Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <uapi/linux/shm.h>
89#include <linux/bpf.h>
90#include <linux/kernfs.h>
91#include <linux/stringhash.h> /* for hashlen_string() */
92#include <uapi/linux/mount.h>
93#include <linux/fsnotify.h>
94#include <linux/fanotify.h>
95#include <linux/io_uring/cmd.h>
96#include <uapi/linux/lsm.h>
97
98#include "avc.h"
99#include "objsec.h"
100#include "netif.h"
101#include "netnode.h"
102#include "netport.h"
103#include "ibpkey.h"
104#include "xfrm.h"
105#include "netlabel.h"
106#include "audit.h"
107#include "avc_ss.h"
108
109#define SELINUX_INODE_INIT_XATTRS 1
110
111struct selinux_state selinux_state;
112
113/* SECMARK reference count */
114static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115
116#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117static int selinux_enforcing_boot __initdata;
118
119static int __init enforcing_setup(char *str)
120{
121 unsigned long enforcing;
122 if (!kstrtoul(str, 0, &enforcing))
123 selinux_enforcing_boot = enforcing ? 1 : 0;
124 return 1;
125}
126__setup("enforcing=", enforcing_setup);
127#else
128#define selinux_enforcing_boot 1
129#endif
130
131int selinux_enabled_boot __initdata = 1;
132#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133static int __init selinux_enabled_setup(char *str)
134{
135 unsigned long enabled;
136 if (!kstrtoul(str, 0, &enabled))
137 selinux_enabled_boot = enabled ? 1 : 0;
138 return 1;
139}
140__setup("selinux=", selinux_enabled_setup);
141#endif
142
143static int __init checkreqprot_setup(char *str)
144{
145 unsigned long checkreqprot;
146
147 if (!kstrtoul(str, 0, &checkreqprot)) {
148 if (checkreqprot)
149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218}
219
220/*
221 * get the security ID of a set of credentials
222 */
223static inline u32 cred_sid(const struct cred *cred)
224{
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229}
230
231static void __ad_net_init(struct common_audit_data *ad,
232 struct lsm_network_audit *net,
233 int ifindex, struct sock *sk, u16 family)
234{
235 ad->type = LSM_AUDIT_DATA_NET;
236 ad->u.net = net;
237 net->netif = ifindex;
238 net->sk = sk;
239 net->family = family;
240}
241
242static void ad_net_init_from_sk(struct common_audit_data *ad,
243 struct lsm_network_audit *net,
244 struct sock *sk)
245{
246 __ad_net_init(ad, net, 0, sk, 0);
247}
248
249static void ad_net_init_from_iif(struct common_audit_data *ad,
250 struct lsm_network_audit *net,
251 int ifindex, u16 family)
252{
253 __ad_net_init(ad, net, ifindex, NULL, family);
254}
255
256/*
257 * get the objective security ID of a task
258 */
259static inline u32 task_sid_obj(const struct task_struct *task)
260{
261 u32 sid;
262
263 rcu_read_lock();
264 sid = cred_sid(__task_cred(task));
265 rcu_read_unlock();
266 return sid;
267}
268
269static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270
271/*
272 * Try reloading inode security labels that have been marked as invalid. The
273 * @may_sleep parameter indicates when sleeping and thus reloading labels is
274 * allowed; when set to false, returns -ECHILD when the label is
275 * invalid. The @dentry parameter should be set to a dentry of the inode.
276 */
277static int __inode_security_revalidate(struct inode *inode,
278 struct dentry *dentry,
279 bool may_sleep)
280{
281 struct inode_security_struct *isec = selinux_inode(inode);
282
283 might_sleep_if(may_sleep);
284
285 /*
286 * The check of isec->initialized below is racy but
287 * inode_doinit_with_dentry() will recheck with
288 * isec->lock held.
289 */
290 if (selinux_initialized() &&
291 data_race(isec->initialized != LABEL_INITIALIZED)) {
292 if (!may_sleep)
293 return -ECHILD;
294
295 /*
296 * Try reloading the inode security label. This will fail if
297 * @opt_dentry is NULL and no dentry for this inode can be
298 * found; in that case, continue using the old label.
299 */
300 inode_doinit_with_dentry(inode, dentry);
301 }
302 return 0;
303}
304
305static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
306{
307 return selinux_inode(inode);
308}
309
310static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
311{
312 int error;
313
314 error = __inode_security_revalidate(inode, NULL, !rcu);
315 if (error)
316 return ERR_PTR(error);
317 return selinux_inode(inode);
318}
319
320/*
321 * Get the security label of an inode.
322 */
323static struct inode_security_struct *inode_security(struct inode *inode)
324{
325 __inode_security_revalidate(inode, NULL, true);
326 return selinux_inode(inode);
327}
328
329static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
330{
331 struct inode *inode = d_backing_inode(dentry);
332
333 return selinux_inode(inode);
334}
335
336/*
337 * Get the security label of a dentry's backing inode.
338 */
339static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
340{
341 struct inode *inode = d_backing_inode(dentry);
342
343 __inode_security_revalidate(inode, dentry, true);
344 return selinux_inode(inode);
345}
346
347static void inode_free_security(struct inode *inode)
348{
349 struct inode_security_struct *isec = selinux_inode(inode);
350 struct superblock_security_struct *sbsec;
351
352 if (!isec)
353 return;
354 sbsec = selinux_superblock(inode->i_sb);
355 /*
356 * As not all inode security structures are in a list, we check for
357 * empty list outside of the lock to make sure that we won't waste
358 * time taking a lock doing nothing.
359 *
360 * The list_del_init() function can be safely called more than once.
361 * It should not be possible for this function to be called with
362 * concurrent list_add(), but for better safety against future changes
363 * in the code, we use list_empty_careful() here.
364 */
365 if (!list_empty_careful(&isec->list)) {
366 spin_lock(&sbsec->isec_lock);
367 list_del_init(&isec->list);
368 spin_unlock(&sbsec->isec_lock);
369 }
370}
371
372struct selinux_mnt_opts {
373 u32 fscontext_sid;
374 u32 context_sid;
375 u32 rootcontext_sid;
376 u32 defcontext_sid;
377};
378
379static void selinux_free_mnt_opts(void *mnt_opts)
380{
381 kfree(mnt_opts);
382}
383
384enum {
385 Opt_error = -1,
386 Opt_context = 0,
387 Opt_defcontext = 1,
388 Opt_fscontext = 2,
389 Opt_rootcontext = 3,
390 Opt_seclabel = 4,
391};
392
393#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
394static const struct {
395 const char *name;
396 int len;
397 int opt;
398 bool has_arg;
399} tokens[] = {
400 A(context, true),
401 A(fscontext, true),
402 A(defcontext, true),
403 A(rootcontext, true),
404 A(seclabel, false),
405};
406#undef A
407
408static int match_opt_prefix(char *s, int l, char **arg)
409{
410 int i;
411
412 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
413 size_t len = tokens[i].len;
414 if (len > l || memcmp(s, tokens[i].name, len))
415 continue;
416 if (tokens[i].has_arg) {
417 if (len == l || s[len] != '=')
418 continue;
419 *arg = s + len + 1;
420 } else if (len != l)
421 continue;
422 return tokens[i].opt;
423 }
424 return Opt_error;
425}
426
427#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
428
429static int may_context_mount_sb_relabel(u32 sid,
430 struct superblock_security_struct *sbsec,
431 const struct cred *cred)
432{
433 const struct task_security_struct *tsec = selinux_cred(cred);
434 int rc;
435
436 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
437 FILESYSTEM__RELABELFROM, NULL);
438 if (rc)
439 return rc;
440
441 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
442 FILESYSTEM__RELABELTO, NULL);
443 return rc;
444}
445
446static int may_context_mount_inode_relabel(u32 sid,
447 struct superblock_security_struct *sbsec,
448 const struct cred *cred)
449{
450 const struct task_security_struct *tsec = selinux_cred(cred);
451 int rc;
452 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 FILESYSTEM__RELABELFROM, NULL);
454 if (rc)
455 return rc;
456
457 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
458 FILESYSTEM__ASSOCIATE, NULL);
459 return rc;
460}
461
462static int selinux_is_genfs_special_handling(struct super_block *sb)
463{
464 /* Special handling. Genfs but also in-core setxattr handler */
465 return !strcmp(sb->s_type->name, "sysfs") ||
466 !strcmp(sb->s_type->name, "pstore") ||
467 !strcmp(sb->s_type->name, "debugfs") ||
468 !strcmp(sb->s_type->name, "tracefs") ||
469 !strcmp(sb->s_type->name, "rootfs") ||
470 (selinux_policycap_cgroupseclabel() &&
471 (!strcmp(sb->s_type->name, "cgroup") ||
472 !strcmp(sb->s_type->name, "cgroup2")));
473}
474
475static int selinux_is_sblabel_mnt(struct super_block *sb)
476{
477 struct superblock_security_struct *sbsec = selinux_superblock(sb);
478
479 /*
480 * IMPORTANT: Double-check logic in this function when adding a new
481 * SECURITY_FS_USE_* definition!
482 */
483 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
484
485 switch (sbsec->behavior) {
486 case SECURITY_FS_USE_XATTR:
487 case SECURITY_FS_USE_TRANS:
488 case SECURITY_FS_USE_TASK:
489 case SECURITY_FS_USE_NATIVE:
490 return 1;
491
492 case SECURITY_FS_USE_GENFS:
493 return selinux_is_genfs_special_handling(sb);
494
495 /* Never allow relabeling on context mounts */
496 case SECURITY_FS_USE_MNTPOINT:
497 case SECURITY_FS_USE_NONE:
498 default:
499 return 0;
500 }
501}
502
503static int sb_check_xattr_support(struct super_block *sb)
504{
505 struct superblock_security_struct *sbsec = selinux_superblock(sb);
506 struct dentry *root = sb->s_root;
507 struct inode *root_inode = d_backing_inode(root);
508 u32 sid;
509 int rc;
510
511 /*
512 * Make sure that the xattr handler exists and that no
513 * error other than -ENODATA is returned by getxattr on
514 * the root directory. -ENODATA is ok, as this may be
515 * the first boot of the SELinux kernel before we have
516 * assigned xattr values to the filesystem.
517 */
518 if (!(root_inode->i_opflags & IOP_XATTR)) {
519 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
520 sb->s_id, sb->s_type->name);
521 goto fallback;
522 }
523
524 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
525 if (rc < 0 && rc != -ENODATA) {
526 if (rc == -EOPNOTSUPP) {
527 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
528 sb->s_id, sb->s_type->name);
529 goto fallback;
530 } else {
531 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
532 sb->s_id, sb->s_type->name, -rc);
533 return rc;
534 }
535 }
536 return 0;
537
538fallback:
539 /* No xattr support - try to fallback to genfs if possible. */
540 rc = security_genfs_sid(sb->s_type->name, "/",
541 SECCLASS_DIR, &sid);
542 if (rc)
543 return -EOPNOTSUPP;
544
545 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
546 sb->s_id, sb->s_type->name);
547 sbsec->behavior = SECURITY_FS_USE_GENFS;
548 sbsec->sid = sid;
549 return 0;
550}
551
552static int sb_finish_set_opts(struct super_block *sb)
553{
554 struct superblock_security_struct *sbsec = selinux_superblock(sb);
555 struct dentry *root = sb->s_root;
556 struct inode *root_inode = d_backing_inode(root);
557 int rc = 0;
558
559 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
560 rc = sb_check_xattr_support(sb);
561 if (rc)
562 return rc;
563 }
564
565 sbsec->flags |= SE_SBINITIALIZED;
566
567 /*
568 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
569 * leave the flag untouched because sb_clone_mnt_opts might be handing
570 * us a superblock that needs the flag to be cleared.
571 */
572 if (selinux_is_sblabel_mnt(sb))
573 sbsec->flags |= SBLABEL_MNT;
574 else
575 sbsec->flags &= ~SBLABEL_MNT;
576
577 /* Initialize the root inode. */
578 rc = inode_doinit_with_dentry(root_inode, root);
579
580 /* Initialize any other inodes associated with the superblock, e.g.
581 inodes created prior to initial policy load or inodes created
582 during get_sb by a pseudo filesystem that directly
583 populates itself. */
584 spin_lock(&sbsec->isec_lock);
585 while (!list_empty(&sbsec->isec_head)) {
586 struct inode_security_struct *isec =
587 list_first_entry(&sbsec->isec_head,
588 struct inode_security_struct, list);
589 struct inode *inode = isec->inode;
590 list_del_init(&isec->list);
591 spin_unlock(&sbsec->isec_lock);
592 inode = igrab(inode);
593 if (inode) {
594 if (!IS_PRIVATE(inode))
595 inode_doinit_with_dentry(inode, NULL);
596 iput(inode);
597 }
598 spin_lock(&sbsec->isec_lock);
599 }
600 spin_unlock(&sbsec->isec_lock);
601 return rc;
602}
603
604static int bad_option(struct superblock_security_struct *sbsec, char flag,
605 u32 old_sid, u32 new_sid)
606{
607 char mnt_flags = sbsec->flags & SE_MNTMASK;
608
609 /* check if the old mount command had the same options */
610 if (sbsec->flags & SE_SBINITIALIZED)
611 if (!(sbsec->flags & flag) ||
612 (old_sid != new_sid))
613 return 1;
614
615 /* check if we were passed the same options twice,
616 * aka someone passed context=a,context=b
617 */
618 if (!(sbsec->flags & SE_SBINITIALIZED))
619 if (mnt_flags & flag)
620 return 1;
621 return 0;
622}
623
624/*
625 * Allow filesystems with binary mount data to explicitly set mount point
626 * labeling information.
627 */
628static int selinux_set_mnt_opts(struct super_block *sb,
629 void *mnt_opts,
630 unsigned long kern_flags,
631 unsigned long *set_kern_flags)
632{
633 const struct cred *cred = current_cred();
634 struct superblock_security_struct *sbsec = selinux_superblock(sb);
635 struct dentry *root = sb->s_root;
636 struct selinux_mnt_opts *opts = mnt_opts;
637 struct inode_security_struct *root_isec;
638 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
639 u32 defcontext_sid = 0;
640 int rc = 0;
641
642 /*
643 * Specifying internal flags without providing a place to
644 * place the results is not allowed
645 */
646 if (kern_flags && !set_kern_flags)
647 return -EINVAL;
648
649 mutex_lock(&sbsec->lock);
650
651 if (!selinux_initialized()) {
652 if (!opts) {
653 /* Defer initialization until selinux_complete_init,
654 after the initial policy is loaded and the security
655 server is ready to handle calls. */
656 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
657 sbsec->flags |= SE_SBNATIVE;
658 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
659 }
660 goto out;
661 }
662 rc = -EINVAL;
663 pr_warn("SELinux: Unable to set superblock options "
664 "before the security server is initialized\n");
665 goto out;
666 }
667
668 /*
669 * Binary mount data FS will come through this function twice. Once
670 * from an explicit call and once from the generic calls from the vfs.
671 * Since the generic VFS calls will not contain any security mount data
672 * we need to skip the double mount verification.
673 *
674 * This does open a hole in which we will not notice if the first
675 * mount using this sb set explicit options and a second mount using
676 * this sb does not set any security options. (The first options
677 * will be used for both mounts)
678 */
679 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
680 && !opts)
681 goto out;
682
683 root_isec = backing_inode_security_novalidate(root);
684
685 /*
686 * parse the mount options, check if they are valid sids.
687 * also check if someone is trying to mount the same sb more
688 * than once with different security options.
689 */
690 if (opts) {
691 if (opts->fscontext_sid) {
692 fscontext_sid = opts->fscontext_sid;
693 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
694 fscontext_sid))
695 goto out_double_mount;
696 sbsec->flags |= FSCONTEXT_MNT;
697 }
698 if (opts->context_sid) {
699 context_sid = opts->context_sid;
700 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
701 context_sid))
702 goto out_double_mount;
703 sbsec->flags |= CONTEXT_MNT;
704 }
705 if (opts->rootcontext_sid) {
706 rootcontext_sid = opts->rootcontext_sid;
707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
708 rootcontext_sid))
709 goto out_double_mount;
710 sbsec->flags |= ROOTCONTEXT_MNT;
711 }
712 if (opts->defcontext_sid) {
713 defcontext_sid = opts->defcontext_sid;
714 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
715 defcontext_sid))
716 goto out_double_mount;
717 sbsec->flags |= DEFCONTEXT_MNT;
718 }
719 }
720
721 if (sbsec->flags & SE_SBINITIALIZED) {
722 /* previously mounted with options, but not on this attempt? */
723 if ((sbsec->flags & SE_MNTMASK) && !opts)
724 goto out_double_mount;
725 rc = 0;
726 goto out;
727 }
728
729 if (strcmp(sb->s_type->name, "proc") == 0)
730 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
731
732 if (!strcmp(sb->s_type->name, "debugfs") ||
733 !strcmp(sb->s_type->name, "tracefs") ||
734 !strcmp(sb->s_type->name, "binder") ||
735 !strcmp(sb->s_type->name, "bpf") ||
736 !strcmp(sb->s_type->name, "pstore") ||
737 !strcmp(sb->s_type->name, "securityfs"))
738 sbsec->flags |= SE_SBGENFS;
739
740 if (!strcmp(sb->s_type->name, "sysfs") ||
741 !strcmp(sb->s_type->name, "cgroup") ||
742 !strcmp(sb->s_type->name, "cgroup2"))
743 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
744
745 if (!sbsec->behavior) {
746 /*
747 * Determine the labeling behavior to use for this
748 * filesystem type.
749 */
750 rc = security_fs_use(sb);
751 if (rc) {
752 pr_warn("%s: security_fs_use(%s) returned %d\n",
753 __func__, sb->s_type->name, rc);
754 goto out;
755 }
756 }
757
758 /*
759 * If this is a user namespace mount and the filesystem type is not
760 * explicitly whitelisted, then no contexts are allowed on the command
761 * line and security labels must be ignored.
762 */
763 if (sb->s_user_ns != &init_user_ns &&
764 strcmp(sb->s_type->name, "tmpfs") &&
765 strcmp(sb->s_type->name, "ramfs") &&
766 strcmp(sb->s_type->name, "devpts") &&
767 strcmp(sb->s_type->name, "overlay")) {
768 if (context_sid || fscontext_sid || rootcontext_sid ||
769 defcontext_sid) {
770 rc = -EACCES;
771 goto out;
772 }
773 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
774 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
775 rc = security_transition_sid(current_sid(),
776 current_sid(),
777 SECCLASS_FILE, NULL,
778 &sbsec->mntpoint_sid);
779 if (rc)
780 goto out;
781 }
782 goto out_set_opts;
783 }
784
785 /* sets the context of the superblock for the fs being mounted. */
786 if (fscontext_sid) {
787 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
788 if (rc)
789 goto out;
790
791 sbsec->sid = fscontext_sid;
792 }
793
794 /*
795 * Switch to using mount point labeling behavior.
796 * sets the label used on all file below the mountpoint, and will set
797 * the superblock context if not already set.
798 */
799 if (sbsec->flags & SE_SBNATIVE) {
800 /*
801 * This means we are initializing a superblock that has been
802 * mounted before the SELinux was initialized and the
803 * filesystem requested native labeling. We had already
804 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
805 * in the original mount attempt, so now we just need to set
806 * the SECURITY_FS_USE_NATIVE behavior.
807 */
808 sbsec->behavior = SECURITY_FS_USE_NATIVE;
809 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
810 sbsec->behavior = SECURITY_FS_USE_NATIVE;
811 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
812 }
813
814 if (context_sid) {
815 if (!fscontext_sid) {
816 rc = may_context_mount_sb_relabel(context_sid, sbsec,
817 cred);
818 if (rc)
819 goto out;
820 sbsec->sid = context_sid;
821 } else {
822 rc = may_context_mount_inode_relabel(context_sid, sbsec,
823 cred);
824 if (rc)
825 goto out;
826 }
827 if (!rootcontext_sid)
828 rootcontext_sid = context_sid;
829
830 sbsec->mntpoint_sid = context_sid;
831 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
832 }
833
834 if (rootcontext_sid) {
835 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
836 cred);
837 if (rc)
838 goto out;
839
840 root_isec->sid = rootcontext_sid;
841 root_isec->initialized = LABEL_INITIALIZED;
842 }
843
844 if (defcontext_sid) {
845 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
846 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
847 rc = -EINVAL;
848 pr_warn("SELinux: defcontext option is "
849 "invalid for this filesystem type\n");
850 goto out;
851 }
852
853 if (defcontext_sid != sbsec->def_sid) {
854 rc = may_context_mount_inode_relabel(defcontext_sid,
855 sbsec, cred);
856 if (rc)
857 goto out;
858 }
859
860 sbsec->def_sid = defcontext_sid;
861 }
862
863out_set_opts:
864 rc = sb_finish_set_opts(sb);
865out:
866 mutex_unlock(&sbsec->lock);
867 return rc;
868out_double_mount:
869 rc = -EINVAL;
870 pr_warn("SELinux: mount invalid. Same superblock, different "
871 "security settings for (dev %s, type %s)\n", sb->s_id,
872 sb->s_type->name);
873 goto out;
874}
875
876static int selinux_cmp_sb_context(const struct super_block *oldsb,
877 const struct super_block *newsb)
878{
879 struct superblock_security_struct *old = selinux_superblock(oldsb);
880 struct superblock_security_struct *new = selinux_superblock(newsb);
881 char oldflags = old->flags & SE_MNTMASK;
882 char newflags = new->flags & SE_MNTMASK;
883
884 if (oldflags != newflags)
885 goto mismatch;
886 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
887 goto mismatch;
888 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
889 goto mismatch;
890 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
891 goto mismatch;
892 if (oldflags & ROOTCONTEXT_MNT) {
893 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
894 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
895 if (oldroot->sid != newroot->sid)
896 goto mismatch;
897 }
898 return 0;
899mismatch:
900 pr_warn("SELinux: mount invalid. Same superblock, "
901 "different security settings for (dev %s, "
902 "type %s)\n", newsb->s_id, newsb->s_type->name);
903 return -EBUSY;
904}
905
906static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
907 struct super_block *newsb,
908 unsigned long kern_flags,
909 unsigned long *set_kern_flags)
910{
911 int rc = 0;
912 const struct superblock_security_struct *oldsbsec =
913 selinux_superblock(oldsb);
914 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
915
916 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
917 int set_context = (oldsbsec->flags & CONTEXT_MNT);
918 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
919
920 /*
921 * Specifying internal flags without providing a place to
922 * place the results is not allowed.
923 */
924 if (kern_flags && !set_kern_flags)
925 return -EINVAL;
926
927 mutex_lock(&newsbsec->lock);
928
929 /*
930 * if the parent was able to be mounted it clearly had no special lsm
931 * mount options. thus we can safely deal with this superblock later
932 */
933 if (!selinux_initialized()) {
934 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
935 newsbsec->flags |= SE_SBNATIVE;
936 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
937 }
938 goto out;
939 }
940
941 /* how can we clone if the old one wasn't set up?? */
942 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
943
944 /* if fs is reusing a sb, make sure that the contexts match */
945 if (newsbsec->flags & SE_SBINITIALIZED) {
946 mutex_unlock(&newsbsec->lock);
947 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
948 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
949 return selinux_cmp_sb_context(oldsb, newsb);
950 }
951
952 newsbsec->flags = oldsbsec->flags;
953
954 newsbsec->sid = oldsbsec->sid;
955 newsbsec->def_sid = oldsbsec->def_sid;
956 newsbsec->behavior = oldsbsec->behavior;
957
958 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
959 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
960 rc = security_fs_use(newsb);
961 if (rc)
962 goto out;
963 }
964
965 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
966 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
967 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
968 }
969
970 if (set_context) {
971 u32 sid = oldsbsec->mntpoint_sid;
972
973 if (!set_fscontext)
974 newsbsec->sid = sid;
975 if (!set_rootcontext) {
976 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
977 newisec->sid = sid;
978 }
979 newsbsec->mntpoint_sid = sid;
980 }
981 if (set_rootcontext) {
982 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
983 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
984
985 newisec->sid = oldisec->sid;
986 }
987
988 sb_finish_set_opts(newsb);
989out:
990 mutex_unlock(&newsbsec->lock);
991 return rc;
992}
993
994/*
995 * NOTE: the caller is responsible for freeing the memory even if on error.
996 */
997static int selinux_add_opt(int token, const char *s, void **mnt_opts)
998{
999 struct selinux_mnt_opts *opts = *mnt_opts;
1000 u32 *dst_sid;
1001 int rc;
1002
1003 if (token == Opt_seclabel)
1004 /* eaten and completely ignored */
1005 return 0;
1006 if (!s)
1007 return -EINVAL;
1008
1009 if (!selinux_initialized()) {
1010 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1011 return -EINVAL;
1012 }
1013
1014 if (!opts) {
1015 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1016 if (!opts)
1017 return -ENOMEM;
1018 *mnt_opts = opts;
1019 }
1020
1021 switch (token) {
1022 case Opt_context:
1023 if (opts->context_sid || opts->defcontext_sid)
1024 goto err;
1025 dst_sid = &opts->context_sid;
1026 break;
1027 case Opt_fscontext:
1028 if (opts->fscontext_sid)
1029 goto err;
1030 dst_sid = &opts->fscontext_sid;
1031 break;
1032 case Opt_rootcontext:
1033 if (opts->rootcontext_sid)
1034 goto err;
1035 dst_sid = &opts->rootcontext_sid;
1036 break;
1037 case Opt_defcontext:
1038 if (opts->context_sid || opts->defcontext_sid)
1039 goto err;
1040 dst_sid = &opts->defcontext_sid;
1041 break;
1042 default:
1043 WARN_ON(1);
1044 return -EINVAL;
1045 }
1046 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1047 if (rc)
1048 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1049 s, rc);
1050 return rc;
1051
1052err:
1053 pr_warn(SEL_MOUNT_FAIL_MSG);
1054 return -EINVAL;
1055}
1056
1057static int show_sid(struct seq_file *m, u32 sid)
1058{
1059 char *context = NULL;
1060 u32 len;
1061 int rc;
1062
1063 rc = security_sid_to_context(sid, &context, &len);
1064 if (!rc) {
1065 bool has_comma = strchr(context, ',');
1066
1067 seq_putc(m, '=');
1068 if (has_comma)
1069 seq_putc(m, '\"');
1070 seq_escape(m, context, "\"\n\\");
1071 if (has_comma)
1072 seq_putc(m, '\"');
1073 }
1074 kfree(context);
1075 return rc;
1076}
1077
1078static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1079{
1080 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1081 int rc;
1082
1083 if (!(sbsec->flags & SE_SBINITIALIZED))
1084 return 0;
1085
1086 if (!selinux_initialized())
1087 return 0;
1088
1089 if (sbsec->flags & FSCONTEXT_MNT) {
1090 seq_putc(m, ',');
1091 seq_puts(m, FSCONTEXT_STR);
1092 rc = show_sid(m, sbsec->sid);
1093 if (rc)
1094 return rc;
1095 }
1096 if (sbsec->flags & CONTEXT_MNT) {
1097 seq_putc(m, ',');
1098 seq_puts(m, CONTEXT_STR);
1099 rc = show_sid(m, sbsec->mntpoint_sid);
1100 if (rc)
1101 return rc;
1102 }
1103 if (sbsec->flags & DEFCONTEXT_MNT) {
1104 seq_putc(m, ',');
1105 seq_puts(m, DEFCONTEXT_STR);
1106 rc = show_sid(m, sbsec->def_sid);
1107 if (rc)
1108 return rc;
1109 }
1110 if (sbsec->flags & ROOTCONTEXT_MNT) {
1111 struct dentry *root = sb->s_root;
1112 struct inode_security_struct *isec = backing_inode_security(root);
1113 seq_putc(m, ',');
1114 seq_puts(m, ROOTCONTEXT_STR);
1115 rc = show_sid(m, isec->sid);
1116 if (rc)
1117 return rc;
1118 }
1119 if (sbsec->flags & SBLABEL_MNT) {
1120 seq_putc(m, ',');
1121 seq_puts(m, SECLABEL_STR);
1122 }
1123 return 0;
1124}
1125
1126static inline u16 inode_mode_to_security_class(umode_t mode)
1127{
1128 switch (mode & S_IFMT) {
1129 case S_IFSOCK:
1130 return SECCLASS_SOCK_FILE;
1131 case S_IFLNK:
1132 return SECCLASS_LNK_FILE;
1133 case S_IFREG:
1134 return SECCLASS_FILE;
1135 case S_IFBLK:
1136 return SECCLASS_BLK_FILE;
1137 case S_IFDIR:
1138 return SECCLASS_DIR;
1139 case S_IFCHR:
1140 return SECCLASS_CHR_FILE;
1141 case S_IFIFO:
1142 return SECCLASS_FIFO_FILE;
1143
1144 }
1145
1146 return SECCLASS_FILE;
1147}
1148
1149static inline int default_protocol_stream(int protocol)
1150{
1151 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1152 protocol == IPPROTO_MPTCP);
1153}
1154
1155static inline int default_protocol_dgram(int protocol)
1156{
1157 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1158}
1159
1160static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1161{
1162 bool extsockclass = selinux_policycap_extsockclass();
1163
1164 switch (family) {
1165 case PF_UNIX:
1166 switch (type) {
1167 case SOCK_STREAM:
1168 case SOCK_SEQPACKET:
1169 return SECCLASS_UNIX_STREAM_SOCKET;
1170 case SOCK_DGRAM:
1171 case SOCK_RAW:
1172 return SECCLASS_UNIX_DGRAM_SOCKET;
1173 }
1174 break;
1175 case PF_INET:
1176 case PF_INET6:
1177 switch (type) {
1178 case SOCK_STREAM:
1179 case SOCK_SEQPACKET:
1180 if (default_protocol_stream(protocol))
1181 return SECCLASS_TCP_SOCKET;
1182 else if (extsockclass && protocol == IPPROTO_SCTP)
1183 return SECCLASS_SCTP_SOCKET;
1184 else
1185 return SECCLASS_RAWIP_SOCKET;
1186 case SOCK_DGRAM:
1187 if (default_protocol_dgram(protocol))
1188 return SECCLASS_UDP_SOCKET;
1189 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1190 protocol == IPPROTO_ICMPV6))
1191 return SECCLASS_ICMP_SOCKET;
1192 else
1193 return SECCLASS_RAWIP_SOCKET;
1194 case SOCK_DCCP:
1195 return SECCLASS_DCCP_SOCKET;
1196 default:
1197 return SECCLASS_RAWIP_SOCKET;
1198 }
1199 break;
1200 case PF_NETLINK:
1201 switch (protocol) {
1202 case NETLINK_ROUTE:
1203 return SECCLASS_NETLINK_ROUTE_SOCKET;
1204 case NETLINK_SOCK_DIAG:
1205 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1206 case NETLINK_NFLOG:
1207 return SECCLASS_NETLINK_NFLOG_SOCKET;
1208 case NETLINK_XFRM:
1209 return SECCLASS_NETLINK_XFRM_SOCKET;
1210 case NETLINK_SELINUX:
1211 return SECCLASS_NETLINK_SELINUX_SOCKET;
1212 case NETLINK_ISCSI:
1213 return SECCLASS_NETLINK_ISCSI_SOCKET;
1214 case NETLINK_AUDIT:
1215 return SECCLASS_NETLINK_AUDIT_SOCKET;
1216 case NETLINK_FIB_LOOKUP:
1217 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1218 case NETLINK_CONNECTOR:
1219 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1220 case NETLINK_NETFILTER:
1221 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1222 case NETLINK_DNRTMSG:
1223 return SECCLASS_NETLINK_DNRT_SOCKET;
1224 case NETLINK_KOBJECT_UEVENT:
1225 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1226 case NETLINK_GENERIC:
1227 return SECCLASS_NETLINK_GENERIC_SOCKET;
1228 case NETLINK_SCSITRANSPORT:
1229 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1230 case NETLINK_RDMA:
1231 return SECCLASS_NETLINK_RDMA_SOCKET;
1232 case NETLINK_CRYPTO:
1233 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1234 default:
1235 return SECCLASS_NETLINK_SOCKET;
1236 }
1237 case PF_PACKET:
1238 return SECCLASS_PACKET_SOCKET;
1239 case PF_KEY:
1240 return SECCLASS_KEY_SOCKET;
1241 case PF_APPLETALK:
1242 return SECCLASS_APPLETALK_SOCKET;
1243 }
1244
1245 if (extsockclass) {
1246 switch (family) {
1247 case PF_AX25:
1248 return SECCLASS_AX25_SOCKET;
1249 case PF_IPX:
1250 return SECCLASS_IPX_SOCKET;
1251 case PF_NETROM:
1252 return SECCLASS_NETROM_SOCKET;
1253 case PF_ATMPVC:
1254 return SECCLASS_ATMPVC_SOCKET;
1255 case PF_X25:
1256 return SECCLASS_X25_SOCKET;
1257 case PF_ROSE:
1258 return SECCLASS_ROSE_SOCKET;
1259 case PF_DECnet:
1260 return SECCLASS_DECNET_SOCKET;
1261 case PF_ATMSVC:
1262 return SECCLASS_ATMSVC_SOCKET;
1263 case PF_RDS:
1264 return SECCLASS_RDS_SOCKET;
1265 case PF_IRDA:
1266 return SECCLASS_IRDA_SOCKET;
1267 case PF_PPPOX:
1268 return SECCLASS_PPPOX_SOCKET;
1269 case PF_LLC:
1270 return SECCLASS_LLC_SOCKET;
1271 case PF_CAN:
1272 return SECCLASS_CAN_SOCKET;
1273 case PF_TIPC:
1274 return SECCLASS_TIPC_SOCKET;
1275 case PF_BLUETOOTH:
1276 return SECCLASS_BLUETOOTH_SOCKET;
1277 case PF_IUCV:
1278 return SECCLASS_IUCV_SOCKET;
1279 case PF_RXRPC:
1280 return SECCLASS_RXRPC_SOCKET;
1281 case PF_ISDN:
1282 return SECCLASS_ISDN_SOCKET;
1283 case PF_PHONET:
1284 return SECCLASS_PHONET_SOCKET;
1285 case PF_IEEE802154:
1286 return SECCLASS_IEEE802154_SOCKET;
1287 case PF_CAIF:
1288 return SECCLASS_CAIF_SOCKET;
1289 case PF_ALG:
1290 return SECCLASS_ALG_SOCKET;
1291 case PF_NFC:
1292 return SECCLASS_NFC_SOCKET;
1293 case PF_VSOCK:
1294 return SECCLASS_VSOCK_SOCKET;
1295 case PF_KCM:
1296 return SECCLASS_KCM_SOCKET;
1297 case PF_QIPCRTR:
1298 return SECCLASS_QIPCRTR_SOCKET;
1299 case PF_SMC:
1300 return SECCLASS_SMC_SOCKET;
1301 case PF_XDP:
1302 return SECCLASS_XDP_SOCKET;
1303 case PF_MCTP:
1304 return SECCLASS_MCTP_SOCKET;
1305#if PF_MAX > 46
1306#error New address family defined, please update this function.
1307#endif
1308 }
1309 }
1310
1311 return SECCLASS_SOCKET;
1312}
1313
1314static int selinux_genfs_get_sid(struct dentry *dentry,
1315 u16 tclass,
1316 u16 flags,
1317 u32 *sid)
1318{
1319 int rc;
1320 struct super_block *sb = dentry->d_sb;
1321 char *buffer, *path;
1322
1323 buffer = (char *)__get_free_page(GFP_KERNEL);
1324 if (!buffer)
1325 return -ENOMEM;
1326
1327 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1328 if (IS_ERR(path))
1329 rc = PTR_ERR(path);
1330 else {
1331 if (flags & SE_SBPROC) {
1332 /* each process gets a /proc/PID/ entry. Strip off the
1333 * PID part to get a valid selinux labeling.
1334 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1335 while (path[1] >= '0' && path[1] <= '9') {
1336 path[1] = '/';
1337 path++;
1338 }
1339 }
1340 rc = security_genfs_sid(sb->s_type->name,
1341 path, tclass, sid);
1342 if (rc == -ENOENT) {
1343 /* No match in policy, mark as unlabeled. */
1344 *sid = SECINITSID_UNLABELED;
1345 rc = 0;
1346 }
1347 }
1348 free_page((unsigned long)buffer);
1349 return rc;
1350}
1351
1352static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1353 u32 def_sid, u32 *sid)
1354{
1355#define INITCONTEXTLEN 255
1356 char *context;
1357 unsigned int len;
1358 int rc;
1359
1360 len = INITCONTEXTLEN;
1361 context = kmalloc(len + 1, GFP_NOFS);
1362 if (!context)
1363 return -ENOMEM;
1364
1365 context[len] = '\0';
1366 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1367 if (rc == -ERANGE) {
1368 kfree(context);
1369
1370 /* Need a larger buffer. Query for the right size. */
1371 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1372 if (rc < 0)
1373 return rc;
1374
1375 len = rc;
1376 context = kmalloc(len + 1, GFP_NOFS);
1377 if (!context)
1378 return -ENOMEM;
1379
1380 context[len] = '\0';
1381 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1382 context, len);
1383 }
1384 if (rc < 0) {
1385 kfree(context);
1386 if (rc != -ENODATA) {
1387 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1388 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1389 return rc;
1390 }
1391 *sid = def_sid;
1392 return 0;
1393 }
1394
1395 rc = security_context_to_sid_default(context, rc, sid,
1396 def_sid, GFP_NOFS);
1397 if (rc) {
1398 char *dev = inode->i_sb->s_id;
1399 unsigned long ino = inode->i_ino;
1400
1401 if (rc == -EINVAL) {
1402 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1403 ino, dev, context);
1404 } else {
1405 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1406 __func__, context, -rc, dev, ino);
1407 }
1408 }
1409 kfree(context);
1410 return 0;
1411}
1412
1413/* The inode's security attributes must be initialized before first use. */
1414static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1415{
1416 struct superblock_security_struct *sbsec = NULL;
1417 struct inode_security_struct *isec = selinux_inode(inode);
1418 u32 task_sid, sid = 0;
1419 u16 sclass;
1420 struct dentry *dentry;
1421 int rc = 0;
1422
1423 if (isec->initialized == LABEL_INITIALIZED)
1424 return 0;
1425
1426 spin_lock(&isec->lock);
1427 if (isec->initialized == LABEL_INITIALIZED)
1428 goto out_unlock;
1429
1430 if (isec->sclass == SECCLASS_FILE)
1431 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1432
1433 sbsec = selinux_superblock(inode->i_sb);
1434 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1435 /* Defer initialization until selinux_complete_init,
1436 after the initial policy is loaded and the security
1437 server is ready to handle calls. */
1438 spin_lock(&sbsec->isec_lock);
1439 if (list_empty(&isec->list))
1440 list_add(&isec->list, &sbsec->isec_head);
1441 spin_unlock(&sbsec->isec_lock);
1442 goto out_unlock;
1443 }
1444
1445 sclass = isec->sclass;
1446 task_sid = isec->task_sid;
1447 sid = isec->sid;
1448 isec->initialized = LABEL_PENDING;
1449 spin_unlock(&isec->lock);
1450
1451 switch (sbsec->behavior) {
1452 /*
1453 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1454 * via xattr when called from delayed_superblock_init().
1455 */
1456 case SECURITY_FS_USE_NATIVE:
1457 case SECURITY_FS_USE_XATTR:
1458 if (!(inode->i_opflags & IOP_XATTR)) {
1459 sid = sbsec->def_sid;
1460 break;
1461 }
1462 /* Need a dentry, since the xattr API requires one.
1463 Life would be simpler if we could just pass the inode. */
1464 if (opt_dentry) {
1465 /* Called from d_instantiate or d_splice_alias. */
1466 dentry = dget(opt_dentry);
1467 } else {
1468 /*
1469 * Called from selinux_complete_init, try to find a dentry.
1470 * Some filesystems really want a connected one, so try
1471 * that first. We could split SECURITY_FS_USE_XATTR in
1472 * two, depending upon that...
1473 */
1474 dentry = d_find_alias(inode);
1475 if (!dentry)
1476 dentry = d_find_any_alias(inode);
1477 }
1478 if (!dentry) {
1479 /*
1480 * this is can be hit on boot when a file is accessed
1481 * before the policy is loaded. When we load policy we
1482 * may find inodes that have no dentry on the
1483 * sbsec->isec_head list. No reason to complain as these
1484 * will get fixed up the next time we go through
1485 * inode_doinit with a dentry, before these inodes could
1486 * be used again by userspace.
1487 */
1488 goto out_invalid;
1489 }
1490
1491 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1492 &sid);
1493 dput(dentry);
1494 if (rc)
1495 goto out;
1496 break;
1497 case SECURITY_FS_USE_TASK:
1498 sid = task_sid;
1499 break;
1500 case SECURITY_FS_USE_TRANS:
1501 /* Default to the fs SID. */
1502 sid = sbsec->sid;
1503
1504 /* Try to obtain a transition SID. */
1505 rc = security_transition_sid(task_sid, sid,
1506 sclass, NULL, &sid);
1507 if (rc)
1508 goto out;
1509 break;
1510 case SECURITY_FS_USE_MNTPOINT:
1511 sid = sbsec->mntpoint_sid;
1512 break;
1513 default:
1514 /* Default to the fs superblock SID. */
1515 sid = sbsec->sid;
1516
1517 if ((sbsec->flags & SE_SBGENFS) &&
1518 (!S_ISLNK(inode->i_mode) ||
1519 selinux_policycap_genfs_seclabel_symlinks())) {
1520 /* We must have a dentry to determine the label on
1521 * procfs inodes */
1522 if (opt_dentry) {
1523 /* Called from d_instantiate or
1524 * d_splice_alias. */
1525 dentry = dget(opt_dentry);
1526 } else {
1527 /* Called from selinux_complete_init, try to
1528 * find a dentry. Some filesystems really want
1529 * a connected one, so try that first.
1530 */
1531 dentry = d_find_alias(inode);
1532 if (!dentry)
1533 dentry = d_find_any_alias(inode);
1534 }
1535 /*
1536 * This can be hit on boot when a file is accessed
1537 * before the policy is loaded. When we load policy we
1538 * may find inodes that have no dentry on the
1539 * sbsec->isec_head list. No reason to complain as
1540 * these will get fixed up the next time we go through
1541 * inode_doinit() with a dentry, before these inodes
1542 * could be used again by userspace.
1543 */
1544 if (!dentry)
1545 goto out_invalid;
1546 rc = selinux_genfs_get_sid(dentry, sclass,
1547 sbsec->flags, &sid);
1548 if (rc) {
1549 dput(dentry);
1550 goto out;
1551 }
1552
1553 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1554 (inode->i_opflags & IOP_XATTR)) {
1555 rc = inode_doinit_use_xattr(inode, dentry,
1556 sid, &sid);
1557 if (rc) {
1558 dput(dentry);
1559 goto out;
1560 }
1561 }
1562 dput(dentry);
1563 }
1564 break;
1565 }
1566
1567out:
1568 spin_lock(&isec->lock);
1569 if (isec->initialized == LABEL_PENDING) {
1570 if (rc) {
1571 isec->initialized = LABEL_INVALID;
1572 goto out_unlock;
1573 }
1574 isec->initialized = LABEL_INITIALIZED;
1575 isec->sid = sid;
1576 }
1577
1578out_unlock:
1579 spin_unlock(&isec->lock);
1580 return rc;
1581
1582out_invalid:
1583 spin_lock(&isec->lock);
1584 if (isec->initialized == LABEL_PENDING) {
1585 isec->initialized = LABEL_INVALID;
1586 isec->sid = sid;
1587 }
1588 spin_unlock(&isec->lock);
1589 return 0;
1590}
1591
1592/* Convert a Linux signal to an access vector. */
1593static inline u32 signal_to_av(int sig)
1594{
1595 u32 perm = 0;
1596
1597 switch (sig) {
1598 case SIGCHLD:
1599 /* Commonly granted from child to parent. */
1600 perm = PROCESS__SIGCHLD;
1601 break;
1602 case SIGKILL:
1603 /* Cannot be caught or ignored */
1604 perm = PROCESS__SIGKILL;
1605 break;
1606 case SIGSTOP:
1607 /* Cannot be caught or ignored */
1608 perm = PROCESS__SIGSTOP;
1609 break;
1610 default:
1611 /* All other signals. */
1612 perm = PROCESS__SIGNAL;
1613 break;
1614 }
1615
1616 return perm;
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625 int cap, unsigned int opts, bool initns)
1626{
1627 struct common_audit_data ad;
1628 struct av_decision avd;
1629 u16 sclass;
1630 u32 sid = cred_sid(cred);
1631 u32 av = CAP_TO_MASK(cap);
1632 int rc;
1633
1634 ad.type = LSM_AUDIT_DATA_CAP;
1635 ad.u.cap = cap;
1636
1637 switch (CAP_TO_INDEX(cap)) {
1638 case 0:
1639 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1640 break;
1641 case 1:
1642 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1643 break;
1644 default:
1645 pr_err("SELinux: out of range capability %d\n", cap);
1646 BUG();
1647 return -EINVAL;
1648 }
1649
1650 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1651 if (!(opts & CAP_OPT_NOAUDIT)) {
1652 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1653 if (rc2)
1654 return rc2;
1655 }
1656 return rc;
1657}
1658
1659/* Check whether a task has a particular permission to an inode.
1660 The 'adp' parameter is optional and allows other audit
1661 data to be passed (e.g. the dentry). */
1662static int inode_has_perm(const struct cred *cred,
1663 struct inode *inode,
1664 u32 perms,
1665 struct common_audit_data *adp)
1666{
1667 struct inode_security_struct *isec;
1668 u32 sid;
1669
1670 if (unlikely(IS_PRIVATE(inode)))
1671 return 0;
1672
1673 sid = cred_sid(cred);
1674 isec = selinux_inode(inode);
1675
1676 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1677}
1678
1679/* Same as inode_has_perm, but pass explicit audit data containing
1680 the dentry to help the auditing code to more easily generate the
1681 pathname if needed. */
1682static inline int dentry_has_perm(const struct cred *cred,
1683 struct dentry *dentry,
1684 u32 av)
1685{
1686 struct inode *inode = d_backing_inode(dentry);
1687 struct common_audit_data ad;
1688
1689 ad.type = LSM_AUDIT_DATA_DENTRY;
1690 ad.u.dentry = dentry;
1691 __inode_security_revalidate(inode, dentry, true);
1692 return inode_has_perm(cred, inode, av, &ad);
1693}
1694
1695/* Same as inode_has_perm, but pass explicit audit data containing
1696 the path to help the auditing code to more easily generate the
1697 pathname if needed. */
1698static inline int path_has_perm(const struct cred *cred,
1699 const struct path *path,
1700 u32 av)
1701{
1702 struct inode *inode = d_backing_inode(path->dentry);
1703 struct common_audit_data ad;
1704
1705 ad.type = LSM_AUDIT_DATA_PATH;
1706 ad.u.path = *path;
1707 __inode_security_revalidate(inode, path->dentry, true);
1708 return inode_has_perm(cred, inode, av, &ad);
1709}
1710
1711/* Same as path_has_perm, but uses the inode from the file struct. */
1712static inline int file_path_has_perm(const struct cred *cred,
1713 struct file *file,
1714 u32 av)
1715{
1716 struct common_audit_data ad;
1717
1718 ad.type = LSM_AUDIT_DATA_FILE;
1719 ad.u.file = file;
1720 return inode_has_perm(cred, file_inode(file), av, &ad);
1721}
1722
1723#ifdef CONFIG_BPF_SYSCALL
1724static int bpf_fd_pass(const struct file *file, u32 sid);
1725#endif
1726
1727/* Check whether a task can use an open file descriptor to
1728 access an inode in a given way. Check access to the
1729 descriptor itself, and then use dentry_has_perm to
1730 check a particular permission to the file.
1731 Access to the descriptor is implicitly granted if it
1732 has the same SID as the process. If av is zero, then
1733 access to the file is not checked, e.g. for cases
1734 where only the descriptor is affected like seek. */
1735static int file_has_perm(const struct cred *cred,
1736 struct file *file,
1737 u32 av)
1738{
1739 struct file_security_struct *fsec = selinux_file(file);
1740 struct inode *inode = file_inode(file);
1741 struct common_audit_data ad;
1742 u32 sid = cred_sid(cred);
1743 int rc;
1744
1745 ad.type = LSM_AUDIT_DATA_FILE;
1746 ad.u.file = file;
1747
1748 if (sid != fsec->sid) {
1749 rc = avc_has_perm(sid, fsec->sid,
1750 SECCLASS_FD,
1751 FD__USE,
1752 &ad);
1753 if (rc)
1754 goto out;
1755 }
1756
1757#ifdef CONFIG_BPF_SYSCALL
1758 rc = bpf_fd_pass(file, cred_sid(cred));
1759 if (rc)
1760 return rc;
1761#endif
1762
1763 /* av is zero if only checking access to the descriptor. */
1764 rc = 0;
1765 if (av)
1766 rc = inode_has_perm(cred, inode, av, &ad);
1767
1768out:
1769 return rc;
1770}
1771
1772/*
1773 * Determine the label for an inode that might be unioned.
1774 */
1775static int
1776selinux_determine_inode_label(const struct task_security_struct *tsec,
1777 struct inode *dir,
1778 const struct qstr *name, u16 tclass,
1779 u32 *_new_isid)
1780{
1781 const struct superblock_security_struct *sbsec =
1782 selinux_superblock(dir->i_sb);
1783
1784 if ((sbsec->flags & SE_SBINITIALIZED) &&
1785 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1786 *_new_isid = sbsec->mntpoint_sid;
1787 } else if ((sbsec->flags & SBLABEL_MNT) &&
1788 tsec->create_sid) {
1789 *_new_isid = tsec->create_sid;
1790 } else {
1791 const struct inode_security_struct *dsec = inode_security(dir);
1792 return security_transition_sid(tsec->sid,
1793 dsec->sid, tclass,
1794 name, _new_isid);
1795 }
1796
1797 return 0;
1798}
1799
1800/* Check whether a task can create a file. */
1801static int may_create(struct inode *dir,
1802 struct dentry *dentry,
1803 u16 tclass)
1804{
1805 const struct task_security_struct *tsec = selinux_cred(current_cred());
1806 struct inode_security_struct *dsec;
1807 struct superblock_security_struct *sbsec;
1808 u32 sid, newsid;
1809 struct common_audit_data ad;
1810 int rc;
1811
1812 dsec = inode_security(dir);
1813 sbsec = selinux_superblock(dir->i_sb);
1814
1815 sid = tsec->sid;
1816
1817 ad.type = LSM_AUDIT_DATA_DENTRY;
1818 ad.u.dentry = dentry;
1819
1820 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1821 DIR__ADD_NAME | DIR__SEARCH,
1822 &ad);
1823 if (rc)
1824 return rc;
1825
1826 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1827 &newsid);
1828 if (rc)
1829 return rc;
1830
1831 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1832 if (rc)
1833 return rc;
1834
1835 return avc_has_perm(newsid, sbsec->sid,
1836 SECCLASS_FILESYSTEM,
1837 FILESYSTEM__ASSOCIATE, &ad);
1838}
1839
1840#define MAY_LINK 0
1841#define MAY_UNLINK 1
1842#define MAY_RMDIR 2
1843
1844/* Check whether a task can link, unlink, or rmdir a file/directory. */
1845static int may_link(struct inode *dir,
1846 struct dentry *dentry,
1847 int kind)
1848
1849{
1850 struct inode_security_struct *dsec, *isec;
1851 struct common_audit_data ad;
1852 u32 sid = current_sid();
1853 u32 av;
1854 int rc;
1855
1856 dsec = inode_security(dir);
1857 isec = backing_inode_security(dentry);
1858
1859 ad.type = LSM_AUDIT_DATA_DENTRY;
1860 ad.u.dentry = dentry;
1861
1862 av = DIR__SEARCH;
1863 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1864 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1865 if (rc)
1866 return rc;
1867
1868 switch (kind) {
1869 case MAY_LINK:
1870 av = FILE__LINK;
1871 break;
1872 case MAY_UNLINK:
1873 av = FILE__UNLINK;
1874 break;
1875 case MAY_RMDIR:
1876 av = DIR__RMDIR;
1877 break;
1878 default:
1879 pr_warn("SELinux: %s: unrecognized kind %d\n",
1880 __func__, kind);
1881 return 0;
1882 }
1883
1884 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1885 return rc;
1886}
1887
1888static inline int may_rename(struct inode *old_dir,
1889 struct dentry *old_dentry,
1890 struct inode *new_dir,
1891 struct dentry *new_dentry)
1892{
1893 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1894 struct common_audit_data ad;
1895 u32 sid = current_sid();
1896 u32 av;
1897 int old_is_dir, new_is_dir;
1898 int rc;
1899
1900 old_dsec = inode_security(old_dir);
1901 old_isec = backing_inode_security(old_dentry);
1902 old_is_dir = d_is_dir(old_dentry);
1903 new_dsec = inode_security(new_dir);
1904
1905 ad.type = LSM_AUDIT_DATA_DENTRY;
1906
1907 ad.u.dentry = old_dentry;
1908 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1909 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1910 if (rc)
1911 return rc;
1912 rc = avc_has_perm(sid, old_isec->sid,
1913 old_isec->sclass, FILE__RENAME, &ad);
1914 if (rc)
1915 return rc;
1916 if (old_is_dir && new_dir != old_dir) {
1917 rc = avc_has_perm(sid, old_isec->sid,
1918 old_isec->sclass, DIR__REPARENT, &ad);
1919 if (rc)
1920 return rc;
1921 }
1922
1923 ad.u.dentry = new_dentry;
1924 av = DIR__ADD_NAME | DIR__SEARCH;
1925 if (d_is_positive(new_dentry))
1926 av |= DIR__REMOVE_NAME;
1927 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1928 if (rc)
1929 return rc;
1930 if (d_is_positive(new_dentry)) {
1931 new_isec = backing_inode_security(new_dentry);
1932 new_is_dir = d_is_dir(new_dentry);
1933 rc = avc_has_perm(sid, new_isec->sid,
1934 new_isec->sclass,
1935 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1936 if (rc)
1937 return rc;
1938 }
1939
1940 return 0;
1941}
1942
1943/* Check whether a task can perform a filesystem operation. */
1944static int superblock_has_perm(const struct cred *cred,
1945 const struct super_block *sb,
1946 u32 perms,
1947 struct common_audit_data *ad)
1948{
1949 struct superblock_security_struct *sbsec;
1950 u32 sid = cred_sid(cred);
1951
1952 sbsec = selinux_superblock(sb);
1953 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1954}
1955
1956/* Convert a Linux mode and permission mask to an access vector. */
1957static inline u32 file_mask_to_av(int mode, int mask)
1958{
1959 u32 av = 0;
1960
1961 if (!S_ISDIR(mode)) {
1962 if (mask & MAY_EXEC)
1963 av |= FILE__EXECUTE;
1964 if (mask & MAY_READ)
1965 av |= FILE__READ;
1966
1967 if (mask & MAY_APPEND)
1968 av |= FILE__APPEND;
1969 else if (mask & MAY_WRITE)
1970 av |= FILE__WRITE;
1971
1972 } else {
1973 if (mask & MAY_EXEC)
1974 av |= DIR__SEARCH;
1975 if (mask & MAY_WRITE)
1976 av |= DIR__WRITE;
1977 if (mask & MAY_READ)
1978 av |= DIR__READ;
1979 }
1980
1981 return av;
1982}
1983
1984/* Convert a Linux file to an access vector. */
1985static inline u32 file_to_av(const struct file *file)
1986{
1987 u32 av = 0;
1988
1989 if (file->f_mode & FMODE_READ)
1990 av |= FILE__READ;
1991 if (file->f_mode & FMODE_WRITE) {
1992 if (file->f_flags & O_APPEND)
1993 av |= FILE__APPEND;
1994 else
1995 av |= FILE__WRITE;
1996 }
1997 if (!av) {
1998 /*
1999 * Special file opened with flags 3 for ioctl-only use.
2000 */
2001 av = FILE__IOCTL;
2002 }
2003
2004 return av;
2005}
2006
2007/*
2008 * Convert a file to an access vector and include the correct
2009 * open permission.
2010 */
2011static inline u32 open_file_to_av(struct file *file)
2012{
2013 u32 av = file_to_av(file);
2014 struct inode *inode = file_inode(file);
2015
2016 if (selinux_policycap_openperm() &&
2017 inode->i_sb->s_magic != SOCKFS_MAGIC)
2018 av |= FILE__OPEN;
2019
2020 return av;
2021}
2022
2023/* Hook functions begin here. */
2024
2025static int selinux_binder_set_context_mgr(const struct cred *mgr)
2026{
2027 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2028 BINDER__SET_CONTEXT_MGR, NULL);
2029}
2030
2031static int selinux_binder_transaction(const struct cred *from,
2032 const struct cred *to)
2033{
2034 u32 mysid = current_sid();
2035 u32 fromsid = cred_sid(from);
2036 u32 tosid = cred_sid(to);
2037 int rc;
2038
2039 if (mysid != fromsid) {
2040 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2041 BINDER__IMPERSONATE, NULL);
2042 if (rc)
2043 return rc;
2044 }
2045
2046 return avc_has_perm(fromsid, tosid,
2047 SECCLASS_BINDER, BINDER__CALL, NULL);
2048}
2049
2050static int selinux_binder_transfer_binder(const struct cred *from,
2051 const struct cred *to)
2052{
2053 return avc_has_perm(cred_sid(from), cred_sid(to),
2054 SECCLASS_BINDER, BINDER__TRANSFER,
2055 NULL);
2056}
2057
2058static int selinux_binder_transfer_file(const struct cred *from,
2059 const struct cred *to,
2060 const struct file *file)
2061{
2062 u32 sid = cred_sid(to);
2063 struct file_security_struct *fsec = selinux_file(file);
2064 struct dentry *dentry = file->f_path.dentry;
2065 struct inode_security_struct *isec;
2066 struct common_audit_data ad;
2067 int rc;
2068
2069 ad.type = LSM_AUDIT_DATA_PATH;
2070 ad.u.path = file->f_path;
2071
2072 if (sid != fsec->sid) {
2073 rc = avc_has_perm(sid, fsec->sid,
2074 SECCLASS_FD,
2075 FD__USE,
2076 &ad);
2077 if (rc)
2078 return rc;
2079 }
2080
2081#ifdef CONFIG_BPF_SYSCALL
2082 rc = bpf_fd_pass(file, sid);
2083 if (rc)
2084 return rc;
2085#endif
2086
2087 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2088 return 0;
2089
2090 isec = backing_inode_security(dentry);
2091 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2092 &ad);
2093}
2094
2095static int selinux_ptrace_access_check(struct task_struct *child,
2096 unsigned int mode)
2097{
2098 u32 sid = current_sid();
2099 u32 csid = task_sid_obj(child);
2100
2101 if (mode & PTRACE_MODE_READ)
2102 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2103 NULL);
2104
2105 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2106 NULL);
2107}
2108
2109static int selinux_ptrace_traceme(struct task_struct *parent)
2110{
2111 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2112 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2113}
2114
2115static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2116 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2117{
2118 return avc_has_perm(current_sid(), task_sid_obj(target),
2119 SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2120}
2121
2122static int selinux_capset(struct cred *new, const struct cred *old,
2123 const kernel_cap_t *effective,
2124 const kernel_cap_t *inheritable,
2125 const kernel_cap_t *permitted)
2126{
2127 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2128 PROCESS__SETCAP, NULL);
2129}
2130
2131/*
2132 * (This comment used to live with the selinux_task_setuid hook,
2133 * which was removed).
2134 *
2135 * Since setuid only affects the current process, and since the SELinux
2136 * controls are not based on the Linux identity attributes, SELinux does not
2137 * need to control this operation. However, SELinux does control the use of
2138 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2139 */
2140
2141static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2142 int cap, unsigned int opts)
2143{
2144 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2145}
2146
2147static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2148{
2149 const struct cred *cred = current_cred();
2150 int rc = 0;
2151
2152 if (!sb)
2153 return 0;
2154
2155 switch (cmds) {
2156 case Q_SYNC:
2157 case Q_QUOTAON:
2158 case Q_QUOTAOFF:
2159 case Q_SETINFO:
2160 case Q_SETQUOTA:
2161 case Q_XQUOTAOFF:
2162 case Q_XQUOTAON:
2163 case Q_XSETQLIM:
2164 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2165 break;
2166 case Q_GETFMT:
2167 case Q_GETINFO:
2168 case Q_GETQUOTA:
2169 case Q_XGETQUOTA:
2170 case Q_XGETQSTAT:
2171 case Q_XGETQSTATV:
2172 case Q_XGETNEXTQUOTA:
2173 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2174 break;
2175 default:
2176 rc = 0; /* let the kernel handle invalid cmds */
2177 break;
2178 }
2179 return rc;
2180}
2181
2182static int selinux_quota_on(struct dentry *dentry)
2183{
2184 const struct cred *cred = current_cred();
2185
2186 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2187}
2188
2189static int selinux_syslog(int type)
2190{
2191 switch (type) {
2192 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2193 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2194 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2195 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2196 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2197 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2198 /* Set level of messages printed to console */
2199 case SYSLOG_ACTION_CONSOLE_LEVEL:
2200 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2202 NULL);
2203 }
2204 /* All other syslog types */
2205 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2206 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2207}
2208
2209/*
2210 * Check permission for allocating a new virtual mapping. Returns
2211 * 0 if permission is granted, negative error code if not.
2212 *
2213 * Do not audit the selinux permission check, as this is applied to all
2214 * processes that allocate mappings.
2215 */
2216static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2217{
2218 return cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2219 CAP_OPT_NOAUDIT, true);
2220}
2221
2222/* binprm security operations */
2223
2224static u32 ptrace_parent_sid(void)
2225{
2226 u32 sid = 0;
2227 struct task_struct *tracer;
2228
2229 rcu_read_lock();
2230 tracer = ptrace_parent(current);
2231 if (tracer)
2232 sid = task_sid_obj(tracer);
2233 rcu_read_unlock();
2234
2235 return sid;
2236}
2237
2238static int check_nnp_nosuid(const struct linux_binprm *bprm,
2239 const struct task_security_struct *old_tsec,
2240 const struct task_security_struct *new_tsec)
2241{
2242 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2243 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2244 int rc;
2245 u32 av;
2246
2247 if (!nnp && !nosuid)
2248 return 0; /* neither NNP nor nosuid */
2249
2250 if (new_tsec->sid == old_tsec->sid)
2251 return 0; /* No change in credentials */
2252
2253 /*
2254 * If the policy enables the nnp_nosuid_transition policy capability,
2255 * then we permit transitions under NNP or nosuid if the
2256 * policy allows the corresponding permission between
2257 * the old and new contexts.
2258 */
2259 if (selinux_policycap_nnp_nosuid_transition()) {
2260 av = 0;
2261 if (nnp)
2262 av |= PROCESS2__NNP_TRANSITION;
2263 if (nosuid)
2264 av |= PROCESS2__NOSUID_TRANSITION;
2265 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2266 SECCLASS_PROCESS2, av, NULL);
2267 if (!rc)
2268 return 0;
2269 }
2270
2271 /*
2272 * We also permit NNP or nosuid transitions to bounded SIDs,
2273 * i.e. SIDs that are guaranteed to only be allowed a subset
2274 * of the permissions of the current SID.
2275 */
2276 rc = security_bounded_transition(old_tsec->sid,
2277 new_tsec->sid);
2278 if (!rc)
2279 return 0;
2280
2281 /*
2282 * On failure, preserve the errno values for NNP vs nosuid.
2283 * NNP: Operation not permitted for caller.
2284 * nosuid: Permission denied to file.
2285 */
2286 if (nnp)
2287 return -EPERM;
2288 return -EACCES;
2289}
2290
2291static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2292{
2293 const struct task_security_struct *old_tsec;
2294 struct task_security_struct *new_tsec;
2295 struct inode_security_struct *isec;
2296 struct common_audit_data ad;
2297 struct inode *inode = file_inode(bprm->file);
2298 int rc;
2299
2300 /* SELinux context only depends on initial program or script and not
2301 * the script interpreter */
2302
2303 old_tsec = selinux_cred(current_cred());
2304 new_tsec = selinux_cred(bprm->cred);
2305 isec = inode_security(inode);
2306
2307 /* Default to the current task SID. */
2308 new_tsec->sid = old_tsec->sid;
2309 new_tsec->osid = old_tsec->sid;
2310
2311 /* Reset fs, key, and sock SIDs on execve. */
2312 new_tsec->create_sid = 0;
2313 new_tsec->keycreate_sid = 0;
2314 new_tsec->sockcreate_sid = 0;
2315
2316 /*
2317 * Before policy is loaded, label any task outside kernel space
2318 * as SECINITSID_INIT, so that any userspace tasks surviving from
2319 * early boot end up with a label different from SECINITSID_KERNEL
2320 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2321 */
2322 if (!selinux_initialized()) {
2323 new_tsec->sid = SECINITSID_INIT;
2324 /* also clear the exec_sid just in case */
2325 new_tsec->exec_sid = 0;
2326 return 0;
2327 }
2328
2329 if (old_tsec->exec_sid) {
2330 new_tsec->sid = old_tsec->exec_sid;
2331 /* Reset exec SID on execve. */
2332 new_tsec->exec_sid = 0;
2333
2334 /* Fail on NNP or nosuid if not an allowed transition. */
2335 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336 if (rc)
2337 return rc;
2338 } else {
2339 /* Check for a default transition on this program. */
2340 rc = security_transition_sid(old_tsec->sid,
2341 isec->sid, SECCLASS_PROCESS, NULL,
2342 &new_tsec->sid);
2343 if (rc)
2344 return rc;
2345
2346 /*
2347 * Fallback to old SID on NNP or nosuid if not an allowed
2348 * transition.
2349 */
2350 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2351 if (rc)
2352 new_tsec->sid = old_tsec->sid;
2353 }
2354
2355 ad.type = LSM_AUDIT_DATA_FILE;
2356 ad.u.file = bprm->file;
2357
2358 if (new_tsec->sid == old_tsec->sid) {
2359 rc = avc_has_perm(old_tsec->sid, isec->sid,
2360 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2361 if (rc)
2362 return rc;
2363 } else {
2364 /* Check permissions for the transition. */
2365 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2366 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2367 if (rc)
2368 return rc;
2369
2370 rc = avc_has_perm(new_tsec->sid, isec->sid,
2371 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2372 if (rc)
2373 return rc;
2374
2375 /* Check for shared state */
2376 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2377 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2378 SECCLASS_PROCESS, PROCESS__SHARE,
2379 NULL);
2380 if (rc)
2381 return -EPERM;
2382 }
2383
2384 /* Make sure that anyone attempting to ptrace over a task that
2385 * changes its SID has the appropriate permit */
2386 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2387 u32 ptsid = ptrace_parent_sid();
2388 if (ptsid != 0) {
2389 rc = avc_has_perm(ptsid, new_tsec->sid,
2390 SECCLASS_PROCESS,
2391 PROCESS__PTRACE, NULL);
2392 if (rc)
2393 return -EPERM;
2394 }
2395 }
2396
2397 /* Clear any possibly unsafe personality bits on exec: */
2398 bprm->per_clear |= PER_CLEAR_ON_SETID;
2399
2400 /* Enable secure mode for SIDs transitions unless
2401 the noatsecure permission is granted between
2402 the two SIDs, i.e. ahp returns 0. */
2403 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2404 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2405 NULL);
2406 bprm->secureexec |= !!rc;
2407 }
2408
2409 return 0;
2410}
2411
2412static int match_file(const void *p, struct file *file, unsigned fd)
2413{
2414 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2415}
2416
2417/* Derived from fs/exec.c:flush_old_files. */
2418static inline void flush_unauthorized_files(const struct cred *cred,
2419 struct files_struct *files)
2420{
2421 struct file *file, *devnull = NULL;
2422 struct tty_struct *tty;
2423 int drop_tty = 0;
2424 unsigned n;
2425
2426 tty = get_current_tty();
2427 if (tty) {
2428 spin_lock(&tty->files_lock);
2429 if (!list_empty(&tty->tty_files)) {
2430 struct tty_file_private *file_priv;
2431
2432 /* Revalidate access to controlling tty.
2433 Use file_path_has_perm on the tty path directly
2434 rather than using file_has_perm, as this particular
2435 open file may belong to another process and we are
2436 only interested in the inode-based check here. */
2437 file_priv = list_first_entry(&tty->tty_files,
2438 struct tty_file_private, list);
2439 file = file_priv->file;
2440 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2441 drop_tty = 1;
2442 }
2443 spin_unlock(&tty->files_lock);
2444 tty_kref_put(tty);
2445 }
2446 /* Reset controlling tty. */
2447 if (drop_tty)
2448 no_tty();
2449
2450 /* Revalidate access to inherited open files. */
2451 n = iterate_fd(files, 0, match_file, cred);
2452 if (!n) /* none found? */
2453 return;
2454
2455 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2456 if (IS_ERR(devnull))
2457 devnull = NULL;
2458 /* replace all the matching ones with this */
2459 do {
2460 replace_fd(n - 1, devnull, 0);
2461 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2462 if (devnull)
2463 fput(devnull);
2464}
2465
2466/*
2467 * Prepare a process for imminent new credential changes due to exec
2468 */
2469static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2470{
2471 struct task_security_struct *new_tsec;
2472 struct rlimit *rlim, *initrlim;
2473 int rc, i;
2474
2475 new_tsec = selinux_cred(bprm->cred);
2476 if (new_tsec->sid == new_tsec->osid)
2477 return;
2478
2479 /* Close files for which the new task SID is not authorized. */
2480 flush_unauthorized_files(bprm->cred, current->files);
2481
2482 /* Always clear parent death signal on SID transitions. */
2483 current->pdeath_signal = 0;
2484
2485 /* Check whether the new SID can inherit resource limits from the old
2486 * SID. If not, reset all soft limits to the lower of the current
2487 * task's hard limit and the init task's soft limit.
2488 *
2489 * Note that the setting of hard limits (even to lower them) can be
2490 * controlled by the setrlimit check. The inclusion of the init task's
2491 * soft limit into the computation is to avoid resetting soft limits
2492 * higher than the default soft limit for cases where the default is
2493 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2494 */
2495 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2496 PROCESS__RLIMITINH, NULL);
2497 if (rc) {
2498 /* protect against do_prlimit() */
2499 task_lock(current);
2500 for (i = 0; i < RLIM_NLIMITS; i++) {
2501 rlim = current->signal->rlim + i;
2502 initrlim = init_task.signal->rlim + i;
2503 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2504 }
2505 task_unlock(current);
2506 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2507 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2508 }
2509}
2510
2511/*
2512 * Clean up the process immediately after the installation of new credentials
2513 * due to exec
2514 */
2515static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2516{
2517 const struct task_security_struct *tsec = selinux_cred(current_cred());
2518 u32 osid, sid;
2519 int rc;
2520
2521 osid = tsec->osid;
2522 sid = tsec->sid;
2523
2524 if (sid == osid)
2525 return;
2526
2527 /* Check whether the new SID can inherit signal state from the old SID.
2528 * If not, clear itimers to avoid subsequent signal generation and
2529 * flush and unblock signals.
2530 *
2531 * This must occur _after_ the task SID has been updated so that any
2532 * kill done after the flush will be checked against the new SID.
2533 */
2534 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2535 if (rc) {
2536 clear_itimer();
2537
2538 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2539 if (!fatal_signal_pending(current)) {
2540 flush_sigqueue(¤t->pending);
2541 flush_sigqueue(¤t->signal->shared_pending);
2542 flush_signal_handlers(current, 1);
2543 sigemptyset(¤t->blocked);
2544 recalc_sigpending();
2545 }
2546 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2547 }
2548
2549 /* Wake up the parent if it is waiting so that it can recheck
2550 * wait permission to the new task SID. */
2551 read_lock(&tasklist_lock);
2552 __wake_up_parent(current, unrcu_pointer(current->real_parent));
2553 read_unlock(&tasklist_lock);
2554}
2555
2556/* superblock security operations */
2557
2558static int selinux_sb_alloc_security(struct super_block *sb)
2559{
2560 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2561
2562 mutex_init(&sbsec->lock);
2563 INIT_LIST_HEAD(&sbsec->isec_head);
2564 spin_lock_init(&sbsec->isec_lock);
2565 sbsec->sid = SECINITSID_UNLABELED;
2566 sbsec->def_sid = SECINITSID_FILE;
2567 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2568
2569 return 0;
2570}
2571
2572static inline int opt_len(const char *s)
2573{
2574 bool open_quote = false;
2575 int len;
2576 char c;
2577
2578 for (len = 0; (c = s[len]) != '\0'; len++) {
2579 if (c == '"')
2580 open_quote = !open_quote;
2581 if (c == ',' && !open_quote)
2582 break;
2583 }
2584 return len;
2585}
2586
2587static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2588{
2589 char *from = options;
2590 char *to = options;
2591 bool first = true;
2592 int rc;
2593
2594 while (1) {
2595 int len = opt_len(from);
2596 int token;
2597 char *arg = NULL;
2598
2599 token = match_opt_prefix(from, len, &arg);
2600
2601 if (token != Opt_error) {
2602 char *p, *q;
2603
2604 /* strip quotes */
2605 if (arg) {
2606 for (p = q = arg; p < from + len; p++) {
2607 char c = *p;
2608 if (c != '"')
2609 *q++ = c;
2610 }
2611 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2612 if (!arg) {
2613 rc = -ENOMEM;
2614 goto free_opt;
2615 }
2616 }
2617 rc = selinux_add_opt(token, arg, mnt_opts);
2618 kfree(arg);
2619 arg = NULL;
2620 if (unlikely(rc)) {
2621 goto free_opt;
2622 }
2623 } else {
2624 if (!first) { // copy with preceding comma
2625 from--;
2626 len++;
2627 }
2628 if (to != from)
2629 memmove(to, from, len);
2630 to += len;
2631 first = false;
2632 }
2633 if (!from[len])
2634 break;
2635 from += len + 1;
2636 }
2637 *to = '\0';
2638 return 0;
2639
2640free_opt:
2641 if (*mnt_opts) {
2642 selinux_free_mnt_opts(*mnt_opts);
2643 *mnt_opts = NULL;
2644 }
2645 return rc;
2646}
2647
2648static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2649{
2650 struct selinux_mnt_opts *opts = mnt_opts;
2651 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2652
2653 /*
2654 * Superblock not initialized (i.e. no options) - reject if any
2655 * options specified, otherwise accept.
2656 */
2657 if (!(sbsec->flags & SE_SBINITIALIZED))
2658 return opts ? 1 : 0;
2659
2660 /*
2661 * Superblock initialized and no options specified - reject if
2662 * superblock has any options set, otherwise accept.
2663 */
2664 if (!opts)
2665 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2666
2667 if (opts->fscontext_sid) {
2668 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2669 opts->fscontext_sid))
2670 return 1;
2671 }
2672 if (opts->context_sid) {
2673 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2674 opts->context_sid))
2675 return 1;
2676 }
2677 if (opts->rootcontext_sid) {
2678 struct inode_security_struct *root_isec;
2679
2680 root_isec = backing_inode_security(sb->s_root);
2681 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2682 opts->rootcontext_sid))
2683 return 1;
2684 }
2685 if (opts->defcontext_sid) {
2686 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2687 opts->defcontext_sid))
2688 return 1;
2689 }
2690 return 0;
2691}
2692
2693static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2694{
2695 struct selinux_mnt_opts *opts = mnt_opts;
2696 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2697
2698 if (!(sbsec->flags & SE_SBINITIALIZED))
2699 return 0;
2700
2701 if (!opts)
2702 return 0;
2703
2704 if (opts->fscontext_sid) {
2705 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2706 opts->fscontext_sid))
2707 goto out_bad_option;
2708 }
2709 if (opts->context_sid) {
2710 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2711 opts->context_sid))
2712 goto out_bad_option;
2713 }
2714 if (opts->rootcontext_sid) {
2715 struct inode_security_struct *root_isec;
2716 root_isec = backing_inode_security(sb->s_root);
2717 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2718 opts->rootcontext_sid))
2719 goto out_bad_option;
2720 }
2721 if (opts->defcontext_sid) {
2722 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2723 opts->defcontext_sid))
2724 goto out_bad_option;
2725 }
2726 return 0;
2727
2728out_bad_option:
2729 pr_warn("SELinux: unable to change security options "
2730 "during remount (dev %s, type=%s)\n", sb->s_id,
2731 sb->s_type->name);
2732 return -EINVAL;
2733}
2734
2735static int selinux_sb_kern_mount(const struct super_block *sb)
2736{
2737 const struct cred *cred = current_cred();
2738 struct common_audit_data ad;
2739
2740 ad.type = LSM_AUDIT_DATA_DENTRY;
2741 ad.u.dentry = sb->s_root;
2742 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2743}
2744
2745static int selinux_sb_statfs(struct dentry *dentry)
2746{
2747 const struct cred *cred = current_cred();
2748 struct common_audit_data ad;
2749
2750 ad.type = LSM_AUDIT_DATA_DENTRY;
2751 ad.u.dentry = dentry->d_sb->s_root;
2752 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2753}
2754
2755static int selinux_mount(const char *dev_name,
2756 const struct path *path,
2757 const char *type,
2758 unsigned long flags,
2759 void *data)
2760{
2761 const struct cred *cred = current_cred();
2762
2763 if (flags & MS_REMOUNT)
2764 return superblock_has_perm(cred, path->dentry->d_sb,
2765 FILESYSTEM__REMOUNT, NULL);
2766 else
2767 return path_has_perm(cred, path, FILE__MOUNTON);
2768}
2769
2770static int selinux_move_mount(const struct path *from_path,
2771 const struct path *to_path)
2772{
2773 const struct cred *cred = current_cred();
2774
2775 return path_has_perm(cred, to_path, FILE__MOUNTON);
2776}
2777
2778static int selinux_umount(struct vfsmount *mnt, int flags)
2779{
2780 const struct cred *cred = current_cred();
2781
2782 return superblock_has_perm(cred, mnt->mnt_sb,
2783 FILESYSTEM__UNMOUNT, NULL);
2784}
2785
2786static int selinux_fs_context_submount(struct fs_context *fc,
2787 struct super_block *reference)
2788{
2789 const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2790 struct selinux_mnt_opts *opts;
2791
2792 /*
2793 * Ensure that fc->security remains NULL when no options are set
2794 * as expected by selinux_set_mnt_opts().
2795 */
2796 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2797 return 0;
2798
2799 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2800 if (!opts)
2801 return -ENOMEM;
2802
2803 if (sbsec->flags & FSCONTEXT_MNT)
2804 opts->fscontext_sid = sbsec->sid;
2805 if (sbsec->flags & CONTEXT_MNT)
2806 opts->context_sid = sbsec->mntpoint_sid;
2807 if (sbsec->flags & DEFCONTEXT_MNT)
2808 opts->defcontext_sid = sbsec->def_sid;
2809 fc->security = opts;
2810 return 0;
2811}
2812
2813static int selinux_fs_context_dup(struct fs_context *fc,
2814 struct fs_context *src_fc)
2815{
2816 const struct selinux_mnt_opts *src = src_fc->security;
2817
2818 if (!src)
2819 return 0;
2820
2821 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2822 return fc->security ? 0 : -ENOMEM;
2823}
2824
2825static const struct fs_parameter_spec selinux_fs_parameters[] = {
2826 fsparam_string(CONTEXT_STR, Opt_context),
2827 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2828 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2829 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2830 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2831 {}
2832};
2833
2834static int selinux_fs_context_parse_param(struct fs_context *fc,
2835 struct fs_parameter *param)
2836{
2837 struct fs_parse_result result;
2838 int opt;
2839
2840 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2841 if (opt < 0)
2842 return opt;
2843
2844 return selinux_add_opt(opt, param->string, &fc->security);
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851 struct inode_security_struct *isec = selinux_inode(inode);
2852 u32 sid = current_sid();
2853
2854 spin_lock_init(&isec->lock);
2855 INIT_LIST_HEAD(&isec->list);
2856 isec->inode = inode;
2857 isec->sid = SECINITSID_UNLABELED;
2858 isec->sclass = SECCLASS_FILE;
2859 isec->task_sid = sid;
2860 isec->initialized = LABEL_INVALID;
2861
2862 return 0;
2863}
2864
2865static void selinux_inode_free_security(struct inode *inode)
2866{
2867 inode_free_security(inode);
2868}
2869
2870static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2871 const struct qstr *name,
2872 const char **xattr_name, void **ctx,
2873 u32 *ctxlen)
2874{
2875 u32 newsid;
2876 int rc;
2877
2878 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2879 d_inode(dentry->d_parent), name,
2880 inode_mode_to_security_class(mode),
2881 &newsid);
2882 if (rc)
2883 return rc;
2884
2885 if (xattr_name)
2886 *xattr_name = XATTR_NAME_SELINUX;
2887
2888 return security_sid_to_context(newsid, (char **)ctx,
2889 ctxlen);
2890}
2891
2892static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2893 struct qstr *name,
2894 const struct cred *old,
2895 struct cred *new)
2896{
2897 u32 newsid;
2898 int rc;
2899 struct task_security_struct *tsec;
2900
2901 rc = selinux_determine_inode_label(selinux_cred(old),
2902 d_inode(dentry->d_parent), name,
2903 inode_mode_to_security_class(mode),
2904 &newsid);
2905 if (rc)
2906 return rc;
2907
2908 tsec = selinux_cred(new);
2909 tsec->create_sid = newsid;
2910 return 0;
2911}
2912
2913static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2914 const struct qstr *qstr,
2915 struct xattr *xattrs, int *xattr_count)
2916{
2917 const struct task_security_struct *tsec = selinux_cred(current_cred());
2918 struct superblock_security_struct *sbsec;
2919 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2920 u32 newsid, clen;
2921 u16 newsclass;
2922 int rc;
2923 char *context;
2924
2925 sbsec = selinux_superblock(dir->i_sb);
2926
2927 newsid = tsec->create_sid;
2928 newsclass = inode_mode_to_security_class(inode->i_mode);
2929 rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2930 if (rc)
2931 return rc;
2932
2933 /* Possibly defer initialization to selinux_complete_init. */
2934 if (sbsec->flags & SE_SBINITIALIZED) {
2935 struct inode_security_struct *isec = selinux_inode(inode);
2936 isec->sclass = newsclass;
2937 isec->sid = newsid;
2938 isec->initialized = LABEL_INITIALIZED;
2939 }
2940
2941 if (!selinux_initialized() ||
2942 !(sbsec->flags & SBLABEL_MNT))
2943 return -EOPNOTSUPP;
2944
2945 if (xattr) {
2946 rc = security_sid_to_context_force(newsid,
2947 &context, &clen);
2948 if (rc)
2949 return rc;
2950 xattr->value = context;
2951 xattr->value_len = clen;
2952 xattr->name = XATTR_SELINUX_SUFFIX;
2953 }
2954
2955 return 0;
2956}
2957
2958static int selinux_inode_init_security_anon(struct inode *inode,
2959 const struct qstr *name,
2960 const struct inode *context_inode)
2961{
2962 u32 sid = current_sid();
2963 struct common_audit_data ad;
2964 struct inode_security_struct *isec;
2965 int rc;
2966
2967 if (unlikely(!selinux_initialized()))
2968 return 0;
2969
2970 isec = selinux_inode(inode);
2971
2972 /*
2973 * We only get here once per ephemeral inode. The inode has
2974 * been initialized via inode_alloc_security but is otherwise
2975 * untouched.
2976 */
2977
2978 if (context_inode) {
2979 struct inode_security_struct *context_isec =
2980 selinux_inode(context_inode);
2981 if (context_isec->initialized != LABEL_INITIALIZED) {
2982 pr_err("SELinux: context_inode is not initialized\n");
2983 return -EACCES;
2984 }
2985
2986 isec->sclass = context_isec->sclass;
2987 isec->sid = context_isec->sid;
2988 } else {
2989 isec->sclass = SECCLASS_ANON_INODE;
2990 rc = security_transition_sid(
2991 sid, sid,
2992 isec->sclass, name, &isec->sid);
2993 if (rc)
2994 return rc;
2995 }
2996
2997 isec->initialized = LABEL_INITIALIZED;
2998 /*
2999 * Now that we've initialized security, check whether we're
3000 * allowed to actually create this type of anonymous inode.
3001 */
3002
3003 ad.type = LSM_AUDIT_DATA_ANONINODE;
3004 ad.u.anonclass = name ? (const char *)name->name : "?";
3005
3006 return avc_has_perm(sid,
3007 isec->sid,
3008 isec->sclass,
3009 FILE__CREATE,
3010 &ad);
3011}
3012
3013static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3014{
3015 return may_create(dir, dentry, SECCLASS_FILE);
3016}
3017
3018static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3019{
3020 return may_link(dir, old_dentry, MAY_LINK);
3021}
3022
3023static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3024{
3025 return may_link(dir, dentry, MAY_UNLINK);
3026}
3027
3028static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3029{
3030 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3031}
3032
3033static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3034{
3035 return may_create(dir, dentry, SECCLASS_DIR);
3036}
3037
3038static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3039{
3040 return may_link(dir, dentry, MAY_RMDIR);
3041}
3042
3043static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3044{
3045 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3046}
3047
3048static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3049 struct inode *new_inode, struct dentry *new_dentry)
3050{
3051 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3052}
3053
3054static int selinux_inode_readlink(struct dentry *dentry)
3055{
3056 const struct cred *cred = current_cred();
3057
3058 return dentry_has_perm(cred, dentry, FILE__READ);
3059}
3060
3061static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3062 bool rcu)
3063{
3064 struct common_audit_data ad;
3065 struct inode_security_struct *isec;
3066 u32 sid = current_sid();
3067
3068 ad.type = LSM_AUDIT_DATA_DENTRY;
3069 ad.u.dentry = dentry;
3070 isec = inode_security_rcu(inode, rcu);
3071 if (IS_ERR(isec))
3072 return PTR_ERR(isec);
3073
3074 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3075}
3076
3077static noinline int audit_inode_permission(struct inode *inode,
3078 u32 perms, u32 audited, u32 denied,
3079 int result)
3080{
3081 struct common_audit_data ad;
3082 struct inode_security_struct *isec = selinux_inode(inode);
3083
3084 ad.type = LSM_AUDIT_DATA_INODE;
3085 ad.u.inode = inode;
3086
3087 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3088 audited, denied, result, &ad);
3089}
3090
3091static int selinux_inode_permission(struct inode *inode, int mask)
3092{
3093 u32 perms;
3094 bool from_access;
3095 bool no_block = mask & MAY_NOT_BLOCK;
3096 struct inode_security_struct *isec;
3097 u32 sid = current_sid();
3098 struct av_decision avd;
3099 int rc, rc2;
3100 u32 audited, denied;
3101
3102 from_access = mask & MAY_ACCESS;
3103 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3104
3105 /* No permission to check. Existence test. */
3106 if (!mask)
3107 return 0;
3108
3109 if (unlikely(IS_PRIVATE(inode)))
3110 return 0;
3111
3112 perms = file_mask_to_av(inode->i_mode, mask);
3113
3114 isec = inode_security_rcu(inode, no_block);
3115 if (IS_ERR(isec))
3116 return PTR_ERR(isec);
3117
3118 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3119 &avd);
3120 audited = avc_audit_required(perms, &avd, rc,
3121 from_access ? FILE__AUDIT_ACCESS : 0,
3122 &denied);
3123 if (likely(!audited))
3124 return rc;
3125
3126 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3127 if (rc2)
3128 return rc2;
3129 return rc;
3130}
3131
3132static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3133 struct iattr *iattr)
3134{
3135 const struct cred *cred = current_cred();
3136 struct inode *inode = d_backing_inode(dentry);
3137 unsigned int ia_valid = iattr->ia_valid;
3138 __u32 av = FILE__WRITE;
3139
3140 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3141 if (ia_valid & ATTR_FORCE) {
3142 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3143 ATTR_FORCE);
3144 if (!ia_valid)
3145 return 0;
3146 }
3147
3148 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3149 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3150 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3151
3152 if (selinux_policycap_openperm() &&
3153 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3154 (ia_valid & ATTR_SIZE) &&
3155 !(ia_valid & ATTR_FILE))
3156 av |= FILE__OPEN;
3157
3158 return dentry_has_perm(cred, dentry, av);
3159}
3160
3161static int selinux_inode_getattr(const struct path *path)
3162{
3163 return path_has_perm(current_cred(), path, FILE__GETATTR);
3164}
3165
3166static bool has_cap_mac_admin(bool audit)
3167{
3168 const struct cred *cred = current_cred();
3169 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3170
3171 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3172 return false;
3173 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3174 return false;
3175 return true;
3176}
3177
3178/**
3179 * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3180 * @name: name of the xattr
3181 *
3182 * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3183 * named @name; the LSM layer should avoid enforcing any traditional
3184 * capability based access controls on this xattr. Returns 0 to indicate that
3185 * SELinux does not "own" the access control rights to xattrs named @name and is
3186 * deferring to the LSM layer for further access controls, including capability
3187 * based controls.
3188 */
3189static int selinux_inode_xattr_skipcap(const char *name)
3190{
3191 /* require capability check if not a selinux xattr */
3192 return !strcmp(name, XATTR_NAME_SELINUX);
3193}
3194
3195static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3196 struct dentry *dentry, const char *name,
3197 const void *value, size_t size, int flags)
3198{
3199 struct inode *inode = d_backing_inode(dentry);
3200 struct inode_security_struct *isec;
3201 struct superblock_security_struct *sbsec;
3202 struct common_audit_data ad;
3203 u32 newsid, sid = current_sid();
3204 int rc = 0;
3205
3206 /* if not a selinux xattr, only check the ordinary setattr perm */
3207 if (strcmp(name, XATTR_NAME_SELINUX))
3208 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3209
3210 if (!selinux_initialized())
3211 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3212
3213 sbsec = selinux_superblock(inode->i_sb);
3214 if (!(sbsec->flags & SBLABEL_MNT))
3215 return -EOPNOTSUPP;
3216
3217 if (!inode_owner_or_capable(idmap, inode))
3218 return -EPERM;
3219
3220 ad.type = LSM_AUDIT_DATA_DENTRY;
3221 ad.u.dentry = dentry;
3222
3223 isec = backing_inode_security(dentry);
3224 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3225 FILE__RELABELFROM, &ad);
3226 if (rc)
3227 return rc;
3228
3229 rc = security_context_to_sid(value, size, &newsid,
3230 GFP_KERNEL);
3231 if (rc == -EINVAL) {
3232 if (!has_cap_mac_admin(true)) {
3233 struct audit_buffer *ab;
3234 size_t audit_size;
3235
3236 /* We strip a nul only if it is at the end, otherwise the
3237 * context contains a nul and we should audit that */
3238 if (value) {
3239 const char *str = value;
3240
3241 if (str[size - 1] == '\0')
3242 audit_size = size - 1;
3243 else
3244 audit_size = size;
3245 } else {
3246 audit_size = 0;
3247 }
3248 ab = audit_log_start(audit_context(),
3249 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3250 if (!ab)
3251 return rc;
3252 audit_log_format(ab, "op=setxattr invalid_context=");
3253 audit_log_n_untrustedstring(ab, value, audit_size);
3254 audit_log_end(ab);
3255
3256 return rc;
3257 }
3258 rc = security_context_to_sid_force(value,
3259 size, &newsid);
3260 }
3261 if (rc)
3262 return rc;
3263
3264 rc = avc_has_perm(sid, newsid, isec->sclass,
3265 FILE__RELABELTO, &ad);
3266 if (rc)
3267 return rc;
3268
3269 rc = security_validate_transition(isec->sid, newsid,
3270 sid, isec->sclass);
3271 if (rc)
3272 return rc;
3273
3274 return avc_has_perm(newsid,
3275 sbsec->sid,
3276 SECCLASS_FILESYSTEM,
3277 FILESYSTEM__ASSOCIATE,
3278 &ad);
3279}
3280
3281static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3282 struct dentry *dentry, const char *acl_name,
3283 struct posix_acl *kacl)
3284{
3285 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3286}
3287
3288static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3289 struct dentry *dentry, const char *acl_name)
3290{
3291 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3292}
3293
3294static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3295 struct dentry *dentry, const char *acl_name)
3296{
3297 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3298}
3299
3300static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3301 const void *value, size_t size,
3302 int flags)
3303{
3304 struct inode *inode = d_backing_inode(dentry);
3305 struct inode_security_struct *isec;
3306 u32 newsid;
3307 int rc;
3308
3309 if (strcmp(name, XATTR_NAME_SELINUX)) {
3310 /* Not an attribute we recognize, so nothing to do. */
3311 return;
3312 }
3313
3314 if (!selinux_initialized()) {
3315 /* If we haven't even been initialized, then we can't validate
3316 * against a policy, so leave the label as invalid. It may
3317 * resolve to a valid label on the next revalidation try if
3318 * we've since initialized.
3319 */
3320 return;
3321 }
3322
3323 rc = security_context_to_sid_force(value, size,
3324 &newsid);
3325 if (rc) {
3326 pr_err("SELinux: unable to map context to SID"
3327 "for (%s, %lu), rc=%d\n",
3328 inode->i_sb->s_id, inode->i_ino, -rc);
3329 return;
3330 }
3331
3332 isec = backing_inode_security(dentry);
3333 spin_lock(&isec->lock);
3334 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3335 isec->sid = newsid;
3336 isec->initialized = LABEL_INITIALIZED;
3337 spin_unlock(&isec->lock);
3338}
3339
3340static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3341{
3342 const struct cred *cred = current_cred();
3343
3344 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3345}
3346
3347static int selinux_inode_listxattr(struct dentry *dentry)
3348{
3349 const struct cred *cred = current_cred();
3350
3351 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3352}
3353
3354static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3355 struct dentry *dentry, const char *name)
3356{
3357 /* if not a selinux xattr, only check the ordinary setattr perm */
3358 if (strcmp(name, XATTR_NAME_SELINUX))
3359 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360
3361 if (!selinux_initialized())
3362 return 0;
3363
3364 /* No one is allowed to remove a SELinux security label.
3365 You can change the label, but all data must be labeled. */
3366 return -EACCES;
3367}
3368
3369static int selinux_path_notify(const struct path *path, u64 mask,
3370 unsigned int obj_type)
3371{
3372 int ret;
3373 u32 perm;
3374
3375 struct common_audit_data ad;
3376
3377 ad.type = LSM_AUDIT_DATA_PATH;
3378 ad.u.path = *path;
3379
3380 /*
3381 * Set permission needed based on the type of mark being set.
3382 * Performs an additional check for sb watches.
3383 */
3384 switch (obj_type) {
3385 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3386 perm = FILE__WATCH_MOUNT;
3387 break;
3388 case FSNOTIFY_OBJ_TYPE_SB:
3389 perm = FILE__WATCH_SB;
3390 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3391 FILESYSTEM__WATCH, &ad);
3392 if (ret)
3393 return ret;
3394 break;
3395 case FSNOTIFY_OBJ_TYPE_INODE:
3396 perm = FILE__WATCH;
3397 break;
3398 default:
3399 return -EINVAL;
3400 }
3401
3402 /* blocking watches require the file:watch_with_perm permission */
3403 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3404 perm |= FILE__WATCH_WITH_PERM;
3405
3406 /* watches on read-like events need the file:watch_reads permission */
3407 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3408 perm |= FILE__WATCH_READS;
3409
3410 return path_has_perm(current_cred(), path, perm);
3411}
3412
3413/*
3414 * Copy the inode security context value to the user.
3415 *
3416 * Permission check is handled by selinux_inode_getxattr hook.
3417 */
3418static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3419 struct inode *inode, const char *name,
3420 void **buffer, bool alloc)
3421{
3422 u32 size;
3423 int error;
3424 char *context = NULL;
3425 struct inode_security_struct *isec;
3426
3427 /*
3428 * If we're not initialized yet, then we can't validate contexts, so
3429 * just let vfs_getxattr fall back to using the on-disk xattr.
3430 */
3431 if (!selinux_initialized() ||
3432 strcmp(name, XATTR_SELINUX_SUFFIX))
3433 return -EOPNOTSUPP;
3434
3435 /*
3436 * If the caller has CAP_MAC_ADMIN, then get the raw context
3437 * value even if it is not defined by current policy; otherwise,
3438 * use the in-core value under current policy.
3439 * Use the non-auditing forms of the permission checks since
3440 * getxattr may be called by unprivileged processes commonly
3441 * and lack of permission just means that we fall back to the
3442 * in-core context value, not a denial.
3443 */
3444 isec = inode_security(inode);
3445 if (has_cap_mac_admin(false))
3446 error = security_sid_to_context_force(isec->sid, &context,
3447 &size);
3448 else
3449 error = security_sid_to_context(isec->sid,
3450 &context, &size);
3451 if (error)
3452 return error;
3453 error = size;
3454 if (alloc) {
3455 *buffer = context;
3456 goto out_nofree;
3457 }
3458 kfree(context);
3459out_nofree:
3460 return error;
3461}
3462
3463static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3464 const void *value, size_t size, int flags)
3465{
3466 struct inode_security_struct *isec = inode_security_novalidate(inode);
3467 struct superblock_security_struct *sbsec;
3468 u32 newsid;
3469 int rc;
3470
3471 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3472 return -EOPNOTSUPP;
3473
3474 sbsec = selinux_superblock(inode->i_sb);
3475 if (!(sbsec->flags & SBLABEL_MNT))
3476 return -EOPNOTSUPP;
3477
3478 if (!value || !size)
3479 return -EACCES;
3480
3481 rc = security_context_to_sid(value, size, &newsid,
3482 GFP_KERNEL);
3483 if (rc)
3484 return rc;
3485
3486 spin_lock(&isec->lock);
3487 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3488 isec->sid = newsid;
3489 isec->initialized = LABEL_INITIALIZED;
3490 spin_unlock(&isec->lock);
3491 return 0;
3492}
3493
3494static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3495{
3496 const int len = sizeof(XATTR_NAME_SELINUX);
3497
3498 if (!selinux_initialized())
3499 return 0;
3500
3501 if (buffer && len <= buffer_size)
3502 memcpy(buffer, XATTR_NAME_SELINUX, len);
3503 return len;
3504}
3505
3506static void selinux_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
3507{
3508 struct inode_security_struct *isec = inode_security_novalidate(inode);
3509
3510 prop->selinux.secid = isec->sid;
3511}
3512
3513static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514{
3515 struct lsm_prop prop;
3516 struct task_security_struct *tsec;
3517 struct cred *new_creds = *new;
3518
3519 if (new_creds == NULL) {
3520 new_creds = prepare_creds();
3521 if (!new_creds)
3522 return -ENOMEM;
3523 }
3524
3525 tsec = selinux_cred(new_creds);
3526 /* Get label from overlay inode and set it in create_sid */
3527 selinux_inode_getlsmprop(d_inode(src), &prop);
3528 tsec->create_sid = prop.selinux.secid;
3529 *new = new_creds;
3530 return 0;
3531}
3532
3533static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3534{
3535 /* The copy_up hook above sets the initial context on an inode, but we
3536 * don't then want to overwrite it by blindly copying all the lower
3537 * xattrs up. Instead, filter out SELinux-related xattrs following
3538 * policy load.
3539 */
3540 if (selinux_initialized() && !strcmp(name, XATTR_NAME_SELINUX))
3541 return -ECANCELED; /* Discard */
3542 /*
3543 * Any other attribute apart from SELINUX is not claimed, supported
3544 * by selinux.
3545 */
3546 return -EOPNOTSUPP;
3547}
3548
3549/* kernfs node operations */
3550
3551static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552 struct kernfs_node *kn)
3553{
3554 const struct task_security_struct *tsec = selinux_cred(current_cred());
3555 u32 parent_sid, newsid, clen;
3556 int rc;
3557 char *context;
3558
3559 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560 if (rc == -ENODATA)
3561 return 0;
3562 else if (rc < 0)
3563 return rc;
3564
3565 clen = (u32)rc;
3566 context = kmalloc(clen, GFP_KERNEL);
3567 if (!context)
3568 return -ENOMEM;
3569
3570 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571 if (rc < 0) {
3572 kfree(context);
3573 return rc;
3574 }
3575
3576 rc = security_context_to_sid(context, clen, &parent_sid,
3577 GFP_KERNEL);
3578 kfree(context);
3579 if (rc)
3580 return rc;
3581
3582 if (tsec->create_sid) {
3583 newsid = tsec->create_sid;
3584 } else {
3585 u16 secclass = inode_mode_to_security_class(kn->mode);
3586 struct qstr q;
3587
3588 q.name = kn->name;
3589 q.hash_len = hashlen_string(kn_dir, kn->name);
3590
3591 rc = security_transition_sid(tsec->sid,
3592 parent_sid, secclass, &q,
3593 &newsid);
3594 if (rc)
3595 return rc;
3596 }
3597
3598 rc = security_sid_to_context_force(newsid,
3599 &context, &clen);
3600 if (rc)
3601 return rc;
3602
3603 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604 XATTR_CREATE);
3605 kfree(context);
3606 return rc;
3607}
3608
3609
3610/* file security operations */
3611
3612static int selinux_revalidate_file_permission(struct file *file, int mask)
3613{
3614 const struct cred *cred = current_cred();
3615 struct inode *inode = file_inode(file);
3616
3617 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619 mask |= MAY_APPEND;
3620
3621 return file_has_perm(cred, file,
3622 file_mask_to_av(inode->i_mode, mask));
3623}
3624
3625static int selinux_file_permission(struct file *file, int mask)
3626{
3627 struct inode *inode = file_inode(file);
3628 struct file_security_struct *fsec = selinux_file(file);
3629 struct inode_security_struct *isec;
3630 u32 sid = current_sid();
3631
3632 if (!mask)
3633 /* No permission to check. Existence test. */
3634 return 0;
3635
3636 isec = inode_security(inode);
3637 if (sid == fsec->sid && fsec->isid == isec->sid &&
3638 fsec->pseqno == avc_policy_seqno())
3639 /* No change since file_open check. */
3640 return 0;
3641
3642 return selinux_revalidate_file_permission(file, mask);
3643}
3644
3645static int selinux_file_alloc_security(struct file *file)
3646{
3647 struct file_security_struct *fsec = selinux_file(file);
3648 u32 sid = current_sid();
3649
3650 fsec->sid = sid;
3651 fsec->fown_sid = sid;
3652
3653 return 0;
3654}
3655
3656/*
3657 * Check whether a task has the ioctl permission and cmd
3658 * operation to an inode.
3659 */
3660static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661 u32 requested, u16 cmd)
3662{
3663 struct common_audit_data ad;
3664 struct file_security_struct *fsec = selinux_file(file);
3665 struct inode *inode = file_inode(file);
3666 struct inode_security_struct *isec;
3667 struct lsm_ioctlop_audit ioctl;
3668 u32 ssid = cred_sid(cred);
3669 int rc;
3670 u8 driver = cmd >> 8;
3671 u8 xperm = cmd & 0xff;
3672
3673 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674 ad.u.op = &ioctl;
3675 ad.u.op->cmd = cmd;
3676 ad.u.op->path = file->f_path;
3677
3678 if (ssid != fsec->sid) {
3679 rc = avc_has_perm(ssid, fsec->sid,
3680 SECCLASS_FD,
3681 FD__USE,
3682 &ad);
3683 if (rc)
3684 goto out;
3685 }
3686
3687 if (unlikely(IS_PRIVATE(inode)))
3688 return 0;
3689
3690 isec = inode_security(inode);
3691 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, requested,
3692 driver, AVC_EXT_IOCTL, xperm, &ad);
3693out:
3694 return rc;
3695}
3696
3697static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698 unsigned long arg)
3699{
3700 const struct cred *cred = current_cred();
3701 int error = 0;
3702
3703 switch (cmd) {
3704 case FIONREAD:
3705 case FIBMAP:
3706 case FIGETBSZ:
3707 case FS_IOC_GETFLAGS:
3708 case FS_IOC_GETVERSION:
3709 error = file_has_perm(cred, file, FILE__GETATTR);
3710 break;
3711
3712 case FS_IOC_SETFLAGS:
3713 case FS_IOC_SETVERSION:
3714 error = file_has_perm(cred, file, FILE__SETATTR);
3715 break;
3716
3717 /* sys_ioctl() checks */
3718 case FIONBIO:
3719 case FIOASYNC:
3720 error = file_has_perm(cred, file, 0);
3721 break;
3722
3723 case KDSKBENT:
3724 case KDSKBSENT:
3725 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726 CAP_OPT_NONE, true);
3727 break;
3728
3729 case FIOCLEX:
3730 case FIONCLEX:
3731 if (!selinux_policycap_ioctl_skip_cloexec())
3732 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733 break;
3734
3735 /* default case assumes that the command will go
3736 * to the file's ioctl() function.
3737 */
3738 default:
3739 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740 }
3741 return error;
3742}
3743
3744static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745 unsigned long arg)
3746{
3747 /*
3748 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749 * make sure we don't compare 32-bit flags to 64-bit flags.
3750 */
3751 switch (cmd) {
3752 case FS_IOC32_GETFLAGS:
3753 cmd = FS_IOC_GETFLAGS;
3754 break;
3755 case FS_IOC32_SETFLAGS:
3756 cmd = FS_IOC_SETFLAGS;
3757 break;
3758 case FS_IOC32_GETVERSION:
3759 cmd = FS_IOC_GETVERSION;
3760 break;
3761 case FS_IOC32_SETVERSION:
3762 cmd = FS_IOC_SETVERSION;
3763 break;
3764 default:
3765 break;
3766 }
3767
3768 return selinux_file_ioctl(file, cmd, arg);
3769}
3770
3771static int default_noexec __ro_after_init;
3772
3773static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774{
3775 const struct cred *cred = current_cred();
3776 u32 sid = cred_sid(cred);
3777 int rc = 0;
3778
3779 if (default_noexec &&
3780 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781 (!shared && (prot & PROT_WRITE)))) {
3782 /*
3783 * We are making executable an anonymous mapping or a
3784 * private file mapping that will also be writable.
3785 * This has an additional check.
3786 */
3787 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3788 PROCESS__EXECMEM, NULL);
3789 if (rc)
3790 goto error;
3791 }
3792
3793 if (file) {
3794 /* read access is always possible with a mapping */
3795 u32 av = FILE__READ;
3796
3797 /* write access only matters if the mapping is shared */
3798 if (shared && (prot & PROT_WRITE))
3799 av |= FILE__WRITE;
3800
3801 if (prot & PROT_EXEC)
3802 av |= FILE__EXECUTE;
3803
3804 return file_has_perm(cred, file, av);
3805 }
3806
3807error:
3808 return rc;
3809}
3810
3811static int selinux_mmap_addr(unsigned long addr)
3812{
3813 int rc = 0;
3814
3815 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816 u32 sid = current_sid();
3817 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3818 MEMPROTECT__MMAP_ZERO, NULL);
3819 }
3820
3821 return rc;
3822}
3823
3824static int selinux_mmap_file(struct file *file,
3825 unsigned long reqprot __always_unused,
3826 unsigned long prot, unsigned long flags)
3827{
3828 struct common_audit_data ad;
3829 int rc;
3830
3831 if (file) {
3832 ad.type = LSM_AUDIT_DATA_FILE;
3833 ad.u.file = file;
3834 rc = inode_has_perm(current_cred(), file_inode(file),
3835 FILE__MAP, &ad);
3836 if (rc)
3837 return rc;
3838 }
3839
3840 return file_map_prot_check(file, prot,
3841 (flags & MAP_TYPE) == MAP_SHARED);
3842}
3843
3844static int selinux_file_mprotect(struct vm_area_struct *vma,
3845 unsigned long reqprot __always_unused,
3846 unsigned long prot)
3847{
3848 const struct cred *cred = current_cred();
3849 u32 sid = cred_sid(cred);
3850
3851 if (default_noexec &&
3852 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853 int rc = 0;
3854 /*
3855 * We don't use the vma_is_initial_heap() helper as it has
3856 * a history of problems and is currently broken on systems
3857 * where there is no heap, e.g. brk == start_brk. Before
3858 * replacing the conditional below with vma_is_initial_heap(),
3859 * or something similar, please ensure that the logic is the
3860 * same as what we have below or you have tested every possible
3861 * corner case you can think to test.
3862 */
3863 if (vma->vm_start >= vma->vm_mm->start_brk &&
3864 vma->vm_end <= vma->vm_mm->brk) {
3865 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3866 PROCESS__EXECHEAP, NULL);
3867 } else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3868 vma_is_stack_for_current(vma))) {
3869 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3870 PROCESS__EXECSTACK, NULL);
3871 } else if (vma->vm_file && vma->anon_vma) {
3872 /*
3873 * We are making executable a file mapping that has
3874 * had some COW done. Since pages might have been
3875 * written, check ability to execute the possibly
3876 * modified content. This typically should only
3877 * occur for text relocations.
3878 */
3879 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3880 }
3881 if (rc)
3882 return rc;
3883 }
3884
3885 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3886}
3887
3888static int selinux_file_lock(struct file *file, unsigned int cmd)
3889{
3890 const struct cred *cred = current_cred();
3891
3892 return file_has_perm(cred, file, FILE__LOCK);
3893}
3894
3895static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3896 unsigned long arg)
3897{
3898 const struct cred *cred = current_cred();
3899 int err = 0;
3900
3901 switch (cmd) {
3902 case F_SETFL:
3903 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3904 err = file_has_perm(cred, file, FILE__WRITE);
3905 break;
3906 }
3907 fallthrough;
3908 case F_SETOWN:
3909 case F_SETSIG:
3910 case F_GETFL:
3911 case F_GETOWN:
3912 case F_GETSIG:
3913 case F_GETOWNER_UIDS:
3914 /* Just check FD__USE permission */
3915 err = file_has_perm(cred, file, 0);
3916 break;
3917 case F_GETLK:
3918 case F_SETLK:
3919 case F_SETLKW:
3920 case F_OFD_GETLK:
3921 case F_OFD_SETLK:
3922 case F_OFD_SETLKW:
3923#if BITS_PER_LONG == 32
3924 case F_GETLK64:
3925 case F_SETLK64:
3926 case F_SETLKW64:
3927#endif
3928 err = file_has_perm(cred, file, FILE__LOCK);
3929 break;
3930 }
3931
3932 return err;
3933}
3934
3935static void selinux_file_set_fowner(struct file *file)
3936{
3937 struct file_security_struct *fsec;
3938
3939 fsec = selinux_file(file);
3940 fsec->fown_sid = current_sid();
3941}
3942
3943static int selinux_file_send_sigiotask(struct task_struct *tsk,
3944 struct fown_struct *fown, int signum)
3945{
3946 struct file *file;
3947 u32 sid = task_sid_obj(tsk);
3948 u32 perm;
3949 struct file_security_struct *fsec;
3950
3951 /* struct fown_struct is never outside the context of a struct file */
3952 file = fown->file;
3953
3954 fsec = selinux_file(file);
3955
3956 if (!signum)
3957 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3958 else
3959 perm = signal_to_av(signum);
3960
3961 return avc_has_perm(fsec->fown_sid, sid,
3962 SECCLASS_PROCESS, perm, NULL);
3963}
3964
3965static int selinux_file_receive(struct file *file)
3966{
3967 const struct cred *cred = current_cred();
3968
3969 return file_has_perm(cred, file, file_to_av(file));
3970}
3971
3972static int selinux_file_open(struct file *file)
3973{
3974 struct file_security_struct *fsec;
3975 struct inode_security_struct *isec;
3976
3977 fsec = selinux_file(file);
3978 isec = inode_security(file_inode(file));
3979 /*
3980 * Save inode label and policy sequence number
3981 * at open-time so that selinux_file_permission
3982 * can determine whether revalidation is necessary.
3983 * Task label is already saved in the file security
3984 * struct as its SID.
3985 */
3986 fsec->isid = isec->sid;
3987 fsec->pseqno = avc_policy_seqno();
3988 /*
3989 * Since the inode label or policy seqno may have changed
3990 * between the selinux_inode_permission check and the saving
3991 * of state above, recheck that access is still permitted.
3992 * Otherwise, access might never be revalidated against the
3993 * new inode label or new policy.
3994 * This check is not redundant - do not remove.
3995 */
3996 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3997}
3998
3999/* task security operations */
4000
4001static int selinux_task_alloc(struct task_struct *task,
4002 unsigned long clone_flags)
4003{
4004 u32 sid = current_sid();
4005
4006 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4007}
4008
4009/*
4010 * prepare a new set of credentials for modification
4011 */
4012static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4013 gfp_t gfp)
4014{
4015 const struct task_security_struct *old_tsec = selinux_cred(old);
4016 struct task_security_struct *tsec = selinux_cred(new);
4017
4018 *tsec = *old_tsec;
4019 return 0;
4020}
4021
4022/*
4023 * transfer the SELinux data to a blank set of creds
4024 */
4025static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4026{
4027 const struct task_security_struct *old_tsec = selinux_cred(old);
4028 struct task_security_struct *tsec = selinux_cred(new);
4029
4030 *tsec = *old_tsec;
4031}
4032
4033static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4034{
4035 *secid = cred_sid(c);
4036}
4037
4038static void selinux_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
4039{
4040 prop->selinux.secid = cred_sid(c);
4041}
4042
4043/*
4044 * set the security data for a kernel service
4045 * - all the creation contexts are set to unlabelled
4046 */
4047static int selinux_kernel_act_as(struct cred *new, u32 secid)
4048{
4049 struct task_security_struct *tsec = selinux_cred(new);
4050 u32 sid = current_sid();
4051 int ret;
4052
4053 ret = avc_has_perm(sid, secid,
4054 SECCLASS_KERNEL_SERVICE,
4055 KERNEL_SERVICE__USE_AS_OVERRIDE,
4056 NULL);
4057 if (ret == 0) {
4058 tsec->sid = secid;
4059 tsec->create_sid = 0;
4060 tsec->keycreate_sid = 0;
4061 tsec->sockcreate_sid = 0;
4062 }
4063 return ret;
4064}
4065
4066/*
4067 * set the file creation context in a security record to the same as the
4068 * objective context of the specified inode
4069 */
4070static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4071{
4072 struct inode_security_struct *isec = inode_security(inode);
4073 struct task_security_struct *tsec = selinux_cred(new);
4074 u32 sid = current_sid();
4075 int ret;
4076
4077 ret = avc_has_perm(sid, isec->sid,
4078 SECCLASS_KERNEL_SERVICE,
4079 KERNEL_SERVICE__CREATE_FILES_AS,
4080 NULL);
4081
4082 if (ret == 0)
4083 tsec->create_sid = isec->sid;
4084 return ret;
4085}
4086
4087static int selinux_kernel_module_request(char *kmod_name)
4088{
4089 struct common_audit_data ad;
4090
4091 ad.type = LSM_AUDIT_DATA_KMOD;
4092 ad.u.kmod_name = kmod_name;
4093
4094 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4095 SYSTEM__MODULE_REQUEST, &ad);
4096}
4097
4098static int selinux_kernel_module_from_file(struct file *file)
4099{
4100 struct common_audit_data ad;
4101 struct inode_security_struct *isec;
4102 struct file_security_struct *fsec;
4103 u32 sid = current_sid();
4104 int rc;
4105
4106 /* init_module */
4107 if (file == NULL)
4108 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4109 SYSTEM__MODULE_LOAD, NULL);
4110
4111 /* finit_module */
4112
4113 ad.type = LSM_AUDIT_DATA_FILE;
4114 ad.u.file = file;
4115
4116 fsec = selinux_file(file);
4117 if (sid != fsec->sid) {
4118 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4119 if (rc)
4120 return rc;
4121 }
4122
4123 isec = inode_security(file_inode(file));
4124 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4125 SYSTEM__MODULE_LOAD, &ad);
4126}
4127
4128static int selinux_kernel_read_file(struct file *file,
4129 enum kernel_read_file_id id,
4130 bool contents)
4131{
4132 int rc = 0;
4133
4134 switch (id) {
4135 case READING_MODULE:
4136 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4137 break;
4138 default:
4139 break;
4140 }
4141
4142 return rc;
4143}
4144
4145static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4146{
4147 int rc = 0;
4148
4149 switch (id) {
4150 case LOADING_MODULE:
4151 rc = selinux_kernel_module_from_file(NULL);
4152 break;
4153 default:
4154 break;
4155 }
4156
4157 return rc;
4158}
4159
4160static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4161{
4162 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4163 PROCESS__SETPGID, NULL);
4164}
4165
4166static int selinux_task_getpgid(struct task_struct *p)
4167{
4168 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4169 PROCESS__GETPGID, NULL);
4170}
4171
4172static int selinux_task_getsid(struct task_struct *p)
4173{
4174 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4175 PROCESS__GETSESSION, NULL);
4176}
4177
4178static void selinux_current_getlsmprop_subj(struct lsm_prop *prop)
4179{
4180 prop->selinux.secid = current_sid();
4181}
4182
4183static void selinux_task_getlsmprop_obj(struct task_struct *p,
4184 struct lsm_prop *prop)
4185{
4186 prop->selinux.secid = task_sid_obj(p);
4187}
4188
4189static int selinux_task_setnice(struct task_struct *p, int nice)
4190{
4191 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4192 PROCESS__SETSCHED, NULL);
4193}
4194
4195static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4196{
4197 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4198 PROCESS__SETSCHED, NULL);
4199}
4200
4201static int selinux_task_getioprio(struct task_struct *p)
4202{
4203 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204 PROCESS__GETSCHED, NULL);
4205}
4206
4207static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4208 unsigned int flags)
4209{
4210 u32 av = 0;
4211
4212 if (!flags)
4213 return 0;
4214 if (flags & LSM_PRLIMIT_WRITE)
4215 av |= PROCESS__SETRLIMIT;
4216 if (flags & LSM_PRLIMIT_READ)
4217 av |= PROCESS__GETRLIMIT;
4218 return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4219 SECCLASS_PROCESS, av, NULL);
4220}
4221
4222static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4223 struct rlimit *new_rlim)
4224{
4225 struct rlimit *old_rlim = p->signal->rlim + resource;
4226
4227 /* Control the ability to change the hard limit (whether
4228 lowering or raising it), so that the hard limit can
4229 later be used as a safe reset point for the soft limit
4230 upon context transitions. See selinux_bprm_committing_creds. */
4231 if (old_rlim->rlim_max != new_rlim->rlim_max)
4232 return avc_has_perm(current_sid(), task_sid_obj(p),
4233 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4234
4235 return 0;
4236}
4237
4238static int selinux_task_setscheduler(struct task_struct *p)
4239{
4240 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4241 PROCESS__SETSCHED, NULL);
4242}
4243
4244static int selinux_task_getscheduler(struct task_struct *p)
4245{
4246 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4247 PROCESS__GETSCHED, NULL);
4248}
4249
4250static int selinux_task_movememory(struct task_struct *p)
4251{
4252 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4253 PROCESS__SETSCHED, NULL);
4254}
4255
4256static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4257 int sig, const struct cred *cred)
4258{
4259 u32 secid;
4260 u32 perm;
4261
4262 if (!sig)
4263 perm = PROCESS__SIGNULL; /* null signal; existence test */
4264 else
4265 perm = signal_to_av(sig);
4266 if (!cred)
4267 secid = current_sid();
4268 else
4269 secid = cred_sid(cred);
4270 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4271}
4272
4273static void selinux_task_to_inode(struct task_struct *p,
4274 struct inode *inode)
4275{
4276 struct inode_security_struct *isec = selinux_inode(inode);
4277 u32 sid = task_sid_obj(p);
4278
4279 spin_lock(&isec->lock);
4280 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4281 isec->sid = sid;
4282 isec->initialized = LABEL_INITIALIZED;
4283 spin_unlock(&isec->lock);
4284}
4285
4286static int selinux_userns_create(const struct cred *cred)
4287{
4288 u32 sid = current_sid();
4289
4290 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4291 USER_NAMESPACE__CREATE, NULL);
4292}
4293
4294/* Returns error only if unable to parse addresses */
4295static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4296 struct common_audit_data *ad, u8 *proto)
4297{
4298 int offset, ihlen, ret = -EINVAL;
4299 struct iphdr _iph, *ih;
4300
4301 offset = skb_network_offset(skb);
4302 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4303 if (ih == NULL)
4304 goto out;
4305
4306 ihlen = ih->ihl * 4;
4307 if (ihlen < sizeof(_iph))
4308 goto out;
4309
4310 ad->u.net->v4info.saddr = ih->saddr;
4311 ad->u.net->v4info.daddr = ih->daddr;
4312 ret = 0;
4313
4314 if (proto)
4315 *proto = ih->protocol;
4316
4317 switch (ih->protocol) {
4318 case IPPROTO_TCP: {
4319 struct tcphdr _tcph, *th;
4320
4321 if (ntohs(ih->frag_off) & IP_OFFSET)
4322 break;
4323
4324 offset += ihlen;
4325 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4326 if (th == NULL)
4327 break;
4328
4329 ad->u.net->sport = th->source;
4330 ad->u.net->dport = th->dest;
4331 break;
4332 }
4333
4334 case IPPROTO_UDP: {
4335 struct udphdr _udph, *uh;
4336
4337 if (ntohs(ih->frag_off) & IP_OFFSET)
4338 break;
4339
4340 offset += ihlen;
4341 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4342 if (uh == NULL)
4343 break;
4344
4345 ad->u.net->sport = uh->source;
4346 ad->u.net->dport = uh->dest;
4347 break;
4348 }
4349
4350 case IPPROTO_DCCP: {
4351 struct dccp_hdr _dccph, *dh;
4352
4353 if (ntohs(ih->frag_off) & IP_OFFSET)
4354 break;
4355
4356 offset += ihlen;
4357 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4358 if (dh == NULL)
4359 break;
4360
4361 ad->u.net->sport = dh->dccph_sport;
4362 ad->u.net->dport = dh->dccph_dport;
4363 break;
4364 }
4365
4366#if IS_ENABLED(CONFIG_IP_SCTP)
4367 case IPPROTO_SCTP: {
4368 struct sctphdr _sctph, *sh;
4369
4370 if (ntohs(ih->frag_off) & IP_OFFSET)
4371 break;
4372
4373 offset += ihlen;
4374 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4375 if (sh == NULL)
4376 break;
4377
4378 ad->u.net->sport = sh->source;
4379 ad->u.net->dport = sh->dest;
4380 break;
4381 }
4382#endif
4383 default:
4384 break;
4385 }
4386out:
4387 return ret;
4388}
4389
4390#if IS_ENABLED(CONFIG_IPV6)
4391
4392/* Returns error only if unable to parse addresses */
4393static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4394 struct common_audit_data *ad, u8 *proto)
4395{
4396 u8 nexthdr;
4397 int ret = -EINVAL, offset;
4398 struct ipv6hdr _ipv6h, *ip6;
4399 __be16 frag_off;
4400
4401 offset = skb_network_offset(skb);
4402 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4403 if (ip6 == NULL)
4404 goto out;
4405
4406 ad->u.net->v6info.saddr = ip6->saddr;
4407 ad->u.net->v6info.daddr = ip6->daddr;
4408 ret = 0;
4409
4410 nexthdr = ip6->nexthdr;
4411 offset += sizeof(_ipv6h);
4412 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4413 if (offset < 0)
4414 goto out;
4415
4416 if (proto)
4417 *proto = nexthdr;
4418
4419 switch (nexthdr) {
4420 case IPPROTO_TCP: {
4421 struct tcphdr _tcph, *th;
4422
4423 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4424 if (th == NULL)
4425 break;
4426
4427 ad->u.net->sport = th->source;
4428 ad->u.net->dport = th->dest;
4429 break;
4430 }
4431
4432 case IPPROTO_UDP: {
4433 struct udphdr _udph, *uh;
4434
4435 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4436 if (uh == NULL)
4437 break;
4438
4439 ad->u.net->sport = uh->source;
4440 ad->u.net->dport = uh->dest;
4441 break;
4442 }
4443
4444 case IPPROTO_DCCP: {
4445 struct dccp_hdr _dccph, *dh;
4446
4447 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4448 if (dh == NULL)
4449 break;
4450
4451 ad->u.net->sport = dh->dccph_sport;
4452 ad->u.net->dport = dh->dccph_dport;
4453 break;
4454 }
4455
4456#if IS_ENABLED(CONFIG_IP_SCTP)
4457 case IPPROTO_SCTP: {
4458 struct sctphdr _sctph, *sh;
4459
4460 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4461 if (sh == NULL)
4462 break;
4463
4464 ad->u.net->sport = sh->source;
4465 ad->u.net->dport = sh->dest;
4466 break;
4467 }
4468#endif
4469 /* includes fragments */
4470 default:
4471 break;
4472 }
4473out:
4474 return ret;
4475}
4476
4477#endif /* IPV6 */
4478
4479static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4480 char **_addrp, int src, u8 *proto)
4481{
4482 char *addrp;
4483 int ret;
4484
4485 switch (ad->u.net->family) {
4486 case PF_INET:
4487 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4488 if (ret)
4489 goto parse_error;
4490 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4491 &ad->u.net->v4info.daddr);
4492 goto okay;
4493
4494#if IS_ENABLED(CONFIG_IPV6)
4495 case PF_INET6:
4496 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4497 if (ret)
4498 goto parse_error;
4499 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4500 &ad->u.net->v6info.daddr);
4501 goto okay;
4502#endif /* IPV6 */
4503 default:
4504 addrp = NULL;
4505 goto okay;
4506 }
4507
4508parse_error:
4509 pr_warn(
4510 "SELinux: failure in selinux_parse_skb(),"
4511 " unable to parse packet\n");
4512 return ret;
4513
4514okay:
4515 if (_addrp)
4516 *_addrp = addrp;
4517 return 0;
4518}
4519
4520/**
4521 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4522 * @skb: the packet
4523 * @family: protocol family
4524 * @sid: the packet's peer label SID
4525 *
4526 * Description:
4527 * Check the various different forms of network peer labeling and determine
4528 * the peer label/SID for the packet; most of the magic actually occurs in
4529 * the security server function security_net_peersid_cmp(). The function
4530 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4531 * or -EACCES if @sid is invalid due to inconsistencies with the different
4532 * peer labels.
4533 *
4534 */
4535static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4536{
4537 int err;
4538 u32 xfrm_sid;
4539 u32 nlbl_sid;
4540 u32 nlbl_type;
4541
4542 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4543 if (unlikely(err))
4544 return -EACCES;
4545 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4546 if (unlikely(err))
4547 return -EACCES;
4548
4549 err = security_net_peersid_resolve(nlbl_sid,
4550 nlbl_type, xfrm_sid, sid);
4551 if (unlikely(err)) {
4552 pr_warn(
4553 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4554 " unable to determine packet's peer label\n");
4555 return -EACCES;
4556 }
4557
4558 return 0;
4559}
4560
4561/**
4562 * selinux_conn_sid - Determine the child socket label for a connection
4563 * @sk_sid: the parent socket's SID
4564 * @skb_sid: the packet's SID
4565 * @conn_sid: the resulting connection SID
4566 *
4567 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4568 * combined with the MLS information from @skb_sid in order to create
4569 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4570 * of @sk_sid. Returns zero on success, negative values on failure.
4571 *
4572 */
4573static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4574{
4575 int err = 0;
4576
4577 if (skb_sid != SECSID_NULL)
4578 err = security_sid_mls_copy(sk_sid, skb_sid,
4579 conn_sid);
4580 else
4581 *conn_sid = sk_sid;
4582
4583 return err;
4584}
4585
4586/* socket security operations */
4587
4588static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4589 u16 secclass, u32 *socksid)
4590{
4591 if (tsec->sockcreate_sid > SECSID_NULL) {
4592 *socksid = tsec->sockcreate_sid;
4593 return 0;
4594 }
4595
4596 return security_transition_sid(tsec->sid, tsec->sid,
4597 secclass, NULL, socksid);
4598}
4599
4600static bool sock_skip_has_perm(u32 sid)
4601{
4602 if (sid == SECINITSID_KERNEL)
4603 return true;
4604
4605 /*
4606 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4607 * inherited the kernel context from early boot used to be skipped
4608 * here, so preserve that behavior unless the capability is set.
4609 *
4610 * By setting the capability the policy signals that it is ready
4611 * for this quirk to be fixed. Note that sockets created by a kernel
4612 * thread or a usermode helper executed without a transition will
4613 * still be skipped in this check regardless of the policycap
4614 * setting.
4615 */
4616 if (!selinux_policycap_userspace_initial_context() &&
4617 sid == SECINITSID_INIT)
4618 return true;
4619 return false;
4620}
4621
4622
4623static int sock_has_perm(struct sock *sk, u32 perms)
4624{
4625 struct sk_security_struct *sksec = sk->sk_security;
4626 struct common_audit_data ad;
4627 struct lsm_network_audit net;
4628
4629 if (sock_skip_has_perm(sksec->sid))
4630 return 0;
4631
4632 ad_net_init_from_sk(&ad, &net, sk);
4633
4634 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4635 &ad);
4636}
4637
4638static int selinux_socket_create(int family, int type,
4639 int protocol, int kern)
4640{
4641 const struct task_security_struct *tsec = selinux_cred(current_cred());
4642 u32 newsid;
4643 u16 secclass;
4644 int rc;
4645
4646 if (kern)
4647 return 0;
4648
4649 secclass = socket_type_to_security_class(family, type, protocol);
4650 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4651 if (rc)
4652 return rc;
4653
4654 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4655}
4656
4657static int selinux_socket_post_create(struct socket *sock, int family,
4658 int type, int protocol, int kern)
4659{
4660 const struct task_security_struct *tsec = selinux_cred(current_cred());
4661 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4662 struct sk_security_struct *sksec;
4663 u16 sclass = socket_type_to_security_class(family, type, protocol);
4664 u32 sid = SECINITSID_KERNEL;
4665 int err = 0;
4666
4667 if (!kern) {
4668 err = socket_sockcreate_sid(tsec, sclass, &sid);
4669 if (err)
4670 return err;
4671 }
4672
4673 isec->sclass = sclass;
4674 isec->sid = sid;
4675 isec->initialized = LABEL_INITIALIZED;
4676
4677 if (sock->sk) {
4678 sksec = selinux_sock(sock->sk);
4679 sksec->sclass = sclass;
4680 sksec->sid = sid;
4681 /* Allows detection of the first association on this socket */
4682 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4684
4685 err = selinux_netlbl_socket_post_create(sock->sk, family);
4686 }
4687
4688 return err;
4689}
4690
4691static int selinux_socket_socketpair(struct socket *socka,
4692 struct socket *sockb)
4693{
4694 struct sk_security_struct *sksec_a = selinux_sock(socka->sk);
4695 struct sk_security_struct *sksec_b = selinux_sock(sockb->sk);
4696
4697 sksec_a->peer_sid = sksec_b->sid;
4698 sksec_b->peer_sid = sksec_a->sid;
4699
4700 return 0;
4701}
4702
4703/* Range of port numbers used to automatically bind.
4704 Need to determine whether we should perform a name_bind
4705 permission check between the socket and the port number. */
4706
4707static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4708{
4709 struct sock *sk = sock->sk;
4710 struct sk_security_struct *sksec = selinux_sock(sk);
4711 u16 family;
4712 int err;
4713
4714 err = sock_has_perm(sk, SOCKET__BIND);
4715 if (err)
4716 goto out;
4717
4718 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4719 family = sk->sk_family;
4720 if (family == PF_INET || family == PF_INET6) {
4721 char *addrp;
4722 struct common_audit_data ad;
4723 struct lsm_network_audit net = {0,};
4724 struct sockaddr_in *addr4 = NULL;
4725 struct sockaddr_in6 *addr6 = NULL;
4726 u16 family_sa;
4727 unsigned short snum;
4728 u32 sid, node_perm;
4729
4730 /*
4731 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4732 * that validates multiple binding addresses. Because of this
4733 * need to check address->sa_family as it is possible to have
4734 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4735 */
4736 if (addrlen < offsetofend(struct sockaddr, sa_family))
4737 return -EINVAL;
4738 family_sa = address->sa_family;
4739 switch (family_sa) {
4740 case AF_UNSPEC:
4741 case AF_INET:
4742 if (addrlen < sizeof(struct sockaddr_in))
4743 return -EINVAL;
4744 addr4 = (struct sockaddr_in *)address;
4745 if (family_sa == AF_UNSPEC) {
4746 if (family == PF_INET6) {
4747 /* Length check from inet6_bind_sk() */
4748 if (addrlen < SIN6_LEN_RFC2133)
4749 return -EINVAL;
4750 /* Family check from __inet6_bind() */
4751 goto err_af;
4752 }
4753 /* see __inet_bind(), we only want to allow
4754 * AF_UNSPEC if the address is INADDR_ANY
4755 */
4756 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4757 goto err_af;
4758 family_sa = AF_INET;
4759 }
4760 snum = ntohs(addr4->sin_port);
4761 addrp = (char *)&addr4->sin_addr.s_addr;
4762 break;
4763 case AF_INET6:
4764 if (addrlen < SIN6_LEN_RFC2133)
4765 return -EINVAL;
4766 addr6 = (struct sockaddr_in6 *)address;
4767 snum = ntohs(addr6->sin6_port);
4768 addrp = (char *)&addr6->sin6_addr.s6_addr;
4769 break;
4770 default:
4771 goto err_af;
4772 }
4773
4774 ad.type = LSM_AUDIT_DATA_NET;
4775 ad.u.net = &net;
4776 ad.u.net->sport = htons(snum);
4777 ad.u.net->family = family_sa;
4778
4779 if (snum) {
4780 int low, high;
4781
4782 inet_get_local_port_range(sock_net(sk), &low, &high);
4783
4784 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4785 snum < low || snum > high) {
4786 err = sel_netport_sid(sk->sk_protocol,
4787 snum, &sid);
4788 if (err)
4789 goto out;
4790 err = avc_has_perm(sksec->sid, sid,
4791 sksec->sclass,
4792 SOCKET__NAME_BIND, &ad);
4793 if (err)
4794 goto out;
4795 }
4796 }
4797
4798 switch (sksec->sclass) {
4799 case SECCLASS_TCP_SOCKET:
4800 node_perm = TCP_SOCKET__NODE_BIND;
4801 break;
4802
4803 case SECCLASS_UDP_SOCKET:
4804 node_perm = UDP_SOCKET__NODE_BIND;
4805 break;
4806
4807 case SECCLASS_DCCP_SOCKET:
4808 node_perm = DCCP_SOCKET__NODE_BIND;
4809 break;
4810
4811 case SECCLASS_SCTP_SOCKET:
4812 node_perm = SCTP_SOCKET__NODE_BIND;
4813 break;
4814
4815 default:
4816 node_perm = RAWIP_SOCKET__NODE_BIND;
4817 break;
4818 }
4819
4820 err = sel_netnode_sid(addrp, family_sa, &sid);
4821 if (err)
4822 goto out;
4823
4824 if (family_sa == AF_INET)
4825 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4826 else
4827 ad.u.net->v6info.saddr = addr6->sin6_addr;
4828
4829 err = avc_has_perm(sksec->sid, sid,
4830 sksec->sclass, node_perm, &ad);
4831 if (err)
4832 goto out;
4833 }
4834out:
4835 return err;
4836err_af:
4837 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4838 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4839 return -EINVAL;
4840 return -EAFNOSUPPORT;
4841}
4842
4843/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4844 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4845 */
4846static int selinux_socket_connect_helper(struct socket *sock,
4847 struct sockaddr *address, int addrlen)
4848{
4849 struct sock *sk = sock->sk;
4850 struct sk_security_struct *sksec = selinux_sock(sk);
4851 int err;
4852
4853 err = sock_has_perm(sk, SOCKET__CONNECT);
4854 if (err)
4855 return err;
4856 if (addrlen < offsetofend(struct sockaddr, sa_family))
4857 return -EINVAL;
4858
4859 /* connect(AF_UNSPEC) has special handling, as it is a documented
4860 * way to disconnect the socket
4861 */
4862 if (address->sa_family == AF_UNSPEC)
4863 return 0;
4864
4865 /*
4866 * If a TCP, DCCP or SCTP socket, check name_connect permission
4867 * for the port.
4868 */
4869 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4870 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4871 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4872 struct common_audit_data ad;
4873 struct lsm_network_audit net = {0,};
4874 struct sockaddr_in *addr4 = NULL;
4875 struct sockaddr_in6 *addr6 = NULL;
4876 unsigned short snum;
4877 u32 sid, perm;
4878
4879 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4880 * that validates multiple connect addresses. Because of this
4881 * need to check address->sa_family as it is possible to have
4882 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4883 */
4884 switch (address->sa_family) {
4885 case AF_INET:
4886 addr4 = (struct sockaddr_in *)address;
4887 if (addrlen < sizeof(struct sockaddr_in))
4888 return -EINVAL;
4889 snum = ntohs(addr4->sin_port);
4890 break;
4891 case AF_INET6:
4892 addr6 = (struct sockaddr_in6 *)address;
4893 if (addrlen < SIN6_LEN_RFC2133)
4894 return -EINVAL;
4895 snum = ntohs(addr6->sin6_port);
4896 break;
4897 default:
4898 /* Note that SCTP services expect -EINVAL, whereas
4899 * others expect -EAFNOSUPPORT.
4900 */
4901 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4902 return -EINVAL;
4903 else
4904 return -EAFNOSUPPORT;
4905 }
4906
4907 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4908 if (err)
4909 return err;
4910
4911 switch (sksec->sclass) {
4912 case SECCLASS_TCP_SOCKET:
4913 perm = TCP_SOCKET__NAME_CONNECT;
4914 break;
4915 case SECCLASS_DCCP_SOCKET:
4916 perm = DCCP_SOCKET__NAME_CONNECT;
4917 break;
4918 case SECCLASS_SCTP_SOCKET:
4919 perm = SCTP_SOCKET__NAME_CONNECT;
4920 break;
4921 }
4922
4923 ad.type = LSM_AUDIT_DATA_NET;
4924 ad.u.net = &net;
4925 ad.u.net->dport = htons(snum);
4926 ad.u.net->family = address->sa_family;
4927 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4928 if (err)
4929 return err;
4930 }
4931
4932 return 0;
4933}
4934
4935/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4936static int selinux_socket_connect(struct socket *sock,
4937 struct sockaddr *address, int addrlen)
4938{
4939 int err;
4940 struct sock *sk = sock->sk;
4941
4942 err = selinux_socket_connect_helper(sock, address, addrlen);
4943 if (err)
4944 return err;
4945
4946 return selinux_netlbl_socket_connect(sk, address);
4947}
4948
4949static int selinux_socket_listen(struct socket *sock, int backlog)
4950{
4951 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4952}
4953
4954static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4955{
4956 int err;
4957 struct inode_security_struct *isec;
4958 struct inode_security_struct *newisec;
4959 u16 sclass;
4960 u32 sid;
4961
4962 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4963 if (err)
4964 return err;
4965
4966 isec = inode_security_novalidate(SOCK_INODE(sock));
4967 spin_lock(&isec->lock);
4968 sclass = isec->sclass;
4969 sid = isec->sid;
4970 spin_unlock(&isec->lock);
4971
4972 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4973 newisec->sclass = sclass;
4974 newisec->sid = sid;
4975 newisec->initialized = LABEL_INITIALIZED;
4976
4977 return 0;
4978}
4979
4980static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4981 int size)
4982{
4983 return sock_has_perm(sock->sk, SOCKET__WRITE);
4984}
4985
4986static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4987 int size, int flags)
4988{
4989 return sock_has_perm(sock->sk, SOCKET__READ);
4990}
4991
4992static int selinux_socket_getsockname(struct socket *sock)
4993{
4994 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4995}
4996
4997static int selinux_socket_getpeername(struct socket *sock)
4998{
4999 return sock_has_perm(sock->sk, SOCKET__GETATTR);
5000}
5001
5002static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5003{
5004 int err;
5005
5006 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5007 if (err)
5008 return err;
5009
5010 return selinux_netlbl_socket_setsockopt(sock, level, optname);
5011}
5012
5013static int selinux_socket_getsockopt(struct socket *sock, int level,
5014 int optname)
5015{
5016 return sock_has_perm(sock->sk, SOCKET__GETOPT);
5017}
5018
5019static int selinux_socket_shutdown(struct socket *sock, int how)
5020{
5021 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5022}
5023
5024static int selinux_socket_unix_stream_connect(struct sock *sock,
5025 struct sock *other,
5026 struct sock *newsk)
5027{
5028 struct sk_security_struct *sksec_sock = selinux_sock(sock);
5029 struct sk_security_struct *sksec_other = selinux_sock(other);
5030 struct sk_security_struct *sksec_new = selinux_sock(newsk);
5031 struct common_audit_data ad;
5032 struct lsm_network_audit net;
5033 int err;
5034
5035 ad_net_init_from_sk(&ad, &net, other);
5036
5037 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5038 sksec_other->sclass,
5039 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5040 if (err)
5041 return err;
5042
5043 /* server child socket */
5044 sksec_new->peer_sid = sksec_sock->sid;
5045 err = security_sid_mls_copy(sksec_other->sid,
5046 sksec_sock->sid, &sksec_new->sid);
5047 if (err)
5048 return err;
5049
5050 /* connecting socket */
5051 sksec_sock->peer_sid = sksec_new->sid;
5052
5053 return 0;
5054}
5055
5056static int selinux_socket_unix_may_send(struct socket *sock,
5057 struct socket *other)
5058{
5059 struct sk_security_struct *ssec = selinux_sock(sock->sk);
5060 struct sk_security_struct *osec = selinux_sock(other->sk);
5061 struct common_audit_data ad;
5062 struct lsm_network_audit net;
5063
5064 ad_net_init_from_sk(&ad, &net, other->sk);
5065
5066 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5067 &ad);
5068}
5069
5070static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5071 char *addrp, u16 family, u32 peer_sid,
5072 struct common_audit_data *ad)
5073{
5074 int err;
5075 u32 if_sid;
5076 u32 node_sid;
5077
5078 err = sel_netif_sid(ns, ifindex, &if_sid);
5079 if (err)
5080 return err;
5081 err = avc_has_perm(peer_sid, if_sid,
5082 SECCLASS_NETIF, NETIF__INGRESS, ad);
5083 if (err)
5084 return err;
5085
5086 err = sel_netnode_sid(addrp, family, &node_sid);
5087 if (err)
5088 return err;
5089 return avc_has_perm(peer_sid, node_sid,
5090 SECCLASS_NODE, NODE__RECVFROM, ad);
5091}
5092
5093static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5094 u16 family)
5095{
5096 int err = 0;
5097 struct sk_security_struct *sksec = selinux_sock(sk);
5098 u32 sk_sid = sksec->sid;
5099 struct common_audit_data ad;
5100 struct lsm_network_audit net;
5101 char *addrp;
5102
5103 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5104 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5105 if (err)
5106 return err;
5107
5108 if (selinux_secmark_enabled()) {
5109 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5110 PACKET__RECV, &ad);
5111 if (err)
5112 return err;
5113 }
5114
5115 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5116 if (err)
5117 return err;
5118 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5119
5120 return err;
5121}
5122
5123static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5124{
5125 int err, peerlbl_active, secmark_active;
5126 struct sk_security_struct *sksec = selinux_sock(sk);
5127 u16 family = sk->sk_family;
5128 u32 sk_sid = sksec->sid;
5129 struct common_audit_data ad;
5130 struct lsm_network_audit net;
5131 char *addrp;
5132
5133 if (family != PF_INET && family != PF_INET6)
5134 return 0;
5135
5136 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5137 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5138 family = PF_INET;
5139
5140 /* If any sort of compatibility mode is enabled then handoff processing
5141 * to the selinux_sock_rcv_skb_compat() function to deal with the
5142 * special handling. We do this in an attempt to keep this function
5143 * as fast and as clean as possible. */
5144 if (!selinux_policycap_netpeer())
5145 return selinux_sock_rcv_skb_compat(sk, skb, family);
5146
5147 secmark_active = selinux_secmark_enabled();
5148 peerlbl_active = selinux_peerlbl_enabled();
5149 if (!secmark_active && !peerlbl_active)
5150 return 0;
5151
5152 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5153 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5154 if (err)
5155 return err;
5156
5157 if (peerlbl_active) {
5158 u32 peer_sid;
5159
5160 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5161 if (err)
5162 return err;
5163 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5164 addrp, family, peer_sid, &ad);
5165 if (err) {
5166 selinux_netlbl_err(skb, family, err, 0);
5167 return err;
5168 }
5169 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5170 PEER__RECV, &ad);
5171 if (err) {
5172 selinux_netlbl_err(skb, family, err, 0);
5173 return err;
5174 }
5175 }
5176
5177 if (secmark_active) {
5178 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5179 PACKET__RECV, &ad);
5180 if (err)
5181 return err;
5182 }
5183
5184 return err;
5185}
5186
5187static int selinux_socket_getpeersec_stream(struct socket *sock,
5188 sockptr_t optval, sockptr_t optlen,
5189 unsigned int len)
5190{
5191 int err = 0;
5192 char *scontext = NULL;
5193 u32 scontext_len;
5194 struct sk_security_struct *sksec = selinux_sock(sock->sk);
5195 u32 peer_sid = SECSID_NULL;
5196
5197 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5198 sksec->sclass == SECCLASS_TCP_SOCKET ||
5199 sksec->sclass == SECCLASS_SCTP_SOCKET)
5200 peer_sid = sksec->peer_sid;
5201 if (peer_sid == SECSID_NULL)
5202 return -ENOPROTOOPT;
5203
5204 err = security_sid_to_context(peer_sid, &scontext,
5205 &scontext_len);
5206 if (err)
5207 return err;
5208 if (scontext_len > len) {
5209 err = -ERANGE;
5210 goto out_len;
5211 }
5212
5213 if (copy_to_sockptr(optval, scontext, scontext_len))
5214 err = -EFAULT;
5215out_len:
5216 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5217 err = -EFAULT;
5218 kfree(scontext);
5219 return err;
5220}
5221
5222static int selinux_socket_getpeersec_dgram(struct socket *sock,
5223 struct sk_buff *skb, u32 *secid)
5224{
5225 u32 peer_secid = SECSID_NULL;
5226 u16 family;
5227
5228 if (skb && skb->protocol == htons(ETH_P_IP))
5229 family = PF_INET;
5230 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5231 family = PF_INET6;
5232 else if (sock)
5233 family = sock->sk->sk_family;
5234 else {
5235 *secid = SECSID_NULL;
5236 return -EINVAL;
5237 }
5238
5239 if (sock && family == PF_UNIX) {
5240 struct inode_security_struct *isec;
5241 isec = inode_security_novalidate(SOCK_INODE(sock));
5242 peer_secid = isec->sid;
5243 } else if (skb)
5244 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5245
5246 *secid = peer_secid;
5247 if (peer_secid == SECSID_NULL)
5248 return -ENOPROTOOPT;
5249 return 0;
5250}
5251
5252static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5253{
5254 struct sk_security_struct *sksec = selinux_sock(sk);
5255
5256 sksec->peer_sid = SECINITSID_UNLABELED;
5257 sksec->sid = SECINITSID_UNLABELED;
5258 sksec->sclass = SECCLASS_SOCKET;
5259 selinux_netlbl_sk_security_reset(sksec);
5260
5261 return 0;
5262}
5263
5264static void selinux_sk_free_security(struct sock *sk)
5265{
5266 struct sk_security_struct *sksec = selinux_sock(sk);
5267
5268 selinux_netlbl_sk_security_free(sksec);
5269}
5270
5271static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5272{
5273 struct sk_security_struct *sksec = selinux_sock(sk);
5274 struct sk_security_struct *newsksec = selinux_sock(newsk);
5275
5276 newsksec->sid = sksec->sid;
5277 newsksec->peer_sid = sksec->peer_sid;
5278 newsksec->sclass = sksec->sclass;
5279
5280 selinux_netlbl_sk_security_reset(newsksec);
5281}
5282
5283static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5284{
5285 if (!sk)
5286 *secid = SECINITSID_ANY_SOCKET;
5287 else {
5288 const struct sk_security_struct *sksec = selinux_sock(sk);
5289
5290 *secid = sksec->sid;
5291 }
5292}
5293
5294static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5295{
5296 struct inode_security_struct *isec =
5297 inode_security_novalidate(SOCK_INODE(parent));
5298 struct sk_security_struct *sksec = selinux_sock(sk);
5299
5300 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5301 sk->sk_family == PF_UNIX)
5302 isec->sid = sksec->sid;
5303 sksec->sclass = isec->sclass;
5304}
5305
5306/*
5307 * Determines peer_secid for the asoc and updates socket's peer label
5308 * if it's the first association on the socket.
5309 */
5310static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5311 struct sk_buff *skb)
5312{
5313 struct sock *sk = asoc->base.sk;
5314 u16 family = sk->sk_family;
5315 struct sk_security_struct *sksec = selinux_sock(sk);
5316 struct common_audit_data ad;
5317 struct lsm_network_audit net;
5318 int err;
5319
5320 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5321 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5322 family = PF_INET;
5323
5324 if (selinux_peerlbl_enabled()) {
5325 asoc->peer_secid = SECSID_NULL;
5326
5327 /* This will return peer_sid = SECSID_NULL if there are
5328 * no peer labels, see security_net_peersid_resolve().
5329 */
5330 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5331 if (err)
5332 return err;
5333
5334 if (asoc->peer_secid == SECSID_NULL)
5335 asoc->peer_secid = SECINITSID_UNLABELED;
5336 } else {
5337 asoc->peer_secid = SECINITSID_UNLABELED;
5338 }
5339
5340 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5341 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5342
5343 /* Here as first association on socket. As the peer SID
5344 * was allowed by peer recv (and the netif/node checks),
5345 * then it is approved by policy and used as the primary
5346 * peer SID for getpeercon(3).
5347 */
5348 sksec->peer_sid = asoc->peer_secid;
5349 } else if (sksec->peer_sid != asoc->peer_secid) {
5350 /* Other association peer SIDs are checked to enforce
5351 * consistency among the peer SIDs.
5352 */
5353 ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5354 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5355 sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5356 &ad);
5357 if (err)
5358 return err;
5359 }
5360 return 0;
5361}
5362
5363/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5364 * happens on an incoming connect(2), sctp_connectx(3) or
5365 * sctp_sendmsg(3) (with no association already present).
5366 */
5367static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5368 struct sk_buff *skb)
5369{
5370 struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5371 u32 conn_sid;
5372 int err;
5373
5374 if (!selinux_policycap_extsockclass())
5375 return 0;
5376
5377 err = selinux_sctp_process_new_assoc(asoc, skb);
5378 if (err)
5379 return err;
5380
5381 /* Compute the MLS component for the connection and store
5382 * the information in asoc. This will be used by SCTP TCP type
5383 * sockets and peeled off connections as they cause a new
5384 * socket to be generated. selinux_sctp_sk_clone() will then
5385 * plug this into the new socket.
5386 */
5387 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5388 if (err)
5389 return err;
5390
5391 asoc->secid = conn_sid;
5392
5393 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5394 return selinux_netlbl_sctp_assoc_request(asoc, skb);
5395}
5396
5397/* Called when SCTP receives a COOKIE ACK chunk as the final
5398 * response to an association request (initited by us).
5399 */
5400static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5401 struct sk_buff *skb)
5402{
5403 struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5404
5405 if (!selinux_policycap_extsockclass())
5406 return 0;
5407
5408 /* Inherit secid from the parent socket - this will be picked up
5409 * by selinux_sctp_sk_clone() if the association gets peeled off
5410 * into a new socket.
5411 */
5412 asoc->secid = sksec->sid;
5413
5414 return selinux_sctp_process_new_assoc(asoc, skb);
5415}
5416
5417/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5418 * based on their @optname.
5419 */
5420static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5421 struct sockaddr *address,
5422 int addrlen)
5423{
5424 int len, err = 0, walk_size = 0;
5425 void *addr_buf;
5426 struct sockaddr *addr;
5427 struct socket *sock;
5428
5429 if (!selinux_policycap_extsockclass())
5430 return 0;
5431
5432 /* Process one or more addresses that may be IPv4 or IPv6 */
5433 sock = sk->sk_socket;
5434 addr_buf = address;
5435
5436 while (walk_size < addrlen) {
5437 if (walk_size + sizeof(sa_family_t) > addrlen)
5438 return -EINVAL;
5439
5440 addr = addr_buf;
5441 switch (addr->sa_family) {
5442 case AF_UNSPEC:
5443 case AF_INET:
5444 len = sizeof(struct sockaddr_in);
5445 break;
5446 case AF_INET6:
5447 len = sizeof(struct sockaddr_in6);
5448 break;
5449 default:
5450 return -EINVAL;
5451 }
5452
5453 if (walk_size + len > addrlen)
5454 return -EINVAL;
5455
5456 err = -EINVAL;
5457 switch (optname) {
5458 /* Bind checks */
5459 case SCTP_PRIMARY_ADDR:
5460 case SCTP_SET_PEER_PRIMARY_ADDR:
5461 case SCTP_SOCKOPT_BINDX_ADD:
5462 err = selinux_socket_bind(sock, addr, len);
5463 break;
5464 /* Connect checks */
5465 case SCTP_SOCKOPT_CONNECTX:
5466 case SCTP_PARAM_SET_PRIMARY:
5467 case SCTP_PARAM_ADD_IP:
5468 case SCTP_SENDMSG_CONNECT:
5469 err = selinux_socket_connect_helper(sock, addr, len);
5470 if (err)
5471 return err;
5472
5473 /* As selinux_sctp_bind_connect() is called by the
5474 * SCTP protocol layer, the socket is already locked,
5475 * therefore selinux_netlbl_socket_connect_locked()
5476 * is called here. The situations handled are:
5477 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5478 * whenever a new IP address is added or when a new
5479 * primary address is selected.
5480 * Note that an SCTP connect(2) call happens before
5481 * the SCTP protocol layer and is handled via
5482 * selinux_socket_connect().
5483 */
5484 err = selinux_netlbl_socket_connect_locked(sk, addr);
5485 break;
5486 }
5487
5488 if (err)
5489 return err;
5490
5491 addr_buf += len;
5492 walk_size += len;
5493 }
5494
5495 return 0;
5496}
5497
5498/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5499static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5500 struct sock *newsk)
5501{
5502 struct sk_security_struct *sksec = selinux_sock(sk);
5503 struct sk_security_struct *newsksec = selinux_sock(newsk);
5504
5505 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5506 * the non-sctp clone version.
5507 */
5508 if (!selinux_policycap_extsockclass())
5509 return selinux_sk_clone_security(sk, newsk);
5510
5511 newsksec->sid = asoc->secid;
5512 newsksec->peer_sid = asoc->peer_secid;
5513 newsksec->sclass = sksec->sclass;
5514 selinux_netlbl_sctp_sk_clone(sk, newsk);
5515}
5516
5517static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5518{
5519 struct sk_security_struct *ssksec = selinux_sock(ssk);
5520 struct sk_security_struct *sksec = selinux_sock(sk);
5521
5522 ssksec->sclass = sksec->sclass;
5523 ssksec->sid = sksec->sid;
5524
5525 /* replace the existing subflow label deleting the existing one
5526 * and re-recreating a new label using the updated context
5527 */
5528 selinux_netlbl_sk_security_free(ssksec);
5529 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5530}
5531
5532static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5533 struct request_sock *req)
5534{
5535 struct sk_security_struct *sksec = selinux_sock(sk);
5536 int err;
5537 u16 family = req->rsk_ops->family;
5538 u32 connsid;
5539 u32 peersid;
5540
5541 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5542 if (err)
5543 return err;
5544 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5545 if (err)
5546 return err;
5547 req->secid = connsid;
5548 req->peer_secid = peersid;
5549
5550 return selinux_netlbl_inet_conn_request(req, family);
5551}
5552
5553static void selinux_inet_csk_clone(struct sock *newsk,
5554 const struct request_sock *req)
5555{
5556 struct sk_security_struct *newsksec = selinux_sock(newsk);
5557
5558 newsksec->sid = req->secid;
5559 newsksec->peer_sid = req->peer_secid;
5560 /* NOTE: Ideally, we should also get the isec->sid for the
5561 new socket in sync, but we don't have the isec available yet.
5562 So we will wait until sock_graft to do it, by which
5563 time it will have been created and available. */
5564
5565 /* We don't need to take any sort of lock here as we are the only
5566 * thread with access to newsksec */
5567 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5568}
5569
5570static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5571{
5572 u16 family = sk->sk_family;
5573 struct sk_security_struct *sksec = selinux_sock(sk);
5574
5575 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5576 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5577 family = PF_INET;
5578
5579 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5580}
5581
5582static int selinux_secmark_relabel_packet(u32 sid)
5583{
5584 return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
5585 NULL);
5586}
5587
5588static void selinux_secmark_refcount_inc(void)
5589{
5590 atomic_inc(&selinux_secmark_refcount);
5591}
5592
5593static void selinux_secmark_refcount_dec(void)
5594{
5595 atomic_dec(&selinux_secmark_refcount);
5596}
5597
5598static void selinux_req_classify_flow(const struct request_sock *req,
5599 struct flowi_common *flic)
5600{
5601 flic->flowic_secid = req->secid;
5602}
5603
5604static int selinux_tun_dev_alloc_security(void *security)
5605{
5606 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5607
5608 tunsec->sid = current_sid();
5609 return 0;
5610}
5611
5612static int selinux_tun_dev_create(void)
5613{
5614 u32 sid = current_sid();
5615
5616 /* we aren't taking into account the "sockcreate" SID since the socket
5617 * that is being created here is not a socket in the traditional sense,
5618 * instead it is a private sock, accessible only to the kernel, and
5619 * representing a wide range of network traffic spanning multiple
5620 * connections unlike traditional sockets - check the TUN driver to
5621 * get a better understanding of why this socket is special */
5622
5623 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5624 NULL);
5625}
5626
5627static int selinux_tun_dev_attach_queue(void *security)
5628{
5629 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5630
5631 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5632 TUN_SOCKET__ATTACH_QUEUE, NULL);
5633}
5634
5635static int selinux_tun_dev_attach(struct sock *sk, void *security)
5636{
5637 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5638 struct sk_security_struct *sksec = selinux_sock(sk);
5639
5640 /* we don't currently perform any NetLabel based labeling here and it
5641 * isn't clear that we would want to do so anyway; while we could apply
5642 * labeling without the support of the TUN user the resulting labeled
5643 * traffic from the other end of the connection would almost certainly
5644 * cause confusion to the TUN user that had no idea network labeling
5645 * protocols were being used */
5646
5647 sksec->sid = tunsec->sid;
5648 sksec->sclass = SECCLASS_TUN_SOCKET;
5649
5650 return 0;
5651}
5652
5653static int selinux_tun_dev_open(void *security)
5654{
5655 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5656 u32 sid = current_sid();
5657 int err;
5658
5659 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5660 TUN_SOCKET__RELABELFROM, NULL);
5661 if (err)
5662 return err;
5663 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5664 TUN_SOCKET__RELABELTO, NULL);
5665 if (err)
5666 return err;
5667 tunsec->sid = sid;
5668
5669 return 0;
5670}
5671
5672#ifdef CONFIG_NETFILTER
5673
5674static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5675 const struct nf_hook_state *state)
5676{
5677 int ifindex;
5678 u16 family;
5679 char *addrp;
5680 u32 peer_sid;
5681 struct common_audit_data ad;
5682 struct lsm_network_audit net;
5683 int secmark_active, peerlbl_active;
5684
5685 if (!selinux_policycap_netpeer())
5686 return NF_ACCEPT;
5687
5688 secmark_active = selinux_secmark_enabled();
5689 peerlbl_active = selinux_peerlbl_enabled();
5690 if (!secmark_active && !peerlbl_active)
5691 return NF_ACCEPT;
5692
5693 family = state->pf;
5694 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5695 return NF_DROP;
5696
5697 ifindex = state->in->ifindex;
5698 ad_net_init_from_iif(&ad, &net, ifindex, family);
5699 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5700 return NF_DROP;
5701
5702 if (peerlbl_active) {
5703 int err;
5704
5705 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5706 addrp, family, peer_sid, &ad);
5707 if (err) {
5708 selinux_netlbl_err(skb, family, err, 1);
5709 return NF_DROP;
5710 }
5711 }
5712
5713 if (secmark_active)
5714 if (avc_has_perm(peer_sid, skb->secmark,
5715 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5716 return NF_DROP;
5717
5718 if (netlbl_enabled())
5719 /* we do this in the FORWARD path and not the POST_ROUTING
5720 * path because we want to make sure we apply the necessary
5721 * labeling before IPsec is applied so we can leverage AH
5722 * protection */
5723 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5724 return NF_DROP;
5725
5726 return NF_ACCEPT;
5727}
5728
5729static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5730 const struct nf_hook_state *state)
5731{
5732 struct sock *sk;
5733 u32 sid;
5734
5735 if (!netlbl_enabled())
5736 return NF_ACCEPT;
5737
5738 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5739 * because we want to make sure we apply the necessary labeling
5740 * before IPsec is applied so we can leverage AH protection */
5741 sk = sk_to_full_sk(skb->sk);
5742 if (sk) {
5743 struct sk_security_struct *sksec;
5744
5745 if (sk_listener(sk))
5746 /* if the socket is the listening state then this
5747 * packet is a SYN-ACK packet which means it needs to
5748 * be labeled based on the connection/request_sock and
5749 * not the parent socket. unfortunately, we can't
5750 * lookup the request_sock yet as it isn't queued on
5751 * the parent socket until after the SYN-ACK is sent.
5752 * the "solution" is to simply pass the packet as-is
5753 * as any IP option based labeling should be copied
5754 * from the initial connection request (in the IP
5755 * layer). it is far from ideal, but until we get a
5756 * security label in the packet itself this is the
5757 * best we can do. */
5758 return NF_ACCEPT;
5759
5760 /* standard practice, label using the parent socket */
5761 sksec = selinux_sock(sk);
5762 sid = sksec->sid;
5763 } else
5764 sid = SECINITSID_KERNEL;
5765 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5766 return NF_DROP;
5767
5768 return NF_ACCEPT;
5769}
5770
5771
5772static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5773 const struct nf_hook_state *state)
5774{
5775 struct sock *sk;
5776 struct sk_security_struct *sksec;
5777 struct common_audit_data ad;
5778 struct lsm_network_audit net;
5779 u8 proto = 0;
5780
5781 sk = skb_to_full_sk(skb);
5782 if (sk == NULL)
5783 return NF_ACCEPT;
5784 sksec = selinux_sock(sk);
5785
5786 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5787 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5788 return NF_DROP;
5789
5790 if (selinux_secmark_enabled())
5791 if (avc_has_perm(sksec->sid, skb->secmark,
5792 SECCLASS_PACKET, PACKET__SEND, &ad))
5793 return NF_DROP_ERR(-ECONNREFUSED);
5794
5795 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5796 return NF_DROP_ERR(-ECONNREFUSED);
5797
5798 return NF_ACCEPT;
5799}
5800
5801static unsigned int selinux_ip_postroute(void *priv,
5802 struct sk_buff *skb,
5803 const struct nf_hook_state *state)
5804{
5805 u16 family;
5806 u32 secmark_perm;
5807 u32 peer_sid;
5808 int ifindex;
5809 struct sock *sk;
5810 struct common_audit_data ad;
5811 struct lsm_network_audit net;
5812 char *addrp;
5813 int secmark_active, peerlbl_active;
5814
5815 /* If any sort of compatibility mode is enabled then handoff processing
5816 * to the selinux_ip_postroute_compat() function to deal with the
5817 * special handling. We do this in an attempt to keep this function
5818 * as fast and as clean as possible. */
5819 if (!selinux_policycap_netpeer())
5820 return selinux_ip_postroute_compat(skb, state);
5821
5822 secmark_active = selinux_secmark_enabled();
5823 peerlbl_active = selinux_peerlbl_enabled();
5824 if (!secmark_active && !peerlbl_active)
5825 return NF_ACCEPT;
5826
5827 sk = skb_to_full_sk(skb);
5828
5829#ifdef CONFIG_XFRM
5830 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5831 * packet transformation so allow the packet to pass without any checks
5832 * since we'll have another chance to perform access control checks
5833 * when the packet is on it's final way out.
5834 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5835 * is NULL, in this case go ahead and apply access control.
5836 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5837 * TCP listening state we cannot wait until the XFRM processing
5838 * is done as we will miss out on the SA label if we do;
5839 * unfortunately, this means more work, but it is only once per
5840 * connection. */
5841 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5842 !(sk && sk_listener(sk)))
5843 return NF_ACCEPT;
5844#endif
5845
5846 family = state->pf;
5847 if (sk == NULL) {
5848 /* Without an associated socket the packet is either coming
5849 * from the kernel or it is being forwarded; check the packet
5850 * to determine which and if the packet is being forwarded
5851 * query the packet directly to determine the security label. */
5852 if (skb->skb_iif) {
5853 secmark_perm = PACKET__FORWARD_OUT;
5854 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5855 return NF_DROP;
5856 } else {
5857 secmark_perm = PACKET__SEND;
5858 peer_sid = SECINITSID_KERNEL;
5859 }
5860 } else if (sk_listener(sk)) {
5861 /* Locally generated packet but the associated socket is in the
5862 * listening state which means this is a SYN-ACK packet. In
5863 * this particular case the correct security label is assigned
5864 * to the connection/request_sock but unfortunately we can't
5865 * query the request_sock as it isn't queued on the parent
5866 * socket until after the SYN-ACK packet is sent; the only
5867 * viable choice is to regenerate the label like we do in
5868 * selinux_inet_conn_request(). See also selinux_ip_output()
5869 * for similar problems. */
5870 u32 skb_sid;
5871 struct sk_security_struct *sksec;
5872
5873 sksec = selinux_sock(sk);
5874 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5875 return NF_DROP;
5876 /* At this point, if the returned skb peerlbl is SECSID_NULL
5877 * and the packet has been through at least one XFRM
5878 * transformation then we must be dealing with the "final"
5879 * form of labeled IPsec packet; since we've already applied
5880 * all of our access controls on this packet we can safely
5881 * pass the packet. */
5882 if (skb_sid == SECSID_NULL) {
5883 switch (family) {
5884 case PF_INET:
5885 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5886 return NF_ACCEPT;
5887 break;
5888 case PF_INET6:
5889 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5890 return NF_ACCEPT;
5891 break;
5892 default:
5893 return NF_DROP_ERR(-ECONNREFUSED);
5894 }
5895 }
5896 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5897 return NF_DROP;
5898 secmark_perm = PACKET__SEND;
5899 } else {
5900 /* Locally generated packet, fetch the security label from the
5901 * associated socket. */
5902 struct sk_security_struct *sksec = selinux_sock(sk);
5903 peer_sid = sksec->sid;
5904 secmark_perm = PACKET__SEND;
5905 }
5906
5907 ifindex = state->out->ifindex;
5908 ad_net_init_from_iif(&ad, &net, ifindex, family);
5909 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5910 return NF_DROP;
5911
5912 if (secmark_active)
5913 if (avc_has_perm(peer_sid, skb->secmark,
5914 SECCLASS_PACKET, secmark_perm, &ad))
5915 return NF_DROP_ERR(-ECONNREFUSED);
5916
5917 if (peerlbl_active) {
5918 u32 if_sid;
5919 u32 node_sid;
5920
5921 if (sel_netif_sid(state->net, ifindex, &if_sid))
5922 return NF_DROP;
5923 if (avc_has_perm(peer_sid, if_sid,
5924 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5925 return NF_DROP_ERR(-ECONNREFUSED);
5926
5927 if (sel_netnode_sid(addrp, family, &node_sid))
5928 return NF_DROP;
5929 if (avc_has_perm(peer_sid, node_sid,
5930 SECCLASS_NODE, NODE__SENDTO, &ad))
5931 return NF_DROP_ERR(-ECONNREFUSED);
5932 }
5933
5934 return NF_ACCEPT;
5935}
5936#endif /* CONFIG_NETFILTER */
5937
5938static int nlmsg_sock_has_extended_perms(struct sock *sk, u32 perms, u16 nlmsg_type)
5939{
5940 struct sk_security_struct *sksec = sk->sk_security;
5941 struct common_audit_data ad;
5942 struct lsm_network_audit net;
5943 u8 driver;
5944 u8 xperm;
5945
5946 if (sock_skip_has_perm(sksec->sid))
5947 return 0;
5948
5949 ad_net_init_from_sk(&ad, &net, sk);
5950
5951 driver = nlmsg_type >> 8;
5952 xperm = nlmsg_type & 0xff;
5953
5954 return avc_has_extended_perms(current_sid(), sksec->sid, sksec->sclass,
5955 perms, driver, AVC_EXT_NLMSG, xperm, &ad);
5956}
5957
5958static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5959{
5960 int rc = 0;
5961 unsigned int msg_len;
5962 unsigned int data_len = skb->len;
5963 unsigned char *data = skb->data;
5964 struct nlmsghdr *nlh;
5965 struct sk_security_struct *sksec = selinux_sock(sk);
5966 u16 sclass = sksec->sclass;
5967 u32 perm;
5968
5969 while (data_len >= nlmsg_total_size(0)) {
5970 nlh = (struct nlmsghdr *)data;
5971
5972 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5973 * users which means we can't reject skb's with bogus
5974 * length fields; our solution is to follow what
5975 * netlink_rcv_skb() does and simply skip processing at
5976 * messages with length fields that are clearly junk
5977 */
5978 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5979 return 0;
5980
5981 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5982 if (rc == 0) {
5983 if (selinux_policycap_netlink_xperm()) {
5984 rc = nlmsg_sock_has_extended_perms(
5985 sk, perm, nlh->nlmsg_type);
5986 } else {
5987 rc = sock_has_perm(sk, perm);
5988 }
5989 if (rc)
5990 return rc;
5991 } else if (rc == -EINVAL) {
5992 /* -EINVAL is a missing msg/perm mapping */
5993 pr_warn_ratelimited("SELinux: unrecognized netlink"
5994 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5995 " pid=%d comm=%s\n",
5996 sk->sk_protocol, nlh->nlmsg_type,
5997 secclass_map[sclass - 1].name,
5998 task_pid_nr(current), current->comm);
5999 if (enforcing_enabled() &&
6000 !security_get_allow_unknown())
6001 return rc;
6002 rc = 0;
6003 } else if (rc == -ENOENT) {
6004 /* -ENOENT is a missing socket/class mapping, ignore */
6005 rc = 0;
6006 } else {
6007 return rc;
6008 }
6009
6010 /* move to the next message after applying netlink padding */
6011 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6012 if (msg_len >= data_len)
6013 return 0;
6014 data_len -= msg_len;
6015 data += msg_len;
6016 }
6017
6018 return rc;
6019}
6020
6021static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6022{
6023 isec->sclass = sclass;
6024 isec->sid = current_sid();
6025}
6026
6027static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6028 u32 perms)
6029{
6030 struct ipc_security_struct *isec;
6031 struct common_audit_data ad;
6032 u32 sid = current_sid();
6033
6034 isec = selinux_ipc(ipc_perms);
6035
6036 ad.type = LSM_AUDIT_DATA_IPC;
6037 ad.u.ipc_id = ipc_perms->key;
6038
6039 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6040}
6041
6042static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6043{
6044 struct msg_security_struct *msec;
6045
6046 msec = selinux_msg_msg(msg);
6047 msec->sid = SECINITSID_UNLABELED;
6048
6049 return 0;
6050}
6051
6052/* message queue security operations */
6053static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6054{
6055 struct ipc_security_struct *isec;
6056 struct common_audit_data ad;
6057 u32 sid = current_sid();
6058
6059 isec = selinux_ipc(msq);
6060 ipc_init_security(isec, SECCLASS_MSGQ);
6061
6062 ad.type = LSM_AUDIT_DATA_IPC;
6063 ad.u.ipc_id = msq->key;
6064
6065 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6066 MSGQ__CREATE, &ad);
6067}
6068
6069static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6070{
6071 struct ipc_security_struct *isec;
6072 struct common_audit_data ad;
6073 u32 sid = current_sid();
6074
6075 isec = selinux_ipc(msq);
6076
6077 ad.type = LSM_AUDIT_DATA_IPC;
6078 ad.u.ipc_id = msq->key;
6079
6080 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6081 MSGQ__ASSOCIATE, &ad);
6082}
6083
6084static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6085{
6086 u32 perms;
6087
6088 switch (cmd) {
6089 case IPC_INFO:
6090 case MSG_INFO:
6091 /* No specific object, just general system-wide information. */
6092 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6093 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6094 case IPC_STAT:
6095 case MSG_STAT:
6096 case MSG_STAT_ANY:
6097 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6098 break;
6099 case IPC_SET:
6100 perms = MSGQ__SETATTR;
6101 break;
6102 case IPC_RMID:
6103 perms = MSGQ__DESTROY;
6104 break;
6105 default:
6106 return 0;
6107 }
6108
6109 return ipc_has_perm(msq, perms);
6110}
6111
6112static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6113{
6114 struct ipc_security_struct *isec;
6115 struct msg_security_struct *msec;
6116 struct common_audit_data ad;
6117 u32 sid = current_sid();
6118 int rc;
6119
6120 isec = selinux_ipc(msq);
6121 msec = selinux_msg_msg(msg);
6122
6123 /*
6124 * First time through, need to assign label to the message
6125 */
6126 if (msec->sid == SECINITSID_UNLABELED) {
6127 /*
6128 * Compute new sid based on current process and
6129 * message queue this message will be stored in
6130 */
6131 rc = security_transition_sid(sid, isec->sid,
6132 SECCLASS_MSG, NULL, &msec->sid);
6133 if (rc)
6134 return rc;
6135 }
6136
6137 ad.type = LSM_AUDIT_DATA_IPC;
6138 ad.u.ipc_id = msq->key;
6139
6140 /* Can this process write to the queue? */
6141 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6142 MSGQ__WRITE, &ad);
6143 if (!rc)
6144 /* Can this process send the message */
6145 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6146 MSG__SEND, &ad);
6147 if (!rc)
6148 /* Can the message be put in the queue? */
6149 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6150 MSGQ__ENQUEUE, &ad);
6151
6152 return rc;
6153}
6154
6155static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6156 struct task_struct *target,
6157 long type, int mode)
6158{
6159 struct ipc_security_struct *isec;
6160 struct msg_security_struct *msec;
6161 struct common_audit_data ad;
6162 u32 sid = task_sid_obj(target);
6163 int rc;
6164
6165 isec = selinux_ipc(msq);
6166 msec = selinux_msg_msg(msg);
6167
6168 ad.type = LSM_AUDIT_DATA_IPC;
6169 ad.u.ipc_id = msq->key;
6170
6171 rc = avc_has_perm(sid, isec->sid,
6172 SECCLASS_MSGQ, MSGQ__READ, &ad);
6173 if (!rc)
6174 rc = avc_has_perm(sid, msec->sid,
6175 SECCLASS_MSG, MSG__RECEIVE, &ad);
6176 return rc;
6177}
6178
6179/* Shared Memory security operations */
6180static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6181{
6182 struct ipc_security_struct *isec;
6183 struct common_audit_data ad;
6184 u32 sid = current_sid();
6185
6186 isec = selinux_ipc(shp);
6187 ipc_init_security(isec, SECCLASS_SHM);
6188
6189 ad.type = LSM_AUDIT_DATA_IPC;
6190 ad.u.ipc_id = shp->key;
6191
6192 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6193 SHM__CREATE, &ad);
6194}
6195
6196static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6197{
6198 struct ipc_security_struct *isec;
6199 struct common_audit_data ad;
6200 u32 sid = current_sid();
6201
6202 isec = selinux_ipc(shp);
6203
6204 ad.type = LSM_AUDIT_DATA_IPC;
6205 ad.u.ipc_id = shp->key;
6206
6207 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6208 SHM__ASSOCIATE, &ad);
6209}
6210
6211/* Note, at this point, shp is locked down */
6212static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6213{
6214 u32 perms;
6215
6216 switch (cmd) {
6217 case IPC_INFO:
6218 case SHM_INFO:
6219 /* No specific object, just general system-wide information. */
6220 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6221 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6222 case IPC_STAT:
6223 case SHM_STAT:
6224 case SHM_STAT_ANY:
6225 perms = SHM__GETATTR | SHM__ASSOCIATE;
6226 break;
6227 case IPC_SET:
6228 perms = SHM__SETATTR;
6229 break;
6230 case SHM_LOCK:
6231 case SHM_UNLOCK:
6232 perms = SHM__LOCK;
6233 break;
6234 case IPC_RMID:
6235 perms = SHM__DESTROY;
6236 break;
6237 default:
6238 return 0;
6239 }
6240
6241 return ipc_has_perm(shp, perms);
6242}
6243
6244static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6245 char __user *shmaddr, int shmflg)
6246{
6247 u32 perms;
6248
6249 if (shmflg & SHM_RDONLY)
6250 perms = SHM__READ;
6251 else
6252 perms = SHM__READ | SHM__WRITE;
6253
6254 return ipc_has_perm(shp, perms);
6255}
6256
6257/* Semaphore security operations */
6258static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6259{
6260 struct ipc_security_struct *isec;
6261 struct common_audit_data ad;
6262 u32 sid = current_sid();
6263
6264 isec = selinux_ipc(sma);
6265 ipc_init_security(isec, SECCLASS_SEM);
6266
6267 ad.type = LSM_AUDIT_DATA_IPC;
6268 ad.u.ipc_id = sma->key;
6269
6270 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6271 SEM__CREATE, &ad);
6272}
6273
6274static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6275{
6276 struct ipc_security_struct *isec;
6277 struct common_audit_data ad;
6278 u32 sid = current_sid();
6279
6280 isec = selinux_ipc(sma);
6281
6282 ad.type = LSM_AUDIT_DATA_IPC;
6283 ad.u.ipc_id = sma->key;
6284
6285 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6286 SEM__ASSOCIATE, &ad);
6287}
6288
6289/* Note, at this point, sma is locked down */
6290static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6291{
6292 int err;
6293 u32 perms;
6294
6295 switch (cmd) {
6296 case IPC_INFO:
6297 case SEM_INFO:
6298 /* No specific object, just general system-wide information. */
6299 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6300 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6301 case GETPID:
6302 case GETNCNT:
6303 case GETZCNT:
6304 perms = SEM__GETATTR;
6305 break;
6306 case GETVAL:
6307 case GETALL:
6308 perms = SEM__READ;
6309 break;
6310 case SETVAL:
6311 case SETALL:
6312 perms = SEM__WRITE;
6313 break;
6314 case IPC_RMID:
6315 perms = SEM__DESTROY;
6316 break;
6317 case IPC_SET:
6318 perms = SEM__SETATTR;
6319 break;
6320 case IPC_STAT:
6321 case SEM_STAT:
6322 case SEM_STAT_ANY:
6323 perms = SEM__GETATTR | SEM__ASSOCIATE;
6324 break;
6325 default:
6326 return 0;
6327 }
6328
6329 err = ipc_has_perm(sma, perms);
6330 return err;
6331}
6332
6333static int selinux_sem_semop(struct kern_ipc_perm *sma,
6334 struct sembuf *sops, unsigned nsops, int alter)
6335{
6336 u32 perms;
6337
6338 if (alter)
6339 perms = SEM__READ | SEM__WRITE;
6340 else
6341 perms = SEM__READ;
6342
6343 return ipc_has_perm(sma, perms);
6344}
6345
6346static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6347{
6348 u32 av = 0;
6349
6350 av = 0;
6351 if (flag & S_IRUGO)
6352 av |= IPC__UNIX_READ;
6353 if (flag & S_IWUGO)
6354 av |= IPC__UNIX_WRITE;
6355
6356 if (av == 0)
6357 return 0;
6358
6359 return ipc_has_perm(ipcp, av);
6360}
6361
6362static void selinux_ipc_getlsmprop(struct kern_ipc_perm *ipcp,
6363 struct lsm_prop *prop)
6364{
6365 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6366 prop->selinux.secid = isec->sid;
6367}
6368
6369static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6370{
6371 if (inode)
6372 inode_doinit_with_dentry(inode, dentry);
6373}
6374
6375static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6376 char **value)
6377{
6378 const struct task_security_struct *tsec;
6379 int error;
6380 u32 sid;
6381 u32 len;
6382
6383 rcu_read_lock();
6384 tsec = selinux_cred(__task_cred(p));
6385 if (p != current) {
6386 error = avc_has_perm(current_sid(), tsec->sid,
6387 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6388 if (error)
6389 goto err_unlock;
6390 }
6391 switch (attr) {
6392 case LSM_ATTR_CURRENT:
6393 sid = tsec->sid;
6394 break;
6395 case LSM_ATTR_PREV:
6396 sid = tsec->osid;
6397 break;
6398 case LSM_ATTR_EXEC:
6399 sid = tsec->exec_sid;
6400 break;
6401 case LSM_ATTR_FSCREATE:
6402 sid = tsec->create_sid;
6403 break;
6404 case LSM_ATTR_KEYCREATE:
6405 sid = tsec->keycreate_sid;
6406 break;
6407 case LSM_ATTR_SOCKCREATE:
6408 sid = tsec->sockcreate_sid;
6409 break;
6410 default:
6411 error = -EOPNOTSUPP;
6412 goto err_unlock;
6413 }
6414 rcu_read_unlock();
6415
6416 if (sid == SECSID_NULL) {
6417 *value = NULL;
6418 return 0;
6419 }
6420
6421 error = security_sid_to_context(sid, value, &len);
6422 if (error)
6423 return error;
6424 return len;
6425
6426err_unlock:
6427 rcu_read_unlock();
6428 return error;
6429}
6430
6431static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6432{
6433 struct task_security_struct *tsec;
6434 struct cred *new;
6435 u32 mysid = current_sid(), sid = 0, ptsid;
6436 int error;
6437 char *str = value;
6438
6439 /*
6440 * Basic control over ability to set these attributes at all.
6441 */
6442 switch (attr) {
6443 case LSM_ATTR_EXEC:
6444 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6445 PROCESS__SETEXEC, NULL);
6446 break;
6447 case LSM_ATTR_FSCREATE:
6448 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6449 PROCESS__SETFSCREATE, NULL);
6450 break;
6451 case LSM_ATTR_KEYCREATE:
6452 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6453 PROCESS__SETKEYCREATE, NULL);
6454 break;
6455 case LSM_ATTR_SOCKCREATE:
6456 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6457 PROCESS__SETSOCKCREATE, NULL);
6458 break;
6459 case LSM_ATTR_CURRENT:
6460 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6461 PROCESS__SETCURRENT, NULL);
6462 break;
6463 default:
6464 error = -EOPNOTSUPP;
6465 break;
6466 }
6467 if (error)
6468 return error;
6469
6470 /* Obtain a SID for the context, if one was specified. */
6471 if (size && str[0] && str[0] != '\n') {
6472 if (str[size-1] == '\n') {
6473 str[size-1] = 0;
6474 size--;
6475 }
6476 error = security_context_to_sid(value, size,
6477 &sid, GFP_KERNEL);
6478 if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6479 if (!has_cap_mac_admin(true)) {
6480 struct audit_buffer *ab;
6481 size_t audit_size;
6482
6483 /* We strip a nul only if it is at the end,
6484 * otherwise the context contains a nul and
6485 * we should audit that */
6486 if (str[size - 1] == '\0')
6487 audit_size = size - 1;
6488 else
6489 audit_size = size;
6490 ab = audit_log_start(audit_context(),
6491 GFP_ATOMIC,
6492 AUDIT_SELINUX_ERR);
6493 if (!ab)
6494 return error;
6495 audit_log_format(ab, "op=fscreate invalid_context=");
6496 audit_log_n_untrustedstring(ab, value,
6497 audit_size);
6498 audit_log_end(ab);
6499
6500 return error;
6501 }
6502 error = security_context_to_sid_force(value, size,
6503 &sid);
6504 }
6505 if (error)
6506 return error;
6507 }
6508
6509 new = prepare_creds();
6510 if (!new)
6511 return -ENOMEM;
6512
6513 /* Permission checking based on the specified context is
6514 performed during the actual operation (execve,
6515 open/mkdir/...), when we know the full context of the
6516 operation. See selinux_bprm_creds_for_exec for the execve
6517 checks and may_create for the file creation checks. The
6518 operation will then fail if the context is not permitted. */
6519 tsec = selinux_cred(new);
6520 if (attr == LSM_ATTR_EXEC) {
6521 tsec->exec_sid = sid;
6522 } else if (attr == LSM_ATTR_FSCREATE) {
6523 tsec->create_sid = sid;
6524 } else if (attr == LSM_ATTR_KEYCREATE) {
6525 if (sid) {
6526 error = avc_has_perm(mysid, sid,
6527 SECCLASS_KEY, KEY__CREATE, NULL);
6528 if (error)
6529 goto abort_change;
6530 }
6531 tsec->keycreate_sid = sid;
6532 } else if (attr == LSM_ATTR_SOCKCREATE) {
6533 tsec->sockcreate_sid = sid;
6534 } else if (attr == LSM_ATTR_CURRENT) {
6535 error = -EINVAL;
6536 if (sid == 0)
6537 goto abort_change;
6538
6539 if (!current_is_single_threaded()) {
6540 error = security_bounded_transition(tsec->sid, sid);
6541 if (error)
6542 goto abort_change;
6543 }
6544
6545 /* Check permissions for the transition. */
6546 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6547 PROCESS__DYNTRANSITION, NULL);
6548 if (error)
6549 goto abort_change;
6550
6551 /* Check for ptracing, and update the task SID if ok.
6552 Otherwise, leave SID unchanged and fail. */
6553 ptsid = ptrace_parent_sid();
6554 if (ptsid != 0) {
6555 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6556 PROCESS__PTRACE, NULL);
6557 if (error)
6558 goto abort_change;
6559 }
6560
6561 tsec->sid = sid;
6562 } else {
6563 error = -EINVAL;
6564 goto abort_change;
6565 }
6566
6567 commit_creds(new);
6568 return size;
6569
6570abort_change:
6571 abort_creds(new);
6572 return error;
6573}
6574
6575/**
6576 * selinux_getselfattr - Get SELinux current task attributes
6577 * @attr: the requested attribute
6578 * @ctx: buffer to receive the result
6579 * @size: buffer size (input), buffer size used (output)
6580 * @flags: unused
6581 *
6582 * Fill the passed user space @ctx with the details of the requested
6583 * attribute.
6584 *
6585 * Returns the number of attributes on success, an error code otherwise.
6586 * There will only ever be one attribute.
6587 */
6588static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6589 u32 *size, u32 flags)
6590{
6591 int rc;
6592 char *val = NULL;
6593 int val_len;
6594
6595 val_len = selinux_lsm_getattr(attr, current, &val);
6596 if (val_len < 0)
6597 return val_len;
6598 rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6599 kfree(val);
6600 return (!rc ? 1 : rc);
6601}
6602
6603static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6604 u32 size, u32 flags)
6605{
6606 int rc;
6607
6608 rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6609 if (rc > 0)
6610 return 0;
6611 return rc;
6612}
6613
6614static int selinux_getprocattr(struct task_struct *p,
6615 const char *name, char **value)
6616{
6617 unsigned int attr = lsm_name_to_attr(name);
6618 int rc;
6619
6620 if (attr) {
6621 rc = selinux_lsm_getattr(attr, p, value);
6622 if (rc != -EOPNOTSUPP)
6623 return rc;
6624 }
6625
6626 return -EINVAL;
6627}
6628
6629static int selinux_setprocattr(const char *name, void *value, size_t size)
6630{
6631 int attr = lsm_name_to_attr(name);
6632
6633 if (attr)
6634 return selinux_lsm_setattr(attr, value, size);
6635 return -EINVAL;
6636}
6637
6638static int selinux_ismaclabel(const char *name)
6639{
6640 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6641}
6642
6643static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6644{
6645 return security_sid_to_context(secid, secdata, seclen);
6646}
6647
6648static int selinux_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
6649 u32 *seclen)
6650{
6651 return selinux_secid_to_secctx(prop->selinux.secid, secdata, seclen);
6652}
6653
6654static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6655{
6656 return security_context_to_sid(secdata, seclen,
6657 secid, GFP_KERNEL);
6658}
6659
6660static void selinux_release_secctx(char *secdata, u32 seclen)
6661{
6662 kfree(secdata);
6663}
6664
6665static void selinux_inode_invalidate_secctx(struct inode *inode)
6666{
6667 struct inode_security_struct *isec = selinux_inode(inode);
6668
6669 spin_lock(&isec->lock);
6670 isec->initialized = LABEL_INVALID;
6671 spin_unlock(&isec->lock);
6672}
6673
6674/*
6675 * called with inode->i_mutex locked
6676 */
6677static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6678{
6679 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6680 ctx, ctxlen, 0);
6681 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6682 return rc == -EOPNOTSUPP ? 0 : rc;
6683}
6684
6685/*
6686 * called with inode->i_mutex locked
6687 */
6688static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6689{
6690 return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6691 ctx, ctxlen, 0, NULL);
6692}
6693
6694static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6695{
6696 int len = 0;
6697 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6698 XATTR_SELINUX_SUFFIX, ctx, true);
6699 if (len < 0)
6700 return len;
6701 *ctxlen = len;
6702 return 0;
6703}
6704#ifdef CONFIG_KEYS
6705
6706static int selinux_key_alloc(struct key *k, const struct cred *cred,
6707 unsigned long flags)
6708{
6709 const struct task_security_struct *tsec;
6710 struct key_security_struct *ksec = selinux_key(k);
6711
6712 tsec = selinux_cred(cred);
6713 if (tsec->keycreate_sid)
6714 ksec->sid = tsec->keycreate_sid;
6715 else
6716 ksec->sid = tsec->sid;
6717
6718 return 0;
6719}
6720
6721static int selinux_key_permission(key_ref_t key_ref,
6722 const struct cred *cred,
6723 enum key_need_perm need_perm)
6724{
6725 struct key *key;
6726 struct key_security_struct *ksec;
6727 u32 perm, sid;
6728
6729 switch (need_perm) {
6730 case KEY_NEED_VIEW:
6731 perm = KEY__VIEW;
6732 break;
6733 case KEY_NEED_READ:
6734 perm = KEY__READ;
6735 break;
6736 case KEY_NEED_WRITE:
6737 perm = KEY__WRITE;
6738 break;
6739 case KEY_NEED_SEARCH:
6740 perm = KEY__SEARCH;
6741 break;
6742 case KEY_NEED_LINK:
6743 perm = KEY__LINK;
6744 break;
6745 case KEY_NEED_SETATTR:
6746 perm = KEY__SETATTR;
6747 break;
6748 case KEY_NEED_UNLINK:
6749 case KEY_SYSADMIN_OVERRIDE:
6750 case KEY_AUTHTOKEN_OVERRIDE:
6751 case KEY_DEFER_PERM_CHECK:
6752 return 0;
6753 default:
6754 WARN_ON(1);
6755 return -EPERM;
6756
6757 }
6758
6759 sid = cred_sid(cred);
6760 key = key_ref_to_ptr(key_ref);
6761 ksec = selinux_key(key);
6762
6763 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6764}
6765
6766static int selinux_key_getsecurity(struct key *key, char **_buffer)
6767{
6768 struct key_security_struct *ksec = selinux_key(key);
6769 char *context = NULL;
6770 unsigned len;
6771 int rc;
6772
6773 rc = security_sid_to_context(ksec->sid,
6774 &context, &len);
6775 if (!rc)
6776 rc = len;
6777 *_buffer = context;
6778 return rc;
6779}
6780
6781#ifdef CONFIG_KEY_NOTIFICATIONS
6782static int selinux_watch_key(struct key *key)
6783{
6784 struct key_security_struct *ksec = selinux_key(key);
6785 u32 sid = current_sid();
6786
6787 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6788}
6789#endif
6790#endif
6791
6792#ifdef CONFIG_SECURITY_INFINIBAND
6793static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6794{
6795 struct common_audit_data ad;
6796 int err;
6797 u32 sid = 0;
6798 struct ib_security_struct *sec = ib_sec;
6799 struct lsm_ibpkey_audit ibpkey;
6800
6801 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6802 if (err)
6803 return err;
6804
6805 ad.type = LSM_AUDIT_DATA_IBPKEY;
6806 ibpkey.subnet_prefix = subnet_prefix;
6807 ibpkey.pkey = pkey_val;
6808 ad.u.ibpkey = &ibpkey;
6809 return avc_has_perm(sec->sid, sid,
6810 SECCLASS_INFINIBAND_PKEY,
6811 INFINIBAND_PKEY__ACCESS, &ad);
6812}
6813
6814static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6815 u8 port_num)
6816{
6817 struct common_audit_data ad;
6818 int err;
6819 u32 sid = 0;
6820 struct ib_security_struct *sec = ib_sec;
6821 struct lsm_ibendport_audit ibendport;
6822
6823 err = security_ib_endport_sid(dev_name, port_num,
6824 &sid);
6825
6826 if (err)
6827 return err;
6828
6829 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6830 ibendport.dev_name = dev_name;
6831 ibendport.port = port_num;
6832 ad.u.ibendport = &ibendport;
6833 return avc_has_perm(sec->sid, sid,
6834 SECCLASS_INFINIBAND_ENDPORT,
6835 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6836}
6837
6838static int selinux_ib_alloc_security(void *ib_sec)
6839{
6840 struct ib_security_struct *sec = selinux_ib(ib_sec);
6841
6842 sec->sid = current_sid();
6843 return 0;
6844}
6845#endif
6846
6847#ifdef CONFIG_BPF_SYSCALL
6848static int selinux_bpf(int cmd, union bpf_attr *attr,
6849 unsigned int size)
6850{
6851 u32 sid = current_sid();
6852 int ret;
6853
6854 switch (cmd) {
6855 case BPF_MAP_CREATE:
6856 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6857 NULL);
6858 break;
6859 case BPF_PROG_LOAD:
6860 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6861 NULL);
6862 break;
6863 default:
6864 ret = 0;
6865 break;
6866 }
6867
6868 return ret;
6869}
6870
6871static u32 bpf_map_fmode_to_av(fmode_t fmode)
6872{
6873 u32 av = 0;
6874
6875 if (fmode & FMODE_READ)
6876 av |= BPF__MAP_READ;
6877 if (fmode & FMODE_WRITE)
6878 av |= BPF__MAP_WRITE;
6879 return av;
6880}
6881
6882/* This function will check the file pass through unix socket or binder to see
6883 * if it is a bpf related object. And apply corresponding checks on the bpf
6884 * object based on the type. The bpf maps and programs, not like other files and
6885 * socket, are using a shared anonymous inode inside the kernel as their inode.
6886 * So checking that inode cannot identify if the process have privilege to
6887 * access the bpf object and that's why we have to add this additional check in
6888 * selinux_file_receive and selinux_binder_transfer_files.
6889 */
6890static int bpf_fd_pass(const struct file *file, u32 sid)
6891{
6892 struct bpf_security_struct *bpfsec;
6893 struct bpf_prog *prog;
6894 struct bpf_map *map;
6895 int ret;
6896
6897 if (file->f_op == &bpf_map_fops) {
6898 map = file->private_data;
6899 bpfsec = map->security;
6900 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6901 bpf_map_fmode_to_av(file->f_mode), NULL);
6902 if (ret)
6903 return ret;
6904 } else if (file->f_op == &bpf_prog_fops) {
6905 prog = file->private_data;
6906 bpfsec = prog->aux->security;
6907 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6908 BPF__PROG_RUN, NULL);
6909 if (ret)
6910 return ret;
6911 }
6912 return 0;
6913}
6914
6915static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6916{
6917 u32 sid = current_sid();
6918 struct bpf_security_struct *bpfsec;
6919
6920 bpfsec = map->security;
6921 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6922 bpf_map_fmode_to_av(fmode), NULL);
6923}
6924
6925static int selinux_bpf_prog(struct bpf_prog *prog)
6926{
6927 u32 sid = current_sid();
6928 struct bpf_security_struct *bpfsec;
6929
6930 bpfsec = prog->aux->security;
6931 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6932 BPF__PROG_RUN, NULL);
6933}
6934
6935static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6936 struct bpf_token *token)
6937{
6938 struct bpf_security_struct *bpfsec;
6939
6940 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6941 if (!bpfsec)
6942 return -ENOMEM;
6943
6944 bpfsec->sid = current_sid();
6945 map->security = bpfsec;
6946
6947 return 0;
6948}
6949
6950static void selinux_bpf_map_free(struct bpf_map *map)
6951{
6952 struct bpf_security_struct *bpfsec = map->security;
6953
6954 map->security = NULL;
6955 kfree(bpfsec);
6956}
6957
6958static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6959 struct bpf_token *token)
6960{
6961 struct bpf_security_struct *bpfsec;
6962
6963 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6964 if (!bpfsec)
6965 return -ENOMEM;
6966
6967 bpfsec->sid = current_sid();
6968 prog->aux->security = bpfsec;
6969
6970 return 0;
6971}
6972
6973static void selinux_bpf_prog_free(struct bpf_prog *prog)
6974{
6975 struct bpf_security_struct *bpfsec = prog->aux->security;
6976
6977 prog->aux->security = NULL;
6978 kfree(bpfsec);
6979}
6980
6981static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6982 const struct path *path)
6983{
6984 struct bpf_security_struct *bpfsec;
6985
6986 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6987 if (!bpfsec)
6988 return -ENOMEM;
6989
6990 bpfsec->sid = current_sid();
6991 token->security = bpfsec;
6992
6993 return 0;
6994}
6995
6996static void selinux_bpf_token_free(struct bpf_token *token)
6997{
6998 struct bpf_security_struct *bpfsec = token->security;
6999
7000 token->security = NULL;
7001 kfree(bpfsec);
7002}
7003#endif
7004
7005struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
7006 .lbs_cred = sizeof(struct task_security_struct),
7007 .lbs_file = sizeof(struct file_security_struct),
7008 .lbs_inode = sizeof(struct inode_security_struct),
7009 .lbs_ipc = sizeof(struct ipc_security_struct),
7010 .lbs_key = sizeof(struct key_security_struct),
7011 .lbs_msg_msg = sizeof(struct msg_security_struct),
7012#ifdef CONFIG_PERF_EVENTS
7013 .lbs_perf_event = sizeof(struct perf_event_security_struct),
7014#endif
7015 .lbs_sock = sizeof(struct sk_security_struct),
7016 .lbs_superblock = sizeof(struct superblock_security_struct),
7017 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7018 .lbs_tun_dev = sizeof(struct tun_security_struct),
7019 .lbs_ib = sizeof(struct ib_security_struct),
7020};
7021
7022#ifdef CONFIG_PERF_EVENTS
7023static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7024{
7025 u32 requested, sid = current_sid();
7026
7027 if (type == PERF_SECURITY_OPEN)
7028 requested = PERF_EVENT__OPEN;
7029 else if (type == PERF_SECURITY_CPU)
7030 requested = PERF_EVENT__CPU;
7031 else if (type == PERF_SECURITY_KERNEL)
7032 requested = PERF_EVENT__KERNEL;
7033 else if (type == PERF_SECURITY_TRACEPOINT)
7034 requested = PERF_EVENT__TRACEPOINT;
7035 else
7036 return -EINVAL;
7037
7038 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7039 requested, NULL);
7040}
7041
7042static int selinux_perf_event_alloc(struct perf_event *event)
7043{
7044 struct perf_event_security_struct *perfsec;
7045
7046 perfsec = selinux_perf_event(event->security);
7047 perfsec->sid = current_sid();
7048
7049 return 0;
7050}
7051
7052static int selinux_perf_event_read(struct perf_event *event)
7053{
7054 struct perf_event_security_struct *perfsec = event->security;
7055 u32 sid = current_sid();
7056
7057 return avc_has_perm(sid, perfsec->sid,
7058 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7059}
7060
7061static int selinux_perf_event_write(struct perf_event *event)
7062{
7063 struct perf_event_security_struct *perfsec = event->security;
7064 u32 sid = current_sid();
7065
7066 return avc_has_perm(sid, perfsec->sid,
7067 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7068}
7069#endif
7070
7071#ifdef CONFIG_IO_URING
7072/**
7073 * selinux_uring_override_creds - check the requested cred override
7074 * @new: the target creds
7075 *
7076 * Check to see if the current task is allowed to override it's credentials
7077 * to service an io_uring operation.
7078 */
7079static int selinux_uring_override_creds(const struct cred *new)
7080{
7081 return avc_has_perm(current_sid(), cred_sid(new),
7082 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7083}
7084
7085/**
7086 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7087 *
7088 * Check to see if the current task is allowed to create a new io_uring
7089 * kernel polling thread.
7090 */
7091static int selinux_uring_sqpoll(void)
7092{
7093 u32 sid = current_sid();
7094
7095 return avc_has_perm(sid, sid,
7096 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7097}
7098
7099/**
7100 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7101 * @ioucmd: the io_uring command structure
7102 *
7103 * Check to see if the current domain is allowed to execute an
7104 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7105 *
7106 */
7107static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7108{
7109 struct file *file = ioucmd->file;
7110 struct inode *inode = file_inode(file);
7111 struct inode_security_struct *isec = selinux_inode(inode);
7112 struct common_audit_data ad;
7113
7114 ad.type = LSM_AUDIT_DATA_FILE;
7115 ad.u.file = file;
7116
7117 return avc_has_perm(current_sid(), isec->sid,
7118 SECCLASS_IO_URING, IO_URING__CMD, &ad);
7119}
7120#endif /* CONFIG_IO_URING */
7121
7122static const struct lsm_id selinux_lsmid = {
7123 .name = "selinux",
7124 .id = LSM_ID_SELINUX,
7125};
7126
7127/*
7128 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7129 * 1. any hooks that don't belong to (2.) or (3.) below,
7130 * 2. hooks that both access structures allocated by other hooks, and allocate
7131 * structures that can be later accessed by other hooks (mostly "cloning"
7132 * hooks),
7133 * 3. hooks that only allocate structures that can be later accessed by other
7134 * hooks ("allocating" hooks).
7135 *
7136 * Please follow block comment delimiters in the list to keep this order.
7137 */
7138static struct security_hook_list selinux_hooks[] __ro_after_init = {
7139 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7140 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7141 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7142 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7143
7144 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7145 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7146 LSM_HOOK_INIT(capget, selinux_capget),
7147 LSM_HOOK_INIT(capset, selinux_capset),
7148 LSM_HOOK_INIT(capable, selinux_capable),
7149 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7150 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7151 LSM_HOOK_INIT(syslog, selinux_syslog),
7152 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7153
7154 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7155
7156 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7157 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7158 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7159
7160 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7161 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7162 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7163 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7164 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7165 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7166 LSM_HOOK_INIT(sb_mount, selinux_mount),
7167 LSM_HOOK_INIT(sb_umount, selinux_umount),
7168 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7169 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7170
7171 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7172
7173 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7174 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7175
7176 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7177 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7178 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7179 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7180 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7181 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7182 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7183 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7184 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7185 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7186 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7187 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7188 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7189 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7190 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7191 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7192 LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7193 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7194 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7195 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7196 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7197 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7198 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7199 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7200 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7201 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7202 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7203 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7204 LSM_HOOK_INIT(inode_getlsmprop, selinux_inode_getlsmprop),
7205 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7206 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7207 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7208
7209 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7210
7211 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7212 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7213 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7214 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7215 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7216 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7217 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7218 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7219 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7220 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7221 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7222 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7223
7224 LSM_HOOK_INIT(file_open, selinux_file_open),
7225
7226 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7227 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7228 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7229 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7230 LSM_HOOK_INIT(cred_getlsmprop, selinux_cred_getlsmprop),
7231 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7232 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7233 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7234 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7235 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7236 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7237 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7238 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7239 LSM_HOOK_INIT(current_getlsmprop_subj, selinux_current_getlsmprop_subj),
7240 LSM_HOOK_INIT(task_getlsmprop_obj, selinux_task_getlsmprop_obj),
7241 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7242 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7243 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7244 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7245 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7246 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7247 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7248 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7249 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7250 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7251 LSM_HOOK_INIT(userns_create, selinux_userns_create),
7252
7253 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7254 LSM_HOOK_INIT(ipc_getlsmprop, selinux_ipc_getlsmprop),
7255
7256 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7257 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7258 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7259 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7260
7261 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7262 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7263 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7264
7265 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7266 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7267 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7268
7269 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7270
7271 LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7272 LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7273 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7274 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7275
7276 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7277 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7278 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7279 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7280 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7281 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7282
7283 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7284 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7285
7286 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7287 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7288 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7289 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7290 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7291 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7292 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7293 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7294 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7295 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7296 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7297 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7298 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7299 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7300 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7301 LSM_HOOK_INIT(socket_getpeersec_stream,
7302 selinux_socket_getpeersec_stream),
7303 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7304 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7305 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7306 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7307 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7308 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7309 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7310 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7311 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7312 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7313 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7314 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7315 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7316 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7317 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7318 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7319 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7320 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7321 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7322 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7323 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7324#ifdef CONFIG_SECURITY_INFINIBAND
7325 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7326 LSM_HOOK_INIT(ib_endport_manage_subnet,
7327 selinux_ib_endport_manage_subnet),
7328#endif
7329#ifdef CONFIG_SECURITY_NETWORK_XFRM
7330 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7331 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7332 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7333 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7334 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7335 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7336 selinux_xfrm_state_pol_flow_match),
7337 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7338#endif
7339
7340#ifdef CONFIG_KEYS
7341 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7342 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7343#ifdef CONFIG_KEY_NOTIFICATIONS
7344 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7345#endif
7346#endif
7347
7348#ifdef CONFIG_AUDIT
7349 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7350 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7351 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7352#endif
7353
7354#ifdef CONFIG_BPF_SYSCALL
7355 LSM_HOOK_INIT(bpf, selinux_bpf),
7356 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7357 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7358 LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7359 LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7360 LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7361#endif
7362
7363#ifdef CONFIG_PERF_EVENTS
7364 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7365 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7366 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7367#endif
7368
7369#ifdef CONFIG_IO_URING
7370 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7371 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7372 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7373#endif
7374
7375 /*
7376 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7377 */
7378 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7379 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7380 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7381 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7382#ifdef CONFIG_SECURITY_NETWORK_XFRM
7383 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7384#endif
7385
7386 /*
7387 * PUT "ALLOCATING" HOOKS HERE
7388 */
7389 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7390 LSM_HOOK_INIT(msg_queue_alloc_security,
7391 selinux_msg_queue_alloc_security),
7392 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7393 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7394 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7395 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7396 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7397 LSM_HOOK_INIT(lsmprop_to_secctx, selinux_lsmprop_to_secctx),
7398 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7399 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7400 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7401#ifdef CONFIG_SECURITY_INFINIBAND
7402 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7403#endif
7404#ifdef CONFIG_SECURITY_NETWORK_XFRM
7405 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7406 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7407 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7408 selinux_xfrm_state_alloc_acquire),
7409#endif
7410#ifdef CONFIG_KEYS
7411 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7412#endif
7413#ifdef CONFIG_AUDIT
7414 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7415#endif
7416#ifdef CONFIG_BPF_SYSCALL
7417 LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7418 LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7419 LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7420#endif
7421#ifdef CONFIG_PERF_EVENTS
7422 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7423#endif
7424};
7425
7426static __init int selinux_init(void)
7427{
7428 pr_info("SELinux: Initializing.\n");
7429
7430 memset(&selinux_state, 0, sizeof(selinux_state));
7431 enforcing_set(selinux_enforcing_boot);
7432 selinux_avc_init();
7433 mutex_init(&selinux_state.status_lock);
7434 mutex_init(&selinux_state.policy_mutex);
7435
7436 /* Set the security state for the initial task. */
7437 cred_init_security();
7438
7439 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7440 if (!default_noexec)
7441 pr_notice("SELinux: virtual memory is executable by default\n");
7442
7443 avc_init();
7444
7445 avtab_cache_init();
7446
7447 ebitmap_cache_init();
7448
7449 hashtab_cache_init();
7450
7451 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7452 &selinux_lsmid);
7453
7454 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7455 panic("SELinux: Unable to register AVC netcache callback\n");
7456
7457 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7458 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7459
7460 if (selinux_enforcing_boot)
7461 pr_debug("SELinux: Starting in enforcing mode\n");
7462 else
7463 pr_debug("SELinux: Starting in permissive mode\n");
7464
7465 fs_validate_description("selinux", selinux_fs_parameters);
7466
7467 return 0;
7468}
7469
7470static void delayed_superblock_init(struct super_block *sb, void *unused)
7471{
7472 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7473}
7474
7475void selinux_complete_init(void)
7476{
7477 pr_debug("SELinux: Completing initialization.\n");
7478
7479 /* Set up any superblocks initialized prior to the policy load. */
7480 pr_debug("SELinux: Setting up existing superblocks.\n");
7481 iterate_supers(delayed_superblock_init, NULL);
7482}
7483
7484/* SELinux requires early initialization in order to label
7485 all processes and objects when they are created. */
7486DEFINE_LSM(selinux) = {
7487 .name = "selinux",
7488 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7489 .enabled = &selinux_enabled_boot,
7490 .blobs = &selinux_blob_sizes,
7491 .init = selinux_init,
7492};
7493
7494#if defined(CONFIG_NETFILTER)
7495static const struct nf_hook_ops selinux_nf_ops[] = {
7496 {
7497 .hook = selinux_ip_postroute,
7498 .pf = NFPROTO_IPV4,
7499 .hooknum = NF_INET_POST_ROUTING,
7500 .priority = NF_IP_PRI_SELINUX_LAST,
7501 },
7502 {
7503 .hook = selinux_ip_forward,
7504 .pf = NFPROTO_IPV4,
7505 .hooknum = NF_INET_FORWARD,
7506 .priority = NF_IP_PRI_SELINUX_FIRST,
7507 },
7508 {
7509 .hook = selinux_ip_output,
7510 .pf = NFPROTO_IPV4,
7511 .hooknum = NF_INET_LOCAL_OUT,
7512 .priority = NF_IP_PRI_SELINUX_FIRST,
7513 },
7514#if IS_ENABLED(CONFIG_IPV6)
7515 {
7516 .hook = selinux_ip_postroute,
7517 .pf = NFPROTO_IPV6,
7518 .hooknum = NF_INET_POST_ROUTING,
7519 .priority = NF_IP6_PRI_SELINUX_LAST,
7520 },
7521 {
7522 .hook = selinux_ip_forward,
7523 .pf = NFPROTO_IPV6,
7524 .hooknum = NF_INET_FORWARD,
7525 .priority = NF_IP6_PRI_SELINUX_FIRST,
7526 },
7527 {
7528 .hook = selinux_ip_output,
7529 .pf = NFPROTO_IPV6,
7530 .hooknum = NF_INET_LOCAL_OUT,
7531 .priority = NF_IP6_PRI_SELINUX_FIRST,
7532 },
7533#endif /* IPV6 */
7534};
7535
7536static int __net_init selinux_nf_register(struct net *net)
7537{
7538 return nf_register_net_hooks(net, selinux_nf_ops,
7539 ARRAY_SIZE(selinux_nf_ops));
7540}
7541
7542static void __net_exit selinux_nf_unregister(struct net *net)
7543{
7544 nf_unregister_net_hooks(net, selinux_nf_ops,
7545 ARRAY_SIZE(selinux_nf_ops));
7546}
7547
7548static struct pernet_operations selinux_net_ops = {
7549 .init = selinux_nf_register,
7550 .exit = selinux_nf_unregister,
7551};
7552
7553static int __init selinux_nf_ip_init(void)
7554{
7555 int err;
7556
7557 if (!selinux_enabled_boot)
7558 return 0;
7559
7560 pr_debug("SELinux: Registering netfilter hooks\n");
7561
7562 err = register_pernet_subsys(&selinux_net_ops);
7563 if (err)
7564 panic("SELinux: register_pernet_subsys: error %d\n", err);
7565
7566 return 0;
7567}
7568__initcall(selinux_nf_ip_init);
7569#endif /* CONFIG_NETFILTER */
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/sched.h>
32#include <linux/lsm_hooks.h>
33#include <linux/xattr.h>
34#include <linux/capability.h>
35#include <linux/unistd.h>
36#include <linux/mm.h>
37#include <linux/mman.h>
38#include <linux/slab.h>
39#include <linux/pagemap.h>
40#include <linux/proc_fs.h>
41#include <linux/swap.h>
42#include <linux/spinlock.h>
43#include <linux/syscalls.h>
44#include <linux/dcache.h>
45#include <linux/file.h>
46#include <linux/fdtable.h>
47#include <linux/namei.h>
48#include <linux/mount.h>
49#include <linux/netfilter_ipv4.h>
50#include <linux/netfilter_ipv6.h>
51#include <linux/tty.h>
52#include <net/icmp.h>
53#include <net/ip.h> /* for local_port_range[] */
54#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
55#include <net/inet_connection_sock.h>
56#include <net/net_namespace.h>
57#include <net/netlabel.h>
58#include <linux/uaccess.h>
59#include <asm/ioctls.h>
60#include <linux/atomic.h>
61#include <linux/bitops.h>
62#include <linux/interrupt.h>
63#include <linux/netdevice.h> /* for network interface checks */
64#include <net/netlink.h>
65#include <linux/tcp.h>
66#include <linux/udp.h>
67#include <linux/dccp.h>
68#include <linux/quota.h>
69#include <linux/un.h> /* for Unix socket types */
70#include <net/af_unix.h> /* for Unix socket types */
71#include <linux/parser.h>
72#include <linux/nfs_mount.h>
73#include <net/ipv6.h>
74#include <linux/hugetlb.h>
75#include <linux/personality.h>
76#include <linux/audit.h>
77#include <linux/string.h>
78#include <linux/selinux.h>
79#include <linux/mutex.h>
80#include <linux/posix-timers.h>
81#include <linux/syslog.h>
82#include <linux/user_namespace.h>
83#include <linux/export.h>
84#include <linux/msg.h>
85#include <linux/shm.h>
86
87#include "avc.h"
88#include "objsec.h"
89#include "netif.h"
90#include "netnode.h"
91#include "netport.h"
92#include "xfrm.h"
93#include "netlabel.h"
94#include "audit.h"
95#include "avc_ss.h"
96
97/* SECMARK reference count */
98static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
99
100#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
101int selinux_enforcing;
102
103static int __init enforcing_setup(char *str)
104{
105 unsigned long enforcing;
106 if (!kstrtoul(str, 0, &enforcing))
107 selinux_enforcing = enforcing ? 1 : 0;
108 return 1;
109}
110__setup("enforcing=", enforcing_setup);
111#endif
112
113#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
114int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
115
116static int __init selinux_enabled_setup(char *str)
117{
118 unsigned long enabled;
119 if (!kstrtoul(str, 0, &enabled))
120 selinux_enabled = enabled ? 1 : 0;
121 return 1;
122}
123__setup("selinux=", selinux_enabled_setup);
124#else
125int selinux_enabled = 1;
126#endif
127
128static struct kmem_cache *sel_inode_cache;
129static struct kmem_cache *file_security_cache;
130
131/**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled. If the always_check_network
139 * policy capability is enabled, SECMARK is always considered enabled.
140 *
141 */
142static int selinux_secmark_enabled(void)
143{
144 return (selinux_policycap_alwaysnetwork || atomic_read(&selinux_secmark_refcount));
145}
146
147/**
148 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
149 *
150 * Description:
151 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
152 * (1) if any are enabled or false (0) if neither are enabled. If the
153 * always_check_network policy capability is enabled, peer labeling
154 * is always considered enabled.
155 *
156 */
157static int selinux_peerlbl_enabled(void)
158{
159 return (selinux_policycap_alwaysnetwork || netlbl_enabled() || selinux_xfrm_enabled());
160}
161
162static int selinux_netcache_avc_callback(u32 event)
163{
164 if (event == AVC_CALLBACK_RESET) {
165 sel_netif_flush();
166 sel_netnode_flush();
167 sel_netport_flush();
168 synchronize_net();
169 }
170 return 0;
171}
172
173/*
174 * initialise the security for the init task
175 */
176static void cred_init_security(void)
177{
178 struct cred *cred = (struct cred *) current->real_cred;
179 struct task_security_struct *tsec;
180
181 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
182 if (!tsec)
183 panic("SELinux: Failed to initialize initial task.\n");
184
185 tsec->osid = tsec->sid = SECINITSID_KERNEL;
186 cred->security = tsec;
187}
188
189/*
190 * get the security ID of a set of credentials
191 */
192static inline u32 cred_sid(const struct cred *cred)
193{
194 const struct task_security_struct *tsec;
195
196 tsec = cred->security;
197 return tsec->sid;
198}
199
200/*
201 * get the objective security ID of a task
202 */
203static inline u32 task_sid(const struct task_struct *task)
204{
205 u32 sid;
206
207 rcu_read_lock();
208 sid = cred_sid(__task_cred(task));
209 rcu_read_unlock();
210 return sid;
211}
212
213/*
214 * get the subjective security ID of the current task
215 */
216static inline u32 current_sid(void)
217{
218 const struct task_security_struct *tsec = current_security();
219
220 return tsec->sid;
221}
222
223/* Allocate and free functions for each kind of security blob. */
224
225static int inode_alloc_security(struct inode *inode)
226{
227 struct inode_security_struct *isec;
228 u32 sid = current_sid();
229
230 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
231 if (!isec)
232 return -ENOMEM;
233
234 mutex_init(&isec->lock);
235 INIT_LIST_HEAD(&isec->list);
236 isec->inode = inode;
237 isec->sid = SECINITSID_UNLABELED;
238 isec->sclass = SECCLASS_FILE;
239 isec->task_sid = sid;
240 inode->i_security = isec;
241
242 return 0;
243}
244
245static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
246
247/*
248 * Try reloading inode security labels that have been marked as invalid. The
249 * @may_sleep parameter indicates when sleeping and thus reloading labels is
250 * allowed; when set to false, returns ERR_PTR(-ECHILD) when the label is
251 * invalid. The @opt_dentry parameter should be set to a dentry of the inode;
252 * when no dentry is available, set it to NULL instead.
253 */
254static int __inode_security_revalidate(struct inode *inode,
255 struct dentry *opt_dentry,
256 bool may_sleep)
257{
258 struct inode_security_struct *isec = inode->i_security;
259
260 might_sleep_if(may_sleep);
261
262 if (isec->initialized == LABEL_INVALID) {
263 if (!may_sleep)
264 return -ECHILD;
265
266 /*
267 * Try reloading the inode security label. This will fail if
268 * @opt_dentry is NULL and no dentry for this inode can be
269 * found; in that case, continue using the old label.
270 */
271 inode_doinit_with_dentry(inode, opt_dentry);
272 }
273 return 0;
274}
275
276static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
277{
278 return inode->i_security;
279}
280
281static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
282{
283 int error;
284
285 error = __inode_security_revalidate(inode, NULL, !rcu);
286 if (error)
287 return ERR_PTR(error);
288 return inode->i_security;
289}
290
291/*
292 * Get the security label of an inode.
293 */
294static struct inode_security_struct *inode_security(struct inode *inode)
295{
296 __inode_security_revalidate(inode, NULL, true);
297 return inode->i_security;
298}
299
300/*
301 * Get the security label of a dentry's backing inode.
302 */
303static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
304{
305 struct inode *inode = d_backing_inode(dentry);
306
307 __inode_security_revalidate(inode, dentry, true);
308 return inode->i_security;
309}
310
311static void inode_free_rcu(struct rcu_head *head)
312{
313 struct inode_security_struct *isec;
314
315 isec = container_of(head, struct inode_security_struct, rcu);
316 kmem_cache_free(sel_inode_cache, isec);
317}
318
319static void inode_free_security(struct inode *inode)
320{
321 struct inode_security_struct *isec = inode->i_security;
322 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
323
324 /*
325 * As not all inode security structures are in a list, we check for
326 * empty list outside of the lock to make sure that we won't waste
327 * time taking a lock doing nothing.
328 *
329 * The list_del_init() function can be safely called more than once.
330 * It should not be possible for this function to be called with
331 * concurrent list_add(), but for better safety against future changes
332 * in the code, we use list_empty_careful() here.
333 */
334 if (!list_empty_careful(&isec->list)) {
335 spin_lock(&sbsec->isec_lock);
336 list_del_init(&isec->list);
337 spin_unlock(&sbsec->isec_lock);
338 }
339
340 /*
341 * The inode may still be referenced in a path walk and
342 * a call to selinux_inode_permission() can be made
343 * after inode_free_security() is called. Ideally, the VFS
344 * wouldn't do this, but fixing that is a much harder
345 * job. For now, simply free the i_security via RCU, and
346 * leave the current inode->i_security pointer intact.
347 * The inode will be freed after the RCU grace period too.
348 */
349 call_rcu(&isec->rcu, inode_free_rcu);
350}
351
352static int file_alloc_security(struct file *file)
353{
354 struct file_security_struct *fsec;
355 u32 sid = current_sid();
356
357 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL);
358 if (!fsec)
359 return -ENOMEM;
360
361 fsec->sid = sid;
362 fsec->fown_sid = sid;
363 file->f_security = fsec;
364
365 return 0;
366}
367
368static void file_free_security(struct file *file)
369{
370 struct file_security_struct *fsec = file->f_security;
371 file->f_security = NULL;
372 kmem_cache_free(file_security_cache, fsec);
373}
374
375static int superblock_alloc_security(struct super_block *sb)
376{
377 struct superblock_security_struct *sbsec;
378
379 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
380 if (!sbsec)
381 return -ENOMEM;
382
383 mutex_init(&sbsec->lock);
384 INIT_LIST_HEAD(&sbsec->isec_head);
385 spin_lock_init(&sbsec->isec_lock);
386 sbsec->sb = sb;
387 sbsec->sid = SECINITSID_UNLABELED;
388 sbsec->def_sid = SECINITSID_FILE;
389 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
390 sb->s_security = sbsec;
391
392 return 0;
393}
394
395static void superblock_free_security(struct super_block *sb)
396{
397 struct superblock_security_struct *sbsec = sb->s_security;
398 sb->s_security = NULL;
399 kfree(sbsec);
400}
401
402/* The file system's label must be initialized prior to use. */
403
404static const char *labeling_behaviors[7] = {
405 "uses xattr",
406 "uses transition SIDs",
407 "uses task SIDs",
408 "uses genfs_contexts",
409 "not configured for labeling",
410 "uses mountpoint labeling",
411 "uses native labeling",
412};
413
414static inline int inode_doinit(struct inode *inode)
415{
416 return inode_doinit_with_dentry(inode, NULL);
417}
418
419enum {
420 Opt_error = -1,
421 Opt_context = 1,
422 Opt_fscontext = 2,
423 Opt_defcontext = 3,
424 Opt_rootcontext = 4,
425 Opt_labelsupport = 5,
426 Opt_nextmntopt = 6,
427};
428
429#define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1)
430
431static const match_table_t tokens = {
432 {Opt_context, CONTEXT_STR "%s"},
433 {Opt_fscontext, FSCONTEXT_STR "%s"},
434 {Opt_defcontext, DEFCONTEXT_STR "%s"},
435 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
436 {Opt_labelsupport, LABELSUPP_STR},
437 {Opt_error, NULL},
438};
439
440#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
441
442static int may_context_mount_sb_relabel(u32 sid,
443 struct superblock_security_struct *sbsec,
444 const struct cred *cred)
445{
446 const struct task_security_struct *tsec = cred->security;
447 int rc;
448
449 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
450 FILESYSTEM__RELABELFROM, NULL);
451 if (rc)
452 return rc;
453
454 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
455 FILESYSTEM__RELABELTO, NULL);
456 return rc;
457}
458
459static int may_context_mount_inode_relabel(u32 sid,
460 struct superblock_security_struct *sbsec,
461 const struct cred *cred)
462{
463 const struct task_security_struct *tsec = cred->security;
464 int rc;
465 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
466 FILESYSTEM__RELABELFROM, NULL);
467 if (rc)
468 return rc;
469
470 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
471 FILESYSTEM__ASSOCIATE, NULL);
472 return rc;
473}
474
475static int selinux_is_sblabel_mnt(struct super_block *sb)
476{
477 struct superblock_security_struct *sbsec = sb->s_security;
478
479 return sbsec->behavior == SECURITY_FS_USE_XATTR ||
480 sbsec->behavior == SECURITY_FS_USE_TRANS ||
481 sbsec->behavior == SECURITY_FS_USE_TASK ||
482 sbsec->behavior == SECURITY_FS_USE_NATIVE ||
483 /* Special handling. Genfs but also in-core setxattr handler */
484 !strcmp(sb->s_type->name, "sysfs") ||
485 !strcmp(sb->s_type->name, "pstore") ||
486 !strcmp(sb->s_type->name, "debugfs") ||
487 !strcmp(sb->s_type->name, "rootfs");
488}
489
490static int sb_finish_set_opts(struct super_block *sb)
491{
492 struct superblock_security_struct *sbsec = sb->s_security;
493 struct dentry *root = sb->s_root;
494 struct inode *root_inode = d_backing_inode(root);
495 int rc = 0;
496
497 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
498 /* Make sure that the xattr handler exists and that no
499 error other than -ENODATA is returned by getxattr on
500 the root directory. -ENODATA is ok, as this may be
501 the first boot of the SELinux kernel before we have
502 assigned xattr values to the filesystem. */
503 if (!root_inode->i_op->getxattr) {
504 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
505 "xattr support\n", sb->s_id, sb->s_type->name);
506 rc = -EOPNOTSUPP;
507 goto out;
508 }
509 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
510 if (rc < 0 && rc != -ENODATA) {
511 if (rc == -EOPNOTSUPP)
512 printk(KERN_WARNING "SELinux: (dev %s, type "
513 "%s) has no security xattr handler\n",
514 sb->s_id, sb->s_type->name);
515 else
516 printk(KERN_WARNING "SELinux: (dev %s, type "
517 "%s) getxattr errno %d\n", sb->s_id,
518 sb->s_type->name, -rc);
519 goto out;
520 }
521 }
522
523 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
524 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
525 sb->s_id, sb->s_type->name);
526
527 sbsec->flags |= SE_SBINITIALIZED;
528 if (selinux_is_sblabel_mnt(sb))
529 sbsec->flags |= SBLABEL_MNT;
530
531 /* Initialize the root inode. */
532 rc = inode_doinit_with_dentry(root_inode, root);
533
534 /* Initialize any other inodes associated with the superblock, e.g.
535 inodes created prior to initial policy load or inodes created
536 during get_sb by a pseudo filesystem that directly
537 populates itself. */
538 spin_lock(&sbsec->isec_lock);
539next_inode:
540 if (!list_empty(&sbsec->isec_head)) {
541 struct inode_security_struct *isec =
542 list_entry(sbsec->isec_head.next,
543 struct inode_security_struct, list);
544 struct inode *inode = isec->inode;
545 list_del_init(&isec->list);
546 spin_unlock(&sbsec->isec_lock);
547 inode = igrab(inode);
548 if (inode) {
549 if (!IS_PRIVATE(inode))
550 inode_doinit(inode);
551 iput(inode);
552 }
553 spin_lock(&sbsec->isec_lock);
554 goto next_inode;
555 }
556 spin_unlock(&sbsec->isec_lock);
557out:
558 return rc;
559}
560
561/*
562 * This function should allow an FS to ask what it's mount security
563 * options were so it can use those later for submounts, displaying
564 * mount options, or whatever.
565 */
566static int selinux_get_mnt_opts(const struct super_block *sb,
567 struct security_mnt_opts *opts)
568{
569 int rc = 0, i;
570 struct superblock_security_struct *sbsec = sb->s_security;
571 char *context = NULL;
572 u32 len;
573 char tmp;
574
575 security_init_mnt_opts(opts);
576
577 if (!(sbsec->flags & SE_SBINITIALIZED))
578 return -EINVAL;
579
580 if (!ss_initialized)
581 return -EINVAL;
582
583 /* make sure we always check enough bits to cover the mask */
584 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS));
585
586 tmp = sbsec->flags & SE_MNTMASK;
587 /* count the number of mount options for this sb */
588 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) {
589 if (tmp & 0x01)
590 opts->num_mnt_opts++;
591 tmp >>= 1;
592 }
593 /* Check if the Label support flag is set */
594 if (sbsec->flags & SBLABEL_MNT)
595 opts->num_mnt_opts++;
596
597 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
598 if (!opts->mnt_opts) {
599 rc = -ENOMEM;
600 goto out_free;
601 }
602
603 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
604 if (!opts->mnt_opts_flags) {
605 rc = -ENOMEM;
606 goto out_free;
607 }
608
609 i = 0;
610 if (sbsec->flags & FSCONTEXT_MNT) {
611 rc = security_sid_to_context(sbsec->sid, &context, &len);
612 if (rc)
613 goto out_free;
614 opts->mnt_opts[i] = context;
615 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
616 }
617 if (sbsec->flags & CONTEXT_MNT) {
618 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
619 if (rc)
620 goto out_free;
621 opts->mnt_opts[i] = context;
622 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
623 }
624 if (sbsec->flags & DEFCONTEXT_MNT) {
625 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
626 if (rc)
627 goto out_free;
628 opts->mnt_opts[i] = context;
629 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
630 }
631 if (sbsec->flags & ROOTCONTEXT_MNT) {
632 struct dentry *root = sbsec->sb->s_root;
633 struct inode_security_struct *isec = backing_inode_security(root);
634
635 rc = security_sid_to_context(isec->sid, &context, &len);
636 if (rc)
637 goto out_free;
638 opts->mnt_opts[i] = context;
639 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
640 }
641 if (sbsec->flags & SBLABEL_MNT) {
642 opts->mnt_opts[i] = NULL;
643 opts->mnt_opts_flags[i++] = SBLABEL_MNT;
644 }
645
646 BUG_ON(i != opts->num_mnt_opts);
647
648 return 0;
649
650out_free:
651 security_free_mnt_opts(opts);
652 return rc;
653}
654
655static int bad_option(struct superblock_security_struct *sbsec, char flag,
656 u32 old_sid, u32 new_sid)
657{
658 char mnt_flags = sbsec->flags & SE_MNTMASK;
659
660 /* check if the old mount command had the same options */
661 if (sbsec->flags & SE_SBINITIALIZED)
662 if (!(sbsec->flags & flag) ||
663 (old_sid != new_sid))
664 return 1;
665
666 /* check if we were passed the same options twice,
667 * aka someone passed context=a,context=b
668 */
669 if (!(sbsec->flags & SE_SBINITIALIZED))
670 if (mnt_flags & flag)
671 return 1;
672 return 0;
673}
674
675/*
676 * Allow filesystems with binary mount data to explicitly set mount point
677 * labeling information.
678 */
679static int selinux_set_mnt_opts(struct super_block *sb,
680 struct security_mnt_opts *opts,
681 unsigned long kern_flags,
682 unsigned long *set_kern_flags)
683{
684 const struct cred *cred = current_cred();
685 int rc = 0, i;
686 struct superblock_security_struct *sbsec = sb->s_security;
687 const char *name = sb->s_type->name;
688 struct dentry *root = sbsec->sb->s_root;
689 struct inode_security_struct *root_isec = backing_inode_security(root);
690 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
691 u32 defcontext_sid = 0;
692 char **mount_options = opts->mnt_opts;
693 int *flags = opts->mnt_opts_flags;
694 int num_opts = opts->num_mnt_opts;
695
696 mutex_lock(&sbsec->lock);
697
698 if (!ss_initialized) {
699 if (!num_opts) {
700 /* Defer initialization until selinux_complete_init,
701 after the initial policy is loaded and the security
702 server is ready to handle calls. */
703 goto out;
704 }
705 rc = -EINVAL;
706 printk(KERN_WARNING "SELinux: Unable to set superblock options "
707 "before the security server is initialized\n");
708 goto out;
709 }
710 if (kern_flags && !set_kern_flags) {
711 /* Specifying internal flags without providing a place to
712 * place the results is not allowed */
713 rc = -EINVAL;
714 goto out;
715 }
716
717 /*
718 * Binary mount data FS will come through this function twice. Once
719 * from an explicit call and once from the generic calls from the vfs.
720 * Since the generic VFS calls will not contain any security mount data
721 * we need to skip the double mount verification.
722 *
723 * This does open a hole in which we will not notice if the first
724 * mount using this sb set explict options and a second mount using
725 * this sb does not set any security options. (The first options
726 * will be used for both mounts)
727 */
728 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
729 && (num_opts == 0))
730 goto out;
731
732 /*
733 * parse the mount options, check if they are valid sids.
734 * also check if someone is trying to mount the same sb more
735 * than once with different security options.
736 */
737 for (i = 0; i < num_opts; i++) {
738 u32 sid;
739
740 if (flags[i] == SBLABEL_MNT)
741 continue;
742 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
743 if (rc) {
744 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
745 "(%s) failed for (dev %s, type %s) errno=%d\n",
746 mount_options[i], sb->s_id, name, rc);
747 goto out;
748 }
749 switch (flags[i]) {
750 case FSCONTEXT_MNT:
751 fscontext_sid = sid;
752
753 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
754 fscontext_sid))
755 goto out_double_mount;
756
757 sbsec->flags |= FSCONTEXT_MNT;
758 break;
759 case CONTEXT_MNT:
760 context_sid = sid;
761
762 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
763 context_sid))
764 goto out_double_mount;
765
766 sbsec->flags |= CONTEXT_MNT;
767 break;
768 case ROOTCONTEXT_MNT:
769 rootcontext_sid = sid;
770
771 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
772 rootcontext_sid))
773 goto out_double_mount;
774
775 sbsec->flags |= ROOTCONTEXT_MNT;
776
777 break;
778 case DEFCONTEXT_MNT:
779 defcontext_sid = sid;
780
781 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
782 defcontext_sid))
783 goto out_double_mount;
784
785 sbsec->flags |= DEFCONTEXT_MNT;
786
787 break;
788 default:
789 rc = -EINVAL;
790 goto out;
791 }
792 }
793
794 if (sbsec->flags & SE_SBINITIALIZED) {
795 /* previously mounted with options, but not on this attempt? */
796 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
797 goto out_double_mount;
798 rc = 0;
799 goto out;
800 }
801
802 if (strcmp(sb->s_type->name, "proc") == 0)
803 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
804
805 if (!strcmp(sb->s_type->name, "debugfs") ||
806 !strcmp(sb->s_type->name, "sysfs") ||
807 !strcmp(sb->s_type->name, "pstore"))
808 sbsec->flags |= SE_SBGENFS;
809
810 if (!sbsec->behavior) {
811 /*
812 * Determine the labeling behavior to use for this
813 * filesystem type.
814 */
815 rc = security_fs_use(sb);
816 if (rc) {
817 printk(KERN_WARNING
818 "%s: security_fs_use(%s) returned %d\n",
819 __func__, sb->s_type->name, rc);
820 goto out;
821 }
822 }
823 /* sets the context of the superblock for the fs being mounted. */
824 if (fscontext_sid) {
825 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
826 if (rc)
827 goto out;
828
829 sbsec->sid = fscontext_sid;
830 }
831
832 /*
833 * Switch to using mount point labeling behavior.
834 * sets the label used on all file below the mountpoint, and will set
835 * the superblock context if not already set.
836 */
837 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
838 sbsec->behavior = SECURITY_FS_USE_NATIVE;
839 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
840 }
841
842 if (context_sid) {
843 if (!fscontext_sid) {
844 rc = may_context_mount_sb_relabel(context_sid, sbsec,
845 cred);
846 if (rc)
847 goto out;
848 sbsec->sid = context_sid;
849 } else {
850 rc = may_context_mount_inode_relabel(context_sid, sbsec,
851 cred);
852 if (rc)
853 goto out;
854 }
855 if (!rootcontext_sid)
856 rootcontext_sid = context_sid;
857
858 sbsec->mntpoint_sid = context_sid;
859 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
860 }
861
862 if (rootcontext_sid) {
863 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
864 cred);
865 if (rc)
866 goto out;
867
868 root_isec->sid = rootcontext_sid;
869 root_isec->initialized = LABEL_INITIALIZED;
870 }
871
872 if (defcontext_sid) {
873 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
874 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
875 rc = -EINVAL;
876 printk(KERN_WARNING "SELinux: defcontext option is "
877 "invalid for this filesystem type\n");
878 goto out;
879 }
880
881 if (defcontext_sid != sbsec->def_sid) {
882 rc = may_context_mount_inode_relabel(defcontext_sid,
883 sbsec, cred);
884 if (rc)
885 goto out;
886 }
887
888 sbsec->def_sid = defcontext_sid;
889 }
890
891 rc = sb_finish_set_opts(sb);
892out:
893 mutex_unlock(&sbsec->lock);
894 return rc;
895out_double_mount:
896 rc = -EINVAL;
897 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
898 "security settings for (dev %s, type %s)\n", sb->s_id, name);
899 goto out;
900}
901
902static int selinux_cmp_sb_context(const struct super_block *oldsb,
903 const struct super_block *newsb)
904{
905 struct superblock_security_struct *old = oldsb->s_security;
906 struct superblock_security_struct *new = newsb->s_security;
907 char oldflags = old->flags & SE_MNTMASK;
908 char newflags = new->flags & SE_MNTMASK;
909
910 if (oldflags != newflags)
911 goto mismatch;
912 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
913 goto mismatch;
914 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
915 goto mismatch;
916 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
917 goto mismatch;
918 if (oldflags & ROOTCONTEXT_MNT) {
919 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
920 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
921 if (oldroot->sid != newroot->sid)
922 goto mismatch;
923 }
924 return 0;
925mismatch:
926 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, "
927 "different security settings for (dev %s, "
928 "type %s)\n", newsb->s_id, newsb->s_type->name);
929 return -EBUSY;
930}
931
932static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
933 struct super_block *newsb)
934{
935 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
936 struct superblock_security_struct *newsbsec = newsb->s_security;
937
938 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
939 int set_context = (oldsbsec->flags & CONTEXT_MNT);
940 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
941
942 /*
943 * if the parent was able to be mounted it clearly had no special lsm
944 * mount options. thus we can safely deal with this superblock later
945 */
946 if (!ss_initialized)
947 return 0;
948
949 /* how can we clone if the old one wasn't set up?? */
950 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
951
952 /* if fs is reusing a sb, make sure that the contexts match */
953 if (newsbsec->flags & SE_SBINITIALIZED)
954 return selinux_cmp_sb_context(oldsb, newsb);
955
956 mutex_lock(&newsbsec->lock);
957
958 newsbsec->flags = oldsbsec->flags;
959
960 newsbsec->sid = oldsbsec->sid;
961 newsbsec->def_sid = oldsbsec->def_sid;
962 newsbsec->behavior = oldsbsec->behavior;
963
964 if (set_context) {
965 u32 sid = oldsbsec->mntpoint_sid;
966
967 if (!set_fscontext)
968 newsbsec->sid = sid;
969 if (!set_rootcontext) {
970 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
971 newisec->sid = sid;
972 }
973 newsbsec->mntpoint_sid = sid;
974 }
975 if (set_rootcontext) {
976 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
977 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
978
979 newisec->sid = oldisec->sid;
980 }
981
982 sb_finish_set_opts(newsb);
983 mutex_unlock(&newsbsec->lock);
984 return 0;
985}
986
987static int selinux_parse_opts_str(char *options,
988 struct security_mnt_opts *opts)
989{
990 char *p;
991 char *context = NULL, *defcontext = NULL;
992 char *fscontext = NULL, *rootcontext = NULL;
993 int rc, num_mnt_opts = 0;
994
995 opts->num_mnt_opts = 0;
996
997 /* Standard string-based options. */
998 while ((p = strsep(&options, "|")) != NULL) {
999 int token;
1000 substring_t args[MAX_OPT_ARGS];
1001
1002 if (!*p)
1003 continue;
1004
1005 token = match_token(p, tokens, args);
1006
1007 switch (token) {
1008 case Opt_context:
1009 if (context || defcontext) {
1010 rc = -EINVAL;
1011 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1012 goto out_err;
1013 }
1014 context = match_strdup(&args[0]);
1015 if (!context) {
1016 rc = -ENOMEM;
1017 goto out_err;
1018 }
1019 break;
1020
1021 case Opt_fscontext:
1022 if (fscontext) {
1023 rc = -EINVAL;
1024 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1025 goto out_err;
1026 }
1027 fscontext = match_strdup(&args[0]);
1028 if (!fscontext) {
1029 rc = -ENOMEM;
1030 goto out_err;
1031 }
1032 break;
1033
1034 case Opt_rootcontext:
1035 if (rootcontext) {
1036 rc = -EINVAL;
1037 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1038 goto out_err;
1039 }
1040 rootcontext = match_strdup(&args[0]);
1041 if (!rootcontext) {
1042 rc = -ENOMEM;
1043 goto out_err;
1044 }
1045 break;
1046
1047 case Opt_defcontext:
1048 if (context || defcontext) {
1049 rc = -EINVAL;
1050 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
1051 goto out_err;
1052 }
1053 defcontext = match_strdup(&args[0]);
1054 if (!defcontext) {
1055 rc = -ENOMEM;
1056 goto out_err;
1057 }
1058 break;
1059 case Opt_labelsupport:
1060 break;
1061 default:
1062 rc = -EINVAL;
1063 printk(KERN_WARNING "SELinux: unknown mount option\n");
1064 goto out_err;
1065
1066 }
1067 }
1068
1069 rc = -ENOMEM;
1070 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
1071 if (!opts->mnt_opts)
1072 goto out_err;
1073
1074 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
1075 if (!opts->mnt_opts_flags) {
1076 kfree(opts->mnt_opts);
1077 goto out_err;
1078 }
1079
1080 if (fscontext) {
1081 opts->mnt_opts[num_mnt_opts] = fscontext;
1082 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
1083 }
1084 if (context) {
1085 opts->mnt_opts[num_mnt_opts] = context;
1086 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
1087 }
1088 if (rootcontext) {
1089 opts->mnt_opts[num_mnt_opts] = rootcontext;
1090 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
1091 }
1092 if (defcontext) {
1093 opts->mnt_opts[num_mnt_opts] = defcontext;
1094 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
1095 }
1096
1097 opts->num_mnt_opts = num_mnt_opts;
1098 return 0;
1099
1100out_err:
1101 kfree(context);
1102 kfree(defcontext);
1103 kfree(fscontext);
1104 kfree(rootcontext);
1105 return rc;
1106}
1107/*
1108 * string mount options parsing and call set the sbsec
1109 */
1110static int superblock_doinit(struct super_block *sb, void *data)
1111{
1112 int rc = 0;
1113 char *options = data;
1114 struct security_mnt_opts opts;
1115
1116 security_init_mnt_opts(&opts);
1117
1118 if (!data)
1119 goto out;
1120
1121 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1122
1123 rc = selinux_parse_opts_str(options, &opts);
1124 if (rc)
1125 goto out_err;
1126
1127out:
1128 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1129
1130out_err:
1131 security_free_mnt_opts(&opts);
1132 return rc;
1133}
1134
1135static void selinux_write_opts(struct seq_file *m,
1136 struct security_mnt_opts *opts)
1137{
1138 int i;
1139 char *prefix;
1140
1141 for (i = 0; i < opts->num_mnt_opts; i++) {
1142 char *has_comma;
1143
1144 if (opts->mnt_opts[i])
1145 has_comma = strchr(opts->mnt_opts[i], ',');
1146 else
1147 has_comma = NULL;
1148
1149 switch (opts->mnt_opts_flags[i]) {
1150 case CONTEXT_MNT:
1151 prefix = CONTEXT_STR;
1152 break;
1153 case FSCONTEXT_MNT:
1154 prefix = FSCONTEXT_STR;
1155 break;
1156 case ROOTCONTEXT_MNT:
1157 prefix = ROOTCONTEXT_STR;
1158 break;
1159 case DEFCONTEXT_MNT:
1160 prefix = DEFCONTEXT_STR;
1161 break;
1162 case SBLABEL_MNT:
1163 seq_putc(m, ',');
1164 seq_puts(m, LABELSUPP_STR);
1165 continue;
1166 default:
1167 BUG();
1168 return;
1169 };
1170 /* we need a comma before each option */
1171 seq_putc(m, ',');
1172 seq_puts(m, prefix);
1173 if (has_comma)
1174 seq_putc(m, '\"');
1175 seq_escape(m, opts->mnt_opts[i], "\"\n\\");
1176 if (has_comma)
1177 seq_putc(m, '\"');
1178 }
1179}
1180
1181static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1182{
1183 struct security_mnt_opts opts;
1184 int rc;
1185
1186 rc = selinux_get_mnt_opts(sb, &opts);
1187 if (rc) {
1188 /* before policy load we may get EINVAL, don't show anything */
1189 if (rc == -EINVAL)
1190 rc = 0;
1191 return rc;
1192 }
1193
1194 selinux_write_opts(m, &opts);
1195
1196 security_free_mnt_opts(&opts);
1197
1198 return rc;
1199}
1200
1201static inline u16 inode_mode_to_security_class(umode_t mode)
1202{
1203 switch (mode & S_IFMT) {
1204 case S_IFSOCK:
1205 return SECCLASS_SOCK_FILE;
1206 case S_IFLNK:
1207 return SECCLASS_LNK_FILE;
1208 case S_IFREG:
1209 return SECCLASS_FILE;
1210 case S_IFBLK:
1211 return SECCLASS_BLK_FILE;
1212 case S_IFDIR:
1213 return SECCLASS_DIR;
1214 case S_IFCHR:
1215 return SECCLASS_CHR_FILE;
1216 case S_IFIFO:
1217 return SECCLASS_FIFO_FILE;
1218
1219 }
1220
1221 return SECCLASS_FILE;
1222}
1223
1224static inline int default_protocol_stream(int protocol)
1225{
1226 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1227}
1228
1229static inline int default_protocol_dgram(int protocol)
1230{
1231 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1232}
1233
1234static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1235{
1236 switch (family) {
1237 case PF_UNIX:
1238 switch (type) {
1239 case SOCK_STREAM:
1240 case SOCK_SEQPACKET:
1241 return SECCLASS_UNIX_STREAM_SOCKET;
1242 case SOCK_DGRAM:
1243 return SECCLASS_UNIX_DGRAM_SOCKET;
1244 }
1245 break;
1246 case PF_INET:
1247 case PF_INET6:
1248 switch (type) {
1249 case SOCK_STREAM:
1250 if (default_protocol_stream(protocol))
1251 return SECCLASS_TCP_SOCKET;
1252 else
1253 return SECCLASS_RAWIP_SOCKET;
1254 case SOCK_DGRAM:
1255 if (default_protocol_dgram(protocol))
1256 return SECCLASS_UDP_SOCKET;
1257 else
1258 return SECCLASS_RAWIP_SOCKET;
1259 case SOCK_DCCP:
1260 return SECCLASS_DCCP_SOCKET;
1261 default:
1262 return SECCLASS_RAWIP_SOCKET;
1263 }
1264 break;
1265 case PF_NETLINK:
1266 switch (protocol) {
1267 case NETLINK_ROUTE:
1268 return SECCLASS_NETLINK_ROUTE_SOCKET;
1269 case NETLINK_SOCK_DIAG:
1270 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1271 case NETLINK_NFLOG:
1272 return SECCLASS_NETLINK_NFLOG_SOCKET;
1273 case NETLINK_XFRM:
1274 return SECCLASS_NETLINK_XFRM_SOCKET;
1275 case NETLINK_SELINUX:
1276 return SECCLASS_NETLINK_SELINUX_SOCKET;
1277 case NETLINK_ISCSI:
1278 return SECCLASS_NETLINK_ISCSI_SOCKET;
1279 case NETLINK_AUDIT:
1280 return SECCLASS_NETLINK_AUDIT_SOCKET;
1281 case NETLINK_FIB_LOOKUP:
1282 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1283 case NETLINK_CONNECTOR:
1284 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1285 case NETLINK_NETFILTER:
1286 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1287 case NETLINK_DNRTMSG:
1288 return SECCLASS_NETLINK_DNRT_SOCKET;
1289 case NETLINK_KOBJECT_UEVENT:
1290 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1291 case NETLINK_GENERIC:
1292 return SECCLASS_NETLINK_GENERIC_SOCKET;
1293 case NETLINK_SCSITRANSPORT:
1294 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1295 case NETLINK_RDMA:
1296 return SECCLASS_NETLINK_RDMA_SOCKET;
1297 case NETLINK_CRYPTO:
1298 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1299 default:
1300 return SECCLASS_NETLINK_SOCKET;
1301 }
1302 case PF_PACKET:
1303 return SECCLASS_PACKET_SOCKET;
1304 case PF_KEY:
1305 return SECCLASS_KEY_SOCKET;
1306 case PF_APPLETALK:
1307 return SECCLASS_APPLETALK_SOCKET;
1308 }
1309
1310 return SECCLASS_SOCKET;
1311}
1312
1313static int selinux_genfs_get_sid(struct dentry *dentry,
1314 u16 tclass,
1315 u16 flags,
1316 u32 *sid)
1317{
1318 int rc;
1319 struct super_block *sb = dentry->d_inode->i_sb;
1320 char *buffer, *path;
1321
1322 buffer = (char *)__get_free_page(GFP_KERNEL);
1323 if (!buffer)
1324 return -ENOMEM;
1325
1326 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1327 if (IS_ERR(path))
1328 rc = PTR_ERR(path);
1329 else {
1330 if (flags & SE_SBPROC) {
1331 /* each process gets a /proc/PID/ entry. Strip off the
1332 * PID part to get a valid selinux labeling.
1333 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1334 while (path[1] >= '0' && path[1] <= '9') {
1335 path[1] = '/';
1336 path++;
1337 }
1338 }
1339 rc = security_genfs_sid(sb->s_type->name, path, tclass, sid);
1340 }
1341 free_page((unsigned long)buffer);
1342 return rc;
1343}
1344
1345/* The inode's security attributes must be initialized before first use. */
1346static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1347{
1348 struct superblock_security_struct *sbsec = NULL;
1349 struct inode_security_struct *isec = inode->i_security;
1350 u32 sid;
1351 struct dentry *dentry;
1352#define INITCONTEXTLEN 255
1353 char *context = NULL;
1354 unsigned len = 0;
1355 int rc = 0;
1356
1357 if (isec->initialized == LABEL_INITIALIZED)
1358 goto out;
1359
1360 mutex_lock(&isec->lock);
1361 if (isec->initialized == LABEL_INITIALIZED)
1362 goto out_unlock;
1363
1364 sbsec = inode->i_sb->s_security;
1365 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1366 /* Defer initialization until selinux_complete_init,
1367 after the initial policy is loaded and the security
1368 server is ready to handle calls. */
1369 spin_lock(&sbsec->isec_lock);
1370 if (list_empty(&isec->list))
1371 list_add(&isec->list, &sbsec->isec_head);
1372 spin_unlock(&sbsec->isec_lock);
1373 goto out_unlock;
1374 }
1375
1376 switch (sbsec->behavior) {
1377 case SECURITY_FS_USE_NATIVE:
1378 break;
1379 case SECURITY_FS_USE_XATTR:
1380 if (!inode->i_op->getxattr) {
1381 isec->sid = sbsec->def_sid;
1382 break;
1383 }
1384
1385 /* Need a dentry, since the xattr API requires one.
1386 Life would be simpler if we could just pass the inode. */
1387 if (opt_dentry) {
1388 /* Called from d_instantiate or d_splice_alias. */
1389 dentry = dget(opt_dentry);
1390 } else {
1391 /* Called from selinux_complete_init, try to find a dentry. */
1392 dentry = d_find_alias(inode);
1393 }
1394 if (!dentry) {
1395 /*
1396 * this is can be hit on boot when a file is accessed
1397 * before the policy is loaded. When we load policy we
1398 * may find inodes that have no dentry on the
1399 * sbsec->isec_head list. No reason to complain as these
1400 * will get fixed up the next time we go through
1401 * inode_doinit with a dentry, before these inodes could
1402 * be used again by userspace.
1403 */
1404 goto out_unlock;
1405 }
1406
1407 len = INITCONTEXTLEN;
1408 context = kmalloc(len+1, GFP_NOFS);
1409 if (!context) {
1410 rc = -ENOMEM;
1411 dput(dentry);
1412 goto out_unlock;
1413 }
1414 context[len] = '\0';
1415 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1416 context, len);
1417 if (rc == -ERANGE) {
1418 kfree(context);
1419
1420 /* Need a larger buffer. Query for the right size. */
1421 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1422 NULL, 0);
1423 if (rc < 0) {
1424 dput(dentry);
1425 goto out_unlock;
1426 }
1427 len = rc;
1428 context = kmalloc(len+1, GFP_NOFS);
1429 if (!context) {
1430 rc = -ENOMEM;
1431 dput(dentry);
1432 goto out_unlock;
1433 }
1434 context[len] = '\0';
1435 rc = inode->i_op->getxattr(dentry,
1436 XATTR_NAME_SELINUX,
1437 context, len);
1438 }
1439 dput(dentry);
1440 if (rc < 0) {
1441 if (rc != -ENODATA) {
1442 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1443 "%d for dev=%s ino=%ld\n", __func__,
1444 -rc, inode->i_sb->s_id, inode->i_ino);
1445 kfree(context);
1446 goto out_unlock;
1447 }
1448 /* Map ENODATA to the default file SID */
1449 sid = sbsec->def_sid;
1450 rc = 0;
1451 } else {
1452 rc = security_context_to_sid_default(context, rc, &sid,
1453 sbsec->def_sid,
1454 GFP_NOFS);
1455 if (rc) {
1456 char *dev = inode->i_sb->s_id;
1457 unsigned long ino = inode->i_ino;
1458
1459 if (rc == -EINVAL) {
1460 if (printk_ratelimit())
1461 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1462 "context=%s. This indicates you may need to relabel the inode or the "
1463 "filesystem in question.\n", ino, dev, context);
1464 } else {
1465 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1466 "returned %d for dev=%s ino=%ld\n",
1467 __func__, context, -rc, dev, ino);
1468 }
1469 kfree(context);
1470 /* Leave with the unlabeled SID */
1471 rc = 0;
1472 break;
1473 }
1474 }
1475 kfree(context);
1476 isec->sid = sid;
1477 break;
1478 case SECURITY_FS_USE_TASK:
1479 isec->sid = isec->task_sid;
1480 break;
1481 case SECURITY_FS_USE_TRANS:
1482 /* Default to the fs SID. */
1483 isec->sid = sbsec->sid;
1484
1485 /* Try to obtain a transition SID. */
1486 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1487 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1488 isec->sclass, NULL, &sid);
1489 if (rc)
1490 goto out_unlock;
1491 isec->sid = sid;
1492 break;
1493 case SECURITY_FS_USE_MNTPOINT:
1494 isec->sid = sbsec->mntpoint_sid;
1495 break;
1496 default:
1497 /* Default to the fs superblock SID. */
1498 isec->sid = sbsec->sid;
1499
1500 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) {
1501 /* We must have a dentry to determine the label on
1502 * procfs inodes */
1503 if (opt_dentry)
1504 /* Called from d_instantiate or
1505 * d_splice_alias. */
1506 dentry = dget(opt_dentry);
1507 else
1508 /* Called from selinux_complete_init, try to
1509 * find a dentry. */
1510 dentry = d_find_alias(inode);
1511 /*
1512 * This can be hit on boot when a file is accessed
1513 * before the policy is loaded. When we load policy we
1514 * may find inodes that have no dentry on the
1515 * sbsec->isec_head list. No reason to complain as
1516 * these will get fixed up the next time we go through
1517 * inode_doinit() with a dentry, before these inodes
1518 * could be used again by userspace.
1519 */
1520 if (!dentry)
1521 goto out_unlock;
1522 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1523 rc = selinux_genfs_get_sid(dentry, isec->sclass,
1524 sbsec->flags, &sid);
1525 dput(dentry);
1526 if (rc)
1527 goto out_unlock;
1528 isec->sid = sid;
1529 }
1530 break;
1531 }
1532
1533 isec->initialized = LABEL_INITIALIZED;
1534
1535out_unlock:
1536 mutex_unlock(&isec->lock);
1537out:
1538 if (isec->sclass == SECCLASS_FILE)
1539 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1540 return rc;
1541}
1542
1543/* Convert a Linux signal to an access vector. */
1544static inline u32 signal_to_av(int sig)
1545{
1546 u32 perm = 0;
1547
1548 switch (sig) {
1549 case SIGCHLD:
1550 /* Commonly granted from child to parent. */
1551 perm = PROCESS__SIGCHLD;
1552 break;
1553 case SIGKILL:
1554 /* Cannot be caught or ignored */
1555 perm = PROCESS__SIGKILL;
1556 break;
1557 case SIGSTOP:
1558 /* Cannot be caught or ignored */
1559 perm = PROCESS__SIGSTOP;
1560 break;
1561 default:
1562 /* All other signals. */
1563 perm = PROCESS__SIGNAL;
1564 break;
1565 }
1566
1567 return perm;
1568}
1569
1570/*
1571 * Check permission between a pair of credentials
1572 * fork check, ptrace check, etc.
1573 */
1574static int cred_has_perm(const struct cred *actor,
1575 const struct cred *target,
1576 u32 perms)
1577{
1578 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1579
1580 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1581}
1582
1583/*
1584 * Check permission between a pair of tasks, e.g. signal checks,
1585 * fork check, ptrace check, etc.
1586 * tsk1 is the actor and tsk2 is the target
1587 * - this uses the default subjective creds of tsk1
1588 */
1589static int task_has_perm(const struct task_struct *tsk1,
1590 const struct task_struct *tsk2,
1591 u32 perms)
1592{
1593 const struct task_security_struct *__tsec1, *__tsec2;
1594 u32 sid1, sid2;
1595
1596 rcu_read_lock();
1597 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1598 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1599 rcu_read_unlock();
1600 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1601}
1602
1603/*
1604 * Check permission between current and another task, e.g. signal checks,
1605 * fork check, ptrace check, etc.
1606 * current is the actor and tsk2 is the target
1607 * - this uses current's subjective creds
1608 */
1609static int current_has_perm(const struct task_struct *tsk,
1610 u32 perms)
1611{
1612 u32 sid, tsid;
1613
1614 sid = current_sid();
1615 tsid = task_sid(tsk);
1616 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625 int cap, int audit)
1626{
1627 struct common_audit_data ad;
1628 struct av_decision avd;
1629 u16 sclass;
1630 u32 sid = cred_sid(cred);
1631 u32 av = CAP_TO_MASK(cap);
1632 int rc;
1633
1634 ad.type = LSM_AUDIT_DATA_CAP;
1635 ad.u.cap = cap;
1636
1637 switch (CAP_TO_INDEX(cap)) {
1638 case 0:
1639 sclass = SECCLASS_CAPABILITY;
1640 break;
1641 case 1:
1642 sclass = SECCLASS_CAPABILITY2;
1643 break;
1644 default:
1645 printk(KERN_ERR
1646 "SELinux: out of range capability %d\n", cap);
1647 BUG();
1648 return -EINVAL;
1649 }
1650
1651 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1652 if (audit == SECURITY_CAP_AUDIT) {
1653 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1654 if (rc2)
1655 return rc2;
1656 }
1657 return rc;
1658}
1659
1660/* Check whether a task is allowed to use a system operation. */
1661static int task_has_system(struct task_struct *tsk,
1662 u32 perms)
1663{
1664 u32 sid = task_sid(tsk);
1665
1666 return avc_has_perm(sid, SECINITSID_KERNEL,
1667 SECCLASS_SYSTEM, perms, NULL);
1668}
1669
1670/* Check whether a task has a particular permission to an inode.
1671 The 'adp' parameter is optional and allows other audit
1672 data to be passed (e.g. the dentry). */
1673static int inode_has_perm(const struct cred *cred,
1674 struct inode *inode,
1675 u32 perms,
1676 struct common_audit_data *adp)
1677{
1678 struct inode_security_struct *isec;
1679 u32 sid;
1680
1681 validate_creds(cred);
1682
1683 if (unlikely(IS_PRIVATE(inode)))
1684 return 0;
1685
1686 sid = cred_sid(cred);
1687 isec = inode->i_security;
1688
1689 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1690}
1691
1692/* Same as inode_has_perm, but pass explicit audit data containing
1693 the dentry to help the auditing code to more easily generate the
1694 pathname if needed. */
1695static inline int dentry_has_perm(const struct cred *cred,
1696 struct dentry *dentry,
1697 u32 av)
1698{
1699 struct inode *inode = d_backing_inode(dentry);
1700 struct common_audit_data ad;
1701
1702 ad.type = LSM_AUDIT_DATA_DENTRY;
1703 ad.u.dentry = dentry;
1704 __inode_security_revalidate(inode, dentry, true);
1705 return inode_has_perm(cred, inode, av, &ad);
1706}
1707
1708/* Same as inode_has_perm, but pass explicit audit data containing
1709 the path to help the auditing code to more easily generate the
1710 pathname if needed. */
1711static inline int path_has_perm(const struct cred *cred,
1712 const struct path *path,
1713 u32 av)
1714{
1715 struct inode *inode = d_backing_inode(path->dentry);
1716 struct common_audit_data ad;
1717
1718 ad.type = LSM_AUDIT_DATA_PATH;
1719 ad.u.path = *path;
1720 __inode_security_revalidate(inode, path->dentry, true);
1721 return inode_has_perm(cred, inode, av, &ad);
1722}
1723
1724/* Same as path_has_perm, but uses the inode from the file struct. */
1725static inline int file_path_has_perm(const struct cred *cred,
1726 struct file *file,
1727 u32 av)
1728{
1729 struct common_audit_data ad;
1730
1731 ad.type = LSM_AUDIT_DATA_PATH;
1732 ad.u.path = file->f_path;
1733 return inode_has_perm(cred, file_inode(file), av, &ad);
1734}
1735
1736/* Check whether a task can use an open file descriptor to
1737 access an inode in a given way. Check access to the
1738 descriptor itself, and then use dentry_has_perm to
1739 check a particular permission to the file.
1740 Access to the descriptor is implicitly granted if it
1741 has the same SID as the process. If av is zero, then
1742 access to the file is not checked, e.g. for cases
1743 where only the descriptor is affected like seek. */
1744static int file_has_perm(const struct cred *cred,
1745 struct file *file,
1746 u32 av)
1747{
1748 struct file_security_struct *fsec = file->f_security;
1749 struct inode *inode = file_inode(file);
1750 struct common_audit_data ad;
1751 u32 sid = cred_sid(cred);
1752 int rc;
1753
1754 ad.type = LSM_AUDIT_DATA_PATH;
1755 ad.u.path = file->f_path;
1756
1757 if (sid != fsec->sid) {
1758 rc = avc_has_perm(sid, fsec->sid,
1759 SECCLASS_FD,
1760 FD__USE,
1761 &ad);
1762 if (rc)
1763 goto out;
1764 }
1765
1766 /* av is zero if only checking access to the descriptor. */
1767 rc = 0;
1768 if (av)
1769 rc = inode_has_perm(cred, inode, av, &ad);
1770
1771out:
1772 return rc;
1773}
1774
1775/*
1776 * Determine the label for an inode that might be unioned.
1777 */
1778static int selinux_determine_inode_label(struct inode *dir,
1779 const struct qstr *name,
1780 u16 tclass,
1781 u32 *_new_isid)
1782{
1783 const struct superblock_security_struct *sbsec = dir->i_sb->s_security;
1784 const struct inode_security_struct *dsec = inode_security(dir);
1785 const struct task_security_struct *tsec = current_security();
1786
1787 if ((sbsec->flags & SE_SBINITIALIZED) &&
1788 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1789 *_new_isid = sbsec->mntpoint_sid;
1790 } else if ((sbsec->flags & SBLABEL_MNT) &&
1791 tsec->create_sid) {
1792 *_new_isid = tsec->create_sid;
1793 } else {
1794 return security_transition_sid(tsec->sid, dsec->sid, tclass,
1795 name, _new_isid);
1796 }
1797
1798 return 0;
1799}
1800
1801/* Check whether a task can create a file. */
1802static int may_create(struct inode *dir,
1803 struct dentry *dentry,
1804 u16 tclass)
1805{
1806 const struct task_security_struct *tsec = current_security();
1807 struct inode_security_struct *dsec;
1808 struct superblock_security_struct *sbsec;
1809 u32 sid, newsid;
1810 struct common_audit_data ad;
1811 int rc;
1812
1813 dsec = inode_security(dir);
1814 sbsec = dir->i_sb->s_security;
1815
1816 sid = tsec->sid;
1817
1818 ad.type = LSM_AUDIT_DATA_DENTRY;
1819 ad.u.dentry = dentry;
1820
1821 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1822 DIR__ADD_NAME | DIR__SEARCH,
1823 &ad);
1824 if (rc)
1825 return rc;
1826
1827 rc = selinux_determine_inode_label(dir, &dentry->d_name, tclass,
1828 &newsid);
1829 if (rc)
1830 return rc;
1831
1832 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1833 if (rc)
1834 return rc;
1835
1836 return avc_has_perm(newsid, sbsec->sid,
1837 SECCLASS_FILESYSTEM,
1838 FILESYSTEM__ASSOCIATE, &ad);
1839}
1840
1841/* Check whether a task can create a key. */
1842static int may_create_key(u32 ksid,
1843 struct task_struct *ctx)
1844{
1845 u32 sid = task_sid(ctx);
1846
1847 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1848}
1849
1850#define MAY_LINK 0
1851#define MAY_UNLINK 1
1852#define MAY_RMDIR 2
1853
1854/* Check whether a task can link, unlink, or rmdir a file/directory. */
1855static int may_link(struct inode *dir,
1856 struct dentry *dentry,
1857 int kind)
1858
1859{
1860 struct inode_security_struct *dsec, *isec;
1861 struct common_audit_data ad;
1862 u32 sid = current_sid();
1863 u32 av;
1864 int rc;
1865
1866 dsec = inode_security(dir);
1867 isec = backing_inode_security(dentry);
1868
1869 ad.type = LSM_AUDIT_DATA_DENTRY;
1870 ad.u.dentry = dentry;
1871
1872 av = DIR__SEARCH;
1873 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1874 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1875 if (rc)
1876 return rc;
1877
1878 switch (kind) {
1879 case MAY_LINK:
1880 av = FILE__LINK;
1881 break;
1882 case MAY_UNLINK:
1883 av = FILE__UNLINK;
1884 break;
1885 case MAY_RMDIR:
1886 av = DIR__RMDIR;
1887 break;
1888 default:
1889 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1890 __func__, kind);
1891 return 0;
1892 }
1893
1894 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1895 return rc;
1896}
1897
1898static inline int may_rename(struct inode *old_dir,
1899 struct dentry *old_dentry,
1900 struct inode *new_dir,
1901 struct dentry *new_dentry)
1902{
1903 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1904 struct common_audit_data ad;
1905 u32 sid = current_sid();
1906 u32 av;
1907 int old_is_dir, new_is_dir;
1908 int rc;
1909
1910 old_dsec = inode_security(old_dir);
1911 old_isec = backing_inode_security(old_dentry);
1912 old_is_dir = d_is_dir(old_dentry);
1913 new_dsec = inode_security(new_dir);
1914
1915 ad.type = LSM_AUDIT_DATA_DENTRY;
1916
1917 ad.u.dentry = old_dentry;
1918 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1919 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1920 if (rc)
1921 return rc;
1922 rc = avc_has_perm(sid, old_isec->sid,
1923 old_isec->sclass, FILE__RENAME, &ad);
1924 if (rc)
1925 return rc;
1926 if (old_is_dir && new_dir != old_dir) {
1927 rc = avc_has_perm(sid, old_isec->sid,
1928 old_isec->sclass, DIR__REPARENT, &ad);
1929 if (rc)
1930 return rc;
1931 }
1932
1933 ad.u.dentry = new_dentry;
1934 av = DIR__ADD_NAME | DIR__SEARCH;
1935 if (d_is_positive(new_dentry))
1936 av |= DIR__REMOVE_NAME;
1937 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1938 if (rc)
1939 return rc;
1940 if (d_is_positive(new_dentry)) {
1941 new_isec = backing_inode_security(new_dentry);
1942 new_is_dir = d_is_dir(new_dentry);
1943 rc = avc_has_perm(sid, new_isec->sid,
1944 new_isec->sclass,
1945 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1946 if (rc)
1947 return rc;
1948 }
1949
1950 return 0;
1951}
1952
1953/* Check whether a task can perform a filesystem operation. */
1954static int superblock_has_perm(const struct cred *cred,
1955 struct super_block *sb,
1956 u32 perms,
1957 struct common_audit_data *ad)
1958{
1959 struct superblock_security_struct *sbsec;
1960 u32 sid = cred_sid(cred);
1961
1962 sbsec = sb->s_security;
1963 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1964}
1965
1966/* Convert a Linux mode and permission mask to an access vector. */
1967static inline u32 file_mask_to_av(int mode, int mask)
1968{
1969 u32 av = 0;
1970
1971 if (!S_ISDIR(mode)) {
1972 if (mask & MAY_EXEC)
1973 av |= FILE__EXECUTE;
1974 if (mask & MAY_READ)
1975 av |= FILE__READ;
1976
1977 if (mask & MAY_APPEND)
1978 av |= FILE__APPEND;
1979 else if (mask & MAY_WRITE)
1980 av |= FILE__WRITE;
1981
1982 } else {
1983 if (mask & MAY_EXEC)
1984 av |= DIR__SEARCH;
1985 if (mask & MAY_WRITE)
1986 av |= DIR__WRITE;
1987 if (mask & MAY_READ)
1988 av |= DIR__READ;
1989 }
1990
1991 return av;
1992}
1993
1994/* Convert a Linux file to an access vector. */
1995static inline u32 file_to_av(struct file *file)
1996{
1997 u32 av = 0;
1998
1999 if (file->f_mode & FMODE_READ)
2000 av |= FILE__READ;
2001 if (file->f_mode & FMODE_WRITE) {
2002 if (file->f_flags & O_APPEND)
2003 av |= FILE__APPEND;
2004 else
2005 av |= FILE__WRITE;
2006 }
2007 if (!av) {
2008 /*
2009 * Special file opened with flags 3 for ioctl-only use.
2010 */
2011 av = FILE__IOCTL;
2012 }
2013
2014 return av;
2015}
2016
2017/*
2018 * Convert a file to an access vector and include the correct open
2019 * open permission.
2020 */
2021static inline u32 open_file_to_av(struct file *file)
2022{
2023 u32 av = file_to_av(file);
2024
2025 if (selinux_policycap_openperm)
2026 av |= FILE__OPEN;
2027
2028 return av;
2029}
2030
2031/* Hook functions begin here. */
2032
2033static int selinux_binder_set_context_mgr(struct task_struct *mgr)
2034{
2035 u32 mysid = current_sid();
2036 u32 mgrsid = task_sid(mgr);
2037
2038 return avc_has_perm(mysid, mgrsid, SECCLASS_BINDER,
2039 BINDER__SET_CONTEXT_MGR, NULL);
2040}
2041
2042static int selinux_binder_transaction(struct task_struct *from,
2043 struct task_struct *to)
2044{
2045 u32 mysid = current_sid();
2046 u32 fromsid = task_sid(from);
2047 u32 tosid = task_sid(to);
2048 int rc;
2049
2050 if (mysid != fromsid) {
2051 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2052 BINDER__IMPERSONATE, NULL);
2053 if (rc)
2054 return rc;
2055 }
2056
2057 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__CALL,
2058 NULL);
2059}
2060
2061static int selinux_binder_transfer_binder(struct task_struct *from,
2062 struct task_struct *to)
2063{
2064 u32 fromsid = task_sid(from);
2065 u32 tosid = task_sid(to);
2066
2067 return avc_has_perm(fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER,
2068 NULL);
2069}
2070
2071static int selinux_binder_transfer_file(struct task_struct *from,
2072 struct task_struct *to,
2073 struct file *file)
2074{
2075 u32 sid = task_sid(to);
2076 struct file_security_struct *fsec = file->f_security;
2077 struct dentry *dentry = file->f_path.dentry;
2078 struct inode_security_struct *isec = backing_inode_security(dentry);
2079 struct common_audit_data ad;
2080 int rc;
2081
2082 ad.type = LSM_AUDIT_DATA_PATH;
2083 ad.u.path = file->f_path;
2084
2085 if (sid != fsec->sid) {
2086 rc = avc_has_perm(sid, fsec->sid,
2087 SECCLASS_FD,
2088 FD__USE,
2089 &ad);
2090 if (rc)
2091 return rc;
2092 }
2093
2094 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2095 return 0;
2096
2097 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2098 &ad);
2099}
2100
2101static int selinux_ptrace_access_check(struct task_struct *child,
2102 unsigned int mode)
2103{
2104 if (mode & PTRACE_MODE_READ) {
2105 u32 sid = current_sid();
2106 u32 csid = task_sid(child);
2107 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
2108 }
2109
2110 return current_has_perm(child, PROCESS__PTRACE);
2111}
2112
2113static int selinux_ptrace_traceme(struct task_struct *parent)
2114{
2115 return task_has_perm(parent, current, PROCESS__PTRACE);
2116}
2117
2118static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
2119 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2120{
2121 return current_has_perm(target, PROCESS__GETCAP);
2122}
2123
2124static int selinux_capset(struct cred *new, const struct cred *old,
2125 const kernel_cap_t *effective,
2126 const kernel_cap_t *inheritable,
2127 const kernel_cap_t *permitted)
2128{
2129 return cred_has_perm(old, new, PROCESS__SETCAP);
2130}
2131
2132/*
2133 * (This comment used to live with the selinux_task_setuid hook,
2134 * which was removed).
2135 *
2136 * Since setuid only affects the current process, and since the SELinux
2137 * controls are not based on the Linux identity attributes, SELinux does not
2138 * need to control this operation. However, SELinux does control the use of
2139 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2140 */
2141
2142static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2143 int cap, int audit)
2144{
2145 return cred_has_capability(cred, cap, audit);
2146}
2147
2148static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
2149{
2150 const struct cred *cred = current_cred();
2151 int rc = 0;
2152
2153 if (!sb)
2154 return 0;
2155
2156 switch (cmds) {
2157 case Q_SYNC:
2158 case Q_QUOTAON:
2159 case Q_QUOTAOFF:
2160 case Q_SETINFO:
2161 case Q_SETQUOTA:
2162 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2163 break;
2164 case Q_GETFMT:
2165 case Q_GETINFO:
2166 case Q_GETQUOTA:
2167 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2168 break;
2169 default:
2170 rc = 0; /* let the kernel handle invalid cmds */
2171 break;
2172 }
2173 return rc;
2174}
2175
2176static int selinux_quota_on(struct dentry *dentry)
2177{
2178 const struct cred *cred = current_cred();
2179
2180 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2181}
2182
2183static int selinux_syslog(int type)
2184{
2185 int rc;
2186
2187 switch (type) {
2188 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2189 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2190 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
2191 break;
2192 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2193 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2194 /* Set level of messages printed to console */
2195 case SYSLOG_ACTION_CONSOLE_LEVEL:
2196 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
2197 break;
2198 case SYSLOG_ACTION_CLOSE: /* Close log */
2199 case SYSLOG_ACTION_OPEN: /* Open log */
2200 case SYSLOG_ACTION_READ: /* Read from log */
2201 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
2202 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
2203 default:
2204 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
2205 break;
2206 }
2207 return rc;
2208}
2209
2210/*
2211 * Check that a process has enough memory to allocate a new virtual
2212 * mapping. 0 means there is enough memory for the allocation to
2213 * succeed and -ENOMEM implies there is not.
2214 *
2215 * Do not audit the selinux permission check, as this is applied to all
2216 * processes that allocate mappings.
2217 */
2218static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2219{
2220 int rc, cap_sys_admin = 0;
2221
2222 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2223 SECURITY_CAP_NOAUDIT);
2224 if (rc == 0)
2225 cap_sys_admin = 1;
2226
2227 return cap_sys_admin;
2228}
2229
2230/* binprm security operations */
2231
2232static int check_nnp_nosuid(const struct linux_binprm *bprm,
2233 const struct task_security_struct *old_tsec,
2234 const struct task_security_struct *new_tsec)
2235{
2236 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2237 int nosuid = (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID);
2238 int rc;
2239
2240 if (!nnp && !nosuid)
2241 return 0; /* neither NNP nor nosuid */
2242
2243 if (new_tsec->sid == old_tsec->sid)
2244 return 0; /* No change in credentials */
2245
2246 /*
2247 * The only transitions we permit under NNP or nosuid
2248 * are transitions to bounded SIDs, i.e. SIDs that are
2249 * guaranteed to only be allowed a subset of the permissions
2250 * of the current SID.
2251 */
2252 rc = security_bounded_transition(old_tsec->sid, new_tsec->sid);
2253 if (rc) {
2254 /*
2255 * On failure, preserve the errno values for NNP vs nosuid.
2256 * NNP: Operation not permitted for caller.
2257 * nosuid: Permission denied to file.
2258 */
2259 if (nnp)
2260 return -EPERM;
2261 else
2262 return -EACCES;
2263 }
2264 return 0;
2265}
2266
2267static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2268{
2269 const struct task_security_struct *old_tsec;
2270 struct task_security_struct *new_tsec;
2271 struct inode_security_struct *isec;
2272 struct common_audit_data ad;
2273 struct inode *inode = file_inode(bprm->file);
2274 int rc;
2275
2276 /* SELinux context only depends on initial program or script and not
2277 * the script interpreter */
2278 if (bprm->cred_prepared)
2279 return 0;
2280
2281 old_tsec = current_security();
2282 new_tsec = bprm->cred->security;
2283 isec = inode_security(inode);
2284
2285 /* Default to the current task SID. */
2286 new_tsec->sid = old_tsec->sid;
2287 new_tsec->osid = old_tsec->sid;
2288
2289 /* Reset fs, key, and sock SIDs on execve. */
2290 new_tsec->create_sid = 0;
2291 new_tsec->keycreate_sid = 0;
2292 new_tsec->sockcreate_sid = 0;
2293
2294 if (old_tsec->exec_sid) {
2295 new_tsec->sid = old_tsec->exec_sid;
2296 /* Reset exec SID on execve. */
2297 new_tsec->exec_sid = 0;
2298
2299 /* Fail on NNP or nosuid if not an allowed transition. */
2300 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2301 if (rc)
2302 return rc;
2303 } else {
2304 /* Check for a default transition on this program. */
2305 rc = security_transition_sid(old_tsec->sid, isec->sid,
2306 SECCLASS_PROCESS, NULL,
2307 &new_tsec->sid);
2308 if (rc)
2309 return rc;
2310
2311 /*
2312 * Fallback to old SID on NNP or nosuid if not an allowed
2313 * transition.
2314 */
2315 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2316 if (rc)
2317 new_tsec->sid = old_tsec->sid;
2318 }
2319
2320 ad.type = LSM_AUDIT_DATA_PATH;
2321 ad.u.path = bprm->file->f_path;
2322
2323 if (new_tsec->sid == old_tsec->sid) {
2324 rc = avc_has_perm(old_tsec->sid, isec->sid,
2325 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2326 if (rc)
2327 return rc;
2328 } else {
2329 /* Check permissions for the transition. */
2330 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2331 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2332 if (rc)
2333 return rc;
2334
2335 rc = avc_has_perm(new_tsec->sid, isec->sid,
2336 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2337 if (rc)
2338 return rc;
2339
2340 /* Check for shared state */
2341 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2342 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2343 SECCLASS_PROCESS, PROCESS__SHARE,
2344 NULL);
2345 if (rc)
2346 return -EPERM;
2347 }
2348
2349 /* Make sure that anyone attempting to ptrace over a task that
2350 * changes its SID has the appropriate permit */
2351 if (bprm->unsafe &
2352 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2353 struct task_struct *tracer;
2354 struct task_security_struct *sec;
2355 u32 ptsid = 0;
2356
2357 rcu_read_lock();
2358 tracer = ptrace_parent(current);
2359 if (likely(tracer != NULL)) {
2360 sec = __task_cred(tracer)->security;
2361 ptsid = sec->sid;
2362 }
2363 rcu_read_unlock();
2364
2365 if (ptsid != 0) {
2366 rc = avc_has_perm(ptsid, new_tsec->sid,
2367 SECCLASS_PROCESS,
2368 PROCESS__PTRACE, NULL);
2369 if (rc)
2370 return -EPERM;
2371 }
2372 }
2373
2374 /* Clear any possibly unsafe personality bits on exec: */
2375 bprm->per_clear |= PER_CLEAR_ON_SETID;
2376 }
2377
2378 return 0;
2379}
2380
2381static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2382{
2383 const struct task_security_struct *tsec = current_security();
2384 u32 sid, osid;
2385 int atsecure = 0;
2386
2387 sid = tsec->sid;
2388 osid = tsec->osid;
2389
2390 if (osid != sid) {
2391 /* Enable secure mode for SIDs transitions unless
2392 the noatsecure permission is granted between
2393 the two SIDs, i.e. ahp returns 0. */
2394 atsecure = avc_has_perm(osid, sid,
2395 SECCLASS_PROCESS,
2396 PROCESS__NOATSECURE, NULL);
2397 }
2398
2399 return !!atsecure;
2400}
2401
2402static int match_file(const void *p, struct file *file, unsigned fd)
2403{
2404 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2405}
2406
2407/* Derived from fs/exec.c:flush_old_files. */
2408static inline void flush_unauthorized_files(const struct cred *cred,
2409 struct files_struct *files)
2410{
2411 struct file *file, *devnull = NULL;
2412 struct tty_struct *tty;
2413 int drop_tty = 0;
2414 unsigned n;
2415
2416 tty = get_current_tty();
2417 if (tty) {
2418 spin_lock(&tty->files_lock);
2419 if (!list_empty(&tty->tty_files)) {
2420 struct tty_file_private *file_priv;
2421
2422 /* Revalidate access to controlling tty.
2423 Use file_path_has_perm on the tty path directly
2424 rather than using file_has_perm, as this particular
2425 open file may belong to another process and we are
2426 only interested in the inode-based check here. */
2427 file_priv = list_first_entry(&tty->tty_files,
2428 struct tty_file_private, list);
2429 file = file_priv->file;
2430 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2431 drop_tty = 1;
2432 }
2433 spin_unlock(&tty->files_lock);
2434 tty_kref_put(tty);
2435 }
2436 /* Reset controlling tty. */
2437 if (drop_tty)
2438 no_tty();
2439
2440 /* Revalidate access to inherited open files. */
2441 n = iterate_fd(files, 0, match_file, cred);
2442 if (!n) /* none found? */
2443 return;
2444
2445 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2446 if (IS_ERR(devnull))
2447 devnull = NULL;
2448 /* replace all the matching ones with this */
2449 do {
2450 replace_fd(n - 1, devnull, 0);
2451 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2452 if (devnull)
2453 fput(devnull);
2454}
2455
2456/*
2457 * Prepare a process for imminent new credential changes due to exec
2458 */
2459static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2460{
2461 struct task_security_struct *new_tsec;
2462 struct rlimit *rlim, *initrlim;
2463 int rc, i;
2464
2465 new_tsec = bprm->cred->security;
2466 if (new_tsec->sid == new_tsec->osid)
2467 return;
2468
2469 /* Close files for which the new task SID is not authorized. */
2470 flush_unauthorized_files(bprm->cred, current->files);
2471
2472 /* Always clear parent death signal on SID transitions. */
2473 current->pdeath_signal = 0;
2474
2475 /* Check whether the new SID can inherit resource limits from the old
2476 * SID. If not, reset all soft limits to the lower of the current
2477 * task's hard limit and the init task's soft limit.
2478 *
2479 * Note that the setting of hard limits (even to lower them) can be
2480 * controlled by the setrlimit check. The inclusion of the init task's
2481 * soft limit into the computation is to avoid resetting soft limits
2482 * higher than the default soft limit for cases where the default is
2483 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2484 */
2485 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2486 PROCESS__RLIMITINH, NULL);
2487 if (rc) {
2488 /* protect against do_prlimit() */
2489 task_lock(current);
2490 for (i = 0; i < RLIM_NLIMITS; i++) {
2491 rlim = current->signal->rlim + i;
2492 initrlim = init_task.signal->rlim + i;
2493 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2494 }
2495 task_unlock(current);
2496 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2497 }
2498}
2499
2500/*
2501 * Clean up the process immediately after the installation of new credentials
2502 * due to exec
2503 */
2504static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2505{
2506 const struct task_security_struct *tsec = current_security();
2507 struct itimerval itimer;
2508 u32 osid, sid;
2509 int rc, i;
2510
2511 osid = tsec->osid;
2512 sid = tsec->sid;
2513
2514 if (sid == osid)
2515 return;
2516
2517 /* Check whether the new SID can inherit signal state from the old SID.
2518 * If not, clear itimers to avoid subsequent signal generation and
2519 * flush and unblock signals.
2520 *
2521 * This must occur _after_ the task SID has been updated so that any
2522 * kill done after the flush will be checked against the new SID.
2523 */
2524 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2525 if (rc) {
2526 memset(&itimer, 0, sizeof itimer);
2527 for (i = 0; i < 3; i++)
2528 do_setitimer(i, &itimer, NULL);
2529 spin_lock_irq(¤t->sighand->siglock);
2530 if (!fatal_signal_pending(current)) {
2531 flush_sigqueue(¤t->pending);
2532 flush_sigqueue(¤t->signal->shared_pending);
2533 flush_signal_handlers(current, 1);
2534 sigemptyset(¤t->blocked);
2535 recalc_sigpending();
2536 }
2537 spin_unlock_irq(¤t->sighand->siglock);
2538 }
2539
2540 /* Wake up the parent if it is waiting so that it can recheck
2541 * wait permission to the new task SID. */
2542 read_lock(&tasklist_lock);
2543 __wake_up_parent(current, current->real_parent);
2544 read_unlock(&tasklist_lock);
2545}
2546
2547/* superblock security operations */
2548
2549static int selinux_sb_alloc_security(struct super_block *sb)
2550{
2551 return superblock_alloc_security(sb);
2552}
2553
2554static void selinux_sb_free_security(struct super_block *sb)
2555{
2556 superblock_free_security(sb);
2557}
2558
2559static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2560{
2561 if (plen > olen)
2562 return 0;
2563
2564 return !memcmp(prefix, option, plen);
2565}
2566
2567static inline int selinux_option(char *option, int len)
2568{
2569 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2570 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2571 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2572 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2573 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2574}
2575
2576static inline void take_option(char **to, char *from, int *first, int len)
2577{
2578 if (!*first) {
2579 **to = ',';
2580 *to += 1;
2581 } else
2582 *first = 0;
2583 memcpy(*to, from, len);
2584 *to += len;
2585}
2586
2587static inline void take_selinux_option(char **to, char *from, int *first,
2588 int len)
2589{
2590 int current_size = 0;
2591
2592 if (!*first) {
2593 **to = '|';
2594 *to += 1;
2595 } else
2596 *first = 0;
2597
2598 while (current_size < len) {
2599 if (*from != '"') {
2600 **to = *from;
2601 *to += 1;
2602 }
2603 from += 1;
2604 current_size += 1;
2605 }
2606}
2607
2608static int selinux_sb_copy_data(char *orig, char *copy)
2609{
2610 int fnosec, fsec, rc = 0;
2611 char *in_save, *in_curr, *in_end;
2612 char *sec_curr, *nosec_save, *nosec;
2613 int open_quote = 0;
2614
2615 in_curr = orig;
2616 sec_curr = copy;
2617
2618 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2619 if (!nosec) {
2620 rc = -ENOMEM;
2621 goto out;
2622 }
2623
2624 nosec_save = nosec;
2625 fnosec = fsec = 1;
2626 in_save = in_end = orig;
2627
2628 do {
2629 if (*in_end == '"')
2630 open_quote = !open_quote;
2631 if ((*in_end == ',' && open_quote == 0) ||
2632 *in_end == '\0') {
2633 int len = in_end - in_curr;
2634
2635 if (selinux_option(in_curr, len))
2636 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2637 else
2638 take_option(&nosec, in_curr, &fnosec, len);
2639
2640 in_curr = in_end + 1;
2641 }
2642 } while (*in_end++);
2643
2644 strcpy(in_save, nosec_save);
2645 free_page((unsigned long)nosec_save);
2646out:
2647 return rc;
2648}
2649
2650static int selinux_sb_remount(struct super_block *sb, void *data)
2651{
2652 int rc, i, *flags;
2653 struct security_mnt_opts opts;
2654 char *secdata, **mount_options;
2655 struct superblock_security_struct *sbsec = sb->s_security;
2656
2657 if (!(sbsec->flags & SE_SBINITIALIZED))
2658 return 0;
2659
2660 if (!data)
2661 return 0;
2662
2663 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2664 return 0;
2665
2666 security_init_mnt_opts(&opts);
2667 secdata = alloc_secdata();
2668 if (!secdata)
2669 return -ENOMEM;
2670 rc = selinux_sb_copy_data(data, secdata);
2671 if (rc)
2672 goto out_free_secdata;
2673
2674 rc = selinux_parse_opts_str(secdata, &opts);
2675 if (rc)
2676 goto out_free_secdata;
2677
2678 mount_options = opts.mnt_opts;
2679 flags = opts.mnt_opts_flags;
2680
2681 for (i = 0; i < opts.num_mnt_opts; i++) {
2682 u32 sid;
2683
2684 if (flags[i] == SBLABEL_MNT)
2685 continue;
2686 rc = security_context_str_to_sid(mount_options[i], &sid, GFP_KERNEL);
2687 if (rc) {
2688 printk(KERN_WARNING "SELinux: security_context_str_to_sid"
2689 "(%s) failed for (dev %s, type %s) errno=%d\n",
2690 mount_options[i], sb->s_id, sb->s_type->name, rc);
2691 goto out_free_opts;
2692 }
2693 rc = -EINVAL;
2694 switch (flags[i]) {
2695 case FSCONTEXT_MNT:
2696 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2697 goto out_bad_option;
2698 break;
2699 case CONTEXT_MNT:
2700 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2701 goto out_bad_option;
2702 break;
2703 case ROOTCONTEXT_MNT: {
2704 struct inode_security_struct *root_isec;
2705 root_isec = backing_inode_security(sb->s_root);
2706
2707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2708 goto out_bad_option;
2709 break;
2710 }
2711 case DEFCONTEXT_MNT:
2712 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2713 goto out_bad_option;
2714 break;
2715 default:
2716 goto out_free_opts;
2717 }
2718 }
2719
2720 rc = 0;
2721out_free_opts:
2722 security_free_mnt_opts(&opts);
2723out_free_secdata:
2724 free_secdata(secdata);
2725 return rc;
2726out_bad_option:
2727 printk(KERN_WARNING "SELinux: unable to change security options "
2728 "during remount (dev %s, type=%s)\n", sb->s_id,
2729 sb->s_type->name);
2730 goto out_free_opts;
2731}
2732
2733static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2734{
2735 const struct cred *cred = current_cred();
2736 struct common_audit_data ad;
2737 int rc;
2738
2739 rc = superblock_doinit(sb, data);
2740 if (rc)
2741 return rc;
2742
2743 /* Allow all mounts performed by the kernel */
2744 if (flags & MS_KERNMOUNT)
2745 return 0;
2746
2747 ad.type = LSM_AUDIT_DATA_DENTRY;
2748 ad.u.dentry = sb->s_root;
2749 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2750}
2751
2752static int selinux_sb_statfs(struct dentry *dentry)
2753{
2754 const struct cred *cred = current_cred();
2755 struct common_audit_data ad;
2756
2757 ad.type = LSM_AUDIT_DATA_DENTRY;
2758 ad.u.dentry = dentry->d_sb->s_root;
2759 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2760}
2761
2762static int selinux_mount(const char *dev_name,
2763 struct path *path,
2764 const char *type,
2765 unsigned long flags,
2766 void *data)
2767{
2768 const struct cred *cred = current_cred();
2769
2770 if (flags & MS_REMOUNT)
2771 return superblock_has_perm(cred, path->dentry->d_sb,
2772 FILESYSTEM__REMOUNT, NULL);
2773 else
2774 return path_has_perm(cred, path, FILE__MOUNTON);
2775}
2776
2777static int selinux_umount(struct vfsmount *mnt, int flags)
2778{
2779 const struct cred *cred = current_cred();
2780
2781 return superblock_has_perm(cred, mnt->mnt_sb,
2782 FILESYSTEM__UNMOUNT, NULL);
2783}
2784
2785/* inode security operations */
2786
2787static int selinux_inode_alloc_security(struct inode *inode)
2788{
2789 return inode_alloc_security(inode);
2790}
2791
2792static void selinux_inode_free_security(struct inode *inode)
2793{
2794 inode_free_security(inode);
2795}
2796
2797static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2798 struct qstr *name, void **ctx,
2799 u32 *ctxlen)
2800{
2801 u32 newsid;
2802 int rc;
2803
2804 rc = selinux_determine_inode_label(d_inode(dentry->d_parent), name,
2805 inode_mode_to_security_class(mode),
2806 &newsid);
2807 if (rc)
2808 return rc;
2809
2810 return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2811}
2812
2813static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2814 const struct qstr *qstr,
2815 const char **name,
2816 void **value, size_t *len)
2817{
2818 const struct task_security_struct *tsec = current_security();
2819 struct superblock_security_struct *sbsec;
2820 u32 sid, newsid, clen;
2821 int rc;
2822 char *context;
2823
2824 sbsec = dir->i_sb->s_security;
2825
2826 sid = tsec->sid;
2827 newsid = tsec->create_sid;
2828
2829 rc = selinux_determine_inode_label(
2830 dir, qstr,
2831 inode_mode_to_security_class(inode->i_mode),
2832 &newsid);
2833 if (rc)
2834 return rc;
2835
2836 /* Possibly defer initialization to selinux_complete_init. */
2837 if (sbsec->flags & SE_SBINITIALIZED) {
2838 struct inode_security_struct *isec = inode->i_security;
2839 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2840 isec->sid = newsid;
2841 isec->initialized = LABEL_INITIALIZED;
2842 }
2843
2844 if (!ss_initialized || !(sbsec->flags & SBLABEL_MNT))
2845 return -EOPNOTSUPP;
2846
2847 if (name)
2848 *name = XATTR_SELINUX_SUFFIX;
2849
2850 if (value && len) {
2851 rc = security_sid_to_context_force(newsid, &context, &clen);
2852 if (rc)
2853 return rc;
2854 *value = context;
2855 *len = clen;
2856 }
2857
2858 return 0;
2859}
2860
2861static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2862{
2863 return may_create(dir, dentry, SECCLASS_FILE);
2864}
2865
2866static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2867{
2868 return may_link(dir, old_dentry, MAY_LINK);
2869}
2870
2871static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2872{
2873 return may_link(dir, dentry, MAY_UNLINK);
2874}
2875
2876static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2877{
2878 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2879}
2880
2881static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2882{
2883 return may_create(dir, dentry, SECCLASS_DIR);
2884}
2885
2886static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2887{
2888 return may_link(dir, dentry, MAY_RMDIR);
2889}
2890
2891static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2892{
2893 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2894}
2895
2896static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2897 struct inode *new_inode, struct dentry *new_dentry)
2898{
2899 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2900}
2901
2902static int selinux_inode_readlink(struct dentry *dentry)
2903{
2904 const struct cred *cred = current_cred();
2905
2906 return dentry_has_perm(cred, dentry, FILE__READ);
2907}
2908
2909static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
2910 bool rcu)
2911{
2912 const struct cred *cred = current_cred();
2913 struct common_audit_data ad;
2914 struct inode_security_struct *isec;
2915 u32 sid;
2916
2917 validate_creds(cred);
2918
2919 ad.type = LSM_AUDIT_DATA_DENTRY;
2920 ad.u.dentry = dentry;
2921 sid = cred_sid(cred);
2922 isec = inode_security_rcu(inode, rcu);
2923 if (IS_ERR(isec))
2924 return PTR_ERR(isec);
2925
2926 return avc_has_perm_flags(sid, isec->sid, isec->sclass, FILE__READ, &ad,
2927 rcu ? MAY_NOT_BLOCK : 0);
2928}
2929
2930static noinline int audit_inode_permission(struct inode *inode,
2931 u32 perms, u32 audited, u32 denied,
2932 int result,
2933 unsigned flags)
2934{
2935 struct common_audit_data ad;
2936 struct inode_security_struct *isec = inode->i_security;
2937 int rc;
2938
2939 ad.type = LSM_AUDIT_DATA_INODE;
2940 ad.u.inode = inode;
2941
2942 rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2943 audited, denied, result, &ad, flags);
2944 if (rc)
2945 return rc;
2946 return 0;
2947}
2948
2949static int selinux_inode_permission(struct inode *inode, int mask)
2950{
2951 const struct cred *cred = current_cred();
2952 u32 perms;
2953 bool from_access;
2954 unsigned flags = mask & MAY_NOT_BLOCK;
2955 struct inode_security_struct *isec;
2956 u32 sid;
2957 struct av_decision avd;
2958 int rc, rc2;
2959 u32 audited, denied;
2960
2961 from_access = mask & MAY_ACCESS;
2962 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2963
2964 /* No permission to check. Existence test. */
2965 if (!mask)
2966 return 0;
2967
2968 validate_creds(cred);
2969
2970 if (unlikely(IS_PRIVATE(inode)))
2971 return 0;
2972
2973 perms = file_mask_to_av(inode->i_mode, mask);
2974
2975 sid = cred_sid(cred);
2976 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK);
2977 if (IS_ERR(isec))
2978 return PTR_ERR(isec);
2979
2980 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2981 audited = avc_audit_required(perms, &avd, rc,
2982 from_access ? FILE__AUDIT_ACCESS : 0,
2983 &denied);
2984 if (likely(!audited))
2985 return rc;
2986
2987 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags);
2988 if (rc2)
2989 return rc2;
2990 return rc;
2991}
2992
2993static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2994{
2995 const struct cred *cred = current_cred();
2996 unsigned int ia_valid = iattr->ia_valid;
2997 __u32 av = FILE__WRITE;
2998
2999 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3000 if (ia_valid & ATTR_FORCE) {
3001 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3002 ATTR_FORCE);
3003 if (!ia_valid)
3004 return 0;
3005 }
3006
3007 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3008 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3009 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3010
3011 if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE)
3012 && !(ia_valid & ATTR_FILE))
3013 av |= FILE__OPEN;
3014
3015 return dentry_has_perm(cred, dentry, av);
3016}
3017
3018static int selinux_inode_getattr(const struct path *path)
3019{
3020 return path_has_perm(current_cred(), path, FILE__GETATTR);
3021}
3022
3023static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
3024{
3025 const struct cred *cred = current_cred();
3026
3027 if (!strncmp(name, XATTR_SECURITY_PREFIX,
3028 sizeof XATTR_SECURITY_PREFIX - 1)) {
3029 if (!strcmp(name, XATTR_NAME_CAPS)) {
3030 if (!capable(CAP_SETFCAP))
3031 return -EPERM;
3032 } else if (!capable(CAP_SYS_ADMIN)) {
3033 /* A different attribute in the security namespace.
3034 Restrict to administrator. */
3035 return -EPERM;
3036 }
3037 }
3038
3039 /* Not an attribute we recognize, so just check the
3040 ordinary setattr permission. */
3041 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3042}
3043
3044static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
3045 const void *value, size_t size, int flags)
3046{
3047 struct inode *inode = d_backing_inode(dentry);
3048 struct inode_security_struct *isec = backing_inode_security(dentry);
3049 struct superblock_security_struct *sbsec;
3050 struct common_audit_data ad;
3051 u32 newsid, sid = current_sid();
3052 int rc = 0;
3053
3054 if (strcmp(name, XATTR_NAME_SELINUX))
3055 return selinux_inode_setotherxattr(dentry, name);
3056
3057 sbsec = inode->i_sb->s_security;
3058 if (!(sbsec->flags & SBLABEL_MNT))
3059 return -EOPNOTSUPP;
3060
3061 if (!inode_owner_or_capable(inode))
3062 return -EPERM;
3063
3064 ad.type = LSM_AUDIT_DATA_DENTRY;
3065 ad.u.dentry = dentry;
3066
3067 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3068 FILE__RELABELFROM, &ad);
3069 if (rc)
3070 return rc;
3071
3072 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3073 if (rc == -EINVAL) {
3074 if (!capable(CAP_MAC_ADMIN)) {
3075 struct audit_buffer *ab;
3076 size_t audit_size;
3077 const char *str;
3078
3079 /* We strip a nul only if it is at the end, otherwise the
3080 * context contains a nul and we should audit that */
3081 if (value) {
3082 str = value;
3083 if (str[size - 1] == '\0')
3084 audit_size = size - 1;
3085 else
3086 audit_size = size;
3087 } else {
3088 str = "";
3089 audit_size = 0;
3090 }
3091 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
3092 audit_log_format(ab, "op=setxattr invalid_context=");
3093 audit_log_n_untrustedstring(ab, value, audit_size);
3094 audit_log_end(ab);
3095
3096 return rc;
3097 }
3098 rc = security_context_to_sid_force(value, size, &newsid);
3099 }
3100 if (rc)
3101 return rc;
3102
3103 rc = avc_has_perm(sid, newsid, isec->sclass,
3104 FILE__RELABELTO, &ad);
3105 if (rc)
3106 return rc;
3107
3108 rc = security_validate_transition(isec->sid, newsid, sid,
3109 isec->sclass);
3110 if (rc)
3111 return rc;
3112
3113 return avc_has_perm(newsid,
3114 sbsec->sid,
3115 SECCLASS_FILESYSTEM,
3116 FILESYSTEM__ASSOCIATE,
3117 &ad);
3118}
3119
3120static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3121 const void *value, size_t size,
3122 int flags)
3123{
3124 struct inode *inode = d_backing_inode(dentry);
3125 struct inode_security_struct *isec = backing_inode_security(dentry);
3126 u32 newsid;
3127 int rc;
3128
3129 if (strcmp(name, XATTR_NAME_SELINUX)) {
3130 /* Not an attribute we recognize, so nothing to do. */
3131 return;
3132 }
3133
3134 rc = security_context_to_sid_force(value, size, &newsid);
3135 if (rc) {
3136 printk(KERN_ERR "SELinux: unable to map context to SID"
3137 "for (%s, %lu), rc=%d\n",
3138 inode->i_sb->s_id, inode->i_ino, -rc);
3139 return;
3140 }
3141
3142 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3143 isec->sid = newsid;
3144 isec->initialized = LABEL_INITIALIZED;
3145
3146 return;
3147}
3148
3149static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3150{
3151 const struct cred *cred = current_cred();
3152
3153 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3154}
3155
3156static int selinux_inode_listxattr(struct dentry *dentry)
3157{
3158 const struct cred *cred = current_cred();
3159
3160 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3161}
3162
3163static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
3164{
3165 if (strcmp(name, XATTR_NAME_SELINUX))
3166 return selinux_inode_setotherxattr(dentry, name);
3167
3168 /* No one is allowed to remove a SELinux security label.
3169 You can change the label, but all data must be labeled. */
3170 return -EACCES;
3171}
3172
3173/*
3174 * Copy the inode security context value to the user.
3175 *
3176 * Permission check is handled by selinux_inode_getxattr hook.
3177 */
3178static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
3179{
3180 u32 size;
3181 int error;
3182 char *context = NULL;
3183 struct inode_security_struct *isec = inode_security(inode);
3184
3185 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3186 return -EOPNOTSUPP;
3187
3188 /*
3189 * If the caller has CAP_MAC_ADMIN, then get the raw context
3190 * value even if it is not defined by current policy; otherwise,
3191 * use the in-core value under current policy.
3192 * Use the non-auditing forms of the permission checks since
3193 * getxattr may be called by unprivileged processes commonly
3194 * and lack of permission just means that we fall back to the
3195 * in-core context value, not a denial.
3196 */
3197 error = cap_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
3198 SECURITY_CAP_NOAUDIT);
3199 if (!error)
3200 error = cred_has_capability(current_cred(), CAP_MAC_ADMIN,
3201 SECURITY_CAP_NOAUDIT);
3202 if (!error)
3203 error = security_sid_to_context_force(isec->sid, &context,
3204 &size);
3205 else
3206 error = security_sid_to_context(isec->sid, &context, &size);
3207 if (error)
3208 return error;
3209 error = size;
3210 if (alloc) {
3211 *buffer = context;
3212 goto out_nofree;
3213 }
3214 kfree(context);
3215out_nofree:
3216 return error;
3217}
3218
3219static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3220 const void *value, size_t size, int flags)
3221{
3222 struct inode_security_struct *isec = inode_security(inode);
3223 u32 newsid;
3224 int rc;
3225
3226 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3227 return -EOPNOTSUPP;
3228
3229 if (!value || !size)
3230 return -EACCES;
3231
3232 rc = security_context_to_sid(value, size, &newsid, GFP_KERNEL);
3233 if (rc)
3234 return rc;
3235
3236 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3237 isec->sid = newsid;
3238 isec->initialized = LABEL_INITIALIZED;
3239 return 0;
3240}
3241
3242static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3243{
3244 const int len = sizeof(XATTR_NAME_SELINUX);
3245 if (buffer && len <= buffer_size)
3246 memcpy(buffer, XATTR_NAME_SELINUX, len);
3247 return len;
3248}
3249
3250static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3251{
3252 struct inode_security_struct *isec = inode_security_novalidate(inode);
3253 *secid = isec->sid;
3254}
3255
3256/* file security operations */
3257
3258static int selinux_revalidate_file_permission(struct file *file, int mask)
3259{
3260 const struct cred *cred = current_cred();
3261 struct inode *inode = file_inode(file);
3262
3263 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3264 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3265 mask |= MAY_APPEND;
3266
3267 return file_has_perm(cred, file,
3268 file_mask_to_av(inode->i_mode, mask));
3269}
3270
3271static int selinux_file_permission(struct file *file, int mask)
3272{
3273 struct inode *inode = file_inode(file);
3274 struct file_security_struct *fsec = file->f_security;
3275 struct inode_security_struct *isec;
3276 u32 sid = current_sid();
3277
3278 if (!mask)
3279 /* No permission to check. Existence test. */
3280 return 0;
3281
3282 isec = inode_security(inode);
3283 if (sid == fsec->sid && fsec->isid == isec->sid &&
3284 fsec->pseqno == avc_policy_seqno())
3285 /* No change since file_open check. */
3286 return 0;
3287
3288 return selinux_revalidate_file_permission(file, mask);
3289}
3290
3291static int selinux_file_alloc_security(struct file *file)
3292{
3293 return file_alloc_security(file);
3294}
3295
3296static void selinux_file_free_security(struct file *file)
3297{
3298 file_free_security(file);
3299}
3300
3301/*
3302 * Check whether a task has the ioctl permission and cmd
3303 * operation to an inode.
3304 */
3305static int ioctl_has_perm(const struct cred *cred, struct file *file,
3306 u32 requested, u16 cmd)
3307{
3308 struct common_audit_data ad;
3309 struct file_security_struct *fsec = file->f_security;
3310 struct inode *inode = file_inode(file);
3311 struct inode_security_struct *isec = inode_security(inode);
3312 struct lsm_ioctlop_audit ioctl;
3313 u32 ssid = cred_sid(cred);
3314 int rc;
3315 u8 driver = cmd >> 8;
3316 u8 xperm = cmd & 0xff;
3317
3318 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3319 ad.u.op = &ioctl;
3320 ad.u.op->cmd = cmd;
3321 ad.u.op->path = file->f_path;
3322
3323 if (ssid != fsec->sid) {
3324 rc = avc_has_perm(ssid, fsec->sid,
3325 SECCLASS_FD,
3326 FD__USE,
3327 &ad);
3328 if (rc)
3329 goto out;
3330 }
3331
3332 if (unlikely(IS_PRIVATE(inode)))
3333 return 0;
3334
3335 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3336 requested, driver, xperm, &ad);
3337out:
3338 return rc;
3339}
3340
3341static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3342 unsigned long arg)
3343{
3344 const struct cred *cred = current_cred();
3345 int error = 0;
3346
3347 switch (cmd) {
3348 case FIONREAD:
3349 /* fall through */
3350 case FIBMAP:
3351 /* fall through */
3352 case FIGETBSZ:
3353 /* fall through */
3354 case FS_IOC_GETFLAGS:
3355 /* fall through */
3356 case FS_IOC_GETVERSION:
3357 error = file_has_perm(cred, file, FILE__GETATTR);
3358 break;
3359
3360 case FS_IOC_SETFLAGS:
3361 /* fall through */
3362 case FS_IOC_SETVERSION:
3363 error = file_has_perm(cred, file, FILE__SETATTR);
3364 break;
3365
3366 /* sys_ioctl() checks */
3367 case FIONBIO:
3368 /* fall through */
3369 case FIOASYNC:
3370 error = file_has_perm(cred, file, 0);
3371 break;
3372
3373 case KDSKBENT:
3374 case KDSKBSENT:
3375 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3376 SECURITY_CAP_AUDIT);
3377 break;
3378
3379 /* default case assumes that the command will go
3380 * to the file's ioctl() function.
3381 */
3382 default:
3383 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3384 }
3385 return error;
3386}
3387
3388static int default_noexec;
3389
3390static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3391{
3392 const struct cred *cred = current_cred();
3393 int rc = 0;
3394
3395 if (default_noexec &&
3396 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3397 (!shared && (prot & PROT_WRITE)))) {
3398 /*
3399 * We are making executable an anonymous mapping or a
3400 * private file mapping that will also be writable.
3401 * This has an additional check.
3402 */
3403 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3404 if (rc)
3405 goto error;
3406 }
3407
3408 if (file) {
3409 /* read access is always possible with a mapping */
3410 u32 av = FILE__READ;
3411
3412 /* write access only matters if the mapping is shared */
3413 if (shared && (prot & PROT_WRITE))
3414 av |= FILE__WRITE;
3415
3416 if (prot & PROT_EXEC)
3417 av |= FILE__EXECUTE;
3418
3419 return file_has_perm(cred, file, av);
3420 }
3421
3422error:
3423 return rc;
3424}
3425
3426static int selinux_mmap_addr(unsigned long addr)
3427{
3428 int rc = 0;
3429
3430 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3431 u32 sid = current_sid();
3432 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3433 MEMPROTECT__MMAP_ZERO, NULL);
3434 }
3435
3436 return rc;
3437}
3438
3439static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3440 unsigned long prot, unsigned long flags)
3441{
3442 if (selinux_checkreqprot)
3443 prot = reqprot;
3444
3445 return file_map_prot_check(file, prot,
3446 (flags & MAP_TYPE) == MAP_SHARED);
3447}
3448
3449static int selinux_file_mprotect(struct vm_area_struct *vma,
3450 unsigned long reqprot,
3451 unsigned long prot)
3452{
3453 const struct cred *cred = current_cred();
3454
3455 if (selinux_checkreqprot)
3456 prot = reqprot;
3457
3458 if (default_noexec &&
3459 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3460 int rc = 0;
3461 if (vma->vm_start >= vma->vm_mm->start_brk &&
3462 vma->vm_end <= vma->vm_mm->brk) {
3463 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3464 } else if (!vma->vm_file &&
3465 vma->vm_start <= vma->vm_mm->start_stack &&
3466 vma->vm_end >= vma->vm_mm->start_stack) {
3467 rc = current_has_perm(current, PROCESS__EXECSTACK);
3468 } else if (vma->vm_file && vma->anon_vma) {
3469 /*
3470 * We are making executable a file mapping that has
3471 * had some COW done. Since pages might have been
3472 * written, check ability to execute the possibly
3473 * modified content. This typically should only
3474 * occur for text relocations.
3475 */
3476 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3477 }
3478 if (rc)
3479 return rc;
3480 }
3481
3482 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3483}
3484
3485static int selinux_file_lock(struct file *file, unsigned int cmd)
3486{
3487 const struct cred *cred = current_cred();
3488
3489 return file_has_perm(cred, file, FILE__LOCK);
3490}
3491
3492static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3493 unsigned long arg)
3494{
3495 const struct cred *cred = current_cred();
3496 int err = 0;
3497
3498 switch (cmd) {
3499 case F_SETFL:
3500 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3501 err = file_has_perm(cred, file, FILE__WRITE);
3502 break;
3503 }
3504 /* fall through */
3505 case F_SETOWN:
3506 case F_SETSIG:
3507 case F_GETFL:
3508 case F_GETOWN:
3509 case F_GETSIG:
3510 case F_GETOWNER_UIDS:
3511 /* Just check FD__USE permission */
3512 err = file_has_perm(cred, file, 0);
3513 break;
3514 case F_GETLK:
3515 case F_SETLK:
3516 case F_SETLKW:
3517 case F_OFD_GETLK:
3518 case F_OFD_SETLK:
3519 case F_OFD_SETLKW:
3520#if BITS_PER_LONG == 32
3521 case F_GETLK64:
3522 case F_SETLK64:
3523 case F_SETLKW64:
3524#endif
3525 err = file_has_perm(cred, file, FILE__LOCK);
3526 break;
3527 }
3528
3529 return err;
3530}
3531
3532static void selinux_file_set_fowner(struct file *file)
3533{
3534 struct file_security_struct *fsec;
3535
3536 fsec = file->f_security;
3537 fsec->fown_sid = current_sid();
3538}
3539
3540static int selinux_file_send_sigiotask(struct task_struct *tsk,
3541 struct fown_struct *fown, int signum)
3542{
3543 struct file *file;
3544 u32 sid = task_sid(tsk);
3545 u32 perm;
3546 struct file_security_struct *fsec;
3547
3548 /* struct fown_struct is never outside the context of a struct file */
3549 file = container_of(fown, struct file, f_owner);
3550
3551 fsec = file->f_security;
3552
3553 if (!signum)
3554 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3555 else
3556 perm = signal_to_av(signum);
3557
3558 return avc_has_perm(fsec->fown_sid, sid,
3559 SECCLASS_PROCESS, perm, NULL);
3560}
3561
3562static int selinux_file_receive(struct file *file)
3563{
3564 const struct cred *cred = current_cred();
3565
3566 return file_has_perm(cred, file, file_to_av(file));
3567}
3568
3569static int selinux_file_open(struct file *file, const struct cred *cred)
3570{
3571 struct file_security_struct *fsec;
3572 struct inode_security_struct *isec;
3573
3574 fsec = file->f_security;
3575 isec = inode_security(file_inode(file));
3576 /*
3577 * Save inode label and policy sequence number
3578 * at open-time so that selinux_file_permission
3579 * can determine whether revalidation is necessary.
3580 * Task label is already saved in the file security
3581 * struct as its SID.
3582 */
3583 fsec->isid = isec->sid;
3584 fsec->pseqno = avc_policy_seqno();
3585 /*
3586 * Since the inode label or policy seqno may have changed
3587 * between the selinux_inode_permission check and the saving
3588 * of state above, recheck that access is still permitted.
3589 * Otherwise, access might never be revalidated against the
3590 * new inode label or new policy.
3591 * This check is not redundant - do not remove.
3592 */
3593 return file_path_has_perm(cred, file, open_file_to_av(file));
3594}
3595
3596/* task security operations */
3597
3598static int selinux_task_create(unsigned long clone_flags)
3599{
3600 return current_has_perm(current, PROCESS__FORK);
3601}
3602
3603/*
3604 * allocate the SELinux part of blank credentials
3605 */
3606static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3607{
3608 struct task_security_struct *tsec;
3609
3610 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3611 if (!tsec)
3612 return -ENOMEM;
3613
3614 cred->security = tsec;
3615 return 0;
3616}
3617
3618/*
3619 * detach and free the LSM part of a set of credentials
3620 */
3621static void selinux_cred_free(struct cred *cred)
3622{
3623 struct task_security_struct *tsec = cred->security;
3624
3625 /*
3626 * cred->security == NULL if security_cred_alloc_blank() or
3627 * security_prepare_creds() returned an error.
3628 */
3629 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3630 cred->security = (void *) 0x7UL;
3631 kfree(tsec);
3632}
3633
3634/*
3635 * prepare a new set of credentials for modification
3636 */
3637static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3638 gfp_t gfp)
3639{
3640 const struct task_security_struct *old_tsec;
3641 struct task_security_struct *tsec;
3642
3643 old_tsec = old->security;
3644
3645 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3646 if (!tsec)
3647 return -ENOMEM;
3648
3649 new->security = tsec;
3650 return 0;
3651}
3652
3653/*
3654 * transfer the SELinux data to a blank set of creds
3655 */
3656static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3657{
3658 const struct task_security_struct *old_tsec = old->security;
3659 struct task_security_struct *tsec = new->security;
3660
3661 *tsec = *old_tsec;
3662}
3663
3664/*
3665 * set the security data for a kernel service
3666 * - all the creation contexts are set to unlabelled
3667 */
3668static int selinux_kernel_act_as(struct cred *new, u32 secid)
3669{
3670 struct task_security_struct *tsec = new->security;
3671 u32 sid = current_sid();
3672 int ret;
3673
3674 ret = avc_has_perm(sid, secid,
3675 SECCLASS_KERNEL_SERVICE,
3676 KERNEL_SERVICE__USE_AS_OVERRIDE,
3677 NULL);
3678 if (ret == 0) {
3679 tsec->sid = secid;
3680 tsec->create_sid = 0;
3681 tsec->keycreate_sid = 0;
3682 tsec->sockcreate_sid = 0;
3683 }
3684 return ret;
3685}
3686
3687/*
3688 * set the file creation context in a security record to the same as the
3689 * objective context of the specified inode
3690 */
3691static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3692{
3693 struct inode_security_struct *isec = inode_security(inode);
3694 struct task_security_struct *tsec = new->security;
3695 u32 sid = current_sid();
3696 int ret;
3697
3698 ret = avc_has_perm(sid, isec->sid,
3699 SECCLASS_KERNEL_SERVICE,
3700 KERNEL_SERVICE__CREATE_FILES_AS,
3701 NULL);
3702
3703 if (ret == 0)
3704 tsec->create_sid = isec->sid;
3705 return ret;
3706}
3707
3708static int selinux_kernel_module_request(char *kmod_name)
3709{
3710 u32 sid;
3711 struct common_audit_data ad;
3712
3713 sid = task_sid(current);
3714
3715 ad.type = LSM_AUDIT_DATA_KMOD;
3716 ad.u.kmod_name = kmod_name;
3717
3718 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3719 SYSTEM__MODULE_REQUEST, &ad);
3720}
3721
3722static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3723{
3724 return current_has_perm(p, PROCESS__SETPGID);
3725}
3726
3727static int selinux_task_getpgid(struct task_struct *p)
3728{
3729 return current_has_perm(p, PROCESS__GETPGID);
3730}
3731
3732static int selinux_task_getsid(struct task_struct *p)
3733{
3734 return current_has_perm(p, PROCESS__GETSESSION);
3735}
3736
3737static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3738{
3739 *secid = task_sid(p);
3740}
3741
3742static int selinux_task_setnice(struct task_struct *p, int nice)
3743{
3744 return current_has_perm(p, PROCESS__SETSCHED);
3745}
3746
3747static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3748{
3749 return current_has_perm(p, PROCESS__SETSCHED);
3750}
3751
3752static int selinux_task_getioprio(struct task_struct *p)
3753{
3754 return current_has_perm(p, PROCESS__GETSCHED);
3755}
3756
3757static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3758 struct rlimit *new_rlim)
3759{
3760 struct rlimit *old_rlim = p->signal->rlim + resource;
3761
3762 /* Control the ability to change the hard limit (whether
3763 lowering or raising it), so that the hard limit can
3764 later be used as a safe reset point for the soft limit
3765 upon context transitions. See selinux_bprm_committing_creds. */
3766 if (old_rlim->rlim_max != new_rlim->rlim_max)
3767 return current_has_perm(p, PROCESS__SETRLIMIT);
3768
3769 return 0;
3770}
3771
3772static int selinux_task_setscheduler(struct task_struct *p)
3773{
3774 return current_has_perm(p, PROCESS__SETSCHED);
3775}
3776
3777static int selinux_task_getscheduler(struct task_struct *p)
3778{
3779 return current_has_perm(p, PROCESS__GETSCHED);
3780}
3781
3782static int selinux_task_movememory(struct task_struct *p)
3783{
3784 return current_has_perm(p, PROCESS__SETSCHED);
3785}
3786
3787static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3788 int sig, u32 secid)
3789{
3790 u32 perm;
3791 int rc;
3792
3793 if (!sig)
3794 perm = PROCESS__SIGNULL; /* null signal; existence test */
3795 else
3796 perm = signal_to_av(sig);
3797 if (secid)
3798 rc = avc_has_perm(secid, task_sid(p),
3799 SECCLASS_PROCESS, perm, NULL);
3800 else
3801 rc = current_has_perm(p, perm);
3802 return rc;
3803}
3804
3805static int selinux_task_wait(struct task_struct *p)
3806{
3807 return task_has_perm(p, current, PROCESS__SIGCHLD);
3808}
3809
3810static void selinux_task_to_inode(struct task_struct *p,
3811 struct inode *inode)
3812{
3813 struct inode_security_struct *isec = inode->i_security;
3814 u32 sid = task_sid(p);
3815
3816 isec->sid = sid;
3817 isec->initialized = LABEL_INITIALIZED;
3818}
3819
3820/* Returns error only if unable to parse addresses */
3821static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3822 struct common_audit_data *ad, u8 *proto)
3823{
3824 int offset, ihlen, ret = -EINVAL;
3825 struct iphdr _iph, *ih;
3826
3827 offset = skb_network_offset(skb);
3828 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3829 if (ih == NULL)
3830 goto out;
3831
3832 ihlen = ih->ihl * 4;
3833 if (ihlen < sizeof(_iph))
3834 goto out;
3835
3836 ad->u.net->v4info.saddr = ih->saddr;
3837 ad->u.net->v4info.daddr = ih->daddr;
3838 ret = 0;
3839
3840 if (proto)
3841 *proto = ih->protocol;
3842
3843 switch (ih->protocol) {
3844 case IPPROTO_TCP: {
3845 struct tcphdr _tcph, *th;
3846
3847 if (ntohs(ih->frag_off) & IP_OFFSET)
3848 break;
3849
3850 offset += ihlen;
3851 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3852 if (th == NULL)
3853 break;
3854
3855 ad->u.net->sport = th->source;
3856 ad->u.net->dport = th->dest;
3857 break;
3858 }
3859
3860 case IPPROTO_UDP: {
3861 struct udphdr _udph, *uh;
3862
3863 if (ntohs(ih->frag_off) & IP_OFFSET)
3864 break;
3865
3866 offset += ihlen;
3867 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3868 if (uh == NULL)
3869 break;
3870
3871 ad->u.net->sport = uh->source;
3872 ad->u.net->dport = uh->dest;
3873 break;
3874 }
3875
3876 case IPPROTO_DCCP: {
3877 struct dccp_hdr _dccph, *dh;
3878
3879 if (ntohs(ih->frag_off) & IP_OFFSET)
3880 break;
3881
3882 offset += ihlen;
3883 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3884 if (dh == NULL)
3885 break;
3886
3887 ad->u.net->sport = dh->dccph_sport;
3888 ad->u.net->dport = dh->dccph_dport;
3889 break;
3890 }
3891
3892 default:
3893 break;
3894 }
3895out:
3896 return ret;
3897}
3898
3899#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3900
3901/* Returns error only if unable to parse addresses */
3902static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3903 struct common_audit_data *ad, u8 *proto)
3904{
3905 u8 nexthdr;
3906 int ret = -EINVAL, offset;
3907 struct ipv6hdr _ipv6h, *ip6;
3908 __be16 frag_off;
3909
3910 offset = skb_network_offset(skb);
3911 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3912 if (ip6 == NULL)
3913 goto out;
3914
3915 ad->u.net->v6info.saddr = ip6->saddr;
3916 ad->u.net->v6info.daddr = ip6->daddr;
3917 ret = 0;
3918
3919 nexthdr = ip6->nexthdr;
3920 offset += sizeof(_ipv6h);
3921 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3922 if (offset < 0)
3923 goto out;
3924
3925 if (proto)
3926 *proto = nexthdr;
3927
3928 switch (nexthdr) {
3929 case IPPROTO_TCP: {
3930 struct tcphdr _tcph, *th;
3931
3932 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3933 if (th == NULL)
3934 break;
3935
3936 ad->u.net->sport = th->source;
3937 ad->u.net->dport = th->dest;
3938 break;
3939 }
3940
3941 case IPPROTO_UDP: {
3942 struct udphdr _udph, *uh;
3943
3944 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3945 if (uh == NULL)
3946 break;
3947
3948 ad->u.net->sport = uh->source;
3949 ad->u.net->dport = uh->dest;
3950 break;
3951 }
3952
3953 case IPPROTO_DCCP: {
3954 struct dccp_hdr _dccph, *dh;
3955
3956 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3957 if (dh == NULL)
3958 break;
3959
3960 ad->u.net->sport = dh->dccph_sport;
3961 ad->u.net->dport = dh->dccph_dport;
3962 break;
3963 }
3964
3965 /* includes fragments */
3966 default:
3967 break;
3968 }
3969out:
3970 return ret;
3971}
3972
3973#endif /* IPV6 */
3974
3975static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3976 char **_addrp, int src, u8 *proto)
3977{
3978 char *addrp;
3979 int ret;
3980
3981 switch (ad->u.net->family) {
3982 case PF_INET:
3983 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3984 if (ret)
3985 goto parse_error;
3986 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3987 &ad->u.net->v4info.daddr);
3988 goto okay;
3989
3990#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3991 case PF_INET6:
3992 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3993 if (ret)
3994 goto parse_error;
3995 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3996 &ad->u.net->v6info.daddr);
3997 goto okay;
3998#endif /* IPV6 */
3999 default:
4000 addrp = NULL;
4001 goto okay;
4002 }
4003
4004parse_error:
4005 printk(KERN_WARNING
4006 "SELinux: failure in selinux_parse_skb(),"
4007 " unable to parse packet\n");
4008 return ret;
4009
4010okay:
4011 if (_addrp)
4012 *_addrp = addrp;
4013 return 0;
4014}
4015
4016/**
4017 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4018 * @skb: the packet
4019 * @family: protocol family
4020 * @sid: the packet's peer label SID
4021 *
4022 * Description:
4023 * Check the various different forms of network peer labeling and determine
4024 * the peer label/SID for the packet; most of the magic actually occurs in
4025 * the security server function security_net_peersid_cmp(). The function
4026 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4027 * or -EACCES if @sid is invalid due to inconsistencies with the different
4028 * peer labels.
4029 *
4030 */
4031static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4032{
4033 int err;
4034 u32 xfrm_sid;
4035 u32 nlbl_sid;
4036 u32 nlbl_type;
4037
4038 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4039 if (unlikely(err))
4040 return -EACCES;
4041 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4042 if (unlikely(err))
4043 return -EACCES;
4044
4045 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
4046 if (unlikely(err)) {
4047 printk(KERN_WARNING
4048 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4049 " unable to determine packet's peer label\n");
4050 return -EACCES;
4051 }
4052
4053 return 0;
4054}
4055
4056/**
4057 * selinux_conn_sid - Determine the child socket label for a connection
4058 * @sk_sid: the parent socket's SID
4059 * @skb_sid: the packet's SID
4060 * @conn_sid: the resulting connection SID
4061 *
4062 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4063 * combined with the MLS information from @skb_sid in order to create
4064 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy
4065 * of @sk_sid. Returns zero on success, negative values on failure.
4066 *
4067 */
4068static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4069{
4070 int err = 0;
4071
4072 if (skb_sid != SECSID_NULL)
4073 err = security_sid_mls_copy(sk_sid, skb_sid, conn_sid);
4074 else
4075 *conn_sid = sk_sid;
4076
4077 return err;
4078}
4079
4080/* socket security operations */
4081
4082static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4083 u16 secclass, u32 *socksid)
4084{
4085 if (tsec->sockcreate_sid > SECSID_NULL) {
4086 *socksid = tsec->sockcreate_sid;
4087 return 0;
4088 }
4089
4090 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
4091 socksid);
4092}
4093
4094static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
4095{
4096 struct sk_security_struct *sksec = sk->sk_security;
4097 struct common_audit_data ad;
4098 struct lsm_network_audit net = {0,};
4099 u32 tsid = task_sid(task);
4100
4101 if (sksec->sid == SECINITSID_KERNEL)
4102 return 0;
4103
4104 ad.type = LSM_AUDIT_DATA_NET;
4105 ad.u.net = &net;
4106 ad.u.net->sk = sk;
4107
4108 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
4109}
4110
4111static int selinux_socket_create(int family, int type,
4112 int protocol, int kern)
4113{
4114 const struct task_security_struct *tsec = current_security();
4115 u32 newsid;
4116 u16 secclass;
4117 int rc;
4118
4119 if (kern)
4120 return 0;
4121
4122 secclass = socket_type_to_security_class(family, type, protocol);
4123 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4124 if (rc)
4125 return rc;
4126
4127 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4128}
4129
4130static int selinux_socket_post_create(struct socket *sock, int family,
4131 int type, int protocol, int kern)
4132{
4133 const struct task_security_struct *tsec = current_security();
4134 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4135 struct sk_security_struct *sksec;
4136 int err = 0;
4137
4138 isec->sclass = socket_type_to_security_class(family, type, protocol);
4139
4140 if (kern)
4141 isec->sid = SECINITSID_KERNEL;
4142 else {
4143 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
4144 if (err)
4145 return err;
4146 }
4147
4148 isec->initialized = LABEL_INITIALIZED;
4149
4150 if (sock->sk) {
4151 sksec = sock->sk->sk_security;
4152 sksec->sid = isec->sid;
4153 sksec->sclass = isec->sclass;
4154 err = selinux_netlbl_socket_post_create(sock->sk, family);
4155 }
4156
4157 return err;
4158}
4159
4160/* Range of port numbers used to automatically bind.
4161 Need to determine whether we should perform a name_bind
4162 permission check between the socket and the port number. */
4163
4164static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4165{
4166 struct sock *sk = sock->sk;
4167 u16 family;
4168 int err;
4169
4170 err = sock_has_perm(current, sk, SOCKET__BIND);
4171 if (err)
4172 goto out;
4173
4174 /*
4175 * If PF_INET or PF_INET6, check name_bind permission for the port.
4176 * Multiple address binding for SCTP is not supported yet: we just
4177 * check the first address now.
4178 */
4179 family = sk->sk_family;
4180 if (family == PF_INET || family == PF_INET6) {
4181 char *addrp;
4182 struct sk_security_struct *sksec = sk->sk_security;
4183 struct common_audit_data ad;
4184 struct lsm_network_audit net = {0,};
4185 struct sockaddr_in *addr4 = NULL;
4186 struct sockaddr_in6 *addr6 = NULL;
4187 unsigned short snum;
4188 u32 sid, node_perm;
4189
4190 if (family == PF_INET) {
4191 addr4 = (struct sockaddr_in *)address;
4192 snum = ntohs(addr4->sin_port);
4193 addrp = (char *)&addr4->sin_addr.s_addr;
4194 } else {
4195 addr6 = (struct sockaddr_in6 *)address;
4196 snum = ntohs(addr6->sin6_port);
4197 addrp = (char *)&addr6->sin6_addr.s6_addr;
4198 }
4199
4200 if (snum) {
4201 int low, high;
4202
4203 inet_get_local_port_range(sock_net(sk), &low, &high);
4204
4205 if (snum < max(PROT_SOCK, low) || snum > high) {
4206 err = sel_netport_sid(sk->sk_protocol,
4207 snum, &sid);
4208 if (err)
4209 goto out;
4210 ad.type = LSM_AUDIT_DATA_NET;
4211 ad.u.net = &net;
4212 ad.u.net->sport = htons(snum);
4213 ad.u.net->family = family;
4214 err = avc_has_perm(sksec->sid, sid,
4215 sksec->sclass,
4216 SOCKET__NAME_BIND, &ad);
4217 if (err)
4218 goto out;
4219 }
4220 }
4221
4222 switch (sksec->sclass) {
4223 case SECCLASS_TCP_SOCKET:
4224 node_perm = TCP_SOCKET__NODE_BIND;
4225 break;
4226
4227 case SECCLASS_UDP_SOCKET:
4228 node_perm = UDP_SOCKET__NODE_BIND;
4229 break;
4230
4231 case SECCLASS_DCCP_SOCKET:
4232 node_perm = DCCP_SOCKET__NODE_BIND;
4233 break;
4234
4235 default:
4236 node_perm = RAWIP_SOCKET__NODE_BIND;
4237 break;
4238 }
4239
4240 err = sel_netnode_sid(addrp, family, &sid);
4241 if (err)
4242 goto out;
4243
4244 ad.type = LSM_AUDIT_DATA_NET;
4245 ad.u.net = &net;
4246 ad.u.net->sport = htons(snum);
4247 ad.u.net->family = family;
4248
4249 if (family == PF_INET)
4250 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4251 else
4252 ad.u.net->v6info.saddr = addr6->sin6_addr;
4253
4254 err = avc_has_perm(sksec->sid, sid,
4255 sksec->sclass, node_perm, &ad);
4256 if (err)
4257 goto out;
4258 }
4259out:
4260 return err;
4261}
4262
4263static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
4264{
4265 struct sock *sk = sock->sk;
4266 struct sk_security_struct *sksec = sk->sk_security;
4267 int err;
4268
4269 err = sock_has_perm(current, sk, SOCKET__CONNECT);
4270 if (err)
4271 return err;
4272
4273 /*
4274 * If a TCP or DCCP socket, check name_connect permission for the port.
4275 */
4276 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4277 sksec->sclass == SECCLASS_DCCP_SOCKET) {
4278 struct common_audit_data ad;
4279 struct lsm_network_audit net = {0,};
4280 struct sockaddr_in *addr4 = NULL;
4281 struct sockaddr_in6 *addr6 = NULL;
4282 unsigned short snum;
4283 u32 sid, perm;
4284
4285 if (sk->sk_family == PF_INET) {
4286 addr4 = (struct sockaddr_in *)address;
4287 if (addrlen < sizeof(struct sockaddr_in))
4288 return -EINVAL;
4289 snum = ntohs(addr4->sin_port);
4290 } else {
4291 addr6 = (struct sockaddr_in6 *)address;
4292 if (addrlen < SIN6_LEN_RFC2133)
4293 return -EINVAL;
4294 snum = ntohs(addr6->sin6_port);
4295 }
4296
4297 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4298 if (err)
4299 goto out;
4300
4301 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4302 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4303
4304 ad.type = LSM_AUDIT_DATA_NET;
4305 ad.u.net = &net;
4306 ad.u.net->dport = htons(snum);
4307 ad.u.net->family = sk->sk_family;
4308 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4309 if (err)
4310 goto out;
4311 }
4312
4313 err = selinux_netlbl_socket_connect(sk, address);
4314
4315out:
4316 return err;
4317}
4318
4319static int selinux_socket_listen(struct socket *sock, int backlog)
4320{
4321 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4322}
4323
4324static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4325{
4326 int err;
4327 struct inode_security_struct *isec;
4328 struct inode_security_struct *newisec;
4329
4330 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4331 if (err)
4332 return err;
4333
4334 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4335
4336 isec = inode_security_novalidate(SOCK_INODE(sock));
4337 newisec->sclass = isec->sclass;
4338 newisec->sid = isec->sid;
4339 newisec->initialized = LABEL_INITIALIZED;
4340
4341 return 0;
4342}
4343
4344static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4345 int size)
4346{
4347 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4348}
4349
4350static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4351 int size, int flags)
4352{
4353 return sock_has_perm(current, sock->sk, SOCKET__READ);
4354}
4355
4356static int selinux_socket_getsockname(struct socket *sock)
4357{
4358 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4359}
4360
4361static int selinux_socket_getpeername(struct socket *sock)
4362{
4363 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4364}
4365
4366static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4367{
4368 int err;
4369
4370 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4371 if (err)
4372 return err;
4373
4374 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4375}
4376
4377static int selinux_socket_getsockopt(struct socket *sock, int level,
4378 int optname)
4379{
4380 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4381}
4382
4383static int selinux_socket_shutdown(struct socket *sock, int how)
4384{
4385 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4386}
4387
4388static int selinux_socket_unix_stream_connect(struct sock *sock,
4389 struct sock *other,
4390 struct sock *newsk)
4391{
4392 struct sk_security_struct *sksec_sock = sock->sk_security;
4393 struct sk_security_struct *sksec_other = other->sk_security;
4394 struct sk_security_struct *sksec_new = newsk->sk_security;
4395 struct common_audit_data ad;
4396 struct lsm_network_audit net = {0,};
4397 int err;
4398
4399 ad.type = LSM_AUDIT_DATA_NET;
4400 ad.u.net = &net;
4401 ad.u.net->sk = other;
4402
4403 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4404 sksec_other->sclass,
4405 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4406 if (err)
4407 return err;
4408
4409 /* server child socket */
4410 sksec_new->peer_sid = sksec_sock->sid;
4411 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4412 &sksec_new->sid);
4413 if (err)
4414 return err;
4415
4416 /* connecting socket */
4417 sksec_sock->peer_sid = sksec_new->sid;
4418
4419 return 0;
4420}
4421
4422static int selinux_socket_unix_may_send(struct socket *sock,
4423 struct socket *other)
4424{
4425 struct sk_security_struct *ssec = sock->sk->sk_security;
4426 struct sk_security_struct *osec = other->sk->sk_security;
4427 struct common_audit_data ad;
4428 struct lsm_network_audit net = {0,};
4429
4430 ad.type = LSM_AUDIT_DATA_NET;
4431 ad.u.net = &net;
4432 ad.u.net->sk = other->sk;
4433
4434 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4435 &ad);
4436}
4437
4438static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
4439 char *addrp, u16 family, u32 peer_sid,
4440 struct common_audit_data *ad)
4441{
4442 int err;
4443 u32 if_sid;
4444 u32 node_sid;
4445
4446 err = sel_netif_sid(ns, ifindex, &if_sid);
4447 if (err)
4448 return err;
4449 err = avc_has_perm(peer_sid, if_sid,
4450 SECCLASS_NETIF, NETIF__INGRESS, ad);
4451 if (err)
4452 return err;
4453
4454 err = sel_netnode_sid(addrp, family, &node_sid);
4455 if (err)
4456 return err;
4457 return avc_has_perm(peer_sid, node_sid,
4458 SECCLASS_NODE, NODE__RECVFROM, ad);
4459}
4460
4461static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4462 u16 family)
4463{
4464 int err = 0;
4465 struct sk_security_struct *sksec = sk->sk_security;
4466 u32 sk_sid = sksec->sid;
4467 struct common_audit_data ad;
4468 struct lsm_network_audit net = {0,};
4469 char *addrp;
4470
4471 ad.type = LSM_AUDIT_DATA_NET;
4472 ad.u.net = &net;
4473 ad.u.net->netif = skb->skb_iif;
4474 ad.u.net->family = family;
4475 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4476 if (err)
4477 return err;
4478
4479 if (selinux_secmark_enabled()) {
4480 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4481 PACKET__RECV, &ad);
4482 if (err)
4483 return err;
4484 }
4485
4486 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4487 if (err)
4488 return err;
4489 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4490
4491 return err;
4492}
4493
4494static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4495{
4496 int err;
4497 struct sk_security_struct *sksec = sk->sk_security;
4498 u16 family = sk->sk_family;
4499 u32 sk_sid = sksec->sid;
4500 struct common_audit_data ad;
4501 struct lsm_network_audit net = {0,};
4502 char *addrp;
4503 u8 secmark_active;
4504 u8 peerlbl_active;
4505
4506 if (family != PF_INET && family != PF_INET6)
4507 return 0;
4508
4509 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4510 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4511 family = PF_INET;
4512
4513 /* If any sort of compatibility mode is enabled then handoff processing
4514 * to the selinux_sock_rcv_skb_compat() function to deal with the
4515 * special handling. We do this in an attempt to keep this function
4516 * as fast and as clean as possible. */
4517 if (!selinux_policycap_netpeer)
4518 return selinux_sock_rcv_skb_compat(sk, skb, family);
4519
4520 secmark_active = selinux_secmark_enabled();
4521 peerlbl_active = selinux_peerlbl_enabled();
4522 if (!secmark_active && !peerlbl_active)
4523 return 0;
4524
4525 ad.type = LSM_AUDIT_DATA_NET;
4526 ad.u.net = &net;
4527 ad.u.net->netif = skb->skb_iif;
4528 ad.u.net->family = family;
4529 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4530 if (err)
4531 return err;
4532
4533 if (peerlbl_active) {
4534 u32 peer_sid;
4535
4536 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4537 if (err)
4538 return err;
4539 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
4540 addrp, family, peer_sid, &ad);
4541 if (err) {
4542 selinux_netlbl_err(skb, err, 0);
4543 return err;
4544 }
4545 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4546 PEER__RECV, &ad);
4547 if (err) {
4548 selinux_netlbl_err(skb, err, 0);
4549 return err;
4550 }
4551 }
4552
4553 if (secmark_active) {
4554 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4555 PACKET__RECV, &ad);
4556 if (err)
4557 return err;
4558 }
4559
4560 return err;
4561}
4562
4563static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4564 int __user *optlen, unsigned len)
4565{
4566 int err = 0;
4567 char *scontext;
4568 u32 scontext_len;
4569 struct sk_security_struct *sksec = sock->sk->sk_security;
4570 u32 peer_sid = SECSID_NULL;
4571
4572 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4573 sksec->sclass == SECCLASS_TCP_SOCKET)
4574 peer_sid = sksec->peer_sid;
4575 if (peer_sid == SECSID_NULL)
4576 return -ENOPROTOOPT;
4577
4578 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4579 if (err)
4580 return err;
4581
4582 if (scontext_len > len) {
4583 err = -ERANGE;
4584 goto out_len;
4585 }
4586
4587 if (copy_to_user(optval, scontext, scontext_len))
4588 err = -EFAULT;
4589
4590out_len:
4591 if (put_user(scontext_len, optlen))
4592 err = -EFAULT;
4593 kfree(scontext);
4594 return err;
4595}
4596
4597static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4598{
4599 u32 peer_secid = SECSID_NULL;
4600 u16 family;
4601
4602 if (skb && skb->protocol == htons(ETH_P_IP))
4603 family = PF_INET;
4604 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4605 family = PF_INET6;
4606 else if (sock)
4607 family = sock->sk->sk_family;
4608 else
4609 goto out;
4610
4611 if (sock && family == PF_UNIX)
4612 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4613 else if (skb)
4614 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4615
4616out:
4617 *secid = peer_secid;
4618 if (peer_secid == SECSID_NULL)
4619 return -EINVAL;
4620 return 0;
4621}
4622
4623static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4624{
4625 struct sk_security_struct *sksec;
4626
4627 sksec = kzalloc(sizeof(*sksec), priority);
4628 if (!sksec)
4629 return -ENOMEM;
4630
4631 sksec->peer_sid = SECINITSID_UNLABELED;
4632 sksec->sid = SECINITSID_UNLABELED;
4633 sksec->sclass = SECCLASS_SOCKET;
4634 selinux_netlbl_sk_security_reset(sksec);
4635 sk->sk_security = sksec;
4636
4637 return 0;
4638}
4639
4640static void selinux_sk_free_security(struct sock *sk)
4641{
4642 struct sk_security_struct *sksec = sk->sk_security;
4643
4644 sk->sk_security = NULL;
4645 selinux_netlbl_sk_security_free(sksec);
4646 kfree(sksec);
4647}
4648
4649static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4650{
4651 struct sk_security_struct *sksec = sk->sk_security;
4652 struct sk_security_struct *newsksec = newsk->sk_security;
4653
4654 newsksec->sid = sksec->sid;
4655 newsksec->peer_sid = sksec->peer_sid;
4656 newsksec->sclass = sksec->sclass;
4657
4658 selinux_netlbl_sk_security_reset(newsksec);
4659}
4660
4661static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4662{
4663 if (!sk)
4664 *secid = SECINITSID_ANY_SOCKET;
4665 else {
4666 struct sk_security_struct *sksec = sk->sk_security;
4667
4668 *secid = sksec->sid;
4669 }
4670}
4671
4672static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4673{
4674 struct inode_security_struct *isec =
4675 inode_security_novalidate(SOCK_INODE(parent));
4676 struct sk_security_struct *sksec = sk->sk_security;
4677
4678 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4679 sk->sk_family == PF_UNIX)
4680 isec->sid = sksec->sid;
4681 sksec->sclass = isec->sclass;
4682}
4683
4684static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4685 struct request_sock *req)
4686{
4687 struct sk_security_struct *sksec = sk->sk_security;
4688 int err;
4689 u16 family = req->rsk_ops->family;
4690 u32 connsid;
4691 u32 peersid;
4692
4693 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4694 if (err)
4695 return err;
4696 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
4697 if (err)
4698 return err;
4699 req->secid = connsid;
4700 req->peer_secid = peersid;
4701
4702 return selinux_netlbl_inet_conn_request(req, family);
4703}
4704
4705static void selinux_inet_csk_clone(struct sock *newsk,
4706 const struct request_sock *req)
4707{
4708 struct sk_security_struct *newsksec = newsk->sk_security;
4709
4710 newsksec->sid = req->secid;
4711 newsksec->peer_sid = req->peer_secid;
4712 /* NOTE: Ideally, we should also get the isec->sid for the
4713 new socket in sync, but we don't have the isec available yet.
4714 So we will wait until sock_graft to do it, by which
4715 time it will have been created and available. */
4716
4717 /* We don't need to take any sort of lock here as we are the only
4718 * thread with access to newsksec */
4719 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4720}
4721
4722static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4723{
4724 u16 family = sk->sk_family;
4725 struct sk_security_struct *sksec = sk->sk_security;
4726
4727 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4728 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4729 family = PF_INET;
4730
4731 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4732}
4733
4734static int selinux_secmark_relabel_packet(u32 sid)
4735{
4736 const struct task_security_struct *__tsec;
4737 u32 tsid;
4738
4739 __tsec = current_security();
4740 tsid = __tsec->sid;
4741
4742 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4743}
4744
4745static void selinux_secmark_refcount_inc(void)
4746{
4747 atomic_inc(&selinux_secmark_refcount);
4748}
4749
4750static void selinux_secmark_refcount_dec(void)
4751{
4752 atomic_dec(&selinux_secmark_refcount);
4753}
4754
4755static void selinux_req_classify_flow(const struct request_sock *req,
4756 struct flowi *fl)
4757{
4758 fl->flowi_secid = req->secid;
4759}
4760
4761static int selinux_tun_dev_alloc_security(void **security)
4762{
4763 struct tun_security_struct *tunsec;
4764
4765 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4766 if (!tunsec)
4767 return -ENOMEM;
4768 tunsec->sid = current_sid();
4769
4770 *security = tunsec;
4771 return 0;
4772}
4773
4774static void selinux_tun_dev_free_security(void *security)
4775{
4776 kfree(security);
4777}
4778
4779static int selinux_tun_dev_create(void)
4780{
4781 u32 sid = current_sid();
4782
4783 /* we aren't taking into account the "sockcreate" SID since the socket
4784 * that is being created here is not a socket in the traditional sense,
4785 * instead it is a private sock, accessible only to the kernel, and
4786 * representing a wide range of network traffic spanning multiple
4787 * connections unlike traditional sockets - check the TUN driver to
4788 * get a better understanding of why this socket is special */
4789
4790 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4791 NULL);
4792}
4793
4794static int selinux_tun_dev_attach_queue(void *security)
4795{
4796 struct tun_security_struct *tunsec = security;
4797
4798 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4799 TUN_SOCKET__ATTACH_QUEUE, NULL);
4800}
4801
4802static int selinux_tun_dev_attach(struct sock *sk, void *security)
4803{
4804 struct tun_security_struct *tunsec = security;
4805 struct sk_security_struct *sksec = sk->sk_security;
4806
4807 /* we don't currently perform any NetLabel based labeling here and it
4808 * isn't clear that we would want to do so anyway; while we could apply
4809 * labeling without the support of the TUN user the resulting labeled
4810 * traffic from the other end of the connection would almost certainly
4811 * cause confusion to the TUN user that had no idea network labeling
4812 * protocols were being used */
4813
4814 sksec->sid = tunsec->sid;
4815 sksec->sclass = SECCLASS_TUN_SOCKET;
4816
4817 return 0;
4818}
4819
4820static int selinux_tun_dev_open(void *security)
4821{
4822 struct tun_security_struct *tunsec = security;
4823 u32 sid = current_sid();
4824 int err;
4825
4826 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4827 TUN_SOCKET__RELABELFROM, NULL);
4828 if (err)
4829 return err;
4830 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4831 TUN_SOCKET__RELABELTO, NULL);
4832 if (err)
4833 return err;
4834 tunsec->sid = sid;
4835
4836 return 0;
4837}
4838
4839static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4840{
4841 int err = 0;
4842 u32 perm;
4843 struct nlmsghdr *nlh;
4844 struct sk_security_struct *sksec = sk->sk_security;
4845
4846 if (skb->len < NLMSG_HDRLEN) {
4847 err = -EINVAL;
4848 goto out;
4849 }
4850 nlh = nlmsg_hdr(skb);
4851
4852 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4853 if (err) {
4854 if (err == -EINVAL) {
4855 pr_warn_ratelimited("SELinux: unrecognized netlink"
4856 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
4857 " pig=%d comm=%s\n",
4858 sk->sk_protocol, nlh->nlmsg_type,
4859 secclass_map[sksec->sclass - 1].name,
4860 task_pid_nr(current), current->comm);
4861 if (!selinux_enforcing || security_get_allow_unknown())
4862 err = 0;
4863 }
4864
4865 /* Ignore */
4866 if (err == -ENOENT)
4867 err = 0;
4868 goto out;
4869 }
4870
4871 err = sock_has_perm(current, sk, perm);
4872out:
4873 return err;
4874}
4875
4876#ifdef CONFIG_NETFILTER
4877
4878static unsigned int selinux_ip_forward(struct sk_buff *skb,
4879 const struct net_device *indev,
4880 u16 family)
4881{
4882 int err;
4883 char *addrp;
4884 u32 peer_sid;
4885 struct common_audit_data ad;
4886 struct lsm_network_audit net = {0,};
4887 u8 secmark_active;
4888 u8 netlbl_active;
4889 u8 peerlbl_active;
4890
4891 if (!selinux_policycap_netpeer)
4892 return NF_ACCEPT;
4893
4894 secmark_active = selinux_secmark_enabled();
4895 netlbl_active = netlbl_enabled();
4896 peerlbl_active = selinux_peerlbl_enabled();
4897 if (!secmark_active && !peerlbl_active)
4898 return NF_ACCEPT;
4899
4900 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4901 return NF_DROP;
4902
4903 ad.type = LSM_AUDIT_DATA_NET;
4904 ad.u.net = &net;
4905 ad.u.net->netif = indev->ifindex;
4906 ad.u.net->family = family;
4907 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4908 return NF_DROP;
4909
4910 if (peerlbl_active) {
4911 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex,
4912 addrp, family, peer_sid, &ad);
4913 if (err) {
4914 selinux_netlbl_err(skb, err, 1);
4915 return NF_DROP;
4916 }
4917 }
4918
4919 if (secmark_active)
4920 if (avc_has_perm(peer_sid, skb->secmark,
4921 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4922 return NF_DROP;
4923
4924 if (netlbl_active)
4925 /* we do this in the FORWARD path and not the POST_ROUTING
4926 * path because we want to make sure we apply the necessary
4927 * labeling before IPsec is applied so we can leverage AH
4928 * protection */
4929 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4930 return NF_DROP;
4931
4932 return NF_ACCEPT;
4933}
4934
4935static unsigned int selinux_ipv4_forward(void *priv,
4936 struct sk_buff *skb,
4937 const struct nf_hook_state *state)
4938{
4939 return selinux_ip_forward(skb, state->in, PF_INET);
4940}
4941
4942#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4943static unsigned int selinux_ipv6_forward(void *priv,
4944 struct sk_buff *skb,
4945 const struct nf_hook_state *state)
4946{
4947 return selinux_ip_forward(skb, state->in, PF_INET6);
4948}
4949#endif /* IPV6 */
4950
4951static unsigned int selinux_ip_output(struct sk_buff *skb,
4952 u16 family)
4953{
4954 struct sock *sk;
4955 u32 sid;
4956
4957 if (!netlbl_enabled())
4958 return NF_ACCEPT;
4959
4960 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4961 * because we want to make sure we apply the necessary labeling
4962 * before IPsec is applied so we can leverage AH protection */
4963 sk = skb->sk;
4964 if (sk) {
4965 struct sk_security_struct *sksec;
4966
4967 if (sk_listener(sk))
4968 /* if the socket is the listening state then this
4969 * packet is a SYN-ACK packet which means it needs to
4970 * be labeled based on the connection/request_sock and
4971 * not the parent socket. unfortunately, we can't
4972 * lookup the request_sock yet as it isn't queued on
4973 * the parent socket until after the SYN-ACK is sent.
4974 * the "solution" is to simply pass the packet as-is
4975 * as any IP option based labeling should be copied
4976 * from the initial connection request (in the IP
4977 * layer). it is far from ideal, but until we get a
4978 * security label in the packet itself this is the
4979 * best we can do. */
4980 return NF_ACCEPT;
4981
4982 /* standard practice, label using the parent socket */
4983 sksec = sk->sk_security;
4984 sid = sksec->sid;
4985 } else
4986 sid = SECINITSID_KERNEL;
4987 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4988 return NF_DROP;
4989
4990 return NF_ACCEPT;
4991}
4992
4993static unsigned int selinux_ipv4_output(void *priv,
4994 struct sk_buff *skb,
4995 const struct nf_hook_state *state)
4996{
4997 return selinux_ip_output(skb, PF_INET);
4998}
4999
5000static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5001 int ifindex,
5002 u16 family)
5003{
5004 struct sock *sk = skb_to_full_sk(skb);
5005 struct sk_security_struct *sksec;
5006 struct common_audit_data ad;
5007 struct lsm_network_audit net = {0,};
5008 char *addrp;
5009 u8 proto;
5010
5011 if (sk == NULL)
5012 return NF_ACCEPT;
5013 sksec = sk->sk_security;
5014
5015 ad.type = LSM_AUDIT_DATA_NET;
5016 ad.u.net = &net;
5017 ad.u.net->netif = ifindex;
5018 ad.u.net->family = family;
5019 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
5020 return NF_DROP;
5021
5022 if (selinux_secmark_enabled())
5023 if (avc_has_perm(sksec->sid, skb->secmark,
5024 SECCLASS_PACKET, PACKET__SEND, &ad))
5025 return NF_DROP_ERR(-ECONNREFUSED);
5026
5027 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5028 return NF_DROP_ERR(-ECONNREFUSED);
5029
5030 return NF_ACCEPT;
5031}
5032
5033static unsigned int selinux_ip_postroute(struct sk_buff *skb,
5034 const struct net_device *outdev,
5035 u16 family)
5036{
5037 u32 secmark_perm;
5038 u32 peer_sid;
5039 int ifindex = outdev->ifindex;
5040 struct sock *sk;
5041 struct common_audit_data ad;
5042 struct lsm_network_audit net = {0,};
5043 char *addrp;
5044 u8 secmark_active;
5045 u8 peerlbl_active;
5046
5047 /* If any sort of compatibility mode is enabled then handoff processing
5048 * to the selinux_ip_postroute_compat() function to deal with the
5049 * special handling. We do this in an attempt to keep this function
5050 * as fast and as clean as possible. */
5051 if (!selinux_policycap_netpeer)
5052 return selinux_ip_postroute_compat(skb, ifindex, family);
5053
5054 secmark_active = selinux_secmark_enabled();
5055 peerlbl_active = selinux_peerlbl_enabled();
5056 if (!secmark_active && !peerlbl_active)
5057 return NF_ACCEPT;
5058
5059 sk = skb_to_full_sk(skb);
5060
5061#ifdef CONFIG_XFRM
5062 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5063 * packet transformation so allow the packet to pass without any checks
5064 * since we'll have another chance to perform access control checks
5065 * when the packet is on it's final way out.
5066 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5067 * is NULL, in this case go ahead and apply access control.
5068 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5069 * TCP listening state we cannot wait until the XFRM processing
5070 * is done as we will miss out on the SA label if we do;
5071 * unfortunately, this means more work, but it is only once per
5072 * connection. */
5073 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5074 !(sk && sk_listener(sk)))
5075 return NF_ACCEPT;
5076#endif
5077
5078 if (sk == NULL) {
5079 /* Without an associated socket the packet is either coming
5080 * from the kernel or it is being forwarded; check the packet
5081 * to determine which and if the packet is being forwarded
5082 * query the packet directly to determine the security label. */
5083 if (skb->skb_iif) {
5084 secmark_perm = PACKET__FORWARD_OUT;
5085 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5086 return NF_DROP;
5087 } else {
5088 secmark_perm = PACKET__SEND;
5089 peer_sid = SECINITSID_KERNEL;
5090 }
5091 } else if (sk_listener(sk)) {
5092 /* Locally generated packet but the associated socket is in the
5093 * listening state which means this is a SYN-ACK packet. In
5094 * this particular case the correct security label is assigned
5095 * to the connection/request_sock but unfortunately we can't
5096 * query the request_sock as it isn't queued on the parent
5097 * socket until after the SYN-ACK packet is sent; the only
5098 * viable choice is to regenerate the label like we do in
5099 * selinux_inet_conn_request(). See also selinux_ip_output()
5100 * for similar problems. */
5101 u32 skb_sid;
5102 struct sk_security_struct *sksec;
5103
5104 sksec = sk->sk_security;
5105 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5106 return NF_DROP;
5107 /* At this point, if the returned skb peerlbl is SECSID_NULL
5108 * and the packet has been through at least one XFRM
5109 * transformation then we must be dealing with the "final"
5110 * form of labeled IPsec packet; since we've already applied
5111 * all of our access controls on this packet we can safely
5112 * pass the packet. */
5113 if (skb_sid == SECSID_NULL) {
5114 switch (family) {
5115 case PF_INET:
5116 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5117 return NF_ACCEPT;
5118 break;
5119 case PF_INET6:
5120 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5121 return NF_ACCEPT;
5122 break;
5123 default:
5124 return NF_DROP_ERR(-ECONNREFUSED);
5125 }
5126 }
5127 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5128 return NF_DROP;
5129 secmark_perm = PACKET__SEND;
5130 } else {
5131 /* Locally generated packet, fetch the security label from the
5132 * associated socket. */
5133 struct sk_security_struct *sksec = sk->sk_security;
5134 peer_sid = sksec->sid;
5135 secmark_perm = PACKET__SEND;
5136 }
5137
5138 ad.type = LSM_AUDIT_DATA_NET;
5139 ad.u.net = &net;
5140 ad.u.net->netif = ifindex;
5141 ad.u.net->family = family;
5142 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5143 return NF_DROP;
5144
5145 if (secmark_active)
5146 if (avc_has_perm(peer_sid, skb->secmark,
5147 SECCLASS_PACKET, secmark_perm, &ad))
5148 return NF_DROP_ERR(-ECONNREFUSED);
5149
5150 if (peerlbl_active) {
5151 u32 if_sid;
5152 u32 node_sid;
5153
5154 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid))
5155 return NF_DROP;
5156 if (avc_has_perm(peer_sid, if_sid,
5157 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5158 return NF_DROP_ERR(-ECONNREFUSED);
5159
5160 if (sel_netnode_sid(addrp, family, &node_sid))
5161 return NF_DROP;
5162 if (avc_has_perm(peer_sid, node_sid,
5163 SECCLASS_NODE, NODE__SENDTO, &ad))
5164 return NF_DROP_ERR(-ECONNREFUSED);
5165 }
5166
5167 return NF_ACCEPT;
5168}
5169
5170static unsigned int selinux_ipv4_postroute(void *priv,
5171 struct sk_buff *skb,
5172 const struct nf_hook_state *state)
5173{
5174 return selinux_ip_postroute(skb, state->out, PF_INET);
5175}
5176
5177#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5178static unsigned int selinux_ipv6_postroute(void *priv,
5179 struct sk_buff *skb,
5180 const struct nf_hook_state *state)
5181{
5182 return selinux_ip_postroute(skb, state->out, PF_INET6);
5183}
5184#endif /* IPV6 */
5185
5186#endif /* CONFIG_NETFILTER */
5187
5188static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5189{
5190 return selinux_nlmsg_perm(sk, skb);
5191}
5192
5193static int ipc_alloc_security(struct task_struct *task,
5194 struct kern_ipc_perm *perm,
5195 u16 sclass)
5196{
5197 struct ipc_security_struct *isec;
5198 u32 sid;
5199
5200 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
5201 if (!isec)
5202 return -ENOMEM;
5203
5204 sid = task_sid(task);
5205 isec->sclass = sclass;
5206 isec->sid = sid;
5207 perm->security = isec;
5208
5209 return 0;
5210}
5211
5212static void ipc_free_security(struct kern_ipc_perm *perm)
5213{
5214 struct ipc_security_struct *isec = perm->security;
5215 perm->security = NULL;
5216 kfree(isec);
5217}
5218
5219static int msg_msg_alloc_security(struct msg_msg *msg)
5220{
5221 struct msg_security_struct *msec;
5222
5223 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
5224 if (!msec)
5225 return -ENOMEM;
5226
5227 msec->sid = SECINITSID_UNLABELED;
5228 msg->security = msec;
5229
5230 return 0;
5231}
5232
5233static void msg_msg_free_security(struct msg_msg *msg)
5234{
5235 struct msg_security_struct *msec = msg->security;
5236
5237 msg->security = NULL;
5238 kfree(msec);
5239}
5240
5241static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5242 u32 perms)
5243{
5244 struct ipc_security_struct *isec;
5245 struct common_audit_data ad;
5246 u32 sid = current_sid();
5247
5248 isec = ipc_perms->security;
5249
5250 ad.type = LSM_AUDIT_DATA_IPC;
5251 ad.u.ipc_id = ipc_perms->key;
5252
5253 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
5254}
5255
5256static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
5257{
5258 return msg_msg_alloc_security(msg);
5259}
5260
5261static void selinux_msg_msg_free_security(struct msg_msg *msg)
5262{
5263 msg_msg_free_security(msg);
5264}
5265
5266/* message queue security operations */
5267static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
5268{
5269 struct ipc_security_struct *isec;
5270 struct common_audit_data ad;
5271 u32 sid = current_sid();
5272 int rc;
5273
5274 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
5275 if (rc)
5276 return rc;
5277
5278 isec = msq->q_perm.security;
5279
5280 ad.type = LSM_AUDIT_DATA_IPC;
5281 ad.u.ipc_id = msq->q_perm.key;
5282
5283 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5284 MSGQ__CREATE, &ad);
5285 if (rc) {
5286 ipc_free_security(&msq->q_perm);
5287 return rc;
5288 }
5289 return 0;
5290}
5291
5292static void selinux_msg_queue_free_security(struct msg_queue *msq)
5293{
5294 ipc_free_security(&msq->q_perm);
5295}
5296
5297static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
5298{
5299 struct ipc_security_struct *isec;
5300 struct common_audit_data ad;
5301 u32 sid = current_sid();
5302
5303 isec = msq->q_perm.security;
5304
5305 ad.type = LSM_AUDIT_DATA_IPC;
5306 ad.u.ipc_id = msq->q_perm.key;
5307
5308 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5309 MSGQ__ASSOCIATE, &ad);
5310}
5311
5312static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
5313{
5314 int err;
5315 int perms;
5316
5317 switch (cmd) {
5318 case IPC_INFO:
5319 case MSG_INFO:
5320 /* No specific object, just general system-wide information. */
5321 return task_has_system(current, SYSTEM__IPC_INFO);
5322 case IPC_STAT:
5323 case MSG_STAT:
5324 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5325 break;
5326 case IPC_SET:
5327 perms = MSGQ__SETATTR;
5328 break;
5329 case IPC_RMID:
5330 perms = MSGQ__DESTROY;
5331 break;
5332 default:
5333 return 0;
5334 }
5335
5336 err = ipc_has_perm(&msq->q_perm, perms);
5337 return err;
5338}
5339
5340static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5341{
5342 struct ipc_security_struct *isec;
5343 struct msg_security_struct *msec;
5344 struct common_audit_data ad;
5345 u32 sid = current_sid();
5346 int rc;
5347
5348 isec = msq->q_perm.security;
5349 msec = msg->security;
5350
5351 /*
5352 * First time through, need to assign label to the message
5353 */
5354 if (msec->sid == SECINITSID_UNLABELED) {
5355 /*
5356 * Compute new sid based on current process and
5357 * message queue this message will be stored in
5358 */
5359 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5360 NULL, &msec->sid);
5361 if (rc)
5362 return rc;
5363 }
5364
5365 ad.type = LSM_AUDIT_DATA_IPC;
5366 ad.u.ipc_id = msq->q_perm.key;
5367
5368 /* Can this process write to the queue? */
5369 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5370 MSGQ__WRITE, &ad);
5371 if (!rc)
5372 /* Can this process send the message */
5373 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5374 MSG__SEND, &ad);
5375 if (!rc)
5376 /* Can the message be put in the queue? */
5377 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5378 MSGQ__ENQUEUE, &ad);
5379
5380 return rc;
5381}
5382
5383static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5384 struct task_struct *target,
5385 long type, int mode)
5386{
5387 struct ipc_security_struct *isec;
5388 struct msg_security_struct *msec;
5389 struct common_audit_data ad;
5390 u32 sid = task_sid(target);
5391 int rc;
5392
5393 isec = msq->q_perm.security;
5394 msec = msg->security;
5395
5396 ad.type = LSM_AUDIT_DATA_IPC;
5397 ad.u.ipc_id = msq->q_perm.key;
5398
5399 rc = avc_has_perm(sid, isec->sid,
5400 SECCLASS_MSGQ, MSGQ__READ, &ad);
5401 if (!rc)
5402 rc = avc_has_perm(sid, msec->sid,
5403 SECCLASS_MSG, MSG__RECEIVE, &ad);
5404 return rc;
5405}
5406
5407/* Shared Memory security operations */
5408static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5409{
5410 struct ipc_security_struct *isec;
5411 struct common_audit_data ad;
5412 u32 sid = current_sid();
5413 int rc;
5414
5415 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5416 if (rc)
5417 return rc;
5418
5419 isec = shp->shm_perm.security;
5420
5421 ad.type = LSM_AUDIT_DATA_IPC;
5422 ad.u.ipc_id = shp->shm_perm.key;
5423
5424 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5425 SHM__CREATE, &ad);
5426 if (rc) {
5427 ipc_free_security(&shp->shm_perm);
5428 return rc;
5429 }
5430 return 0;
5431}
5432
5433static void selinux_shm_free_security(struct shmid_kernel *shp)
5434{
5435 ipc_free_security(&shp->shm_perm);
5436}
5437
5438static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5439{
5440 struct ipc_security_struct *isec;
5441 struct common_audit_data ad;
5442 u32 sid = current_sid();
5443
5444 isec = shp->shm_perm.security;
5445
5446 ad.type = LSM_AUDIT_DATA_IPC;
5447 ad.u.ipc_id = shp->shm_perm.key;
5448
5449 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5450 SHM__ASSOCIATE, &ad);
5451}
5452
5453/* Note, at this point, shp is locked down */
5454static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5455{
5456 int perms;
5457 int err;
5458
5459 switch (cmd) {
5460 case IPC_INFO:
5461 case SHM_INFO:
5462 /* No specific object, just general system-wide information. */
5463 return task_has_system(current, SYSTEM__IPC_INFO);
5464 case IPC_STAT:
5465 case SHM_STAT:
5466 perms = SHM__GETATTR | SHM__ASSOCIATE;
5467 break;
5468 case IPC_SET:
5469 perms = SHM__SETATTR;
5470 break;
5471 case SHM_LOCK:
5472 case SHM_UNLOCK:
5473 perms = SHM__LOCK;
5474 break;
5475 case IPC_RMID:
5476 perms = SHM__DESTROY;
5477 break;
5478 default:
5479 return 0;
5480 }
5481
5482 err = ipc_has_perm(&shp->shm_perm, perms);
5483 return err;
5484}
5485
5486static int selinux_shm_shmat(struct shmid_kernel *shp,
5487 char __user *shmaddr, int shmflg)
5488{
5489 u32 perms;
5490
5491 if (shmflg & SHM_RDONLY)
5492 perms = SHM__READ;
5493 else
5494 perms = SHM__READ | SHM__WRITE;
5495
5496 return ipc_has_perm(&shp->shm_perm, perms);
5497}
5498
5499/* Semaphore security operations */
5500static int selinux_sem_alloc_security(struct sem_array *sma)
5501{
5502 struct ipc_security_struct *isec;
5503 struct common_audit_data ad;
5504 u32 sid = current_sid();
5505 int rc;
5506
5507 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5508 if (rc)
5509 return rc;
5510
5511 isec = sma->sem_perm.security;
5512
5513 ad.type = LSM_AUDIT_DATA_IPC;
5514 ad.u.ipc_id = sma->sem_perm.key;
5515
5516 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5517 SEM__CREATE, &ad);
5518 if (rc) {
5519 ipc_free_security(&sma->sem_perm);
5520 return rc;
5521 }
5522 return 0;
5523}
5524
5525static void selinux_sem_free_security(struct sem_array *sma)
5526{
5527 ipc_free_security(&sma->sem_perm);
5528}
5529
5530static int selinux_sem_associate(struct sem_array *sma, int semflg)
5531{
5532 struct ipc_security_struct *isec;
5533 struct common_audit_data ad;
5534 u32 sid = current_sid();
5535
5536 isec = sma->sem_perm.security;
5537
5538 ad.type = LSM_AUDIT_DATA_IPC;
5539 ad.u.ipc_id = sma->sem_perm.key;
5540
5541 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5542 SEM__ASSOCIATE, &ad);
5543}
5544
5545/* Note, at this point, sma is locked down */
5546static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5547{
5548 int err;
5549 u32 perms;
5550
5551 switch (cmd) {
5552 case IPC_INFO:
5553 case SEM_INFO:
5554 /* No specific object, just general system-wide information. */
5555 return task_has_system(current, SYSTEM__IPC_INFO);
5556 case GETPID:
5557 case GETNCNT:
5558 case GETZCNT:
5559 perms = SEM__GETATTR;
5560 break;
5561 case GETVAL:
5562 case GETALL:
5563 perms = SEM__READ;
5564 break;
5565 case SETVAL:
5566 case SETALL:
5567 perms = SEM__WRITE;
5568 break;
5569 case IPC_RMID:
5570 perms = SEM__DESTROY;
5571 break;
5572 case IPC_SET:
5573 perms = SEM__SETATTR;
5574 break;
5575 case IPC_STAT:
5576 case SEM_STAT:
5577 perms = SEM__GETATTR | SEM__ASSOCIATE;
5578 break;
5579 default:
5580 return 0;
5581 }
5582
5583 err = ipc_has_perm(&sma->sem_perm, perms);
5584 return err;
5585}
5586
5587static int selinux_sem_semop(struct sem_array *sma,
5588 struct sembuf *sops, unsigned nsops, int alter)
5589{
5590 u32 perms;
5591
5592 if (alter)
5593 perms = SEM__READ | SEM__WRITE;
5594 else
5595 perms = SEM__READ;
5596
5597 return ipc_has_perm(&sma->sem_perm, perms);
5598}
5599
5600static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5601{
5602 u32 av = 0;
5603
5604 av = 0;
5605 if (flag & S_IRUGO)
5606 av |= IPC__UNIX_READ;
5607 if (flag & S_IWUGO)
5608 av |= IPC__UNIX_WRITE;
5609
5610 if (av == 0)
5611 return 0;
5612
5613 return ipc_has_perm(ipcp, av);
5614}
5615
5616static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5617{
5618 struct ipc_security_struct *isec = ipcp->security;
5619 *secid = isec->sid;
5620}
5621
5622static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5623{
5624 if (inode)
5625 inode_doinit_with_dentry(inode, dentry);
5626}
5627
5628static int selinux_getprocattr(struct task_struct *p,
5629 char *name, char **value)
5630{
5631 const struct task_security_struct *__tsec;
5632 u32 sid;
5633 int error;
5634 unsigned len;
5635
5636 if (current != p) {
5637 error = current_has_perm(p, PROCESS__GETATTR);
5638 if (error)
5639 return error;
5640 }
5641
5642 rcu_read_lock();
5643 __tsec = __task_cred(p)->security;
5644
5645 if (!strcmp(name, "current"))
5646 sid = __tsec->sid;
5647 else if (!strcmp(name, "prev"))
5648 sid = __tsec->osid;
5649 else if (!strcmp(name, "exec"))
5650 sid = __tsec->exec_sid;
5651 else if (!strcmp(name, "fscreate"))
5652 sid = __tsec->create_sid;
5653 else if (!strcmp(name, "keycreate"))
5654 sid = __tsec->keycreate_sid;
5655 else if (!strcmp(name, "sockcreate"))
5656 sid = __tsec->sockcreate_sid;
5657 else
5658 goto invalid;
5659 rcu_read_unlock();
5660
5661 if (!sid)
5662 return 0;
5663
5664 error = security_sid_to_context(sid, value, &len);
5665 if (error)
5666 return error;
5667 return len;
5668
5669invalid:
5670 rcu_read_unlock();
5671 return -EINVAL;
5672}
5673
5674static int selinux_setprocattr(struct task_struct *p,
5675 char *name, void *value, size_t size)
5676{
5677 struct task_security_struct *tsec;
5678 struct task_struct *tracer;
5679 struct cred *new;
5680 u32 sid = 0, ptsid;
5681 int error;
5682 char *str = value;
5683
5684 if (current != p) {
5685 /* SELinux only allows a process to change its own
5686 security attributes. */
5687 return -EACCES;
5688 }
5689
5690 /*
5691 * Basic control over ability to set these attributes at all.
5692 * current == p, but we'll pass them separately in case the
5693 * above restriction is ever removed.
5694 */
5695 if (!strcmp(name, "exec"))
5696 error = current_has_perm(p, PROCESS__SETEXEC);
5697 else if (!strcmp(name, "fscreate"))
5698 error = current_has_perm(p, PROCESS__SETFSCREATE);
5699 else if (!strcmp(name, "keycreate"))
5700 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5701 else if (!strcmp(name, "sockcreate"))
5702 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5703 else if (!strcmp(name, "current"))
5704 error = current_has_perm(p, PROCESS__SETCURRENT);
5705 else
5706 error = -EINVAL;
5707 if (error)
5708 return error;
5709
5710 /* Obtain a SID for the context, if one was specified. */
5711 if (size && str[1] && str[1] != '\n') {
5712 if (str[size-1] == '\n') {
5713 str[size-1] = 0;
5714 size--;
5715 }
5716 error = security_context_to_sid(value, size, &sid, GFP_KERNEL);
5717 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5718 if (!capable(CAP_MAC_ADMIN)) {
5719 struct audit_buffer *ab;
5720 size_t audit_size;
5721
5722 /* We strip a nul only if it is at the end, otherwise the
5723 * context contains a nul and we should audit that */
5724 if (str[size - 1] == '\0')
5725 audit_size = size - 1;
5726 else
5727 audit_size = size;
5728 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5729 audit_log_format(ab, "op=fscreate invalid_context=");
5730 audit_log_n_untrustedstring(ab, value, audit_size);
5731 audit_log_end(ab);
5732
5733 return error;
5734 }
5735 error = security_context_to_sid_force(value, size,
5736 &sid);
5737 }
5738 if (error)
5739 return error;
5740 }
5741
5742 new = prepare_creds();
5743 if (!new)
5744 return -ENOMEM;
5745
5746 /* Permission checking based on the specified context is
5747 performed during the actual operation (execve,
5748 open/mkdir/...), when we know the full context of the
5749 operation. See selinux_bprm_set_creds for the execve
5750 checks and may_create for the file creation checks. The
5751 operation will then fail if the context is not permitted. */
5752 tsec = new->security;
5753 if (!strcmp(name, "exec")) {
5754 tsec->exec_sid = sid;
5755 } else if (!strcmp(name, "fscreate")) {
5756 tsec->create_sid = sid;
5757 } else if (!strcmp(name, "keycreate")) {
5758 error = may_create_key(sid, p);
5759 if (error)
5760 goto abort_change;
5761 tsec->keycreate_sid = sid;
5762 } else if (!strcmp(name, "sockcreate")) {
5763 tsec->sockcreate_sid = sid;
5764 } else if (!strcmp(name, "current")) {
5765 error = -EINVAL;
5766 if (sid == 0)
5767 goto abort_change;
5768
5769 /* Only allow single threaded processes to change context */
5770 error = -EPERM;
5771 if (!current_is_single_threaded()) {
5772 error = security_bounded_transition(tsec->sid, sid);
5773 if (error)
5774 goto abort_change;
5775 }
5776
5777 /* Check permissions for the transition. */
5778 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5779 PROCESS__DYNTRANSITION, NULL);
5780 if (error)
5781 goto abort_change;
5782
5783 /* Check for ptracing, and update the task SID if ok.
5784 Otherwise, leave SID unchanged and fail. */
5785 ptsid = 0;
5786 rcu_read_lock();
5787 tracer = ptrace_parent(p);
5788 if (tracer)
5789 ptsid = task_sid(tracer);
5790 rcu_read_unlock();
5791
5792 if (tracer) {
5793 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5794 PROCESS__PTRACE, NULL);
5795 if (error)
5796 goto abort_change;
5797 }
5798
5799 tsec->sid = sid;
5800 } else {
5801 error = -EINVAL;
5802 goto abort_change;
5803 }
5804
5805 commit_creds(new);
5806 return size;
5807
5808abort_change:
5809 abort_creds(new);
5810 return error;
5811}
5812
5813static int selinux_ismaclabel(const char *name)
5814{
5815 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5816}
5817
5818static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5819{
5820 return security_sid_to_context(secid, secdata, seclen);
5821}
5822
5823static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5824{
5825 return security_context_to_sid(secdata, seclen, secid, GFP_KERNEL);
5826}
5827
5828static void selinux_release_secctx(char *secdata, u32 seclen)
5829{
5830 kfree(secdata);
5831}
5832
5833static void selinux_inode_invalidate_secctx(struct inode *inode)
5834{
5835 struct inode_security_struct *isec = inode->i_security;
5836
5837 mutex_lock(&isec->lock);
5838 isec->initialized = LABEL_INVALID;
5839 mutex_unlock(&isec->lock);
5840}
5841
5842/*
5843 * called with inode->i_mutex locked
5844 */
5845static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5846{
5847 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5848}
5849
5850/*
5851 * called with inode->i_mutex locked
5852 */
5853static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5854{
5855 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5856}
5857
5858static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5859{
5860 int len = 0;
5861 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5862 ctx, true);
5863 if (len < 0)
5864 return len;
5865 *ctxlen = len;
5866 return 0;
5867}
5868#ifdef CONFIG_KEYS
5869
5870static int selinux_key_alloc(struct key *k, const struct cred *cred,
5871 unsigned long flags)
5872{
5873 const struct task_security_struct *tsec;
5874 struct key_security_struct *ksec;
5875
5876 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5877 if (!ksec)
5878 return -ENOMEM;
5879
5880 tsec = cred->security;
5881 if (tsec->keycreate_sid)
5882 ksec->sid = tsec->keycreate_sid;
5883 else
5884 ksec->sid = tsec->sid;
5885
5886 k->security = ksec;
5887 return 0;
5888}
5889
5890static void selinux_key_free(struct key *k)
5891{
5892 struct key_security_struct *ksec = k->security;
5893
5894 k->security = NULL;
5895 kfree(ksec);
5896}
5897
5898static int selinux_key_permission(key_ref_t key_ref,
5899 const struct cred *cred,
5900 unsigned perm)
5901{
5902 struct key *key;
5903 struct key_security_struct *ksec;
5904 u32 sid;
5905
5906 /* if no specific permissions are requested, we skip the
5907 permission check. No serious, additional covert channels
5908 appear to be created. */
5909 if (perm == 0)
5910 return 0;
5911
5912 sid = cred_sid(cred);
5913
5914 key = key_ref_to_ptr(key_ref);
5915 ksec = key->security;
5916
5917 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5918}
5919
5920static int selinux_key_getsecurity(struct key *key, char **_buffer)
5921{
5922 struct key_security_struct *ksec = key->security;
5923 char *context = NULL;
5924 unsigned len;
5925 int rc;
5926
5927 rc = security_sid_to_context(ksec->sid, &context, &len);
5928 if (!rc)
5929 rc = len;
5930 *_buffer = context;
5931 return rc;
5932}
5933
5934#endif
5935
5936static struct security_hook_list selinux_hooks[] = {
5937 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
5938 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
5939 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
5940 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
5941
5942 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
5943 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
5944 LSM_HOOK_INIT(capget, selinux_capget),
5945 LSM_HOOK_INIT(capset, selinux_capset),
5946 LSM_HOOK_INIT(capable, selinux_capable),
5947 LSM_HOOK_INIT(quotactl, selinux_quotactl),
5948 LSM_HOOK_INIT(quota_on, selinux_quota_on),
5949 LSM_HOOK_INIT(syslog, selinux_syslog),
5950 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
5951
5952 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
5953
5954 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds),
5955 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
5956 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
5957 LSM_HOOK_INIT(bprm_secureexec, selinux_bprm_secureexec),
5958
5959 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
5960 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security),
5961 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data),
5962 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
5963 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
5964 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
5965 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
5966 LSM_HOOK_INIT(sb_mount, selinux_mount),
5967 LSM_HOOK_INIT(sb_umount, selinux_umount),
5968 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
5969 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
5970 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str),
5971
5972 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
5973
5974 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
5975 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
5976 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
5977 LSM_HOOK_INIT(inode_create, selinux_inode_create),
5978 LSM_HOOK_INIT(inode_link, selinux_inode_link),
5979 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
5980 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
5981 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
5982 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
5983 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
5984 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
5985 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
5986 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
5987 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
5988 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
5989 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
5990 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
5991 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
5992 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
5993 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
5994 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
5995 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
5996 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
5997 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
5998 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
5999
6000 LSM_HOOK_INIT(file_permission, selinux_file_permission),
6001 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
6002 LSM_HOOK_INIT(file_free_security, selinux_file_free_security),
6003 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
6004 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
6005 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
6006 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
6007 LSM_HOOK_INIT(file_lock, selinux_file_lock),
6008 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
6009 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
6010 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
6011 LSM_HOOK_INIT(file_receive, selinux_file_receive),
6012
6013 LSM_HOOK_INIT(file_open, selinux_file_open),
6014
6015 LSM_HOOK_INIT(task_create, selinux_task_create),
6016 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank),
6017 LSM_HOOK_INIT(cred_free, selinux_cred_free),
6018 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
6019 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
6020 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
6021 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
6022 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
6023 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
6024 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
6025 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
6026 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid),
6027 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
6028 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
6029 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
6030 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
6031 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
6032 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
6033 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
6034 LSM_HOOK_INIT(task_kill, selinux_task_kill),
6035 LSM_HOOK_INIT(task_wait, selinux_task_wait),
6036 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
6037
6038 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
6039 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
6040
6041 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
6042 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security),
6043
6044 LSM_HOOK_INIT(msg_queue_alloc_security,
6045 selinux_msg_queue_alloc_security),
6046 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security),
6047 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
6048 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
6049 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
6050 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
6051
6052 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
6053 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security),
6054 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
6055 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
6056 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
6057
6058 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
6059 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security),
6060 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
6061 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
6062 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
6063
6064 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
6065
6066 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
6067 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
6068
6069 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
6070 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
6071 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
6072 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
6073 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
6074 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
6075 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
6076 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
6077
6078 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
6079 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
6080
6081 LSM_HOOK_INIT(socket_create, selinux_socket_create),
6082 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
6083 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
6084 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
6085 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
6086 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
6087 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
6088 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
6089 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
6090 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
6091 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
6092 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
6093 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
6094 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
6095 LSM_HOOK_INIT(socket_getpeersec_stream,
6096 selinux_socket_getpeersec_stream),
6097 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
6098 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
6099 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
6100 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
6101 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
6102 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
6103 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
6104 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
6105 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
6106 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
6107 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
6108 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
6109 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
6110 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
6111 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
6112 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
6113 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
6114 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
6115 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
6116
6117#ifdef CONFIG_SECURITY_NETWORK_XFRM
6118 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
6119 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
6120 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
6121 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
6122 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
6123 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
6124 selinux_xfrm_state_alloc_acquire),
6125 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
6126 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
6127 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
6128 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
6129 selinux_xfrm_state_pol_flow_match),
6130 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
6131#endif
6132
6133#ifdef CONFIG_KEYS
6134 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
6135 LSM_HOOK_INIT(key_free, selinux_key_free),
6136 LSM_HOOK_INIT(key_permission, selinux_key_permission),
6137 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
6138#endif
6139
6140#ifdef CONFIG_AUDIT
6141 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
6142 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
6143 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
6144 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
6145#endif
6146};
6147
6148static __init int selinux_init(void)
6149{
6150 if (!security_module_enable("selinux")) {
6151 selinux_enabled = 0;
6152 return 0;
6153 }
6154
6155 if (!selinux_enabled) {
6156 printk(KERN_INFO "SELinux: Disabled at boot.\n");
6157 return 0;
6158 }
6159
6160 printk(KERN_INFO "SELinux: Initializing.\n");
6161
6162 /* Set the security state for the initial task. */
6163 cred_init_security();
6164
6165 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
6166
6167 sel_inode_cache = kmem_cache_create("selinux_inode_security",
6168 sizeof(struct inode_security_struct),
6169 0, SLAB_PANIC, NULL);
6170 file_security_cache = kmem_cache_create("selinux_file_security",
6171 sizeof(struct file_security_struct),
6172 0, SLAB_PANIC, NULL);
6173 avc_init();
6174
6175 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6176
6177 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
6178 panic("SELinux: Unable to register AVC netcache callback\n");
6179
6180 if (selinux_enforcing)
6181 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
6182 else
6183 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
6184
6185 return 0;
6186}
6187
6188static void delayed_superblock_init(struct super_block *sb, void *unused)
6189{
6190 superblock_doinit(sb, NULL);
6191}
6192
6193void selinux_complete_init(void)
6194{
6195 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
6196
6197 /* Set up any superblocks initialized prior to the policy load. */
6198 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
6199 iterate_supers(delayed_superblock_init, NULL);
6200}
6201
6202/* SELinux requires early initialization in order to label
6203 all processes and objects when they are created. */
6204security_initcall(selinux_init);
6205
6206#if defined(CONFIG_NETFILTER)
6207
6208static struct nf_hook_ops selinux_nf_ops[] = {
6209 {
6210 .hook = selinux_ipv4_postroute,
6211 .pf = NFPROTO_IPV4,
6212 .hooknum = NF_INET_POST_ROUTING,
6213 .priority = NF_IP_PRI_SELINUX_LAST,
6214 },
6215 {
6216 .hook = selinux_ipv4_forward,
6217 .pf = NFPROTO_IPV4,
6218 .hooknum = NF_INET_FORWARD,
6219 .priority = NF_IP_PRI_SELINUX_FIRST,
6220 },
6221 {
6222 .hook = selinux_ipv4_output,
6223 .pf = NFPROTO_IPV4,
6224 .hooknum = NF_INET_LOCAL_OUT,
6225 .priority = NF_IP_PRI_SELINUX_FIRST,
6226 },
6227#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6228 {
6229 .hook = selinux_ipv6_postroute,
6230 .pf = NFPROTO_IPV6,
6231 .hooknum = NF_INET_POST_ROUTING,
6232 .priority = NF_IP6_PRI_SELINUX_LAST,
6233 },
6234 {
6235 .hook = selinux_ipv6_forward,
6236 .pf = NFPROTO_IPV6,
6237 .hooknum = NF_INET_FORWARD,
6238 .priority = NF_IP6_PRI_SELINUX_FIRST,
6239 },
6240#endif /* IPV6 */
6241};
6242
6243static int __init selinux_nf_ip_init(void)
6244{
6245 int err;
6246
6247 if (!selinux_enabled)
6248 return 0;
6249
6250 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
6251
6252 err = nf_register_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6253 if (err)
6254 panic("SELinux: nf_register_hooks: error %d\n", err);
6255
6256 return 0;
6257}
6258
6259__initcall(selinux_nf_ip_init);
6260
6261#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6262static void selinux_nf_ip_exit(void)
6263{
6264 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
6265
6266 nf_unregister_hooks(selinux_nf_ops, ARRAY_SIZE(selinux_nf_ops));
6267}
6268#endif
6269
6270#else /* CONFIG_NETFILTER */
6271
6272#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6273#define selinux_nf_ip_exit()
6274#endif
6275
6276#endif /* CONFIG_NETFILTER */
6277
6278#ifdef CONFIG_SECURITY_SELINUX_DISABLE
6279static int selinux_disabled;
6280
6281int selinux_disable(void)
6282{
6283 if (ss_initialized) {
6284 /* Not permitted after initial policy load. */
6285 return -EINVAL;
6286 }
6287
6288 if (selinux_disabled) {
6289 /* Only do this once. */
6290 return -EINVAL;
6291 }
6292
6293 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
6294
6295 selinux_disabled = 1;
6296 selinux_enabled = 0;
6297
6298 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks));
6299
6300 /* Try to destroy the avc node cache */
6301 avc_disable();
6302
6303 /* Unregister netfilter hooks. */
6304 selinux_nf_ip_exit();
6305
6306 /* Unregister selinuxfs. */
6307 exit_sel_fs();
6308
6309 return 0;
6310}
6311#endif