Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Security-Enhanced Linux (SELinux) security module
4 *
5 * This file contains the SELinux hook function implementations.
6 *
7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com>
8 * Chris Vance, <cvance@nai.com>
9 * Wayne Salamon, <wsalamon@nai.com>
10 * James Morris <jmorris@redhat.com>
11 *
12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14 * Eric Paris <eparis@redhat.com>
15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16 * <dgoeddel@trustedcs.com>
17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18 * Paul Moore <paul@paul-moore.com>
19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20 * Yuichi Nakamura <ynakam@hitachisoft.jp>
21 * Copyright (C) 2016 Mellanox Technologies
22 */
23
24#include <linux/init.h>
25#include <linux/kd.h>
26#include <linux/kernel.h>
27#include <linux/kernel_read_file.h>
28#include <linux/errno.h>
29#include <linux/sched/signal.h>
30#include <linux/sched/task.h>
31#include <linux/lsm_hooks.h>
32#include <linux/xattr.h>
33#include <linux/capability.h>
34#include <linux/unistd.h>
35#include <linux/mm.h>
36#include <linux/mman.h>
37#include <linux/slab.h>
38#include <linux/pagemap.h>
39#include <linux/proc_fs.h>
40#include <linux/swap.h>
41#include <linux/spinlock.h>
42#include <linux/syscalls.h>
43#include <linux/dcache.h>
44#include <linux/file.h>
45#include <linux/fdtable.h>
46#include <linux/namei.h>
47#include <linux/mount.h>
48#include <linux/fs_context.h>
49#include <linux/fs_parser.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/inet_connection_sock.h>
57#include <net/net_namespace.h>
58#include <net/netlabel.h>
59#include <linux/uaccess.h>
60#include <asm/ioctls.h>
61#include <linux/atomic.h>
62#include <linux/bitops.h>
63#include <linux/interrupt.h>
64#include <linux/netdevice.h> /* for network interface checks */
65#include <net/netlink.h>
66#include <linux/tcp.h>
67#include <linux/udp.h>
68#include <linux/dccp.h>
69#include <linux/sctp.h>
70#include <net/sctp/structs.h>
71#include <linux/quota.h>
72#include <linux/un.h> /* for Unix socket types */
73#include <net/af_unix.h> /* for Unix socket types */
74#include <linux/parser.h>
75#include <linux/nfs_mount.h>
76#include <net/ipv6.h>
77#include <linux/hugetlb.h>
78#include <linux/personality.h>
79#include <linux/audit.h>
80#include <linux/string.h>
81#include <linux/mutex.h>
82#include <linux/posix-timers.h>
83#include <linux/syslog.h>
84#include <linux/user_namespace.h>
85#include <linux/export.h>
86#include <linux/msg.h>
87#include <linux/shm.h>
88#include <uapi/linux/shm.h>
89#include <linux/bpf.h>
90#include <linux/kernfs.h>
91#include <linux/stringhash.h> /* for hashlen_string() */
92#include <uapi/linux/mount.h>
93#include <linux/fsnotify.h>
94#include <linux/fanotify.h>
95#include <linux/io_uring/cmd.h>
96#include <uapi/linux/lsm.h>
97
98#include "avc.h"
99#include "objsec.h"
100#include "netif.h"
101#include "netnode.h"
102#include "netport.h"
103#include "ibpkey.h"
104#include "xfrm.h"
105#include "netlabel.h"
106#include "audit.h"
107#include "avc_ss.h"
108
109#define SELINUX_INODE_INIT_XATTRS 1
110
111struct selinux_state selinux_state;
112
113/* SECMARK reference count */
114static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115
116#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117static int selinux_enforcing_boot __initdata;
118
119static int __init enforcing_setup(char *str)
120{
121 unsigned long enforcing;
122 if (!kstrtoul(str, 0, &enforcing))
123 selinux_enforcing_boot = enforcing ? 1 : 0;
124 return 1;
125}
126__setup("enforcing=", enforcing_setup);
127#else
128#define selinux_enforcing_boot 1
129#endif
130
131int selinux_enabled_boot __initdata = 1;
132#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133static int __init selinux_enabled_setup(char *str)
134{
135 unsigned long enabled;
136 if (!kstrtoul(str, 0, &enabled))
137 selinux_enabled_boot = enabled ? 1 : 0;
138 return 1;
139}
140__setup("selinux=", selinux_enabled_setup);
141#endif
142
143static int __init checkreqprot_setup(char *str)
144{
145 unsigned long checkreqprot;
146
147 if (!kstrtoul(str, 0, &checkreqprot)) {
148 if (checkreqprot)
149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n");
150 }
151 return 1;
152}
153__setup("checkreqprot=", checkreqprot_setup);
154
155/**
156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157 *
158 * Description:
159 * This function checks the SECMARK reference counter to see if any SECMARK
160 * targets are currently configured, if the reference counter is greater than
161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
162 * enabled, false (0) if SECMARK is disabled. If the always_check_network
163 * policy capability is enabled, SECMARK is always considered enabled.
164 *
165 */
166static int selinux_secmark_enabled(void)
167{
168 return (selinux_policycap_alwaysnetwork() ||
169 atomic_read(&selinux_secmark_refcount));
170}
171
172/**
173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174 *
175 * Description:
176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true
177 * (1) if any are enabled or false (0) if neither are enabled. If the
178 * always_check_network policy capability is enabled, peer labeling
179 * is always considered enabled.
180 *
181 */
182static int selinux_peerlbl_enabled(void)
183{
184 return (selinux_policycap_alwaysnetwork() ||
185 netlbl_enabled() || selinux_xfrm_enabled());
186}
187
188static int selinux_netcache_avc_callback(u32 event)
189{
190 if (event == AVC_CALLBACK_RESET) {
191 sel_netif_flush();
192 sel_netnode_flush();
193 sel_netport_flush();
194 synchronize_net();
195 }
196 return 0;
197}
198
199static int selinux_lsm_notifier_avc_callback(u32 event)
200{
201 if (event == AVC_CALLBACK_RESET) {
202 sel_ib_pkey_flush();
203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 }
205
206 return 0;
207}
208
209/*
210 * initialise the security for the init task
211 */
212static void cred_init_security(void)
213{
214 struct task_security_struct *tsec;
215
216 tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 tsec->osid = tsec->sid = SECINITSID_KERNEL;
218}
219
220/*
221 * get the security ID of a set of credentials
222 */
223static inline u32 cred_sid(const struct cred *cred)
224{
225 const struct task_security_struct *tsec;
226
227 tsec = selinux_cred(cred);
228 return tsec->sid;
229}
230
231static void __ad_net_init(struct common_audit_data *ad,
232 struct lsm_network_audit *net,
233 int ifindex, struct sock *sk, u16 family)
234{
235 ad->type = LSM_AUDIT_DATA_NET;
236 ad->u.net = net;
237 net->netif = ifindex;
238 net->sk = sk;
239 net->family = family;
240}
241
242static void ad_net_init_from_sk(struct common_audit_data *ad,
243 struct lsm_network_audit *net,
244 struct sock *sk)
245{
246 __ad_net_init(ad, net, 0, sk, 0);
247}
248
249static void ad_net_init_from_iif(struct common_audit_data *ad,
250 struct lsm_network_audit *net,
251 int ifindex, u16 family)
252{
253 __ad_net_init(ad, net, ifindex, NULL, family);
254}
255
256/*
257 * get the objective security ID of a task
258 */
259static inline u32 task_sid_obj(const struct task_struct *task)
260{
261 u32 sid;
262
263 rcu_read_lock();
264 sid = cred_sid(__task_cred(task));
265 rcu_read_unlock();
266 return sid;
267}
268
269static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270
271/*
272 * Try reloading inode security labels that have been marked as invalid. The
273 * @may_sleep parameter indicates when sleeping and thus reloading labels is
274 * allowed; when set to false, returns -ECHILD when the label is
275 * invalid. The @dentry parameter should be set to a dentry of the inode.
276 */
277static int __inode_security_revalidate(struct inode *inode,
278 struct dentry *dentry,
279 bool may_sleep)
280{
281 struct inode_security_struct *isec = selinux_inode(inode);
282
283 might_sleep_if(may_sleep);
284
285 /*
286 * The check of isec->initialized below is racy but
287 * inode_doinit_with_dentry() will recheck with
288 * isec->lock held.
289 */
290 if (selinux_initialized() &&
291 data_race(isec->initialized != LABEL_INITIALIZED)) {
292 if (!may_sleep)
293 return -ECHILD;
294
295 /*
296 * Try reloading the inode security label. This will fail if
297 * @opt_dentry is NULL and no dentry for this inode can be
298 * found; in that case, continue using the old label.
299 */
300 inode_doinit_with_dentry(inode, dentry);
301 }
302 return 0;
303}
304
305static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
306{
307 return selinux_inode(inode);
308}
309
310static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
311{
312 int error;
313
314 error = __inode_security_revalidate(inode, NULL, !rcu);
315 if (error)
316 return ERR_PTR(error);
317 return selinux_inode(inode);
318}
319
320/*
321 * Get the security label of an inode.
322 */
323static struct inode_security_struct *inode_security(struct inode *inode)
324{
325 __inode_security_revalidate(inode, NULL, true);
326 return selinux_inode(inode);
327}
328
329static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
330{
331 struct inode *inode = d_backing_inode(dentry);
332
333 return selinux_inode(inode);
334}
335
336/*
337 * Get the security label of a dentry's backing inode.
338 */
339static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
340{
341 struct inode *inode = d_backing_inode(dentry);
342
343 __inode_security_revalidate(inode, dentry, true);
344 return selinux_inode(inode);
345}
346
347static void inode_free_security(struct inode *inode)
348{
349 struct inode_security_struct *isec = selinux_inode(inode);
350 struct superblock_security_struct *sbsec;
351
352 if (!isec)
353 return;
354 sbsec = selinux_superblock(inode->i_sb);
355 /*
356 * As not all inode security structures are in a list, we check for
357 * empty list outside of the lock to make sure that we won't waste
358 * time taking a lock doing nothing.
359 *
360 * The list_del_init() function can be safely called more than once.
361 * It should not be possible for this function to be called with
362 * concurrent list_add(), but for better safety against future changes
363 * in the code, we use list_empty_careful() here.
364 */
365 if (!list_empty_careful(&isec->list)) {
366 spin_lock(&sbsec->isec_lock);
367 list_del_init(&isec->list);
368 spin_unlock(&sbsec->isec_lock);
369 }
370}
371
372struct selinux_mnt_opts {
373 u32 fscontext_sid;
374 u32 context_sid;
375 u32 rootcontext_sid;
376 u32 defcontext_sid;
377};
378
379static void selinux_free_mnt_opts(void *mnt_opts)
380{
381 kfree(mnt_opts);
382}
383
384enum {
385 Opt_error = -1,
386 Opt_context = 0,
387 Opt_defcontext = 1,
388 Opt_fscontext = 2,
389 Opt_rootcontext = 3,
390 Opt_seclabel = 4,
391};
392
393#define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
394static const struct {
395 const char *name;
396 int len;
397 int opt;
398 bool has_arg;
399} tokens[] = {
400 A(context, true),
401 A(fscontext, true),
402 A(defcontext, true),
403 A(rootcontext, true),
404 A(seclabel, false),
405};
406#undef A
407
408static int match_opt_prefix(char *s, int l, char **arg)
409{
410 int i;
411
412 for (i = 0; i < ARRAY_SIZE(tokens); i++) {
413 size_t len = tokens[i].len;
414 if (len > l || memcmp(s, tokens[i].name, len))
415 continue;
416 if (tokens[i].has_arg) {
417 if (len == l || s[len] != '=')
418 continue;
419 *arg = s + len + 1;
420 } else if (len != l)
421 continue;
422 return tokens[i].opt;
423 }
424 return Opt_error;
425}
426
427#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
428
429static int may_context_mount_sb_relabel(u32 sid,
430 struct superblock_security_struct *sbsec,
431 const struct cred *cred)
432{
433 const struct task_security_struct *tsec = selinux_cred(cred);
434 int rc;
435
436 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
437 FILESYSTEM__RELABELFROM, NULL);
438 if (rc)
439 return rc;
440
441 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
442 FILESYSTEM__RELABELTO, NULL);
443 return rc;
444}
445
446static int may_context_mount_inode_relabel(u32 sid,
447 struct superblock_security_struct *sbsec,
448 const struct cred *cred)
449{
450 const struct task_security_struct *tsec = selinux_cred(cred);
451 int rc;
452 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 FILESYSTEM__RELABELFROM, NULL);
454 if (rc)
455 return rc;
456
457 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
458 FILESYSTEM__ASSOCIATE, NULL);
459 return rc;
460}
461
462static int selinux_is_genfs_special_handling(struct super_block *sb)
463{
464 /* Special handling. Genfs but also in-core setxattr handler */
465 return !strcmp(sb->s_type->name, "sysfs") ||
466 !strcmp(sb->s_type->name, "pstore") ||
467 !strcmp(sb->s_type->name, "debugfs") ||
468 !strcmp(sb->s_type->name, "tracefs") ||
469 !strcmp(sb->s_type->name, "rootfs") ||
470 (selinux_policycap_cgroupseclabel() &&
471 (!strcmp(sb->s_type->name, "cgroup") ||
472 !strcmp(sb->s_type->name, "cgroup2")));
473}
474
475static int selinux_is_sblabel_mnt(struct super_block *sb)
476{
477 struct superblock_security_struct *sbsec = selinux_superblock(sb);
478
479 /*
480 * IMPORTANT: Double-check logic in this function when adding a new
481 * SECURITY_FS_USE_* definition!
482 */
483 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
484
485 switch (sbsec->behavior) {
486 case SECURITY_FS_USE_XATTR:
487 case SECURITY_FS_USE_TRANS:
488 case SECURITY_FS_USE_TASK:
489 case SECURITY_FS_USE_NATIVE:
490 return 1;
491
492 case SECURITY_FS_USE_GENFS:
493 return selinux_is_genfs_special_handling(sb);
494
495 /* Never allow relabeling on context mounts */
496 case SECURITY_FS_USE_MNTPOINT:
497 case SECURITY_FS_USE_NONE:
498 default:
499 return 0;
500 }
501}
502
503static int sb_check_xattr_support(struct super_block *sb)
504{
505 struct superblock_security_struct *sbsec = selinux_superblock(sb);
506 struct dentry *root = sb->s_root;
507 struct inode *root_inode = d_backing_inode(root);
508 u32 sid;
509 int rc;
510
511 /*
512 * Make sure that the xattr handler exists and that no
513 * error other than -ENODATA is returned by getxattr on
514 * the root directory. -ENODATA is ok, as this may be
515 * the first boot of the SELinux kernel before we have
516 * assigned xattr values to the filesystem.
517 */
518 if (!(root_inode->i_opflags & IOP_XATTR)) {
519 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
520 sb->s_id, sb->s_type->name);
521 goto fallback;
522 }
523
524 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
525 if (rc < 0 && rc != -ENODATA) {
526 if (rc == -EOPNOTSUPP) {
527 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
528 sb->s_id, sb->s_type->name);
529 goto fallback;
530 } else {
531 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
532 sb->s_id, sb->s_type->name, -rc);
533 return rc;
534 }
535 }
536 return 0;
537
538fallback:
539 /* No xattr support - try to fallback to genfs if possible. */
540 rc = security_genfs_sid(sb->s_type->name, "/",
541 SECCLASS_DIR, &sid);
542 if (rc)
543 return -EOPNOTSUPP;
544
545 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
546 sb->s_id, sb->s_type->name);
547 sbsec->behavior = SECURITY_FS_USE_GENFS;
548 sbsec->sid = sid;
549 return 0;
550}
551
552static int sb_finish_set_opts(struct super_block *sb)
553{
554 struct superblock_security_struct *sbsec = selinux_superblock(sb);
555 struct dentry *root = sb->s_root;
556 struct inode *root_inode = d_backing_inode(root);
557 int rc = 0;
558
559 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
560 rc = sb_check_xattr_support(sb);
561 if (rc)
562 return rc;
563 }
564
565 sbsec->flags |= SE_SBINITIALIZED;
566
567 /*
568 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply
569 * leave the flag untouched because sb_clone_mnt_opts might be handing
570 * us a superblock that needs the flag to be cleared.
571 */
572 if (selinux_is_sblabel_mnt(sb))
573 sbsec->flags |= SBLABEL_MNT;
574 else
575 sbsec->flags &= ~SBLABEL_MNT;
576
577 /* Initialize the root inode. */
578 rc = inode_doinit_with_dentry(root_inode, root);
579
580 /* Initialize any other inodes associated with the superblock, e.g.
581 inodes created prior to initial policy load or inodes created
582 during get_sb by a pseudo filesystem that directly
583 populates itself. */
584 spin_lock(&sbsec->isec_lock);
585 while (!list_empty(&sbsec->isec_head)) {
586 struct inode_security_struct *isec =
587 list_first_entry(&sbsec->isec_head,
588 struct inode_security_struct, list);
589 struct inode *inode = isec->inode;
590 list_del_init(&isec->list);
591 spin_unlock(&sbsec->isec_lock);
592 inode = igrab(inode);
593 if (inode) {
594 if (!IS_PRIVATE(inode))
595 inode_doinit_with_dentry(inode, NULL);
596 iput(inode);
597 }
598 spin_lock(&sbsec->isec_lock);
599 }
600 spin_unlock(&sbsec->isec_lock);
601 return rc;
602}
603
604static int bad_option(struct superblock_security_struct *sbsec, char flag,
605 u32 old_sid, u32 new_sid)
606{
607 char mnt_flags = sbsec->flags & SE_MNTMASK;
608
609 /* check if the old mount command had the same options */
610 if (sbsec->flags & SE_SBINITIALIZED)
611 if (!(sbsec->flags & flag) ||
612 (old_sid != new_sid))
613 return 1;
614
615 /* check if we were passed the same options twice,
616 * aka someone passed context=a,context=b
617 */
618 if (!(sbsec->flags & SE_SBINITIALIZED))
619 if (mnt_flags & flag)
620 return 1;
621 return 0;
622}
623
624/*
625 * Allow filesystems with binary mount data to explicitly set mount point
626 * labeling information.
627 */
628static int selinux_set_mnt_opts(struct super_block *sb,
629 void *mnt_opts,
630 unsigned long kern_flags,
631 unsigned long *set_kern_flags)
632{
633 const struct cred *cred = current_cred();
634 struct superblock_security_struct *sbsec = selinux_superblock(sb);
635 struct dentry *root = sb->s_root;
636 struct selinux_mnt_opts *opts = mnt_opts;
637 struct inode_security_struct *root_isec;
638 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
639 u32 defcontext_sid = 0;
640 int rc = 0;
641
642 /*
643 * Specifying internal flags without providing a place to
644 * place the results is not allowed
645 */
646 if (kern_flags && !set_kern_flags)
647 return -EINVAL;
648
649 mutex_lock(&sbsec->lock);
650
651 if (!selinux_initialized()) {
652 if (!opts) {
653 /* Defer initialization until selinux_complete_init,
654 after the initial policy is loaded and the security
655 server is ready to handle calls. */
656 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
657 sbsec->flags |= SE_SBNATIVE;
658 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
659 }
660 goto out;
661 }
662 rc = -EINVAL;
663 pr_warn("SELinux: Unable to set superblock options "
664 "before the security server is initialized\n");
665 goto out;
666 }
667
668 /*
669 * Binary mount data FS will come through this function twice. Once
670 * from an explicit call and once from the generic calls from the vfs.
671 * Since the generic VFS calls will not contain any security mount data
672 * we need to skip the double mount verification.
673 *
674 * This does open a hole in which we will not notice if the first
675 * mount using this sb set explicit options and a second mount using
676 * this sb does not set any security options. (The first options
677 * will be used for both mounts)
678 */
679 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
680 && !opts)
681 goto out;
682
683 root_isec = backing_inode_security_novalidate(root);
684
685 /*
686 * parse the mount options, check if they are valid sids.
687 * also check if someone is trying to mount the same sb more
688 * than once with different security options.
689 */
690 if (opts) {
691 if (opts->fscontext_sid) {
692 fscontext_sid = opts->fscontext_sid;
693 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
694 fscontext_sid))
695 goto out_double_mount;
696 sbsec->flags |= FSCONTEXT_MNT;
697 }
698 if (opts->context_sid) {
699 context_sid = opts->context_sid;
700 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
701 context_sid))
702 goto out_double_mount;
703 sbsec->flags |= CONTEXT_MNT;
704 }
705 if (opts->rootcontext_sid) {
706 rootcontext_sid = opts->rootcontext_sid;
707 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
708 rootcontext_sid))
709 goto out_double_mount;
710 sbsec->flags |= ROOTCONTEXT_MNT;
711 }
712 if (opts->defcontext_sid) {
713 defcontext_sid = opts->defcontext_sid;
714 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
715 defcontext_sid))
716 goto out_double_mount;
717 sbsec->flags |= DEFCONTEXT_MNT;
718 }
719 }
720
721 if (sbsec->flags & SE_SBINITIALIZED) {
722 /* previously mounted with options, but not on this attempt? */
723 if ((sbsec->flags & SE_MNTMASK) && !opts)
724 goto out_double_mount;
725 rc = 0;
726 goto out;
727 }
728
729 if (strcmp(sb->s_type->name, "proc") == 0)
730 sbsec->flags |= SE_SBPROC | SE_SBGENFS;
731
732 if (!strcmp(sb->s_type->name, "debugfs") ||
733 !strcmp(sb->s_type->name, "tracefs") ||
734 !strcmp(sb->s_type->name, "binder") ||
735 !strcmp(sb->s_type->name, "bpf") ||
736 !strcmp(sb->s_type->name, "pstore") ||
737 !strcmp(sb->s_type->name, "securityfs"))
738 sbsec->flags |= SE_SBGENFS;
739
740 if (!strcmp(sb->s_type->name, "sysfs") ||
741 !strcmp(sb->s_type->name, "cgroup") ||
742 !strcmp(sb->s_type->name, "cgroup2"))
743 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
744
745 if (!sbsec->behavior) {
746 /*
747 * Determine the labeling behavior to use for this
748 * filesystem type.
749 */
750 rc = security_fs_use(sb);
751 if (rc) {
752 pr_warn("%s: security_fs_use(%s) returned %d\n",
753 __func__, sb->s_type->name, rc);
754 goto out;
755 }
756 }
757
758 /*
759 * If this is a user namespace mount and the filesystem type is not
760 * explicitly whitelisted, then no contexts are allowed on the command
761 * line and security labels must be ignored.
762 */
763 if (sb->s_user_ns != &init_user_ns &&
764 strcmp(sb->s_type->name, "tmpfs") &&
765 strcmp(sb->s_type->name, "ramfs") &&
766 strcmp(sb->s_type->name, "devpts") &&
767 strcmp(sb->s_type->name, "overlay")) {
768 if (context_sid || fscontext_sid || rootcontext_sid ||
769 defcontext_sid) {
770 rc = -EACCES;
771 goto out;
772 }
773 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
774 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
775 rc = security_transition_sid(current_sid(),
776 current_sid(),
777 SECCLASS_FILE, NULL,
778 &sbsec->mntpoint_sid);
779 if (rc)
780 goto out;
781 }
782 goto out_set_opts;
783 }
784
785 /* sets the context of the superblock for the fs being mounted. */
786 if (fscontext_sid) {
787 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
788 if (rc)
789 goto out;
790
791 sbsec->sid = fscontext_sid;
792 }
793
794 /*
795 * Switch to using mount point labeling behavior.
796 * sets the label used on all file below the mountpoint, and will set
797 * the superblock context if not already set.
798 */
799 if (sbsec->flags & SE_SBNATIVE) {
800 /*
801 * This means we are initializing a superblock that has been
802 * mounted before the SELinux was initialized and the
803 * filesystem requested native labeling. We had already
804 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
805 * in the original mount attempt, so now we just need to set
806 * the SECURITY_FS_USE_NATIVE behavior.
807 */
808 sbsec->behavior = SECURITY_FS_USE_NATIVE;
809 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
810 sbsec->behavior = SECURITY_FS_USE_NATIVE;
811 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
812 }
813
814 if (context_sid) {
815 if (!fscontext_sid) {
816 rc = may_context_mount_sb_relabel(context_sid, sbsec,
817 cred);
818 if (rc)
819 goto out;
820 sbsec->sid = context_sid;
821 } else {
822 rc = may_context_mount_inode_relabel(context_sid, sbsec,
823 cred);
824 if (rc)
825 goto out;
826 }
827 if (!rootcontext_sid)
828 rootcontext_sid = context_sid;
829
830 sbsec->mntpoint_sid = context_sid;
831 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
832 }
833
834 if (rootcontext_sid) {
835 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
836 cred);
837 if (rc)
838 goto out;
839
840 root_isec->sid = rootcontext_sid;
841 root_isec->initialized = LABEL_INITIALIZED;
842 }
843
844 if (defcontext_sid) {
845 if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
846 sbsec->behavior != SECURITY_FS_USE_NATIVE) {
847 rc = -EINVAL;
848 pr_warn("SELinux: defcontext option is "
849 "invalid for this filesystem type\n");
850 goto out;
851 }
852
853 if (defcontext_sid != sbsec->def_sid) {
854 rc = may_context_mount_inode_relabel(defcontext_sid,
855 sbsec, cred);
856 if (rc)
857 goto out;
858 }
859
860 sbsec->def_sid = defcontext_sid;
861 }
862
863out_set_opts:
864 rc = sb_finish_set_opts(sb);
865out:
866 mutex_unlock(&sbsec->lock);
867 return rc;
868out_double_mount:
869 rc = -EINVAL;
870 pr_warn("SELinux: mount invalid. Same superblock, different "
871 "security settings for (dev %s, type %s)\n", sb->s_id,
872 sb->s_type->name);
873 goto out;
874}
875
876static int selinux_cmp_sb_context(const struct super_block *oldsb,
877 const struct super_block *newsb)
878{
879 struct superblock_security_struct *old = selinux_superblock(oldsb);
880 struct superblock_security_struct *new = selinux_superblock(newsb);
881 char oldflags = old->flags & SE_MNTMASK;
882 char newflags = new->flags & SE_MNTMASK;
883
884 if (oldflags != newflags)
885 goto mismatch;
886 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
887 goto mismatch;
888 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
889 goto mismatch;
890 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
891 goto mismatch;
892 if (oldflags & ROOTCONTEXT_MNT) {
893 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
894 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
895 if (oldroot->sid != newroot->sid)
896 goto mismatch;
897 }
898 return 0;
899mismatch:
900 pr_warn("SELinux: mount invalid. Same superblock, "
901 "different security settings for (dev %s, "
902 "type %s)\n", newsb->s_id, newsb->s_type->name);
903 return -EBUSY;
904}
905
906static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
907 struct super_block *newsb,
908 unsigned long kern_flags,
909 unsigned long *set_kern_flags)
910{
911 int rc = 0;
912 const struct superblock_security_struct *oldsbsec =
913 selinux_superblock(oldsb);
914 struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
915
916 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
917 int set_context = (oldsbsec->flags & CONTEXT_MNT);
918 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
919
920 /*
921 * Specifying internal flags without providing a place to
922 * place the results is not allowed.
923 */
924 if (kern_flags && !set_kern_flags)
925 return -EINVAL;
926
927 mutex_lock(&newsbsec->lock);
928
929 /*
930 * if the parent was able to be mounted it clearly had no special lsm
931 * mount options. thus we can safely deal with this superblock later
932 */
933 if (!selinux_initialized()) {
934 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
935 newsbsec->flags |= SE_SBNATIVE;
936 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
937 }
938 goto out;
939 }
940
941 /* how can we clone if the old one wasn't set up?? */
942 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
943
944 /* if fs is reusing a sb, make sure that the contexts match */
945 if (newsbsec->flags & SE_SBINITIALIZED) {
946 mutex_unlock(&newsbsec->lock);
947 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
948 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
949 return selinux_cmp_sb_context(oldsb, newsb);
950 }
951
952 newsbsec->flags = oldsbsec->flags;
953
954 newsbsec->sid = oldsbsec->sid;
955 newsbsec->def_sid = oldsbsec->def_sid;
956 newsbsec->behavior = oldsbsec->behavior;
957
958 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
959 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
960 rc = security_fs_use(newsb);
961 if (rc)
962 goto out;
963 }
964
965 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
966 newsbsec->behavior = SECURITY_FS_USE_NATIVE;
967 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
968 }
969
970 if (set_context) {
971 u32 sid = oldsbsec->mntpoint_sid;
972
973 if (!set_fscontext)
974 newsbsec->sid = sid;
975 if (!set_rootcontext) {
976 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
977 newisec->sid = sid;
978 }
979 newsbsec->mntpoint_sid = sid;
980 }
981 if (set_rootcontext) {
982 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
983 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
984
985 newisec->sid = oldisec->sid;
986 }
987
988 sb_finish_set_opts(newsb);
989out:
990 mutex_unlock(&newsbsec->lock);
991 return rc;
992}
993
994/*
995 * NOTE: the caller is responsible for freeing the memory even if on error.
996 */
997static int selinux_add_opt(int token, const char *s, void **mnt_opts)
998{
999 struct selinux_mnt_opts *opts = *mnt_opts;
1000 u32 *dst_sid;
1001 int rc;
1002
1003 if (token == Opt_seclabel)
1004 /* eaten and completely ignored */
1005 return 0;
1006 if (!s)
1007 return -EINVAL;
1008
1009 if (!selinux_initialized()) {
1010 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1011 return -EINVAL;
1012 }
1013
1014 if (!opts) {
1015 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1016 if (!opts)
1017 return -ENOMEM;
1018 *mnt_opts = opts;
1019 }
1020
1021 switch (token) {
1022 case Opt_context:
1023 if (opts->context_sid || opts->defcontext_sid)
1024 goto err;
1025 dst_sid = &opts->context_sid;
1026 break;
1027 case Opt_fscontext:
1028 if (opts->fscontext_sid)
1029 goto err;
1030 dst_sid = &opts->fscontext_sid;
1031 break;
1032 case Opt_rootcontext:
1033 if (opts->rootcontext_sid)
1034 goto err;
1035 dst_sid = &opts->rootcontext_sid;
1036 break;
1037 case Opt_defcontext:
1038 if (opts->context_sid || opts->defcontext_sid)
1039 goto err;
1040 dst_sid = &opts->defcontext_sid;
1041 break;
1042 default:
1043 WARN_ON(1);
1044 return -EINVAL;
1045 }
1046 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1047 if (rc)
1048 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1049 s, rc);
1050 return rc;
1051
1052err:
1053 pr_warn(SEL_MOUNT_FAIL_MSG);
1054 return -EINVAL;
1055}
1056
1057static int show_sid(struct seq_file *m, u32 sid)
1058{
1059 char *context = NULL;
1060 u32 len;
1061 int rc;
1062
1063 rc = security_sid_to_context(sid, &context, &len);
1064 if (!rc) {
1065 bool has_comma = strchr(context, ',');
1066
1067 seq_putc(m, '=');
1068 if (has_comma)
1069 seq_putc(m, '\"');
1070 seq_escape(m, context, "\"\n\\");
1071 if (has_comma)
1072 seq_putc(m, '\"');
1073 }
1074 kfree(context);
1075 return rc;
1076}
1077
1078static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1079{
1080 struct superblock_security_struct *sbsec = selinux_superblock(sb);
1081 int rc;
1082
1083 if (!(sbsec->flags & SE_SBINITIALIZED))
1084 return 0;
1085
1086 if (!selinux_initialized())
1087 return 0;
1088
1089 if (sbsec->flags & FSCONTEXT_MNT) {
1090 seq_putc(m, ',');
1091 seq_puts(m, FSCONTEXT_STR);
1092 rc = show_sid(m, sbsec->sid);
1093 if (rc)
1094 return rc;
1095 }
1096 if (sbsec->flags & CONTEXT_MNT) {
1097 seq_putc(m, ',');
1098 seq_puts(m, CONTEXT_STR);
1099 rc = show_sid(m, sbsec->mntpoint_sid);
1100 if (rc)
1101 return rc;
1102 }
1103 if (sbsec->flags & DEFCONTEXT_MNT) {
1104 seq_putc(m, ',');
1105 seq_puts(m, DEFCONTEXT_STR);
1106 rc = show_sid(m, sbsec->def_sid);
1107 if (rc)
1108 return rc;
1109 }
1110 if (sbsec->flags & ROOTCONTEXT_MNT) {
1111 struct dentry *root = sb->s_root;
1112 struct inode_security_struct *isec = backing_inode_security(root);
1113 seq_putc(m, ',');
1114 seq_puts(m, ROOTCONTEXT_STR);
1115 rc = show_sid(m, isec->sid);
1116 if (rc)
1117 return rc;
1118 }
1119 if (sbsec->flags & SBLABEL_MNT) {
1120 seq_putc(m, ',');
1121 seq_puts(m, SECLABEL_STR);
1122 }
1123 return 0;
1124}
1125
1126static inline u16 inode_mode_to_security_class(umode_t mode)
1127{
1128 switch (mode & S_IFMT) {
1129 case S_IFSOCK:
1130 return SECCLASS_SOCK_FILE;
1131 case S_IFLNK:
1132 return SECCLASS_LNK_FILE;
1133 case S_IFREG:
1134 return SECCLASS_FILE;
1135 case S_IFBLK:
1136 return SECCLASS_BLK_FILE;
1137 case S_IFDIR:
1138 return SECCLASS_DIR;
1139 case S_IFCHR:
1140 return SECCLASS_CHR_FILE;
1141 case S_IFIFO:
1142 return SECCLASS_FIFO_FILE;
1143
1144 }
1145
1146 return SECCLASS_FILE;
1147}
1148
1149static inline int default_protocol_stream(int protocol)
1150{
1151 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1152 protocol == IPPROTO_MPTCP);
1153}
1154
1155static inline int default_protocol_dgram(int protocol)
1156{
1157 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1158}
1159
1160static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1161{
1162 bool extsockclass = selinux_policycap_extsockclass();
1163
1164 switch (family) {
1165 case PF_UNIX:
1166 switch (type) {
1167 case SOCK_STREAM:
1168 case SOCK_SEQPACKET:
1169 return SECCLASS_UNIX_STREAM_SOCKET;
1170 case SOCK_DGRAM:
1171 case SOCK_RAW:
1172 return SECCLASS_UNIX_DGRAM_SOCKET;
1173 }
1174 break;
1175 case PF_INET:
1176 case PF_INET6:
1177 switch (type) {
1178 case SOCK_STREAM:
1179 case SOCK_SEQPACKET:
1180 if (default_protocol_stream(protocol))
1181 return SECCLASS_TCP_SOCKET;
1182 else if (extsockclass && protocol == IPPROTO_SCTP)
1183 return SECCLASS_SCTP_SOCKET;
1184 else
1185 return SECCLASS_RAWIP_SOCKET;
1186 case SOCK_DGRAM:
1187 if (default_protocol_dgram(protocol))
1188 return SECCLASS_UDP_SOCKET;
1189 else if (extsockclass && (protocol == IPPROTO_ICMP ||
1190 protocol == IPPROTO_ICMPV6))
1191 return SECCLASS_ICMP_SOCKET;
1192 else
1193 return SECCLASS_RAWIP_SOCKET;
1194 case SOCK_DCCP:
1195 return SECCLASS_DCCP_SOCKET;
1196 default:
1197 return SECCLASS_RAWIP_SOCKET;
1198 }
1199 break;
1200 case PF_NETLINK:
1201 switch (protocol) {
1202 case NETLINK_ROUTE:
1203 return SECCLASS_NETLINK_ROUTE_SOCKET;
1204 case NETLINK_SOCK_DIAG:
1205 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1206 case NETLINK_NFLOG:
1207 return SECCLASS_NETLINK_NFLOG_SOCKET;
1208 case NETLINK_XFRM:
1209 return SECCLASS_NETLINK_XFRM_SOCKET;
1210 case NETLINK_SELINUX:
1211 return SECCLASS_NETLINK_SELINUX_SOCKET;
1212 case NETLINK_ISCSI:
1213 return SECCLASS_NETLINK_ISCSI_SOCKET;
1214 case NETLINK_AUDIT:
1215 return SECCLASS_NETLINK_AUDIT_SOCKET;
1216 case NETLINK_FIB_LOOKUP:
1217 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1218 case NETLINK_CONNECTOR:
1219 return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1220 case NETLINK_NETFILTER:
1221 return SECCLASS_NETLINK_NETFILTER_SOCKET;
1222 case NETLINK_DNRTMSG:
1223 return SECCLASS_NETLINK_DNRT_SOCKET;
1224 case NETLINK_KOBJECT_UEVENT:
1225 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1226 case NETLINK_GENERIC:
1227 return SECCLASS_NETLINK_GENERIC_SOCKET;
1228 case NETLINK_SCSITRANSPORT:
1229 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1230 case NETLINK_RDMA:
1231 return SECCLASS_NETLINK_RDMA_SOCKET;
1232 case NETLINK_CRYPTO:
1233 return SECCLASS_NETLINK_CRYPTO_SOCKET;
1234 default:
1235 return SECCLASS_NETLINK_SOCKET;
1236 }
1237 case PF_PACKET:
1238 return SECCLASS_PACKET_SOCKET;
1239 case PF_KEY:
1240 return SECCLASS_KEY_SOCKET;
1241 case PF_APPLETALK:
1242 return SECCLASS_APPLETALK_SOCKET;
1243 }
1244
1245 if (extsockclass) {
1246 switch (family) {
1247 case PF_AX25:
1248 return SECCLASS_AX25_SOCKET;
1249 case PF_IPX:
1250 return SECCLASS_IPX_SOCKET;
1251 case PF_NETROM:
1252 return SECCLASS_NETROM_SOCKET;
1253 case PF_ATMPVC:
1254 return SECCLASS_ATMPVC_SOCKET;
1255 case PF_X25:
1256 return SECCLASS_X25_SOCKET;
1257 case PF_ROSE:
1258 return SECCLASS_ROSE_SOCKET;
1259 case PF_DECnet:
1260 return SECCLASS_DECNET_SOCKET;
1261 case PF_ATMSVC:
1262 return SECCLASS_ATMSVC_SOCKET;
1263 case PF_RDS:
1264 return SECCLASS_RDS_SOCKET;
1265 case PF_IRDA:
1266 return SECCLASS_IRDA_SOCKET;
1267 case PF_PPPOX:
1268 return SECCLASS_PPPOX_SOCKET;
1269 case PF_LLC:
1270 return SECCLASS_LLC_SOCKET;
1271 case PF_CAN:
1272 return SECCLASS_CAN_SOCKET;
1273 case PF_TIPC:
1274 return SECCLASS_TIPC_SOCKET;
1275 case PF_BLUETOOTH:
1276 return SECCLASS_BLUETOOTH_SOCKET;
1277 case PF_IUCV:
1278 return SECCLASS_IUCV_SOCKET;
1279 case PF_RXRPC:
1280 return SECCLASS_RXRPC_SOCKET;
1281 case PF_ISDN:
1282 return SECCLASS_ISDN_SOCKET;
1283 case PF_PHONET:
1284 return SECCLASS_PHONET_SOCKET;
1285 case PF_IEEE802154:
1286 return SECCLASS_IEEE802154_SOCKET;
1287 case PF_CAIF:
1288 return SECCLASS_CAIF_SOCKET;
1289 case PF_ALG:
1290 return SECCLASS_ALG_SOCKET;
1291 case PF_NFC:
1292 return SECCLASS_NFC_SOCKET;
1293 case PF_VSOCK:
1294 return SECCLASS_VSOCK_SOCKET;
1295 case PF_KCM:
1296 return SECCLASS_KCM_SOCKET;
1297 case PF_QIPCRTR:
1298 return SECCLASS_QIPCRTR_SOCKET;
1299 case PF_SMC:
1300 return SECCLASS_SMC_SOCKET;
1301 case PF_XDP:
1302 return SECCLASS_XDP_SOCKET;
1303 case PF_MCTP:
1304 return SECCLASS_MCTP_SOCKET;
1305#if PF_MAX > 46
1306#error New address family defined, please update this function.
1307#endif
1308 }
1309 }
1310
1311 return SECCLASS_SOCKET;
1312}
1313
1314static int selinux_genfs_get_sid(struct dentry *dentry,
1315 u16 tclass,
1316 u16 flags,
1317 u32 *sid)
1318{
1319 int rc;
1320 struct super_block *sb = dentry->d_sb;
1321 char *buffer, *path;
1322
1323 buffer = (char *)__get_free_page(GFP_KERNEL);
1324 if (!buffer)
1325 return -ENOMEM;
1326
1327 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1328 if (IS_ERR(path))
1329 rc = PTR_ERR(path);
1330 else {
1331 if (flags & SE_SBPROC) {
1332 /* each process gets a /proc/PID/ entry. Strip off the
1333 * PID part to get a valid selinux labeling.
1334 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1335 while (path[1] >= '0' && path[1] <= '9') {
1336 path[1] = '/';
1337 path++;
1338 }
1339 }
1340 rc = security_genfs_sid(sb->s_type->name,
1341 path, tclass, sid);
1342 if (rc == -ENOENT) {
1343 /* No match in policy, mark as unlabeled. */
1344 *sid = SECINITSID_UNLABELED;
1345 rc = 0;
1346 }
1347 }
1348 free_page((unsigned long)buffer);
1349 return rc;
1350}
1351
1352static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1353 u32 def_sid, u32 *sid)
1354{
1355#define INITCONTEXTLEN 255
1356 char *context;
1357 unsigned int len;
1358 int rc;
1359
1360 len = INITCONTEXTLEN;
1361 context = kmalloc(len + 1, GFP_NOFS);
1362 if (!context)
1363 return -ENOMEM;
1364
1365 context[len] = '\0';
1366 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1367 if (rc == -ERANGE) {
1368 kfree(context);
1369
1370 /* Need a larger buffer. Query for the right size. */
1371 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1372 if (rc < 0)
1373 return rc;
1374
1375 len = rc;
1376 context = kmalloc(len + 1, GFP_NOFS);
1377 if (!context)
1378 return -ENOMEM;
1379
1380 context[len] = '\0';
1381 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1382 context, len);
1383 }
1384 if (rc < 0) {
1385 kfree(context);
1386 if (rc != -ENODATA) {
1387 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n",
1388 __func__, -rc, inode->i_sb->s_id, inode->i_ino);
1389 return rc;
1390 }
1391 *sid = def_sid;
1392 return 0;
1393 }
1394
1395 rc = security_context_to_sid_default(context, rc, sid,
1396 def_sid, GFP_NOFS);
1397 if (rc) {
1398 char *dev = inode->i_sb->s_id;
1399 unsigned long ino = inode->i_ino;
1400
1401 if (rc == -EINVAL) {
1402 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n",
1403 ino, dev, context);
1404 } else {
1405 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1406 __func__, context, -rc, dev, ino);
1407 }
1408 }
1409 kfree(context);
1410 return 0;
1411}
1412
1413/* The inode's security attributes must be initialized before first use. */
1414static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1415{
1416 struct superblock_security_struct *sbsec = NULL;
1417 struct inode_security_struct *isec = selinux_inode(inode);
1418 u32 task_sid, sid = 0;
1419 u16 sclass;
1420 struct dentry *dentry;
1421 int rc = 0;
1422
1423 if (isec->initialized == LABEL_INITIALIZED)
1424 return 0;
1425
1426 spin_lock(&isec->lock);
1427 if (isec->initialized == LABEL_INITIALIZED)
1428 goto out_unlock;
1429
1430 if (isec->sclass == SECCLASS_FILE)
1431 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1432
1433 sbsec = selinux_superblock(inode->i_sb);
1434 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1435 /* Defer initialization until selinux_complete_init,
1436 after the initial policy is loaded and the security
1437 server is ready to handle calls. */
1438 spin_lock(&sbsec->isec_lock);
1439 if (list_empty(&isec->list))
1440 list_add(&isec->list, &sbsec->isec_head);
1441 spin_unlock(&sbsec->isec_lock);
1442 goto out_unlock;
1443 }
1444
1445 sclass = isec->sclass;
1446 task_sid = isec->task_sid;
1447 sid = isec->sid;
1448 isec->initialized = LABEL_PENDING;
1449 spin_unlock(&isec->lock);
1450
1451 switch (sbsec->behavior) {
1452 /*
1453 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1454 * via xattr when called from delayed_superblock_init().
1455 */
1456 case SECURITY_FS_USE_NATIVE:
1457 case SECURITY_FS_USE_XATTR:
1458 if (!(inode->i_opflags & IOP_XATTR)) {
1459 sid = sbsec->def_sid;
1460 break;
1461 }
1462 /* Need a dentry, since the xattr API requires one.
1463 Life would be simpler if we could just pass the inode. */
1464 if (opt_dentry) {
1465 /* Called from d_instantiate or d_splice_alias. */
1466 dentry = dget(opt_dentry);
1467 } else {
1468 /*
1469 * Called from selinux_complete_init, try to find a dentry.
1470 * Some filesystems really want a connected one, so try
1471 * that first. We could split SECURITY_FS_USE_XATTR in
1472 * two, depending upon that...
1473 */
1474 dentry = d_find_alias(inode);
1475 if (!dentry)
1476 dentry = d_find_any_alias(inode);
1477 }
1478 if (!dentry) {
1479 /*
1480 * this is can be hit on boot when a file is accessed
1481 * before the policy is loaded. When we load policy we
1482 * may find inodes that have no dentry on the
1483 * sbsec->isec_head list. No reason to complain as these
1484 * will get fixed up the next time we go through
1485 * inode_doinit with a dentry, before these inodes could
1486 * be used again by userspace.
1487 */
1488 goto out_invalid;
1489 }
1490
1491 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1492 &sid);
1493 dput(dentry);
1494 if (rc)
1495 goto out;
1496 break;
1497 case SECURITY_FS_USE_TASK:
1498 sid = task_sid;
1499 break;
1500 case SECURITY_FS_USE_TRANS:
1501 /* Default to the fs SID. */
1502 sid = sbsec->sid;
1503
1504 /* Try to obtain a transition SID. */
1505 rc = security_transition_sid(task_sid, sid,
1506 sclass, NULL, &sid);
1507 if (rc)
1508 goto out;
1509 break;
1510 case SECURITY_FS_USE_MNTPOINT:
1511 sid = sbsec->mntpoint_sid;
1512 break;
1513 default:
1514 /* Default to the fs superblock SID. */
1515 sid = sbsec->sid;
1516
1517 if ((sbsec->flags & SE_SBGENFS) &&
1518 (!S_ISLNK(inode->i_mode) ||
1519 selinux_policycap_genfs_seclabel_symlinks())) {
1520 /* We must have a dentry to determine the label on
1521 * procfs inodes */
1522 if (opt_dentry) {
1523 /* Called from d_instantiate or
1524 * d_splice_alias. */
1525 dentry = dget(opt_dentry);
1526 } else {
1527 /* Called from selinux_complete_init, try to
1528 * find a dentry. Some filesystems really want
1529 * a connected one, so try that first.
1530 */
1531 dentry = d_find_alias(inode);
1532 if (!dentry)
1533 dentry = d_find_any_alias(inode);
1534 }
1535 /*
1536 * This can be hit on boot when a file is accessed
1537 * before the policy is loaded. When we load policy we
1538 * may find inodes that have no dentry on the
1539 * sbsec->isec_head list. No reason to complain as
1540 * these will get fixed up the next time we go through
1541 * inode_doinit() with a dentry, before these inodes
1542 * could be used again by userspace.
1543 */
1544 if (!dentry)
1545 goto out_invalid;
1546 rc = selinux_genfs_get_sid(dentry, sclass,
1547 sbsec->flags, &sid);
1548 if (rc) {
1549 dput(dentry);
1550 goto out;
1551 }
1552
1553 if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1554 (inode->i_opflags & IOP_XATTR)) {
1555 rc = inode_doinit_use_xattr(inode, dentry,
1556 sid, &sid);
1557 if (rc) {
1558 dput(dentry);
1559 goto out;
1560 }
1561 }
1562 dput(dentry);
1563 }
1564 break;
1565 }
1566
1567out:
1568 spin_lock(&isec->lock);
1569 if (isec->initialized == LABEL_PENDING) {
1570 if (rc) {
1571 isec->initialized = LABEL_INVALID;
1572 goto out_unlock;
1573 }
1574 isec->initialized = LABEL_INITIALIZED;
1575 isec->sid = sid;
1576 }
1577
1578out_unlock:
1579 spin_unlock(&isec->lock);
1580 return rc;
1581
1582out_invalid:
1583 spin_lock(&isec->lock);
1584 if (isec->initialized == LABEL_PENDING) {
1585 isec->initialized = LABEL_INVALID;
1586 isec->sid = sid;
1587 }
1588 spin_unlock(&isec->lock);
1589 return 0;
1590}
1591
1592/* Convert a Linux signal to an access vector. */
1593static inline u32 signal_to_av(int sig)
1594{
1595 u32 perm = 0;
1596
1597 switch (sig) {
1598 case SIGCHLD:
1599 /* Commonly granted from child to parent. */
1600 perm = PROCESS__SIGCHLD;
1601 break;
1602 case SIGKILL:
1603 /* Cannot be caught or ignored */
1604 perm = PROCESS__SIGKILL;
1605 break;
1606 case SIGSTOP:
1607 /* Cannot be caught or ignored */
1608 perm = PROCESS__SIGSTOP;
1609 break;
1610 default:
1611 /* All other signals. */
1612 perm = PROCESS__SIGNAL;
1613 break;
1614 }
1615
1616 return perm;
1617}
1618
1619#if CAP_LAST_CAP > 63
1620#error Fix SELinux to handle capabilities > 63.
1621#endif
1622
1623/* Check whether a task is allowed to use a capability. */
1624static int cred_has_capability(const struct cred *cred,
1625 int cap, unsigned int opts, bool initns)
1626{
1627 struct common_audit_data ad;
1628 struct av_decision avd;
1629 u16 sclass;
1630 u32 sid = cred_sid(cred);
1631 u32 av = CAP_TO_MASK(cap);
1632 int rc;
1633
1634 ad.type = LSM_AUDIT_DATA_CAP;
1635 ad.u.cap = cap;
1636
1637 switch (CAP_TO_INDEX(cap)) {
1638 case 0:
1639 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1640 break;
1641 case 1:
1642 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1643 break;
1644 default:
1645 pr_err("SELinux: out of range capability %d\n", cap);
1646 BUG();
1647 return -EINVAL;
1648 }
1649
1650 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1651 if (!(opts & CAP_OPT_NOAUDIT)) {
1652 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1653 if (rc2)
1654 return rc2;
1655 }
1656 return rc;
1657}
1658
1659/* Check whether a task has a particular permission to an inode.
1660 The 'adp' parameter is optional and allows other audit
1661 data to be passed (e.g. the dentry). */
1662static int inode_has_perm(const struct cred *cred,
1663 struct inode *inode,
1664 u32 perms,
1665 struct common_audit_data *adp)
1666{
1667 struct inode_security_struct *isec;
1668 u32 sid;
1669
1670 if (unlikely(IS_PRIVATE(inode)))
1671 return 0;
1672
1673 sid = cred_sid(cred);
1674 isec = selinux_inode(inode);
1675
1676 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1677}
1678
1679/* Same as inode_has_perm, but pass explicit audit data containing
1680 the dentry to help the auditing code to more easily generate the
1681 pathname if needed. */
1682static inline int dentry_has_perm(const struct cred *cred,
1683 struct dentry *dentry,
1684 u32 av)
1685{
1686 struct inode *inode = d_backing_inode(dentry);
1687 struct common_audit_data ad;
1688
1689 ad.type = LSM_AUDIT_DATA_DENTRY;
1690 ad.u.dentry = dentry;
1691 __inode_security_revalidate(inode, dentry, true);
1692 return inode_has_perm(cred, inode, av, &ad);
1693}
1694
1695/* Same as inode_has_perm, but pass explicit audit data containing
1696 the path to help the auditing code to more easily generate the
1697 pathname if needed. */
1698static inline int path_has_perm(const struct cred *cred,
1699 const struct path *path,
1700 u32 av)
1701{
1702 struct inode *inode = d_backing_inode(path->dentry);
1703 struct common_audit_data ad;
1704
1705 ad.type = LSM_AUDIT_DATA_PATH;
1706 ad.u.path = *path;
1707 __inode_security_revalidate(inode, path->dentry, true);
1708 return inode_has_perm(cred, inode, av, &ad);
1709}
1710
1711/* Same as path_has_perm, but uses the inode from the file struct. */
1712static inline int file_path_has_perm(const struct cred *cred,
1713 struct file *file,
1714 u32 av)
1715{
1716 struct common_audit_data ad;
1717
1718 ad.type = LSM_AUDIT_DATA_FILE;
1719 ad.u.file = file;
1720 return inode_has_perm(cred, file_inode(file), av, &ad);
1721}
1722
1723#ifdef CONFIG_BPF_SYSCALL
1724static int bpf_fd_pass(const struct file *file, u32 sid);
1725#endif
1726
1727/* Check whether a task can use an open file descriptor to
1728 access an inode in a given way. Check access to the
1729 descriptor itself, and then use dentry_has_perm to
1730 check a particular permission to the file.
1731 Access to the descriptor is implicitly granted if it
1732 has the same SID as the process. If av is zero, then
1733 access to the file is not checked, e.g. for cases
1734 where only the descriptor is affected like seek. */
1735static int file_has_perm(const struct cred *cred,
1736 struct file *file,
1737 u32 av)
1738{
1739 struct file_security_struct *fsec = selinux_file(file);
1740 struct inode *inode = file_inode(file);
1741 struct common_audit_data ad;
1742 u32 sid = cred_sid(cred);
1743 int rc;
1744
1745 ad.type = LSM_AUDIT_DATA_FILE;
1746 ad.u.file = file;
1747
1748 if (sid != fsec->sid) {
1749 rc = avc_has_perm(sid, fsec->sid,
1750 SECCLASS_FD,
1751 FD__USE,
1752 &ad);
1753 if (rc)
1754 goto out;
1755 }
1756
1757#ifdef CONFIG_BPF_SYSCALL
1758 rc = bpf_fd_pass(file, cred_sid(cred));
1759 if (rc)
1760 return rc;
1761#endif
1762
1763 /* av is zero if only checking access to the descriptor. */
1764 rc = 0;
1765 if (av)
1766 rc = inode_has_perm(cred, inode, av, &ad);
1767
1768out:
1769 return rc;
1770}
1771
1772/*
1773 * Determine the label for an inode that might be unioned.
1774 */
1775static int
1776selinux_determine_inode_label(const struct task_security_struct *tsec,
1777 struct inode *dir,
1778 const struct qstr *name, u16 tclass,
1779 u32 *_new_isid)
1780{
1781 const struct superblock_security_struct *sbsec =
1782 selinux_superblock(dir->i_sb);
1783
1784 if ((sbsec->flags & SE_SBINITIALIZED) &&
1785 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1786 *_new_isid = sbsec->mntpoint_sid;
1787 } else if ((sbsec->flags & SBLABEL_MNT) &&
1788 tsec->create_sid) {
1789 *_new_isid = tsec->create_sid;
1790 } else {
1791 const struct inode_security_struct *dsec = inode_security(dir);
1792 return security_transition_sid(tsec->sid,
1793 dsec->sid, tclass,
1794 name, _new_isid);
1795 }
1796
1797 return 0;
1798}
1799
1800/* Check whether a task can create a file. */
1801static int may_create(struct inode *dir,
1802 struct dentry *dentry,
1803 u16 tclass)
1804{
1805 const struct task_security_struct *tsec = selinux_cred(current_cred());
1806 struct inode_security_struct *dsec;
1807 struct superblock_security_struct *sbsec;
1808 u32 sid, newsid;
1809 struct common_audit_data ad;
1810 int rc;
1811
1812 dsec = inode_security(dir);
1813 sbsec = selinux_superblock(dir->i_sb);
1814
1815 sid = tsec->sid;
1816
1817 ad.type = LSM_AUDIT_DATA_DENTRY;
1818 ad.u.dentry = dentry;
1819
1820 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1821 DIR__ADD_NAME | DIR__SEARCH,
1822 &ad);
1823 if (rc)
1824 return rc;
1825
1826 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1827 &newsid);
1828 if (rc)
1829 return rc;
1830
1831 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1832 if (rc)
1833 return rc;
1834
1835 return avc_has_perm(newsid, sbsec->sid,
1836 SECCLASS_FILESYSTEM,
1837 FILESYSTEM__ASSOCIATE, &ad);
1838}
1839
1840#define MAY_LINK 0
1841#define MAY_UNLINK 1
1842#define MAY_RMDIR 2
1843
1844/* Check whether a task can link, unlink, or rmdir a file/directory. */
1845static int may_link(struct inode *dir,
1846 struct dentry *dentry,
1847 int kind)
1848
1849{
1850 struct inode_security_struct *dsec, *isec;
1851 struct common_audit_data ad;
1852 u32 sid = current_sid();
1853 u32 av;
1854 int rc;
1855
1856 dsec = inode_security(dir);
1857 isec = backing_inode_security(dentry);
1858
1859 ad.type = LSM_AUDIT_DATA_DENTRY;
1860 ad.u.dentry = dentry;
1861
1862 av = DIR__SEARCH;
1863 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1864 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1865 if (rc)
1866 return rc;
1867
1868 switch (kind) {
1869 case MAY_LINK:
1870 av = FILE__LINK;
1871 break;
1872 case MAY_UNLINK:
1873 av = FILE__UNLINK;
1874 break;
1875 case MAY_RMDIR:
1876 av = DIR__RMDIR;
1877 break;
1878 default:
1879 pr_warn("SELinux: %s: unrecognized kind %d\n",
1880 __func__, kind);
1881 return 0;
1882 }
1883
1884 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1885 return rc;
1886}
1887
1888static inline int may_rename(struct inode *old_dir,
1889 struct dentry *old_dentry,
1890 struct inode *new_dir,
1891 struct dentry *new_dentry)
1892{
1893 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1894 struct common_audit_data ad;
1895 u32 sid = current_sid();
1896 u32 av;
1897 int old_is_dir, new_is_dir;
1898 int rc;
1899
1900 old_dsec = inode_security(old_dir);
1901 old_isec = backing_inode_security(old_dentry);
1902 old_is_dir = d_is_dir(old_dentry);
1903 new_dsec = inode_security(new_dir);
1904
1905 ad.type = LSM_AUDIT_DATA_DENTRY;
1906
1907 ad.u.dentry = old_dentry;
1908 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1909 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1910 if (rc)
1911 return rc;
1912 rc = avc_has_perm(sid, old_isec->sid,
1913 old_isec->sclass, FILE__RENAME, &ad);
1914 if (rc)
1915 return rc;
1916 if (old_is_dir && new_dir != old_dir) {
1917 rc = avc_has_perm(sid, old_isec->sid,
1918 old_isec->sclass, DIR__REPARENT, &ad);
1919 if (rc)
1920 return rc;
1921 }
1922
1923 ad.u.dentry = new_dentry;
1924 av = DIR__ADD_NAME | DIR__SEARCH;
1925 if (d_is_positive(new_dentry))
1926 av |= DIR__REMOVE_NAME;
1927 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1928 if (rc)
1929 return rc;
1930 if (d_is_positive(new_dentry)) {
1931 new_isec = backing_inode_security(new_dentry);
1932 new_is_dir = d_is_dir(new_dentry);
1933 rc = avc_has_perm(sid, new_isec->sid,
1934 new_isec->sclass,
1935 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1936 if (rc)
1937 return rc;
1938 }
1939
1940 return 0;
1941}
1942
1943/* Check whether a task can perform a filesystem operation. */
1944static int superblock_has_perm(const struct cred *cred,
1945 const struct super_block *sb,
1946 u32 perms,
1947 struct common_audit_data *ad)
1948{
1949 struct superblock_security_struct *sbsec;
1950 u32 sid = cred_sid(cred);
1951
1952 sbsec = selinux_superblock(sb);
1953 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1954}
1955
1956/* Convert a Linux mode and permission mask to an access vector. */
1957static inline u32 file_mask_to_av(int mode, int mask)
1958{
1959 u32 av = 0;
1960
1961 if (!S_ISDIR(mode)) {
1962 if (mask & MAY_EXEC)
1963 av |= FILE__EXECUTE;
1964 if (mask & MAY_READ)
1965 av |= FILE__READ;
1966
1967 if (mask & MAY_APPEND)
1968 av |= FILE__APPEND;
1969 else if (mask & MAY_WRITE)
1970 av |= FILE__WRITE;
1971
1972 } else {
1973 if (mask & MAY_EXEC)
1974 av |= DIR__SEARCH;
1975 if (mask & MAY_WRITE)
1976 av |= DIR__WRITE;
1977 if (mask & MAY_READ)
1978 av |= DIR__READ;
1979 }
1980
1981 return av;
1982}
1983
1984/* Convert a Linux file to an access vector. */
1985static inline u32 file_to_av(const struct file *file)
1986{
1987 u32 av = 0;
1988
1989 if (file->f_mode & FMODE_READ)
1990 av |= FILE__READ;
1991 if (file->f_mode & FMODE_WRITE) {
1992 if (file->f_flags & O_APPEND)
1993 av |= FILE__APPEND;
1994 else
1995 av |= FILE__WRITE;
1996 }
1997 if (!av) {
1998 /*
1999 * Special file opened with flags 3 for ioctl-only use.
2000 */
2001 av = FILE__IOCTL;
2002 }
2003
2004 return av;
2005}
2006
2007/*
2008 * Convert a file to an access vector and include the correct
2009 * open permission.
2010 */
2011static inline u32 open_file_to_av(struct file *file)
2012{
2013 u32 av = file_to_av(file);
2014 struct inode *inode = file_inode(file);
2015
2016 if (selinux_policycap_openperm() &&
2017 inode->i_sb->s_magic != SOCKFS_MAGIC)
2018 av |= FILE__OPEN;
2019
2020 return av;
2021}
2022
2023/* Hook functions begin here. */
2024
2025static int selinux_binder_set_context_mgr(const struct cred *mgr)
2026{
2027 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2028 BINDER__SET_CONTEXT_MGR, NULL);
2029}
2030
2031static int selinux_binder_transaction(const struct cred *from,
2032 const struct cred *to)
2033{
2034 u32 mysid = current_sid();
2035 u32 fromsid = cred_sid(from);
2036 u32 tosid = cred_sid(to);
2037 int rc;
2038
2039 if (mysid != fromsid) {
2040 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2041 BINDER__IMPERSONATE, NULL);
2042 if (rc)
2043 return rc;
2044 }
2045
2046 return avc_has_perm(fromsid, tosid,
2047 SECCLASS_BINDER, BINDER__CALL, NULL);
2048}
2049
2050static int selinux_binder_transfer_binder(const struct cred *from,
2051 const struct cred *to)
2052{
2053 return avc_has_perm(cred_sid(from), cred_sid(to),
2054 SECCLASS_BINDER, BINDER__TRANSFER,
2055 NULL);
2056}
2057
2058static int selinux_binder_transfer_file(const struct cred *from,
2059 const struct cred *to,
2060 const struct file *file)
2061{
2062 u32 sid = cred_sid(to);
2063 struct file_security_struct *fsec = selinux_file(file);
2064 struct dentry *dentry = file->f_path.dentry;
2065 struct inode_security_struct *isec;
2066 struct common_audit_data ad;
2067 int rc;
2068
2069 ad.type = LSM_AUDIT_DATA_PATH;
2070 ad.u.path = file->f_path;
2071
2072 if (sid != fsec->sid) {
2073 rc = avc_has_perm(sid, fsec->sid,
2074 SECCLASS_FD,
2075 FD__USE,
2076 &ad);
2077 if (rc)
2078 return rc;
2079 }
2080
2081#ifdef CONFIG_BPF_SYSCALL
2082 rc = bpf_fd_pass(file, sid);
2083 if (rc)
2084 return rc;
2085#endif
2086
2087 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2088 return 0;
2089
2090 isec = backing_inode_security(dentry);
2091 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2092 &ad);
2093}
2094
2095static int selinux_ptrace_access_check(struct task_struct *child,
2096 unsigned int mode)
2097{
2098 u32 sid = current_sid();
2099 u32 csid = task_sid_obj(child);
2100
2101 if (mode & PTRACE_MODE_READ)
2102 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2103 NULL);
2104
2105 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2106 NULL);
2107}
2108
2109static int selinux_ptrace_traceme(struct task_struct *parent)
2110{
2111 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2112 SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2113}
2114
2115static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2116 kernel_cap_t *inheritable, kernel_cap_t *permitted)
2117{
2118 return avc_has_perm(current_sid(), task_sid_obj(target),
2119 SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2120}
2121
2122static int selinux_capset(struct cred *new, const struct cred *old,
2123 const kernel_cap_t *effective,
2124 const kernel_cap_t *inheritable,
2125 const kernel_cap_t *permitted)
2126{
2127 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2128 PROCESS__SETCAP, NULL);
2129}
2130
2131/*
2132 * (This comment used to live with the selinux_task_setuid hook,
2133 * which was removed).
2134 *
2135 * Since setuid only affects the current process, and since the SELinux
2136 * controls are not based on the Linux identity attributes, SELinux does not
2137 * need to control this operation. However, SELinux does control the use of
2138 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2139 */
2140
2141static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2142 int cap, unsigned int opts)
2143{
2144 return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2145}
2146
2147static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2148{
2149 const struct cred *cred = current_cred();
2150 int rc = 0;
2151
2152 if (!sb)
2153 return 0;
2154
2155 switch (cmds) {
2156 case Q_SYNC:
2157 case Q_QUOTAON:
2158 case Q_QUOTAOFF:
2159 case Q_SETINFO:
2160 case Q_SETQUOTA:
2161 case Q_XQUOTAOFF:
2162 case Q_XQUOTAON:
2163 case Q_XSETQLIM:
2164 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2165 break;
2166 case Q_GETFMT:
2167 case Q_GETINFO:
2168 case Q_GETQUOTA:
2169 case Q_XGETQUOTA:
2170 case Q_XGETQSTAT:
2171 case Q_XGETQSTATV:
2172 case Q_XGETNEXTQUOTA:
2173 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2174 break;
2175 default:
2176 rc = 0; /* let the kernel handle invalid cmds */
2177 break;
2178 }
2179 return rc;
2180}
2181
2182static int selinux_quota_on(struct dentry *dentry)
2183{
2184 const struct cred *cred = current_cred();
2185
2186 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2187}
2188
2189static int selinux_syslog(int type)
2190{
2191 switch (type) {
2192 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
2193 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
2194 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2195 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2196 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
2197 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
2198 /* Set level of messages printed to console */
2199 case SYSLOG_ACTION_CONSOLE_LEVEL:
2200 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2202 NULL);
2203 }
2204 /* All other syslog types */
2205 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2206 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2207}
2208
2209/*
2210 * Check permission for allocating a new virtual mapping. Returns
2211 * 0 if permission is granted, negative error code if not.
2212 *
2213 * Do not audit the selinux permission check, as this is applied to all
2214 * processes that allocate mappings.
2215 */
2216static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2217{
2218 return cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2219 CAP_OPT_NOAUDIT, true);
2220}
2221
2222/* binprm security operations */
2223
2224static u32 ptrace_parent_sid(void)
2225{
2226 u32 sid = 0;
2227 struct task_struct *tracer;
2228
2229 rcu_read_lock();
2230 tracer = ptrace_parent(current);
2231 if (tracer)
2232 sid = task_sid_obj(tracer);
2233 rcu_read_unlock();
2234
2235 return sid;
2236}
2237
2238static int check_nnp_nosuid(const struct linux_binprm *bprm,
2239 const struct task_security_struct *old_tsec,
2240 const struct task_security_struct *new_tsec)
2241{
2242 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2243 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2244 int rc;
2245 u32 av;
2246
2247 if (!nnp && !nosuid)
2248 return 0; /* neither NNP nor nosuid */
2249
2250 if (new_tsec->sid == old_tsec->sid)
2251 return 0; /* No change in credentials */
2252
2253 /*
2254 * If the policy enables the nnp_nosuid_transition policy capability,
2255 * then we permit transitions under NNP or nosuid if the
2256 * policy allows the corresponding permission between
2257 * the old and new contexts.
2258 */
2259 if (selinux_policycap_nnp_nosuid_transition()) {
2260 av = 0;
2261 if (nnp)
2262 av |= PROCESS2__NNP_TRANSITION;
2263 if (nosuid)
2264 av |= PROCESS2__NOSUID_TRANSITION;
2265 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2266 SECCLASS_PROCESS2, av, NULL);
2267 if (!rc)
2268 return 0;
2269 }
2270
2271 /*
2272 * We also permit NNP or nosuid transitions to bounded SIDs,
2273 * i.e. SIDs that are guaranteed to only be allowed a subset
2274 * of the permissions of the current SID.
2275 */
2276 rc = security_bounded_transition(old_tsec->sid,
2277 new_tsec->sid);
2278 if (!rc)
2279 return 0;
2280
2281 /*
2282 * On failure, preserve the errno values for NNP vs nosuid.
2283 * NNP: Operation not permitted for caller.
2284 * nosuid: Permission denied to file.
2285 */
2286 if (nnp)
2287 return -EPERM;
2288 return -EACCES;
2289}
2290
2291static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2292{
2293 const struct task_security_struct *old_tsec;
2294 struct task_security_struct *new_tsec;
2295 struct inode_security_struct *isec;
2296 struct common_audit_data ad;
2297 struct inode *inode = file_inode(bprm->file);
2298 int rc;
2299
2300 /* SELinux context only depends on initial program or script and not
2301 * the script interpreter */
2302
2303 old_tsec = selinux_cred(current_cred());
2304 new_tsec = selinux_cred(bprm->cred);
2305 isec = inode_security(inode);
2306
2307 /* Default to the current task SID. */
2308 new_tsec->sid = old_tsec->sid;
2309 new_tsec->osid = old_tsec->sid;
2310
2311 /* Reset fs, key, and sock SIDs on execve. */
2312 new_tsec->create_sid = 0;
2313 new_tsec->keycreate_sid = 0;
2314 new_tsec->sockcreate_sid = 0;
2315
2316 /*
2317 * Before policy is loaded, label any task outside kernel space
2318 * as SECINITSID_INIT, so that any userspace tasks surviving from
2319 * early boot end up with a label different from SECINITSID_KERNEL
2320 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2321 */
2322 if (!selinux_initialized()) {
2323 new_tsec->sid = SECINITSID_INIT;
2324 /* also clear the exec_sid just in case */
2325 new_tsec->exec_sid = 0;
2326 return 0;
2327 }
2328
2329 if (old_tsec->exec_sid) {
2330 new_tsec->sid = old_tsec->exec_sid;
2331 /* Reset exec SID on execve. */
2332 new_tsec->exec_sid = 0;
2333
2334 /* Fail on NNP or nosuid if not an allowed transition. */
2335 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2336 if (rc)
2337 return rc;
2338 } else {
2339 /* Check for a default transition on this program. */
2340 rc = security_transition_sid(old_tsec->sid,
2341 isec->sid, SECCLASS_PROCESS, NULL,
2342 &new_tsec->sid);
2343 if (rc)
2344 return rc;
2345
2346 /*
2347 * Fallback to old SID on NNP or nosuid if not an allowed
2348 * transition.
2349 */
2350 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2351 if (rc)
2352 new_tsec->sid = old_tsec->sid;
2353 }
2354
2355 ad.type = LSM_AUDIT_DATA_FILE;
2356 ad.u.file = bprm->file;
2357
2358 if (new_tsec->sid == old_tsec->sid) {
2359 rc = avc_has_perm(old_tsec->sid, isec->sid,
2360 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2361 if (rc)
2362 return rc;
2363 } else {
2364 /* Check permissions for the transition. */
2365 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2366 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2367 if (rc)
2368 return rc;
2369
2370 rc = avc_has_perm(new_tsec->sid, isec->sid,
2371 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2372 if (rc)
2373 return rc;
2374
2375 /* Check for shared state */
2376 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2377 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2378 SECCLASS_PROCESS, PROCESS__SHARE,
2379 NULL);
2380 if (rc)
2381 return -EPERM;
2382 }
2383
2384 /* Make sure that anyone attempting to ptrace over a task that
2385 * changes its SID has the appropriate permit */
2386 if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2387 u32 ptsid = ptrace_parent_sid();
2388 if (ptsid != 0) {
2389 rc = avc_has_perm(ptsid, new_tsec->sid,
2390 SECCLASS_PROCESS,
2391 PROCESS__PTRACE, NULL);
2392 if (rc)
2393 return -EPERM;
2394 }
2395 }
2396
2397 /* Clear any possibly unsafe personality bits on exec: */
2398 bprm->per_clear |= PER_CLEAR_ON_SETID;
2399
2400 /* Enable secure mode for SIDs transitions unless
2401 the noatsecure permission is granted between
2402 the two SIDs, i.e. ahp returns 0. */
2403 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2404 SECCLASS_PROCESS, PROCESS__NOATSECURE,
2405 NULL);
2406 bprm->secureexec |= !!rc;
2407 }
2408
2409 return 0;
2410}
2411
2412static int match_file(const void *p, struct file *file, unsigned fd)
2413{
2414 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2415}
2416
2417/* Derived from fs/exec.c:flush_old_files. */
2418static inline void flush_unauthorized_files(const struct cred *cred,
2419 struct files_struct *files)
2420{
2421 struct file *file, *devnull = NULL;
2422 struct tty_struct *tty;
2423 int drop_tty = 0;
2424 unsigned n;
2425
2426 tty = get_current_tty();
2427 if (tty) {
2428 spin_lock(&tty->files_lock);
2429 if (!list_empty(&tty->tty_files)) {
2430 struct tty_file_private *file_priv;
2431
2432 /* Revalidate access to controlling tty.
2433 Use file_path_has_perm on the tty path directly
2434 rather than using file_has_perm, as this particular
2435 open file may belong to another process and we are
2436 only interested in the inode-based check here. */
2437 file_priv = list_first_entry(&tty->tty_files,
2438 struct tty_file_private, list);
2439 file = file_priv->file;
2440 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2441 drop_tty = 1;
2442 }
2443 spin_unlock(&tty->files_lock);
2444 tty_kref_put(tty);
2445 }
2446 /* Reset controlling tty. */
2447 if (drop_tty)
2448 no_tty();
2449
2450 /* Revalidate access to inherited open files. */
2451 n = iterate_fd(files, 0, match_file, cred);
2452 if (!n) /* none found? */
2453 return;
2454
2455 devnull = dentry_open(&selinux_null, O_RDWR, cred);
2456 if (IS_ERR(devnull))
2457 devnull = NULL;
2458 /* replace all the matching ones with this */
2459 do {
2460 replace_fd(n - 1, devnull, 0);
2461 } while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2462 if (devnull)
2463 fput(devnull);
2464}
2465
2466/*
2467 * Prepare a process for imminent new credential changes due to exec
2468 */
2469static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2470{
2471 struct task_security_struct *new_tsec;
2472 struct rlimit *rlim, *initrlim;
2473 int rc, i;
2474
2475 new_tsec = selinux_cred(bprm->cred);
2476 if (new_tsec->sid == new_tsec->osid)
2477 return;
2478
2479 /* Close files for which the new task SID is not authorized. */
2480 flush_unauthorized_files(bprm->cred, current->files);
2481
2482 /* Always clear parent death signal on SID transitions. */
2483 current->pdeath_signal = 0;
2484
2485 /* Check whether the new SID can inherit resource limits from the old
2486 * SID. If not, reset all soft limits to the lower of the current
2487 * task's hard limit and the init task's soft limit.
2488 *
2489 * Note that the setting of hard limits (even to lower them) can be
2490 * controlled by the setrlimit check. The inclusion of the init task's
2491 * soft limit into the computation is to avoid resetting soft limits
2492 * higher than the default soft limit for cases where the default is
2493 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2494 */
2495 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2496 PROCESS__RLIMITINH, NULL);
2497 if (rc) {
2498 /* protect against do_prlimit() */
2499 task_lock(current);
2500 for (i = 0; i < RLIM_NLIMITS; i++) {
2501 rlim = current->signal->rlim + i;
2502 initrlim = init_task.signal->rlim + i;
2503 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2504 }
2505 task_unlock(current);
2506 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2507 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2508 }
2509}
2510
2511/*
2512 * Clean up the process immediately after the installation of new credentials
2513 * due to exec
2514 */
2515static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2516{
2517 const struct task_security_struct *tsec = selinux_cred(current_cred());
2518 u32 osid, sid;
2519 int rc;
2520
2521 osid = tsec->osid;
2522 sid = tsec->sid;
2523
2524 if (sid == osid)
2525 return;
2526
2527 /* Check whether the new SID can inherit signal state from the old SID.
2528 * If not, clear itimers to avoid subsequent signal generation and
2529 * flush and unblock signals.
2530 *
2531 * This must occur _after_ the task SID has been updated so that any
2532 * kill done after the flush will be checked against the new SID.
2533 */
2534 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2535 if (rc) {
2536 clear_itimer();
2537
2538 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2539 if (!fatal_signal_pending(current)) {
2540 flush_sigqueue(¤t->pending);
2541 flush_sigqueue(¤t->signal->shared_pending);
2542 flush_signal_handlers(current, 1);
2543 sigemptyset(¤t->blocked);
2544 recalc_sigpending();
2545 }
2546 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2547 }
2548
2549 /* Wake up the parent if it is waiting so that it can recheck
2550 * wait permission to the new task SID. */
2551 read_lock(&tasklist_lock);
2552 __wake_up_parent(current, unrcu_pointer(current->real_parent));
2553 read_unlock(&tasklist_lock);
2554}
2555
2556/* superblock security operations */
2557
2558static int selinux_sb_alloc_security(struct super_block *sb)
2559{
2560 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2561
2562 mutex_init(&sbsec->lock);
2563 INIT_LIST_HEAD(&sbsec->isec_head);
2564 spin_lock_init(&sbsec->isec_lock);
2565 sbsec->sid = SECINITSID_UNLABELED;
2566 sbsec->def_sid = SECINITSID_FILE;
2567 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2568
2569 return 0;
2570}
2571
2572static inline int opt_len(const char *s)
2573{
2574 bool open_quote = false;
2575 int len;
2576 char c;
2577
2578 for (len = 0; (c = s[len]) != '\0'; len++) {
2579 if (c == '"')
2580 open_quote = !open_quote;
2581 if (c == ',' && !open_quote)
2582 break;
2583 }
2584 return len;
2585}
2586
2587static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2588{
2589 char *from = options;
2590 char *to = options;
2591 bool first = true;
2592 int rc;
2593
2594 while (1) {
2595 int len = opt_len(from);
2596 int token;
2597 char *arg = NULL;
2598
2599 token = match_opt_prefix(from, len, &arg);
2600
2601 if (token != Opt_error) {
2602 char *p, *q;
2603
2604 /* strip quotes */
2605 if (arg) {
2606 for (p = q = arg; p < from + len; p++) {
2607 char c = *p;
2608 if (c != '"')
2609 *q++ = c;
2610 }
2611 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2612 if (!arg) {
2613 rc = -ENOMEM;
2614 goto free_opt;
2615 }
2616 }
2617 rc = selinux_add_opt(token, arg, mnt_opts);
2618 kfree(arg);
2619 arg = NULL;
2620 if (unlikely(rc)) {
2621 goto free_opt;
2622 }
2623 } else {
2624 if (!first) { // copy with preceding comma
2625 from--;
2626 len++;
2627 }
2628 if (to != from)
2629 memmove(to, from, len);
2630 to += len;
2631 first = false;
2632 }
2633 if (!from[len])
2634 break;
2635 from += len + 1;
2636 }
2637 *to = '\0';
2638 return 0;
2639
2640free_opt:
2641 if (*mnt_opts) {
2642 selinux_free_mnt_opts(*mnt_opts);
2643 *mnt_opts = NULL;
2644 }
2645 return rc;
2646}
2647
2648static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2649{
2650 struct selinux_mnt_opts *opts = mnt_opts;
2651 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2652
2653 /*
2654 * Superblock not initialized (i.e. no options) - reject if any
2655 * options specified, otherwise accept.
2656 */
2657 if (!(sbsec->flags & SE_SBINITIALIZED))
2658 return opts ? 1 : 0;
2659
2660 /*
2661 * Superblock initialized and no options specified - reject if
2662 * superblock has any options set, otherwise accept.
2663 */
2664 if (!opts)
2665 return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2666
2667 if (opts->fscontext_sid) {
2668 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2669 opts->fscontext_sid))
2670 return 1;
2671 }
2672 if (opts->context_sid) {
2673 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2674 opts->context_sid))
2675 return 1;
2676 }
2677 if (opts->rootcontext_sid) {
2678 struct inode_security_struct *root_isec;
2679
2680 root_isec = backing_inode_security(sb->s_root);
2681 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2682 opts->rootcontext_sid))
2683 return 1;
2684 }
2685 if (opts->defcontext_sid) {
2686 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2687 opts->defcontext_sid))
2688 return 1;
2689 }
2690 return 0;
2691}
2692
2693static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2694{
2695 struct selinux_mnt_opts *opts = mnt_opts;
2696 struct superblock_security_struct *sbsec = selinux_superblock(sb);
2697
2698 if (!(sbsec->flags & SE_SBINITIALIZED))
2699 return 0;
2700
2701 if (!opts)
2702 return 0;
2703
2704 if (opts->fscontext_sid) {
2705 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2706 opts->fscontext_sid))
2707 goto out_bad_option;
2708 }
2709 if (opts->context_sid) {
2710 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2711 opts->context_sid))
2712 goto out_bad_option;
2713 }
2714 if (opts->rootcontext_sid) {
2715 struct inode_security_struct *root_isec;
2716 root_isec = backing_inode_security(sb->s_root);
2717 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2718 opts->rootcontext_sid))
2719 goto out_bad_option;
2720 }
2721 if (opts->defcontext_sid) {
2722 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2723 opts->defcontext_sid))
2724 goto out_bad_option;
2725 }
2726 return 0;
2727
2728out_bad_option:
2729 pr_warn("SELinux: unable to change security options "
2730 "during remount (dev %s, type=%s)\n", sb->s_id,
2731 sb->s_type->name);
2732 return -EINVAL;
2733}
2734
2735static int selinux_sb_kern_mount(const struct super_block *sb)
2736{
2737 const struct cred *cred = current_cred();
2738 struct common_audit_data ad;
2739
2740 ad.type = LSM_AUDIT_DATA_DENTRY;
2741 ad.u.dentry = sb->s_root;
2742 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2743}
2744
2745static int selinux_sb_statfs(struct dentry *dentry)
2746{
2747 const struct cred *cred = current_cred();
2748 struct common_audit_data ad;
2749
2750 ad.type = LSM_AUDIT_DATA_DENTRY;
2751 ad.u.dentry = dentry->d_sb->s_root;
2752 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2753}
2754
2755static int selinux_mount(const char *dev_name,
2756 const struct path *path,
2757 const char *type,
2758 unsigned long flags,
2759 void *data)
2760{
2761 const struct cred *cred = current_cred();
2762
2763 if (flags & MS_REMOUNT)
2764 return superblock_has_perm(cred, path->dentry->d_sb,
2765 FILESYSTEM__REMOUNT, NULL);
2766 else
2767 return path_has_perm(cred, path, FILE__MOUNTON);
2768}
2769
2770static int selinux_move_mount(const struct path *from_path,
2771 const struct path *to_path)
2772{
2773 const struct cred *cred = current_cred();
2774
2775 return path_has_perm(cred, to_path, FILE__MOUNTON);
2776}
2777
2778static int selinux_umount(struct vfsmount *mnt, int flags)
2779{
2780 const struct cred *cred = current_cred();
2781
2782 return superblock_has_perm(cred, mnt->mnt_sb,
2783 FILESYSTEM__UNMOUNT, NULL);
2784}
2785
2786static int selinux_fs_context_submount(struct fs_context *fc,
2787 struct super_block *reference)
2788{
2789 const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2790 struct selinux_mnt_opts *opts;
2791
2792 /*
2793 * Ensure that fc->security remains NULL when no options are set
2794 * as expected by selinux_set_mnt_opts().
2795 */
2796 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2797 return 0;
2798
2799 opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2800 if (!opts)
2801 return -ENOMEM;
2802
2803 if (sbsec->flags & FSCONTEXT_MNT)
2804 opts->fscontext_sid = sbsec->sid;
2805 if (sbsec->flags & CONTEXT_MNT)
2806 opts->context_sid = sbsec->mntpoint_sid;
2807 if (sbsec->flags & DEFCONTEXT_MNT)
2808 opts->defcontext_sid = sbsec->def_sid;
2809 fc->security = opts;
2810 return 0;
2811}
2812
2813static int selinux_fs_context_dup(struct fs_context *fc,
2814 struct fs_context *src_fc)
2815{
2816 const struct selinux_mnt_opts *src = src_fc->security;
2817
2818 if (!src)
2819 return 0;
2820
2821 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2822 return fc->security ? 0 : -ENOMEM;
2823}
2824
2825static const struct fs_parameter_spec selinux_fs_parameters[] = {
2826 fsparam_string(CONTEXT_STR, Opt_context),
2827 fsparam_string(DEFCONTEXT_STR, Opt_defcontext),
2828 fsparam_string(FSCONTEXT_STR, Opt_fscontext),
2829 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext),
2830 fsparam_flag (SECLABEL_STR, Opt_seclabel),
2831 {}
2832};
2833
2834static int selinux_fs_context_parse_param(struct fs_context *fc,
2835 struct fs_parameter *param)
2836{
2837 struct fs_parse_result result;
2838 int opt;
2839
2840 opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2841 if (opt < 0)
2842 return opt;
2843
2844 return selinux_add_opt(opt, param->string, &fc->security);
2845}
2846
2847/* inode security operations */
2848
2849static int selinux_inode_alloc_security(struct inode *inode)
2850{
2851 struct inode_security_struct *isec = selinux_inode(inode);
2852 u32 sid = current_sid();
2853
2854 spin_lock_init(&isec->lock);
2855 INIT_LIST_HEAD(&isec->list);
2856 isec->inode = inode;
2857 isec->sid = SECINITSID_UNLABELED;
2858 isec->sclass = SECCLASS_FILE;
2859 isec->task_sid = sid;
2860 isec->initialized = LABEL_INVALID;
2861
2862 return 0;
2863}
2864
2865static void selinux_inode_free_security(struct inode *inode)
2866{
2867 inode_free_security(inode);
2868}
2869
2870static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2871 const struct qstr *name,
2872 const char **xattr_name, void **ctx,
2873 u32 *ctxlen)
2874{
2875 u32 newsid;
2876 int rc;
2877
2878 rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2879 d_inode(dentry->d_parent), name,
2880 inode_mode_to_security_class(mode),
2881 &newsid);
2882 if (rc)
2883 return rc;
2884
2885 if (xattr_name)
2886 *xattr_name = XATTR_NAME_SELINUX;
2887
2888 return security_sid_to_context(newsid, (char **)ctx,
2889 ctxlen);
2890}
2891
2892static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2893 struct qstr *name,
2894 const struct cred *old,
2895 struct cred *new)
2896{
2897 u32 newsid;
2898 int rc;
2899 struct task_security_struct *tsec;
2900
2901 rc = selinux_determine_inode_label(selinux_cred(old),
2902 d_inode(dentry->d_parent), name,
2903 inode_mode_to_security_class(mode),
2904 &newsid);
2905 if (rc)
2906 return rc;
2907
2908 tsec = selinux_cred(new);
2909 tsec->create_sid = newsid;
2910 return 0;
2911}
2912
2913static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2914 const struct qstr *qstr,
2915 struct xattr *xattrs, int *xattr_count)
2916{
2917 const struct task_security_struct *tsec = selinux_cred(current_cred());
2918 struct superblock_security_struct *sbsec;
2919 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2920 u32 newsid, clen;
2921 u16 newsclass;
2922 int rc;
2923 char *context;
2924
2925 sbsec = selinux_superblock(dir->i_sb);
2926
2927 newsid = tsec->create_sid;
2928 newsclass = inode_mode_to_security_class(inode->i_mode);
2929 rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2930 if (rc)
2931 return rc;
2932
2933 /* Possibly defer initialization to selinux_complete_init. */
2934 if (sbsec->flags & SE_SBINITIALIZED) {
2935 struct inode_security_struct *isec = selinux_inode(inode);
2936 isec->sclass = newsclass;
2937 isec->sid = newsid;
2938 isec->initialized = LABEL_INITIALIZED;
2939 }
2940
2941 if (!selinux_initialized() ||
2942 !(sbsec->flags & SBLABEL_MNT))
2943 return -EOPNOTSUPP;
2944
2945 if (xattr) {
2946 rc = security_sid_to_context_force(newsid,
2947 &context, &clen);
2948 if (rc)
2949 return rc;
2950 xattr->value = context;
2951 xattr->value_len = clen;
2952 xattr->name = XATTR_SELINUX_SUFFIX;
2953 }
2954
2955 return 0;
2956}
2957
2958static int selinux_inode_init_security_anon(struct inode *inode,
2959 const struct qstr *name,
2960 const struct inode *context_inode)
2961{
2962 u32 sid = current_sid();
2963 struct common_audit_data ad;
2964 struct inode_security_struct *isec;
2965 int rc;
2966
2967 if (unlikely(!selinux_initialized()))
2968 return 0;
2969
2970 isec = selinux_inode(inode);
2971
2972 /*
2973 * We only get here once per ephemeral inode. The inode has
2974 * been initialized via inode_alloc_security but is otherwise
2975 * untouched.
2976 */
2977
2978 if (context_inode) {
2979 struct inode_security_struct *context_isec =
2980 selinux_inode(context_inode);
2981 if (context_isec->initialized != LABEL_INITIALIZED) {
2982 pr_err("SELinux: context_inode is not initialized\n");
2983 return -EACCES;
2984 }
2985
2986 isec->sclass = context_isec->sclass;
2987 isec->sid = context_isec->sid;
2988 } else {
2989 isec->sclass = SECCLASS_ANON_INODE;
2990 rc = security_transition_sid(
2991 sid, sid,
2992 isec->sclass, name, &isec->sid);
2993 if (rc)
2994 return rc;
2995 }
2996
2997 isec->initialized = LABEL_INITIALIZED;
2998 /*
2999 * Now that we've initialized security, check whether we're
3000 * allowed to actually create this type of anonymous inode.
3001 */
3002
3003 ad.type = LSM_AUDIT_DATA_ANONINODE;
3004 ad.u.anonclass = name ? (const char *)name->name : "?";
3005
3006 return avc_has_perm(sid,
3007 isec->sid,
3008 isec->sclass,
3009 FILE__CREATE,
3010 &ad);
3011}
3012
3013static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3014{
3015 return may_create(dir, dentry, SECCLASS_FILE);
3016}
3017
3018static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3019{
3020 return may_link(dir, old_dentry, MAY_LINK);
3021}
3022
3023static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3024{
3025 return may_link(dir, dentry, MAY_UNLINK);
3026}
3027
3028static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3029{
3030 return may_create(dir, dentry, SECCLASS_LNK_FILE);
3031}
3032
3033static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3034{
3035 return may_create(dir, dentry, SECCLASS_DIR);
3036}
3037
3038static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3039{
3040 return may_link(dir, dentry, MAY_RMDIR);
3041}
3042
3043static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3044{
3045 return may_create(dir, dentry, inode_mode_to_security_class(mode));
3046}
3047
3048static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3049 struct inode *new_inode, struct dentry *new_dentry)
3050{
3051 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3052}
3053
3054static int selinux_inode_readlink(struct dentry *dentry)
3055{
3056 const struct cred *cred = current_cred();
3057
3058 return dentry_has_perm(cred, dentry, FILE__READ);
3059}
3060
3061static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3062 bool rcu)
3063{
3064 struct common_audit_data ad;
3065 struct inode_security_struct *isec;
3066 u32 sid = current_sid();
3067
3068 ad.type = LSM_AUDIT_DATA_DENTRY;
3069 ad.u.dentry = dentry;
3070 isec = inode_security_rcu(inode, rcu);
3071 if (IS_ERR(isec))
3072 return PTR_ERR(isec);
3073
3074 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3075}
3076
3077static noinline int audit_inode_permission(struct inode *inode,
3078 u32 perms, u32 audited, u32 denied,
3079 int result)
3080{
3081 struct common_audit_data ad;
3082 struct inode_security_struct *isec = selinux_inode(inode);
3083
3084 ad.type = LSM_AUDIT_DATA_INODE;
3085 ad.u.inode = inode;
3086
3087 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3088 audited, denied, result, &ad);
3089}
3090
3091static int selinux_inode_permission(struct inode *inode, int mask)
3092{
3093 u32 perms;
3094 bool from_access;
3095 bool no_block = mask & MAY_NOT_BLOCK;
3096 struct inode_security_struct *isec;
3097 u32 sid = current_sid();
3098 struct av_decision avd;
3099 int rc, rc2;
3100 u32 audited, denied;
3101
3102 from_access = mask & MAY_ACCESS;
3103 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3104
3105 /* No permission to check. Existence test. */
3106 if (!mask)
3107 return 0;
3108
3109 if (unlikely(IS_PRIVATE(inode)))
3110 return 0;
3111
3112 perms = file_mask_to_av(inode->i_mode, mask);
3113
3114 isec = inode_security_rcu(inode, no_block);
3115 if (IS_ERR(isec))
3116 return PTR_ERR(isec);
3117
3118 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3119 &avd);
3120 audited = avc_audit_required(perms, &avd, rc,
3121 from_access ? FILE__AUDIT_ACCESS : 0,
3122 &denied);
3123 if (likely(!audited))
3124 return rc;
3125
3126 rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3127 if (rc2)
3128 return rc2;
3129 return rc;
3130}
3131
3132static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3133 struct iattr *iattr)
3134{
3135 const struct cred *cred = current_cred();
3136 struct inode *inode = d_backing_inode(dentry);
3137 unsigned int ia_valid = iattr->ia_valid;
3138 __u32 av = FILE__WRITE;
3139
3140 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3141 if (ia_valid & ATTR_FORCE) {
3142 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3143 ATTR_FORCE);
3144 if (!ia_valid)
3145 return 0;
3146 }
3147
3148 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3149 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3150 return dentry_has_perm(cred, dentry, FILE__SETATTR);
3151
3152 if (selinux_policycap_openperm() &&
3153 inode->i_sb->s_magic != SOCKFS_MAGIC &&
3154 (ia_valid & ATTR_SIZE) &&
3155 !(ia_valid & ATTR_FILE))
3156 av |= FILE__OPEN;
3157
3158 return dentry_has_perm(cred, dentry, av);
3159}
3160
3161static int selinux_inode_getattr(const struct path *path)
3162{
3163 return path_has_perm(current_cred(), path, FILE__GETATTR);
3164}
3165
3166static bool has_cap_mac_admin(bool audit)
3167{
3168 const struct cred *cred = current_cred();
3169 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3170
3171 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3172 return false;
3173 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3174 return false;
3175 return true;
3176}
3177
3178/**
3179 * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3180 * @name: name of the xattr
3181 *
3182 * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3183 * named @name; the LSM layer should avoid enforcing any traditional
3184 * capability based access controls on this xattr. Returns 0 to indicate that
3185 * SELinux does not "own" the access control rights to xattrs named @name and is
3186 * deferring to the LSM layer for further access controls, including capability
3187 * based controls.
3188 */
3189static int selinux_inode_xattr_skipcap(const char *name)
3190{
3191 /* require capability check if not a selinux xattr */
3192 return !strcmp(name, XATTR_NAME_SELINUX);
3193}
3194
3195static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3196 struct dentry *dentry, const char *name,
3197 const void *value, size_t size, int flags)
3198{
3199 struct inode *inode = d_backing_inode(dentry);
3200 struct inode_security_struct *isec;
3201 struct superblock_security_struct *sbsec;
3202 struct common_audit_data ad;
3203 u32 newsid, sid = current_sid();
3204 int rc = 0;
3205
3206 /* if not a selinux xattr, only check the ordinary setattr perm */
3207 if (strcmp(name, XATTR_NAME_SELINUX))
3208 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3209
3210 if (!selinux_initialized())
3211 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3212
3213 sbsec = selinux_superblock(inode->i_sb);
3214 if (!(sbsec->flags & SBLABEL_MNT))
3215 return -EOPNOTSUPP;
3216
3217 if (!inode_owner_or_capable(idmap, inode))
3218 return -EPERM;
3219
3220 ad.type = LSM_AUDIT_DATA_DENTRY;
3221 ad.u.dentry = dentry;
3222
3223 isec = backing_inode_security(dentry);
3224 rc = avc_has_perm(sid, isec->sid, isec->sclass,
3225 FILE__RELABELFROM, &ad);
3226 if (rc)
3227 return rc;
3228
3229 rc = security_context_to_sid(value, size, &newsid,
3230 GFP_KERNEL);
3231 if (rc == -EINVAL) {
3232 if (!has_cap_mac_admin(true)) {
3233 struct audit_buffer *ab;
3234 size_t audit_size;
3235
3236 /* We strip a nul only if it is at the end, otherwise the
3237 * context contains a nul and we should audit that */
3238 if (value) {
3239 const char *str = value;
3240
3241 if (str[size - 1] == '\0')
3242 audit_size = size - 1;
3243 else
3244 audit_size = size;
3245 } else {
3246 audit_size = 0;
3247 }
3248 ab = audit_log_start(audit_context(),
3249 GFP_ATOMIC, AUDIT_SELINUX_ERR);
3250 if (!ab)
3251 return rc;
3252 audit_log_format(ab, "op=setxattr invalid_context=");
3253 audit_log_n_untrustedstring(ab, value, audit_size);
3254 audit_log_end(ab);
3255
3256 return rc;
3257 }
3258 rc = security_context_to_sid_force(value,
3259 size, &newsid);
3260 }
3261 if (rc)
3262 return rc;
3263
3264 rc = avc_has_perm(sid, newsid, isec->sclass,
3265 FILE__RELABELTO, &ad);
3266 if (rc)
3267 return rc;
3268
3269 rc = security_validate_transition(isec->sid, newsid,
3270 sid, isec->sclass);
3271 if (rc)
3272 return rc;
3273
3274 return avc_has_perm(newsid,
3275 sbsec->sid,
3276 SECCLASS_FILESYSTEM,
3277 FILESYSTEM__ASSOCIATE,
3278 &ad);
3279}
3280
3281static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3282 struct dentry *dentry, const char *acl_name,
3283 struct posix_acl *kacl)
3284{
3285 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3286}
3287
3288static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3289 struct dentry *dentry, const char *acl_name)
3290{
3291 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3292}
3293
3294static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3295 struct dentry *dentry, const char *acl_name)
3296{
3297 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3298}
3299
3300static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3301 const void *value, size_t size,
3302 int flags)
3303{
3304 struct inode *inode = d_backing_inode(dentry);
3305 struct inode_security_struct *isec;
3306 u32 newsid;
3307 int rc;
3308
3309 if (strcmp(name, XATTR_NAME_SELINUX)) {
3310 /* Not an attribute we recognize, so nothing to do. */
3311 return;
3312 }
3313
3314 if (!selinux_initialized()) {
3315 /* If we haven't even been initialized, then we can't validate
3316 * against a policy, so leave the label as invalid. It may
3317 * resolve to a valid label on the next revalidation try if
3318 * we've since initialized.
3319 */
3320 return;
3321 }
3322
3323 rc = security_context_to_sid_force(value, size,
3324 &newsid);
3325 if (rc) {
3326 pr_err("SELinux: unable to map context to SID"
3327 "for (%s, %lu), rc=%d\n",
3328 inode->i_sb->s_id, inode->i_ino, -rc);
3329 return;
3330 }
3331
3332 isec = backing_inode_security(dentry);
3333 spin_lock(&isec->lock);
3334 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3335 isec->sid = newsid;
3336 isec->initialized = LABEL_INITIALIZED;
3337 spin_unlock(&isec->lock);
3338}
3339
3340static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3341{
3342 const struct cred *cred = current_cred();
3343
3344 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3345}
3346
3347static int selinux_inode_listxattr(struct dentry *dentry)
3348{
3349 const struct cred *cred = current_cred();
3350
3351 return dentry_has_perm(cred, dentry, FILE__GETATTR);
3352}
3353
3354static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3355 struct dentry *dentry, const char *name)
3356{
3357 /* if not a selinux xattr, only check the ordinary setattr perm */
3358 if (strcmp(name, XATTR_NAME_SELINUX))
3359 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360
3361 if (!selinux_initialized())
3362 return 0;
3363
3364 /* No one is allowed to remove a SELinux security label.
3365 You can change the label, but all data must be labeled. */
3366 return -EACCES;
3367}
3368
3369static int selinux_path_notify(const struct path *path, u64 mask,
3370 unsigned int obj_type)
3371{
3372 int ret;
3373 u32 perm;
3374
3375 struct common_audit_data ad;
3376
3377 ad.type = LSM_AUDIT_DATA_PATH;
3378 ad.u.path = *path;
3379
3380 /*
3381 * Set permission needed based on the type of mark being set.
3382 * Performs an additional check for sb watches.
3383 */
3384 switch (obj_type) {
3385 case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3386 perm = FILE__WATCH_MOUNT;
3387 break;
3388 case FSNOTIFY_OBJ_TYPE_SB:
3389 perm = FILE__WATCH_SB;
3390 ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3391 FILESYSTEM__WATCH, &ad);
3392 if (ret)
3393 return ret;
3394 break;
3395 case FSNOTIFY_OBJ_TYPE_INODE:
3396 perm = FILE__WATCH;
3397 break;
3398 default:
3399 return -EINVAL;
3400 }
3401
3402 /* blocking watches require the file:watch_with_perm permission */
3403 if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3404 perm |= FILE__WATCH_WITH_PERM;
3405
3406 /* watches on read-like events need the file:watch_reads permission */
3407 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3408 perm |= FILE__WATCH_READS;
3409
3410 return path_has_perm(current_cred(), path, perm);
3411}
3412
3413/*
3414 * Copy the inode security context value to the user.
3415 *
3416 * Permission check is handled by selinux_inode_getxattr hook.
3417 */
3418static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3419 struct inode *inode, const char *name,
3420 void **buffer, bool alloc)
3421{
3422 u32 size;
3423 int error;
3424 char *context = NULL;
3425 struct inode_security_struct *isec;
3426
3427 /*
3428 * If we're not initialized yet, then we can't validate contexts, so
3429 * just let vfs_getxattr fall back to using the on-disk xattr.
3430 */
3431 if (!selinux_initialized() ||
3432 strcmp(name, XATTR_SELINUX_SUFFIX))
3433 return -EOPNOTSUPP;
3434
3435 /*
3436 * If the caller has CAP_MAC_ADMIN, then get the raw context
3437 * value even if it is not defined by current policy; otherwise,
3438 * use the in-core value under current policy.
3439 * Use the non-auditing forms of the permission checks since
3440 * getxattr may be called by unprivileged processes commonly
3441 * and lack of permission just means that we fall back to the
3442 * in-core context value, not a denial.
3443 */
3444 isec = inode_security(inode);
3445 if (has_cap_mac_admin(false))
3446 error = security_sid_to_context_force(isec->sid, &context,
3447 &size);
3448 else
3449 error = security_sid_to_context(isec->sid,
3450 &context, &size);
3451 if (error)
3452 return error;
3453 error = size;
3454 if (alloc) {
3455 *buffer = context;
3456 goto out_nofree;
3457 }
3458 kfree(context);
3459out_nofree:
3460 return error;
3461}
3462
3463static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3464 const void *value, size_t size, int flags)
3465{
3466 struct inode_security_struct *isec = inode_security_novalidate(inode);
3467 struct superblock_security_struct *sbsec;
3468 u32 newsid;
3469 int rc;
3470
3471 if (strcmp(name, XATTR_SELINUX_SUFFIX))
3472 return -EOPNOTSUPP;
3473
3474 sbsec = selinux_superblock(inode->i_sb);
3475 if (!(sbsec->flags & SBLABEL_MNT))
3476 return -EOPNOTSUPP;
3477
3478 if (!value || !size)
3479 return -EACCES;
3480
3481 rc = security_context_to_sid(value, size, &newsid,
3482 GFP_KERNEL);
3483 if (rc)
3484 return rc;
3485
3486 spin_lock(&isec->lock);
3487 isec->sclass = inode_mode_to_security_class(inode->i_mode);
3488 isec->sid = newsid;
3489 isec->initialized = LABEL_INITIALIZED;
3490 spin_unlock(&isec->lock);
3491 return 0;
3492}
3493
3494static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3495{
3496 const int len = sizeof(XATTR_NAME_SELINUX);
3497
3498 if (!selinux_initialized())
3499 return 0;
3500
3501 if (buffer && len <= buffer_size)
3502 memcpy(buffer, XATTR_NAME_SELINUX, len);
3503 return len;
3504}
3505
3506static void selinux_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
3507{
3508 struct inode_security_struct *isec = inode_security_novalidate(inode);
3509
3510 prop->selinux.secid = isec->sid;
3511}
3512
3513static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514{
3515 struct lsm_prop prop;
3516 struct task_security_struct *tsec;
3517 struct cred *new_creds = *new;
3518
3519 if (new_creds == NULL) {
3520 new_creds = prepare_creds();
3521 if (!new_creds)
3522 return -ENOMEM;
3523 }
3524
3525 tsec = selinux_cred(new_creds);
3526 /* Get label from overlay inode and set it in create_sid */
3527 selinux_inode_getlsmprop(d_inode(src), &prop);
3528 tsec->create_sid = prop.selinux.secid;
3529 *new = new_creds;
3530 return 0;
3531}
3532
3533static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3534{
3535 /* The copy_up hook above sets the initial context on an inode, but we
3536 * don't then want to overwrite it by blindly copying all the lower
3537 * xattrs up. Instead, filter out SELinux-related xattrs following
3538 * policy load.
3539 */
3540 if (selinux_initialized() && !strcmp(name, XATTR_NAME_SELINUX))
3541 return -ECANCELED; /* Discard */
3542 /*
3543 * Any other attribute apart from SELINUX is not claimed, supported
3544 * by selinux.
3545 */
3546 return -EOPNOTSUPP;
3547}
3548
3549/* kernfs node operations */
3550
3551static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552 struct kernfs_node *kn)
3553{
3554 const struct task_security_struct *tsec = selinux_cred(current_cred());
3555 u32 parent_sid, newsid, clen;
3556 int rc;
3557 char *context;
3558
3559 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560 if (rc == -ENODATA)
3561 return 0;
3562 else if (rc < 0)
3563 return rc;
3564
3565 clen = (u32)rc;
3566 context = kmalloc(clen, GFP_KERNEL);
3567 if (!context)
3568 return -ENOMEM;
3569
3570 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571 if (rc < 0) {
3572 kfree(context);
3573 return rc;
3574 }
3575
3576 rc = security_context_to_sid(context, clen, &parent_sid,
3577 GFP_KERNEL);
3578 kfree(context);
3579 if (rc)
3580 return rc;
3581
3582 if (tsec->create_sid) {
3583 newsid = tsec->create_sid;
3584 } else {
3585 u16 secclass = inode_mode_to_security_class(kn->mode);
3586 struct qstr q;
3587
3588 q.name = kn->name;
3589 q.hash_len = hashlen_string(kn_dir, kn->name);
3590
3591 rc = security_transition_sid(tsec->sid,
3592 parent_sid, secclass, &q,
3593 &newsid);
3594 if (rc)
3595 return rc;
3596 }
3597
3598 rc = security_sid_to_context_force(newsid,
3599 &context, &clen);
3600 if (rc)
3601 return rc;
3602
3603 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604 XATTR_CREATE);
3605 kfree(context);
3606 return rc;
3607}
3608
3609
3610/* file security operations */
3611
3612static int selinux_revalidate_file_permission(struct file *file, int mask)
3613{
3614 const struct cred *cred = current_cred();
3615 struct inode *inode = file_inode(file);
3616
3617 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619 mask |= MAY_APPEND;
3620
3621 return file_has_perm(cred, file,
3622 file_mask_to_av(inode->i_mode, mask));
3623}
3624
3625static int selinux_file_permission(struct file *file, int mask)
3626{
3627 struct inode *inode = file_inode(file);
3628 struct file_security_struct *fsec = selinux_file(file);
3629 struct inode_security_struct *isec;
3630 u32 sid = current_sid();
3631
3632 if (!mask)
3633 /* No permission to check. Existence test. */
3634 return 0;
3635
3636 isec = inode_security(inode);
3637 if (sid == fsec->sid && fsec->isid == isec->sid &&
3638 fsec->pseqno == avc_policy_seqno())
3639 /* No change since file_open check. */
3640 return 0;
3641
3642 return selinux_revalidate_file_permission(file, mask);
3643}
3644
3645static int selinux_file_alloc_security(struct file *file)
3646{
3647 struct file_security_struct *fsec = selinux_file(file);
3648 u32 sid = current_sid();
3649
3650 fsec->sid = sid;
3651 fsec->fown_sid = sid;
3652
3653 return 0;
3654}
3655
3656/*
3657 * Check whether a task has the ioctl permission and cmd
3658 * operation to an inode.
3659 */
3660static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661 u32 requested, u16 cmd)
3662{
3663 struct common_audit_data ad;
3664 struct file_security_struct *fsec = selinux_file(file);
3665 struct inode *inode = file_inode(file);
3666 struct inode_security_struct *isec;
3667 struct lsm_ioctlop_audit ioctl;
3668 u32 ssid = cred_sid(cred);
3669 int rc;
3670 u8 driver = cmd >> 8;
3671 u8 xperm = cmd & 0xff;
3672
3673 ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674 ad.u.op = &ioctl;
3675 ad.u.op->cmd = cmd;
3676 ad.u.op->path = file->f_path;
3677
3678 if (ssid != fsec->sid) {
3679 rc = avc_has_perm(ssid, fsec->sid,
3680 SECCLASS_FD,
3681 FD__USE,
3682 &ad);
3683 if (rc)
3684 goto out;
3685 }
3686
3687 if (unlikely(IS_PRIVATE(inode)))
3688 return 0;
3689
3690 isec = inode_security(inode);
3691 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, requested,
3692 driver, AVC_EXT_IOCTL, xperm, &ad);
3693out:
3694 return rc;
3695}
3696
3697static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698 unsigned long arg)
3699{
3700 const struct cred *cred = current_cred();
3701 int error = 0;
3702
3703 switch (cmd) {
3704 case FIONREAD:
3705 case FIBMAP:
3706 case FIGETBSZ:
3707 case FS_IOC_GETFLAGS:
3708 case FS_IOC_GETVERSION:
3709 error = file_has_perm(cred, file, FILE__GETATTR);
3710 break;
3711
3712 case FS_IOC_SETFLAGS:
3713 case FS_IOC_SETVERSION:
3714 error = file_has_perm(cred, file, FILE__SETATTR);
3715 break;
3716
3717 /* sys_ioctl() checks */
3718 case FIONBIO:
3719 case FIOASYNC:
3720 error = file_has_perm(cred, file, 0);
3721 break;
3722
3723 case KDSKBENT:
3724 case KDSKBSENT:
3725 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726 CAP_OPT_NONE, true);
3727 break;
3728
3729 case FIOCLEX:
3730 case FIONCLEX:
3731 if (!selinux_policycap_ioctl_skip_cloexec())
3732 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733 break;
3734
3735 /* default case assumes that the command will go
3736 * to the file's ioctl() function.
3737 */
3738 default:
3739 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740 }
3741 return error;
3742}
3743
3744static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745 unsigned long arg)
3746{
3747 /*
3748 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749 * make sure we don't compare 32-bit flags to 64-bit flags.
3750 */
3751 switch (cmd) {
3752 case FS_IOC32_GETFLAGS:
3753 cmd = FS_IOC_GETFLAGS;
3754 break;
3755 case FS_IOC32_SETFLAGS:
3756 cmd = FS_IOC_SETFLAGS;
3757 break;
3758 case FS_IOC32_GETVERSION:
3759 cmd = FS_IOC_GETVERSION;
3760 break;
3761 case FS_IOC32_SETVERSION:
3762 cmd = FS_IOC_SETVERSION;
3763 break;
3764 default:
3765 break;
3766 }
3767
3768 return selinux_file_ioctl(file, cmd, arg);
3769}
3770
3771static int default_noexec __ro_after_init;
3772
3773static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774{
3775 const struct cred *cred = current_cred();
3776 u32 sid = cred_sid(cred);
3777 int rc = 0;
3778
3779 if (default_noexec &&
3780 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781 (!shared && (prot & PROT_WRITE)))) {
3782 /*
3783 * We are making executable an anonymous mapping or a
3784 * private file mapping that will also be writable.
3785 * This has an additional check.
3786 */
3787 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3788 PROCESS__EXECMEM, NULL);
3789 if (rc)
3790 goto error;
3791 }
3792
3793 if (file) {
3794 /* read access is always possible with a mapping */
3795 u32 av = FILE__READ;
3796
3797 /* write access only matters if the mapping is shared */
3798 if (shared && (prot & PROT_WRITE))
3799 av |= FILE__WRITE;
3800
3801 if (prot & PROT_EXEC)
3802 av |= FILE__EXECUTE;
3803
3804 return file_has_perm(cred, file, av);
3805 }
3806
3807error:
3808 return rc;
3809}
3810
3811static int selinux_mmap_addr(unsigned long addr)
3812{
3813 int rc = 0;
3814
3815 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816 u32 sid = current_sid();
3817 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3818 MEMPROTECT__MMAP_ZERO, NULL);
3819 }
3820
3821 return rc;
3822}
3823
3824static int selinux_mmap_file(struct file *file,
3825 unsigned long reqprot __always_unused,
3826 unsigned long prot, unsigned long flags)
3827{
3828 struct common_audit_data ad;
3829 int rc;
3830
3831 if (file) {
3832 ad.type = LSM_AUDIT_DATA_FILE;
3833 ad.u.file = file;
3834 rc = inode_has_perm(current_cred(), file_inode(file),
3835 FILE__MAP, &ad);
3836 if (rc)
3837 return rc;
3838 }
3839
3840 return file_map_prot_check(file, prot,
3841 (flags & MAP_TYPE) == MAP_SHARED);
3842}
3843
3844static int selinux_file_mprotect(struct vm_area_struct *vma,
3845 unsigned long reqprot __always_unused,
3846 unsigned long prot)
3847{
3848 const struct cred *cred = current_cred();
3849 u32 sid = cred_sid(cred);
3850
3851 if (default_noexec &&
3852 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853 int rc = 0;
3854 /*
3855 * We don't use the vma_is_initial_heap() helper as it has
3856 * a history of problems and is currently broken on systems
3857 * where there is no heap, e.g. brk == start_brk. Before
3858 * replacing the conditional below with vma_is_initial_heap(),
3859 * or something similar, please ensure that the logic is the
3860 * same as what we have below or you have tested every possible
3861 * corner case you can think to test.
3862 */
3863 if (vma->vm_start >= vma->vm_mm->start_brk &&
3864 vma->vm_end <= vma->vm_mm->brk) {
3865 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3866 PROCESS__EXECHEAP, NULL);
3867 } else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3868 vma_is_stack_for_current(vma))) {
3869 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3870 PROCESS__EXECSTACK, NULL);
3871 } else if (vma->vm_file && vma->anon_vma) {
3872 /*
3873 * We are making executable a file mapping that has
3874 * had some COW done. Since pages might have been
3875 * written, check ability to execute the possibly
3876 * modified content. This typically should only
3877 * occur for text relocations.
3878 */
3879 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3880 }
3881 if (rc)
3882 return rc;
3883 }
3884
3885 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3886}
3887
3888static int selinux_file_lock(struct file *file, unsigned int cmd)
3889{
3890 const struct cred *cred = current_cred();
3891
3892 return file_has_perm(cred, file, FILE__LOCK);
3893}
3894
3895static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3896 unsigned long arg)
3897{
3898 const struct cred *cred = current_cred();
3899 int err = 0;
3900
3901 switch (cmd) {
3902 case F_SETFL:
3903 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3904 err = file_has_perm(cred, file, FILE__WRITE);
3905 break;
3906 }
3907 fallthrough;
3908 case F_SETOWN:
3909 case F_SETSIG:
3910 case F_GETFL:
3911 case F_GETOWN:
3912 case F_GETSIG:
3913 case F_GETOWNER_UIDS:
3914 /* Just check FD__USE permission */
3915 err = file_has_perm(cred, file, 0);
3916 break;
3917 case F_GETLK:
3918 case F_SETLK:
3919 case F_SETLKW:
3920 case F_OFD_GETLK:
3921 case F_OFD_SETLK:
3922 case F_OFD_SETLKW:
3923#if BITS_PER_LONG == 32
3924 case F_GETLK64:
3925 case F_SETLK64:
3926 case F_SETLKW64:
3927#endif
3928 err = file_has_perm(cred, file, FILE__LOCK);
3929 break;
3930 }
3931
3932 return err;
3933}
3934
3935static void selinux_file_set_fowner(struct file *file)
3936{
3937 struct file_security_struct *fsec;
3938
3939 fsec = selinux_file(file);
3940 fsec->fown_sid = current_sid();
3941}
3942
3943static int selinux_file_send_sigiotask(struct task_struct *tsk,
3944 struct fown_struct *fown, int signum)
3945{
3946 struct file *file;
3947 u32 sid = task_sid_obj(tsk);
3948 u32 perm;
3949 struct file_security_struct *fsec;
3950
3951 /* struct fown_struct is never outside the context of a struct file */
3952 file = fown->file;
3953
3954 fsec = selinux_file(file);
3955
3956 if (!signum)
3957 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3958 else
3959 perm = signal_to_av(signum);
3960
3961 return avc_has_perm(fsec->fown_sid, sid,
3962 SECCLASS_PROCESS, perm, NULL);
3963}
3964
3965static int selinux_file_receive(struct file *file)
3966{
3967 const struct cred *cred = current_cred();
3968
3969 return file_has_perm(cred, file, file_to_av(file));
3970}
3971
3972static int selinux_file_open(struct file *file)
3973{
3974 struct file_security_struct *fsec;
3975 struct inode_security_struct *isec;
3976
3977 fsec = selinux_file(file);
3978 isec = inode_security(file_inode(file));
3979 /*
3980 * Save inode label and policy sequence number
3981 * at open-time so that selinux_file_permission
3982 * can determine whether revalidation is necessary.
3983 * Task label is already saved in the file security
3984 * struct as its SID.
3985 */
3986 fsec->isid = isec->sid;
3987 fsec->pseqno = avc_policy_seqno();
3988 /*
3989 * Since the inode label or policy seqno may have changed
3990 * between the selinux_inode_permission check and the saving
3991 * of state above, recheck that access is still permitted.
3992 * Otherwise, access might never be revalidated against the
3993 * new inode label or new policy.
3994 * This check is not redundant - do not remove.
3995 */
3996 return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3997}
3998
3999/* task security operations */
4000
4001static int selinux_task_alloc(struct task_struct *task,
4002 unsigned long clone_flags)
4003{
4004 u32 sid = current_sid();
4005
4006 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4007}
4008
4009/*
4010 * prepare a new set of credentials for modification
4011 */
4012static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4013 gfp_t gfp)
4014{
4015 const struct task_security_struct *old_tsec = selinux_cred(old);
4016 struct task_security_struct *tsec = selinux_cred(new);
4017
4018 *tsec = *old_tsec;
4019 return 0;
4020}
4021
4022/*
4023 * transfer the SELinux data to a blank set of creds
4024 */
4025static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4026{
4027 const struct task_security_struct *old_tsec = selinux_cred(old);
4028 struct task_security_struct *tsec = selinux_cred(new);
4029
4030 *tsec = *old_tsec;
4031}
4032
4033static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4034{
4035 *secid = cred_sid(c);
4036}
4037
4038static void selinux_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
4039{
4040 prop->selinux.secid = cred_sid(c);
4041}
4042
4043/*
4044 * set the security data for a kernel service
4045 * - all the creation contexts are set to unlabelled
4046 */
4047static int selinux_kernel_act_as(struct cred *new, u32 secid)
4048{
4049 struct task_security_struct *tsec = selinux_cred(new);
4050 u32 sid = current_sid();
4051 int ret;
4052
4053 ret = avc_has_perm(sid, secid,
4054 SECCLASS_KERNEL_SERVICE,
4055 KERNEL_SERVICE__USE_AS_OVERRIDE,
4056 NULL);
4057 if (ret == 0) {
4058 tsec->sid = secid;
4059 tsec->create_sid = 0;
4060 tsec->keycreate_sid = 0;
4061 tsec->sockcreate_sid = 0;
4062 }
4063 return ret;
4064}
4065
4066/*
4067 * set the file creation context in a security record to the same as the
4068 * objective context of the specified inode
4069 */
4070static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4071{
4072 struct inode_security_struct *isec = inode_security(inode);
4073 struct task_security_struct *tsec = selinux_cred(new);
4074 u32 sid = current_sid();
4075 int ret;
4076
4077 ret = avc_has_perm(sid, isec->sid,
4078 SECCLASS_KERNEL_SERVICE,
4079 KERNEL_SERVICE__CREATE_FILES_AS,
4080 NULL);
4081
4082 if (ret == 0)
4083 tsec->create_sid = isec->sid;
4084 return ret;
4085}
4086
4087static int selinux_kernel_module_request(char *kmod_name)
4088{
4089 struct common_audit_data ad;
4090
4091 ad.type = LSM_AUDIT_DATA_KMOD;
4092 ad.u.kmod_name = kmod_name;
4093
4094 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4095 SYSTEM__MODULE_REQUEST, &ad);
4096}
4097
4098static int selinux_kernel_module_from_file(struct file *file)
4099{
4100 struct common_audit_data ad;
4101 struct inode_security_struct *isec;
4102 struct file_security_struct *fsec;
4103 u32 sid = current_sid();
4104 int rc;
4105
4106 /* init_module */
4107 if (file == NULL)
4108 return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4109 SYSTEM__MODULE_LOAD, NULL);
4110
4111 /* finit_module */
4112
4113 ad.type = LSM_AUDIT_DATA_FILE;
4114 ad.u.file = file;
4115
4116 fsec = selinux_file(file);
4117 if (sid != fsec->sid) {
4118 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4119 if (rc)
4120 return rc;
4121 }
4122
4123 isec = inode_security(file_inode(file));
4124 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4125 SYSTEM__MODULE_LOAD, &ad);
4126}
4127
4128static int selinux_kernel_read_file(struct file *file,
4129 enum kernel_read_file_id id,
4130 bool contents)
4131{
4132 int rc = 0;
4133
4134 switch (id) {
4135 case READING_MODULE:
4136 rc = selinux_kernel_module_from_file(contents ? file : NULL);
4137 break;
4138 default:
4139 break;
4140 }
4141
4142 return rc;
4143}
4144
4145static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4146{
4147 int rc = 0;
4148
4149 switch (id) {
4150 case LOADING_MODULE:
4151 rc = selinux_kernel_module_from_file(NULL);
4152 break;
4153 default:
4154 break;
4155 }
4156
4157 return rc;
4158}
4159
4160static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4161{
4162 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4163 PROCESS__SETPGID, NULL);
4164}
4165
4166static int selinux_task_getpgid(struct task_struct *p)
4167{
4168 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4169 PROCESS__GETPGID, NULL);
4170}
4171
4172static int selinux_task_getsid(struct task_struct *p)
4173{
4174 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4175 PROCESS__GETSESSION, NULL);
4176}
4177
4178static void selinux_current_getlsmprop_subj(struct lsm_prop *prop)
4179{
4180 prop->selinux.secid = current_sid();
4181}
4182
4183static void selinux_task_getlsmprop_obj(struct task_struct *p,
4184 struct lsm_prop *prop)
4185{
4186 prop->selinux.secid = task_sid_obj(p);
4187}
4188
4189static int selinux_task_setnice(struct task_struct *p, int nice)
4190{
4191 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4192 PROCESS__SETSCHED, NULL);
4193}
4194
4195static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4196{
4197 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4198 PROCESS__SETSCHED, NULL);
4199}
4200
4201static int selinux_task_getioprio(struct task_struct *p)
4202{
4203 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4204 PROCESS__GETSCHED, NULL);
4205}
4206
4207static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4208 unsigned int flags)
4209{
4210 u32 av = 0;
4211
4212 if (!flags)
4213 return 0;
4214 if (flags & LSM_PRLIMIT_WRITE)
4215 av |= PROCESS__SETRLIMIT;
4216 if (flags & LSM_PRLIMIT_READ)
4217 av |= PROCESS__GETRLIMIT;
4218 return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4219 SECCLASS_PROCESS, av, NULL);
4220}
4221
4222static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4223 struct rlimit *new_rlim)
4224{
4225 struct rlimit *old_rlim = p->signal->rlim + resource;
4226
4227 /* Control the ability to change the hard limit (whether
4228 lowering or raising it), so that the hard limit can
4229 later be used as a safe reset point for the soft limit
4230 upon context transitions. See selinux_bprm_committing_creds. */
4231 if (old_rlim->rlim_max != new_rlim->rlim_max)
4232 return avc_has_perm(current_sid(), task_sid_obj(p),
4233 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4234
4235 return 0;
4236}
4237
4238static int selinux_task_setscheduler(struct task_struct *p)
4239{
4240 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4241 PROCESS__SETSCHED, NULL);
4242}
4243
4244static int selinux_task_getscheduler(struct task_struct *p)
4245{
4246 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4247 PROCESS__GETSCHED, NULL);
4248}
4249
4250static int selinux_task_movememory(struct task_struct *p)
4251{
4252 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4253 PROCESS__SETSCHED, NULL);
4254}
4255
4256static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4257 int sig, const struct cred *cred)
4258{
4259 u32 secid;
4260 u32 perm;
4261
4262 if (!sig)
4263 perm = PROCESS__SIGNULL; /* null signal; existence test */
4264 else
4265 perm = signal_to_av(sig);
4266 if (!cred)
4267 secid = current_sid();
4268 else
4269 secid = cred_sid(cred);
4270 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4271}
4272
4273static void selinux_task_to_inode(struct task_struct *p,
4274 struct inode *inode)
4275{
4276 struct inode_security_struct *isec = selinux_inode(inode);
4277 u32 sid = task_sid_obj(p);
4278
4279 spin_lock(&isec->lock);
4280 isec->sclass = inode_mode_to_security_class(inode->i_mode);
4281 isec->sid = sid;
4282 isec->initialized = LABEL_INITIALIZED;
4283 spin_unlock(&isec->lock);
4284}
4285
4286static int selinux_userns_create(const struct cred *cred)
4287{
4288 u32 sid = current_sid();
4289
4290 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4291 USER_NAMESPACE__CREATE, NULL);
4292}
4293
4294/* Returns error only if unable to parse addresses */
4295static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4296 struct common_audit_data *ad, u8 *proto)
4297{
4298 int offset, ihlen, ret = -EINVAL;
4299 struct iphdr _iph, *ih;
4300
4301 offset = skb_network_offset(skb);
4302 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4303 if (ih == NULL)
4304 goto out;
4305
4306 ihlen = ih->ihl * 4;
4307 if (ihlen < sizeof(_iph))
4308 goto out;
4309
4310 ad->u.net->v4info.saddr = ih->saddr;
4311 ad->u.net->v4info.daddr = ih->daddr;
4312 ret = 0;
4313
4314 if (proto)
4315 *proto = ih->protocol;
4316
4317 switch (ih->protocol) {
4318 case IPPROTO_TCP: {
4319 struct tcphdr _tcph, *th;
4320
4321 if (ntohs(ih->frag_off) & IP_OFFSET)
4322 break;
4323
4324 offset += ihlen;
4325 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4326 if (th == NULL)
4327 break;
4328
4329 ad->u.net->sport = th->source;
4330 ad->u.net->dport = th->dest;
4331 break;
4332 }
4333
4334 case IPPROTO_UDP: {
4335 struct udphdr _udph, *uh;
4336
4337 if (ntohs(ih->frag_off) & IP_OFFSET)
4338 break;
4339
4340 offset += ihlen;
4341 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4342 if (uh == NULL)
4343 break;
4344
4345 ad->u.net->sport = uh->source;
4346 ad->u.net->dport = uh->dest;
4347 break;
4348 }
4349
4350 case IPPROTO_DCCP: {
4351 struct dccp_hdr _dccph, *dh;
4352
4353 if (ntohs(ih->frag_off) & IP_OFFSET)
4354 break;
4355
4356 offset += ihlen;
4357 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4358 if (dh == NULL)
4359 break;
4360
4361 ad->u.net->sport = dh->dccph_sport;
4362 ad->u.net->dport = dh->dccph_dport;
4363 break;
4364 }
4365
4366#if IS_ENABLED(CONFIG_IP_SCTP)
4367 case IPPROTO_SCTP: {
4368 struct sctphdr _sctph, *sh;
4369
4370 if (ntohs(ih->frag_off) & IP_OFFSET)
4371 break;
4372
4373 offset += ihlen;
4374 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4375 if (sh == NULL)
4376 break;
4377
4378 ad->u.net->sport = sh->source;
4379 ad->u.net->dport = sh->dest;
4380 break;
4381 }
4382#endif
4383 default:
4384 break;
4385 }
4386out:
4387 return ret;
4388}
4389
4390#if IS_ENABLED(CONFIG_IPV6)
4391
4392/* Returns error only if unable to parse addresses */
4393static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4394 struct common_audit_data *ad, u8 *proto)
4395{
4396 u8 nexthdr;
4397 int ret = -EINVAL, offset;
4398 struct ipv6hdr _ipv6h, *ip6;
4399 __be16 frag_off;
4400
4401 offset = skb_network_offset(skb);
4402 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4403 if (ip6 == NULL)
4404 goto out;
4405
4406 ad->u.net->v6info.saddr = ip6->saddr;
4407 ad->u.net->v6info.daddr = ip6->daddr;
4408 ret = 0;
4409
4410 nexthdr = ip6->nexthdr;
4411 offset += sizeof(_ipv6h);
4412 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4413 if (offset < 0)
4414 goto out;
4415
4416 if (proto)
4417 *proto = nexthdr;
4418
4419 switch (nexthdr) {
4420 case IPPROTO_TCP: {
4421 struct tcphdr _tcph, *th;
4422
4423 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4424 if (th == NULL)
4425 break;
4426
4427 ad->u.net->sport = th->source;
4428 ad->u.net->dport = th->dest;
4429 break;
4430 }
4431
4432 case IPPROTO_UDP: {
4433 struct udphdr _udph, *uh;
4434
4435 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4436 if (uh == NULL)
4437 break;
4438
4439 ad->u.net->sport = uh->source;
4440 ad->u.net->dport = uh->dest;
4441 break;
4442 }
4443
4444 case IPPROTO_DCCP: {
4445 struct dccp_hdr _dccph, *dh;
4446
4447 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4448 if (dh == NULL)
4449 break;
4450
4451 ad->u.net->sport = dh->dccph_sport;
4452 ad->u.net->dport = dh->dccph_dport;
4453 break;
4454 }
4455
4456#if IS_ENABLED(CONFIG_IP_SCTP)
4457 case IPPROTO_SCTP: {
4458 struct sctphdr _sctph, *sh;
4459
4460 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4461 if (sh == NULL)
4462 break;
4463
4464 ad->u.net->sport = sh->source;
4465 ad->u.net->dport = sh->dest;
4466 break;
4467 }
4468#endif
4469 /* includes fragments */
4470 default:
4471 break;
4472 }
4473out:
4474 return ret;
4475}
4476
4477#endif /* IPV6 */
4478
4479static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4480 char **_addrp, int src, u8 *proto)
4481{
4482 char *addrp;
4483 int ret;
4484
4485 switch (ad->u.net->family) {
4486 case PF_INET:
4487 ret = selinux_parse_skb_ipv4(skb, ad, proto);
4488 if (ret)
4489 goto parse_error;
4490 addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4491 &ad->u.net->v4info.daddr);
4492 goto okay;
4493
4494#if IS_ENABLED(CONFIG_IPV6)
4495 case PF_INET6:
4496 ret = selinux_parse_skb_ipv6(skb, ad, proto);
4497 if (ret)
4498 goto parse_error;
4499 addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4500 &ad->u.net->v6info.daddr);
4501 goto okay;
4502#endif /* IPV6 */
4503 default:
4504 addrp = NULL;
4505 goto okay;
4506 }
4507
4508parse_error:
4509 pr_warn(
4510 "SELinux: failure in selinux_parse_skb(),"
4511 " unable to parse packet\n");
4512 return ret;
4513
4514okay:
4515 if (_addrp)
4516 *_addrp = addrp;
4517 return 0;
4518}
4519
4520/**
4521 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4522 * @skb: the packet
4523 * @family: protocol family
4524 * @sid: the packet's peer label SID
4525 *
4526 * Description:
4527 * Check the various different forms of network peer labeling and determine
4528 * the peer label/SID for the packet; most of the magic actually occurs in
4529 * the security server function security_net_peersid_cmp(). The function
4530 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4531 * or -EACCES if @sid is invalid due to inconsistencies with the different
4532 * peer labels.
4533 *
4534 */
4535static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4536{
4537 int err;
4538 u32 xfrm_sid;
4539 u32 nlbl_sid;
4540 u32 nlbl_type;
4541
4542 err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4543 if (unlikely(err))
4544 return -EACCES;
4545 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4546 if (unlikely(err))
4547 return -EACCES;
4548
4549 err = security_net_peersid_resolve(nlbl_sid,
4550 nlbl_type, xfrm_sid, sid);
4551 if (unlikely(err)) {
4552 pr_warn(
4553 "SELinux: failure in selinux_skb_peerlbl_sid(),"
4554 " unable to determine packet's peer label\n");
4555 return -EACCES;
4556 }
4557
4558 return 0;
4559}
4560
4561/**
4562 * selinux_conn_sid - Determine the child socket label for a connection
4563 * @sk_sid: the parent socket's SID
4564 * @skb_sid: the packet's SID
4565 * @conn_sid: the resulting connection SID
4566 *
4567 * If @skb_sid is valid then the user:role:type information from @sk_sid is
4568 * combined with the MLS information from @skb_sid in order to create
4569 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy
4570 * of @sk_sid. Returns zero on success, negative values on failure.
4571 *
4572 */
4573static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4574{
4575 int err = 0;
4576
4577 if (skb_sid != SECSID_NULL)
4578 err = security_sid_mls_copy(sk_sid, skb_sid,
4579 conn_sid);
4580 else
4581 *conn_sid = sk_sid;
4582
4583 return err;
4584}
4585
4586/* socket security operations */
4587
4588static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4589 u16 secclass, u32 *socksid)
4590{
4591 if (tsec->sockcreate_sid > SECSID_NULL) {
4592 *socksid = tsec->sockcreate_sid;
4593 return 0;
4594 }
4595
4596 return security_transition_sid(tsec->sid, tsec->sid,
4597 secclass, NULL, socksid);
4598}
4599
4600static bool sock_skip_has_perm(u32 sid)
4601{
4602 if (sid == SECINITSID_KERNEL)
4603 return true;
4604
4605 /*
4606 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4607 * inherited the kernel context from early boot used to be skipped
4608 * here, so preserve that behavior unless the capability is set.
4609 *
4610 * By setting the capability the policy signals that it is ready
4611 * for this quirk to be fixed. Note that sockets created by a kernel
4612 * thread or a usermode helper executed without a transition will
4613 * still be skipped in this check regardless of the policycap
4614 * setting.
4615 */
4616 if (!selinux_policycap_userspace_initial_context() &&
4617 sid == SECINITSID_INIT)
4618 return true;
4619 return false;
4620}
4621
4622
4623static int sock_has_perm(struct sock *sk, u32 perms)
4624{
4625 struct sk_security_struct *sksec = sk->sk_security;
4626 struct common_audit_data ad;
4627 struct lsm_network_audit net;
4628
4629 if (sock_skip_has_perm(sksec->sid))
4630 return 0;
4631
4632 ad_net_init_from_sk(&ad, &net, sk);
4633
4634 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4635 &ad);
4636}
4637
4638static int selinux_socket_create(int family, int type,
4639 int protocol, int kern)
4640{
4641 const struct task_security_struct *tsec = selinux_cred(current_cred());
4642 u32 newsid;
4643 u16 secclass;
4644 int rc;
4645
4646 if (kern)
4647 return 0;
4648
4649 secclass = socket_type_to_security_class(family, type, protocol);
4650 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4651 if (rc)
4652 return rc;
4653
4654 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4655}
4656
4657static int selinux_socket_post_create(struct socket *sock, int family,
4658 int type, int protocol, int kern)
4659{
4660 const struct task_security_struct *tsec = selinux_cred(current_cred());
4661 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4662 struct sk_security_struct *sksec;
4663 u16 sclass = socket_type_to_security_class(family, type, protocol);
4664 u32 sid = SECINITSID_KERNEL;
4665 int err = 0;
4666
4667 if (!kern) {
4668 err = socket_sockcreate_sid(tsec, sclass, &sid);
4669 if (err)
4670 return err;
4671 }
4672
4673 isec->sclass = sclass;
4674 isec->sid = sid;
4675 isec->initialized = LABEL_INITIALIZED;
4676
4677 if (sock->sk) {
4678 sksec = selinux_sock(sock->sk);
4679 sksec->sclass = sclass;
4680 sksec->sid = sid;
4681 /* Allows detection of the first association on this socket */
4682 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4683 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4684
4685 err = selinux_netlbl_socket_post_create(sock->sk, family);
4686 }
4687
4688 return err;
4689}
4690
4691static int selinux_socket_socketpair(struct socket *socka,
4692 struct socket *sockb)
4693{
4694 struct sk_security_struct *sksec_a = selinux_sock(socka->sk);
4695 struct sk_security_struct *sksec_b = selinux_sock(sockb->sk);
4696
4697 sksec_a->peer_sid = sksec_b->sid;
4698 sksec_b->peer_sid = sksec_a->sid;
4699
4700 return 0;
4701}
4702
4703/* Range of port numbers used to automatically bind.
4704 Need to determine whether we should perform a name_bind
4705 permission check between the socket and the port number. */
4706
4707static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4708{
4709 struct sock *sk = sock->sk;
4710 struct sk_security_struct *sksec = selinux_sock(sk);
4711 u16 family;
4712 int err;
4713
4714 err = sock_has_perm(sk, SOCKET__BIND);
4715 if (err)
4716 goto out;
4717
4718 /* If PF_INET or PF_INET6, check name_bind permission for the port. */
4719 family = sk->sk_family;
4720 if (family == PF_INET || family == PF_INET6) {
4721 char *addrp;
4722 struct common_audit_data ad;
4723 struct lsm_network_audit net = {0,};
4724 struct sockaddr_in *addr4 = NULL;
4725 struct sockaddr_in6 *addr6 = NULL;
4726 u16 family_sa;
4727 unsigned short snum;
4728 u32 sid, node_perm;
4729
4730 /*
4731 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4732 * that validates multiple binding addresses. Because of this
4733 * need to check address->sa_family as it is possible to have
4734 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4735 */
4736 if (addrlen < offsetofend(struct sockaddr, sa_family))
4737 return -EINVAL;
4738 family_sa = address->sa_family;
4739 switch (family_sa) {
4740 case AF_UNSPEC:
4741 case AF_INET:
4742 if (addrlen < sizeof(struct sockaddr_in))
4743 return -EINVAL;
4744 addr4 = (struct sockaddr_in *)address;
4745 if (family_sa == AF_UNSPEC) {
4746 if (family == PF_INET6) {
4747 /* Length check from inet6_bind_sk() */
4748 if (addrlen < SIN6_LEN_RFC2133)
4749 return -EINVAL;
4750 /* Family check from __inet6_bind() */
4751 goto err_af;
4752 }
4753 /* see __inet_bind(), we only want to allow
4754 * AF_UNSPEC if the address is INADDR_ANY
4755 */
4756 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4757 goto err_af;
4758 family_sa = AF_INET;
4759 }
4760 snum = ntohs(addr4->sin_port);
4761 addrp = (char *)&addr4->sin_addr.s_addr;
4762 break;
4763 case AF_INET6:
4764 if (addrlen < SIN6_LEN_RFC2133)
4765 return -EINVAL;
4766 addr6 = (struct sockaddr_in6 *)address;
4767 snum = ntohs(addr6->sin6_port);
4768 addrp = (char *)&addr6->sin6_addr.s6_addr;
4769 break;
4770 default:
4771 goto err_af;
4772 }
4773
4774 ad.type = LSM_AUDIT_DATA_NET;
4775 ad.u.net = &net;
4776 ad.u.net->sport = htons(snum);
4777 ad.u.net->family = family_sa;
4778
4779 if (snum) {
4780 int low, high;
4781
4782 inet_get_local_port_range(sock_net(sk), &low, &high);
4783
4784 if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4785 snum < low || snum > high) {
4786 err = sel_netport_sid(sk->sk_protocol,
4787 snum, &sid);
4788 if (err)
4789 goto out;
4790 err = avc_has_perm(sksec->sid, sid,
4791 sksec->sclass,
4792 SOCKET__NAME_BIND, &ad);
4793 if (err)
4794 goto out;
4795 }
4796 }
4797
4798 switch (sksec->sclass) {
4799 case SECCLASS_TCP_SOCKET:
4800 node_perm = TCP_SOCKET__NODE_BIND;
4801 break;
4802
4803 case SECCLASS_UDP_SOCKET:
4804 node_perm = UDP_SOCKET__NODE_BIND;
4805 break;
4806
4807 case SECCLASS_DCCP_SOCKET:
4808 node_perm = DCCP_SOCKET__NODE_BIND;
4809 break;
4810
4811 case SECCLASS_SCTP_SOCKET:
4812 node_perm = SCTP_SOCKET__NODE_BIND;
4813 break;
4814
4815 default:
4816 node_perm = RAWIP_SOCKET__NODE_BIND;
4817 break;
4818 }
4819
4820 err = sel_netnode_sid(addrp, family_sa, &sid);
4821 if (err)
4822 goto out;
4823
4824 if (family_sa == AF_INET)
4825 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4826 else
4827 ad.u.net->v6info.saddr = addr6->sin6_addr;
4828
4829 err = avc_has_perm(sksec->sid, sid,
4830 sksec->sclass, node_perm, &ad);
4831 if (err)
4832 goto out;
4833 }
4834out:
4835 return err;
4836err_af:
4837 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4838 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4839 return -EINVAL;
4840 return -EAFNOSUPPORT;
4841}
4842
4843/* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4844 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4845 */
4846static int selinux_socket_connect_helper(struct socket *sock,
4847 struct sockaddr *address, int addrlen)
4848{
4849 struct sock *sk = sock->sk;
4850 struct sk_security_struct *sksec = selinux_sock(sk);
4851 int err;
4852
4853 err = sock_has_perm(sk, SOCKET__CONNECT);
4854 if (err)
4855 return err;
4856 if (addrlen < offsetofend(struct sockaddr, sa_family))
4857 return -EINVAL;
4858
4859 /* connect(AF_UNSPEC) has special handling, as it is a documented
4860 * way to disconnect the socket
4861 */
4862 if (address->sa_family == AF_UNSPEC)
4863 return 0;
4864
4865 /*
4866 * If a TCP, DCCP or SCTP socket, check name_connect permission
4867 * for the port.
4868 */
4869 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4870 sksec->sclass == SECCLASS_DCCP_SOCKET ||
4871 sksec->sclass == SECCLASS_SCTP_SOCKET) {
4872 struct common_audit_data ad;
4873 struct lsm_network_audit net = {0,};
4874 struct sockaddr_in *addr4 = NULL;
4875 struct sockaddr_in6 *addr6 = NULL;
4876 unsigned short snum;
4877 u32 sid, perm;
4878
4879 /* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4880 * that validates multiple connect addresses. Because of this
4881 * need to check address->sa_family as it is possible to have
4882 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4883 */
4884 switch (address->sa_family) {
4885 case AF_INET:
4886 addr4 = (struct sockaddr_in *)address;
4887 if (addrlen < sizeof(struct sockaddr_in))
4888 return -EINVAL;
4889 snum = ntohs(addr4->sin_port);
4890 break;
4891 case AF_INET6:
4892 addr6 = (struct sockaddr_in6 *)address;
4893 if (addrlen < SIN6_LEN_RFC2133)
4894 return -EINVAL;
4895 snum = ntohs(addr6->sin6_port);
4896 break;
4897 default:
4898 /* Note that SCTP services expect -EINVAL, whereas
4899 * others expect -EAFNOSUPPORT.
4900 */
4901 if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4902 return -EINVAL;
4903 else
4904 return -EAFNOSUPPORT;
4905 }
4906
4907 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4908 if (err)
4909 return err;
4910
4911 switch (sksec->sclass) {
4912 case SECCLASS_TCP_SOCKET:
4913 perm = TCP_SOCKET__NAME_CONNECT;
4914 break;
4915 case SECCLASS_DCCP_SOCKET:
4916 perm = DCCP_SOCKET__NAME_CONNECT;
4917 break;
4918 case SECCLASS_SCTP_SOCKET:
4919 perm = SCTP_SOCKET__NAME_CONNECT;
4920 break;
4921 }
4922
4923 ad.type = LSM_AUDIT_DATA_NET;
4924 ad.u.net = &net;
4925 ad.u.net->dport = htons(snum);
4926 ad.u.net->family = address->sa_family;
4927 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4928 if (err)
4929 return err;
4930 }
4931
4932 return 0;
4933}
4934
4935/* Supports connect(2), see comments in selinux_socket_connect_helper() */
4936static int selinux_socket_connect(struct socket *sock,
4937 struct sockaddr *address, int addrlen)
4938{
4939 int err;
4940 struct sock *sk = sock->sk;
4941
4942 err = selinux_socket_connect_helper(sock, address, addrlen);
4943 if (err)
4944 return err;
4945
4946 return selinux_netlbl_socket_connect(sk, address);
4947}
4948
4949static int selinux_socket_listen(struct socket *sock, int backlog)
4950{
4951 return sock_has_perm(sock->sk, SOCKET__LISTEN);
4952}
4953
4954static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4955{
4956 int err;
4957 struct inode_security_struct *isec;
4958 struct inode_security_struct *newisec;
4959 u16 sclass;
4960 u32 sid;
4961
4962 err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4963 if (err)
4964 return err;
4965
4966 isec = inode_security_novalidate(SOCK_INODE(sock));
4967 spin_lock(&isec->lock);
4968 sclass = isec->sclass;
4969 sid = isec->sid;
4970 spin_unlock(&isec->lock);
4971
4972 newisec = inode_security_novalidate(SOCK_INODE(newsock));
4973 newisec->sclass = sclass;
4974 newisec->sid = sid;
4975 newisec->initialized = LABEL_INITIALIZED;
4976
4977 return 0;
4978}
4979
4980static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4981 int size)
4982{
4983 return sock_has_perm(sock->sk, SOCKET__WRITE);
4984}
4985
4986static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4987 int size, int flags)
4988{
4989 return sock_has_perm(sock->sk, SOCKET__READ);
4990}
4991
4992static int selinux_socket_getsockname(struct socket *sock)
4993{
4994 return sock_has_perm(sock->sk, SOCKET__GETATTR);
4995}
4996
4997static int selinux_socket_getpeername(struct socket *sock)
4998{
4999 return sock_has_perm(sock->sk, SOCKET__GETATTR);
5000}
5001
5002static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
5003{
5004 int err;
5005
5006 err = sock_has_perm(sock->sk, SOCKET__SETOPT);
5007 if (err)
5008 return err;
5009
5010 return selinux_netlbl_socket_setsockopt(sock, level, optname);
5011}
5012
5013static int selinux_socket_getsockopt(struct socket *sock, int level,
5014 int optname)
5015{
5016 return sock_has_perm(sock->sk, SOCKET__GETOPT);
5017}
5018
5019static int selinux_socket_shutdown(struct socket *sock, int how)
5020{
5021 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5022}
5023
5024static int selinux_socket_unix_stream_connect(struct sock *sock,
5025 struct sock *other,
5026 struct sock *newsk)
5027{
5028 struct sk_security_struct *sksec_sock = selinux_sock(sock);
5029 struct sk_security_struct *sksec_other = selinux_sock(other);
5030 struct sk_security_struct *sksec_new = selinux_sock(newsk);
5031 struct common_audit_data ad;
5032 struct lsm_network_audit net;
5033 int err;
5034
5035 ad_net_init_from_sk(&ad, &net, other);
5036
5037 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5038 sksec_other->sclass,
5039 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5040 if (err)
5041 return err;
5042
5043 /* server child socket */
5044 sksec_new->peer_sid = sksec_sock->sid;
5045 err = security_sid_mls_copy(sksec_other->sid,
5046 sksec_sock->sid, &sksec_new->sid);
5047 if (err)
5048 return err;
5049
5050 /* connecting socket */
5051 sksec_sock->peer_sid = sksec_new->sid;
5052
5053 return 0;
5054}
5055
5056static int selinux_socket_unix_may_send(struct socket *sock,
5057 struct socket *other)
5058{
5059 struct sk_security_struct *ssec = selinux_sock(sock->sk);
5060 struct sk_security_struct *osec = selinux_sock(other->sk);
5061 struct common_audit_data ad;
5062 struct lsm_network_audit net;
5063
5064 ad_net_init_from_sk(&ad, &net, other->sk);
5065
5066 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5067 &ad);
5068}
5069
5070static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5071 char *addrp, u16 family, u32 peer_sid,
5072 struct common_audit_data *ad)
5073{
5074 int err;
5075 u32 if_sid;
5076 u32 node_sid;
5077
5078 err = sel_netif_sid(ns, ifindex, &if_sid);
5079 if (err)
5080 return err;
5081 err = avc_has_perm(peer_sid, if_sid,
5082 SECCLASS_NETIF, NETIF__INGRESS, ad);
5083 if (err)
5084 return err;
5085
5086 err = sel_netnode_sid(addrp, family, &node_sid);
5087 if (err)
5088 return err;
5089 return avc_has_perm(peer_sid, node_sid,
5090 SECCLASS_NODE, NODE__RECVFROM, ad);
5091}
5092
5093static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5094 u16 family)
5095{
5096 int err = 0;
5097 struct sk_security_struct *sksec = selinux_sock(sk);
5098 u32 sk_sid = sksec->sid;
5099 struct common_audit_data ad;
5100 struct lsm_network_audit net;
5101 char *addrp;
5102
5103 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5104 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5105 if (err)
5106 return err;
5107
5108 if (selinux_secmark_enabled()) {
5109 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5110 PACKET__RECV, &ad);
5111 if (err)
5112 return err;
5113 }
5114
5115 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5116 if (err)
5117 return err;
5118 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5119
5120 return err;
5121}
5122
5123static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5124{
5125 int err, peerlbl_active, secmark_active;
5126 struct sk_security_struct *sksec = selinux_sock(sk);
5127 u16 family = sk->sk_family;
5128 u32 sk_sid = sksec->sid;
5129 struct common_audit_data ad;
5130 struct lsm_network_audit net;
5131 char *addrp;
5132
5133 if (family != PF_INET && family != PF_INET6)
5134 return 0;
5135
5136 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
5137 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5138 family = PF_INET;
5139
5140 /* If any sort of compatibility mode is enabled then handoff processing
5141 * to the selinux_sock_rcv_skb_compat() function to deal with the
5142 * special handling. We do this in an attempt to keep this function
5143 * as fast and as clean as possible. */
5144 if (!selinux_policycap_netpeer())
5145 return selinux_sock_rcv_skb_compat(sk, skb, family);
5146
5147 secmark_active = selinux_secmark_enabled();
5148 peerlbl_active = selinux_peerlbl_enabled();
5149 if (!secmark_active && !peerlbl_active)
5150 return 0;
5151
5152 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5153 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5154 if (err)
5155 return err;
5156
5157 if (peerlbl_active) {
5158 u32 peer_sid;
5159
5160 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5161 if (err)
5162 return err;
5163 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5164 addrp, family, peer_sid, &ad);
5165 if (err) {
5166 selinux_netlbl_err(skb, family, err, 0);
5167 return err;
5168 }
5169 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5170 PEER__RECV, &ad);
5171 if (err) {
5172 selinux_netlbl_err(skb, family, err, 0);
5173 return err;
5174 }
5175 }
5176
5177 if (secmark_active) {
5178 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5179 PACKET__RECV, &ad);
5180 if (err)
5181 return err;
5182 }
5183
5184 return err;
5185}
5186
5187static int selinux_socket_getpeersec_stream(struct socket *sock,
5188 sockptr_t optval, sockptr_t optlen,
5189 unsigned int len)
5190{
5191 int err = 0;
5192 char *scontext = NULL;
5193 u32 scontext_len;
5194 struct sk_security_struct *sksec = selinux_sock(sock->sk);
5195 u32 peer_sid = SECSID_NULL;
5196
5197 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5198 sksec->sclass == SECCLASS_TCP_SOCKET ||
5199 sksec->sclass == SECCLASS_SCTP_SOCKET)
5200 peer_sid = sksec->peer_sid;
5201 if (peer_sid == SECSID_NULL)
5202 return -ENOPROTOOPT;
5203
5204 err = security_sid_to_context(peer_sid, &scontext,
5205 &scontext_len);
5206 if (err)
5207 return err;
5208 if (scontext_len > len) {
5209 err = -ERANGE;
5210 goto out_len;
5211 }
5212
5213 if (copy_to_sockptr(optval, scontext, scontext_len))
5214 err = -EFAULT;
5215out_len:
5216 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5217 err = -EFAULT;
5218 kfree(scontext);
5219 return err;
5220}
5221
5222static int selinux_socket_getpeersec_dgram(struct socket *sock,
5223 struct sk_buff *skb, u32 *secid)
5224{
5225 u32 peer_secid = SECSID_NULL;
5226 u16 family;
5227
5228 if (skb && skb->protocol == htons(ETH_P_IP))
5229 family = PF_INET;
5230 else if (skb && skb->protocol == htons(ETH_P_IPV6))
5231 family = PF_INET6;
5232 else if (sock)
5233 family = sock->sk->sk_family;
5234 else {
5235 *secid = SECSID_NULL;
5236 return -EINVAL;
5237 }
5238
5239 if (sock && family == PF_UNIX) {
5240 struct inode_security_struct *isec;
5241 isec = inode_security_novalidate(SOCK_INODE(sock));
5242 peer_secid = isec->sid;
5243 } else if (skb)
5244 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5245
5246 *secid = peer_secid;
5247 if (peer_secid == SECSID_NULL)
5248 return -ENOPROTOOPT;
5249 return 0;
5250}
5251
5252static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5253{
5254 struct sk_security_struct *sksec = selinux_sock(sk);
5255
5256 sksec->peer_sid = SECINITSID_UNLABELED;
5257 sksec->sid = SECINITSID_UNLABELED;
5258 sksec->sclass = SECCLASS_SOCKET;
5259 selinux_netlbl_sk_security_reset(sksec);
5260
5261 return 0;
5262}
5263
5264static void selinux_sk_free_security(struct sock *sk)
5265{
5266 struct sk_security_struct *sksec = selinux_sock(sk);
5267
5268 selinux_netlbl_sk_security_free(sksec);
5269}
5270
5271static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5272{
5273 struct sk_security_struct *sksec = selinux_sock(sk);
5274 struct sk_security_struct *newsksec = selinux_sock(newsk);
5275
5276 newsksec->sid = sksec->sid;
5277 newsksec->peer_sid = sksec->peer_sid;
5278 newsksec->sclass = sksec->sclass;
5279
5280 selinux_netlbl_sk_security_reset(newsksec);
5281}
5282
5283static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5284{
5285 if (!sk)
5286 *secid = SECINITSID_ANY_SOCKET;
5287 else {
5288 const struct sk_security_struct *sksec = selinux_sock(sk);
5289
5290 *secid = sksec->sid;
5291 }
5292}
5293
5294static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5295{
5296 struct inode_security_struct *isec =
5297 inode_security_novalidate(SOCK_INODE(parent));
5298 struct sk_security_struct *sksec = selinux_sock(sk);
5299
5300 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5301 sk->sk_family == PF_UNIX)
5302 isec->sid = sksec->sid;
5303 sksec->sclass = isec->sclass;
5304}
5305
5306/*
5307 * Determines peer_secid for the asoc and updates socket's peer label
5308 * if it's the first association on the socket.
5309 */
5310static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5311 struct sk_buff *skb)
5312{
5313 struct sock *sk = asoc->base.sk;
5314 u16 family = sk->sk_family;
5315 struct sk_security_struct *sksec = selinux_sock(sk);
5316 struct common_audit_data ad;
5317 struct lsm_network_audit net;
5318 int err;
5319
5320 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5321 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5322 family = PF_INET;
5323
5324 if (selinux_peerlbl_enabled()) {
5325 asoc->peer_secid = SECSID_NULL;
5326
5327 /* This will return peer_sid = SECSID_NULL if there are
5328 * no peer labels, see security_net_peersid_resolve().
5329 */
5330 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5331 if (err)
5332 return err;
5333
5334 if (asoc->peer_secid == SECSID_NULL)
5335 asoc->peer_secid = SECINITSID_UNLABELED;
5336 } else {
5337 asoc->peer_secid = SECINITSID_UNLABELED;
5338 }
5339
5340 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5341 sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5342
5343 /* Here as first association on socket. As the peer SID
5344 * was allowed by peer recv (and the netif/node checks),
5345 * then it is approved by policy and used as the primary
5346 * peer SID for getpeercon(3).
5347 */
5348 sksec->peer_sid = asoc->peer_secid;
5349 } else if (sksec->peer_sid != asoc->peer_secid) {
5350 /* Other association peer SIDs are checked to enforce
5351 * consistency among the peer SIDs.
5352 */
5353 ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5354 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5355 sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5356 &ad);
5357 if (err)
5358 return err;
5359 }
5360 return 0;
5361}
5362
5363/* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5364 * happens on an incoming connect(2), sctp_connectx(3) or
5365 * sctp_sendmsg(3) (with no association already present).
5366 */
5367static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5368 struct sk_buff *skb)
5369{
5370 struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5371 u32 conn_sid;
5372 int err;
5373
5374 if (!selinux_policycap_extsockclass())
5375 return 0;
5376
5377 err = selinux_sctp_process_new_assoc(asoc, skb);
5378 if (err)
5379 return err;
5380
5381 /* Compute the MLS component for the connection and store
5382 * the information in asoc. This will be used by SCTP TCP type
5383 * sockets and peeled off connections as they cause a new
5384 * socket to be generated. selinux_sctp_sk_clone() will then
5385 * plug this into the new socket.
5386 */
5387 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5388 if (err)
5389 return err;
5390
5391 asoc->secid = conn_sid;
5392
5393 /* Set any NetLabel labels including CIPSO/CALIPSO options. */
5394 return selinux_netlbl_sctp_assoc_request(asoc, skb);
5395}
5396
5397/* Called when SCTP receives a COOKIE ACK chunk as the final
5398 * response to an association request (initited by us).
5399 */
5400static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5401 struct sk_buff *skb)
5402{
5403 struct sk_security_struct *sksec = selinux_sock(asoc->base.sk);
5404
5405 if (!selinux_policycap_extsockclass())
5406 return 0;
5407
5408 /* Inherit secid from the parent socket - this will be picked up
5409 * by selinux_sctp_sk_clone() if the association gets peeled off
5410 * into a new socket.
5411 */
5412 asoc->secid = sksec->sid;
5413
5414 return selinux_sctp_process_new_assoc(asoc, skb);
5415}
5416
5417/* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5418 * based on their @optname.
5419 */
5420static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5421 struct sockaddr *address,
5422 int addrlen)
5423{
5424 int len, err = 0, walk_size = 0;
5425 void *addr_buf;
5426 struct sockaddr *addr;
5427 struct socket *sock;
5428
5429 if (!selinux_policycap_extsockclass())
5430 return 0;
5431
5432 /* Process one or more addresses that may be IPv4 or IPv6 */
5433 sock = sk->sk_socket;
5434 addr_buf = address;
5435
5436 while (walk_size < addrlen) {
5437 if (walk_size + sizeof(sa_family_t) > addrlen)
5438 return -EINVAL;
5439
5440 addr = addr_buf;
5441 switch (addr->sa_family) {
5442 case AF_UNSPEC:
5443 case AF_INET:
5444 len = sizeof(struct sockaddr_in);
5445 break;
5446 case AF_INET6:
5447 len = sizeof(struct sockaddr_in6);
5448 break;
5449 default:
5450 return -EINVAL;
5451 }
5452
5453 if (walk_size + len > addrlen)
5454 return -EINVAL;
5455
5456 err = -EINVAL;
5457 switch (optname) {
5458 /* Bind checks */
5459 case SCTP_PRIMARY_ADDR:
5460 case SCTP_SET_PEER_PRIMARY_ADDR:
5461 case SCTP_SOCKOPT_BINDX_ADD:
5462 err = selinux_socket_bind(sock, addr, len);
5463 break;
5464 /* Connect checks */
5465 case SCTP_SOCKOPT_CONNECTX:
5466 case SCTP_PARAM_SET_PRIMARY:
5467 case SCTP_PARAM_ADD_IP:
5468 case SCTP_SENDMSG_CONNECT:
5469 err = selinux_socket_connect_helper(sock, addr, len);
5470 if (err)
5471 return err;
5472
5473 /* As selinux_sctp_bind_connect() is called by the
5474 * SCTP protocol layer, the socket is already locked,
5475 * therefore selinux_netlbl_socket_connect_locked()
5476 * is called here. The situations handled are:
5477 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5478 * whenever a new IP address is added or when a new
5479 * primary address is selected.
5480 * Note that an SCTP connect(2) call happens before
5481 * the SCTP protocol layer and is handled via
5482 * selinux_socket_connect().
5483 */
5484 err = selinux_netlbl_socket_connect_locked(sk, addr);
5485 break;
5486 }
5487
5488 if (err)
5489 return err;
5490
5491 addr_buf += len;
5492 walk_size += len;
5493 }
5494
5495 return 0;
5496}
5497
5498/* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5499static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5500 struct sock *newsk)
5501{
5502 struct sk_security_struct *sksec = selinux_sock(sk);
5503 struct sk_security_struct *newsksec = selinux_sock(newsk);
5504
5505 /* If policy does not support SECCLASS_SCTP_SOCKET then call
5506 * the non-sctp clone version.
5507 */
5508 if (!selinux_policycap_extsockclass())
5509 return selinux_sk_clone_security(sk, newsk);
5510
5511 newsksec->sid = asoc->secid;
5512 newsksec->peer_sid = asoc->peer_secid;
5513 newsksec->sclass = sksec->sclass;
5514 selinux_netlbl_sctp_sk_clone(sk, newsk);
5515}
5516
5517static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5518{
5519 struct sk_security_struct *ssksec = selinux_sock(ssk);
5520 struct sk_security_struct *sksec = selinux_sock(sk);
5521
5522 ssksec->sclass = sksec->sclass;
5523 ssksec->sid = sksec->sid;
5524
5525 /* replace the existing subflow label deleting the existing one
5526 * and re-recreating a new label using the updated context
5527 */
5528 selinux_netlbl_sk_security_free(ssksec);
5529 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5530}
5531
5532static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5533 struct request_sock *req)
5534{
5535 struct sk_security_struct *sksec = selinux_sock(sk);
5536 int err;
5537 u16 family = req->rsk_ops->family;
5538 u32 connsid;
5539 u32 peersid;
5540
5541 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5542 if (err)
5543 return err;
5544 err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5545 if (err)
5546 return err;
5547 req->secid = connsid;
5548 req->peer_secid = peersid;
5549
5550 return selinux_netlbl_inet_conn_request(req, family);
5551}
5552
5553static void selinux_inet_csk_clone(struct sock *newsk,
5554 const struct request_sock *req)
5555{
5556 struct sk_security_struct *newsksec = selinux_sock(newsk);
5557
5558 newsksec->sid = req->secid;
5559 newsksec->peer_sid = req->peer_secid;
5560 /* NOTE: Ideally, we should also get the isec->sid for the
5561 new socket in sync, but we don't have the isec available yet.
5562 So we will wait until sock_graft to do it, by which
5563 time it will have been created and available. */
5564
5565 /* We don't need to take any sort of lock here as we are the only
5566 * thread with access to newsksec */
5567 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5568}
5569
5570static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5571{
5572 u16 family = sk->sk_family;
5573 struct sk_security_struct *sksec = selinux_sock(sk);
5574
5575 /* handle mapped IPv4 packets arriving via IPv6 sockets */
5576 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5577 family = PF_INET;
5578
5579 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5580}
5581
5582static int selinux_secmark_relabel_packet(u32 sid)
5583{
5584 return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
5585 NULL);
5586}
5587
5588static void selinux_secmark_refcount_inc(void)
5589{
5590 atomic_inc(&selinux_secmark_refcount);
5591}
5592
5593static void selinux_secmark_refcount_dec(void)
5594{
5595 atomic_dec(&selinux_secmark_refcount);
5596}
5597
5598static void selinux_req_classify_flow(const struct request_sock *req,
5599 struct flowi_common *flic)
5600{
5601 flic->flowic_secid = req->secid;
5602}
5603
5604static int selinux_tun_dev_alloc_security(void *security)
5605{
5606 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5607
5608 tunsec->sid = current_sid();
5609 return 0;
5610}
5611
5612static int selinux_tun_dev_create(void)
5613{
5614 u32 sid = current_sid();
5615
5616 /* we aren't taking into account the "sockcreate" SID since the socket
5617 * that is being created here is not a socket in the traditional sense,
5618 * instead it is a private sock, accessible only to the kernel, and
5619 * representing a wide range of network traffic spanning multiple
5620 * connections unlike traditional sockets - check the TUN driver to
5621 * get a better understanding of why this socket is special */
5622
5623 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5624 NULL);
5625}
5626
5627static int selinux_tun_dev_attach_queue(void *security)
5628{
5629 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5630
5631 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5632 TUN_SOCKET__ATTACH_QUEUE, NULL);
5633}
5634
5635static int selinux_tun_dev_attach(struct sock *sk, void *security)
5636{
5637 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5638 struct sk_security_struct *sksec = selinux_sock(sk);
5639
5640 /* we don't currently perform any NetLabel based labeling here and it
5641 * isn't clear that we would want to do so anyway; while we could apply
5642 * labeling without the support of the TUN user the resulting labeled
5643 * traffic from the other end of the connection would almost certainly
5644 * cause confusion to the TUN user that had no idea network labeling
5645 * protocols were being used */
5646
5647 sksec->sid = tunsec->sid;
5648 sksec->sclass = SECCLASS_TUN_SOCKET;
5649
5650 return 0;
5651}
5652
5653static int selinux_tun_dev_open(void *security)
5654{
5655 struct tun_security_struct *tunsec = selinux_tun_dev(security);
5656 u32 sid = current_sid();
5657 int err;
5658
5659 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5660 TUN_SOCKET__RELABELFROM, NULL);
5661 if (err)
5662 return err;
5663 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5664 TUN_SOCKET__RELABELTO, NULL);
5665 if (err)
5666 return err;
5667 tunsec->sid = sid;
5668
5669 return 0;
5670}
5671
5672#ifdef CONFIG_NETFILTER
5673
5674static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5675 const struct nf_hook_state *state)
5676{
5677 int ifindex;
5678 u16 family;
5679 char *addrp;
5680 u32 peer_sid;
5681 struct common_audit_data ad;
5682 struct lsm_network_audit net;
5683 int secmark_active, peerlbl_active;
5684
5685 if (!selinux_policycap_netpeer())
5686 return NF_ACCEPT;
5687
5688 secmark_active = selinux_secmark_enabled();
5689 peerlbl_active = selinux_peerlbl_enabled();
5690 if (!secmark_active && !peerlbl_active)
5691 return NF_ACCEPT;
5692
5693 family = state->pf;
5694 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5695 return NF_DROP;
5696
5697 ifindex = state->in->ifindex;
5698 ad_net_init_from_iif(&ad, &net, ifindex, family);
5699 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5700 return NF_DROP;
5701
5702 if (peerlbl_active) {
5703 int err;
5704
5705 err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5706 addrp, family, peer_sid, &ad);
5707 if (err) {
5708 selinux_netlbl_err(skb, family, err, 1);
5709 return NF_DROP;
5710 }
5711 }
5712
5713 if (secmark_active)
5714 if (avc_has_perm(peer_sid, skb->secmark,
5715 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5716 return NF_DROP;
5717
5718 if (netlbl_enabled())
5719 /* we do this in the FORWARD path and not the POST_ROUTING
5720 * path because we want to make sure we apply the necessary
5721 * labeling before IPsec is applied so we can leverage AH
5722 * protection */
5723 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5724 return NF_DROP;
5725
5726 return NF_ACCEPT;
5727}
5728
5729static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5730 const struct nf_hook_state *state)
5731{
5732 struct sock *sk;
5733 u32 sid;
5734
5735 if (!netlbl_enabled())
5736 return NF_ACCEPT;
5737
5738 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5739 * because we want to make sure we apply the necessary labeling
5740 * before IPsec is applied so we can leverage AH protection */
5741 sk = sk_to_full_sk(skb->sk);
5742 if (sk) {
5743 struct sk_security_struct *sksec;
5744
5745 if (sk_listener(sk))
5746 /* if the socket is the listening state then this
5747 * packet is a SYN-ACK packet which means it needs to
5748 * be labeled based on the connection/request_sock and
5749 * not the parent socket. unfortunately, we can't
5750 * lookup the request_sock yet as it isn't queued on
5751 * the parent socket until after the SYN-ACK is sent.
5752 * the "solution" is to simply pass the packet as-is
5753 * as any IP option based labeling should be copied
5754 * from the initial connection request (in the IP
5755 * layer). it is far from ideal, but until we get a
5756 * security label in the packet itself this is the
5757 * best we can do. */
5758 return NF_ACCEPT;
5759
5760 /* standard practice, label using the parent socket */
5761 sksec = selinux_sock(sk);
5762 sid = sksec->sid;
5763 } else
5764 sid = SECINITSID_KERNEL;
5765 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5766 return NF_DROP;
5767
5768 return NF_ACCEPT;
5769}
5770
5771
5772static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5773 const struct nf_hook_state *state)
5774{
5775 struct sock *sk;
5776 struct sk_security_struct *sksec;
5777 struct common_audit_data ad;
5778 struct lsm_network_audit net;
5779 u8 proto = 0;
5780
5781 sk = skb_to_full_sk(skb);
5782 if (sk == NULL)
5783 return NF_ACCEPT;
5784 sksec = selinux_sock(sk);
5785
5786 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5787 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5788 return NF_DROP;
5789
5790 if (selinux_secmark_enabled())
5791 if (avc_has_perm(sksec->sid, skb->secmark,
5792 SECCLASS_PACKET, PACKET__SEND, &ad))
5793 return NF_DROP_ERR(-ECONNREFUSED);
5794
5795 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5796 return NF_DROP_ERR(-ECONNREFUSED);
5797
5798 return NF_ACCEPT;
5799}
5800
5801static unsigned int selinux_ip_postroute(void *priv,
5802 struct sk_buff *skb,
5803 const struct nf_hook_state *state)
5804{
5805 u16 family;
5806 u32 secmark_perm;
5807 u32 peer_sid;
5808 int ifindex;
5809 struct sock *sk;
5810 struct common_audit_data ad;
5811 struct lsm_network_audit net;
5812 char *addrp;
5813 int secmark_active, peerlbl_active;
5814
5815 /* If any sort of compatibility mode is enabled then handoff processing
5816 * to the selinux_ip_postroute_compat() function to deal with the
5817 * special handling. We do this in an attempt to keep this function
5818 * as fast and as clean as possible. */
5819 if (!selinux_policycap_netpeer())
5820 return selinux_ip_postroute_compat(skb, state);
5821
5822 secmark_active = selinux_secmark_enabled();
5823 peerlbl_active = selinux_peerlbl_enabled();
5824 if (!secmark_active && !peerlbl_active)
5825 return NF_ACCEPT;
5826
5827 sk = skb_to_full_sk(skb);
5828
5829#ifdef CONFIG_XFRM
5830 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5831 * packet transformation so allow the packet to pass without any checks
5832 * since we'll have another chance to perform access control checks
5833 * when the packet is on it's final way out.
5834 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5835 * is NULL, in this case go ahead and apply access control.
5836 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5837 * TCP listening state we cannot wait until the XFRM processing
5838 * is done as we will miss out on the SA label if we do;
5839 * unfortunately, this means more work, but it is only once per
5840 * connection. */
5841 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5842 !(sk && sk_listener(sk)))
5843 return NF_ACCEPT;
5844#endif
5845
5846 family = state->pf;
5847 if (sk == NULL) {
5848 /* Without an associated socket the packet is either coming
5849 * from the kernel or it is being forwarded; check the packet
5850 * to determine which and if the packet is being forwarded
5851 * query the packet directly to determine the security label. */
5852 if (skb->skb_iif) {
5853 secmark_perm = PACKET__FORWARD_OUT;
5854 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5855 return NF_DROP;
5856 } else {
5857 secmark_perm = PACKET__SEND;
5858 peer_sid = SECINITSID_KERNEL;
5859 }
5860 } else if (sk_listener(sk)) {
5861 /* Locally generated packet but the associated socket is in the
5862 * listening state which means this is a SYN-ACK packet. In
5863 * this particular case the correct security label is assigned
5864 * to the connection/request_sock but unfortunately we can't
5865 * query the request_sock as it isn't queued on the parent
5866 * socket until after the SYN-ACK packet is sent; the only
5867 * viable choice is to regenerate the label like we do in
5868 * selinux_inet_conn_request(). See also selinux_ip_output()
5869 * for similar problems. */
5870 u32 skb_sid;
5871 struct sk_security_struct *sksec;
5872
5873 sksec = selinux_sock(sk);
5874 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5875 return NF_DROP;
5876 /* At this point, if the returned skb peerlbl is SECSID_NULL
5877 * and the packet has been through at least one XFRM
5878 * transformation then we must be dealing with the "final"
5879 * form of labeled IPsec packet; since we've already applied
5880 * all of our access controls on this packet we can safely
5881 * pass the packet. */
5882 if (skb_sid == SECSID_NULL) {
5883 switch (family) {
5884 case PF_INET:
5885 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5886 return NF_ACCEPT;
5887 break;
5888 case PF_INET6:
5889 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5890 return NF_ACCEPT;
5891 break;
5892 default:
5893 return NF_DROP_ERR(-ECONNREFUSED);
5894 }
5895 }
5896 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5897 return NF_DROP;
5898 secmark_perm = PACKET__SEND;
5899 } else {
5900 /* Locally generated packet, fetch the security label from the
5901 * associated socket. */
5902 struct sk_security_struct *sksec = selinux_sock(sk);
5903 peer_sid = sksec->sid;
5904 secmark_perm = PACKET__SEND;
5905 }
5906
5907 ifindex = state->out->ifindex;
5908 ad_net_init_from_iif(&ad, &net, ifindex, family);
5909 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5910 return NF_DROP;
5911
5912 if (secmark_active)
5913 if (avc_has_perm(peer_sid, skb->secmark,
5914 SECCLASS_PACKET, secmark_perm, &ad))
5915 return NF_DROP_ERR(-ECONNREFUSED);
5916
5917 if (peerlbl_active) {
5918 u32 if_sid;
5919 u32 node_sid;
5920
5921 if (sel_netif_sid(state->net, ifindex, &if_sid))
5922 return NF_DROP;
5923 if (avc_has_perm(peer_sid, if_sid,
5924 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5925 return NF_DROP_ERR(-ECONNREFUSED);
5926
5927 if (sel_netnode_sid(addrp, family, &node_sid))
5928 return NF_DROP;
5929 if (avc_has_perm(peer_sid, node_sid,
5930 SECCLASS_NODE, NODE__SENDTO, &ad))
5931 return NF_DROP_ERR(-ECONNREFUSED);
5932 }
5933
5934 return NF_ACCEPT;
5935}
5936#endif /* CONFIG_NETFILTER */
5937
5938static int nlmsg_sock_has_extended_perms(struct sock *sk, u32 perms, u16 nlmsg_type)
5939{
5940 struct sk_security_struct *sksec = sk->sk_security;
5941 struct common_audit_data ad;
5942 struct lsm_network_audit net;
5943 u8 driver;
5944 u8 xperm;
5945
5946 if (sock_skip_has_perm(sksec->sid))
5947 return 0;
5948
5949 ad_net_init_from_sk(&ad, &net, sk);
5950
5951 driver = nlmsg_type >> 8;
5952 xperm = nlmsg_type & 0xff;
5953
5954 return avc_has_extended_perms(current_sid(), sksec->sid, sksec->sclass,
5955 perms, driver, AVC_EXT_NLMSG, xperm, &ad);
5956}
5957
5958static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5959{
5960 int rc = 0;
5961 unsigned int msg_len;
5962 unsigned int data_len = skb->len;
5963 unsigned char *data = skb->data;
5964 struct nlmsghdr *nlh;
5965 struct sk_security_struct *sksec = selinux_sock(sk);
5966 u16 sclass = sksec->sclass;
5967 u32 perm;
5968
5969 while (data_len >= nlmsg_total_size(0)) {
5970 nlh = (struct nlmsghdr *)data;
5971
5972 /* NOTE: the nlmsg_len field isn't reliably set by some netlink
5973 * users which means we can't reject skb's with bogus
5974 * length fields; our solution is to follow what
5975 * netlink_rcv_skb() does and simply skip processing at
5976 * messages with length fields that are clearly junk
5977 */
5978 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5979 return 0;
5980
5981 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5982 if (rc == 0) {
5983 if (selinux_policycap_netlink_xperm()) {
5984 rc = nlmsg_sock_has_extended_perms(
5985 sk, perm, nlh->nlmsg_type);
5986 } else {
5987 rc = sock_has_perm(sk, perm);
5988 }
5989 if (rc)
5990 return rc;
5991 } else if (rc == -EINVAL) {
5992 /* -EINVAL is a missing msg/perm mapping */
5993 pr_warn_ratelimited("SELinux: unrecognized netlink"
5994 " message: protocol=%hu nlmsg_type=%hu sclass=%s"
5995 " pid=%d comm=%s\n",
5996 sk->sk_protocol, nlh->nlmsg_type,
5997 secclass_map[sclass - 1].name,
5998 task_pid_nr(current), current->comm);
5999 if (enforcing_enabled() &&
6000 !security_get_allow_unknown())
6001 return rc;
6002 rc = 0;
6003 } else if (rc == -ENOENT) {
6004 /* -ENOENT is a missing socket/class mapping, ignore */
6005 rc = 0;
6006 } else {
6007 return rc;
6008 }
6009
6010 /* move to the next message after applying netlink padding */
6011 msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
6012 if (msg_len >= data_len)
6013 return 0;
6014 data_len -= msg_len;
6015 data += msg_len;
6016 }
6017
6018 return rc;
6019}
6020
6021static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6022{
6023 isec->sclass = sclass;
6024 isec->sid = current_sid();
6025}
6026
6027static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6028 u32 perms)
6029{
6030 struct ipc_security_struct *isec;
6031 struct common_audit_data ad;
6032 u32 sid = current_sid();
6033
6034 isec = selinux_ipc(ipc_perms);
6035
6036 ad.type = LSM_AUDIT_DATA_IPC;
6037 ad.u.ipc_id = ipc_perms->key;
6038
6039 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6040}
6041
6042static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6043{
6044 struct msg_security_struct *msec;
6045
6046 msec = selinux_msg_msg(msg);
6047 msec->sid = SECINITSID_UNLABELED;
6048
6049 return 0;
6050}
6051
6052/* message queue security operations */
6053static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6054{
6055 struct ipc_security_struct *isec;
6056 struct common_audit_data ad;
6057 u32 sid = current_sid();
6058
6059 isec = selinux_ipc(msq);
6060 ipc_init_security(isec, SECCLASS_MSGQ);
6061
6062 ad.type = LSM_AUDIT_DATA_IPC;
6063 ad.u.ipc_id = msq->key;
6064
6065 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6066 MSGQ__CREATE, &ad);
6067}
6068
6069static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6070{
6071 struct ipc_security_struct *isec;
6072 struct common_audit_data ad;
6073 u32 sid = current_sid();
6074
6075 isec = selinux_ipc(msq);
6076
6077 ad.type = LSM_AUDIT_DATA_IPC;
6078 ad.u.ipc_id = msq->key;
6079
6080 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6081 MSGQ__ASSOCIATE, &ad);
6082}
6083
6084static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6085{
6086 u32 perms;
6087
6088 switch (cmd) {
6089 case IPC_INFO:
6090 case MSG_INFO:
6091 /* No specific object, just general system-wide information. */
6092 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6093 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6094 case IPC_STAT:
6095 case MSG_STAT:
6096 case MSG_STAT_ANY:
6097 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6098 break;
6099 case IPC_SET:
6100 perms = MSGQ__SETATTR;
6101 break;
6102 case IPC_RMID:
6103 perms = MSGQ__DESTROY;
6104 break;
6105 default:
6106 return 0;
6107 }
6108
6109 return ipc_has_perm(msq, perms);
6110}
6111
6112static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6113{
6114 struct ipc_security_struct *isec;
6115 struct msg_security_struct *msec;
6116 struct common_audit_data ad;
6117 u32 sid = current_sid();
6118 int rc;
6119
6120 isec = selinux_ipc(msq);
6121 msec = selinux_msg_msg(msg);
6122
6123 /*
6124 * First time through, need to assign label to the message
6125 */
6126 if (msec->sid == SECINITSID_UNLABELED) {
6127 /*
6128 * Compute new sid based on current process and
6129 * message queue this message will be stored in
6130 */
6131 rc = security_transition_sid(sid, isec->sid,
6132 SECCLASS_MSG, NULL, &msec->sid);
6133 if (rc)
6134 return rc;
6135 }
6136
6137 ad.type = LSM_AUDIT_DATA_IPC;
6138 ad.u.ipc_id = msq->key;
6139
6140 /* Can this process write to the queue? */
6141 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6142 MSGQ__WRITE, &ad);
6143 if (!rc)
6144 /* Can this process send the message */
6145 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6146 MSG__SEND, &ad);
6147 if (!rc)
6148 /* Can the message be put in the queue? */
6149 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6150 MSGQ__ENQUEUE, &ad);
6151
6152 return rc;
6153}
6154
6155static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6156 struct task_struct *target,
6157 long type, int mode)
6158{
6159 struct ipc_security_struct *isec;
6160 struct msg_security_struct *msec;
6161 struct common_audit_data ad;
6162 u32 sid = task_sid_obj(target);
6163 int rc;
6164
6165 isec = selinux_ipc(msq);
6166 msec = selinux_msg_msg(msg);
6167
6168 ad.type = LSM_AUDIT_DATA_IPC;
6169 ad.u.ipc_id = msq->key;
6170
6171 rc = avc_has_perm(sid, isec->sid,
6172 SECCLASS_MSGQ, MSGQ__READ, &ad);
6173 if (!rc)
6174 rc = avc_has_perm(sid, msec->sid,
6175 SECCLASS_MSG, MSG__RECEIVE, &ad);
6176 return rc;
6177}
6178
6179/* Shared Memory security operations */
6180static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6181{
6182 struct ipc_security_struct *isec;
6183 struct common_audit_data ad;
6184 u32 sid = current_sid();
6185
6186 isec = selinux_ipc(shp);
6187 ipc_init_security(isec, SECCLASS_SHM);
6188
6189 ad.type = LSM_AUDIT_DATA_IPC;
6190 ad.u.ipc_id = shp->key;
6191
6192 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6193 SHM__CREATE, &ad);
6194}
6195
6196static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6197{
6198 struct ipc_security_struct *isec;
6199 struct common_audit_data ad;
6200 u32 sid = current_sid();
6201
6202 isec = selinux_ipc(shp);
6203
6204 ad.type = LSM_AUDIT_DATA_IPC;
6205 ad.u.ipc_id = shp->key;
6206
6207 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6208 SHM__ASSOCIATE, &ad);
6209}
6210
6211/* Note, at this point, shp is locked down */
6212static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6213{
6214 u32 perms;
6215
6216 switch (cmd) {
6217 case IPC_INFO:
6218 case SHM_INFO:
6219 /* No specific object, just general system-wide information. */
6220 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6221 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6222 case IPC_STAT:
6223 case SHM_STAT:
6224 case SHM_STAT_ANY:
6225 perms = SHM__GETATTR | SHM__ASSOCIATE;
6226 break;
6227 case IPC_SET:
6228 perms = SHM__SETATTR;
6229 break;
6230 case SHM_LOCK:
6231 case SHM_UNLOCK:
6232 perms = SHM__LOCK;
6233 break;
6234 case IPC_RMID:
6235 perms = SHM__DESTROY;
6236 break;
6237 default:
6238 return 0;
6239 }
6240
6241 return ipc_has_perm(shp, perms);
6242}
6243
6244static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6245 char __user *shmaddr, int shmflg)
6246{
6247 u32 perms;
6248
6249 if (shmflg & SHM_RDONLY)
6250 perms = SHM__READ;
6251 else
6252 perms = SHM__READ | SHM__WRITE;
6253
6254 return ipc_has_perm(shp, perms);
6255}
6256
6257/* Semaphore security operations */
6258static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6259{
6260 struct ipc_security_struct *isec;
6261 struct common_audit_data ad;
6262 u32 sid = current_sid();
6263
6264 isec = selinux_ipc(sma);
6265 ipc_init_security(isec, SECCLASS_SEM);
6266
6267 ad.type = LSM_AUDIT_DATA_IPC;
6268 ad.u.ipc_id = sma->key;
6269
6270 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6271 SEM__CREATE, &ad);
6272}
6273
6274static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6275{
6276 struct ipc_security_struct *isec;
6277 struct common_audit_data ad;
6278 u32 sid = current_sid();
6279
6280 isec = selinux_ipc(sma);
6281
6282 ad.type = LSM_AUDIT_DATA_IPC;
6283 ad.u.ipc_id = sma->key;
6284
6285 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6286 SEM__ASSOCIATE, &ad);
6287}
6288
6289/* Note, at this point, sma is locked down */
6290static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6291{
6292 int err;
6293 u32 perms;
6294
6295 switch (cmd) {
6296 case IPC_INFO:
6297 case SEM_INFO:
6298 /* No specific object, just general system-wide information. */
6299 return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6300 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6301 case GETPID:
6302 case GETNCNT:
6303 case GETZCNT:
6304 perms = SEM__GETATTR;
6305 break;
6306 case GETVAL:
6307 case GETALL:
6308 perms = SEM__READ;
6309 break;
6310 case SETVAL:
6311 case SETALL:
6312 perms = SEM__WRITE;
6313 break;
6314 case IPC_RMID:
6315 perms = SEM__DESTROY;
6316 break;
6317 case IPC_SET:
6318 perms = SEM__SETATTR;
6319 break;
6320 case IPC_STAT:
6321 case SEM_STAT:
6322 case SEM_STAT_ANY:
6323 perms = SEM__GETATTR | SEM__ASSOCIATE;
6324 break;
6325 default:
6326 return 0;
6327 }
6328
6329 err = ipc_has_perm(sma, perms);
6330 return err;
6331}
6332
6333static int selinux_sem_semop(struct kern_ipc_perm *sma,
6334 struct sembuf *sops, unsigned nsops, int alter)
6335{
6336 u32 perms;
6337
6338 if (alter)
6339 perms = SEM__READ | SEM__WRITE;
6340 else
6341 perms = SEM__READ;
6342
6343 return ipc_has_perm(sma, perms);
6344}
6345
6346static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6347{
6348 u32 av = 0;
6349
6350 av = 0;
6351 if (flag & S_IRUGO)
6352 av |= IPC__UNIX_READ;
6353 if (flag & S_IWUGO)
6354 av |= IPC__UNIX_WRITE;
6355
6356 if (av == 0)
6357 return 0;
6358
6359 return ipc_has_perm(ipcp, av);
6360}
6361
6362static void selinux_ipc_getlsmprop(struct kern_ipc_perm *ipcp,
6363 struct lsm_prop *prop)
6364{
6365 struct ipc_security_struct *isec = selinux_ipc(ipcp);
6366 prop->selinux.secid = isec->sid;
6367}
6368
6369static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6370{
6371 if (inode)
6372 inode_doinit_with_dentry(inode, dentry);
6373}
6374
6375static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6376 char **value)
6377{
6378 const struct task_security_struct *tsec;
6379 int error;
6380 u32 sid;
6381 u32 len;
6382
6383 rcu_read_lock();
6384 tsec = selinux_cred(__task_cred(p));
6385 if (p != current) {
6386 error = avc_has_perm(current_sid(), tsec->sid,
6387 SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6388 if (error)
6389 goto err_unlock;
6390 }
6391 switch (attr) {
6392 case LSM_ATTR_CURRENT:
6393 sid = tsec->sid;
6394 break;
6395 case LSM_ATTR_PREV:
6396 sid = tsec->osid;
6397 break;
6398 case LSM_ATTR_EXEC:
6399 sid = tsec->exec_sid;
6400 break;
6401 case LSM_ATTR_FSCREATE:
6402 sid = tsec->create_sid;
6403 break;
6404 case LSM_ATTR_KEYCREATE:
6405 sid = tsec->keycreate_sid;
6406 break;
6407 case LSM_ATTR_SOCKCREATE:
6408 sid = tsec->sockcreate_sid;
6409 break;
6410 default:
6411 error = -EOPNOTSUPP;
6412 goto err_unlock;
6413 }
6414 rcu_read_unlock();
6415
6416 if (sid == SECSID_NULL) {
6417 *value = NULL;
6418 return 0;
6419 }
6420
6421 error = security_sid_to_context(sid, value, &len);
6422 if (error)
6423 return error;
6424 return len;
6425
6426err_unlock:
6427 rcu_read_unlock();
6428 return error;
6429}
6430
6431static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6432{
6433 struct task_security_struct *tsec;
6434 struct cred *new;
6435 u32 mysid = current_sid(), sid = 0, ptsid;
6436 int error;
6437 char *str = value;
6438
6439 /*
6440 * Basic control over ability to set these attributes at all.
6441 */
6442 switch (attr) {
6443 case LSM_ATTR_EXEC:
6444 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6445 PROCESS__SETEXEC, NULL);
6446 break;
6447 case LSM_ATTR_FSCREATE:
6448 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6449 PROCESS__SETFSCREATE, NULL);
6450 break;
6451 case LSM_ATTR_KEYCREATE:
6452 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6453 PROCESS__SETKEYCREATE, NULL);
6454 break;
6455 case LSM_ATTR_SOCKCREATE:
6456 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6457 PROCESS__SETSOCKCREATE, NULL);
6458 break;
6459 case LSM_ATTR_CURRENT:
6460 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6461 PROCESS__SETCURRENT, NULL);
6462 break;
6463 default:
6464 error = -EOPNOTSUPP;
6465 break;
6466 }
6467 if (error)
6468 return error;
6469
6470 /* Obtain a SID for the context, if one was specified. */
6471 if (size && str[0] && str[0] != '\n') {
6472 if (str[size-1] == '\n') {
6473 str[size-1] = 0;
6474 size--;
6475 }
6476 error = security_context_to_sid(value, size,
6477 &sid, GFP_KERNEL);
6478 if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6479 if (!has_cap_mac_admin(true)) {
6480 struct audit_buffer *ab;
6481 size_t audit_size;
6482
6483 /* We strip a nul only if it is at the end,
6484 * otherwise the context contains a nul and
6485 * we should audit that */
6486 if (str[size - 1] == '\0')
6487 audit_size = size - 1;
6488 else
6489 audit_size = size;
6490 ab = audit_log_start(audit_context(),
6491 GFP_ATOMIC,
6492 AUDIT_SELINUX_ERR);
6493 if (!ab)
6494 return error;
6495 audit_log_format(ab, "op=fscreate invalid_context=");
6496 audit_log_n_untrustedstring(ab, value,
6497 audit_size);
6498 audit_log_end(ab);
6499
6500 return error;
6501 }
6502 error = security_context_to_sid_force(value, size,
6503 &sid);
6504 }
6505 if (error)
6506 return error;
6507 }
6508
6509 new = prepare_creds();
6510 if (!new)
6511 return -ENOMEM;
6512
6513 /* Permission checking based on the specified context is
6514 performed during the actual operation (execve,
6515 open/mkdir/...), when we know the full context of the
6516 operation. See selinux_bprm_creds_for_exec for the execve
6517 checks and may_create for the file creation checks. The
6518 operation will then fail if the context is not permitted. */
6519 tsec = selinux_cred(new);
6520 if (attr == LSM_ATTR_EXEC) {
6521 tsec->exec_sid = sid;
6522 } else if (attr == LSM_ATTR_FSCREATE) {
6523 tsec->create_sid = sid;
6524 } else if (attr == LSM_ATTR_KEYCREATE) {
6525 if (sid) {
6526 error = avc_has_perm(mysid, sid,
6527 SECCLASS_KEY, KEY__CREATE, NULL);
6528 if (error)
6529 goto abort_change;
6530 }
6531 tsec->keycreate_sid = sid;
6532 } else if (attr == LSM_ATTR_SOCKCREATE) {
6533 tsec->sockcreate_sid = sid;
6534 } else if (attr == LSM_ATTR_CURRENT) {
6535 error = -EINVAL;
6536 if (sid == 0)
6537 goto abort_change;
6538
6539 if (!current_is_single_threaded()) {
6540 error = security_bounded_transition(tsec->sid, sid);
6541 if (error)
6542 goto abort_change;
6543 }
6544
6545 /* Check permissions for the transition. */
6546 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6547 PROCESS__DYNTRANSITION, NULL);
6548 if (error)
6549 goto abort_change;
6550
6551 /* Check for ptracing, and update the task SID if ok.
6552 Otherwise, leave SID unchanged and fail. */
6553 ptsid = ptrace_parent_sid();
6554 if (ptsid != 0) {
6555 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6556 PROCESS__PTRACE, NULL);
6557 if (error)
6558 goto abort_change;
6559 }
6560
6561 tsec->sid = sid;
6562 } else {
6563 error = -EINVAL;
6564 goto abort_change;
6565 }
6566
6567 commit_creds(new);
6568 return size;
6569
6570abort_change:
6571 abort_creds(new);
6572 return error;
6573}
6574
6575/**
6576 * selinux_getselfattr - Get SELinux current task attributes
6577 * @attr: the requested attribute
6578 * @ctx: buffer to receive the result
6579 * @size: buffer size (input), buffer size used (output)
6580 * @flags: unused
6581 *
6582 * Fill the passed user space @ctx with the details of the requested
6583 * attribute.
6584 *
6585 * Returns the number of attributes on success, an error code otherwise.
6586 * There will only ever be one attribute.
6587 */
6588static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6589 u32 *size, u32 flags)
6590{
6591 int rc;
6592 char *val = NULL;
6593 int val_len;
6594
6595 val_len = selinux_lsm_getattr(attr, current, &val);
6596 if (val_len < 0)
6597 return val_len;
6598 rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6599 kfree(val);
6600 return (!rc ? 1 : rc);
6601}
6602
6603static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6604 u32 size, u32 flags)
6605{
6606 int rc;
6607
6608 rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6609 if (rc > 0)
6610 return 0;
6611 return rc;
6612}
6613
6614static int selinux_getprocattr(struct task_struct *p,
6615 const char *name, char **value)
6616{
6617 unsigned int attr = lsm_name_to_attr(name);
6618 int rc;
6619
6620 if (attr) {
6621 rc = selinux_lsm_getattr(attr, p, value);
6622 if (rc != -EOPNOTSUPP)
6623 return rc;
6624 }
6625
6626 return -EINVAL;
6627}
6628
6629static int selinux_setprocattr(const char *name, void *value, size_t size)
6630{
6631 int attr = lsm_name_to_attr(name);
6632
6633 if (attr)
6634 return selinux_lsm_setattr(attr, value, size);
6635 return -EINVAL;
6636}
6637
6638static int selinux_ismaclabel(const char *name)
6639{
6640 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6641}
6642
6643static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6644{
6645 return security_sid_to_context(secid, secdata, seclen);
6646}
6647
6648static int selinux_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
6649 u32 *seclen)
6650{
6651 return selinux_secid_to_secctx(prop->selinux.secid, secdata, seclen);
6652}
6653
6654static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6655{
6656 return security_context_to_sid(secdata, seclen,
6657 secid, GFP_KERNEL);
6658}
6659
6660static void selinux_release_secctx(char *secdata, u32 seclen)
6661{
6662 kfree(secdata);
6663}
6664
6665static void selinux_inode_invalidate_secctx(struct inode *inode)
6666{
6667 struct inode_security_struct *isec = selinux_inode(inode);
6668
6669 spin_lock(&isec->lock);
6670 isec->initialized = LABEL_INVALID;
6671 spin_unlock(&isec->lock);
6672}
6673
6674/*
6675 * called with inode->i_mutex locked
6676 */
6677static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6678{
6679 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6680 ctx, ctxlen, 0);
6681 /* Do not return error when suppressing label (SBLABEL_MNT not set). */
6682 return rc == -EOPNOTSUPP ? 0 : rc;
6683}
6684
6685/*
6686 * called with inode->i_mutex locked
6687 */
6688static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6689{
6690 return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6691 ctx, ctxlen, 0, NULL);
6692}
6693
6694static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6695{
6696 int len = 0;
6697 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6698 XATTR_SELINUX_SUFFIX, ctx, true);
6699 if (len < 0)
6700 return len;
6701 *ctxlen = len;
6702 return 0;
6703}
6704#ifdef CONFIG_KEYS
6705
6706static int selinux_key_alloc(struct key *k, const struct cred *cred,
6707 unsigned long flags)
6708{
6709 const struct task_security_struct *tsec;
6710 struct key_security_struct *ksec = selinux_key(k);
6711
6712 tsec = selinux_cred(cred);
6713 if (tsec->keycreate_sid)
6714 ksec->sid = tsec->keycreate_sid;
6715 else
6716 ksec->sid = tsec->sid;
6717
6718 return 0;
6719}
6720
6721static int selinux_key_permission(key_ref_t key_ref,
6722 const struct cred *cred,
6723 enum key_need_perm need_perm)
6724{
6725 struct key *key;
6726 struct key_security_struct *ksec;
6727 u32 perm, sid;
6728
6729 switch (need_perm) {
6730 case KEY_NEED_VIEW:
6731 perm = KEY__VIEW;
6732 break;
6733 case KEY_NEED_READ:
6734 perm = KEY__READ;
6735 break;
6736 case KEY_NEED_WRITE:
6737 perm = KEY__WRITE;
6738 break;
6739 case KEY_NEED_SEARCH:
6740 perm = KEY__SEARCH;
6741 break;
6742 case KEY_NEED_LINK:
6743 perm = KEY__LINK;
6744 break;
6745 case KEY_NEED_SETATTR:
6746 perm = KEY__SETATTR;
6747 break;
6748 case KEY_NEED_UNLINK:
6749 case KEY_SYSADMIN_OVERRIDE:
6750 case KEY_AUTHTOKEN_OVERRIDE:
6751 case KEY_DEFER_PERM_CHECK:
6752 return 0;
6753 default:
6754 WARN_ON(1);
6755 return -EPERM;
6756
6757 }
6758
6759 sid = cred_sid(cred);
6760 key = key_ref_to_ptr(key_ref);
6761 ksec = selinux_key(key);
6762
6763 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6764}
6765
6766static int selinux_key_getsecurity(struct key *key, char **_buffer)
6767{
6768 struct key_security_struct *ksec = selinux_key(key);
6769 char *context = NULL;
6770 unsigned len;
6771 int rc;
6772
6773 rc = security_sid_to_context(ksec->sid,
6774 &context, &len);
6775 if (!rc)
6776 rc = len;
6777 *_buffer = context;
6778 return rc;
6779}
6780
6781#ifdef CONFIG_KEY_NOTIFICATIONS
6782static int selinux_watch_key(struct key *key)
6783{
6784 struct key_security_struct *ksec = selinux_key(key);
6785 u32 sid = current_sid();
6786
6787 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6788}
6789#endif
6790#endif
6791
6792#ifdef CONFIG_SECURITY_INFINIBAND
6793static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6794{
6795 struct common_audit_data ad;
6796 int err;
6797 u32 sid = 0;
6798 struct ib_security_struct *sec = ib_sec;
6799 struct lsm_ibpkey_audit ibpkey;
6800
6801 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6802 if (err)
6803 return err;
6804
6805 ad.type = LSM_AUDIT_DATA_IBPKEY;
6806 ibpkey.subnet_prefix = subnet_prefix;
6807 ibpkey.pkey = pkey_val;
6808 ad.u.ibpkey = &ibpkey;
6809 return avc_has_perm(sec->sid, sid,
6810 SECCLASS_INFINIBAND_PKEY,
6811 INFINIBAND_PKEY__ACCESS, &ad);
6812}
6813
6814static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6815 u8 port_num)
6816{
6817 struct common_audit_data ad;
6818 int err;
6819 u32 sid = 0;
6820 struct ib_security_struct *sec = ib_sec;
6821 struct lsm_ibendport_audit ibendport;
6822
6823 err = security_ib_endport_sid(dev_name, port_num,
6824 &sid);
6825
6826 if (err)
6827 return err;
6828
6829 ad.type = LSM_AUDIT_DATA_IBENDPORT;
6830 ibendport.dev_name = dev_name;
6831 ibendport.port = port_num;
6832 ad.u.ibendport = &ibendport;
6833 return avc_has_perm(sec->sid, sid,
6834 SECCLASS_INFINIBAND_ENDPORT,
6835 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6836}
6837
6838static int selinux_ib_alloc_security(void *ib_sec)
6839{
6840 struct ib_security_struct *sec = selinux_ib(ib_sec);
6841
6842 sec->sid = current_sid();
6843 return 0;
6844}
6845#endif
6846
6847#ifdef CONFIG_BPF_SYSCALL
6848static int selinux_bpf(int cmd, union bpf_attr *attr,
6849 unsigned int size)
6850{
6851 u32 sid = current_sid();
6852 int ret;
6853
6854 switch (cmd) {
6855 case BPF_MAP_CREATE:
6856 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6857 NULL);
6858 break;
6859 case BPF_PROG_LOAD:
6860 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6861 NULL);
6862 break;
6863 default:
6864 ret = 0;
6865 break;
6866 }
6867
6868 return ret;
6869}
6870
6871static u32 bpf_map_fmode_to_av(fmode_t fmode)
6872{
6873 u32 av = 0;
6874
6875 if (fmode & FMODE_READ)
6876 av |= BPF__MAP_READ;
6877 if (fmode & FMODE_WRITE)
6878 av |= BPF__MAP_WRITE;
6879 return av;
6880}
6881
6882/* This function will check the file pass through unix socket or binder to see
6883 * if it is a bpf related object. And apply corresponding checks on the bpf
6884 * object based on the type. The bpf maps and programs, not like other files and
6885 * socket, are using a shared anonymous inode inside the kernel as their inode.
6886 * So checking that inode cannot identify if the process have privilege to
6887 * access the bpf object and that's why we have to add this additional check in
6888 * selinux_file_receive and selinux_binder_transfer_files.
6889 */
6890static int bpf_fd_pass(const struct file *file, u32 sid)
6891{
6892 struct bpf_security_struct *bpfsec;
6893 struct bpf_prog *prog;
6894 struct bpf_map *map;
6895 int ret;
6896
6897 if (file->f_op == &bpf_map_fops) {
6898 map = file->private_data;
6899 bpfsec = map->security;
6900 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6901 bpf_map_fmode_to_av(file->f_mode), NULL);
6902 if (ret)
6903 return ret;
6904 } else if (file->f_op == &bpf_prog_fops) {
6905 prog = file->private_data;
6906 bpfsec = prog->aux->security;
6907 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6908 BPF__PROG_RUN, NULL);
6909 if (ret)
6910 return ret;
6911 }
6912 return 0;
6913}
6914
6915static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6916{
6917 u32 sid = current_sid();
6918 struct bpf_security_struct *bpfsec;
6919
6920 bpfsec = map->security;
6921 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6922 bpf_map_fmode_to_av(fmode), NULL);
6923}
6924
6925static int selinux_bpf_prog(struct bpf_prog *prog)
6926{
6927 u32 sid = current_sid();
6928 struct bpf_security_struct *bpfsec;
6929
6930 bpfsec = prog->aux->security;
6931 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6932 BPF__PROG_RUN, NULL);
6933}
6934
6935static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6936 struct bpf_token *token)
6937{
6938 struct bpf_security_struct *bpfsec;
6939
6940 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6941 if (!bpfsec)
6942 return -ENOMEM;
6943
6944 bpfsec->sid = current_sid();
6945 map->security = bpfsec;
6946
6947 return 0;
6948}
6949
6950static void selinux_bpf_map_free(struct bpf_map *map)
6951{
6952 struct bpf_security_struct *bpfsec = map->security;
6953
6954 map->security = NULL;
6955 kfree(bpfsec);
6956}
6957
6958static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6959 struct bpf_token *token)
6960{
6961 struct bpf_security_struct *bpfsec;
6962
6963 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6964 if (!bpfsec)
6965 return -ENOMEM;
6966
6967 bpfsec->sid = current_sid();
6968 prog->aux->security = bpfsec;
6969
6970 return 0;
6971}
6972
6973static void selinux_bpf_prog_free(struct bpf_prog *prog)
6974{
6975 struct bpf_security_struct *bpfsec = prog->aux->security;
6976
6977 prog->aux->security = NULL;
6978 kfree(bpfsec);
6979}
6980
6981static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6982 const struct path *path)
6983{
6984 struct bpf_security_struct *bpfsec;
6985
6986 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6987 if (!bpfsec)
6988 return -ENOMEM;
6989
6990 bpfsec->sid = current_sid();
6991 token->security = bpfsec;
6992
6993 return 0;
6994}
6995
6996static void selinux_bpf_token_free(struct bpf_token *token)
6997{
6998 struct bpf_security_struct *bpfsec = token->security;
6999
7000 token->security = NULL;
7001 kfree(bpfsec);
7002}
7003#endif
7004
7005struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
7006 .lbs_cred = sizeof(struct task_security_struct),
7007 .lbs_file = sizeof(struct file_security_struct),
7008 .lbs_inode = sizeof(struct inode_security_struct),
7009 .lbs_ipc = sizeof(struct ipc_security_struct),
7010 .lbs_key = sizeof(struct key_security_struct),
7011 .lbs_msg_msg = sizeof(struct msg_security_struct),
7012#ifdef CONFIG_PERF_EVENTS
7013 .lbs_perf_event = sizeof(struct perf_event_security_struct),
7014#endif
7015 .lbs_sock = sizeof(struct sk_security_struct),
7016 .lbs_superblock = sizeof(struct superblock_security_struct),
7017 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7018 .lbs_tun_dev = sizeof(struct tun_security_struct),
7019 .lbs_ib = sizeof(struct ib_security_struct),
7020};
7021
7022#ifdef CONFIG_PERF_EVENTS
7023static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7024{
7025 u32 requested, sid = current_sid();
7026
7027 if (type == PERF_SECURITY_OPEN)
7028 requested = PERF_EVENT__OPEN;
7029 else if (type == PERF_SECURITY_CPU)
7030 requested = PERF_EVENT__CPU;
7031 else if (type == PERF_SECURITY_KERNEL)
7032 requested = PERF_EVENT__KERNEL;
7033 else if (type == PERF_SECURITY_TRACEPOINT)
7034 requested = PERF_EVENT__TRACEPOINT;
7035 else
7036 return -EINVAL;
7037
7038 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7039 requested, NULL);
7040}
7041
7042static int selinux_perf_event_alloc(struct perf_event *event)
7043{
7044 struct perf_event_security_struct *perfsec;
7045
7046 perfsec = selinux_perf_event(event->security);
7047 perfsec->sid = current_sid();
7048
7049 return 0;
7050}
7051
7052static int selinux_perf_event_read(struct perf_event *event)
7053{
7054 struct perf_event_security_struct *perfsec = event->security;
7055 u32 sid = current_sid();
7056
7057 return avc_has_perm(sid, perfsec->sid,
7058 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7059}
7060
7061static int selinux_perf_event_write(struct perf_event *event)
7062{
7063 struct perf_event_security_struct *perfsec = event->security;
7064 u32 sid = current_sid();
7065
7066 return avc_has_perm(sid, perfsec->sid,
7067 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7068}
7069#endif
7070
7071#ifdef CONFIG_IO_URING
7072/**
7073 * selinux_uring_override_creds - check the requested cred override
7074 * @new: the target creds
7075 *
7076 * Check to see if the current task is allowed to override it's credentials
7077 * to service an io_uring operation.
7078 */
7079static int selinux_uring_override_creds(const struct cred *new)
7080{
7081 return avc_has_perm(current_sid(), cred_sid(new),
7082 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7083}
7084
7085/**
7086 * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7087 *
7088 * Check to see if the current task is allowed to create a new io_uring
7089 * kernel polling thread.
7090 */
7091static int selinux_uring_sqpoll(void)
7092{
7093 u32 sid = current_sid();
7094
7095 return avc_has_perm(sid, sid,
7096 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7097}
7098
7099/**
7100 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7101 * @ioucmd: the io_uring command structure
7102 *
7103 * Check to see if the current domain is allowed to execute an
7104 * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7105 *
7106 */
7107static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7108{
7109 struct file *file = ioucmd->file;
7110 struct inode *inode = file_inode(file);
7111 struct inode_security_struct *isec = selinux_inode(inode);
7112 struct common_audit_data ad;
7113
7114 ad.type = LSM_AUDIT_DATA_FILE;
7115 ad.u.file = file;
7116
7117 return avc_has_perm(current_sid(), isec->sid,
7118 SECCLASS_IO_URING, IO_URING__CMD, &ad);
7119}
7120#endif /* CONFIG_IO_URING */
7121
7122static const struct lsm_id selinux_lsmid = {
7123 .name = "selinux",
7124 .id = LSM_ID_SELINUX,
7125};
7126
7127/*
7128 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7129 * 1. any hooks that don't belong to (2.) or (3.) below,
7130 * 2. hooks that both access structures allocated by other hooks, and allocate
7131 * structures that can be later accessed by other hooks (mostly "cloning"
7132 * hooks),
7133 * 3. hooks that only allocate structures that can be later accessed by other
7134 * hooks ("allocating" hooks).
7135 *
7136 * Please follow block comment delimiters in the list to keep this order.
7137 */
7138static struct security_hook_list selinux_hooks[] __ro_after_init = {
7139 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7140 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7141 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7142 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7143
7144 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7145 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7146 LSM_HOOK_INIT(capget, selinux_capget),
7147 LSM_HOOK_INIT(capset, selinux_capset),
7148 LSM_HOOK_INIT(capable, selinux_capable),
7149 LSM_HOOK_INIT(quotactl, selinux_quotactl),
7150 LSM_HOOK_INIT(quota_on, selinux_quota_on),
7151 LSM_HOOK_INIT(syslog, selinux_syslog),
7152 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7153
7154 LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7155
7156 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7157 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7158 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7159
7160 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7161 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7162 LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7163 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7164 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7165 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7166 LSM_HOOK_INIT(sb_mount, selinux_mount),
7167 LSM_HOOK_INIT(sb_umount, selinux_umount),
7168 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7169 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7170
7171 LSM_HOOK_INIT(move_mount, selinux_move_mount),
7172
7173 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7174 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7175
7176 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7177 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7178 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7179 LSM_HOOK_INIT(inode_create, selinux_inode_create),
7180 LSM_HOOK_INIT(inode_link, selinux_inode_link),
7181 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7182 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7183 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7184 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7185 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7186 LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7187 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7188 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7189 LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7190 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7191 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7192 LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7193 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7194 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7195 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7196 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7197 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7198 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7199 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7200 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7201 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7202 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7203 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7204 LSM_HOOK_INIT(inode_getlsmprop, selinux_inode_getlsmprop),
7205 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7206 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7207 LSM_HOOK_INIT(path_notify, selinux_path_notify),
7208
7209 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7210
7211 LSM_HOOK_INIT(file_permission, selinux_file_permission),
7212 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7213 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7214 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7215 LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7216 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7217 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7218 LSM_HOOK_INIT(file_lock, selinux_file_lock),
7219 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7220 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7221 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7222 LSM_HOOK_INIT(file_receive, selinux_file_receive),
7223
7224 LSM_HOOK_INIT(file_open, selinux_file_open),
7225
7226 LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7227 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7228 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7229 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7230 LSM_HOOK_INIT(cred_getlsmprop, selinux_cred_getlsmprop),
7231 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7232 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7233 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7234 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7235 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7236 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7237 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7238 LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7239 LSM_HOOK_INIT(current_getlsmprop_subj, selinux_current_getlsmprop_subj),
7240 LSM_HOOK_INIT(task_getlsmprop_obj, selinux_task_getlsmprop_obj),
7241 LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7242 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7243 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7244 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7245 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7246 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7247 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7248 LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7249 LSM_HOOK_INIT(task_kill, selinux_task_kill),
7250 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7251 LSM_HOOK_INIT(userns_create, selinux_userns_create),
7252
7253 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7254 LSM_HOOK_INIT(ipc_getlsmprop, selinux_ipc_getlsmprop),
7255
7256 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7257 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7258 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7259 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7260
7261 LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7262 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7263 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7264
7265 LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7266 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7267 LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7268
7269 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7270
7271 LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7272 LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7273 LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7274 LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7275
7276 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7277 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7278 LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7279 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7280 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7281 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7282
7283 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7284 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7285
7286 LSM_HOOK_INIT(socket_create, selinux_socket_create),
7287 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7288 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7289 LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7290 LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7291 LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7292 LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7293 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7294 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7295 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7296 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7297 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7298 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7299 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7300 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7301 LSM_HOOK_INIT(socket_getpeersec_stream,
7302 selinux_socket_getpeersec_stream),
7303 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7304 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7305 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7306 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7307 LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7308 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7309 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7310 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7311 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7312 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7313 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7314 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7315 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7316 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7317 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7318 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7319 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7320 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7321 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7322 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7323 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7324#ifdef CONFIG_SECURITY_INFINIBAND
7325 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7326 LSM_HOOK_INIT(ib_endport_manage_subnet,
7327 selinux_ib_endport_manage_subnet),
7328#endif
7329#ifdef CONFIG_SECURITY_NETWORK_XFRM
7330 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7331 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7332 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7333 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7334 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7335 LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7336 selinux_xfrm_state_pol_flow_match),
7337 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7338#endif
7339
7340#ifdef CONFIG_KEYS
7341 LSM_HOOK_INIT(key_permission, selinux_key_permission),
7342 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7343#ifdef CONFIG_KEY_NOTIFICATIONS
7344 LSM_HOOK_INIT(watch_key, selinux_watch_key),
7345#endif
7346#endif
7347
7348#ifdef CONFIG_AUDIT
7349 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7350 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7351 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7352#endif
7353
7354#ifdef CONFIG_BPF_SYSCALL
7355 LSM_HOOK_INIT(bpf, selinux_bpf),
7356 LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7357 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7358 LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7359 LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7360 LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7361#endif
7362
7363#ifdef CONFIG_PERF_EVENTS
7364 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7365 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7366 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7367#endif
7368
7369#ifdef CONFIG_IO_URING
7370 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7371 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7372 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7373#endif
7374
7375 /*
7376 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7377 */
7378 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7379 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7380 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7381 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7382#ifdef CONFIG_SECURITY_NETWORK_XFRM
7383 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7384#endif
7385
7386 /*
7387 * PUT "ALLOCATING" HOOKS HERE
7388 */
7389 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7390 LSM_HOOK_INIT(msg_queue_alloc_security,
7391 selinux_msg_queue_alloc_security),
7392 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7393 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7394 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7395 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7396 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7397 LSM_HOOK_INIT(lsmprop_to_secctx, selinux_lsmprop_to_secctx),
7398 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7399 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7400 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7401#ifdef CONFIG_SECURITY_INFINIBAND
7402 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7403#endif
7404#ifdef CONFIG_SECURITY_NETWORK_XFRM
7405 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7406 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7407 LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7408 selinux_xfrm_state_alloc_acquire),
7409#endif
7410#ifdef CONFIG_KEYS
7411 LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7412#endif
7413#ifdef CONFIG_AUDIT
7414 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7415#endif
7416#ifdef CONFIG_BPF_SYSCALL
7417 LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7418 LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7419 LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7420#endif
7421#ifdef CONFIG_PERF_EVENTS
7422 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7423#endif
7424};
7425
7426static __init int selinux_init(void)
7427{
7428 pr_info("SELinux: Initializing.\n");
7429
7430 memset(&selinux_state, 0, sizeof(selinux_state));
7431 enforcing_set(selinux_enforcing_boot);
7432 selinux_avc_init();
7433 mutex_init(&selinux_state.status_lock);
7434 mutex_init(&selinux_state.policy_mutex);
7435
7436 /* Set the security state for the initial task. */
7437 cred_init_security();
7438
7439 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7440 if (!default_noexec)
7441 pr_notice("SELinux: virtual memory is executable by default\n");
7442
7443 avc_init();
7444
7445 avtab_cache_init();
7446
7447 ebitmap_cache_init();
7448
7449 hashtab_cache_init();
7450
7451 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7452 &selinux_lsmid);
7453
7454 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7455 panic("SELinux: Unable to register AVC netcache callback\n");
7456
7457 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7458 panic("SELinux: Unable to register AVC LSM notifier callback\n");
7459
7460 if (selinux_enforcing_boot)
7461 pr_debug("SELinux: Starting in enforcing mode\n");
7462 else
7463 pr_debug("SELinux: Starting in permissive mode\n");
7464
7465 fs_validate_description("selinux", selinux_fs_parameters);
7466
7467 return 0;
7468}
7469
7470static void delayed_superblock_init(struct super_block *sb, void *unused)
7471{
7472 selinux_set_mnt_opts(sb, NULL, 0, NULL);
7473}
7474
7475void selinux_complete_init(void)
7476{
7477 pr_debug("SELinux: Completing initialization.\n");
7478
7479 /* Set up any superblocks initialized prior to the policy load. */
7480 pr_debug("SELinux: Setting up existing superblocks.\n");
7481 iterate_supers(delayed_superblock_init, NULL);
7482}
7483
7484/* SELinux requires early initialization in order to label
7485 all processes and objects when they are created. */
7486DEFINE_LSM(selinux) = {
7487 .name = "selinux",
7488 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7489 .enabled = &selinux_enabled_boot,
7490 .blobs = &selinux_blob_sizes,
7491 .init = selinux_init,
7492};
7493
7494#if defined(CONFIG_NETFILTER)
7495static const struct nf_hook_ops selinux_nf_ops[] = {
7496 {
7497 .hook = selinux_ip_postroute,
7498 .pf = NFPROTO_IPV4,
7499 .hooknum = NF_INET_POST_ROUTING,
7500 .priority = NF_IP_PRI_SELINUX_LAST,
7501 },
7502 {
7503 .hook = selinux_ip_forward,
7504 .pf = NFPROTO_IPV4,
7505 .hooknum = NF_INET_FORWARD,
7506 .priority = NF_IP_PRI_SELINUX_FIRST,
7507 },
7508 {
7509 .hook = selinux_ip_output,
7510 .pf = NFPROTO_IPV4,
7511 .hooknum = NF_INET_LOCAL_OUT,
7512 .priority = NF_IP_PRI_SELINUX_FIRST,
7513 },
7514#if IS_ENABLED(CONFIG_IPV6)
7515 {
7516 .hook = selinux_ip_postroute,
7517 .pf = NFPROTO_IPV6,
7518 .hooknum = NF_INET_POST_ROUTING,
7519 .priority = NF_IP6_PRI_SELINUX_LAST,
7520 },
7521 {
7522 .hook = selinux_ip_forward,
7523 .pf = NFPROTO_IPV6,
7524 .hooknum = NF_INET_FORWARD,
7525 .priority = NF_IP6_PRI_SELINUX_FIRST,
7526 },
7527 {
7528 .hook = selinux_ip_output,
7529 .pf = NFPROTO_IPV6,
7530 .hooknum = NF_INET_LOCAL_OUT,
7531 .priority = NF_IP6_PRI_SELINUX_FIRST,
7532 },
7533#endif /* IPV6 */
7534};
7535
7536static int __net_init selinux_nf_register(struct net *net)
7537{
7538 return nf_register_net_hooks(net, selinux_nf_ops,
7539 ARRAY_SIZE(selinux_nf_ops));
7540}
7541
7542static void __net_exit selinux_nf_unregister(struct net *net)
7543{
7544 nf_unregister_net_hooks(net, selinux_nf_ops,
7545 ARRAY_SIZE(selinux_nf_ops));
7546}
7547
7548static struct pernet_operations selinux_net_ops = {
7549 .init = selinux_nf_register,
7550 .exit = selinux_nf_unregister,
7551};
7552
7553static int __init selinux_nf_ip_init(void)
7554{
7555 int err;
7556
7557 if (!selinux_enabled_boot)
7558 return 0;
7559
7560 pr_debug("SELinux: Registering netfilter hooks\n");
7561
7562 err = register_pernet_subsys(&selinux_net_ops);
7563 if (err)
7564 panic("SELinux: register_pernet_subsys: error %d\n", err);
7565
7566 return 0;
7567}
7568__initcall(selinux_nf_ip_init);
7569#endif /* CONFIG_NETFILTER */
1/*
2 * NSA Security-Enhanced Linux (SELinux) security module
3 *
4 * This file contains the SELinux hook function implementations.
5 *
6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil>
7 * Chris Vance, <cvance@nai.com>
8 * Wayne Salamon, <wsalamon@nai.com>
9 * James Morris <jmorris@redhat.com>
10 *
11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13 * Eric Paris <eparis@redhat.com>
14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15 * <dgoeddel@trustedcs.com>
16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17 * Paul Moore <paul@paul-moore.com>
18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19 * Yuichi Nakamura <ynakam@hitachisoft.jp>
20 *
21 * This program is free software; you can redistribute it and/or modify
22 * it under the terms of the GNU General Public License version 2,
23 * as published by the Free Software Foundation.
24 */
25
26#include <linux/init.h>
27#include <linux/kd.h>
28#include <linux/kernel.h>
29#include <linux/tracehook.h>
30#include <linux/errno.h>
31#include <linux/ext2_fs.h>
32#include <linux/sched.h>
33#include <linux/security.h>
34#include <linux/xattr.h>
35#include <linux/capability.h>
36#include <linux/unistd.h>
37#include <linux/mm.h>
38#include <linux/mman.h>
39#include <linux/slab.h>
40#include <linux/pagemap.h>
41#include <linux/proc_fs.h>
42#include <linux/swap.h>
43#include <linux/spinlock.h>
44#include <linux/syscalls.h>
45#include <linux/dcache.h>
46#include <linux/file.h>
47#include <linux/fdtable.h>
48#include <linux/namei.h>
49#include <linux/mount.h>
50#include <linux/netfilter_ipv4.h>
51#include <linux/netfilter_ipv6.h>
52#include <linux/tty.h>
53#include <net/icmp.h>
54#include <net/ip.h> /* for local_port_range[] */
55#include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */
56#include <net/net_namespace.h>
57#include <net/netlabel.h>
58#include <linux/uaccess.h>
59#include <asm/ioctls.h>
60#include <linux/atomic.h>
61#include <linux/bitops.h>
62#include <linux/interrupt.h>
63#include <linux/netdevice.h> /* for network interface checks */
64#include <linux/netlink.h>
65#include <linux/tcp.h>
66#include <linux/udp.h>
67#include <linux/dccp.h>
68#include <linux/quota.h>
69#include <linux/un.h> /* for Unix socket types */
70#include <net/af_unix.h> /* for Unix socket types */
71#include <linux/parser.h>
72#include <linux/nfs_mount.h>
73#include <net/ipv6.h>
74#include <linux/hugetlb.h>
75#include <linux/personality.h>
76#include <linux/audit.h>
77#include <linux/string.h>
78#include <linux/selinux.h>
79#include <linux/mutex.h>
80#include <linux/posix-timers.h>
81#include <linux/syslog.h>
82#include <linux/user_namespace.h>
83
84#include "avc.h"
85#include "objsec.h"
86#include "netif.h"
87#include "netnode.h"
88#include "netport.h"
89#include "xfrm.h"
90#include "netlabel.h"
91#include "audit.h"
92
93#define NUM_SEL_MNT_OPTS 5
94
95extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm);
96extern struct security_operations *security_ops;
97
98/* SECMARK reference count */
99atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
100
101#ifdef CONFIG_SECURITY_SELINUX_DEVELOP
102int selinux_enforcing;
103
104static int __init enforcing_setup(char *str)
105{
106 unsigned long enforcing;
107 if (!strict_strtoul(str, 0, &enforcing))
108 selinux_enforcing = enforcing ? 1 : 0;
109 return 1;
110}
111__setup("enforcing=", enforcing_setup);
112#endif
113
114#ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
115int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
116
117static int __init selinux_enabled_setup(char *str)
118{
119 unsigned long enabled;
120 if (!strict_strtoul(str, 0, &enabled))
121 selinux_enabled = enabled ? 1 : 0;
122 return 1;
123}
124__setup("selinux=", selinux_enabled_setup);
125#else
126int selinux_enabled = 1;
127#endif
128
129static struct kmem_cache *sel_inode_cache;
130
131/**
132 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
133 *
134 * Description:
135 * This function checks the SECMARK reference counter to see if any SECMARK
136 * targets are currently configured, if the reference counter is greater than
137 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is
138 * enabled, false (0) if SECMARK is disabled.
139 *
140 */
141static int selinux_secmark_enabled(void)
142{
143 return (atomic_read(&selinux_secmark_refcount) > 0);
144}
145
146/*
147 * initialise the security for the init task
148 */
149static void cred_init_security(void)
150{
151 struct cred *cred = (struct cred *) current->real_cred;
152 struct task_security_struct *tsec;
153
154 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
155 if (!tsec)
156 panic("SELinux: Failed to initialize initial task.\n");
157
158 tsec->osid = tsec->sid = SECINITSID_KERNEL;
159 cred->security = tsec;
160}
161
162/*
163 * get the security ID of a set of credentials
164 */
165static inline u32 cred_sid(const struct cred *cred)
166{
167 const struct task_security_struct *tsec;
168
169 tsec = cred->security;
170 return tsec->sid;
171}
172
173/*
174 * get the objective security ID of a task
175 */
176static inline u32 task_sid(const struct task_struct *task)
177{
178 u32 sid;
179
180 rcu_read_lock();
181 sid = cred_sid(__task_cred(task));
182 rcu_read_unlock();
183 return sid;
184}
185
186/*
187 * get the subjective security ID of the current task
188 */
189static inline u32 current_sid(void)
190{
191 const struct task_security_struct *tsec = current_security();
192
193 return tsec->sid;
194}
195
196/* Allocate and free functions for each kind of security blob. */
197
198static int inode_alloc_security(struct inode *inode)
199{
200 struct inode_security_struct *isec;
201 u32 sid = current_sid();
202
203 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
204 if (!isec)
205 return -ENOMEM;
206
207 mutex_init(&isec->lock);
208 INIT_LIST_HEAD(&isec->list);
209 isec->inode = inode;
210 isec->sid = SECINITSID_UNLABELED;
211 isec->sclass = SECCLASS_FILE;
212 isec->task_sid = sid;
213 inode->i_security = isec;
214
215 return 0;
216}
217
218static void inode_free_security(struct inode *inode)
219{
220 struct inode_security_struct *isec = inode->i_security;
221 struct superblock_security_struct *sbsec = inode->i_sb->s_security;
222
223 spin_lock(&sbsec->isec_lock);
224 if (!list_empty(&isec->list))
225 list_del_init(&isec->list);
226 spin_unlock(&sbsec->isec_lock);
227
228 inode->i_security = NULL;
229 kmem_cache_free(sel_inode_cache, isec);
230}
231
232static int file_alloc_security(struct file *file)
233{
234 struct file_security_struct *fsec;
235 u32 sid = current_sid();
236
237 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
238 if (!fsec)
239 return -ENOMEM;
240
241 fsec->sid = sid;
242 fsec->fown_sid = sid;
243 file->f_security = fsec;
244
245 return 0;
246}
247
248static void file_free_security(struct file *file)
249{
250 struct file_security_struct *fsec = file->f_security;
251 file->f_security = NULL;
252 kfree(fsec);
253}
254
255static int superblock_alloc_security(struct super_block *sb)
256{
257 struct superblock_security_struct *sbsec;
258
259 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
260 if (!sbsec)
261 return -ENOMEM;
262
263 mutex_init(&sbsec->lock);
264 INIT_LIST_HEAD(&sbsec->isec_head);
265 spin_lock_init(&sbsec->isec_lock);
266 sbsec->sb = sb;
267 sbsec->sid = SECINITSID_UNLABELED;
268 sbsec->def_sid = SECINITSID_FILE;
269 sbsec->mntpoint_sid = SECINITSID_UNLABELED;
270 sb->s_security = sbsec;
271
272 return 0;
273}
274
275static void superblock_free_security(struct super_block *sb)
276{
277 struct superblock_security_struct *sbsec = sb->s_security;
278 sb->s_security = NULL;
279 kfree(sbsec);
280}
281
282/* The security server must be initialized before
283 any labeling or access decisions can be provided. */
284extern int ss_initialized;
285
286/* The file system's label must be initialized prior to use. */
287
288static const char *labeling_behaviors[6] = {
289 "uses xattr",
290 "uses transition SIDs",
291 "uses task SIDs",
292 "uses genfs_contexts",
293 "not configured for labeling",
294 "uses mountpoint labeling",
295};
296
297static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
298
299static inline int inode_doinit(struct inode *inode)
300{
301 return inode_doinit_with_dentry(inode, NULL);
302}
303
304enum {
305 Opt_error = -1,
306 Opt_context = 1,
307 Opt_fscontext = 2,
308 Opt_defcontext = 3,
309 Opt_rootcontext = 4,
310 Opt_labelsupport = 5,
311};
312
313static const match_table_t tokens = {
314 {Opt_context, CONTEXT_STR "%s"},
315 {Opt_fscontext, FSCONTEXT_STR "%s"},
316 {Opt_defcontext, DEFCONTEXT_STR "%s"},
317 {Opt_rootcontext, ROOTCONTEXT_STR "%s"},
318 {Opt_labelsupport, LABELSUPP_STR},
319 {Opt_error, NULL},
320};
321
322#define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n"
323
324static int may_context_mount_sb_relabel(u32 sid,
325 struct superblock_security_struct *sbsec,
326 const struct cred *cred)
327{
328 const struct task_security_struct *tsec = cred->security;
329 int rc;
330
331 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
332 FILESYSTEM__RELABELFROM, NULL);
333 if (rc)
334 return rc;
335
336 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
337 FILESYSTEM__RELABELTO, NULL);
338 return rc;
339}
340
341static int may_context_mount_inode_relabel(u32 sid,
342 struct superblock_security_struct *sbsec,
343 const struct cred *cred)
344{
345 const struct task_security_struct *tsec = cred->security;
346 int rc;
347 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
348 FILESYSTEM__RELABELFROM, NULL);
349 if (rc)
350 return rc;
351
352 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
353 FILESYSTEM__ASSOCIATE, NULL);
354 return rc;
355}
356
357static int sb_finish_set_opts(struct super_block *sb)
358{
359 struct superblock_security_struct *sbsec = sb->s_security;
360 struct dentry *root = sb->s_root;
361 struct inode *root_inode = root->d_inode;
362 int rc = 0;
363
364 if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
365 /* Make sure that the xattr handler exists and that no
366 error other than -ENODATA is returned by getxattr on
367 the root directory. -ENODATA is ok, as this may be
368 the first boot of the SELinux kernel before we have
369 assigned xattr values to the filesystem. */
370 if (!root_inode->i_op->getxattr) {
371 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
372 "xattr support\n", sb->s_id, sb->s_type->name);
373 rc = -EOPNOTSUPP;
374 goto out;
375 }
376 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
377 if (rc < 0 && rc != -ENODATA) {
378 if (rc == -EOPNOTSUPP)
379 printk(KERN_WARNING "SELinux: (dev %s, type "
380 "%s) has no security xattr handler\n",
381 sb->s_id, sb->s_type->name);
382 else
383 printk(KERN_WARNING "SELinux: (dev %s, type "
384 "%s) getxattr errno %d\n", sb->s_id,
385 sb->s_type->name, -rc);
386 goto out;
387 }
388 }
389
390 sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
391
392 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
393 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
394 sb->s_id, sb->s_type->name);
395 else
396 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
397 sb->s_id, sb->s_type->name,
398 labeling_behaviors[sbsec->behavior-1]);
399
400 if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
401 sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
402 sbsec->behavior == SECURITY_FS_USE_NONE ||
403 sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
404 sbsec->flags &= ~SE_SBLABELSUPP;
405
406 /* Special handling for sysfs. Is genfs but also has setxattr handler*/
407 if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
408 sbsec->flags |= SE_SBLABELSUPP;
409
410 /* Initialize the root inode. */
411 rc = inode_doinit_with_dentry(root_inode, root);
412
413 /* Initialize any other inodes associated with the superblock, e.g.
414 inodes created prior to initial policy load or inodes created
415 during get_sb by a pseudo filesystem that directly
416 populates itself. */
417 spin_lock(&sbsec->isec_lock);
418next_inode:
419 if (!list_empty(&sbsec->isec_head)) {
420 struct inode_security_struct *isec =
421 list_entry(sbsec->isec_head.next,
422 struct inode_security_struct, list);
423 struct inode *inode = isec->inode;
424 spin_unlock(&sbsec->isec_lock);
425 inode = igrab(inode);
426 if (inode) {
427 if (!IS_PRIVATE(inode))
428 inode_doinit(inode);
429 iput(inode);
430 }
431 spin_lock(&sbsec->isec_lock);
432 list_del_init(&isec->list);
433 goto next_inode;
434 }
435 spin_unlock(&sbsec->isec_lock);
436out:
437 return rc;
438}
439
440/*
441 * This function should allow an FS to ask what it's mount security
442 * options were so it can use those later for submounts, displaying
443 * mount options, or whatever.
444 */
445static int selinux_get_mnt_opts(const struct super_block *sb,
446 struct security_mnt_opts *opts)
447{
448 int rc = 0, i;
449 struct superblock_security_struct *sbsec = sb->s_security;
450 char *context = NULL;
451 u32 len;
452 char tmp;
453
454 security_init_mnt_opts(opts);
455
456 if (!(sbsec->flags & SE_SBINITIALIZED))
457 return -EINVAL;
458
459 if (!ss_initialized)
460 return -EINVAL;
461
462 tmp = sbsec->flags & SE_MNTMASK;
463 /* count the number of mount options for this sb */
464 for (i = 0; i < 8; i++) {
465 if (tmp & 0x01)
466 opts->num_mnt_opts++;
467 tmp >>= 1;
468 }
469 /* Check if the Label support flag is set */
470 if (sbsec->flags & SE_SBLABELSUPP)
471 opts->num_mnt_opts++;
472
473 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
474 if (!opts->mnt_opts) {
475 rc = -ENOMEM;
476 goto out_free;
477 }
478
479 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
480 if (!opts->mnt_opts_flags) {
481 rc = -ENOMEM;
482 goto out_free;
483 }
484
485 i = 0;
486 if (sbsec->flags & FSCONTEXT_MNT) {
487 rc = security_sid_to_context(sbsec->sid, &context, &len);
488 if (rc)
489 goto out_free;
490 opts->mnt_opts[i] = context;
491 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
492 }
493 if (sbsec->flags & CONTEXT_MNT) {
494 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
495 if (rc)
496 goto out_free;
497 opts->mnt_opts[i] = context;
498 opts->mnt_opts_flags[i++] = CONTEXT_MNT;
499 }
500 if (sbsec->flags & DEFCONTEXT_MNT) {
501 rc = security_sid_to_context(sbsec->def_sid, &context, &len);
502 if (rc)
503 goto out_free;
504 opts->mnt_opts[i] = context;
505 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
506 }
507 if (sbsec->flags & ROOTCONTEXT_MNT) {
508 struct inode *root = sbsec->sb->s_root->d_inode;
509 struct inode_security_struct *isec = root->i_security;
510
511 rc = security_sid_to_context(isec->sid, &context, &len);
512 if (rc)
513 goto out_free;
514 opts->mnt_opts[i] = context;
515 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
516 }
517 if (sbsec->flags & SE_SBLABELSUPP) {
518 opts->mnt_opts[i] = NULL;
519 opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
520 }
521
522 BUG_ON(i != opts->num_mnt_opts);
523
524 return 0;
525
526out_free:
527 security_free_mnt_opts(opts);
528 return rc;
529}
530
531static int bad_option(struct superblock_security_struct *sbsec, char flag,
532 u32 old_sid, u32 new_sid)
533{
534 char mnt_flags = sbsec->flags & SE_MNTMASK;
535
536 /* check if the old mount command had the same options */
537 if (sbsec->flags & SE_SBINITIALIZED)
538 if (!(sbsec->flags & flag) ||
539 (old_sid != new_sid))
540 return 1;
541
542 /* check if we were passed the same options twice,
543 * aka someone passed context=a,context=b
544 */
545 if (!(sbsec->flags & SE_SBINITIALIZED))
546 if (mnt_flags & flag)
547 return 1;
548 return 0;
549}
550
551/*
552 * Allow filesystems with binary mount data to explicitly set mount point
553 * labeling information.
554 */
555static int selinux_set_mnt_opts(struct super_block *sb,
556 struct security_mnt_opts *opts)
557{
558 const struct cred *cred = current_cred();
559 int rc = 0, i;
560 struct superblock_security_struct *sbsec = sb->s_security;
561 const char *name = sb->s_type->name;
562 struct inode *inode = sbsec->sb->s_root->d_inode;
563 struct inode_security_struct *root_isec = inode->i_security;
564 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
565 u32 defcontext_sid = 0;
566 char **mount_options = opts->mnt_opts;
567 int *flags = opts->mnt_opts_flags;
568 int num_opts = opts->num_mnt_opts;
569
570 mutex_lock(&sbsec->lock);
571
572 if (!ss_initialized) {
573 if (!num_opts) {
574 /* Defer initialization until selinux_complete_init,
575 after the initial policy is loaded and the security
576 server is ready to handle calls. */
577 goto out;
578 }
579 rc = -EINVAL;
580 printk(KERN_WARNING "SELinux: Unable to set superblock options "
581 "before the security server is initialized\n");
582 goto out;
583 }
584
585 /*
586 * Binary mount data FS will come through this function twice. Once
587 * from an explicit call and once from the generic calls from the vfs.
588 * Since the generic VFS calls will not contain any security mount data
589 * we need to skip the double mount verification.
590 *
591 * This does open a hole in which we will not notice if the first
592 * mount using this sb set explict options and a second mount using
593 * this sb does not set any security options. (The first options
594 * will be used for both mounts)
595 */
596 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
597 && (num_opts == 0))
598 goto out;
599
600 /*
601 * parse the mount options, check if they are valid sids.
602 * also check if someone is trying to mount the same sb more
603 * than once with different security options.
604 */
605 for (i = 0; i < num_opts; i++) {
606 u32 sid;
607
608 if (flags[i] == SE_SBLABELSUPP)
609 continue;
610 rc = security_context_to_sid(mount_options[i],
611 strlen(mount_options[i]), &sid);
612 if (rc) {
613 printk(KERN_WARNING "SELinux: security_context_to_sid"
614 "(%s) failed for (dev %s, type %s) errno=%d\n",
615 mount_options[i], sb->s_id, name, rc);
616 goto out;
617 }
618 switch (flags[i]) {
619 case FSCONTEXT_MNT:
620 fscontext_sid = sid;
621
622 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
623 fscontext_sid))
624 goto out_double_mount;
625
626 sbsec->flags |= FSCONTEXT_MNT;
627 break;
628 case CONTEXT_MNT:
629 context_sid = sid;
630
631 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
632 context_sid))
633 goto out_double_mount;
634
635 sbsec->flags |= CONTEXT_MNT;
636 break;
637 case ROOTCONTEXT_MNT:
638 rootcontext_sid = sid;
639
640 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
641 rootcontext_sid))
642 goto out_double_mount;
643
644 sbsec->flags |= ROOTCONTEXT_MNT;
645
646 break;
647 case DEFCONTEXT_MNT:
648 defcontext_sid = sid;
649
650 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
651 defcontext_sid))
652 goto out_double_mount;
653
654 sbsec->flags |= DEFCONTEXT_MNT;
655
656 break;
657 default:
658 rc = -EINVAL;
659 goto out;
660 }
661 }
662
663 if (sbsec->flags & SE_SBINITIALIZED) {
664 /* previously mounted with options, but not on this attempt? */
665 if ((sbsec->flags & SE_MNTMASK) && !num_opts)
666 goto out_double_mount;
667 rc = 0;
668 goto out;
669 }
670
671 if (strcmp(sb->s_type->name, "proc") == 0)
672 sbsec->flags |= SE_SBPROC;
673
674 /* Determine the labeling behavior to use for this filesystem type. */
675 rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
676 if (rc) {
677 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
678 __func__, sb->s_type->name, rc);
679 goto out;
680 }
681
682 /* sets the context of the superblock for the fs being mounted. */
683 if (fscontext_sid) {
684 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
685 if (rc)
686 goto out;
687
688 sbsec->sid = fscontext_sid;
689 }
690
691 /*
692 * Switch to using mount point labeling behavior.
693 * sets the label used on all file below the mountpoint, and will set
694 * the superblock context if not already set.
695 */
696 if (context_sid) {
697 if (!fscontext_sid) {
698 rc = may_context_mount_sb_relabel(context_sid, sbsec,
699 cred);
700 if (rc)
701 goto out;
702 sbsec->sid = context_sid;
703 } else {
704 rc = may_context_mount_inode_relabel(context_sid, sbsec,
705 cred);
706 if (rc)
707 goto out;
708 }
709 if (!rootcontext_sid)
710 rootcontext_sid = context_sid;
711
712 sbsec->mntpoint_sid = context_sid;
713 sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
714 }
715
716 if (rootcontext_sid) {
717 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
718 cred);
719 if (rc)
720 goto out;
721
722 root_isec->sid = rootcontext_sid;
723 root_isec->initialized = 1;
724 }
725
726 if (defcontext_sid) {
727 if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
728 rc = -EINVAL;
729 printk(KERN_WARNING "SELinux: defcontext option is "
730 "invalid for this filesystem type\n");
731 goto out;
732 }
733
734 if (defcontext_sid != sbsec->def_sid) {
735 rc = may_context_mount_inode_relabel(defcontext_sid,
736 sbsec, cred);
737 if (rc)
738 goto out;
739 }
740
741 sbsec->def_sid = defcontext_sid;
742 }
743
744 rc = sb_finish_set_opts(sb);
745out:
746 mutex_unlock(&sbsec->lock);
747 return rc;
748out_double_mount:
749 rc = -EINVAL;
750 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different "
751 "security settings for (dev %s, type %s)\n", sb->s_id, name);
752 goto out;
753}
754
755static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
756 struct super_block *newsb)
757{
758 const struct superblock_security_struct *oldsbsec = oldsb->s_security;
759 struct superblock_security_struct *newsbsec = newsb->s_security;
760
761 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT);
762 int set_context = (oldsbsec->flags & CONTEXT_MNT);
763 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT);
764
765 /*
766 * if the parent was able to be mounted it clearly had no special lsm
767 * mount options. thus we can safely deal with this superblock later
768 */
769 if (!ss_initialized)
770 return;
771
772 /* how can we clone if the old one wasn't set up?? */
773 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
774
775 /* if fs is reusing a sb, just let its options stand... */
776 if (newsbsec->flags & SE_SBINITIALIZED)
777 return;
778
779 mutex_lock(&newsbsec->lock);
780
781 newsbsec->flags = oldsbsec->flags;
782
783 newsbsec->sid = oldsbsec->sid;
784 newsbsec->def_sid = oldsbsec->def_sid;
785 newsbsec->behavior = oldsbsec->behavior;
786
787 if (set_context) {
788 u32 sid = oldsbsec->mntpoint_sid;
789
790 if (!set_fscontext)
791 newsbsec->sid = sid;
792 if (!set_rootcontext) {
793 struct inode *newinode = newsb->s_root->d_inode;
794 struct inode_security_struct *newisec = newinode->i_security;
795 newisec->sid = sid;
796 }
797 newsbsec->mntpoint_sid = sid;
798 }
799 if (set_rootcontext) {
800 const struct inode *oldinode = oldsb->s_root->d_inode;
801 const struct inode_security_struct *oldisec = oldinode->i_security;
802 struct inode *newinode = newsb->s_root->d_inode;
803 struct inode_security_struct *newisec = newinode->i_security;
804
805 newisec->sid = oldisec->sid;
806 }
807
808 sb_finish_set_opts(newsb);
809 mutex_unlock(&newsbsec->lock);
810}
811
812static int selinux_parse_opts_str(char *options,
813 struct security_mnt_opts *opts)
814{
815 char *p;
816 char *context = NULL, *defcontext = NULL;
817 char *fscontext = NULL, *rootcontext = NULL;
818 int rc, num_mnt_opts = 0;
819
820 opts->num_mnt_opts = 0;
821
822 /* Standard string-based options. */
823 while ((p = strsep(&options, "|")) != NULL) {
824 int token;
825 substring_t args[MAX_OPT_ARGS];
826
827 if (!*p)
828 continue;
829
830 token = match_token(p, tokens, args);
831
832 switch (token) {
833 case Opt_context:
834 if (context || defcontext) {
835 rc = -EINVAL;
836 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
837 goto out_err;
838 }
839 context = match_strdup(&args[0]);
840 if (!context) {
841 rc = -ENOMEM;
842 goto out_err;
843 }
844 break;
845
846 case Opt_fscontext:
847 if (fscontext) {
848 rc = -EINVAL;
849 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
850 goto out_err;
851 }
852 fscontext = match_strdup(&args[0]);
853 if (!fscontext) {
854 rc = -ENOMEM;
855 goto out_err;
856 }
857 break;
858
859 case Opt_rootcontext:
860 if (rootcontext) {
861 rc = -EINVAL;
862 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
863 goto out_err;
864 }
865 rootcontext = match_strdup(&args[0]);
866 if (!rootcontext) {
867 rc = -ENOMEM;
868 goto out_err;
869 }
870 break;
871
872 case Opt_defcontext:
873 if (context || defcontext) {
874 rc = -EINVAL;
875 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
876 goto out_err;
877 }
878 defcontext = match_strdup(&args[0]);
879 if (!defcontext) {
880 rc = -ENOMEM;
881 goto out_err;
882 }
883 break;
884 case Opt_labelsupport:
885 break;
886 default:
887 rc = -EINVAL;
888 printk(KERN_WARNING "SELinux: unknown mount option\n");
889 goto out_err;
890
891 }
892 }
893
894 rc = -ENOMEM;
895 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
896 if (!opts->mnt_opts)
897 goto out_err;
898
899 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
900 if (!opts->mnt_opts_flags) {
901 kfree(opts->mnt_opts);
902 goto out_err;
903 }
904
905 if (fscontext) {
906 opts->mnt_opts[num_mnt_opts] = fscontext;
907 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
908 }
909 if (context) {
910 opts->mnt_opts[num_mnt_opts] = context;
911 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
912 }
913 if (rootcontext) {
914 opts->mnt_opts[num_mnt_opts] = rootcontext;
915 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
916 }
917 if (defcontext) {
918 opts->mnt_opts[num_mnt_opts] = defcontext;
919 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
920 }
921
922 opts->num_mnt_opts = num_mnt_opts;
923 return 0;
924
925out_err:
926 kfree(context);
927 kfree(defcontext);
928 kfree(fscontext);
929 kfree(rootcontext);
930 return rc;
931}
932/*
933 * string mount options parsing and call set the sbsec
934 */
935static int superblock_doinit(struct super_block *sb, void *data)
936{
937 int rc = 0;
938 char *options = data;
939 struct security_mnt_opts opts;
940
941 security_init_mnt_opts(&opts);
942
943 if (!data)
944 goto out;
945
946 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
947
948 rc = selinux_parse_opts_str(options, &opts);
949 if (rc)
950 goto out_err;
951
952out:
953 rc = selinux_set_mnt_opts(sb, &opts);
954
955out_err:
956 security_free_mnt_opts(&opts);
957 return rc;
958}
959
960static void selinux_write_opts(struct seq_file *m,
961 struct security_mnt_opts *opts)
962{
963 int i;
964 char *prefix;
965
966 for (i = 0; i < opts->num_mnt_opts; i++) {
967 char *has_comma;
968
969 if (opts->mnt_opts[i])
970 has_comma = strchr(opts->mnt_opts[i], ',');
971 else
972 has_comma = NULL;
973
974 switch (opts->mnt_opts_flags[i]) {
975 case CONTEXT_MNT:
976 prefix = CONTEXT_STR;
977 break;
978 case FSCONTEXT_MNT:
979 prefix = FSCONTEXT_STR;
980 break;
981 case ROOTCONTEXT_MNT:
982 prefix = ROOTCONTEXT_STR;
983 break;
984 case DEFCONTEXT_MNT:
985 prefix = DEFCONTEXT_STR;
986 break;
987 case SE_SBLABELSUPP:
988 seq_putc(m, ',');
989 seq_puts(m, LABELSUPP_STR);
990 continue;
991 default:
992 BUG();
993 return;
994 };
995 /* we need a comma before each option */
996 seq_putc(m, ',');
997 seq_puts(m, prefix);
998 if (has_comma)
999 seq_putc(m, '\"');
1000 seq_puts(m, opts->mnt_opts[i]);
1001 if (has_comma)
1002 seq_putc(m, '\"');
1003 }
1004}
1005
1006static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1007{
1008 struct security_mnt_opts opts;
1009 int rc;
1010
1011 rc = selinux_get_mnt_opts(sb, &opts);
1012 if (rc) {
1013 /* before policy load we may get EINVAL, don't show anything */
1014 if (rc == -EINVAL)
1015 rc = 0;
1016 return rc;
1017 }
1018
1019 selinux_write_opts(m, &opts);
1020
1021 security_free_mnt_opts(&opts);
1022
1023 return rc;
1024}
1025
1026static inline u16 inode_mode_to_security_class(umode_t mode)
1027{
1028 switch (mode & S_IFMT) {
1029 case S_IFSOCK:
1030 return SECCLASS_SOCK_FILE;
1031 case S_IFLNK:
1032 return SECCLASS_LNK_FILE;
1033 case S_IFREG:
1034 return SECCLASS_FILE;
1035 case S_IFBLK:
1036 return SECCLASS_BLK_FILE;
1037 case S_IFDIR:
1038 return SECCLASS_DIR;
1039 case S_IFCHR:
1040 return SECCLASS_CHR_FILE;
1041 case S_IFIFO:
1042 return SECCLASS_FIFO_FILE;
1043
1044 }
1045
1046 return SECCLASS_FILE;
1047}
1048
1049static inline int default_protocol_stream(int protocol)
1050{
1051 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1052}
1053
1054static inline int default_protocol_dgram(int protocol)
1055{
1056 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1057}
1058
1059static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1060{
1061 switch (family) {
1062 case PF_UNIX:
1063 switch (type) {
1064 case SOCK_STREAM:
1065 case SOCK_SEQPACKET:
1066 return SECCLASS_UNIX_STREAM_SOCKET;
1067 case SOCK_DGRAM:
1068 return SECCLASS_UNIX_DGRAM_SOCKET;
1069 }
1070 break;
1071 case PF_INET:
1072 case PF_INET6:
1073 switch (type) {
1074 case SOCK_STREAM:
1075 if (default_protocol_stream(protocol))
1076 return SECCLASS_TCP_SOCKET;
1077 else
1078 return SECCLASS_RAWIP_SOCKET;
1079 case SOCK_DGRAM:
1080 if (default_protocol_dgram(protocol))
1081 return SECCLASS_UDP_SOCKET;
1082 else
1083 return SECCLASS_RAWIP_SOCKET;
1084 case SOCK_DCCP:
1085 return SECCLASS_DCCP_SOCKET;
1086 default:
1087 return SECCLASS_RAWIP_SOCKET;
1088 }
1089 break;
1090 case PF_NETLINK:
1091 switch (protocol) {
1092 case NETLINK_ROUTE:
1093 return SECCLASS_NETLINK_ROUTE_SOCKET;
1094 case NETLINK_FIREWALL:
1095 return SECCLASS_NETLINK_FIREWALL_SOCKET;
1096 case NETLINK_INET_DIAG:
1097 return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1098 case NETLINK_NFLOG:
1099 return SECCLASS_NETLINK_NFLOG_SOCKET;
1100 case NETLINK_XFRM:
1101 return SECCLASS_NETLINK_XFRM_SOCKET;
1102 case NETLINK_SELINUX:
1103 return SECCLASS_NETLINK_SELINUX_SOCKET;
1104 case NETLINK_AUDIT:
1105 return SECCLASS_NETLINK_AUDIT_SOCKET;
1106 case NETLINK_IP6_FW:
1107 return SECCLASS_NETLINK_IP6FW_SOCKET;
1108 case NETLINK_DNRTMSG:
1109 return SECCLASS_NETLINK_DNRT_SOCKET;
1110 case NETLINK_KOBJECT_UEVENT:
1111 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1112 default:
1113 return SECCLASS_NETLINK_SOCKET;
1114 }
1115 case PF_PACKET:
1116 return SECCLASS_PACKET_SOCKET;
1117 case PF_KEY:
1118 return SECCLASS_KEY_SOCKET;
1119 case PF_APPLETALK:
1120 return SECCLASS_APPLETALK_SOCKET;
1121 }
1122
1123 return SECCLASS_SOCKET;
1124}
1125
1126#ifdef CONFIG_PROC_FS
1127static int selinux_proc_get_sid(struct dentry *dentry,
1128 u16 tclass,
1129 u32 *sid)
1130{
1131 int rc;
1132 char *buffer, *path;
1133
1134 buffer = (char *)__get_free_page(GFP_KERNEL);
1135 if (!buffer)
1136 return -ENOMEM;
1137
1138 path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1139 if (IS_ERR(path))
1140 rc = PTR_ERR(path);
1141 else {
1142 /* each process gets a /proc/PID/ entry. Strip off the
1143 * PID part to get a valid selinux labeling.
1144 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1145 while (path[1] >= '0' && path[1] <= '9') {
1146 path[1] = '/';
1147 path++;
1148 }
1149 rc = security_genfs_sid("proc", path, tclass, sid);
1150 }
1151 free_page((unsigned long)buffer);
1152 return rc;
1153}
1154#else
1155static int selinux_proc_get_sid(struct dentry *dentry,
1156 u16 tclass,
1157 u32 *sid)
1158{
1159 return -EINVAL;
1160}
1161#endif
1162
1163/* The inode's security attributes must be initialized before first use. */
1164static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1165{
1166 struct superblock_security_struct *sbsec = NULL;
1167 struct inode_security_struct *isec = inode->i_security;
1168 u32 sid;
1169 struct dentry *dentry;
1170#define INITCONTEXTLEN 255
1171 char *context = NULL;
1172 unsigned len = 0;
1173 int rc = 0;
1174
1175 if (isec->initialized)
1176 goto out;
1177
1178 mutex_lock(&isec->lock);
1179 if (isec->initialized)
1180 goto out_unlock;
1181
1182 sbsec = inode->i_sb->s_security;
1183 if (!(sbsec->flags & SE_SBINITIALIZED)) {
1184 /* Defer initialization until selinux_complete_init,
1185 after the initial policy is loaded and the security
1186 server is ready to handle calls. */
1187 spin_lock(&sbsec->isec_lock);
1188 if (list_empty(&isec->list))
1189 list_add(&isec->list, &sbsec->isec_head);
1190 spin_unlock(&sbsec->isec_lock);
1191 goto out_unlock;
1192 }
1193
1194 switch (sbsec->behavior) {
1195 case SECURITY_FS_USE_XATTR:
1196 if (!inode->i_op->getxattr) {
1197 isec->sid = sbsec->def_sid;
1198 break;
1199 }
1200
1201 /* Need a dentry, since the xattr API requires one.
1202 Life would be simpler if we could just pass the inode. */
1203 if (opt_dentry) {
1204 /* Called from d_instantiate or d_splice_alias. */
1205 dentry = dget(opt_dentry);
1206 } else {
1207 /* Called from selinux_complete_init, try to find a dentry. */
1208 dentry = d_find_alias(inode);
1209 }
1210 if (!dentry) {
1211 /*
1212 * this is can be hit on boot when a file is accessed
1213 * before the policy is loaded. When we load policy we
1214 * may find inodes that have no dentry on the
1215 * sbsec->isec_head list. No reason to complain as these
1216 * will get fixed up the next time we go through
1217 * inode_doinit with a dentry, before these inodes could
1218 * be used again by userspace.
1219 */
1220 goto out_unlock;
1221 }
1222
1223 len = INITCONTEXTLEN;
1224 context = kmalloc(len+1, GFP_NOFS);
1225 if (!context) {
1226 rc = -ENOMEM;
1227 dput(dentry);
1228 goto out_unlock;
1229 }
1230 context[len] = '\0';
1231 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1232 context, len);
1233 if (rc == -ERANGE) {
1234 kfree(context);
1235
1236 /* Need a larger buffer. Query for the right size. */
1237 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1238 NULL, 0);
1239 if (rc < 0) {
1240 dput(dentry);
1241 goto out_unlock;
1242 }
1243 len = rc;
1244 context = kmalloc(len+1, GFP_NOFS);
1245 if (!context) {
1246 rc = -ENOMEM;
1247 dput(dentry);
1248 goto out_unlock;
1249 }
1250 context[len] = '\0';
1251 rc = inode->i_op->getxattr(dentry,
1252 XATTR_NAME_SELINUX,
1253 context, len);
1254 }
1255 dput(dentry);
1256 if (rc < 0) {
1257 if (rc != -ENODATA) {
1258 printk(KERN_WARNING "SELinux: %s: getxattr returned "
1259 "%d for dev=%s ino=%ld\n", __func__,
1260 -rc, inode->i_sb->s_id, inode->i_ino);
1261 kfree(context);
1262 goto out_unlock;
1263 }
1264 /* Map ENODATA to the default file SID */
1265 sid = sbsec->def_sid;
1266 rc = 0;
1267 } else {
1268 rc = security_context_to_sid_default(context, rc, &sid,
1269 sbsec->def_sid,
1270 GFP_NOFS);
1271 if (rc) {
1272 char *dev = inode->i_sb->s_id;
1273 unsigned long ino = inode->i_ino;
1274
1275 if (rc == -EINVAL) {
1276 if (printk_ratelimit())
1277 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1278 "context=%s. This indicates you may need to relabel the inode or the "
1279 "filesystem in question.\n", ino, dev, context);
1280 } else {
1281 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) "
1282 "returned %d for dev=%s ino=%ld\n",
1283 __func__, context, -rc, dev, ino);
1284 }
1285 kfree(context);
1286 /* Leave with the unlabeled SID */
1287 rc = 0;
1288 break;
1289 }
1290 }
1291 kfree(context);
1292 isec->sid = sid;
1293 break;
1294 case SECURITY_FS_USE_TASK:
1295 isec->sid = isec->task_sid;
1296 break;
1297 case SECURITY_FS_USE_TRANS:
1298 /* Default to the fs SID. */
1299 isec->sid = sbsec->sid;
1300
1301 /* Try to obtain a transition SID. */
1302 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1303 rc = security_transition_sid(isec->task_sid, sbsec->sid,
1304 isec->sclass, NULL, &sid);
1305 if (rc)
1306 goto out_unlock;
1307 isec->sid = sid;
1308 break;
1309 case SECURITY_FS_USE_MNTPOINT:
1310 isec->sid = sbsec->mntpoint_sid;
1311 break;
1312 default:
1313 /* Default to the fs superblock SID. */
1314 isec->sid = sbsec->sid;
1315
1316 if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1317 if (opt_dentry) {
1318 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1319 rc = selinux_proc_get_sid(opt_dentry,
1320 isec->sclass,
1321 &sid);
1322 if (rc)
1323 goto out_unlock;
1324 isec->sid = sid;
1325 }
1326 }
1327 break;
1328 }
1329
1330 isec->initialized = 1;
1331
1332out_unlock:
1333 mutex_unlock(&isec->lock);
1334out:
1335 if (isec->sclass == SECCLASS_FILE)
1336 isec->sclass = inode_mode_to_security_class(inode->i_mode);
1337 return rc;
1338}
1339
1340/* Convert a Linux signal to an access vector. */
1341static inline u32 signal_to_av(int sig)
1342{
1343 u32 perm = 0;
1344
1345 switch (sig) {
1346 case SIGCHLD:
1347 /* Commonly granted from child to parent. */
1348 perm = PROCESS__SIGCHLD;
1349 break;
1350 case SIGKILL:
1351 /* Cannot be caught or ignored */
1352 perm = PROCESS__SIGKILL;
1353 break;
1354 case SIGSTOP:
1355 /* Cannot be caught or ignored */
1356 perm = PROCESS__SIGSTOP;
1357 break;
1358 default:
1359 /* All other signals. */
1360 perm = PROCESS__SIGNAL;
1361 break;
1362 }
1363
1364 return perm;
1365}
1366
1367/*
1368 * Check permission between a pair of credentials
1369 * fork check, ptrace check, etc.
1370 */
1371static int cred_has_perm(const struct cred *actor,
1372 const struct cred *target,
1373 u32 perms)
1374{
1375 u32 asid = cred_sid(actor), tsid = cred_sid(target);
1376
1377 return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1378}
1379
1380/*
1381 * Check permission between a pair of tasks, e.g. signal checks,
1382 * fork check, ptrace check, etc.
1383 * tsk1 is the actor and tsk2 is the target
1384 * - this uses the default subjective creds of tsk1
1385 */
1386static int task_has_perm(const struct task_struct *tsk1,
1387 const struct task_struct *tsk2,
1388 u32 perms)
1389{
1390 const struct task_security_struct *__tsec1, *__tsec2;
1391 u32 sid1, sid2;
1392
1393 rcu_read_lock();
1394 __tsec1 = __task_cred(tsk1)->security; sid1 = __tsec1->sid;
1395 __tsec2 = __task_cred(tsk2)->security; sid2 = __tsec2->sid;
1396 rcu_read_unlock();
1397 return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1398}
1399
1400/*
1401 * Check permission between current and another task, e.g. signal checks,
1402 * fork check, ptrace check, etc.
1403 * current is the actor and tsk2 is the target
1404 * - this uses current's subjective creds
1405 */
1406static int current_has_perm(const struct task_struct *tsk,
1407 u32 perms)
1408{
1409 u32 sid, tsid;
1410
1411 sid = current_sid();
1412 tsid = task_sid(tsk);
1413 return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1414}
1415
1416#if CAP_LAST_CAP > 63
1417#error Fix SELinux to handle capabilities > 63.
1418#endif
1419
1420/* Check whether a task is allowed to use a capability. */
1421static int task_has_capability(struct task_struct *tsk,
1422 const struct cred *cred,
1423 int cap, int audit)
1424{
1425 struct common_audit_data ad;
1426 struct av_decision avd;
1427 u16 sclass;
1428 u32 sid = cred_sid(cred);
1429 u32 av = CAP_TO_MASK(cap);
1430 int rc;
1431
1432 COMMON_AUDIT_DATA_INIT(&ad, CAP);
1433 ad.tsk = tsk;
1434 ad.u.cap = cap;
1435
1436 switch (CAP_TO_INDEX(cap)) {
1437 case 0:
1438 sclass = SECCLASS_CAPABILITY;
1439 break;
1440 case 1:
1441 sclass = SECCLASS_CAPABILITY2;
1442 break;
1443 default:
1444 printk(KERN_ERR
1445 "SELinux: out of range capability %d\n", cap);
1446 BUG();
1447 return -EINVAL;
1448 }
1449
1450 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1451 if (audit == SECURITY_CAP_AUDIT) {
1452 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1453 if (rc2)
1454 return rc2;
1455 }
1456 return rc;
1457}
1458
1459/* Check whether a task is allowed to use a system operation. */
1460static int task_has_system(struct task_struct *tsk,
1461 u32 perms)
1462{
1463 u32 sid = task_sid(tsk);
1464
1465 return avc_has_perm(sid, SECINITSID_KERNEL,
1466 SECCLASS_SYSTEM, perms, NULL);
1467}
1468
1469/* Check whether a task has a particular permission to an inode.
1470 The 'adp' parameter is optional and allows other audit
1471 data to be passed (e.g. the dentry). */
1472static int inode_has_perm(const struct cred *cred,
1473 struct inode *inode,
1474 u32 perms,
1475 struct common_audit_data *adp,
1476 unsigned flags)
1477{
1478 struct inode_security_struct *isec;
1479 u32 sid;
1480
1481 validate_creds(cred);
1482
1483 if (unlikely(IS_PRIVATE(inode)))
1484 return 0;
1485
1486 sid = cred_sid(cred);
1487 isec = inode->i_security;
1488
1489 return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1490}
1491
1492static int inode_has_perm_noadp(const struct cred *cred,
1493 struct inode *inode,
1494 u32 perms,
1495 unsigned flags)
1496{
1497 struct common_audit_data ad;
1498
1499 COMMON_AUDIT_DATA_INIT(&ad, INODE);
1500 ad.u.inode = inode;
1501 return inode_has_perm(cred, inode, perms, &ad, flags);
1502}
1503
1504/* Same as inode_has_perm, but pass explicit audit data containing
1505 the dentry to help the auditing code to more easily generate the
1506 pathname if needed. */
1507static inline int dentry_has_perm(const struct cred *cred,
1508 struct dentry *dentry,
1509 u32 av)
1510{
1511 struct inode *inode = dentry->d_inode;
1512 struct common_audit_data ad;
1513
1514 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1515 ad.u.dentry = dentry;
1516 return inode_has_perm(cred, inode, av, &ad, 0);
1517}
1518
1519/* Same as inode_has_perm, but pass explicit audit data containing
1520 the path to help the auditing code to more easily generate the
1521 pathname if needed. */
1522static inline int path_has_perm(const struct cred *cred,
1523 struct path *path,
1524 u32 av)
1525{
1526 struct inode *inode = path->dentry->d_inode;
1527 struct common_audit_data ad;
1528
1529 COMMON_AUDIT_DATA_INIT(&ad, PATH);
1530 ad.u.path = *path;
1531 return inode_has_perm(cred, inode, av, &ad, 0);
1532}
1533
1534/* Check whether a task can use an open file descriptor to
1535 access an inode in a given way. Check access to the
1536 descriptor itself, and then use dentry_has_perm to
1537 check a particular permission to the file.
1538 Access to the descriptor is implicitly granted if it
1539 has the same SID as the process. If av is zero, then
1540 access to the file is not checked, e.g. for cases
1541 where only the descriptor is affected like seek. */
1542static int file_has_perm(const struct cred *cred,
1543 struct file *file,
1544 u32 av)
1545{
1546 struct file_security_struct *fsec = file->f_security;
1547 struct inode *inode = file->f_path.dentry->d_inode;
1548 struct common_audit_data ad;
1549 u32 sid = cred_sid(cred);
1550 int rc;
1551
1552 COMMON_AUDIT_DATA_INIT(&ad, PATH);
1553 ad.u.path = file->f_path;
1554
1555 if (sid != fsec->sid) {
1556 rc = avc_has_perm(sid, fsec->sid,
1557 SECCLASS_FD,
1558 FD__USE,
1559 &ad);
1560 if (rc)
1561 goto out;
1562 }
1563
1564 /* av is zero if only checking access to the descriptor. */
1565 rc = 0;
1566 if (av)
1567 rc = inode_has_perm(cred, inode, av, &ad, 0);
1568
1569out:
1570 return rc;
1571}
1572
1573/* Check whether a task can create a file. */
1574static int may_create(struct inode *dir,
1575 struct dentry *dentry,
1576 u16 tclass)
1577{
1578 const struct task_security_struct *tsec = current_security();
1579 struct inode_security_struct *dsec;
1580 struct superblock_security_struct *sbsec;
1581 u32 sid, newsid;
1582 struct common_audit_data ad;
1583 int rc;
1584
1585 dsec = dir->i_security;
1586 sbsec = dir->i_sb->s_security;
1587
1588 sid = tsec->sid;
1589 newsid = tsec->create_sid;
1590
1591 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1592 ad.u.dentry = dentry;
1593
1594 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1595 DIR__ADD_NAME | DIR__SEARCH,
1596 &ad);
1597 if (rc)
1598 return rc;
1599
1600 if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1601 rc = security_transition_sid(sid, dsec->sid, tclass,
1602 &dentry->d_name, &newsid);
1603 if (rc)
1604 return rc;
1605 }
1606
1607 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1608 if (rc)
1609 return rc;
1610
1611 return avc_has_perm(newsid, sbsec->sid,
1612 SECCLASS_FILESYSTEM,
1613 FILESYSTEM__ASSOCIATE, &ad);
1614}
1615
1616/* Check whether a task can create a key. */
1617static int may_create_key(u32 ksid,
1618 struct task_struct *ctx)
1619{
1620 u32 sid = task_sid(ctx);
1621
1622 return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1623}
1624
1625#define MAY_LINK 0
1626#define MAY_UNLINK 1
1627#define MAY_RMDIR 2
1628
1629/* Check whether a task can link, unlink, or rmdir a file/directory. */
1630static int may_link(struct inode *dir,
1631 struct dentry *dentry,
1632 int kind)
1633
1634{
1635 struct inode_security_struct *dsec, *isec;
1636 struct common_audit_data ad;
1637 u32 sid = current_sid();
1638 u32 av;
1639 int rc;
1640
1641 dsec = dir->i_security;
1642 isec = dentry->d_inode->i_security;
1643
1644 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1645 ad.u.dentry = dentry;
1646
1647 av = DIR__SEARCH;
1648 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1649 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1650 if (rc)
1651 return rc;
1652
1653 switch (kind) {
1654 case MAY_LINK:
1655 av = FILE__LINK;
1656 break;
1657 case MAY_UNLINK:
1658 av = FILE__UNLINK;
1659 break;
1660 case MAY_RMDIR:
1661 av = DIR__RMDIR;
1662 break;
1663 default:
1664 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n",
1665 __func__, kind);
1666 return 0;
1667 }
1668
1669 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1670 return rc;
1671}
1672
1673static inline int may_rename(struct inode *old_dir,
1674 struct dentry *old_dentry,
1675 struct inode *new_dir,
1676 struct dentry *new_dentry)
1677{
1678 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1679 struct common_audit_data ad;
1680 u32 sid = current_sid();
1681 u32 av;
1682 int old_is_dir, new_is_dir;
1683 int rc;
1684
1685 old_dsec = old_dir->i_security;
1686 old_isec = old_dentry->d_inode->i_security;
1687 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1688 new_dsec = new_dir->i_security;
1689
1690 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
1691
1692 ad.u.dentry = old_dentry;
1693 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1694 DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1695 if (rc)
1696 return rc;
1697 rc = avc_has_perm(sid, old_isec->sid,
1698 old_isec->sclass, FILE__RENAME, &ad);
1699 if (rc)
1700 return rc;
1701 if (old_is_dir && new_dir != old_dir) {
1702 rc = avc_has_perm(sid, old_isec->sid,
1703 old_isec->sclass, DIR__REPARENT, &ad);
1704 if (rc)
1705 return rc;
1706 }
1707
1708 ad.u.dentry = new_dentry;
1709 av = DIR__ADD_NAME | DIR__SEARCH;
1710 if (new_dentry->d_inode)
1711 av |= DIR__REMOVE_NAME;
1712 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1713 if (rc)
1714 return rc;
1715 if (new_dentry->d_inode) {
1716 new_isec = new_dentry->d_inode->i_security;
1717 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1718 rc = avc_has_perm(sid, new_isec->sid,
1719 new_isec->sclass,
1720 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1721 if (rc)
1722 return rc;
1723 }
1724
1725 return 0;
1726}
1727
1728/* Check whether a task can perform a filesystem operation. */
1729static int superblock_has_perm(const struct cred *cred,
1730 struct super_block *sb,
1731 u32 perms,
1732 struct common_audit_data *ad)
1733{
1734 struct superblock_security_struct *sbsec;
1735 u32 sid = cred_sid(cred);
1736
1737 sbsec = sb->s_security;
1738 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1739}
1740
1741/* Convert a Linux mode and permission mask to an access vector. */
1742static inline u32 file_mask_to_av(int mode, int mask)
1743{
1744 u32 av = 0;
1745
1746 if ((mode & S_IFMT) != S_IFDIR) {
1747 if (mask & MAY_EXEC)
1748 av |= FILE__EXECUTE;
1749 if (mask & MAY_READ)
1750 av |= FILE__READ;
1751
1752 if (mask & MAY_APPEND)
1753 av |= FILE__APPEND;
1754 else if (mask & MAY_WRITE)
1755 av |= FILE__WRITE;
1756
1757 } else {
1758 if (mask & MAY_EXEC)
1759 av |= DIR__SEARCH;
1760 if (mask & MAY_WRITE)
1761 av |= DIR__WRITE;
1762 if (mask & MAY_READ)
1763 av |= DIR__READ;
1764 }
1765
1766 return av;
1767}
1768
1769/* Convert a Linux file to an access vector. */
1770static inline u32 file_to_av(struct file *file)
1771{
1772 u32 av = 0;
1773
1774 if (file->f_mode & FMODE_READ)
1775 av |= FILE__READ;
1776 if (file->f_mode & FMODE_WRITE) {
1777 if (file->f_flags & O_APPEND)
1778 av |= FILE__APPEND;
1779 else
1780 av |= FILE__WRITE;
1781 }
1782 if (!av) {
1783 /*
1784 * Special file opened with flags 3 for ioctl-only use.
1785 */
1786 av = FILE__IOCTL;
1787 }
1788
1789 return av;
1790}
1791
1792/*
1793 * Convert a file to an access vector and include the correct open
1794 * open permission.
1795 */
1796static inline u32 open_file_to_av(struct file *file)
1797{
1798 u32 av = file_to_av(file);
1799
1800 if (selinux_policycap_openperm)
1801 av |= FILE__OPEN;
1802
1803 return av;
1804}
1805
1806/* Hook functions begin here. */
1807
1808static int selinux_ptrace_access_check(struct task_struct *child,
1809 unsigned int mode)
1810{
1811 int rc;
1812
1813 rc = cap_ptrace_access_check(child, mode);
1814 if (rc)
1815 return rc;
1816
1817 if (mode == PTRACE_MODE_READ) {
1818 u32 sid = current_sid();
1819 u32 csid = task_sid(child);
1820 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1821 }
1822
1823 return current_has_perm(child, PROCESS__PTRACE);
1824}
1825
1826static int selinux_ptrace_traceme(struct task_struct *parent)
1827{
1828 int rc;
1829
1830 rc = cap_ptrace_traceme(parent);
1831 if (rc)
1832 return rc;
1833
1834 return task_has_perm(parent, current, PROCESS__PTRACE);
1835}
1836
1837static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1838 kernel_cap_t *inheritable, kernel_cap_t *permitted)
1839{
1840 int error;
1841
1842 error = current_has_perm(target, PROCESS__GETCAP);
1843 if (error)
1844 return error;
1845
1846 return cap_capget(target, effective, inheritable, permitted);
1847}
1848
1849static int selinux_capset(struct cred *new, const struct cred *old,
1850 const kernel_cap_t *effective,
1851 const kernel_cap_t *inheritable,
1852 const kernel_cap_t *permitted)
1853{
1854 int error;
1855
1856 error = cap_capset(new, old,
1857 effective, inheritable, permitted);
1858 if (error)
1859 return error;
1860
1861 return cred_has_perm(old, new, PROCESS__SETCAP);
1862}
1863
1864/*
1865 * (This comment used to live with the selinux_task_setuid hook,
1866 * which was removed).
1867 *
1868 * Since setuid only affects the current process, and since the SELinux
1869 * controls are not based on the Linux identity attributes, SELinux does not
1870 * need to control this operation. However, SELinux does control the use of
1871 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1872 */
1873
1874static int selinux_capable(struct task_struct *tsk, const struct cred *cred,
1875 struct user_namespace *ns, int cap, int audit)
1876{
1877 int rc;
1878
1879 rc = cap_capable(tsk, cred, ns, cap, audit);
1880 if (rc)
1881 return rc;
1882
1883 return task_has_capability(tsk, cred, cap, audit);
1884}
1885
1886static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1887{
1888 const struct cred *cred = current_cred();
1889 int rc = 0;
1890
1891 if (!sb)
1892 return 0;
1893
1894 switch (cmds) {
1895 case Q_SYNC:
1896 case Q_QUOTAON:
1897 case Q_QUOTAOFF:
1898 case Q_SETINFO:
1899 case Q_SETQUOTA:
1900 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1901 break;
1902 case Q_GETFMT:
1903 case Q_GETINFO:
1904 case Q_GETQUOTA:
1905 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1906 break;
1907 default:
1908 rc = 0; /* let the kernel handle invalid cmds */
1909 break;
1910 }
1911 return rc;
1912}
1913
1914static int selinux_quota_on(struct dentry *dentry)
1915{
1916 const struct cred *cred = current_cred();
1917
1918 return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1919}
1920
1921static int selinux_syslog(int type)
1922{
1923 int rc;
1924
1925 switch (type) {
1926 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */
1927 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */
1928 rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1929 break;
1930 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */
1931 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */
1932 /* Set level of messages printed to console */
1933 case SYSLOG_ACTION_CONSOLE_LEVEL:
1934 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1935 break;
1936 case SYSLOG_ACTION_CLOSE: /* Close log */
1937 case SYSLOG_ACTION_OPEN: /* Open log */
1938 case SYSLOG_ACTION_READ: /* Read from log */
1939 case SYSLOG_ACTION_READ_CLEAR: /* Read/clear last kernel messages */
1940 case SYSLOG_ACTION_CLEAR: /* Clear ring buffer */
1941 default:
1942 rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1943 break;
1944 }
1945 return rc;
1946}
1947
1948/*
1949 * Check that a process has enough memory to allocate a new virtual
1950 * mapping. 0 means there is enough memory for the allocation to
1951 * succeed and -ENOMEM implies there is not.
1952 *
1953 * Do not audit the selinux permission check, as this is applied to all
1954 * processes that allocate mappings.
1955 */
1956static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1957{
1958 int rc, cap_sys_admin = 0;
1959
1960 rc = selinux_capable(current, current_cred(),
1961 &init_user_ns, CAP_SYS_ADMIN,
1962 SECURITY_CAP_NOAUDIT);
1963 if (rc == 0)
1964 cap_sys_admin = 1;
1965
1966 return __vm_enough_memory(mm, pages, cap_sys_admin);
1967}
1968
1969/* binprm security operations */
1970
1971static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1972{
1973 const struct task_security_struct *old_tsec;
1974 struct task_security_struct *new_tsec;
1975 struct inode_security_struct *isec;
1976 struct common_audit_data ad;
1977 struct inode *inode = bprm->file->f_path.dentry->d_inode;
1978 int rc;
1979
1980 rc = cap_bprm_set_creds(bprm);
1981 if (rc)
1982 return rc;
1983
1984 /* SELinux context only depends on initial program or script and not
1985 * the script interpreter */
1986 if (bprm->cred_prepared)
1987 return 0;
1988
1989 old_tsec = current_security();
1990 new_tsec = bprm->cred->security;
1991 isec = inode->i_security;
1992
1993 /* Default to the current task SID. */
1994 new_tsec->sid = old_tsec->sid;
1995 new_tsec->osid = old_tsec->sid;
1996
1997 /* Reset fs, key, and sock SIDs on execve. */
1998 new_tsec->create_sid = 0;
1999 new_tsec->keycreate_sid = 0;
2000 new_tsec->sockcreate_sid = 0;
2001
2002 if (old_tsec->exec_sid) {
2003 new_tsec->sid = old_tsec->exec_sid;
2004 /* Reset exec SID on execve. */
2005 new_tsec->exec_sid = 0;
2006 } else {
2007 /* Check for a default transition on this program. */
2008 rc = security_transition_sid(old_tsec->sid, isec->sid,
2009 SECCLASS_PROCESS, NULL,
2010 &new_tsec->sid);
2011 if (rc)
2012 return rc;
2013 }
2014
2015 COMMON_AUDIT_DATA_INIT(&ad, PATH);
2016 ad.u.path = bprm->file->f_path;
2017
2018 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)
2019 new_tsec->sid = old_tsec->sid;
2020
2021 if (new_tsec->sid == old_tsec->sid) {
2022 rc = avc_has_perm(old_tsec->sid, isec->sid,
2023 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2024 if (rc)
2025 return rc;
2026 } else {
2027 /* Check permissions for the transition. */
2028 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2029 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2030 if (rc)
2031 return rc;
2032
2033 rc = avc_has_perm(new_tsec->sid, isec->sid,
2034 SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2035 if (rc)
2036 return rc;
2037
2038 /* Check for shared state */
2039 if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2040 rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2041 SECCLASS_PROCESS, PROCESS__SHARE,
2042 NULL);
2043 if (rc)
2044 return -EPERM;
2045 }
2046
2047 /* Make sure that anyone attempting to ptrace over a task that
2048 * changes its SID has the appropriate permit */
2049 if (bprm->unsafe &
2050 (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2051 struct task_struct *tracer;
2052 struct task_security_struct *sec;
2053 u32 ptsid = 0;
2054
2055 rcu_read_lock();
2056 tracer = ptrace_parent(current);
2057 if (likely(tracer != NULL)) {
2058 sec = __task_cred(tracer)->security;
2059 ptsid = sec->sid;
2060 }
2061 rcu_read_unlock();
2062
2063 if (ptsid != 0) {
2064 rc = avc_has_perm(ptsid, new_tsec->sid,
2065 SECCLASS_PROCESS,
2066 PROCESS__PTRACE, NULL);
2067 if (rc)
2068 return -EPERM;
2069 }
2070 }
2071
2072 /* Clear any possibly unsafe personality bits on exec: */
2073 bprm->per_clear |= PER_CLEAR_ON_SETID;
2074 }
2075
2076 return 0;
2077}
2078
2079static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2080{
2081 const struct task_security_struct *tsec = current_security();
2082 u32 sid, osid;
2083 int atsecure = 0;
2084
2085 sid = tsec->sid;
2086 osid = tsec->osid;
2087
2088 if (osid != sid) {
2089 /* Enable secure mode for SIDs transitions unless
2090 the noatsecure permission is granted between
2091 the two SIDs, i.e. ahp returns 0. */
2092 atsecure = avc_has_perm(osid, sid,
2093 SECCLASS_PROCESS,
2094 PROCESS__NOATSECURE, NULL);
2095 }
2096
2097 return (atsecure || cap_bprm_secureexec(bprm));
2098}
2099
2100extern struct vfsmount *selinuxfs_mount;
2101extern struct dentry *selinux_null;
2102
2103/* Derived from fs/exec.c:flush_old_files. */
2104static inline void flush_unauthorized_files(const struct cred *cred,
2105 struct files_struct *files)
2106{
2107 struct common_audit_data ad;
2108 struct file *file, *devnull = NULL;
2109 struct tty_struct *tty;
2110 struct fdtable *fdt;
2111 long j = -1;
2112 int drop_tty = 0;
2113
2114 tty = get_current_tty();
2115 if (tty) {
2116 spin_lock(&tty_files_lock);
2117 if (!list_empty(&tty->tty_files)) {
2118 struct tty_file_private *file_priv;
2119 struct inode *inode;
2120
2121 /* Revalidate access to controlling tty.
2122 Use inode_has_perm on the tty inode directly rather
2123 than using file_has_perm, as this particular open
2124 file may belong to another process and we are only
2125 interested in the inode-based check here. */
2126 file_priv = list_first_entry(&tty->tty_files,
2127 struct tty_file_private, list);
2128 file = file_priv->file;
2129 inode = file->f_path.dentry->d_inode;
2130 if (inode_has_perm_noadp(cred, inode,
2131 FILE__READ | FILE__WRITE, 0)) {
2132 drop_tty = 1;
2133 }
2134 }
2135 spin_unlock(&tty_files_lock);
2136 tty_kref_put(tty);
2137 }
2138 /* Reset controlling tty. */
2139 if (drop_tty)
2140 no_tty();
2141
2142 /* Revalidate access to inherited open files. */
2143
2144 COMMON_AUDIT_DATA_INIT(&ad, INODE);
2145
2146 spin_lock(&files->file_lock);
2147 for (;;) {
2148 unsigned long set, i;
2149 int fd;
2150
2151 j++;
2152 i = j * __NFDBITS;
2153 fdt = files_fdtable(files);
2154 if (i >= fdt->max_fds)
2155 break;
2156 set = fdt->open_fds->fds_bits[j];
2157 if (!set)
2158 continue;
2159 spin_unlock(&files->file_lock);
2160 for ( ; set ; i++, set >>= 1) {
2161 if (set & 1) {
2162 file = fget(i);
2163 if (!file)
2164 continue;
2165 if (file_has_perm(cred,
2166 file,
2167 file_to_av(file))) {
2168 sys_close(i);
2169 fd = get_unused_fd();
2170 if (fd != i) {
2171 if (fd >= 0)
2172 put_unused_fd(fd);
2173 fput(file);
2174 continue;
2175 }
2176 if (devnull) {
2177 get_file(devnull);
2178 } else {
2179 devnull = dentry_open(
2180 dget(selinux_null),
2181 mntget(selinuxfs_mount),
2182 O_RDWR, cred);
2183 if (IS_ERR(devnull)) {
2184 devnull = NULL;
2185 put_unused_fd(fd);
2186 fput(file);
2187 continue;
2188 }
2189 }
2190 fd_install(fd, devnull);
2191 }
2192 fput(file);
2193 }
2194 }
2195 spin_lock(&files->file_lock);
2196
2197 }
2198 spin_unlock(&files->file_lock);
2199}
2200
2201/*
2202 * Prepare a process for imminent new credential changes due to exec
2203 */
2204static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2205{
2206 struct task_security_struct *new_tsec;
2207 struct rlimit *rlim, *initrlim;
2208 int rc, i;
2209
2210 new_tsec = bprm->cred->security;
2211 if (new_tsec->sid == new_tsec->osid)
2212 return;
2213
2214 /* Close files for which the new task SID is not authorized. */
2215 flush_unauthorized_files(bprm->cred, current->files);
2216
2217 /* Always clear parent death signal on SID transitions. */
2218 current->pdeath_signal = 0;
2219
2220 /* Check whether the new SID can inherit resource limits from the old
2221 * SID. If not, reset all soft limits to the lower of the current
2222 * task's hard limit and the init task's soft limit.
2223 *
2224 * Note that the setting of hard limits (even to lower them) can be
2225 * controlled by the setrlimit check. The inclusion of the init task's
2226 * soft limit into the computation is to avoid resetting soft limits
2227 * higher than the default soft limit for cases where the default is
2228 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2229 */
2230 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2231 PROCESS__RLIMITINH, NULL);
2232 if (rc) {
2233 /* protect against do_prlimit() */
2234 task_lock(current);
2235 for (i = 0; i < RLIM_NLIMITS; i++) {
2236 rlim = current->signal->rlim + i;
2237 initrlim = init_task.signal->rlim + i;
2238 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2239 }
2240 task_unlock(current);
2241 update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2242 }
2243}
2244
2245/*
2246 * Clean up the process immediately after the installation of new credentials
2247 * due to exec
2248 */
2249static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2250{
2251 const struct task_security_struct *tsec = current_security();
2252 struct itimerval itimer;
2253 u32 osid, sid;
2254 int rc, i;
2255
2256 osid = tsec->osid;
2257 sid = tsec->sid;
2258
2259 if (sid == osid)
2260 return;
2261
2262 /* Check whether the new SID can inherit signal state from the old SID.
2263 * If not, clear itimers to avoid subsequent signal generation and
2264 * flush and unblock signals.
2265 *
2266 * This must occur _after_ the task SID has been updated so that any
2267 * kill done after the flush will be checked against the new SID.
2268 */
2269 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2270 if (rc) {
2271 memset(&itimer, 0, sizeof itimer);
2272 for (i = 0; i < 3; i++)
2273 do_setitimer(i, &itimer, NULL);
2274 spin_lock_irq(¤t->sighand->siglock);
2275 if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2276 __flush_signals(current);
2277 flush_signal_handlers(current, 1);
2278 sigemptyset(¤t->blocked);
2279 }
2280 spin_unlock_irq(¤t->sighand->siglock);
2281 }
2282
2283 /* Wake up the parent if it is waiting so that it can recheck
2284 * wait permission to the new task SID. */
2285 read_lock(&tasklist_lock);
2286 __wake_up_parent(current, current->real_parent);
2287 read_unlock(&tasklist_lock);
2288}
2289
2290/* superblock security operations */
2291
2292static int selinux_sb_alloc_security(struct super_block *sb)
2293{
2294 return superblock_alloc_security(sb);
2295}
2296
2297static void selinux_sb_free_security(struct super_block *sb)
2298{
2299 superblock_free_security(sb);
2300}
2301
2302static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2303{
2304 if (plen > olen)
2305 return 0;
2306
2307 return !memcmp(prefix, option, plen);
2308}
2309
2310static inline int selinux_option(char *option, int len)
2311{
2312 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2313 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2314 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2315 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2316 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2317}
2318
2319static inline void take_option(char **to, char *from, int *first, int len)
2320{
2321 if (!*first) {
2322 **to = ',';
2323 *to += 1;
2324 } else
2325 *first = 0;
2326 memcpy(*to, from, len);
2327 *to += len;
2328}
2329
2330static inline void take_selinux_option(char **to, char *from, int *first,
2331 int len)
2332{
2333 int current_size = 0;
2334
2335 if (!*first) {
2336 **to = '|';
2337 *to += 1;
2338 } else
2339 *first = 0;
2340
2341 while (current_size < len) {
2342 if (*from != '"') {
2343 **to = *from;
2344 *to += 1;
2345 }
2346 from += 1;
2347 current_size += 1;
2348 }
2349}
2350
2351static int selinux_sb_copy_data(char *orig, char *copy)
2352{
2353 int fnosec, fsec, rc = 0;
2354 char *in_save, *in_curr, *in_end;
2355 char *sec_curr, *nosec_save, *nosec;
2356 int open_quote = 0;
2357
2358 in_curr = orig;
2359 sec_curr = copy;
2360
2361 nosec = (char *)get_zeroed_page(GFP_KERNEL);
2362 if (!nosec) {
2363 rc = -ENOMEM;
2364 goto out;
2365 }
2366
2367 nosec_save = nosec;
2368 fnosec = fsec = 1;
2369 in_save = in_end = orig;
2370
2371 do {
2372 if (*in_end == '"')
2373 open_quote = !open_quote;
2374 if ((*in_end == ',' && open_quote == 0) ||
2375 *in_end == '\0') {
2376 int len = in_end - in_curr;
2377
2378 if (selinux_option(in_curr, len))
2379 take_selinux_option(&sec_curr, in_curr, &fsec, len);
2380 else
2381 take_option(&nosec, in_curr, &fnosec, len);
2382
2383 in_curr = in_end + 1;
2384 }
2385 } while (*in_end++);
2386
2387 strcpy(in_save, nosec_save);
2388 free_page((unsigned long)nosec_save);
2389out:
2390 return rc;
2391}
2392
2393static int selinux_sb_remount(struct super_block *sb, void *data)
2394{
2395 int rc, i, *flags;
2396 struct security_mnt_opts opts;
2397 char *secdata, **mount_options;
2398 struct superblock_security_struct *sbsec = sb->s_security;
2399
2400 if (!(sbsec->flags & SE_SBINITIALIZED))
2401 return 0;
2402
2403 if (!data)
2404 return 0;
2405
2406 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2407 return 0;
2408
2409 security_init_mnt_opts(&opts);
2410 secdata = alloc_secdata();
2411 if (!secdata)
2412 return -ENOMEM;
2413 rc = selinux_sb_copy_data(data, secdata);
2414 if (rc)
2415 goto out_free_secdata;
2416
2417 rc = selinux_parse_opts_str(secdata, &opts);
2418 if (rc)
2419 goto out_free_secdata;
2420
2421 mount_options = opts.mnt_opts;
2422 flags = opts.mnt_opts_flags;
2423
2424 for (i = 0; i < opts.num_mnt_opts; i++) {
2425 u32 sid;
2426 size_t len;
2427
2428 if (flags[i] == SE_SBLABELSUPP)
2429 continue;
2430 len = strlen(mount_options[i]);
2431 rc = security_context_to_sid(mount_options[i], len, &sid);
2432 if (rc) {
2433 printk(KERN_WARNING "SELinux: security_context_to_sid"
2434 "(%s) failed for (dev %s, type %s) errno=%d\n",
2435 mount_options[i], sb->s_id, sb->s_type->name, rc);
2436 goto out_free_opts;
2437 }
2438 rc = -EINVAL;
2439 switch (flags[i]) {
2440 case FSCONTEXT_MNT:
2441 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2442 goto out_bad_option;
2443 break;
2444 case CONTEXT_MNT:
2445 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2446 goto out_bad_option;
2447 break;
2448 case ROOTCONTEXT_MNT: {
2449 struct inode_security_struct *root_isec;
2450 root_isec = sb->s_root->d_inode->i_security;
2451
2452 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2453 goto out_bad_option;
2454 break;
2455 }
2456 case DEFCONTEXT_MNT:
2457 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2458 goto out_bad_option;
2459 break;
2460 default:
2461 goto out_free_opts;
2462 }
2463 }
2464
2465 rc = 0;
2466out_free_opts:
2467 security_free_mnt_opts(&opts);
2468out_free_secdata:
2469 free_secdata(secdata);
2470 return rc;
2471out_bad_option:
2472 printk(KERN_WARNING "SELinux: unable to change security options "
2473 "during remount (dev %s, type=%s)\n", sb->s_id,
2474 sb->s_type->name);
2475 goto out_free_opts;
2476}
2477
2478static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2479{
2480 const struct cred *cred = current_cred();
2481 struct common_audit_data ad;
2482 int rc;
2483
2484 rc = superblock_doinit(sb, data);
2485 if (rc)
2486 return rc;
2487
2488 /* Allow all mounts performed by the kernel */
2489 if (flags & MS_KERNMOUNT)
2490 return 0;
2491
2492 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2493 ad.u.dentry = sb->s_root;
2494 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2495}
2496
2497static int selinux_sb_statfs(struct dentry *dentry)
2498{
2499 const struct cred *cred = current_cred();
2500 struct common_audit_data ad;
2501
2502 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2503 ad.u.dentry = dentry->d_sb->s_root;
2504 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2505}
2506
2507static int selinux_mount(char *dev_name,
2508 struct path *path,
2509 char *type,
2510 unsigned long flags,
2511 void *data)
2512{
2513 const struct cred *cred = current_cred();
2514
2515 if (flags & MS_REMOUNT)
2516 return superblock_has_perm(cred, path->mnt->mnt_sb,
2517 FILESYSTEM__REMOUNT, NULL);
2518 else
2519 return path_has_perm(cred, path, FILE__MOUNTON);
2520}
2521
2522static int selinux_umount(struct vfsmount *mnt, int flags)
2523{
2524 const struct cred *cred = current_cred();
2525
2526 return superblock_has_perm(cred, mnt->mnt_sb,
2527 FILESYSTEM__UNMOUNT, NULL);
2528}
2529
2530/* inode security operations */
2531
2532static int selinux_inode_alloc_security(struct inode *inode)
2533{
2534 return inode_alloc_security(inode);
2535}
2536
2537static void selinux_inode_free_security(struct inode *inode)
2538{
2539 inode_free_security(inode);
2540}
2541
2542static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2543 const struct qstr *qstr, char **name,
2544 void **value, size_t *len)
2545{
2546 const struct task_security_struct *tsec = current_security();
2547 struct inode_security_struct *dsec;
2548 struct superblock_security_struct *sbsec;
2549 u32 sid, newsid, clen;
2550 int rc;
2551 char *namep = NULL, *context;
2552
2553 dsec = dir->i_security;
2554 sbsec = dir->i_sb->s_security;
2555
2556 sid = tsec->sid;
2557 newsid = tsec->create_sid;
2558
2559 if ((sbsec->flags & SE_SBINITIALIZED) &&
2560 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2561 newsid = sbsec->mntpoint_sid;
2562 else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2563 rc = security_transition_sid(sid, dsec->sid,
2564 inode_mode_to_security_class(inode->i_mode),
2565 qstr, &newsid);
2566 if (rc) {
2567 printk(KERN_WARNING "%s: "
2568 "security_transition_sid failed, rc=%d (dev=%s "
2569 "ino=%ld)\n",
2570 __func__,
2571 -rc, inode->i_sb->s_id, inode->i_ino);
2572 return rc;
2573 }
2574 }
2575
2576 /* Possibly defer initialization to selinux_complete_init. */
2577 if (sbsec->flags & SE_SBINITIALIZED) {
2578 struct inode_security_struct *isec = inode->i_security;
2579 isec->sclass = inode_mode_to_security_class(inode->i_mode);
2580 isec->sid = newsid;
2581 isec->initialized = 1;
2582 }
2583
2584 if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2585 return -EOPNOTSUPP;
2586
2587 if (name) {
2588 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2589 if (!namep)
2590 return -ENOMEM;
2591 *name = namep;
2592 }
2593
2594 if (value && len) {
2595 rc = security_sid_to_context_force(newsid, &context, &clen);
2596 if (rc) {
2597 kfree(namep);
2598 return rc;
2599 }
2600 *value = context;
2601 *len = clen;
2602 }
2603
2604 return 0;
2605}
2606
2607static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask)
2608{
2609 return may_create(dir, dentry, SECCLASS_FILE);
2610}
2611
2612static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2613{
2614 return may_link(dir, old_dentry, MAY_LINK);
2615}
2616
2617static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2618{
2619 return may_link(dir, dentry, MAY_UNLINK);
2620}
2621
2622static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2623{
2624 return may_create(dir, dentry, SECCLASS_LNK_FILE);
2625}
2626
2627static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask)
2628{
2629 return may_create(dir, dentry, SECCLASS_DIR);
2630}
2631
2632static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2633{
2634 return may_link(dir, dentry, MAY_RMDIR);
2635}
2636
2637static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
2638{
2639 return may_create(dir, dentry, inode_mode_to_security_class(mode));
2640}
2641
2642static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2643 struct inode *new_inode, struct dentry *new_dentry)
2644{
2645 return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2646}
2647
2648static int selinux_inode_readlink(struct dentry *dentry)
2649{
2650 const struct cred *cred = current_cred();
2651
2652 return dentry_has_perm(cred, dentry, FILE__READ);
2653}
2654
2655static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2656{
2657 const struct cred *cred = current_cred();
2658
2659 return dentry_has_perm(cred, dentry, FILE__READ);
2660}
2661
2662static int selinux_inode_permission(struct inode *inode, int mask)
2663{
2664 const struct cred *cred = current_cred();
2665 struct common_audit_data ad;
2666 u32 perms;
2667 bool from_access;
2668 unsigned flags = mask & MAY_NOT_BLOCK;
2669
2670 from_access = mask & MAY_ACCESS;
2671 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2672
2673 /* No permission to check. Existence test. */
2674 if (!mask)
2675 return 0;
2676
2677 COMMON_AUDIT_DATA_INIT(&ad, INODE);
2678 ad.u.inode = inode;
2679
2680 if (from_access)
2681 ad.selinux_audit_data.auditdeny |= FILE__AUDIT_ACCESS;
2682
2683 perms = file_mask_to_av(inode->i_mode, mask);
2684
2685 return inode_has_perm(cred, inode, perms, &ad, flags);
2686}
2687
2688static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2689{
2690 const struct cred *cred = current_cred();
2691 unsigned int ia_valid = iattr->ia_valid;
2692
2693 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2694 if (ia_valid & ATTR_FORCE) {
2695 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2696 ATTR_FORCE);
2697 if (!ia_valid)
2698 return 0;
2699 }
2700
2701 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2702 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2703 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2704
2705 return dentry_has_perm(cred, dentry, FILE__WRITE);
2706}
2707
2708static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2709{
2710 const struct cred *cred = current_cred();
2711 struct path path;
2712
2713 path.dentry = dentry;
2714 path.mnt = mnt;
2715
2716 return path_has_perm(cred, &path, FILE__GETATTR);
2717}
2718
2719static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2720{
2721 const struct cred *cred = current_cred();
2722
2723 if (!strncmp(name, XATTR_SECURITY_PREFIX,
2724 sizeof XATTR_SECURITY_PREFIX - 1)) {
2725 if (!strcmp(name, XATTR_NAME_CAPS)) {
2726 if (!capable(CAP_SETFCAP))
2727 return -EPERM;
2728 } else if (!capable(CAP_SYS_ADMIN)) {
2729 /* A different attribute in the security namespace.
2730 Restrict to administrator. */
2731 return -EPERM;
2732 }
2733 }
2734
2735 /* Not an attribute we recognize, so just check the
2736 ordinary setattr permission. */
2737 return dentry_has_perm(cred, dentry, FILE__SETATTR);
2738}
2739
2740static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2741 const void *value, size_t size, int flags)
2742{
2743 struct inode *inode = dentry->d_inode;
2744 struct inode_security_struct *isec = inode->i_security;
2745 struct superblock_security_struct *sbsec;
2746 struct common_audit_data ad;
2747 u32 newsid, sid = current_sid();
2748 int rc = 0;
2749
2750 if (strcmp(name, XATTR_NAME_SELINUX))
2751 return selinux_inode_setotherxattr(dentry, name);
2752
2753 sbsec = inode->i_sb->s_security;
2754 if (!(sbsec->flags & SE_SBLABELSUPP))
2755 return -EOPNOTSUPP;
2756
2757 if (!inode_owner_or_capable(inode))
2758 return -EPERM;
2759
2760 COMMON_AUDIT_DATA_INIT(&ad, DENTRY);
2761 ad.u.dentry = dentry;
2762
2763 rc = avc_has_perm(sid, isec->sid, isec->sclass,
2764 FILE__RELABELFROM, &ad);
2765 if (rc)
2766 return rc;
2767
2768 rc = security_context_to_sid(value, size, &newsid);
2769 if (rc == -EINVAL) {
2770 if (!capable(CAP_MAC_ADMIN))
2771 return rc;
2772 rc = security_context_to_sid_force(value, size, &newsid);
2773 }
2774 if (rc)
2775 return rc;
2776
2777 rc = avc_has_perm(sid, newsid, isec->sclass,
2778 FILE__RELABELTO, &ad);
2779 if (rc)
2780 return rc;
2781
2782 rc = security_validate_transition(isec->sid, newsid, sid,
2783 isec->sclass);
2784 if (rc)
2785 return rc;
2786
2787 return avc_has_perm(newsid,
2788 sbsec->sid,
2789 SECCLASS_FILESYSTEM,
2790 FILESYSTEM__ASSOCIATE,
2791 &ad);
2792}
2793
2794static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2795 const void *value, size_t size,
2796 int flags)
2797{
2798 struct inode *inode = dentry->d_inode;
2799 struct inode_security_struct *isec = inode->i_security;
2800 u32 newsid;
2801 int rc;
2802
2803 if (strcmp(name, XATTR_NAME_SELINUX)) {
2804 /* Not an attribute we recognize, so nothing to do. */
2805 return;
2806 }
2807
2808 rc = security_context_to_sid_force(value, size, &newsid);
2809 if (rc) {
2810 printk(KERN_ERR "SELinux: unable to map context to SID"
2811 "for (%s, %lu), rc=%d\n",
2812 inode->i_sb->s_id, inode->i_ino, -rc);
2813 return;
2814 }
2815
2816 isec->sid = newsid;
2817 return;
2818}
2819
2820static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2821{
2822 const struct cred *cred = current_cred();
2823
2824 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2825}
2826
2827static int selinux_inode_listxattr(struct dentry *dentry)
2828{
2829 const struct cred *cred = current_cred();
2830
2831 return dentry_has_perm(cred, dentry, FILE__GETATTR);
2832}
2833
2834static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2835{
2836 if (strcmp(name, XATTR_NAME_SELINUX))
2837 return selinux_inode_setotherxattr(dentry, name);
2838
2839 /* No one is allowed to remove a SELinux security label.
2840 You can change the label, but all data must be labeled. */
2841 return -EACCES;
2842}
2843
2844/*
2845 * Copy the inode security context value to the user.
2846 *
2847 * Permission check is handled by selinux_inode_getxattr hook.
2848 */
2849static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2850{
2851 u32 size;
2852 int error;
2853 char *context = NULL;
2854 struct inode_security_struct *isec = inode->i_security;
2855
2856 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2857 return -EOPNOTSUPP;
2858
2859 /*
2860 * If the caller has CAP_MAC_ADMIN, then get the raw context
2861 * value even if it is not defined by current policy; otherwise,
2862 * use the in-core value under current policy.
2863 * Use the non-auditing forms of the permission checks since
2864 * getxattr may be called by unprivileged processes commonly
2865 * and lack of permission just means that we fall back to the
2866 * in-core context value, not a denial.
2867 */
2868 error = selinux_capable(current, current_cred(),
2869 &init_user_ns, CAP_MAC_ADMIN,
2870 SECURITY_CAP_NOAUDIT);
2871 if (!error)
2872 error = security_sid_to_context_force(isec->sid, &context,
2873 &size);
2874 else
2875 error = security_sid_to_context(isec->sid, &context, &size);
2876 if (error)
2877 return error;
2878 error = size;
2879 if (alloc) {
2880 *buffer = context;
2881 goto out_nofree;
2882 }
2883 kfree(context);
2884out_nofree:
2885 return error;
2886}
2887
2888static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2889 const void *value, size_t size, int flags)
2890{
2891 struct inode_security_struct *isec = inode->i_security;
2892 u32 newsid;
2893 int rc;
2894
2895 if (strcmp(name, XATTR_SELINUX_SUFFIX))
2896 return -EOPNOTSUPP;
2897
2898 if (!value || !size)
2899 return -EACCES;
2900
2901 rc = security_context_to_sid((void *)value, size, &newsid);
2902 if (rc)
2903 return rc;
2904
2905 isec->sid = newsid;
2906 isec->initialized = 1;
2907 return 0;
2908}
2909
2910static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2911{
2912 const int len = sizeof(XATTR_NAME_SELINUX);
2913 if (buffer && len <= buffer_size)
2914 memcpy(buffer, XATTR_NAME_SELINUX, len);
2915 return len;
2916}
2917
2918static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2919{
2920 struct inode_security_struct *isec = inode->i_security;
2921 *secid = isec->sid;
2922}
2923
2924/* file security operations */
2925
2926static int selinux_revalidate_file_permission(struct file *file, int mask)
2927{
2928 const struct cred *cred = current_cred();
2929 struct inode *inode = file->f_path.dentry->d_inode;
2930
2931 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2932 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2933 mask |= MAY_APPEND;
2934
2935 return file_has_perm(cred, file,
2936 file_mask_to_av(inode->i_mode, mask));
2937}
2938
2939static int selinux_file_permission(struct file *file, int mask)
2940{
2941 struct inode *inode = file->f_path.dentry->d_inode;
2942 struct file_security_struct *fsec = file->f_security;
2943 struct inode_security_struct *isec = inode->i_security;
2944 u32 sid = current_sid();
2945
2946 if (!mask)
2947 /* No permission to check. Existence test. */
2948 return 0;
2949
2950 if (sid == fsec->sid && fsec->isid == isec->sid &&
2951 fsec->pseqno == avc_policy_seqno())
2952 /* No change since dentry_open check. */
2953 return 0;
2954
2955 return selinux_revalidate_file_permission(file, mask);
2956}
2957
2958static int selinux_file_alloc_security(struct file *file)
2959{
2960 return file_alloc_security(file);
2961}
2962
2963static void selinux_file_free_security(struct file *file)
2964{
2965 file_free_security(file);
2966}
2967
2968static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2969 unsigned long arg)
2970{
2971 const struct cred *cred = current_cred();
2972 int error = 0;
2973
2974 switch (cmd) {
2975 case FIONREAD:
2976 /* fall through */
2977 case FIBMAP:
2978 /* fall through */
2979 case FIGETBSZ:
2980 /* fall through */
2981 case EXT2_IOC_GETFLAGS:
2982 /* fall through */
2983 case EXT2_IOC_GETVERSION:
2984 error = file_has_perm(cred, file, FILE__GETATTR);
2985 break;
2986
2987 case EXT2_IOC_SETFLAGS:
2988 /* fall through */
2989 case EXT2_IOC_SETVERSION:
2990 error = file_has_perm(cred, file, FILE__SETATTR);
2991 break;
2992
2993 /* sys_ioctl() checks */
2994 case FIONBIO:
2995 /* fall through */
2996 case FIOASYNC:
2997 error = file_has_perm(cred, file, 0);
2998 break;
2999
3000 case KDSKBENT:
3001 case KDSKBSENT:
3002 error = task_has_capability(current, cred, CAP_SYS_TTY_CONFIG,
3003 SECURITY_CAP_AUDIT);
3004 break;
3005
3006 /* default case assumes that the command will go
3007 * to the file's ioctl() function.
3008 */
3009 default:
3010 error = file_has_perm(cred, file, FILE__IOCTL);
3011 }
3012 return error;
3013}
3014
3015static int default_noexec;
3016
3017static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3018{
3019 const struct cred *cred = current_cred();
3020 int rc = 0;
3021
3022 if (default_noexec &&
3023 (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3024 /*
3025 * We are making executable an anonymous mapping or a
3026 * private file mapping that will also be writable.
3027 * This has an additional check.
3028 */
3029 rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3030 if (rc)
3031 goto error;
3032 }
3033
3034 if (file) {
3035 /* read access is always possible with a mapping */
3036 u32 av = FILE__READ;
3037
3038 /* write access only matters if the mapping is shared */
3039 if (shared && (prot & PROT_WRITE))
3040 av |= FILE__WRITE;
3041
3042 if (prot & PROT_EXEC)
3043 av |= FILE__EXECUTE;
3044
3045 return file_has_perm(cred, file, av);
3046 }
3047
3048error:
3049 return rc;
3050}
3051
3052static int selinux_file_mmap(struct file *file, unsigned long reqprot,
3053 unsigned long prot, unsigned long flags,
3054 unsigned long addr, unsigned long addr_only)
3055{
3056 int rc = 0;
3057 u32 sid = current_sid();
3058
3059 /*
3060 * notice that we are intentionally putting the SELinux check before
3061 * the secondary cap_file_mmap check. This is such a likely attempt
3062 * at bad behaviour/exploit that we always want to get the AVC, even
3063 * if DAC would have also denied the operation.
3064 */
3065 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3066 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3067 MEMPROTECT__MMAP_ZERO, NULL);
3068 if (rc)
3069 return rc;
3070 }
3071
3072 /* do DAC check on address space usage */
3073 rc = cap_file_mmap(file, reqprot, prot, flags, addr, addr_only);
3074 if (rc || addr_only)
3075 return rc;
3076
3077 if (selinux_checkreqprot)
3078 prot = reqprot;
3079
3080 return file_map_prot_check(file, prot,
3081 (flags & MAP_TYPE) == MAP_SHARED);
3082}
3083
3084static int selinux_file_mprotect(struct vm_area_struct *vma,
3085 unsigned long reqprot,
3086 unsigned long prot)
3087{
3088 const struct cred *cred = current_cred();
3089
3090 if (selinux_checkreqprot)
3091 prot = reqprot;
3092
3093 if (default_noexec &&
3094 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3095 int rc = 0;
3096 if (vma->vm_start >= vma->vm_mm->start_brk &&
3097 vma->vm_end <= vma->vm_mm->brk) {
3098 rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3099 } else if (!vma->vm_file &&
3100 vma->vm_start <= vma->vm_mm->start_stack &&
3101 vma->vm_end >= vma->vm_mm->start_stack) {
3102 rc = current_has_perm(current, PROCESS__EXECSTACK);
3103 } else if (vma->vm_file && vma->anon_vma) {
3104 /*
3105 * We are making executable a file mapping that has
3106 * had some COW done. Since pages might have been
3107 * written, check ability to execute the possibly
3108 * modified content. This typically should only
3109 * occur for text relocations.
3110 */
3111 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3112 }
3113 if (rc)
3114 return rc;
3115 }
3116
3117 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3118}
3119
3120static int selinux_file_lock(struct file *file, unsigned int cmd)
3121{
3122 const struct cred *cred = current_cred();
3123
3124 return file_has_perm(cred, file, FILE__LOCK);
3125}
3126
3127static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3128 unsigned long arg)
3129{
3130 const struct cred *cred = current_cred();
3131 int err = 0;
3132
3133 switch (cmd) {
3134 case F_SETFL:
3135 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3136 err = -EINVAL;
3137 break;
3138 }
3139
3140 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3141 err = file_has_perm(cred, file, FILE__WRITE);
3142 break;
3143 }
3144 /* fall through */
3145 case F_SETOWN:
3146 case F_SETSIG:
3147 case F_GETFL:
3148 case F_GETOWN:
3149 case F_GETSIG:
3150 /* Just check FD__USE permission */
3151 err = file_has_perm(cred, file, 0);
3152 break;
3153 case F_GETLK:
3154 case F_SETLK:
3155 case F_SETLKW:
3156#if BITS_PER_LONG == 32
3157 case F_GETLK64:
3158 case F_SETLK64:
3159 case F_SETLKW64:
3160#endif
3161 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3162 err = -EINVAL;
3163 break;
3164 }
3165 err = file_has_perm(cred, file, FILE__LOCK);
3166 break;
3167 }
3168
3169 return err;
3170}
3171
3172static int selinux_file_set_fowner(struct file *file)
3173{
3174 struct file_security_struct *fsec;
3175
3176 fsec = file->f_security;
3177 fsec->fown_sid = current_sid();
3178
3179 return 0;
3180}
3181
3182static int selinux_file_send_sigiotask(struct task_struct *tsk,
3183 struct fown_struct *fown, int signum)
3184{
3185 struct file *file;
3186 u32 sid = task_sid(tsk);
3187 u32 perm;
3188 struct file_security_struct *fsec;
3189
3190 /* struct fown_struct is never outside the context of a struct file */
3191 file = container_of(fown, struct file, f_owner);
3192
3193 fsec = file->f_security;
3194
3195 if (!signum)
3196 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3197 else
3198 perm = signal_to_av(signum);
3199
3200 return avc_has_perm(fsec->fown_sid, sid,
3201 SECCLASS_PROCESS, perm, NULL);
3202}
3203
3204static int selinux_file_receive(struct file *file)
3205{
3206 const struct cred *cred = current_cred();
3207
3208 return file_has_perm(cred, file, file_to_av(file));
3209}
3210
3211static int selinux_dentry_open(struct file *file, const struct cred *cred)
3212{
3213 struct file_security_struct *fsec;
3214 struct inode *inode;
3215 struct inode_security_struct *isec;
3216
3217 inode = file->f_path.dentry->d_inode;
3218 fsec = file->f_security;
3219 isec = inode->i_security;
3220 /*
3221 * Save inode label and policy sequence number
3222 * at open-time so that selinux_file_permission
3223 * can determine whether revalidation is necessary.
3224 * Task label is already saved in the file security
3225 * struct as its SID.
3226 */
3227 fsec->isid = isec->sid;
3228 fsec->pseqno = avc_policy_seqno();
3229 /*
3230 * Since the inode label or policy seqno may have changed
3231 * between the selinux_inode_permission check and the saving
3232 * of state above, recheck that access is still permitted.
3233 * Otherwise, access might never be revalidated against the
3234 * new inode label or new policy.
3235 * This check is not redundant - do not remove.
3236 */
3237 return inode_has_perm_noadp(cred, inode, open_file_to_av(file), 0);
3238}
3239
3240/* task security operations */
3241
3242static int selinux_task_create(unsigned long clone_flags)
3243{
3244 return current_has_perm(current, PROCESS__FORK);
3245}
3246
3247/*
3248 * allocate the SELinux part of blank credentials
3249 */
3250static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3251{
3252 struct task_security_struct *tsec;
3253
3254 tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3255 if (!tsec)
3256 return -ENOMEM;
3257
3258 cred->security = tsec;
3259 return 0;
3260}
3261
3262/*
3263 * detach and free the LSM part of a set of credentials
3264 */
3265static void selinux_cred_free(struct cred *cred)
3266{
3267 struct task_security_struct *tsec = cred->security;
3268
3269 /*
3270 * cred->security == NULL if security_cred_alloc_blank() or
3271 * security_prepare_creds() returned an error.
3272 */
3273 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3274 cred->security = (void *) 0x7UL;
3275 kfree(tsec);
3276}
3277
3278/*
3279 * prepare a new set of credentials for modification
3280 */
3281static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3282 gfp_t gfp)
3283{
3284 const struct task_security_struct *old_tsec;
3285 struct task_security_struct *tsec;
3286
3287 old_tsec = old->security;
3288
3289 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3290 if (!tsec)
3291 return -ENOMEM;
3292
3293 new->security = tsec;
3294 return 0;
3295}
3296
3297/*
3298 * transfer the SELinux data to a blank set of creds
3299 */
3300static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3301{
3302 const struct task_security_struct *old_tsec = old->security;
3303 struct task_security_struct *tsec = new->security;
3304
3305 *tsec = *old_tsec;
3306}
3307
3308/*
3309 * set the security data for a kernel service
3310 * - all the creation contexts are set to unlabelled
3311 */
3312static int selinux_kernel_act_as(struct cred *new, u32 secid)
3313{
3314 struct task_security_struct *tsec = new->security;
3315 u32 sid = current_sid();
3316 int ret;
3317
3318 ret = avc_has_perm(sid, secid,
3319 SECCLASS_KERNEL_SERVICE,
3320 KERNEL_SERVICE__USE_AS_OVERRIDE,
3321 NULL);
3322 if (ret == 0) {
3323 tsec->sid = secid;
3324 tsec->create_sid = 0;
3325 tsec->keycreate_sid = 0;
3326 tsec->sockcreate_sid = 0;
3327 }
3328 return ret;
3329}
3330
3331/*
3332 * set the file creation context in a security record to the same as the
3333 * objective context of the specified inode
3334 */
3335static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3336{
3337 struct inode_security_struct *isec = inode->i_security;
3338 struct task_security_struct *tsec = new->security;
3339 u32 sid = current_sid();
3340 int ret;
3341
3342 ret = avc_has_perm(sid, isec->sid,
3343 SECCLASS_KERNEL_SERVICE,
3344 KERNEL_SERVICE__CREATE_FILES_AS,
3345 NULL);
3346
3347 if (ret == 0)
3348 tsec->create_sid = isec->sid;
3349 return ret;
3350}
3351
3352static int selinux_kernel_module_request(char *kmod_name)
3353{
3354 u32 sid;
3355 struct common_audit_data ad;
3356
3357 sid = task_sid(current);
3358
3359 COMMON_AUDIT_DATA_INIT(&ad, KMOD);
3360 ad.u.kmod_name = kmod_name;
3361
3362 return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3363 SYSTEM__MODULE_REQUEST, &ad);
3364}
3365
3366static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3367{
3368 return current_has_perm(p, PROCESS__SETPGID);
3369}
3370
3371static int selinux_task_getpgid(struct task_struct *p)
3372{
3373 return current_has_perm(p, PROCESS__GETPGID);
3374}
3375
3376static int selinux_task_getsid(struct task_struct *p)
3377{
3378 return current_has_perm(p, PROCESS__GETSESSION);
3379}
3380
3381static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3382{
3383 *secid = task_sid(p);
3384}
3385
3386static int selinux_task_setnice(struct task_struct *p, int nice)
3387{
3388 int rc;
3389
3390 rc = cap_task_setnice(p, nice);
3391 if (rc)
3392 return rc;
3393
3394 return current_has_perm(p, PROCESS__SETSCHED);
3395}
3396
3397static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3398{
3399 int rc;
3400
3401 rc = cap_task_setioprio(p, ioprio);
3402 if (rc)
3403 return rc;
3404
3405 return current_has_perm(p, PROCESS__SETSCHED);
3406}
3407
3408static int selinux_task_getioprio(struct task_struct *p)
3409{
3410 return current_has_perm(p, PROCESS__GETSCHED);
3411}
3412
3413static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3414 struct rlimit *new_rlim)
3415{
3416 struct rlimit *old_rlim = p->signal->rlim + resource;
3417
3418 /* Control the ability to change the hard limit (whether
3419 lowering or raising it), so that the hard limit can
3420 later be used as a safe reset point for the soft limit
3421 upon context transitions. See selinux_bprm_committing_creds. */
3422 if (old_rlim->rlim_max != new_rlim->rlim_max)
3423 return current_has_perm(p, PROCESS__SETRLIMIT);
3424
3425 return 0;
3426}
3427
3428static int selinux_task_setscheduler(struct task_struct *p)
3429{
3430 int rc;
3431
3432 rc = cap_task_setscheduler(p);
3433 if (rc)
3434 return rc;
3435
3436 return current_has_perm(p, PROCESS__SETSCHED);
3437}
3438
3439static int selinux_task_getscheduler(struct task_struct *p)
3440{
3441 return current_has_perm(p, PROCESS__GETSCHED);
3442}
3443
3444static int selinux_task_movememory(struct task_struct *p)
3445{
3446 return current_has_perm(p, PROCESS__SETSCHED);
3447}
3448
3449static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3450 int sig, u32 secid)
3451{
3452 u32 perm;
3453 int rc;
3454
3455 if (!sig)
3456 perm = PROCESS__SIGNULL; /* null signal; existence test */
3457 else
3458 perm = signal_to_av(sig);
3459 if (secid)
3460 rc = avc_has_perm(secid, task_sid(p),
3461 SECCLASS_PROCESS, perm, NULL);
3462 else
3463 rc = current_has_perm(p, perm);
3464 return rc;
3465}
3466
3467static int selinux_task_wait(struct task_struct *p)
3468{
3469 return task_has_perm(p, current, PROCESS__SIGCHLD);
3470}
3471
3472static void selinux_task_to_inode(struct task_struct *p,
3473 struct inode *inode)
3474{
3475 struct inode_security_struct *isec = inode->i_security;
3476 u32 sid = task_sid(p);
3477
3478 isec->sid = sid;
3479 isec->initialized = 1;
3480}
3481
3482/* Returns error only if unable to parse addresses */
3483static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3484 struct common_audit_data *ad, u8 *proto)
3485{
3486 int offset, ihlen, ret = -EINVAL;
3487 struct iphdr _iph, *ih;
3488
3489 offset = skb_network_offset(skb);
3490 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3491 if (ih == NULL)
3492 goto out;
3493
3494 ihlen = ih->ihl * 4;
3495 if (ihlen < sizeof(_iph))
3496 goto out;
3497
3498 ad->u.net.v4info.saddr = ih->saddr;
3499 ad->u.net.v4info.daddr = ih->daddr;
3500 ret = 0;
3501
3502 if (proto)
3503 *proto = ih->protocol;
3504
3505 switch (ih->protocol) {
3506 case IPPROTO_TCP: {
3507 struct tcphdr _tcph, *th;
3508
3509 if (ntohs(ih->frag_off) & IP_OFFSET)
3510 break;
3511
3512 offset += ihlen;
3513 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3514 if (th == NULL)
3515 break;
3516
3517 ad->u.net.sport = th->source;
3518 ad->u.net.dport = th->dest;
3519 break;
3520 }
3521
3522 case IPPROTO_UDP: {
3523 struct udphdr _udph, *uh;
3524
3525 if (ntohs(ih->frag_off) & IP_OFFSET)
3526 break;
3527
3528 offset += ihlen;
3529 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3530 if (uh == NULL)
3531 break;
3532
3533 ad->u.net.sport = uh->source;
3534 ad->u.net.dport = uh->dest;
3535 break;
3536 }
3537
3538 case IPPROTO_DCCP: {
3539 struct dccp_hdr _dccph, *dh;
3540
3541 if (ntohs(ih->frag_off) & IP_OFFSET)
3542 break;
3543
3544 offset += ihlen;
3545 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3546 if (dh == NULL)
3547 break;
3548
3549 ad->u.net.sport = dh->dccph_sport;
3550 ad->u.net.dport = dh->dccph_dport;
3551 break;
3552 }
3553
3554 default:
3555 break;
3556 }
3557out:
3558 return ret;
3559}
3560
3561#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3562
3563/* Returns error only if unable to parse addresses */
3564static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3565 struct common_audit_data *ad, u8 *proto)
3566{
3567 u8 nexthdr;
3568 int ret = -EINVAL, offset;
3569 struct ipv6hdr _ipv6h, *ip6;
3570
3571 offset = skb_network_offset(skb);
3572 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3573 if (ip6 == NULL)
3574 goto out;
3575
3576 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr);
3577 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr);
3578 ret = 0;
3579
3580 nexthdr = ip6->nexthdr;
3581 offset += sizeof(_ipv6h);
3582 offset = ipv6_skip_exthdr(skb, offset, &nexthdr);
3583 if (offset < 0)
3584 goto out;
3585
3586 if (proto)
3587 *proto = nexthdr;
3588
3589 switch (nexthdr) {
3590 case IPPROTO_TCP: {
3591 struct tcphdr _tcph, *th;
3592
3593 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3594 if (th == NULL)
3595 break;
3596
3597 ad->u.net.sport = th->source;
3598 ad->u.net.dport = th->dest;
3599 break;
3600 }
3601
3602 case IPPROTO_UDP: {
3603 struct udphdr _udph, *uh;
3604
3605 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3606 if (uh == NULL)
3607 break;
3608
3609 ad->u.net.sport = uh->source;
3610 ad->u.net.dport = uh->dest;
3611 break;
3612 }
3613
3614 case IPPROTO_DCCP: {
3615 struct dccp_hdr _dccph, *dh;
3616
3617 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3618 if (dh == NULL)
3619 break;
3620
3621 ad->u.net.sport = dh->dccph_sport;
3622 ad->u.net.dport = dh->dccph_dport;
3623 break;
3624 }
3625
3626 /* includes fragments */
3627 default:
3628 break;
3629 }
3630out:
3631 return ret;
3632}
3633
3634#endif /* IPV6 */
3635
3636static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3637 char **_addrp, int src, u8 *proto)
3638{
3639 char *addrp;
3640 int ret;
3641
3642 switch (ad->u.net.family) {
3643 case PF_INET:
3644 ret = selinux_parse_skb_ipv4(skb, ad, proto);
3645 if (ret)
3646 goto parse_error;
3647 addrp = (char *)(src ? &ad->u.net.v4info.saddr :
3648 &ad->u.net.v4info.daddr);
3649 goto okay;
3650
3651#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3652 case PF_INET6:
3653 ret = selinux_parse_skb_ipv6(skb, ad, proto);
3654 if (ret)
3655 goto parse_error;
3656 addrp = (char *)(src ? &ad->u.net.v6info.saddr :
3657 &ad->u.net.v6info.daddr);
3658 goto okay;
3659#endif /* IPV6 */
3660 default:
3661 addrp = NULL;
3662 goto okay;
3663 }
3664
3665parse_error:
3666 printk(KERN_WARNING
3667 "SELinux: failure in selinux_parse_skb(),"
3668 " unable to parse packet\n");
3669 return ret;
3670
3671okay:
3672 if (_addrp)
3673 *_addrp = addrp;
3674 return 0;
3675}
3676
3677/**
3678 * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3679 * @skb: the packet
3680 * @family: protocol family
3681 * @sid: the packet's peer label SID
3682 *
3683 * Description:
3684 * Check the various different forms of network peer labeling and determine
3685 * the peer label/SID for the packet; most of the magic actually occurs in
3686 * the security server function security_net_peersid_cmp(). The function
3687 * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3688 * or -EACCES if @sid is invalid due to inconsistencies with the different
3689 * peer labels.
3690 *
3691 */
3692static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3693{
3694 int err;
3695 u32 xfrm_sid;
3696 u32 nlbl_sid;
3697 u32 nlbl_type;
3698
3699 selinux_skb_xfrm_sid(skb, &xfrm_sid);
3700 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3701
3702 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3703 if (unlikely(err)) {
3704 printk(KERN_WARNING
3705 "SELinux: failure in selinux_skb_peerlbl_sid(),"
3706 " unable to determine packet's peer label\n");
3707 return -EACCES;
3708 }
3709
3710 return 0;
3711}
3712
3713/* socket security operations */
3714
3715static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3716 u16 secclass, u32 *socksid)
3717{
3718 if (tsec->sockcreate_sid > SECSID_NULL) {
3719 *socksid = tsec->sockcreate_sid;
3720 return 0;
3721 }
3722
3723 return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3724 socksid);
3725}
3726
3727static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3728{
3729 struct sk_security_struct *sksec = sk->sk_security;
3730 struct common_audit_data ad;
3731 u32 tsid = task_sid(task);
3732
3733 if (sksec->sid == SECINITSID_KERNEL)
3734 return 0;
3735
3736 COMMON_AUDIT_DATA_INIT(&ad, NET);
3737 ad.u.net.sk = sk;
3738
3739 return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3740}
3741
3742static int selinux_socket_create(int family, int type,
3743 int protocol, int kern)
3744{
3745 const struct task_security_struct *tsec = current_security();
3746 u32 newsid;
3747 u16 secclass;
3748 int rc;
3749
3750 if (kern)
3751 return 0;
3752
3753 secclass = socket_type_to_security_class(family, type, protocol);
3754 rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3755 if (rc)
3756 return rc;
3757
3758 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3759}
3760
3761static int selinux_socket_post_create(struct socket *sock, int family,
3762 int type, int protocol, int kern)
3763{
3764 const struct task_security_struct *tsec = current_security();
3765 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3766 struct sk_security_struct *sksec;
3767 int err = 0;
3768
3769 isec->sclass = socket_type_to_security_class(family, type, protocol);
3770
3771 if (kern)
3772 isec->sid = SECINITSID_KERNEL;
3773 else {
3774 err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3775 if (err)
3776 return err;
3777 }
3778
3779 isec->initialized = 1;
3780
3781 if (sock->sk) {
3782 sksec = sock->sk->sk_security;
3783 sksec->sid = isec->sid;
3784 sksec->sclass = isec->sclass;
3785 err = selinux_netlbl_socket_post_create(sock->sk, family);
3786 }
3787
3788 return err;
3789}
3790
3791/* Range of port numbers used to automatically bind.
3792 Need to determine whether we should perform a name_bind
3793 permission check between the socket and the port number. */
3794
3795static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3796{
3797 struct sock *sk = sock->sk;
3798 u16 family;
3799 int err;
3800
3801 err = sock_has_perm(current, sk, SOCKET__BIND);
3802 if (err)
3803 goto out;
3804
3805 /*
3806 * If PF_INET or PF_INET6, check name_bind permission for the port.
3807 * Multiple address binding for SCTP is not supported yet: we just
3808 * check the first address now.
3809 */
3810 family = sk->sk_family;
3811 if (family == PF_INET || family == PF_INET6) {
3812 char *addrp;
3813 struct sk_security_struct *sksec = sk->sk_security;
3814 struct common_audit_data ad;
3815 struct sockaddr_in *addr4 = NULL;
3816 struct sockaddr_in6 *addr6 = NULL;
3817 unsigned short snum;
3818 u32 sid, node_perm;
3819
3820 if (family == PF_INET) {
3821 addr4 = (struct sockaddr_in *)address;
3822 snum = ntohs(addr4->sin_port);
3823 addrp = (char *)&addr4->sin_addr.s_addr;
3824 } else {
3825 addr6 = (struct sockaddr_in6 *)address;
3826 snum = ntohs(addr6->sin6_port);
3827 addrp = (char *)&addr6->sin6_addr.s6_addr;
3828 }
3829
3830 if (snum) {
3831 int low, high;
3832
3833 inet_get_local_port_range(&low, &high);
3834
3835 if (snum < max(PROT_SOCK, low) || snum > high) {
3836 err = sel_netport_sid(sk->sk_protocol,
3837 snum, &sid);
3838 if (err)
3839 goto out;
3840 COMMON_AUDIT_DATA_INIT(&ad, NET);
3841 ad.u.net.sport = htons(snum);
3842 ad.u.net.family = family;
3843 err = avc_has_perm(sksec->sid, sid,
3844 sksec->sclass,
3845 SOCKET__NAME_BIND, &ad);
3846 if (err)
3847 goto out;
3848 }
3849 }
3850
3851 switch (sksec->sclass) {
3852 case SECCLASS_TCP_SOCKET:
3853 node_perm = TCP_SOCKET__NODE_BIND;
3854 break;
3855
3856 case SECCLASS_UDP_SOCKET:
3857 node_perm = UDP_SOCKET__NODE_BIND;
3858 break;
3859
3860 case SECCLASS_DCCP_SOCKET:
3861 node_perm = DCCP_SOCKET__NODE_BIND;
3862 break;
3863
3864 default:
3865 node_perm = RAWIP_SOCKET__NODE_BIND;
3866 break;
3867 }
3868
3869 err = sel_netnode_sid(addrp, family, &sid);
3870 if (err)
3871 goto out;
3872
3873 COMMON_AUDIT_DATA_INIT(&ad, NET);
3874 ad.u.net.sport = htons(snum);
3875 ad.u.net.family = family;
3876
3877 if (family == PF_INET)
3878 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr;
3879 else
3880 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr);
3881
3882 err = avc_has_perm(sksec->sid, sid,
3883 sksec->sclass, node_perm, &ad);
3884 if (err)
3885 goto out;
3886 }
3887out:
3888 return err;
3889}
3890
3891static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3892{
3893 struct sock *sk = sock->sk;
3894 struct sk_security_struct *sksec = sk->sk_security;
3895 int err;
3896
3897 err = sock_has_perm(current, sk, SOCKET__CONNECT);
3898 if (err)
3899 return err;
3900
3901 /*
3902 * If a TCP or DCCP socket, check name_connect permission for the port.
3903 */
3904 if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3905 sksec->sclass == SECCLASS_DCCP_SOCKET) {
3906 struct common_audit_data ad;
3907 struct sockaddr_in *addr4 = NULL;
3908 struct sockaddr_in6 *addr6 = NULL;
3909 unsigned short snum;
3910 u32 sid, perm;
3911
3912 if (sk->sk_family == PF_INET) {
3913 addr4 = (struct sockaddr_in *)address;
3914 if (addrlen < sizeof(struct sockaddr_in))
3915 return -EINVAL;
3916 snum = ntohs(addr4->sin_port);
3917 } else {
3918 addr6 = (struct sockaddr_in6 *)address;
3919 if (addrlen < SIN6_LEN_RFC2133)
3920 return -EINVAL;
3921 snum = ntohs(addr6->sin6_port);
3922 }
3923
3924 err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3925 if (err)
3926 goto out;
3927
3928 perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3929 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3930
3931 COMMON_AUDIT_DATA_INIT(&ad, NET);
3932 ad.u.net.dport = htons(snum);
3933 ad.u.net.family = sk->sk_family;
3934 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3935 if (err)
3936 goto out;
3937 }
3938
3939 err = selinux_netlbl_socket_connect(sk, address);
3940
3941out:
3942 return err;
3943}
3944
3945static int selinux_socket_listen(struct socket *sock, int backlog)
3946{
3947 return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3948}
3949
3950static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3951{
3952 int err;
3953 struct inode_security_struct *isec;
3954 struct inode_security_struct *newisec;
3955
3956 err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3957 if (err)
3958 return err;
3959
3960 newisec = SOCK_INODE(newsock)->i_security;
3961
3962 isec = SOCK_INODE(sock)->i_security;
3963 newisec->sclass = isec->sclass;
3964 newisec->sid = isec->sid;
3965 newisec->initialized = 1;
3966
3967 return 0;
3968}
3969
3970static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3971 int size)
3972{
3973 return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3974}
3975
3976static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3977 int size, int flags)
3978{
3979 return sock_has_perm(current, sock->sk, SOCKET__READ);
3980}
3981
3982static int selinux_socket_getsockname(struct socket *sock)
3983{
3984 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3985}
3986
3987static int selinux_socket_getpeername(struct socket *sock)
3988{
3989 return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3990}
3991
3992static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
3993{
3994 int err;
3995
3996 err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
3997 if (err)
3998 return err;
3999
4000 return selinux_netlbl_socket_setsockopt(sock, level, optname);
4001}
4002
4003static int selinux_socket_getsockopt(struct socket *sock, int level,
4004 int optname)
4005{
4006 return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4007}
4008
4009static int selinux_socket_shutdown(struct socket *sock, int how)
4010{
4011 return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4012}
4013
4014static int selinux_socket_unix_stream_connect(struct sock *sock,
4015 struct sock *other,
4016 struct sock *newsk)
4017{
4018 struct sk_security_struct *sksec_sock = sock->sk_security;
4019 struct sk_security_struct *sksec_other = other->sk_security;
4020 struct sk_security_struct *sksec_new = newsk->sk_security;
4021 struct common_audit_data ad;
4022 int err;
4023
4024 COMMON_AUDIT_DATA_INIT(&ad, NET);
4025 ad.u.net.sk = other;
4026
4027 err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4028 sksec_other->sclass,
4029 UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4030 if (err)
4031 return err;
4032
4033 /* server child socket */
4034 sksec_new->peer_sid = sksec_sock->sid;
4035 err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4036 &sksec_new->sid);
4037 if (err)
4038 return err;
4039
4040 /* connecting socket */
4041 sksec_sock->peer_sid = sksec_new->sid;
4042
4043 return 0;
4044}
4045
4046static int selinux_socket_unix_may_send(struct socket *sock,
4047 struct socket *other)
4048{
4049 struct sk_security_struct *ssec = sock->sk->sk_security;
4050 struct sk_security_struct *osec = other->sk->sk_security;
4051 struct common_audit_data ad;
4052
4053 COMMON_AUDIT_DATA_INIT(&ad, NET);
4054 ad.u.net.sk = other->sk;
4055
4056 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4057 &ad);
4058}
4059
4060static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4061 u32 peer_sid,
4062 struct common_audit_data *ad)
4063{
4064 int err;
4065 u32 if_sid;
4066 u32 node_sid;
4067
4068 err = sel_netif_sid(ifindex, &if_sid);
4069 if (err)
4070 return err;
4071 err = avc_has_perm(peer_sid, if_sid,
4072 SECCLASS_NETIF, NETIF__INGRESS, ad);
4073 if (err)
4074 return err;
4075
4076 err = sel_netnode_sid(addrp, family, &node_sid);
4077 if (err)
4078 return err;
4079 return avc_has_perm(peer_sid, node_sid,
4080 SECCLASS_NODE, NODE__RECVFROM, ad);
4081}
4082
4083static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4084 u16 family)
4085{
4086 int err = 0;
4087 struct sk_security_struct *sksec = sk->sk_security;
4088 u32 sk_sid = sksec->sid;
4089 struct common_audit_data ad;
4090 char *addrp;
4091
4092 COMMON_AUDIT_DATA_INIT(&ad, NET);
4093 ad.u.net.netif = skb->skb_iif;
4094 ad.u.net.family = family;
4095 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4096 if (err)
4097 return err;
4098
4099 if (selinux_secmark_enabled()) {
4100 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4101 PACKET__RECV, &ad);
4102 if (err)
4103 return err;
4104 }
4105
4106 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4107 if (err)
4108 return err;
4109 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4110
4111 return err;
4112}
4113
4114static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4115{
4116 int err;
4117 struct sk_security_struct *sksec = sk->sk_security;
4118 u16 family = sk->sk_family;
4119 u32 sk_sid = sksec->sid;
4120 struct common_audit_data ad;
4121 char *addrp;
4122 u8 secmark_active;
4123 u8 peerlbl_active;
4124
4125 if (family != PF_INET && family != PF_INET6)
4126 return 0;
4127
4128 /* Handle mapped IPv4 packets arriving via IPv6 sockets */
4129 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4130 family = PF_INET;
4131
4132 /* If any sort of compatibility mode is enabled then handoff processing
4133 * to the selinux_sock_rcv_skb_compat() function to deal with the
4134 * special handling. We do this in an attempt to keep this function
4135 * as fast and as clean as possible. */
4136 if (!selinux_policycap_netpeer)
4137 return selinux_sock_rcv_skb_compat(sk, skb, family);
4138
4139 secmark_active = selinux_secmark_enabled();
4140 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4141 if (!secmark_active && !peerlbl_active)
4142 return 0;
4143
4144 COMMON_AUDIT_DATA_INIT(&ad, NET);
4145 ad.u.net.netif = skb->skb_iif;
4146 ad.u.net.family = family;
4147 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4148 if (err)
4149 return err;
4150
4151 if (peerlbl_active) {
4152 u32 peer_sid;
4153
4154 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4155 if (err)
4156 return err;
4157 err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4158 peer_sid, &ad);
4159 if (err) {
4160 selinux_netlbl_err(skb, err, 0);
4161 return err;
4162 }
4163 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4164 PEER__RECV, &ad);
4165 if (err)
4166 selinux_netlbl_err(skb, err, 0);
4167 }
4168
4169 if (secmark_active) {
4170 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4171 PACKET__RECV, &ad);
4172 if (err)
4173 return err;
4174 }
4175
4176 return err;
4177}
4178
4179static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4180 int __user *optlen, unsigned len)
4181{
4182 int err = 0;
4183 char *scontext;
4184 u32 scontext_len;
4185 struct sk_security_struct *sksec = sock->sk->sk_security;
4186 u32 peer_sid = SECSID_NULL;
4187
4188 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4189 sksec->sclass == SECCLASS_TCP_SOCKET)
4190 peer_sid = sksec->peer_sid;
4191 if (peer_sid == SECSID_NULL)
4192 return -ENOPROTOOPT;
4193
4194 err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4195 if (err)
4196 return err;
4197
4198 if (scontext_len > len) {
4199 err = -ERANGE;
4200 goto out_len;
4201 }
4202
4203 if (copy_to_user(optval, scontext, scontext_len))
4204 err = -EFAULT;
4205
4206out_len:
4207 if (put_user(scontext_len, optlen))
4208 err = -EFAULT;
4209 kfree(scontext);
4210 return err;
4211}
4212
4213static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4214{
4215 u32 peer_secid = SECSID_NULL;
4216 u16 family;
4217
4218 if (skb && skb->protocol == htons(ETH_P_IP))
4219 family = PF_INET;
4220 else if (skb && skb->protocol == htons(ETH_P_IPV6))
4221 family = PF_INET6;
4222 else if (sock)
4223 family = sock->sk->sk_family;
4224 else
4225 goto out;
4226
4227 if (sock && family == PF_UNIX)
4228 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4229 else if (skb)
4230 selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4231
4232out:
4233 *secid = peer_secid;
4234 if (peer_secid == SECSID_NULL)
4235 return -EINVAL;
4236 return 0;
4237}
4238
4239static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4240{
4241 struct sk_security_struct *sksec;
4242
4243 sksec = kzalloc(sizeof(*sksec), priority);
4244 if (!sksec)
4245 return -ENOMEM;
4246
4247 sksec->peer_sid = SECINITSID_UNLABELED;
4248 sksec->sid = SECINITSID_UNLABELED;
4249 selinux_netlbl_sk_security_reset(sksec);
4250 sk->sk_security = sksec;
4251
4252 return 0;
4253}
4254
4255static void selinux_sk_free_security(struct sock *sk)
4256{
4257 struct sk_security_struct *sksec = sk->sk_security;
4258
4259 sk->sk_security = NULL;
4260 selinux_netlbl_sk_security_free(sksec);
4261 kfree(sksec);
4262}
4263
4264static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4265{
4266 struct sk_security_struct *sksec = sk->sk_security;
4267 struct sk_security_struct *newsksec = newsk->sk_security;
4268
4269 newsksec->sid = sksec->sid;
4270 newsksec->peer_sid = sksec->peer_sid;
4271 newsksec->sclass = sksec->sclass;
4272
4273 selinux_netlbl_sk_security_reset(newsksec);
4274}
4275
4276static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4277{
4278 if (!sk)
4279 *secid = SECINITSID_ANY_SOCKET;
4280 else {
4281 struct sk_security_struct *sksec = sk->sk_security;
4282
4283 *secid = sksec->sid;
4284 }
4285}
4286
4287static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4288{
4289 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4290 struct sk_security_struct *sksec = sk->sk_security;
4291
4292 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4293 sk->sk_family == PF_UNIX)
4294 isec->sid = sksec->sid;
4295 sksec->sclass = isec->sclass;
4296}
4297
4298static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4299 struct request_sock *req)
4300{
4301 struct sk_security_struct *sksec = sk->sk_security;
4302 int err;
4303 u16 family = sk->sk_family;
4304 u32 newsid;
4305 u32 peersid;
4306
4307 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4308 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4309 family = PF_INET;
4310
4311 err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4312 if (err)
4313 return err;
4314 if (peersid == SECSID_NULL) {
4315 req->secid = sksec->sid;
4316 req->peer_secid = SECSID_NULL;
4317 } else {
4318 err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4319 if (err)
4320 return err;
4321 req->secid = newsid;
4322 req->peer_secid = peersid;
4323 }
4324
4325 return selinux_netlbl_inet_conn_request(req, family);
4326}
4327
4328static void selinux_inet_csk_clone(struct sock *newsk,
4329 const struct request_sock *req)
4330{
4331 struct sk_security_struct *newsksec = newsk->sk_security;
4332
4333 newsksec->sid = req->secid;
4334 newsksec->peer_sid = req->peer_secid;
4335 /* NOTE: Ideally, we should also get the isec->sid for the
4336 new socket in sync, but we don't have the isec available yet.
4337 So we will wait until sock_graft to do it, by which
4338 time it will have been created and available. */
4339
4340 /* We don't need to take any sort of lock here as we are the only
4341 * thread with access to newsksec */
4342 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4343}
4344
4345static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4346{
4347 u16 family = sk->sk_family;
4348 struct sk_security_struct *sksec = sk->sk_security;
4349
4350 /* handle mapped IPv4 packets arriving via IPv6 sockets */
4351 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4352 family = PF_INET;
4353
4354 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4355}
4356
4357static int selinux_secmark_relabel_packet(u32 sid)
4358{
4359 const struct task_security_struct *__tsec;
4360 u32 tsid;
4361
4362 __tsec = current_security();
4363 tsid = __tsec->sid;
4364
4365 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4366}
4367
4368static void selinux_secmark_refcount_inc(void)
4369{
4370 atomic_inc(&selinux_secmark_refcount);
4371}
4372
4373static void selinux_secmark_refcount_dec(void)
4374{
4375 atomic_dec(&selinux_secmark_refcount);
4376}
4377
4378static void selinux_req_classify_flow(const struct request_sock *req,
4379 struct flowi *fl)
4380{
4381 fl->flowi_secid = req->secid;
4382}
4383
4384static int selinux_tun_dev_create(void)
4385{
4386 u32 sid = current_sid();
4387
4388 /* we aren't taking into account the "sockcreate" SID since the socket
4389 * that is being created here is not a socket in the traditional sense,
4390 * instead it is a private sock, accessible only to the kernel, and
4391 * representing a wide range of network traffic spanning multiple
4392 * connections unlike traditional sockets - check the TUN driver to
4393 * get a better understanding of why this socket is special */
4394
4395 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4396 NULL);
4397}
4398
4399static void selinux_tun_dev_post_create(struct sock *sk)
4400{
4401 struct sk_security_struct *sksec = sk->sk_security;
4402
4403 /* we don't currently perform any NetLabel based labeling here and it
4404 * isn't clear that we would want to do so anyway; while we could apply
4405 * labeling without the support of the TUN user the resulting labeled
4406 * traffic from the other end of the connection would almost certainly
4407 * cause confusion to the TUN user that had no idea network labeling
4408 * protocols were being used */
4409
4410 /* see the comments in selinux_tun_dev_create() about why we don't use
4411 * the sockcreate SID here */
4412
4413 sksec->sid = current_sid();
4414 sksec->sclass = SECCLASS_TUN_SOCKET;
4415}
4416
4417static int selinux_tun_dev_attach(struct sock *sk)
4418{
4419 struct sk_security_struct *sksec = sk->sk_security;
4420 u32 sid = current_sid();
4421 int err;
4422
4423 err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4424 TUN_SOCKET__RELABELFROM, NULL);
4425 if (err)
4426 return err;
4427 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4428 TUN_SOCKET__RELABELTO, NULL);
4429 if (err)
4430 return err;
4431
4432 sksec->sid = sid;
4433
4434 return 0;
4435}
4436
4437static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4438{
4439 int err = 0;
4440 u32 perm;
4441 struct nlmsghdr *nlh;
4442 struct sk_security_struct *sksec = sk->sk_security;
4443
4444 if (skb->len < NLMSG_SPACE(0)) {
4445 err = -EINVAL;
4446 goto out;
4447 }
4448 nlh = nlmsg_hdr(skb);
4449
4450 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4451 if (err) {
4452 if (err == -EINVAL) {
4453 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4454 "SELinux: unrecognized netlink message"
4455 " type=%hu for sclass=%hu\n",
4456 nlh->nlmsg_type, sksec->sclass);
4457 if (!selinux_enforcing || security_get_allow_unknown())
4458 err = 0;
4459 }
4460
4461 /* Ignore */
4462 if (err == -ENOENT)
4463 err = 0;
4464 goto out;
4465 }
4466
4467 err = sock_has_perm(current, sk, perm);
4468out:
4469 return err;
4470}
4471
4472#ifdef CONFIG_NETFILTER
4473
4474static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4475 u16 family)
4476{
4477 int err;
4478 char *addrp;
4479 u32 peer_sid;
4480 struct common_audit_data ad;
4481 u8 secmark_active;
4482 u8 netlbl_active;
4483 u8 peerlbl_active;
4484
4485 if (!selinux_policycap_netpeer)
4486 return NF_ACCEPT;
4487
4488 secmark_active = selinux_secmark_enabled();
4489 netlbl_active = netlbl_enabled();
4490 peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4491 if (!secmark_active && !peerlbl_active)
4492 return NF_ACCEPT;
4493
4494 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4495 return NF_DROP;
4496
4497 COMMON_AUDIT_DATA_INIT(&ad, NET);
4498 ad.u.net.netif = ifindex;
4499 ad.u.net.family = family;
4500 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4501 return NF_DROP;
4502
4503 if (peerlbl_active) {
4504 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4505 peer_sid, &ad);
4506 if (err) {
4507 selinux_netlbl_err(skb, err, 1);
4508 return NF_DROP;
4509 }
4510 }
4511
4512 if (secmark_active)
4513 if (avc_has_perm(peer_sid, skb->secmark,
4514 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4515 return NF_DROP;
4516
4517 if (netlbl_active)
4518 /* we do this in the FORWARD path and not the POST_ROUTING
4519 * path because we want to make sure we apply the necessary
4520 * labeling before IPsec is applied so we can leverage AH
4521 * protection */
4522 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4523 return NF_DROP;
4524
4525 return NF_ACCEPT;
4526}
4527
4528static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4529 struct sk_buff *skb,
4530 const struct net_device *in,
4531 const struct net_device *out,
4532 int (*okfn)(struct sk_buff *))
4533{
4534 return selinux_ip_forward(skb, in->ifindex, PF_INET);
4535}
4536
4537#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4538static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4539 struct sk_buff *skb,
4540 const struct net_device *in,
4541 const struct net_device *out,
4542 int (*okfn)(struct sk_buff *))
4543{
4544 return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4545}
4546#endif /* IPV6 */
4547
4548static unsigned int selinux_ip_output(struct sk_buff *skb,
4549 u16 family)
4550{
4551 u32 sid;
4552
4553 if (!netlbl_enabled())
4554 return NF_ACCEPT;
4555
4556 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4557 * because we want to make sure we apply the necessary labeling
4558 * before IPsec is applied so we can leverage AH protection */
4559 if (skb->sk) {
4560 struct sk_security_struct *sksec = skb->sk->sk_security;
4561 sid = sksec->sid;
4562 } else
4563 sid = SECINITSID_KERNEL;
4564 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4565 return NF_DROP;
4566
4567 return NF_ACCEPT;
4568}
4569
4570static unsigned int selinux_ipv4_output(unsigned int hooknum,
4571 struct sk_buff *skb,
4572 const struct net_device *in,
4573 const struct net_device *out,
4574 int (*okfn)(struct sk_buff *))
4575{
4576 return selinux_ip_output(skb, PF_INET);
4577}
4578
4579static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4580 int ifindex,
4581 u16 family)
4582{
4583 struct sock *sk = skb->sk;
4584 struct sk_security_struct *sksec;
4585 struct common_audit_data ad;
4586 char *addrp;
4587 u8 proto;
4588
4589 if (sk == NULL)
4590 return NF_ACCEPT;
4591 sksec = sk->sk_security;
4592
4593 COMMON_AUDIT_DATA_INIT(&ad, NET);
4594 ad.u.net.netif = ifindex;
4595 ad.u.net.family = family;
4596 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4597 return NF_DROP;
4598
4599 if (selinux_secmark_enabled())
4600 if (avc_has_perm(sksec->sid, skb->secmark,
4601 SECCLASS_PACKET, PACKET__SEND, &ad))
4602 return NF_DROP_ERR(-ECONNREFUSED);
4603
4604 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4605 return NF_DROP_ERR(-ECONNREFUSED);
4606
4607 return NF_ACCEPT;
4608}
4609
4610static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4611 u16 family)
4612{
4613 u32 secmark_perm;
4614 u32 peer_sid;
4615 struct sock *sk;
4616 struct common_audit_data ad;
4617 char *addrp;
4618 u8 secmark_active;
4619 u8 peerlbl_active;
4620
4621 /* If any sort of compatibility mode is enabled then handoff processing
4622 * to the selinux_ip_postroute_compat() function to deal with the
4623 * special handling. We do this in an attempt to keep this function
4624 * as fast and as clean as possible. */
4625 if (!selinux_policycap_netpeer)
4626 return selinux_ip_postroute_compat(skb, ifindex, family);
4627#ifdef CONFIG_XFRM
4628 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4629 * packet transformation so allow the packet to pass without any checks
4630 * since we'll have another chance to perform access control checks
4631 * when the packet is on it's final way out.
4632 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4633 * is NULL, in this case go ahead and apply access control. */
4634 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4635 return NF_ACCEPT;
4636#endif
4637 secmark_active = selinux_secmark_enabled();
4638 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4639 if (!secmark_active && !peerlbl_active)
4640 return NF_ACCEPT;
4641
4642 /* if the packet is being forwarded then get the peer label from the
4643 * packet itself; otherwise check to see if it is from a local
4644 * application or the kernel, if from an application get the peer label
4645 * from the sending socket, otherwise use the kernel's sid */
4646 sk = skb->sk;
4647 if (sk == NULL) {
4648 if (skb->skb_iif) {
4649 secmark_perm = PACKET__FORWARD_OUT;
4650 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4651 return NF_DROP;
4652 } else {
4653 secmark_perm = PACKET__SEND;
4654 peer_sid = SECINITSID_KERNEL;
4655 }
4656 } else {
4657 struct sk_security_struct *sksec = sk->sk_security;
4658 peer_sid = sksec->sid;
4659 secmark_perm = PACKET__SEND;
4660 }
4661
4662 COMMON_AUDIT_DATA_INIT(&ad, NET);
4663 ad.u.net.netif = ifindex;
4664 ad.u.net.family = family;
4665 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4666 return NF_DROP;
4667
4668 if (secmark_active)
4669 if (avc_has_perm(peer_sid, skb->secmark,
4670 SECCLASS_PACKET, secmark_perm, &ad))
4671 return NF_DROP_ERR(-ECONNREFUSED);
4672
4673 if (peerlbl_active) {
4674 u32 if_sid;
4675 u32 node_sid;
4676
4677 if (sel_netif_sid(ifindex, &if_sid))
4678 return NF_DROP;
4679 if (avc_has_perm(peer_sid, if_sid,
4680 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4681 return NF_DROP_ERR(-ECONNREFUSED);
4682
4683 if (sel_netnode_sid(addrp, family, &node_sid))
4684 return NF_DROP;
4685 if (avc_has_perm(peer_sid, node_sid,
4686 SECCLASS_NODE, NODE__SENDTO, &ad))
4687 return NF_DROP_ERR(-ECONNREFUSED);
4688 }
4689
4690 return NF_ACCEPT;
4691}
4692
4693static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4694 struct sk_buff *skb,
4695 const struct net_device *in,
4696 const struct net_device *out,
4697 int (*okfn)(struct sk_buff *))
4698{
4699 return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4700}
4701
4702#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4703static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4704 struct sk_buff *skb,
4705 const struct net_device *in,
4706 const struct net_device *out,
4707 int (*okfn)(struct sk_buff *))
4708{
4709 return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4710}
4711#endif /* IPV6 */
4712
4713#endif /* CONFIG_NETFILTER */
4714
4715static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4716{
4717 int err;
4718
4719 err = cap_netlink_send(sk, skb);
4720 if (err)
4721 return err;
4722
4723 return selinux_nlmsg_perm(sk, skb);
4724}
4725
4726static int selinux_netlink_recv(struct sk_buff *skb, int capability)
4727{
4728 int err;
4729 struct common_audit_data ad;
4730 u32 sid;
4731
4732 err = cap_netlink_recv(skb, capability);
4733 if (err)
4734 return err;
4735
4736 COMMON_AUDIT_DATA_INIT(&ad, CAP);
4737 ad.u.cap = capability;
4738
4739 security_task_getsecid(current, &sid);
4740 return avc_has_perm(sid, sid, SECCLASS_CAPABILITY,
4741 CAP_TO_MASK(capability), &ad);
4742}
4743
4744static int ipc_alloc_security(struct task_struct *task,
4745 struct kern_ipc_perm *perm,
4746 u16 sclass)
4747{
4748 struct ipc_security_struct *isec;
4749 u32 sid;
4750
4751 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4752 if (!isec)
4753 return -ENOMEM;
4754
4755 sid = task_sid(task);
4756 isec->sclass = sclass;
4757 isec->sid = sid;
4758 perm->security = isec;
4759
4760 return 0;
4761}
4762
4763static void ipc_free_security(struct kern_ipc_perm *perm)
4764{
4765 struct ipc_security_struct *isec = perm->security;
4766 perm->security = NULL;
4767 kfree(isec);
4768}
4769
4770static int msg_msg_alloc_security(struct msg_msg *msg)
4771{
4772 struct msg_security_struct *msec;
4773
4774 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4775 if (!msec)
4776 return -ENOMEM;
4777
4778 msec->sid = SECINITSID_UNLABELED;
4779 msg->security = msec;
4780
4781 return 0;
4782}
4783
4784static void msg_msg_free_security(struct msg_msg *msg)
4785{
4786 struct msg_security_struct *msec = msg->security;
4787
4788 msg->security = NULL;
4789 kfree(msec);
4790}
4791
4792static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4793 u32 perms)
4794{
4795 struct ipc_security_struct *isec;
4796 struct common_audit_data ad;
4797 u32 sid = current_sid();
4798
4799 isec = ipc_perms->security;
4800
4801 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4802 ad.u.ipc_id = ipc_perms->key;
4803
4804 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4805}
4806
4807static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4808{
4809 return msg_msg_alloc_security(msg);
4810}
4811
4812static void selinux_msg_msg_free_security(struct msg_msg *msg)
4813{
4814 msg_msg_free_security(msg);
4815}
4816
4817/* message queue security operations */
4818static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4819{
4820 struct ipc_security_struct *isec;
4821 struct common_audit_data ad;
4822 u32 sid = current_sid();
4823 int rc;
4824
4825 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4826 if (rc)
4827 return rc;
4828
4829 isec = msq->q_perm.security;
4830
4831 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4832 ad.u.ipc_id = msq->q_perm.key;
4833
4834 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4835 MSGQ__CREATE, &ad);
4836 if (rc) {
4837 ipc_free_security(&msq->q_perm);
4838 return rc;
4839 }
4840 return 0;
4841}
4842
4843static void selinux_msg_queue_free_security(struct msg_queue *msq)
4844{
4845 ipc_free_security(&msq->q_perm);
4846}
4847
4848static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4849{
4850 struct ipc_security_struct *isec;
4851 struct common_audit_data ad;
4852 u32 sid = current_sid();
4853
4854 isec = msq->q_perm.security;
4855
4856 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4857 ad.u.ipc_id = msq->q_perm.key;
4858
4859 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4860 MSGQ__ASSOCIATE, &ad);
4861}
4862
4863static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4864{
4865 int err;
4866 int perms;
4867
4868 switch (cmd) {
4869 case IPC_INFO:
4870 case MSG_INFO:
4871 /* No specific object, just general system-wide information. */
4872 return task_has_system(current, SYSTEM__IPC_INFO);
4873 case IPC_STAT:
4874 case MSG_STAT:
4875 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4876 break;
4877 case IPC_SET:
4878 perms = MSGQ__SETATTR;
4879 break;
4880 case IPC_RMID:
4881 perms = MSGQ__DESTROY;
4882 break;
4883 default:
4884 return 0;
4885 }
4886
4887 err = ipc_has_perm(&msq->q_perm, perms);
4888 return err;
4889}
4890
4891static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4892{
4893 struct ipc_security_struct *isec;
4894 struct msg_security_struct *msec;
4895 struct common_audit_data ad;
4896 u32 sid = current_sid();
4897 int rc;
4898
4899 isec = msq->q_perm.security;
4900 msec = msg->security;
4901
4902 /*
4903 * First time through, need to assign label to the message
4904 */
4905 if (msec->sid == SECINITSID_UNLABELED) {
4906 /*
4907 * Compute new sid based on current process and
4908 * message queue this message will be stored in
4909 */
4910 rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4911 NULL, &msec->sid);
4912 if (rc)
4913 return rc;
4914 }
4915
4916 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4917 ad.u.ipc_id = msq->q_perm.key;
4918
4919 /* Can this process write to the queue? */
4920 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4921 MSGQ__WRITE, &ad);
4922 if (!rc)
4923 /* Can this process send the message */
4924 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4925 MSG__SEND, &ad);
4926 if (!rc)
4927 /* Can the message be put in the queue? */
4928 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4929 MSGQ__ENQUEUE, &ad);
4930
4931 return rc;
4932}
4933
4934static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4935 struct task_struct *target,
4936 long type, int mode)
4937{
4938 struct ipc_security_struct *isec;
4939 struct msg_security_struct *msec;
4940 struct common_audit_data ad;
4941 u32 sid = task_sid(target);
4942 int rc;
4943
4944 isec = msq->q_perm.security;
4945 msec = msg->security;
4946
4947 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4948 ad.u.ipc_id = msq->q_perm.key;
4949
4950 rc = avc_has_perm(sid, isec->sid,
4951 SECCLASS_MSGQ, MSGQ__READ, &ad);
4952 if (!rc)
4953 rc = avc_has_perm(sid, msec->sid,
4954 SECCLASS_MSG, MSG__RECEIVE, &ad);
4955 return rc;
4956}
4957
4958/* Shared Memory security operations */
4959static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4960{
4961 struct ipc_security_struct *isec;
4962 struct common_audit_data ad;
4963 u32 sid = current_sid();
4964 int rc;
4965
4966 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4967 if (rc)
4968 return rc;
4969
4970 isec = shp->shm_perm.security;
4971
4972 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4973 ad.u.ipc_id = shp->shm_perm.key;
4974
4975 rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4976 SHM__CREATE, &ad);
4977 if (rc) {
4978 ipc_free_security(&shp->shm_perm);
4979 return rc;
4980 }
4981 return 0;
4982}
4983
4984static void selinux_shm_free_security(struct shmid_kernel *shp)
4985{
4986 ipc_free_security(&shp->shm_perm);
4987}
4988
4989static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4990{
4991 struct ipc_security_struct *isec;
4992 struct common_audit_data ad;
4993 u32 sid = current_sid();
4994
4995 isec = shp->shm_perm.security;
4996
4997 COMMON_AUDIT_DATA_INIT(&ad, IPC);
4998 ad.u.ipc_id = shp->shm_perm.key;
4999
5000 return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5001 SHM__ASSOCIATE, &ad);
5002}
5003
5004/* Note, at this point, shp is locked down */
5005static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5006{
5007 int perms;
5008 int err;
5009
5010 switch (cmd) {
5011 case IPC_INFO:
5012 case SHM_INFO:
5013 /* No specific object, just general system-wide information. */
5014 return task_has_system(current, SYSTEM__IPC_INFO);
5015 case IPC_STAT:
5016 case SHM_STAT:
5017 perms = SHM__GETATTR | SHM__ASSOCIATE;
5018 break;
5019 case IPC_SET:
5020 perms = SHM__SETATTR;
5021 break;
5022 case SHM_LOCK:
5023 case SHM_UNLOCK:
5024 perms = SHM__LOCK;
5025 break;
5026 case IPC_RMID:
5027 perms = SHM__DESTROY;
5028 break;
5029 default:
5030 return 0;
5031 }
5032
5033 err = ipc_has_perm(&shp->shm_perm, perms);
5034 return err;
5035}
5036
5037static int selinux_shm_shmat(struct shmid_kernel *shp,
5038 char __user *shmaddr, int shmflg)
5039{
5040 u32 perms;
5041
5042 if (shmflg & SHM_RDONLY)
5043 perms = SHM__READ;
5044 else
5045 perms = SHM__READ | SHM__WRITE;
5046
5047 return ipc_has_perm(&shp->shm_perm, perms);
5048}
5049
5050/* Semaphore security operations */
5051static int selinux_sem_alloc_security(struct sem_array *sma)
5052{
5053 struct ipc_security_struct *isec;
5054 struct common_audit_data ad;
5055 u32 sid = current_sid();
5056 int rc;
5057
5058 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5059 if (rc)
5060 return rc;
5061
5062 isec = sma->sem_perm.security;
5063
5064 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5065 ad.u.ipc_id = sma->sem_perm.key;
5066
5067 rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5068 SEM__CREATE, &ad);
5069 if (rc) {
5070 ipc_free_security(&sma->sem_perm);
5071 return rc;
5072 }
5073 return 0;
5074}
5075
5076static void selinux_sem_free_security(struct sem_array *sma)
5077{
5078 ipc_free_security(&sma->sem_perm);
5079}
5080
5081static int selinux_sem_associate(struct sem_array *sma, int semflg)
5082{
5083 struct ipc_security_struct *isec;
5084 struct common_audit_data ad;
5085 u32 sid = current_sid();
5086
5087 isec = sma->sem_perm.security;
5088
5089 COMMON_AUDIT_DATA_INIT(&ad, IPC);
5090 ad.u.ipc_id = sma->sem_perm.key;
5091
5092 return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5093 SEM__ASSOCIATE, &ad);
5094}
5095
5096/* Note, at this point, sma is locked down */
5097static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5098{
5099 int err;
5100 u32 perms;
5101
5102 switch (cmd) {
5103 case IPC_INFO:
5104 case SEM_INFO:
5105 /* No specific object, just general system-wide information. */
5106 return task_has_system(current, SYSTEM__IPC_INFO);
5107 case GETPID:
5108 case GETNCNT:
5109 case GETZCNT:
5110 perms = SEM__GETATTR;
5111 break;
5112 case GETVAL:
5113 case GETALL:
5114 perms = SEM__READ;
5115 break;
5116 case SETVAL:
5117 case SETALL:
5118 perms = SEM__WRITE;
5119 break;
5120 case IPC_RMID:
5121 perms = SEM__DESTROY;
5122 break;
5123 case IPC_SET:
5124 perms = SEM__SETATTR;
5125 break;
5126 case IPC_STAT:
5127 case SEM_STAT:
5128 perms = SEM__GETATTR | SEM__ASSOCIATE;
5129 break;
5130 default:
5131 return 0;
5132 }
5133
5134 err = ipc_has_perm(&sma->sem_perm, perms);
5135 return err;
5136}
5137
5138static int selinux_sem_semop(struct sem_array *sma,
5139 struct sembuf *sops, unsigned nsops, int alter)
5140{
5141 u32 perms;
5142
5143 if (alter)
5144 perms = SEM__READ | SEM__WRITE;
5145 else
5146 perms = SEM__READ;
5147
5148 return ipc_has_perm(&sma->sem_perm, perms);
5149}
5150
5151static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5152{
5153 u32 av = 0;
5154
5155 av = 0;
5156 if (flag & S_IRUGO)
5157 av |= IPC__UNIX_READ;
5158 if (flag & S_IWUGO)
5159 av |= IPC__UNIX_WRITE;
5160
5161 if (av == 0)
5162 return 0;
5163
5164 return ipc_has_perm(ipcp, av);
5165}
5166
5167static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5168{
5169 struct ipc_security_struct *isec = ipcp->security;
5170 *secid = isec->sid;
5171}
5172
5173static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5174{
5175 if (inode)
5176 inode_doinit_with_dentry(inode, dentry);
5177}
5178
5179static int selinux_getprocattr(struct task_struct *p,
5180 char *name, char **value)
5181{
5182 const struct task_security_struct *__tsec;
5183 u32 sid;
5184 int error;
5185 unsigned len;
5186
5187 if (current != p) {
5188 error = current_has_perm(p, PROCESS__GETATTR);
5189 if (error)
5190 return error;
5191 }
5192
5193 rcu_read_lock();
5194 __tsec = __task_cred(p)->security;
5195
5196 if (!strcmp(name, "current"))
5197 sid = __tsec->sid;
5198 else if (!strcmp(name, "prev"))
5199 sid = __tsec->osid;
5200 else if (!strcmp(name, "exec"))
5201 sid = __tsec->exec_sid;
5202 else if (!strcmp(name, "fscreate"))
5203 sid = __tsec->create_sid;
5204 else if (!strcmp(name, "keycreate"))
5205 sid = __tsec->keycreate_sid;
5206 else if (!strcmp(name, "sockcreate"))
5207 sid = __tsec->sockcreate_sid;
5208 else
5209 goto invalid;
5210 rcu_read_unlock();
5211
5212 if (!sid)
5213 return 0;
5214
5215 error = security_sid_to_context(sid, value, &len);
5216 if (error)
5217 return error;
5218 return len;
5219
5220invalid:
5221 rcu_read_unlock();
5222 return -EINVAL;
5223}
5224
5225static int selinux_setprocattr(struct task_struct *p,
5226 char *name, void *value, size_t size)
5227{
5228 struct task_security_struct *tsec;
5229 struct task_struct *tracer;
5230 struct cred *new;
5231 u32 sid = 0, ptsid;
5232 int error;
5233 char *str = value;
5234
5235 if (current != p) {
5236 /* SELinux only allows a process to change its own
5237 security attributes. */
5238 return -EACCES;
5239 }
5240
5241 /*
5242 * Basic control over ability to set these attributes at all.
5243 * current == p, but we'll pass them separately in case the
5244 * above restriction is ever removed.
5245 */
5246 if (!strcmp(name, "exec"))
5247 error = current_has_perm(p, PROCESS__SETEXEC);
5248 else if (!strcmp(name, "fscreate"))
5249 error = current_has_perm(p, PROCESS__SETFSCREATE);
5250 else if (!strcmp(name, "keycreate"))
5251 error = current_has_perm(p, PROCESS__SETKEYCREATE);
5252 else if (!strcmp(name, "sockcreate"))
5253 error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5254 else if (!strcmp(name, "current"))
5255 error = current_has_perm(p, PROCESS__SETCURRENT);
5256 else
5257 error = -EINVAL;
5258 if (error)
5259 return error;
5260
5261 /* Obtain a SID for the context, if one was specified. */
5262 if (size && str[1] && str[1] != '\n') {
5263 if (str[size-1] == '\n') {
5264 str[size-1] = 0;
5265 size--;
5266 }
5267 error = security_context_to_sid(value, size, &sid);
5268 if (error == -EINVAL && !strcmp(name, "fscreate")) {
5269 if (!capable(CAP_MAC_ADMIN))
5270 return error;
5271 error = security_context_to_sid_force(value, size,
5272 &sid);
5273 }
5274 if (error)
5275 return error;
5276 }
5277
5278 new = prepare_creds();
5279 if (!new)
5280 return -ENOMEM;
5281
5282 /* Permission checking based on the specified context is
5283 performed during the actual operation (execve,
5284 open/mkdir/...), when we know the full context of the
5285 operation. See selinux_bprm_set_creds for the execve
5286 checks and may_create for the file creation checks. The
5287 operation will then fail if the context is not permitted. */
5288 tsec = new->security;
5289 if (!strcmp(name, "exec")) {
5290 tsec->exec_sid = sid;
5291 } else if (!strcmp(name, "fscreate")) {
5292 tsec->create_sid = sid;
5293 } else if (!strcmp(name, "keycreate")) {
5294 error = may_create_key(sid, p);
5295 if (error)
5296 goto abort_change;
5297 tsec->keycreate_sid = sid;
5298 } else if (!strcmp(name, "sockcreate")) {
5299 tsec->sockcreate_sid = sid;
5300 } else if (!strcmp(name, "current")) {
5301 error = -EINVAL;
5302 if (sid == 0)
5303 goto abort_change;
5304
5305 /* Only allow single threaded processes to change context */
5306 error = -EPERM;
5307 if (!current_is_single_threaded()) {
5308 error = security_bounded_transition(tsec->sid, sid);
5309 if (error)
5310 goto abort_change;
5311 }
5312
5313 /* Check permissions for the transition. */
5314 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5315 PROCESS__DYNTRANSITION, NULL);
5316 if (error)
5317 goto abort_change;
5318
5319 /* Check for ptracing, and update the task SID if ok.
5320 Otherwise, leave SID unchanged and fail. */
5321 ptsid = 0;
5322 task_lock(p);
5323 tracer = ptrace_parent(p);
5324 if (tracer)
5325 ptsid = task_sid(tracer);
5326 task_unlock(p);
5327
5328 if (tracer) {
5329 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5330 PROCESS__PTRACE, NULL);
5331 if (error)
5332 goto abort_change;
5333 }
5334
5335 tsec->sid = sid;
5336 } else {
5337 error = -EINVAL;
5338 goto abort_change;
5339 }
5340
5341 commit_creds(new);
5342 return size;
5343
5344abort_change:
5345 abort_creds(new);
5346 return error;
5347}
5348
5349static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5350{
5351 return security_sid_to_context(secid, secdata, seclen);
5352}
5353
5354static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5355{
5356 return security_context_to_sid(secdata, seclen, secid);
5357}
5358
5359static void selinux_release_secctx(char *secdata, u32 seclen)
5360{
5361 kfree(secdata);
5362}
5363
5364/*
5365 * called with inode->i_mutex locked
5366 */
5367static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5368{
5369 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5370}
5371
5372/*
5373 * called with inode->i_mutex locked
5374 */
5375static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5376{
5377 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5378}
5379
5380static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5381{
5382 int len = 0;
5383 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5384 ctx, true);
5385 if (len < 0)
5386 return len;
5387 *ctxlen = len;
5388 return 0;
5389}
5390#ifdef CONFIG_KEYS
5391
5392static int selinux_key_alloc(struct key *k, const struct cred *cred,
5393 unsigned long flags)
5394{
5395 const struct task_security_struct *tsec;
5396 struct key_security_struct *ksec;
5397
5398 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5399 if (!ksec)
5400 return -ENOMEM;
5401
5402 tsec = cred->security;
5403 if (tsec->keycreate_sid)
5404 ksec->sid = tsec->keycreate_sid;
5405 else
5406 ksec->sid = tsec->sid;
5407
5408 k->security = ksec;
5409 return 0;
5410}
5411
5412static void selinux_key_free(struct key *k)
5413{
5414 struct key_security_struct *ksec = k->security;
5415
5416 k->security = NULL;
5417 kfree(ksec);
5418}
5419
5420static int selinux_key_permission(key_ref_t key_ref,
5421 const struct cred *cred,
5422 key_perm_t perm)
5423{
5424 struct key *key;
5425 struct key_security_struct *ksec;
5426 u32 sid;
5427
5428 /* if no specific permissions are requested, we skip the
5429 permission check. No serious, additional covert channels
5430 appear to be created. */
5431 if (perm == 0)
5432 return 0;
5433
5434 sid = cred_sid(cred);
5435
5436 key = key_ref_to_ptr(key_ref);
5437 ksec = key->security;
5438
5439 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5440}
5441
5442static int selinux_key_getsecurity(struct key *key, char **_buffer)
5443{
5444 struct key_security_struct *ksec = key->security;
5445 char *context = NULL;
5446 unsigned len;
5447 int rc;
5448
5449 rc = security_sid_to_context(ksec->sid, &context, &len);
5450 if (!rc)
5451 rc = len;
5452 *_buffer = context;
5453 return rc;
5454}
5455
5456#endif
5457
5458static struct security_operations selinux_ops = {
5459 .name = "selinux",
5460
5461 .ptrace_access_check = selinux_ptrace_access_check,
5462 .ptrace_traceme = selinux_ptrace_traceme,
5463 .capget = selinux_capget,
5464 .capset = selinux_capset,
5465 .capable = selinux_capable,
5466 .quotactl = selinux_quotactl,
5467 .quota_on = selinux_quota_on,
5468 .syslog = selinux_syslog,
5469 .vm_enough_memory = selinux_vm_enough_memory,
5470
5471 .netlink_send = selinux_netlink_send,
5472 .netlink_recv = selinux_netlink_recv,
5473
5474 .bprm_set_creds = selinux_bprm_set_creds,
5475 .bprm_committing_creds = selinux_bprm_committing_creds,
5476 .bprm_committed_creds = selinux_bprm_committed_creds,
5477 .bprm_secureexec = selinux_bprm_secureexec,
5478
5479 .sb_alloc_security = selinux_sb_alloc_security,
5480 .sb_free_security = selinux_sb_free_security,
5481 .sb_copy_data = selinux_sb_copy_data,
5482 .sb_remount = selinux_sb_remount,
5483 .sb_kern_mount = selinux_sb_kern_mount,
5484 .sb_show_options = selinux_sb_show_options,
5485 .sb_statfs = selinux_sb_statfs,
5486 .sb_mount = selinux_mount,
5487 .sb_umount = selinux_umount,
5488 .sb_set_mnt_opts = selinux_set_mnt_opts,
5489 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts,
5490 .sb_parse_opts_str = selinux_parse_opts_str,
5491
5492
5493 .inode_alloc_security = selinux_inode_alloc_security,
5494 .inode_free_security = selinux_inode_free_security,
5495 .inode_init_security = selinux_inode_init_security,
5496 .inode_create = selinux_inode_create,
5497 .inode_link = selinux_inode_link,
5498 .inode_unlink = selinux_inode_unlink,
5499 .inode_symlink = selinux_inode_symlink,
5500 .inode_mkdir = selinux_inode_mkdir,
5501 .inode_rmdir = selinux_inode_rmdir,
5502 .inode_mknod = selinux_inode_mknod,
5503 .inode_rename = selinux_inode_rename,
5504 .inode_readlink = selinux_inode_readlink,
5505 .inode_follow_link = selinux_inode_follow_link,
5506 .inode_permission = selinux_inode_permission,
5507 .inode_setattr = selinux_inode_setattr,
5508 .inode_getattr = selinux_inode_getattr,
5509 .inode_setxattr = selinux_inode_setxattr,
5510 .inode_post_setxattr = selinux_inode_post_setxattr,
5511 .inode_getxattr = selinux_inode_getxattr,
5512 .inode_listxattr = selinux_inode_listxattr,
5513 .inode_removexattr = selinux_inode_removexattr,
5514 .inode_getsecurity = selinux_inode_getsecurity,
5515 .inode_setsecurity = selinux_inode_setsecurity,
5516 .inode_listsecurity = selinux_inode_listsecurity,
5517 .inode_getsecid = selinux_inode_getsecid,
5518
5519 .file_permission = selinux_file_permission,
5520 .file_alloc_security = selinux_file_alloc_security,
5521 .file_free_security = selinux_file_free_security,
5522 .file_ioctl = selinux_file_ioctl,
5523 .file_mmap = selinux_file_mmap,
5524 .file_mprotect = selinux_file_mprotect,
5525 .file_lock = selinux_file_lock,
5526 .file_fcntl = selinux_file_fcntl,
5527 .file_set_fowner = selinux_file_set_fowner,
5528 .file_send_sigiotask = selinux_file_send_sigiotask,
5529 .file_receive = selinux_file_receive,
5530
5531 .dentry_open = selinux_dentry_open,
5532
5533 .task_create = selinux_task_create,
5534 .cred_alloc_blank = selinux_cred_alloc_blank,
5535 .cred_free = selinux_cred_free,
5536 .cred_prepare = selinux_cred_prepare,
5537 .cred_transfer = selinux_cred_transfer,
5538 .kernel_act_as = selinux_kernel_act_as,
5539 .kernel_create_files_as = selinux_kernel_create_files_as,
5540 .kernel_module_request = selinux_kernel_module_request,
5541 .task_setpgid = selinux_task_setpgid,
5542 .task_getpgid = selinux_task_getpgid,
5543 .task_getsid = selinux_task_getsid,
5544 .task_getsecid = selinux_task_getsecid,
5545 .task_setnice = selinux_task_setnice,
5546 .task_setioprio = selinux_task_setioprio,
5547 .task_getioprio = selinux_task_getioprio,
5548 .task_setrlimit = selinux_task_setrlimit,
5549 .task_setscheduler = selinux_task_setscheduler,
5550 .task_getscheduler = selinux_task_getscheduler,
5551 .task_movememory = selinux_task_movememory,
5552 .task_kill = selinux_task_kill,
5553 .task_wait = selinux_task_wait,
5554 .task_to_inode = selinux_task_to_inode,
5555
5556 .ipc_permission = selinux_ipc_permission,
5557 .ipc_getsecid = selinux_ipc_getsecid,
5558
5559 .msg_msg_alloc_security = selinux_msg_msg_alloc_security,
5560 .msg_msg_free_security = selinux_msg_msg_free_security,
5561
5562 .msg_queue_alloc_security = selinux_msg_queue_alloc_security,
5563 .msg_queue_free_security = selinux_msg_queue_free_security,
5564 .msg_queue_associate = selinux_msg_queue_associate,
5565 .msg_queue_msgctl = selinux_msg_queue_msgctl,
5566 .msg_queue_msgsnd = selinux_msg_queue_msgsnd,
5567 .msg_queue_msgrcv = selinux_msg_queue_msgrcv,
5568
5569 .shm_alloc_security = selinux_shm_alloc_security,
5570 .shm_free_security = selinux_shm_free_security,
5571 .shm_associate = selinux_shm_associate,
5572 .shm_shmctl = selinux_shm_shmctl,
5573 .shm_shmat = selinux_shm_shmat,
5574
5575 .sem_alloc_security = selinux_sem_alloc_security,
5576 .sem_free_security = selinux_sem_free_security,
5577 .sem_associate = selinux_sem_associate,
5578 .sem_semctl = selinux_sem_semctl,
5579 .sem_semop = selinux_sem_semop,
5580
5581 .d_instantiate = selinux_d_instantiate,
5582
5583 .getprocattr = selinux_getprocattr,
5584 .setprocattr = selinux_setprocattr,
5585
5586 .secid_to_secctx = selinux_secid_to_secctx,
5587 .secctx_to_secid = selinux_secctx_to_secid,
5588 .release_secctx = selinux_release_secctx,
5589 .inode_notifysecctx = selinux_inode_notifysecctx,
5590 .inode_setsecctx = selinux_inode_setsecctx,
5591 .inode_getsecctx = selinux_inode_getsecctx,
5592
5593 .unix_stream_connect = selinux_socket_unix_stream_connect,
5594 .unix_may_send = selinux_socket_unix_may_send,
5595
5596 .socket_create = selinux_socket_create,
5597 .socket_post_create = selinux_socket_post_create,
5598 .socket_bind = selinux_socket_bind,
5599 .socket_connect = selinux_socket_connect,
5600 .socket_listen = selinux_socket_listen,
5601 .socket_accept = selinux_socket_accept,
5602 .socket_sendmsg = selinux_socket_sendmsg,
5603 .socket_recvmsg = selinux_socket_recvmsg,
5604 .socket_getsockname = selinux_socket_getsockname,
5605 .socket_getpeername = selinux_socket_getpeername,
5606 .socket_getsockopt = selinux_socket_getsockopt,
5607 .socket_setsockopt = selinux_socket_setsockopt,
5608 .socket_shutdown = selinux_socket_shutdown,
5609 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb,
5610 .socket_getpeersec_stream = selinux_socket_getpeersec_stream,
5611 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram,
5612 .sk_alloc_security = selinux_sk_alloc_security,
5613 .sk_free_security = selinux_sk_free_security,
5614 .sk_clone_security = selinux_sk_clone_security,
5615 .sk_getsecid = selinux_sk_getsecid,
5616 .sock_graft = selinux_sock_graft,
5617 .inet_conn_request = selinux_inet_conn_request,
5618 .inet_csk_clone = selinux_inet_csk_clone,
5619 .inet_conn_established = selinux_inet_conn_established,
5620 .secmark_relabel_packet = selinux_secmark_relabel_packet,
5621 .secmark_refcount_inc = selinux_secmark_refcount_inc,
5622 .secmark_refcount_dec = selinux_secmark_refcount_dec,
5623 .req_classify_flow = selinux_req_classify_flow,
5624 .tun_dev_create = selinux_tun_dev_create,
5625 .tun_dev_post_create = selinux_tun_dev_post_create,
5626 .tun_dev_attach = selinux_tun_dev_attach,
5627
5628#ifdef CONFIG_SECURITY_NETWORK_XFRM
5629 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc,
5630 .xfrm_policy_clone_security = selinux_xfrm_policy_clone,
5631 .xfrm_policy_free_security = selinux_xfrm_policy_free,
5632 .xfrm_policy_delete_security = selinux_xfrm_policy_delete,
5633 .xfrm_state_alloc_security = selinux_xfrm_state_alloc,
5634 .xfrm_state_free_security = selinux_xfrm_state_free,
5635 .xfrm_state_delete_security = selinux_xfrm_state_delete,
5636 .xfrm_policy_lookup = selinux_xfrm_policy_lookup,
5637 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match,
5638 .xfrm_decode_session = selinux_xfrm_decode_session,
5639#endif
5640
5641#ifdef CONFIG_KEYS
5642 .key_alloc = selinux_key_alloc,
5643 .key_free = selinux_key_free,
5644 .key_permission = selinux_key_permission,
5645 .key_getsecurity = selinux_key_getsecurity,
5646#endif
5647
5648#ifdef CONFIG_AUDIT
5649 .audit_rule_init = selinux_audit_rule_init,
5650 .audit_rule_known = selinux_audit_rule_known,
5651 .audit_rule_match = selinux_audit_rule_match,
5652 .audit_rule_free = selinux_audit_rule_free,
5653#endif
5654};
5655
5656static __init int selinux_init(void)
5657{
5658 if (!security_module_enable(&selinux_ops)) {
5659 selinux_enabled = 0;
5660 return 0;
5661 }
5662
5663 if (!selinux_enabled) {
5664 printk(KERN_INFO "SELinux: Disabled at boot.\n");
5665 return 0;
5666 }
5667
5668 printk(KERN_INFO "SELinux: Initializing.\n");
5669
5670 /* Set the security state for the initial task. */
5671 cred_init_security();
5672
5673 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5674
5675 sel_inode_cache = kmem_cache_create("selinux_inode_security",
5676 sizeof(struct inode_security_struct),
5677 0, SLAB_PANIC, NULL);
5678 avc_init();
5679
5680 if (register_security(&selinux_ops))
5681 panic("SELinux: Unable to register with kernel.\n");
5682
5683 if (selinux_enforcing)
5684 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n");
5685 else
5686 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n");
5687
5688 return 0;
5689}
5690
5691static void delayed_superblock_init(struct super_block *sb, void *unused)
5692{
5693 superblock_doinit(sb, NULL);
5694}
5695
5696void selinux_complete_init(void)
5697{
5698 printk(KERN_DEBUG "SELinux: Completing initialization.\n");
5699
5700 /* Set up any superblocks initialized prior to the policy load. */
5701 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n");
5702 iterate_supers(delayed_superblock_init, NULL);
5703}
5704
5705/* SELinux requires early initialization in order to label
5706 all processes and objects when they are created. */
5707security_initcall(selinux_init);
5708
5709#if defined(CONFIG_NETFILTER)
5710
5711static struct nf_hook_ops selinux_ipv4_ops[] = {
5712 {
5713 .hook = selinux_ipv4_postroute,
5714 .owner = THIS_MODULE,
5715 .pf = PF_INET,
5716 .hooknum = NF_INET_POST_ROUTING,
5717 .priority = NF_IP_PRI_SELINUX_LAST,
5718 },
5719 {
5720 .hook = selinux_ipv4_forward,
5721 .owner = THIS_MODULE,
5722 .pf = PF_INET,
5723 .hooknum = NF_INET_FORWARD,
5724 .priority = NF_IP_PRI_SELINUX_FIRST,
5725 },
5726 {
5727 .hook = selinux_ipv4_output,
5728 .owner = THIS_MODULE,
5729 .pf = PF_INET,
5730 .hooknum = NF_INET_LOCAL_OUT,
5731 .priority = NF_IP_PRI_SELINUX_FIRST,
5732 }
5733};
5734
5735#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5736
5737static struct nf_hook_ops selinux_ipv6_ops[] = {
5738 {
5739 .hook = selinux_ipv6_postroute,
5740 .owner = THIS_MODULE,
5741 .pf = PF_INET6,
5742 .hooknum = NF_INET_POST_ROUTING,
5743 .priority = NF_IP6_PRI_SELINUX_LAST,
5744 },
5745 {
5746 .hook = selinux_ipv6_forward,
5747 .owner = THIS_MODULE,
5748 .pf = PF_INET6,
5749 .hooknum = NF_INET_FORWARD,
5750 .priority = NF_IP6_PRI_SELINUX_FIRST,
5751 }
5752};
5753
5754#endif /* IPV6 */
5755
5756static int __init selinux_nf_ip_init(void)
5757{
5758 int err = 0;
5759
5760 if (!selinux_enabled)
5761 goto out;
5762
5763 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n");
5764
5765 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5766 if (err)
5767 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5768
5769#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5770 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5771 if (err)
5772 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5773#endif /* IPV6 */
5774
5775out:
5776 return err;
5777}
5778
5779__initcall(selinux_nf_ip_init);
5780
5781#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5782static void selinux_nf_ip_exit(void)
5783{
5784 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n");
5785
5786 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5787#if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5788 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5789#endif /* IPV6 */
5790}
5791#endif
5792
5793#else /* CONFIG_NETFILTER */
5794
5795#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5796#define selinux_nf_ip_exit()
5797#endif
5798
5799#endif /* CONFIG_NETFILTER */
5800
5801#ifdef CONFIG_SECURITY_SELINUX_DISABLE
5802static int selinux_disabled;
5803
5804int selinux_disable(void)
5805{
5806 extern void exit_sel_fs(void);
5807
5808 if (ss_initialized) {
5809 /* Not permitted after initial policy load. */
5810 return -EINVAL;
5811 }
5812
5813 if (selinux_disabled) {
5814 /* Only do this once. */
5815 return -EINVAL;
5816 }
5817
5818 printk(KERN_INFO "SELinux: Disabled at runtime.\n");
5819
5820 selinux_disabled = 1;
5821 selinux_enabled = 0;
5822
5823 reset_security_ops();
5824
5825 /* Try to destroy the avc node cache */
5826 avc_disable();
5827
5828 /* Unregister netfilter hooks. */
5829 selinux_nf_ip_exit();
5830
5831 /* Unregister selinuxfs. */
5832 exit_sel_fs();
5833
5834 return 0;
5835}
5836#endif