Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
 
  16#include <linux/device.h>
  17#include <linux/export.h>
  18#include <linux/pm_domain.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/slab.h>
  21#include <linux/xarray.h>
  22
  23#include "opp.h"
  24
  25/*
  26 * The root of the list of all opp-tables. All opp_table structures branch off
  27 * from here, with each opp_table containing the list of opps it supports in
  28 * various states of availability.
  29 */
  30LIST_HEAD(opp_tables);
  31
  32/* Lock to allow exclusive modification to the device and opp lists */
  33DEFINE_MUTEX(opp_table_lock);
  34/* Flag indicating that opp_tables list is being updated at the moment */
  35static bool opp_tables_busy;
  36
  37/* OPP ID allocator */
  38static DEFINE_XARRAY_ALLOC1(opp_configs);
  39
  40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
  41{
  42	struct opp_device *opp_dev;
  43	bool found = false;
  44
  45	mutex_lock(&opp_table->lock);
  46	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  47		if (opp_dev->dev == dev) {
  48			found = true;
  49			break;
  50		}
  51
  52	mutex_unlock(&opp_table->lock);
  53	return found;
  54}
  55
  56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  57{
  58	struct opp_table *opp_table;
 
  59
  60	list_for_each_entry(opp_table, &opp_tables, node) {
  61		if (_find_opp_dev(dev, opp_table)) {
 
 
 
 
  62			_get_opp_table_kref(opp_table);
 
  63			return opp_table;
  64		}
  65	}
  66
  67	return ERR_PTR(-ENODEV);
  68}
  69
  70/**
  71 * _find_opp_table() - find opp_table struct using device pointer
  72 * @dev:	device pointer used to lookup OPP table
  73 *
  74 * Search OPP table for one containing matching device.
  75 *
  76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  77 * -EINVAL based on type of error.
  78 *
  79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  80 */
  81struct opp_table *_find_opp_table(struct device *dev)
  82{
  83	struct opp_table *opp_table;
  84
  85	if (IS_ERR_OR_NULL(dev)) {
  86		pr_err("%s: Invalid parameters\n", __func__);
  87		return ERR_PTR(-EINVAL);
  88	}
  89
  90	mutex_lock(&opp_table_lock);
  91	opp_table = _find_opp_table_unlocked(dev);
  92	mutex_unlock(&opp_table_lock);
  93
  94	return opp_table;
  95}
  96
  97/*
  98 * Returns true if multiple clocks aren't there, else returns false with WARN.
  99 *
 100 * We don't force clk_count == 1 here as there are users who don't have a clock
 101 * representation in the OPP table and manage the clock configuration themselves
 102 * in an platform specific way.
 103 */
 104static bool assert_single_clk(struct opp_table *opp_table,
 105			      unsigned int __always_unused index)
 106{
 107	return !WARN_ON(opp_table->clk_count > 1);
 108}
 109
 110/*
 111 * Returns true if clock table is large enough to contain the clock index.
 112 */
 113static bool assert_clk_index(struct opp_table *opp_table,
 114			     unsigned int index)
 115{
 116	return opp_table->clk_count > index;
 117}
 118
 119/*
 120 * Returns true if bandwidth table is large enough to contain the bandwidth index.
 121 */
 122static bool assert_bandwidth_index(struct opp_table *opp_table,
 123				   unsigned int index)
 124{
 125	return opp_table->path_count > index;
 126}
 127
 128/**
 129 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
 130 * @opp:	opp for which voltage has to be returned for
 131 *
 132 * Return: voltage in micro volt corresponding to the opp, else
 133 * return 0
 134 *
 135 * This is useful only for devices with single power supply.
 136 */
 137unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 138{
 139	if (IS_ERR_OR_NULL(opp)) {
 140		pr_err("%s: Invalid parameters\n", __func__);
 141		return 0;
 142	}
 143
 144	return opp->supplies[0].u_volt;
 145}
 146EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 147
 148/**
 149 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
 150 * @opp:	opp for which voltage has to be returned for
 151 * @supplies:	Placeholder for copying the supply information.
 152 *
 153 * Return: negative error number on failure, 0 otherwise on success after
 154 * setting @supplies.
 155 *
 156 * This can be used for devices with any number of power supplies. The caller
 157 * must ensure the @supplies array must contain space for each regulator.
 158 */
 159int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
 160			    struct dev_pm_opp_supply *supplies)
 161{
 162	if (IS_ERR_OR_NULL(opp) || !supplies) {
 163		pr_err("%s: Invalid parameters\n", __func__);
 164		return -EINVAL;
 165	}
 166
 167	memcpy(supplies, opp->supplies,
 168	       sizeof(*supplies) * opp->opp_table->regulator_count);
 169	return 0;
 170}
 171EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
 172
 173/**
 174 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
 175 * @opp:	opp for which power has to be returned for
 176 *
 177 * Return: power in micro watt corresponding to the opp, else
 178 * return 0
 179 *
 180 * This is useful only for devices with single power supply.
 181 */
 182unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
 183{
 184	unsigned long opp_power = 0;
 185	int i;
 186
 187	if (IS_ERR_OR_NULL(opp)) {
 188		pr_err("%s: Invalid parameters\n", __func__);
 189		return 0;
 190	}
 191	for (i = 0; i < opp->opp_table->regulator_count; i++)
 192		opp_power += opp->supplies[i].u_watt;
 193
 194	return opp_power;
 195}
 196EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
 197
 198/**
 199 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
 200 *				   available opp with specified index
 201 * @opp: opp for which frequency has to be returned for
 202 * @index: index of the frequency within the required opp
 203 *
 204 * Return: frequency in hertz corresponding to the opp with specified index,
 205 * else return 0
 206 */
 207unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
 208{
 209	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
 210		pr_err("%s: Invalid parameters\n", __func__);
 211		return 0;
 212	}
 213
 214	return opp->rates[index];
 215}
 216EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
 217
 218/**
 219 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 220 * @opp:	opp for which level value has to be returned for
 221 *
 222 * Return: level read from device tree corresponding to the opp, else
 223 * return U32_MAX.
 224 */
 225unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 226{
 227	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 228		pr_err("%s: Invalid parameters\n", __func__);
 229		return 0;
 230	}
 231
 232	return opp->level;
 233}
 234EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 235
 236/**
 237 * dev_pm_opp_get_required_pstate() - Gets the required performance state
 238 *                                    corresponding to an available opp
 239 * @opp:	opp for which performance state has to be returned for
 240 * @index:	index of the required opp
 241 *
 242 * Return: performance state read from device tree corresponding to the
 243 * required opp, else return U32_MAX.
 244 */
 245unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
 246					    unsigned int index)
 247{
 248	if (IS_ERR_OR_NULL(opp) || !opp->available ||
 249	    index >= opp->opp_table->required_opp_count) {
 250		pr_err("%s: Invalid parameters\n", __func__);
 251		return 0;
 252	}
 253
 254	/* required-opps not fully initialized yet */
 255	if (lazy_linking_pending(opp->opp_table))
 256		return 0;
 257
 258	/* The required OPP table must belong to a genpd */
 259	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
 260		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
 261		return 0;
 262	}
 263
 264	return opp->required_opps[index]->level;
 265}
 266EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
 267
 268/**
 269 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 270 * @opp: opp for which turbo mode is being verified
 271 *
 272 * Turbo OPPs are not for normal use, and can be enabled (under certain
 273 * conditions) for short duration of times to finish high throughput work
 274 * quickly. Running on them for longer times may overheat the chip.
 275 *
 276 * Return: true if opp is turbo opp, else false.
 277 */
 278bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 279{
 280	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 281		pr_err("%s: Invalid parameters\n", __func__);
 282		return false;
 283	}
 284
 285	return opp->turbo;
 286}
 287EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 288
 289/**
 290 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 291 * @dev:	device for which we do this operation
 292 *
 293 * Return: This function returns the max clock latency in nanoseconds.
 294 */
 295unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 296{
 297	struct opp_table *opp_table;
 298	unsigned long clock_latency_ns;
 299
 300	opp_table = _find_opp_table(dev);
 301	if (IS_ERR(opp_table))
 302		return 0;
 303
 304	clock_latency_ns = opp_table->clock_latency_ns_max;
 305
 306	dev_pm_opp_put_opp_table(opp_table);
 307
 308	return clock_latency_ns;
 309}
 310EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 311
 312/**
 313 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 314 * @dev: device for which we do this operation
 315 *
 316 * Return: This function returns the max voltage latency in nanoseconds.
 317 */
 318unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 319{
 320	struct opp_table *opp_table;
 321	struct dev_pm_opp *opp;
 322	struct regulator *reg;
 323	unsigned long latency_ns = 0;
 324	int ret, i, count;
 325	struct {
 326		unsigned long min;
 327		unsigned long max;
 328	} *uV;
 329
 330	opp_table = _find_opp_table(dev);
 331	if (IS_ERR(opp_table))
 332		return 0;
 333
 334	/* Regulator may not be required for the device */
 335	if (!opp_table->regulators)
 336		goto put_opp_table;
 337
 338	count = opp_table->regulator_count;
 339
 340	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 341	if (!uV)
 342		goto put_opp_table;
 343
 344	mutex_lock(&opp_table->lock);
 345
 346	for (i = 0; i < count; i++) {
 347		uV[i].min = ~0;
 348		uV[i].max = 0;
 349
 350		list_for_each_entry(opp, &opp_table->opp_list, node) {
 351			if (!opp->available)
 352				continue;
 353
 354			if (opp->supplies[i].u_volt_min < uV[i].min)
 355				uV[i].min = opp->supplies[i].u_volt_min;
 356			if (opp->supplies[i].u_volt_max > uV[i].max)
 357				uV[i].max = opp->supplies[i].u_volt_max;
 358		}
 359	}
 360
 361	mutex_unlock(&opp_table->lock);
 362
 363	/*
 364	 * The caller needs to ensure that opp_table (and hence the regulator)
 365	 * isn't freed, while we are executing this routine.
 366	 */
 367	for (i = 0; i < count; i++) {
 368		reg = opp_table->regulators[i];
 369		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 370		if (ret > 0)
 371			latency_ns += ret * 1000;
 372	}
 373
 374	kfree(uV);
 375put_opp_table:
 376	dev_pm_opp_put_opp_table(opp_table);
 377
 378	return latency_ns;
 379}
 380EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 381
 382/**
 383 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 384 *					     nanoseconds
 385 * @dev: device for which we do this operation
 386 *
 387 * Return: This function returns the max transition latency, in nanoseconds, to
 388 * switch from one OPP to other.
 389 */
 390unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 391{
 392	return dev_pm_opp_get_max_volt_latency(dev) +
 393		dev_pm_opp_get_max_clock_latency(dev);
 394}
 395EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 396
 397/**
 398 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 399 * @dev:	device for which we do this operation
 400 *
 401 * Return: This function returns the frequency of the OPP marked as suspend_opp
 402 * if one is available, else returns 0;
 403 */
 404unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 405{
 406	struct opp_table *opp_table;
 407	unsigned long freq = 0;
 408
 409	opp_table = _find_opp_table(dev);
 410	if (IS_ERR(opp_table))
 411		return 0;
 412
 413	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 414		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 415
 416	dev_pm_opp_put_opp_table(opp_table);
 417
 418	return freq;
 419}
 420EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 421
 422int _get_opp_count(struct opp_table *opp_table)
 423{
 424	struct dev_pm_opp *opp;
 425	int count = 0;
 426
 427	mutex_lock(&opp_table->lock);
 428
 429	list_for_each_entry(opp, &opp_table->opp_list, node) {
 430		if (opp->available)
 431			count++;
 432	}
 433
 434	mutex_unlock(&opp_table->lock);
 435
 436	return count;
 437}
 438
 439/**
 440 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 441 * @dev:	device for which we do this operation
 442 *
 443 * Return: This function returns the number of available opps if there are any,
 444 * else returns 0 if none or the corresponding error value.
 445 */
 446int dev_pm_opp_get_opp_count(struct device *dev)
 447{
 448	struct opp_table *opp_table;
 449	int count;
 450
 451	opp_table = _find_opp_table(dev);
 452	if (IS_ERR(opp_table)) {
 453		count = PTR_ERR(opp_table);
 454		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 455			__func__, count);
 456		return count;
 457	}
 458
 459	count = _get_opp_count(opp_table);
 460	dev_pm_opp_put_opp_table(opp_table);
 461
 462	return count;
 463}
 464EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 465
 466/* Helpers to read keys */
 467static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
 468{
 469	return opp->rates[index];
 470}
 471
 472static unsigned long _read_level(struct dev_pm_opp *opp, int index)
 473{
 474	return opp->level;
 475}
 476
 477static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
 478{
 479	return opp->bandwidth[index].peak;
 480}
 481
 482/* Generic comparison helpers */
 483static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 484			   unsigned long opp_key, unsigned long key)
 485{
 486	if (opp_key == key) {
 487		*opp = temp_opp;
 488		return true;
 489	}
 490
 491	return false;
 492}
 493
 494static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 495			  unsigned long opp_key, unsigned long key)
 496{
 497	if (opp_key >= key) {
 498		*opp = temp_opp;
 499		return true;
 500	}
 501
 502	return false;
 503}
 504
 505static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 506			   unsigned long opp_key, unsigned long key)
 507{
 508	if (opp_key > key)
 509		return true;
 510
 511	*opp = temp_opp;
 512	return false;
 513}
 514
 515/* Generic key finding helpers */
 516static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
 517		unsigned long *key, int index, bool available,
 518		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 519		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 520				unsigned long opp_key, unsigned long key),
 521		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 522{
 523	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 524
 525	/* Assert that the requirement is met */
 526	if (assert && !assert(opp_table, index))
 527		return ERR_PTR(-EINVAL);
 528
 529	mutex_lock(&opp_table->lock);
 530
 531	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 532		if (temp_opp->available == available) {
 533			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
 534				break;
 535		}
 536	}
 537
 538	/* Increment the reference count of OPP */
 539	if (!IS_ERR(opp)) {
 540		*key = read(opp, index);
 541		dev_pm_opp_get(opp);
 542	}
 543
 544	mutex_unlock(&opp_table->lock);
 545
 546	return opp;
 547}
 548
 549static struct dev_pm_opp *
 550_find_key(struct device *dev, unsigned long *key, int index, bool available,
 551	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
 552	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 553			  unsigned long opp_key, unsigned long key),
 554	  bool (*assert)(struct opp_table *opp_table, unsigned int index))
 555{
 556	struct opp_table *opp_table;
 557	struct dev_pm_opp *opp;
 558
 559	opp_table = _find_opp_table(dev);
 560	if (IS_ERR(opp_table)) {
 561		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
 562			PTR_ERR(opp_table));
 563		return ERR_CAST(opp_table);
 564	}
 565
 566	opp = _opp_table_find_key(opp_table, key, index, available, read,
 567				  compare, assert);
 568
 569	dev_pm_opp_put_opp_table(opp_table);
 570
 571	return opp;
 572}
 573
 574static struct dev_pm_opp *_find_key_exact(struct device *dev,
 575		unsigned long key, int index, bool available,
 576		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 577		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 578{
 579	/*
 580	 * The value of key will be updated here, but will be ignored as the
 581	 * caller doesn't need it.
 582	 */
 583	return _find_key(dev, &key, index, available, read, _compare_exact,
 584			 assert);
 585}
 586
 587static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
 588		unsigned long *key, int index, bool available,
 589		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 590		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 591{
 592	return _opp_table_find_key(opp_table, key, index, available, read,
 593				   _compare_ceil, assert);
 594}
 595
 596static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
 597		int index, bool available,
 598		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 599		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 600{
 601	return _find_key(dev, key, index, available, read, _compare_ceil,
 602			 assert);
 603}
 604
 605static struct dev_pm_opp *_find_key_floor(struct device *dev,
 606		unsigned long *key, int index, bool available,
 607		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 608		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 609{
 610	return _find_key(dev, key, index, available, read, _compare_floor,
 611			 assert);
 612}
 613
 614/**
 615 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 616 * @dev:		device for which we do this operation
 617 * @freq:		frequency to search for
 618 * @available:		true/false - match for available opp
 619 *
 620 * Return: Searches for exact match in the opp table and returns pointer to the
 621 * matching opp if found, else returns ERR_PTR in case of error and should
 622 * be handled using IS_ERR. Error return values can be:
 623 * EINVAL:	for bad pointer
 624 * ERANGE:	no match found for search
 625 * ENODEV:	if device not found in list of registered devices
 626 *
 627 * Note: available is a modifier for the search. if available=true, then the
 628 * match is for exact matching frequency and is available in the stored OPP
 629 * table. if false, the match is for exact frequency which is not available.
 630 *
 631 * This provides a mechanism to enable an opp which is not available currently
 632 * or the opposite as well.
 633 *
 634 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 635 * use.
 636 */
 637struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 638		unsigned long freq, bool available)
 
 639{
 640	return _find_key_exact(dev, freq, 0, available, _read_freq,
 641			       assert_single_clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 642}
 643EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 644
 645/**
 646 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
 647 *					 clock corresponding to the index
 648 * @dev:	Device for which we do this operation
 649 * @freq:	frequency to search for
 650 * @index:	Clock index
 651 * @available:	true/false - match for available opp
 652 *
 653 * Search for the matching exact OPP for the clock corresponding to the
 654 * specified index from a starting freq for a device.
 655 *
 656 * Return: matching *opp , else returns ERR_PTR in case of error and should be
 657 * handled using IS_ERR. Error return values can be:
 
 658 * EINVAL:	for bad pointer
 659 * ERANGE:	no match found for search
 660 * ENODEV:	if device not found in list of registered devices
 661 *
 662 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 663 * use.
 664 */
 665struct dev_pm_opp *
 666dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
 667				   u32 index, bool available)
 668{
 669	return _find_key_exact(dev, freq, index, available, _read_freq,
 670			       assert_clk_index);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 671}
 672EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
 673
 674static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 675						   unsigned long *freq)
 676{
 677	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
 678					assert_single_clk);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 679}
 680
 681/**
 682 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 683 * @dev:	device for which we do this operation
 684 * @freq:	Start frequency
 685 *
 686 * Search for the matching ceil *available* OPP from a starting freq
 687 * for a device.
 688 *
 689 * Return: matching *opp and refreshes *freq accordingly, else returns
 690 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 691 * values can be:
 692 * EINVAL:	for bad pointer
 693 * ERANGE:	no match found for search
 694 * ENODEV:	if device not found in list of registered devices
 695 *
 696 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 697 * use.
 698 */
 699struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 700					     unsigned long *freq)
 701{
 702	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
 703}
 704EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 705
 706/**
 707 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
 708 *					 clock corresponding to the index
 709 * @dev:	Device for which we do this operation
 710 * @freq:	Start frequency
 711 * @index:	Clock index
 712 *
 713 * Search for the matching ceil *available* OPP for the clock corresponding to
 714 * the specified index from a starting freq for a device.
 715 *
 716 * Return: matching *opp and refreshes *freq accordingly, else returns
 717 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 718 * values can be:
 719 * EINVAL:	for bad pointer
 720 * ERANGE:	no match found for search
 721 * ENODEV:	if device not found in list of registered devices
 722 *
 723 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 724 * use.
 725 */
 726struct dev_pm_opp *
 727dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
 728				  u32 index)
 729{
 730	return _find_key_ceil(dev, freq, index, true, _read_freq,
 731			      assert_clk_index);
 732}
 733EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
 734
 735/**
 736 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 737 * @dev:	device for which we do this operation
 738 * @freq:	Start frequency
 739 *
 740 * Search for the matching floor *available* OPP from a starting freq
 741 * for a device.
 742 *
 743 * Return: matching *opp and refreshes *freq accordingly, else returns
 744 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 745 * values can be:
 746 * EINVAL:	for bad pointer
 747 * ERANGE:	no match found for search
 748 * ENODEV:	if device not found in list of registered devices
 749 *
 750 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 751 * use.
 752 */
 753struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 754					      unsigned long *freq)
 755{
 756	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
 757}
 758EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 759
 760/**
 761 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
 762 *					  clock corresponding to the index
 763 * @dev:	Device for which we do this operation
 764 * @freq:	Start frequency
 765 * @index:	Clock index
 766 *
 767 * Search for the matching floor *available* OPP for the clock corresponding to
 768 * the specified index from a starting freq for a device.
 769 *
 770 * Return: matching *opp and refreshes *freq accordingly, else returns
 771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 772 * values can be:
 773 * EINVAL:	for bad pointer
 774 * ERANGE:	no match found for search
 775 * ENODEV:	if device not found in list of registered devices
 776 *
 777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 778 * use.
 779 */
 780struct dev_pm_opp *
 781dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
 782				   u32 index)
 783{
 784	return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
 785}
 786EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
 787
 788/**
 789 * dev_pm_opp_find_level_exact() - search for an exact level
 790 * @dev:		device for which we do this operation
 791 * @level:		level to search for
 792 *
 793 * Return: Searches for exact match in the opp table and returns pointer to the
 794 * matching opp if found, else returns ERR_PTR in case of error and should
 795 * be handled using IS_ERR. Error return values can be:
 796 * EINVAL:	for bad pointer
 797 * ERANGE:	no match found for search
 798 * ENODEV:	if device not found in list of registered devices
 799 *
 800 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 801 * use.
 802 */
 803struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 804					       unsigned int level)
 805{
 806	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
 807}
 808EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 809
 810/**
 811 * dev_pm_opp_find_level_ceil() - search for an rounded up level
 812 * @dev:		device for which we do this operation
 813 * @level:		level to search for
 814 *
 815 * Return: Searches for rounded up match in the opp table and returns pointer
 816 * to the  matching opp if found, else returns ERR_PTR in case of error and
 817 * should be handled using IS_ERR. Error return values can be:
 818 * EINVAL:	for bad pointer
 819 * ERANGE:	no match found for search
 820 * ENODEV:	if device not found in list of registered devices
 821 *
 822 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 823 * use.
 824 */
 825struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
 826					      unsigned int *level)
 827{
 828	unsigned long temp = *level;
 829	struct dev_pm_opp *opp;
 830
 831	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
 832	if (IS_ERR(opp))
 833		return opp;
 834
 835	/* False match */
 836	if (temp == OPP_LEVEL_UNSET) {
 837		dev_err(dev, "%s: OPP levels aren't available\n", __func__);
 838		dev_pm_opp_put(opp);
 839		return ERR_PTR(-ENODEV);
 840	}
 841
 842	*level = temp;
 843	return opp;
 844}
 845EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
 
 846
 847/**
 848 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
 849 * @dev:	device for which we do this operation
 850 * @level:	Start level
 851 *
 852 * Search for the matching floor *available* OPP from a starting level
 853 * for a device.
 854 *
 855 * Return: matching *opp and refreshes *level accordingly, else returns
 856 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 857 * values can be:
 858 * EINVAL:	for bad pointer
 859 * ERANGE:	no match found for search
 860 * ENODEV:	if device not found in list of registered devices
 861 *
 862 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 863 * use.
 864 */
 865struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
 866					       unsigned int *level)
 867{
 868	unsigned long temp = *level;
 869	struct dev_pm_opp *opp;
 870
 871	opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
 872	*level = temp;
 873	return opp;
 874}
 875EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
 876
 877/**
 878 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
 879 * @dev:	device for which we do this operation
 880 * @bw:	start bandwidth
 881 * @index:	which bandwidth to compare, in case of OPPs with several values
 882 *
 883 * Search for the matching floor *available* OPP from a starting bandwidth
 884 * for a device.
 885 *
 886 * Return: matching *opp and refreshes *bw accordingly, else returns
 887 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 888 * values can be:
 889 * EINVAL:	for bad pointer
 890 * ERANGE:	no match found for search
 891 * ENODEV:	if device not found in list of registered devices
 892 *
 893 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 894 * use.
 895 */
 896struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
 897					   int index)
 898{
 899	unsigned long temp = *bw;
 900	struct dev_pm_opp *opp;
 901
 902	opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
 903			     assert_bandwidth_index);
 904	*bw = temp;
 905	return opp;
 906}
 907EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
 908
 909/**
 910 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
 911 * @dev:	device for which we do this operation
 912 * @bw:	start bandwidth
 913 * @index:	which bandwidth to compare, in case of OPPs with several values
 914 *
 915 * Search for the matching floor *available* OPP from a starting bandwidth
 916 * for a device.
 917 *
 918 * Return: matching *opp and refreshes *bw accordingly, else returns
 919 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 920 * values can be:
 921 * EINVAL:	for bad pointer
 922 * ERANGE:	no match found for search
 923 * ENODEV:	if device not found in list of registered devices
 924 *
 925 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 926 * use.
 927 */
 928struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
 929					    unsigned int *bw, int index)
 930{
 931	unsigned long temp = *bw;
 932	struct dev_pm_opp *opp;
 933
 934	opp = _find_key_floor(dev, &temp, index, true, _read_bw,
 935			      assert_bandwidth_index);
 936	*bw = temp;
 937	return opp;
 938}
 939EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
 940
 941static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 942			    struct dev_pm_opp_supply *supply)
 943{
 944	int ret;
 945
 946	/* Regulator not available for device */
 947	if (IS_ERR(reg)) {
 948		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 949			PTR_ERR(reg));
 950		return 0;
 951	}
 952
 953	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 954		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 955
 956	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 957					    supply->u_volt, supply->u_volt_max);
 958	if (ret)
 959		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 960			__func__, supply->u_volt_min, supply->u_volt,
 961			supply->u_volt_max, ret);
 962
 963	return ret;
 964}
 965
 966static int
 967_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
 968		       struct dev_pm_opp *opp, void *data, bool scaling_down)
 969{
 970	unsigned long *target = data;
 971	unsigned long freq;
 972	int ret;
 973
 974	/* One of target and opp must be available */
 975	if (target) {
 976		freq = *target;
 977	} else if (opp) {
 978		freq = opp->rates[0];
 979	} else {
 980		WARN_ON(1);
 981		return -EINVAL;
 982	}
 983
 984	ret = clk_set_rate(opp_table->clk, freq);
 985	if (ret) {
 986		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 987			ret);
 988	} else {
 989		opp_table->current_rate_single_clk = freq;
 990	}
 991
 992	return ret;
 993}
 994
 995/*
 996 * Simple implementation for configuring multiple clocks. Configure clocks in
 997 * the order in which they are present in the array while scaling up.
 998 */
 999int dev_pm_opp_config_clks_simple(struct device *dev,
1000		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
1001		bool scaling_down)
1002{
1003	int ret, i;
1004
1005	if (scaling_down) {
1006		for (i = opp_table->clk_count - 1; i >= 0; i--) {
1007			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1008			if (ret) {
1009				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1010					ret);
1011				return ret;
1012			}
1013		}
1014	} else {
1015		for (i = 0; i < opp_table->clk_count; i++) {
1016			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1017			if (ret) {
1018				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1019					ret);
1020				return ret;
1021			}
1022		}
1023	}
1024
1025	return 0;
1026}
1027EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1028
1029static int _opp_config_regulator_single(struct device *dev,
1030			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1031			struct regulator **regulators, unsigned int count)
1032{
1033	struct regulator *reg = regulators[0];
1034	int ret;
1035
1036	/* This function only supports single regulator per device */
1037	if (WARN_ON(count > 1)) {
1038		dev_err(dev, "multiple regulators are not supported\n");
1039		return -EINVAL;
1040	}
1041
1042	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
 
 
 
 
 
 
 
 
1043	if (ret)
1044		return ret;
 
 
 
 
 
 
 
1045
1046	/*
1047	 * Enable the regulator after setting its voltages, otherwise it breaks
1048	 * some boot-enabled regulators.
1049	 */
1050	if (unlikely(!new_opp->opp_table->enabled)) {
1051		ret = regulator_enable(reg);
1052		if (ret < 0)
1053			dev_warn(dev, "Failed to enable regulator: %d", ret);
 
 
1054	}
1055
1056	return 0;
 
 
 
 
 
 
 
 
 
 
 
1057}
1058
1059static int _set_opp_bw(const struct opp_table *opp_table,
1060		       struct dev_pm_opp *opp, struct device *dev)
1061{
1062	u32 avg, peak;
1063	int i, ret;
1064
1065	if (!opp_table->paths)
1066		return 0;
1067
1068	for (i = 0; i < opp_table->path_count; i++) {
1069		if (!opp) {
1070			avg = 0;
1071			peak = 0;
1072		} else {
1073			avg = opp->bandwidth[i].avg;
1074			peak = opp->bandwidth[i].peak;
1075		}
1076		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1077		if (ret) {
1078			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1079				opp ? "set" : "remove", i, ret);
1080			return ret;
1081		}
1082	}
1083
1084	return 0;
1085}
1086
1087static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1088{
1089	unsigned int level = 0;
1090	int ret = 0;
1091
1092	if (opp) {
1093		if (opp->level == OPP_LEVEL_UNSET)
1094			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1095
1096		level = opp->level;
1097	}
1098
1099	/* Request a new performance state through the device's PM domain. */
1100	ret = dev_pm_domain_set_performance_state(dev, level);
1101	if (ret)
1102		dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1103			ret);
1104
1105	return ret;
1106}
1107
1108/* This is only called for PM domain for now */
1109static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1110			      struct dev_pm_opp *opp, bool up)
1111{
1112	struct device **devs = opp_table->required_devs;
1113	struct dev_pm_opp *required_opp;
1114	int index, target, delta, ret;
 
 
1115
1116	if (!devs)
1117		return 0;
1118
1119	/* required-opps not fully initialized yet */
1120	if (lazy_linking_pending(opp_table))
1121		return -EBUSY;
1122
1123	/* Scaling up? Set required OPPs in normal order, else reverse */
1124	if (up) {
1125		index = 0;
1126		target = opp_table->required_opp_count;
1127		delta = 1;
1128	} else {
1129		index = opp_table->required_opp_count - 1;
1130		target = -1;
1131		delta = -1;
1132	}
1133
1134	while (index != target) {
1135		if (devs[index]) {
1136			required_opp = opp ? opp->required_opps[index] : NULL;
1137
1138			ret = _set_opp_level(devs[index], required_opp);
1139			if (ret)
1140				return ret;
1141		}
1142
1143		index += delta;
1144	}
1145
1146	return 0;
1147}
1148
1149static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1150{
1151	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1152	unsigned long freq;
1153
1154	if (!IS_ERR(opp_table->clk)) {
1155		freq = clk_get_rate(opp_table->clk);
1156		opp = _find_freq_ceil(opp_table, &freq);
1157	}
1158
1159	/*
1160	 * Unable to find the current OPP ? Pick the first from the list since
1161	 * it is in ascending order, otherwise rest of the code will need to
1162	 * make special checks to validate current_opp.
1163	 */
1164	if (IS_ERR(opp)) {
1165		mutex_lock(&opp_table->lock);
1166		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1167		dev_pm_opp_get(opp);
1168		mutex_unlock(&opp_table->lock);
1169	}
1170
1171	opp_table->current_opp = opp;
1172}
1173
1174static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1175{
1176	int ret;
1177
1178	if (!opp_table->enabled)
1179		return 0;
1180
1181	/*
1182	 * Some drivers need to support cases where some platforms may
1183	 * have OPP table for the device, while others don't and
1184	 * opp_set_rate() just needs to behave like clk_set_rate().
1185	 */
1186	if (!_get_opp_count(opp_table))
1187		return 0;
1188
1189	ret = _set_opp_bw(opp_table, NULL, dev);
1190	if (ret)
1191		return ret;
1192
1193	if (opp_table->regulators)
1194		regulator_disable(opp_table->regulators[0]);
1195
1196	ret = _set_opp_level(dev, NULL);
1197	if (ret)
1198		goto out;
1199
1200	ret = _set_required_opps(dev, opp_table, NULL, false);
1201
1202out:
1203	opp_table->enabled = false;
1204	return ret;
1205}
1206
1207static int _set_opp(struct device *dev, struct opp_table *opp_table,
1208		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1209{
1210	struct dev_pm_opp *old_opp;
1211	int scaling_down, ret;
1212
1213	if (unlikely(!opp))
1214		return _disable_opp_table(dev, opp_table);
1215
1216	/* Find the currently set OPP if we don't know already */
1217	if (unlikely(!opp_table->current_opp))
1218		_find_current_opp(dev, opp_table);
1219
1220	old_opp = opp_table->current_opp;
1221
1222	/* Return early if nothing to do */
1223	if (!forced && old_opp == opp && opp_table->enabled) {
1224		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1225		return 0;
1226	}
1227
1228	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1229		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1230		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1231		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1232
1233	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1234	if (scaling_down == -1)
1235		scaling_down = 0;
1236
1237	/* Scaling up? Configure required OPPs before frequency */
1238	if (!scaling_down) {
1239		ret = _set_required_opps(dev, opp_table, opp, true);
1240		if (ret) {
1241			dev_err(dev, "Failed to set required opps: %d\n", ret);
1242			return ret;
1243		}
1244
1245		ret = _set_opp_level(dev, opp);
1246		if (ret)
1247			return ret;
1248
1249		ret = _set_opp_bw(opp_table, opp, dev);
1250		if (ret) {
1251			dev_err(dev, "Failed to set bw: %d\n", ret);
1252			return ret;
1253		}
1254
1255		if (opp_table->config_regulators) {
1256			ret = opp_table->config_regulators(dev, old_opp, opp,
1257							   opp_table->regulators,
1258							   opp_table->regulator_count);
1259			if (ret) {
1260				dev_err(dev, "Failed to set regulator voltages: %d\n",
1261					ret);
1262				return ret;
1263			}
1264		}
1265	}
 
1266
1267	if (opp_table->config_clks) {
1268		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1269		if (ret)
1270			return ret;
1271	}
1272
1273	/* Scaling down? Configure required OPPs after frequency */
1274	if (scaling_down) {
1275		if (opp_table->config_regulators) {
1276			ret = opp_table->config_regulators(dev, old_opp, opp,
1277							   opp_table->regulators,
1278							   opp_table->regulator_count);
1279			if (ret) {
1280				dev_err(dev, "Failed to set regulator voltages: %d\n",
1281					ret);
1282				return ret;
1283			}
1284		}
1285
1286		ret = _set_opp_bw(opp_table, opp, dev);
1287		if (ret) {
1288			dev_err(dev, "Failed to set bw: %d\n", ret);
1289			return ret;
1290		}
1291
1292		ret = _set_opp_level(dev, opp);
1293		if (ret)
1294			return ret;
 
 
 
 
 
 
 
 
 
 
 
1295
1296		ret = _set_required_opps(dev, opp_table, opp, false);
1297		if (ret) {
1298			dev_err(dev, "Failed to set required opps: %d\n", ret);
1299			return ret;
1300		}
1301	}
1302
1303	opp_table->enabled = true;
1304	dev_pm_opp_put(old_opp);
1305
1306	/* Make sure current_opp doesn't get freed */
1307	dev_pm_opp_get(opp);
1308	opp_table->current_opp = opp;
1309
 
1310	return ret;
1311}
 
1312
1313/**
1314 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1315 * @dev:	 device for which we do this operation
1316 * @target_freq: frequency to achieve
1317 *
1318 * This configures the power-supplies to the levels specified by the OPP
1319 * corresponding to the target_freq, and programs the clock to a value <=
1320 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1321 * provided by the opp, should have already rounded to the target OPP's
1322 * frequency.
1323 */
1324int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1325{
1326	struct opp_table *opp_table;
1327	unsigned long freq = 0, temp_freq;
1328	struct dev_pm_opp *opp = NULL;
1329	bool forced = false;
1330	int ret;
1331
1332	opp_table = _find_opp_table(dev);
1333	if (IS_ERR(opp_table)) {
1334		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1335		return PTR_ERR(opp_table);
1336	}
1337
1338	if (target_freq) {
1339		/*
1340		 * For IO devices which require an OPP on some platforms/SoCs
1341		 * while just needing to scale the clock on some others
1342		 * we look for empty OPP tables with just a clock handle and
1343		 * scale only the clk. This makes dev_pm_opp_set_rate()
1344		 * equivalent to a clk_set_rate()
1345		 */
1346		if (!_get_opp_count(opp_table)) {
1347			ret = opp_table->config_clks(dev, opp_table, NULL,
1348						     &target_freq, false);
1349			goto put_opp_table;
1350		}
1351
1352		freq = clk_round_rate(opp_table->clk, target_freq);
1353		if ((long)freq <= 0)
1354			freq = target_freq;
 
 
 
1355
1356		/*
1357		 * The clock driver may support finer resolution of the
1358		 * frequencies than the OPP table, don't update the frequency we
1359		 * pass to clk_set_rate() here.
1360		 */
1361		temp_freq = freq;
1362		opp = _find_freq_ceil(opp_table, &temp_freq);
1363		if (IS_ERR(opp)) {
1364			ret = PTR_ERR(opp);
1365			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1366				__func__, freq, ret);
1367			goto put_opp_table;
 
 
 
 
1368		}
1369
1370		/*
1371		 * An OPP entry specifies the highest frequency at which other
1372		 * properties of the OPP entry apply. Even if the new OPP is
1373		 * same as the old one, we may still reach here for a different
1374		 * value of the frequency. In such a case, do not abort but
1375		 * configure the hardware to the desired frequency forcefully.
1376		 */
1377		forced = opp_table->current_rate_single_clk != freq;
1378	}
1379
1380	ret = _set_opp(dev, opp_table, opp, &freq, forced);
 
 
 
 
 
 
1381
1382	if (freq)
1383		dev_pm_opp_put(opp);
 
1384
1385put_opp_table:
1386	dev_pm_opp_put_opp_table(opp_table);
1387	return ret;
1388}
1389EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1390
1391/**
1392 * dev_pm_opp_set_opp() - Configure device for OPP
1393 * @dev: device for which we do this operation
1394 * @opp: OPP to set to
1395 *
1396 * This configures the device based on the properties of the OPP passed to this
1397 * routine.
1398 *
1399 * Return: 0 on success, a negative error number otherwise.
1400 */
1401int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1402{
1403	struct opp_table *opp_table;
1404	int ret;
1405
1406	opp_table = _find_opp_table(dev);
1407	if (IS_ERR(opp_table)) {
1408		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1409		return PTR_ERR(opp_table);
 
 
 
 
 
 
1410	}
1411
1412	ret = _set_opp(dev, opp_table, opp, NULL, false);
1413	dev_pm_opp_put_opp_table(opp_table);
 
 
 
 
1414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415	return ret;
1416}
1417EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1418
1419/* OPP-dev Helpers */
1420static void _remove_opp_dev(struct opp_device *opp_dev,
1421			    struct opp_table *opp_table)
1422{
1423	opp_debug_unregister(opp_dev, opp_table);
1424	list_del(&opp_dev->node);
1425	kfree(opp_dev);
1426}
1427
1428struct opp_device *_add_opp_dev(const struct device *dev,
1429				struct opp_table *opp_table)
1430{
1431	struct opp_device *opp_dev;
1432
1433	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1434	if (!opp_dev)
1435		return NULL;
1436
1437	/* Initialize opp-dev */
1438	opp_dev->dev = dev;
1439
1440	mutex_lock(&opp_table->lock);
1441	list_add(&opp_dev->node, &opp_table->dev_list);
1442	mutex_unlock(&opp_table->lock);
1443
1444	/* Create debugfs entries for the opp_table */
1445	opp_debug_register(opp_dev, opp_table);
1446
1447	return opp_dev;
1448}
1449
 
 
 
 
 
 
 
 
 
 
 
 
1450static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1451{
1452	struct opp_table *opp_table;
1453	struct opp_device *opp_dev;
1454	int ret;
1455
1456	/*
1457	 * Allocate a new OPP table. In the infrequent case where a new
1458	 * device is needed to be added, we pay this penalty.
1459	 */
1460	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1461	if (!opp_table)
1462		return ERR_PTR(-ENOMEM);
1463
1464	mutex_init(&opp_table->lock);
 
1465	INIT_LIST_HEAD(&opp_table->dev_list);
1466	INIT_LIST_HEAD(&opp_table->lazy);
1467
1468	opp_table->clk = ERR_PTR(-ENODEV);
1469
1470	/* Mark regulator count uninitialized */
1471	opp_table->regulator_count = -1;
1472
1473	opp_dev = _add_opp_dev(dev, opp_table);
1474	if (!opp_dev) {
1475		ret = -ENOMEM;
1476		goto err;
1477	}
1478
1479	_of_init_opp_table(opp_table, dev, index);
1480
 
 
 
 
 
 
 
 
 
1481	/* Find interconnect path(s) for the device */
1482	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1483	if (ret) {
1484		if (ret == -EPROBE_DEFER)
1485			goto remove_opp_dev;
1486
1487		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1488			 __func__, ret);
1489	}
1490
1491	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1492	INIT_LIST_HEAD(&opp_table->opp_list);
1493	kref_init(&opp_table->kref);
1494
 
 
1495	return opp_table;
1496
1497remove_opp_dev:
1498	_of_clear_opp_table(opp_table);
1499	_remove_opp_dev(opp_dev, opp_table);
1500	mutex_destroy(&opp_table->lock);
1501err:
1502	kfree(opp_table);
1503	return ERR_PTR(ret);
1504}
1505
1506void _get_opp_table_kref(struct opp_table *opp_table)
1507{
1508	kref_get(&opp_table->kref);
1509}
1510
1511static struct opp_table *_update_opp_table_clk(struct device *dev,
1512					       struct opp_table *opp_table,
1513					       bool getclk)
1514{
1515	int ret;
1516
1517	/*
1518	 * Return early if we don't need to get clk or we have already done it
1519	 * earlier.
1520	 */
1521	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1522	    opp_table->clks)
1523		return opp_table;
1524
1525	/* Find clk for the device */
1526	opp_table->clk = clk_get(dev, NULL);
1527
1528	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1529	if (!ret) {
1530		opp_table->config_clks = _opp_config_clk_single;
1531		opp_table->clk_count = 1;
1532		return opp_table;
1533	}
1534
1535	if (ret == -ENOENT) {
1536		/*
1537		 * There are few platforms which don't want the OPP core to
1538		 * manage device's clock settings. In such cases neither the
1539		 * platform provides the clks explicitly to us, nor the DT
1540		 * contains a valid clk entry. The OPP nodes in DT may still
1541		 * contain "opp-hz" property though, which we need to parse and
1542		 * allow the platform to find an OPP based on freq later on.
1543		 *
1544		 * This is a simple solution to take care of such corner cases,
1545		 * i.e. make the clk_count 1, which lets us allocate space for
1546		 * frequency in opp->rates and also parse the entries in DT.
1547		 */
1548		opp_table->clk_count = 1;
1549
1550		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1551		return opp_table;
1552	}
1553
1554	dev_pm_opp_put_opp_table(opp_table);
1555	dev_err_probe(dev, ret, "Couldn't find clock\n");
1556
1557	return ERR_PTR(ret);
1558}
1559
1560/*
1561 * We need to make sure that the OPP table for a device doesn't get added twice,
1562 * if this routine gets called in parallel with the same device pointer.
1563 *
1564 * The simplest way to enforce that is to perform everything (find existing
1565 * table and if not found, create a new one) under the opp_table_lock, so only
1566 * one creator gets access to the same. But that expands the critical section
1567 * under the lock and may end up causing circular dependencies with frameworks
1568 * like debugfs, interconnect or clock framework as they may be direct or
1569 * indirect users of OPP core.
1570 *
1571 * And for that reason we have to go for a bit tricky implementation here, which
1572 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1573 * of adding an OPP table and others should wait for it to finish.
1574 */
1575struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1576					 bool getclk)
1577{
1578	struct opp_table *opp_table;
1579
1580again:
1581	mutex_lock(&opp_table_lock);
1582
1583	opp_table = _find_opp_table_unlocked(dev);
1584	if (!IS_ERR(opp_table))
1585		goto unlock;
1586
1587	/*
1588	 * The opp_tables list or an OPP table's dev_list is getting updated by
1589	 * another user, wait for it to finish.
1590	 */
1591	if (unlikely(opp_tables_busy)) {
1592		mutex_unlock(&opp_table_lock);
1593		cpu_relax();
1594		goto again;
1595	}
1596
1597	opp_tables_busy = true;
1598	opp_table = _managed_opp(dev, index);
1599
1600	/* Drop the lock to reduce the size of critical section */
1601	mutex_unlock(&opp_table_lock);
1602
1603	if (opp_table) {
1604		if (!_add_opp_dev(dev, opp_table)) {
1605			dev_pm_opp_put_opp_table(opp_table);
1606			opp_table = ERR_PTR(-ENOMEM);
1607		}
1608
1609		mutex_lock(&opp_table_lock);
1610	} else {
1611		opp_table = _allocate_opp_table(dev, index);
1612
1613		mutex_lock(&opp_table_lock);
1614		if (!IS_ERR(opp_table))
1615			list_add(&opp_table->node, &opp_tables);
1616	}
1617
1618	opp_tables_busy = false;
1619
1620unlock:
1621	mutex_unlock(&opp_table_lock);
1622
1623	return _update_opp_table_clk(dev, opp_table, getclk);
1624}
1625
1626static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1627{
1628	return _add_opp_table_indexed(dev, 0, getclk);
1629}
 
1630
1631struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
 
1632{
1633	return _find_opp_table(dev);
1634}
1635EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1636
1637static void _opp_table_kref_release(struct kref *kref)
1638{
1639	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1640	struct opp_device *opp_dev, *temp;
1641	int i;
1642
1643	/* Drop the lock as soon as we can */
1644	list_del(&opp_table->node);
1645	mutex_unlock(&opp_table_lock);
1646
1647	if (opp_table->current_opp)
1648		dev_pm_opp_put(opp_table->current_opp);
1649
1650	_of_clear_opp_table(opp_table);
1651
1652	/* Release automatically acquired single clk */
1653	if (!IS_ERR(opp_table->clk))
1654		clk_put(opp_table->clk);
1655
1656	if (opp_table->paths) {
1657		for (i = 0; i < opp_table->path_count; i++)
1658			icc_put(opp_table->paths[i]);
1659		kfree(opp_table->paths);
1660	}
1661
1662	WARN_ON(!list_empty(&opp_table->opp_list));
1663
1664	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
 
 
 
 
 
 
 
1665		_remove_opp_dev(opp_dev, opp_table);
 
1666
 
1667	mutex_destroy(&opp_table->lock);
 
1668	kfree(opp_table);
 
 
1669}
1670
1671void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1672{
1673	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1674		       &opp_table_lock);
1675}
1676EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1677
1678void _opp_free(struct dev_pm_opp *opp)
1679{
1680	kfree(opp);
1681}
1682
1683static void _opp_kref_release(struct kref *kref)
 
1684{
1685	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1686	struct opp_table *opp_table = opp->opp_table;
1687
1688	list_del(&opp->node);
1689	mutex_unlock(&opp_table->lock);
1690
1691	/*
1692	 * Notify the changes in the availability of the operable
1693	 * frequency/voltage list.
1694	 */
1695	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1696	_of_clear_opp(opp_table, opp);
1697	opp_debug_remove_one(opp);
 
1698	kfree(opp);
1699}
1700
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1701void dev_pm_opp_get(struct dev_pm_opp *opp)
1702{
1703	kref_get(&opp->kref);
1704}
1705
1706void dev_pm_opp_put(struct dev_pm_opp *opp)
1707{
1708	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
 
1709}
1710EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1711
 
 
 
 
 
1712/**
1713 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1714 * @dev:	device for which we do this operation
1715 * @freq:	OPP to remove with matching 'freq'
1716 *
1717 * This function removes an opp from the opp table.
1718 */
1719void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1720{
1721	struct dev_pm_opp *opp = NULL, *iter;
1722	struct opp_table *opp_table;
 
1723
1724	opp_table = _find_opp_table(dev);
1725	if (IS_ERR(opp_table))
1726		return;
1727
1728	if (!assert_single_clk(opp_table, 0))
1729		goto put_table;
1730
1731	mutex_lock(&opp_table->lock);
1732
1733	list_for_each_entry(iter, &opp_table->opp_list, node) {
1734		if (iter->rates[0] == freq) {
1735			opp = iter;
1736			break;
1737		}
1738	}
1739
1740	mutex_unlock(&opp_table->lock);
1741
1742	if (opp) {
1743		dev_pm_opp_put(opp);
1744
1745		/* Drop the reference taken by dev_pm_opp_add() */
1746		dev_pm_opp_put_opp_table(opp_table);
1747	} else {
1748		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1749			 __func__, freq);
1750	}
1751
1752put_table:
1753	/* Drop the reference taken by _find_opp_table() */
1754	dev_pm_opp_put_opp_table(opp_table);
1755}
1756EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1757
1758static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1759					bool dynamic)
1760{
1761	struct dev_pm_opp *opp = NULL, *temp;
1762
1763	mutex_lock(&opp_table->lock);
1764	list_for_each_entry(temp, &opp_table->opp_list, node) {
1765		/*
1766		 * Refcount must be dropped only once for each OPP by OPP core,
1767		 * do that with help of "removed" flag.
1768		 */
1769		if (!temp->removed && dynamic == temp->dynamic) {
1770			opp = temp;
1771			break;
1772		}
1773	}
1774
1775	mutex_unlock(&opp_table->lock);
1776	return opp;
1777}
1778
1779/*
1780 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1781 * happen lock less to avoid circular dependency issues. This routine must be
1782 * called without the opp_table->lock held.
1783 */
1784static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1785{
1786	struct dev_pm_opp *opp;
1787
1788	while ((opp = _opp_get_next(opp_table, dynamic))) {
1789		opp->removed = true;
1790		dev_pm_opp_put(opp);
1791
1792		/* Drop the references taken by dev_pm_opp_add() */
1793		if (dynamic)
1794			dev_pm_opp_put_opp_table(opp_table);
1795	}
1796}
1797
1798bool _opp_remove_all_static(struct opp_table *opp_table)
1799{
 
 
 
1800	mutex_lock(&opp_table->lock);
1801
1802	if (!opp_table->parsed_static_opps) {
1803		mutex_unlock(&opp_table->lock);
1804		return false;
1805	}
1806
1807	if (--opp_table->parsed_static_opps) {
1808		mutex_unlock(&opp_table->lock);
1809		return true;
 
 
 
1810	}
1811
 
1812	mutex_unlock(&opp_table->lock);
1813
1814	_opp_remove_all(opp_table, false);
1815	return true;
1816}
1817
1818/**
1819 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1820 * @dev:	device for which we do this operation
1821 *
1822 * This function removes all dynamically created OPPs from the opp table.
1823 */
1824void dev_pm_opp_remove_all_dynamic(struct device *dev)
1825{
1826	struct opp_table *opp_table;
 
 
1827
1828	opp_table = _find_opp_table(dev);
1829	if (IS_ERR(opp_table))
1830		return;
1831
1832	_opp_remove_all(opp_table, true);
 
 
 
 
 
 
 
 
 
 
 
1833
1834	/* Drop the reference taken by _find_opp_table() */
1835	dev_pm_opp_put_opp_table(opp_table);
1836}
1837EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1838
1839struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1840{
1841	struct dev_pm_opp *opp;
1842	int supply_count, supply_size, icc_size, clk_size;
1843
1844	/* Allocate space for at least one supply */
1845	supply_count = opp_table->regulator_count > 0 ?
1846			opp_table->regulator_count : 1;
1847	supply_size = sizeof(*opp->supplies) * supply_count;
1848	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1849	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1850
1851	/* allocate new OPP node and supplies structures */
1852	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
 
1853	if (!opp)
1854		return NULL;
1855
1856	/* Put the supplies, bw and clock at the end of the OPP structure */
1857	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1858
1859	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1860
1861	if (icc_size)
1862		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1863
1864	INIT_LIST_HEAD(&opp->node);
1865
1866	opp->level = OPP_LEVEL_UNSET;
1867
1868	return opp;
1869}
1870
1871static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1872					 struct opp_table *opp_table)
1873{
1874	struct regulator *reg;
1875	int i;
1876
1877	if (!opp_table->regulators)
1878		return true;
1879
1880	for (i = 0; i < opp_table->regulator_count; i++) {
1881		reg = opp_table->regulators[i];
1882
1883		if (!regulator_is_supported_voltage(reg,
1884					opp->supplies[i].u_volt_min,
1885					opp->supplies[i].u_volt_max)) {
1886			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1887				__func__, opp->supplies[i].u_volt_min,
1888				opp->supplies[i].u_volt_max);
1889			return false;
1890		}
1891	}
1892
1893	return true;
1894}
1895
1896static int _opp_compare_rate(struct opp_table *opp_table,
1897			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1898{
1899	int i;
1900
1901	for (i = 0; i < opp_table->clk_count; i++) {
1902		if (opp1->rates[i] != opp2->rates[i])
1903			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1904	}
1905
1906	/* Same rates for both OPPs */
1907	return 0;
1908}
1909
1910static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1911			   struct dev_pm_opp *opp2)
1912{
1913	int i;
1914
1915	for (i = 0; i < opp_table->path_count; i++) {
1916		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1917			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1918	}
1919
1920	/* Same bw for both OPPs */
1921	return 0;
1922}
1923
1924/*
1925 * Returns
1926 * 0: opp1 == opp2
1927 * 1: opp1 > opp2
1928 * -1: opp1 < opp2
1929 */
1930int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1931		     struct dev_pm_opp *opp2)
1932{
1933	int ret;
1934
1935	ret = _opp_compare_rate(opp_table, opp1, opp2);
1936	if (ret)
1937		return ret;
1938
1939	ret = _opp_compare_bw(opp_table, opp1, opp2);
1940	if (ret)
1941		return ret;
1942
1943	if (opp1->level != opp2->level)
1944		return opp1->level < opp2->level ? -1 : 1;
1945
1946	/* Duplicate OPPs */
1947	return 0;
1948}
1949
1950static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1951			     struct opp_table *opp_table,
1952			     struct list_head **head)
1953{
1954	struct dev_pm_opp *opp;
1955	int opp_cmp;
1956
1957	/*
1958	 * Insert new OPP in order of increasing frequency and discard if
1959	 * already present.
1960	 *
1961	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1962	 * loop, don't replace it with head otherwise it will become an infinite
1963	 * loop.
1964	 */
1965	list_for_each_entry(opp, &opp_table->opp_list, node) {
1966		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1967		if (opp_cmp > 0) {
1968			*head = &opp->node;
1969			continue;
1970		}
1971
1972		if (opp_cmp < 0)
1973			return 0;
1974
1975		/* Duplicate OPPs */
1976		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1977			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1978			 opp->available, new_opp->rates[0],
1979			 new_opp->supplies[0].u_volt, new_opp->available);
1980
1981		/* Should we compare voltages for all regulators here ? */
1982		return opp->available &&
1983		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1984	}
1985
1986	return 0;
1987}
1988
1989void _required_opps_available(struct dev_pm_opp *opp, int count)
1990{
1991	int i;
1992
1993	for (i = 0; i < count; i++) {
1994		if (opp->required_opps[i]->available)
1995			continue;
1996
1997		opp->available = false;
1998		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1999			 __func__, opp->required_opps[i]->np, opp->rates[0]);
2000		return;
2001	}
2002}
2003
2004/*
2005 * Returns:
2006 * 0: On success. And appropriate error message for duplicate OPPs.
2007 * -EBUSY: For OPP with same freq/volt and is available. The callers of
2008 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2009 *  sure we don't print error messages unnecessarily if different parts of
2010 *  kernel try to initialize the OPP table.
2011 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2012 *  should be considered an error by the callers of _opp_add().
2013 */
2014int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2015	     struct opp_table *opp_table)
2016{
2017	struct list_head *head;
2018	int ret;
2019
2020	mutex_lock(&opp_table->lock);
2021	head = &opp_table->opp_list;
2022
2023	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2024	if (ret) {
2025		mutex_unlock(&opp_table->lock);
2026		return ret;
 
 
2027	}
2028
2029	list_add(&new_opp->node, head);
2030	mutex_unlock(&opp_table->lock);
2031
2032	new_opp->opp_table = opp_table;
2033	kref_init(&new_opp->kref);
2034
2035	opp_debug_create_one(new_opp, opp_table);
2036
2037	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2038		new_opp->available = false;
2039		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2040			 __func__, new_opp->rates[0]);
2041	}
2042
2043	/* required-opps not fully initialized yet */
2044	if (lazy_linking_pending(opp_table))
2045		return 0;
2046
2047	_required_opps_available(new_opp, opp_table->required_opp_count);
2048
2049	return 0;
2050}
2051
2052/**
2053 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2054 * @opp_table:	OPP table
2055 * @dev:	device for which we do this operation
2056 * @data:	The OPP data for the OPP to add
 
2057 * @dynamic:	Dynamically added OPPs.
2058 *
2059 * This function adds an opp definition to the opp table and returns status.
2060 * The opp is made available by default and it can be controlled using
2061 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2062 *
2063 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2064 * and freed by dev_pm_opp_of_remove_table.
2065 *
2066 * Return:
2067 * 0		On success OR
2068 *		Duplicate OPPs (both freq and volt are same) and opp->available
2069 * -EEXIST	Freq are same and volt are different OR
2070 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2071 * -ENOMEM	Memory allocation failure
2072 */
2073int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2074		struct dev_pm_opp_data *data, bool dynamic)
2075{
2076	struct dev_pm_opp *new_opp;
2077	unsigned long tol, u_volt = data->u_volt;
2078	int ret;
2079
2080	if (!assert_single_clk(opp_table, 0))
2081		return -EINVAL;
2082
2083	new_opp = _opp_allocate(opp_table);
2084	if (!new_opp)
2085		return -ENOMEM;
2086
2087	/* populate the opp table */
2088	new_opp->rates[0] = data->freq;
2089	new_opp->level = data->level;
2090	new_opp->turbo = data->turbo;
2091	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2092	new_opp->supplies[0].u_volt = u_volt;
2093	new_opp->supplies[0].u_volt_min = u_volt - tol;
2094	new_opp->supplies[0].u_volt_max = u_volt + tol;
2095	new_opp->available = true;
2096	new_opp->dynamic = dynamic;
2097
2098	ret = _opp_add(dev, new_opp, opp_table);
2099	if (ret) {
2100		/* Don't return error for duplicate OPPs */
2101		if (ret == -EBUSY)
2102			ret = 0;
2103		goto free_opp;
2104	}
2105
2106	/*
2107	 * Notify the changes in the availability of the operable
2108	 * frequency/voltage list.
2109	 */
2110	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2111	return 0;
2112
2113free_opp:
2114	_opp_free(new_opp);
2115
2116	return ret;
2117}
2118
2119/*
 
 
 
 
 
2120 * This is required only for the V2 bindings, and it enables a platform to
2121 * specify the hierarchy of versions it supports. OPP layer will then enable
2122 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2123 * property.
2124 */
2125static int _opp_set_supported_hw(struct opp_table *opp_table,
2126				 const u32 *versions, unsigned int count)
2127{
 
 
 
 
 
 
 
 
 
2128	/* Another CPU that shares the OPP table has set the property ? */
2129	if (opp_table->supported_hw)
2130		return 0;
2131
2132	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2133					GFP_KERNEL);
2134	if (!opp_table->supported_hw)
2135		return -ENOMEM;
 
 
2136
2137	opp_table->supported_hw_count = count;
2138
2139	return 0;
2140}
 
2141
2142static void _opp_put_supported_hw(struct opp_table *opp_table)
 
 
 
 
 
 
 
 
2143{
2144	if (opp_table->supported_hw) {
2145		kfree(opp_table->supported_hw);
2146		opp_table->supported_hw = NULL;
2147		opp_table->supported_hw_count = 0;
2148	}
 
 
 
2149}
 
2150
2151/*
 
 
 
 
2152 * This is required only for the V2 bindings, and it enables a platform to
2153 * specify the extn to be used for certain property names. The properties to
2154 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2155 * should postfix the property name with -<name> while looking for them.
2156 */
2157static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2158{
 
 
 
 
 
 
 
 
 
2159	/* Another CPU that shares the OPP table has set the property ? */
 
 
 
 
2160	if (!opp_table->prop_name) {
2161		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2162		if (!opp_table->prop_name)
2163			return -ENOMEM;
2164	}
2165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2166	return 0;
2167}
2168
2169static void _opp_put_prop_name(struct opp_table *opp_table)
2170{
2171	if (opp_table->prop_name) {
2172		kfree(opp_table->prop_name);
2173		opp_table->prop_name = NULL;
2174	}
2175}
2176
2177/*
 
 
 
 
 
2178 * In order to support OPP switching, OPP layer needs to know the name of the
2179 * device's regulators, as the core would be required to switch voltages as
2180 * well.
2181 *
2182 * This must be called before any OPPs are initialized for the device.
2183 */
2184static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2185			       const char * const names[])
 
2186{
2187	const char * const *temp = names;
2188	struct regulator *reg;
2189	int count = 0, ret, i;
2190
2191	/* Count number of regulators */
2192	while (*temp++)
2193		count++;
2194
2195	if (!count)
2196		return -EINVAL;
 
 
 
2197
2198	/* Another CPU that shares the OPP table has set the regulators ? */
2199	if (opp_table->regulators)
2200		return 0;
2201
2202	opp_table->regulators = kmalloc_array(count,
2203					      sizeof(*opp_table->regulators),
2204					      GFP_KERNEL);
2205	if (!opp_table->regulators)
2206		return -ENOMEM;
 
 
2207
2208	for (i = 0; i < count; i++) {
2209		reg = regulator_get_optional(dev, names[i]);
2210		if (IS_ERR(reg)) {
2211			ret = dev_err_probe(dev, PTR_ERR(reg),
2212					    "%s: no regulator (%s) found\n",
2213					    __func__, names[i]);
 
2214			goto free_regulators;
2215		}
2216
2217		opp_table->regulators[i] = reg;
2218	}
2219
2220	opp_table->regulator_count = count;
2221
2222	/* Set generic config_regulators() for single regulators here */
2223	if (count == 1)
2224		opp_table->config_regulators = _opp_config_regulator_single;
 
2225
2226	return 0;
2227
2228free_regulators:
2229	while (i != 0)
2230		regulator_put(opp_table->regulators[--i]);
2231
2232	kfree(opp_table->regulators);
2233	opp_table->regulators = NULL;
2234	opp_table->regulator_count = -1;
 
 
2235
2236	return ret;
2237}
 
2238
2239static void _opp_put_regulators(struct opp_table *opp_table)
 
 
 
 
2240{
2241	int i;
2242
2243	if (!opp_table->regulators)
2244		return;
 
 
 
2245
2246	if (opp_table->enabled) {
2247		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2248			regulator_disable(opp_table->regulators[i]);
 
 
2249	}
2250
2251	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2252		regulator_put(opp_table->regulators[i]);
2253
 
 
2254	kfree(opp_table->regulators);
2255	opp_table->regulators = NULL;
2256	opp_table->regulator_count = -1;
2257}
2258
2259static void _put_clks(struct opp_table *opp_table, int count)
2260{
2261	int i;
2262
2263	for (i = count - 1; i >= 0; i--)
2264		clk_put(opp_table->clks[i]);
2265
2266	kfree(opp_table->clks);
2267	opp_table->clks = NULL;
2268}
 
2269
2270/*
2271 * In order to support OPP switching, OPP layer needs to get pointers to the
2272 * clocks for the device. Simple cases work fine without using this routine
2273 * (i.e. by passing connection-id as NULL), but for a device with multiple
2274 * clocks available, the OPP core needs to know the exact names of the clks to
2275 * use.
 
 
 
2276 *
2277 * This must be called before any OPPs are initialized for the device.
2278 */
2279static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2280			     const char * const names[],
2281			     config_clks_t config_clks)
2282{
2283	const char * const *temp = names;
2284	int count = 0, ret, i;
2285	struct clk *clk;
2286
2287	/* Count number of clks */
2288	while (*temp++)
2289		count++;
2290
2291	/*
2292	 * This is a special case where we have a single clock, whose connection
2293	 * id name is NULL, i.e. first two entries are NULL in the array.
2294	 */
2295	if (!count && !names[1])
2296		count = 1;
2297
2298	/* Fail early for invalid configurations */
2299	if (!count || (!config_clks && count > 1))
2300		return -EINVAL;
2301
2302	/* Another CPU that shares the OPP table has set the clkname ? */
2303	if (opp_table->clks)
2304		return 0;
 
 
2305
2306	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2307					GFP_KERNEL);
2308	if (!opp_table->clks)
2309		return -ENOMEM;
2310
2311	/* Find clks for the device */
2312	for (i = 0; i < count; i++) {
2313		clk = clk_get(dev, names[i]);
2314		if (IS_ERR(clk)) {
2315			ret = dev_err_probe(dev, PTR_ERR(clk),
2316					    "%s: Couldn't find clock with name: %s\n",
2317					    __func__, names[i]);
2318			goto free_clks;
2319		}
2320
2321		opp_table->clks[i] = clk;
2322	}
2323
2324	opp_table->clk_count = count;
2325	opp_table->config_clks = config_clks;
2326
2327	/* Set generic single clk set here */
2328	if (count == 1) {
2329		if (!opp_table->config_clks)
2330			opp_table->config_clks = _opp_config_clk_single;
2331
2332		/*
2333		 * We could have just dropped the "clk" field and used "clks"
2334		 * everywhere. Instead we kept the "clk" field around for
2335		 * following reasons:
2336		 *
2337		 * - avoiding clks[0] everywhere else.
2338		 * - not running single clk helpers for multiple clk usecase by
2339		 *   mistake.
2340		 *
2341		 * Since this is single-clk case, just update the clk pointer
2342		 * too.
2343		 */
2344		opp_table->clk = opp_table->clks[0];
2345	}
2346
2347	return 0;
 
2348
2349free_clks:
2350	_put_clks(opp_table, i);
2351	return ret;
2352}
 
2353
2354static void _opp_put_clknames(struct opp_table *opp_table)
 
 
 
 
2355{
2356	if (!opp_table->clks)
2357		return;
2358
2359	opp_table->config_clks = NULL;
2360	opp_table->clk = ERR_PTR(-ENODEV);
2361
2362	_put_clks(opp_table, opp_table->clk_count);
2363}
 
2364
2365/*
2366 * This is useful to support platforms with multiple regulators per device.
 
 
 
 
 
2367 *
2368 * This must be called before any OPPs are initialized for the device.
2369 */
2370static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2371		struct device *dev, config_regulators_t config_regulators)
2372{
2373	/* Another CPU that shares the OPP table has set the helper ? */
2374	if (!opp_table->config_regulators)
2375		opp_table->config_regulators = config_regulators;
2376
2377	return 0;
2378}
2379
2380static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2381{
2382	if (opp_table->config_regulators)
2383		opp_table->config_regulators = NULL;
2384}
2385
2386static int _opp_set_required_dev(struct opp_table *opp_table,
2387				 struct device *dev,
2388				 struct device *required_dev,
2389				 unsigned int index)
2390{
2391	struct opp_table *required_table, *pd_table;
2392	struct device *gdev;
2393
2394	/* Genpd core takes care of propagation to parent genpd */
2395	if (opp_table->is_genpd) {
2396		dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2397		return -EOPNOTSUPP;
2398	}
2399
2400	if (index >= opp_table->required_opp_count) {
2401		dev_err(dev, "Required OPPs not available, can't set required devs\n");
2402		return -EINVAL;
2403	}
2404
2405	required_table = opp_table->required_opp_tables[index];
2406	if (IS_ERR(required_table)) {
2407		dev_err(dev, "Missing OPP table, unable to set the required devs\n");
2408		return -ENODEV;
2409	}
2410
2411	/*
2412	 * The required_opp_tables parsing is not perfect, as the OPP core does
2413	 * the parsing solely based on the DT node pointers. The core sets the
2414	 * required_opp_tables entry to the first OPP table in the "opp_tables"
2415	 * list, that matches with the node pointer.
2416	 *
2417	 * If the target DT OPP table is used by multiple devices and they all
2418	 * create separate instances of 'struct opp_table' from it, then it is
2419	 * possible that the required_opp_tables entry may be set to the
2420	 * incorrect sibling device.
2421	 *
2422	 * Cross check it again and fix if required.
2423	 */
2424	gdev = dev_to_genpd_dev(required_dev);
2425	if (IS_ERR(gdev))
2426		return PTR_ERR(gdev);
2427
2428	pd_table = _find_opp_table(gdev);
2429	if (!IS_ERR(pd_table)) {
2430		if (pd_table != required_table) {
2431			dev_pm_opp_put_opp_table(required_table);
2432			opp_table->required_opp_tables[index] = pd_table;
2433		} else {
2434			dev_pm_opp_put_opp_table(pd_table);
2435		}
2436	}
2437
2438	opp_table->required_devs[index] = required_dev;
2439	return 0;
2440}
 
2441
2442static void _opp_put_required_dev(struct opp_table *opp_table,
2443				  unsigned int index)
 
 
 
 
 
 
2444{
2445	opp_table->required_devs[index] = NULL;
 
 
 
 
2446}
 
2447
2448static void _opp_clear_config(struct opp_config_data *data)
2449{
2450	if (data->flags & OPP_CONFIG_REQUIRED_DEV)
2451		_opp_put_required_dev(data->opp_table,
2452				      data->required_dev_index);
2453	if (data->flags & OPP_CONFIG_REGULATOR)
2454		_opp_put_regulators(data->opp_table);
2455	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2456		_opp_put_supported_hw(data->opp_table);
2457	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2458		_opp_put_config_regulators_helper(data->opp_table);
2459	if (data->flags & OPP_CONFIG_PROP_NAME)
2460		_opp_put_prop_name(data->opp_table);
2461	if (data->flags & OPP_CONFIG_CLK)
2462		_opp_put_clknames(data->opp_table);
2463
2464	dev_pm_opp_put_opp_table(data->opp_table);
2465	kfree(data);
 
 
 
 
 
 
 
 
2466}
2467
2468/**
2469 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2470 * @dev: Device for which configuration is being set.
2471 * @config: OPP configuration.
 
 
 
 
 
 
 
 
2472 *
2473 * This allows all device OPP configurations to be performed at once.
 
2474 *
2475 * This must be called before any OPPs are initialized for the device. This may
2476 * be called multiple times for the same OPP table, for example once for each
2477 * CPU that share the same table. This must be balanced by the same number of
2478 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2479 *
2480 * This returns a token to the caller, which must be passed to
2481 * dev_pm_opp_clear_config() to free the resources later. The value of the
2482 * returned token will be >= 1 for success and negative for errors. The minimum
2483 * value of 1 is chosen here to make it easy for callers to manage the resource.
2484 */
2485int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
 
2486{
2487	struct opp_table *opp_table;
2488	struct opp_config_data *data;
2489	unsigned int id;
2490	int ret;
2491
2492	data = kmalloc(sizeof(*data), GFP_KERNEL);
2493	if (!data)
2494		return -ENOMEM;
2495
2496	opp_table = _add_opp_table(dev, false);
2497	if (IS_ERR(opp_table)) {
2498		kfree(data);
2499		return PTR_ERR(opp_table);
2500	}
2501
2502	data->opp_table = opp_table;
2503	data->flags = 0;
2504
2505	/* This should be called before OPPs are initialized */
2506	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2507		ret = -EBUSY;
2508		goto err;
2509	}
2510
2511	/* Configure clocks */
2512	if (config->clk_names) {
2513		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2514					config->config_clks);
2515		if (ret)
2516			goto err;
2517
2518		data->flags |= OPP_CONFIG_CLK;
2519	} else if (config->config_clks) {
2520		/* Don't allow config callback without clocks */
2521		ret = -EINVAL;
2522		goto err;
 
 
 
2523	}
2524
2525	/* Configure property names */
2526	if (config->prop_name) {
2527		ret = _opp_set_prop_name(opp_table, config->prop_name);
2528		if (ret)
2529			goto err;
2530
2531		data->flags |= OPP_CONFIG_PROP_NAME;
2532	}
 
 
 
2533
2534	/* Configure config_regulators helper */
2535	if (config->config_regulators) {
2536		ret = _opp_set_config_regulators_helper(opp_table, dev,
2537						config->config_regulators);
2538		if (ret)
2539			goto err;
 
2540
2541		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2542	}
2543
2544	/* Configure supported hardware */
2545	if (config->supported_hw) {
2546		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2547					    config->supported_hw_count);
2548		if (ret)
2549			goto err;
 
2550
2551		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2552	}
2553
2554	/* Configure supplies */
2555	if (config->regulator_names) {
2556		ret = _opp_set_regulators(opp_table, dev,
2557					  config->regulator_names);
2558		if (ret)
2559			goto err;
 
2560
2561		data->flags |= OPP_CONFIG_REGULATOR;
 
 
2562	}
2563
2564	if (config->required_dev) {
2565		ret = _opp_set_required_dev(opp_table, dev,
2566					    config->required_dev,
2567					    config->required_dev_index);
2568		if (ret)
2569			goto err;
2570
2571		data->required_dev_index = config->required_dev_index;
2572		data->flags |= OPP_CONFIG_REQUIRED_DEV;
2573	}
2574
2575	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2576		       GFP_KERNEL);
2577	if (ret)
2578		goto err;
2579
2580	return id;
 
2581
2582err:
2583	_opp_clear_config(data);
2584	return ret;
2585}
2586EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2587
2588/**
2589 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2590 * @token: The token returned by dev_pm_opp_set_config() previously.
2591 *
2592 * This allows all device OPP configurations to be cleared at once. This must be
2593 * called once for each call made to dev_pm_opp_set_config(), in order to free
2594 * the OPPs properly.
2595 *
2596 * Currently the first call itself ends up freeing all the OPP configurations,
2597 * while the later ones only drop the OPP table reference. This works well for
2598 * now as we would never want to use an half initialized OPP table and want to
2599 * remove the configurations together.
2600 */
2601void dev_pm_opp_clear_config(int token)
2602{
2603	struct opp_config_data *data;
2604
2605	/*
2606	 * This lets the callers call this unconditionally and keep their code
2607	 * simple.
2608	 */
2609	if (unlikely(token <= 0))
2610		return;
2611
2612	data = xa_erase(&opp_configs, token);
2613	if (WARN_ON(!data))
2614		return;
2615
2616	_opp_clear_config(data);
2617}
2618EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2619
2620static void devm_pm_opp_config_release(void *token)
2621{
2622	dev_pm_opp_clear_config((unsigned long)token);
2623}
2624
2625/**
2626 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2627 * @dev: Device for which configuration is being set.
2628 * @config: OPP configuration.
2629 *
2630 * This allows all device OPP configurations to be performed at once.
2631 * This is a resource-managed variant of dev_pm_opp_set_config().
2632 *
2633 * Return: 0 on success and errorno otherwise.
2634 */
2635int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2636{
2637	int token = dev_pm_opp_set_config(dev, config);
2638
2639	if (token < 0)
2640		return token;
2641
2642	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2643					(void *) ((unsigned long) token));
2644}
2645EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2646
2647/**
2648 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2649 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2650 * @dst_table: Required OPP table of the @src_table.
2651 * @src_opp: OPP from the @src_table.
2652 *
2653 * This function returns the OPP (present in @dst_table) pointed out by the
2654 * "required-opps" property of the @src_opp (present in @src_table).
2655 *
2656 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2657 * use.
2658 *
2659 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2660 */
2661struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2662						 struct opp_table *dst_table,
2663						 struct dev_pm_opp *src_opp)
2664{
2665	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2666	int i;
2667
2668	if (!src_table || !dst_table || !src_opp ||
2669	    !src_table->required_opp_tables)
2670		return ERR_PTR(-EINVAL);
2671
2672	/* required-opps not fully initialized yet */
2673	if (lazy_linking_pending(src_table))
2674		return ERR_PTR(-EBUSY);
2675
2676	for (i = 0; i < src_table->required_opp_count; i++) {
2677		if (src_table->required_opp_tables[i] == dst_table) {
2678			mutex_lock(&src_table->lock);
2679
2680			list_for_each_entry(opp, &src_table->opp_list, node) {
2681				if (opp == src_opp) {
2682					dest_opp = opp->required_opps[i];
2683					dev_pm_opp_get(dest_opp);
2684					break;
2685				}
2686			}
2687
2688			mutex_unlock(&src_table->lock);
2689			break;
2690		}
2691	}
2692
2693	if (IS_ERR(dest_opp)) {
2694		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2695		       src_table, dst_table);
2696	}
2697
2698	return dest_opp;
2699}
2700EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2701
2702/**
2703 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2704 * @src_table: OPP table which has dst_table as one of its required OPP table.
2705 * @dst_table: Required OPP table of the src_table.
2706 * @pstate: Current performance state of the src_table.
2707 *
2708 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2709 * "required-opps" property of the OPP (present in @src_table) which has
2710 * performance state set to @pstate.
2711 *
2712 * Return: Zero or positive performance state on success, otherwise negative
2713 * value on errors.
2714 */
2715int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2716				       struct opp_table *dst_table,
2717				       unsigned int pstate)
2718{
2719	struct dev_pm_opp *opp;
2720	int dest_pstate = -EINVAL;
2721	int i;
2722
 
 
 
2723	/*
2724	 * Normally the src_table will have the "required_opps" property set to
2725	 * point to one of the OPPs in the dst_table, but in some cases the
2726	 * genpd and its master have one to one mapping of performance states
2727	 * and so none of them have the "required-opps" property set. Return the
2728	 * pstate of the src_table as it is in such cases.
2729	 */
2730	if (!src_table || !src_table->required_opp_count)
2731		return pstate;
2732
2733	/* Both OPP tables must belong to genpds */
2734	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2735		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2736		return -EINVAL;
2737	}
2738
2739	/* required-opps not fully initialized yet */
2740	if (lazy_linking_pending(src_table))
2741		return -EBUSY;
2742
2743	for (i = 0; i < src_table->required_opp_count; i++) {
2744		if (src_table->required_opp_tables[i]->np == dst_table->np)
2745			break;
2746	}
2747
2748	if (unlikely(i == src_table->required_opp_count)) {
2749		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2750		       __func__, src_table, dst_table);
2751		return -EINVAL;
2752	}
2753
2754	mutex_lock(&src_table->lock);
2755
2756	list_for_each_entry(opp, &src_table->opp_list, node) {
2757		if (opp->level == pstate) {
2758			dest_pstate = opp->required_opps[i]->level;
2759			goto unlock;
2760		}
2761	}
2762
2763	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2764	       dst_table);
2765
2766unlock:
2767	mutex_unlock(&src_table->lock);
2768
2769	return dest_pstate;
2770}
2771
2772/**
2773 * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
2774 * @dev:	The device for which we do this operation
2775 * @data:	The OPP data for the OPP to add
 
2776 *
2777 * This function adds an opp definition to the opp table and returns status.
2778 * The opp is made available by default and it can be controlled using
2779 * dev_pm_opp_enable/disable functions.
2780 *
2781 * Return:
2782 * 0		On success OR
2783 *		Duplicate OPPs (both freq and volt are same) and opp->available
2784 * -EEXIST	Freq are same and volt are different OR
2785 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2786 * -ENOMEM	Memory allocation failure
2787 */
2788int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2789{
2790	struct opp_table *opp_table;
2791	int ret;
2792
2793	opp_table = _add_opp_table(dev, true);
2794	if (IS_ERR(opp_table))
2795		return PTR_ERR(opp_table);
2796
2797	/* Fix regulator count for dynamic OPPs */
2798	opp_table->regulator_count = 1;
2799
2800	ret = _opp_add_v1(opp_table, dev, data, true);
2801	if (ret)
2802		dev_pm_opp_put_opp_table(opp_table);
2803
2804	return ret;
2805}
2806EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2807
2808/**
2809 * _opp_set_availability() - helper to set the availability of an opp
2810 * @dev:		device for which we do this operation
2811 * @freq:		OPP frequency to modify availability
2812 * @availability_req:	availability status requested for this opp
2813 *
2814 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2815 * which is isolated here.
2816 *
2817 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2818 * copy operation, returns 0 if no modification was done OR modification was
2819 * successful.
2820 */
2821static int _opp_set_availability(struct device *dev, unsigned long freq,
2822				 bool availability_req)
2823{
2824	struct opp_table *opp_table;
2825	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2826	int r = 0;
2827
2828	/* Find the opp_table */
2829	opp_table = _find_opp_table(dev);
2830	if (IS_ERR(opp_table)) {
2831		r = PTR_ERR(opp_table);
2832		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2833		return r;
2834	}
2835
2836	if (!assert_single_clk(opp_table, 0)) {
2837		r = -EINVAL;
2838		goto put_table;
2839	}
2840
2841	mutex_lock(&opp_table->lock);
2842
2843	/* Do we have the frequency? */
2844	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2845		if (tmp_opp->rates[0] == freq) {
2846			opp = tmp_opp;
2847			break;
2848		}
2849	}
2850
2851	if (IS_ERR(opp)) {
2852		r = PTR_ERR(opp);
2853		goto unlock;
2854	}
2855
2856	/* Is update really needed? */
2857	if (opp->available == availability_req)
2858		goto unlock;
2859
2860	opp->available = availability_req;
2861
2862	dev_pm_opp_get(opp);
2863	mutex_unlock(&opp_table->lock);
2864
2865	/* Notify the change of the OPP availability */
2866	if (availability_req)
2867		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2868					     opp);
2869	else
2870		blocking_notifier_call_chain(&opp_table->head,
2871					     OPP_EVENT_DISABLE, opp);
2872
2873	dev_pm_opp_put(opp);
2874	goto put_table;
2875
2876unlock:
2877	mutex_unlock(&opp_table->lock);
2878put_table:
2879	dev_pm_opp_put_opp_table(opp_table);
2880	return r;
2881}
2882
2883/**
2884 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2885 * @dev:		device for which we do this operation
2886 * @freq:		OPP frequency to adjust voltage of
2887 * @u_volt:		new OPP target voltage
2888 * @u_volt_min:		new OPP min voltage
2889 * @u_volt_max:		new OPP max voltage
2890 *
2891 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2892 * copy operation, returns 0 if no modifcation was done OR modification was
2893 * successful.
2894 */
2895int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2896			      unsigned long u_volt, unsigned long u_volt_min,
2897			      unsigned long u_volt_max)
2898
2899{
2900	struct opp_table *opp_table;
2901	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2902	int r = 0;
2903
2904	/* Find the opp_table */
2905	opp_table = _find_opp_table(dev);
2906	if (IS_ERR(opp_table)) {
2907		r = PTR_ERR(opp_table);
2908		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2909		return r;
2910	}
2911
2912	if (!assert_single_clk(opp_table, 0)) {
2913		r = -EINVAL;
2914		goto put_table;
2915	}
2916
2917	mutex_lock(&opp_table->lock);
2918
2919	/* Do we have the frequency? */
2920	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2921		if (tmp_opp->rates[0] == freq) {
2922			opp = tmp_opp;
2923			break;
2924		}
2925	}
2926
2927	if (IS_ERR(opp)) {
2928		r = PTR_ERR(opp);
2929		goto adjust_unlock;
2930	}
2931
2932	/* Is update really needed? */
2933	if (opp->supplies->u_volt == u_volt)
2934		goto adjust_unlock;
2935
2936	opp->supplies->u_volt = u_volt;
2937	opp->supplies->u_volt_min = u_volt_min;
2938	opp->supplies->u_volt_max = u_volt_max;
2939
2940	dev_pm_opp_get(opp);
2941	mutex_unlock(&opp_table->lock);
2942
2943	/* Notify the voltage change of the OPP */
2944	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2945				     opp);
2946
2947	dev_pm_opp_put(opp);
2948	goto put_table;
2949
2950adjust_unlock:
2951	mutex_unlock(&opp_table->lock);
2952put_table:
2953	dev_pm_opp_put_opp_table(opp_table);
2954	return r;
2955}
2956EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2957
2958/**
2959 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2960 * @dev:	device for which we do this operation
2961 *
2962 * Sync voltage state of the OPP table regulators.
2963 *
2964 * Return: 0 on success or a negative error value.
2965 */
2966int dev_pm_opp_sync_regulators(struct device *dev)
2967{
2968	struct opp_table *opp_table;
2969	struct regulator *reg;
2970	int i, ret = 0;
2971
2972	/* Device may not have OPP table */
2973	opp_table = _find_opp_table(dev);
2974	if (IS_ERR(opp_table))
2975		return 0;
2976
2977	/* Regulator may not be required for the device */
2978	if (unlikely(!opp_table->regulators))
2979		goto put_table;
2980
2981	/* Nothing to sync if voltage wasn't changed */
2982	if (!opp_table->enabled)
2983		goto put_table;
2984
2985	for (i = 0; i < opp_table->regulator_count; i++) {
2986		reg = opp_table->regulators[i];
2987		ret = regulator_sync_voltage(reg);
2988		if (ret)
2989			break;
2990	}
2991put_table:
2992	/* Drop reference taken by _find_opp_table() */
2993	dev_pm_opp_put_opp_table(opp_table);
2994
2995	return ret;
2996}
2997EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2998
2999/**
3000 * dev_pm_opp_enable() - Enable a specific OPP
3001 * @dev:	device for which we do this operation
3002 * @freq:	OPP frequency to enable
3003 *
3004 * Enables a provided opp. If the operation is valid, this returns 0, else the
3005 * corresponding error value. It is meant to be used for users an OPP available
3006 * after being temporarily made unavailable with dev_pm_opp_disable.
3007 *
3008 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3009 * copy operation, returns 0 if no modification was done OR modification was
3010 * successful.
3011 */
3012int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3013{
3014	return _opp_set_availability(dev, freq, true);
3015}
3016EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3017
3018/**
3019 * dev_pm_opp_disable() - Disable a specific OPP
3020 * @dev:	device for which we do this operation
3021 * @freq:	OPP frequency to disable
3022 *
3023 * Disables a provided opp. If the operation is valid, this returns
3024 * 0, else the corresponding error value. It is meant to be a temporary
3025 * control by users to make this OPP not available until the circumstances are
3026 * right to make it available again (with a call to dev_pm_opp_enable).
3027 *
3028 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3029 * copy operation, returns 0 if no modification was done OR modification was
3030 * successful.
3031 */
3032int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3033{
3034	return _opp_set_availability(dev, freq, false);
3035}
3036EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3037
3038/**
3039 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3040 * @dev:	Device for which notifier needs to be registered
3041 * @nb:		Notifier block to be registered
3042 *
3043 * Return: 0 on success or a negative error value.
3044 */
3045int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3046{
3047	struct opp_table *opp_table;
3048	int ret;
3049
3050	opp_table = _find_opp_table(dev);
3051	if (IS_ERR(opp_table))
3052		return PTR_ERR(opp_table);
3053
3054	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3055
3056	dev_pm_opp_put_opp_table(opp_table);
3057
3058	return ret;
3059}
3060EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3061
3062/**
3063 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3064 * @dev:	Device for which notifier needs to be unregistered
3065 * @nb:		Notifier block to be unregistered
3066 *
3067 * Return: 0 on success or a negative error value.
3068 */
3069int dev_pm_opp_unregister_notifier(struct device *dev,
3070				   struct notifier_block *nb)
3071{
3072	struct opp_table *opp_table;
3073	int ret;
3074
3075	opp_table = _find_opp_table(dev);
3076	if (IS_ERR(opp_table))
3077		return PTR_ERR(opp_table);
3078
3079	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3080
3081	dev_pm_opp_put_opp_table(opp_table);
3082
3083	return ret;
3084}
3085EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3086
3087/**
3088 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3089 * @dev:	device pointer used to lookup OPP table.
3090 *
3091 * Free both OPPs created using static entries present in DT and the
3092 * dynamically added entries.
3093 */
3094void dev_pm_opp_remove_table(struct device *dev)
3095{
3096	struct opp_table *opp_table;
3097
3098	/* Check for existing table for 'dev' */
3099	opp_table = _find_opp_table(dev);
3100	if (IS_ERR(opp_table)) {
3101		int error = PTR_ERR(opp_table);
3102
3103		if (error != -ENODEV)
3104			WARN(1, "%s: opp_table: %d\n",
3105			     IS_ERR_OR_NULL(dev) ?
3106					"Invalid device" : dev_name(dev),
3107			     error);
3108		return;
3109	}
3110
3111	/*
3112	 * Drop the extra reference only if the OPP table was successfully added
3113	 * with dev_pm_opp_of_add_table() earlier.
3114	 **/
3115	if (_opp_remove_all_static(opp_table))
3116		dev_pm_opp_put_opp_table(opp_table);
3117
3118	/* Drop reference taken by _find_opp_table() */
3119	dev_pm_opp_put_opp_table(opp_table);
 
 
 
 
 
 
 
 
 
 
 
 
3120}
3121EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
v5.9
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/slab.h>
  17#include <linux/device.h>
  18#include <linux/export.h>
  19#include <linux/pm_domain.h>
  20#include <linux/regulator/consumer.h>
 
 
  21
  22#include "opp.h"
  23
  24/*
  25 * The root of the list of all opp-tables. All opp_table structures branch off
  26 * from here, with each opp_table containing the list of opps it supports in
  27 * various states of availability.
  28 */
  29LIST_HEAD(opp_tables);
 
  30/* Lock to allow exclusive modification to the device and opp lists */
  31DEFINE_MUTEX(opp_table_lock);
 
 
  32
  33static struct opp_device *_find_opp_dev(const struct device *dev,
  34					struct opp_table *opp_table)
 
 
  35{
  36	struct opp_device *opp_dev;
 
  37
 
  38	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  39		if (opp_dev->dev == dev)
  40			return opp_dev;
 
 
  41
  42	return NULL;
 
  43}
  44
  45static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  46{
  47	struct opp_table *opp_table;
  48	bool found;
  49
  50	list_for_each_entry(opp_table, &opp_tables, node) {
  51		mutex_lock(&opp_table->lock);
  52		found = !!_find_opp_dev(dev, opp_table);
  53		mutex_unlock(&opp_table->lock);
  54
  55		if (found) {
  56			_get_opp_table_kref(opp_table);
  57
  58			return opp_table;
  59		}
  60	}
  61
  62	return ERR_PTR(-ENODEV);
  63}
  64
  65/**
  66 * _find_opp_table() - find opp_table struct using device pointer
  67 * @dev:	device pointer used to lookup OPP table
  68 *
  69 * Search OPP table for one containing matching device.
  70 *
  71 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  72 * -EINVAL based on type of error.
  73 *
  74 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  75 */
  76struct opp_table *_find_opp_table(struct device *dev)
  77{
  78	struct opp_table *opp_table;
  79
  80	if (IS_ERR_OR_NULL(dev)) {
  81		pr_err("%s: Invalid parameters\n", __func__);
  82		return ERR_PTR(-EINVAL);
  83	}
  84
  85	mutex_lock(&opp_table_lock);
  86	opp_table = _find_opp_table_unlocked(dev);
  87	mutex_unlock(&opp_table_lock);
  88
  89	return opp_table;
  90}
  91
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  92/**
  93 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
  94 * @opp:	opp for which voltage has to be returned for
  95 *
  96 * Return: voltage in micro volt corresponding to the opp, else
  97 * return 0
  98 *
  99 * This is useful only for devices with single power supply.
 100 */
 101unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 102{
 103	if (IS_ERR_OR_NULL(opp)) {
 104		pr_err("%s: Invalid parameters\n", __func__);
 105		return 0;
 106	}
 107
 108	return opp->supplies[0].u_volt;
 109}
 110EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 111
 112/**
 113 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
 114 * @opp:	opp for which frequency has to be returned for
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 115 *
 116 * Return: frequency in hertz corresponding to the opp, else
 117 * return 0
 
 
 118 */
 119unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
 120{
 
 
 
 121	if (IS_ERR_OR_NULL(opp)) {
 122		pr_err("%s: Invalid parameters\n", __func__);
 123		return 0;
 124	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 125
 126	return opp->rate;
 127}
 128EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
 129
 130/**
 131 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 132 * @opp:	opp for which level value has to be returned for
 133 *
 134 * Return: level read from device tree corresponding to the opp, else
 135 * return 0.
 136 */
 137unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 138{
 139	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 140		pr_err("%s: Invalid parameters\n", __func__);
 141		return 0;
 142	}
 143
 144	return opp->level;
 145}
 146EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 147
 148/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 149 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 150 * @opp: opp for which turbo mode is being verified
 151 *
 152 * Turbo OPPs are not for normal use, and can be enabled (under certain
 153 * conditions) for short duration of times to finish high throughput work
 154 * quickly. Running on them for longer times may overheat the chip.
 155 *
 156 * Return: true if opp is turbo opp, else false.
 157 */
 158bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 159{
 160	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 161		pr_err("%s: Invalid parameters\n", __func__);
 162		return false;
 163	}
 164
 165	return opp->turbo;
 166}
 167EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 168
 169/**
 170 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 171 * @dev:	device for which we do this operation
 172 *
 173 * Return: This function returns the max clock latency in nanoseconds.
 174 */
 175unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 176{
 177	struct opp_table *opp_table;
 178	unsigned long clock_latency_ns;
 179
 180	opp_table = _find_opp_table(dev);
 181	if (IS_ERR(opp_table))
 182		return 0;
 183
 184	clock_latency_ns = opp_table->clock_latency_ns_max;
 185
 186	dev_pm_opp_put_opp_table(opp_table);
 187
 188	return clock_latency_ns;
 189}
 190EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 191
 192/**
 193 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 194 * @dev: device for which we do this operation
 195 *
 196 * Return: This function returns the max voltage latency in nanoseconds.
 197 */
 198unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 199{
 200	struct opp_table *opp_table;
 201	struct dev_pm_opp *opp;
 202	struct regulator *reg;
 203	unsigned long latency_ns = 0;
 204	int ret, i, count;
 205	struct {
 206		unsigned long min;
 207		unsigned long max;
 208	} *uV;
 209
 210	opp_table = _find_opp_table(dev);
 211	if (IS_ERR(opp_table))
 212		return 0;
 213
 214	/* Regulator may not be required for the device */
 215	if (!opp_table->regulators)
 216		goto put_opp_table;
 217
 218	count = opp_table->regulator_count;
 219
 220	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 221	if (!uV)
 222		goto put_opp_table;
 223
 224	mutex_lock(&opp_table->lock);
 225
 226	for (i = 0; i < count; i++) {
 227		uV[i].min = ~0;
 228		uV[i].max = 0;
 229
 230		list_for_each_entry(opp, &opp_table->opp_list, node) {
 231			if (!opp->available)
 232				continue;
 233
 234			if (opp->supplies[i].u_volt_min < uV[i].min)
 235				uV[i].min = opp->supplies[i].u_volt_min;
 236			if (opp->supplies[i].u_volt_max > uV[i].max)
 237				uV[i].max = opp->supplies[i].u_volt_max;
 238		}
 239	}
 240
 241	mutex_unlock(&opp_table->lock);
 242
 243	/*
 244	 * The caller needs to ensure that opp_table (and hence the regulator)
 245	 * isn't freed, while we are executing this routine.
 246	 */
 247	for (i = 0; i < count; i++) {
 248		reg = opp_table->regulators[i];
 249		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 250		if (ret > 0)
 251			latency_ns += ret * 1000;
 252	}
 253
 254	kfree(uV);
 255put_opp_table:
 256	dev_pm_opp_put_opp_table(opp_table);
 257
 258	return latency_ns;
 259}
 260EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 261
 262/**
 263 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 264 *					     nanoseconds
 265 * @dev: device for which we do this operation
 266 *
 267 * Return: This function returns the max transition latency, in nanoseconds, to
 268 * switch from one OPP to other.
 269 */
 270unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 271{
 272	return dev_pm_opp_get_max_volt_latency(dev) +
 273		dev_pm_opp_get_max_clock_latency(dev);
 274}
 275EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 276
 277/**
 278 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 279 * @dev:	device for which we do this operation
 280 *
 281 * Return: This function returns the frequency of the OPP marked as suspend_opp
 282 * if one is available, else returns 0;
 283 */
 284unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 285{
 286	struct opp_table *opp_table;
 287	unsigned long freq = 0;
 288
 289	opp_table = _find_opp_table(dev);
 290	if (IS_ERR(opp_table))
 291		return 0;
 292
 293	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 294		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 295
 296	dev_pm_opp_put_opp_table(opp_table);
 297
 298	return freq;
 299}
 300EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 301
 302int _get_opp_count(struct opp_table *opp_table)
 303{
 304	struct dev_pm_opp *opp;
 305	int count = 0;
 306
 307	mutex_lock(&opp_table->lock);
 308
 309	list_for_each_entry(opp, &opp_table->opp_list, node) {
 310		if (opp->available)
 311			count++;
 312	}
 313
 314	mutex_unlock(&opp_table->lock);
 315
 316	return count;
 317}
 318
 319/**
 320 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 321 * @dev:	device for which we do this operation
 322 *
 323 * Return: This function returns the number of available opps if there are any,
 324 * else returns 0 if none or the corresponding error value.
 325 */
 326int dev_pm_opp_get_opp_count(struct device *dev)
 327{
 328	struct opp_table *opp_table;
 329	int count;
 330
 331	opp_table = _find_opp_table(dev);
 332	if (IS_ERR(opp_table)) {
 333		count = PTR_ERR(opp_table);
 334		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 335			__func__, count);
 336		return count;
 337	}
 338
 339	count = _get_opp_count(opp_table);
 340	dev_pm_opp_put_opp_table(opp_table);
 341
 342	return count;
 343}
 344EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 345
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 346/**
 347 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 348 * @dev:		device for which we do this operation
 349 * @freq:		frequency to search for
 350 * @available:		true/false - match for available opp
 351 *
 352 * Return: Searches for exact match in the opp table and returns pointer to the
 353 * matching opp if found, else returns ERR_PTR in case of error and should
 354 * be handled using IS_ERR. Error return values can be:
 355 * EINVAL:	for bad pointer
 356 * ERANGE:	no match found for search
 357 * ENODEV:	if device not found in list of registered devices
 358 *
 359 * Note: available is a modifier for the search. if available=true, then the
 360 * match is for exact matching frequency and is available in the stored OPP
 361 * table. if false, the match is for exact frequency which is not available.
 362 *
 363 * This provides a mechanism to enable an opp which is not available currently
 364 * or the opposite as well.
 365 *
 366 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 367 * use.
 368 */
 369struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 370					      unsigned long freq,
 371					      bool available)
 372{
 373	struct opp_table *opp_table;
 374	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 375
 376	opp_table = _find_opp_table(dev);
 377	if (IS_ERR(opp_table)) {
 378		int r = PTR_ERR(opp_table);
 379
 380		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
 381		return ERR_PTR(r);
 382	}
 383
 384	mutex_lock(&opp_table->lock);
 385
 386	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 387		if (temp_opp->available == available &&
 388				temp_opp->rate == freq) {
 389			opp = temp_opp;
 390
 391			/* Increment the reference count of OPP */
 392			dev_pm_opp_get(opp);
 393			break;
 394		}
 395	}
 396
 397	mutex_unlock(&opp_table->lock);
 398	dev_pm_opp_put_opp_table(opp_table);
 399
 400	return opp;
 401}
 402EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 403
 404/**
 405 * dev_pm_opp_find_level_exact() - search for an exact level
 406 * @dev:		device for which we do this operation
 407 * @level:		level to search for
 
 
 
 
 
 
 408 *
 409 * Return: Searches for exact match in the opp table and returns pointer to the
 410 * matching opp if found, else returns ERR_PTR in case of error and should
 411 * be handled using IS_ERR. Error return values can be:
 412 * EINVAL:	for bad pointer
 413 * ERANGE:	no match found for search
 414 * ENODEV:	if device not found in list of registered devices
 415 *
 416 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 417 * use.
 418 */
 419struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 420					       unsigned int level)
 
 421{
 422	struct opp_table *opp_table;
 423	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 424
 425	opp_table = _find_opp_table(dev);
 426	if (IS_ERR(opp_table)) {
 427		int r = PTR_ERR(opp_table);
 428
 429		dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
 430		return ERR_PTR(r);
 431	}
 432
 433	mutex_lock(&opp_table->lock);
 434
 435	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 436		if (temp_opp->level == level) {
 437			opp = temp_opp;
 438
 439			/* Increment the reference count of OPP */
 440			dev_pm_opp_get(opp);
 441			break;
 442		}
 443	}
 444
 445	mutex_unlock(&opp_table->lock);
 446	dev_pm_opp_put_opp_table(opp_table);
 447
 448	return opp;
 449}
 450EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 451
 452static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 453						   unsigned long *freq)
 454{
 455	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 456
 457	mutex_lock(&opp_table->lock);
 458
 459	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 460		if (temp_opp->available && temp_opp->rate >= *freq) {
 461			opp = temp_opp;
 462			*freq = opp->rate;
 463
 464			/* Increment the reference count of OPP */
 465			dev_pm_opp_get(opp);
 466			break;
 467		}
 468	}
 469
 470	mutex_unlock(&opp_table->lock);
 471
 472	return opp;
 473}
 474
 475/**
 476 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 477 * @dev:	device for which we do this operation
 478 * @freq:	Start frequency
 479 *
 480 * Search for the matching ceil *available* OPP from a starting freq
 481 * for a device.
 482 *
 483 * Return: matching *opp and refreshes *freq accordingly, else returns
 484 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 485 * values can be:
 486 * EINVAL:	for bad pointer
 487 * ERANGE:	no match found for search
 488 * ENODEV:	if device not found in list of registered devices
 489 *
 490 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 491 * use.
 492 */
 493struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 494					     unsigned long *freq)
 495{
 496	struct opp_table *opp_table;
 497	struct dev_pm_opp *opp;
 
 498
 499	if (!dev || !freq) {
 500		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 501		return ERR_PTR(-EINVAL);
 502	}
 503
 504	opp_table = _find_opp_table(dev);
 505	if (IS_ERR(opp_table))
 506		return ERR_CAST(opp_table);
 507
 508	opp = _find_freq_ceil(opp_table, freq);
 509
 510	dev_pm_opp_put_opp_table(opp_table);
 511
 512	return opp;
 
 
 
 
 
 
 
 
 
 
 
 
 513}
 514EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 515
 516/**
 517 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 518 * @dev:	device for which we do this operation
 519 * @freq:	Start frequency
 520 *
 521 * Search for the matching floor *available* OPP from a starting freq
 522 * for a device.
 523 *
 524 * Return: matching *opp and refreshes *freq accordingly, else returns
 525 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 526 * values can be:
 527 * EINVAL:	for bad pointer
 528 * ERANGE:	no match found for search
 529 * ENODEV:	if device not found in list of registered devices
 530 *
 531 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 532 * use.
 533 */
 534struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 535					      unsigned long *freq)
 536{
 537	struct opp_table *opp_table;
 538	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 
 539
 540	if (!dev || !freq) {
 541		dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
 542		return ERR_PTR(-EINVAL);
 543	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 544
 545	opp_table = _find_opp_table(dev);
 546	if (IS_ERR(opp_table))
 547		return ERR_CAST(opp_table);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 548
 549	mutex_lock(&opp_table->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550
 551	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 552		if (temp_opp->available) {
 553			/* go to the next node, before choosing prev */
 554			if (temp_opp->rate > *freq)
 555				break;
 556			else
 557				opp = temp_opp;
 558		}
 
 559	}
 560
 561	/* Increment the reference count of OPP */
 562	if (!IS_ERR(opp))
 563		dev_pm_opp_get(opp);
 564	mutex_unlock(&opp_table->lock);
 565	dev_pm_opp_put_opp_table(opp_table);
 566
 567	if (!IS_ERR(opp))
 568		*freq = opp->rate;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 569
 
 
 570	return opp;
 571}
 572EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 573
 574/**
 575 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
 576 *					 target voltage.
 577 * @dev:	Device for which we do this operation.
 578 * @u_volt:	Target voltage.
 579 *
 580 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
 
 581 *
 582 * Return: matching *opp, else returns ERR_PTR in case of error which should be
 583 * handled using IS_ERR.
 584 *
 585 * Error return values can be:
 586 * EINVAL:	bad parameters
 
 587 *
 588 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 589 * use.
 590 */
 591struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
 592						     unsigned long u_volt)
 593{
 594	struct opp_table *opp_table;
 595	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 596
 597	if (!dev || !u_volt) {
 598		dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
 599			u_volt);
 600		return ERR_PTR(-EINVAL);
 601	}
 
 602
 603	opp_table = _find_opp_table(dev);
 604	if (IS_ERR(opp_table))
 605		return ERR_CAST(opp_table);
 606
 607	mutex_lock(&opp_table->lock);
 608
 609	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 610		if (temp_opp->available) {
 611			if (temp_opp->supplies[0].u_volt > u_volt)
 612				break;
 613			opp = temp_opp;
 614		}
 615	}
 616
 617	/* Increment the reference count of OPP */
 618	if (!IS_ERR(opp))
 619		dev_pm_opp_get(opp);
 620
 621	mutex_unlock(&opp_table->lock);
 622	dev_pm_opp_put_opp_table(opp_table);
 
 
 
 
 623
 
 
 
 624	return opp;
 625}
 626EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
 627
 628static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 629			    struct dev_pm_opp_supply *supply)
 630{
 631	int ret;
 632
 633	/* Regulator not available for device */
 634	if (IS_ERR(reg)) {
 635		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 636			PTR_ERR(reg));
 637		return 0;
 638	}
 639
 640	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 641		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 642
 643	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 644					    supply->u_volt, supply->u_volt_max);
 645	if (ret)
 646		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 647			__func__, supply->u_volt_min, supply->u_volt,
 648			supply->u_volt_max, ret);
 649
 650	return ret;
 651}
 652
 653static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
 654					    unsigned long freq)
 
 655{
 
 
 656	int ret;
 657
 658	ret = clk_set_rate(clk, freq);
 
 
 
 
 
 
 
 
 
 
 659	if (ret) {
 660		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 661			ret);
 
 
 662	}
 663
 664	return ret;
 665}
 666
 667static int _generic_set_opp_regulator(struct opp_table *opp_table,
 668				      struct device *dev,
 669				      unsigned long old_freq,
 670				      unsigned long freq,
 671				      struct dev_pm_opp_supply *old_supply,
 672				      struct dev_pm_opp_supply *new_supply)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 673{
 674	struct regulator *reg = opp_table->regulators[0];
 675	int ret;
 676
 677	/* This function only supports single regulator per device */
 678	if (WARN_ON(opp_table->regulator_count > 1)) {
 679		dev_err(dev, "multiple regulators are not supported\n");
 680		return -EINVAL;
 681	}
 682
 683	/* Scaling up? Scale voltage before frequency */
 684	if (freq >= old_freq) {
 685		ret = _set_opp_voltage(dev, reg, new_supply);
 686		if (ret)
 687			goto restore_voltage;
 688	}
 689
 690	/* Change frequency */
 691	ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
 692	if (ret)
 693		goto restore_voltage;
 694
 695	/* Scaling down? Scale voltage after frequency */
 696	if (freq < old_freq) {
 697		ret = _set_opp_voltage(dev, reg, new_supply);
 698		if (ret)
 699			goto restore_freq;
 700	}
 701
 702	/*
 703	 * Enable the regulator after setting its voltages, otherwise it breaks
 704	 * some boot-enabled regulators.
 705	 */
 706	if (unlikely(!opp_table->regulator_enabled)) {
 707		ret = regulator_enable(reg);
 708		if (ret < 0)
 709			dev_warn(dev, "Failed to enable regulator: %d", ret);
 710		else
 711			opp_table->regulator_enabled = true;
 712	}
 713
 714	return 0;
 715
 716restore_freq:
 717	if (_generic_set_opp_clk_only(dev, opp_table->clk, old_freq))
 718		dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
 719			__func__, old_freq);
 720restore_voltage:
 721	/* This shouldn't harm even if the voltages weren't updated earlier */
 722	if (old_supply)
 723		_set_opp_voltage(dev, reg, old_supply);
 724
 725	return ret;
 726}
 727
 728static int _set_opp_bw(const struct opp_table *opp_table,
 729		       struct dev_pm_opp *opp, struct device *dev, bool remove)
 730{
 731	u32 avg, peak;
 732	int i, ret;
 733
 734	if (!opp_table->paths)
 735		return 0;
 736
 737	for (i = 0; i < opp_table->path_count; i++) {
 738		if (remove) {
 739			avg = 0;
 740			peak = 0;
 741		} else {
 742			avg = opp->bandwidth[i].avg;
 743			peak = opp->bandwidth[i].peak;
 744		}
 745		ret = icc_set_bw(opp_table->paths[i], avg, peak);
 746		if (ret) {
 747			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
 748				remove ? "remove" : "set", i, ret);
 749			return ret;
 750		}
 751	}
 752
 753	return 0;
 754}
 755
 756static int _set_opp_custom(const struct opp_table *opp_table,
 757			   struct device *dev, unsigned long old_freq,
 758			   unsigned long freq,
 759			   struct dev_pm_opp_supply *old_supply,
 760			   struct dev_pm_opp_supply *new_supply)
 761{
 762	struct dev_pm_set_opp_data *data;
 763	int size;
 764
 765	data = opp_table->set_opp_data;
 766	data->regulators = opp_table->regulators;
 767	data->regulator_count = opp_table->regulator_count;
 768	data->clk = opp_table->clk;
 769	data->dev = dev;
 770
 771	data->old_opp.rate = old_freq;
 772	size = sizeof(*old_supply) * opp_table->regulator_count;
 773	if (!old_supply)
 774		memset(data->old_opp.supplies, 0, size);
 775	else
 776		memcpy(data->old_opp.supplies, old_supply, size);
 777
 778	data->new_opp.rate = freq;
 779	memcpy(data->new_opp.supplies, new_supply, size);
 780
 781	return opp_table->set_opp(data);
 
 
 
 
 
 
 782}
 783
 784/* This is only called for PM domain for now */
 785static int _set_required_opps(struct device *dev,
 786			      struct opp_table *opp_table,
 787			      struct dev_pm_opp *opp)
 788{
 789	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 790	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
 791	unsigned int pstate;
 792	int i, ret = 0;
 793
 794	if (!required_opp_tables)
 795		return 0;
 796
 797	/* Single genpd case */
 798	if (!genpd_virt_devs) {
 799		pstate = likely(opp) ? opp->required_opps[0]->pstate : 0;
 800		ret = dev_pm_genpd_set_performance_state(dev, pstate);
 801		if (ret) {
 802			dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
 803				dev_name(dev), pstate, ret);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 804		}
 805		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806	}
 807
 808	/* Multiple genpd case */
 
 
 
 
 
 
 
 
 809
 810	/*
 811	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
 812	 * after it is freed from another thread.
 
 813	 */
 814	mutex_lock(&opp_table->genpd_virt_dev_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 815
 816	for (i = 0; i < opp_table->required_opp_count; i++) {
 817		pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818
 819		if (!genpd_virt_devs[i])
 820			continue;
 
 821
 822		ret = dev_pm_genpd_set_performance_state(genpd_virt_devs[i], pstate);
 823		if (ret) {
 824			dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
 825				dev_name(genpd_virt_devs[i]), pstate, ret);
 826			break;
 
 
 
 
 
 
 
 
 
 
 827		}
 828	}
 829	mutex_unlock(&opp_table->genpd_virt_dev_lock);
 830
 831	return ret;
 832}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 833
 834/**
 835 * dev_pm_opp_set_bw() - sets bandwidth levels corresponding to an opp
 836 * @dev:	device for which we do this operation
 837 * @opp:	opp based on which the bandwidth levels are to be configured
 838 *
 839 * This configures the bandwidth to the levels specified by the OPP. However
 840 * if the OPP specified is NULL the bandwidth levels are cleared out.
 841 *
 842 * Return: 0 on success or a negative error value.
 843 */
 844int dev_pm_opp_set_bw(struct device *dev, struct dev_pm_opp *opp)
 845{
 846	struct opp_table *opp_table;
 847	int ret;
 848
 849	opp_table = _find_opp_table(dev);
 850	if (IS_ERR(opp_table)) {
 851		dev_err(dev, "%s: device opp table doesn't exist\n", __func__);
 852		return PTR_ERR(opp_table);
 
 853	}
 854
 855	if (opp)
 856		ret = _set_opp_bw(opp_table, opp, dev, false);
 857	else
 858		ret = _set_opp_bw(opp_table, NULL, dev, true);
 
 
 859
 860	dev_pm_opp_put_opp_table(opp_table);
 861	return ret;
 862}
 863EXPORT_SYMBOL_GPL(dev_pm_opp_set_bw);
 864
 865/**
 866 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
 867 * @dev:	 device for which we do this operation
 868 * @target_freq: frequency to achieve
 869 *
 870 * This configures the power-supplies to the levels specified by the OPP
 871 * corresponding to the target_freq, and programs the clock to a value <=
 872 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
 873 * provided by the opp, should have already rounded to the target OPP's
 874 * frequency.
 875 */
 876int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
 877{
 878	struct opp_table *opp_table;
 879	unsigned long freq, old_freq, temp_freq;
 880	struct dev_pm_opp *old_opp, *opp;
 881	struct clk *clk;
 882	int ret;
 883
 884	opp_table = _find_opp_table(dev);
 885	if (IS_ERR(opp_table)) {
 886		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
 887		return PTR_ERR(opp_table);
 888	}
 889
 890	if (unlikely(!target_freq)) {
 891		/*
 892		 * Some drivers need to support cases where some platforms may
 893		 * have OPP table for the device, while others don't and
 894		 * opp_set_rate() just needs to behave like clk_set_rate().
 
 
 895		 */
 896		if (!_get_opp_count(opp_table)) {
 897			ret = 0;
 
 898			goto put_opp_table;
 899		}
 900
 901		if (!opp_table->required_opp_tables && !opp_table->regulators &&
 902		    !opp_table->paths) {
 903			dev_err(dev, "target frequency can't be 0\n");
 904			ret = -EINVAL;
 905			goto put_opp_table;
 906		}
 907
 908		ret = _set_opp_bw(opp_table, NULL, dev, true);
 909		if (ret)
 
 
 
 
 
 
 
 
 
 910			goto put_opp_table;
 911
 912		if (opp_table->regulator_enabled) {
 913			regulator_disable(opp_table->regulators[0]);
 914			opp_table->regulator_enabled = false;
 915		}
 916
 917		ret = _set_required_opps(dev, opp_table, NULL);
 918		goto put_opp_table;
 
 
 
 
 
 
 919	}
 920
 921	clk = opp_table->clk;
 922	if (IS_ERR(clk)) {
 923		dev_err(dev, "%s: No clock available for the device\n",
 924			__func__);
 925		ret = PTR_ERR(clk);
 926		goto put_opp_table;
 927	}
 928
 929	freq = clk_round_rate(clk, target_freq);
 930	if ((long)freq <= 0)
 931		freq = target_freq;
 932
 933	old_freq = clk_get_rate(clk);
 
 
 
 
 934
 935	/* Return early if nothing to do */
 936	if (old_freq == freq) {
 937		if (!opp_table->required_opp_tables && !opp_table->regulators &&
 938		    !opp_table->paths) {
 939			dev_dbg(dev, "%s: old/new frequencies (%lu Hz) are same, nothing to do\n",
 940				__func__, freq);
 941			ret = 0;
 942			goto put_opp_table;
 943		}
 944	}
 
 
 
 
 945
 946	/*
 947	 * For IO devices which require an OPP on some platforms/SoCs
 948	 * while just needing to scale the clock on some others
 949	 * we look for empty OPP tables with just a clock handle and
 950	 * scale only the clk. This makes dev_pm_opp_set_rate()
 951	 * equivalent to a clk_set_rate()
 952	 */
 953	if (!_get_opp_count(opp_table)) {
 954		ret = _generic_set_opp_clk_only(dev, clk, freq);
 955		goto put_opp_table;
 956	}
 957
 958	temp_freq = old_freq;
 959	old_opp = _find_freq_ceil(opp_table, &temp_freq);
 960	if (IS_ERR(old_opp)) {
 961		dev_err(dev, "%s: failed to find current OPP for freq %lu (%ld)\n",
 962			__func__, old_freq, PTR_ERR(old_opp));
 963	}
 964
 965	temp_freq = freq;
 966	opp = _find_freq_ceil(opp_table, &temp_freq);
 967	if (IS_ERR(opp)) {
 968		ret = PTR_ERR(opp);
 969		dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
 970			__func__, freq, ret);
 971		goto put_old_opp;
 972	}
 973
 974	dev_dbg(dev, "%s: switching OPP: %lu Hz --> %lu Hz\n", __func__,
 975		old_freq, freq);
 976
 977	/* Scaling up? Configure required OPPs before frequency */
 978	if (freq >= old_freq) {
 979		ret = _set_required_opps(dev, opp_table, opp);
 980		if (ret)
 981			goto put_opp;
 982	}
 983
 984	if (opp_table->set_opp) {
 985		ret = _set_opp_custom(opp_table, dev, old_freq, freq,
 986				      IS_ERR(old_opp) ? NULL : old_opp->supplies,
 987				      opp->supplies);
 988	} else if (opp_table->regulators) {
 989		ret = _generic_set_opp_regulator(opp_table, dev, old_freq, freq,
 990						 IS_ERR(old_opp) ? NULL : old_opp->supplies,
 991						 opp->supplies);
 992	} else {
 993		/* Only frequency scaling */
 994		ret = _generic_set_opp_clk_only(dev, clk, freq);
 995	}
 996
 997	/* Scaling down? Configure required OPPs after frequency */
 998	if (!ret && freq < old_freq) {
 999		ret = _set_required_opps(dev, opp_table, opp);
1000		if (ret)
1001			dev_err(dev, "Failed to set required opps: %d\n", ret);
1002	}
1003
1004	if (!ret)
1005		ret = _set_opp_bw(opp_table, opp, dev, false);
1006
1007put_opp:
1008	dev_pm_opp_put(opp);
1009put_old_opp:
1010	if (!IS_ERR(old_opp))
1011		dev_pm_opp_put(old_opp);
1012put_opp_table:
1013	dev_pm_opp_put_opp_table(opp_table);
1014	return ret;
1015}
1016EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1017
1018/* OPP-dev Helpers */
1019static void _remove_opp_dev(struct opp_device *opp_dev,
1020			    struct opp_table *opp_table)
1021{
1022	opp_debug_unregister(opp_dev, opp_table);
1023	list_del(&opp_dev->node);
1024	kfree(opp_dev);
1025}
1026
1027static struct opp_device *_add_opp_dev_unlocked(const struct device *dev,
1028						struct opp_table *opp_table)
1029{
1030	struct opp_device *opp_dev;
1031
1032	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1033	if (!opp_dev)
1034		return NULL;
1035
1036	/* Initialize opp-dev */
1037	opp_dev->dev = dev;
1038
 
1039	list_add(&opp_dev->node, &opp_table->dev_list);
 
1040
1041	/* Create debugfs entries for the opp_table */
1042	opp_debug_register(opp_dev, opp_table);
1043
1044	return opp_dev;
1045}
1046
1047struct opp_device *_add_opp_dev(const struct device *dev,
1048				struct opp_table *opp_table)
1049{
1050	struct opp_device *opp_dev;
1051
1052	mutex_lock(&opp_table->lock);
1053	opp_dev = _add_opp_dev_unlocked(dev, opp_table);
1054	mutex_unlock(&opp_table->lock);
1055
1056	return opp_dev;
1057}
1058
1059static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1060{
1061	struct opp_table *opp_table;
1062	struct opp_device *opp_dev;
1063	int ret;
1064
1065	/*
1066	 * Allocate a new OPP table. In the infrequent case where a new
1067	 * device is needed to be added, we pay this penalty.
1068	 */
1069	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1070	if (!opp_table)
1071		return NULL;
1072
1073	mutex_init(&opp_table->lock);
1074	mutex_init(&opp_table->genpd_virt_dev_lock);
1075	INIT_LIST_HEAD(&opp_table->dev_list);
 
 
 
1076
1077	/* Mark regulator count uninitialized */
1078	opp_table->regulator_count = -1;
1079
1080	opp_dev = _add_opp_dev(dev, opp_table);
1081	if (!opp_dev) {
1082		kfree(opp_table);
1083		return NULL;
1084	}
1085
1086	_of_init_opp_table(opp_table, dev, index);
1087
1088	/* Find clk for the device */
1089	opp_table->clk = clk_get(dev, NULL);
1090	if (IS_ERR(opp_table->clk)) {
1091		ret = PTR_ERR(opp_table->clk);
1092		if (ret != -EPROBE_DEFER)
1093			dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__,
1094				ret);
1095	}
1096
1097	/* Find interconnect path(s) for the device */
1098	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1099	if (ret)
 
 
 
1100		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1101			 __func__, ret);
 
1102
1103	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1104	INIT_LIST_HEAD(&opp_table->opp_list);
1105	kref_init(&opp_table->kref);
1106
1107	/* Secure the device table modification */
1108	list_add(&opp_table->node, &opp_tables);
1109	return opp_table;
 
 
 
 
 
 
 
 
1110}
1111
1112void _get_opp_table_kref(struct opp_table *opp_table)
1113{
1114	kref_get(&opp_table->kref);
1115}
1116
1117static struct opp_table *_opp_get_opp_table(struct device *dev, int index)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1118{
1119	struct opp_table *opp_table;
1120
1121	/* Hold our table modification lock here */
1122	mutex_lock(&opp_table_lock);
1123
1124	opp_table = _find_opp_table_unlocked(dev);
1125	if (!IS_ERR(opp_table))
1126		goto unlock;
1127
 
 
 
 
 
 
 
 
 
 
 
1128	opp_table = _managed_opp(dev, index);
 
 
 
 
1129	if (opp_table) {
1130		if (!_add_opp_dev_unlocked(dev, opp_table)) {
1131			dev_pm_opp_put_opp_table(opp_table);
1132			opp_table = NULL;
1133		}
1134		goto unlock;
 
 
 
 
 
 
 
1135	}
1136
1137	opp_table = _allocate_opp_table(dev, index);
1138
1139unlock:
1140	mutex_unlock(&opp_table_lock);
1141
1142	return opp_table;
1143}
1144
1145struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1146{
1147	return _opp_get_opp_table(dev, 0);
1148}
1149EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1150
1151struct opp_table *dev_pm_opp_get_opp_table_indexed(struct device *dev,
1152						   int index)
1153{
1154	return _opp_get_opp_table(dev, index);
1155}
 
1156
1157static void _opp_table_kref_release(struct kref *kref)
1158{
1159	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1160	struct opp_device *opp_dev, *temp;
1161	int i;
1162
 
 
 
 
 
 
 
1163	_of_clear_opp_table(opp_table);
1164
1165	/* Release clk */
1166	if (!IS_ERR(opp_table->clk))
1167		clk_put(opp_table->clk);
1168
1169	if (opp_table->paths) {
1170		for (i = 0; i < opp_table->path_count; i++)
1171			icc_put(opp_table->paths[i]);
1172		kfree(opp_table->paths);
1173	}
1174
1175	WARN_ON(!list_empty(&opp_table->opp_list));
1176
1177	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1178		/*
1179		 * The OPP table is getting removed, drop the performance state
1180		 * constraints.
1181		 */
1182		if (opp_table->genpd_performance_state)
1183			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1184
1185		_remove_opp_dev(opp_dev, opp_table);
1186	}
1187
1188	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1189	mutex_destroy(&opp_table->lock);
1190	list_del(&opp_table->node);
1191	kfree(opp_table);
1192
1193	mutex_unlock(&opp_table_lock);
1194}
1195
1196void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1197{
1198	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1199		       &opp_table_lock);
1200}
1201EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1202
1203void _opp_free(struct dev_pm_opp *opp)
1204{
1205	kfree(opp);
1206}
1207
1208static void _opp_kref_release(struct dev_pm_opp *opp,
1209			      struct opp_table *opp_table)
1210{
 
 
 
 
 
 
1211	/*
1212	 * Notify the changes in the availability of the operable
1213	 * frequency/voltage list.
1214	 */
1215	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1216	_of_opp_free_required_opps(opp_table, opp);
1217	opp_debug_remove_one(opp);
1218	list_del(&opp->node);
1219	kfree(opp);
1220}
1221
1222static void _opp_kref_release_unlocked(struct kref *kref)
1223{
1224	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1225	struct opp_table *opp_table = opp->opp_table;
1226
1227	_opp_kref_release(opp, opp_table);
1228}
1229
1230static void _opp_kref_release_locked(struct kref *kref)
1231{
1232	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1233	struct opp_table *opp_table = opp->opp_table;
1234
1235	_opp_kref_release(opp, opp_table);
1236	mutex_unlock(&opp_table->lock);
1237}
1238
1239void dev_pm_opp_get(struct dev_pm_opp *opp)
1240{
1241	kref_get(&opp->kref);
1242}
1243
1244void dev_pm_opp_put(struct dev_pm_opp *opp)
1245{
1246	kref_put_mutex(&opp->kref, _opp_kref_release_locked,
1247		       &opp->opp_table->lock);
1248}
1249EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1250
1251static void dev_pm_opp_put_unlocked(struct dev_pm_opp *opp)
1252{
1253	kref_put(&opp->kref, _opp_kref_release_unlocked);
1254}
1255
1256/**
1257 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1258 * @dev:	device for which we do this operation
1259 * @freq:	OPP to remove with matching 'freq'
1260 *
1261 * This function removes an opp from the opp table.
1262 */
1263void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1264{
1265	struct dev_pm_opp *opp;
1266	struct opp_table *opp_table;
1267	bool found = false;
1268
1269	opp_table = _find_opp_table(dev);
1270	if (IS_ERR(opp_table))
1271		return;
1272
 
 
 
1273	mutex_lock(&opp_table->lock);
1274
1275	list_for_each_entry(opp, &opp_table->opp_list, node) {
1276		if (opp->rate == freq) {
1277			found = true;
1278			break;
1279		}
1280	}
1281
1282	mutex_unlock(&opp_table->lock);
1283
1284	if (found) {
1285		dev_pm_opp_put(opp);
1286
1287		/* Drop the reference taken by dev_pm_opp_add() */
1288		dev_pm_opp_put_opp_table(opp_table);
1289	} else {
1290		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1291			 __func__, freq);
1292	}
1293
 
1294	/* Drop the reference taken by _find_opp_table() */
1295	dev_pm_opp_put_opp_table(opp_table);
1296}
1297EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1298
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299bool _opp_remove_all_static(struct opp_table *opp_table)
1300{
1301	struct dev_pm_opp *opp, *tmp;
1302	bool ret = true;
1303
1304	mutex_lock(&opp_table->lock);
1305
1306	if (!opp_table->parsed_static_opps) {
1307		ret = false;
1308		goto unlock;
1309	}
1310
1311	if (--opp_table->parsed_static_opps)
1312		goto unlock;
1313
1314	list_for_each_entry_safe(opp, tmp, &opp_table->opp_list, node) {
1315		if (!opp->dynamic)
1316			dev_pm_opp_put_unlocked(opp);
1317	}
1318
1319unlock:
1320	mutex_unlock(&opp_table->lock);
1321
1322	return ret;
 
1323}
1324
1325/**
1326 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1327 * @dev:	device for which we do this operation
1328 *
1329 * This function removes all dynamically created OPPs from the opp table.
1330 */
1331void dev_pm_opp_remove_all_dynamic(struct device *dev)
1332{
1333	struct opp_table *opp_table;
1334	struct dev_pm_opp *opp, *temp;
1335	int count = 0;
1336
1337	opp_table = _find_opp_table(dev);
1338	if (IS_ERR(opp_table))
1339		return;
1340
1341	mutex_lock(&opp_table->lock);
1342	list_for_each_entry_safe(opp, temp, &opp_table->opp_list, node) {
1343		if (opp->dynamic) {
1344			dev_pm_opp_put_unlocked(opp);
1345			count++;
1346		}
1347	}
1348	mutex_unlock(&opp_table->lock);
1349
1350	/* Drop the references taken by dev_pm_opp_add() */
1351	while (count--)
1352		dev_pm_opp_put_opp_table(opp_table);
1353
1354	/* Drop the reference taken by _find_opp_table() */
1355	dev_pm_opp_put_opp_table(opp_table);
1356}
1357EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1358
1359struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1360{
1361	struct dev_pm_opp *opp;
1362	int supply_count, supply_size, icc_size;
1363
1364	/* Allocate space for at least one supply */
1365	supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
 
1366	supply_size = sizeof(*opp->supplies) * supply_count;
1367	icc_size = sizeof(*opp->bandwidth) * table->path_count;
 
1368
1369	/* allocate new OPP node and supplies structures */
1370	opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1371
1372	if (!opp)
1373		return NULL;
1374
1375	/* Put the supplies at the end of the OPP structure as an empty array */
1376	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
 
 
 
1377	if (icc_size)
1378		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
 
1379	INIT_LIST_HEAD(&opp->node);
1380
 
 
1381	return opp;
1382}
1383
1384static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1385					 struct opp_table *opp_table)
1386{
1387	struct regulator *reg;
1388	int i;
1389
1390	if (!opp_table->regulators)
1391		return true;
1392
1393	for (i = 0; i < opp_table->regulator_count; i++) {
1394		reg = opp_table->regulators[i];
1395
1396		if (!regulator_is_supported_voltage(reg,
1397					opp->supplies[i].u_volt_min,
1398					opp->supplies[i].u_volt_max)) {
1399			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1400				__func__, opp->supplies[i].u_volt_min,
1401				opp->supplies[i].u_volt_max);
1402			return false;
1403		}
1404	}
1405
1406	return true;
1407}
1408
1409int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1410{
1411	if (opp1->rate != opp2->rate)
1412		return opp1->rate < opp2->rate ? -1 : 1;
1413	if (opp1->bandwidth && opp2->bandwidth &&
1414	    opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1415		return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
 
 
 
 
 
1416	if (opp1->level != opp2->level)
1417		return opp1->level < opp2->level ? -1 : 1;
 
 
1418	return 0;
1419}
1420
1421static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1422			     struct opp_table *opp_table,
1423			     struct list_head **head)
1424{
1425	struct dev_pm_opp *opp;
1426	int opp_cmp;
1427
1428	/*
1429	 * Insert new OPP in order of increasing frequency and discard if
1430	 * already present.
1431	 *
1432	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1433	 * loop, don't replace it with head otherwise it will become an infinite
1434	 * loop.
1435	 */
1436	list_for_each_entry(opp, &opp_table->opp_list, node) {
1437		opp_cmp = _opp_compare_key(new_opp, opp);
1438		if (opp_cmp > 0) {
1439			*head = &opp->node;
1440			continue;
1441		}
1442
1443		if (opp_cmp < 0)
1444			return 0;
1445
1446		/* Duplicate OPPs */
1447		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1448			 __func__, opp->rate, opp->supplies[0].u_volt,
1449			 opp->available, new_opp->rate,
1450			 new_opp->supplies[0].u_volt, new_opp->available);
1451
1452		/* Should we compare voltages for all regulators here ? */
1453		return opp->available &&
1454		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1455	}
1456
1457	return 0;
1458}
1459
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1460/*
1461 * Returns:
1462 * 0: On success. And appropriate error message for duplicate OPPs.
1463 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1464 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1465 *  sure we don't print error messages unnecessarily if different parts of
1466 *  kernel try to initialize the OPP table.
1467 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1468 *  should be considered an error by the callers of _opp_add().
1469 */
1470int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1471	     struct opp_table *opp_table, bool rate_not_available)
1472{
1473	struct list_head *head;
1474	int ret;
1475
1476	mutex_lock(&opp_table->lock);
1477	head = &opp_table->opp_list;
1478
1479	if (likely(!rate_not_available)) {
1480		ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1481		if (ret) {
1482			mutex_unlock(&opp_table->lock);
1483			return ret;
1484		}
1485	}
1486
1487	list_add(&new_opp->node, head);
1488	mutex_unlock(&opp_table->lock);
1489
1490	new_opp->opp_table = opp_table;
1491	kref_init(&new_opp->kref);
1492
1493	opp_debug_create_one(new_opp, opp_table);
1494
1495	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1496		new_opp->available = false;
1497		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1498			 __func__, new_opp->rate);
1499	}
1500
 
 
 
 
 
 
1501	return 0;
1502}
1503
1504/**
1505 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1506 * @opp_table:	OPP table
1507 * @dev:	device for which we do this operation
1508 * @freq:	Frequency in Hz for this OPP
1509 * @u_volt:	Voltage in uVolts for this OPP
1510 * @dynamic:	Dynamically added OPPs.
1511 *
1512 * This function adds an opp definition to the opp table and returns status.
1513 * The opp is made available by default and it can be controlled using
1514 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1515 *
1516 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1517 * and freed by dev_pm_opp_of_remove_table.
1518 *
1519 * Return:
1520 * 0		On success OR
1521 *		Duplicate OPPs (both freq and volt are same) and opp->available
1522 * -EEXIST	Freq are same and volt are different OR
1523 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1524 * -ENOMEM	Memory allocation failure
1525 */
1526int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1527		unsigned long freq, long u_volt, bool dynamic)
1528{
1529	struct dev_pm_opp *new_opp;
1530	unsigned long tol;
1531	int ret;
1532
 
 
 
1533	new_opp = _opp_allocate(opp_table);
1534	if (!new_opp)
1535		return -ENOMEM;
1536
1537	/* populate the opp table */
1538	new_opp->rate = freq;
 
 
1539	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1540	new_opp->supplies[0].u_volt = u_volt;
1541	new_opp->supplies[0].u_volt_min = u_volt - tol;
1542	new_opp->supplies[0].u_volt_max = u_volt + tol;
1543	new_opp->available = true;
1544	new_opp->dynamic = dynamic;
1545
1546	ret = _opp_add(dev, new_opp, opp_table, false);
1547	if (ret) {
1548		/* Don't return error for duplicate OPPs */
1549		if (ret == -EBUSY)
1550			ret = 0;
1551		goto free_opp;
1552	}
1553
1554	/*
1555	 * Notify the changes in the availability of the operable
1556	 * frequency/voltage list.
1557	 */
1558	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1559	return 0;
1560
1561free_opp:
1562	_opp_free(new_opp);
1563
1564	return ret;
1565}
1566
1567/**
1568 * dev_pm_opp_set_supported_hw() - Set supported platforms
1569 * @dev: Device for which supported-hw has to be set.
1570 * @versions: Array of hierarchy of versions to match.
1571 * @count: Number of elements in the array.
1572 *
1573 * This is required only for the V2 bindings, and it enables a platform to
1574 * specify the hierarchy of versions it supports. OPP layer will then enable
1575 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1576 * property.
1577 */
1578struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1579			const u32 *versions, unsigned int count)
1580{
1581	struct opp_table *opp_table;
1582
1583	opp_table = dev_pm_opp_get_opp_table(dev);
1584	if (!opp_table)
1585		return ERR_PTR(-ENOMEM);
1586
1587	/* Make sure there are no concurrent readers while updating opp_table */
1588	WARN_ON(!list_empty(&opp_table->opp_list));
1589
1590	/* Another CPU that shares the OPP table has set the property ? */
1591	if (opp_table->supported_hw)
1592		return opp_table;
1593
1594	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1595					GFP_KERNEL);
1596	if (!opp_table->supported_hw) {
1597		dev_pm_opp_put_opp_table(opp_table);
1598		return ERR_PTR(-ENOMEM);
1599	}
1600
1601	opp_table->supported_hw_count = count;
1602
1603	return opp_table;
1604}
1605EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1606
1607/**
1608 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1609 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1610 *
1611 * This is required only for the V2 bindings, and is called for a matching
1612 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1613 * will not be freed.
1614 */
1615void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1616{
1617	/* Make sure there are no concurrent readers while updating opp_table */
1618	WARN_ON(!list_empty(&opp_table->opp_list));
1619
1620	kfree(opp_table->supported_hw);
1621	opp_table->supported_hw = NULL;
1622	opp_table->supported_hw_count = 0;
1623
1624	dev_pm_opp_put_opp_table(opp_table);
1625}
1626EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1627
1628/**
1629 * dev_pm_opp_set_prop_name() - Set prop-extn name
1630 * @dev: Device for which the prop-name has to be set.
1631 * @name: name to postfix to properties.
1632 *
1633 * This is required only for the V2 bindings, and it enables a platform to
1634 * specify the extn to be used for certain property names. The properties to
1635 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1636 * should postfix the property name with -<name> while looking for them.
1637 */
1638struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1639{
1640	struct opp_table *opp_table;
1641
1642	opp_table = dev_pm_opp_get_opp_table(dev);
1643	if (!opp_table)
1644		return ERR_PTR(-ENOMEM);
1645
1646	/* Make sure there are no concurrent readers while updating opp_table */
1647	WARN_ON(!list_empty(&opp_table->opp_list));
1648
1649	/* Another CPU that shares the OPP table has set the property ? */
1650	if (opp_table->prop_name)
1651		return opp_table;
1652
1653	opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1654	if (!opp_table->prop_name) {
1655		dev_pm_opp_put_opp_table(opp_table);
1656		return ERR_PTR(-ENOMEM);
 
1657	}
1658
1659	return opp_table;
1660}
1661EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1662
1663/**
1664 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1665 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1666 *
1667 * This is required only for the V2 bindings, and is called for a matching
1668 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1669 * will not be freed.
1670 */
1671void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1672{
1673	/* Make sure there are no concurrent readers while updating opp_table */
1674	WARN_ON(!list_empty(&opp_table->opp_list));
1675
1676	kfree(opp_table->prop_name);
1677	opp_table->prop_name = NULL;
1678
1679	dev_pm_opp_put_opp_table(opp_table);
1680}
1681EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1682
1683static int _allocate_set_opp_data(struct opp_table *opp_table)
1684{
1685	struct dev_pm_set_opp_data *data;
1686	int len, count = opp_table->regulator_count;
1687
1688	if (WARN_ON(!opp_table->regulators))
1689		return -EINVAL;
1690
1691	/* space for set_opp_data */
1692	len = sizeof(*data);
1693
1694	/* space for old_opp.supplies and new_opp.supplies */
1695	len += 2 * sizeof(struct dev_pm_opp_supply) * count;
1696
1697	data = kzalloc(len, GFP_KERNEL);
1698	if (!data)
1699		return -ENOMEM;
1700
1701	data->old_opp.supplies = (void *)(data + 1);
1702	data->new_opp.supplies = data->old_opp.supplies + count;
1703
1704	opp_table->set_opp_data = data;
1705
1706	return 0;
1707}
1708
1709static void _free_set_opp_data(struct opp_table *opp_table)
1710{
1711	kfree(opp_table->set_opp_data);
1712	opp_table->set_opp_data = NULL;
 
 
1713}
1714
1715/**
1716 * dev_pm_opp_set_regulators() - Set regulator names for the device
1717 * @dev: Device for which regulator name is being set.
1718 * @names: Array of pointers to the names of the regulator.
1719 * @count: Number of regulators.
1720 *
1721 * In order to support OPP switching, OPP layer needs to know the name of the
1722 * device's regulators, as the core would be required to switch voltages as
1723 * well.
1724 *
1725 * This must be called before any OPPs are initialized for the device.
1726 */
1727struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1728					    const char * const names[],
1729					    unsigned int count)
1730{
1731	struct opp_table *opp_table;
1732	struct regulator *reg;
1733	int ret, i;
1734
1735	opp_table = dev_pm_opp_get_opp_table(dev);
1736	if (!opp_table)
1737		return ERR_PTR(-ENOMEM);
1738
1739	/* This should be called before OPPs are initialized */
1740	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1741		ret = -EBUSY;
1742		goto err;
1743	}
1744
1745	/* Another CPU that shares the OPP table has set the regulators ? */
1746	if (opp_table->regulators)
1747		return opp_table;
1748
1749	opp_table->regulators = kmalloc_array(count,
1750					      sizeof(*opp_table->regulators),
1751					      GFP_KERNEL);
1752	if (!opp_table->regulators) {
1753		ret = -ENOMEM;
1754		goto err;
1755	}
1756
1757	for (i = 0; i < count; i++) {
1758		reg = regulator_get_optional(dev, names[i]);
1759		if (IS_ERR(reg)) {
1760			ret = PTR_ERR(reg);
1761			if (ret != -EPROBE_DEFER)
1762				dev_err(dev, "%s: no regulator (%s) found: %d\n",
1763					__func__, names[i], ret);
1764			goto free_regulators;
1765		}
1766
1767		opp_table->regulators[i] = reg;
1768	}
1769
1770	opp_table->regulator_count = count;
1771
1772	/* Allocate block only once to pass to set_opp() routines */
1773	ret = _allocate_set_opp_data(opp_table);
1774	if (ret)
1775		goto free_regulators;
1776
1777	return opp_table;
1778
1779free_regulators:
1780	while (i != 0)
1781		regulator_put(opp_table->regulators[--i]);
1782
1783	kfree(opp_table->regulators);
1784	opp_table->regulators = NULL;
1785	opp_table->regulator_count = -1;
1786err:
1787	dev_pm_opp_put_opp_table(opp_table);
1788
1789	return ERR_PTR(ret);
1790}
1791EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
1792
1793/**
1794 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
1795 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
1796 */
1797void dev_pm_opp_put_regulators(struct opp_table *opp_table)
1798{
1799	int i;
1800
1801	if (!opp_table->regulators)
1802		goto put_opp_table;
1803
1804	/* Make sure there are no concurrent readers while updating opp_table */
1805	WARN_ON(!list_empty(&opp_table->opp_list));
1806
1807	if (opp_table->regulator_enabled) {
1808		for (i = opp_table->regulator_count - 1; i >= 0; i--)
1809			regulator_disable(opp_table->regulators[i]);
1810
1811		opp_table->regulator_enabled = false;
1812	}
1813
1814	for (i = opp_table->regulator_count - 1; i >= 0; i--)
1815		regulator_put(opp_table->regulators[i]);
1816
1817	_free_set_opp_data(opp_table);
1818
1819	kfree(opp_table->regulators);
1820	opp_table->regulators = NULL;
1821	opp_table->regulator_count = -1;
 
1822
1823put_opp_table:
1824	dev_pm_opp_put_opp_table(opp_table);
 
 
 
 
 
 
 
1825}
1826EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
1827
1828/**
1829 * dev_pm_opp_set_clkname() - Set clk name for the device
1830 * @dev: Device for which clk name is being set.
1831 * @name: Clk name.
1832 *
1833 * In order to support OPP switching, OPP layer needs to get pointer to the
1834 * clock for the device. Simple cases work fine without using this routine (i.e.
1835 * by passing connection-id as NULL), but for a device with multiple clocks
1836 * available, the OPP core needs to know the exact name of the clk to use.
1837 *
1838 * This must be called before any OPPs are initialized for the device.
1839 */
1840struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
 
 
1841{
1842	struct opp_table *opp_table;
1843	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
1844
1845	opp_table = dev_pm_opp_get_opp_table(dev);
1846	if (!opp_table)
1847		return ERR_PTR(-ENOMEM);
1848
1849	/* This should be called before OPPs are initialized */
1850	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1851		ret = -EBUSY;
1852		goto err;
1853	}
1854
1855	/* Already have default clk set, free it */
1856	if (!IS_ERR(opp_table->clk))
1857		clk_put(opp_table->clk);
 
1858
1859	/* Find clk for the device */
1860	opp_table->clk = clk_get(dev, name);
1861	if (IS_ERR(opp_table->clk)) {
1862		ret = PTR_ERR(opp_table->clk);
1863		if (ret != -EPROBE_DEFER) {
1864			dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
1865				ret);
 
1866		}
1867		goto err;
 
1868	}
1869
1870	return opp_table;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1871
1872err:
1873	dev_pm_opp_put_opp_table(opp_table);
1874
1875	return ERR_PTR(ret);
 
 
1876}
1877EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
1878
1879/**
1880 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
1881 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
1882 */
1883void dev_pm_opp_put_clkname(struct opp_table *opp_table)
1884{
1885	/* Make sure there are no concurrent readers while updating opp_table */
1886	WARN_ON(!list_empty(&opp_table->opp_list));
1887
1888	clk_put(opp_table->clk);
1889	opp_table->clk = ERR_PTR(-EINVAL);
1890
1891	dev_pm_opp_put_opp_table(opp_table);
1892}
1893EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
1894
1895/**
1896 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
1897 * @dev: Device for which the helper is getting registered.
1898 * @set_opp: Custom set OPP helper.
1899 *
1900 * This is useful to support complex platforms (like platforms with multiple
1901 * regulators per device), instead of the generic OPP set rate helper.
1902 *
1903 * This must be called before any OPPs are initialized for the device.
1904 */
1905struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
1906			int (*set_opp)(struct dev_pm_set_opp_data *data))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1907{
1908	struct opp_table *opp_table;
 
1909
1910	if (!set_opp)
1911		return ERR_PTR(-EINVAL);
 
 
 
1912
1913	opp_table = dev_pm_opp_get_opp_table(dev);
1914	if (!opp_table)
1915		return ERR_PTR(-ENOMEM);
 
1916
1917	/* This should be called before OPPs are initialized */
1918	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1919		dev_pm_opp_put_opp_table(opp_table);
1920		return ERR_PTR(-EBUSY);
1921	}
1922
1923	/* Another CPU that shares the OPP table has set the helper ? */
1924	if (!opp_table->set_opp)
1925		opp_table->set_opp = set_opp;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1926
1927	return opp_table;
 
1928}
1929EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
1930
1931/**
1932 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
1933 *					   set_opp helper
1934 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
1935 *
1936 * Release resources blocked for platform specific set_opp helper.
1937 */
1938void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
1939{
1940	/* Make sure there are no concurrent readers while updating opp_table */
1941	WARN_ON(!list_empty(&opp_table->opp_list));
1942
1943	opp_table->set_opp = NULL;
1944	dev_pm_opp_put_opp_table(opp_table);
1945}
1946EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
1947
1948static void _opp_detach_genpd(struct opp_table *opp_table)
1949{
1950	int index;
 
 
 
 
 
 
 
 
 
 
 
 
1951
1952	for (index = 0; index < opp_table->required_opp_count; index++) {
1953		if (!opp_table->genpd_virt_devs[index])
1954			continue;
1955
1956		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
1957		opp_table->genpd_virt_devs[index] = NULL;
1958	}
1959
1960	kfree(opp_table->genpd_virt_devs);
1961	opp_table->genpd_virt_devs = NULL;
1962}
1963
1964/**
1965 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
1966 * @dev: Consumer device for which the genpd is getting attached.
1967 * @names: Null terminated array of pointers containing names of genpd to attach.
1968 * @virt_devs: Pointer to return the array of virtual devices.
1969 *
1970 * Multiple generic power domains for a device are supported with the help of
1971 * virtual genpd devices, which are created for each consumer device - genpd
1972 * pair. These are the device structures which are attached to the power domain
1973 * and are required by the OPP core to set the performance state of the genpd.
1974 * The same API also works for the case where single genpd is available and so
1975 * we don't need to support that separately.
1976 *
1977 * This helper will normally be called by the consumer driver of the device
1978 * "dev", as only that has details of the genpd names.
1979 *
1980 * This helper needs to be called once with a list of all genpd to attach.
1981 * Otherwise the original device structure will be used instead by the OPP core.
 
 
1982 *
1983 * The order of entries in the names array must match the order in which
1984 * "required-opps" are added in DT.
 
 
1985 */
1986struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
1987		const char **names, struct device ***virt_devs)
1988{
1989	struct opp_table *opp_table;
1990	struct device *virt_dev;
1991	int index = 0, ret = -EINVAL;
1992	const char **name = names;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1993
1994	opp_table = dev_pm_opp_get_opp_table(dev);
1995	if (!opp_table)
1996		return ERR_PTR(-ENOMEM);
 
 
 
1997
1998	/*
1999	 * If the genpd's OPP table isn't already initialized, parsing of the
2000	 * required-opps fail for dev. We should retry this after genpd's OPP
2001	 * table is added.
2002	 */
2003	if (!opp_table->required_opp_count) {
2004		ret = -EPROBE_DEFER;
2005		goto put_table;
2006	}
2007
2008	mutex_lock(&opp_table->genpd_virt_dev_lock);
 
 
 
 
2009
2010	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2011					     sizeof(*opp_table->genpd_virt_devs),
2012					     GFP_KERNEL);
2013	if (!opp_table->genpd_virt_devs)
2014		goto unlock;
2015
2016	while (*name) {
2017		if (index >= opp_table->required_opp_count) {
2018			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2019				*name, opp_table->required_opp_count, index);
 
2020			goto err;
2021		}
2022
2023		if (opp_table->genpd_virt_devs[index]) {
2024			dev_err(dev, "Genpd virtual device already set %s\n",
2025				*name);
 
 
 
 
 
2026			goto err;
2027		}
2028
2029		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2030		if (IS_ERR(virt_dev)) {
2031			ret = PTR_ERR(virt_dev);
2032			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
 
 
 
 
2033			goto err;
2034		}
2035
2036		opp_table->genpd_virt_devs[index] = virt_dev;
2037		index++;
2038		name++;
2039	}
2040
2041	if (virt_devs)
2042		*virt_devs = opp_table->genpd_virt_devs;
2043	mutex_unlock(&opp_table->genpd_virt_dev_lock);
 
 
 
2044
2045	return opp_table;
 
 
2046
2047err:
2048	_opp_detach_genpd(opp_table);
2049unlock:
2050	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2051
2052put_table:
2053	dev_pm_opp_put_opp_table(opp_table);
2054
2055	return ERR_PTR(ret);
 
 
2056}
2057EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2058
2059/**
2060 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2061 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2062 *
2063 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2064 * OPP table.
 
 
 
 
 
 
2065 */
2066void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2067{
 
 
2068	/*
2069	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2070	 * used in parallel.
2071	 */
2072	mutex_lock(&opp_table->genpd_virt_dev_lock);
2073	_opp_detach_genpd(opp_table);
2074	mutex_unlock(&opp_table->genpd_virt_dev_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2075
2076	dev_pm_opp_put_opp_table(opp_table);
2077}
2078EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2079
2080/**
2081 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2082 * @src_table: OPP table which has dst_table as one of its required OPP table.
2083 * @dst_table: Required OPP table of the src_table.
2084 * @pstate: Current performance state of the src_table.
2085 *
2086 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2087 * "required-opps" property of the OPP (present in @src_table) which has
2088 * performance state set to @pstate.
2089 *
2090 * Return: Zero or positive performance state on success, otherwise negative
2091 * value on errors.
2092 */
2093int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2094				       struct opp_table *dst_table,
2095				       unsigned int pstate)
2096{
2097	struct dev_pm_opp *opp;
2098	int dest_pstate = -EINVAL;
2099	int i;
2100
2101	if (!pstate)
2102		return 0;
2103
2104	/*
2105	 * Normally the src_table will have the "required_opps" property set to
2106	 * point to one of the OPPs in the dst_table, but in some cases the
2107	 * genpd and its master have one to one mapping of performance states
2108	 * and so none of them have the "required-opps" property set. Return the
2109	 * pstate of the src_table as it is in such cases.
2110	 */
2111	if (!src_table->required_opp_count)
2112		return pstate;
2113
 
 
 
 
 
 
 
 
 
 
2114	for (i = 0; i < src_table->required_opp_count; i++) {
2115		if (src_table->required_opp_tables[i]->np == dst_table->np)
2116			break;
2117	}
2118
2119	if (unlikely(i == src_table->required_opp_count)) {
2120		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2121		       __func__, src_table, dst_table);
2122		return -EINVAL;
2123	}
2124
2125	mutex_lock(&src_table->lock);
2126
2127	list_for_each_entry(opp, &src_table->opp_list, node) {
2128		if (opp->pstate == pstate) {
2129			dest_pstate = opp->required_opps[i]->pstate;
2130			goto unlock;
2131		}
2132	}
2133
2134	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2135	       dst_table);
2136
2137unlock:
2138	mutex_unlock(&src_table->lock);
2139
2140	return dest_pstate;
2141}
2142
2143/**
2144 * dev_pm_opp_add()  - Add an OPP table from a table definitions
2145 * @dev:	device for which we do this operation
2146 * @freq:	Frequency in Hz for this OPP
2147 * @u_volt:	Voltage in uVolts for this OPP
2148 *
2149 * This function adds an opp definition to the opp table and returns status.
2150 * The opp is made available by default and it can be controlled using
2151 * dev_pm_opp_enable/disable functions.
2152 *
2153 * Return:
2154 * 0		On success OR
2155 *		Duplicate OPPs (both freq and volt are same) and opp->available
2156 * -EEXIST	Freq are same and volt are different OR
2157 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2158 * -ENOMEM	Memory allocation failure
2159 */
2160int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2161{
2162	struct opp_table *opp_table;
2163	int ret;
2164
2165	opp_table = dev_pm_opp_get_opp_table(dev);
2166	if (!opp_table)
2167		return -ENOMEM;
2168
2169	/* Fix regulator count for dynamic OPPs */
2170	opp_table->regulator_count = 1;
2171
2172	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2173	if (ret)
2174		dev_pm_opp_put_opp_table(opp_table);
2175
2176	return ret;
2177}
2178EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2179
2180/**
2181 * _opp_set_availability() - helper to set the availability of an opp
2182 * @dev:		device for which we do this operation
2183 * @freq:		OPP frequency to modify availability
2184 * @availability_req:	availability status requested for this opp
2185 *
2186 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2187 * which is isolated here.
2188 *
2189 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2190 * copy operation, returns 0 if no modification was done OR modification was
2191 * successful.
2192 */
2193static int _opp_set_availability(struct device *dev, unsigned long freq,
2194				 bool availability_req)
2195{
2196	struct opp_table *opp_table;
2197	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2198	int r = 0;
2199
2200	/* Find the opp_table */
2201	opp_table = _find_opp_table(dev);
2202	if (IS_ERR(opp_table)) {
2203		r = PTR_ERR(opp_table);
2204		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2205		return r;
2206	}
2207
 
 
 
 
 
2208	mutex_lock(&opp_table->lock);
2209
2210	/* Do we have the frequency? */
2211	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2212		if (tmp_opp->rate == freq) {
2213			opp = tmp_opp;
2214			break;
2215		}
2216	}
2217
2218	if (IS_ERR(opp)) {
2219		r = PTR_ERR(opp);
2220		goto unlock;
2221	}
2222
2223	/* Is update really needed? */
2224	if (opp->available == availability_req)
2225		goto unlock;
2226
2227	opp->available = availability_req;
2228
2229	dev_pm_opp_get(opp);
2230	mutex_unlock(&opp_table->lock);
2231
2232	/* Notify the change of the OPP availability */
2233	if (availability_req)
2234		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2235					     opp);
2236	else
2237		blocking_notifier_call_chain(&opp_table->head,
2238					     OPP_EVENT_DISABLE, opp);
2239
2240	dev_pm_opp_put(opp);
2241	goto put_table;
2242
2243unlock:
2244	mutex_unlock(&opp_table->lock);
2245put_table:
2246	dev_pm_opp_put_opp_table(opp_table);
2247	return r;
2248}
2249
2250/**
2251 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2252 * @dev:		device for which we do this operation
2253 * @freq:		OPP frequency to adjust voltage of
2254 * @u_volt:		new OPP target voltage
2255 * @u_volt_min:		new OPP min voltage
2256 * @u_volt_max:		new OPP max voltage
2257 *
2258 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2259 * copy operation, returns 0 if no modifcation was done OR modification was
2260 * successful.
2261 */
2262int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2263			      unsigned long u_volt, unsigned long u_volt_min,
2264			      unsigned long u_volt_max)
2265
2266{
2267	struct opp_table *opp_table;
2268	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2269	int r = 0;
2270
2271	/* Find the opp_table */
2272	opp_table = _find_opp_table(dev);
2273	if (IS_ERR(opp_table)) {
2274		r = PTR_ERR(opp_table);
2275		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2276		return r;
2277	}
2278
 
 
 
 
 
2279	mutex_lock(&opp_table->lock);
2280
2281	/* Do we have the frequency? */
2282	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2283		if (tmp_opp->rate == freq) {
2284			opp = tmp_opp;
2285			break;
2286		}
2287	}
2288
2289	if (IS_ERR(opp)) {
2290		r = PTR_ERR(opp);
2291		goto adjust_unlock;
2292	}
2293
2294	/* Is update really needed? */
2295	if (opp->supplies->u_volt == u_volt)
2296		goto adjust_unlock;
2297
2298	opp->supplies->u_volt = u_volt;
2299	opp->supplies->u_volt_min = u_volt_min;
2300	opp->supplies->u_volt_max = u_volt_max;
2301
2302	dev_pm_opp_get(opp);
2303	mutex_unlock(&opp_table->lock);
2304
2305	/* Notify the voltage change of the OPP */
2306	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2307				     opp);
2308
2309	dev_pm_opp_put(opp);
2310	goto adjust_put_table;
2311
2312adjust_unlock:
2313	mutex_unlock(&opp_table->lock);
2314adjust_put_table:
2315	dev_pm_opp_put_opp_table(opp_table);
2316	return r;
2317}
2318EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2319
2320/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2321 * dev_pm_opp_enable() - Enable a specific OPP
2322 * @dev:	device for which we do this operation
2323 * @freq:	OPP frequency to enable
2324 *
2325 * Enables a provided opp. If the operation is valid, this returns 0, else the
2326 * corresponding error value. It is meant to be used for users an OPP available
2327 * after being temporarily made unavailable with dev_pm_opp_disable.
2328 *
2329 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2330 * copy operation, returns 0 if no modification was done OR modification was
2331 * successful.
2332 */
2333int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2334{
2335	return _opp_set_availability(dev, freq, true);
2336}
2337EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2338
2339/**
2340 * dev_pm_opp_disable() - Disable a specific OPP
2341 * @dev:	device for which we do this operation
2342 * @freq:	OPP frequency to disable
2343 *
2344 * Disables a provided opp. If the operation is valid, this returns
2345 * 0, else the corresponding error value. It is meant to be a temporary
2346 * control by users to make this OPP not available until the circumstances are
2347 * right to make it available again (with a call to dev_pm_opp_enable).
2348 *
2349 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2350 * copy operation, returns 0 if no modification was done OR modification was
2351 * successful.
2352 */
2353int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2354{
2355	return _opp_set_availability(dev, freq, false);
2356}
2357EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2358
2359/**
2360 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2361 * @dev:	Device for which notifier needs to be registered
2362 * @nb:		Notifier block to be registered
2363 *
2364 * Return: 0 on success or a negative error value.
2365 */
2366int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2367{
2368	struct opp_table *opp_table;
2369	int ret;
2370
2371	opp_table = _find_opp_table(dev);
2372	if (IS_ERR(opp_table))
2373		return PTR_ERR(opp_table);
2374
2375	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2376
2377	dev_pm_opp_put_opp_table(opp_table);
2378
2379	return ret;
2380}
2381EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2382
2383/**
2384 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2385 * @dev:	Device for which notifier needs to be unregistered
2386 * @nb:		Notifier block to be unregistered
2387 *
2388 * Return: 0 on success or a negative error value.
2389 */
2390int dev_pm_opp_unregister_notifier(struct device *dev,
2391				   struct notifier_block *nb)
2392{
2393	struct opp_table *opp_table;
2394	int ret;
2395
2396	opp_table = _find_opp_table(dev);
2397	if (IS_ERR(opp_table))
2398		return PTR_ERR(opp_table);
2399
2400	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2401
2402	dev_pm_opp_put_opp_table(opp_table);
2403
2404	return ret;
2405}
2406EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2407
2408void _dev_pm_opp_find_and_remove_table(struct device *dev)
 
 
 
 
 
 
 
2409{
2410	struct opp_table *opp_table;
2411
2412	/* Check for existing table for 'dev' */
2413	opp_table = _find_opp_table(dev);
2414	if (IS_ERR(opp_table)) {
2415		int error = PTR_ERR(opp_table);
2416
2417		if (error != -ENODEV)
2418			WARN(1, "%s: opp_table: %d\n",
2419			     IS_ERR_OR_NULL(dev) ?
2420					"Invalid device" : dev_name(dev),
2421			     error);
2422		return;
2423	}
2424
2425	/*
2426	 * Drop the extra reference only if the OPP table was successfully added
2427	 * with dev_pm_opp_of_add_table() earlier.
2428	 **/
2429	if (_opp_remove_all_static(opp_table))
2430		dev_pm_opp_put_opp_table(opp_table);
2431
2432	/* Drop reference taken by _find_opp_table() */
2433	dev_pm_opp_put_opp_table(opp_table);
2434}
2435
2436/**
2437 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2438 * @dev:	device pointer used to lookup OPP table.
2439 *
2440 * Free both OPPs created using static entries present in DT and the
2441 * dynamically added entries.
2442 */
2443void dev_pm_opp_remove_table(struct device *dev)
2444{
2445	_dev_pm_opp_find_and_remove_table(dev);
2446}
2447EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);