 s, rc);
1050 return rc;
1051
1052err:
1053 pr_warn(SEL_MOUNT_FAIL_MSG);
1054 return -EINVAL;
1055}
1056
1057static int show_sid(struct seq_file *m, u32 sid)
1058{
1059 char *context = NULL;
1060 u32 len;
1061 int rc;
1062
1063 rc = security_sid_to_context(sid, &context, &len);
1064 if (!rc) {
1065 bool has_comma = strchr(context, ',');
1066
1067 seq_putc(m, '=');
1068 if (has_comma)
1069 seq_putc(m, '\"');
1070 seq_escape(m, context, "\"\n\\");
1071 if (has_comma)
1072 seq_putc(m, '\"');
1073 }
1074 kfree(context);
1075 return rc;
1076}
1077
1078static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1079{
1080 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1081 int rc;
1082
1083 if (!(sbsec->flags & SE_SBINITIALIZED))
1084 return 0;
1085
1086 if (!selinux_initialized())
1087 return 0;
1088
1089 if (sbsec->flags & FSCONTEXT_MNT) {
1090 seq_putc(m, ',');
1091 seq_puts(m, FSCONTEXT_STR);
1092 rc = show_sid(m, sbsec->sid);
1093 if (rc)
1094 return rc;
1095 }
1096 if (sbsec->flags & CONTEXT_MNT) {
1097 seq_putc(m, ',');
1098 seq_puts(m, CONTEXT_STR);
1099 rc = show_sid(m, sbsec->mntpoint_sid);
1100 if (rc)
1101 return rc;
1102 }
1103 if (sbsec->flags & DEFCONTEXT_MNT) {
1104 seq_putc(m, ',');
1105 seq_puts(m, DEFCONTEXT_STR);
1106 rc = show_sid(m, sbsec->def_sid);
1107 if (rc)
1108 return rc;
1109 }
1110 if (sbsec->flags & ROOTCONTEXT_MNT) {
1111 struct dentry *root = sb->s_root;
1112 struct inode_security_struct *isec = backing_inode_security(root);
1113 seq_putc(m, ',');
1114 seq_puts(m, ROOTCONTEXT_STR);
1115 rc = show_sid(m, isec->sid);
1116 if (rc)
1117 return rc;
1118 }
1119 if (sbsec->flags & SBLABEL_MNT) {
1120 seq_putc(m, ',');
1121 seq_puts(m, SECLABEL_STR);
1122 }
1123 return 0;
1124}
1125
1126static inline u16 inode_mode_to_security_class(umode_t mode)
1127{
1128 switch (mode & S_IFMT) {
1129 case S_IFSOCK:
1130 return SECCLASS_SOCK_FILE;
1131 case S_IFLNK:
1132 return SECCLASS_LNK_FILE;
1133 case S_IFREG:
1134 return SECCLASS_FILE;
1135 case S_IFBLK:
1136 return SECCLASS_BLK_FILE;
1137 case S_IFDIR:
1138 return SECCLASS_DIR;
1139 case S_IFCHR:
1140 return SECCLASS_CHR_FILE;
1141 case S_IFIFO:
1142 return SECCLASS_FIFO_FILE;
1143
1144 }
1145
1146 return SECCLASS_FILE;
1147}
1148
1149static inline int default_protocol_stream(int protocol)
1150{
1151 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1152 protocol == IPPROTO_MPTCP);
1153}
1154
1155static inline int default_protocol_dgram(int protocol)
1156{
1157 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1158}
1159
1160static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1161{
1162 bool extsockclass = selinux_policycap_extsockclass();
1163
1164 switch (family) {
1165 case PF_UNIX:
1166 switch (type) {
1167 case SOCK_STREAM:
1168 case SOCK_SEQPACKET:
1169 return SECCLASS_UNIX_STREAM_SOCKET;
1170 case SOCK_DGRAM:
1171 case SOCK_RAW:
1172 return SECCLASS_UNIX_DGRAM_SOCKET;
1173 }
1174 break;
1175 case PF_INET:
1176 case PF_INET6:
1177 switch (type) {
1178 case SOCK_STREAM:
1179 case SOCK_SEQPACKET:
1180 if (default_protocol_stream(protocol))
1181 return SECCLASS_TCP_SOCKET;
1182 else if (extsockclass && protocol == IPPROTO_SCTP)
1183 return SECCLASS_SCTP_SOCKET;
1184 else
1185 return SECCLASS_RAWIP_SOCKET;
1186 case SOCK_DGRAM:
1187 if (default_protocol_dgram(protocol))
1188 return SECCLASS_UDP_SOCKET;
1189 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1190 protocol == IPPROTO_ICMPV6))
1191 return SECCLASS_ICMP_SOCKET;
1192 else
1193 return SECCLASS_RAWIP_SOCKET;
1194 case SOCK_DCCP:
1195 return SECCLASS_DCCP_SOCKET;
1196 default:
1197 return SECCLASS_RAWIP_SOCKET;
1198 }
1199 break;
1200 case PF_NETLINK:
1201 switch (protocol) {
1202 case NETLINK_ROUTE:
1203 return SECCLASS_NETLINK_ROUTE_SOCKET;
1204 case NETLINK_SOCK_DIAG:
1205 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1206 case NETLINK_NFLOG:
1207 return SECCLASS_NETLINK_NFLOG_SOCKET;
1208 case NETLINK_XFRM:
1209 return SECCLASS_NETLINK_XFRM_SOCKET;
1210 case NETLINK_SELINUX:
1211 return SECCLASS_NETLINK_SELINUX_SOCKET;
1212 case NETLINK_ISCSI:
1213 return SECCLASS_NETLINK_ISCSI_SOCKET;
1214 case NETLINK_AUDIT:
1215 return SECCLASS_NETLINK_AUDIT_SOCKET;
1216 case NETLINK_FIB_LOOKUP:
1217 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1218 case NETLINK_CONNECTOR:
1219 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1220 case NETLINK_NETFILTER:
1221 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1222 case NETLINK_DNRTMSG:
1223 return SECCLASS_NETLINK_DNRT_SOCKET;
1224 case NETLINK_KOBJECT_UEVENT:
1225 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1226 case NETLINK_GENERIC:
1227 return SECCLASS_NETLINK_GENERIC_SOCKET;
1228 case NETLINK_SCSITRANSPORT:
1229 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1230 case NETLINK_RDMA:
1231 return SECCLASS_NETLINK_RDMA_SOCKET;
1232 case NETLINK_CRYPTO:
1233 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1234 default:
1235 return SECCLASS_NETLINK_SOCKET;
1236 }
1237 case PF_PACKET:
1238 return SECCLASS_PACKET_SOCKET;
1239 case PF_KEY:
1240 return SECCLASS_KEY_SOCKET;
1241 case PF_APPLETALK:
1242 return SECCLASS_APPLETALK_SOCKET;
1243 }
1244
1245 if (extsockclass) {
1246 switch (family) {
1247 case PF_AX25:
1248 return SECCLASS_AX25_SOCKET;
1249 case PF_IPX:
1250 return SECCLASS_IPX_SOCKET;
1251 case PF_NETROM:
1252 return SECCLASS_NETROM_SOCKET;
1253 case PF_ATMPVC:
1254 return SECCLASS_ATMPVC_SOCKET;
1255 case PF_X25:
1256 return SECCLASS_X25_SOCKET;
1257 case PF_ROSE:
1258 return SECCLASS_ROSE_SOCKET;
1259 case PF_DECnet:
1260 return SECCLASS_DECNET_SOCKET;
1261 case PF_ATMSVC:
1262 return SECCLASS_ATMSVC_SOCKET;
1263 case PF_RDS:
1264 return SECCLASS_RDS_SOCKET;
1265 case PF_IRDA:
1266 return SECCLASS_IRDA_SOCKET;
1267 case PF_PPPOX:
1268 return SECCLASS_PPPOX_SOCKET;
1269 case PF_LLC:
1270 return SECCLASS_LLC_SOCKET;
1271 case PF_CAN:
1272 return SECCLASS_CAN_SOCKET;
1273 case PF_TIPC:
1274 return SECCLASS_TIPC_SOCKET;
1275 case PF_BLUETOOTH:
1276 return SECCLASS_BLUETOOTH_SOCKET;
1277 case PF_IUCV:
1278 return SECCLASS_IUCV_SOCKET;
1279 case PF_RXRPC:
1280 return SECCLASS_RXRPC_SOCKET;
1281 case PF_ISDN:
1282 return SECCLASS_ISDN_SOCKET;
1283 case PF_PHONET:
1284 return SECCLASS_PHONET_SOCKET;
1285 case PF_IEEE802154:
1286 return SECCLASS_IEEE802154_SOCKET;
1287 case PF_CAIF:
1288 return SECCLASS_CAIF_SOCKET;
1289 case PF_ALG:
1290 return SECCLASS_ALG_SOCKET;
1291 case PF_NFC:
1292 return SECCLASS_NFC_SOCKET;
1293 case PF_VSOCK:
1294 return SECCLASS_VSOCK_SOCKET;
1295 case PF_KCM:
1296 return SECCLASS_KCM_SOCKET;
1297 case PF_QIPCRTR:
1298 return SECCLASS_QIPCRTR_SOCKET;
1299 case PF_SMC:
1300 return SECCLASS_SMC_SOCKET;
1301 case PF_XDP:
1302 return SECCLASS_XDP_SOCKET;
1303 case PF_MCTP:
1304 return SECCLASS_MCTP_SOCKET;
1305#if PF_MAX > 46
1306#error New address family defined, please update this function.
1307#endif
1308 }
1309 }
1310
1311 return SECCLASS_SOCKET;
1312}
1313
1314static int selinux_genfs_get_sid(struct dentry *dentry,
1315 u16 tclass,
1316 u16 flags,
1317 u32 *sid)
1318{
1319 int rc;
1320 struct super_block *sb = dentry->d_sb;
1321 char *buffer, *path;
1322
1323 buffer = (char *)__get_free_page(GFP_KERNEL);
1324 if (!buffer)
1325 return -ENOMEM;
1326
1327 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1328 if (IS_ERR(path))
1329 rc = PTR_ERR(path);
1330 else {
1331 if (flags & SE_SBPROC) {
1332 /* each process gets a /proc/PID/ entry. Strip off the
1333 * PID part to get a valid selinux labeling.
1334 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1335 while (path[1] >= '0' && path[1] <= '9') {
1336 path[1] = '/';
1337 path++;
1338 }
1339 }
1340 rc = security_genfs_sid(sb->s_type->name,
1341 path, tclass, sid);
1342 if (rc == -ENOENT) {
1343 /* No match in policy, mark as unlabeled. */
1344 *sid = SECINITSID_UNLABELED;
1345 rc = 0;
1346 }
1347 }
1348 free_page((unsigned long)buffer);
1349 return rc;
1350}
1351
1352static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1353 u32 def_sid, u32 *sid)
1354{
1355#define INITCONTEXTLEN 255
1356 char *context;
1357 unsigned int len;
1358 int rc;
1359
1360 len = INITCONTEXTLEN;
1361 context = kmalloc(len + 1, GFP_NOFS);
1362 if (!context)
1363 return -ENOMEM;
1364
1365 context[len] = '\0';
1366 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1367 if (rc == -ERANGE) {
1368 kfree(context);
1369
1370 /* Need a larger buffer. Query for the right size. */
1371 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1372 if (rc < 0)
1373 return rc;
1374
1375 len = rc;
1376 context = kmalloc(len + 1, GFP_NOFS);
1377 if (!context)
1378 return -ENOMEM;
1379
1380 context[len] = '\0';
1381 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1382 context, len);
1383 }
1384 if (rc < 0) {
1385 kfree(context);
1386 if (rc != -ENODATA) {
1387 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1388 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1389 return rc;
1390 }
1391 *sid = def_sid;
1392 return 0;
1393 }
1394
1395 rc = security_context_to_sid_default(context, rc, sid,
1396 def_sid, GFP_NOFS);
1397 if (rc) {
1398 char *dev = inode->i_sb->s_id;
1399 unsigned long ino = inode->i_ino;
1400
1401 if (rc == -EINVAL) {
1402 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1403 ino, dev, context);
1404 } else {
1405 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1406 __func__, context, -rc, dev, ino);
1407 }
1408 }
1409 kfree(context);
1410 return 0;
1411}
1412
1413/* The inode's security attributes must be initialized before first use. */
1414static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1415{
1416 struct superblock_security_struct *sbsec = NULL;
1417 struct inode_security_struct *isec = selinux_inode(inode);
1418 u32 task_sid, sid = 0;
1419 u16 sclass;
1420 struct dentry *dentry;
1421 int rc = 0;
1422
1423 if (isec->initialized == LABEL_INITIALIZED)
1424 return 0;
1425
1426 spin_lock(&isec->lock);
1427 if (isec->initialized == LABEL_INITIALIZED)
1428 goto out_unlock;
1429
1430 if (isec->sclass == SECCLASS_FILE)
1431 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1432
1433 sbsec = selinux_superblock(inode->i_sb);
1434 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1435 /* Defer initialization until selinux_complete_init,
1436 after the initial policy is loaded and the security
1437 server is ready to handle calls. */
1438 spin_lock(&sbsec->isec_lock);
1439 if (list_empty(&isec->list))
1440 list_add(&isec->list, &sbsec->isec_head);
1441 spin_unlock(&sbsec->isec_lock);
1442 goto out_unlock;
1443 }
1444
1445 sclass = isec->sclass;
1446 task_sid = isec->task_sid;
1447 sid = isec->sid;
1448 isec->initialized = LABEL_PENDING;
1449 spin_unlock(&isec->lock);
1450
1451 switch (sbsec->behavior) {
1452 /*
1453 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1454 * via xattr when called from delayed_superblock_init().
1455 */
1456 case SECURITY_FS_USE_NATIVE:
1457 case SECURITY_FS_USE_XATTR:
1458 if (!(inode->i_opflags & IOP_XATTR)) {
1459 sid = sbsec->def_sid;
1460 break;
1461 }
1462 /* Need a dentry, since the xattr API requires one.
1463 Life would be simpler if we could just pass the inode. */
1464 if (opt_dentry) {
1465 /* Called from d_instantiate or d_splice_alias. */
1466 dentry = dget(opt_dentry);
1467 } else {
1468 /*
1469 * Called from selinux_complete_init, try to find a dentry.
1470 * Some filesystems really want a connected one, so try
1471 * that first. We could split SECURITY_FS_USE_XATTR in
1472 * two, depending upon that...
1473 */
1474 dentry = d_find_alias(inode);
1475 if (!dentry)
1476 dentry = d_find_any_alias(inode);
1477 }
1478 if (!dentry) {
1479 /*
1480 * this is can be hit on boot when a file is accessed
1481 * before the policy is loaded. When we load policy we
1482 * may find inodes that have no dentry on the
1483 * sbsec->isec_head list. No reason to complain as these
1484 * will get fixed up the next time we go through
1485 * inode_doinit with a dentry, before these inodes could
1486 * be used again by userspace.
1487 */
1488 goto out_invalid;
1489 }
1490
1491 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1492 &sid);
1493 dput(dentry);
1494 if (rc)
1495 goto out;
1496 break;
1497 case SECURITY_FS_USE_TASK:
1498 sid = task_sid;
1499 break;
1500 case SECURITY_FS_USE_TRANS:
1501 /* Default to the fs SID. */
1502 sid = sbsec->sid;
1503
1504 /* Try to obtain a transition SID. */
1505 rc = security_transition_sid(task_sid, sid,
1506 sclass, NULL, &sid);
1507 if (rc)
1508 goto out;
1509 break;
1510 case SECURITY_FS_USE_MNTPOINT:
1511 sid = sbsec->mntpoint_sid;
1512 break;
1513 default:
1514 /* Default to the fs superblock SID. */
1515 sid = sbsec->sid;
1516
1517 if ((sbsec->flags & SE_SBGENFS) &&
1518 (!S_ISLNK(inode->i_mode) ||
1519 selinux_policycap_genfs_seclabel_symlinks())) {
1520 /* We must have a dentry to determine the label on
1521 * procfs inodes */
1522 if (opt_dentry) {
1523 /* Called from d_instantiate or
1524 * d_splice_alias. */
1525 dentry = dget(opt_dentry);
1526 } else {
1527 /* Called from selinux_complete_init, try to
1528 * find a dentry. Some filesystems really want
1529 * a connected one, so try that first.
1530 */
1531 dentry = d_find_alias(inode);
1532 if (!dentry)
1533 dentry = d_find_any_alias(inode);
1534 }
1535 /*
1536 * This can be hit on boot when a file is accessed
1537 * before the policy is loaded. When we load policy we
1538 * may find inodes that have no dentry on the
1539 * sbsec->isec_head list. No reason to complain as
1540 * these will get fixed up the next time we go through
1541 * inode_doinit() with a dentry, before these inodes
1542 * could be used again by userspace.
1543 */
1544 if (!dentry)
1545 goto out_invalid;
1546 rc = selinux_genfs_get_sid(dentry, sclass,
1547 sbsec->flags, &sid);
1548 if (rc) {
1549 dput(dentry);
1550 goto out;
1551 }
1552
1553 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1554 (inode->i_opflags & IOP_XATTR)) {
1555 rc = inode_doinit_use_xattr(inode, dentry,
1556 sid, &sid);
1557 if (rc) {
1558 dput(dentry);
1559 goto out;
1560 }
1561 }
1562 dput(dentry);
1563 }
1564 break;
1565 }
1566
1567out:
1568 spin_lock(&isec->lock);
1569 if (isec->initialized == LABEL_PENDING) {
1570 if (rc) {
1571 isec->initialized = LABEL_INVALID;
1572 goto out_unlock;
1573 }
1574 isec->initialized = LABEL_INITIALIZED;
1575 isec->sid = sid;
1576 }
1577
1578out_unlock:
1579 spin_unlock(&isec->lock);
1580 return rc;
1581
1582out_invalid:
1583 spin_lock(&isec->lock);
1584 if (isec->initialized == LABEL_PENDING) {
1585 isec->initialized = LABEL_INVALID;
1586 isec->sid = sid;
1587 }
1588 spin_unlock(&isec->lock);
1589 return 0;
1590}
1591
1592/* Convert a Linux signal to an access vector. */
1593static inline u32 signal_to_av(int sig)
1594{
1595 u32 perm = 0;
1596
1597 switch (sig) {
1598 case SIGCHLD:
1599 /* Commonly granted from child to parent. */
1600 perm = PROCESS__SIGCHLD;
1601 break;
1602 case SIGKILL:
1603 /* Cannot be caught or ignored */
1604 perm = PROCESS__SIGKILL;
1605 break;
1606 case SIGSTOP:
1607 /* Cannot be caught or ignored */
1608 perm = PROCESS__SIGSTOP;
1609 break;
1610 default:
1611 /* All other signals. */
1612 perm = PROCESS__SIGNAL;
1613 break;
1614 }
1615
1616 return perm;
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625 int cap, unsigned int opts, bool initns)
1626{
1627 struct common_audit_data ad;
1628 struct av_decision avd;
1629 u16 sclass;
1630 u32 sid = cred_sid(cred);
1631 u32 av = CAP_TO_MASK(cap);
1632 int rc;
1633
1634 ad.type = LSM_AUDIT_DATA_CAP;
1635 ad.u.cap = cap;
1636
1637 switch (CAP_TO_INDEX(cap)) {
1638 case 0:
1639 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1640 break;
1641 case 1:
1642 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1643 break;
1644 default:
1645 pr_err("SELinux: out of range capability %d\n", cap);
1646 BUG();
1647 return -EINVAL;
1648 }
1649
1650 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1651 if (!(opts & CAP_OPT_NOAUDIT)) {
1652 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1653 if (rc2)
1654 return rc2;
1655 }
1656 return rc;
1657}
1658
1659/* Check whether a task has a particular permission to an inode.
1660 The 'adp' parameter is optional and allows other audit
1661 data to be passed (e.g. the dentry). */
1662static int inode_has_perm(const struct cred *cred,
1663 struct inode *inode,
1664 u32 perms,
1665 struct common_audit_data *adp)
1666{
1667 struct inode_security_struct *isec;
1668 u32 sid;
1669
1670 if (unlikely(IS_PRIVATE(inode)))
1671 return 0;
1672
1673 sid = cred_sid(cred);
1674 isec = selinux_inode(inode);
1675
1676 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1677}
1678
1679/* Same as inode_has_perm, but pass explicit audit data containing
1680 the dentry to help the auditing code to more easily generate the
1681 pathname if needed. */
1682static inline int dentry_has_perm(const struct cred *cred,
1683 struct dentry *dentry,
1684 u32 av)
1685{
1686 struct inode *inode = d_backing_inode(dentry);
1687 struct common_audit_data ad;
1688
1689 ad.type = LSM_AUDIT_DATA_DENTRY;
1690 ad.u.dentry = dentry;
1691 __inode_security_revalidate(inode, dentry, true);
1692 return inode_has_perm(cred, inode, av, &ad);
1693}
1694
1695/* Same as inode_has_perm, but pass explicit audit data containing
1696 the path to help the auditing code to more easily generate the
1697 pathname if needed. */
1698static inline int path_has_perm(const struct cred *cred,
1699 const struct path *path,
1700 u32 av)
1701{
1702 struct inode *inode = d_backing_inode(path->dentry);
1703 struct common_audit_data ad;
1704
1705 ad.type = LSM_AUDIT_DATA_PATH;
1706 ad.u.path = *path;
1707 __inode_security_revalidate(inode, path->dentry, true);
1708 return inode_has_perm(cred, inode, av, &ad);
1709}
1710
1711/* Same as path_has_perm, but uses the inode from the file struct. */
1712static inline int file_path_has_perm(const struct cred *cred,
1713 struct file *file,
1714 u32 av)
1715{
1716 struct common_audit_data ad;
1717
1718 ad.type = LSM_AUDIT_DATA_FILE;
1719 ad.u.file = file;
1720 return inode_has_perm(cred, file_inode(file), av, &ad);
1721}
1722
1723#ifdef CONFIG_BPF_SYSCALL
1724static int bpf_fd_pass(const struct file *file, u32 sid);
1725#endif
1726
1727/* Check whether a task can use an open file descriptor to
1728 access an inode in a given way. Check access to the
1729 descriptor itself, and then use dentry_has_perm to
1730 check a particular permission to the file.
1731 Access to the descriptor is implicitly granted if it
1732 has the same SID as the process. If av is zero, then
1733 access to the file is not checked, e.g. for cases
1734 where only the descriptor is affected like seek. */
1735static int file_has_perm(const struct cred *cred,
1736 struct file *file,
1737 u32 av)
1738{
1739 struct file_security_struct *fsec = selinux_file(file);
1740 struct inode *inode = file_inode(file);
1741 struct common_audit_data ad;
1742 u32 sid = cred_sid(cred);
1743 int rc;
1744
1745 ad.type = LSM_AUDIT_DATA_FILE;
1746 ad.u.file = file;
1747
1748 if (sid != fsec->sid) {
1749 rc = avc_has_perm(sid, fsec->sid,
1750 SECCLASS_FD,
1751 FD__USE,
1752 &ad);
1753 if (rc)
1754 goto out;
1755 }
1756
1757#ifdef CONFIG_BPF_SYSCALL
1758 rc = bpf_fd_pass(file, cred_sid(cred));
1759 if (rc)
1760 return rc;
1761#endif
1762
1763 /* av is zero if only checking access to the descriptor. */
1764 rc = 0;
1765 if (av)
1766 rc = inode_has_perm(cred, inode, av, &ad);
1767
1768out:
1769 return rc;
1770}
1771
1772/*
1773 * Determine the label for an inode that might be unioned.
1774 */
1775static int
1776selinux_determine_inode_label(const struct task_security_struct *tsec,
1777 struct inode *dir,
1778 const struct qstr *name, u16 tclass,
1779 u32 *_new_isid)
1780{
1781 const struct superblock_security_struct *sbsec =
1782 selinux_superblock(dir->i_sb);
1783
1784 if ((sbsec->flags & SE_SBINITIALIZED) &&
1785 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1786 *_new_isid = sbsec->mntpoint_sid;
1787 } else if ((sbsec->flags & SBLABEL_MNT) &&
1788 tsec->create_sid) {
1789 *_new_isid = tsec->create_sid;
1790 } else {
1791 const struct inode_security_struct *dsec = inode_security(dir);
1792 return security_transition_sid(tsec->sid,
1793 dsec->sid, tclass,
1794 name, _new_isid);
1795 }
1796
1797 return 0;
1798}
1799
1800/* Check whether a task can create a file. */
1801static int may_create(struct inode *dir,
1802 struct dentry *dentry,
1803 u16 tclass)
1804{
1805 const struct task_security_struct *tsec = selinux_cred(current_cred());
1806 struct inode_security_struct *dsec;
1807 struct superblock_security_struct *sbsec;
1808 u32 sid, newsid;
1809 struct common_audit_data ad;
1810 int rc;
1811
1812 dsec = inode_security(dir);
1813 sbsec = selinux_superblock(dir->i_sb);
1814
1815 sid = tsec->sid;
1816
1817 ad.type = LSM_AUDIT_DATA_DENTRY;
1818 ad.u.dentry = dentry;
1819
1820 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1821 DIR__ADD_NAME | DIR__SEARCH,
1822 &ad);
1823 if (rc)
1824 return rc;
1825
1826 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1827 &newsid);
1828 if (rc)
1829 return rc;
1830
1831 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1832 if (rc)
1833 return rc;
1834
1835 return avc_has_perm(newsid, sbsec->sid,
1836 SECCLASS_FILESYSTEM,
1837 FILESYSTEM__ASSOCIATE, &ad);
1838}
1839
1840#define MAY_LINK 0
1841#define MAY_UNLINK 1
1842#define MAY_RMDIR 2
1843
1844/* Check whether a task can link, unlink, or rmdir a file/directory. */
1845static int may_link(struct inode *dir,
1846 struct dentry *dentry,
1847 int kind)
1848
1849{
1850 struct inode_security_struct *dsec, *isec;
1851 struct common_audit_data ad;
1852 u32 sid = current_sid();
1853 u32 av;
1854 int rc;
1855
1856 dsec = inode_security(dir);
1857 isec = backing_inode_security(dentry);
1858
1859 ad.type = LSM_AUDIT_DATA_DENTRY;
1860 ad.u.dentry = dentry;
1861
1862 av = DIR__SEARCH;
1863 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1864 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1865 if (rc)
1866 return rc;
1867
1868 switch (kind) {
1869 case MAY_LINK:
1870 av = FILE__LINK;
1871 break;
1872 case MAY_UNLINK:
1873 av = FILE__UNLINK;
1874 break;
1875 case MAY_RMDIR:
1876 av = DIR__RMDIR;
1877 break;
1878 default:
1879 pr_warn("SELinux: %s: unrecognized kind %d\n",
1880 __func__, kind);
1881 return 0;
1882 }
1883
1884 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1885 return rc;
1886}
1887
1888static inline int may_rename(struct inode *old_dir,
1889 struct dentry *old_dentry,
1890 struct inode *new_dir,
1891 struct dentry *new_dentry)
1892{
1893 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1894 struct common_audit_data ad;
1895 u32 sid = current_sid();
1896 u32 av;
1897 int old_is_dir, new_is_dir;
1898 int rc;
1899
1900 old_dsec = inode_security(old_dir);
1901 old_isec = backing_inode_security(old_dentry);
1902 old_is_dir = d_is_dir(old_dentry);
1903 new_dsec = inode_security(new_dir);
1904
1905 ad.type = LSM_AUDIT_DATA_DENTRY;
1906
1907 ad.u.dentry = old_dentry;
1908 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1909 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1910 if (rc)
1911 return rc;
1912 rc = avc_has_perm(sid, old_isec->sid,
1913 old_isec->sclass, FILE__RENAME, &ad);
1914 if (rc)
1915 return rc;
1916 if (old_is_dir && new_dir != old_dir) {
1917 rc = avc_has_perm(sid, old_isec->sid,
1918 old_isec->sclass, DIR__REPARENT, &ad);
1919 if (rc)
1920 return rc;
1921 }
1922
1923 ad.u.dentry = new_dentry;
1924 av = DIR__ADD_NAME | DIR__SEARCH;
1925 if (d_is_positive(new_dentry))
1926 av |= DIR__REMOVE_NAME;
1927 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1928 if (rc)
1929 return rc;
1930 if (d_is_positive(new_dentry)) {
1931 new_isec = backing_inode_security(new_dentry);
1932 new_is_dir = d_is_dir(new_dentry);
1933 rc = avc_has_perm(sid, new_isec->sid,
1934 new_isec->sclass,
1935 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1936 if (rc)
1937 return rc;
1938 }
1939
1940 return 0;
1941}
1942
1943/* Check whether a task can perform a filesystem operation. */
1944static int superblock_has_perm(const struct cred *cred,
1945 const struct super_block *sb,
1946 u32 perms,
1947 struct common_audit_data *ad)
1948{
1949 struct superblock_security_struct *sbsec;
1950 u32 sid = cred_sid(cred);
1951
1952 sbsec = selinux_superblock(sb);
1953 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1954}
1955
1956/* Convert a Linux mode and permission mask to an access vector. */
1957static inline u32 file_mask_to_av(int mode, int mask)
1958{
1959 u32 av = 0;
1960
1961 if (!S_ISDIR(mode)) {
1962 if (mask & MAY_EXEC)
1963 av |= FILE__EXECUTE;
1964 if (mask & MAY_READ)
1965 av |= FILE__READ;
1966
1967 if (mask & MAY_APPEND)
1968 av |= FILE__APPEND;
1969 else if (mask & MAY_WRITE)
1970 av |= FILE__WRITE;
1971
1972 } else {
1973 if (mask & MAY_EXEC)
1974 av |= DIR__SEARCH;
1975 if (mask & MAY_WRITE)
1976 av |= DIR__WRITE;
1977 if (mask & MAY_READ)
1978 av |= DIR__READ;
1979 }
1980
1981 return av;
1982}
1983
1984/* Convert a Linux file to an access vector. */
1985static inline u32 file_to_av(const struct file *file)
1986{
1987 u32 av = 0;
1988
1989 if (file->f_mode & FMODE_READ)
1990 av |= FILE__READ;
1991 if (file->f_mode & FMODE_WRITE) {
1992 if (file->f_flags & O_APPEND)
1993 av |= FILE__APPEND;
1994 else
1995 av |= FILE__WRITE;
1996 }
1997 if (!av) {
1998 /*
1999 * Special file opened with flags 3 for ioctl-only use.
2000 */
2001 av = FILE__IOCTL;
2002 }
2003
2004 return av;
2005}
2006
2007/*
2008 * Convert a file to an access vector and include the correct
2009 * open permission.
2010 */
2011static inline u32 open_file_to_av(struct file *file)
2012{
2013 u32 av = file_to_av(file);
2014 struct inode *inode = file_inode(file);
2015
2016 if (selinux_policycap_openperm() &&
2017 inode->i_sb->s_magic != SOCKFS_MAGIC)
2018 av |= FILE__OPEN;
2019
2020 return av;
2021}
2022
2023/* Hook functions begin here. */
2024
2025static int selinux_binder_set_context_mgr(const struct cred *mgr)
2026{
2027 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2028 BINDER__SET_CONTEXT_MGR, NULL);
2029}
2030
2031static int selinux_binder_transaction(const struct cred *from,
2032 const struct cred *to)
2033{
2034 u32 mysid = current_sid();
2035 u32 fromsid = cred_sid(from);
2036 u32 tosid = cred_sid(to);
2037 int rc;
2038
2039 if (mysid != fromsid) {
2040 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2041 BINDER__IMPERSONATE, NULL);
2042 if (rc)
2043 return rc;
2044 }
2045
2046 return avc_has_perm(fromsid, tosid,
2047 SECCLASS_BINDER, BINDER__CALL, NULL);
2048}
2049
2050static int selinux_binder_transfer_binder(const struct cred *from,
2051 const struct cred *to)
2052{
2053 return avc_has_perm(cred_sid(from), cred_sid(to),
2054 SECCLASS_BINDER, BINDER__TRANSFER,
2055 NULL);
2056}
2057
2058static int selinux_binder_transfer_file(const struct cred *from,
2059 const struct cred *to,
2060 const struct file *file)
2061{
2062 u32 sid = cred_sid(to);
2063 struct file_security_struct *fsec = selinux_file(file);
2064 struct dentry *dentry = file->f_path.dentry;
2065 struct inode_security_struct *isec;
2066 struct common_audit_data ad;
2067 int rc;
2068
2069 ad.type = LSM_AUDIT_DATA_PATH;
2070 ad.u.path = file->f_path;
2071
2072 if (sid != fsec->sid) {
2073 rc = avc_has_perm(sid, fsec->sid,
2074 SECCLASS_FD,
2075 FD__USE,
2076 &ad);
2077 if (rc)
2078 return rc;
2079 }
2080
2081#ifdef CONFIG_BPF_SYSCALL
2082 rc = bpf_fd_pass(file, sid);
2083 if (rc)
2084 return rc;
2085#endif
2086
2087 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2088 return 0;
2089
2090 isec = backing_inode_security(dentry);
2091 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2092 &ad);
2093}
2094
2095static int selinux_ptrace_access_check(struct task_struct *child,
2096 unsigned int mode)
2097{
2098 u32 sid = current_sid();
2099 u32 csid = task_sid_obj(child);
2100
2101 if (mode & PTRACE_MODE_READ)
2102 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2103 NULL);
2104
2105 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2106 NULL);
2107}
2108
2109static int selinux_ptrace_traceme(struct task_struct *parent)
2110{
2111 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2112 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2113}
2114
2115static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2116 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2117{
2118 return avc_has_perm(current_sid(), task_sid_obj(target),
2119 SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2120}
2121
2122static int selinux_capset(struct cred *new, const struct cred *old,
2123 const kernel_cap_t *effective,
2124 const kernel_cap_t *inheritable,
2125 const kernel_cap_t *permitted)
2126{
2127 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2128 PROCESS__SETCAP, NULL);
2129}
2130
2131/*
2132 * (This comment used to live with the selinux_task_setuid hook,
2133 * which was removed).
2134 *
2135 * Since setuid only affects the current process, and since the SELinux
2136 * controls are not based on the Linux identity attributes, SELinux does not
2137 * need to control this operation. However, SELinux does control the use of
2138 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2139 */
2140
2141static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2142 int cap, unsigned int opts)
2143{
2144 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2145}
2146
2147static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2148{
2149 const struct cred *cred = current_cred();
2150 int rc = 0;
2151
2152 if (!sb)
2153 return 0;
2154
2155 switch (cmds) {
2156 case Q_SYNC:
2157 case Q_QUOTAON:
2158 case Q_QUOTAOFF:
2159 case Q_SETINFO:
2160 case Q_SETQUOTA:
2161 case Q_XQUOTAOFF:
2162 case Q_XQUOTAON:
2163 case Q_XSETQLIM:
2164 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2165 break;
2166 case Q_GETFMT:
2167 case Q_GETINFO:
2168 case Q_GETQUOTA:
2169 case Q_XGETQUOTA:
2170 case Q_XGETQSTAT:
2171 case Q_XGETQSTATV:
2172 case Q_XGETNEXTQUOTA:
2173 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2174 break;
2175 default:
2176 rc = 0; /* let the kernel handle invalid cmds */
2177 break;
2178 }
2179 return rc;
2180}
2181
2182static int selinux_quota_on(struct dentry *dentry)
2183{
2184 const struct cred *cred = current_cred();
2185
2186 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2187}
2188
2189static int selinux_syslog(int type)
2190{
2191 switch (type) {
2192 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2193 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2194 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2195 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2196 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2197 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2198 /* Set level of messages printed to console */
2199 case SYSLOG_ACTION_CONSOLE_LEVEL:
2200 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2202 NULL);
2203 }
2204 /* All other syslog types */
2205 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2206 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2207}
2208
2209/*
2210 * Check permission for allocating a new virtual mapping. Returns
2211 * 0 if permission is granted, negative error code if not.
2212 *
2213 * Do not audit the selinux permission check, as this is applied to all
2214 * processes that allocate mappings.
2215 */
2216static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2217{
2218 return cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2219 CAP_OPT_NOAUDIT, true);
2220}
2221
2222/* binprm security operations */
2223
2224static u32 ptrace_parent_sid(void)
2225{
2226 u32 sid = 0;
2227 struct task_struct *tracer;
2228
2229 rcu_read_lock();
2230 tracer = ptrace_parent(current);
2231 if (tracer)
2232 sid = task_sid_obj(tracer);
2233 rcu_read_unlock();
2234
2235 return sid;
2236}
2237
2238static int check_nnp_nosuid(const struct linux_binprm *bprm,
2239 const struct task_security_struct *old_tsec,
2240 const struct task_security_struct *new_tsec)
2241{
2242 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2243 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2244 int rc;
2245 u32 av;
2246
2247 if (!nnp && !nosuid)
2248 return 0; /* neither NNP nor nosuid */
2249
2250 if (new_tsec->sid == old_tsec->sid)
2251 return 0; /* No change in credentials */
2252
2253 /*
2254 * If the policy enables the nnp_nosuid_transition policy capability,
2255 * then we permit transitions under NNP or nosuid if the
2256 * policy allows the corresponding permission between
2257 * the old and new contexts.
2258 */
2259 if (selinux_policycap_nnp_nosuid_transition()) {
2260 av = 0;
2261 if (nnp)
2262 av |= PROCESS2__NNP_TRANSITION;
2263 if (nosuid)
2264 av |= PROCESS2__NOSUID_TRANSITION;
2265 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2266 SECCLASS_PROCESS2, av, NULL);
2267 if (!rc)
2268 return 0;
2269 }
2270
2271 /*
2272 * We also permit NNP or nosuid transitions to bounded SIDs,
2273 * i.e. SIDs that are guaranteed to only be allowed a subset
2274 * of the permissions of the current SID.
2275 */
2276 rc = security_bounded_transition(old_tsec->sid,
2277 new_tsec->sid);
2278 if (!rc)
2279 return 0;
2280
2281 /*
2282 * On failure, preserve the errno values for NNP vs nosuid.
2283 * NNP: Operation not permitted for caller.
2284 * nosuid: Permission denied to file.
2285 */
2286 if (nnp)
2287 return -EPERM;
2288 return -EACCES;
2289}
2290
2291static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2292{
2293 const struct task_security_struct *old_tsec;
2294 struct task_security_struct *new_tsec;
2295 struct inode_security_struct *isec;
2296 struct common_audit_data ad;
2297 struct inode *inode = file_inode(bprm->file);
2298 int rc;
2299
2300 /* SELinux context only depends on initial program or script and not
2301 * the script interpreter */
2302
2303 old_tsec = selinux_cred(current_cred());
2304 new_tsec = selinux_cred(bprm->cred);
2305 isec = inode_security(inode);
2306
2307 /* Default to the current task SID. */
2308 new_tsec->sid = old_tsec->sid;
2309 new_tsec->osid = old_tsec->sid;
2310
2311 /* Reset fs, key, and sock SIDs on execve. */
2312 new_tsec->create_sid = 0;
2313 new_tsec->keycreate_sid = 0;
2314 new_tsec->sockcreate_sid = 0;
2315
2316 /*
2317 * Before policy is loaded, label any task outside kernel space
2318 * as SECINITSID_INIT, so that any userspace tasks surviving from
2319 * early boot end up with a label different from SECINITSID_KERNEL
2320 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2321 */
2322 if (!selinux_initialized()) {
2323 new_tsec->sid = SECINITSID_INIT;
2324 /* also clear the exec_sid just in case */
2325 new_tsec->exec_sid = 0;
2326 return 0;
2327 }
2328
2329 if (old_tsec->exec_sid) {
2330 new_tsec->sid = old_tsec->exec_sid;
2331 /* Reset exec SID on execve. */
2332 new_tsec->exec_sid = 0;
2333
2334 /* Fail on NNP or nosuid if not an allowed transition. */
2335 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336 if (rc)
2337 return rc;
2338 } else {
2339 /* Check for a default transition on this program. */
2340 rc = security_transition_sid(old_tsec->sid,
2341 isec->sid, SECCLASS_PROCESS, NULL,
2342 &new_tsec->sid);
2343 if (rc)
2344 return rc;
2345
2346 /*
2347 * Fallback to old SID on NNP or nosuid if not an allowed
2348 * transition.
2349 */
2350 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2351 if (rc)
2352 new_tsec->sid = old_tsec->sid;
2353 }
2354
2355 ad.type = LSM_AUDIT_DATA_FILE;
2356 ad.u.file = bprm->file;
2357
2358 if (new_tsec->sid == old_tsec->sid) {
2359 rc = avc_has_perm(old_tsec->sid, isec->sid,
2360 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2361 if (rc)
2362 return rc;
2363 } else {
2364 /* Check permissions for the transition. */
2365 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2366 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2367 if (rc)
2368 return rc;
2369
2370 rc = avc_has_perm(new_tsec->sid, isec->sid,
2371 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2372 if (rc)
2373 return rc;
2374
2375 /* Check for shared state */
2376 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2377 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2378 SECCLASS_PROCESS, PROCESS__SHARE,
2379 NULL);
2380 if (rc)
2381 return -EPERM;
2382 }
2383
2384 /* Make sure that anyone attempting to ptrace over a task that
2385 * changes its SID has the appropriate permit */
2386 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2387 u32 ptsid = ptrace_parent_sid();
2388 if (ptsid != 0) {
2389 rc = avc_has_perm(ptsid, new_tsec->sid,
2390 SECCLASS_PROCESS,
2391 PROCESS__PTRACE, NULL);
2392 if (rc)
2393 return -EPERM;
2394 }
2395 }
2396
2397 /* Clear any possibly unsafe personality bits on exec: */
2398 bprm->per_clear |= PER_CLEAR_ON_SETID;
2399
2400 /* Enable secure mode for SIDs transitions unless
2401 the noatsecure permission is granted between
2402 the two SIDs, i.e. ahp returns 0. */
2403 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2404 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2405 NULL);
2406 bprm->secureexec |= !!rc;
2407 }
2408
2409 return 0;
2410}
2411
2412static int match_file(const void *p, struct file *file, unsigned fd)
2413{
2414 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2415}
2416
2417/* Derived from fs/exec.c:flush_old_files. */
2418static inline void flush_unauthorized_files(const struct cred *cred,
2419 struct files_struct *files)
2420{
2421 struct file *file, *devnull = NULL;
2422 struct tty_struct *tty;
2423 int drop_tty = 0;
2424 unsigned n;
2425
2426 tty = get_current_tty();
2427 if (tty) {
2428 spin_lock(&tty->files_lock);
2429 if (!list_empty(&tty->tty_files)) {
2430 struct tty_file_private *file_priv;
2431
2432 /* Revalidate access to controlling tty.
2433 Use file_path_has_perm on the tty path directly
2434 rather than using file_has_perm, as this particular
2435 open file may belong to another process and we are
2436 only interested in the inode-based check here. */
2437 file_priv = list_first_entry(&tty->tty_files,
2438 struct tty_file_private, list);
2439 file = file_priv->file;
2440 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2441 drop_tty = 1;
2442 }
2443 spin_unlock(&tty->files_lock);
2444 tty_kref_put(tty);
2445 }
2446 /* Reset controlling tty. */
2447 if (drop_tty)
2448 no_tty();
2449
2450 /* Revalidate access to inherited open files. */
2451 n = iterate_fd(files, 0, match_file, cred);
2452 if (!n) /* none found? */
2453 return;
2454
2455 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2456 if (IS_ERR(devnull))
2457 devnull = NULL;
2458 /* replace all the matching ones with this */
2459 do {
2460 replace_fd(n - 1, devnull, 0);
2461 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2462 if (devnull)
2463 fput(devnull);
2464}
2465
2466/*
2467 * Prepare a process for imminent new credential changes due to exec
2468 */
2469static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2470{
2471 struct task_security_struct *new_tsec;
2472 struct rlimit *rlim, *initrlim;
2473 int rc, i;
2474
2475 new_tsec = selinux_cred(bprm->cred);
2476 if (new_tsec->sid == new_tsec->osid)
2477 return;
2478
2479 /* Close files for which the new task SID is not authorized. */
2480 flush_unauthorized_files(bprm->cred, current->files);
2481
2482 /* Always clear parent death signal on SID transitions. */
2483 current->pdeath_signal = 0;
2484
2485 /* Check whether the new SID can inherit resource limits from the old
2486 * SID. If not, reset all soft limits to the lower of the current
2487 * task's hard limit and the init task's soft limit.
2488 *
2489 * Note that the setting of hard limits (even to lower them) can be
2490 * controlled by the setrlimit check. The inclusion of the init task's
2491 * soft limit into the computation is to avoid resetting soft limits
2492 * higher than the default soft limit for cases where the default is
2493 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2494 */
2495 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2496 PROCESS__RLIMITINH, NULL);
2497 if (rc) {
2498 /* protect against do_prlimit() */
2499 task_lock(current);
2500 for (i = 0; i < RLIM_NLIMITS; i++) {
2501 rlim = current->signal->rlim + i;
2502 initrlim = init_task.signal->rlim + i;
2503 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2504 }
2505 task_unlock(current);
2506 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2507 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2508 }
2509}
2510
2511/*
2512 * Clean up the process immediately after the installation of new credentials
2513 * due to exec
2514 */
2515static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2516{
2517 const struct task_security_struct *tsec = selinux_cred(current_cred());
2518 u32 osid, sid;
2519 int rc;
2520
2521 osid = tsec->osid;
2522 sid = tsec->sid;
2523
2524 if (sid == osid)
2525 return;
2526
2527 /* Check whether the new SID can inherit signal state from the old SID.
2528 * If not, clear itimers to avoid subsequent signal generation and
2529 * flush and unblock signals.
2530 *
2531 * This must occur _after_ the task SID has been updated so that any
2532 * kill done after the flush will be checked against the new SID.
2533 */
2534 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2535 if (rc) {
2536 clear_itimer();
2537
2538 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2539 if (!fatal_signal_pending(current)) {
2540 flush_sigqueue(¤t->pending);
2541 flush_sigqueue(¤t->signal->shared_pending);
2542 flush_signal_handlers(current, 1);
2543 sigemptyset(¤t->blocked);
2544 recalc_sigpending();
2545 }
2546 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2547 }
2548
2549 /* Wake up the parent if it is waiting so that it can recheck
2550 * wait permission to the new task SID. */
2551 read_lock(&tasklist_lock);
2552 __wake_up_parent(current, unrcu_pointer(current->real_parent));
2553 read_unlock(&tasklist_lock);
2554}
2555
2556/* superblock security operations */
2557
2558static int selinux_sb_alloc_security(struct super_block *sb)
2559{
2560 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2561
2562 mutex_init(&sbsec->lock);
2563 INIT_LIST_HEAD(&sbsec->isec_head);
2564 spin_lock_init(&sbsec->isec_lock);
2565 sbsec->sid = SECINITSID_UNLABELED;
2566 sbsec->def_sid = SECINITSID_FILE;
2567 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2568
2569 return 0;
2570}
2571
2572static inline int opt_len(const char *s)
2573{
2574 bool open_quote = false;
2575 int len;
2576 char c;
2577
2578 for (len = 0; (c = s[len]) != '\0'; len++) {
2579 if (c == '"')
2580 open_quote = !open_quote;
2581 if (c == ',' && !open_quote)
2582 break;
2583 }
2584 return len;
2585}
2586
2587static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2588{
2589 char *from = options;
2590 char *to = options;
2591 bool first = true;
2592 int rc;
2593
2594 while (1) {
2595 int len = opt_len(from);
2596 int token;
2597 char *arg = NULL;
2598
2599 token = match_opt_prefix(from, len, &arg);
2600
2601 if (token != Opt_error) {
2602 char *p, *q;
2603
2604 /* strip quotes */
2605 if (arg) {
2606 for (p = q = arg; p < from + len; p++) {
2607 char c = *p;
2608 if (c != '"')
2609 *q++ = c;
2610 }
2611 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2612 if (!arg) {
2613 rc = -ENOMEM;
2614 goto free_opt;
2615 }
2616 }
2617 rc = selinux_add_opt(token, arg, mnt_opts);
2618 kfree(arg);
2619 arg = NULL;
2620 if (unlikely(rc)) {
2621 goto free_opt;
2622 }
2623 } else {
2624 if (!first) { // copy with preceding comma
2625 from--;
2626 len++;
2627 }
2628 if (to != from)
2629 memmove(to, from, len);
2630 to += len;
2631 first = false;
2632 }
2633 if (!from[len])
2634 break;
2635 from += len + 1;
2636 }
2637 *to = '\0';
2638 return 0;
2639
2640free_opt:
2641 if (*mnt_opts) {
2642 selinux_free_mnt_opts(*mnt_opts);
2643 *mnt_opts = NULL;
2644 }
2645 return rc;
2646}
2647
2648static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2649{
2650 struct selinux_mnt_opts *opts = mnt_opts;
2651 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2652
2653 /*
2654 * Superblock not initialized (i.e. no options) - reject if any
2655 * options specified, otherwise accept.
2656 */
2657 if (!(sbsec->flags & SE_SBINITIALIZED))
2658 return opts ? 1 : 0;
2659
2660 /*
2661 * Superblock initialized and no options specified - reject if
2662 * superblock has any options set, otherwise accept.
2663 */
2664 if (!opts)
2665 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2666
2667 if (opts->fscontext_sid) {
2668 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2669 opts->fscontext_sid))
2670 return 1;
2671 }
2672 if (opts->context_sid) {
2673 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2674 opts->context_sid))
2675 return 1;
2676 }
2677 if (opts->rootcontext_sid) {
2678 struct inode_security_struct *root_isec;
2679
2680 root_isec = backing_inode_security(sb->s_root);
2681 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2682 opts->rootcontext_sid))
2683 return 1;
2684 }
2685 if (opts->defcontext_sid) {
2686 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2687 opts->defcontext_sid))
2688 return 1;
2689 }
2690 return 0;
2691}
2692
2693static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2694{
2695 struct selinux_mnt_opts *opts = mnt_opts;
2696 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2697
2698 if (!(sbsec->flags & SE_SBINITIALIZED))
2699 return 0;
2700
2701 if (!opts)
2702 return 0;
2703
2704 if (opts->fscontext_sid) {
2705 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2706 opts->fscontext_sid))
2707 goto out_bad_option;
2708 }
2709 if (opts->context_sid) {
2710 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2711 opts->context_sid))
2712 goto out_bad_option;
2713 }
2714 if (opts->rootcontext_sid) {
2715 struct inode_security_struct *root_isec;
2716 root_isec = backing_inode_security(sb->s_root);
2717 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2718 opts->rootcontext_sid))
2719 goto out_bad_option;
2720 }
2721 if (opts->defcontext_sid) {
2722 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2723 opts->defcontext_sid))
2724 goto out_bad_option;
2725 }
2726 return 0;
2727
2728out_bad_option:
2729 pr_warn("SELinux: unable to change security options "
2730 "during remount (dev %s, type=%s)\n", sb->s_id,
2731 sb->s_type->name);
2732 return -EINVAL;
2733}
2734
2735static int selinux_sb_kern_mount(const struct super_block *sb)
2736{
2737 const struct cred *cred = current_cred();
2738 struct common_audit_data ad;
2739
2740 ad.type = LSM_AUDIT_DATA_DENTRY;
2741 ad.u.dentry = sb->s_root;
2742 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2743}
2744
2745static int selinux_sb_statfs(struct dentry *dentry)
2746{
2747 const struct cred *cred = current_cred();
2748 struct common_audit_data ad;
2749
2750 ad.type = LSM_AUDIT_DATA_DENTRY;
2751 ad.u.dentry = dentry->d_sb->s_root;
2752 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2753}
2754
2755static int selinux_mount(const char *dev_name,
2756 const struct path *path,
2757 const char *type,
2758 unsigned long flags,
2759 void *data)
2760{
2761 const struct cred *cred = current_cred();
2762
2763 if (flags & MS_REMOUNT)
2764 return superblock_has_perm(cred, path->dentry->d_sb,
2765 FILESYSTEM__REMOUNT, NULL);
2766 else
2767 return path_has_perm(cred, path, FILE__MOUNTON);
2768}
2769
2770static int selinux_move_mount(const struct path *from_path,
2771 const struct path *to_path)
2772{
2773 const struct cred *cred = current_cred();
2774
2775 return path_has_perm(cred, to_path, FILE__MOUNTON);
2776}
2777
2778static int selinux_umount(struct vfsmount *mnt, int flags)
2779{
2780 const struct cred *cred = current_cred();
2781
2782 return superblock_has_perm(cred, mnt->mnt_sb,
2783 FILESYSTEM__UNMOUNT, NULL);
2784}
2785
2786static int selinux_fs_context_submount(struct fs_context *fc,
2787 struct super_block *reference)
2788{
2789 const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2790 struct selinux_mnt_opts *opts;
2791
2792 /*
2793 * Ensure that fc->security remains NULL when no options are set
2794 * as expected by selinux_set_mnt_opts().
2795 */
2796 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2797 return 0;
2798
2799 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2800 if (!opts)
2801 return -ENOMEM;
2802
2803 if (sbsec->flags & FSCONTEXT_MNT)
2804 opts->fscontext_sid = sbsec->sid;
2805 if (sbsec->flags & CONTEXT_MNT)
2806 opts->context_sid = sbsec->mntpoint_sid;
2807 if (sbsec->flags & DEFCONTEXT_MNT)
2808 opts->defcontext_sid = sbsec->def_sid;
2809 fc->security = opts;
2810 return 0;
2811}
2812
2813static int selinux_fs_context_dup(struct fs_context *fc,
2814 struct fs_context *src_fc)
2815{
2816 const struct selinux_mnt_opts *src = src_fc->security;
2817
2818 if (!src)
2819 return 0;
2820
2821 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2822 return fc->security ? 0 : -ENOMEM;
2823}
2824
2825static const struct fs_parameter_spec selinux_fs_parameters[] = {
2826 fsparam_string(CONTEXT_STR, Opt_context),
2827 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2828 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2829 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2830 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2831 {}
2832};
2833
2834static int selinux_fs_context_parse_param(struct fs_context *fc,
2835 struct fs_parameter *param)
2836{
2837 struct fs_parse_result result;
2838 int opt;
2839
2840 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2841 if (opt < 0)
2842 return opt;
2843
2844 return selinux_add_opt(opt, param->string, &fc->security);
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851 struct inode_security_struct *isec = selinux_inode(inode);
2852 u32 sid = current_sid();
2853
2854 spin_lock_init(&isec->lock);
2855 INIT_LIST_HEAD(&isec->list);
2856 isec->inode = inode;
2857 isec->sid = SECINITSID_UNLABELED;
2858 isec->sclass = SECCLASS_FILE;
2859 isec->task_sid = sid;
2860 isec->initialized = LABEL_INVALID;
2861
2862 return 0;
2863}
2864
2865static void selinux_inode_free_security(struct inode *inode)
2866{
2867 inode_free_security(inode);
2868}
2869
2870static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2871 const struct qstr *name,
2872 const char **xattr_name, void **ctx,
2873 u32 *ctxlen)
2874{
2875 u32 newsid;
2876 int rc;
2877
2878 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2879 d_inode(dentry->d_parent), name,
2880 inode_mode_to_security_class(mode),
2881 &newsid);
2882 if (rc)
2883 return rc;
2884
2885 if (xattr_name)
2886 *xattr_name = XATTR_NAME_SELINUX;
2887
2888 return security_sid_to_context(newsid, (char **)ctx,
2889 ctxlen);
2890}
2891
2892static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2893 struct qstr *name,
2894 const struct cred *old,
2895 struct cred *new)
2896{
2897 u32 newsid;
2898 int rc;
2899 struct task_security_struct *tsec;
2900
2901 rc = selinux_determine_inode_label(selinux_cred(old),
2902 d_inode(dentry->d_parent), name,
2903 inode_mode_to_security_class(mode),
2904 &newsid);
2905 if (rc)
2906 return rc;
2907
2908 tsec = selinux_cred(new);
2909 tsec->create_sid = newsid;
2910 return 0;
2911}
2912
2913static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2914 const struct qstr *qstr,
2915 struct xattr *xattrs, int *xattr_count)
2916{
2917 const struct task_security_struct *tsec = selinux_cred(current_cred());
2918 struct superblock_security_struct *sbsec;
2919 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2920 u32 newsid, clen;
2921 u16 newsclass;
2922 int rc;
2923 char *context;
2924
2925 sbsec = selinux_superblock(dir->i_sb);
2926
2927 newsid = tsec->create_sid;
2928 newsclass = inode_mode_to_security_class(inode->i_mode);
2929 rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2930 if (rc)
2931 return rc;
2932
2933 /* Possibly defer initialization to selinux_complete_init. */
2934 if (sbsec->flags & SE_SBINITIALIZED) {
2935 struct inode_security_struct *isec = selinux_inode(inode);
2936 isec->sclass = newsclass;
2937 isec->sid = newsid;
2938 isec->initialized = LABEL_INITIALIZED;
2939 }
2940
2941 if (!selinux_initialized() ||
2942 !(sbsec->flags & SBLABEL_MNT))
2943 return -EOPNOTSUPP;
2944
2945 if (xattr) {
2946 rc = security_sid_to_context_force(newsid,
2947 &context, &clen);
2948 if (rc)
2949 return rc;
2950 xattr->value = context;
2951 xattr->value_len = clen;
2952 xattr->name = XATTR_SELINUX_SUFFIX;
2953 }
2954
2955 return 0;
2956}
2957
2958static int selinux_inode_init_security_anon(struct inode *inode,
2959 const struct qstr *name,
2960 const struct inode *context_inode)
2961{
2962 u32 sid = current_sid();
2963 struct common_audit_data ad;
2964 struct inode_security_struct *isec;
2965 int rc;
2966
2967 if (unlikely(!selinux_initialized()))
2968 return 0;
2969
2970 isec = selinux_inode(inode);
2971
2972 /*
2973 * We only get here once per ephemeral inode. The inode has
2974 * been initialized via inode_alloc_security but is otherwise
2975 * untouched.
2976 */
2977
2978 if (context_inode) {
2979 struct inode_security_struct *context_isec =
2980 selinux_inode(context_inode);
2981 if (context_isec->initialized != LABEL_INITIALIZED) {
2982 pr_err("SELinux: context_inode is not initialized\n");
2983 return -EACCES;
2984 }
2985
2986 isec->sclass = context_isec->sclass;
2987 isec->sid = context_isec->sid;
2988 } else {
2989 isec->sclass = SECCLASS_ANON_INODE;
2990 rc = security_transition_sid(
2991 sid, sid,
2992 isec->sclass, name, &isec->sid);
2993 if (rc)
2994 return rc;
2995 }
2996
2997 isec->initialized = LABEL_INITIALIZED;
2998 /*
2999 * Now that we've initialized security, check whether we're
3000 * allowed to actually create this type of anonymous inode.
3001 */
3002
3003 ad.type = LSM_AUDIT_DATA_ANONINODE;
3004 ad.u.anonclass = name ? (const char *)name->name : "?";
3005
3006 return avc_has_perm(sid,
3007 isec->sid,
3008 isec->sclass,
3009 FILE__CREATE,
3010 &ad);
3011}
3012
3013static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3014{
3015 return may_create(dir, dentry, SECCLASS_FILE);
3016}
3017
3018static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3019{
3020 return may_link(dir, old_dentry, MAY_LINK);
3021}
3022
3023static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3024{
3025 return may_link(dir, dentry, MAY_UNLINK);
3026}
3027
3028static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3029{
3030 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3031}
3032
3033static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3034{
3035 return may_create(dir, dentry, SECCLASS_DIR);
3036}
3037
3038static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3039{
3040 return may_link(dir, dentry, MAY_RMDIR);
3041}
3042
3043static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3044{
3045 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3046}
3047
3048static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3049 struct inode *new_inode, struct dentry *new_dentry)
3050{
3051 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3052}
3053
3054static int selinux_inode_readlink(struct dentry *dentry)
3055{
3056 const struct cred *cred = current_cred();
3057
3058 return dentry_has_perm(cred, dentry, FILE__READ);
3059}
3060
3061static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3062 bool rcu)
3063{
3064 struct common_audit_data ad;
3065 struct inode_security_struct *isec;
3066 u32 sid = current_sid();
3067
3068 ad.type = LSM_AUDIT_DATA_DENTRY;
3069 ad.u.dentry = dentry;
3070 isec = inode_security_rcu(inode, rcu);
3071 if (IS_ERR(isec))
3072 return PTR_ERR(isec);
3073
3074 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3075}
3076
3077static noinline int audit_inode_permission(struct inode *inode,
3078 u32 perms, u32 audited, u32 denied,
3079 int result)
3080{
3081 struct common_audit_data ad;
3082 struct inode_security_struct *isec = selinux_inode(inode);
3083
3084 ad.type = LSM_AUDIT_DATA_INODE;
3085 ad.u.inode = inode;
3086
3087 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3088 audited, denied, result, &ad);
3089}
3090
3091static int selinux_inode_permission(struct inode *inode, int mask)
3092{
3093 u32 perms;
3094 bool from_access;
3095 bool no_block = mask & MAY_NOT_BLOCK;
3096 struct inode_security_struct *isec;
3097 u32 sid = current_sid();
3098 struct av_decision avd;
3099 int rc, rc2;
3100 u32 audited, denied;
3101
3102 from_access = mask & MAY_ACCESS;
3103 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3104
3105 /* No permission to check. Existence test. */
3106 if (!mask)
3107 return 0;
3108
3109 if (unlikely(IS_PRIVATE(inode)))
3110 return 0;
3111
3112 perms = file_mask_to_av(inode->i_mode, mask);
3113
3114 isec = inode_security_rcu(inode, no_block);
3115 if (IS_ERR(isec))
3116 return PTR_ERR(isec);
3117
3118 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3119 &avd);
3120 audited = avc_audit_required(perms, &avd, rc,
3121 from_access ? FILE__AUDIT_ACCESS : 0,
3122 &denied);
3123 if (likely(!audited))
3124 return rc;
3125
3126 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3127 if (rc2)
3128 return rc2;
3129 return rc;
3130}
3131
3132static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3133 struct iattr *iattr)
3134{
3135 const struct cred *cred = current_cred();
3136 struct inode *inode = d_backing_inode(dentry);
3137 unsigned int ia_valid = iattr->ia_valid;
3138 __u32 av = FILE__WRITE;
3139
3140 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3141 if (ia_valid & ATTR_FORCE) {
3142 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3143 ATTR_FORCE);
3144 if (!ia_valid)
3145 return 0;
3146 }
3147
3148 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3149 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3150 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3151
3152 if (selinux_policycap_openperm() &&
3153 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3154 (ia_valid & ATTR_SIZE) &&
3155 !(ia_valid & ATTR_FILE))
3156 av |= FILE__OPEN;
3157
3158 return dentry_has_perm(cred, dentry, av);
3159}
3160
3161static int selinux_inode_getattr(const struct path *path)
3162{
3163 return path_has_perm(current_cred(), path, FILE__GETATTR);
3164}
3165
3166static bool has_cap_mac_admin(bool audit)
3167{
3168 const struct cred *cred = current_cred();
3169 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3170
3171 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3172 return false;
3173 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3174 return false;
3175 return true;
3176}
3177
3178/**
3179 * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3180 * @name: name of the xattr
3181 *
3182 * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3183 * named @name; the LSM layer should avoid enforcing any traditional
3184 * capability based access controls on this xattr. Returns 0 to indicate that
3185 * SELinux does not "own" the access control rights to xattrs named @name and is
3186 * deferring to the LSM layer for further access controls, including capability
3187 * based controls.
3188 */
3189static int selinux_inode_xattr_skipcap(const char *name)
3190{
3191 /* require capability check if not a selinux xattr */
3192 return !strcmp(name, XATTR_NAME_SELINUX);
3193}
3194
3195static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3196 struct dentry *dentry, const char *name,
3197 const void *value, size_t size, int flags)
3198{
3199 struct inode *inode = d_backing_inode(dentry);
3200 struct inode_security_struct *isec;
3201 struct superblock_security_struct *sbsec;
3202 struct common_audit_data ad;
3203 u32 newsid, sid = current_sid();
3204 int rc = 0;
3205
3206 /* if not a selinux xattr, only check the ordinary setattr perm */
3207 if (strcmp(name, XATTR_NAME_SELINUX))
3208 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3209
3210 if (!selinux_initialized())
3211 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3212
3213 sbsec = selinux_superblock(inode->i_sb);
3214 if (!(sbsec->flags & SBLABEL_MNT))
3215 return -EOPNOTSUPP;
3216
3217 if (!inode_owner_or_capable(idmap, inode))
3218 return -EPERM;
3219
3220 ad.type = LSM_AUDIT_DATA_DENTRY;
3221 ad.u.dentry = dentry;
3222
3223 isec = backing_inode_security(dentry);
3224 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3225 FILE__RELABELFROM, &ad);
3226 if (rc)
3227 return rc;
3228
3229 rc = security_context_to_sid(value, size, &newsid,
3230 GFP_KERNEL);
3231 if (rc == -EINVAL) {
3232 if (!has_cap_mac_admin(true)) {
3233 struct audit_buffer *ab;
3234 size_t audit_size;
3235
3236 /* We strip a nul only if it is at the end, otherwise the
3237 * context contains a nul and we should audit that */
3238 if (value) {
3239 const char *str = value;
3240
3241 if (str[size - 1] == '\0')
3242 audit_size = size - 1;
3243 else
3244 audit_size = size;
3245 } else {
3246 audit_size = 0;
3247 }
3248 ab = audit_log_start(audit_context(),
3249 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3250 if (!ab)
3251 return rc;
3252 audit_log_format(ab, "op=setxattr invalid_context=");
3253 audit_log_n_untrustedstring(ab, value, audit_size);
3254 audit_log_end(ab);
3255
3256 return rc;
3257 }
3258 rc = security_context_to_sid_force(value,
3259 size, &newsid);
3260 }
3261 if (rc)
3262 return rc;
3263
3264 rc = avc_has_perm(sid, newsid, isec->sclass,
3265 FILE__RELABELTO, &ad);
3266 if (rc)
3267 return rc;
3268
3269 rc = security_validate_transition(isec->sid, newsid,
3270 sid, isec->sclass);
3271 if (rc)
3272 return rc;
3273
3274 return avc_has_perm(newsid,
3275 sbsec->sid,
3276 SECCLASS_FILESYSTEM,
3277 FILESYSTEM__ASSOCIATE,
3278 &ad);
3279}
3280
3281static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3282 struct dentry *dentry, const char *acl_name,
3283 struct posix_acl *kacl)
3284{
3285 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3286}
3287
3288static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3289 struct dentry *dentry, const char *acl_name)
3290{
3291 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3292}
3293
3294static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3295 struct dentry *dentry, const char *acl_name)
3296{
3297 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3298}
3299
3300static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3301 const void *value, size_t size,
3302 int flags)
3303{
3304 struct inode *inode = d_backing_inode(dentry);
3305 struct inode_security_struct *isec;
3306 u32 newsid;
3307 int rc;
3308
3309 if (strcmp(name, XATTR_NAME_SELINUX)) {
3310 /* Not an attribute we recognize, so nothing to do. */
3311 return;
3312 }
3313
3314 if (!selinux_initialized()) {
3315 /* If we haven't even been initialized, then we can't validate
3316 * against a policy, so leave the label as invalid. It may
3317 * resolve to a valid label on the next revalidation try if
3318 * we've since initialized.
3319 */
3320 return;
3321 }
3322
3323 rc = security_context_to_sid_force(value, size,
3324 &newsid);
3325 if (rc) {
3326 pr_err("SELinux: unable to map context to SID"
3327 "for (%s, %lu), rc=%d\n",
3328 inode->i_sb->s_id, inode->i_ino, -rc);
3329 return;
3330 }
3331
3332 isec = backing_inode_security(dentry);
3333 spin_lock(&isec->lock);
3334 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3335 isec->sid = newsid;
3336 isec->initialized = LABEL_INITIALIZED;
3337 spin_unlock(&isec->lock);
3338}
3339
3340static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3341{
3342 const struct cred *cred = current_cred();
3343
3344 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3345}
3346
3347static int selinux_inode_listxattr(struct dentry *dentry)
3348{
3349 const struct cred *cred = current_cred();
3350
3351 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3352}
3353
3354static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3355 struct dentry *dentry, const char *name)
3356{
3357 /* if not a selinux xattr, only check the ordinary setattr perm */
3358 if (strcmp(name, XATTR_NAME_SELINUX))
3359 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360
3361 if (!selinux_initialized())
3362 return 0;
3363
3364 /* No one is allowed to remove a SELinux security label.
3365 You can change the label, but all data must be labeled. */
3366 return -EACCES;
3367}
3368
3369static int selinux_path_notify(const struct path *path, u64 mask,
3370 unsigned int obj_type)
3371{
3372 int ret;
3373 u32 perm;
3374
3375 struct common_audit_data ad;
3376
3377 ad.type = LSM_AUDIT_DATA_PATH;
3378 ad.u.path = *path;
3379
3380 /*
3381 * Set permission needed based on the type of mark being set.
3382 * Performs an additional check for sb watches.
3383 */
3384 switch (obj_type) {
3385 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3386 perm = FILE__WATCH_MOUNT;
3387 break;
3388 case FSNOTIFY_OBJ_TYPE_SB:
3389 perm = FILE__WATCH_SB;
3390 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3391 FILESYSTEM__WATCH, &ad);
3392 if (ret)
3393 return ret;
3394 break;
3395 case FSNOTIFY_OBJ_TYPE_INODE:
3396 perm = FILE__WATCH;
3397 break;
3398 default:
3399 return -EINVAL;
3400 }
3401
3402 /* blocking watches require the file:watch_with_perm permission */
3403 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3404 perm |= FILE__WATCH_WITH_PERM;
3405
3406 /* watches on read-like events need the file:watch_reads permission */
3407 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3408 perm |= FILE__WATCH_READS;
3409
3410 return path_has_perm(current_cred(), path, perm);
3411}
3412
3413/*
3414 * Copy the inode security context value to the user.
3415 *
3416 * Permission check is handled by selinux_inode_getxattr hook.
3417 */
3418static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3419 struct inode *inode, const char *name,
3420 void **buffer, bool alloc)
3421{
3422 u32 size;
3423 int error;
3424 char *context = NULL;
3425 struct inode_security_struct *isec;
3426
3427 /*
3428 * If we're not initialized yet, then we can't validate contexts, so
3429 * just let vfs_getxattr fall back to using the on-disk xattr.
3430 */
3431 if (!selinux_initialized() ||
3432 strcmp(name, XATTR_SELINUX_SUFFIX))
3433 return -EOPNOTSUPP;
3434
3435 /*
3436 * If the caller has CAP_MAC_ADMIN, then get the raw context
3437 * value even if it is not defined by current policy; otherwise,
3438 * use the in-core value under current policy.
3439 * Use the non-auditing forms of the permission checks since
3440 * getxattr may be called by unprivileged processes commonly
3441 * and lack of permission just means that we fall back to the
3442 * in-core context value, not a denial.
3443 */
3444 isec = inode_security(inode);
3445 if (has_cap_mac_admin(false))
3446 error = security_sid_to_context_force(isec->sid, &context,
3447 &size);
3448 else
3449 error = security_sid_to_context(isec->sid,
3450 &context, &size);
3451 if (error)
3452 return error;
3453 error = size;
3454 if (alloc) {
3455 *buffer = context;
3456 goto out_nofree;
3457 }
3458 kfree(context);
3459out_nofree:
3460 return error;
3461}
3462
3463static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3464 const void *value, size_t size, int flags)
3465{
3466 struct inode_security_struct *isec = inode_security_novalidate(inode);
3467 struct superblock_security_struct *sbsec;
3468 u32 newsid;
3469 int rc;
3470
3471 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3472 return -EOPNOTSUPP;
3473
3474 sbsec = selinux_superblock(inode->i_sb);
3475 if (!(sbsec->flags & SBLABEL_MNT))
3476 return -EOPNOTSUPP;
3477
3478 if (!value || !size)
3479 return -EACCES;
3480
3481 rc = security_context_to_sid(value, size, &newsid,
3482 GFP_KERNEL);
3483 if (rc)
3484 return rc;
3485
3486 spin_lock(&isec->lock);
3487 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3488 isec->sid = newsid;
3489 isec->initialized = LABEL_INITIALIZED;
3490 spin_unlock(&isec->lock);
3491 return 0;
3492}
3493
3494static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3495{
3496 const int len = sizeof(XATTR_NAME_SELINUX);
3497
3498 if (!selinux_initialized())
3499 return 0;
3500
3501 if (buffer && len <= buffer_size)
3502 memcpy(buffer, XATTR_NAME_SELINUX, len);
3503 return len;
3504}
3505
3506static void selinux_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
3507{
3508 struct inode_security_struct *isec = inode_security_novalidate(inode);
3509
3510 prop->selinux.secid = isec->sid;
3511}
3512
3513static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514{
3515 struct lsm_prop prop;
3516 struct task_security_struct *tsec;
3517 struct cred *new_creds = *new;
3518
3519 if (new_creds == NULL) {
3520 new_creds = prepare_creds();
3521 if (!new_creds)
3522 return -ENOMEM;
3523 }
3524
3525 tsec = selinux_cred(new_creds);
3526 /* Get label from overlay inode and set it in create_sid */
3527 selinux_inode_getlsmprop(d_inode(src), &prop);
3528 tsec->create_sid = prop.selinux.secid;
3529 *new = new_creds;
3530 return 0;
3531}
3532
3533static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3534{
3535 /* The copy_up hook above sets the initial context on an inode, but we
3536 * don't then want to overwrite it by blindly copying all the lower
3537 * xattrs up. Instead, filter out SELinux-related xattrs following
3538 * policy load.
3539 */
3540 if (selinux_initialized() && !strcmp(name, XATTR_NAME_SELINUX))
3541 return -ECANCELED; /* Discard */
3542 /*
3543 * Any other attribute apart from SELINUX is not claimed, supported
3544 * by selinux.
3545 */
3546 return -EOPNOTSUPP;
3547}
3548
3549/* kernfs node operations */
3550
3551static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552 struct kernfs_node *kn)
3553{
3554 const struct task_security_struct *tsec = selinux_cred(current_cred());
3555 u32 parent_sid, newsid, clen;
3556 int rc;
3557 char *context;
3558
3559 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560 if (rc == -ENODATA)
3561 return 0;
3562 else if (rc < 0)
3563 return rc;
3564
3565 clen = (u32)rc;
3566 context = kmalloc(clen, GFP_KERNEL);
3567 if (!context)
3568 return -ENOMEM;
3569
3570 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571 if (rc < 0) {
3572 kfree(context);
3573 return rc;
3574 }
3575
3576 rc = security_context_to_sid(context, clen, &parent_sid,
3577 GFP_KERNEL);
3578 kfree(context);
3579 if (rc)
3580 return rc;
3581
3582 if (tsec->create_sid) {
3583 newsid = tsec->create_sid;
3584 } else {
3585 u16 secclass = inode_mode_to_security_class(kn->mode);
3586 struct qstr q;
3587
3588 q.name = kn->name;
3589 q.hash_len = hashlen_string(kn_dir, kn->name);
3590
3591 rc = security_transition_sid(tsec->sid,
3592 parent_sid, secclass, &q,
3593 &newsid);
3594 if (rc)
3595 return rc;
3596 }
3597
3598 rc = security_sid_to_context_force(newsid,
3599 &context, &clen);
3600 if (rc)
3601 return rc;
3602
3603 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604 XATTR_CREATE);
3605 kfree(context);
3606 return rc;
3607}
3608
3609
3610/* file security operations */
3611
3612static int selinux_revalidate_file_permission(struct file *file, int mask)
3613{
3614 const struct cred *cred = current_cred();
3615 struct inode *inode = file_inode(file);
3616
3617 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619 mask |= MAY_APPEND;
3620
3621 return file_has_perm(cred, file,
3622 file_mask_to_av(inode->i_mode, mask));
3623}
3624
3625static int selinux_file_permission(struct file *file, int mask)
3626{
3627 struct inode *inode = file_inode(file);
3628 struct file_security_struct *fsec = selinux_file(file);
3629 struct inode_security_struct *isec;
3630 u32 sid = current_sid();
3631
3632 if (!mask)
3633 /* No permission to check. Existence test. */
3634 return 0;
3635
3636 isec = inode_security(inode);
3637 if (sid == fsec->sid && fsec->isid == isec->sid &&
3638 fsec->pseqno == avc_policy_seqno())
3639 /* No change since file_open check. */
3640 return 0;
3641
3642 return selinux_revalidate_file_permission(file, mask);
3643}
3644
3645static int selinux_file_alloc_security(struct file *file)
3646{
3647 struct file_security_struct *fsec = selinux_file(file);
3648 u32 sid = current_sid();
3649
3650 fsec->sid = sid;
3651 fsec->fown_sid = sid;
3652
3653 return 0;
3654}
3655
3656/*
3657 * Check whether a task has the ioctl permission and cmd
3658 * operation to an inode.
3659 */
3660static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661 u32 requested, u16 cmd)
3662{
3663 struct common_audit_data ad;
3664 struct file_security_struct *fsec = selinux_file(file);
3665 struct inode *inode = file_inode(file);
3666 struct inode_security_struct *isec;
3667 struct lsm_ioctlop_audit ioctl;
3668 u32 ssid = cred_sid(cred);
3669 int rc;
3670 u8 driver = cmd >> 8;
3671 u8 xperm = cmd & 0xff;
3672
3673 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674 ad.u.op = &ioctl;
3675 ad.u.op->cmd = cmd;
3676 ad.u.op->path = file->f_path;
3677
3678 if (ssid != fsec->sid) {
3679 rc = avc_has_perm(ssid, fsec->sid,
3680 SECCLASS_FD,
3681 FD__USE,
3682 &ad);
3683 if (rc)
3684 goto out;
3685 }
3686
3687 if (unlikely(IS_PRIVATE(inode)))
3688 return 0;
3689
3690 isec = inode_security(inode);
3691 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, requested,
3692 driver, AVC_EXT_IOCTL, xperm, &ad);
3693out:
3694 return rc;
3695}
3696
3697static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698 unsigned long arg)
3699{
3700 const struct cred *cred = current_cred();
3701 int error = 0;
3702
3703 switch (cmd) {
3704 case FIONREAD:
3705 case FIBMAP:
3706 case FIGETBSZ:
3707 case FS_IOC_GETFLAGS:
3708 case FS_IOC_GETVERSION:
3709 error = file_has_perm(cred, file, FILE__GETATTR);
3710 break;
3711
3712 case FS_IOC_SETFLAGS:
3713 case FS_IOC_SETVERSION:
3714 error = file_has_perm(cred, file, FILE__SETATTR);
3715 break;
3716
3717 /* sys_ioctl() checks */
3718 case FIONBIO:
3719 case FIOASYNC:
3720 error = file_has_perm(cred, file, 0);
3721 break;
3722
3723 case KDSKBENT:
3724 case KDSKBSENT:
3725 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726 CAP_OPT_NONE, true);
3727 break;
3728
3729 case FIOCLEX:
3730 case FIONCLEX:
3731 if (!selinux_policycap_ioctl_skip_cloexec())
3732 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733 break;
3734
3735 /* default case assumes that the command will go
3736 * to the file's ioctl() function.
3737 */
3738 default:
3739 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740 }
3741 return error;
3742}
3743
3744static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745 unsigned long arg)
3746{
3747 /*
3748 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749 * make sure we don't compare 32-bit flags to 64-bit flags.
3750 */
3751 switch (cmd) {
3752 case FS_IOC32_GETFLAGS:
3753 cmd = FS_IOC_GETFLAGS;
3754 break;
3755 case FS_IOC32_SETFLAGS:
3756 cmd = FS_IOC_SETFLAGS;
3757 break;
3758 case FS_IOC32_GETVERSION:
3759 cmd = FS_IOC_GETVERSION;
3760 break;
3761 case FS_IOC32_SETVERSION:
3762 cmd = FS_IOC_SETVERSION;
3763 break;
3764 default:
3765 break;
3766 }
3767
3768 return selinux_file_ioctl(file, cmd, arg);
3769}
3770
3771static int default_noexec __ro_after_init;
3772
3773static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774{
3775 const struct cred *cred = current_cred();
3776 u32 sid = cred_sid(cred);
3777 int rc = 0;
3778
3779 if (default_noexec &&
3780 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781 (!shared && (prot & PROT_WRITE)))) {
3782 /*
3783 * We are making executable an anonymous mapping or a
3784 * private file mapping that will also be writable.
3785 * This has an additional check.
3786 */
3787 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3788 PROCESS__EXECMEM, NULL);
3789 if (rc)
3790 goto error;
3791 }
3792
3793 if (file) {
3794 /* read access is always possible with a mapping */
3795 u32 av = FILE__READ;
3796
3797 /* write access only matters if the mapping is shared */
3798 if (shared && (prot & PROT_WRITE))
3799 av |= FILE__WRITE;
3800
3801 if (prot & PROT_EXEC)
3802 av |= FILE__EXECUTE;
3803
3804 return file_has_perm(cred, file, av);
3805 }
3806
3807error:
3808 return rc;
3809}
3810
3811static int selinux_mmap_addr(unsigned long addr)
3812{
3813 int rc = 0;
3814
3815 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816 u32 sid = current_sid();
3817 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3818 MEMPROTECT__MMAP_ZERO, NULL);
3819 }
3820
3821 return rc;
3822}
3823
3824static int selinux_mmap_file(struct file *file,
3825 unsigned long reqprot __always_unused,
3826 unsigned long prot, unsigned long flags)
3827{
3828 struct common_audit_data ad;
3829 int rc;
3830
3831 if (file) {
3832 ad.type = LSM_AUDIT_DATA_FILE;
3833 ad.u.file = file;
3834 rc = inode_has_perm(current_cred(), file_inode(file),
3835 FILE__MAP, &ad);
3836 if (rc)
3837 return rc;
3838 }
3839
3840 return file_map_prot_check(file, prot,
3841 (flags & MAP_TYPE) == MAP_SHARED);
3842}
3843
3844static int selinux_file_mprotect(struct vm_area_struct *vma,
3845 unsigned long reqprot __always_unused,
3846 unsigned long prot)
3847{
3848 const struct cred *cred = current_cred();
3849 u32 sid = cred_sid(cred);
3850
3851 if (default_noexec &&
3852 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853 int rc = 0;
3854 /*
3855 * We don't use the vma_is_initial_heap() helper as it has
3856 * a history of problems and is currently broken on systems
3857 * where there is no heap, e.g. brk == start_brk. Before
3858 * replacing the conditional below with vma_is_initial_heap(),
3859 * or something similar, please ensure that the logic is the
3860 * same as what we have below or you have tested every possible
3861 * corner case you can think to test.
3862 */
3863 if (vma->vm_start >= vma->vm_mm->start_brk &&
3864 vma->vm_end <= vma->vm_mm->brk) {
3865 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3866 PROCESS__EXECHEAP, NULL);
3867 } else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3868 vma_is_stack_for_current(vma))) {
3869 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3870 PROCESS__EXECSTACK, NULL);
3871 } else if (vma->vm_file && vma->anon_vma) {
3872 /*
3873 * We are making executable a file mapping that has
3874 * had some COW done. Since pages might have been
3875 * written, check ability to execute the possibly
3876 * modified content. This typically should only
3877 * occur for text relocations.
3878 */
3879 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3880 }
3881 if (rc)
3882 return rc;
3883 }
3884
3885 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3886}
3887
3888static int selinux_file_lock(struct file *file, unsigned int cmd)
3889{
3890 const struct cred *cred = current_cred();
3891
3892 return file_has_perm(cred, file, FILE__LOCK);
3893}
3894
3895static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3896 unsigned long arg)
3897{
3898 const struct cred *cred = current_cred();
3899 int err = 0;
3900
3901 switch (cmd) {
3902 case F_SETFL:
3903 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3904 err = file_has_perm(cred, file, FILE__WRITE);
3905 break;
3906 }
3907 fallthrough;
3908 case F_SETOWN:
3909 case F_SETSIG:
3910 case F_GETFL:
3911 case F_GETOWN:
3912 case F_GETSIG:
3913 case F_GETOWNER_UIDS:
3914 /* Just check FD__USE permission */
3915 err = file_has_perm(cred, file, 0);
3916 break;
3917 case F_GETLK:
3918 case F_SETLK:
3919 case F_SETLKW:
3920 case F_OFD_GETLK:
3921 case F_OFD_SETLK:
3922 case F_OFD_SETLKW:
3923#if BITS_PER_LONG == 32
3924 case F_GETLK64:
3925 case F_SETLK64:
3926 case F_SETLKW64:
3927#endif
3928 err = file_has_perm(cred, file, FILE__LOCK);
3929 break;
3930 }
3931
3932 return err;
3933}
3934
3935static void selinux_file_set_fowner(struct file *file)
3936{
3937 struct file_security_struct *fsec;
3938
3939 fsec = selinux_file(file);
3940 fsec->fown_sid = current_sid();
3941}
3942
3943static int selinux_file_send_sigiotask(struct task_struct *tsk,
3944 struct fown_struct *fown, int signum)
3945{
3946 struct file *file;
3947 u32 sid = task_sid_obj(tsk);
3948 u32 perm;
3949 struct file_security_struct *fsec;
3950
3951 /* struct fown_struct is never outside the context of a struct file */
3952 file = fown->file;
3953
3954 fsec = selinux_file(file);
3955
3956 if (!signum)
3957 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3958 else
3959 perm = signal_to_av(signum);
3960
3961 return avc_has_perm(fsec->fown_sid, sid,
3962 SECCLASS_PROCESS, perm, NULL);
3963}
3964
3965static int selinux_file_receive(struct file *file)
3966{
3967 const struct cred *cred = current_cred();
3968
3969 return file_has_perm(cred, file, file_to_av(file));
3970}
3971
3972static int selinux_file_open(struct file *file)
3973{
3974 struct file_security_struct *fsec;
3975 struct inode_security_struct *isec;
3976
3977 fsec = selinux_file(file);
3978 isec = inode_security(file_inode(file));
3979 /*
3980 * Save inode label and policy sequence number
3981 * at open-time so that selinux_file_permission
3982 * can determine whether revalidation is necessary.
3983 * Task label is already saved in the file security
3984 * struct as its SID.
3985 */
3986 fsec->isid = isec->sid;
3987 fsec->pseqno = avc_policy_seqno();
3988 /*
3989 * Since the inode label or policy seqno may have changed
3990 * between the selinux_inode_permission check and the saving
3991 * of state above, recheck that access is still permitted.
3992 * Otherwise, access might never be revalidated against the
3993 * new inode label or new policy.
3994 * This check is not redundant - do not remove.
3995 */
3996 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3997}
3998
3999/* task security operations */
4000
4001static int selinux_task_alloc(struct task_struct *task,
4002 unsigned long clone_flags)
4003{
4004 u32 sid = current_sid();
4005
4006 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4007}
4008
4009/*
4010 * prepare a new set of credentials for modification
4011 */
4012static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4013 gfp_t gfp)
4014{
4015 const struct task_security_struct *old_tsec = selinux_cred(old);
4016 struct task_security_struct *tsec = selinux_cred(new);
4017
4018 *tsec = *old_tsec;
4019 return 0;
4020}
4021
4022/*
4023 * transfer the SELinux data to a blank set of creds
4024 */
4025static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4026{
4027 const struct task_security_struct *old_tsec = selinux_cred(old);
4028 struct task_security_struct *tsec = selinux_cred(new);
4029
4030 *tsec = *old_tsec;
4031}
4032
4033static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4034{
4035 *secid = cred_sid(c);
4036}
4037
4038static void selinux_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
4039{
4040 prop->selinux.secid = cred_sid(c);
4041}
4042
4043/*
4044 * set the security data for a kernel service
4045 * - all the creation contexts are set to unlabelled
4046 */
4047static int selinux_kernel_act_as(struct cred *new, u32 secid)
4048{
4049 struct task_security_struct *tsec = selinux_cred(new);
4050 u32 sid = current_sid();
4051 int ret;
4052
4053 ret = avc_has_perm(sid, secid,
4054 SECCLASS_KERNEL_SERVICE,
4055 KERNEL_SERVICE__USE_AS_OVERRIDE,
4056 NULL);
4057 if (ret == 0) {
4058 tsec->sid = secid;
4059 tsec->create_sid = 0;
4060 tsec->keycreate_sid = 0;
4061 tsec->sockcreate_sid = 0;
4062 }
4063 return ret;
4064}
4065
4066/*
4067 * set the file creation context in a security record to the same as the
4068 * objective context of the specified inode
4069 */
4070static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4071{
4072 struct inode_security_struct *isec = inode_security(inode);
4073 struct task_security_struct *tsec = selinux_cred(new);
4074 u32 sid = current_sid();
4075 int ret;
4076
4077 ret = avc_has_perm(sid, isec->sid,
4078 SECCLASS_KERNEL_SERVICE,
4079 KERNEL_SERVICE__CREATE_FILES_AS,
4080 NULL);
4081
4082 if (ret == 0)
4083 tsec->create_sid = isec->sid;
4084 return ret;
4085}
4086
4087static int selinux_kernel_module_request(char *kmod_name)
4088{
4089 struct common_audit_data ad;
4090
4091 ad.type = LSM_AUDIT_DATA_KMOD;
4092 ad.u.kmod_name = kmod_name;
4093
4094 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4095 SYSTEM__MODULE_REQUEST, &ad);
4096}
4097
4098static int selinux_kernel_module_from_file(struct file *file)
4099{
4100 struct common_audit_data ad;
4101 struct inode_security_struct *isec;
4102 struct file_security_struct *fsec;
4103 u32 sid = current_sid();
4104 int rc;
4105
4106 /* init_module */
4107 if (file == NULL)
4108 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4109 SYSTEM__MODULE_LOAD, NULL);
4110
4111 /* finit_module */
4112
4113 ad.type = LSM_AUDIT_DATA_FILE;
4114 ad.u.file = file;
4115
4116 fsec = selinux_file(file);
4117 if (sid != fsec->sid) {
4118 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4119 if (rc)
4120 return rc;
4121 }
4122
4123 isec = inode_security(file_inode(file));
4124 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4125 SYSTEM__MODULE_LOAD, &ad);
4126}
4127
4128static int selinux_kernel_read_file(struct file *file,
4129 enum kernel_read_file_id id,
4130 bool contents)
4131{
4132 int rc = 0;
4133
4134 switch (id) {
4135 case READING_MODULE:
4136 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4137 break;
4138 default:
4139 break;
4140 }
4141
4142 return rc;
4143}
4144
4145static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4146{
4147 int rc = 0;
4148
4149 switch (id) {
4150 case LOADING_MODULE:
4151 rc = selinux_kernel_module_from_file(NULL);
4152 break;
4153 default:
4154 break;
4155 }
4156
4157 return rc;
4158}
4159
4160static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4161{
4162 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4163 PROCESS__SETPGID, NULL);
4164}
4165
4166static int selinux_task_getpgid(struct task_struct *p)
4167{
4168 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4169 PROCESS__GETPGID, NULL);
4170}
4171
4172static int selinux_task_getsid(struct task_struct *p)
4173{
4174 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4175 PROCESS__GETSESSION, NULL);
4176}
4177
4178static void selinux_current_getlsmprop_subj(struct lsm_prop *prop)
4179{
4180 prop->selinux.secid = current_sid();
4181}
4182
4183static void selinux_task_getlsmprop_obj(struct task_struct *p,
4184 struct lsm_prop *prop)
4185{
4186 prop->selinux.secid = task_sid_obj(p);
4187}
4188
4189static int selinux_task_setnice(struct task_struct *p, int nice)
4190{
4191 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4192 PROCESS__SETSCHED, NULL);
4193}
4194
4195static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4196{
4197 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4198 PROCESS__SETSCHED, NULL);
4199}
4200
4201static int selinux_task_getioprio(struct task_struct *p)
4202{
4203 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204 PROCESS__GETSCHED, NULL);
4205}
4206
4207static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4208 unsigned int flags)
4209{
4210 u32 av = 0;
4211
4212 if (!flags)
4213 return 0;
4214 if (flags & LSM_PRLIMIT_WRITE)
4215 av |= PROCESS__SETRLIMIT;
4216 if (flags & LSM_PRLIMIT_READ)
4217 av |= PROCESS__GETRLIMIT;
4218 return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4219 SECCLASS_PROCESS, av, NULL);
4220}
4221
4222static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4223 struct rlimit *new_rlim)
4224{
4225 struct rlimit *old_rlim = p->signal->rlim + resource;
4226
4227 /* Control the ability to change the hard limit (whether
4228 lowering or raising it), so that the hard limit can
4229 later be used as a safe reset point for the soft limit
4230 upon context transitions. See selinux_bprm_committing_creds. */
4231 if (old_rlim->rlim_max != new_rlim->rlim_max)
4232 return avc_has_perm(current_sid(), task_sid_obj(p),
4233 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4234
4235 return 0;
4236}
4237
4238static int selinux_task_setscheduler(struct task_struct *p)
4239{
4240 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4241 PROCESS__SETSCHED, NULL);
4242}
4243
4244static int selinux_task_getscheduler(struct task_struct *p)
4245{
4246 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4247 PROCESS__GETSCHED, NULL);
4248}
4249
4250static int selinux_task_movememory(struct task_struct *p)
4251{
4252 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4253 PROCESS__SETSCHED, NULL);
4254}
4255
4256static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4257 int sig, const struct cred *cred)
4258{
4259 u32 secid;
4260 u32 perm;
4261
4262 if (!sig)
4263 perm = PROCESS__SIGNULL; /* null signal; existence test */
4264 else
4265 perm = signal_to_av(sig);
4266 if (!cred)
4267 secid = current_sid();
4268 else
4269 secid = cred_sid(cred);
4270 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4271}
4272
4273static void selinux_task_to_inode(struct task_struct *p,
4274 struct inode *inode)
4275{
4276 struct inode_security_struct *isec = selinux_inode(inode);
4277 u32 sid = task_sid_obj(p);
4278
4279 spin_lock(&isec->lock);
4280 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4281 isec->sid = sid;
4282 isec->initialized = LABEL_INITIALIZED;
4283 spin_unlock(&isec->lock);
4284}
4285
4286static int selinux_userns_create(const struct cred *cred)
4287{
4288 u32 sid = current_sid();
4289
4290 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4291 USER_NAMESPACE__CREATE, NULL);
4292}
4293
4294/* Returns error only if unable to parse addresses */
4295static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4296 struct common_audit_data *ad, u8 *proto)
4297{
4298 int offset, ihlen, ret = -EINVAL;
4299 struct iphdr _iph, *ih;
4300
4301 offset = skb_network_offset(skb);
4302 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4303 if (ih == NULL)
4304 goto out;
4305
4306 ihlen = ih->ihl * 4;
4307 if (ihlen < sizeof(_iph))
4308 goto out;
4309
4310 ad->u.net->v4info.saddr = ih->saddr;
4311 ad->u.net->v4info.daddr = ih->daddr;
4312 ret = 0;
4313
4314 if (proto)
4315 *proto = ih->protocol;
4316
4317 switch (ih->protocol) {
4318 case IPPROTO_TCP: {
4319 struct tcphdr _tcph, *th;
4320
4321 if (ntohs(ih->frag_off) & IP_OFFSET)
4322 break;
4323
4324 offset += ihlen;
4325 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4326 if (th == NULL)
4327 break;
4328
4329 ad->u.net->sport = th->source;
4330 ad->u.net->dport = th->dest;
4331 break;
4332 }
4333
4334 case IPPROTO_UDP: {
4335 struct udphdr _udph, *uh;
4336
4337 if (ntohs(ih->frag_off) & IP_OFFSET)
4338 break;
4339
4340 offset += ihlen;
4341 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4342 if (uh == NULL)
4343 break;
4344
4345 ad->u.net->sport = uh->source;
4346 ad->u.net->dport = uh->dest;
4347 break;
4348 }
4349
4350 case IPPROTO_DCCP: {
4351 struct dccp_hdr _dccph, *dh;
4352
4353 if (ntohs(ih->frag_off) & IP_OFFSET)
4354 break;
4355
4356 offset += ihlen;
4357 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4358 if (dh == NULL)
4359 break;
4360
4361 ad->u.net->sport = dh->dccph_sport;
4362 ad->u.net->dport = dh->dccph_dport;
4363 break;
4364 }
4365
4366#if IS_ENABLED(CONFIG_IP_SCTP)
4367 case IPPROTO_SCTP: {
4368 struct sctphdr _sctph, *sh;
4369
4370 if (ntohs(ih->frag_off) & IP_OFFSET)
4371 break;
4372
4373 offset += ihlen;
4374 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4375 if (sh == NULL)
4376 break;
4377
4378 ad->u.net->sport = sh->source;
4379 ad->u.net->dport = sh->dest;
4380 break;
4381 }
4382#endif
4383 default:
4384 break;
4385 }
4386out:
4387 return ret;
4388}
4389
4390#if IS_ENABLED(CONFIG_IPV6)
4391
4392/* Returns error only if unable to parse addresses */
4393static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4394 struct common_audit_data *ad, u8 *proto)
4395{
4396 u8 nexthdr;
4397 int ret = -EINVAL, offset;
4398 struct ipv6hdr _ipv6h, *ip6;
4399 __be16 frag_off;
4400
4401 offset = skb_network_offset(skb);
4402 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4403 if (ip6 == NULL)
4404 goto out;
4405
4406 ad->u.net->v6info.saddr = ip6->saddr;
4407 ad->u.net->v6info.daddr = ip6->daddr;
4408 ret = 0;
4409
4410 nexthdr = ip6->nexthdr;
4411 offset += sizeof(_ipv6h);
4412 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4413 if (offset < 0)
4414 goto out;
4415
4416 if (proto)
4417 *proto = nexthdr;
4418
4419 switch (nexthdr) {
4420 case IPPROTO_TCP: {
4421 struct tcphdr _tcph, *th;
4422
4423 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4424 if (th == NULL)
4425 break;
4426
4427 ad->u.net->sport = th->source;
4428 ad->u.net->dport = th->dest;
4429 break;
4430 }
4431
4432 case IPPROTO_UDP: {
4433 struct udphdr _udph, *uh;
4434
4435 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4436 if (uh == NULL)
4437 break;
4438
4439 ad->u.net->sport = uh->source;
4440 ad->u.net->dport = uh->dest;
4441 break;
4442 }
4443
4444 case IPPROTO_DCCP: {
4445 struct dccp_hdr _dccph, *dh;
4446
4447 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4448 if (dh == NULL)
4449 break;
4450
4451 ad->u.net->sport = dh->dccph_sport;
4452 ad->u.net->dport = dh->dccph_dport;
4453 break;
4454 }
4455
4456#if IS_ENABLED(CONFIG_IP_SCTP)
4457 case IPPROTO_SCTP: {
4458 struct sctphdr _sctph, *sh;
4459
4460 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4461 if (sh == NULL)
4462 break;
4463
4464 ad->u.net->sport = sh->source;
4465 ad->u.net->dport = sh->dest;
4466 break;
4467 }
4468#endif
4469 /* includes fragments */
4470 default:
4471 break;
4472 }
4473out:
4474 return ret;
4475}
4476
4477#endif /* IPV6 */
4478
4479static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4480 char **_addrp, int src, u8 *proto)
4481{
4482 char *addrp;
4483 int ret;
4484
4485 switch (ad->u.net->family) {
4486 case PF_INET:
4487 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4488 if (ret)
4489 goto parse_error;
4490 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4491 &ad->u.net->v4info.daddr);
4492 goto okay;
4493
4494#if IS_ENABLED(CONFIG_IPV6)
4495 case PF_INET6:
4496 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4497 if (ret)
4498 goto parse_error;
4499 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4500 &ad->u.net->v6info.daddr);
4501 goto okay;
4502#endif /* IPV6 */
4503 default:
4504 addrp = NULL;
4505 goto okay;
4506 }
4507
4508parse_error:
4509 pr_warn(
4510 "SELinux: failure in selinux_parse_skb(),"
4511 " unable to parse packet\n");
4512 return ret;
4513
4514okay:
4515 if (_addrp)
4516 *_addrp = addrp;
4517 return 0;
4518}
4519
4520/**
4521 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4522 * @skb: the packet
4523 * @family: protocol family
4524 * @sid: the packet's peer label SID
4525 *
4526 * Description:
4527 * Check the various different forms of network peer labeling and determine
4528 * the peer label/SID for the packet; most of the magic actually occurs in
4529 * the security server function security_net_peersid_cmp(). The function
4530 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4531 * or -EACCES if @sid is invalid due to inconsistencies with the different
4532 * peer labels.
4533 *
4534 */
4535static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4536{
4537 int err;
4538 u32 xfrm_sid;
4539 u32 nlbl_sid;
4540 u32 nlbl_type;
4541
4542 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4543 if (unlikely(err))
4544 return -EACCES;
4545 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4546 if (unlikely(err))
4547 return -EACCES;
4548
4549 err = security_net_peersid_resolve(nlbl_sid,
4550 nlbl_type, xfrm_sid, sid);
4551 if (unlikely(err)) {
4552 pr_warn(
4553 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4554 " unable to determine packet's peer label\n");
4555 return -EACCES;
4556 }
4557
4558 return 0;
4559}
4560
4561/**
4562 * selinux_conn_sid - Determine the child socket label for a connection
4563 * @sk_sid: the parent socket's SID
4564 * @skb_sid: the packet's SID
4565 * @conn_sid: the resulting connection SID
4566 *
4567 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4568 * combined with the MLS information from @skb_sid in order to create
4569 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4570 * of @sk_sid. Returns zero on success, negative values on failure.
4571 *
4572 */
4573static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4574{
4575 int err = 0;
4576
4577 if (skb_sid != SECSID_NULL)
4578 err = security_sid_mls_copy(sk_sid, skb_sid,
4579 conn_sid);
4580 else
4581 *conn_sid = sk_sid;
4582
4583 return err;
4584}
4585
4586/* socket security operations */
4587
4588static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4589 u16 secclass, u32 *socksid)
4590{
4591 if (tsec->sockcreate_sid > SECSID_NULL) {
4592 *socksid = tsec->sockcreate_sid;
4593 return 0;
4594 }
4595
4596 return security_transition_sid(tsec->sid, tsec->sid,
4597 secclass, NULL, socksid);
4598}
4599
4600static bool sock_skip_has_perm(u32 sid)
4601{
4602 if (sid == SECINITSID_KERNEL)
4603 return true;
4604
4605 /*
4606 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4607 * inherited the kernel context from early boot used to be skipped
4608 * here, so preserve that behavior unless the capability is set.
4609 *
4610 * By setting the capability the policy signals that it is ready
4611 * for this quirk to be fixed. Note that sockets created by a kernel
4612 * thread or a usermode helper executed without a transition will
4613 * still be skipped in this check regardless of the policycap
4614 * setting.
4615 */
4616 if (!selinux_policycap_userspace_initial_context() &&
4617 sid == SECINITSID_INIT)
4618 return true;
4619 return false;
4620}
4621
4622
4623static int sock_has_perm(struct sock *sk, u32 perms)
4624{
4625 struct sk_security_struct *sksec = sk->sk_security;
4626 struct common_audit_data ad;
4627 struct lsm_network_audit net;
4628
4629 if (sock_skip_has_perm(sksec->sid))
4630 return 0;
4631
4632 ad_net_init_from_sk(&ad, &net, sk);
4633
4634 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4635 &ad);
4636}
4637
4638static int selinux_socket_create(int family, int type,
4639 int protocol, int kern)
4640{
4641 const struct task_security_struct *tsec = selinux_cred(current_cred());
4642 u32 newsid;
4643 u16 secclass;
4644 int rc;
4645
4646 if (kern)
4647 return 0;
4648
4649 secclass = socket_type_to_security_class(family, type, protocol);
4650 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4651 if (rc)
4652 return rc;
4653
4654 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4655}
4656
4657static int selinux_socket_post_create(struct socket *sock, int family,
4658 int type, int protocol, int kern)
4659{
4660 const struct task_security_struct *tsec = selinux_cred(current_cred());
4661 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4662 struct sk_security_struct *sksec;
4663 u16 sclass = socket_type_to_security_class(family, type, protocol);
4664 u32 sid = SECINITSID_KERNEL;
4665 int err = 0;
4666
4667 if (!kern) {
4668 err = socket_sockcreate_sid(tsec, sclass, &sid);
4669 if (err)
4670 return err;
4671 }
4672
4673 isec->sclass = sclass;
4674 isec->sid = sid;
4675 isec->initialized = LABEL_INITIALIZED;
4676
4677 if (sock->sk) {
4678 sksec = selinux_sock(sock->sk);
4679 sksec->sclass = sclass;
4680 sksec->sid = sid;
4681 /* Allows detection of the first association on this socket */
4682 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4684
4685 err = selinux_netlbl_socket_post_create(sock->sk, family);
4686 }
4687
4688 return err;
4689}
4690
4691static int selinux_socket_socketpair(struct socket *socka,
4692 struct socket *sockb)
4693{
4694 struct sk_security_struct *sksec_a = selinux_sock(socka->sk);
4695 struct sk_security_struct *sksec_b = selinux_sock(sockb->sk);
4696
4697 sksec_a->peer_sid = sksec_b->sid;
4698 sksec_b->peer_sid = sksec_a->sid;
4699
4700 return 0;
4701}
4702
4703/* Range of port numbers used to automatically bind.
4704 Need to determine whether we should perform a name_bind
4705 permission check between the socket and the port number. */
4706
4707static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4708{
4709 struct sock *sk = sock->sk;
4710 struct sk_security_struct *sksec = selinux_sock(sk);
4711 u16 family;
4712 int err;
4713
4714 err = sock_has_perm(sk, SOCKET__BIND);
4715 if (err)
4716 goto out;
4717
4718 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4719 family = sk->sk_family;
4720 if (family == PF_INET || family == PF_INET6) {
4721 char *addrp;
4722 struct common_audit_data ad;
4723 struct lsm_network_audit net = {0,};
4724 struct sockaddr_in *addr4 = NULL;
4725 struct sockaddr_in6 *addr6 = NULL;
4726 u16 family_sa;
4727 unsigned short snum;
4728 u32 sid, node_perm;
4729
4730 /*
4731 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4732 * that validates multiple binding addresses. Because of this
4733 * need to check address->sa_family as it is possible to have
4734 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4735 */
4736 if (addrlen < offsetofend(struct sockaddr, sa_family))
4737 return -EINVAL;
4738 family_sa = address->sa_family;
4739 switch (family_sa) {
4740 case AF_UNSPEC:
4741 case AF_INET:
4742 if (addrlen < sizeof(struct sockaddr_in))
4743 return -EINVAL;
4744 addr4 = (struct sockaddr_in *)address;
4745 if (family_sa == AF_UNSPEC) {
4746 if (family == PF_INET6) {
4747 /* Length check from inet6_bind_sk() */
4748 if (addrlen < SIN6_LEN_RFC2133)
4749 return -EINVAL;
4750 /* Family check from __inet6_bind() */
4751 goto err_af;
4752 }
4753 /* see __inet_bind(), we only want to allow
4754 * AF_UNSPEC if the address is INADDR_ANY
4755 */
4756 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4757 goto err_af;
4758 family_sa = AF_INET;
4759 }
4760 snum = ntohs(addr4->sin_port);
4761 addrp = (char *)&addr4->sin_addr.s_addr;
4762 break;
4763 case AF_INET6:
4764 if (addrlen < SIN6_LEN_RFC2133)
4765 return -EINVAL;
4766 addr6 = (struct sockaddr_in6 *)address;
4767 snum = ntohs(addr6->sin6_port);
4768 addrp = (char *)&addr6->sin6_addr.s6_addr;
4769 break;
4770 default:
4771 goto err_af;
4772 }
4773
4774 ad.type = LSM_AUDIT_DATA_NET;
4775 ad.u.net = &net;
4776 ad.u.net->sport = htons(snum);
4777 ad.u.net->family = family_sa;
4778
4779 if (snum) {
4780 int low, high;
4781
4782 inet_get_local_port_range(sock_net(sk), &low, &high);
4783
4784 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4785 snum < low || snum > high) {
4786 err = sel_netport_sid(sk->sk_protocol,
4787 snum, &sid);
4788 if (err)
4789 goto out;
4790 err = avc_has_perm(sksec->sid, sid,
4791 sksec->sclass,
4792 SOCKET__NAME_BIND, &ad);
4793 if (err)
4794 goto out;
4795 }
4796 }
4797
4798 switch (sksec->sclass) {
4799 case SECCLASS_TCP_SOCKET:
4800 node_perm = TCP_SOCKET__NODE_BIND;
4801 break;
4802
4803 case SECCLASS_UDP_SOCKET:
4804 node_perm = UDP_SOCKET__NODE_BIND;
4805 break;
4806
4807 case SECCLASS_DCCP_SOCKET:
4808 node_perm = DCCP_SOCKET__NODE_BIND;
4809 break;
4810
4811 case SECCLASS_SCTP_SOCKET:
4812 node_perm = SCTP_SOCKET__NODE_BIND;
4813 break;
4814
4815 default:
4816 node_perm = RAWIP_SOCKET__NODE_BIND;
4817 break;
4818 }
4819
4820 err = sel_netnode_sid(addrp, family_sa, &sid);
4821 if (err)
4822 goto out;
4823
4824 if (family_sa == AF_INET)
4825 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4826 else
4827 ad.u.net->v6info.saddr = addr6->sin6_addr;
4828
4829 err = avc_has_perm(sksec->sid, sid,
4830 sksec->sclass, node_perm, &ad);
4831 if (err)
4832 goto out;
4833 }
4834out:
4835 return err;
4836err_af:
4837 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4838 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4839 return -EINVAL;
4840 return -EAFNOSUPPORT;
4841}
4842
4843/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4844 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4845 */
4846static int selinux_socket_connect_helper(struct socket *sock,
4847 struct sockaddr *address, int addrlen)
4848{
4849 struct sock *sk = sock->sk;
4850 struct sk_security_struct *sksec = selinux_sock(sk);
4851 int err;
4852
4853 err = sock_has_perm(sk, SOCKET__CONNECT);
4854 if (err)
4855 return err;
4856 if (addrlen < offsetofend(struct sockaddr, sa_family))
4857 return -EINVAL;
4858
4859 /* connect(AF_UNSPEC) has special handling, as it is a documented
4860 * way to disconnect the socket
4861 */
4862 if (address->sa_family == AF_UNSPEC)
4863 return 0;
4864
4865 /*
4866 * If a TCP, DCCP or SCTP socket, check name_connect permission
4867 * for the port.
4868 */
4869 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4870 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4871 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4872 struct common_audit_data ad;
4873 struct lsm_network_audit net = {0,};
4874 struct sockaddr_in *addr4 = NULL;
4875 struct sockaddr_in6 *addr6 = NULL;
4876 unsigned short snum;
4877 u32 sid, perm;
4878
4879 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4880 * that validates multiple connect addresses. Because of this
4881 * need to check address->sa_family as it is possible to have
4882 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4883 */
4884 switch (address->sa_family) {
4885 case AF_INET:
4886 addr4 = (struct sockaddr_in *)address;
4887 if (addrlen < sizeof(struct sockaddr_in))
4888 return -EINVAL;
4889 snum = ntohs(addr4->sin_port);
4890 break;
4891 case AF_INET6:
4892 addr6 = (struct sockaddr_in6 *)address;
4893 if (addrlen < SIN6_LEN_RFC2133)
4894 return -EINVAL;
4895 snum = ntohs(addr6->sin6_port);
4896 break;
4897 default:
4898 /* Note that SCTP services expect -EINVAL, whereas
4899 * others expect -EAFNOSUPPORT.
4900 */
4901 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4902 return -EINVAL;
4903 else
4904 return -EAFNOSUPPORT;
4905 }
4906
4907 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4908 if (err)
4909 return err;
4910
4911 switch (sksec->sclass) {
4912 case SECCLASS_TCP_SOCKET:
4913 perm = TCP_SOCKET__NAME_CONNECT;
4914 break;
4915 case SECCLASS_DCCP_SOCKET:
4916 perm = DCCP_SOCKET__NAME_CONNECT;
4917 break;
4918 case SECCLASS_SCTP_SOCKET:
4919 perm = SCTP_SOCKET__NAME_CONNECT;
4920 break;
4921 }
4922
4923 ad.type = LSM_AUDIT_DATA_NET;
4924 ad.u.net = &net;
4925 ad.u.net->dport = htons(snum);
4926 ad.u.net->family = address->sa_family;
4927 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4928 if (err)
4929 return err;
4930 }
4931
4932 return 0;
4933}
4934
4935/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4936static int selinux_socket_connect(struct socket *sock,
4937 struct sockaddr *address, int addrlen)
4938{
4939 int err;
4940 struct sock *sk = sock->sk;
4941
4942 err = selinux_socket_connect_helper(sock, address, addrlen);
4943 if (err)
4944 return err;
4945
4946 return selinux_netlbl_socket_connect(sk, address);
4947}
4948
4949static int selinux_socket_listen(struct socket *sock, int backlog)
4950{
4951 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4952}
4953
4954static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4955{
4956 int err;
4957 struct inode_security_struct *isec;
4958 struct inode_security_struct *newisec;
4959 u16 sclass;
4960 u32 sid;
4961
4962 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4963 if (err)
4964 return err;
4965
4966 isec = inode_security_novalidate(SOCK_INODE(sock));
4967 spin_lock(&isec->lock);
4968 sclass = isec->sclass;
4969 sid = isec->sid;
4970 spin_unlock(&isec->lock);
4971
4972 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4973 newisec->sclass = sclass;
4974 newisec->sid = sid;
4975 newisec->initialized = LABEL_INITIALIZED;
4976
4977 return 0;
4978}
4979
4980static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4981 int size)
4982{
4983 return sock_has_perm(sock->sk, SOCKET__WRITE);
4984}
4985
4986static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4987 int size, int flags)
4988{
4989 return sock_has_perm(sock->sk, SOCKET__READ);
4990}
4991
4992static int selinux_socket_getsockname(struct socket *sock)
4993{
4994 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4995}
4996
4997static int selinux_socket_getpeername(struct socket *sock)
4998{
4999 return sock_has_perm(sock->sk, SOCKET__GETATTR);
5000}
5001
5002static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5003{
5004 int err;
5005
5006 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5007 if (err)
5008 return err;
5009
5010 return selinux_netlbl_socket_setsockopt(sock, level, optname);
5011}
5012
5013static int selinux_socket_getsockopt(struct socket *sock, int level,
5014 int optname)
5015{
5016 return sock_has_perm(sock->sk, SOCKET__GETOPT);
5017}
5018
5019static int selinux_socket_shutdown(struct socket *sock, int how)
5020{
5021 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5022}
5023
5024static int selinux_socket_unix_stream_connect(struct sock *sock,
5025 struct sock *other,
5026 struct sock *newsk)
5027{
5028 struct sk_security_struct *sksec_sock = selinux_sock(sock);
5029 struct sk_security_struct *sksec_other = selinux_sock(other);
5030 struct sk_security_struct *sksec_new = selinux_sock(newsk);
5031 struct common_audit_data ad;
5032 struct lsm_network_audit net;
5033 int err;
5034
5035 ad_net_init_from_sk(&ad, &net, other);
5036
5037 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5038 sksec_other->sclass,
5039 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5040 if (err)
5041 return err;
5042
5043 /* server child socket */
5044 sksec_new->peer_sid = sksec_sock->sid;
5045 err = security_sid_mls_copy(sksec_other->sid,
5046 sksec_sock->sid, &sksec_new->sid);
5047 if (err)
5048 return err;
5049
5050 /* connecting socket */
5051 sksec_sock->peer_sid = sksec_new->sid;
5052
5053 return 0;
5054}
5055
5056static int selinux_socket_unix_may_send(struct socket *sock,
5057 struct socket *other)
5058{
5059 struct sk_security_struct *ssec = selinux_sock(sock->sk);
5060 struct sk_security_struct *osec = selinux_sock(other->sk);
5061 struct common_audit_data ad;
5062 struct lsm_network_audit net;
5063
5064 ad_net_init_from_sk(&ad, &net, other->sk);
5065
5066 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5067 &ad);
5068}
5069
5070static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5071 char *addrp, u16 family, u32 peer_sid,
5072 struct common_audit_data *ad)
5073{
5074 int err;
5075 u32 if_sid;
5076 u32 node_sid;
5077
5078 err = sel_netif_sid(ns, ifindex, &if_sid);
5079 if (err)
5080 return err;
5081 err = avc_has_perm(peer_sid, if_sid,
5082 SECCLASS_NETIF, NETIF__INGRESS, ad);
5083 if (err)
5084 return err;
5085
5086 err = sel_netnode_sid(addrp, family, &node_sid);
5087 if (err)
5088 return err;
5089 return avc_has_perm(peer_sid, node_sid,
5090 SECCLASS_NODE, NODE__RECVFROM, ad);
5091}
5092
5093static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5094 u16 family)
5095{
5096 int err = 0;
5097 struct sk_security_struct *sksec = selinux_sock(sk);
5098 u32 sk_sid = sksec->sid;
5099 struct common_audit_data ad;
5100 struct lsm_network_audit net;
5101 char *addrp;
5102
5103 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5104 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5105 if (err)
5106 return err;
5107
5108 if (selinux_secmark_enabled()) {
5109 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5110 PACKET__RECV, &ad);
5111 if (err)
5112 return err;
5113 }
5114
5115 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5116 if (err)
5117 return err;
5118 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5119
5120 return err;
5121}
5122
5123static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5124{
5125 int err, peerlbl_active, secmark_active;
5126 struct sk_security_struct *sksec = selinux_sock(sk);
5127 u16 family = sk->sk_family;
5128 u32 sk_sid = sksec->sid;
5129 struct common_audit_data ad;
5130 struct lsm_network_audit net;
5131 char *addrp;
5132
5133 if (family != PF_INET && family != PF_INET6)
5134 return 0;
5135
5136 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5137 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5138 family = PF_INET;
5139
5140 /* If any sort of compatibility mode is enabled then handoff processing
5141 * to the selinux_sock_rcv_skb_compat() function to deal with the
5142 * special handling. We do this in an attempt to keep this function
5143 * as fast and as clean as possible. */
5144 if (!selinux_policycap_netpeer())
5145 return selinux_sock_rcv_skb_compat(sk, skb, family);
5146
5147 secmark_active = selinux_secmark_enabled();
5148 peerlbl_active = selinux_peerlbl_enabled();
5149 if (!secmark_active && !peerlbl_active)
5150 return 0;
5151
5152 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5153 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5154 if (err)
5155 return err;
5156
5157 if (peerlbl_active) {
5158 u32 peer_sid;
5159
5160 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5161 if (err)
5162 return err;
5163 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5164 addrp, family, peer_sid, &ad);
5165 if (err) {
5166 selinux_netlbl_err(skb, family, err, 0);
5167 return err;
5168 }
5169 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5170 PEER__RECV, &ad);
5171 if (err) {
5172 selinux_netlbl_err(skb, family, err, 0);
5173 return err;
5174 }
5175 }
5176
5177 if (secmark_active) {
5178 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5179 PACKET__RECV, &ad);
5180 if (err)
5181 return err;
5182 }
5183
5184 return err;
5185}
5186
5187static int selinux_socket_getpeersec_stream(struct socket *sock,
5188 sockptr_t optval, sockptr_t optlen,
5189 unsigned int len)
5190{
5191 int err = 0;
5192 char *scontext = NULL;
5193 u32 scontext_len;
5194 struct sk_security_struct *sksec = selinux_sock(sock->sk);
5195 u32 peer_sid = SECSID_NULL;
5196
5197 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5198 sksec->sclass == SECCLASS_TCP_SOCKET ||
5199 sksec->sclass == SECCLASS_SCTP_SOCKET)
5200 peer_sid = sksec->peer_sid;
5201 if (peer_sid == SECSID_NULL)
5202 return -ENOPROTOOPT;
5203
5204 err = security_sid_to_context(peer_sid, &scontext,
5205 &scontext_len);
5206 if (err)
5207 return err;
5208 if (scontext_len > len) {
5209 err = -ERANGE;
5210 goto out_len;
5211 }
5212
5213 if (copy_to_sockptr(optval, scontext, scontext_len))
5214 err = -EFAULT;
5215out_len:
5216 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5217 err = -EFAULT;
5218 kfree(scontext);
5219 return err;
5220}
5221
5222static int selinux_socket_getpeersec_dgram(struct socket *sock,
5223 struct sk_buff *skb, u32 *secid)
5224{
5225 u32 peer_secid = SECSID_NULL;
5226 u16 family;
5227
5228 if (skb && skb->protocol == htons(ETH_P_IP))
5229 family = PF_INET;
5230 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5231 family = PF_INET6;
5232 else if (sock)
5233 family = sock->sk->sk_family;
5234 else {
5235 *secid = SECSID_NULL;
5236 return -EINVAL;
5237 }
5238
5239 if (sock && family == PF_UNIX) {
5240 struct inode_security_struct *isec;
5241 isec = inode_security_novalidate(SOCK_INODE(sock));
5242 peer_secid = isec->sid;
5243 } else if (skb)
5244 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5245
5246 *secid = peer_secid;
5247 if (peer_secid == SECSID_NULL)
5248 return -ENOPROTOOPT;
5249 return 0;
5250}
5251
5252static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5253{
5254 struct sk_security_struct *sksec = selinux_sock(sk);
5255
5256 sksec->peer_sid = SECINITSID_UNLABELED;
5257 sksec->sid = SECINITSID_UNLABELED;
5258 sksec->sclass = SECCLASS_SOCKET;
5259 selinux_netlbl_sk_security_reset(sksec);
5260
5261 return 0;
5262}
5263
5264static void selinux_sk_free_security(struct sock *sk)
5265{
5266 struct sk_security_struct *sksec = selinux_sock(sk);
5267
5268 selinux_netlbl_sk_security_free(sksec);
5269}
5270
5271static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5272{
5273 struct sk_security_struct *sksec = selinux_sock(sk);
5274 struct sk_security_struct *newsksec = selinux_sock(newsk);
5275
5276 newsksec->sid = sksec->sid;
5277 newsksec->peer_sid = sksec->peer_sid;
5278 newsksec->sclass = sksec->sclass;
5279
5280 selinux_netlbl_sk_security_reset(newsksec);
5281}
5282
5283static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5284{
5285 if (!sk)
5286 *secid = SECINITSID_ANY_SOCKET;
5287 else {
5288 const struct sk_security_struct *sksec = selinux_sock(sk);
5289
5290 *secid = sksec->sid;
5291 }
5292}
5293
5294static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5295{
5296 struct inode_security_struct *isec =
5297 inode_security_novalidate(SOCK_INODE(parent));
5298 struct sk_security_struct *sksec = selinux_sock(sk);
5299
5300 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5301 sk->sk_family == PF_UNIX)
5302 isec->sid = sksec->sid;
5303 sksec->sclass = isec->sclass;
5304}
5305
5306/*
5307 * Determines peer_secid for the asoc and updates socket's peer label
5308 * if it's the first association on the socket.
5309 */
5310static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5311 struct sk_buff *skb)
5312{
5313 struct sock *sk = asoc->base.sk;
5314 u16 family = sk->sk_family;
5315 struct sk_security_struct *sksec = selinux_sock(sk);
5316 struct common_audit_data ad;
5317 struct lsm_network_audit net;
5318 int err;
5319
5320 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5321 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5322 family = PF_INET;
5323
5324 if (selinux_peerlbl_enabled()) {
5325 asoc->peer_secid = SECSID_NULL;
5326
5327 /* This will return peer_sid = SECSID_NULL if there are
5328 * no peer labels, see security_net_peersid_resolve().
5329 */
5330 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5331 if (err)
5332 return err;
5333
5334 if (asoc->peer_secid == SECSID_NULL)
5335 asoc->peer_secid = SECINITSID_UNLABELED;
5336 } else {
5337 asoc->peer_secid = SECINITSID_UNLABELED;
5338 }
5339
5340 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5341 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5342
5343 /* Here as first association on socket. As the peer SID
5344 * was allowed by peer recv (and the netif/node checks),
5345 * then it is approved by policy and used as the primary
5346 * peer SID for getpeercon(3).
5347 */
5348 sksec->peer_sid = asoc->peer_secid;
5349 } else if (sksec->peer_sid != asoc->peer_secid) {
5350 /* Other association peer SIDs are checked to enforce
5351 * consistency among the peer SIDs.
5352 */
5353 ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5354 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5355 sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5356 &ad);
5357 if (err)
5358 return err;
5359 }
5360 return 0;
5361}
5362
5363/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5364 * happens on an incoming connect(2), sctp_connectx(3) or
5365 * sctp_sendmsg(3) (with no association already present).
5366 */
5367static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5368 struct sk_buff *skb)
5369{
5370 struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5371 u32 conn_sid;
5372 int err;
5373
5374 if (!selinux_policycap_extsockclass())
5375 return 0;
5376
5377 err = selinux_sctp_process_new_assoc(asoc, skb);
5378 if (err)
5379 return err;
5380
5381 /* Compute the MLS component for the connection and store
5382 * the information in asoc. This will be used by SCTP TCP type
5383 * sockets and peeled off connections as they cause a new
5384 * socket to be generated. selinux_sctp_sk_clone() will then
5385 * plug this into the new socket.
5386 */
5387 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5388 if (err)
5389 return err;
5390
5391 asoc->secid = conn_sid;
5392
5393 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5394 return selinux_netlbl_sctp_assoc_request(asoc, skb);
5395}
5396
5397/* Called when SCTP receives a COOKIE ACK chunk as the final
5398 * response to an association request (initited by us).
5399 */
5400static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5401 struct sk_buff *skb)
5402{
5403 struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5404
5405 if (!selinux_policycap_extsockclass())
5406 return 0;
5407
5408 /* Inherit secid from the parent socket - this will be picked up
5409 * by selinux_sctp_sk_clone() if the association gets peeled off
5410 * into a new socket.
5411 */
5412 asoc->secid = sksec->sid;
5413
5414 return selinux_sctp_process_new_assoc(asoc, skb);
5415}
5416
5417/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5418 * based on their @optname.
5419 */
5420static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5421 struct sockaddr *address,
5422 int addrlen)
5423{
5424 int len, err = 0, walk_size = 0;
5425 void *addr_buf;
5426 struct sockaddr *addr;
5427 struct socket *sock;
5428
5429 if (!selinux_policycap_extsockclass())
5430 return 0;
5431
5432 /* Process one or more addresses that may be IPv4 or IPv6 */
5433 sock = sk->sk_socket;
5434 addr_buf = address;
5435
5436 while (walk_size < addrlen) {
5437 if (walk_size + sizeof(sa_family_t) > addrlen)
5438 return -EINVAL;
5439
5440 addr = addr_buf;
5441 switch (addr->sa_family) {
5442 case AF_UNSPEC:
5443 case AF_INET:
5444 len = sizeof(struct sockaddr_in);
5445 break;
5446 case AF_INET6:
5447 len = sizeof(struct sockaddr_in6);
5448 break;
5449 default:
5450 return -EINVAL;
5451 }
5452
5453 if (walk_size + len > addrlen)
5454 return -EINVAL;
5455
5456 err = -EINVAL;
5457 switch (optname) {
5458 /* Bind checks */
5459 case SCTP_PRIMARY_ADDR:
5460 case SCTP_SET_PEER_PRIMARY_ADDR:
5461 case SCTP_SOCKOPT_BINDX_ADD:
5462 err = selinux_socket_bind(sock, addr, len);
5463 break;
5464 /* Connect checks */
5465 case SCTP_SOCKOPT_CONNECTX:
5466 case SCTP_PARAM_SET_PRIMARY:
5467 case SCTP_PARAM_ADD_IP:
5468 case SCTP_SENDMSG_CONNECT:
5469 err = selinux_socket_connect_helper(sock, addr, len);
5470 if (err)
5471 return err;
5472
5473 /* As selinux_sctp_bind_connect() is called by the
5474 * SCTP protocol layer, the socket is already locked,
5475 * therefore selinux_netlbl_socket_connect_locked()
5476 * is called here. The situations handled are:
5477 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5478 * whenever a new IP address is added or when a new
5479 * primary address is selected.
5480 * Note that an SCTP connect(2) call happens before
5481 * the SCTP protocol layer and is handled via
5482 * selinux_socket_connect().
5483 */
5484 err = selinux_netlbl_socket_connect_locked(sk, addr);
5485 break;
5486 }
5487
5488 if (err)
5489 return err;
5490
5491 addr_buf += len;
5492 walk_size += len;
5493 }
5494
5495 return 0;
5496}
5497
5498/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5499static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5500 struct sock *newsk)
5501{
5502 struct sk_security_struct *sksec = selinux_sock(sk);
5503 struct sk_security_struct *newsksec = selinux_sock(newsk);
5504
5505 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5506 * the non-sctp clone version.
5507 */
5508 if (!selinux_policycap_extsockclass())
5509 return selinux_sk_clone_security(sk, newsk);
5510
5511 newsksec->sid = asoc->secid;
5512 newsksec->peer_sid = asoc->peer_secid;
5513 newsksec->sclass = sksec->sclass;
5514 selinux_netlbl_sctp_sk_clone(sk, newsk);
5515}
5516
5517static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5518{
5519 struct sk_security_struct *ssksec = selinux_sock(ssk);
5520 struct sk_security_struct *sksec = selinux_sock(sk);
5521
5522 ssksec->sclass = sksec->sclass;
5523 ssksec->sid = sksec->sid;
5524
5525 /* replace the existing subflow label deleting the existing one
5526 * and re-recreating a new label using the updated context
5527 */
5528 selinux_netlbl_sk_security_free(ssksec);
5529 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5530}
5531
5532static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5533 struct request_sock *req)
5534{
5535 struct sk_security_struct *sksec = selinux_sock(sk);
5536 int err;
5537 u16 family = req->rsk_ops->family;
5538 u32 connsid;
5539 u32 peersid;
5540
5541 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5542 if (err)
5543 return err;
5544 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5545 if (err)
5546 return err;
5547 req->secid = connsid;
5548 req->peer_secid = peersid;
5549
5550 return selinux_netlbl_inet_conn_request(req, family);
5551}
5552
5553static void selinux_inet_csk_clone(struct sock *newsk,
5554 const struct request_sock *req)
5555{
5556 struct sk_security_struct *newsksec = selinux_sock(newsk);
5557
5558 newsksec->sid = req->secid;
5559 newsksec->peer_sid = req->peer_secid;
5560 /* NOTE: Ideally, we should also get the isec->sid for the
5561 new socket in sync, but we don't have the isec available yet.
5562 So we will wait until sock_graft to do it, by which
5563 time it will have been created and available. */
5564
5565 /* We don't need to take any sort of lock here as we are the only
5566 * thread with access to newsksec */
5567 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5568}
5569
5570static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5571{
5572 u16 family = sk->sk_family;
5573 struct sk_security_struct *sksec = selinux_sock(sk);
5574
5575 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5576 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5577 family = PF_INET;
5578
5579 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5580}
5581
5582static int selinux_secmark_relabel_packet(u32 sid)
5583{
5584 return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
5585 NULL);
5586}
5587
5588static void selinux_secmark_refcount_inc(void)
5589{
5590 atomic_inc(&selinux_secmark_refcount);
5591}
5592
5593static void selinux_secmark_refcount_dec(void)
5594{
5595 atomic_dec(&selinux_secmark_refcount);
5596}
5597
5598static void selinux_req_classify_flow(const struct request_sock *req,
5599 struct flowi_common *flic)
5600{
5601 flic->flowic_secid = req->secid;
5602}
5603
5604static int selinux_tun_dev_alloc_security(void *security)
5605{
5606 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5607
5608 tunsec->sid = current_sid();
5609 return 0;
5610}
5611
5612static int selinux_tun_dev_create(void)
5613{
5614 u32 sid = current_sid();
5615
5616 /* we aren't taking into account the "sockcreate" SID since the socket
5617 * that is being created here is not a socket in the traditional sense,
5618 * instead it is a private sock, accessible only to the kernel, and
5619 * representing a wide range of network traffic spanning multiple
5620 * connections unlike traditional sockets - check the TUN driver to
5621 * get a better understanding of why this socket is special */
5622
5623 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5624 NULL);
5625}
5626
5627static int selinux_tun_dev_attach_queue(void *security)
5628{
5629 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5630
5631 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5632 TUN_SOCKET__ATTACH_QUEUE, NULL);
5633}
5634
5635static int selinux_tun_dev_attach(struct sock *sk, void *security)
5636{
5637 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5638 struct sk_security_struct *sksec = selinux_sock(sk);
5639
5640 /* we don't currently perform any NetLabel based labeling here and it
5641 * isn't clear that we would want to do so anyway; while we could apply
5642 * labeling without the support of the TUN user the resulting labeled
5643 * traffic from the other end of the connection would almost certainly
5644 * cause confusion to the TUN user that had no idea network labeling
5645 * protocols were being used */
5646
5647 sksec->sid = tunsec->sid;
5648 sksec->sclass = SECCLASS_TUN_SOCKET;
5649
5650 return 0;
5651}
5652
5653static int selinux_tun_dev_open(void *security)
5654{
5655 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5656 u32 sid = current_sid();
5657 int err;
5658
5659 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5660 TUN_SOCKET__RELABELFROM, NULL);
5661 if (err)
5662 return err;
5663 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5664 TUN_SOCKET__RELABELTO, NULL);
5665 if (err)
5666 return err;
5667 tunsec->sid = sid;
5668
5669 return 0;
5670}
5671
5672#ifdef CONFIG_NETFILTER
5673
5674static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5675 const struct nf_hook_state *state)
5676{
5677 int ifindex;
5678 u16 family;
5679 char *addrp;
5680 u32 peer_sid;
5681 struct common_audit_data ad;
5682 struct lsm_network_audit net;
5683 int secmark_active, peerlbl_active;
5684
5685 if (!selinux_policycap_netpeer())
5686 return NF_ACCEPT;
5687
5688 secmark_active = selinux_secmark_enabled();
5689 peerlbl_active = selinux_peerlbl_enabled();
5690 if (!secmark_active && !peerlbl_active)
5691 return NF_ACCEPT;
5692
5693 family = state->pf;
5694 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5695 return NF_DROP;
5696
5697 ifindex = state->in->ifindex;
5698 ad_net_init_from_iif(&ad, &net, ifindex, family);
5699 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5700 return NF_DROP;
5701
5702 if (peerlbl_active) {
5703 int err;
5704
5705 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5706 addrp, family, peer_sid, &ad);
5707 if (err) {
5708 selinux_netlbl_err(skb, family, err, 1);
5709 return NF_DROP;
5710 }
5711 }
5712
5713 if (secmark_active)
5714 if (avc_has_perm(peer_sid, skb->secmark,
5715 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5716 return NF_DROP;
5717
5718 if (netlbl_enabled())
5719 /* we do this in the FORWARD path and not the POST_ROUTING
5720 * path because we want to make sure we apply the necessary
5721 * labeling before IPsec is applied so we can leverage AH
5722 * protection */
5723 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5724 return NF_DROP;
5725
5726 return NF_ACCEPT;
5727}
5728
5729static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5730 const struct nf_hook_state *state)
5731{
5732 struct sock *sk;
5733 u32 sid;
5734
5735 if (!netlbl_enabled())
5736 return NF_ACCEPT;
5737
5738 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5739 * because we want to make sure we apply the necessary labeling
5740 * before IPsec is applied so we can leverage AH protection */
5741 sk = sk_to_full_sk(skb->sk);
5742 if (sk) {
5743 struct sk_security_struct *sksec;
5744
5745 if (sk_listener(sk))
5746 /* if the socket is the listening state then this
5747 * packet is a SYN-ACK packet which means it needs to
5748 * be labeled based on the connection/request_sock and
5749 * not the parent socket. unfortunately, we can't
5750 * lookup the request_sock yet as it isn't queued on
5751 * the parent socket until after the SYN-ACK is sent.
5752 * the "solution" is to simply pass the packet as-is
5753 * as any IP option based labeling should be copied
5754 * from the initial connection request (in the IP
5755 * layer). it is far from ideal, but until we get a
5756 * security label in the packet itself this is the
5757 * best we can do. */
5758 return NF_ACCEPT;
5759
5760 /* standard practice, label using the parent socket */
5761 sksec = selinux_sock(sk);
5762 sid = sksec->sid;
5763 } else
5764 sid = SECINITSID_KERNEL;
5765 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5766 return NF_DROP;
5767
5768 return NF_ACCEPT;
5769}
5770
5771
5772static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5773 const struct nf_hook_state *state)
5774{
5775 struct sock *sk;
5776 struct sk_security_struct *sksec;
5777 struct common_audit_data ad;
5778 struct lsm_network_audit net;
5779 u8 proto = 0;
5780
5781 sk = skb_to_full_sk(skb);
5782 if (sk == NULL)
5783 return NF_ACCEPT;
5784 sksec = selinux_sock(sk);
5785
5786 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5787 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5788 return NF_DROP;
5789
5790 if (selinux_secmark_enabled())
5791 if (avc_has_perm(sksec->sid, skb->secmark,
5792 SECCLASS_PACKET, PACKET__SEND, &ad))
5793 return NF_DROP_ERR(-ECONNREFUSED);
5794
5795 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5796 return NF_DROP_ERR(-ECONNREFUSED);
5797
5798 return NF_ACCEPT;
5799}
5800
5801static unsigned int selinux_ip_postroute(void *priv,
5802 struct sk_buff *skb,
5803 const struct nf_hook_state *state)
5804{
5805 u16 family;
5806 u32 secmark_perm;
5807 u32 peer_sid;
5808 int ifindex;
5809 struct sock *sk;
5810 struct common_audit_data ad;
5811 struct lsm_network_audit net;
5812 char *addrp;
5813 int secmark_active, peerlbl_active;
5814
5815 /* If any sort of compatibility mode is enabled then handoff processing
5816 * to the selinux_ip_postroute_compat() function to deal with the
5817 * special handling. We do this in an attempt to keep this function
5818 * as fast and as clean as possible. */
5819 if (!selinux_policycap_netpeer())
5820 return selinux_ip_postroute_compat(skb, state);
5821
5822 secmark_active = selinux_secmark_enabled();
5823 peerlbl_active = selinux_peerlbl_enabled();
5824 if (!secmark_active && !peerlbl_active)
5825 return NF_ACCEPT;
5826
5827 sk = skb_to_full_sk(skb);
5828
5829#ifdef CONFIG_XFRM
5830 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5831 * packet transformation so allow the packet to pass without any checks
5832 * since we'll have another chance to perform access control checks
5833 * when the packet is on it's final way out.
5834 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5835 * is NULL, in this case go ahead and apply access control.
5836 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5837 * TCP listening state we cannot wait until the XFRM processing
5838 * is done as we will miss out on the SA label if we do;
5839 * unfortunately, this means more work, but it is only once per
5840 * connection. */
5841 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5842 !(sk && sk_listener(sk)))
5843 return NF_ACCEPT;
5844#endif
5845
5846 family = state->pf;
5847 if (sk == NULL) {
5848 /* Without an associated socket the packet is either coming
5849 * from the kernel or it is being forwarded; check the packet
5850 * to determine which and if the packet is being forwarded
5851 * query the packet directly to determine the security label. */
5852 if (skb->skb_iif) {
5853 secmark_perm = PACKET__FORWARD_OUT;
5854 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5855 return NF_DROP;
5856 } else {
5857 secmark_perm = PACKET__SEND;
5858 peer_sid = SECINITSID_KERNEL;
5859 }
5860 } else if (sk_listener(sk)) {
5861 /* Locally generated packet but the associated socket is in the
5862 * listening state which means this is a SYN-ACK packet. In
5863 * this particular case the correct security label is assigned
5864 * to the connection/request_sock but unfortunately we can't
5865 * query the request_sock as it isn't queued on the parent
5866 * socket until after the SYN-ACK packet is sent; the only
5867 * viable choice is to regenerate the label like we do in
5868 * selinux_inet_conn_request(). See also selinux_ip_output()
5869 * for similar problems. */
5870 u32 skb_sid;
5871 struct sk_security_struct *sksec;
5872
5873 sksec = selinux_sock(sk);
5874 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5875 return NF_DROP;
5876 /* At this point, if the returned skb peerlbl is SECSID_NULL
5877 * and the packet has been through at least one XFRM
5878 * transformation then we must be dealing with the "final"
5879 * form of labeled IPsec packet; since we've already applied
5880 * all of our access controls on this packet we can safely
5881 * pass the packet. */
5882 if (skb_sid == SECSID_NULL) {
5883 switch (family) {
5884 case PF_INET:
5885 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5886 return NF_ACCEPT;
5887 break;
5888 case PF_INET6:
5889 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5890 return NF_ACCEPT;
5891 break;
5892 default:
5893 return NF_DROP_ERR(-ECONNREFUSED);
5894 }
5895 }
5896 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5897 return NF_DROP;
5898 secmark_perm = PACKET__SEND;
5899 } else {
5900 /* Locally generated packet, fetch the security label from the
5901 * associated socket. */
5902 struct sk_security_struct *sksec = selinux_sock(sk);
5903 peer_sid = sksec->sid;
5904 secmark_perm = PACKET__SEND;
5905 }
5906
5907 ifindex = state->out->ifindex;
5908 ad_net_init_from_iif(&ad, &net, ifindex, family);
5909 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5910 return NF_DROP;
5911
5912 if (secmark_active)
5913 if (avc_has_perm(peer_sid, skb->secmark,
5914 SECCLASS_PACKET, secmark_perm, &ad))
5915 return NF_DROP_ERR(-ECONNREFUSED);
5916
5917 if (peerlbl_active) {
5918 u32 if_sid;
5919 u32 node_sid;
5920
5921 if (sel_netif_sid(state->net, ifindex, &if_sid))
5922 return NF_DROP;
5923 if (avc_has_perm(peer_sid, if_sid,
5924 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5925 return NF_DROP_ERR(-ECONNREFUSED);
5926
5927 if (sel_netnode_sid(addrp, family, &node_sid))
5928 return NF_DROP;
5929 if (avc_has_perm(peer_sid, node_sid,
5930 SECCLASS_NODE, NODE__SENDTO, &ad))
5931 return NF_DROP_ERR(-ECONNREFUSED);
5932 }
5933
5934 return NF_ACCEPT;
5935}
5936#endif /* CONFIG_NETFILTER */
5937
5938static int nlmsg_sock_has_extended_perms(struct sock *sk, u32 perms, u16 nlmsg_type)
5939{
5940 struct sk_security_struct *sksec = sk->sk_security;
5941 struct common_audit_data ad;
5942 struct lsm_network_audit net;
5943 u8 driver;
5944 u8 xperm;
5945
5946 if (sock_skip_has_perm(sksec->sid))
5947 return 0;
5948
5949 ad_net_init_from_sk(&ad, &net, sk);
5950
5951 driver = nlmsg_type >> 8;
5952 xperm = nlmsg_type & 0xff;
5953
5954 return avc_has_extended_perms(current_sid(), sksec->sid, sksec->sclass,
5955 perms, driver, AVC_EXT_NLMSG, xperm, &ad);
5956}
5957
5958static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5959{
5960 int rc = 0;
5961 unsigned int msg_len;
5962 unsigned int data_len = skb->len;
5963 unsigned char *data = skb->data;
5964 struct nlmsghdr *nlh;
5965 struct sk_security_struct *sksec = selinux_sock(sk);
5966 u16 sclass = sksec->sclass;
5967 u32 perm;
5968
5969 while (data_len >= nlmsg_total_size(0)) {
5970 nlh = (struct nlmsghdr *)data;
5971
5972 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5973 * users which means we can't reject skb's with bogus
5974 * length fields; our solution is to follow what
5975 * netlink_rcv_skb() does and simply skip processing at
5976 * messages with length fields that are clearly junk
5977 */
5978 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5979 return 0;
5980
5981 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5982 if (rc == 0) {
5983 if (selinux_policycap_netlink_xperm()) {
5984 rc = nlmsg_sock_has_extended_perms(
5985 sk, perm, nlh->nlmsg_type);
5986 } else {
5987 rc = sock_has_perm(sk, perm);
5988 }
5989 if (rc)
5990 return rc;
5991 } else if (rc == -EINVAL) {
5992 /* -EINVAL is a missing msg/perm mapping */
5993 pr_warn_ratelimited("SELinux: unrecognized netlink"
5994 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5995 " pid=%d comm=%s\n",
5996 sk->sk_protocol, nlh->nlmsg_type,
5997 secclass_map[sclass - 1].name,
5998 task_pid_nr(current), current->comm);
5999 if (enforcing_enabled() &&
6000 !security_get_allow_unknown())
6001 return rc;
6002 rc = 0;
6003 } else if (rc == -ENOENT) {
6004 /* -ENOENT is a missing socket/class mapping, ignore */
6005 rc = 0;
6006 } else {
6007 return rc;
6008 }
6009
6010 /* move to the next message after applying netlink padding */
6011 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6012 if (msg_len >= data_len)
6013 return 0;
6014 data_len -= msg_len;
6015 data += msg_len;
6016 }
6017
6018 return rc;
6019}
6020
6021static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6022{
6023 isec->sclass = sclass;
6024 isec->sid = current_sid();
6025}
6026
6027static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6028 u32 perms)
6029{
6030 struct ipc_security_struct *isec;
6031 struct common_audit_data ad;
6032 u32 sid = current_sid();
6033
6034 isec = selinux_ipc(ipc_perms);
6035
6036 ad.type = LSM_AUDIT_DATA_IPC;
6037 ad.u.ipc_id = ipc_perms->key;
6038
6039 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6040}
6041
6042static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6043{
6044 struct msg_security_struct *msec;
6045
6046 msec = selinux_msg_msg(msg);
6047 msec->sid = SECINITSID_UNLABELED;
6048
6049 return 0;
6050}
6051
6052/* message queue security operations */
6053static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6054{
6055 struct ipc_security_struct *isec;
6056 struct common_audit_data ad;
6057 u32 sid = current_sid();
6058
6059 isec = selinux_ipc(msq);
6060 ipc_init_security(isec, SECCLASS_MSGQ);
6061
6062 ad.type = LSM_AUDIT_DATA_IPC;
6063 ad.u.ipc_id = msq->key;
6064
6065 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6066 MSGQ__CREATE, &ad);
6067}
6068
6069static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6070{
6071 struct ipc_security_struct *isec;
6072 struct common_audit_data ad;
6073 u32 sid = current_sid();
6074
6075 isec = selinux_ipc(msq);
6076
6077 ad.type = LSM_AUDIT_DATA_IPC;
6078 ad.u.ipc_id = msq->key;
6079
6080 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6081 MSGQ__ASSOCIATE, &ad);
6082}
6083
6084static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6085{
6086 u32 perms;
6087
6088 switch (cmd) {
6089 case IPC_INFO:
6090 case MSG_INFO:
6091 /* No specific object, just general system-wide information. */
6092 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6093 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6094 case IPC_STAT:
6095 case MSG_STAT:
6096 case MSG_STAT_ANY:
6097 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6098 break;
6099 case IPC_SET:
6100 perms = MSGQ__SETATTR;
6101 break;
6102 case IPC_RMID:
6103 perms = MSGQ__DESTROY;
6104 break;
6105 default:
6106 return 0;
6107 }
6108
6109 return ipc_has_perm(msq, perms);
6110}
6111
6112static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6113{
6114 struct ipc_security_struct *isec;
6115 struct msg_security_struct *msec;
6116 struct common_audit_data ad;
6117 u32 sid = current_sid();
6118 int rc;
6119
6120 isec = selinux_ipc(msq);
6121 msec = selinux_msg_msg(msg);
6122
6123 /*
6124 * First time through, need to assign label to the message
6125 */
6126 if (msec->sid == SECINITSID_UNLABELED) {
6127 /*
6128 * Compute new sid based on current process and
6129 * message queue this message will be stored in
6130 */
6131 rc = security_transition_sid(sid, isec->sid,
6132 SECCLASS_MSG, NULL, &msec->sid);
6133 if (rc)
6134 return rc;
6135 }
6136
6137 ad.type = LSM_AUDIT_DATA_IPC;
6138 ad.u.ipc_id = msq->key;
6139
6140 /* Can this process write to the queue? */
6141 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6142 MSGQ__WRITE, &ad);
6143 if (!rc)
6144 /* Can this process send the message */
6145 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6146 MSG__SEND, &ad);
6147 if (!rc)
6148 /* Can the message be put in the queue? */
6149 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6150 MSGQ__ENQUEUE, &ad);
6151
6152 return rc;
6153}
6154
6155static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6156 struct task_struct *target,
6157 long type, int mode)
6158{
6159 struct ipc_security_struct *isec;
6160 struct msg_security_struct *msec;
6161 struct common_audit_data ad;
6162 u32 sid = task_sid_obj(target);
6163 int rc;
6164
6165 isec = selinux_ipc(msq);
6166 msec = selinux_msg_msg(msg);
6167
6168 ad.type = LSM_AUDIT_DATA_IPC;
6169 ad.u.ipc_id = msq->key;
6170
6171 rc = avc_has_perm(sid, isec->sid,
6172 SECCLASS_MSGQ, MSGQ__READ, &ad);
6173 if (!rc)
6174 rc = avc_has_perm(sid, msec->sid,
6175 SECCLASS_MSG, MSG__RECEIVE, &ad);
6176 return rc;
6177}
6178
6179/* Shared Memory security operations */
6180static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6181{
6182 struct ipc_security_struct *isec;
6183 struct common_audit_data ad;
6184 u32 sid = current_sid();
6185
6186 isec = selinux_ipc(shp);
6187 ipc_init_security(isec, SECCLASS_SHM);
6188
6189 ad.type = LSM_AUDIT_DATA_IPC;
6190 ad.u.ipc_id = shp->key;
6191
6192 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6193 SHM__CREATE, &ad);
6194}
6195
6196static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6197{
6198 struct ipc_security_struct *isec;
6199 struct common_audit_data ad;
6200 u32 sid = current_sid();
6201
6202 isec = selinux_ipc(shp);
6203
6204 ad.type = LSM_AUDIT_DATA_IPC;
6205 ad.u.ipc_id = shp->key;
6206
6207 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6208 SHM__ASSOCIATE, &ad);
6209}
6210
6211/* Note, at this point, shp is locked down */
6212static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6213{
6214 u32 perms;
6215
6216 switch (cmd) {
6217 case IPC_INFO:
6218 case SHM_INFO:
6219 /* No specific object, just general system-wide information. */
6220 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6221 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6222 case IPC_STAT:
6223 case SHM_STAT:
6224 case SHM_STAT_ANY:
6225 perms = SHM__GETATTR | SHM__ASSOCIATE;
6226 break;
6227 case IPC_SET:
6228 perms = SHM__SETATTR;
6229 break;
6230 case SHM_LOCK:
6231 case SHM_UNLOCK:
6232 perms = SHM__LOCK;
6233 break;
6234 case IPC_RMID:
6235 perms = SHM__DESTROY;
6236 break;
6237 default:
6238 return 0;
6239 }
6240
6241 return ipc_has_perm(shp, perms);
6242}
6243
6244static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6245 char __user *shmaddr, int shmflg)
6246{
6247 u32 perms;
6248
6249 if (shmflg & SHM_RDONLY)
6250 perms = SHM__READ;
6251 else
6252 perms = SHM__READ | SHM__WRITE;
6253
6254 return ipc_has_perm(shp, perms);
6255}
6256
6257/* Semaphore security operations */
6258static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6259{
6260 struct ipc_security_struct *isec;
6261 struct common_audit_data ad;
6262 u32 sid = current_sid();
6263
6264 isec = selinux_ipc(sma);
6265 ipc_init_security(isec, SECCLASS_SEM);
6266
6267 ad.type = LSM_AUDIT_DATA_IPC;
6268 ad.u.ipc_id = sma->key;
6269
6270 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6271 SEM__CREATE, &ad);
6272}
6273
6274static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6275{
6276 struct ipc_security_struct *isec;
6277 struct common_audit_data ad;
6278 u32 sid = current_sid();
6279
6280 isec = selinux_ipc(sma);
6281
6282 ad.type = LSM_AUDIT_DATA_IPC;
6283 ad.u.ipc_id = sma->key;
6284
6285 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6286 SEM__ASSOCIATE, &ad);
6287}
6288
6289/* Note, at this point, sma is locked down */
6290static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6291{
6292 int err;
6293 u32 perms;
6294
6295 switch (cmd) {
6296 case IPC_INFO:
6297 case SEM_INFO:
6298 /* No specific object, just general system-wide information. */
6299 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6300 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6301 case GETPID:
6302 case GETNCNT:
6303 case GETZCNT:
6304 perms = SEM__GETATTR;
6305 break;
6306 case GETVAL:
6307 case GETALL:
6308 perms = SEM__READ;
6309 break;
6310 case SETVAL:
6311 case SETALL:
6312 perms = SEM__WRITE;
6313 break;
6314 case IPC_RMID:
6315 perms = SEM__DESTROY;
6316 break;
6317 case IPC_SET:
6318 perms = SEM__SETATTR;
6319 break;
6320 case IPC_STAT:
6321 case SEM_STAT:
6322 case SEM_STAT_ANY:
6323 perms = SEM__GETATTR | SEM__ASSOCIATE;
6324 break;
6325 default:
6326 return 0;
6327 }
6328
6329 err = ipc_has_perm(sma, perms);
6330 return err;
6331}
6332
6333static int selinux_sem_semop(struct kern_ipc_perm *sma,
6334 struct sembuf *sops, unsigned nsops, int alter)
6335{
6336 u32 perms;
6337
6338 if (alter)
6339 perms = SEM__READ | SEM__WRITE;
6340 else
6341 perms = SEM__READ;
6342
6343 return ipc_has_perm(sma, perms);
6344}
6345
6346static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6347{
6348 u32 av = 0;
6349
6350 av = 0;
6351 if (flag & S_IRUGO)
6352 av |= IPC__UNIX_READ;
6353 if (flag & S_IWUGO)
6354 av |= IPC__UNIX_WRITE;
6355
6356 if (av == 0)
6357 return 0;
6358
6359 return ipc_has_perm(ipcp, av);
6360}
6361
6362static void selinux_ipc_getlsmprop(struct kern_ipc_perm *ipcp,
6363 struct lsm_prop *prop)
6364{
6365 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6366 prop->selinux.secid = isec->sid;
6367}
6368
6369static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6370{
6371 if (inode)
6372 inode_doinit_with_dentry(inode, dentry);
6373}
6374
6375static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6376 char **value)
6377{
6378 const struct task_security_struct *tsec;
6379 int error;
6380 u32 sid;
6381 u32 len;
6382
6383 rcu_read_lock();
6384 tsec = selinux_cred(__task_cred(p));
6385 if (p != current) {
6386 error = avc_has_perm(current_sid(), tsec->sid,
6387 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6388 if (error)
6389 goto err_unlock;
6390 }
6391 switch (attr) {
6392 case LSM_ATTR_CURRENT:
6393 sid = tsec->sid;
6394 break;
6395 case LSM_ATTR_PREV:
6396 sid = tsec->osid;
6397 break;
6398 case LSM_ATTR_EXEC:
6399 sid = tsec->exec_sid;
6400 break;
6401 case LSM_ATTR_FSCREATE:
6402 sid = tsec->create_sid;
6403 break;
6404 case LSM_ATTR_KEYCREATE:
6405 sid = tsec->keycreate_sid;
6406 break;
6407 case LSM_ATTR_SOCKCREATE:
6408 sid = tsec->sockcreate_sid;
6409 break;
6410 default:
6411 error = -EOPNOTSUPP;
6412 goto err_unlock;
6413 }
6414 rcu_read_unlock();
6415
6416 if (sid == SECSID_NULL) {
6417 *value = NULL;
6418 return 0;
6419 }
6420
6421 error = security_sid_to_context(sid, value, &len);
6422 if (error)
6423 return error;
6424 return len;
6425
6426err_unlock:
6427 rcu_read_unlock();
6428 return error;
6429}
6430
6431static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6432{
6433 struct task_security_struct *tsec;
6434 struct cred *new;
6435 u32 mysid = current_sid(), sid = 0, ptsid;
6436 int error;
6437 char *str = value;
6438
6439 /*
6440 * Basic control over ability to set these attributes at all.
6441 */
6442 switch (attr) {
6443 case LSM_ATTR_EXEC:
6444 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6445 PROCESS__SETEXEC, NULL);
6446 break;
6447 case LSM_ATTR_FSCREATE:
6448 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6449 PROCESS__SETFSCREATE, NULL);
6450 break;
6451 case LSM_ATTR_KEYCREATE:
6452 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6453 PROCESS__SETKEYCREATE, NULL);
6454 break;
6455 case LSM_ATTR_SOCKCREATE:
6456 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6457 PROCESS__SETSOCKCREATE, NULL);
6458 break;
6459 case LSM_ATTR_CURRENT:
6460 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6461 PROCESS__SETCURRENT, NULL);
6462 break;
6463 default:
6464 error = -EOPNOTSUPP;
6465 break;
6466 }
6467 if (error)
6468 return error;
6469
6470 /* Obtain a SID for the context, if one was specified. */
6471 if (size && str[0] && str[0] != '\n') {
6472 if (str[size-1] == '\n') {
6473 str[size-1] = 0;
6474 size--;
6475 }
6476 error = security_context_to_sid(value, size,
6477 &sid, GFP_KERNEL);
6478 if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6479 if (!has_cap_mac_admin(true)) {
6480 struct audit_buffer *ab;
6481 size_t audit_size;
6482
6483 /* We strip a nul only if it is at the end,
6484 * otherwise the context contains a nul and
6485 * we should audit that */
6486 if (str[size - 1] == '\0')
6487 audit_size = size - 1;
6488 else
6489 audit_size = size;
6490 ab = audit_log_start(audit_context(),
6491 GFP_ATOMIC,
6492 AUDIT_SELINUX_ERR);
6493 if (!ab)
6494 return error;
6495 audit_log_format(ab, "op=fscreate invalid_context=");
6496 audit_log_n_untrustedstring(ab, value,
6497 audit_size);
6498 audit_log_end(ab);
6499
6500 return error;
6501 }
6502 error = security_context_to_sid_force(value, size,
6503 &sid);
6504 }
6505 if (error)
6506 return error;
6507 }
6508
6509 new = prepare_creds();
6510 if (!new)
6511 return -ENOMEM;
6512
6513 /* Permission checking based on the specified context is
6514 performed during the actual operation (execve,
6515 open/mkdir/...), when we know the full context of the
6516 operation. See selinux_bprm_creds_for_exec for the execve
6517 checks and may_create for the file creation checks. The
6518 operation will then fail if the context is not permitted. */
6519 tsec = selinux_cred(new);
6520 if (attr == LSM_ATTR_EXEC) {
6521 tsec->exec_sid = sid;
6522 } else if (attr == LSM_ATTR_FSCREATE) {
6523 tsec->create_sid = sid;
6524 } else if (attr == LSM_ATTR_KEYCREATE) {
6525 if (sid) {
6526 error = avc_has_perm(mysid, sid,
6527 SECCLASS_KEY, KEY__CREATE, NULL);
6528 if (error)
6529 goto abort_change;
6530 }
6531 tsec->keycreate_sid = sid;
6532 } else if (attr == LSM_ATTR_SOCKCREATE) {
6533 tsec->sockcreate_sid = sid;
6534 } else if (attr == LSM_ATTR_CURRENT) {
6535 error = -EINVAL;
6536 if (sid == 0)
6537 goto abort_change;
6538
6539 if (!current_is_single_threaded()) {
6540 error = security_bounded_transition(tsec->sid, sid);
6541 if (error)
6542 goto abort_change;
6543 }
6544
6545 /* Check permissions for the transition. */
6546 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6547 PROCESS__DYNTRANSITION, NULL);
6548 if (error)
6549 goto abort_change;
6550
6551 /* Check for ptracing, and update the task SID if ok.
6552 Otherwise, leave SID unchanged and fail. */
6553 ptsid = ptrace_parent_sid();
6554 if (ptsid != 0) {
6555 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6556 PROCESS__PTRACE, NULL);
6557 if (error)
6558 goto abort_change;
6559 }
6560
6561 tsec->sid = sid;
6562 } else {
6563 error = -EINVAL;
6564 goto abort_change;
6565 }
6566
6567 commit_creds(new);
6568 return size;
6569
6570abort_change:
6571 abort_creds(new);
6572 return error;
6573}
6574
6575/**
6576 * selinux_getselfattr - Get SELinux current task attributes
6577 * @attr: the requested attribute
6578 * @ctx: buffer to receive the result
6579 * @size: buffer size (input), buffer size used (output)
6580 * @flags: unused
6581 *
6582 * Fill the passed user space @ctx with the details of the requested
6583 * attribute.
6584 *
6585 * Returns the number of attributes on success, an error code otherwise.
6586 * There will only ever be one attribute.
6587 */
6588static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6589 u32 *size, u32 flags)
6590{
6591 int rc;
6592 char *val = NULL;
6593 int val_len;
6594
6595 val_len = selinux_lsm_getattr(attr, current, &val);
6596 if (val_len < 0)
6597 return val_len;
6598 rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6599 kfree(val);
6600 return (!rc ? 1 : rc);
6601}
6602
6603static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6604 u32 size, u32 flags)
6605{
6606 int rc;
6607
6608 rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6609 if (rc > 0)
6610 return 0;
6611 return rc;
6612}
6613
6614static int selinux_getprocattr(struct task_struct *p,
6615 const char *name, char **value)
6616{
6617 unsigned int attr = lsm_name_to_attr(name);
6618 int rc;
6619
6620 if (attr) {
6621 rc = selinux_lsm_getattr(attr, p, value);
6622 if (rc != -EOPNOTSUPP)
6623 return rc;
6624 }
6625
6626 return -EINVAL;
6627}
6628
6629static int selinux_setprocattr(const char *name, void *value, size_t size)
6630{
6631 int attr = lsm_name_to_attr(name);
6632
6633 if (attr)
6634 return selinux_lsm_setattr(attr, value, size);
6635 return -EINVAL;
6636}
6637
6638static int selinux_ismaclabel(const char *name)
6639{
6640 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6641}
6642
6643static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6644{
6645 return security_sid_to_context(secid, secdata, seclen);
6646}
6647
6648static int selinux_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
6649 u32 *seclen)
6650{
6651 return selinux_secid_to_secctx(prop->selinux.secid, secdata, seclen);
6652}
6653
6654static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6655{
6656 return security_context_to_sid(secdata, seclen,
6657 secid, GFP_KERNEL);
6658}
6659
6660static void selinux_release_secctx(char *secdata, u32 seclen)
6661{
6662 kfree(secdata);
6663}
6664
6665static void selinux_inode_invalidate_secctx(struct inode *inode)
6666{
6667 struct inode_security_struct *isec = selinux_inode(inode);
6668
6669 spin_lock(&isec->lock);
6670 isec->initialized = LABEL_INVALID;
6671 spin_unlock(&isec->lock);
6672}
6673
6674/*
6675 * called with inode->i_mutex locked
6676 */
6677static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6678{
6679 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6680 ctx, ctxlen, 0);
6681 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6682 return rc == -EOPNOTSUPP ? 0 : rc;
6683}
6684
6685/*
6686 * called with inode->i_mutex locked
6687 */
6688static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6689{
6690 return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6691 ctx, ctxlen, 0, NULL);
6692}
6693
6694static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6695{
6696 int len = 0;
6697 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6698 XATTR_SELINUX_SUFFIX, ctx, true);
6699 if (len < 0)
6700 return len;
6701 *ctxlen = len;
6702 return 0;
6703}
6704#ifdef CONFIG_KEYS
6705
6706static int selinux_key_alloc(struct key *k, const struct cred *cred,
6707 unsigned long flags)
6708{
6709 const struct task_security_struct *tsec;
6710 struct key_security_struct *ksec = selinux_key(k);
6711
6712 tsec = selinux_cred(cred);
6713 if (tsec->keycreate_sid)
6714 ksec->sid = tsec->keycreate_sid;
6715 else
6716 ksec->sid = tsec->sid;
6717
6718 return 0;
6719}
6720
6721static int selinux_key_permission(key_ref_t key_ref,
6722 const struct cred *cred,
6723 enum key_need_perm need_perm)
6724{
6725 struct key *key;
6726 struct key_security_struct *ksec;
6727 u32 perm, sid;
6728
6729 switch (need_perm) {
6730 case KEY_NEED_VIEW:
6731 perm = KEY__VIEW;
6732 break;
6733 case KEY_NEED_READ:
6734 perm = KEY__READ;
6735 break;
6736 case KEY_NEED_WRITE:
6737 perm = KEY__WRITE;
6738 break;
6739 case KEY_NEED_SEARCH:
6740 perm = KEY__SEARCH;
6741 break;
6742 case KEY_NEED_LINK:
6743 perm = KEY__LINK;
6744 break;
6745 case KEY_NEED_SETATTR:
6746 perm = KEY__SETATTR;
6747 break;
6748 case KEY_NEED_UNLINK:
6749 case KEY_SYSADMIN_OVERRIDE:
6750 case KEY_AUTHTOKEN_OVERRIDE:
6751 case KEY_DEFER_PERM_CHECK:
6752 return 0;
6753 default:
6754 WARN_ON(1);
6755 return -EPERM;
6756
6757 }
6758
6759 sid = cred_sid(cred);
6760 key = key_ref_to_ptr(key_ref);
6761 ksec = selinux_key(key);
6762
6763 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6764}
6765
6766static int selinux_key_getsecurity(struct key *key, char **_buffer)
6767{
6768 struct key_security_struct *ksec = selinux_key(key);
6769 char *context = NULL;
6770 unsigned len;
6771 int rc;
6772
6773 rc = security_sid_to_context(ksec->sid,
6774 &context, &len);
6775 if (!rc)
6776 rc = len;
6777 *_buffer = context;
6778 return rc;
6779}
6780
6781#ifdef CONFIG_KEY_NOTIFICATIONS
6782static int selinux_watch_key(struct key *key)
6783{
6784 struct key_security_struct *ksec = selinux_key(key);
6785 u32 sid = current_sid();
6786
6787 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6788}
6789#endif
6790#endif
6791
6792#ifdef CONFIG_SECURITY_INFINIBAND
6793static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6794{
6795 struct common_audit_data ad;
6796 int err;
6797 u32 sid = 0;
6798 struct ib_security_struct *sec = ib_sec;
6799 struct lsm_ibpkey_audit ibpkey;
6800
6801 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6802 if (err)
6803 return err;
6804
6805 ad.type = LSM_AUDIT_DATA_IBPKEY;
6806 ibpkey.subnet_prefix = subnet_prefix;
6807 ibpkey.pkey = pkey_val;
6808 ad.u.ibpkey = &ibpkey;
6809 return avc_has_perm(sec->sid, sid,
6810 SECCLASS_INFINIBAND_PKEY,
6811 INFINIBAND_PKEY__ACCESS, &ad);
6812}
6813
6814static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6815 u8 port_num)
6816{
6817 struct common_audit_data ad;
6818 int err;
6819 u32 sid = 0;
6820 struct ib_security_struct *sec = ib_sec;
6821 struct lsm_ibendport_audit ibendport;
6822
6823 err = security_ib_endport_sid(dev_name, port_num,
6824 &sid);
6825
6826 if (err)
6827 return err;
6828
6829 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6830 ibendport.dev_name = dev_name;
6831 ibendport.port = port_num;
6832 ad.u.ibendport = &ibendport;
6833 return avc_has_perm(sec->sid, sid,
6834 SECCLASS_INFINIBAND_ENDPORT,
6835 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6836}
6837
6838static int selinux_ib_alloc_security(void *ib_sec)
6839{
6840 struct ib_security_struct *sec = selinux_ib(ib_sec);
6841
6842 sec->sid = current_sid();
6843 return 0;
6844}
6845#endif
6846
6847#ifdef CONFIG_BPF_SYSCALL
6848static int selinux_bpf(int cmd, union bpf_attr *attr,
6849 unsigned int size)
6850{
6851 u32 sid = current_sid();
6852 int ret;
6853
6854 switch (cmd) {
6855 case BPF_MAP_CREATE:
6856 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6857 NULL);
6858 break;
6859 case BPF_PROG_LOAD:
6860 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6861 NULL);
6862 break;
6863 default:
6864 ret = 0;
6865 break;
6866 }
6867
6868 return ret;
6869}
6870
6871static u32 bpf_map_fmode_to_av(fmode_t fmode)
6872{
6873 u32 av = 0;
6874
6875 if (fmode & FMODE_READ)
6876 av |= BPF__MAP_READ;
6877 if (fmode & FMODE_WRITE)
6878 av |= BPF__MAP_WRITE;
6879 return av;
6880}
6881
6882/* This function will check the file pass through unix socket or binder to see
6883 * if it is a bpf related object. And apply corresponding checks on the bpf
6884 * object based on the type. The bpf maps and programs, not like other files and
6885 * socket, are using a shared anonymous inode inside the kernel as their inode.
6886 * So checking that inode cannot identify if the process have privilege to
6887 * access the bpf object and that's why we have to add this additional check in
6888 * selinux_file_receive and selinux_binder_transfer_files.
6889 */
6890static int bpf_fd_pass(const struct file *file, u32 sid)
6891{
6892 struct bpf_security_struct *bpfsec;
6893 struct bpf_prog *prog;
6894 struct bpf_map *map;
6895 int ret;
6896
6897 if (file->f_op == &bpf_map_fops) {
6898 map = file->private_data;
6899 bpfsec = map->security;
6900 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6901 bpf_map_fmode_to_av(file->f_mode), NULL);
6902 if (ret)
6903 return ret;
6904 } else if (file->f_op == &bpf_prog_fops) {
6905 prog = file->private_data;
6906 bpfsec = prog->aux->security;
6907 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6908 BPF__PROG_RUN, NULL);
6909 if (ret)
6910 return ret;
6911 }
6912 return 0;
6913}
6914
6915static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6916{
6917 u32 sid = current_sid();
6918 struct bpf_security_struct *bpfsec;
6919
6920 bpfsec = map->security;
6921 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6922 bpf_map_fmode_to_av(fmode), NULL);
6923}
6924
6925static int selinux_bpf_prog(struct bpf_prog *prog)
6926{
6927 u32 sid = current_sid();
6928 struct bpf_security_struct *bpfsec;
6929
6930 bpfsec = prog->aux->security;
6931 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6932 BPF__PROG_RUN, NULL);
6933}
6934
6935static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6936 struct bpf_token *token)
6937{
6938 struct bpf_security_struct *bpfsec;
6939
6940 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6941 if (!bpfsec)
6942 return -ENOMEM;
6943
6944 bpfsec->sid = current_sid();
6945 map->security = bpfsec;
6946
6947 return 0;
6948}
6949
6950static void selinux_bpf_map_free(struct bpf_map *map)
6951{
6952 struct bpf_security_struct *bpfsec = map->security;
6953
6954 map->security = NULL;
6955 kfree(bpfsec);
6956}
6957
6958static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6959 struct bpf_token *token)
6960{
6961 struct bpf_security_struct *bpfsec;
6962
6963 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6964 if (!bpfsec)
6965 return -ENOMEM;
6966
6967 bpfsec->sid = current_sid();
6968 prog->aux->security = bpfsec;
6969
6970 return 0;
6971}
6972
6973static void selinux_bpf_prog_free(struct bpf_prog *prog)
6974{
6975 struct bpf_security_struct *bpfsec = prog->aux->security;
6976
6977 prog->aux->security = NULL;
6978 kfree(bpfsec);
6979}
6980
6981static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6982 const struct path *path)
6983{
6984 struct bpf_security_struct *bpfsec;
6985
6986 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6987 if (!bpfsec)
6988 return -ENOMEM;
6989
6990 bpfsec->sid = current_sid();
6991 token->security = bpfsec;
6992
6993 return 0;
6994}
6995
6996static void selinux_bpf_token_free(struct bpf_token *token)
6997{
6998 struct bpf_security_struct *bpfsec = token->security;
6999
7000 token->security = NULL;
7001 kfree(bpfsec);
7002}
7003#endif
7004
7005struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
7006 .lbs_cred = sizeof(struct task_security_struct),
7007 .lbs_file = sizeof(struct file_security_struct),
7008 .lbs_inode = sizeof(struct inode_security_struct),
7009 .lbs_ipc = sizeof(struct ipc_security_struct),
7010 .lbs_key = sizeof(struct key_security_struct),
7011 .lbs_msg_msg = sizeof(struct msg_security_struct),
7012#ifdef CONFIG_PERF_EVENTS
7013 .lbs_perf_event = sizeof(struct perf_event_security_struct),
7014#endif
7015 .lbs_sock = sizeof(struct sk_security_struct),
7016 .lbs_superblock = sizeof(struct superblock_security_struct),
7017 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7018 .lbs_tun_dev = sizeof(struct tun_security_struct),
7019 .lbs_ib = sizeof(struct ib_security_struct),
7020};
7021
7022#ifdef CONFIG_PERF_EVENTS
7023static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7024{
7025 u32 requested, sid = current_sid();
7026
7027 if (type == PERF_SECURITY_OPEN)
7028 requested = PERF_EVENT__OPEN;
7029 else if (type == PERF_SECURITY_CPU)
7030 requested = PERF_EVENT__CPU;
7031 else if (type == PERF_SECURITY_KERNEL)
7032 requested = PERF_EVENT__KERNEL;
7033 else if (type == PERF_SECURITY_TRACEPOINT)
7034 requested = PERF_EVENT__TRACEPOINT;
7035 else
7036 return -EINVAL;
7037
7038 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7039 requested, NULL);
7040}
7041
7042static int selinux_perf_event_alloc(struct perf_event *event)
7043{
7044 struct perf_event_security_struct *perfsec;
7045
7046 perfsec = selinux_perf_event(event->security);
7047 perfsec->sid = current_sid();
7048
7049 return 0;
7050}
7051
7052static int selinux_perf_event_read(struct perf_event *event)
7053{
7054 struct perf_event_security_struct *perfsec = event->security;
7055 u32 sid = current_sid();
7056
7057 return avc_has_perm(sid, perfsec->sid,
7058 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7059}
7060
7061static int selinux_perf_event_write(struct perf_event *event)
7062{
7063 struct perf_event_security_struct *perfsec = event->security;
7064 u32 sid = current_sid();
7065
7066 return avc_has_perm(sid, perfsec->sid,
7067 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7068}
7069#endif
7070
7071#ifdef CONFIG_IO_URING
7072/**
7073 * selinux_uring_override_creds - check the requested cred override
7074 * @new: the target creds
7075 *
7076 * Check to see if the current task is allowed to override it's credentials
7077 * to service an io_uring operation.
7078 */
7079static int selinux_uring_override_creds(const struct cred *new)
7080{
7081 return avc_has_perm(current_sid(), cred_sid(new),
7082 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7083}
7084
7085/**
7086 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7087 *
7088 * Check to see if the current task is allowed to create a new io_uring
7089 * kernel polling thread.
7090 */
7091static int selinux_uring_sqpoll(void)
7092{
7093 u32 sid = current_sid();
7094
7095 return avc_has_perm(sid, sid,
7096 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7097}
7098
7099/**
7100 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7101 * @ioucmd: the io_uring command structure
7102 *
7103 * Check to see if the current domain is allowed to execute an
7104 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7105 *
7106 */
7107static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7108{
7109 struct file *file = ioucmd->file;
7110 struct inode *inode = file_inode(file);
7111 struct inode_security_struct *isec = selinux_inode(inode);
7112 struct common_audit_data ad;
7113
7114 ad.type = LSM_AUDIT_DATA_FILE;
7115 ad.u.file = file;
7116
7117 return avc_has_perm(current_sid(), isec->sid,
7118 SECCLASS_IO_URING, IO_URING__CMD, &ad);
7119}
7120#endif /* CONFIG_IO_URING */
7121
7122static const struct lsm_id selinux_lsmid = {
7123 .name = "selinux",
7124 .id = LSM_ID_SELINUX,
7125};
7126
7127/*
7128 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7129 * 1. any hooks that don't belong to (2.) or (3.) below,
7130 * 2. hooks that both access structures allocated by other hooks, and allocate
7131 * structures that can be later accessed by other hooks (mostly "cloning"
7132 * hooks),
7133 * 3. hooks that only allocate structures that can be later accessed by other
7134 * hooks ("allocating" hooks).
7135 *
7136 * Please follow block comment delimiters in the list to keep this order.
7137 */
7138static struct security_hook_list selinux_hooks[] __ro_after_init = {
7139 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7140 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7141 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7142 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7143
7144 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7145 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7146 LSM_HOOK_INIT(capget, selinux_capget),
7147 LSM_HOOK_INIT(capset, selinux_capset),
7148 LSM_HOOK_INIT(capable, selinux_capable),
7149 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7150 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7151 LSM_HOOK_INIT(syslog, selinux_syslog),
7152 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7153
7154 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7155
7156 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7157 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7158 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7159
7160 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7161 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7162 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7163 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7164 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7165 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7166 LSM_HOOK_INIT(sb_mount, selinux_mount),
7167 LSM_HOOK_INIT(sb_umount, selinux_umount),
7168 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7169 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7170
7171 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7172
7173 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7174 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7175
7176 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7177 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7178 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7179 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7180 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7181 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7182 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7183 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7184 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7185 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7186 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7187 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7188 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7189 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7190 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7191 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7192 LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7193 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7194 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7195 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7196 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7197 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7198 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7199 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7200 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7201 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7202 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7203 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7204 LSM_HOOK_INIT(inode_getlsmprop, selinux_inode_getlsmprop),
7205 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7206 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7207 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7208
7209 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7210
7211 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7212 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7213 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7214 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7215 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7216 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7217 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7218 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7219 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7220 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7221 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7222 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7223
7224 LSM_HOOK_INIT(file_open, selinux_file_open),
7225
7226 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7227 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7228 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7229 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7230 LSM_HOOK_INIT(cred_getlsmprop, selinux_cred_getlsmprop),
7231 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7232 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7233 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7234 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7235 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7236 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7237 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7238 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7239 LSM_HOOK_INIT(current_getlsmprop_subj, selinux_current_getlsmprop_subj),
7240 LSM_HOOK_INIT(task_getlsmprop_obj, selinux_task_getlsmprop_obj),
7241 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7242 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7243 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7244 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7245 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7246 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7247 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7248 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7249 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7250 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7251 LSM_HOOK_INIT(userns_create, selinux_userns_create),
7252
7253 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7254 LSM_HOOK_INIT(ipc_getlsmprop, selinux_ipc_getlsmprop),
7255
7256 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7257 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7258 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7259 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7260
7261 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7262 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7263 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7264
7265 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7266 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7267 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7268
7269 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7270
7271 LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7272 LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7273 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7274 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7275
7276 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7277 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7278 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7279 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7280 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7281 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7282
7283 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7284 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7285
7286 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7287 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7288 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7289 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7290 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7291 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7292 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7293 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7294 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7295 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7296 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7297 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7298 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7299 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7300 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7301 LSM_HOOK_INIT(socket_getpeersec_stream,
7302 selinux_socket_getpeersec_stream),
7303 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7304 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7305 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7306 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7307 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7308 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7309 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7310 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7311 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7312 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7313 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7314 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7315 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7316 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7317 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7318 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7319 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7320 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7321 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7322 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7323 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7324#ifdef CONFIG_SECURITY_INFINIBAND
7325 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7326 LSM_HOOK_INIT(ib_endport_manage_subnet,
7327 selinux_ib_endport_manage_subnet),
7328#endif
7329#ifdef CONFIG_SECURITY_NETWORK_XFRM
7330 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7331 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7332 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7333 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7334 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7335 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7336 selinux_xfrm_state_pol_flow_match),
7337 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7338#endif
7339
7340#ifdef CONFIG_KEYS
7341 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7342 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7343#ifdef CONFIG_KEY_NOTIFICATIONS
7344 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7345#endif
7346#endif
7347
7348#ifdef CONFIG_AUDIT
7349 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7350 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7351 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7352#endif
7353
7354#ifdef CONFIG_BPF_SYSCALL
7355 LSM_HOOK_INIT(bpf, selinux_bpf),
7356 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7357 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7358 LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7359 LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7360 LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7361#endif
7362
7363#ifdef CONFIG_PERF_EVENTS
7364 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7365 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7366 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7367#endif
7368
7369#ifdef CONFIG_IO_URING
7370 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7371 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7372 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7373#endif
7374
7375 /*
7376 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7377 */
7378 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7379 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7380 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7381 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7382#ifdef CONFIG_SECURITY_NETWORK_XFRM
7383 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7384#endif
7385
7386 /*
7387 * PUT "ALLOCATING" HOOKS HERE
7388 */
7389 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7390 LSM_HOOK_INIT(msg_queue_alloc_security,
7391 selinux_msg_queue_alloc_security),
7392 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7393 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7394 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7395 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7396 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7397 LSM_HOOK_INIT(lsmprop_to_secctx, selinux_lsmprop_to_secctx),
7398 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7399 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7400 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7401#ifdef CONFIG_SECURITY_INFINIBAND
7402 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7403#endif
7404#ifdef CONFIG_SECURITY_NETWORK_XFRM
7405 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7406 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7407 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7408 selinux_xfrm_state_alloc_acquire),
7409#endif
7410#ifdef CONFIG_KEYS
7411 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7412#endif
7413#ifdef CONFIG_AUDIT
7414 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7415#endif
7416#ifdef CONFIG_BPF_SYSCALL
7417 LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7418 LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7419 LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7420#endif
7421#ifdef CONFIG_PERF_EVENTS
7422 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7423#endif
7424};
7425
7426static __init int selinux_init(void)
7427{
7428 pr_info("SELinux: Initializing.\n");
7429
7430 memset(&selinux_state, 0, sizeof(selinux_state));
7431 enforcing_set(selinux_enforcing_boot);
7432 selinux_avc_init();
7433 mutex_init(&selinux_state.status_lock);
7434 mutex_init(&selinux_state.policy_mutex);
7435
7436 /* Set the security state for the initial task. */
7437 cred_init_security();
7438
7439 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7440 if (!default_noexec)
7441 pr_notice("SELinux: virtual memory is executable by default\n");
7442
7443 avc_init();
7444
7445 avtab_cache_init();
7446
7447 ebitmap_cache_init();
7448
7449 hashtab_cache_init();
7450
7451 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7452 &selinux_lsmid);
7453
7454 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7455 panic("SELinux: Unable to register AVC netcache callback\n");
7456
7457 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7458 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7459
7460 if (selinux_enforcing_boot)
7461 pr_debug("SELinux: Starting in enforcing mode\n");
7462 else
7463 pr_debug("SELinux: Starting in permissive mode\n");
7464
7465 fs_validate_description("selinux", selinux_fs_parameters);
7466
7467 return 0;
7468}
7469
7470static void delayed_superblock_init(struct super_block *sb, void *unused)
7471{
7472 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7473}
7474
7475void selinux_complete_init(void)
7476{
7477 pr_debug("SELinux: Completing initialization.\n");
7478
7479 /* Set up any superblocks initialized prior to the policy load. */
7480 pr_debug("SELinux: Setting up existing superblocks.\n");
7481 iterate_supers(delayed_superblock_init, NULL);
7482}
7483
7484/* SELinux requires early initialization in order to label
7485 all processes and objects when they are created. */
7486DEFINE_LSM(selinux) = {
7487 .name = "selinux",
7488 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7489 .enabled = &selinux_enabled_boot,
7490 .blobs = &selinux_blob_sizes,
7491 .init = selinux_init,
7492};
7493
7494#if defined(CONFIG_NETFILTER)
7495static const struct nf_hook_ops selinux_nf_ops[] = {
7496 {
7497 .hook = selinux_ip_postroute,
7498 .pf = NFPROTO_IPV4,
7499 .hooknum = NF_INET_POST_ROUTING,
7500 .priority = NF_IP_PRI_SELINUX_LAST,
7501 },
7502 {
7503 .hook = selinux_ip_forward,
7504 .pf = NFPROTO_IPV4,
7505 .hooknum = NF_INET_FORWARD,
7506 .priority = NF_IP_PRI_SELINUX_FIRST,
7507 },
7508 {
7509 .hook = selinux_ip_output,
7510 .pf = NFPROTO_IPV4,
7511 .hooknum = NF_INET_LOCAL_OUT,
7512 .priority = NF_IP_PRI_SELINUX_FIRST,
7513 },
7514#if IS_ENABLED(CONFIG_IPV6)
7515 {
7516 .hook = selinux_ip_postroute,
7517 .pf = NFPROTO_IPV6,
7518 .hooknum = NF_INET_POST_ROUTING,
7519 .priority = NF_IP6_PRI_SELINUX_LAST,
7520 },
7521 {
7522 .hook = selinux_ip_forward,
7523 .pf = NFPROTO_IPV6,
7524 .hooknum = NF_INET_FORWARD,
7525 .priority = NF_IP6_PRI_SELINUX_FIRST,
7526 },
7527 {
7528 .hook = selinux_ip_output,
7529 .pf = NFPROTO_IPV6,
7530 .hooknum = NF_INET_LOCAL_OUT,
7531 .priority = NF_IP6_PRI_SELINUX_FIRST,
7532 },
7533#endif /* IPV6 */
7534};
7535
7536static int __net_init selinux_nf_register(struct net *net)
7537{
7538 return nf_register_net_hooks(net, selinux_nf_ops,
7539 ARRAY_SIZE(selinux_nf_ops));
7540}
7541
7542static void __net_exit selinux_nf_unregister(struct net *net)
7543{
7544 nf_unregister_net_hooks(net, selinux_nf_ops,
7545 ARRAY_SIZE(selinux_nf_ops));
7546}
7547
7548static struct pernet_operations selinux_net_ops = {
7549 .init = selinux_nf_register,
7550 .exit = selinux_nf_unregister,
7551};
7552
7553static int __init selinux_nf_ip_init(void)
7554{
7555 int err;
7556
7557 if (!selinux_enabled_boot)
7558 return 0;
7559
7560 pr_debug("SELinux: Registering netfilter hooks\n");
7561
7562 err = register_pernet_subsys(&selinux_net_ops);
7563 if (err)
7564 panic("SELinux: register_pernet_subsys: error %d\n", err);
7565
7566 return 0;
7567}
7568__initcall(selinux_nf_ip_init);
7569#endif /* CONFIG_NETFILTER */
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * NSA Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/tracehook.h>
29#include <linux/errno.h>
30#include <linux/sched/signal.h>
31#include <linux/sched/task.h>
32#include <linux/lsm_hooks.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/fs_context.h>
50#include <linux/fs_parser.h>
51#include <linux/netfilter_ipv4.h>
52#include <linux/netfilter_ipv6.h>
53#include <linux/tty.h>
54#include <net/icmp.h>
55#include <net/ip.h> /* for local_port_range[] */
56#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
57#include <net/inet_connection_sock.h>
58#include <net/net_namespace.h>
59#include <net/netlabel.h>
60#include <linux/uaccess.h>
61#include <asm/ioctls.h>
62#include <linux/atomic.h>
63#include <linux/bitops.h>
64#include <linux/interrupt.h>
65#include <linux/netdevice.h> /* for network interface checks */
66#include <net/netlink.h>
67#include <linux/tcp.h>
68#include <linux/udp.h>
69#include <linux/dccp.h>
70#include <linux/sctp.h>
71#include <net/sctp/structs.h>
72#include <linux/quota.h>
73#include <linux/un.h> /* for Unix socket types */
74#include <net/af_unix.h> /* for Unix socket types */
75#include <linux/parser.h>
76#include <linux/nfs_mount.h>
77#include <net/ipv6.h>
78#include <linux/hugetlb.h>
79#include <linux/personality.h>
80#include <linux/audit.h>
81#include <linux/string.h>
82#include <linux/mutex.h>
83#include <linux/posix-timers.h>
84#include <linux/syslog.h>
85#include <linux/user_namespace.h>
86#include <linux/export.h>
87#include <linux/msg.h>
88#include <linux/shm.h>
89#include <linux/bpf.h>
90#include <linux/kernfs.h>
91#include <linux/stringhash.h> /* for hashlen_string() */
92#include <uapi/linux/mount.h>
93#include <linux/fsnotify.h>
94#include <linux/fanotify.h>
95
96#include "avc.h"
97#include "objsec.h"
98#include "netif.h"
99#include "netnode.h"
100#include "netport.h"
101#include "ibpkey.h"
102#include "xfrm.h"
103#include "netlabel.h"
104#include "audit.h"
105#include "avc_ss.h"
106
107struct selinux_state selinux_state;
108
109/* SECMARK reference count */
110static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
111
112#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
113static int selinux_enforcing_boot __initdata;
114
115static int __init enforcing_setup(char *str)
116{
117 unsigned long enforcing;
118 if (!kstrtoul(str, 0, &enforcing))
119 selinux_enforcing_boot = enforcing ? 1 : 0;
120 return 1;
121}
122__setup("enforcing=", enforcing_setup);
123#else
124#define selinux_enforcing_boot 1
125#endif
126
127int selinux_enabled_boot __initdata = 1;
128#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
129static int __init selinux_enabled_setup(char *str)
130{
131 unsigned long enabled;
132 if (!kstrtoul(str, 0, &enabled))
133 selinux_enabled_boot = enabled ? 1 : 0;
134 return 1;
135}
136__setup("selinux=", selinux_enabled_setup);
137#endif
138
139static unsigned int selinux_checkreqprot_boot =
140 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE;
141
142static int __init checkreqprot_setup(char *str)
143{
144 unsigned long checkreqprot;
145
146 if (!kstrtoul(str, 0, &checkreqprot)) {
147 selinux_checkreqprot_boot = checkreqprot ? 1 : 0;
148 if (checkreqprot)
149 pr_warn("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct cred *cred = (struct cred *) current->real_cred;
215 struct task_security_struct *tsec;
216
217 tsec = selinux_cred(cred);
218 tsec->osid = tsec->sid = SECINITSID_KERNEL;
219}
220
221/*
222 * get the security ID of a set of credentials
223 */
224static inline u32 cred_sid(const struct cred *cred)
225{
226 const struct task_security_struct *tsec;
227
228 tsec = selinux_cred(cred);
229 return tsec->sid;
230}
231
232/*
233 * get the subjective security ID of a task
234 */
235static inline u32 task_sid_subj(const struct task_struct *task)
236{
237 u32 sid;
238
239 rcu_read_lock();
240 sid = cred_sid(rcu_dereference(task->cred));
241 rcu_read_unlock();
242 return sid;
243}
244
245/*
246 * get the objective security ID of a task
247 */
248static inline u32 task_sid_obj(const struct task_struct *task)
249{
250 u32 sid;
251
252 rcu_read_lock();
253 sid = cred_sid(__task_cred(task));
254 rcu_read_unlock();
255 return sid;
256}
257
258/*
259 * get the security ID of a task for use with binder
260 */
261static inline u32 task_sid_binder(const struct task_struct *task)
262{
263 /*
264 * In many case where this function is used we should be using the
265 * task's subjective SID, but we can't reliably access the subjective
266 * creds of a task other than our own so we must use the objective
267 * creds/SID, which are safe to access. The downside is that if a task
268 * is temporarily overriding it's creds it will not be reflected here;
269 * however, it isn't clear that binder would handle that case well
270 * anyway.
271 *
272 * If this ever changes and we can safely reference the subjective
273 * creds/SID of another task, this function will make it easier to
274 * identify the various places where we make use of the task SIDs in
275 * the binder code. It is also likely that we will need to adjust
276 * the main drivers/android binder code as well.
277 */
278 return task_sid_obj(task);
279}
280
281static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
282
283/*
284 * Try reloading inode security labels that have been marked as invalid. The
285 * @may_sleep parameter indicates when sleeping and thus reloading labels is
286 * allowed; when set to false, returns -ECHILD when the label is
287 * invalid. The @dentry parameter should be set to a dentry of the inode.
288 */
289static int __inode_security_revalidate(struct inode *inode,
290 struct dentry *dentry,
291 bool may_sleep)
292{
293 struct inode_security_struct *isec = selinux_inode(inode);
294
295 might_sleep_if(may_sleep);
296
297 if (selinux_initialized(&selinux_state) &&
298 isec->initialized != LABEL_INITIALIZED) {
299 if (!may_sleep)
300 return -ECHILD;
301
302 /*
303 * Try reloading the inode security label. This will fail if
304 * @opt_dentry is NULL and no dentry for this inode can be
305 * found; in that case, continue using the old label.
306 */
307 inode_doinit_with_dentry(inode, dentry);
308 }
309 return 0;
310}
311
312static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
313{
314 return selinux_inode(inode);
315}
316
317static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
318{
319 int error;
320
321 error = __inode_security_revalidate(inode, NULL, !rcu);
322 if (error)
323 return ERR_PTR(error);
324 return selinux_inode(inode);
325}
326
327/*
328 * Get the security label of an inode.
329 */
330static struct inode_security_struct *inode_security(struct inode *inode)
331{
332 __inode_security_revalidate(inode, NULL, true);
333 return selinux_inode(inode);
334}
335
336static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
337{
338 struct inode *inode = d_backing_inode(dentry);
339
340 return selinux_inode(inode);
341}
342
343/*
344 * Get the security label of a dentry's backing inode.
345 */
346static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
347{
348 struct inode *inode = d_backing_inode(dentry);
349
350 __inode_security_revalidate(inode, dentry, true);
351 return selinux_inode(inode);
352}
353
354static void inode_free_security(struct inode *inode)
355{
356 struct inode_security_struct *isec = selinux_inode(inode);
357 struct superblock_security_struct *sbsec;
358
359 if (!isec)
360 return;
361 sbsec = selinux_superblock(inode->i_sb);
362 /*
363 * As not all inode security structures are in a list, we check for
364 * empty list outside of the lock to make sure that we won't waste
365 * time taking a lock doing nothing.
366 *
367 * The list_del_init() function can be safely called more than once.
368 * It should not be possible for this function to be called with
369 * concurrent list_add(), but for better safety against future changes
370 * in the code, we use list_empty_careful() here.
371 */
372 if (!list_empty_careful(&isec->list)) {
373 spin_lock(&sbsec->isec_lock);
374 list_del_init(&isec->list);
375 spin_unlock(&sbsec->isec_lock);
376 }
377}
378
379struct selinux_mnt_opts {
380 const char *fscontext, *context, *rootcontext, *defcontext;
381};
382
383static void selinux_free_mnt_opts(void *mnt_opts)
384{
385 struct selinux_mnt_opts *opts = mnt_opts;
386 kfree(opts->fscontext);
387 kfree(opts->context);
388 kfree(opts->rootcontext);
389 kfree(opts->defcontext);
390 kfree(opts);
391}
392
393enum {
394 Opt_error = -1,
395 Opt_context = 0,
396 Opt_defcontext = 1,
397 Opt_fscontext = 2,
398 Opt_rootcontext = 3,
399 Opt_seclabel = 4,
400};
401
402#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
403static struct {
404 const char *name;
405 int len;
406 int opt;
407 bool has_arg;
408} tokens[] = {
409 A(context, true),
410 A(fscontext, true),
411 A(defcontext, true),
412 A(rootcontext, true),
413 A(seclabel, false),
414};
415#undef A
416
417static int match_opt_prefix(char *s, int l, char **arg)
418{
419 int i;
420
421 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
422 size_t len = tokens[i].len;
423 if (len > l || memcmp(s, tokens[i].name, len))
424 continue;
425 if (tokens[i].has_arg) {
426 if (len == l || s[len] != '=')
427 continue;
428 *arg = s + len + 1;
429 } else if (len != l)
430 continue;
431 return tokens[i].opt;
432 }
433 return Opt_error;
434}
435
436#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
437
438static int may_context_mount_sb_relabel(u32 sid,
439 struct superblock_security_struct *sbsec,
440 const struct cred *cred)
441{
442 const struct task_security_struct *tsec = selinux_cred(cred);
443 int rc;
444
445 rc = avc_has_perm(&selinux_state,
446 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
447 FILESYSTEM__RELABELFROM, NULL);
448 if (rc)
449 return rc;
450
451 rc = avc_has_perm(&selinux_state,
452 tsec->sid, sid, SECCLASS_FILESYSTEM,
453 FILESYSTEM__RELABELTO, NULL);
454 return rc;
455}
456
457static int may_context_mount_inode_relabel(u32 sid,
458 struct superblock_security_struct *sbsec,
459 const struct cred *cred)
460{
461 const struct task_security_struct *tsec = selinux_cred(cred);
462 int rc;
463 rc = avc_has_perm(&selinux_state,
464 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
465 FILESYSTEM__RELABELFROM, NULL);
466 if (rc)
467 return rc;
468
469 rc = avc_has_perm(&selinux_state,
470 sid, sbsec->sid, SECCLASS_FILESYSTEM,
471 FILESYSTEM__ASSOCIATE, NULL);
472 return rc;
473}
474
475static int selinux_is_genfs_special_handling(struct super_block *sb)
476{
477 /* Special handling. Genfs but also in-core setxattr handler */
478 return !strcmp(sb->s_type->name, "sysfs") ||
479 !strcmp(sb->s_type->name, "pstore") ||
480 !strcmp(sb->s_type->name, "debugfs") ||
481 !strcmp(sb->s_type->name, "tracefs") ||
482 !strcmp(sb->s_type->name, "rootfs") ||
483 (selinux_policycap_cgroupseclabel() &&
484 (!strcmp(sb->s_type->name, "cgroup") ||
485 !strcmp(sb->s_type->name, "cgroup2")));
486}
487
488static int selinux_is_sblabel_mnt(struct super_block *sb)
489{
490 struct superblock_security_struct *sbsec = selinux_superblock(sb);
491
492 /*
493 * IMPORTANT: Double-check logic in this function when adding a new
494 * SECURITY_FS_USE_* definition!
495 */
496 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
497
498 switch (sbsec->behavior) {
499 case SECURITY_FS_USE_XATTR:
500 case SECURITY_FS_USE_TRANS:
501 case SECURITY_FS_USE_TASK:
502 case SECURITY_FS_USE_NATIVE:
503 return 1;
504
505 case SECURITY_FS_USE_GENFS:
506 return selinux_is_genfs_special_handling(sb);
507
508 /* Never allow relabeling on context mounts */
509 case SECURITY_FS_USE_MNTPOINT:
510 case SECURITY_FS_USE_NONE:
511 default:
512 return 0;
513 }
514}
515
516static int sb_check_xattr_support(struct super_block *sb)
517{
518 struct superblock_security_struct *sbsec = sb->s_security;
519 struct dentry *root = sb->s_root;
520 struct inode *root_inode = d_backing_inode(root);
521 u32 sid;
522 int rc;
523
524 /*
525 * Make sure that the xattr handler exists and that no
526 * error other than -ENODATA is returned by getxattr on
527 * the root directory. -ENODATA is ok, as this may be
528 * the first boot of the SELinux kernel before we have
529 * assigned xattr values to the filesystem.
530 */
531 if (!(root_inode->i_opflags & IOP_XATTR)) {
532 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
533 sb->s_id, sb->s_type->name);
534 goto fallback;
535 }
536
537 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
538 if (rc < 0 && rc != -ENODATA) {
539 if (rc == -EOPNOTSUPP) {
540 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
541 sb->s_id, sb->s_type->name);
542 goto fallback;
543 } else {
544 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
545 sb->s_id, sb->s_type->name, -rc);
546 return rc;
547 }
548 }
549 return 0;
550
551fallback:
552 /* No xattr support - try to fallback to genfs if possible. */
553 rc = security_genfs_sid(&selinux_state, sb->s_type->name, "/",
554 SECCLASS_DIR, &sid);
555 if (rc)
556 return -EOPNOTSUPP;
557
558 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
559 sb->s_id, sb->s_type->name);
560 sbsec->behavior = SECURITY_FS_USE_GENFS;
561 sbsec->sid = sid;
562 return 0;
563}
564
565static int sb_finish_set_opts(struct super_block *sb)
566{
567 struct superblock_security_struct *sbsec = selinux_superblock(sb);
568 struct dentry *root = sb->s_root;
569 struct inode *root_inode = d_backing_inode(root);
570 int rc = 0;
571
572 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
573 rc = sb_check_xattr_support(sb);
574 if (rc)
575 return rc;
576 }
577
578 sbsec->flags |= SE_SBINITIALIZED;
579
580 /*
581 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
582 * leave the flag untouched because sb_clone_mnt_opts might be handing
583 * us a superblock that needs the flag to be cleared.
584 */
585 if (selinux_is_sblabel_mnt(sb))
586 sbsec->flags |= SBLABEL_MNT;
587 else
588 sbsec->flags &= ~SBLABEL_MNT;
589
590 /* Initialize the root inode. */
591 rc = inode_doinit_with_dentry(root_inode, root);
592
593 /* Initialize any other inodes associated with the superblock, e.g.
594 inodes created prior to initial policy load or inodes created
595 during get_sb by a pseudo filesystem that directly
596 populates itself. */
597 spin_lock(&sbsec->isec_lock);
598 while (!list_empty(&sbsec->isec_head)) {
599 struct inode_security_struct *isec =
600 list_first_entry(&sbsec->isec_head,
601 struct inode_security_struct, list);
602 struct inode *inode = isec->inode;
603 list_del_init(&isec->list);
604 spin_unlock(&sbsec->isec_lock);
605 inode = igrab(inode);
606 if (inode) {
607 if (!IS_PRIVATE(inode))
608 inode_doinit_with_dentry(inode, NULL);
609 iput(inode);
610 }
611 spin_lock(&sbsec->isec_lock);
612 }
613 spin_unlock(&sbsec->isec_lock);
614 return rc;
615}
616
617static int bad_option(struct superblock_security_struct *sbsec, char flag,
618 u32 old_sid, u32 new_sid)
619{
620 char mnt_flags = sbsec->flags & SE_MNTMASK;
621
622 /* check if the old mount command had the same options */
623 if (sbsec->flags & SE_SBINITIALIZED)
624 if (!(sbsec->flags & flag) ||
625 (old_sid != new_sid))
626 return 1;
627
628 /* check if we were passed the same options twice,
629 * aka someone passed context=a,context=b
630 */
631 if (!(sbsec->flags & SE_SBINITIALIZED))
632 if (mnt_flags & flag)
633 return 1;
634 return 0;
635}
636
637static int parse_sid(struct super_block *sb, const char *s, u32 *sid)
638{
639 int rc = security_context_str_to_sid(&selinux_state, s,
640 sid, GFP_KERNEL);
641 if (rc)
642 pr_warn("SELinux: security_context_str_to_sid"
643 "(%s) failed for (dev %s, type %s) errno=%d\n",
644 s, sb->s_id, sb->s_type->name, rc);
645 return rc;
646}
647
648/*
649 * Allow filesystems with binary mount data to explicitly set mount point
650 * labeling information.
651 */
652static int selinux_set_mnt_opts(struct super_block *sb,
653 void *mnt_opts,
654 unsigned long kern_flags,
655 unsigned long *set_kern_flags)
656{
657 const struct cred *cred = current_cred();
658 struct superblock_security_struct *sbsec = selinux_superblock(sb);
659 struct dentry *root = sb->s_root;
660 struct selinux_mnt_opts *opts = mnt_opts;
661 struct inode_security_struct *root_isec;
662 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
663 u32 defcontext_sid = 0;
664 int rc = 0;
665
666 mutex_lock(&sbsec->lock);
667
668 if (!selinux_initialized(&selinux_state)) {
669 if (!opts) {
670 /* Defer initialization until selinux_complete_init,
671 after the initial policy is loaded and the security
672 server is ready to handle calls. */
673 goto out;
674 }
675 rc = -EINVAL;
676 pr_warn("SELinux: Unable to set superblock options "
677 "before the security server is initialized\n");
678 goto out;
679 }
680 if (kern_flags && !set_kern_flags) {
681 /* Specifying internal flags without providing a place to
682 * place the results is not allowed */
683 rc = -EINVAL;
684 goto out;
685 }
686
687 /*
688 * Binary mount data FS will come through this function twice. Once
689 * from an explicit call and once from the generic calls from the vfs.
690 * Since the generic VFS calls will not contain any security mount data
691 * we need to skip the double mount verification.
692 *
693 * This does open a hole in which we will not notice if the first
694 * mount using this sb set explict options and a second mount using
695 * this sb does not set any security options. (The first options
696 * will be used for both mounts)
697 */
698 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
699 && !opts)
700 goto out;
701
702 root_isec = backing_inode_security_novalidate(root);
703
704 /*
705 * parse the mount options, check if they are valid sids.
706 * also check if someone is trying to mount the same sb more
707 * than once with different security options.
708 */
709 if (opts) {
710 if (opts->fscontext) {
711 rc = parse_sid(sb, opts->fscontext, &fscontext_sid);
712 if (rc)
713 goto out;
714 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
715 fscontext_sid))
716 goto out_double_mount;
717 sbsec->flags |= FSCONTEXT_MNT;
718 }
719 if (opts->context) {
720 rc = parse_sid(sb, opts->context, &context_sid);
721 if (rc)
722 goto out;
723 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
724 context_sid))
725 goto out_double_mount;
726 sbsec->flags |= CONTEXT_MNT;
727 }
728 if (opts->rootcontext) {
729 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid);
730 if (rc)
731 goto out;
732 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
733 rootcontext_sid))
734 goto out_double_mount;
735 sbsec->flags |= ROOTCONTEXT_MNT;
736 }
737 if (opts->defcontext) {
738 rc = parse_sid(sb, opts->defcontext, &defcontext_sid);
739 if (rc)
740 goto out;
741 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
742 defcontext_sid))
743 goto out_double_mount;
744 sbsec->flags |= DEFCONTEXT_MNT;
745 }
746 }
747
748 if (sbsec->flags & SE_SBINITIALIZED) {
749 /* previously mounted with options, but not on this attempt? */
750 if ((sbsec->flags & SE_MNTMASK) && !opts)
751 goto out_double_mount;
752 rc = 0;
753 goto out;
754 }
755
756 if (strcmp(sb->s_type->name, "proc") == 0)
757 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
758
759 if (!strcmp(sb->s_type->name, "debugfs") ||
760 !strcmp(sb->s_type->name, "tracefs") ||
761 !strcmp(sb->s_type->name, "binder") ||
762 !strcmp(sb->s_type->name, "bpf") ||
763 !strcmp(sb->s_type->name, "pstore"))
764 sbsec->flags |= SE_SBGENFS;
765
766 if (!strcmp(sb->s_type->name, "sysfs") ||
767 !strcmp(sb->s_type->name, "cgroup") ||
768 !strcmp(sb->s_type->name, "cgroup2"))
769 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
770
771 if (!sbsec->behavior) {
772 /*
773 * Determine the labeling behavior to use for this
774 * filesystem type.
775 */
776 rc = security_fs_use(&selinux_state, sb);
777 if (rc) {
778 pr_warn("%s: security_fs_use(%s) returned %d\n",
779 __func__, sb->s_type->name, rc);
780 goto out;
781 }
782 }
783
784 /*
785 * If this is a user namespace mount and the filesystem type is not
786 * explicitly whitelisted, then no contexts are allowed on the command
787 * line and security labels must be ignored.
788 */
789 if (sb->s_user_ns != &init_user_ns &&
790 strcmp(sb->s_type->name, "tmpfs") &&
791 strcmp(sb->s_type->name, "ramfs") &&
792 strcmp(sb->s_type->name, "devpts") &&
793 strcmp(sb->s_type->name, "overlay")) {
794 if (context_sid || fscontext_sid || rootcontext_sid ||
795 defcontext_sid) {
796 rc = -EACCES;
797 goto out;
798 }
799 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
800 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
801 rc = security_transition_sid(&selinux_state,
802 current_sid(),
803 current_sid(),
804 SECCLASS_FILE, NULL,
805 &sbsec->mntpoint_sid);
806 if (rc)
807 goto out;
808 }
809 goto out_set_opts;
810 }
811
812 /* sets the context of the superblock for the fs being mounted. */
813 if (fscontext_sid) {
814 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
815 if (rc)
816 goto out;
817
818 sbsec->sid = fscontext_sid;
819 }
820
821 /*
822 * Switch to using mount point labeling behavior.
823 * sets the label used on all file below the mountpoint, and will set
824 * the superblock context if not already set.
825 */
826 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
827 sbsec->behavior = SECURITY_FS_USE_NATIVE;
828 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
829 }
830
831 if (context_sid) {
832 if (!fscontext_sid) {
833 rc = may_context_mount_sb_relabel(context_sid, sbsec,
834 cred);
835 if (rc)
836 goto out;
837 sbsec->sid = context_sid;
838 } else {
839 rc = may_context_mount_inode_relabel(context_sid, sbsec,
840 cred);
841 if (rc)
842 goto out;
843 }
844 if (!rootcontext_sid)
845 rootcontext_sid = context_sid;
846
847 sbsec->mntpoint_sid = context_sid;
848 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
849 }
850
851 if (rootcontext_sid) {
852 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
853 cred);
854 if (rc)
855 goto out;
856
857 root_isec->sid = rootcontext_sid;
858 root_isec->initialized = LABEL_INITIALIZED;
859 }
860
861 if (defcontext_sid) {
862 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
863 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
864 rc = -EINVAL;
865 pr_warn("SELinux: defcontext option is "
866 "invalid for this filesystem type\n");
867 goto out;
868 }
869
870 if (defcontext_sid != sbsec->def_sid) {
871 rc = may_context_mount_inode_relabel(defcontext_sid,
872 sbsec, cred);
873 if (rc)
874 goto out;
875 }
876
877 sbsec->def_sid = defcontext_sid;
878 }
879
880out_set_opts:
881 rc = sb_finish_set_opts(sb);
882out:
883 mutex_unlock(&sbsec->lock);
884 return rc;
885out_double_mount:
886 rc = -EINVAL;
887 pr_warn("SELinux: mount invalid. Same superblock, different "
888 "security settings for (dev %s, type %s)\n", sb->s_id,
889 sb->s_type->name);
890 goto out;
891}
892
893static int selinux_cmp_sb_context(const struct super_block *oldsb,
894 const struct super_block *newsb)
895{
896 struct superblock_security_struct *old = selinux_superblock(oldsb);
897 struct superblock_security_struct *new = selinux_superblock(newsb);
898 char oldflags = old->flags & SE_MNTMASK;
899 char newflags = new->flags & SE_MNTMASK;
900
901 if (oldflags != newflags)
902 goto mismatch;
903 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
904 goto mismatch;
905 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
906 goto mismatch;
907 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
908 goto mismatch;
909 if (oldflags & ROOTCONTEXT_MNT) {
910 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
911 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
912 if (oldroot->sid != newroot->sid)
913 goto mismatch;
914 }
915 return 0;
916mismatch:
917 pr_warn("SELinux: mount invalid. Same superblock, "
918 "different security settings for (dev %s, "
919 "type %s)\n", newsb->s_id, newsb->s_type->name);
920 return -EBUSY;
921}
922
923static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
924 struct super_block *newsb,
925 unsigned long kern_flags,
926 unsigned long *set_kern_flags)
927{
928 int rc = 0;
929 const struct superblock_security_struct *oldsbsec =
930 selinux_superblock(oldsb);
931 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
932
933 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
934 int set_context = (oldsbsec->flags & CONTEXT_MNT);
935 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
936
937 /*
938 * if the parent was able to be mounted it clearly had no special lsm
939 * mount options. thus we can safely deal with this superblock later
940 */
941 if (!selinux_initialized(&selinux_state))
942 return 0;
943
944 /*
945 * Specifying internal flags without providing a place to
946 * place the results is not allowed.
947 */
948 if (kern_flags && !set_kern_flags)
949 return -EINVAL;
950
951 /* how can we clone if the old one wasn't set up?? */
952 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
953
954 /* if fs is reusing a sb, make sure that the contexts match */
955 if (newsbsec->flags & SE_SBINITIALIZED) {
956 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
957 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
958 return selinux_cmp_sb_context(oldsb, newsb);
959 }
960
961 mutex_lock(&newsbsec->lock);
962
963 newsbsec->flags = oldsbsec->flags;
964
965 newsbsec->sid = oldsbsec->sid;
966 newsbsec->def_sid = oldsbsec->def_sid;
967 newsbsec->behavior = oldsbsec->behavior;
968
969 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
970 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
971 rc = security_fs_use(&selinux_state, newsb);
972 if (rc)
973 goto out;
974 }
975
976 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
977 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
978 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
979 }
980
981 if (set_context) {
982 u32 sid = oldsbsec->mntpoint_sid;
983
984 if (!set_fscontext)
985 newsbsec->sid = sid;
986 if (!set_rootcontext) {
987 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
988 newisec->sid = sid;
989 }
990 newsbsec->mntpoint_sid = sid;
991 }
992 if (set_rootcontext) {
993 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
994 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
995
996 newisec->sid = oldisec->sid;
997 }
998
999 sb_finish_set_opts(newsb);
1000out:
1001 mutex_unlock(&newsbsec->lock);
1002 return rc;
1003}
1004
1005static int selinux_add_opt(int token, const char *s, void **mnt_opts)
1006{
1007 struct selinux_mnt_opts *opts = *mnt_opts;
1008
1009 if (token == Opt_seclabel) /* eaten and completely ignored */
1010 return 0;
1011
1012 if (!opts) {
1013 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
1014 if (!opts)
1015 return -ENOMEM;
1016 *mnt_opts = opts;
1017 }
1018 if (!s)
1019 return -ENOMEM;
1020 switch (token) {
1021 case Opt_context:
1022 if (opts->context || opts->defcontext)
1023 goto Einval;
1024 opts->context = s;
1025 break;
1026 case Opt_fscontext:
1027 if (opts->fscontext)
1028 goto Einval;
1029 opts->fscontext = s;
1030 break;
1031 case Opt_rootcontext:
1032 if (opts->rootcontext)
1033 goto Einval;
1034 opts->rootcontext = s;
1035 break;
1036 case Opt_defcontext:
1037 if (opts->context || opts->defcontext)
1038 goto Einval;
1039 opts->defcontext = s;
1040 break;
1041 }
1042 return 0;
1043Einval:
1044 pr_warn(SEL_MOUNT_FAIL_MSG);
1045 return -EINVAL;
1046}
1047
1048static int selinux_add_mnt_opt(const char *option, const char *val, int len,
1049 void **mnt_opts)
1050{
1051 int token = Opt_error;
1052 int rc, i;
1053
1054 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
1055 if (strcmp(option, tokens[i].name) == 0) {
1056 token = tokens[i].opt;
1057 break;
1058 }
1059 }
1060
1061 if (token == Opt_error)
1062 return -EINVAL;
1063
1064 if (token != Opt_seclabel) {
1065 val = kmemdup_nul(val, len, GFP_KERNEL);
1066 if (!val) {
1067 rc = -ENOMEM;
1068 goto free_opt;
1069 }
1070 }
1071 rc = selinux_add_opt(token, val, mnt_opts);
1072 if (unlikely(rc)) {
1073 kfree(val);
1074 goto free_opt;
1075 }
1076 return rc;
1077
1078free_opt:
1079 if (*mnt_opts) {
1080 selinux_free_mnt_opts(*mnt_opts);
1081 *mnt_opts = NULL;
1082 }
1083 return rc;
1084}
1085
1086static int show_sid(struct seq_file *m, u32 sid)
1087{
1088 char *context = NULL;
1089 u32 len;
1090 int rc;
1091
1092 rc = security_sid_to_context(&selinux_state, sid,
1093 &context, &len);
1094 if (!rc) {
1095 bool has_comma = context && strchr(context, ',');
1096
1097 seq_putc(m, '=');
1098 if (has_comma)
1099 seq_putc(m, '\"');
1100 seq_escape(m, context, "\"\n\\");
1101 if (has_comma)
1102 seq_putc(m, '\"');
1103 }
1104 kfree(context);
1105 return rc;
1106}
1107
1108static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1109{
1110 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1111 int rc;
1112
1113 if (!(sbsec->flags & SE_SBINITIALIZED))
1114 return 0;
1115
1116 if (!selinux_initialized(&selinux_state))
1117 return 0;
1118
1119 if (sbsec->flags & FSCONTEXT_MNT) {
1120 seq_putc(m, ',');
1121 seq_puts(m, FSCONTEXT_STR);
1122 rc = show_sid(m, sbsec->sid);
1123 if (rc)
1124 return rc;
1125 }
1126 if (sbsec->flags & CONTEXT_MNT) {
1127 seq_putc(m, ',');
1128 seq_puts(m, CONTEXT_STR);
1129 rc = show_sid(m, sbsec->mntpoint_sid);
1130 if (rc)
1131 return rc;
1132 }
1133 if (sbsec->flags & DEFCONTEXT_MNT) {
1134 seq_putc(m, ',');
1135 seq_puts(m, DEFCONTEXT_STR);
1136 rc = show_sid(m, sbsec->def_sid);
1137 if (rc)
1138 return rc;
1139 }
1140 if (sbsec->flags & ROOTCONTEXT_MNT) {
1141 struct dentry *root = sb->s_root;
1142 struct inode_security_struct *isec = backing_inode_security(root);
1143 seq_putc(m, ',');
1144 seq_puts(m, ROOTCONTEXT_STR);
1145 rc = show_sid(m, isec->sid);
1146 if (rc)
1147 return rc;
1148 }
1149 if (sbsec->flags & SBLABEL_MNT) {
1150 seq_putc(m, ',');
1151 seq_puts(m, SECLABEL_STR);
1152 }
1153 return 0;
1154}
1155
1156static inline u16 inode_mode_to_security_class(umode_t mode)
1157{
1158 switch (mode & S_IFMT) {
1159 case S_IFSOCK:
1160 return SECCLASS_SOCK_FILE;
1161 case S_IFLNK:
1162 return SECCLASS_LNK_FILE;
1163 case S_IFREG:
1164 return SECCLASS_FILE;
1165 case S_IFBLK:
1166 return SECCLASS_BLK_FILE;
1167 case S_IFDIR:
1168 return SECCLASS_DIR;
1169 case S_IFCHR:
1170 return SECCLASS_CHR_FILE;
1171 case S_IFIFO:
1172 return SECCLASS_FIFO_FILE;
1173
1174 }
1175
1176 return SECCLASS_FILE;
1177}
1178
1179static inline int default_protocol_stream(int protocol)
1180{
1181 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1182 protocol == IPPROTO_MPTCP);
1183}
1184
1185static inline int default_protocol_dgram(int protocol)
1186{
1187 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1188}
1189
1190static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1191{
1192 int extsockclass = selinux_policycap_extsockclass();
1193
1194 switch (family) {
1195 case PF_UNIX:
1196 switch (type) {
1197 case SOCK_STREAM:
1198 case SOCK_SEQPACKET:
1199 return SECCLASS_UNIX_STREAM_SOCKET;
1200 case SOCK_DGRAM:
1201 case SOCK_RAW:
1202 return SECCLASS_UNIX_DGRAM_SOCKET;
1203 }
1204 break;
1205 case PF_INET:
1206 case PF_INET6:
1207 switch (type) {
1208 case SOCK_STREAM:
1209 case SOCK_SEQPACKET:
1210 if (default_protocol_stream(protocol))
1211 return SECCLASS_TCP_SOCKET;
1212 else if (extsockclass && protocol == IPPROTO_SCTP)
1213 return SECCLASS_SCTP_SOCKET;
1214 else
1215 return SECCLASS_RAWIP_SOCKET;
1216 case SOCK_DGRAM:
1217 if (default_protocol_dgram(protocol))
1218 return SECCLASS_UDP_SOCKET;
1219 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1220 protocol == IPPROTO_ICMPV6))
1221 return SECCLASS_ICMP_SOCKET;
1222 else
1223 return SECCLASS_RAWIP_SOCKET;
1224 case SOCK_DCCP:
1225 return SECCLASS_DCCP_SOCKET;
1226 default:
1227 return SECCLASS_RAWIP_SOCKET;
1228 }
1229 break;
1230 case PF_NETLINK:
1231 switch (protocol) {
1232 case NETLINK_ROUTE:
1233 return SECCLASS_NETLINK_ROUTE_SOCKET;
1234 case NETLINK_SOCK_DIAG:
1235 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1236 case NETLINK_NFLOG:
1237 return SECCLASS_NETLINK_NFLOG_SOCKET;
1238 case NETLINK_XFRM:
1239 return SECCLASS_NETLINK_XFRM_SOCKET;
1240 case NETLINK_SELINUX:
1241 return SECCLASS_NETLINK_SELINUX_SOCKET;
1242 case NETLINK_ISCSI:
1243 return SECCLASS_NETLINK_ISCSI_SOCKET;
1244 case NETLINK_AUDIT:
1245 return SECCLASS_NETLINK_AUDIT_SOCKET;
1246 case NETLINK_FIB_LOOKUP:
1247 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1248 case NETLINK_CONNECTOR:
1249 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1250 case NETLINK_NETFILTER:
1251 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1252 case NETLINK_DNRTMSG:
1253 return SECCLASS_NETLINK_DNRT_SOCKET;
1254 case NETLINK_KOBJECT_UEVENT:
1255 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1256 case NETLINK_GENERIC:
1257 return SECCLASS_NETLINK_GENERIC_SOCKET;
1258 case NETLINK_SCSITRANSPORT:
1259 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1260 case NETLINK_RDMA:
1261 return SECCLASS_NETLINK_RDMA_SOCKET;
1262 case NETLINK_CRYPTO:
1263 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1264 default:
1265 return SECCLASS_NETLINK_SOCKET;
1266 }
1267 case PF_PACKET:
1268 return SECCLASS_PACKET_SOCKET;
1269 case PF_KEY:
1270 return SECCLASS_KEY_SOCKET;
1271 case PF_APPLETALK:
1272 return SECCLASS_APPLETALK_SOCKET;
1273 }
1274
1275 if (extsockclass) {
1276 switch (family) {
1277 case PF_AX25:
1278 return SECCLASS_AX25_SOCKET;
1279 case PF_IPX:
1280 return SECCLASS_IPX_SOCKET;
1281 case PF_NETROM:
1282 return SECCLASS_NETROM_SOCKET;
1283 case PF_ATMPVC:
1284 return SECCLASS_ATMPVC_SOCKET;
1285 case PF_X25:
1286 return SECCLASS_X25_SOCKET;
1287 case PF_ROSE:
1288 return SECCLASS_ROSE_SOCKET;
1289 case PF_DECnet:
1290 return SECCLASS_DECNET_SOCKET;
1291 case PF_ATMSVC:
1292 return SECCLASS_ATMSVC_SOCKET;
1293 case PF_RDS:
1294 return SECCLASS_RDS_SOCKET;
1295 case PF_IRDA:
1296 return SECCLASS_IRDA_SOCKET;
1297 case PF_PPPOX:
1298 return SECCLASS_PPPOX_SOCKET;
1299 case PF_LLC:
1300 return SECCLASS_LLC_SOCKET;
1301 case PF_CAN:
1302 return SECCLASS_CAN_SOCKET;
1303 case PF_TIPC:
1304 return SECCLASS_TIPC_SOCKET;
1305 case PF_BLUETOOTH:
1306 return SECCLASS_BLUETOOTH_SOCKET;
1307 case PF_IUCV:
1308 return SECCLASS_IUCV_SOCKET;
1309 case PF_RXRPC:
1310 return SECCLASS_RXRPC_SOCKET;
1311 case PF_ISDN:
1312 return SECCLASS_ISDN_SOCKET;
1313 case PF_PHONET:
1314 return SECCLASS_PHONET_SOCKET;
1315 case PF_IEEE802154:
1316 return SECCLASS_IEEE802154_SOCKET;
1317 case PF_CAIF:
1318 return SECCLASS_CAIF_SOCKET;
1319 case PF_ALG:
1320 return SECCLASS_ALG_SOCKET;
1321 case PF_NFC:
1322 return SECCLASS_NFC_SOCKET;
1323 case PF_VSOCK:
1324 return SECCLASS_VSOCK_SOCKET;
1325 case PF_KCM:
1326 return SECCLASS_KCM_SOCKET;
1327 case PF_QIPCRTR:
1328 return SECCLASS_QIPCRTR_SOCKET;
1329 case PF_SMC:
1330 return SECCLASS_SMC_SOCKET;
1331 case PF_XDP:
1332 return SECCLASS_XDP_SOCKET;
1333#if PF_MAX > 45
1334#error New address family defined, please update this function.
1335#endif
1336 }
1337 }
1338
1339 return SECCLASS_SOCKET;
1340}
1341
1342static int selinux_genfs_get_sid(struct dentry *dentry,
1343 u16 tclass,
1344 u16 flags,
1345 u32 *sid)
1346{
1347 int rc;
1348 struct super_block *sb = dentry->d_sb;
1349 char *buffer, *path;
1350
1351 buffer = (char *)__get_free_page(GFP_KERNEL);
1352 if (!buffer)
1353 return -ENOMEM;
1354
1355 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1356 if (IS_ERR(path))
1357 rc = PTR_ERR(path);
1358 else {
1359 if (flags & SE_SBPROC) {
1360 /* each process gets a /proc/PID/ entry. Strip off the
1361 * PID part to get a valid selinux labeling.
1362 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1363 while (path[1] >= '0' && path[1] <= '9') {
1364 path[1] = '/';
1365 path++;
1366 }
1367 }
1368 rc = security_genfs_sid(&selinux_state, sb->s_type->name,
1369 path, tclass, sid);
1370 if (rc == -ENOENT) {
1371 /* No match in policy, mark as unlabeled. */
1372 *sid = SECINITSID_UNLABELED;
1373 rc = 0;
1374 }
1375 }
1376 free_page((unsigned long)buffer);
1377 return rc;
1378}
1379
1380static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1381 u32 def_sid, u32 *sid)
1382{
1383#define INITCONTEXTLEN 255
1384 char *context;
1385 unsigned int len;
1386 int rc;
1387
1388 len = INITCONTEXTLEN;
1389 context = kmalloc(len + 1, GFP_NOFS);
1390 if (!context)
1391 return -ENOMEM;
1392
1393 context[len] = '\0';
1394 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1395 if (rc == -ERANGE) {
1396 kfree(context);
1397
1398 /* Need a larger buffer. Query for the right size. */
1399 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1400 if (rc < 0)
1401 return rc;
1402
1403 len = rc;
1404 context = kmalloc(len + 1, GFP_NOFS);
1405 if (!context)
1406 return -ENOMEM;
1407
1408 context[len] = '\0';
1409 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1410 context, len);
1411 }
1412 if (rc < 0) {
1413 kfree(context);
1414 if (rc != -ENODATA) {
1415 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1416 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1417 return rc;
1418 }
1419 *sid = def_sid;
1420 return 0;
1421 }
1422
1423 rc = security_context_to_sid_default(&selinux_state, context, rc, sid,
1424 def_sid, GFP_NOFS);
1425 if (rc) {
1426 char *dev = inode->i_sb->s_id;
1427 unsigned long ino = inode->i_ino;
1428
1429 if (rc == -EINVAL) {
1430 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1431 ino, dev, context);
1432 } else {
1433 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1434 __func__, context, -rc, dev, ino);
1435 }
1436 }
1437 kfree(context);
1438 return 0;
1439}
1440
1441/* The inode's security attributes must be initialized before first use. */
1442static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1443{
1444 struct superblock_security_struct *sbsec = NULL;
1445 struct inode_security_struct *isec = selinux_inode(inode);
1446 u32 task_sid, sid = 0;
1447 u16 sclass;
1448 struct dentry *dentry;
1449 int rc = 0;
1450
1451 if (isec->initialized == LABEL_INITIALIZED)
1452 return 0;
1453
1454 spin_lock(&isec->lock);
1455 if (isec->initialized == LABEL_INITIALIZED)
1456 goto out_unlock;
1457
1458 if (isec->sclass == SECCLASS_FILE)
1459 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1460
1461 sbsec = selinux_superblock(inode->i_sb);
1462 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1463 /* Defer initialization until selinux_complete_init,
1464 after the initial policy is loaded and the security
1465 server is ready to handle calls. */
1466 spin_lock(&sbsec->isec_lock);
1467 if (list_empty(&isec->list))
1468 list_add(&isec->list, &sbsec->isec_head);
1469 spin_unlock(&sbsec->isec_lock);
1470 goto out_unlock;
1471 }
1472
1473 sclass = isec->sclass;
1474 task_sid = isec->task_sid;
1475 sid = isec->sid;
1476 isec->initialized = LABEL_PENDING;
1477 spin_unlock(&isec->lock);
1478
1479 switch (sbsec->behavior) {
1480 case SECURITY_FS_USE_NATIVE:
1481 break;
1482 case SECURITY_FS_USE_XATTR:
1483 if (!(inode->i_opflags & IOP_XATTR)) {
1484 sid = sbsec->def_sid;
1485 break;
1486 }
1487 /* Need a dentry, since the xattr API requires one.
1488 Life would be simpler if we could just pass the inode. */
1489 if (opt_dentry) {
1490 /* Called from d_instantiate or d_splice_alias. */
1491 dentry = dget(opt_dentry);
1492 } else {
1493 /*
1494 * Called from selinux_complete_init, try to find a dentry.
1495 * Some filesystems really want a connected one, so try
1496 * that first. We could split SECURITY_FS_USE_XATTR in
1497 * two, depending upon that...
1498 */
1499 dentry = d_find_alias(inode);
1500 if (!dentry)
1501 dentry = d_find_any_alias(inode);
1502 }
1503 if (!dentry) {
1504 /*
1505 * this is can be hit on boot when a file is accessed
1506 * before the policy is loaded. When we load policy we
1507 * may find inodes that have no dentry on the
1508 * sbsec->isec_head list. No reason to complain as these
1509 * will get fixed up the next time we go through
1510 * inode_doinit with a dentry, before these inodes could
1511 * be used again by userspace.
1512 */
1513 goto out_invalid;
1514 }
1515
1516 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1517 &sid);
1518 dput(dentry);
1519 if (rc)
1520 goto out;
1521 break;
1522 case SECURITY_FS_USE_TASK:
1523 sid = task_sid;
1524 break;
1525 case SECURITY_FS_USE_TRANS:
1526 /* Default to the fs SID. */
1527 sid = sbsec->sid;
1528
1529 /* Try to obtain a transition SID. */
1530 rc = security_transition_sid(&selinux_state, task_sid, sid,
1531 sclass, NULL, &sid);
1532 if (rc)
1533 goto out;
1534 break;
1535 case SECURITY_FS_USE_MNTPOINT:
1536 sid = sbsec->mntpoint_sid;
1537 break;
1538 default:
1539 /* Default to the fs superblock SID. */
1540 sid = sbsec->sid;
1541
1542 if ((sbsec->flags & SE_SBGENFS) &&
1543 (!S_ISLNK(inode->i_mode) ||
1544 selinux_policycap_genfs_seclabel_symlinks())) {
1545 /* We must have a dentry to determine the label on
1546 * procfs inodes */
1547 if (opt_dentry) {
1548 /* Called from d_instantiate or
1549 * d_splice_alias. */
1550 dentry = dget(opt_dentry);
1551 } else {
1552 /* Called from selinux_complete_init, try to
1553 * find a dentry. Some filesystems really want
1554 * a connected one, so try that first.
1555 */
1556 dentry = d_find_alias(inode);
1557 if (!dentry)
1558 dentry = d_find_any_alias(inode);
1559 }
1560 /*
1561 * This can be hit on boot when a file is accessed
1562 * before the policy is loaded. When we load policy we
1563 * may find inodes that have no dentry on the
1564 * sbsec->isec_head list. No reason to complain as
1565 * these will get fixed up the next time we go through
1566 * inode_doinit() with a dentry, before these inodes
1567 * could be used again by userspace.
1568 */
1569 if (!dentry)
1570 goto out_invalid;
1571 rc = selinux_genfs_get_sid(dentry, sclass,
1572 sbsec->flags, &sid);
1573 if (rc) {
1574 dput(dentry);
1575 goto out;
1576 }
1577
1578 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1579 (inode->i_opflags & IOP_XATTR)) {
1580 rc = inode_doinit_use_xattr(inode, dentry,
1581 sid, &sid);
1582 if (rc) {
1583 dput(dentry);
1584 goto out;
1585 }
1586 }
1587 dput(dentry);
1588 }
1589 break;
1590 }
1591
1592out:
1593 spin_lock(&isec->lock);
1594 if (isec->initialized == LABEL_PENDING) {
1595 if (rc) {
1596 isec->initialized = LABEL_INVALID;
1597 goto out_unlock;
1598 }
1599 isec->initialized = LABEL_INITIALIZED;
1600 isec->sid = sid;
1601 }
1602
1603out_unlock:
1604 spin_unlock(&isec->lock);
1605 return rc;
1606
1607out_invalid:
1608 spin_lock(&isec->lock);
1609 if (isec->initialized == LABEL_PENDING) {
1610 isec->initialized = LABEL_INVALID;
1611 isec->sid = sid;
1612 }
1613 spin_unlock(&isec->lock);
1614 return 0;
1615}
1616
1617/* Convert a Linux signal to an access vector. */
1618static inline u32 signal_to_av(int sig)
1619{
1620 u32 perm = 0;
1621
1622 switch (sig) {
1623 case SIGCHLD:
1624 /* Commonly granted from child to parent. */
1625 perm = PROCESS__SIGCHLD;
1626 break;
1627 case SIGKILL:
1628 /* Cannot be caught or ignored */
1629 perm = PROCESS__SIGKILL;
1630 break;
1631 case SIGSTOP:
1632 /* Cannot be caught or ignored */
1633 perm = PROCESS__SIGSTOP;
1634 break;
1635 default:
1636 /* All other signals. */
1637 perm = PROCESS__SIGNAL;
1638 break;
1639 }
1640
1641 return perm;
1642}
1643
1644#if CAP_LAST_CAP > 63
1645#error Fix SELinux to handle capabilities > 63.
1646#endif
1647
1648/* Check whether a task is allowed to use a capability. */
1649static int cred_has_capability(const struct cred *cred,
1650 int cap, unsigned int opts, bool initns)
1651{
1652 struct common_audit_data ad;
1653 struct av_decision avd;
1654 u16 sclass;
1655 u32 sid = cred_sid(cred);
1656 u32 av = CAP_TO_MASK(cap);
1657 int rc;
1658
1659 ad.type = LSM_AUDIT_DATA_CAP;
1660 ad.u.cap = cap;
1661
1662 switch (CAP_TO_INDEX(cap)) {
1663 case 0:
1664 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1665 break;
1666 case 1:
1667 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1668 break;
1669 default:
1670 pr_err("SELinux: out of range capability %d\n", cap);
1671 BUG();
1672 return -EINVAL;
1673 }
1674
1675 rc = avc_has_perm_noaudit(&selinux_state,
1676 sid, sid, sclass, av, 0, &avd);
1677 if (!(opts & CAP_OPT_NOAUDIT)) {
1678 int rc2 = avc_audit(&selinux_state,
1679 sid, sid, sclass, av, &avd, rc, &ad);
1680 if (rc2)
1681 return rc2;
1682 }
1683 return rc;
1684}
1685
1686/* Check whether a task has a particular permission to an inode.
1687 The 'adp' parameter is optional and allows other audit
1688 data to be passed (e.g. the dentry). */
1689static int inode_has_perm(const struct cred *cred,
1690 struct inode *inode,
1691 u32 perms,
1692 struct common_audit_data *adp)
1693{
1694 struct inode_security_struct *isec;
1695 u32 sid;
1696
1697 validate_creds(cred);
1698
1699 if (unlikely(IS_PRIVATE(inode)))
1700 return 0;
1701
1702 sid = cred_sid(cred);
1703 isec = selinux_inode(inode);
1704
1705 return avc_has_perm(&selinux_state,
1706 sid, isec->sid, isec->sclass, perms, adp);
1707}
1708
1709/* Same as inode_has_perm, but pass explicit audit data containing
1710 the dentry to help the auditing code to more easily generate the
1711 pathname if needed. */
1712static inline int dentry_has_perm(const struct cred *cred,
1713 struct dentry *dentry,
1714 u32 av)
1715{
1716 struct inode *inode = d_backing_inode(dentry);
1717 struct common_audit_data ad;
1718
1719 ad.type = LSM_AUDIT_DATA_DENTRY;
1720 ad.u.dentry = dentry;
1721 __inode_security_revalidate(inode, dentry, true);
1722 return inode_has_perm(cred, inode, av, &ad);
1723}
1724
1725/* Same as inode_has_perm, but pass explicit audit data containing
1726 the path to help the auditing code to more easily generate the
1727 pathname if needed. */
1728static inline int path_has_perm(const struct cred *cred,
1729 const struct path *path,
1730 u32 av)
1731{
1732 struct inode *inode = d_backing_inode(path->dentry);
1733 struct common_audit_data ad;
1734
1735 ad.type = LSM_AUDIT_DATA_PATH;
1736 ad.u.path = *path;
1737 __inode_security_revalidate(inode, path->dentry, true);
1738 return inode_has_perm(cred, inode, av, &ad);
1739}
1740
1741/* Same as path_has_perm, but uses the inode from the file struct. */
1742static inline int file_path_has_perm(const struct cred *cred,
1743 struct file *file,
1744 u32 av)
1745{
1746 struct common_audit_data ad;
1747
1748 ad.type = LSM_AUDIT_DATA_FILE;
1749 ad.u.file = file;
1750 return inode_has_perm(cred, file_inode(file), av, &ad);
1751}
1752
1753#ifdef CONFIG_BPF_SYSCALL
1754static int bpf_fd_pass(struct file *file, u32 sid);
1755#endif
1756
1757/* Check whether a task can use an open file descriptor to
1758 access an inode in a given way. Check access to the
1759 descriptor itself, and then use dentry_has_perm to
1760 check a particular permission to the file.
1761 Access to the descriptor is implicitly granted if it
1762 has the same SID as the process. If av is zero, then
1763 access to the file is not checked, e.g. for cases
1764 where only the descriptor is affected like seek. */
1765static int file_has_perm(const struct cred *cred,
1766 struct file *file,
1767 u32 av)
1768{
1769 struct file_security_struct *fsec = selinux_file(file);
1770 struct inode *inode = file_inode(file);
1771 struct common_audit_data ad;
1772 u32 sid = cred_sid(cred);
1773 int rc;
1774
1775 ad.type = LSM_AUDIT_DATA_FILE;
1776 ad.u.file = file;
1777
1778 if (sid != fsec->sid) {
1779 rc = avc_has_perm(&selinux_state,
1780 sid, fsec->sid,
1781 SECCLASS_FD,
1782 FD__USE,
1783 &ad);
1784 if (rc)
1785 goto out;
1786 }
1787
1788#ifdef CONFIG_BPF_SYSCALL
1789 rc = bpf_fd_pass(file, cred_sid(cred));
1790 if (rc)
1791 return rc;
1792#endif
1793
1794 /* av is zero if only checking access to the descriptor. */
1795 rc = 0;
1796 if (av)
1797 rc = inode_has_perm(cred, inode, av, &ad);
1798
1799out:
1800 return rc;
1801}
1802
1803/*
1804 * Determine the label for an inode that might be unioned.
1805 */
1806static int
1807selinux_determine_inode_label(const struct task_security_struct *tsec,
1808 struct inode *dir,
1809 const struct qstr *name, u16 tclass,
1810 u32 *_new_isid)
1811{
1812 const struct superblock_security_struct *sbsec =
1813 selinux_superblock(dir->i_sb);
1814
1815 if ((sbsec->flags & SE_SBINITIALIZED) &&
1816 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1817 *_new_isid = sbsec->mntpoint_sid;
1818 } else if ((sbsec->flags & SBLABEL_MNT) &&
1819 tsec->create_sid) {
1820 *_new_isid = tsec->create_sid;
1821 } else {
1822 const struct inode_security_struct *dsec = inode_security(dir);
1823 return security_transition_sid(&selinux_state, tsec->sid,
1824 dsec->sid, tclass,
1825 name, _new_isid);
1826 }
1827
1828 return 0;
1829}
1830
1831/* Check whether a task can create a file. */
1832static int may_create(struct inode *dir,
1833 struct dentry *dentry,
1834 u16 tclass)
1835{
1836 const struct task_security_struct *tsec = selinux_cred(current_cred());
1837 struct inode_security_struct *dsec;
1838 struct superblock_security_struct *sbsec;
1839 u32 sid, newsid;
1840 struct common_audit_data ad;
1841 int rc;
1842
1843 dsec = inode_security(dir);
1844 sbsec = selinux_superblock(dir->i_sb);
1845
1846 sid = tsec->sid;
1847
1848 ad.type = LSM_AUDIT_DATA_DENTRY;
1849 ad.u.dentry = dentry;
1850
1851 rc = avc_has_perm(&selinux_state,
1852 sid, dsec->sid, SECCLASS_DIR,
1853 DIR__ADD_NAME | DIR__SEARCH,
1854 &ad);
1855 if (rc)
1856 return rc;
1857
1858 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1859 &newsid);
1860 if (rc)
1861 return rc;
1862
1863 rc = avc_has_perm(&selinux_state,
1864 sid, newsid, tclass, FILE__CREATE, &ad);
1865 if (rc)
1866 return rc;
1867
1868 return avc_has_perm(&selinux_state,
1869 newsid, sbsec->sid,
1870 SECCLASS_FILESYSTEM,
1871 FILESYSTEM__ASSOCIATE, &ad);
1872}
1873
1874#define MAY_LINK 0
1875#define MAY_UNLINK 1
1876#define MAY_RMDIR 2
1877
1878/* Check whether a task can link, unlink, or rmdir a file/directory. */
1879static int may_link(struct inode *dir,
1880 struct dentry *dentry,
1881 int kind)
1882
1883{
1884 struct inode_security_struct *dsec, *isec;
1885 struct common_audit_data ad;
1886 u32 sid = current_sid();
1887 u32 av;
1888 int rc;
1889
1890 dsec = inode_security(dir);
1891 isec = backing_inode_security(dentry);
1892
1893 ad.type = LSM_AUDIT_DATA_DENTRY;
1894 ad.u.dentry = dentry;
1895
1896 av = DIR__SEARCH;
1897 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1898 rc = avc_has_perm(&selinux_state,
1899 sid, dsec->sid, SECCLASS_DIR, av, &ad);
1900 if (rc)
1901 return rc;
1902
1903 switch (kind) {
1904 case MAY_LINK:
1905 av = FILE__LINK;
1906 break;
1907 case MAY_UNLINK:
1908 av = FILE__UNLINK;
1909 break;
1910 case MAY_RMDIR:
1911 av = DIR__RMDIR;
1912 break;
1913 default:
1914 pr_warn("SELinux: %s: unrecognized kind %d\n",
1915 __func__, kind);
1916 return 0;
1917 }
1918
1919 rc = avc_has_perm(&selinux_state,
1920 sid, isec->sid, isec->sclass, av, &ad);
1921 return rc;
1922}
1923
1924static inline int may_rename(struct inode *old_dir,
1925 struct dentry *old_dentry,
1926 struct inode *new_dir,
1927 struct dentry *new_dentry)
1928{
1929 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1930 struct common_audit_data ad;
1931 u32 sid = current_sid();
1932 u32 av;
1933 int old_is_dir, new_is_dir;
1934 int rc;
1935
1936 old_dsec = inode_security(old_dir);
1937 old_isec = backing_inode_security(old_dentry);
1938 old_is_dir = d_is_dir(old_dentry);
1939 new_dsec = inode_security(new_dir);
1940
1941 ad.type = LSM_AUDIT_DATA_DENTRY;
1942
1943 ad.u.dentry = old_dentry;
1944 rc = avc_has_perm(&selinux_state,
1945 sid, old_dsec->sid, SECCLASS_DIR,
1946 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1947 if (rc)
1948 return rc;
1949 rc = avc_has_perm(&selinux_state,
1950 sid, old_isec->sid,
1951 old_isec->sclass, FILE__RENAME, &ad);
1952 if (rc)
1953 return rc;
1954 if (old_is_dir && new_dir != old_dir) {
1955 rc = avc_has_perm(&selinux_state,
1956 sid, old_isec->sid,
1957 old_isec->sclass, DIR__REPARENT, &ad);
1958 if (rc)
1959 return rc;
1960 }
1961
1962 ad.u.dentry = new_dentry;
1963 av = DIR__ADD_NAME | DIR__SEARCH;
1964 if (d_is_positive(new_dentry))
1965 av |= DIR__REMOVE_NAME;
1966 rc = avc_has_perm(&selinux_state,
1967 sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1968 if (rc)
1969 return rc;
1970 if (d_is_positive(new_dentry)) {
1971 new_isec = backing_inode_security(new_dentry);
1972 new_is_dir = d_is_dir(new_dentry);
1973 rc = avc_has_perm(&selinux_state,
1974 sid, new_isec->sid,
1975 new_isec->sclass,
1976 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1977 if (rc)
1978 return rc;
1979 }
1980
1981 return 0;
1982}
1983
1984/* Check whether a task can perform a filesystem operation. */
1985static int superblock_has_perm(const struct cred *cred,
1986 struct super_block *sb,
1987 u32 perms,
1988 struct common_audit_data *ad)
1989{
1990 struct superblock_security_struct *sbsec;
1991 u32 sid = cred_sid(cred);
1992
1993 sbsec = selinux_superblock(sb);
1994 return avc_has_perm(&selinux_state,
1995 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1996}
1997
1998/* Convert a Linux mode and permission mask to an access vector. */
1999static inline u32 file_mask_to_av(int mode, int mask)
2000{
2001 u32 av = 0;
2002
2003 if (!S_ISDIR(mode)) {
2004 if (mask & MAY_EXEC)
2005 av |= FILE__EXECUTE;
2006 if (mask & MAY_READ)
2007 av |= FILE__READ;
2008
2009 if (mask & MAY_APPEND)
2010 av |= FILE__APPEND;
2011 else if (mask & MAY_WRITE)
2012 av |= FILE__WRITE;
2013
2014 } else {
2015 if (mask & MAY_EXEC)
2016 av |= DIR__SEARCH;
2017 if (mask & MAY_WRITE)
2018 av |= DIR__WRITE;
2019 if (mask & MAY_READ)
2020 av |= DIR__READ;
2021 }
2022
2023 return av;
2024}
2025
2026/* Convert a Linux file to an access vector. */
2027static inline u32 file_to_av(struct file *file)
2028{
2029 u32 av = 0;
2030
2031 if (file->f_mode & FMODE_READ)
2032 av |= FILE__READ;
2033 if (file->f_mode & FMODE_WRITE) {
2034 if (file->f_flags & O_APPEND)
2035 av |= FILE__APPEND;
2036 else
2037 av |= FILE__WRITE;
2038 }
2039 if (!av) {
2040 /*
2041 * Special file opened with flags 3 for ioctl-only use.
2042 */
2043 av = FILE__IOCTL;
2044 }
2045
2046 return av;
2047}
2048
2049/*
2050 * Convert a file to an access vector and include the correct
2051 * open permission.
2052 */
2053static inline u32 open_file_to_av(struct file *file)
2054{
2055 u32 av = file_to_av(file);
2056 struct inode *inode = file_inode(file);
2057
2058 if (selinux_policycap_openperm() &&
2059 inode->i_sb->s_magic != SOCKFS_MAGIC)
2060 av |= FILE__OPEN;
2061
2062 return av;
2063}
2064
2065/* Hook functions begin here. */
2066
2067static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2068{
2069 return avc_has_perm(&selinux_state,
2070 current_sid(), task_sid_binder(mgr), SECCLASS_BINDER,
2071 BINDER__SET_CONTEXT_MGR, NULL);
2072}
2073
2074static int selinux_binder_transaction(struct task_struct *from,
2075 struct task_struct *to)
2076{
2077 u32 mysid = current_sid();
2078 u32 fromsid = task_sid_binder(from);
2079 int rc;
2080
2081 if (mysid != fromsid) {
2082 rc = avc_has_perm(&selinux_state,
2083 mysid, fromsid, SECCLASS_BINDER,
2084 BINDER__IMPERSONATE, NULL);
2085 if (rc)
2086 return rc;
2087 }
2088
2089 return avc_has_perm(&selinux_state, fromsid, task_sid_binder(to),
2090 SECCLASS_BINDER, BINDER__CALL, NULL);
2091}
2092
2093static int selinux_binder_transfer_binder(struct task_struct *from,
2094 struct task_struct *to)
2095{
2096 return avc_has_perm(&selinux_state,
2097 task_sid_binder(from), task_sid_binder(to),
2098 SECCLASS_BINDER, BINDER__TRANSFER,
2099 NULL);
2100}
2101
2102static int selinux_binder_transfer_file(struct task_struct *from,
2103 struct task_struct *to,
2104 struct file *file)
2105{
2106 u32 sid = task_sid_binder(to);
2107 struct file_security_struct *fsec = selinux_file(file);
2108 struct dentry *dentry = file->f_path.dentry;
2109 struct inode_security_struct *isec;
2110 struct common_audit_data ad;
2111 int rc;
2112
2113 ad.type = LSM_AUDIT_DATA_PATH;
2114 ad.u.path = file->f_path;
2115
2116 if (sid != fsec->sid) {
2117 rc = avc_has_perm(&selinux_state,
2118 sid, fsec->sid,
2119 SECCLASS_FD,
2120 FD__USE,
2121 &ad);
2122 if (rc)
2123 return rc;
2124 }
2125
2126#ifdef CONFIG_BPF_SYSCALL
2127 rc = bpf_fd_pass(file, sid);
2128 if (rc)
2129 return rc;
2130#endif
2131
2132 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2133 return 0;
2134
2135 isec = backing_inode_security(dentry);
2136 return avc_has_perm(&selinux_state,
2137 sid, isec->sid, isec->sclass, file_to_av(file),
2138 &ad);
2139}
2140
2141static int selinux_ptrace_access_check(struct task_struct *child,
2142 unsigned int mode)
2143{
2144 u32 sid = current_sid();
2145 u32 csid = task_sid_obj(child);
2146
2147 if (mode & PTRACE_MODE_READ)
2148 return avc_has_perm(&selinux_state,
2149 sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2150
2151 return avc_has_perm(&selinux_state,
2152 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2153}
2154
2155static int selinux_ptrace_traceme(struct task_struct *parent)
2156{
2157 return avc_has_perm(&selinux_state,
2158 task_sid_obj(parent), task_sid_obj(current),
2159 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2160}
2161
2162static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2163 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2164{
2165 return avc_has_perm(&selinux_state,
2166 current_sid(), task_sid_obj(target), SECCLASS_PROCESS,
2167 PROCESS__GETCAP, NULL);
2168}
2169
2170static int selinux_capset(struct cred *new, const struct cred *old,
2171 const kernel_cap_t *effective,
2172 const kernel_cap_t *inheritable,
2173 const kernel_cap_t *permitted)
2174{
2175 return avc_has_perm(&selinux_state,
2176 cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2177 PROCESS__SETCAP, NULL);
2178}
2179
2180/*
2181 * (This comment used to live with the selinux_task_setuid hook,
2182 * which was removed).
2183 *
2184 * Since setuid only affects the current process, and since the SELinux
2185 * controls are not based on the Linux identity attributes, SELinux does not
2186 * need to control this operation. However, SELinux does control the use of
2187 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2188 */
2189
2190static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2191 int cap, unsigned int opts)
2192{
2193 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2194}
2195
2196static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2197{
2198 const struct cred *cred = current_cred();
2199 int rc = 0;
2200
2201 if (!sb)
2202 return 0;
2203
2204 switch (cmds) {
2205 case Q_SYNC:
2206 case Q_QUOTAON:
2207 case Q_QUOTAOFF:
2208 case Q_SETINFO:
2209 case Q_SETQUOTA:
2210 case Q_XQUOTAOFF:
2211 case Q_XQUOTAON:
2212 case Q_XSETQLIM:
2213 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2214 break;
2215 case Q_GETFMT:
2216 case Q_GETINFO:
2217 case Q_GETQUOTA:
2218 case Q_XGETQUOTA:
2219 case Q_XGETQSTAT:
2220 case Q_XGETQSTATV:
2221 case Q_XGETNEXTQUOTA:
2222 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2223 break;
2224 default:
2225 rc = 0; /* let the kernel handle invalid cmds */
2226 break;
2227 }
2228 return rc;
2229}
2230
2231static int selinux_quota_on(struct dentry *dentry)
2232{
2233 const struct cred *cred = current_cred();
2234
2235 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2236}
2237
2238static int selinux_syslog(int type)
2239{
2240 switch (type) {
2241 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2242 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2243 return avc_has_perm(&selinux_state,
2244 current_sid(), SECINITSID_KERNEL,
2245 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2246 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2247 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2248 /* Set level of messages printed to console */
2249 case SYSLOG_ACTION_CONSOLE_LEVEL:
2250 return avc_has_perm(&selinux_state,
2251 current_sid(), SECINITSID_KERNEL,
2252 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2253 NULL);
2254 }
2255 /* All other syslog types */
2256 return avc_has_perm(&selinux_state,
2257 current_sid(), SECINITSID_KERNEL,
2258 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2259}
2260
2261/*
2262 * Check that a process has enough memory to allocate a new virtual
2263 * mapping. 0 means there is enough memory for the allocation to
2264 * succeed and -ENOMEM implies there is not.
2265 *
2266 * Do not audit the selinux permission check, as this is applied to all
2267 * processes that allocate mappings.
2268 */
2269static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2270{
2271 int rc, cap_sys_admin = 0;
2272
2273 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2274 CAP_OPT_NOAUDIT, true);
2275 if (rc == 0)
2276 cap_sys_admin = 1;
2277
2278 return cap_sys_admin;
2279}
2280
2281/* binprm security operations */
2282
2283static u32 ptrace_parent_sid(void)
2284{
2285 u32 sid = 0;
2286 struct task_struct *tracer;
2287
2288 rcu_read_lock();
2289 tracer = ptrace_parent(current);
2290 if (tracer)
2291 sid = task_sid_obj(tracer);
2292 rcu_read_unlock();
2293
2294 return sid;
2295}
2296
2297static int check_nnp_nosuid(const struct linux_binprm *bprm,
2298 const struct task_security_struct *old_tsec,
2299 const struct task_security_struct *new_tsec)
2300{
2301 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2302 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2303 int rc;
2304 u32 av;
2305
2306 if (!nnp && !nosuid)
2307 return 0; /* neither NNP nor nosuid */
2308
2309 if (new_tsec->sid == old_tsec->sid)
2310 return 0; /* No change in credentials */
2311
2312 /*
2313 * If the policy enables the nnp_nosuid_transition policy capability,
2314 * then we permit transitions under NNP or nosuid if the
2315 * policy allows the corresponding permission between
2316 * the old and new contexts.
2317 */
2318 if (selinux_policycap_nnp_nosuid_transition()) {
2319 av = 0;
2320 if (nnp)
2321 av |= PROCESS2__NNP_TRANSITION;
2322 if (nosuid)
2323 av |= PROCESS2__NOSUID_TRANSITION;
2324 rc = avc_has_perm(&selinux_state,
2325 old_tsec->sid, new_tsec->sid,
2326 SECCLASS_PROCESS2, av, NULL);
2327 if (!rc)
2328 return 0;
2329 }
2330
2331 /*
2332 * We also permit NNP or nosuid transitions to bounded SIDs,
2333 * i.e. SIDs that are guaranteed to only be allowed a subset
2334 * of the permissions of the current SID.
2335 */
2336 rc = security_bounded_transition(&selinux_state, old_tsec->sid,
2337 new_tsec->sid);
2338 if (!rc)
2339 return 0;
2340
2341 /*
2342 * On failure, preserve the errno values for NNP vs nosuid.
2343 * NNP: Operation not permitted for caller.
2344 * nosuid: Permission denied to file.
2345 */
2346 if (nnp)
2347 return -EPERM;
2348 return -EACCES;
2349}
2350
2351static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2352{
2353 const struct task_security_struct *old_tsec;
2354 struct task_security_struct *new_tsec;
2355 struct inode_security_struct *isec;
2356 struct common_audit_data ad;
2357 struct inode *inode = file_inode(bprm->file);
2358 int rc;
2359
2360 /* SELinux context only depends on initial program or script and not
2361 * the script interpreter */
2362
2363 old_tsec = selinux_cred(current_cred());
2364 new_tsec = selinux_cred(bprm->cred);
2365 isec = inode_security(inode);
2366
2367 /* Default to the current task SID. */
2368 new_tsec->sid = old_tsec->sid;
2369 new_tsec->osid = old_tsec->sid;
2370
2371 /* Reset fs, key, and sock SIDs on execve. */
2372 new_tsec->create_sid = 0;
2373 new_tsec->keycreate_sid = 0;
2374 new_tsec->sockcreate_sid = 0;
2375
2376 if (old_tsec->exec_sid) {
2377 new_tsec->sid = old_tsec->exec_sid;
2378 /* Reset exec SID on execve. */
2379 new_tsec->exec_sid = 0;
2380
2381 /* Fail on NNP or nosuid if not an allowed transition. */
2382 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2383 if (rc)
2384 return rc;
2385 } else {
2386 /* Check for a default transition on this program. */
2387 rc = security_transition_sid(&selinux_state, old_tsec->sid,
2388 isec->sid, SECCLASS_PROCESS, NULL,
2389 &new_tsec->sid);
2390 if (rc)
2391 return rc;
2392
2393 /*
2394 * Fallback to old SID on NNP or nosuid if not an allowed
2395 * transition.
2396 */
2397 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2398 if (rc)
2399 new_tsec->sid = old_tsec->sid;
2400 }
2401
2402 ad.type = LSM_AUDIT_DATA_FILE;
2403 ad.u.file = bprm->file;
2404
2405 if (new_tsec->sid == old_tsec->sid) {
2406 rc = avc_has_perm(&selinux_state,
2407 old_tsec->sid, isec->sid,
2408 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2409 if (rc)
2410 return rc;
2411 } else {
2412 /* Check permissions for the transition. */
2413 rc = avc_has_perm(&selinux_state,
2414 old_tsec->sid, new_tsec->sid,
2415 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2416 if (rc)
2417 return rc;
2418
2419 rc = avc_has_perm(&selinux_state,
2420 new_tsec->sid, isec->sid,
2421 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2422 if (rc)
2423 return rc;
2424
2425 /* Check for shared state */
2426 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2427 rc = avc_has_perm(&selinux_state,
2428 old_tsec->sid, new_tsec->sid,
2429 SECCLASS_PROCESS, PROCESS__SHARE,
2430 NULL);
2431 if (rc)
2432 return -EPERM;
2433 }
2434
2435 /* Make sure that anyone attempting to ptrace over a task that
2436 * changes its SID has the appropriate permit */
2437 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2438 u32 ptsid = ptrace_parent_sid();
2439 if (ptsid != 0) {
2440 rc = avc_has_perm(&selinux_state,
2441 ptsid, new_tsec->sid,
2442 SECCLASS_PROCESS,
2443 PROCESS__PTRACE, NULL);
2444 if (rc)
2445 return -EPERM;
2446 }
2447 }
2448
2449 /* Clear any possibly unsafe personality bits on exec: */
2450 bprm->per_clear |= PER_CLEAR_ON_SETID;
2451
2452 /* Enable secure mode for SIDs transitions unless
2453 the noatsecure permission is granted between
2454 the two SIDs, i.e. ahp returns 0. */
2455 rc = avc_has_perm(&selinux_state,
2456 old_tsec->sid, new_tsec->sid,
2457 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2458 NULL);
2459 bprm->secureexec |= !!rc;
2460 }
2461
2462 return 0;
2463}
2464
2465static int match_file(const void *p, struct file *file, unsigned fd)
2466{
2467 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2468}
2469
2470/* Derived from fs/exec.c:flush_old_files. */
2471static inline void flush_unauthorized_files(const struct cred *cred,
2472 struct files_struct *files)
2473{
2474 struct file *file, *devnull = NULL;
2475 struct tty_struct *tty;
2476 int drop_tty = 0;
2477 unsigned n;
2478
2479 tty = get_current_tty();
2480 if (tty) {
2481 spin_lock(&tty->files_lock);
2482 if (!list_empty(&tty->tty_files)) {
2483 struct tty_file_private *file_priv;
2484
2485 /* Revalidate access to controlling tty.
2486 Use file_path_has_perm on the tty path directly
2487 rather than using file_has_perm, as this particular
2488 open file may belong to another process and we are
2489 only interested in the inode-based check here. */
2490 file_priv = list_first_entry(&tty->tty_files,
2491 struct tty_file_private, list);
2492 file = file_priv->file;
2493 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2494 drop_tty = 1;
2495 }
2496 spin_unlock(&tty->files_lock);
2497 tty_kref_put(tty);
2498 }
2499 /* Reset controlling tty. */
2500 if (drop_tty)
2501 no_tty();
2502
2503 /* Revalidate access to inherited open files. */
2504 n = iterate_fd(files, 0, match_file, cred);
2505 if (!n) /* none found? */
2506 return;
2507
2508 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2509 if (IS_ERR(devnull))
2510 devnull = NULL;
2511 /* replace all the matching ones with this */
2512 do {
2513 replace_fd(n - 1, devnull, 0);
2514 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2515 if (devnull)
2516 fput(devnull);
2517}
2518
2519/*
2520 * Prepare a process for imminent new credential changes due to exec
2521 */
2522static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2523{
2524 struct task_security_struct *new_tsec;
2525 struct rlimit *rlim, *initrlim;
2526 int rc, i;
2527
2528 new_tsec = selinux_cred(bprm->cred);
2529 if (new_tsec->sid == new_tsec->osid)
2530 return;
2531
2532 /* Close files for which the new task SID is not authorized. */
2533 flush_unauthorized_files(bprm->cred, current->files);
2534
2535 /* Always clear parent death signal on SID transitions. */
2536 current->pdeath_signal = 0;
2537
2538 /* Check whether the new SID can inherit resource limits from the old
2539 * SID. If not, reset all soft limits to the lower of the current
2540 * task's hard limit and the init task's soft limit.
2541 *
2542 * Note that the setting of hard limits (even to lower them) can be
2543 * controlled by the setrlimit check. The inclusion of the init task's
2544 * soft limit into the computation is to avoid resetting soft limits
2545 * higher than the default soft limit for cases where the default is
2546 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2547 */
2548 rc = avc_has_perm(&selinux_state,
2549 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2550 PROCESS__RLIMITINH, NULL);
2551 if (rc) {
2552 /* protect against do_prlimit() */
2553 task_lock(current);
2554 for (i = 0; i < RLIM_NLIMITS; i++) {
2555 rlim = current->signal->rlim + i;
2556 initrlim = init_task.signal->rlim + i;
2557 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2558 }
2559 task_unlock(current);
2560 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2561 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2562 }
2563}
2564
2565/*
2566 * Clean up the process immediately after the installation of new credentials
2567 * due to exec
2568 */
2569static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2570{
2571 const struct task_security_struct *tsec = selinux_cred(current_cred());
2572 u32 osid, sid;
2573 int rc;
2574
2575 osid = tsec->osid;
2576 sid = tsec->sid;
2577
2578 if (sid == osid)
2579 return;
2580
2581 /* Check whether the new SID can inherit signal state from the old SID.
2582 * If not, clear itimers to avoid subsequent signal generation and
2583 * flush and unblock signals.
2584 *
2585 * This must occur _after_ the task SID has been updated so that any
2586 * kill done after the flush will be checked against the new SID.
2587 */
2588 rc = avc_has_perm(&selinux_state,
2589 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2590 if (rc) {
2591 clear_itimer();
2592
2593 spin_lock_irq(¤t->sighand->siglock);
2594 if (!fatal_signal_pending(current)) {
2595 flush_sigqueue(¤t->pending);
2596 flush_sigqueue(¤t->signal->shared_pending);
2597 flush_signal_handlers(current, 1);
2598 sigemptyset(¤t->blocked);
2599 recalc_sigpending();
2600 }
2601 spin_unlock_irq(¤t->sighand->siglock);
2602 }
2603
2604 /* Wake up the parent if it is waiting so that it can recheck
2605 * wait permission to the new task SID. */
2606 read_lock(&tasklist_lock);
2607 __wake_up_parent(current, current->real_parent);
2608 read_unlock(&tasklist_lock);
2609}
2610
2611/* superblock security operations */
2612
2613static int selinux_sb_alloc_security(struct super_block *sb)
2614{
2615 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2616
2617 mutex_init(&sbsec->lock);
2618 INIT_LIST_HEAD(&sbsec->isec_head);
2619 spin_lock_init(&sbsec->isec_lock);
2620 sbsec->sid = SECINITSID_UNLABELED;
2621 sbsec->def_sid = SECINITSID_FILE;
2622 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2623
2624 return 0;
2625}
2626
2627static inline int opt_len(const char *s)
2628{
2629 bool open_quote = false;
2630 int len;
2631 char c;
2632
2633 for (len = 0; (c = s[len]) != '\0'; len++) {
2634 if (c == '"')
2635 open_quote = !open_quote;
2636 if (c == ',' && !open_quote)
2637 break;
2638 }
2639 return len;
2640}
2641
2642static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2643{
2644 char *from = options;
2645 char *to = options;
2646 bool first = true;
2647 int rc;
2648
2649 while (1) {
2650 int len = opt_len(from);
2651 int token;
2652 char *arg = NULL;
2653
2654 token = match_opt_prefix(from, len, &arg);
2655
2656 if (token != Opt_error) {
2657 char *p, *q;
2658
2659 /* strip quotes */
2660 if (arg) {
2661 for (p = q = arg; p < from + len; p++) {
2662 char c = *p;
2663 if (c != '"')
2664 *q++ = c;
2665 }
2666 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2667 if (!arg) {
2668 rc = -ENOMEM;
2669 goto free_opt;
2670 }
2671 }
2672 rc = selinux_add_opt(token, arg, mnt_opts);
2673 if (unlikely(rc)) {
2674 kfree(arg);
2675 goto free_opt;
2676 }
2677 } else {
2678 if (!first) { // copy with preceding comma
2679 from--;
2680 len++;
2681 }
2682 if (to != from)
2683 memmove(to, from, len);
2684 to += len;
2685 first = false;
2686 }
2687 if (!from[len])
2688 break;
2689 from += len + 1;
2690 }
2691 *to = '\0';
2692 return 0;
2693
2694free_opt:
2695 if (*mnt_opts) {
2696 selinux_free_mnt_opts(*mnt_opts);
2697 *mnt_opts = NULL;
2698 }
2699 return rc;
2700}
2701
2702static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2703{
2704 struct selinux_mnt_opts *opts = mnt_opts;
2705 struct superblock_security_struct *sbsec = sb->s_security;
2706 u32 sid;
2707 int rc;
2708
2709 /*
2710 * Superblock not initialized (i.e. no options) - reject if any
2711 * options specified, otherwise accept.
2712 */
2713 if (!(sbsec->flags & SE_SBINITIALIZED))
2714 return opts ? 1 : 0;
2715
2716 /*
2717 * Superblock initialized and no options specified - reject if
2718 * superblock has any options set, otherwise accept.
2719 */
2720 if (!opts)
2721 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2722
2723 if (opts->fscontext) {
2724 rc = parse_sid(sb, opts->fscontext, &sid);
2725 if (rc)
2726 return 1;
2727 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2728 return 1;
2729 }
2730 if (opts->context) {
2731 rc = parse_sid(sb, opts->context, &sid);
2732 if (rc)
2733 return 1;
2734 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2735 return 1;
2736 }
2737 if (opts->rootcontext) {
2738 struct inode_security_struct *root_isec;
2739
2740 root_isec = backing_inode_security(sb->s_root);
2741 rc = parse_sid(sb, opts->rootcontext, &sid);
2742 if (rc)
2743 return 1;
2744 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2745 return 1;
2746 }
2747 if (opts->defcontext) {
2748 rc = parse_sid(sb, opts->defcontext, &sid);
2749 if (rc)
2750 return 1;
2751 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2752 return 1;
2753 }
2754 return 0;
2755}
2756
2757static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2758{
2759 struct selinux_mnt_opts *opts = mnt_opts;
2760 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2761 u32 sid;
2762 int rc;
2763
2764 if (!(sbsec->flags & SE_SBINITIALIZED))
2765 return 0;
2766
2767 if (!opts)
2768 return 0;
2769
2770 if (opts->fscontext) {
2771 rc = parse_sid(sb, opts->fscontext, &sid);
2772 if (rc)
2773 return rc;
2774 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2775 goto out_bad_option;
2776 }
2777 if (opts->context) {
2778 rc = parse_sid(sb, opts->context, &sid);
2779 if (rc)
2780 return rc;
2781 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2782 goto out_bad_option;
2783 }
2784 if (opts->rootcontext) {
2785 struct inode_security_struct *root_isec;
2786 root_isec = backing_inode_security(sb->s_root);
2787 rc = parse_sid(sb, opts->rootcontext, &sid);
2788 if (rc)
2789 return rc;
2790 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2791 goto out_bad_option;
2792 }
2793 if (opts->defcontext) {
2794 rc = parse_sid(sb, opts->defcontext, &sid);
2795 if (rc)
2796 return rc;
2797 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2798 goto out_bad_option;
2799 }
2800 return 0;
2801
2802out_bad_option:
2803 pr_warn("SELinux: unable to change security options "
2804 "during remount (dev %s, type=%s)\n", sb->s_id,
2805 sb->s_type->name);
2806 return -EINVAL;
2807}
2808
2809static int selinux_sb_kern_mount(struct super_block *sb)
2810{
2811 const struct cred *cred = current_cred();
2812 struct common_audit_data ad;
2813
2814 ad.type = LSM_AUDIT_DATA_DENTRY;
2815 ad.u.dentry = sb->s_root;
2816 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2817}
2818
2819static int selinux_sb_statfs(struct dentry *dentry)
2820{
2821 const struct cred *cred = current_cred();
2822 struct common_audit_data ad;
2823
2824 ad.type = LSM_AUDIT_DATA_DENTRY;
2825 ad.u.dentry = dentry->d_sb->s_root;
2826 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2827}
2828
2829static int selinux_mount(const char *dev_name,
2830 const struct path *path,
2831 const char *type,
2832 unsigned long flags,
2833 void *data)
2834{
2835 const struct cred *cred = current_cred();
2836
2837 if (flags & MS_REMOUNT)
2838 return superblock_has_perm(cred, path->dentry->d_sb,
2839 FILESYSTEM__REMOUNT, NULL);
2840 else
2841 return path_has_perm(cred, path, FILE__MOUNTON);
2842}
2843
2844static int selinux_move_mount(const struct path *from_path,
2845 const struct path *to_path)
2846{
2847 const struct cred *cred = current_cred();
2848
2849 return path_has_perm(cred, to_path, FILE__MOUNTON);
2850}
2851
2852static int selinux_umount(struct vfsmount *mnt, int flags)
2853{
2854 const struct cred *cred = current_cred();
2855
2856 return superblock_has_perm(cred, mnt->mnt_sb,
2857 FILESYSTEM__UNMOUNT, NULL);
2858}
2859
2860static int selinux_fs_context_dup(struct fs_context *fc,
2861 struct fs_context *src_fc)
2862{
2863 const struct selinux_mnt_opts *src = src_fc->security;
2864 struct selinux_mnt_opts *opts;
2865
2866 if (!src)
2867 return 0;
2868
2869 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL);
2870 if (!fc->security)
2871 return -ENOMEM;
2872
2873 opts = fc->security;
2874
2875 if (src->fscontext) {
2876 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL);
2877 if (!opts->fscontext)
2878 return -ENOMEM;
2879 }
2880 if (src->context) {
2881 opts->context = kstrdup(src->context, GFP_KERNEL);
2882 if (!opts->context)
2883 return -ENOMEM;
2884 }
2885 if (src->rootcontext) {
2886 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL);
2887 if (!opts->rootcontext)
2888 return -ENOMEM;
2889 }
2890 if (src->defcontext) {
2891 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL);
2892 if (!opts->defcontext)
2893 return -ENOMEM;
2894 }
2895 return 0;
2896}
2897
2898static const struct fs_parameter_spec selinux_fs_parameters[] = {
2899 fsparam_string(CONTEXT_STR, Opt_context),
2900 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2901 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2902 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2903 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2904 {}
2905};
2906
2907static int selinux_fs_context_parse_param(struct fs_context *fc,
2908 struct fs_parameter *param)
2909{
2910 struct fs_parse_result result;
2911 int opt, rc;
2912
2913 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2914 if (opt < 0)
2915 return opt;
2916
2917 rc = selinux_add_opt(opt, param->string, &fc->security);
2918 if (!rc) {
2919 param->string = NULL;
2920 rc = 1;
2921 }
2922 return rc;
2923}
2924
2925/* inode security operations */
2926
2927static int selinux_inode_alloc_security(struct inode *inode)
2928{
2929 struct inode_security_struct *isec = selinux_inode(inode);
2930 u32 sid = current_sid();
2931
2932 spin_lock_init(&isec->lock);
2933 INIT_LIST_HEAD(&isec->list);
2934 isec->inode = inode;
2935 isec->sid = SECINITSID_UNLABELED;
2936 isec->sclass = SECCLASS_FILE;
2937 isec->task_sid = sid;
2938 isec->initialized = LABEL_INVALID;
2939
2940 return 0;
2941}
2942
2943static void selinux_inode_free_security(struct inode *inode)
2944{
2945 inode_free_security(inode);
2946}
2947
2948static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2949 const struct qstr *name, void **ctx,
2950 u32 *ctxlen)
2951{
2952 u32 newsid;
2953 int rc;
2954
2955 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2956 d_inode(dentry->d_parent), name,
2957 inode_mode_to_security_class(mode),
2958 &newsid);
2959 if (rc)
2960 return rc;
2961
2962 return security_sid_to_context(&selinux_state, newsid, (char **)ctx,
2963 ctxlen);
2964}
2965
2966static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2967 struct qstr *name,
2968 const struct cred *old,
2969 struct cred *new)
2970{
2971 u32 newsid;
2972 int rc;
2973 struct task_security_struct *tsec;
2974
2975 rc = selinux_determine_inode_label(selinux_cred(old),
2976 d_inode(dentry->d_parent), name,
2977 inode_mode_to_security_class(mode),
2978 &newsid);
2979 if (rc)
2980 return rc;
2981
2982 tsec = selinux_cred(new);
2983 tsec->create_sid = newsid;
2984 return 0;
2985}
2986
2987static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2988 const struct qstr *qstr,
2989 const char **name,
2990 void **value, size_t *len)
2991{
2992 const struct task_security_struct *tsec = selinux_cred(current_cred());
2993 struct superblock_security_struct *sbsec;
2994 u32 newsid, clen;
2995 int rc;
2996 char *context;
2997
2998 sbsec = selinux_superblock(dir->i_sb);
2999
3000 newsid = tsec->create_sid;
3001
3002 rc = selinux_determine_inode_label(tsec, dir, qstr,
3003 inode_mode_to_security_class(inode->i_mode),
3004 &newsid);
3005 if (rc)
3006 return rc;
3007
3008 /* Possibly defer initialization to selinux_complete_init. */
3009 if (sbsec->flags & SE_SBINITIALIZED) {
3010 struct inode_security_struct *isec = selinux_inode(inode);
3011 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3012 isec->sid = newsid;
3013 isec->initialized = LABEL_INITIALIZED;
3014 }
3015
3016 if (!selinux_initialized(&selinux_state) ||
3017 !(sbsec->flags & SBLABEL_MNT))
3018 return -EOPNOTSUPP;
3019
3020 if (name)
3021 *name = XATTR_SELINUX_SUFFIX;
3022
3023 if (value && len) {
3024 rc = security_sid_to_context_force(&selinux_state, newsid,
3025 &context, &clen);
3026 if (rc)
3027 return rc;
3028 *value = context;
3029 *len = clen;
3030 }
3031
3032 return 0;
3033}
3034
3035static int selinux_inode_init_security_anon(struct inode *inode,
3036 const struct qstr *name,
3037 const struct inode *context_inode)
3038{
3039 const struct task_security_struct *tsec = selinux_cred(current_cred());
3040 struct common_audit_data ad;
3041 struct inode_security_struct *isec;
3042 int rc;
3043
3044 if (unlikely(!selinux_initialized(&selinux_state)))
3045 return 0;
3046
3047 isec = selinux_inode(inode);
3048
3049 /*
3050 * We only get here once per ephemeral inode. The inode has
3051 * been initialized via inode_alloc_security but is otherwise
3052 * untouched.
3053 */
3054
3055 if (context_inode) {
3056 struct inode_security_struct *context_isec =
3057 selinux_inode(context_inode);
3058 if (context_isec->initialized != LABEL_INITIALIZED) {
3059 pr_err("SELinux: context_inode is not initialized");
3060 return -EACCES;
3061 }
3062
3063 isec->sclass = context_isec->sclass;
3064 isec->sid = context_isec->sid;
3065 } else {
3066 isec->sclass = SECCLASS_ANON_INODE;
3067 rc = security_transition_sid(
3068 &selinux_state, tsec->sid, tsec->sid,
3069 isec->sclass, name, &isec->sid);
3070 if (rc)
3071 return rc;
3072 }
3073
3074 isec->initialized = LABEL_INITIALIZED;
3075 /*
3076 * Now that we've initialized security, check whether we're
3077 * allowed to actually create this type of anonymous inode.
3078 */
3079
3080 ad.type = LSM_AUDIT_DATA_INODE;
3081 ad.u.inode = inode;
3082
3083 return avc_has_perm(&selinux_state,
3084 tsec->sid,
3085 isec->sid,
3086 isec->sclass,
3087 FILE__CREATE,
3088 &ad);
3089}
3090
3091static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3092{
3093 return may_create(dir, dentry, SECCLASS_FILE);
3094}
3095
3096static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3097{
3098 return may_link(dir, old_dentry, MAY_LINK);
3099}
3100
3101static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3102{
3103 return may_link(dir, dentry, MAY_UNLINK);
3104}
3105
3106static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3107{
3108 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3109}
3110
3111static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3112{
3113 return may_create(dir, dentry, SECCLASS_DIR);
3114}
3115
3116static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3117{
3118 return may_link(dir, dentry, MAY_RMDIR);
3119}
3120
3121static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3122{
3123 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3124}
3125
3126static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3127 struct inode *new_inode, struct dentry *new_dentry)
3128{
3129 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3130}
3131
3132static int selinux_inode_readlink(struct dentry *dentry)
3133{
3134 const struct cred *cred = current_cred();
3135
3136 return dentry_has_perm(cred, dentry, FILE__READ);
3137}
3138
3139static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3140 bool rcu)
3141{
3142 const struct cred *cred = current_cred();
3143 struct common_audit_data ad;
3144 struct inode_security_struct *isec;
3145 u32 sid;
3146
3147 validate_creds(cred);
3148
3149 ad.type = LSM_AUDIT_DATA_DENTRY;
3150 ad.u.dentry = dentry;
3151 sid = cred_sid(cred);
3152 isec = inode_security_rcu(inode, rcu);
3153 if (IS_ERR(isec))
3154 return PTR_ERR(isec);
3155
3156 return avc_has_perm(&selinux_state,
3157 sid, isec->sid, isec->sclass, FILE__READ, &ad);
3158}
3159
3160static noinline int audit_inode_permission(struct inode *inode,
3161 u32 perms, u32 audited, u32 denied,
3162 int result)
3163{
3164 struct common_audit_data ad;
3165 struct inode_security_struct *isec = selinux_inode(inode);
3166
3167 ad.type = LSM_AUDIT_DATA_INODE;
3168 ad.u.inode = inode;
3169
3170 return slow_avc_audit(&selinux_state,
3171 current_sid(), isec->sid, isec->sclass, perms,
3172 audited, denied, result, &ad);
3173}
3174
3175static int selinux_inode_permission(struct inode *inode, int mask)
3176{
3177 const struct cred *cred = current_cred();
3178 u32 perms;
3179 bool from_access;
3180 bool no_block = mask & MAY_NOT_BLOCK;
3181 struct inode_security_struct *isec;
3182 u32 sid;
3183 struct av_decision avd;
3184 int rc, rc2;
3185 u32 audited, denied;
3186
3187 from_access = mask & MAY_ACCESS;
3188 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3189
3190 /* No permission to check. Existence test. */
3191 if (!mask)
3192 return 0;
3193
3194 validate_creds(cred);
3195
3196 if (unlikely(IS_PRIVATE(inode)))
3197 return 0;
3198
3199 perms = file_mask_to_av(inode->i_mode, mask);
3200
3201 sid = cred_sid(cred);
3202 isec = inode_security_rcu(inode, no_block);
3203 if (IS_ERR(isec))
3204 return PTR_ERR(isec);
3205
3206 rc = avc_has_perm_noaudit(&selinux_state,
3207 sid, isec->sid, isec->sclass, perms, 0,
3208 &avd);
3209 audited = avc_audit_required(perms, &avd, rc,
3210 from_access ? FILE__AUDIT_ACCESS : 0,
3211 &denied);
3212 if (likely(!audited))
3213 return rc;
3214
3215 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3216 if (rc2)
3217 return rc2;
3218 return rc;
3219}
3220
3221static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3222{
3223 const struct cred *cred = current_cred();
3224 struct inode *inode = d_backing_inode(dentry);
3225 unsigned int ia_valid = iattr->ia_valid;
3226 __u32 av = FILE__WRITE;
3227
3228 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3229 if (ia_valid & ATTR_FORCE) {
3230 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3231 ATTR_FORCE);
3232 if (!ia_valid)
3233 return 0;
3234 }
3235
3236 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3237 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3238 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3239
3240 if (selinux_policycap_openperm() &&
3241 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3242 (ia_valid & ATTR_SIZE) &&
3243 !(ia_valid & ATTR_FILE))
3244 av |= FILE__OPEN;
3245
3246 return dentry_has_perm(cred, dentry, av);
3247}
3248
3249static int selinux_inode_getattr(const struct path *path)
3250{
3251 return path_has_perm(current_cred(), path, FILE__GETATTR);
3252}
3253
3254static bool has_cap_mac_admin(bool audit)
3255{
3256 const struct cred *cred = current_cred();
3257 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3258
3259 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3260 return false;
3261 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3262 return false;
3263 return true;
3264}
3265
3266static int selinux_inode_setxattr(struct user_namespace *mnt_userns,
3267 struct dentry *dentry, const char *name,
3268 const void *value, size_t size, int flags)
3269{
3270 struct inode *inode = d_backing_inode(dentry);
3271 struct inode_security_struct *isec;
3272 struct superblock_security_struct *sbsec;
3273 struct common_audit_data ad;
3274 u32 newsid, sid = current_sid();
3275 int rc = 0;
3276
3277 if (strcmp(name, XATTR_NAME_SELINUX)) {
3278 rc = cap_inode_setxattr(dentry, name, value, size, flags);
3279 if (rc)
3280 return rc;
3281
3282 /* Not an attribute we recognize, so just check the
3283 ordinary setattr permission. */
3284 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3285 }
3286
3287 if (!selinux_initialized(&selinux_state))
3288 return (inode_owner_or_capable(mnt_userns, inode) ? 0 : -EPERM);
3289
3290 sbsec = selinux_superblock(inode->i_sb);
3291 if (!(sbsec->flags & SBLABEL_MNT))
3292 return -EOPNOTSUPP;
3293
3294 if (!inode_owner_or_capable(mnt_userns, inode))
3295 return -EPERM;
3296
3297 ad.type = LSM_AUDIT_DATA_DENTRY;
3298 ad.u.dentry = dentry;
3299
3300 isec = backing_inode_security(dentry);
3301 rc = avc_has_perm(&selinux_state,
3302 sid, isec->sid, isec->sclass,
3303 FILE__RELABELFROM, &ad);
3304 if (rc)
3305 return rc;
3306
3307 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3308 GFP_KERNEL);
3309 if (rc == -EINVAL) {
3310 if (!has_cap_mac_admin(true)) {
3311 struct audit_buffer *ab;
3312 size_t audit_size;
3313
3314 /* We strip a nul only if it is at the end, otherwise the
3315 * context contains a nul and we should audit that */
3316 if (value) {
3317 const char *str = value;
3318
3319 if (str[size - 1] == '\0')
3320 audit_size = size - 1;
3321 else
3322 audit_size = size;
3323 } else {
3324 audit_size = 0;
3325 }
3326 ab = audit_log_start(audit_context(),
3327 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3328 audit_log_format(ab, "op=setxattr invalid_context=");
3329 audit_log_n_untrustedstring(ab, value, audit_size);
3330 audit_log_end(ab);
3331
3332 return rc;
3333 }
3334 rc = security_context_to_sid_force(&selinux_state, value,
3335 size, &newsid);
3336 }
3337 if (rc)
3338 return rc;
3339
3340 rc = avc_has_perm(&selinux_state,
3341 sid, newsid, isec->sclass,
3342 FILE__RELABELTO, &ad);
3343 if (rc)
3344 return rc;
3345
3346 rc = security_validate_transition(&selinux_state, isec->sid, newsid,
3347 sid, isec->sclass);
3348 if (rc)
3349 return rc;
3350
3351 return avc_has_perm(&selinux_state,
3352 newsid,
3353 sbsec->sid,
3354 SECCLASS_FILESYSTEM,
3355 FILESYSTEM__ASSOCIATE,
3356 &ad);
3357}
3358
3359static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3360 const void *value, size_t size,
3361 int flags)
3362{
3363 struct inode *inode = d_backing_inode(dentry);
3364 struct inode_security_struct *isec;
3365 u32 newsid;
3366 int rc;
3367
3368 if (strcmp(name, XATTR_NAME_SELINUX)) {
3369 /* Not an attribute we recognize, so nothing to do. */
3370 return;
3371 }
3372
3373 if (!selinux_initialized(&selinux_state)) {
3374 /* If we haven't even been initialized, then we can't validate
3375 * against a policy, so leave the label as invalid. It may
3376 * resolve to a valid label on the next revalidation try if
3377 * we've since initialized.
3378 */
3379 return;
3380 }
3381
3382 rc = security_context_to_sid_force(&selinux_state, value, size,
3383 &newsid);
3384 if (rc) {
3385 pr_err("SELinux: unable to map context to SID"
3386 "for (%s, %lu), rc=%d\n",
3387 inode->i_sb->s_id, inode->i_ino, -rc);
3388 return;
3389 }
3390
3391 isec = backing_inode_security(dentry);
3392 spin_lock(&isec->lock);
3393 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3394 isec->sid = newsid;
3395 isec->initialized = LABEL_INITIALIZED;
3396 spin_unlock(&isec->lock);
3397
3398 return;
3399}
3400
3401static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3402{
3403 const struct cred *cred = current_cred();
3404
3405 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3406}
3407
3408static int selinux_inode_listxattr(struct dentry *dentry)
3409{
3410 const struct cred *cred = current_cred();
3411
3412 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3413}
3414
3415static int selinux_inode_removexattr(struct user_namespace *mnt_userns,
3416 struct dentry *dentry, const char *name)
3417{
3418 if (strcmp(name, XATTR_NAME_SELINUX)) {
3419 int rc = cap_inode_removexattr(mnt_userns, dentry, name);
3420 if (rc)
3421 return rc;
3422
3423 /* Not an attribute we recognize, so just check the
3424 ordinary setattr permission. */
3425 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3426 }
3427
3428 if (!selinux_initialized(&selinux_state))
3429 return 0;
3430
3431 /* No one is allowed to remove a SELinux security label.
3432 You can change the label, but all data must be labeled. */
3433 return -EACCES;
3434}
3435
3436static int selinux_path_notify(const struct path *path, u64 mask,
3437 unsigned int obj_type)
3438{
3439 int ret;
3440 u32 perm;
3441
3442 struct common_audit_data ad;
3443
3444 ad.type = LSM_AUDIT_DATA_PATH;
3445 ad.u.path = *path;
3446
3447 /*
3448 * Set permission needed based on the type of mark being set.
3449 * Performs an additional check for sb watches.
3450 */
3451 switch (obj_type) {
3452 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3453 perm = FILE__WATCH_MOUNT;
3454 break;
3455 case FSNOTIFY_OBJ_TYPE_SB:
3456 perm = FILE__WATCH_SB;
3457 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3458 FILESYSTEM__WATCH, &ad);
3459 if (ret)
3460 return ret;
3461 break;
3462 case FSNOTIFY_OBJ_TYPE_INODE:
3463 perm = FILE__WATCH;
3464 break;
3465 default:
3466 return -EINVAL;
3467 }
3468
3469 /* blocking watches require the file:watch_with_perm permission */
3470 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3471 perm |= FILE__WATCH_WITH_PERM;
3472
3473 /* watches on read-like events need the file:watch_reads permission */
3474 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3475 perm |= FILE__WATCH_READS;
3476
3477 return path_has_perm(current_cred(), path, perm);
3478}
3479
3480/*
3481 * Copy the inode security context value to the user.
3482 *
3483 * Permission check is handled by selinux_inode_getxattr hook.
3484 */
3485static int selinux_inode_getsecurity(struct user_namespace *mnt_userns,
3486 struct inode *inode, const char *name,
3487 void **buffer, bool alloc)
3488{
3489 u32 size;
3490 int error;
3491 char *context = NULL;
3492 struct inode_security_struct *isec;
3493
3494 /*
3495 * If we're not initialized yet, then we can't validate contexts, so
3496 * just let vfs_getxattr fall back to using the on-disk xattr.
3497 */
3498 if (!selinux_initialized(&selinux_state) ||
3499 strcmp(name, XATTR_SELINUX_SUFFIX))
3500 return -EOPNOTSUPP;
3501
3502 /*
3503 * If the caller has CAP_MAC_ADMIN, then get the raw context
3504 * value even if it is not defined by current policy; otherwise,
3505 * use the in-core value under current policy.
3506 * Use the non-auditing forms of the permission checks since
3507 * getxattr may be called by unprivileged processes commonly
3508 * and lack of permission just means that we fall back to the
3509 * in-core context value, not a denial.
3510 */
3511 isec = inode_security(inode);
3512 if (has_cap_mac_admin(false))
3513 error = security_sid_to_context_force(&selinux_state,
3514 isec->sid, &context,
3515 &size);
3516 else
3517 error = security_sid_to_context(&selinux_state, isec->sid,
3518 &context, &size);
3519 if (error)
3520 return error;
3521 error = size;
3522 if (alloc) {
3523 *buffer = context;
3524 goto out_nofree;
3525 }
3526 kfree(context);
3527out_nofree:
3528 return error;
3529}
3530
3531static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3532 const void *value, size_t size, int flags)
3533{
3534 struct inode_security_struct *isec = inode_security_novalidate(inode);
3535 struct superblock_security_struct *sbsec;
3536 u32 newsid;
3537 int rc;
3538
3539 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3540 return -EOPNOTSUPP;
3541
3542 sbsec = selinux_superblock(inode->i_sb);
3543 if (!(sbsec->flags & SBLABEL_MNT))
3544 return -EOPNOTSUPP;
3545
3546 if (!value || !size)
3547 return -EACCES;
3548
3549 rc = security_context_to_sid(&selinux_state, value, size, &newsid,
3550 GFP_KERNEL);
3551 if (rc)
3552 return rc;
3553
3554 spin_lock(&isec->lock);
3555 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3556 isec->sid = newsid;
3557 isec->initialized = LABEL_INITIALIZED;
3558 spin_unlock(&isec->lock);
3559 return 0;
3560}
3561
3562static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3563{
3564 const int len = sizeof(XATTR_NAME_SELINUX);
3565
3566 if (!selinux_initialized(&selinux_state))
3567 return 0;
3568
3569 if (buffer && len <= buffer_size)
3570 memcpy(buffer, XATTR_NAME_SELINUX, len);
3571 return len;
3572}
3573
3574static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3575{
3576 struct inode_security_struct *isec = inode_security_novalidate(inode);
3577 *secid = isec->sid;
3578}
3579
3580static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3581{
3582 u32 sid;
3583 struct task_security_struct *tsec;
3584 struct cred *new_creds = *new;
3585
3586 if (new_creds == NULL) {
3587 new_creds = prepare_creds();
3588 if (!new_creds)
3589 return -ENOMEM;
3590 }
3591
3592 tsec = selinux_cred(new_creds);
3593 /* Get label from overlay inode and set it in create_sid */
3594 selinux_inode_getsecid(d_inode(src), &sid);
3595 tsec->create_sid = sid;
3596 *new = new_creds;
3597 return 0;
3598}
3599
3600static int selinux_inode_copy_up_xattr(const char *name)
3601{
3602 /* The copy_up hook above sets the initial context on an inode, but we
3603 * don't then want to overwrite it by blindly copying all the lower
3604 * xattrs up. Instead, we have to filter out SELinux-related xattrs.
3605 */
3606 if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3607 return 1; /* Discard */
3608 /*
3609 * Any other attribute apart from SELINUX is not claimed, supported
3610 * by selinux.
3611 */
3612 return -EOPNOTSUPP;
3613}
3614
3615/* kernfs node operations */
3616
3617static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3618 struct kernfs_node *kn)
3619{
3620 const struct task_security_struct *tsec = selinux_cred(current_cred());
3621 u32 parent_sid, newsid, clen;
3622 int rc;
3623 char *context;
3624
3625 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3626 if (rc == -ENODATA)
3627 return 0;
3628 else if (rc < 0)
3629 return rc;
3630
3631 clen = (u32)rc;
3632 context = kmalloc(clen, GFP_KERNEL);
3633 if (!context)
3634 return -ENOMEM;
3635
3636 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3637 if (rc < 0) {
3638 kfree(context);
3639 return rc;
3640 }
3641
3642 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid,
3643 GFP_KERNEL);
3644 kfree(context);
3645 if (rc)
3646 return rc;
3647
3648 if (tsec->create_sid) {
3649 newsid = tsec->create_sid;
3650 } else {
3651 u16 secclass = inode_mode_to_security_class(kn->mode);
3652 struct qstr q;
3653
3654 q.name = kn->name;
3655 q.hash_len = hashlen_string(kn_dir, kn->name);
3656
3657 rc = security_transition_sid(&selinux_state, tsec->sid,
3658 parent_sid, secclass, &q,
3659 &newsid);
3660 if (rc)
3661 return rc;
3662 }
3663
3664 rc = security_sid_to_context_force(&selinux_state, newsid,
3665 &context, &clen);
3666 if (rc)
3667 return rc;
3668
3669 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3670 XATTR_CREATE);
3671 kfree(context);
3672 return rc;
3673}
3674
3675
3676/* file security operations */
3677
3678static int selinux_revalidate_file_permission(struct file *file, int mask)
3679{
3680 const struct cred *cred = current_cred();
3681 struct inode *inode = file_inode(file);
3682
3683 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3684 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3685 mask |= MAY_APPEND;
3686
3687 return file_has_perm(cred, file,
3688 file_mask_to_av(inode->i_mode, mask));
3689}
3690
3691static int selinux_file_permission(struct file *file, int mask)
3692{
3693 struct inode *inode = file_inode(file);
3694 struct file_security_struct *fsec = selinux_file(file);
3695 struct inode_security_struct *isec;
3696 u32 sid = current_sid();
3697
3698 if (!mask)
3699 /* No permission to check. Existence test. */
3700 return 0;
3701
3702 isec = inode_security(inode);
3703 if (sid == fsec->sid && fsec->isid == isec->sid &&
3704 fsec->pseqno == avc_policy_seqno(&selinux_state))
3705 /* No change since file_open check. */
3706 return 0;
3707
3708 return selinux_revalidate_file_permission(file, mask);
3709}
3710
3711static int selinux_file_alloc_security(struct file *file)
3712{
3713 struct file_security_struct *fsec = selinux_file(file);
3714 u32 sid = current_sid();
3715
3716 fsec->sid = sid;
3717 fsec->fown_sid = sid;
3718
3719 return 0;
3720}
3721
3722/*
3723 * Check whether a task has the ioctl permission and cmd
3724 * operation to an inode.
3725 */
3726static int ioctl_has_perm(const struct cred *cred, struct file *file,
3727 u32 requested, u16 cmd)
3728{
3729 struct common_audit_data ad;
3730 struct file_security_struct *fsec = selinux_file(file);
3731 struct inode *inode = file_inode(file);
3732 struct inode_security_struct *isec;
3733 struct lsm_ioctlop_audit ioctl;
3734 u32 ssid = cred_sid(cred);
3735 int rc;
3736 u8 driver = cmd >> 8;
3737 u8 xperm = cmd & 0xff;
3738
3739 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3740 ad.u.op = &ioctl;
3741 ad.u.op->cmd = cmd;
3742 ad.u.op->path = file->f_path;
3743
3744 if (ssid != fsec->sid) {
3745 rc = avc_has_perm(&selinux_state,
3746 ssid, fsec->sid,
3747 SECCLASS_FD,
3748 FD__USE,
3749 &ad);
3750 if (rc)
3751 goto out;
3752 }
3753
3754 if (unlikely(IS_PRIVATE(inode)))
3755 return 0;
3756
3757 isec = inode_security(inode);
3758 rc = avc_has_extended_perms(&selinux_state,
3759 ssid, isec->sid, isec->sclass,
3760 requested, driver, xperm, &ad);
3761out:
3762 return rc;
3763}
3764
3765static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3766 unsigned long arg)
3767{
3768 const struct cred *cred = current_cred();
3769 int error = 0;
3770
3771 switch (cmd) {
3772 case FIONREAD:
3773 case FIBMAP:
3774 case FIGETBSZ:
3775 case FS_IOC_GETFLAGS:
3776 case FS_IOC_GETVERSION:
3777 error = file_has_perm(cred, file, FILE__GETATTR);
3778 break;
3779
3780 case FS_IOC_SETFLAGS:
3781 case FS_IOC_SETVERSION:
3782 error = file_has_perm(cred, file, FILE__SETATTR);
3783 break;
3784
3785 /* sys_ioctl() checks */
3786 case FIONBIO:
3787 case FIOASYNC:
3788 error = file_has_perm(cred, file, 0);
3789 break;
3790
3791 case KDSKBENT:
3792 case KDSKBSENT:
3793 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3794 CAP_OPT_NONE, true);
3795 break;
3796
3797 /* default case assumes that the command will go
3798 * to the file's ioctl() function.
3799 */
3800 default:
3801 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3802 }
3803 return error;
3804}
3805
3806static int default_noexec __ro_after_init;
3807
3808static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3809{
3810 const struct cred *cred = current_cred();
3811 u32 sid = cred_sid(cred);
3812 int rc = 0;
3813
3814 if (default_noexec &&
3815 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3816 (!shared && (prot & PROT_WRITE)))) {
3817 /*
3818 * We are making executable an anonymous mapping or a
3819 * private file mapping that will also be writable.
3820 * This has an additional check.
3821 */
3822 rc = avc_has_perm(&selinux_state,
3823 sid, sid, SECCLASS_PROCESS,
3824 PROCESS__EXECMEM, NULL);
3825 if (rc)
3826 goto error;
3827 }
3828
3829 if (file) {
3830 /* read access is always possible with a mapping */
3831 u32 av = FILE__READ;
3832
3833 /* write access only matters if the mapping is shared */
3834 if (shared && (prot & PROT_WRITE))
3835 av |= FILE__WRITE;
3836
3837 if (prot & PROT_EXEC)
3838 av |= FILE__EXECUTE;
3839
3840 return file_has_perm(cred, file, av);
3841 }
3842
3843error:
3844 return rc;
3845}
3846
3847static int selinux_mmap_addr(unsigned long addr)
3848{
3849 int rc = 0;
3850
3851 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3852 u32 sid = current_sid();
3853 rc = avc_has_perm(&selinux_state,
3854 sid, sid, SECCLASS_MEMPROTECT,
3855 MEMPROTECT__MMAP_ZERO, NULL);
3856 }
3857
3858 return rc;
3859}
3860
3861static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3862 unsigned long prot, unsigned long flags)
3863{
3864 struct common_audit_data ad;
3865 int rc;
3866
3867 if (file) {
3868 ad.type = LSM_AUDIT_DATA_FILE;
3869 ad.u.file = file;
3870 rc = inode_has_perm(current_cred(), file_inode(file),
3871 FILE__MAP, &ad);
3872 if (rc)
3873 return rc;
3874 }
3875
3876 if (checkreqprot_get(&selinux_state))
3877 prot = reqprot;
3878
3879 return file_map_prot_check(file, prot,
3880 (flags & MAP_TYPE) == MAP_SHARED);
3881}
3882
3883static int selinux_file_mprotect(struct vm_area_struct *vma,
3884 unsigned long reqprot,
3885 unsigned long prot)
3886{
3887 const struct cred *cred = current_cred();
3888 u32 sid = cred_sid(cred);
3889
3890 if (checkreqprot_get(&selinux_state))
3891 prot = reqprot;
3892
3893 if (default_noexec &&
3894 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3895 int rc = 0;
3896 if (vma->vm_start >= vma->vm_mm->start_brk &&
3897 vma->vm_end <= vma->vm_mm->brk) {
3898 rc = avc_has_perm(&selinux_state,
3899 sid, sid, SECCLASS_PROCESS,
3900 PROCESS__EXECHEAP, NULL);
3901 } else if (!vma->vm_file &&
3902 ((vma->vm_start <= vma->vm_mm->start_stack &&
3903 vma->vm_end >= vma->vm_mm->start_stack) ||
3904 vma_is_stack_for_current(vma))) {
3905 rc = avc_has_perm(&selinux_state,
3906 sid, sid, SECCLASS_PROCESS,
3907 PROCESS__EXECSTACK, NULL);
3908 } else if (vma->vm_file && vma->anon_vma) {
3909 /*
3910 * We are making executable a file mapping that has
3911 * had some COW done. Since pages might have been
3912 * written, check ability to execute the possibly
3913 * modified content. This typically should only
3914 * occur for text relocations.
3915 */
3916 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3917 }
3918 if (rc)
3919 return rc;
3920 }
3921
3922 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3923}
3924
3925static int selinux_file_lock(struct file *file, unsigned int cmd)
3926{
3927 const struct cred *cred = current_cred();
3928
3929 return file_has_perm(cred, file, FILE__LOCK);
3930}
3931
3932static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3933 unsigned long arg)
3934{
3935 const struct cred *cred = current_cred();
3936 int err = 0;
3937
3938 switch (cmd) {
3939 case F_SETFL:
3940 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3941 err = file_has_perm(cred, file, FILE__WRITE);
3942 break;
3943 }
3944 fallthrough;
3945 case F_SETOWN:
3946 case F_SETSIG:
3947 case F_GETFL:
3948 case F_GETOWN:
3949 case F_GETSIG:
3950 case F_GETOWNER_UIDS:
3951 /* Just check FD__USE permission */
3952 err = file_has_perm(cred, file, 0);
3953 break;
3954 case F_GETLK:
3955 case F_SETLK:
3956 case F_SETLKW:
3957 case F_OFD_GETLK:
3958 case F_OFD_SETLK:
3959 case F_OFD_SETLKW:
3960#if BITS_PER_LONG == 32
3961 case F_GETLK64:
3962 case F_SETLK64:
3963 case F_SETLKW64:
3964#endif
3965 err = file_has_perm(cred, file, FILE__LOCK);
3966 break;
3967 }
3968
3969 return err;
3970}
3971
3972static void selinux_file_set_fowner(struct file *file)
3973{
3974 struct file_security_struct *fsec;
3975
3976 fsec = selinux_file(file);
3977 fsec->fown_sid = current_sid();
3978}
3979
3980static int selinux_file_send_sigiotask(struct task_struct *tsk,
3981 struct fown_struct *fown, int signum)
3982{
3983 struct file *file;
3984 u32 sid = task_sid_obj(tsk);
3985 u32 perm;
3986 struct file_security_struct *fsec;
3987
3988 /* struct fown_struct is never outside the context of a struct file */
3989 file = container_of(fown, struct file, f_owner);
3990
3991 fsec = selinux_file(file);
3992
3993 if (!signum)
3994 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3995 else
3996 perm = signal_to_av(signum);
3997
3998 return avc_has_perm(&selinux_state,
3999 fsec->fown_sid, sid,
4000 SECCLASS_PROCESS, perm, NULL);
4001}
4002
4003static int selinux_file_receive(struct file *file)
4004{
4005 const struct cred *cred = current_cred();
4006
4007 return file_has_perm(cred, file, file_to_av(file));
4008}
4009
4010static int selinux_file_open(struct file *file)
4011{
4012 struct file_security_struct *fsec;
4013 struct inode_security_struct *isec;
4014
4015 fsec = selinux_file(file);
4016 isec = inode_security(file_inode(file));
4017 /*
4018 * Save inode label and policy sequence number
4019 * at open-time so that selinux_file_permission
4020 * can determine whether revalidation is necessary.
4021 * Task label is already saved in the file security
4022 * struct as its SID.
4023 */
4024 fsec->isid = isec->sid;
4025 fsec->pseqno = avc_policy_seqno(&selinux_state);
4026 /*
4027 * Since the inode label or policy seqno may have changed
4028 * between the selinux_inode_permission check and the saving
4029 * of state above, recheck that access is still permitted.
4030 * Otherwise, access might never be revalidated against the
4031 * new inode label or new policy.
4032 * This check is not redundant - do not remove.
4033 */
4034 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
4035}
4036
4037/* task security operations */
4038
4039static int selinux_task_alloc(struct task_struct *task,
4040 unsigned long clone_flags)
4041{
4042 u32 sid = current_sid();
4043
4044 return avc_has_perm(&selinux_state,
4045 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4046}
4047
4048/*
4049 * prepare a new set of credentials for modification
4050 */
4051static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4052 gfp_t gfp)
4053{
4054 const struct task_security_struct *old_tsec = selinux_cred(old);
4055 struct task_security_struct *tsec = selinux_cred(new);
4056
4057 *tsec = *old_tsec;
4058 return 0;
4059}
4060
4061/*
4062 * transfer the SELinux data to a blank set of creds
4063 */
4064static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4065{
4066 const struct task_security_struct *old_tsec = selinux_cred(old);
4067 struct task_security_struct *tsec = selinux_cred(new);
4068
4069 *tsec = *old_tsec;
4070}
4071
4072static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4073{
4074 *secid = cred_sid(c);
4075}
4076
4077/*
4078 * set the security data for a kernel service
4079 * - all the creation contexts are set to unlabelled
4080 */
4081static int selinux_kernel_act_as(struct cred *new, u32 secid)
4082{
4083 struct task_security_struct *tsec = selinux_cred(new);
4084 u32 sid = current_sid();
4085 int ret;
4086
4087 ret = avc_has_perm(&selinux_state,
4088 sid, secid,
4089 SECCLASS_KERNEL_SERVICE,
4090 KERNEL_SERVICE__USE_AS_OVERRIDE,
4091 NULL);
4092 if (ret == 0) {
4093 tsec->sid = secid;
4094 tsec->create_sid = 0;
4095 tsec->keycreate_sid = 0;
4096 tsec->sockcreate_sid = 0;
4097 }
4098 return ret;
4099}
4100
4101/*
4102 * set the file creation context in a security record to the same as the
4103 * objective context of the specified inode
4104 */
4105static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4106{
4107 struct inode_security_struct *isec = inode_security(inode);
4108 struct task_security_struct *tsec = selinux_cred(new);
4109 u32 sid = current_sid();
4110 int ret;
4111
4112 ret = avc_has_perm(&selinux_state,
4113 sid, isec->sid,
4114 SECCLASS_KERNEL_SERVICE,
4115 KERNEL_SERVICE__CREATE_FILES_AS,
4116 NULL);
4117
4118 if (ret == 0)
4119 tsec->create_sid = isec->sid;
4120 return ret;
4121}
4122
4123static int selinux_kernel_module_request(char *kmod_name)
4124{
4125 struct common_audit_data ad;
4126
4127 ad.type = LSM_AUDIT_DATA_KMOD;
4128 ad.u.kmod_name = kmod_name;
4129
4130 return avc_has_perm(&selinux_state,
4131 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4132 SYSTEM__MODULE_REQUEST, &ad);
4133}
4134
4135static int selinux_kernel_module_from_file(struct file *file)
4136{
4137 struct common_audit_data ad;
4138 struct inode_security_struct *isec;
4139 struct file_security_struct *fsec;
4140 u32 sid = current_sid();
4141 int rc;
4142
4143 /* init_module */
4144 if (file == NULL)
4145 return avc_has_perm(&selinux_state,
4146 sid, sid, SECCLASS_SYSTEM,
4147 SYSTEM__MODULE_LOAD, NULL);
4148
4149 /* finit_module */
4150
4151 ad.type = LSM_AUDIT_DATA_FILE;
4152 ad.u.file = file;
4153
4154 fsec = selinux_file(file);
4155 if (sid != fsec->sid) {
4156 rc = avc_has_perm(&selinux_state,
4157 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4158 if (rc)
4159 return rc;
4160 }
4161
4162 isec = inode_security(file_inode(file));
4163 return avc_has_perm(&selinux_state,
4164 sid, isec->sid, SECCLASS_SYSTEM,
4165 SYSTEM__MODULE_LOAD, &ad);
4166}
4167
4168static int selinux_kernel_read_file(struct file *file,
4169 enum kernel_read_file_id id,
4170 bool contents)
4171{
4172 int rc = 0;
4173
4174 switch (id) {
4175 case READING_MODULE:
4176 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4177 break;
4178 default:
4179 break;
4180 }
4181
4182 return rc;
4183}
4184
4185static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4186{
4187 int rc = 0;
4188
4189 switch (id) {
4190 case LOADING_MODULE:
4191 rc = selinux_kernel_module_from_file(NULL);
4192 break;
4193 default:
4194 break;
4195 }
4196
4197 return rc;
4198}
4199
4200static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4201{
4202 return avc_has_perm(&selinux_state,
4203 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204 PROCESS__SETPGID, NULL);
4205}
4206
4207static int selinux_task_getpgid(struct task_struct *p)
4208{
4209 return avc_has_perm(&selinux_state,
4210 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4211 PROCESS__GETPGID, NULL);
4212}
4213
4214static int selinux_task_getsid(struct task_struct *p)
4215{
4216 return avc_has_perm(&selinux_state,
4217 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4218 PROCESS__GETSESSION, NULL);
4219}
4220
4221static void selinux_task_getsecid_subj(struct task_struct *p, u32 *secid)
4222{
4223 *secid = task_sid_subj(p);
4224}
4225
4226static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4227{
4228 *secid = task_sid_obj(p);
4229}
4230
4231static int selinux_task_setnice(struct task_struct *p, int nice)
4232{
4233 return avc_has_perm(&selinux_state,
4234 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4235 PROCESS__SETSCHED, NULL);
4236}
4237
4238static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4239{
4240 return avc_has_perm(&selinux_state,
4241 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4242 PROCESS__SETSCHED, NULL);
4243}
4244
4245static int selinux_task_getioprio(struct task_struct *p)
4246{
4247 return avc_has_perm(&selinux_state,
4248 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4249 PROCESS__GETSCHED, NULL);
4250}
4251
4252static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4253 unsigned int flags)
4254{
4255 u32 av = 0;
4256
4257 if (!flags)
4258 return 0;
4259 if (flags & LSM_PRLIMIT_WRITE)
4260 av |= PROCESS__SETRLIMIT;
4261 if (flags & LSM_PRLIMIT_READ)
4262 av |= PROCESS__GETRLIMIT;
4263 return avc_has_perm(&selinux_state,
4264 cred_sid(cred), cred_sid(tcred),
4265 SECCLASS_PROCESS, av, NULL);
4266}
4267
4268static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4269 struct rlimit *new_rlim)
4270{
4271 struct rlimit *old_rlim = p->signal->rlim + resource;
4272
4273 /* Control the ability to change the hard limit (whether
4274 lowering or raising it), so that the hard limit can
4275 later be used as a safe reset point for the soft limit
4276 upon context transitions. See selinux_bprm_committing_creds. */
4277 if (old_rlim->rlim_max != new_rlim->rlim_max)
4278 return avc_has_perm(&selinux_state,
4279 current_sid(), task_sid_obj(p),
4280 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4281
4282 return 0;
4283}
4284
4285static int selinux_task_setscheduler(struct task_struct *p)
4286{
4287 return avc_has_perm(&selinux_state,
4288 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4289 PROCESS__SETSCHED, NULL);
4290}
4291
4292static int selinux_task_getscheduler(struct task_struct *p)
4293{
4294 return avc_has_perm(&selinux_state,
4295 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4296 PROCESS__GETSCHED, NULL);
4297}
4298
4299static int selinux_task_movememory(struct task_struct *p)
4300{
4301 return avc_has_perm(&selinux_state,
4302 current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4303 PROCESS__SETSCHED, NULL);
4304}
4305
4306static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4307 int sig, const struct cred *cred)
4308{
4309 u32 secid;
4310 u32 perm;
4311
4312 if (!sig)
4313 perm = PROCESS__SIGNULL; /* null signal; existence test */
4314 else
4315 perm = signal_to_av(sig);
4316 if (!cred)
4317 secid = current_sid();
4318 else
4319 secid = cred_sid(cred);
4320 return avc_has_perm(&selinux_state,
4321 secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4322}
4323
4324static void selinux_task_to_inode(struct task_struct *p,
4325 struct inode *inode)
4326{
4327 struct inode_security_struct *isec = selinux_inode(inode);
4328 u32 sid = task_sid_obj(p);
4329
4330 spin_lock(&isec->lock);
4331 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4332 isec->sid = sid;
4333 isec->initialized = LABEL_INITIALIZED;
4334 spin_unlock(&isec->lock);
4335}
4336
4337/* Returns error only if unable to parse addresses */
4338static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4339 struct common_audit_data *ad, u8 *proto)
4340{
4341 int offset, ihlen, ret = -EINVAL;
4342 struct iphdr _iph, *ih;
4343
4344 offset = skb_network_offset(skb);
4345 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4346 if (ih == NULL)
4347 goto out;
4348
4349 ihlen = ih->ihl * 4;
4350 if (ihlen < sizeof(_iph))
4351 goto out;
4352
4353 ad->u.net->v4info.saddr = ih->saddr;
4354 ad->u.net->v4info.daddr = ih->daddr;
4355 ret = 0;
4356
4357 if (proto)
4358 *proto = ih->protocol;
4359
4360 switch (ih->protocol) {
4361 case IPPROTO_TCP: {
4362 struct tcphdr _tcph, *th;
4363
4364 if (ntohs(ih->frag_off) & IP_OFFSET)
4365 break;
4366
4367 offset += ihlen;
4368 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4369 if (th == NULL)
4370 break;
4371
4372 ad->u.net->sport = th->source;
4373 ad->u.net->dport = th->dest;
4374 break;
4375 }
4376
4377 case IPPROTO_UDP: {
4378 struct udphdr _udph, *uh;
4379
4380 if (ntohs(ih->frag_off) & IP_OFFSET)
4381 break;
4382
4383 offset += ihlen;
4384 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4385 if (uh == NULL)
4386 break;
4387
4388 ad->u.net->sport = uh->source;
4389 ad->u.net->dport = uh->dest;
4390 break;
4391 }
4392
4393 case IPPROTO_DCCP: {
4394 struct dccp_hdr _dccph, *dh;
4395
4396 if (ntohs(ih->frag_off) & IP_OFFSET)
4397 break;
4398
4399 offset += ihlen;
4400 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4401 if (dh == NULL)
4402 break;
4403
4404 ad->u.net->sport = dh->dccph_sport;
4405 ad->u.net->dport = dh->dccph_dport;
4406 break;
4407 }
4408
4409#if IS_ENABLED(CONFIG_IP_SCTP)
4410 case IPPROTO_SCTP: {
4411 struct sctphdr _sctph, *sh;
4412
4413 if (ntohs(ih->frag_off) & IP_OFFSET)
4414 break;
4415
4416 offset += ihlen;
4417 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4418 if (sh == NULL)
4419 break;
4420
4421 ad->u.net->sport = sh->source;
4422 ad->u.net->dport = sh->dest;
4423 break;
4424 }
4425#endif
4426 default:
4427 break;
4428 }
4429out:
4430 return ret;
4431}
4432
4433#if IS_ENABLED(CONFIG_IPV6)
4434
4435/* Returns error only if unable to parse addresses */
4436static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4437 struct common_audit_data *ad, u8 *proto)
4438{
4439 u8 nexthdr;
4440 int ret = -EINVAL, offset;
4441 struct ipv6hdr _ipv6h, *ip6;
4442 __be16 frag_off;
4443
4444 offset = skb_network_offset(skb);
4445 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4446 if (ip6 == NULL)
4447 goto out;
4448
4449 ad->u.net->v6info.saddr = ip6->saddr;
4450 ad->u.net->v6info.daddr = ip6->daddr;
4451 ret = 0;
4452
4453 nexthdr = ip6->nexthdr;
4454 offset += sizeof(_ipv6h);
4455 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4456 if (offset < 0)
4457 goto out;
4458
4459 if (proto)
4460 *proto = nexthdr;
4461
4462 switch (nexthdr) {
4463 case IPPROTO_TCP: {
4464 struct tcphdr _tcph, *th;
4465
4466 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4467 if (th == NULL)
4468 break;
4469
4470 ad->u.net->sport = th->source;
4471 ad->u.net->dport = th->dest;
4472 break;
4473 }
4474
4475 case IPPROTO_UDP: {
4476 struct udphdr _udph, *uh;
4477
4478 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4479 if (uh == NULL)
4480 break;
4481
4482 ad->u.net->sport = uh->source;
4483 ad->u.net->dport = uh->dest;
4484 break;
4485 }
4486
4487 case IPPROTO_DCCP: {
4488 struct dccp_hdr _dccph, *dh;
4489
4490 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4491 if (dh == NULL)
4492 break;
4493
4494 ad->u.net->sport = dh->dccph_sport;
4495 ad->u.net->dport = dh->dccph_dport;
4496 break;
4497 }
4498
4499#if IS_ENABLED(CONFIG_IP_SCTP)
4500 case IPPROTO_SCTP: {
4501 struct sctphdr _sctph, *sh;
4502
4503 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4504 if (sh == NULL)
4505 break;
4506
4507 ad->u.net->sport = sh->source;
4508 ad->u.net->dport = sh->dest;
4509 break;
4510 }
4511#endif
4512 /* includes fragments */
4513 default:
4514 break;
4515 }
4516out:
4517 return ret;
4518}
4519
4520#endif /* IPV6 */
4521
4522static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4523 char **_addrp, int src, u8 *proto)
4524{
4525 char *addrp;
4526 int ret;
4527
4528 switch (ad->u.net->family) {
4529 case PF_INET:
4530 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4531 if (ret)
4532 goto parse_error;
4533 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4534 &ad->u.net->v4info.daddr);
4535 goto okay;
4536
4537#if IS_ENABLED(CONFIG_IPV6)
4538 case PF_INET6:
4539 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4540 if (ret)
4541 goto parse_error;
4542 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4543 &ad->u.net->v6info.daddr);
4544 goto okay;
4545#endif /* IPV6 */
4546 default:
4547 addrp = NULL;
4548 goto okay;
4549 }
4550
4551parse_error:
4552 pr_warn(
4553 "SELinux: failure in selinux_parse_skb(),"
4554 " unable to parse packet\n");
4555 return ret;
4556
4557okay:
4558 if (_addrp)
4559 *_addrp = addrp;
4560 return 0;
4561}
4562
4563/**
4564 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4565 * @skb: the packet
4566 * @family: protocol family
4567 * @sid: the packet's peer label SID
4568 *
4569 * Description:
4570 * Check the various different forms of network peer labeling and determine
4571 * the peer label/SID for the packet; most of the magic actually occurs in
4572 * the security server function security_net_peersid_cmp(). The function
4573 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4574 * or -EACCES if @sid is invalid due to inconsistencies with the different
4575 * peer labels.
4576 *
4577 */
4578static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4579{
4580 int err;
4581 u32 xfrm_sid;
4582 u32 nlbl_sid;
4583 u32 nlbl_type;
4584
4585 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4586 if (unlikely(err))
4587 return -EACCES;
4588 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4589 if (unlikely(err))
4590 return -EACCES;
4591
4592 err = security_net_peersid_resolve(&selinux_state, nlbl_sid,
4593 nlbl_type, xfrm_sid, sid);
4594 if (unlikely(err)) {
4595 pr_warn(
4596 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4597 " unable to determine packet's peer label\n");
4598 return -EACCES;
4599 }
4600
4601 return 0;
4602}
4603
4604/**
4605 * selinux_conn_sid - Determine the child socket label for a connection
4606 * @sk_sid: the parent socket's SID
4607 * @skb_sid: the packet's SID
4608 * @conn_sid: the resulting connection SID
4609 *
4610 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4611 * combined with the MLS information from @skb_sid in order to create
4612 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4613 * of @sk_sid. Returns zero on success, negative values on failure.
4614 *
4615 */
4616static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4617{
4618 int err = 0;
4619
4620 if (skb_sid != SECSID_NULL)
4621 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid,
4622 conn_sid);
4623 else
4624 *conn_sid = sk_sid;
4625
4626 return err;
4627}
4628
4629/* socket security operations */
4630
4631static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4632 u16 secclass, u32 *socksid)
4633{
4634 if (tsec->sockcreate_sid > SECSID_NULL) {
4635 *socksid = tsec->sockcreate_sid;
4636 return 0;
4637 }
4638
4639 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid,
4640 secclass, NULL, socksid);
4641}
4642
4643static int sock_has_perm(struct sock *sk, u32 perms)
4644{
4645 struct sk_security_struct *sksec = sk->sk_security;
4646 struct common_audit_data ad;
4647 struct lsm_network_audit net = {0,};
4648
4649 if (sksec->sid == SECINITSID_KERNEL)
4650 return 0;
4651
4652 ad.type = LSM_AUDIT_DATA_NET;
4653 ad.u.net = &net;
4654 ad.u.net->sk = sk;
4655
4656 return avc_has_perm(&selinux_state,
4657 current_sid(), sksec->sid, sksec->sclass, perms,
4658 &ad);
4659}
4660
4661static int selinux_socket_create(int family, int type,
4662 int protocol, int kern)
4663{
4664 const struct task_security_struct *tsec = selinux_cred(current_cred());
4665 u32 newsid;
4666 u16 secclass;
4667 int rc;
4668
4669 if (kern)
4670 return 0;
4671
4672 secclass = socket_type_to_security_class(family, type, protocol);
4673 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4674 if (rc)
4675 return rc;
4676
4677 return avc_has_perm(&selinux_state,
4678 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4679}
4680
4681static int selinux_socket_post_create(struct socket *sock, int family,
4682 int type, int protocol, int kern)
4683{
4684 const struct task_security_struct *tsec = selinux_cred(current_cred());
4685 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4686 struct sk_security_struct *sksec;
4687 u16 sclass = socket_type_to_security_class(family, type, protocol);
4688 u32 sid = SECINITSID_KERNEL;
4689 int err = 0;
4690
4691 if (!kern) {
4692 err = socket_sockcreate_sid(tsec, sclass, &sid);
4693 if (err)
4694 return err;
4695 }
4696
4697 isec->sclass = sclass;
4698 isec->sid = sid;
4699 isec->initialized = LABEL_INITIALIZED;
4700
4701 if (sock->sk) {
4702 sksec = sock->sk->sk_security;
4703 sksec->sclass = sclass;
4704 sksec->sid = sid;
4705 /* Allows detection of the first association on this socket */
4706 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4707 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4708
4709 err = selinux_netlbl_socket_post_create(sock->sk, family);
4710 }
4711
4712 return err;
4713}
4714
4715static int selinux_socket_socketpair(struct socket *socka,
4716 struct socket *sockb)
4717{
4718 struct sk_security_struct *sksec_a = socka->sk->sk_security;
4719 struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4720
4721 sksec_a->peer_sid = sksec_b->sid;
4722 sksec_b->peer_sid = sksec_a->sid;
4723
4724 return 0;
4725}
4726
4727/* Range of port numbers used to automatically bind.
4728 Need to determine whether we should perform a name_bind
4729 permission check between the socket and the port number. */
4730
4731static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4732{
4733 struct sock *sk = sock->sk;
4734 struct sk_security_struct *sksec = sk->sk_security;
4735 u16 family;
4736 int err;
4737
4738 err = sock_has_perm(sk, SOCKET__BIND);
4739 if (err)
4740 goto out;
4741
4742 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4743 family = sk->sk_family;
4744 if (family == PF_INET || family == PF_INET6) {
4745 char *addrp;
4746 struct common_audit_data ad;
4747 struct lsm_network_audit net = {0,};
4748 struct sockaddr_in *addr4 = NULL;
4749 struct sockaddr_in6 *addr6 = NULL;
4750 u16 family_sa;
4751 unsigned short snum;
4752 u32 sid, node_perm;
4753
4754 /*
4755 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4756 * that validates multiple binding addresses. Because of this
4757 * need to check address->sa_family as it is possible to have
4758 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4759 */
4760 if (addrlen < offsetofend(struct sockaddr, sa_family))
4761 return -EINVAL;
4762 family_sa = address->sa_family;
4763 switch (family_sa) {
4764 case AF_UNSPEC:
4765 case AF_INET:
4766 if (addrlen < sizeof(struct sockaddr_in))
4767 return -EINVAL;
4768 addr4 = (struct sockaddr_in *)address;
4769 if (family_sa == AF_UNSPEC) {
4770 /* see __inet_bind(), we only want to allow
4771 * AF_UNSPEC if the address is INADDR_ANY
4772 */
4773 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4774 goto err_af;
4775 family_sa = AF_INET;
4776 }
4777 snum = ntohs(addr4->sin_port);
4778 addrp = (char *)&addr4->sin_addr.s_addr;
4779 break;
4780 case AF_INET6:
4781 if (addrlen < SIN6_LEN_RFC2133)
4782 return -EINVAL;
4783 addr6 = (struct sockaddr_in6 *)address;
4784 snum = ntohs(addr6->sin6_port);
4785 addrp = (char *)&addr6->sin6_addr.s6_addr;
4786 break;
4787 default:
4788 goto err_af;
4789 }
4790
4791 ad.type = LSM_AUDIT_DATA_NET;
4792 ad.u.net = &net;
4793 ad.u.net->sport = htons(snum);
4794 ad.u.net->family = family_sa;
4795
4796 if (snum) {
4797 int low, high;
4798
4799 inet_get_local_port_range(sock_net(sk), &low, &high);
4800
4801 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4802 snum < low || snum > high) {
4803 err = sel_netport_sid(sk->sk_protocol,
4804 snum, &sid);
4805 if (err)
4806 goto out;
4807 err = avc_has_perm(&selinux_state,
4808 sksec->sid, sid,
4809 sksec->sclass,
4810 SOCKET__NAME_BIND, &ad);
4811 if (err)
4812 goto out;
4813 }
4814 }
4815
4816 switch (sksec->sclass) {
4817 case SECCLASS_TCP_SOCKET:
4818 node_perm = TCP_SOCKET__NODE_BIND;
4819 break;
4820
4821 case SECCLASS_UDP_SOCKET:
4822 node_perm = UDP_SOCKET__NODE_BIND;
4823 break;
4824
4825 case SECCLASS_DCCP_SOCKET:
4826 node_perm = DCCP_SOCKET__NODE_BIND;
4827 break;
4828
4829 case SECCLASS_SCTP_SOCKET:
4830 node_perm = SCTP_SOCKET__NODE_BIND;
4831 break;
4832
4833 default:
4834 node_perm = RAWIP_SOCKET__NODE_BIND;
4835 break;
4836 }
4837
4838 err = sel_netnode_sid(addrp, family_sa, &sid);
4839 if (err)
4840 goto out;
4841
4842 if (family_sa == AF_INET)
4843 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4844 else
4845 ad.u.net->v6info.saddr = addr6->sin6_addr;
4846
4847 err = avc_has_perm(&selinux_state,
4848 sksec->sid, sid,
4849 sksec->sclass, node_perm, &ad);
4850 if (err)
4851 goto out;
4852 }
4853out:
4854 return err;
4855err_af:
4856 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4857 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4858 return -EINVAL;
4859 return -EAFNOSUPPORT;
4860}
4861
4862/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4863 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4864 */
4865static int selinux_socket_connect_helper(struct socket *sock,
4866 struct sockaddr *address, int addrlen)
4867{
4868 struct sock *sk = sock->sk;
4869 struct sk_security_struct *sksec = sk->sk_security;
4870 int err;
4871
4872 err = sock_has_perm(sk, SOCKET__CONNECT);
4873 if (err)
4874 return err;
4875 if (addrlen < offsetofend(struct sockaddr, sa_family))
4876 return -EINVAL;
4877
4878 /* connect(AF_UNSPEC) has special handling, as it is a documented
4879 * way to disconnect the socket
4880 */
4881 if (address->sa_family == AF_UNSPEC)
4882 return 0;
4883
4884 /*
4885 * If a TCP, DCCP or SCTP socket, check name_connect permission
4886 * for the port.
4887 */
4888 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4889 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4890 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4891 struct common_audit_data ad;
4892 struct lsm_network_audit net = {0,};
4893 struct sockaddr_in *addr4 = NULL;
4894 struct sockaddr_in6 *addr6 = NULL;
4895 unsigned short snum;
4896 u32 sid, perm;
4897
4898 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4899 * that validates multiple connect addresses. Because of this
4900 * need to check address->sa_family as it is possible to have
4901 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4902 */
4903 switch (address->sa_family) {
4904 case AF_INET:
4905 addr4 = (struct sockaddr_in *)address;
4906 if (addrlen < sizeof(struct sockaddr_in))
4907 return -EINVAL;
4908 snum = ntohs(addr4->sin_port);
4909 break;
4910 case AF_INET6:
4911 addr6 = (struct sockaddr_in6 *)address;
4912 if (addrlen < SIN6_LEN_RFC2133)
4913 return -EINVAL;
4914 snum = ntohs(addr6->sin6_port);
4915 break;
4916 default:
4917 /* Note that SCTP services expect -EINVAL, whereas
4918 * others expect -EAFNOSUPPORT.
4919 */
4920 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4921 return -EINVAL;
4922 else
4923 return -EAFNOSUPPORT;
4924 }
4925
4926 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4927 if (err)
4928 return err;
4929
4930 switch (sksec->sclass) {
4931 case SECCLASS_TCP_SOCKET:
4932 perm = TCP_SOCKET__NAME_CONNECT;
4933 break;
4934 case SECCLASS_DCCP_SOCKET:
4935 perm = DCCP_SOCKET__NAME_CONNECT;
4936 break;
4937 case SECCLASS_SCTP_SOCKET:
4938 perm = SCTP_SOCKET__NAME_CONNECT;
4939 break;
4940 }
4941
4942 ad.type = LSM_AUDIT_DATA_NET;
4943 ad.u.net = &net;
4944 ad.u.net->dport = htons(snum);
4945 ad.u.net->family = address->sa_family;
4946 err = avc_has_perm(&selinux_state,
4947 sksec->sid, sid, sksec->sclass, perm, &ad);
4948 if (err)
4949 return err;
4950 }
4951
4952 return 0;
4953}
4954
4955/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4956static int selinux_socket_connect(struct socket *sock,
4957 struct sockaddr *address, int addrlen)
4958{
4959 int err;
4960 struct sock *sk = sock->sk;
4961
4962 err = selinux_socket_connect_helper(sock, address, addrlen);
4963 if (err)
4964 return err;
4965
4966 return selinux_netlbl_socket_connect(sk, address);
4967}
4968
4969static int selinux_socket_listen(struct socket *sock, int backlog)
4970{
4971 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4972}
4973
4974static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4975{
4976 int err;
4977 struct inode_security_struct *isec;
4978 struct inode_security_struct *newisec;
4979 u16 sclass;
4980 u32 sid;
4981
4982 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4983 if (err)
4984 return err;
4985
4986 isec = inode_security_novalidate(SOCK_INODE(sock));
4987 spin_lock(&isec->lock);
4988 sclass = isec->sclass;
4989 sid = isec->sid;
4990 spin_unlock(&isec->lock);
4991
4992 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4993 newisec->sclass = sclass;
4994 newisec->sid = sid;
4995 newisec->initialized = LABEL_INITIALIZED;
4996
4997 return 0;
4998}
4999
5000static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
5001 int size)
5002{
5003 return sock_has_perm(sock->sk, SOCKET__WRITE);
5004}
5005
5006static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
5007 int size, int flags)
5008{
5009 return sock_has_perm(sock->sk, SOCKET__READ);
5010}
5011
5012static int selinux_socket_getsockname(struct socket *sock)
5013{
5014 return sock_has_perm(sock->sk, SOCKET__GETATTR);
5015}
5016
5017static int selinux_socket_getpeername(struct socket *sock)
5018{
5019 return sock_has_perm(sock->sk, SOCKET__GETATTR);
5020}
5021
5022static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5023{
5024 int err;
5025
5026 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5027 if (err)
5028 return err;
5029
5030 return selinux_netlbl_socket_setsockopt(sock, level, optname);
5031}
5032
5033static int selinux_socket_getsockopt(struct socket *sock, int level,
5034 int optname)
5035{
5036 return sock_has_perm(sock->sk, SOCKET__GETOPT);
5037}
5038
5039static int selinux_socket_shutdown(struct socket *sock, int how)
5040{
5041 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5042}
5043
5044static int selinux_socket_unix_stream_connect(struct sock *sock,
5045 struct sock *other,
5046 struct sock *newsk)
5047{
5048 struct sk_security_struct *sksec_sock = sock->sk_security;
5049 struct sk_security_struct *sksec_other = other->sk_security;
5050 struct sk_security_struct *sksec_new = newsk->sk_security;
5051 struct common_audit_data ad;
5052 struct lsm_network_audit net = {0,};
5053 int err;
5054
5055 ad.type = LSM_AUDIT_DATA_NET;
5056 ad.u.net = &net;
5057 ad.u.net->sk = other;
5058
5059 err = avc_has_perm(&selinux_state,
5060 sksec_sock->sid, sksec_other->sid,
5061 sksec_other->sclass,
5062 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5063 if (err)
5064 return err;
5065
5066 /* server child socket */
5067 sksec_new->peer_sid = sksec_sock->sid;
5068 err = security_sid_mls_copy(&selinux_state, sksec_other->sid,
5069 sksec_sock->sid, &sksec_new->sid);
5070 if (err)
5071 return err;
5072
5073 /* connecting socket */
5074 sksec_sock->peer_sid = sksec_new->sid;
5075
5076 return 0;
5077}
5078
5079static int selinux_socket_unix_may_send(struct socket *sock,
5080 struct socket *other)
5081{
5082 struct sk_security_struct *ssec = sock->sk->sk_security;
5083 struct sk_security_struct *osec = other->sk->sk_security;
5084 struct common_audit_data ad;
5085 struct lsm_network_audit net = {0,};
5086
5087 ad.type = LSM_AUDIT_DATA_NET;
5088 ad.u.net = &net;
5089 ad.u.net->sk = other->sk;
5090
5091 return avc_has_perm(&selinux_state,
5092 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5093 &ad);
5094}
5095
5096static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5097 char *addrp, u16 family, u32 peer_sid,
5098 struct common_audit_data *ad)
5099{
5100 int err;
5101 u32 if_sid;
5102 u32 node_sid;
5103
5104 err = sel_netif_sid(ns, ifindex, &if_sid);
5105 if (err)
5106 return err;
5107 err = avc_has_perm(&selinux_state,
5108 peer_sid, if_sid,
5109 SECCLASS_NETIF, NETIF__INGRESS, ad);
5110 if (err)
5111 return err;
5112
5113 err = sel_netnode_sid(addrp, family, &node_sid);
5114 if (err)
5115 return err;
5116 return avc_has_perm(&selinux_state,
5117 peer_sid, node_sid,
5118 SECCLASS_NODE, NODE__RECVFROM, ad);
5119}
5120
5121static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5122 u16 family)
5123{
5124 int err = 0;
5125 struct sk_security_struct *sksec = sk->sk_security;
5126 u32 sk_sid = sksec->sid;
5127 struct common_audit_data ad;
5128 struct lsm_network_audit net = {0,};
5129 char *addrp;
5130
5131 ad.type = LSM_AUDIT_DATA_NET;
5132 ad.u.net = &net;
5133 ad.u.net->netif = skb->skb_iif;
5134 ad.u.net->family = family;
5135 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5136 if (err)
5137 return err;
5138
5139 if (selinux_secmark_enabled()) {
5140 err = avc_has_perm(&selinux_state,
5141 sk_sid, skb->secmark, SECCLASS_PACKET,
5142 PACKET__RECV, &ad);
5143 if (err)
5144 return err;
5145 }
5146
5147 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5148 if (err)
5149 return err;
5150 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5151
5152 return err;
5153}
5154
5155static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5156{
5157 int err;
5158 struct sk_security_struct *sksec = sk->sk_security;
5159 u16 family = sk->sk_family;
5160 u32 sk_sid = sksec->sid;
5161 struct common_audit_data ad;
5162 struct lsm_network_audit net = {0,};
5163 char *addrp;
5164 u8 secmark_active;
5165 u8 peerlbl_active;
5166
5167 if (family != PF_INET && family != PF_INET6)
5168 return 0;
5169
5170 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5171 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5172 family = PF_INET;
5173
5174 /* If any sort of compatibility mode is enabled then handoff processing
5175 * to the selinux_sock_rcv_skb_compat() function to deal with the
5176 * special handling. We do this in an attempt to keep this function
5177 * as fast and as clean as possible. */
5178 if (!selinux_policycap_netpeer())
5179 return selinux_sock_rcv_skb_compat(sk, skb, family);
5180
5181 secmark_active = selinux_secmark_enabled();
5182 peerlbl_active = selinux_peerlbl_enabled();
5183 if (!secmark_active && !peerlbl_active)
5184 return 0;
5185
5186 ad.type = LSM_AUDIT_DATA_NET;
5187 ad.u.net = &net;
5188 ad.u.net->netif = skb->skb_iif;
5189 ad.u.net->family = family;
5190 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5191 if (err)
5192 return err;
5193
5194 if (peerlbl_active) {
5195 u32 peer_sid;
5196
5197 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5198 if (err)
5199 return err;
5200 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5201 addrp, family, peer_sid, &ad);
5202 if (err) {
5203 selinux_netlbl_err(skb, family, err, 0);
5204 return err;
5205 }
5206 err = avc_has_perm(&selinux_state,
5207 sk_sid, peer_sid, SECCLASS_PEER,
5208 PEER__RECV, &ad);
5209 if (err) {
5210 selinux_netlbl_err(skb, family, err, 0);
5211 return err;
5212 }
5213 }
5214
5215 if (secmark_active) {
5216 err = avc_has_perm(&selinux_state,
5217 sk_sid, skb->secmark, SECCLASS_PACKET,
5218 PACKET__RECV, &ad);
5219 if (err)
5220 return err;
5221 }
5222
5223 return err;
5224}
5225
5226static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
5227 int __user *optlen, unsigned len)
5228{
5229 int err = 0;
5230 char *scontext;
5231 u32 scontext_len;
5232 struct sk_security_struct *sksec = sock->sk->sk_security;
5233 u32 peer_sid = SECSID_NULL;
5234
5235 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5236 sksec->sclass == SECCLASS_TCP_SOCKET ||
5237 sksec->sclass == SECCLASS_SCTP_SOCKET)
5238 peer_sid = sksec->peer_sid;
5239 if (peer_sid == SECSID_NULL)
5240 return -ENOPROTOOPT;
5241
5242 err = security_sid_to_context(&selinux_state, peer_sid, &scontext,
5243 &scontext_len);
5244 if (err)
5245 return err;
5246
5247 if (scontext_len > len) {
5248 err = -ERANGE;
5249 goto out_len;
5250 }
5251
5252 if (copy_to_user(optval, scontext, scontext_len))
5253 err = -EFAULT;
5254
5255out_len:
5256 if (put_user(scontext_len, optlen))
5257 err = -EFAULT;
5258 kfree(scontext);
5259 return err;
5260}
5261
5262static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5263{
5264 u32 peer_secid = SECSID_NULL;
5265 u16 family;
5266 struct inode_security_struct *isec;
5267
5268 if (skb && skb->protocol == htons(ETH_P_IP))
5269 family = PF_INET;
5270 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5271 family = PF_INET6;
5272 else if (sock)
5273 family = sock->sk->sk_family;
5274 else
5275 goto out;
5276
5277 if (sock && family == PF_UNIX) {
5278 isec = inode_security_novalidate(SOCK_INODE(sock));
5279 peer_secid = isec->sid;
5280 } else if (skb)
5281 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5282
5283out:
5284 *secid = peer_secid;
5285 if (peer_secid == SECSID_NULL)
5286 return -EINVAL;
5287 return 0;
5288}
5289
5290static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5291{
5292 struct sk_security_struct *sksec;
5293
5294 sksec = kzalloc(sizeof(*sksec), priority);
5295 if (!sksec)
5296 return -ENOMEM;
5297
5298 sksec->peer_sid = SECINITSID_UNLABELED;
5299 sksec->sid = SECINITSID_UNLABELED;
5300 sksec->sclass = SECCLASS_SOCKET;
5301 selinux_netlbl_sk_security_reset(sksec);
5302 sk->sk_security = sksec;
5303
5304 return 0;
5305}
5306
5307static void selinux_sk_free_security(struct sock *sk)
5308{
5309 struct sk_security_struct *sksec = sk->sk_security;
5310
5311 sk->sk_security = NULL;
5312 selinux_netlbl_sk_security_free(sksec);
5313 kfree(sksec);
5314}
5315
5316static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5317{
5318 struct sk_security_struct *sksec = sk->sk_security;
5319 struct sk_security_struct *newsksec = newsk->sk_security;
5320
5321 newsksec->sid = sksec->sid;
5322 newsksec->peer_sid = sksec->peer_sid;
5323 newsksec->sclass = sksec->sclass;
5324
5325 selinux_netlbl_sk_security_reset(newsksec);
5326}
5327
5328static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
5329{
5330 if (!sk)
5331 *secid = SECINITSID_ANY_SOCKET;
5332 else {
5333 struct sk_security_struct *sksec = sk->sk_security;
5334
5335 *secid = sksec->sid;
5336 }
5337}
5338
5339static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5340{
5341 struct inode_security_struct *isec =
5342 inode_security_novalidate(SOCK_INODE(parent));
5343 struct sk_security_struct *sksec = sk->sk_security;
5344
5345 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5346 sk->sk_family == PF_UNIX)
5347 isec->sid = sksec->sid;
5348 sksec->sclass = isec->sclass;
5349}
5350
5351/* Called whenever SCTP receives an INIT chunk. This happens when an incoming
5352 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association
5353 * already present).
5354 */
5355static int selinux_sctp_assoc_request(struct sctp_endpoint *ep,
5356 struct sk_buff *skb)
5357{
5358 struct sk_security_struct *sksec = ep->base.sk->sk_security;
5359 struct common_audit_data ad;
5360 struct lsm_network_audit net = {0,};
5361 u8 peerlbl_active;
5362 u32 peer_sid = SECINITSID_UNLABELED;
5363 u32 conn_sid;
5364 int err = 0;
5365
5366 if (!selinux_policycap_extsockclass())
5367 return 0;
5368
5369 peerlbl_active = selinux_peerlbl_enabled();
5370
5371 if (peerlbl_active) {
5372 /* This will return peer_sid = SECSID_NULL if there are
5373 * no peer labels, see security_net_peersid_resolve().
5374 */
5375 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family,
5376 &peer_sid);
5377 if (err)
5378 return err;
5379
5380 if (peer_sid == SECSID_NULL)
5381 peer_sid = SECINITSID_UNLABELED;
5382 }
5383
5384 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5385 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5386
5387 /* Here as first association on socket. As the peer SID
5388 * was allowed by peer recv (and the netif/node checks),
5389 * then it is approved by policy and used as the primary
5390 * peer SID for getpeercon(3).
5391 */
5392 sksec->peer_sid = peer_sid;
5393 } else if (sksec->peer_sid != peer_sid) {
5394 /* Other association peer SIDs are checked to enforce
5395 * consistency among the peer SIDs.
5396 */
5397 ad.type = LSM_AUDIT_DATA_NET;
5398 ad.u.net = &net;
5399 ad.u.net->sk = ep->base.sk;
5400 err = avc_has_perm(&selinux_state,
5401 sksec->peer_sid, peer_sid, sksec->sclass,
5402 SCTP_SOCKET__ASSOCIATION, &ad);
5403 if (err)
5404 return err;
5405 }
5406
5407 /* Compute the MLS component for the connection and store
5408 * the information in ep. This will be used by SCTP TCP type
5409 * sockets and peeled off connections as they cause a new
5410 * socket to be generated. selinux_sctp_sk_clone() will then
5411 * plug this into the new socket.
5412 */
5413 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid);
5414 if (err)
5415 return err;
5416
5417 ep->secid = conn_sid;
5418 ep->peer_secid = peer_sid;
5419
5420 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5421 return selinux_netlbl_sctp_assoc_request(ep, skb);
5422}
5423
5424/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5425 * based on their @optname.
5426 */
5427static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5428 struct sockaddr *address,
5429 int addrlen)
5430{
5431 int len, err = 0, walk_size = 0;
5432 void *addr_buf;
5433 struct sockaddr *addr;
5434 struct socket *sock;
5435
5436 if (!selinux_policycap_extsockclass())
5437 return 0;
5438
5439 /* Process one or more addresses that may be IPv4 or IPv6 */
5440 sock = sk->sk_socket;
5441 addr_buf = address;
5442
5443 while (walk_size < addrlen) {
5444 if (walk_size + sizeof(sa_family_t) > addrlen)
5445 return -EINVAL;
5446
5447 addr = addr_buf;
5448 switch (addr->sa_family) {
5449 case AF_UNSPEC:
5450 case AF_INET:
5451 len = sizeof(struct sockaddr_in);
5452 break;
5453 case AF_INET6:
5454 len = sizeof(struct sockaddr_in6);
5455 break;
5456 default:
5457 return -EINVAL;
5458 }
5459
5460 if (walk_size + len > addrlen)
5461 return -EINVAL;
5462
5463 err = -EINVAL;
5464 switch (optname) {
5465 /* Bind checks */
5466 case SCTP_PRIMARY_ADDR:
5467 case SCTP_SET_PEER_PRIMARY_ADDR:
5468 case SCTP_SOCKOPT_BINDX_ADD:
5469 err = selinux_socket_bind(sock, addr, len);
5470 break;
5471 /* Connect checks */
5472 case SCTP_SOCKOPT_CONNECTX:
5473 case SCTP_PARAM_SET_PRIMARY:
5474 case SCTP_PARAM_ADD_IP:
5475 case SCTP_SENDMSG_CONNECT:
5476 err = selinux_socket_connect_helper(sock, addr, len);
5477 if (err)
5478 return err;
5479
5480 /* As selinux_sctp_bind_connect() is called by the
5481 * SCTP protocol layer, the socket is already locked,
5482 * therefore selinux_netlbl_socket_connect_locked()
5483 * is called here. The situations handled are:
5484 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5485 * whenever a new IP address is added or when a new
5486 * primary address is selected.
5487 * Note that an SCTP connect(2) call happens before
5488 * the SCTP protocol layer and is handled via
5489 * selinux_socket_connect().
5490 */
5491 err = selinux_netlbl_socket_connect_locked(sk, addr);
5492 break;
5493 }
5494
5495 if (err)
5496 return err;
5497
5498 addr_buf += len;
5499 walk_size += len;
5500 }
5501
5502 return 0;
5503}
5504
5505/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5506static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
5507 struct sock *newsk)
5508{
5509 struct sk_security_struct *sksec = sk->sk_security;
5510 struct sk_security_struct *newsksec = newsk->sk_security;
5511
5512 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5513 * the non-sctp clone version.
5514 */
5515 if (!selinux_policycap_extsockclass())
5516 return selinux_sk_clone_security(sk, newsk);
5517
5518 newsksec->sid = ep->secid;
5519 newsksec->peer_sid = ep->peer_secid;
5520 newsksec->sclass = sksec->sclass;
5521 selinux_netlbl_sctp_sk_clone(sk, newsk);
5522}
5523
5524static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5525 struct request_sock *req)
5526{
5527 struct sk_security_struct *sksec = sk->sk_security;
5528 int err;
5529 u16 family = req->rsk_ops->family;
5530 u32 connsid;
5531 u32 peersid;
5532
5533 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5534 if (err)
5535 return err;
5536 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5537 if (err)
5538 return err;
5539 req->secid = connsid;
5540 req->peer_secid = peersid;
5541
5542 return selinux_netlbl_inet_conn_request(req, family);
5543}
5544
5545static void selinux_inet_csk_clone(struct sock *newsk,
5546 const struct request_sock *req)
5547{
5548 struct sk_security_struct *newsksec = newsk->sk_security;
5549
5550 newsksec->sid = req->secid;
5551 newsksec->peer_sid = req->peer_secid;
5552 /* NOTE: Ideally, we should also get the isec->sid for the
5553 new socket in sync, but we don't have the isec available yet.
5554 So we will wait until sock_graft to do it, by which
5555 time it will have been created and available. */
5556
5557 /* We don't need to take any sort of lock here as we are the only
5558 * thread with access to newsksec */
5559 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5560}
5561
5562static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5563{
5564 u16 family = sk->sk_family;
5565 struct sk_security_struct *sksec = sk->sk_security;
5566
5567 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5568 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5569 family = PF_INET;
5570
5571 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5572}
5573
5574static int selinux_secmark_relabel_packet(u32 sid)
5575{
5576 const struct task_security_struct *__tsec;
5577 u32 tsid;
5578
5579 __tsec = selinux_cred(current_cred());
5580 tsid = __tsec->sid;
5581
5582 return avc_has_perm(&selinux_state,
5583 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5584 NULL);
5585}
5586
5587static void selinux_secmark_refcount_inc(void)
5588{
5589 atomic_inc(&selinux_secmark_refcount);
5590}
5591
5592static void selinux_secmark_refcount_dec(void)
5593{
5594 atomic_dec(&selinux_secmark_refcount);
5595}
5596
5597static void selinux_req_classify_flow(const struct request_sock *req,
5598 struct flowi_common *flic)
5599{
5600 flic->flowic_secid = req->secid;
5601}
5602
5603static int selinux_tun_dev_alloc_security(void **security)
5604{
5605 struct tun_security_struct *tunsec;
5606
5607 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5608 if (!tunsec)
5609 return -ENOMEM;
5610 tunsec->sid = current_sid();
5611
5612 *security = tunsec;
5613 return 0;
5614}
5615
5616static void selinux_tun_dev_free_security(void *security)
5617{
5618 kfree(security);
5619}
5620
5621static int selinux_tun_dev_create(void)
5622{
5623 u32 sid = current_sid();
5624
5625 /* we aren't taking into account the "sockcreate" SID since the socket
5626 * that is being created here is not a socket in the traditional sense,
5627 * instead it is a private sock, accessible only to the kernel, and
5628 * representing a wide range of network traffic spanning multiple
5629 * connections unlike traditional sockets - check the TUN driver to
5630 * get a better understanding of why this socket is special */
5631
5632 return avc_has_perm(&selinux_state,
5633 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5634 NULL);
5635}
5636
5637static int selinux_tun_dev_attach_queue(void *security)
5638{
5639 struct tun_security_struct *tunsec = security;
5640
5641 return avc_has_perm(&selinux_state,
5642 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5643 TUN_SOCKET__ATTACH_QUEUE, NULL);
5644}
5645
5646static int selinux_tun_dev_attach(struct sock *sk, void *security)
5647{
5648 struct tun_security_struct *tunsec = security;
5649 struct sk_security_struct *sksec = sk->sk_security;
5650
5651 /* we don't currently perform any NetLabel based labeling here and it
5652 * isn't clear that we would want to do so anyway; while we could apply
5653 * labeling without the support of the TUN user the resulting labeled
5654 * traffic from the other end of the connection would almost certainly
5655 * cause confusion to the TUN user that had no idea network labeling
5656 * protocols were being used */
5657
5658 sksec->sid = tunsec->sid;
5659 sksec->sclass = SECCLASS_TUN_SOCKET;
5660
5661 return 0;
5662}
5663
5664static int selinux_tun_dev_open(void *security)
5665{
5666 struct tun_security_struct *tunsec = security;
5667 u32 sid = current_sid();
5668 int err;
5669
5670 err = avc_has_perm(&selinux_state,
5671 sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5672 TUN_SOCKET__RELABELFROM, NULL);
5673 if (err)
5674 return err;
5675 err = avc_has_perm(&selinux_state,
5676 sid, sid, SECCLASS_TUN_SOCKET,
5677 TUN_SOCKET__RELABELTO, NULL);
5678 if (err)
5679 return err;
5680 tunsec->sid = sid;
5681
5682 return 0;
5683}
5684
5685#ifdef CONFIG_NETFILTER
5686
5687static unsigned int selinux_ip_forward(struct sk_buff *skb,
5688 const struct net_device *indev,
5689 u16 family)
5690{
5691 int err;
5692 char *addrp;
5693 u32 peer_sid;
5694 struct common_audit_data ad;
5695 struct lsm_network_audit net = {0,};
5696 u8 secmark_active;
5697 u8 netlbl_active;
5698 u8 peerlbl_active;
5699
5700 if (!selinux_policycap_netpeer())
5701 return NF_ACCEPT;
5702
5703 secmark_active = selinux_secmark_enabled();
5704 netlbl_active = netlbl_enabled();
5705 peerlbl_active = selinux_peerlbl_enabled();
5706 if (!secmark_active && !peerlbl_active)
5707 return NF_ACCEPT;
5708
5709 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5710 return NF_DROP;
5711
5712 ad.type = LSM_AUDIT_DATA_NET;
5713 ad.u.net = &net;
5714 ad.u.net->netif = indev->ifindex;
5715 ad.u.net->family = family;
5716 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5717 return NF_DROP;
5718
5719 if (peerlbl_active) {
5720 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
5721 addrp, family, peer_sid, &ad);
5722 if (err) {
5723 selinux_netlbl_err(skb, family, err, 1);
5724 return NF_DROP;
5725 }
5726 }
5727
5728 if (secmark_active)
5729 if (avc_has_perm(&selinux_state,
5730 peer_sid, skb->secmark,
5731 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5732 return NF_DROP;
5733
5734 if (netlbl_active)
5735 /* we do this in the FORWARD path and not the POST_ROUTING
5736 * path because we want to make sure we apply the necessary
5737 * labeling before IPsec is applied so we can leverage AH
5738 * protection */
5739 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5740 return NF_DROP;
5741
5742 return NF_ACCEPT;
5743}
5744
5745static unsigned int selinux_ipv4_forward(void *priv,
5746 struct sk_buff *skb,
5747 const struct nf_hook_state *state)
5748{
5749 return selinux_ip_forward(skb, state->in, PF_INET);
5750}
5751
5752#if IS_ENABLED(CONFIG_IPV6)
5753static unsigned int selinux_ipv6_forward(void *priv,
5754 struct sk_buff *skb,
5755 const struct nf_hook_state *state)
5756{
5757 return selinux_ip_forward(skb, state->in, PF_INET6);
5758}
5759#endif /* IPV6 */
5760
5761static unsigned int selinux_ip_output(struct sk_buff *skb,
5762 u16 family)
5763{
5764 struct sock *sk;
5765 u32 sid;
5766
5767 if (!netlbl_enabled())
5768 return NF_ACCEPT;
5769
5770 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5771 * because we want to make sure we apply the necessary labeling
5772 * before IPsec is applied so we can leverage AH protection */
5773 sk = skb->sk;
5774 if (sk) {
5775 struct sk_security_struct *sksec;
5776
5777 if (sk_listener(sk))
5778 /* if the socket is the listening state then this
5779 * packet is a SYN-ACK packet which means it needs to
5780 * be labeled based on the connection/request_sock and
5781 * not the parent socket. unfortunately, we can't
5782 * lookup the request_sock yet as it isn't queued on
5783 * the parent socket until after the SYN-ACK is sent.
5784 * the "solution" is to simply pass the packet as-is
5785 * as any IP option based labeling should be copied
5786 * from the initial connection request (in the IP
5787 * layer). it is far from ideal, but until we get a
5788 * security label in the packet itself this is the
5789 * best we can do. */
5790 return NF_ACCEPT;
5791
5792 /* standard practice, label using the parent socket */
5793 sksec = sk->sk_security;
5794 sid = sksec->sid;
5795 } else
5796 sid = SECINITSID_KERNEL;
5797 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
5798 return NF_DROP;
5799
5800 return NF_ACCEPT;
5801}
5802
5803static unsigned int selinux_ipv4_output(void *priv,
5804 struct sk_buff *skb,
5805 const struct nf_hook_state *state)
5806{
5807 return selinux_ip_output(skb, PF_INET);
5808}
5809
5810#if IS_ENABLED(CONFIG_IPV6)
5811static unsigned int selinux_ipv6_output(void *priv,
5812 struct sk_buff *skb,
5813 const struct nf_hook_state *state)
5814{
5815 return selinux_ip_output(skb, PF_INET6);
5816}
5817#endif /* IPV6 */
5818
5819static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5820 int ifindex,
5821 u16 family)
5822{
5823 struct sock *sk = skb_to_full_sk(skb);
5824 struct sk_security_struct *sksec;
5825 struct common_audit_data ad;
5826 struct lsm_network_audit net = {0,};
5827 char *addrp;
5828 u8 proto;
5829
5830 if (sk == NULL)
5831 return NF_ACCEPT;
5832 sksec = sk->sk_security;
5833
5834 ad.type = LSM_AUDIT_DATA_NET;
5835 ad.u.net = &net;
5836 ad.u.net->netif = ifindex;
5837 ad.u.net->family = family;
5838 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5839 return NF_DROP;
5840
5841 if (selinux_secmark_enabled())
5842 if (avc_has_perm(&selinux_state,
5843 sksec->sid, skb->secmark,
5844 SECCLASS_PACKET, PACKET__SEND, &ad))
5845 return NF_DROP_ERR(-ECONNREFUSED);
5846
5847 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5848 return NF_DROP_ERR(-ECONNREFUSED);
5849
5850 return NF_ACCEPT;
5851}
5852
5853static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5854 const struct net_device *outdev,
5855 u16 family)
5856{
5857 u32 secmark_perm;
5858 u32 peer_sid;
5859 int ifindex = outdev->ifindex;
5860 struct sock *sk;
5861 struct common_audit_data ad;
5862 struct lsm_network_audit net = {0,};
5863 char *addrp;
5864 u8 secmark_active;
5865 u8 peerlbl_active;
5866
5867 /* If any sort of compatibility mode is enabled then handoff processing
5868 * to the selinux_ip_postroute_compat() function to deal with the
5869 * special handling. We do this in an attempt to keep this function
5870 * as fast and as clean as possible. */
5871 if (!selinux_policycap_netpeer())
5872 return selinux_ip_postroute_compat(skb, ifindex, family);
5873
5874 secmark_active = selinux_secmark_enabled();
5875 peerlbl_active = selinux_peerlbl_enabled();
5876 if (!secmark_active && !peerlbl_active)
5877 return NF_ACCEPT;
5878
5879 sk = skb_to_full_sk(skb);
5880
5881#ifdef CONFIG_XFRM
5882 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5883 * packet transformation so allow the packet to pass without any checks
5884 * since we'll have another chance to perform access control checks
5885 * when the packet is on it's final way out.
5886 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5887 * is NULL, in this case go ahead and apply access control.
5888 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5889 * TCP listening state we cannot wait until the XFRM processing
5890 * is done as we will miss out on the SA label if we do;
5891 * unfortunately, this means more work, but it is only once per
5892 * connection. */
5893 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5894 !(sk && sk_listener(sk)))
5895 return NF_ACCEPT;
5896#endif
5897
5898 if (sk == NULL) {
5899 /* Without an associated socket the packet is either coming
5900 * from the kernel or it is being forwarded; check the packet
5901 * to determine which and if the packet is being forwarded
5902 * query the packet directly to determine the security label. */
5903 if (skb->skb_iif) {
5904 secmark_perm = PACKET__FORWARD_OUT;
5905 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5906 return NF_DROP;
5907 } else {
5908 secmark_perm = PACKET__SEND;
5909 peer_sid = SECINITSID_KERNEL;
5910 }
5911 } else if (sk_listener(sk)) {
5912 /* Locally generated packet but the associated socket is in the
5913 * listening state which means this is a SYN-ACK packet. In
5914 * this particular case the correct security label is assigned
5915 * to the connection/request_sock but unfortunately we can't
5916 * query the request_sock as it isn't queued on the parent
5917 * socket until after the SYN-ACK packet is sent; the only
5918 * viable choice is to regenerate the label like we do in
5919 * selinux_inet_conn_request(). See also selinux_ip_output()
5920 * for similar problems. */
5921 u32 skb_sid;
5922 struct sk_security_struct *sksec;
5923
5924 sksec = sk->sk_security;
5925 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5926 return NF_DROP;
5927 /* At this point, if the returned skb peerlbl is SECSID_NULL
5928 * and the packet has been through at least one XFRM
5929 * transformation then we must be dealing with the "final"
5930 * form of labeled IPsec packet; since we've already applied
5931 * all of our access controls on this packet we can safely
5932 * pass the packet. */
5933 if (skb_sid == SECSID_NULL) {
5934 switch (family) {
5935 case PF_INET:
5936 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5937 return NF_ACCEPT;
5938 break;
5939 case PF_INET6:
5940 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5941 return NF_ACCEPT;
5942 break;
5943 default:
5944 return NF_DROP_ERR(-ECONNREFUSED);
5945 }
5946 }
5947 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5948 return NF_DROP;
5949 secmark_perm = PACKET__SEND;
5950 } else {
5951 /* Locally generated packet, fetch the security label from the
5952 * associated socket. */
5953 struct sk_security_struct *sksec = sk->sk_security;
5954 peer_sid = sksec->sid;
5955 secmark_perm = PACKET__SEND;
5956 }
5957
5958 ad.type = LSM_AUDIT_DATA_NET;
5959 ad.u.net = &net;
5960 ad.u.net->netif = ifindex;
5961 ad.u.net->family = family;
5962 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5963 return NF_DROP;
5964
5965 if (secmark_active)
5966 if (avc_has_perm(&selinux_state,
5967 peer_sid, skb->secmark,
5968 SECCLASS_PACKET, secmark_perm, &ad))
5969 return NF_DROP_ERR(-ECONNREFUSED);
5970
5971 if (peerlbl_active) {
5972 u32 if_sid;
5973 u32 node_sid;
5974
5975 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5976 return NF_DROP;
5977 if (avc_has_perm(&selinux_state,
5978 peer_sid, if_sid,
5979 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5980 return NF_DROP_ERR(-ECONNREFUSED);
5981
5982 if (sel_netnode_sid(addrp, family, &node_sid))
5983 return NF_DROP;
5984 if (avc_has_perm(&selinux_state,
5985 peer_sid, node_sid,
5986 SECCLASS_NODE, NODE__SENDTO, &ad))
5987 return NF_DROP_ERR(-ECONNREFUSED);
5988 }
5989
5990 return NF_ACCEPT;
5991}
5992
5993static unsigned int selinux_ipv4_postroute(void *priv,
5994 struct sk_buff *skb,
5995 const struct nf_hook_state *state)
5996{
5997 return selinux_ip_postroute(skb, state->out, PF_INET);
5998}
5999
6000#if IS_ENABLED(CONFIG_IPV6)
6001static unsigned int selinux_ipv6_postroute(void *priv,
6002 struct sk_buff *skb,
6003 const struct nf_hook_state *state)
6004{
6005 return selinux_ip_postroute(skb, state->out, PF_INET6);
6006}
6007#endif /* IPV6 */
6008
6009#endif /* CONFIG_NETFILTER */
6010
6011static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
6012{
6013 int rc = 0;
6014 unsigned int msg_len;
6015 unsigned int data_len = skb->len;
6016 unsigned char *data = skb->data;
6017 struct nlmsghdr *nlh;
6018 struct sk_security_struct *sksec = sk->sk_security;
6019 u16 sclass = sksec->sclass;
6020 u32 perm;
6021
6022 while (data_len >= nlmsg_total_size(0)) {
6023 nlh = (struct nlmsghdr *)data;
6024
6025 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
6026 * users which means we can't reject skb's with bogus
6027 * length fields; our solution is to follow what
6028 * netlink_rcv_skb() does and simply skip processing at
6029 * messages with length fields that are clearly junk
6030 */
6031 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
6032 return 0;
6033
6034 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
6035 if (rc == 0) {
6036 rc = sock_has_perm(sk, perm);
6037 if (rc)
6038 return rc;
6039 } else if (rc == -EINVAL) {
6040 /* -EINVAL is a missing msg/perm mapping */
6041 pr_warn_ratelimited("SELinux: unrecognized netlink"
6042 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
6043 " pid=%d comm=%s\n",
6044 sk->sk_protocol, nlh->nlmsg_type,
6045 secclass_map[sclass - 1].name,
6046 task_pid_nr(current), current->comm);
6047 if (enforcing_enabled(&selinux_state) &&
6048 !security_get_allow_unknown(&selinux_state))
6049 return rc;
6050 rc = 0;
6051 } else if (rc == -ENOENT) {
6052 /* -ENOENT is a missing socket/class mapping, ignore */
6053 rc = 0;
6054 } else {
6055 return rc;
6056 }
6057
6058 /* move to the next message after applying netlink padding */
6059 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6060 if (msg_len >= data_len)
6061 return 0;
6062 data_len -= msg_len;
6063 data += msg_len;
6064 }
6065
6066 return rc;
6067}
6068
6069static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6070{
6071 isec->sclass = sclass;
6072 isec->sid = current_sid();
6073}
6074
6075static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6076 u32 perms)
6077{
6078 struct ipc_security_struct *isec;
6079 struct common_audit_data ad;
6080 u32 sid = current_sid();
6081
6082 isec = selinux_ipc(ipc_perms);
6083
6084 ad.type = LSM_AUDIT_DATA_IPC;
6085 ad.u.ipc_id = ipc_perms->key;
6086
6087 return avc_has_perm(&selinux_state,
6088 sid, isec->sid, isec->sclass, perms, &ad);
6089}
6090
6091static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6092{
6093 struct msg_security_struct *msec;
6094
6095 msec = selinux_msg_msg(msg);
6096 msec->sid = SECINITSID_UNLABELED;
6097
6098 return 0;
6099}
6100
6101/* message queue security operations */
6102static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6103{
6104 struct ipc_security_struct *isec;
6105 struct common_audit_data ad;
6106 u32 sid = current_sid();
6107 int rc;
6108
6109 isec = selinux_ipc(msq);
6110 ipc_init_security(isec, SECCLASS_MSGQ);
6111
6112 ad.type = LSM_AUDIT_DATA_IPC;
6113 ad.u.ipc_id = msq->key;
6114
6115 rc = avc_has_perm(&selinux_state,
6116 sid, isec->sid, SECCLASS_MSGQ,
6117 MSGQ__CREATE, &ad);
6118 return rc;
6119}
6120
6121static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6122{
6123 struct ipc_security_struct *isec;
6124 struct common_audit_data ad;
6125 u32 sid = current_sid();
6126
6127 isec = selinux_ipc(msq);
6128
6129 ad.type = LSM_AUDIT_DATA_IPC;
6130 ad.u.ipc_id = msq->key;
6131
6132 return avc_has_perm(&selinux_state,
6133 sid, isec->sid, SECCLASS_MSGQ,
6134 MSGQ__ASSOCIATE, &ad);
6135}
6136
6137static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6138{
6139 int err;
6140 int perms;
6141
6142 switch (cmd) {
6143 case IPC_INFO:
6144 case MSG_INFO:
6145 /* No specific object, just general system-wide information. */
6146 return avc_has_perm(&selinux_state,
6147 current_sid(), SECINITSID_KERNEL,
6148 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6149 case IPC_STAT:
6150 case MSG_STAT:
6151 case MSG_STAT_ANY:
6152 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6153 break;
6154 case IPC_SET:
6155 perms = MSGQ__SETATTR;
6156 break;
6157 case IPC_RMID:
6158 perms = MSGQ__DESTROY;
6159 break;
6160 default:
6161 return 0;
6162 }
6163
6164 err = ipc_has_perm(msq, perms);
6165 return err;
6166}
6167
6168static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6169{
6170 struct ipc_security_struct *isec;
6171 struct msg_security_struct *msec;
6172 struct common_audit_data ad;
6173 u32 sid = current_sid();
6174 int rc;
6175
6176 isec = selinux_ipc(msq);
6177 msec = selinux_msg_msg(msg);
6178
6179 /*
6180 * First time through, need to assign label to the message
6181 */
6182 if (msec->sid == SECINITSID_UNLABELED) {
6183 /*
6184 * Compute new sid based on current process and
6185 * message queue this message will be stored in
6186 */
6187 rc = security_transition_sid(&selinux_state, sid, isec->sid,
6188 SECCLASS_MSG, NULL, &msec->sid);
6189 if (rc)
6190 return rc;
6191 }
6192
6193 ad.type = LSM_AUDIT_DATA_IPC;
6194 ad.u.ipc_id = msq->key;
6195
6196 /* Can this process write to the queue? */
6197 rc = avc_has_perm(&selinux_state,
6198 sid, isec->sid, SECCLASS_MSGQ,
6199 MSGQ__WRITE, &ad);
6200 if (!rc)
6201 /* Can this process send the message */
6202 rc = avc_has_perm(&selinux_state,
6203 sid, msec->sid, SECCLASS_MSG,
6204 MSG__SEND, &ad);
6205 if (!rc)
6206 /* Can the message be put in the queue? */
6207 rc = avc_has_perm(&selinux_state,
6208 msec->sid, isec->sid, SECCLASS_MSGQ,
6209 MSGQ__ENQUEUE, &ad);
6210
6211 return rc;
6212}
6213
6214static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6215 struct task_struct *target,
6216 long type, int mode)
6217{
6218 struct ipc_security_struct *isec;
6219 struct msg_security_struct *msec;
6220 struct common_audit_data ad;
6221 u32 sid = task_sid_obj(target);
6222 int rc;
6223
6224 isec = selinux_ipc(msq);
6225 msec = selinux_msg_msg(msg);
6226
6227 ad.type = LSM_AUDIT_DATA_IPC;
6228 ad.u.ipc_id = msq->key;
6229
6230 rc = avc_has_perm(&selinux_state,
6231 sid, isec->sid,
6232 SECCLASS_MSGQ, MSGQ__READ, &ad);
6233 if (!rc)
6234 rc = avc_has_perm(&selinux_state,
6235 sid, msec->sid,
6236 SECCLASS_MSG, MSG__RECEIVE, &ad);
6237 return rc;
6238}
6239
6240/* Shared Memory security operations */
6241static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6242{
6243 struct ipc_security_struct *isec;
6244 struct common_audit_data ad;
6245 u32 sid = current_sid();
6246 int rc;
6247
6248 isec = selinux_ipc(shp);
6249 ipc_init_security(isec, SECCLASS_SHM);
6250
6251 ad.type = LSM_AUDIT_DATA_IPC;
6252 ad.u.ipc_id = shp->key;
6253
6254 rc = avc_has_perm(&selinux_state,
6255 sid, isec->sid, SECCLASS_SHM,
6256 SHM__CREATE, &ad);
6257 return rc;
6258}
6259
6260static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6261{
6262 struct ipc_security_struct *isec;
6263 struct common_audit_data ad;
6264 u32 sid = current_sid();
6265
6266 isec = selinux_ipc(shp);
6267
6268 ad.type = LSM_AUDIT_DATA_IPC;
6269 ad.u.ipc_id = shp->key;
6270
6271 return avc_has_perm(&selinux_state,
6272 sid, isec->sid, SECCLASS_SHM,
6273 SHM__ASSOCIATE, &ad);
6274}
6275
6276/* Note, at this point, shp is locked down */
6277static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6278{
6279 int perms;
6280 int err;
6281
6282 switch (cmd) {
6283 case IPC_INFO:
6284 case SHM_INFO:
6285 /* No specific object, just general system-wide information. */
6286 return avc_has_perm(&selinux_state,
6287 current_sid(), SECINITSID_KERNEL,
6288 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6289 case IPC_STAT:
6290 case SHM_STAT:
6291 case SHM_STAT_ANY:
6292 perms = SHM__GETATTR | SHM__ASSOCIATE;
6293 break;
6294 case IPC_SET:
6295 perms = SHM__SETATTR;
6296 break;
6297 case SHM_LOCK:
6298 case SHM_UNLOCK:
6299 perms = SHM__LOCK;
6300 break;
6301 case IPC_RMID:
6302 perms = SHM__DESTROY;
6303 break;
6304 default:
6305 return 0;
6306 }
6307
6308 err = ipc_has_perm(shp, perms);
6309 return err;
6310}
6311
6312static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6313 char __user *shmaddr, int shmflg)
6314{
6315 u32 perms;
6316
6317 if (shmflg & SHM_RDONLY)
6318 perms = SHM__READ;
6319 else
6320 perms = SHM__READ | SHM__WRITE;
6321
6322 return ipc_has_perm(shp, perms);
6323}
6324
6325/* Semaphore security operations */
6326static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6327{
6328 struct ipc_security_struct *isec;
6329 struct common_audit_data ad;
6330 u32 sid = current_sid();
6331 int rc;
6332
6333 isec = selinux_ipc(sma);
6334 ipc_init_security(isec, SECCLASS_SEM);
6335
6336 ad.type = LSM_AUDIT_DATA_IPC;
6337 ad.u.ipc_id = sma->key;
6338
6339 rc = avc_has_perm(&selinux_state,
6340 sid, isec->sid, SECCLASS_SEM,
6341 SEM__CREATE, &ad);
6342 return rc;
6343}
6344
6345static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6346{
6347 struct ipc_security_struct *isec;
6348 struct common_audit_data ad;
6349 u32 sid = current_sid();
6350
6351 isec = selinux_ipc(sma);
6352
6353 ad.type = LSM_AUDIT_DATA_IPC;
6354 ad.u.ipc_id = sma->key;
6355
6356 return avc_has_perm(&selinux_state,
6357 sid, isec->sid, SECCLASS_SEM,
6358 SEM__ASSOCIATE, &ad);
6359}
6360
6361/* Note, at this point, sma is locked down */
6362static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6363{
6364 int err;
6365 u32 perms;
6366
6367 switch (cmd) {
6368 case IPC_INFO:
6369 case SEM_INFO:
6370 /* No specific object, just general system-wide information. */
6371 return avc_has_perm(&selinux_state,
6372 current_sid(), SECINITSID_KERNEL,
6373 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6374 case GETPID:
6375 case GETNCNT:
6376 case GETZCNT:
6377 perms = SEM__GETATTR;
6378 break;
6379 case GETVAL:
6380 case GETALL:
6381 perms = SEM__READ;
6382 break;
6383 case SETVAL:
6384 case SETALL:
6385 perms = SEM__WRITE;
6386 break;
6387 case IPC_RMID:
6388 perms = SEM__DESTROY;
6389 break;
6390 case IPC_SET:
6391 perms = SEM__SETATTR;
6392 break;
6393 case IPC_STAT:
6394 case SEM_STAT:
6395 case SEM_STAT_ANY:
6396 perms = SEM__GETATTR | SEM__ASSOCIATE;
6397 break;
6398 default:
6399 return 0;
6400 }
6401
6402 err = ipc_has_perm(sma, perms);
6403 return err;
6404}
6405
6406static int selinux_sem_semop(struct kern_ipc_perm *sma,
6407 struct sembuf *sops, unsigned nsops, int alter)
6408{
6409 u32 perms;
6410
6411 if (alter)
6412 perms = SEM__READ | SEM__WRITE;
6413 else
6414 perms = SEM__READ;
6415
6416 return ipc_has_perm(sma, perms);
6417}
6418
6419static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6420{
6421 u32 av = 0;
6422
6423 av = 0;
6424 if (flag & S_IRUGO)
6425 av |= IPC__UNIX_READ;
6426 if (flag & S_IWUGO)
6427 av |= IPC__UNIX_WRITE;
6428
6429 if (av == 0)
6430 return 0;
6431
6432 return ipc_has_perm(ipcp, av);
6433}
6434
6435static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6436{
6437 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6438 *secid = isec->sid;
6439}
6440
6441static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6442{
6443 if (inode)
6444 inode_doinit_with_dentry(inode, dentry);
6445}
6446
6447static int selinux_getprocattr(struct task_struct *p,
6448 char *name, char **value)
6449{
6450 const struct task_security_struct *__tsec;
6451 u32 sid;
6452 int error;
6453 unsigned len;
6454
6455 rcu_read_lock();
6456 __tsec = selinux_cred(__task_cred(p));
6457
6458 if (current != p) {
6459 error = avc_has_perm(&selinux_state,
6460 current_sid(), __tsec->sid,
6461 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6462 if (error)
6463 goto bad;
6464 }
6465
6466 if (!strcmp(name, "current"))
6467 sid = __tsec->sid;
6468 else if (!strcmp(name, "prev"))
6469 sid = __tsec->osid;
6470 else if (!strcmp(name, "exec"))
6471 sid = __tsec->exec_sid;
6472 else if (!strcmp(name, "fscreate"))
6473 sid = __tsec->create_sid;
6474 else if (!strcmp(name, "keycreate"))
6475 sid = __tsec->keycreate_sid;
6476 else if (!strcmp(name, "sockcreate"))
6477 sid = __tsec->sockcreate_sid;
6478 else {
6479 error = -EINVAL;
6480 goto bad;
6481 }
6482 rcu_read_unlock();
6483
6484 if (!sid)
6485 return 0;
6486
6487 error = security_sid_to_context(&selinux_state, sid, value, &len);
6488 if (error)
6489 return error;
6490 return len;
6491
6492bad:
6493 rcu_read_unlock();
6494 return error;
6495}
6496
6497static int selinux_setprocattr(const char *name, void *value, size_t size)
6498{
6499 struct task_security_struct *tsec;
6500 struct cred *new;
6501 u32 mysid = current_sid(), sid = 0, ptsid;
6502 int error;
6503 char *str = value;
6504
6505 /*
6506 * Basic control over ability to set these attributes at all.
6507 */
6508 if (!strcmp(name, "exec"))
6509 error = avc_has_perm(&selinux_state,
6510 mysid, mysid, SECCLASS_PROCESS,
6511 PROCESS__SETEXEC, NULL);
6512 else if (!strcmp(name, "fscreate"))
6513 error = avc_has_perm(&selinux_state,
6514 mysid, mysid, SECCLASS_PROCESS,
6515 PROCESS__SETFSCREATE, NULL);
6516 else if (!strcmp(name, "keycreate"))
6517 error = avc_has_perm(&selinux_state,
6518 mysid, mysid, SECCLASS_PROCESS,
6519 PROCESS__SETKEYCREATE, NULL);
6520 else if (!strcmp(name, "sockcreate"))
6521 error = avc_has_perm(&selinux_state,
6522 mysid, mysid, SECCLASS_PROCESS,
6523 PROCESS__SETSOCKCREATE, NULL);
6524 else if (!strcmp(name, "current"))
6525 error = avc_has_perm(&selinux_state,
6526 mysid, mysid, SECCLASS_PROCESS,
6527 PROCESS__SETCURRENT, NULL);
6528 else
6529 error = -EINVAL;
6530 if (error)
6531 return error;
6532
6533 /* Obtain a SID for the context, if one was specified. */
6534 if (size && str[0] && str[0] != '\n') {
6535 if (str[size-1] == '\n') {
6536 str[size-1] = 0;
6537 size--;
6538 }
6539 error = security_context_to_sid(&selinux_state, value, size,
6540 &sid, GFP_KERNEL);
6541 if (error == -EINVAL && !strcmp(name, "fscreate")) {
6542 if (!has_cap_mac_admin(true)) {
6543 struct audit_buffer *ab;
6544 size_t audit_size;
6545
6546 /* We strip a nul only if it is at the end, otherwise the
6547 * context contains a nul and we should audit that */
6548 if (str[size - 1] == '\0')
6549 audit_size = size - 1;
6550 else
6551 audit_size = size;
6552 ab = audit_log_start(audit_context(),
6553 GFP_ATOMIC,
6554 AUDIT_SELINUX_ERR);
6555 audit_log_format(ab, "op=fscreate invalid_context=");
6556 audit_log_n_untrustedstring(ab, value, audit_size);
6557 audit_log_end(ab);
6558
6559 return error;
6560 }
6561 error = security_context_to_sid_force(
6562 &selinux_state,
6563 value, size, &sid);
6564 }
6565 if (error)
6566 return error;
6567 }
6568
6569 new = prepare_creds();
6570 if (!new)
6571 return -ENOMEM;
6572
6573 /* Permission checking based on the specified context is
6574 performed during the actual operation (execve,
6575 open/mkdir/...), when we know the full context of the
6576 operation. See selinux_bprm_creds_for_exec for the execve
6577 checks and may_create for the file creation checks. The
6578 operation will then fail if the context is not permitted. */
6579 tsec = selinux_cred(new);
6580 if (!strcmp(name, "exec")) {
6581 tsec->exec_sid = sid;
6582 } else if (!strcmp(name, "fscreate")) {
6583 tsec->create_sid = sid;
6584 } else if (!strcmp(name, "keycreate")) {
6585 if (sid) {
6586 error = avc_has_perm(&selinux_state, mysid, sid,
6587 SECCLASS_KEY, KEY__CREATE, NULL);
6588 if (error)
6589 goto abort_change;
6590 }
6591 tsec->keycreate_sid = sid;
6592 } else if (!strcmp(name, "sockcreate")) {
6593 tsec->sockcreate_sid = sid;
6594 } else if (!strcmp(name, "current")) {
6595 error = -EINVAL;
6596 if (sid == 0)
6597 goto abort_change;
6598
6599 /* Only allow single threaded processes to change context */
6600 error = -EPERM;
6601 if (!current_is_single_threaded()) {
6602 error = security_bounded_transition(&selinux_state,
6603 tsec->sid, sid);
6604 if (error)
6605 goto abort_change;
6606 }
6607
6608 /* Check permissions for the transition. */
6609 error = avc_has_perm(&selinux_state,
6610 tsec->sid, sid, SECCLASS_PROCESS,
6611 PROCESS__DYNTRANSITION, NULL);
6612 if (error)
6613 goto abort_change;
6614
6615 /* Check for ptracing, and update the task SID if ok.
6616 Otherwise, leave SID unchanged and fail. */
6617 ptsid = ptrace_parent_sid();
6618 if (ptsid != 0) {
6619 error = avc_has_perm(&selinux_state,
6620 ptsid, sid, SECCLASS_PROCESS,
6621 PROCESS__PTRACE, NULL);
6622 if (error)
6623 goto abort_change;
6624 }
6625
6626 tsec->sid = sid;
6627 } else {
6628 error = -EINVAL;
6629 goto abort_change;
6630 }
6631
6632 commit_creds(new);
6633 return size;
6634
6635abort_change:
6636 abort_creds(new);
6637 return error;
6638}
6639
6640static int selinux_ismaclabel(const char *name)
6641{
6642 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6643}
6644
6645static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6646{
6647 return security_sid_to_context(&selinux_state, secid,
6648 secdata, seclen);
6649}
6650
6651static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6652{
6653 return security_context_to_sid(&selinux_state, secdata, seclen,
6654 secid, GFP_KERNEL);
6655}
6656
6657static void selinux_release_secctx(char *secdata, u32 seclen)
6658{
6659 kfree(secdata);
6660}
6661
6662static void selinux_inode_invalidate_secctx(struct inode *inode)
6663{
6664 struct inode_security_struct *isec = selinux_inode(inode);
6665
6666 spin_lock(&isec->lock);
6667 isec->initialized = LABEL_INVALID;
6668 spin_unlock(&isec->lock);
6669}
6670
6671/*
6672 * called with inode->i_mutex locked
6673 */
6674static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6675{
6676 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6677 ctx, ctxlen, 0);
6678 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6679 return rc == -EOPNOTSUPP ? 0 : rc;
6680}
6681
6682/*
6683 * called with inode->i_mutex locked
6684 */
6685static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6686{
6687 return __vfs_setxattr_noperm(&init_user_ns, dentry, XATTR_NAME_SELINUX,
6688 ctx, ctxlen, 0);
6689}
6690
6691static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6692{
6693 int len = 0;
6694 len = selinux_inode_getsecurity(&init_user_ns, inode,
6695 XATTR_SELINUX_SUFFIX, ctx, true);
6696 if (len < 0)
6697 return len;
6698 *ctxlen = len;
6699 return 0;
6700}
6701#ifdef CONFIG_KEYS
6702
6703static int selinux_key_alloc(struct key *k, const struct cred *cred,
6704 unsigned long flags)
6705{
6706 const struct task_security_struct *tsec;
6707 struct key_security_struct *ksec;
6708
6709 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6710 if (!ksec)
6711 return -ENOMEM;
6712
6713 tsec = selinux_cred(cred);
6714 if (tsec->keycreate_sid)
6715 ksec->sid = tsec->keycreate_sid;
6716 else
6717 ksec->sid = tsec->sid;
6718
6719 k->security = ksec;
6720 return 0;
6721}
6722
6723static void selinux_key_free(struct key *k)
6724{
6725 struct key_security_struct *ksec = k->security;
6726
6727 k->security = NULL;
6728 kfree(ksec);
6729}
6730
6731static int selinux_key_permission(key_ref_t key_ref,
6732 const struct cred *cred,
6733 enum key_need_perm need_perm)
6734{
6735 struct key *key;
6736 struct key_security_struct *ksec;
6737 u32 perm, sid;
6738
6739 switch (need_perm) {
6740 case KEY_NEED_VIEW:
6741 perm = KEY__VIEW;
6742 break;
6743 case KEY_NEED_READ:
6744 perm = KEY__READ;
6745 break;
6746 case KEY_NEED_WRITE:
6747 perm = KEY__WRITE;
6748 break;
6749 case KEY_NEED_SEARCH:
6750 perm = KEY__SEARCH;
6751 break;
6752 case KEY_NEED_LINK:
6753 perm = KEY__LINK;
6754 break;
6755 case KEY_NEED_SETATTR:
6756 perm = KEY__SETATTR;
6757 break;
6758 case KEY_NEED_UNLINK:
6759 case KEY_SYSADMIN_OVERRIDE:
6760 case KEY_AUTHTOKEN_OVERRIDE:
6761 case KEY_DEFER_PERM_CHECK:
6762 return 0;
6763 default:
6764 WARN_ON(1);
6765 return -EPERM;
6766
6767 }
6768
6769 sid = cred_sid(cred);
6770 key = key_ref_to_ptr(key_ref);
6771 ksec = key->security;
6772
6773 return avc_has_perm(&selinux_state,
6774 sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6775}
6776
6777static int selinux_key_getsecurity(struct key *key, char **_buffer)
6778{
6779 struct key_security_struct *ksec = key->security;
6780 char *context = NULL;
6781 unsigned len;
6782 int rc;
6783
6784 rc = security_sid_to_context(&selinux_state, ksec->sid,
6785 &context, &len);
6786 if (!rc)
6787 rc = len;
6788 *_buffer = context;
6789 return rc;
6790}
6791
6792#ifdef CONFIG_KEY_NOTIFICATIONS
6793static int selinux_watch_key(struct key *key)
6794{
6795 struct key_security_struct *ksec = key->security;
6796 u32 sid = current_sid();
6797
6798 return avc_has_perm(&selinux_state,
6799 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6800}
6801#endif
6802#endif
6803
6804#ifdef CONFIG_SECURITY_INFINIBAND
6805static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6806{
6807 struct common_audit_data ad;
6808 int err;
6809 u32 sid = 0;
6810 struct ib_security_struct *sec = ib_sec;
6811 struct lsm_ibpkey_audit ibpkey;
6812
6813 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6814 if (err)
6815 return err;
6816
6817 ad.type = LSM_AUDIT_DATA_IBPKEY;
6818 ibpkey.subnet_prefix = subnet_prefix;
6819 ibpkey.pkey = pkey_val;
6820 ad.u.ibpkey = &ibpkey;
6821 return avc_has_perm(&selinux_state,
6822 sec->sid, sid,
6823 SECCLASS_INFINIBAND_PKEY,
6824 INFINIBAND_PKEY__ACCESS, &ad);
6825}
6826
6827static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6828 u8 port_num)
6829{
6830 struct common_audit_data ad;
6831 int err;
6832 u32 sid = 0;
6833 struct ib_security_struct *sec = ib_sec;
6834 struct lsm_ibendport_audit ibendport;
6835
6836 err = security_ib_endport_sid(&selinux_state, dev_name, port_num,
6837 &sid);
6838
6839 if (err)
6840 return err;
6841
6842 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6843 ibendport.dev_name = dev_name;
6844 ibendport.port = port_num;
6845 ad.u.ibendport = &ibendport;
6846 return avc_has_perm(&selinux_state,
6847 sec->sid, sid,
6848 SECCLASS_INFINIBAND_ENDPORT,
6849 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6850}
6851
6852static int selinux_ib_alloc_security(void **ib_sec)
6853{
6854 struct ib_security_struct *sec;
6855
6856 sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6857 if (!sec)
6858 return -ENOMEM;
6859 sec->sid = current_sid();
6860
6861 *ib_sec = sec;
6862 return 0;
6863}
6864
6865static void selinux_ib_free_security(void *ib_sec)
6866{
6867 kfree(ib_sec);
6868}
6869#endif
6870
6871#ifdef CONFIG_BPF_SYSCALL
6872static int selinux_bpf(int cmd, union bpf_attr *attr,
6873 unsigned int size)
6874{
6875 u32 sid = current_sid();
6876 int ret;
6877
6878 switch (cmd) {
6879 case BPF_MAP_CREATE:
6880 ret = avc_has_perm(&selinux_state,
6881 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6882 NULL);
6883 break;
6884 case BPF_PROG_LOAD:
6885 ret = avc_has_perm(&selinux_state,
6886 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6887 NULL);
6888 break;
6889 default:
6890 ret = 0;
6891 break;
6892 }
6893
6894 return ret;
6895}
6896
6897static u32 bpf_map_fmode_to_av(fmode_t fmode)
6898{
6899 u32 av = 0;
6900
6901 if (fmode & FMODE_READ)
6902 av |= BPF__MAP_READ;
6903 if (fmode & FMODE_WRITE)
6904 av |= BPF__MAP_WRITE;
6905 return av;
6906}
6907
6908/* This function will check the file pass through unix socket or binder to see
6909 * if it is a bpf related object. And apply correspinding checks on the bpf
6910 * object based on the type. The bpf maps and programs, not like other files and
6911 * socket, are using a shared anonymous inode inside the kernel as their inode.
6912 * So checking that inode cannot identify if the process have privilege to
6913 * access the bpf object and that's why we have to add this additional check in
6914 * selinux_file_receive and selinux_binder_transfer_files.
6915 */
6916static int bpf_fd_pass(struct file *file, u32 sid)
6917{
6918 struct bpf_security_struct *bpfsec;
6919 struct bpf_prog *prog;
6920 struct bpf_map *map;
6921 int ret;
6922
6923 if (file->f_op == &bpf_map_fops) {
6924 map = file->private_data;
6925 bpfsec = map->security;
6926 ret = avc_has_perm(&selinux_state,
6927 sid, bpfsec->sid, SECCLASS_BPF,
6928 bpf_map_fmode_to_av(file->f_mode), NULL);
6929 if (ret)
6930 return ret;
6931 } else if (file->f_op == &bpf_prog_fops) {
6932 prog = file->private_data;
6933 bpfsec = prog->aux->security;
6934 ret = avc_has_perm(&selinux_state,
6935 sid, bpfsec->sid, SECCLASS_BPF,
6936 BPF__PROG_RUN, NULL);
6937 if (ret)
6938 return ret;
6939 }
6940 return 0;
6941}
6942
6943static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6944{
6945 u32 sid = current_sid();
6946 struct bpf_security_struct *bpfsec;
6947
6948 bpfsec = map->security;
6949 return avc_has_perm(&selinux_state,
6950 sid, bpfsec->sid, SECCLASS_BPF,
6951 bpf_map_fmode_to_av(fmode), NULL);
6952}
6953
6954static int selinux_bpf_prog(struct bpf_prog *prog)
6955{
6956 u32 sid = current_sid();
6957 struct bpf_security_struct *bpfsec;
6958
6959 bpfsec = prog->aux->security;
6960 return avc_has_perm(&selinux_state,
6961 sid, bpfsec->sid, SECCLASS_BPF,
6962 BPF__PROG_RUN, NULL);
6963}
6964
6965static int selinux_bpf_map_alloc(struct bpf_map *map)
6966{
6967 struct bpf_security_struct *bpfsec;
6968
6969 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6970 if (!bpfsec)
6971 return -ENOMEM;
6972
6973 bpfsec->sid = current_sid();
6974 map->security = bpfsec;
6975
6976 return 0;
6977}
6978
6979static void selinux_bpf_map_free(struct bpf_map *map)
6980{
6981 struct bpf_security_struct *bpfsec = map->security;
6982
6983 map->security = NULL;
6984 kfree(bpfsec);
6985}
6986
6987static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6988{
6989 struct bpf_security_struct *bpfsec;
6990
6991 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6992 if (!bpfsec)
6993 return -ENOMEM;
6994
6995 bpfsec->sid = current_sid();
6996 aux->security = bpfsec;
6997
6998 return 0;
6999}
7000
7001static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
7002{
7003 struct bpf_security_struct *bpfsec = aux->security;
7004
7005 aux->security = NULL;
7006 kfree(bpfsec);
7007}
7008#endif
7009
7010static int selinux_lockdown(enum lockdown_reason what)
7011{
7012 struct common_audit_data ad;
7013 u32 sid = current_sid();
7014 int invalid_reason = (what <= LOCKDOWN_NONE) ||
7015 (what == LOCKDOWN_INTEGRITY_MAX) ||
7016 (what >= LOCKDOWN_CONFIDENTIALITY_MAX);
7017
7018 if (WARN(invalid_reason, "Invalid lockdown reason")) {
7019 audit_log(audit_context(),
7020 GFP_ATOMIC, AUDIT_SELINUX_ERR,
7021 "lockdown_reason=invalid");
7022 return -EINVAL;
7023 }
7024
7025 ad.type = LSM_AUDIT_DATA_LOCKDOWN;
7026 ad.u.reason = what;
7027
7028 if (what <= LOCKDOWN_INTEGRITY_MAX)
7029 return avc_has_perm(&selinux_state,
7030 sid, sid, SECCLASS_LOCKDOWN,
7031 LOCKDOWN__INTEGRITY, &ad);
7032 else
7033 return avc_has_perm(&selinux_state,
7034 sid, sid, SECCLASS_LOCKDOWN,
7035 LOCKDOWN__CONFIDENTIALITY, &ad);
7036}
7037
7038struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = {
7039 .lbs_cred = sizeof(struct task_security_struct),
7040 .lbs_file = sizeof(struct file_security_struct),
7041 .lbs_inode = sizeof(struct inode_security_struct),
7042 .lbs_ipc = sizeof(struct ipc_security_struct),
7043 .lbs_msg_msg = sizeof(struct msg_security_struct),
7044 .lbs_superblock = sizeof(struct superblock_security_struct),
7045};
7046
7047#ifdef CONFIG_PERF_EVENTS
7048static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7049{
7050 u32 requested, sid = current_sid();
7051
7052 if (type == PERF_SECURITY_OPEN)
7053 requested = PERF_EVENT__OPEN;
7054 else if (type == PERF_SECURITY_CPU)
7055 requested = PERF_EVENT__CPU;
7056 else if (type == PERF_SECURITY_KERNEL)
7057 requested = PERF_EVENT__KERNEL;
7058 else if (type == PERF_SECURITY_TRACEPOINT)
7059 requested = PERF_EVENT__TRACEPOINT;
7060 else
7061 return -EINVAL;
7062
7063 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT,
7064 requested, NULL);
7065}
7066
7067static int selinux_perf_event_alloc(struct perf_event *event)
7068{
7069 struct perf_event_security_struct *perfsec;
7070
7071 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7072 if (!perfsec)
7073 return -ENOMEM;
7074
7075 perfsec->sid = current_sid();
7076 event->security = perfsec;
7077
7078 return 0;
7079}
7080
7081static void selinux_perf_event_free(struct perf_event *event)
7082{
7083 struct perf_event_security_struct *perfsec = event->security;
7084
7085 event->security = NULL;
7086 kfree(perfsec);
7087}
7088
7089static int selinux_perf_event_read(struct perf_event *event)
7090{
7091 struct perf_event_security_struct *perfsec = event->security;
7092 u32 sid = current_sid();
7093
7094 return avc_has_perm(&selinux_state, sid, perfsec->sid,
7095 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7096}
7097
7098static int selinux_perf_event_write(struct perf_event *event)
7099{
7100 struct perf_event_security_struct *perfsec = event->security;
7101 u32 sid = current_sid();
7102
7103 return avc_has_perm(&selinux_state, sid, perfsec->sid,
7104 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7105}
7106#endif
7107
7108/*
7109 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7110 * 1. any hooks that don't belong to (2.) or (3.) below,
7111 * 2. hooks that both access structures allocated by other hooks, and allocate
7112 * structures that can be later accessed by other hooks (mostly "cloning"
7113 * hooks),
7114 * 3. hooks that only allocate structures that can be later accessed by other
7115 * hooks ("allocating" hooks).
7116 *
7117 * Please follow block comment delimiters in the list to keep this order.
7118 *
7119 * This ordering is needed for SELinux runtime disable to work at least somewhat
7120 * safely. Breaking the ordering rules above might lead to NULL pointer derefs
7121 * when disabling SELinux at runtime.
7122 */
7123static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = {
7124 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7125 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7126 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7127 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7128
7129 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7130 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7131 LSM_HOOK_INIT(capget, selinux_capget),
7132 LSM_HOOK_INIT(capset, selinux_capset),
7133 LSM_HOOK_INIT(capable, selinux_capable),
7134 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7135 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7136 LSM_HOOK_INIT(syslog, selinux_syslog),
7137 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7138
7139 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7140
7141 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7142 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7143 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7144
7145 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7146 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7147 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7148 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7149 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7150 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7151 LSM_HOOK_INIT(sb_mount, selinux_mount),
7152 LSM_HOOK_INIT(sb_umount, selinux_umount),
7153 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7154 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7155
7156 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7157
7158 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7159 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7160
7161 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7162 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7163 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7164 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7165 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7166 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7167 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7168 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7169 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7170 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7171 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7172 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7173 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7174 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7175 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7176 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7177 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7178 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7179 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7180 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7181 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7182 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7183 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7184 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7185 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7186 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7187 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7188 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7189
7190 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7191
7192 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7193 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7194 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7195 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7196 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7197 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7198 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7199 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7200 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7201 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7202 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7203
7204 LSM_HOOK_INIT(file_open, selinux_file_open),
7205
7206 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7207 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7208 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7209 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7210 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7211 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7212 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7213 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7214 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7215 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7216 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7217 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7218 LSM_HOOK_INIT(task_getsecid_subj, selinux_task_getsecid_subj),
7219 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7220 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7221 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7222 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7223 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7224 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7225 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7226 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7227 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7228 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7229 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7230
7231 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7232 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7233
7234 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7235 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7236 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7237 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7238
7239 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7240 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7241 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7242
7243 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7244 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7245 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7246
7247 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7248
7249 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7250 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7251
7252 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7253 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7254 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7255 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7256 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7257 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7258
7259 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7260 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7261
7262 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7263 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7264 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7265 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7266 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7267 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7268 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7269 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7270 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7271 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7272 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7273 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7274 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7275 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7276 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7277 LSM_HOOK_INIT(socket_getpeersec_stream,
7278 selinux_socket_getpeersec_stream),
7279 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7280 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7281 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7282 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7283 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7284 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7285 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7286 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7287 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7288 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7289 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7290 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7291 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7292 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7293 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7294 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7295 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7296 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7297 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7298 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7299#ifdef CONFIG_SECURITY_INFINIBAND
7300 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7301 LSM_HOOK_INIT(ib_endport_manage_subnet,
7302 selinux_ib_endport_manage_subnet),
7303 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7304#endif
7305#ifdef CONFIG_SECURITY_NETWORK_XFRM
7306 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7307 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7308 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7309 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7310 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7311 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7312 selinux_xfrm_state_pol_flow_match),
7313 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7314#endif
7315
7316#ifdef CONFIG_KEYS
7317 LSM_HOOK_INIT(key_free, selinux_key_free),
7318 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7319 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7320#ifdef CONFIG_KEY_NOTIFICATIONS
7321 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7322#endif
7323#endif
7324
7325#ifdef CONFIG_AUDIT
7326 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7327 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7328 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7329#endif
7330
7331#ifdef CONFIG_BPF_SYSCALL
7332 LSM_HOOK_INIT(bpf, selinux_bpf),
7333 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7334 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7335 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7336 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7337#endif
7338
7339#ifdef CONFIG_PERF_EVENTS
7340 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7341 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7342 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7343 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7344#endif
7345
7346 LSM_HOOK_INIT(locked_down, selinux_lockdown),
7347
7348 /*
7349 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7350 */
7351 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7352 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7353 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7354 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt),
7355#ifdef CONFIG_SECURITY_NETWORK_XFRM
7356 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7357#endif
7358
7359 /*
7360 * PUT "ALLOCATING" HOOKS HERE
7361 */
7362 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7363 LSM_HOOK_INIT(msg_queue_alloc_security,
7364 selinux_msg_queue_alloc_security),
7365 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7366 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7367 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7368 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7369 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7370 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7371 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7372 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7373#ifdef CONFIG_SECURITY_INFINIBAND
7374 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7375#endif
7376#ifdef CONFIG_SECURITY_NETWORK_XFRM
7377 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7378 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7379 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7380 selinux_xfrm_state_alloc_acquire),
7381#endif
7382#ifdef CONFIG_KEYS
7383 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7384#endif
7385#ifdef CONFIG_AUDIT
7386 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7387#endif
7388#ifdef CONFIG_BPF_SYSCALL
7389 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7390 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7391#endif
7392#ifdef CONFIG_PERF_EVENTS
7393 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7394#endif
7395};
7396
7397static __init int selinux_init(void)
7398{
7399 pr_info("SELinux: Initializing.\n");
7400
7401 memset(&selinux_state, 0, sizeof(selinux_state));
7402 enforcing_set(&selinux_state, selinux_enforcing_boot);
7403 checkreqprot_set(&selinux_state, selinux_checkreqprot_boot);
7404 selinux_avc_init(&selinux_state.avc);
7405 mutex_init(&selinux_state.status_lock);
7406 mutex_init(&selinux_state.policy_mutex);
7407
7408 /* Set the security state for the initial task. */
7409 cred_init_security();
7410
7411 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7412
7413 avc_init();
7414
7415 avtab_cache_init();
7416
7417 ebitmap_cache_init();
7418
7419 hashtab_cache_init();
7420
7421 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux");
7422
7423 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7424 panic("SELinux: Unable to register AVC netcache callback\n");
7425
7426 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7427 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7428
7429 if (selinux_enforcing_boot)
7430 pr_debug("SELinux: Starting in enforcing mode\n");
7431 else
7432 pr_debug("SELinux: Starting in permissive mode\n");
7433
7434 fs_validate_description("selinux", selinux_fs_parameters);
7435
7436 return 0;
7437}
7438
7439static void delayed_superblock_init(struct super_block *sb, void *unused)
7440{
7441 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7442}
7443
7444void selinux_complete_init(void)
7445{
7446 pr_debug("SELinux: Completing initialization.\n");
7447
7448 /* Set up any superblocks initialized prior to the policy load. */
7449 pr_debug("SELinux: Setting up existing superblocks.\n");
7450 iterate_supers(delayed_superblock_init, NULL);
7451}
7452
7453/* SELinux requires early initialization in order to label
7454 all processes and objects when they are created. */
7455DEFINE_LSM(selinux) = {
7456 .name = "selinux",
7457 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7458 .enabled = &selinux_enabled_boot,
7459 .blobs = &selinux_blob_sizes,
7460 .init = selinux_init,
7461};
7462
7463#if defined(CONFIG_NETFILTER)
7464
7465static const struct nf_hook_ops selinux_nf_ops[] = {
7466 {
7467 .hook = selinux_ipv4_postroute,
7468 .pf = NFPROTO_IPV4,
7469 .hooknum = NF_INET_POST_ROUTING,
7470 .priority = NF_IP_PRI_SELINUX_LAST,
7471 },
7472 {
7473 .hook = selinux_ipv4_forward,
7474 .pf = NFPROTO_IPV4,
7475 .hooknum = NF_INET_FORWARD,
7476 .priority = NF_IP_PRI_SELINUX_FIRST,
7477 },
7478 {
7479 .hook = selinux_ipv4_output,
7480 .pf = NFPROTO_IPV4,
7481 .hooknum = NF_INET_LOCAL_OUT,
7482 .priority = NF_IP_PRI_SELINUX_FIRST,
7483 },
7484#if IS_ENABLED(CONFIG_IPV6)
7485 {
7486 .hook = selinux_ipv6_postroute,
7487 .pf = NFPROTO_IPV6,
7488 .hooknum = NF_INET_POST_ROUTING,
7489 .priority = NF_IP6_PRI_SELINUX_LAST,
7490 },
7491 {
7492 .hook = selinux_ipv6_forward,
7493 .pf = NFPROTO_IPV6,
7494 .hooknum = NF_INET_FORWARD,
7495 .priority = NF_IP6_PRI_SELINUX_FIRST,
7496 },
7497 {
7498 .hook = selinux_ipv6_output,
7499 .pf = NFPROTO_IPV6,
7500 .hooknum = NF_INET_LOCAL_OUT,
7501 .priority = NF_IP6_PRI_SELINUX_FIRST,
7502 },
7503#endif /* IPV6 */
7504};
7505
7506static int __net_init selinux_nf_register(struct net *net)
7507{
7508 return nf_register_net_hooks(net, selinux_nf_ops,
7509 ARRAY_SIZE(selinux_nf_ops));
7510}
7511
7512static void __net_exit selinux_nf_unregister(struct net *net)
7513{
7514 nf_unregister_net_hooks(net, selinux_nf_ops,
7515 ARRAY_SIZE(selinux_nf_ops));
7516}
7517
7518static struct pernet_operations selinux_net_ops = {
7519 .init = selinux_nf_register,
7520 .exit = selinux_nf_unregister,
7521};
7522
7523static int __init selinux_nf_ip_init(void)
7524{
7525 int err;
7526
7527 if (!selinux_enabled_boot)
7528 return 0;
7529
7530 pr_debug("SELinux: Registering netfilter hooks\n");
7531
7532 err = register_pernet_subsys(&selinux_net_ops);
7533 if (err)
7534 panic("SELinux: register_pernet_subsys: error %d\n", err);
7535
7536 return 0;
7537}
7538__initcall(selinux_nf_ip_init);
7539
7540#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7541static void selinux_nf_ip_exit(void)
7542{
7543 pr_debug("SELinux: Unregistering netfilter hooks\n");
7544
7545 unregister_pernet_subsys(&selinux_net_ops);
7546}
7547#endif
7548
7549#else /* CONFIG_NETFILTER */
7550
7551#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7552#define selinux_nf_ip_exit()
7553#endif
7554
7555#endif /* CONFIG_NETFILTER */
7556
7557#ifdef CONFIG_SECURITY_SELINUX_DISABLE
7558int selinux_disable(struct selinux_state *state)
7559{
7560 if (selinux_initialized(state)) {
7561 /* Not permitted after initial policy load. */
7562 return -EINVAL;
7563 }
7564
7565 if (selinux_disabled(state)) {
7566 /* Only do this once. */
7567 return -EINVAL;
7568 }
7569
7570 selinux_mark_disabled(state);
7571
7572 pr_info("SELinux: Disabled at runtime.\n");
7573
7574 /*
7575 * Unregister netfilter hooks.
7576 * Must be done before security_delete_hooks() to avoid breaking
7577 * runtime disable.
7578 */
7579 selinux_nf_ip_exit();
7580
7581 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
7582
7583 /* Try to destroy the avc node cache */
7584 avc_disable();
7585
7586 /* Unregister selinuxfs. */
7587 exit_sel_fs();
7588
7589 return 0;
7590}
7591#endif