Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* Lock to allow exclusive modification to the device and opp lists */
33DEFINE_MUTEX(opp_table_lock);
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
36
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41{
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(&opp_table->lock);
53 return found;
54}
55
56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57{
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68}
69
70/**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
81struct opp_table *_find_opp_table(struct device *dev)
82{
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
93
94 return opp_table;
95}
96
97/*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
104static bool assert_single_clk(struct opp_table *opp_table,
105 unsigned int __always_unused index)
106{
107 return !WARN_ON(opp_table->clk_count > 1);
108}
109
110/*
111 * Returns true if clock table is large enough to contain the clock index.
112 */
113static bool assert_clk_index(struct opp_table *opp_table,
114 unsigned int index)
115{
116 return opp_table->clk_count > index;
117}
118
119/*
120 * Returns true if bandwidth table is large enough to contain the bandwidth index.
121 */
122static bool assert_bandwidth_index(struct opp_table *opp_table,
123 unsigned int index)
124{
125 return opp_table->path_count > index;
126}
127
128/**
129 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
130 * @opp: opp for which voltage has to be returned for
131 *
132 * Return: voltage in micro volt corresponding to the opp, else
133 * return 0
134 *
135 * This is useful only for devices with single power supply.
136 */
137unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp)) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->supplies[0].u_volt;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
147
148/**
149 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
150 * @opp: opp for which voltage has to be returned for
151 * @supplies: Placeholder for copying the supply information.
152 *
153 * Return: negative error number on failure, 0 otherwise on success after
154 * setting @supplies.
155 *
156 * This can be used for devices with any number of power supplies. The caller
157 * must ensure the @supplies array must contain space for each regulator.
158 */
159int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
160 struct dev_pm_opp_supply *supplies)
161{
162 if (IS_ERR_OR_NULL(opp) || !supplies) {
163 pr_err("%s: Invalid parameters\n", __func__);
164 return -EINVAL;
165 }
166
167 memcpy(supplies, opp->supplies,
168 sizeof(*supplies) * opp->opp_table->regulator_count);
169 return 0;
170}
171EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
172
173/**
174 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
175 * @opp: opp for which power has to be returned for
176 *
177 * Return: power in micro watt corresponding to the opp, else
178 * return 0
179 *
180 * This is useful only for devices with single power supply.
181 */
182unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
183{
184 unsigned long opp_power = 0;
185 int i;
186
187 if (IS_ERR_OR_NULL(opp)) {
188 pr_err("%s: Invalid parameters\n", __func__);
189 return 0;
190 }
191 for (i = 0; i < opp->opp_table->regulator_count; i++)
192 opp_power += opp->supplies[i].u_watt;
193
194 return opp_power;
195}
196EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
197
198/**
199 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
200 * available opp with specified index
201 * @opp: opp for which frequency has to be returned for
202 * @index: index of the frequency within the required opp
203 *
204 * Return: frequency in hertz corresponding to the opp with specified index,
205 * else return 0
206 */
207unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
208{
209 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
210 pr_err("%s: Invalid parameters\n", __func__);
211 return 0;
212 }
213
214 return opp->rates[index];
215}
216EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
217
218/**
219 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
220 * @opp: opp for which level value has to be returned for
221 *
222 * Return: level read from device tree corresponding to the opp, else
223 * return U32_MAX.
224 */
225unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
226{
227 if (IS_ERR_OR_NULL(opp) || !opp->available) {
228 pr_err("%s: Invalid parameters\n", __func__);
229 return 0;
230 }
231
232 return opp->level;
233}
234EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
235
236/**
237 * dev_pm_opp_get_required_pstate() - Gets the required performance state
238 * corresponding to an available opp
239 * @opp: opp for which performance state has to be returned for
240 * @index: index of the required opp
241 *
242 * Return: performance state read from device tree corresponding to the
243 * required opp, else return U32_MAX.
244 */
245unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
246 unsigned int index)
247{
248 if (IS_ERR_OR_NULL(opp) || !opp->available ||
249 index >= opp->opp_table->required_opp_count) {
250 pr_err("%s: Invalid parameters\n", __func__);
251 return 0;
252 }
253
254 /* required-opps not fully initialized yet */
255 if (lazy_linking_pending(opp->opp_table))
256 return 0;
257
258 /* The required OPP table must belong to a genpd */
259 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
260 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
261 return 0;
262 }
263
264 return opp->required_opps[index]->level;
265}
266EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
267
268/**
269 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
270 * @opp: opp for which turbo mode is being verified
271 *
272 * Turbo OPPs are not for normal use, and can be enabled (under certain
273 * conditions) for short duration of times to finish high throughput work
274 * quickly. Running on them for longer times may overheat the chip.
275 *
276 * Return: true if opp is turbo opp, else false.
277 */
278bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
279{
280 if (IS_ERR_OR_NULL(opp) || !opp->available) {
281 pr_err("%s: Invalid parameters\n", __func__);
282 return false;
283 }
284
285 return opp->turbo;
286}
287EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
288
289/**
290 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
291 * @dev: device for which we do this operation
292 *
293 * Return: This function returns the max clock latency in nanoseconds.
294 */
295unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
296{
297 struct opp_table *opp_table;
298 unsigned long clock_latency_ns;
299
300 opp_table = _find_opp_table(dev);
301 if (IS_ERR(opp_table))
302 return 0;
303
304 clock_latency_ns = opp_table->clock_latency_ns_max;
305
306 dev_pm_opp_put_opp_table(opp_table);
307
308 return clock_latency_ns;
309}
310EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
311
312/**
313 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
314 * @dev: device for which we do this operation
315 *
316 * Return: This function returns the max voltage latency in nanoseconds.
317 */
318unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
319{
320 struct opp_table *opp_table;
321 struct dev_pm_opp *opp;
322 struct regulator *reg;
323 unsigned long latency_ns = 0;
324 int ret, i, count;
325 struct {
326 unsigned long min;
327 unsigned long max;
328 } *uV;
329
330 opp_table = _find_opp_table(dev);
331 if (IS_ERR(opp_table))
332 return 0;
333
334 /* Regulator may not be required for the device */
335 if (!opp_table->regulators)
336 goto put_opp_table;
337
338 count = opp_table->regulator_count;
339
340 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
341 if (!uV)
342 goto put_opp_table;
343
344 mutex_lock(&opp_table->lock);
345
346 for (i = 0; i < count; i++) {
347 uV[i].min = ~0;
348 uV[i].max = 0;
349
350 list_for_each_entry(opp, &opp_table->opp_list, node) {
351 if (!opp->available)
352 continue;
353
354 if (opp->supplies[i].u_volt_min < uV[i].min)
355 uV[i].min = opp->supplies[i].u_volt_min;
356 if (opp->supplies[i].u_volt_max > uV[i].max)
357 uV[i].max = opp->supplies[i].u_volt_max;
358 }
359 }
360
361 mutex_unlock(&opp_table->lock);
362
363 /*
364 * The caller needs to ensure that opp_table (and hence the regulator)
365 * isn't freed, while we are executing this routine.
366 */
367 for (i = 0; i < count; i++) {
368 reg = opp_table->regulators[i];
369 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
370 if (ret > 0)
371 latency_ns += ret * 1000;
372 }
373
374 kfree(uV);
375put_opp_table:
376 dev_pm_opp_put_opp_table(opp_table);
377
378 return latency_ns;
379}
380EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
381
382/**
383 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
384 * nanoseconds
385 * @dev: device for which we do this operation
386 *
387 * Return: This function returns the max transition latency, in nanoseconds, to
388 * switch from one OPP to other.
389 */
390unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
391{
392 return dev_pm_opp_get_max_volt_latency(dev) +
393 dev_pm_opp_get_max_clock_latency(dev);
394}
395EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
396
397/**
398 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
399 * @dev: device for which we do this operation
400 *
401 * Return: This function returns the frequency of the OPP marked as suspend_opp
402 * if one is available, else returns 0;
403 */
404unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
405{
406 struct opp_table *opp_table;
407 unsigned long freq = 0;
408
409 opp_table = _find_opp_table(dev);
410 if (IS_ERR(opp_table))
411 return 0;
412
413 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
414 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
415
416 dev_pm_opp_put_opp_table(opp_table);
417
418 return freq;
419}
420EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
421
422int _get_opp_count(struct opp_table *opp_table)
423{
424 struct dev_pm_opp *opp;
425 int count = 0;
426
427 mutex_lock(&opp_table->lock);
428
429 list_for_each_entry(opp, &opp_table->opp_list, node) {
430 if (opp->available)
431 count++;
432 }
433
434 mutex_unlock(&opp_table->lock);
435
436 return count;
437}
438
439/**
440 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
441 * @dev: device for which we do this operation
442 *
443 * Return: This function returns the number of available opps if there are any,
444 * else returns 0 if none or the corresponding error value.
445 */
446int dev_pm_opp_get_opp_count(struct device *dev)
447{
448 struct opp_table *opp_table;
449 int count;
450
451 opp_table = _find_opp_table(dev);
452 if (IS_ERR(opp_table)) {
453 count = PTR_ERR(opp_table);
454 dev_dbg(dev, "%s: OPP table not found (%d)\n",
455 __func__, count);
456 return count;
457 }
458
459 count = _get_opp_count(opp_table);
460 dev_pm_opp_put_opp_table(opp_table);
461
462 return count;
463}
464EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
465
466/* Helpers to read keys */
467static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
468{
469 return opp->rates[index];
470}
471
472static unsigned long _read_level(struct dev_pm_opp *opp, int index)
473{
474 return opp->level;
475}
476
477static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
478{
479 return opp->bandwidth[index].peak;
480}
481
482/* Generic comparison helpers */
483static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
484 unsigned long opp_key, unsigned long key)
485{
486 if (opp_key == key) {
487 *opp = temp_opp;
488 return true;
489 }
490
491 return false;
492}
493
494static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
495 unsigned long opp_key, unsigned long key)
496{
497 if (opp_key >= key) {
498 *opp = temp_opp;
499 return true;
500 }
501
502 return false;
503}
504
505static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
506 unsigned long opp_key, unsigned long key)
507{
508 if (opp_key > key)
509 return true;
510
511 *opp = temp_opp;
512 return false;
513}
514
515/* Generic key finding helpers */
516static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
517 unsigned long *key, int index, bool available,
518 unsigned long (*read)(struct dev_pm_opp *opp, int index),
519 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
520 unsigned long opp_key, unsigned long key),
521 bool (*assert)(struct opp_table *opp_table, unsigned int index))
522{
523 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
524
525 /* Assert that the requirement is met */
526 if (assert && !assert(opp_table, index))
527 return ERR_PTR(-EINVAL);
528
529 mutex_lock(&opp_table->lock);
530
531 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
532 if (temp_opp->available == available) {
533 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
534 break;
535 }
536 }
537
538 /* Increment the reference count of OPP */
539 if (!IS_ERR(opp)) {
540 *key = read(opp, index);
541 dev_pm_opp_get(opp);
542 }
543
544 mutex_unlock(&opp_table->lock);
545
546 return opp;
547}
548
549static struct dev_pm_opp *
550_find_key(struct device *dev, unsigned long *key, int index, bool available,
551 unsigned long (*read)(struct dev_pm_opp *opp, int index),
552 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
553 unsigned long opp_key, unsigned long key),
554 bool (*assert)(struct opp_table *opp_table, unsigned int index))
555{
556 struct opp_table *opp_table;
557 struct dev_pm_opp *opp;
558
559 opp_table = _find_opp_table(dev);
560 if (IS_ERR(opp_table)) {
561 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
562 PTR_ERR(opp_table));
563 return ERR_CAST(opp_table);
564 }
565
566 opp = _opp_table_find_key(opp_table, key, index, available, read,
567 compare, assert);
568
569 dev_pm_opp_put_opp_table(opp_table);
570
571 return opp;
572}
573
574static struct dev_pm_opp *_find_key_exact(struct device *dev,
575 unsigned long key, int index, bool available,
576 unsigned long (*read)(struct dev_pm_opp *opp, int index),
577 bool (*assert)(struct opp_table *opp_table, unsigned int index))
578{
579 /*
580 * The value of key will be updated here, but will be ignored as the
581 * caller doesn't need it.
582 */
583 return _find_key(dev, &key, index, available, read, _compare_exact,
584 assert);
585}
586
587static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
588 unsigned long *key, int index, bool available,
589 unsigned long (*read)(struct dev_pm_opp *opp, int index),
590 bool (*assert)(struct opp_table *opp_table, unsigned int index))
591{
592 return _opp_table_find_key(opp_table, key, index, available, read,
593 _compare_ceil, assert);
594}
595
596static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
597 int index, bool available,
598 unsigned long (*read)(struct dev_pm_opp *opp, int index),
599 bool (*assert)(struct opp_table *opp_table, unsigned int index))
600{
601 return _find_key(dev, key, index, available, read, _compare_ceil,
602 assert);
603}
604
605static struct dev_pm_opp *_find_key_floor(struct device *dev,
606 unsigned long *key, int index, bool available,
607 unsigned long (*read)(struct dev_pm_opp *opp, int index),
608 bool (*assert)(struct opp_table *opp_table, unsigned int index))
609{
610 return _find_key(dev, key, index, available, read, _compare_floor,
611 assert);
612}
613
614/**
615 * dev_pm_opp_find_freq_exact() - search for an exact frequency
616 * @dev: device for which we do this operation
617 * @freq: frequency to search for
618 * @available: true/false - match for available opp
619 *
620 * Return: Searches for exact match in the opp table and returns pointer to the
621 * matching opp if found, else returns ERR_PTR in case of error and should
622 * be handled using IS_ERR. Error return values can be:
623 * EINVAL: for bad pointer
624 * ERANGE: no match found for search
625 * ENODEV: if device not found in list of registered devices
626 *
627 * Note: available is a modifier for the search. if available=true, then the
628 * match is for exact matching frequency and is available in the stored OPP
629 * table. if false, the match is for exact frequency which is not available.
630 *
631 * This provides a mechanism to enable an opp which is not available currently
632 * or the opposite as well.
633 *
634 * The callers are required to call dev_pm_opp_put() for the returned OPP after
635 * use.
636 */
637struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
638 unsigned long freq, bool available)
639{
640 return _find_key_exact(dev, freq, 0, available, _read_freq,
641 assert_single_clk);
642}
643EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
644
645/**
646 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
647 * clock corresponding to the index
648 * @dev: Device for which we do this operation
649 * @freq: frequency to search for
650 * @index: Clock index
651 * @available: true/false - match for available opp
652 *
653 * Search for the matching exact OPP for the clock corresponding to the
654 * specified index from a starting freq for a device.
655 *
656 * Return: matching *opp , else returns ERR_PTR in case of error and should be
657 * handled using IS_ERR. Error return values can be:
658 * EINVAL: for bad pointer
659 * ERANGE: no match found for search
660 * ENODEV: if device not found in list of registered devices
661 *
662 * The callers are required to call dev_pm_opp_put() for the returned OPP after
663 * use.
664 */
665struct dev_pm_opp *
666dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
667 u32 index, bool available)
668{
669 return _find_key_exact(dev, freq, index, available, _read_freq,
670 assert_clk_index);
671}
672EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
673
674static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
675 unsigned long *freq)
676{
677 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
678 assert_single_clk);
679}
680
681/**
682 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
683 * @dev: device for which we do this operation
684 * @freq: Start frequency
685 *
686 * Search for the matching ceil *available* OPP from a starting freq
687 * for a device.
688 *
689 * Return: matching *opp and refreshes *freq accordingly, else returns
690 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
691 * values can be:
692 * EINVAL: for bad pointer
693 * ERANGE: no match found for search
694 * ENODEV: if device not found in list of registered devices
695 *
696 * The callers are required to call dev_pm_opp_put() for the returned OPP after
697 * use.
698 */
699struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
700 unsigned long *freq)
701{
702 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
703}
704EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
705
706/**
707 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
708 * clock corresponding to the index
709 * @dev: Device for which we do this operation
710 * @freq: Start frequency
711 * @index: Clock index
712 *
713 * Search for the matching ceil *available* OPP for the clock corresponding to
714 * the specified index from a starting freq for a device.
715 *
716 * Return: matching *opp and refreshes *freq accordingly, else returns
717 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
718 * values can be:
719 * EINVAL: for bad pointer
720 * ERANGE: no match found for search
721 * ENODEV: if device not found in list of registered devices
722 *
723 * The callers are required to call dev_pm_opp_put() for the returned OPP after
724 * use.
725 */
726struct dev_pm_opp *
727dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
728 u32 index)
729{
730 return _find_key_ceil(dev, freq, index, true, _read_freq,
731 assert_clk_index);
732}
733EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
734
735/**
736 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
737 * @dev: device for which we do this operation
738 * @freq: Start frequency
739 *
740 * Search for the matching floor *available* OPP from a starting freq
741 * for a device.
742 *
743 * Return: matching *opp and refreshes *freq accordingly, else returns
744 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
745 * values can be:
746 * EINVAL: for bad pointer
747 * ERANGE: no match found for search
748 * ENODEV: if device not found in list of registered devices
749 *
750 * The callers are required to call dev_pm_opp_put() for the returned OPP after
751 * use.
752 */
753struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
754 unsigned long *freq)
755{
756 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
757}
758EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
759
760/**
761 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
762 * clock corresponding to the index
763 * @dev: Device for which we do this operation
764 * @freq: Start frequency
765 * @index: Clock index
766 *
767 * Search for the matching floor *available* OPP for the clock corresponding to
768 * the specified index from a starting freq for a device.
769 *
770 * Return: matching *opp and refreshes *freq accordingly, else returns
771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772 * values can be:
773 * EINVAL: for bad pointer
774 * ERANGE: no match found for search
775 * ENODEV: if device not found in list of registered devices
776 *
777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
778 * use.
779 */
780struct dev_pm_opp *
781dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
782 u32 index)
783{
784 return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
785}
786EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
787
788/**
789 * dev_pm_opp_find_level_exact() - search for an exact level
790 * @dev: device for which we do this operation
791 * @level: level to search for
792 *
793 * Return: Searches for exact match in the opp table and returns pointer to the
794 * matching opp if found, else returns ERR_PTR in case of error and should
795 * be handled using IS_ERR. Error return values can be:
796 * EINVAL: for bad pointer
797 * ERANGE: no match found for search
798 * ENODEV: if device not found in list of registered devices
799 *
800 * The callers are required to call dev_pm_opp_put() for the returned OPP after
801 * use.
802 */
803struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
804 unsigned int level)
805{
806 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
807}
808EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
809
810/**
811 * dev_pm_opp_find_level_ceil() - search for an rounded up level
812 * @dev: device for which we do this operation
813 * @level: level to search for
814 *
815 * Return: Searches for rounded up match in the opp table and returns pointer
816 * to the matching opp if found, else returns ERR_PTR in case of error and
817 * should be handled using IS_ERR. Error return values can be:
818 * EINVAL: for bad pointer
819 * ERANGE: no match found for search
820 * ENODEV: if device not found in list of registered devices
821 *
822 * The callers are required to call dev_pm_opp_put() for the returned OPP after
823 * use.
824 */
825struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
826 unsigned int *level)
827{
828 unsigned long temp = *level;
829 struct dev_pm_opp *opp;
830
831 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
832 if (IS_ERR(opp))
833 return opp;
834
835 /* False match */
836 if (temp == OPP_LEVEL_UNSET) {
837 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
838 dev_pm_opp_put(opp);
839 return ERR_PTR(-ENODEV);
840 }
841
842 *level = temp;
843 return opp;
844}
845EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
846
847/**
848 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
849 * @dev: device for which we do this operation
850 * @level: Start level
851 *
852 * Search for the matching floor *available* OPP from a starting level
853 * for a device.
854 *
855 * Return: matching *opp and refreshes *level accordingly, else returns
856 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
857 * values can be:
858 * EINVAL: for bad pointer
859 * ERANGE: no match found for search
860 * ENODEV: if device not found in list of registered devices
861 *
862 * The callers are required to call dev_pm_opp_put() for the returned OPP after
863 * use.
864 */
865struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
866 unsigned int *level)
867{
868 unsigned long temp = *level;
869 struct dev_pm_opp *opp;
870
871 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
872 *level = temp;
873 return opp;
874}
875EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
876
877/**
878 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
879 * @dev: device for which we do this operation
880 * @bw: start bandwidth
881 * @index: which bandwidth to compare, in case of OPPs with several values
882 *
883 * Search for the matching floor *available* OPP from a starting bandwidth
884 * for a device.
885 *
886 * Return: matching *opp and refreshes *bw accordingly, else returns
887 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
888 * values can be:
889 * EINVAL: for bad pointer
890 * ERANGE: no match found for search
891 * ENODEV: if device not found in list of registered devices
892 *
893 * The callers are required to call dev_pm_opp_put() for the returned OPP after
894 * use.
895 */
896struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
897 int index)
898{
899 unsigned long temp = *bw;
900 struct dev_pm_opp *opp;
901
902 opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
903 assert_bandwidth_index);
904 *bw = temp;
905 return opp;
906}
907EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
908
909/**
910 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
911 * @dev: device for which we do this operation
912 * @bw: start bandwidth
913 * @index: which bandwidth to compare, in case of OPPs with several values
914 *
915 * Search for the matching floor *available* OPP from a starting bandwidth
916 * for a device.
917 *
918 * Return: matching *opp and refreshes *bw accordingly, else returns
919 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
920 * values can be:
921 * EINVAL: for bad pointer
922 * ERANGE: no match found for search
923 * ENODEV: if device not found in list of registered devices
924 *
925 * The callers are required to call dev_pm_opp_put() for the returned OPP after
926 * use.
927 */
928struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
929 unsigned int *bw, int index)
930{
931 unsigned long temp = *bw;
932 struct dev_pm_opp *opp;
933
934 opp = _find_key_floor(dev, &temp, index, true, _read_bw,
935 assert_bandwidth_index);
936 *bw = temp;
937 return opp;
938}
939EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
940
941static int _set_opp_voltage(struct device *dev, struct regulator *reg,
942 struct dev_pm_opp_supply *supply)
943{
944 int ret;
945
946 /* Regulator not available for device */
947 if (IS_ERR(reg)) {
948 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
949 PTR_ERR(reg));
950 return 0;
951 }
952
953 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
954 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
955
956 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
957 supply->u_volt, supply->u_volt_max);
958 if (ret)
959 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
960 __func__, supply->u_volt_min, supply->u_volt,
961 supply->u_volt_max, ret);
962
963 return ret;
964}
965
966static int
967_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
968 struct dev_pm_opp *opp, void *data, bool scaling_down)
969{
970 unsigned long *target = data;
971 unsigned long freq;
972 int ret;
973
974 /* One of target and opp must be available */
975 if (target) {
976 freq = *target;
977 } else if (opp) {
978 freq = opp->rates[0];
979 } else {
980 WARN_ON(1);
981 return -EINVAL;
982 }
983
984 ret = clk_set_rate(opp_table->clk, freq);
985 if (ret) {
986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 ret);
988 } else {
989 opp_table->current_rate_single_clk = freq;
990 }
991
992 return ret;
993}
994
995/*
996 * Simple implementation for configuring multiple clocks. Configure clocks in
997 * the order in which they are present in the array while scaling up.
998 */
999int dev_pm_opp_config_clks_simple(struct device *dev,
1000 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
1001 bool scaling_down)
1002{
1003 int ret, i;
1004
1005 if (scaling_down) {
1006 for (i = opp_table->clk_count - 1; i >= 0; i--) {
1007 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1008 if (ret) {
1009 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1010 ret);
1011 return ret;
1012 }
1013 }
1014 } else {
1015 for (i = 0; i < opp_table->clk_count; i++) {
1016 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1017 if (ret) {
1018 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1019 ret);
1020 return ret;
1021 }
1022 }
1023 }
1024
1025 return 0;
1026}
1027EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1028
1029static int _opp_config_regulator_single(struct device *dev,
1030 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1031 struct regulator **regulators, unsigned int count)
1032{
1033 struct regulator *reg = regulators[0];
1034 int ret;
1035
1036 /* This function only supports single regulator per device */
1037 if (WARN_ON(count > 1)) {
1038 dev_err(dev, "multiple regulators are not supported\n");
1039 return -EINVAL;
1040 }
1041
1042 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1043 if (ret)
1044 return ret;
1045
1046 /*
1047 * Enable the regulator after setting its voltages, otherwise it breaks
1048 * some boot-enabled regulators.
1049 */
1050 if (unlikely(!new_opp->opp_table->enabled)) {
1051 ret = regulator_enable(reg);
1052 if (ret < 0)
1053 dev_warn(dev, "Failed to enable regulator: %d", ret);
1054 }
1055
1056 return 0;
1057}
1058
1059static int _set_opp_bw(const struct opp_table *opp_table,
1060 struct dev_pm_opp *opp, struct device *dev)
1061{
1062 u32 avg, peak;
1063 int i, ret;
1064
1065 if (!opp_table->paths)
1066 return 0;
1067
1068 for (i = 0; i < opp_table->path_count; i++) {
1069 if (!opp) {
1070 avg = 0;
1071 peak = 0;
1072 } else {
1073 avg = opp->bandwidth[i].avg;
1074 peak = opp->bandwidth[i].peak;
1075 }
1076 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1077 if (ret) {
1078 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1079 opp ? "set" : "remove", i, ret);
1080 return ret;
1081 }
1082 }
1083
1084 return 0;
1085}
1086
1087static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1088{
1089 unsigned int level = 0;
1090 int ret = 0;
1091
1092 if (opp) {
1093 if (opp->level == OPP_LEVEL_UNSET)
1094 return 0;
1095
1096 level = opp->level;
1097 }
1098
1099 /* Request a new performance state through the device's PM domain. */
1100 ret = dev_pm_domain_set_performance_state(dev, level);
1101 if (ret)
1102 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1103 ret);
1104
1105 return ret;
1106}
1107
1108/* This is only called for PM domain for now */
1109static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1110 struct dev_pm_opp *opp, bool up)
1111{
1112 struct device **devs = opp_table->required_devs;
1113 struct dev_pm_opp *required_opp;
1114 int index, target, delta, ret;
1115
1116 if (!devs)
1117 return 0;
1118
1119 /* required-opps not fully initialized yet */
1120 if (lazy_linking_pending(opp_table))
1121 return -EBUSY;
1122
1123 /* Scaling up? Set required OPPs in normal order, else reverse */
1124 if (up) {
1125 index = 0;
1126 target = opp_table->required_opp_count;
1127 delta = 1;
1128 } else {
1129 index = opp_table->required_opp_count - 1;
1130 target = -1;
1131 delta = -1;
1132 }
1133
1134 while (index != target) {
1135 if (devs[index]) {
1136 required_opp = opp ? opp->required_opps[index] : NULL;
1137
1138 ret = _set_opp_level(devs[index], required_opp);
1139 if (ret)
1140 return ret;
1141 }
1142
1143 index += delta;
1144 }
1145
1146 return 0;
1147}
1148
1149static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1150{
1151 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1152 unsigned long freq;
1153
1154 if (!IS_ERR(opp_table->clk)) {
1155 freq = clk_get_rate(opp_table->clk);
1156 opp = _find_freq_ceil(opp_table, &freq);
1157 }
1158
1159 /*
1160 * Unable to find the current OPP ? Pick the first from the list since
1161 * it is in ascending order, otherwise rest of the code will need to
1162 * make special checks to validate current_opp.
1163 */
1164 if (IS_ERR(opp)) {
1165 mutex_lock(&opp_table->lock);
1166 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1167 dev_pm_opp_get(opp);
1168 mutex_unlock(&opp_table->lock);
1169 }
1170
1171 opp_table->current_opp = opp;
1172}
1173
1174static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1175{
1176 int ret;
1177
1178 if (!opp_table->enabled)
1179 return 0;
1180
1181 /*
1182 * Some drivers need to support cases where some platforms may
1183 * have OPP table for the device, while others don't and
1184 * opp_set_rate() just needs to behave like clk_set_rate().
1185 */
1186 if (!_get_opp_count(opp_table))
1187 return 0;
1188
1189 ret = _set_opp_bw(opp_table, NULL, dev);
1190 if (ret)
1191 return ret;
1192
1193 if (opp_table->regulators)
1194 regulator_disable(opp_table->regulators[0]);
1195
1196 ret = _set_opp_level(dev, NULL);
1197 if (ret)
1198 goto out;
1199
1200 ret = _set_required_opps(dev, opp_table, NULL, false);
1201
1202out:
1203 opp_table->enabled = false;
1204 return ret;
1205}
1206
1207static int _set_opp(struct device *dev, struct opp_table *opp_table,
1208 struct dev_pm_opp *opp, void *clk_data, bool forced)
1209{
1210 struct dev_pm_opp *old_opp;
1211 int scaling_down, ret;
1212
1213 if (unlikely(!opp))
1214 return _disable_opp_table(dev, opp_table);
1215
1216 /* Find the currently set OPP if we don't know already */
1217 if (unlikely(!opp_table->current_opp))
1218 _find_current_opp(dev, opp_table);
1219
1220 old_opp = opp_table->current_opp;
1221
1222 /* Return early if nothing to do */
1223 if (!forced && old_opp == opp && opp_table->enabled) {
1224 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1225 return 0;
1226 }
1227
1228 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1229 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1230 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1231 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1232
1233 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1234 if (scaling_down == -1)
1235 scaling_down = 0;
1236
1237 /* Scaling up? Configure required OPPs before frequency */
1238 if (!scaling_down) {
1239 ret = _set_required_opps(dev, opp_table, opp, true);
1240 if (ret) {
1241 dev_err(dev, "Failed to set required opps: %d\n", ret);
1242 return ret;
1243 }
1244
1245 ret = _set_opp_level(dev, opp);
1246 if (ret)
1247 return ret;
1248
1249 ret = _set_opp_bw(opp_table, opp, dev);
1250 if (ret) {
1251 dev_err(dev, "Failed to set bw: %d\n", ret);
1252 return ret;
1253 }
1254
1255 if (opp_table->config_regulators) {
1256 ret = opp_table->config_regulators(dev, old_opp, opp,
1257 opp_table->regulators,
1258 opp_table->regulator_count);
1259 if (ret) {
1260 dev_err(dev, "Failed to set regulator voltages: %d\n",
1261 ret);
1262 return ret;
1263 }
1264 }
1265 }
1266
1267 if (opp_table->config_clks) {
1268 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1269 if (ret)
1270 return ret;
1271 }
1272
1273 /* Scaling down? Configure required OPPs after frequency */
1274 if (scaling_down) {
1275 if (opp_table->config_regulators) {
1276 ret = opp_table->config_regulators(dev, old_opp, opp,
1277 opp_table->regulators,
1278 opp_table->regulator_count);
1279 if (ret) {
1280 dev_err(dev, "Failed to set regulator voltages: %d\n",
1281 ret);
1282 return ret;
1283 }
1284 }
1285
1286 ret = _set_opp_bw(opp_table, opp, dev);
1287 if (ret) {
1288 dev_err(dev, "Failed to set bw: %d\n", ret);
1289 return ret;
1290 }
1291
1292 ret = _set_opp_level(dev, opp);
1293 if (ret)
1294 return ret;
1295
1296 ret = _set_required_opps(dev, opp_table, opp, false);
1297 if (ret) {
1298 dev_err(dev, "Failed to set required opps: %d\n", ret);
1299 return ret;
1300 }
1301 }
1302
1303 opp_table->enabled = true;
1304 dev_pm_opp_put(old_opp);
1305
1306 /* Make sure current_opp doesn't get freed */
1307 dev_pm_opp_get(opp);
1308 opp_table->current_opp = opp;
1309
1310 return ret;
1311}
1312
1313/**
1314 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1315 * @dev: device for which we do this operation
1316 * @target_freq: frequency to achieve
1317 *
1318 * This configures the power-supplies to the levels specified by the OPP
1319 * corresponding to the target_freq, and programs the clock to a value <=
1320 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1321 * provided by the opp, should have already rounded to the target OPP's
1322 * frequency.
1323 */
1324int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1325{
1326 struct opp_table *opp_table;
1327 unsigned long freq = 0, temp_freq;
1328 struct dev_pm_opp *opp = NULL;
1329 bool forced = false;
1330 int ret;
1331
1332 opp_table = _find_opp_table(dev);
1333 if (IS_ERR(opp_table)) {
1334 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1335 return PTR_ERR(opp_table);
1336 }
1337
1338 if (target_freq) {
1339 /*
1340 * For IO devices which require an OPP on some platforms/SoCs
1341 * while just needing to scale the clock on some others
1342 * we look for empty OPP tables with just a clock handle and
1343 * scale only the clk. This makes dev_pm_opp_set_rate()
1344 * equivalent to a clk_set_rate()
1345 */
1346 if (!_get_opp_count(opp_table)) {
1347 ret = opp_table->config_clks(dev, opp_table, NULL,
1348 &target_freq, false);
1349 goto put_opp_table;
1350 }
1351
1352 freq = clk_round_rate(opp_table->clk, target_freq);
1353 if ((long)freq <= 0)
1354 freq = target_freq;
1355
1356 /*
1357 * The clock driver may support finer resolution of the
1358 * frequencies than the OPP table, don't update the frequency we
1359 * pass to clk_set_rate() here.
1360 */
1361 temp_freq = freq;
1362 opp = _find_freq_ceil(opp_table, &temp_freq);
1363 if (IS_ERR(opp)) {
1364 ret = PTR_ERR(opp);
1365 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1366 __func__, freq, ret);
1367 goto put_opp_table;
1368 }
1369
1370 /*
1371 * An OPP entry specifies the highest frequency at which other
1372 * properties of the OPP entry apply. Even if the new OPP is
1373 * same as the old one, we may still reach here for a different
1374 * value of the frequency. In such a case, do not abort but
1375 * configure the hardware to the desired frequency forcefully.
1376 */
1377 forced = opp_table->current_rate_single_clk != freq;
1378 }
1379
1380 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1381
1382 if (freq)
1383 dev_pm_opp_put(opp);
1384
1385put_opp_table:
1386 dev_pm_opp_put_opp_table(opp_table);
1387 return ret;
1388}
1389EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1390
1391/**
1392 * dev_pm_opp_set_opp() - Configure device for OPP
1393 * @dev: device for which we do this operation
1394 * @opp: OPP to set to
1395 *
1396 * This configures the device based on the properties of the OPP passed to this
1397 * routine.
1398 *
1399 * Return: 0 on success, a negative error number otherwise.
1400 */
1401int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1402{
1403 struct opp_table *opp_table;
1404 int ret;
1405
1406 opp_table = _find_opp_table(dev);
1407 if (IS_ERR(opp_table)) {
1408 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1409 return PTR_ERR(opp_table);
1410 }
1411
1412 ret = _set_opp(dev, opp_table, opp, NULL, false);
1413 dev_pm_opp_put_opp_table(opp_table);
1414
1415 return ret;
1416}
1417EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1418
1419/* OPP-dev Helpers */
1420static void _remove_opp_dev(struct opp_device *opp_dev,
1421 struct opp_table *opp_table)
1422{
1423 opp_debug_unregister(opp_dev, opp_table);
1424 list_del(&opp_dev->node);
1425 kfree(opp_dev);
1426}
1427
1428struct opp_device *_add_opp_dev(const struct device *dev,
1429 struct opp_table *opp_table)
1430{
1431 struct opp_device *opp_dev;
1432
1433 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1434 if (!opp_dev)
1435 return NULL;
1436
1437 /* Initialize opp-dev */
1438 opp_dev->dev = dev;
1439
1440 mutex_lock(&opp_table->lock);
1441 list_add(&opp_dev->node, &opp_table->dev_list);
1442 mutex_unlock(&opp_table->lock);
1443
1444 /* Create debugfs entries for the opp_table */
1445 opp_debug_register(opp_dev, opp_table);
1446
1447 return opp_dev;
1448}
1449
1450static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1451{
1452 struct opp_table *opp_table;
1453 struct opp_device *opp_dev;
1454 int ret;
1455
1456 /*
1457 * Allocate a new OPP table. In the infrequent case where a new
1458 * device is needed to be added, we pay this penalty.
1459 */
1460 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1461 if (!opp_table)
1462 return ERR_PTR(-ENOMEM);
1463
1464 mutex_init(&opp_table->lock);
1465 INIT_LIST_HEAD(&opp_table->dev_list);
1466 INIT_LIST_HEAD(&opp_table->lazy);
1467
1468 opp_table->clk = ERR_PTR(-ENODEV);
1469
1470 /* Mark regulator count uninitialized */
1471 opp_table->regulator_count = -1;
1472
1473 opp_dev = _add_opp_dev(dev, opp_table);
1474 if (!opp_dev) {
1475 ret = -ENOMEM;
1476 goto err;
1477 }
1478
1479 _of_init_opp_table(opp_table, dev, index);
1480
1481 /* Find interconnect path(s) for the device */
1482 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1483 if (ret) {
1484 if (ret == -EPROBE_DEFER)
1485 goto remove_opp_dev;
1486
1487 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1488 __func__, ret);
1489 }
1490
1491 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1492 INIT_LIST_HEAD(&opp_table->opp_list);
1493 kref_init(&opp_table->kref);
1494
1495 return opp_table;
1496
1497remove_opp_dev:
1498 _of_clear_opp_table(opp_table);
1499 _remove_opp_dev(opp_dev, opp_table);
1500 mutex_destroy(&opp_table->lock);
1501err:
1502 kfree(opp_table);
1503 return ERR_PTR(ret);
1504}
1505
1506void _get_opp_table_kref(struct opp_table *opp_table)
1507{
1508 kref_get(&opp_table->kref);
1509}
1510
1511static struct opp_table *_update_opp_table_clk(struct device *dev,
1512 struct opp_table *opp_table,
1513 bool getclk)
1514{
1515 int ret;
1516
1517 /*
1518 * Return early if we don't need to get clk or we have already done it
1519 * earlier.
1520 */
1521 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1522 opp_table->clks)
1523 return opp_table;
1524
1525 /* Find clk for the device */
1526 opp_table->clk = clk_get(dev, NULL);
1527
1528 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1529 if (!ret) {
1530 opp_table->config_clks = _opp_config_clk_single;
1531 opp_table->clk_count = 1;
1532 return opp_table;
1533 }
1534
1535 if (ret == -ENOENT) {
1536 /*
1537 * There are few platforms which don't want the OPP core to
1538 * manage device's clock settings. In such cases neither the
1539 * platform provides the clks explicitly to us, nor the DT
1540 * contains a valid clk entry. The OPP nodes in DT may still
1541 * contain "opp-hz" property though, which we need to parse and
1542 * allow the platform to find an OPP based on freq later on.
1543 *
1544 * This is a simple solution to take care of such corner cases,
1545 * i.e. make the clk_count 1, which lets us allocate space for
1546 * frequency in opp->rates and also parse the entries in DT.
1547 */
1548 opp_table->clk_count = 1;
1549
1550 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1551 return opp_table;
1552 }
1553
1554 dev_pm_opp_put_opp_table(opp_table);
1555 dev_err_probe(dev, ret, "Couldn't find clock\n");
1556
1557 return ERR_PTR(ret);
1558}
1559
1560/*
1561 * We need to make sure that the OPP table for a device doesn't get added twice,
1562 * if this routine gets called in parallel with the same device pointer.
1563 *
1564 * The simplest way to enforce that is to perform everything (find existing
1565 * table and if not found, create a new one) under the opp_table_lock, so only
1566 * one creator gets access to the same. But that expands the critical section
1567 * under the lock and may end up causing circular dependencies with frameworks
1568 * like debugfs, interconnect or clock framework as they may be direct or
1569 * indirect users of OPP core.
1570 *
1571 * And for that reason we have to go for a bit tricky implementation here, which
1572 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1573 * of adding an OPP table and others should wait for it to finish.
1574 */
1575struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1576 bool getclk)
1577{
1578 struct opp_table *opp_table;
1579
1580again:
1581 mutex_lock(&opp_table_lock);
1582
1583 opp_table = _find_opp_table_unlocked(dev);
1584 if (!IS_ERR(opp_table))
1585 goto unlock;
1586
1587 /*
1588 * The opp_tables list or an OPP table's dev_list is getting updated by
1589 * another user, wait for it to finish.
1590 */
1591 if (unlikely(opp_tables_busy)) {
1592 mutex_unlock(&opp_table_lock);
1593 cpu_relax();
1594 goto again;
1595 }
1596
1597 opp_tables_busy = true;
1598 opp_table = _managed_opp(dev, index);
1599
1600 /* Drop the lock to reduce the size of critical section */
1601 mutex_unlock(&opp_table_lock);
1602
1603 if (opp_table) {
1604 if (!_add_opp_dev(dev, opp_table)) {
1605 dev_pm_opp_put_opp_table(opp_table);
1606 opp_table = ERR_PTR(-ENOMEM);
1607 }
1608
1609 mutex_lock(&opp_table_lock);
1610 } else {
1611 opp_table = _allocate_opp_table(dev, index);
1612
1613 mutex_lock(&opp_table_lock);
1614 if (!IS_ERR(opp_table))
1615 list_add(&opp_table->node, &opp_tables);
1616 }
1617
1618 opp_tables_busy = false;
1619
1620unlock:
1621 mutex_unlock(&opp_table_lock);
1622
1623 return _update_opp_table_clk(dev, opp_table, getclk);
1624}
1625
1626static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1627{
1628 return _add_opp_table_indexed(dev, 0, getclk);
1629}
1630
1631struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1632{
1633 return _find_opp_table(dev);
1634}
1635EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1636
1637static void _opp_table_kref_release(struct kref *kref)
1638{
1639 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1640 struct opp_device *opp_dev, *temp;
1641 int i;
1642
1643 /* Drop the lock as soon as we can */
1644 list_del(&opp_table->node);
1645 mutex_unlock(&opp_table_lock);
1646
1647 if (opp_table->current_opp)
1648 dev_pm_opp_put(opp_table->current_opp);
1649
1650 _of_clear_opp_table(opp_table);
1651
1652 /* Release automatically acquired single clk */
1653 if (!IS_ERR(opp_table->clk))
1654 clk_put(opp_table->clk);
1655
1656 if (opp_table->paths) {
1657 for (i = 0; i < opp_table->path_count; i++)
1658 icc_put(opp_table->paths[i]);
1659 kfree(opp_table->paths);
1660 }
1661
1662 WARN_ON(!list_empty(&opp_table->opp_list));
1663
1664 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1665 _remove_opp_dev(opp_dev, opp_table);
1666
1667 mutex_destroy(&opp_table->lock);
1668 kfree(opp_table);
1669}
1670
1671void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1672{
1673 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1674 &opp_table_lock);
1675}
1676EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1677
1678void _opp_free(struct dev_pm_opp *opp)
1679{
1680 kfree(opp);
1681}
1682
1683static void _opp_kref_release(struct kref *kref)
1684{
1685 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1686 struct opp_table *opp_table = opp->opp_table;
1687
1688 list_del(&opp->node);
1689 mutex_unlock(&opp_table->lock);
1690
1691 /*
1692 * Notify the changes in the availability of the operable
1693 * frequency/voltage list.
1694 */
1695 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1696 _of_clear_opp(opp_table, opp);
1697 opp_debug_remove_one(opp);
1698 kfree(opp);
1699}
1700
1701void dev_pm_opp_get(struct dev_pm_opp *opp)
1702{
1703 kref_get(&opp->kref);
1704}
1705
1706void dev_pm_opp_put(struct dev_pm_opp *opp)
1707{
1708 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1709}
1710EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1711
1712/**
1713 * dev_pm_opp_remove() - Remove an OPP from OPP table
1714 * @dev: device for which we do this operation
1715 * @freq: OPP to remove with matching 'freq'
1716 *
1717 * This function removes an opp from the opp table.
1718 */
1719void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1720{
1721 struct dev_pm_opp *opp = NULL, *iter;
1722 struct opp_table *opp_table;
1723
1724 opp_table = _find_opp_table(dev);
1725 if (IS_ERR(opp_table))
1726 return;
1727
1728 if (!assert_single_clk(opp_table, 0))
1729 goto put_table;
1730
1731 mutex_lock(&opp_table->lock);
1732
1733 list_for_each_entry(iter, &opp_table->opp_list, node) {
1734 if (iter->rates[0] == freq) {
1735 opp = iter;
1736 break;
1737 }
1738 }
1739
1740 mutex_unlock(&opp_table->lock);
1741
1742 if (opp) {
1743 dev_pm_opp_put(opp);
1744
1745 /* Drop the reference taken by dev_pm_opp_add() */
1746 dev_pm_opp_put_opp_table(opp_table);
1747 } else {
1748 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1749 __func__, freq);
1750 }
1751
1752put_table:
1753 /* Drop the reference taken by _find_opp_table() */
1754 dev_pm_opp_put_opp_table(opp_table);
1755}
1756EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1757
1758static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1759 bool dynamic)
1760{
1761 struct dev_pm_opp *opp = NULL, *temp;
1762
1763 mutex_lock(&opp_table->lock);
1764 list_for_each_entry(temp, &opp_table->opp_list, node) {
1765 /*
1766 * Refcount must be dropped only once for each OPP by OPP core,
1767 * do that with help of "removed" flag.
1768 */
1769 if (!temp->removed && dynamic == temp->dynamic) {
1770 opp = temp;
1771 break;
1772 }
1773 }
1774
1775 mutex_unlock(&opp_table->lock);
1776 return opp;
1777}
1778
1779/*
1780 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1781 * happen lock less to avoid circular dependency issues. This routine must be
1782 * called without the opp_table->lock held.
1783 */
1784static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1785{
1786 struct dev_pm_opp *opp;
1787
1788 while ((opp = _opp_get_next(opp_table, dynamic))) {
1789 opp->removed = true;
1790 dev_pm_opp_put(opp);
1791
1792 /* Drop the references taken by dev_pm_opp_add() */
1793 if (dynamic)
1794 dev_pm_opp_put_opp_table(opp_table);
1795 }
1796}
1797
1798bool _opp_remove_all_static(struct opp_table *opp_table)
1799{
1800 mutex_lock(&opp_table->lock);
1801
1802 if (!opp_table->parsed_static_opps) {
1803 mutex_unlock(&opp_table->lock);
1804 return false;
1805 }
1806
1807 if (--opp_table->parsed_static_opps) {
1808 mutex_unlock(&opp_table->lock);
1809 return true;
1810 }
1811
1812 mutex_unlock(&opp_table->lock);
1813
1814 _opp_remove_all(opp_table, false);
1815 return true;
1816}
1817
1818/**
1819 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1820 * @dev: device for which we do this operation
1821 *
1822 * This function removes all dynamically created OPPs from the opp table.
1823 */
1824void dev_pm_opp_remove_all_dynamic(struct device *dev)
1825{
1826 struct opp_table *opp_table;
1827
1828 opp_table = _find_opp_table(dev);
1829 if (IS_ERR(opp_table))
1830 return;
1831
1832 _opp_remove_all(opp_table, true);
1833
1834 /* Drop the reference taken by _find_opp_table() */
1835 dev_pm_opp_put_opp_table(opp_table);
1836}
1837EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1838
1839struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1840{
1841 struct dev_pm_opp *opp;
1842 int supply_count, supply_size, icc_size, clk_size;
1843
1844 /* Allocate space for at least one supply */
1845 supply_count = opp_table->regulator_count > 0 ?
1846 opp_table->regulator_count : 1;
1847 supply_size = sizeof(*opp->supplies) * supply_count;
1848 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1849 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1850
1851 /* allocate new OPP node and supplies structures */
1852 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1853 if (!opp)
1854 return NULL;
1855
1856 /* Put the supplies, bw and clock at the end of the OPP structure */
1857 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1858
1859 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1860
1861 if (icc_size)
1862 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1863
1864 INIT_LIST_HEAD(&opp->node);
1865
1866 opp->level = OPP_LEVEL_UNSET;
1867
1868 return opp;
1869}
1870
1871static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1872 struct opp_table *opp_table)
1873{
1874 struct regulator *reg;
1875 int i;
1876
1877 if (!opp_table->regulators)
1878 return true;
1879
1880 for (i = 0; i < opp_table->regulator_count; i++) {
1881 reg = opp_table->regulators[i];
1882
1883 if (!regulator_is_supported_voltage(reg,
1884 opp->supplies[i].u_volt_min,
1885 opp->supplies[i].u_volt_max)) {
1886 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1887 __func__, opp->supplies[i].u_volt_min,
1888 opp->supplies[i].u_volt_max);
1889 return false;
1890 }
1891 }
1892
1893 return true;
1894}
1895
1896static int _opp_compare_rate(struct opp_table *opp_table,
1897 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1898{
1899 int i;
1900
1901 for (i = 0; i < opp_table->clk_count; i++) {
1902 if (opp1->rates[i] != opp2->rates[i])
1903 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1904 }
1905
1906 /* Same rates for both OPPs */
1907 return 0;
1908}
1909
1910static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1911 struct dev_pm_opp *opp2)
1912{
1913 int i;
1914
1915 for (i = 0; i < opp_table->path_count; i++) {
1916 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1917 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1918 }
1919
1920 /* Same bw for both OPPs */
1921 return 0;
1922}
1923
1924/*
1925 * Returns
1926 * 0: opp1 == opp2
1927 * 1: opp1 > opp2
1928 * -1: opp1 < opp2
1929 */
1930int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1931 struct dev_pm_opp *opp2)
1932{
1933 int ret;
1934
1935 ret = _opp_compare_rate(opp_table, opp1, opp2);
1936 if (ret)
1937 return ret;
1938
1939 ret = _opp_compare_bw(opp_table, opp1, opp2);
1940 if (ret)
1941 return ret;
1942
1943 if (opp1->level != opp2->level)
1944 return opp1->level < opp2->level ? -1 : 1;
1945
1946 /* Duplicate OPPs */
1947 return 0;
1948}
1949
1950static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1951 struct opp_table *opp_table,
1952 struct list_head **head)
1953{
1954 struct dev_pm_opp *opp;
1955 int opp_cmp;
1956
1957 /*
1958 * Insert new OPP in order of increasing frequency and discard if
1959 * already present.
1960 *
1961 * Need to use &opp_table->opp_list in the condition part of the 'for'
1962 * loop, don't replace it with head otherwise it will become an infinite
1963 * loop.
1964 */
1965 list_for_each_entry(opp, &opp_table->opp_list, node) {
1966 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1967 if (opp_cmp > 0) {
1968 *head = &opp->node;
1969 continue;
1970 }
1971
1972 if (opp_cmp < 0)
1973 return 0;
1974
1975 /* Duplicate OPPs */
1976 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1977 __func__, opp->rates[0], opp->supplies[0].u_volt,
1978 opp->available, new_opp->rates[0],
1979 new_opp->supplies[0].u_volt, new_opp->available);
1980
1981 /* Should we compare voltages for all regulators here ? */
1982 return opp->available &&
1983 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1984 }
1985
1986 return 0;
1987}
1988
1989void _required_opps_available(struct dev_pm_opp *opp, int count)
1990{
1991 int i;
1992
1993 for (i = 0; i < count; i++) {
1994 if (opp->required_opps[i]->available)
1995 continue;
1996
1997 opp->available = false;
1998 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1999 __func__, opp->required_opps[i]->np, opp->rates[0]);
2000 return;
2001 }
2002}
2003
2004/*
2005 * Returns:
2006 * 0: On success. And appropriate error message for duplicate OPPs.
2007 * -EBUSY: For OPP with same freq/volt and is available. The callers of
2008 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2009 * sure we don't print error messages unnecessarily if different parts of
2010 * kernel try to initialize the OPP table.
2011 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2012 * should be considered an error by the callers of _opp_add().
2013 */
2014int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2015 struct opp_table *opp_table)
2016{
2017 struct list_head *head;
2018 int ret;
2019
2020 mutex_lock(&opp_table->lock);
2021 head = &opp_table->opp_list;
2022
2023 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2024 if (ret) {
2025 mutex_unlock(&opp_table->lock);
2026 return ret;
2027 }
2028
2029 list_add(&new_opp->node, head);
2030 mutex_unlock(&opp_table->lock);
2031
2032 new_opp->opp_table = opp_table;
2033 kref_init(&new_opp->kref);
2034
2035 opp_debug_create_one(new_opp, opp_table);
2036
2037 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2038 new_opp->available = false;
2039 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2040 __func__, new_opp->rates[0]);
2041 }
2042
2043 /* required-opps not fully initialized yet */
2044 if (lazy_linking_pending(opp_table))
2045 return 0;
2046
2047 _required_opps_available(new_opp, opp_table->required_opp_count);
2048
2049 return 0;
2050}
2051
2052/**
2053 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2054 * @opp_table: OPP table
2055 * @dev: device for which we do this operation
2056 * @data: The OPP data for the OPP to add
2057 * @dynamic: Dynamically added OPPs.
2058 *
2059 * This function adds an opp definition to the opp table and returns status.
2060 * The opp is made available by default and it can be controlled using
2061 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2062 *
2063 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2064 * and freed by dev_pm_opp_of_remove_table.
2065 *
2066 * Return:
2067 * 0 On success OR
2068 * Duplicate OPPs (both freq and volt are same) and opp->available
2069 * -EEXIST Freq are same and volt are different OR
2070 * Duplicate OPPs (both freq and volt are same) and !opp->available
2071 * -ENOMEM Memory allocation failure
2072 */
2073int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2074 struct dev_pm_opp_data *data, bool dynamic)
2075{
2076 struct dev_pm_opp *new_opp;
2077 unsigned long tol, u_volt = data->u_volt;
2078 int ret;
2079
2080 if (!assert_single_clk(opp_table, 0))
2081 return -EINVAL;
2082
2083 new_opp = _opp_allocate(opp_table);
2084 if (!new_opp)
2085 return -ENOMEM;
2086
2087 /* populate the opp table */
2088 new_opp->rates[0] = data->freq;
2089 new_opp->level = data->level;
2090 new_opp->turbo = data->turbo;
2091 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2092 new_opp->supplies[0].u_volt = u_volt;
2093 new_opp->supplies[0].u_volt_min = u_volt - tol;
2094 new_opp->supplies[0].u_volt_max = u_volt + tol;
2095 new_opp->available = true;
2096 new_opp->dynamic = dynamic;
2097
2098 ret = _opp_add(dev, new_opp, opp_table);
2099 if (ret) {
2100 /* Don't return error for duplicate OPPs */
2101 if (ret == -EBUSY)
2102 ret = 0;
2103 goto free_opp;
2104 }
2105
2106 /*
2107 * Notify the changes in the availability of the operable
2108 * frequency/voltage list.
2109 */
2110 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2111 return 0;
2112
2113free_opp:
2114 _opp_free(new_opp);
2115
2116 return ret;
2117}
2118
2119/*
2120 * This is required only for the V2 bindings, and it enables a platform to
2121 * specify the hierarchy of versions it supports. OPP layer will then enable
2122 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2123 * property.
2124 */
2125static int _opp_set_supported_hw(struct opp_table *opp_table,
2126 const u32 *versions, unsigned int count)
2127{
2128 /* Another CPU that shares the OPP table has set the property ? */
2129 if (opp_table->supported_hw)
2130 return 0;
2131
2132 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2133 GFP_KERNEL);
2134 if (!opp_table->supported_hw)
2135 return -ENOMEM;
2136
2137 opp_table->supported_hw_count = count;
2138
2139 return 0;
2140}
2141
2142static void _opp_put_supported_hw(struct opp_table *opp_table)
2143{
2144 if (opp_table->supported_hw) {
2145 kfree(opp_table->supported_hw);
2146 opp_table->supported_hw = NULL;
2147 opp_table->supported_hw_count = 0;
2148 }
2149}
2150
2151/*
2152 * This is required only for the V2 bindings, and it enables a platform to
2153 * specify the extn to be used for certain property names. The properties to
2154 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2155 * should postfix the property name with -<name> while looking for them.
2156 */
2157static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2158{
2159 /* Another CPU that shares the OPP table has set the property ? */
2160 if (!opp_table->prop_name) {
2161 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2162 if (!opp_table->prop_name)
2163 return -ENOMEM;
2164 }
2165
2166 return 0;
2167}
2168
2169static void _opp_put_prop_name(struct opp_table *opp_table)
2170{
2171 if (opp_table->prop_name) {
2172 kfree(opp_table->prop_name);
2173 opp_table->prop_name = NULL;
2174 }
2175}
2176
2177/*
2178 * In order to support OPP switching, OPP layer needs to know the name of the
2179 * device's regulators, as the core would be required to switch voltages as
2180 * well.
2181 *
2182 * This must be called before any OPPs are initialized for the device.
2183 */
2184static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2185 const char * const names[])
2186{
2187 const char * const *temp = names;
2188 struct regulator *reg;
2189 int count = 0, ret, i;
2190
2191 /* Count number of regulators */
2192 while (*temp++)
2193 count++;
2194
2195 if (!count)
2196 return -EINVAL;
2197
2198 /* Another CPU that shares the OPP table has set the regulators ? */
2199 if (opp_table->regulators)
2200 return 0;
2201
2202 opp_table->regulators = kmalloc_array(count,
2203 sizeof(*opp_table->regulators),
2204 GFP_KERNEL);
2205 if (!opp_table->regulators)
2206 return -ENOMEM;
2207
2208 for (i = 0; i < count; i++) {
2209 reg = regulator_get_optional(dev, names[i]);
2210 if (IS_ERR(reg)) {
2211 ret = dev_err_probe(dev, PTR_ERR(reg),
2212 "%s: no regulator (%s) found\n",
2213 __func__, names[i]);
2214 goto free_regulators;
2215 }
2216
2217 opp_table->regulators[i] = reg;
2218 }
2219
2220 opp_table->regulator_count = count;
2221
2222 /* Set generic config_regulators() for single regulators here */
2223 if (count == 1)
2224 opp_table->config_regulators = _opp_config_regulator_single;
2225
2226 return 0;
2227
2228free_regulators:
2229 while (i != 0)
2230 regulator_put(opp_table->regulators[--i]);
2231
2232 kfree(opp_table->regulators);
2233 opp_table->regulators = NULL;
2234 opp_table->regulator_count = -1;
2235
2236 return ret;
2237}
2238
2239static void _opp_put_regulators(struct opp_table *opp_table)
2240{
2241 int i;
2242
2243 if (!opp_table->regulators)
2244 return;
2245
2246 if (opp_table->enabled) {
2247 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2248 regulator_disable(opp_table->regulators[i]);
2249 }
2250
2251 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2252 regulator_put(opp_table->regulators[i]);
2253
2254 kfree(opp_table->regulators);
2255 opp_table->regulators = NULL;
2256 opp_table->regulator_count = -1;
2257}
2258
2259static void _put_clks(struct opp_table *opp_table, int count)
2260{
2261 int i;
2262
2263 for (i = count - 1; i >= 0; i--)
2264 clk_put(opp_table->clks[i]);
2265
2266 kfree(opp_table->clks);
2267 opp_table->clks = NULL;
2268}
2269
2270/*
2271 * In order to support OPP switching, OPP layer needs to get pointers to the
2272 * clocks for the device. Simple cases work fine without using this routine
2273 * (i.e. by passing connection-id as NULL), but for a device with multiple
2274 * clocks available, the OPP core needs to know the exact names of the clks to
2275 * use.
2276 *
2277 * This must be called before any OPPs are initialized for the device.
2278 */
2279static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2280 const char * const names[],
2281 config_clks_t config_clks)
2282{
2283 const char * const *temp = names;
2284 int count = 0, ret, i;
2285 struct clk *clk;
2286
2287 /* Count number of clks */
2288 while (*temp++)
2289 count++;
2290
2291 /*
2292 * This is a special case where we have a single clock, whose connection
2293 * id name is NULL, i.e. first two entries are NULL in the array.
2294 */
2295 if (!count && !names[1])
2296 count = 1;
2297
2298 /* Fail early for invalid configurations */
2299 if (!count || (!config_clks && count > 1))
2300 return -EINVAL;
2301
2302 /* Another CPU that shares the OPP table has set the clkname ? */
2303 if (opp_table->clks)
2304 return 0;
2305
2306 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2307 GFP_KERNEL);
2308 if (!opp_table->clks)
2309 return -ENOMEM;
2310
2311 /* Find clks for the device */
2312 for (i = 0; i < count; i++) {
2313 clk = clk_get(dev, names[i]);
2314 if (IS_ERR(clk)) {
2315 ret = dev_err_probe(dev, PTR_ERR(clk),
2316 "%s: Couldn't find clock with name: %s\n",
2317 __func__, names[i]);
2318 goto free_clks;
2319 }
2320
2321 opp_table->clks[i] = clk;
2322 }
2323
2324 opp_table->clk_count = count;
2325 opp_table->config_clks = config_clks;
2326
2327 /* Set generic single clk set here */
2328 if (count == 1) {
2329 if (!opp_table->config_clks)
2330 opp_table->config_clks = _opp_config_clk_single;
2331
2332 /*
2333 * We could have just dropped the "clk" field and used "clks"
2334 * everywhere. Instead we kept the "clk" field around for
2335 * following reasons:
2336 *
2337 * - avoiding clks[0] everywhere else.
2338 * - not running single clk helpers for multiple clk usecase by
2339 * mistake.
2340 *
2341 * Since this is single-clk case, just update the clk pointer
2342 * too.
2343 */
2344 opp_table->clk = opp_table->clks[0];
2345 }
2346
2347 return 0;
2348
2349free_clks:
2350 _put_clks(opp_table, i);
2351 return ret;
2352}
2353
2354static void _opp_put_clknames(struct opp_table *opp_table)
2355{
2356 if (!opp_table->clks)
2357 return;
2358
2359 opp_table->config_clks = NULL;
2360 opp_table->clk = ERR_PTR(-ENODEV);
2361
2362 _put_clks(opp_table, opp_table->clk_count);
2363}
2364
2365/*
2366 * This is useful to support platforms with multiple regulators per device.
2367 *
2368 * This must be called before any OPPs are initialized for the device.
2369 */
2370static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2371 struct device *dev, config_regulators_t config_regulators)
2372{
2373 /* Another CPU that shares the OPP table has set the helper ? */
2374 if (!opp_table->config_regulators)
2375 opp_table->config_regulators = config_regulators;
2376
2377 return 0;
2378}
2379
2380static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2381{
2382 if (opp_table->config_regulators)
2383 opp_table->config_regulators = NULL;
2384}
2385
2386static int _opp_set_required_dev(struct opp_table *opp_table,
2387 struct device *dev,
2388 struct device *required_dev,
2389 unsigned int index)
2390{
2391 struct opp_table *required_table, *pd_table;
2392 struct device *gdev;
2393
2394 /* Genpd core takes care of propagation to parent genpd */
2395 if (opp_table->is_genpd) {
2396 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2397 return -EOPNOTSUPP;
2398 }
2399
2400 if (index >= opp_table->required_opp_count) {
2401 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2402 return -EINVAL;
2403 }
2404
2405 required_table = opp_table->required_opp_tables[index];
2406 if (IS_ERR(required_table)) {
2407 dev_err(dev, "Missing OPP table, unable to set the required devs\n");
2408 return -ENODEV;
2409 }
2410
2411 /*
2412 * The required_opp_tables parsing is not perfect, as the OPP core does
2413 * the parsing solely based on the DT node pointers. The core sets the
2414 * required_opp_tables entry to the first OPP table in the "opp_tables"
2415 * list, that matches with the node pointer.
2416 *
2417 * If the target DT OPP table is used by multiple devices and they all
2418 * create separate instances of 'struct opp_table' from it, then it is
2419 * possible that the required_opp_tables entry may be set to the
2420 * incorrect sibling device.
2421 *
2422 * Cross check it again and fix if required.
2423 */
2424 gdev = dev_to_genpd_dev(required_dev);
2425 if (IS_ERR(gdev))
2426 return PTR_ERR(gdev);
2427
2428 pd_table = _find_opp_table(gdev);
2429 if (!IS_ERR(pd_table)) {
2430 if (pd_table != required_table) {
2431 dev_pm_opp_put_opp_table(required_table);
2432 opp_table->required_opp_tables[index] = pd_table;
2433 } else {
2434 dev_pm_opp_put_opp_table(pd_table);
2435 }
2436 }
2437
2438 opp_table->required_devs[index] = required_dev;
2439 return 0;
2440}
2441
2442static void _opp_put_required_dev(struct opp_table *opp_table,
2443 unsigned int index)
2444{
2445 opp_table->required_devs[index] = NULL;
2446}
2447
2448static void _opp_clear_config(struct opp_config_data *data)
2449{
2450 if (data->flags & OPP_CONFIG_REQUIRED_DEV)
2451 _opp_put_required_dev(data->opp_table,
2452 data->required_dev_index);
2453 if (data->flags & OPP_CONFIG_REGULATOR)
2454 _opp_put_regulators(data->opp_table);
2455 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2456 _opp_put_supported_hw(data->opp_table);
2457 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2458 _opp_put_config_regulators_helper(data->opp_table);
2459 if (data->flags & OPP_CONFIG_PROP_NAME)
2460 _opp_put_prop_name(data->opp_table);
2461 if (data->flags & OPP_CONFIG_CLK)
2462 _opp_put_clknames(data->opp_table);
2463
2464 dev_pm_opp_put_opp_table(data->opp_table);
2465 kfree(data);
2466}
2467
2468/**
2469 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2470 * @dev: Device for which configuration is being set.
2471 * @config: OPP configuration.
2472 *
2473 * This allows all device OPP configurations to be performed at once.
2474 *
2475 * This must be called before any OPPs are initialized for the device. This may
2476 * be called multiple times for the same OPP table, for example once for each
2477 * CPU that share the same table. This must be balanced by the same number of
2478 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2479 *
2480 * This returns a token to the caller, which must be passed to
2481 * dev_pm_opp_clear_config() to free the resources later. The value of the
2482 * returned token will be >= 1 for success and negative for errors. The minimum
2483 * value of 1 is chosen here to make it easy for callers to manage the resource.
2484 */
2485int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2486{
2487 struct opp_table *opp_table;
2488 struct opp_config_data *data;
2489 unsigned int id;
2490 int ret;
2491
2492 data = kmalloc(sizeof(*data), GFP_KERNEL);
2493 if (!data)
2494 return -ENOMEM;
2495
2496 opp_table = _add_opp_table(dev, false);
2497 if (IS_ERR(opp_table)) {
2498 kfree(data);
2499 return PTR_ERR(opp_table);
2500 }
2501
2502 data->opp_table = opp_table;
2503 data->flags = 0;
2504
2505 /* This should be called before OPPs are initialized */
2506 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2507 ret = -EBUSY;
2508 goto err;
2509 }
2510
2511 /* Configure clocks */
2512 if (config->clk_names) {
2513 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2514 config->config_clks);
2515 if (ret)
2516 goto err;
2517
2518 data->flags |= OPP_CONFIG_CLK;
2519 } else if (config->config_clks) {
2520 /* Don't allow config callback without clocks */
2521 ret = -EINVAL;
2522 goto err;
2523 }
2524
2525 /* Configure property names */
2526 if (config->prop_name) {
2527 ret = _opp_set_prop_name(opp_table, config->prop_name);
2528 if (ret)
2529 goto err;
2530
2531 data->flags |= OPP_CONFIG_PROP_NAME;
2532 }
2533
2534 /* Configure config_regulators helper */
2535 if (config->config_regulators) {
2536 ret = _opp_set_config_regulators_helper(opp_table, dev,
2537 config->config_regulators);
2538 if (ret)
2539 goto err;
2540
2541 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2542 }
2543
2544 /* Configure supported hardware */
2545 if (config->supported_hw) {
2546 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2547 config->supported_hw_count);
2548 if (ret)
2549 goto err;
2550
2551 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2552 }
2553
2554 /* Configure supplies */
2555 if (config->regulator_names) {
2556 ret = _opp_set_regulators(opp_table, dev,
2557 config->regulator_names);
2558 if (ret)
2559 goto err;
2560
2561 data->flags |= OPP_CONFIG_REGULATOR;
2562 }
2563
2564 if (config->required_dev) {
2565 ret = _opp_set_required_dev(opp_table, dev,
2566 config->required_dev,
2567 config->required_dev_index);
2568 if (ret)
2569 goto err;
2570
2571 data->required_dev_index = config->required_dev_index;
2572 data->flags |= OPP_CONFIG_REQUIRED_DEV;
2573 }
2574
2575 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2576 GFP_KERNEL);
2577 if (ret)
2578 goto err;
2579
2580 return id;
2581
2582err:
2583 _opp_clear_config(data);
2584 return ret;
2585}
2586EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2587
2588/**
2589 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2590 * @token: The token returned by dev_pm_opp_set_config() previously.
2591 *
2592 * This allows all device OPP configurations to be cleared at once. This must be
2593 * called once for each call made to dev_pm_opp_set_config(), in order to free
2594 * the OPPs properly.
2595 *
2596 * Currently the first call itself ends up freeing all the OPP configurations,
2597 * while the later ones only drop the OPP table reference. This works well for
2598 * now as we would never want to use an half initialized OPP table and want to
2599 * remove the configurations together.
2600 */
2601void dev_pm_opp_clear_config(int token)
2602{
2603 struct opp_config_data *data;
2604
2605 /*
2606 * This lets the callers call this unconditionally and keep their code
2607 * simple.
2608 */
2609 if (unlikely(token <= 0))
2610 return;
2611
2612 data = xa_erase(&opp_configs, token);
2613 if (WARN_ON(!data))
2614 return;
2615
2616 _opp_clear_config(data);
2617}
2618EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2619
2620static void devm_pm_opp_config_release(void *token)
2621{
2622 dev_pm_opp_clear_config((unsigned long)token);
2623}
2624
2625/**
2626 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2627 * @dev: Device for which configuration is being set.
2628 * @config: OPP configuration.
2629 *
2630 * This allows all device OPP configurations to be performed at once.
2631 * This is a resource-managed variant of dev_pm_opp_set_config().
2632 *
2633 * Return: 0 on success and errorno otherwise.
2634 */
2635int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2636{
2637 int token = dev_pm_opp_set_config(dev, config);
2638
2639 if (token < 0)
2640 return token;
2641
2642 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2643 (void *) ((unsigned long) token));
2644}
2645EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2646
2647/**
2648 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2649 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2650 * @dst_table: Required OPP table of the @src_table.
2651 * @src_opp: OPP from the @src_table.
2652 *
2653 * This function returns the OPP (present in @dst_table) pointed out by the
2654 * "required-opps" property of the @src_opp (present in @src_table).
2655 *
2656 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2657 * use.
2658 *
2659 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2660 */
2661struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2662 struct opp_table *dst_table,
2663 struct dev_pm_opp *src_opp)
2664{
2665 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2666 int i;
2667
2668 if (!src_table || !dst_table || !src_opp ||
2669 !src_table->required_opp_tables)
2670 return ERR_PTR(-EINVAL);
2671
2672 /* required-opps not fully initialized yet */
2673 if (lazy_linking_pending(src_table))
2674 return ERR_PTR(-EBUSY);
2675
2676 for (i = 0; i < src_table->required_opp_count; i++) {
2677 if (src_table->required_opp_tables[i] == dst_table) {
2678 mutex_lock(&src_table->lock);
2679
2680 list_for_each_entry(opp, &src_table->opp_list, node) {
2681 if (opp == src_opp) {
2682 dest_opp = opp->required_opps[i];
2683 dev_pm_opp_get(dest_opp);
2684 break;
2685 }
2686 }
2687
2688 mutex_unlock(&src_table->lock);
2689 break;
2690 }
2691 }
2692
2693 if (IS_ERR(dest_opp)) {
2694 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2695 src_table, dst_table);
2696 }
2697
2698 return dest_opp;
2699}
2700EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2701
2702/**
2703 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2704 * @src_table: OPP table which has dst_table as one of its required OPP table.
2705 * @dst_table: Required OPP table of the src_table.
2706 * @pstate: Current performance state of the src_table.
2707 *
2708 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2709 * "required-opps" property of the OPP (present in @src_table) which has
2710 * performance state set to @pstate.
2711 *
2712 * Return: Zero or positive performance state on success, otherwise negative
2713 * value on errors.
2714 */
2715int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2716 struct opp_table *dst_table,
2717 unsigned int pstate)
2718{
2719 struct dev_pm_opp *opp;
2720 int dest_pstate = -EINVAL;
2721 int i;
2722
2723 /*
2724 * Normally the src_table will have the "required_opps" property set to
2725 * point to one of the OPPs in the dst_table, but in some cases the
2726 * genpd and its master have one to one mapping of performance states
2727 * and so none of them have the "required-opps" property set. Return the
2728 * pstate of the src_table as it is in such cases.
2729 */
2730 if (!src_table || !src_table->required_opp_count)
2731 return pstate;
2732
2733 /* Both OPP tables must belong to genpds */
2734 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2735 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2736 return -EINVAL;
2737 }
2738
2739 /* required-opps not fully initialized yet */
2740 if (lazy_linking_pending(src_table))
2741 return -EBUSY;
2742
2743 for (i = 0; i < src_table->required_opp_count; i++) {
2744 if (src_table->required_opp_tables[i]->np == dst_table->np)
2745 break;
2746 }
2747
2748 if (unlikely(i == src_table->required_opp_count)) {
2749 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2750 __func__, src_table, dst_table);
2751 return -EINVAL;
2752 }
2753
2754 mutex_lock(&src_table->lock);
2755
2756 list_for_each_entry(opp, &src_table->opp_list, node) {
2757 if (opp->level == pstate) {
2758 dest_pstate = opp->required_opps[i]->level;
2759 goto unlock;
2760 }
2761 }
2762
2763 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2764 dst_table);
2765
2766unlock:
2767 mutex_unlock(&src_table->lock);
2768
2769 return dest_pstate;
2770}
2771
2772/**
2773 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2774 * @dev: The device for which we do this operation
2775 * @data: The OPP data for the OPP to add
2776 *
2777 * This function adds an opp definition to the opp table and returns status.
2778 * The opp is made available by default and it can be controlled using
2779 * dev_pm_opp_enable/disable functions.
2780 *
2781 * Return:
2782 * 0 On success OR
2783 * Duplicate OPPs (both freq and volt are same) and opp->available
2784 * -EEXIST Freq are same and volt are different OR
2785 * Duplicate OPPs (both freq and volt are same) and !opp->available
2786 * -ENOMEM Memory allocation failure
2787 */
2788int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2789{
2790 struct opp_table *opp_table;
2791 int ret;
2792
2793 opp_table = _add_opp_table(dev, true);
2794 if (IS_ERR(opp_table))
2795 return PTR_ERR(opp_table);
2796
2797 /* Fix regulator count for dynamic OPPs */
2798 opp_table->regulator_count = 1;
2799
2800 ret = _opp_add_v1(opp_table, dev, data, true);
2801 if (ret)
2802 dev_pm_opp_put_opp_table(opp_table);
2803
2804 return ret;
2805}
2806EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2807
2808/**
2809 * _opp_set_availability() - helper to set the availability of an opp
2810 * @dev: device for which we do this operation
2811 * @freq: OPP frequency to modify availability
2812 * @availability_req: availability status requested for this opp
2813 *
2814 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2815 * which is isolated here.
2816 *
2817 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2818 * copy operation, returns 0 if no modification was done OR modification was
2819 * successful.
2820 */
2821static int _opp_set_availability(struct device *dev, unsigned long freq,
2822 bool availability_req)
2823{
2824 struct opp_table *opp_table;
2825 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2826 int r = 0;
2827
2828 /* Find the opp_table */
2829 opp_table = _find_opp_table(dev);
2830 if (IS_ERR(opp_table)) {
2831 r = PTR_ERR(opp_table);
2832 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2833 return r;
2834 }
2835
2836 if (!assert_single_clk(opp_table, 0)) {
2837 r = -EINVAL;
2838 goto put_table;
2839 }
2840
2841 mutex_lock(&opp_table->lock);
2842
2843 /* Do we have the frequency? */
2844 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2845 if (tmp_opp->rates[0] == freq) {
2846 opp = tmp_opp;
2847 break;
2848 }
2849 }
2850
2851 if (IS_ERR(opp)) {
2852 r = PTR_ERR(opp);
2853 goto unlock;
2854 }
2855
2856 /* Is update really needed? */
2857 if (opp->available == availability_req)
2858 goto unlock;
2859
2860 opp->available = availability_req;
2861
2862 dev_pm_opp_get(opp);
2863 mutex_unlock(&opp_table->lock);
2864
2865 /* Notify the change of the OPP availability */
2866 if (availability_req)
2867 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2868 opp);
2869 else
2870 blocking_notifier_call_chain(&opp_table->head,
2871 OPP_EVENT_DISABLE, opp);
2872
2873 dev_pm_opp_put(opp);
2874 goto put_table;
2875
2876unlock:
2877 mutex_unlock(&opp_table->lock);
2878put_table:
2879 dev_pm_opp_put_opp_table(opp_table);
2880 return r;
2881}
2882
2883/**
2884 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2885 * @dev: device for which we do this operation
2886 * @freq: OPP frequency to adjust voltage of
2887 * @u_volt: new OPP target voltage
2888 * @u_volt_min: new OPP min voltage
2889 * @u_volt_max: new OPP max voltage
2890 *
2891 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2892 * copy operation, returns 0 if no modifcation was done OR modification was
2893 * successful.
2894 */
2895int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2896 unsigned long u_volt, unsigned long u_volt_min,
2897 unsigned long u_volt_max)
2898
2899{
2900 struct opp_table *opp_table;
2901 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2902 int r = 0;
2903
2904 /* Find the opp_table */
2905 opp_table = _find_opp_table(dev);
2906 if (IS_ERR(opp_table)) {
2907 r = PTR_ERR(opp_table);
2908 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2909 return r;
2910 }
2911
2912 if (!assert_single_clk(opp_table, 0)) {
2913 r = -EINVAL;
2914 goto put_table;
2915 }
2916
2917 mutex_lock(&opp_table->lock);
2918
2919 /* Do we have the frequency? */
2920 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2921 if (tmp_opp->rates[0] == freq) {
2922 opp = tmp_opp;
2923 break;
2924 }
2925 }
2926
2927 if (IS_ERR(opp)) {
2928 r = PTR_ERR(opp);
2929 goto adjust_unlock;
2930 }
2931
2932 /* Is update really needed? */
2933 if (opp->supplies->u_volt == u_volt)
2934 goto adjust_unlock;
2935
2936 opp->supplies->u_volt = u_volt;
2937 opp->supplies->u_volt_min = u_volt_min;
2938 opp->supplies->u_volt_max = u_volt_max;
2939
2940 dev_pm_opp_get(opp);
2941 mutex_unlock(&opp_table->lock);
2942
2943 /* Notify the voltage change of the OPP */
2944 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2945 opp);
2946
2947 dev_pm_opp_put(opp);
2948 goto put_table;
2949
2950adjust_unlock:
2951 mutex_unlock(&opp_table->lock);
2952put_table:
2953 dev_pm_opp_put_opp_table(opp_table);
2954 return r;
2955}
2956EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2957
2958/**
2959 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2960 * @dev: device for which we do this operation
2961 *
2962 * Sync voltage state of the OPP table regulators.
2963 *
2964 * Return: 0 on success or a negative error value.
2965 */
2966int dev_pm_opp_sync_regulators(struct device *dev)
2967{
2968 struct opp_table *opp_table;
2969 struct regulator *reg;
2970 int i, ret = 0;
2971
2972 /* Device may not have OPP table */
2973 opp_table = _find_opp_table(dev);
2974 if (IS_ERR(opp_table))
2975 return 0;
2976
2977 /* Regulator may not be required for the device */
2978 if (unlikely(!opp_table->regulators))
2979 goto put_table;
2980
2981 /* Nothing to sync if voltage wasn't changed */
2982 if (!opp_table->enabled)
2983 goto put_table;
2984
2985 for (i = 0; i < opp_table->regulator_count; i++) {
2986 reg = opp_table->regulators[i];
2987 ret = regulator_sync_voltage(reg);
2988 if (ret)
2989 break;
2990 }
2991put_table:
2992 /* Drop reference taken by _find_opp_table() */
2993 dev_pm_opp_put_opp_table(opp_table);
2994
2995 return ret;
2996}
2997EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2998
2999/**
3000 * dev_pm_opp_enable() - Enable a specific OPP
3001 * @dev: device for which we do this operation
3002 * @freq: OPP frequency to enable
3003 *
3004 * Enables a provided opp. If the operation is valid, this returns 0, else the
3005 * corresponding error value. It is meant to be used for users an OPP available
3006 * after being temporarily made unavailable with dev_pm_opp_disable.
3007 *
3008 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3009 * copy operation, returns 0 if no modification was done OR modification was
3010 * successful.
3011 */
3012int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3013{
3014 return _opp_set_availability(dev, freq, true);
3015}
3016EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3017
3018/**
3019 * dev_pm_opp_disable() - Disable a specific OPP
3020 * @dev: device for which we do this operation
3021 * @freq: OPP frequency to disable
3022 *
3023 * Disables a provided opp. If the operation is valid, this returns
3024 * 0, else the corresponding error value. It is meant to be a temporary
3025 * control by users to make this OPP not available until the circumstances are
3026 * right to make it available again (with a call to dev_pm_opp_enable).
3027 *
3028 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3029 * copy operation, returns 0 if no modification was done OR modification was
3030 * successful.
3031 */
3032int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3033{
3034 return _opp_set_availability(dev, freq, false);
3035}
3036EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3037
3038/**
3039 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3040 * @dev: Device for which notifier needs to be registered
3041 * @nb: Notifier block to be registered
3042 *
3043 * Return: 0 on success or a negative error value.
3044 */
3045int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3046{
3047 struct opp_table *opp_table;
3048 int ret;
3049
3050 opp_table = _find_opp_table(dev);
3051 if (IS_ERR(opp_table))
3052 return PTR_ERR(opp_table);
3053
3054 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3055
3056 dev_pm_opp_put_opp_table(opp_table);
3057
3058 return ret;
3059}
3060EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3061
3062/**
3063 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3064 * @dev: Device for which notifier needs to be unregistered
3065 * @nb: Notifier block to be unregistered
3066 *
3067 * Return: 0 on success or a negative error value.
3068 */
3069int dev_pm_opp_unregister_notifier(struct device *dev,
3070 struct notifier_block *nb)
3071{
3072 struct opp_table *opp_table;
3073 int ret;
3074
3075 opp_table = _find_opp_table(dev);
3076 if (IS_ERR(opp_table))
3077 return PTR_ERR(opp_table);
3078
3079 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3080
3081 dev_pm_opp_put_opp_table(opp_table);
3082
3083 return ret;
3084}
3085EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3086
3087/**
3088 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3089 * @dev: device pointer used to lookup OPP table.
3090 *
3091 * Free both OPPs created using static entries present in DT and the
3092 * dynamically added entries.
3093 */
3094void dev_pm_opp_remove_table(struct device *dev)
3095{
3096 struct opp_table *opp_table;
3097
3098 /* Check for existing table for 'dev' */
3099 opp_table = _find_opp_table(dev);
3100 if (IS_ERR(opp_table)) {
3101 int error = PTR_ERR(opp_table);
3102
3103 if (error != -ENODEV)
3104 WARN(1, "%s: opp_table: %d\n",
3105 IS_ERR_OR_NULL(dev) ?
3106 "Invalid device" : dev_name(dev),
3107 error);
3108 return;
3109 }
3110
3111 /*
3112 * Drop the extra reference only if the OPP table was successfully added
3113 * with dev_pm_opp_of_add_table() earlier.
3114 **/
3115 if (_opp_remove_all_static(opp_table))
3116 dev_pm_opp_put_opp_table(opp_table);
3117
3118 /* Drop reference taken by _find_opp_table() */
3119 dev_pm_opp_put_opp_table(opp_table);
3120}
3121EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30/* Lock to allow exclusive modification to the device and opp lists */
31DEFINE_MUTEX(opp_table_lock);
32
33static struct opp_device *_find_opp_dev(const struct device *dev,
34 struct opp_table *opp_table)
35{
36 struct opp_device *opp_dev;
37
38 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
39 if (opp_dev->dev == dev)
40 return opp_dev;
41
42 return NULL;
43}
44
45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
46{
47 struct opp_table *opp_table;
48 bool found;
49
50 list_for_each_entry(opp_table, &opp_tables, node) {
51 mutex_lock(&opp_table->lock);
52 found = !!_find_opp_dev(dev, opp_table);
53 mutex_unlock(&opp_table->lock);
54
55 if (found) {
56 _get_opp_table_kref(opp_table);
57
58 return opp_table;
59 }
60 }
61
62 return ERR_PTR(-ENODEV);
63}
64
65/**
66 * _find_opp_table() - find opp_table struct using device pointer
67 * @dev: device pointer used to lookup OPP table
68 *
69 * Search OPP table for one containing matching device.
70 *
71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
72 * -EINVAL based on type of error.
73 *
74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
75 */
76struct opp_table *_find_opp_table(struct device *dev)
77{
78 struct opp_table *opp_table;
79
80 if (IS_ERR_OR_NULL(dev)) {
81 pr_err("%s: Invalid parameters\n", __func__);
82 return ERR_PTR(-EINVAL);
83 }
84
85 mutex_lock(&opp_table_lock);
86 opp_table = _find_opp_table_unlocked(dev);
87 mutex_unlock(&opp_table_lock);
88
89 return opp_table;
90}
91
92/**
93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
94 * @opp: opp for which voltage has to be returned for
95 *
96 * Return: voltage in micro volt corresponding to the opp, else
97 * return 0
98 *
99 * This is useful only for devices with single power supply.
100 */
101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
102{
103 if (IS_ERR_OR_NULL(opp)) {
104 pr_err("%s: Invalid parameters\n", __func__);
105 return 0;
106 }
107
108 return opp->supplies[0].u_volt;
109}
110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
111
112/**
113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
114 * @opp: opp for which frequency has to be returned for
115 *
116 * Return: frequency in hertz corresponding to the opp, else
117 * return 0
118 */
119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
120{
121 if (IS_ERR_OR_NULL(opp) || !opp->available) {
122 pr_err("%s: Invalid parameters\n", __func__);
123 return 0;
124 }
125
126 return opp->rate;
127}
128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
129
130/**
131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
132 * @opp: opp for which level value has to be returned for
133 *
134 * Return: level read from device tree corresponding to the opp, else
135 * return 0.
136 */
137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp) || !opp->available) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->level;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
147
148/**
149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
150 * @opp: opp for which turbo mode is being verified
151 *
152 * Turbo OPPs are not for normal use, and can be enabled (under certain
153 * conditions) for short duration of times to finish high throughput work
154 * quickly. Running on them for longer times may overheat the chip.
155 *
156 * Return: true if opp is turbo opp, else false.
157 */
158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
159{
160 if (IS_ERR_OR_NULL(opp) || !opp->available) {
161 pr_err("%s: Invalid parameters\n", __func__);
162 return false;
163 }
164
165 return opp->turbo;
166}
167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
168
169/**
170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
171 * @dev: device for which we do this operation
172 *
173 * Return: This function returns the max clock latency in nanoseconds.
174 */
175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
176{
177 struct opp_table *opp_table;
178 unsigned long clock_latency_ns;
179
180 opp_table = _find_opp_table(dev);
181 if (IS_ERR(opp_table))
182 return 0;
183
184 clock_latency_ns = opp_table->clock_latency_ns_max;
185
186 dev_pm_opp_put_opp_table(opp_table);
187
188 return clock_latency_ns;
189}
190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
191
192/**
193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
194 * @dev: device for which we do this operation
195 *
196 * Return: This function returns the max voltage latency in nanoseconds.
197 */
198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
199{
200 struct opp_table *opp_table;
201 struct dev_pm_opp *opp;
202 struct regulator *reg;
203 unsigned long latency_ns = 0;
204 int ret, i, count;
205 struct {
206 unsigned long min;
207 unsigned long max;
208 } *uV;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 /* Regulator may not be required for the device */
215 if (!opp_table->regulators)
216 goto put_opp_table;
217
218 count = opp_table->regulator_count;
219
220 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
221 if (!uV)
222 goto put_opp_table;
223
224 mutex_lock(&opp_table->lock);
225
226 for (i = 0; i < count; i++) {
227 uV[i].min = ~0;
228 uV[i].max = 0;
229
230 list_for_each_entry(opp, &opp_table->opp_list, node) {
231 if (!opp->available)
232 continue;
233
234 if (opp->supplies[i].u_volt_min < uV[i].min)
235 uV[i].min = opp->supplies[i].u_volt_min;
236 if (opp->supplies[i].u_volt_max > uV[i].max)
237 uV[i].max = opp->supplies[i].u_volt_max;
238 }
239 }
240
241 mutex_unlock(&opp_table->lock);
242
243 /*
244 * The caller needs to ensure that opp_table (and hence the regulator)
245 * isn't freed, while we are executing this routine.
246 */
247 for (i = 0; i < count; i++) {
248 reg = opp_table->regulators[i];
249 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
250 if (ret > 0)
251 latency_ns += ret * 1000;
252 }
253
254 kfree(uV);
255put_opp_table:
256 dev_pm_opp_put_opp_table(opp_table);
257
258 return latency_ns;
259}
260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
261
262/**
263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
264 * nanoseconds
265 * @dev: device for which we do this operation
266 *
267 * Return: This function returns the max transition latency, in nanoseconds, to
268 * switch from one OPP to other.
269 */
270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
271{
272 return dev_pm_opp_get_max_volt_latency(dev) +
273 dev_pm_opp_get_max_clock_latency(dev);
274}
275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
276
277/**
278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
279 * @dev: device for which we do this operation
280 *
281 * Return: This function returns the frequency of the OPP marked as suspend_opp
282 * if one is available, else returns 0;
283 */
284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
285{
286 struct opp_table *opp_table;
287 unsigned long freq = 0;
288
289 opp_table = _find_opp_table(dev);
290 if (IS_ERR(opp_table))
291 return 0;
292
293 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
294 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
295
296 dev_pm_opp_put_opp_table(opp_table);
297
298 return freq;
299}
300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
301
302int _get_opp_count(struct opp_table *opp_table)
303{
304 struct dev_pm_opp *opp;
305 int count = 0;
306
307 mutex_lock(&opp_table->lock);
308
309 list_for_each_entry(opp, &opp_table->opp_list, node) {
310 if (opp->available)
311 count++;
312 }
313
314 mutex_unlock(&opp_table->lock);
315
316 return count;
317}
318
319/**
320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
321 * @dev: device for which we do this operation
322 *
323 * Return: This function returns the number of available opps if there are any,
324 * else returns 0 if none or the corresponding error value.
325 */
326int dev_pm_opp_get_opp_count(struct device *dev)
327{
328 struct opp_table *opp_table;
329 int count;
330
331 opp_table = _find_opp_table(dev);
332 if (IS_ERR(opp_table)) {
333 count = PTR_ERR(opp_table);
334 dev_dbg(dev, "%s: OPP table not found (%d)\n",
335 __func__, count);
336 return count;
337 }
338
339 count = _get_opp_count(opp_table);
340 dev_pm_opp_put_opp_table(opp_table);
341
342 return count;
343}
344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
345
346/**
347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
348 * @dev: device for which we do this operation
349 * @freq: frequency to search for
350 * @available: true/false - match for available opp
351 *
352 * Return: Searches for exact match in the opp table and returns pointer to the
353 * matching opp if found, else returns ERR_PTR in case of error and should
354 * be handled using IS_ERR. Error return values can be:
355 * EINVAL: for bad pointer
356 * ERANGE: no match found for search
357 * ENODEV: if device not found in list of registered devices
358 *
359 * Note: available is a modifier for the search. if available=true, then the
360 * match is for exact matching frequency and is available in the stored OPP
361 * table. if false, the match is for exact frequency which is not available.
362 *
363 * This provides a mechanism to enable an opp which is not available currently
364 * or the opposite as well.
365 *
366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
367 * use.
368 */
369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
370 unsigned long freq,
371 bool available)
372{
373 struct opp_table *opp_table;
374 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
375
376 opp_table = _find_opp_table(dev);
377 if (IS_ERR(opp_table)) {
378 int r = PTR_ERR(opp_table);
379
380 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
381 return ERR_PTR(r);
382 }
383
384 mutex_lock(&opp_table->lock);
385
386 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
387 if (temp_opp->available == available &&
388 temp_opp->rate == freq) {
389 opp = temp_opp;
390
391 /* Increment the reference count of OPP */
392 dev_pm_opp_get(opp);
393 break;
394 }
395 }
396
397 mutex_unlock(&opp_table->lock);
398 dev_pm_opp_put_opp_table(opp_table);
399
400 return opp;
401}
402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
403
404/**
405 * dev_pm_opp_find_level_exact() - search for an exact level
406 * @dev: device for which we do this operation
407 * @level: level to search for
408 *
409 * Return: Searches for exact match in the opp table and returns pointer to the
410 * matching opp if found, else returns ERR_PTR in case of error and should
411 * be handled using IS_ERR. Error return values can be:
412 * EINVAL: for bad pointer
413 * ERANGE: no match found for search
414 * ENODEV: if device not found in list of registered devices
415 *
416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
417 * use.
418 */
419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
420 unsigned int level)
421{
422 struct opp_table *opp_table;
423 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
424
425 opp_table = _find_opp_table(dev);
426 if (IS_ERR(opp_table)) {
427 int r = PTR_ERR(opp_table);
428
429 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
430 return ERR_PTR(r);
431 }
432
433 mutex_lock(&opp_table->lock);
434
435 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
436 if (temp_opp->level == level) {
437 opp = temp_opp;
438
439 /* Increment the reference count of OPP */
440 dev_pm_opp_get(opp);
441 break;
442 }
443 }
444
445 mutex_unlock(&opp_table->lock);
446 dev_pm_opp_put_opp_table(opp_table);
447
448 return opp;
449}
450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
451
452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
453 unsigned long *freq)
454{
455 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
456
457 mutex_lock(&opp_table->lock);
458
459 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
460 if (temp_opp->available && temp_opp->rate >= *freq) {
461 opp = temp_opp;
462 *freq = opp->rate;
463
464 /* Increment the reference count of OPP */
465 dev_pm_opp_get(opp);
466 break;
467 }
468 }
469
470 mutex_unlock(&opp_table->lock);
471
472 return opp;
473}
474
475/**
476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
477 * @dev: device for which we do this operation
478 * @freq: Start frequency
479 *
480 * Search for the matching ceil *available* OPP from a starting freq
481 * for a device.
482 *
483 * Return: matching *opp and refreshes *freq accordingly, else returns
484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
485 * values can be:
486 * EINVAL: for bad pointer
487 * ERANGE: no match found for search
488 * ENODEV: if device not found in list of registered devices
489 *
490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
491 * use.
492 */
493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
494 unsigned long *freq)
495{
496 struct opp_table *opp_table;
497 struct dev_pm_opp *opp;
498
499 if (!dev || !freq) {
500 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
501 return ERR_PTR(-EINVAL);
502 }
503
504 opp_table = _find_opp_table(dev);
505 if (IS_ERR(opp_table))
506 return ERR_CAST(opp_table);
507
508 opp = _find_freq_ceil(opp_table, freq);
509
510 dev_pm_opp_put_opp_table(opp_table);
511
512 return opp;
513}
514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
515
516/**
517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
518 * @dev: device for which we do this operation
519 * @freq: Start frequency
520 *
521 * Search for the matching floor *available* OPP from a starting freq
522 * for a device.
523 *
524 * Return: matching *opp and refreshes *freq accordingly, else returns
525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
526 * values can be:
527 * EINVAL: for bad pointer
528 * ERANGE: no match found for search
529 * ENODEV: if device not found in list of registered devices
530 *
531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
532 * use.
533 */
534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
535 unsigned long *freq)
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
539
540 if (!dev || !freq) {
541 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
542 return ERR_PTR(-EINVAL);
543 }
544
545 opp_table = _find_opp_table(dev);
546 if (IS_ERR(opp_table))
547 return ERR_CAST(opp_table);
548
549 mutex_lock(&opp_table->lock);
550
551 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
552 if (temp_opp->available) {
553 /* go to the next node, before choosing prev */
554 if (temp_opp->rate > *freq)
555 break;
556 else
557 opp = temp_opp;
558 }
559 }
560
561 /* Increment the reference count of OPP */
562 if (!IS_ERR(opp))
563 dev_pm_opp_get(opp);
564 mutex_unlock(&opp_table->lock);
565 dev_pm_opp_put_opp_table(opp_table);
566
567 if (!IS_ERR(opp))
568 *freq = opp->rate;
569
570 return opp;
571}
572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
573
574/**
575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
576 * target voltage.
577 * @dev: Device for which we do this operation.
578 * @u_volt: Target voltage.
579 *
580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
581 *
582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
583 * handled using IS_ERR.
584 *
585 * Error return values can be:
586 * EINVAL: bad parameters
587 *
588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
589 * use.
590 */
591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
592 unsigned long u_volt)
593{
594 struct opp_table *opp_table;
595 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
596
597 if (!dev || !u_volt) {
598 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
599 u_volt);
600 return ERR_PTR(-EINVAL);
601 }
602
603 opp_table = _find_opp_table(dev);
604 if (IS_ERR(opp_table))
605 return ERR_CAST(opp_table);
606
607 mutex_lock(&opp_table->lock);
608
609 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
610 if (temp_opp->available) {
611 if (temp_opp->supplies[0].u_volt > u_volt)
612 break;
613 opp = temp_opp;
614 }
615 }
616
617 /* Increment the reference count of OPP */
618 if (!IS_ERR(opp))
619 dev_pm_opp_get(opp);
620
621 mutex_unlock(&opp_table->lock);
622 dev_pm_opp_put_opp_table(opp_table);
623
624 return opp;
625}
626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
627
628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
629 struct dev_pm_opp_supply *supply)
630{
631 int ret;
632
633 /* Regulator not available for device */
634 if (IS_ERR(reg)) {
635 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
636 PTR_ERR(reg));
637 return 0;
638 }
639
640 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
641 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
642
643 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
644 supply->u_volt, supply->u_volt_max);
645 if (ret)
646 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
647 __func__, supply->u_volt_min, supply->u_volt,
648 supply->u_volt_max, ret);
649
650 return ret;
651}
652
653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
654 unsigned long freq)
655{
656 int ret;
657
658 ret = clk_set_rate(clk, freq);
659 if (ret) {
660 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
661 ret);
662 }
663
664 return ret;
665}
666
667static int _generic_set_opp_regulator(const struct opp_table *opp_table,
668 struct device *dev,
669 unsigned long old_freq,
670 unsigned long freq,
671 struct dev_pm_opp_supply *old_supply,
672 struct dev_pm_opp_supply *new_supply)
673{
674 struct regulator *reg = opp_table->regulators[0];
675 int ret;
676
677 /* This function only supports single regulator per device */
678 if (WARN_ON(opp_table->regulator_count > 1)) {
679 dev_err(dev, "multiple regulators are not supported\n");
680 return -EINVAL;
681 }
682
683 /* Scaling up? Scale voltage before frequency */
684 if (freq >= old_freq) {
685 ret = _set_opp_voltage(dev, reg, new_supply);
686 if (ret)
687 goto restore_voltage;
688 }
689
690 /* Change frequency */
691 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
692 if (ret)
693 goto restore_voltage;
694
695 /* Scaling down? Scale voltage after frequency */
696 if (freq < old_freq) {
697 ret = _set_opp_voltage(dev, reg, new_supply);
698 if (ret)
699 goto restore_freq;
700 }
701
702 return 0;
703
704restore_freq:
705 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
706 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
707 __func__, old_freq);
708restore_voltage:
709 /* This shouldn't harm even if the voltages weren't updated earlier */
710 if (old_supply)
711 _set_opp_voltage(dev, reg, old_supply);
712
713 return ret;
714}
715
716static int _set_opp_custom(const struct opp_table *opp_table,
717 struct device *dev, unsigned long old_freq,
718 unsigned long freq,
719 struct dev_pm_opp_supply *old_supply,
720 struct dev_pm_opp_supply *new_supply)
721{
722 struct dev_pm_set_opp_data *data;
723 int size;
724
725 data = opp_table->set_opp_data;
726 data->regulators = opp_table->regulators;
727 data->regulator_count = opp_table->regulator_count;
728 data->clk = opp_table->clk;
729 data->dev = dev;
730
731 data->old_opp.rate = old_freq;
732 size = sizeof(*old_supply) * opp_table->regulator_count;
733 if (!old_supply)
734 memset(data->old_opp.supplies, 0, size);
735 else
736 memcpy(data->old_opp.supplies, old_supply, size);
737
738 data->new_opp.rate = freq;
739 memcpy(data->new_opp.supplies, new_supply, size);
740
741 return opp_table->set_opp(data);
742}
743
744/* This is only called for PM domain for now */
745static int _set_required_opps(struct device *dev,
746 struct opp_table *opp_table,
747 struct dev_pm_opp *opp)
748{
749 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
750 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
751 unsigned int pstate;
752 int i, ret = 0;
753
754 if (!required_opp_tables)
755 return 0;
756
757 /* Single genpd case */
758 if (!genpd_virt_devs) {
759 pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
760 ret = dev_pm_genpd_set_performance_state(dev, pstate);
761 if (ret) {
762 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
763 dev_name(dev), pstate, ret);
764 }
765 return ret;
766 }
767
768 /* Multiple genpd case */
769
770 /*
771 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
772 * after it is freed from another thread.
773 */
774 mutex_lock(&opp_table->genpd_virt_dev_lock);
775
776 for (i = 0; i < opp_table->required_opp_count; i++) {
777 pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
778
779 if (!genpd_virt_devs[i])
780 continue;
781
782 ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
783 if (ret) {
784 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
785 dev_name(genpd_virt_devs[i]), pstate, ret);
786 break;
787 }
788 }
789 mutex_unlock(&opp_table->genpd_virt_dev_lock);
790
791 return ret;
792}
793
794/**
795 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
796 * @dev: device for which we do this operation
797 * @target_freq: frequency to achieve
798 *
799 * This configures the power-supplies to the levels specified by the OPP
800 * corresponding to the target_freq, and programs the clock to a value <=
801 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
802 * provided by the opp, should have already rounded to the target OPP's
803 * frequency.
804 */
805int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
806{
807 struct opp_table *opp_table;
808 unsigned long freq, old_freq, temp_freq;
809 struct dev_pm_opp *old_opp, *opp;
810 struct clk *clk;
811 int ret;
812
813 opp_table = _find_opp_table(dev);
814 if (IS_ERR(opp_table)) {
815 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
816 return PTR_ERR(opp_table);
817 }
818
819 if (unlikely(!target_freq)) {
820 if (opp_table->required_opp_tables) {
821 ret = _set_required_opps(dev, opp_table, NULL);
822 } else {
823 dev_err(dev, "target frequency can't be 0\n");
824 ret = -EINVAL;
825 }
826
827 goto put_opp_table;
828 }
829
830 clk = opp_table->clk;
831 if (IS_ERR(clk)) {
832 dev_err(dev, "%s: No clock available for the device\n",
833 __func__);
834 ret = PTR_ERR(clk);
835 goto put_opp_table;
836 }
837
838 freq = clk_round_rate(clk, target_freq);
839 if ((long)freq <= 0)
840 freq = target_freq;
841
842 old_freq = clk_get_rate(clk);
843
844 /* Return early if nothing to do */
845 if (old_freq == freq) {
846 dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
847 __func__, freq);
848 ret = 0;
849 goto put_opp_table;
850 }
851
852 temp_freq = old_freq;
853 old_opp = _find_freq_ceil(opp_table, &temp_freq);
854 if (IS_ERR(old_opp)) {
855 dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
856 __func__, old_freq, PTR_ERR(old_opp));
857 }
858
859 temp_freq = freq;
860 opp = _find_freq_ceil(opp_table, &temp_freq);
861 if (IS_ERR(opp)) {
862 ret = PTR_ERR(opp);
863 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
864 __func__, freq, ret);
865 goto put_old_opp;
866 }
867
868 dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
869 old_freq, freq);
870
871 /* Scaling up? Configure required OPPs before frequency */
872 if (freq >= old_freq) {
873 ret = _set_required_opps(dev, opp_table, opp);
874 if (ret)
875 goto put_opp;
876 }
877
878 if (opp_table->set_opp) {
879 ret = _set_opp_custom(opp_table, dev, old_freq, freq,
880 IS_ERR(old_opp) ? NULL : old_opp->supplies,
881 opp->supplies);
882 } else if (opp_table->regulators) {
883 ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
884 IS_ERR(old_opp) ? NULL : old_opp->supplies,
885 opp->supplies);
886 } else {
887 /* Only frequency scaling */
888 ret = _generic_set_opp_clk_only(dev, clk, freq);
889 }
890
891 /* Scaling down? Configure required OPPs after frequency */
892 if (!ret && freq < old_freq) {
893 ret = _set_required_opps(dev, opp_table, opp);
894 if (ret)
895 dev_err(dev, "Failed to set required opps: %d\n", ret);
896 }
897
898put_opp:
899 dev_pm_opp_put(opp);
900put_old_opp:
901 if (!IS_ERR(old_opp))
902 dev_pm_opp_put(old_opp);
903put_opp_table:
904 dev_pm_opp_put_opp_table(opp_table);
905 return ret;
906}
907EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
908
909/* OPP-dev Helpers */
910static void _remove_opp_dev(struct opp_device *opp_dev,
911 struct opp_table *opp_table)
912{
913 opp_debug_unregister(opp_dev, opp_table);
914 list_del(&opp_dev->node);
915 kfree(opp_dev);
916}
917
918static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
919 struct opp_table *opp_table)
920{
921 struct opp_device *opp_dev;
922
923 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
924 if (!opp_dev)
925 return NULL;
926
927 /* Initialize opp-dev */
928 opp_dev->dev = dev;
929
930 list_add(&opp_dev->node, &opp_table->dev_list);
931
932 /* Create debugfs entries for the opp_table */
933 opp_debug_register(opp_dev, opp_table);
934
935 return opp_dev;
936}
937
938struct opp_device *_add_opp_dev(const struct device *dev,
939 struct opp_table *opp_table)
940{
941 struct opp_device *opp_dev;
942
943 mutex_lock(&opp_table->lock);
944 opp_dev = _add_opp_dev_unlocked(dev, opp_table);
945 mutex_unlock(&opp_table->lock);
946
947 return opp_dev;
948}
949
950static struct opp_table *_allocate_opp_table(struct device *dev, int index)
951{
952 struct opp_table *opp_table;
953 struct opp_device *opp_dev;
954 int ret;
955
956 /*
957 * Allocate a new OPP table. In the infrequent case where a new
958 * device is needed to be added, we pay this penalty.
959 */
960 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
961 if (!opp_table)
962 return NULL;
963
964 mutex_init(&opp_table->lock);
965 mutex_init(&opp_table->genpd_virt_dev_lock);
966 INIT_LIST_HEAD(&opp_table->dev_list);
967
968 /* Mark regulator count uninitialized */
969 opp_table->regulator_count = -1;
970
971 opp_dev = _add_opp_dev(dev, opp_table);
972 if (!opp_dev) {
973 kfree(opp_table);
974 return NULL;
975 }
976
977 _of_init_opp_table(opp_table, dev, index);
978
979 /* Find clk for the device */
980 opp_table->clk = clk_get(dev, NULL);
981 if (IS_ERR(opp_table->clk)) {
982 ret = PTR_ERR(opp_table->clk);
983 if (ret != -EPROBE_DEFER)
984 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
985 ret);
986 }
987
988 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
989 INIT_LIST_HEAD(&opp_table->opp_list);
990 kref_init(&opp_table->kref);
991 kref_init(&opp_table->list_kref);
992
993 /* Secure the device table modification */
994 list_add(&opp_table->node, &opp_tables);
995 return opp_table;
996}
997
998void _get_opp_table_kref(struct opp_table *opp_table)
999{
1000 kref_get(&opp_table->kref);
1001}
1002
1003static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
1004{
1005 struct opp_table *opp_table;
1006
1007 /* Hold our table modification lock here */
1008 mutex_lock(&opp_table_lock);
1009
1010 opp_table = _find_opp_table_unlocked(dev);
1011 if (!IS_ERR(opp_table))
1012 goto unlock;
1013
1014 opp_table = _managed_opp(dev, index);
1015 if (opp_table) {
1016 if (!_add_opp_dev_unlocked(dev, opp_table)) {
1017 dev_pm_opp_put_opp_table(opp_table);
1018 opp_table = NULL;
1019 }
1020 goto unlock;
1021 }
1022
1023 opp_table = _allocate_opp_table(dev, index);
1024
1025unlock:
1026 mutex_unlock(&opp_table_lock);
1027
1028 return opp_table;
1029}
1030
1031struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1032{
1033 return _opp_get_opp_table(dev, 0);
1034}
1035EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1036
1037struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1038 int index)
1039{
1040 return _opp_get_opp_table(dev, index);
1041}
1042
1043static void _opp_table_kref_release(struct kref *kref)
1044{
1045 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1046 struct opp_device *opp_dev, *temp;
1047
1048 _of_clear_opp_table(opp_table);
1049
1050 /* Release clk */
1051 if (!IS_ERR(opp_table->clk))
1052 clk_put(opp_table->clk);
1053
1054 WARN_ON(!list_empty(&opp_table->opp_list));
1055
1056 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1057 /*
1058 * The OPP table is getting removed, drop the performance state
1059 * constraints.
1060 */
1061 if (opp_table->genpd_performance_state)
1062 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1063
1064 _remove_opp_dev(opp_dev, opp_table);
1065 }
1066
1067 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1068 mutex_destroy(&opp_table->lock);
1069 list_del(&opp_table->node);
1070 kfree(opp_table);
1071
1072 mutex_unlock(&opp_table_lock);
1073}
1074
1075void _opp_remove_all_static(struct opp_table *opp_table)
1076{
1077 struct dev_pm_opp *opp, *tmp;
1078
1079 list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1080 if (!opp->dynamic)
1081 dev_pm_opp_put(opp);
1082 }
1083
1084 opp_table->parsed_static_opps = false;
1085}
1086
1087static void _opp_table_list_kref_release(struct kref *kref)
1088{
1089 struct opp_table *opp_table = container_of(kref, struct opp_table,
1090 list_kref);
1091
1092 _opp_remove_all_static(opp_table);
1093 mutex_unlock(&opp_table_lock);
1094}
1095
1096void _put_opp_list_kref(struct opp_table *opp_table)
1097{
1098 kref_put_mutex(&opp_table->list_kref, _opp_table_list_kref_release,
1099 &opp_table_lock);
1100}
1101
1102void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1103{
1104 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1105 &opp_table_lock);
1106}
1107EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1108
1109void _opp_free(struct dev_pm_opp *opp)
1110{
1111 kfree(opp);
1112}
1113
1114static void _opp_kref_release(struct dev_pm_opp *opp,
1115 struct opp_table *opp_table)
1116{
1117 /*
1118 * Notify the changes in the availability of the operable
1119 * frequency/voltage list.
1120 */
1121 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1122 _of_opp_free_required_opps(opp_table, opp);
1123 opp_debug_remove_one(opp);
1124 list_del(&opp->node);
1125 kfree(opp);
1126}
1127
1128static void _opp_kref_release_unlocked(struct kref *kref)
1129{
1130 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1131 struct opp_table *opp_table = opp->opp_table;
1132
1133 _opp_kref_release(opp, opp_table);
1134}
1135
1136static void _opp_kref_release_locked(struct kref *kref)
1137{
1138 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1139 struct opp_table *opp_table = opp->opp_table;
1140
1141 _opp_kref_release(opp, opp_table);
1142 mutex_unlock(&opp_table->lock);
1143}
1144
1145void dev_pm_opp_get(struct dev_pm_opp *opp)
1146{
1147 kref_get(&opp->kref);
1148}
1149
1150void dev_pm_opp_put(struct dev_pm_opp *opp)
1151{
1152 kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1153 &opp->opp_table->lock);
1154}
1155EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1156
1157static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1158{
1159 kref_put(&opp->kref, _opp_kref_release_unlocked);
1160}
1161
1162/**
1163 * dev_pm_opp_remove() - Remove an OPP from OPP table
1164 * @dev: device for which we do this operation
1165 * @freq: OPP to remove with matching 'freq'
1166 *
1167 * This function removes an opp from the opp table.
1168 */
1169void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1170{
1171 struct dev_pm_opp *opp;
1172 struct opp_table *opp_table;
1173 bool found = false;
1174
1175 opp_table = _find_opp_table(dev);
1176 if (IS_ERR(opp_table))
1177 return;
1178
1179 mutex_lock(&opp_table->lock);
1180
1181 list_for_each_entry(opp, &opp_table->opp_list, node) {
1182 if (opp->rate == freq) {
1183 found = true;
1184 break;
1185 }
1186 }
1187
1188 mutex_unlock(&opp_table->lock);
1189
1190 if (found) {
1191 dev_pm_opp_put(opp);
1192
1193 /* Drop the reference taken by dev_pm_opp_add() */
1194 dev_pm_opp_put_opp_table(opp_table);
1195 } else {
1196 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1197 __func__, freq);
1198 }
1199
1200 /* Drop the reference taken by _find_opp_table() */
1201 dev_pm_opp_put_opp_table(opp_table);
1202}
1203EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1204
1205/**
1206 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1207 * @dev: device for which we do this operation
1208 *
1209 * This function removes all dynamically created OPPs from the opp table.
1210 */
1211void dev_pm_opp_remove_all_dynamic(struct device *dev)
1212{
1213 struct opp_table *opp_table;
1214 struct dev_pm_opp *opp, *temp;
1215 int count = 0;
1216
1217 opp_table = _find_opp_table(dev);
1218 if (IS_ERR(opp_table))
1219 return;
1220
1221 mutex_lock(&opp_table->lock);
1222 list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1223 if (opp->dynamic) {
1224 dev_pm_opp_put_unlocked(opp);
1225 count++;
1226 }
1227 }
1228 mutex_unlock(&opp_table->lock);
1229
1230 /* Drop the references taken by dev_pm_opp_add() */
1231 while (count--)
1232 dev_pm_opp_put_opp_table(opp_table);
1233
1234 /* Drop the reference taken by _find_opp_table() */
1235 dev_pm_opp_put_opp_table(opp_table);
1236}
1237EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1238
1239struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1240{
1241 struct dev_pm_opp *opp;
1242 int count, supply_size;
1243
1244 /* Allocate space for at least one supply */
1245 count = table->regulator_count > 0 ? table->regulator_count : 1;
1246 supply_size = sizeof(*opp->supplies) * count;
1247
1248 /* allocate new OPP node and supplies structures */
1249 opp = kzalloc(sizeof(*opp) + supply_size, GFP_KERNEL);
1250 if (!opp)
1251 return NULL;
1252
1253 /* Put the supplies at the end of the OPP structure as an empty array */
1254 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1255 INIT_LIST_HEAD(&opp->node);
1256
1257 return opp;
1258}
1259
1260static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1261 struct opp_table *opp_table)
1262{
1263 struct regulator *reg;
1264 int i;
1265
1266 if (!opp_table->regulators)
1267 return true;
1268
1269 for (i = 0; i < opp_table->regulator_count; i++) {
1270 reg = opp_table->regulators[i];
1271
1272 if (!regulator_is_supported_voltage(reg,
1273 opp->supplies[i].u_volt_min,
1274 opp->supplies[i].u_volt_max)) {
1275 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1276 __func__, opp->supplies[i].u_volt_min,
1277 opp->supplies[i].u_volt_max);
1278 return false;
1279 }
1280 }
1281
1282 return true;
1283}
1284
1285static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1286 struct opp_table *opp_table,
1287 struct list_head **head)
1288{
1289 struct dev_pm_opp *opp;
1290
1291 /*
1292 * Insert new OPP in order of increasing frequency and discard if
1293 * already present.
1294 *
1295 * Need to use &opp_table->opp_list in the condition part of the 'for'
1296 * loop, don't replace it with head otherwise it will become an infinite
1297 * loop.
1298 */
1299 list_for_each_entry(opp, &opp_table->opp_list, node) {
1300 if (new_opp->rate > opp->rate) {
1301 *head = &opp->node;
1302 continue;
1303 }
1304
1305 if (new_opp->rate < opp->rate)
1306 return 0;
1307
1308 /* Duplicate OPPs */
1309 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1310 __func__, opp->rate, opp->supplies[0].u_volt,
1311 opp->available, new_opp->rate,
1312 new_opp->supplies[0].u_volt, new_opp->available);
1313
1314 /* Should we compare voltages for all regulators here ? */
1315 return opp->available &&
1316 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1317 }
1318
1319 return 0;
1320}
1321
1322/*
1323 * Returns:
1324 * 0: On success. And appropriate error message for duplicate OPPs.
1325 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1326 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1327 * sure we don't print error messages unnecessarily if different parts of
1328 * kernel try to initialize the OPP table.
1329 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1330 * should be considered an error by the callers of _opp_add().
1331 */
1332int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1333 struct opp_table *opp_table, bool rate_not_available)
1334{
1335 struct list_head *head;
1336 int ret;
1337
1338 mutex_lock(&opp_table->lock);
1339 head = &opp_table->opp_list;
1340
1341 if (likely(!rate_not_available)) {
1342 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1343 if (ret) {
1344 mutex_unlock(&opp_table->lock);
1345 return ret;
1346 }
1347 }
1348
1349 list_add(&new_opp->node, head);
1350 mutex_unlock(&opp_table->lock);
1351
1352 new_opp->opp_table = opp_table;
1353 kref_init(&new_opp->kref);
1354
1355 opp_debug_create_one(new_opp, opp_table);
1356
1357 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1358 new_opp->available = false;
1359 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1360 __func__, new_opp->rate);
1361 }
1362
1363 return 0;
1364}
1365
1366/**
1367 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1368 * @opp_table: OPP table
1369 * @dev: device for which we do this operation
1370 * @freq: Frequency in Hz for this OPP
1371 * @u_volt: Voltage in uVolts for this OPP
1372 * @dynamic: Dynamically added OPPs.
1373 *
1374 * This function adds an opp definition to the opp table and returns status.
1375 * The opp is made available by default and it can be controlled using
1376 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1377 *
1378 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1379 * and freed by dev_pm_opp_of_remove_table.
1380 *
1381 * Return:
1382 * 0 On success OR
1383 * Duplicate OPPs (both freq and volt are same) and opp->available
1384 * -EEXIST Freq are same and volt are different OR
1385 * Duplicate OPPs (both freq and volt are same) and !opp->available
1386 * -ENOMEM Memory allocation failure
1387 */
1388int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1389 unsigned long freq, long u_volt, bool dynamic)
1390{
1391 struct dev_pm_opp *new_opp;
1392 unsigned long tol;
1393 int ret;
1394
1395 new_opp = _opp_allocate(opp_table);
1396 if (!new_opp)
1397 return -ENOMEM;
1398
1399 /* populate the opp table */
1400 new_opp->rate = freq;
1401 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1402 new_opp->supplies[0].u_volt = u_volt;
1403 new_opp->supplies[0].u_volt_min = u_volt - tol;
1404 new_opp->supplies[0].u_volt_max = u_volt + tol;
1405 new_opp->available = true;
1406 new_opp->dynamic = dynamic;
1407
1408 ret = _opp_add(dev, new_opp, opp_table, false);
1409 if (ret) {
1410 /* Don't return error for duplicate OPPs */
1411 if (ret == -EBUSY)
1412 ret = 0;
1413 goto free_opp;
1414 }
1415
1416 /*
1417 * Notify the changes in the availability of the operable
1418 * frequency/voltage list.
1419 */
1420 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1421 return 0;
1422
1423free_opp:
1424 _opp_free(new_opp);
1425
1426 return ret;
1427}
1428
1429/**
1430 * dev_pm_opp_set_supported_hw() - Set supported platforms
1431 * @dev: Device for which supported-hw has to be set.
1432 * @versions: Array of hierarchy of versions to match.
1433 * @count: Number of elements in the array.
1434 *
1435 * This is required only for the V2 bindings, and it enables a platform to
1436 * specify the hierarchy of versions it supports. OPP layer will then enable
1437 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1438 * property.
1439 */
1440struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1441 const u32 *versions, unsigned int count)
1442{
1443 struct opp_table *opp_table;
1444
1445 opp_table = dev_pm_opp_get_opp_table(dev);
1446 if (!opp_table)
1447 return ERR_PTR(-ENOMEM);
1448
1449 /* Make sure there are no concurrent readers while updating opp_table */
1450 WARN_ON(!list_empty(&opp_table->opp_list));
1451
1452 /* Another CPU that shares the OPP table has set the property ? */
1453 if (opp_table->supported_hw)
1454 return opp_table;
1455
1456 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1457 GFP_KERNEL);
1458 if (!opp_table->supported_hw) {
1459 dev_pm_opp_put_opp_table(opp_table);
1460 return ERR_PTR(-ENOMEM);
1461 }
1462
1463 opp_table->supported_hw_count = count;
1464
1465 return opp_table;
1466}
1467EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1468
1469/**
1470 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1471 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1472 *
1473 * This is required only for the V2 bindings, and is called for a matching
1474 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1475 * will not be freed.
1476 */
1477void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1478{
1479 /* Make sure there are no concurrent readers while updating opp_table */
1480 WARN_ON(!list_empty(&opp_table->opp_list));
1481
1482 kfree(opp_table->supported_hw);
1483 opp_table->supported_hw = NULL;
1484 opp_table->supported_hw_count = 0;
1485
1486 dev_pm_opp_put_opp_table(opp_table);
1487}
1488EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1489
1490/**
1491 * dev_pm_opp_set_prop_name() - Set prop-extn name
1492 * @dev: Device for which the prop-name has to be set.
1493 * @name: name to postfix to properties.
1494 *
1495 * This is required only for the V2 bindings, and it enables a platform to
1496 * specify the extn to be used for certain property names. The properties to
1497 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1498 * should postfix the property name with -<name> while looking for them.
1499 */
1500struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1501{
1502 struct opp_table *opp_table;
1503
1504 opp_table = dev_pm_opp_get_opp_table(dev);
1505 if (!opp_table)
1506 return ERR_PTR(-ENOMEM);
1507
1508 /* Make sure there are no concurrent readers while updating opp_table */
1509 WARN_ON(!list_empty(&opp_table->opp_list));
1510
1511 /* Another CPU that shares the OPP table has set the property ? */
1512 if (opp_table->prop_name)
1513 return opp_table;
1514
1515 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1516 if (!opp_table->prop_name) {
1517 dev_pm_opp_put_opp_table(opp_table);
1518 return ERR_PTR(-ENOMEM);
1519 }
1520
1521 return opp_table;
1522}
1523EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1524
1525/**
1526 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1527 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1528 *
1529 * This is required only for the V2 bindings, and is called for a matching
1530 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1531 * will not be freed.
1532 */
1533void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1534{
1535 /* Make sure there are no concurrent readers while updating opp_table */
1536 WARN_ON(!list_empty(&opp_table->opp_list));
1537
1538 kfree(opp_table->prop_name);
1539 opp_table->prop_name = NULL;
1540
1541 dev_pm_opp_put_opp_table(opp_table);
1542}
1543EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1544
1545static int _allocate_set_opp_data(struct opp_table *opp_table)
1546{
1547 struct dev_pm_set_opp_data *data;
1548 int len, count = opp_table->regulator_count;
1549
1550 if (WARN_ON(!opp_table->regulators))
1551 return -EINVAL;
1552
1553 /* space for set_opp_data */
1554 len = sizeof(*data);
1555
1556 /* space for old_opp.supplies and new_opp.supplies */
1557 len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1558
1559 data = kzalloc(len, GFP_KERNEL);
1560 if (!data)
1561 return -ENOMEM;
1562
1563 data->old_opp.supplies = (void *)(data + 1);
1564 data->new_opp.supplies = data->old_opp.supplies + count;
1565
1566 opp_table->set_opp_data = data;
1567
1568 return 0;
1569}
1570
1571static void _free_set_opp_data(struct opp_table *opp_table)
1572{
1573 kfree(opp_table->set_opp_data);
1574 opp_table->set_opp_data = NULL;
1575}
1576
1577/**
1578 * dev_pm_opp_set_regulators() - Set regulator names for the device
1579 * @dev: Device for which regulator name is being set.
1580 * @names: Array of pointers to the names of the regulator.
1581 * @count: Number of regulators.
1582 *
1583 * In order to support OPP switching, OPP layer needs to know the name of the
1584 * device's regulators, as the core would be required to switch voltages as
1585 * well.
1586 *
1587 * This must be called before any OPPs are initialized for the device.
1588 */
1589struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1590 const char * const names[],
1591 unsigned int count)
1592{
1593 struct opp_table *opp_table;
1594 struct regulator *reg;
1595 int ret, i;
1596
1597 opp_table = dev_pm_opp_get_opp_table(dev);
1598 if (!opp_table)
1599 return ERR_PTR(-ENOMEM);
1600
1601 /* This should be called before OPPs are initialized */
1602 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1603 ret = -EBUSY;
1604 goto err;
1605 }
1606
1607 /* Another CPU that shares the OPP table has set the regulators ? */
1608 if (opp_table->regulators)
1609 return opp_table;
1610
1611 opp_table->regulators = kmalloc_array(count,
1612 sizeof(*opp_table->regulators),
1613 GFP_KERNEL);
1614 if (!opp_table->regulators) {
1615 ret = -ENOMEM;
1616 goto err;
1617 }
1618
1619 for (i = 0; i < count; i++) {
1620 reg = regulator_get_optional(dev, names[i]);
1621 if (IS_ERR(reg)) {
1622 ret = PTR_ERR(reg);
1623 if (ret != -EPROBE_DEFER)
1624 dev_err(dev, "%s: no regulator (%s) found: %d\n",
1625 __func__, names[i], ret);
1626 goto free_regulators;
1627 }
1628
1629 opp_table->regulators[i] = reg;
1630 }
1631
1632 opp_table->regulator_count = count;
1633
1634 /* Allocate block only once to pass to set_opp() routines */
1635 ret = _allocate_set_opp_data(opp_table);
1636 if (ret)
1637 goto free_regulators;
1638
1639 return opp_table;
1640
1641free_regulators:
1642 while (i != 0)
1643 regulator_put(opp_table->regulators[--i]);
1644
1645 kfree(opp_table->regulators);
1646 opp_table->regulators = NULL;
1647 opp_table->regulator_count = -1;
1648err:
1649 dev_pm_opp_put_opp_table(opp_table);
1650
1651 return ERR_PTR(ret);
1652}
1653EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1654
1655/**
1656 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1657 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1658 */
1659void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1660{
1661 int i;
1662
1663 if (!opp_table->regulators)
1664 goto put_opp_table;
1665
1666 /* Make sure there are no concurrent readers while updating opp_table */
1667 WARN_ON(!list_empty(&opp_table->opp_list));
1668
1669 for (i = opp_table->regulator_count - 1; i >= 0; i--)
1670 regulator_put(opp_table->regulators[i]);
1671
1672 _free_set_opp_data(opp_table);
1673
1674 kfree(opp_table->regulators);
1675 opp_table->regulators = NULL;
1676 opp_table->regulator_count = -1;
1677
1678put_opp_table:
1679 dev_pm_opp_put_opp_table(opp_table);
1680}
1681EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1682
1683/**
1684 * dev_pm_opp_set_clkname() - Set clk name for the device
1685 * @dev: Device for which clk name is being set.
1686 * @name: Clk name.
1687 *
1688 * In order to support OPP switching, OPP layer needs to get pointer to the
1689 * clock for the device. Simple cases work fine without using this routine (i.e.
1690 * by passing connection-id as NULL), but for a device with multiple clocks
1691 * available, the OPP core needs to know the exact name of the clk to use.
1692 *
1693 * This must be called before any OPPs are initialized for the device.
1694 */
1695struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
1696{
1697 struct opp_table *opp_table;
1698 int ret;
1699
1700 opp_table = dev_pm_opp_get_opp_table(dev);
1701 if (!opp_table)
1702 return ERR_PTR(-ENOMEM);
1703
1704 /* This should be called before OPPs are initialized */
1705 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1706 ret = -EBUSY;
1707 goto err;
1708 }
1709
1710 /* Already have default clk set, free it */
1711 if (!IS_ERR(opp_table->clk))
1712 clk_put(opp_table->clk);
1713
1714 /* Find clk for the device */
1715 opp_table->clk = clk_get(dev, name);
1716 if (IS_ERR(opp_table->clk)) {
1717 ret = PTR_ERR(opp_table->clk);
1718 if (ret != -EPROBE_DEFER) {
1719 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1720 ret);
1721 }
1722 goto err;
1723 }
1724
1725 return opp_table;
1726
1727err:
1728 dev_pm_opp_put_opp_table(opp_table);
1729
1730 return ERR_PTR(ret);
1731}
1732EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1733
1734/**
1735 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1736 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1737 */
1738void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1739{
1740 /* Make sure there are no concurrent readers while updating opp_table */
1741 WARN_ON(!list_empty(&opp_table->opp_list));
1742
1743 clk_put(opp_table->clk);
1744 opp_table->clk = ERR_PTR(-EINVAL);
1745
1746 dev_pm_opp_put_opp_table(opp_table);
1747}
1748EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1749
1750/**
1751 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1752 * @dev: Device for which the helper is getting registered.
1753 * @set_opp: Custom set OPP helper.
1754 *
1755 * This is useful to support complex platforms (like platforms with multiple
1756 * regulators per device), instead of the generic OPP set rate helper.
1757 *
1758 * This must be called before any OPPs are initialized for the device.
1759 */
1760struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1761 int (*set_opp)(struct dev_pm_set_opp_data *data))
1762{
1763 struct opp_table *opp_table;
1764
1765 if (!set_opp)
1766 return ERR_PTR(-EINVAL);
1767
1768 opp_table = dev_pm_opp_get_opp_table(dev);
1769 if (!opp_table)
1770 return ERR_PTR(-ENOMEM);
1771
1772 /* This should be called before OPPs are initialized */
1773 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1774 dev_pm_opp_put_opp_table(opp_table);
1775 return ERR_PTR(-EBUSY);
1776 }
1777
1778 /* Another CPU that shares the OPP table has set the helper ? */
1779 if (!opp_table->set_opp)
1780 opp_table->set_opp = set_opp;
1781
1782 return opp_table;
1783}
1784EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1785
1786/**
1787 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1788 * set_opp helper
1789 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1790 *
1791 * Release resources blocked for platform specific set_opp helper.
1792 */
1793void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1794{
1795 /* Make sure there are no concurrent readers while updating opp_table */
1796 WARN_ON(!list_empty(&opp_table->opp_list));
1797
1798 opp_table->set_opp = NULL;
1799 dev_pm_opp_put_opp_table(opp_table);
1800}
1801EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1802
1803static void _opp_detach_genpd(struct opp_table *opp_table)
1804{
1805 int index;
1806
1807 for (index = 0; index < opp_table->required_opp_count; index++) {
1808 if (!opp_table->genpd_virt_devs[index])
1809 continue;
1810
1811 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1812 opp_table->genpd_virt_devs[index] = NULL;
1813 }
1814
1815 kfree(opp_table->genpd_virt_devs);
1816 opp_table->genpd_virt_devs = NULL;
1817}
1818
1819/**
1820 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1821 * @dev: Consumer device for which the genpd is getting attached.
1822 * @names: Null terminated array of pointers containing names of genpd to attach.
1823 * @virt_devs: Pointer to return the array of virtual devices.
1824 *
1825 * Multiple generic power domains for a device are supported with the help of
1826 * virtual genpd devices, which are created for each consumer device - genpd
1827 * pair. These are the device structures which are attached to the power domain
1828 * and are required by the OPP core to set the performance state of the genpd.
1829 * The same API also works for the case where single genpd is available and so
1830 * we don't need to support that separately.
1831 *
1832 * This helper will normally be called by the consumer driver of the device
1833 * "dev", as only that has details of the genpd names.
1834 *
1835 * This helper needs to be called once with a list of all genpd to attach.
1836 * Otherwise the original device structure will be used instead by the OPP core.
1837 *
1838 * The order of entries in the names array must match the order in which
1839 * "required-opps" are added in DT.
1840 */
1841struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1842 const char **names, struct device ***virt_devs)
1843{
1844 struct opp_table *opp_table;
1845 struct device *virt_dev;
1846 int index = 0, ret = -EINVAL;
1847 const char **name = names;
1848
1849 opp_table = dev_pm_opp_get_opp_table(dev);
1850 if (!opp_table)
1851 return ERR_PTR(-ENOMEM);
1852
1853 /*
1854 * If the genpd's OPP table isn't already initialized, parsing of the
1855 * required-opps fail for dev. We should retry this after genpd's OPP
1856 * table is added.
1857 */
1858 if (!opp_table->required_opp_count) {
1859 ret = -EPROBE_DEFER;
1860 goto put_table;
1861 }
1862
1863 mutex_lock(&opp_table->genpd_virt_dev_lock);
1864
1865 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
1866 sizeof(*opp_table->genpd_virt_devs),
1867 GFP_KERNEL);
1868 if (!opp_table->genpd_virt_devs)
1869 goto unlock;
1870
1871 while (*name) {
1872 if (index >= opp_table->required_opp_count) {
1873 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
1874 *name, opp_table->required_opp_count, index);
1875 goto err;
1876 }
1877
1878 if (opp_table->genpd_virt_devs[index]) {
1879 dev_err(dev, "Genpd virtual device already set %s\n",
1880 *name);
1881 goto err;
1882 }
1883
1884 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
1885 if (IS_ERR(virt_dev)) {
1886 ret = PTR_ERR(virt_dev);
1887 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
1888 goto err;
1889 }
1890
1891 opp_table->genpd_virt_devs[index] = virt_dev;
1892 index++;
1893 name++;
1894 }
1895
1896 if (virt_devs)
1897 *virt_devs = opp_table->genpd_virt_devs;
1898 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1899
1900 return opp_table;
1901
1902err:
1903 _opp_detach_genpd(opp_table);
1904unlock:
1905 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1906
1907put_table:
1908 dev_pm_opp_put_opp_table(opp_table);
1909
1910 return ERR_PTR(ret);
1911}
1912EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
1913
1914/**
1915 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
1916 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
1917 *
1918 * This detaches the genpd(s), resets the virtual device pointers, and puts the
1919 * OPP table.
1920 */
1921void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
1922{
1923 /*
1924 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
1925 * used in parallel.
1926 */
1927 mutex_lock(&opp_table->genpd_virt_dev_lock);
1928 _opp_detach_genpd(opp_table);
1929 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1930
1931 dev_pm_opp_put_opp_table(opp_table);
1932}
1933EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
1934
1935/**
1936 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
1937 * @src_table: OPP table which has dst_table as one of its required OPP table.
1938 * @dst_table: Required OPP table of the src_table.
1939 * @pstate: Current performance state of the src_table.
1940 *
1941 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
1942 * "required-opps" property of the OPP (present in @src_table) which has
1943 * performance state set to @pstate.
1944 *
1945 * Return: Zero or positive performance state on success, otherwise negative
1946 * value on errors.
1947 */
1948int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
1949 struct opp_table *dst_table,
1950 unsigned int pstate)
1951{
1952 struct dev_pm_opp *opp;
1953 int dest_pstate = -EINVAL;
1954 int i;
1955
1956 if (!pstate)
1957 return 0;
1958
1959 /*
1960 * Normally the src_table will have the "required_opps" property set to
1961 * point to one of the OPPs in the dst_table, but in some cases the
1962 * genpd and its master have one to one mapping of performance states
1963 * and so none of them have the "required-opps" property set. Return the
1964 * pstate of the src_table as it is in such cases.
1965 */
1966 if (!src_table->required_opp_count)
1967 return pstate;
1968
1969 for (i = 0; i < src_table->required_opp_count; i++) {
1970 if (src_table->required_opp_tables[i]->np == dst_table->np)
1971 break;
1972 }
1973
1974 if (unlikely(i == src_table->required_opp_count)) {
1975 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
1976 __func__, src_table, dst_table);
1977 return -EINVAL;
1978 }
1979
1980 mutex_lock(&src_table->lock);
1981
1982 list_for_each_entry(opp, &src_table->opp_list, node) {
1983 if (opp->pstate == pstate) {
1984 dest_pstate = opp->required_opps[i]->pstate;
1985 goto unlock;
1986 }
1987 }
1988
1989 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
1990 dst_table);
1991
1992unlock:
1993 mutex_unlock(&src_table->lock);
1994
1995 return dest_pstate;
1996}
1997
1998/**
1999 * dev_pm_opp_add() - Add an OPP table from a table definitions
2000 * @dev: device for which we do this operation
2001 * @freq: Frequency in Hz for this OPP
2002 * @u_volt: Voltage in uVolts for this OPP
2003 *
2004 * This function adds an opp definition to the opp table and returns status.
2005 * The opp is made available by default and it can be controlled using
2006 * dev_pm_opp_enable/disable functions.
2007 *
2008 * Return:
2009 * 0 On success OR
2010 * Duplicate OPPs (both freq and volt are same) and opp->available
2011 * -EEXIST Freq are same and volt are different OR
2012 * Duplicate OPPs (both freq and volt are same) and !opp->available
2013 * -ENOMEM Memory allocation failure
2014 */
2015int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2016{
2017 struct opp_table *opp_table;
2018 int ret;
2019
2020 opp_table = dev_pm_opp_get_opp_table(dev);
2021 if (!opp_table)
2022 return -ENOMEM;
2023
2024 /* Fix regulator count for dynamic OPPs */
2025 opp_table->regulator_count = 1;
2026
2027 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2028 if (ret)
2029 dev_pm_opp_put_opp_table(opp_table);
2030
2031 return ret;
2032}
2033EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2034
2035/**
2036 * _opp_set_availability() - helper to set the availability of an opp
2037 * @dev: device for which we do this operation
2038 * @freq: OPP frequency to modify availability
2039 * @availability_req: availability status requested for this opp
2040 *
2041 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2042 * which is isolated here.
2043 *
2044 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2045 * copy operation, returns 0 if no modification was done OR modification was
2046 * successful.
2047 */
2048static int _opp_set_availability(struct device *dev, unsigned long freq,
2049 bool availability_req)
2050{
2051 struct opp_table *opp_table;
2052 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2053 int r = 0;
2054
2055 /* Find the opp_table */
2056 opp_table = _find_opp_table(dev);
2057 if (IS_ERR(opp_table)) {
2058 r = PTR_ERR(opp_table);
2059 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2060 return r;
2061 }
2062
2063 mutex_lock(&opp_table->lock);
2064
2065 /* Do we have the frequency? */
2066 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2067 if (tmp_opp->rate == freq) {
2068 opp = tmp_opp;
2069 break;
2070 }
2071 }
2072
2073 if (IS_ERR(opp)) {
2074 r = PTR_ERR(opp);
2075 goto unlock;
2076 }
2077
2078 /* Is update really needed? */
2079 if (opp->available == availability_req)
2080 goto unlock;
2081
2082 opp->available = availability_req;
2083
2084 dev_pm_opp_get(opp);
2085 mutex_unlock(&opp_table->lock);
2086
2087 /* Notify the change of the OPP availability */
2088 if (availability_req)
2089 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2090 opp);
2091 else
2092 blocking_notifier_call_chain(&opp_table->head,
2093 OPP_EVENT_DISABLE, opp);
2094
2095 dev_pm_opp_put(opp);
2096 goto put_table;
2097
2098unlock:
2099 mutex_unlock(&opp_table->lock);
2100put_table:
2101 dev_pm_opp_put_opp_table(opp_table);
2102 return r;
2103}
2104
2105/**
2106 * dev_pm_opp_enable() - Enable a specific OPP
2107 * @dev: device for which we do this operation
2108 * @freq: OPP frequency to enable
2109 *
2110 * Enables a provided opp. If the operation is valid, this returns 0, else the
2111 * corresponding error value. It is meant to be used for users an OPP available
2112 * after being temporarily made unavailable with dev_pm_opp_disable.
2113 *
2114 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2115 * copy operation, returns 0 if no modification was done OR modification was
2116 * successful.
2117 */
2118int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2119{
2120 return _opp_set_availability(dev, freq, true);
2121}
2122EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2123
2124/**
2125 * dev_pm_opp_disable() - Disable a specific OPP
2126 * @dev: device for which we do this operation
2127 * @freq: OPP frequency to disable
2128 *
2129 * Disables a provided opp. If the operation is valid, this returns
2130 * 0, else the corresponding error value. It is meant to be a temporary
2131 * control by users to make this OPP not available until the circumstances are
2132 * right to make it available again (with a call to dev_pm_opp_enable).
2133 *
2134 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2135 * copy operation, returns 0 if no modification was done OR modification was
2136 * successful.
2137 */
2138int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2139{
2140 return _opp_set_availability(dev, freq, false);
2141}
2142EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2143
2144/**
2145 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2146 * @dev: Device for which notifier needs to be registered
2147 * @nb: Notifier block to be registered
2148 *
2149 * Return: 0 on success or a negative error value.
2150 */
2151int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2152{
2153 struct opp_table *opp_table;
2154 int ret;
2155
2156 opp_table = _find_opp_table(dev);
2157 if (IS_ERR(opp_table))
2158 return PTR_ERR(opp_table);
2159
2160 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2161
2162 dev_pm_opp_put_opp_table(opp_table);
2163
2164 return ret;
2165}
2166EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2167
2168/**
2169 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2170 * @dev: Device for which notifier needs to be unregistered
2171 * @nb: Notifier block to be unregistered
2172 *
2173 * Return: 0 on success or a negative error value.
2174 */
2175int dev_pm_opp_unregister_notifier(struct device *dev,
2176 struct notifier_block *nb)
2177{
2178 struct opp_table *opp_table;
2179 int ret;
2180
2181 opp_table = _find_opp_table(dev);
2182 if (IS_ERR(opp_table))
2183 return PTR_ERR(opp_table);
2184
2185 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2186
2187 dev_pm_opp_put_opp_table(opp_table);
2188
2189 return ret;
2190}
2191EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2192
2193void _dev_pm_opp_find_and_remove_table(struct device *dev)
2194{
2195 struct opp_table *opp_table;
2196
2197 /* Check for existing table for 'dev' */
2198 opp_table = _find_opp_table(dev);
2199 if (IS_ERR(opp_table)) {
2200 int error = PTR_ERR(opp_table);
2201
2202 if (error != -ENODEV)
2203 WARN(1, "%s: opp_table: %d\n",
2204 IS_ERR_OR_NULL(dev) ?
2205 "Invalid device" : dev_name(dev),
2206 error);
2207 return;
2208 }
2209
2210 _put_opp_list_kref(opp_table);
2211
2212 /* Drop reference taken by _find_opp_table() */
2213 dev_pm_opp_put_opp_table(opp_table);
2214
2215 /* Drop reference taken while the OPP table was added */
2216 dev_pm_opp_put_opp_table(opp_table);
2217}
2218
2219/**
2220 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2221 * @dev: device pointer used to lookup OPP table.
2222 *
2223 * Free both OPPs created using static entries present in DT and the
2224 * dynamically added entries.
2225 */
2226void dev_pm_opp_remove_table(struct device *dev)
2227{
2228 _dev_pm_opp_find_and_remove_table(dev);
2229}
2230EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);