Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* Lock to allow exclusive modification to the device and opp lists */
33DEFINE_MUTEX(opp_table_lock);
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
36
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41{
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(&opp_table->lock);
53 return found;
54}
55
56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57{
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68}
69
70/**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
81struct opp_table *_find_opp_table(struct device *dev)
82{
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
93
94 return opp_table;
95}
96
97/*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
104static bool assert_single_clk(struct opp_table *opp_table,
105 unsigned int __always_unused index)
106{
107 return !WARN_ON(opp_table->clk_count > 1);
108}
109
110/*
111 * Returns true if clock table is large enough to contain the clock index.
112 */
113static bool assert_clk_index(struct opp_table *opp_table,
114 unsigned int index)
115{
116 return opp_table->clk_count > index;
117}
118
119/*
120 * Returns true if bandwidth table is large enough to contain the bandwidth index.
121 */
122static bool assert_bandwidth_index(struct opp_table *opp_table,
123 unsigned int index)
124{
125 return opp_table->path_count > index;
126}
127
128/**
129 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
130 * @opp: opp for which voltage has to be returned for
131 *
132 * Return: voltage in micro volt corresponding to the opp, else
133 * return 0
134 *
135 * This is useful only for devices with single power supply.
136 */
137unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp)) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->supplies[0].u_volt;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
147
148/**
149 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
150 * @opp: opp for which voltage has to be returned for
151 * @supplies: Placeholder for copying the supply information.
152 *
153 * Return: negative error number on failure, 0 otherwise on success after
154 * setting @supplies.
155 *
156 * This can be used for devices with any number of power supplies. The caller
157 * must ensure the @supplies array must contain space for each regulator.
158 */
159int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
160 struct dev_pm_opp_supply *supplies)
161{
162 if (IS_ERR_OR_NULL(opp) || !supplies) {
163 pr_err("%s: Invalid parameters\n", __func__);
164 return -EINVAL;
165 }
166
167 memcpy(supplies, opp->supplies,
168 sizeof(*supplies) * opp->opp_table->regulator_count);
169 return 0;
170}
171EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
172
173/**
174 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
175 * @opp: opp for which power has to be returned for
176 *
177 * Return: power in micro watt corresponding to the opp, else
178 * return 0
179 *
180 * This is useful only for devices with single power supply.
181 */
182unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
183{
184 unsigned long opp_power = 0;
185 int i;
186
187 if (IS_ERR_OR_NULL(opp)) {
188 pr_err("%s: Invalid parameters\n", __func__);
189 return 0;
190 }
191 for (i = 0; i < opp->opp_table->regulator_count; i++)
192 opp_power += opp->supplies[i].u_watt;
193
194 return opp_power;
195}
196EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
197
198/**
199 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
200 * available opp with specified index
201 * @opp: opp for which frequency has to be returned for
202 * @index: index of the frequency within the required opp
203 *
204 * Return: frequency in hertz corresponding to the opp with specified index,
205 * else return 0
206 */
207unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
208{
209 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
210 pr_err("%s: Invalid parameters\n", __func__);
211 return 0;
212 }
213
214 return opp->rates[index];
215}
216EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
217
218/**
219 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
220 * @opp: opp for which level value has to be returned for
221 *
222 * Return: level read from device tree corresponding to the opp, else
223 * return U32_MAX.
224 */
225unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
226{
227 if (IS_ERR_OR_NULL(opp) || !opp->available) {
228 pr_err("%s: Invalid parameters\n", __func__);
229 return 0;
230 }
231
232 return opp->level;
233}
234EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
235
236/**
237 * dev_pm_opp_get_required_pstate() - Gets the required performance state
238 * corresponding to an available opp
239 * @opp: opp for which performance state has to be returned for
240 * @index: index of the required opp
241 *
242 * Return: performance state read from device tree corresponding to the
243 * required opp, else return U32_MAX.
244 */
245unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
246 unsigned int index)
247{
248 if (IS_ERR_OR_NULL(opp) || !opp->available ||
249 index >= opp->opp_table->required_opp_count) {
250 pr_err("%s: Invalid parameters\n", __func__);
251 return 0;
252 }
253
254 /* required-opps not fully initialized yet */
255 if (lazy_linking_pending(opp->opp_table))
256 return 0;
257
258 /* The required OPP table must belong to a genpd */
259 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
260 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
261 return 0;
262 }
263
264 return opp->required_opps[index]->level;
265}
266EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
267
268/**
269 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
270 * @opp: opp for which turbo mode is being verified
271 *
272 * Turbo OPPs are not for normal use, and can be enabled (under certain
273 * conditions) for short duration of times to finish high throughput work
274 * quickly. Running on them for longer times may overheat the chip.
275 *
276 * Return: true if opp is turbo opp, else false.
277 */
278bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
279{
280 if (IS_ERR_OR_NULL(opp) || !opp->available) {
281 pr_err("%s: Invalid parameters\n", __func__);
282 return false;
283 }
284
285 return opp->turbo;
286}
287EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
288
289/**
290 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
291 * @dev: device for which we do this operation
292 *
293 * Return: This function returns the max clock latency in nanoseconds.
294 */
295unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
296{
297 struct opp_table *opp_table;
298 unsigned long clock_latency_ns;
299
300 opp_table = _find_opp_table(dev);
301 if (IS_ERR(opp_table))
302 return 0;
303
304 clock_latency_ns = opp_table->clock_latency_ns_max;
305
306 dev_pm_opp_put_opp_table(opp_table);
307
308 return clock_latency_ns;
309}
310EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
311
312/**
313 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
314 * @dev: device for which we do this operation
315 *
316 * Return: This function returns the max voltage latency in nanoseconds.
317 */
318unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
319{
320 struct opp_table *opp_table;
321 struct dev_pm_opp *opp;
322 struct regulator *reg;
323 unsigned long latency_ns = 0;
324 int ret, i, count;
325 struct {
326 unsigned long min;
327 unsigned long max;
328 } *uV;
329
330 opp_table = _find_opp_table(dev);
331 if (IS_ERR(opp_table))
332 return 0;
333
334 /* Regulator may not be required for the device */
335 if (!opp_table->regulators)
336 goto put_opp_table;
337
338 count = opp_table->regulator_count;
339
340 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
341 if (!uV)
342 goto put_opp_table;
343
344 mutex_lock(&opp_table->lock);
345
346 for (i = 0; i < count; i++) {
347 uV[i].min = ~0;
348 uV[i].max = 0;
349
350 list_for_each_entry(opp, &opp_table->opp_list, node) {
351 if (!opp->available)
352 continue;
353
354 if (opp->supplies[i].u_volt_min < uV[i].min)
355 uV[i].min = opp->supplies[i].u_volt_min;
356 if (opp->supplies[i].u_volt_max > uV[i].max)
357 uV[i].max = opp->supplies[i].u_volt_max;
358 }
359 }
360
361 mutex_unlock(&opp_table->lock);
362
363 /*
364 * The caller needs to ensure that opp_table (and hence the regulator)
365 * isn't freed, while we are executing this routine.
366 */
367 for (i = 0; i < count; i++) {
368 reg = opp_table->regulators[i];
369 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
370 if (ret > 0)
371 latency_ns += ret * 1000;
372 }
373
374 kfree(uV);
375put_opp_table:
376 dev_pm_opp_put_opp_table(opp_table);
377
378 return latency_ns;
379}
380EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
381
382/**
383 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
384 * nanoseconds
385 * @dev: device for which we do this operation
386 *
387 * Return: This function returns the max transition latency, in nanoseconds, to
388 * switch from one OPP to other.
389 */
390unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
391{
392 return dev_pm_opp_get_max_volt_latency(dev) +
393 dev_pm_opp_get_max_clock_latency(dev);
394}
395EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
396
397/**
398 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
399 * @dev: device for which we do this operation
400 *
401 * Return: This function returns the frequency of the OPP marked as suspend_opp
402 * if one is available, else returns 0;
403 */
404unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
405{
406 struct opp_table *opp_table;
407 unsigned long freq = 0;
408
409 opp_table = _find_opp_table(dev);
410 if (IS_ERR(opp_table))
411 return 0;
412
413 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
414 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
415
416 dev_pm_opp_put_opp_table(opp_table);
417
418 return freq;
419}
420EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
421
422int _get_opp_count(struct opp_table *opp_table)
423{
424 struct dev_pm_opp *opp;
425 int count = 0;
426
427 mutex_lock(&opp_table->lock);
428
429 list_for_each_entry(opp, &opp_table->opp_list, node) {
430 if (opp->available)
431 count++;
432 }
433
434 mutex_unlock(&opp_table->lock);
435
436 return count;
437}
438
439/**
440 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
441 * @dev: device for which we do this operation
442 *
443 * Return: This function returns the number of available opps if there are any,
444 * else returns 0 if none or the corresponding error value.
445 */
446int dev_pm_opp_get_opp_count(struct device *dev)
447{
448 struct opp_table *opp_table;
449 int count;
450
451 opp_table = _find_opp_table(dev);
452 if (IS_ERR(opp_table)) {
453 count = PTR_ERR(opp_table);
454 dev_dbg(dev, "%s: OPP table not found (%d)\n",
455 __func__, count);
456 return count;
457 }
458
459 count = _get_opp_count(opp_table);
460 dev_pm_opp_put_opp_table(opp_table);
461
462 return count;
463}
464EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
465
466/* Helpers to read keys */
467static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
468{
469 return opp->rates[index];
470}
471
472static unsigned long _read_level(struct dev_pm_opp *opp, int index)
473{
474 return opp->level;
475}
476
477static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
478{
479 return opp->bandwidth[index].peak;
480}
481
482/* Generic comparison helpers */
483static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
484 unsigned long opp_key, unsigned long key)
485{
486 if (opp_key == key) {
487 *opp = temp_opp;
488 return true;
489 }
490
491 return false;
492}
493
494static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
495 unsigned long opp_key, unsigned long key)
496{
497 if (opp_key >= key) {
498 *opp = temp_opp;
499 return true;
500 }
501
502 return false;
503}
504
505static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
506 unsigned long opp_key, unsigned long key)
507{
508 if (opp_key > key)
509 return true;
510
511 *opp = temp_opp;
512 return false;
513}
514
515/* Generic key finding helpers */
516static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
517 unsigned long *key, int index, bool available,
518 unsigned long (*read)(struct dev_pm_opp *opp, int index),
519 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
520 unsigned long opp_key, unsigned long key),
521 bool (*assert)(struct opp_table *opp_table, unsigned int index))
522{
523 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
524
525 /* Assert that the requirement is met */
526 if (assert && !assert(opp_table, index))
527 return ERR_PTR(-EINVAL);
528
529 mutex_lock(&opp_table->lock);
530
531 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
532 if (temp_opp->available == available) {
533 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
534 break;
535 }
536 }
537
538 /* Increment the reference count of OPP */
539 if (!IS_ERR(opp)) {
540 *key = read(opp, index);
541 dev_pm_opp_get(opp);
542 }
543
544 mutex_unlock(&opp_table->lock);
545
546 return opp;
547}
548
549static struct dev_pm_opp *
550_find_key(struct device *dev, unsigned long *key, int index, bool available,
551 unsigned long (*read)(struct dev_pm_opp *opp, int index),
552 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
553 unsigned long opp_key, unsigned long key),
554 bool (*assert)(struct opp_table *opp_table, unsigned int index))
555{
556 struct opp_table *opp_table;
557 struct dev_pm_opp *opp;
558
559 opp_table = _find_opp_table(dev);
560 if (IS_ERR(opp_table)) {
561 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
562 PTR_ERR(opp_table));
563 return ERR_CAST(opp_table);
564 }
565
566 opp = _opp_table_find_key(opp_table, key, index, available, read,
567 compare, assert);
568
569 dev_pm_opp_put_opp_table(opp_table);
570
571 return opp;
572}
573
574static struct dev_pm_opp *_find_key_exact(struct device *dev,
575 unsigned long key, int index, bool available,
576 unsigned long (*read)(struct dev_pm_opp *opp, int index),
577 bool (*assert)(struct opp_table *opp_table, unsigned int index))
578{
579 /*
580 * The value of key will be updated here, but will be ignored as the
581 * caller doesn't need it.
582 */
583 return _find_key(dev, &key, index, available, read, _compare_exact,
584 assert);
585}
586
587static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
588 unsigned long *key, int index, bool available,
589 unsigned long (*read)(struct dev_pm_opp *opp, int index),
590 bool (*assert)(struct opp_table *opp_table, unsigned int index))
591{
592 return _opp_table_find_key(opp_table, key, index, available, read,
593 _compare_ceil, assert);
594}
595
596static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
597 int index, bool available,
598 unsigned long (*read)(struct dev_pm_opp *opp, int index),
599 bool (*assert)(struct opp_table *opp_table, unsigned int index))
600{
601 return _find_key(dev, key, index, available, read, _compare_ceil,
602 assert);
603}
604
605static struct dev_pm_opp *_find_key_floor(struct device *dev,
606 unsigned long *key, int index, bool available,
607 unsigned long (*read)(struct dev_pm_opp *opp, int index),
608 bool (*assert)(struct opp_table *opp_table, unsigned int index))
609{
610 return _find_key(dev, key, index, available, read, _compare_floor,
611 assert);
612}
613
614/**
615 * dev_pm_opp_find_freq_exact() - search for an exact frequency
616 * @dev: device for which we do this operation
617 * @freq: frequency to search for
618 * @available: true/false - match for available opp
619 *
620 * Return: Searches for exact match in the opp table and returns pointer to the
621 * matching opp if found, else returns ERR_PTR in case of error and should
622 * be handled using IS_ERR. Error return values can be:
623 * EINVAL: for bad pointer
624 * ERANGE: no match found for search
625 * ENODEV: if device not found in list of registered devices
626 *
627 * Note: available is a modifier for the search. if available=true, then the
628 * match is for exact matching frequency and is available in the stored OPP
629 * table. if false, the match is for exact frequency which is not available.
630 *
631 * This provides a mechanism to enable an opp which is not available currently
632 * or the opposite as well.
633 *
634 * The callers are required to call dev_pm_opp_put() for the returned OPP after
635 * use.
636 */
637struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
638 unsigned long freq, bool available)
639{
640 return _find_key_exact(dev, freq, 0, available, _read_freq,
641 assert_single_clk);
642}
643EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
644
645/**
646 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
647 * clock corresponding to the index
648 * @dev: Device for which we do this operation
649 * @freq: frequency to search for
650 * @index: Clock index
651 * @available: true/false - match for available opp
652 *
653 * Search for the matching exact OPP for the clock corresponding to the
654 * specified index from a starting freq for a device.
655 *
656 * Return: matching *opp , else returns ERR_PTR in case of error and should be
657 * handled using IS_ERR. Error return values can be:
658 * EINVAL: for bad pointer
659 * ERANGE: no match found for search
660 * ENODEV: if device not found in list of registered devices
661 *
662 * The callers are required to call dev_pm_opp_put() for the returned OPP after
663 * use.
664 */
665struct dev_pm_opp *
666dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
667 u32 index, bool available)
668{
669 return _find_key_exact(dev, freq, index, available, _read_freq,
670 assert_clk_index);
671}
672EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
673
674static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
675 unsigned long *freq)
676{
677 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
678 assert_single_clk);
679}
680
681/**
682 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
683 * @dev: device for which we do this operation
684 * @freq: Start frequency
685 *
686 * Search for the matching ceil *available* OPP from a starting freq
687 * for a device.
688 *
689 * Return: matching *opp and refreshes *freq accordingly, else returns
690 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
691 * values can be:
692 * EINVAL: for bad pointer
693 * ERANGE: no match found for search
694 * ENODEV: if device not found in list of registered devices
695 *
696 * The callers are required to call dev_pm_opp_put() for the returned OPP after
697 * use.
698 */
699struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
700 unsigned long *freq)
701{
702 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
703}
704EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
705
706/**
707 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
708 * clock corresponding to the index
709 * @dev: Device for which we do this operation
710 * @freq: Start frequency
711 * @index: Clock index
712 *
713 * Search for the matching ceil *available* OPP for the clock corresponding to
714 * the specified index from a starting freq for a device.
715 *
716 * Return: matching *opp and refreshes *freq accordingly, else returns
717 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
718 * values can be:
719 * EINVAL: for bad pointer
720 * ERANGE: no match found for search
721 * ENODEV: if device not found in list of registered devices
722 *
723 * The callers are required to call dev_pm_opp_put() for the returned OPP after
724 * use.
725 */
726struct dev_pm_opp *
727dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
728 u32 index)
729{
730 return _find_key_ceil(dev, freq, index, true, _read_freq,
731 assert_clk_index);
732}
733EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
734
735/**
736 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
737 * @dev: device for which we do this operation
738 * @freq: Start frequency
739 *
740 * Search for the matching floor *available* OPP from a starting freq
741 * for a device.
742 *
743 * Return: matching *opp and refreshes *freq accordingly, else returns
744 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
745 * values can be:
746 * EINVAL: for bad pointer
747 * ERANGE: no match found for search
748 * ENODEV: if device not found in list of registered devices
749 *
750 * The callers are required to call dev_pm_opp_put() for the returned OPP after
751 * use.
752 */
753struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
754 unsigned long *freq)
755{
756 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
757}
758EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
759
760/**
761 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
762 * clock corresponding to the index
763 * @dev: Device for which we do this operation
764 * @freq: Start frequency
765 * @index: Clock index
766 *
767 * Search for the matching floor *available* OPP for the clock corresponding to
768 * the specified index from a starting freq for a device.
769 *
770 * Return: matching *opp and refreshes *freq accordingly, else returns
771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772 * values can be:
773 * EINVAL: for bad pointer
774 * ERANGE: no match found for search
775 * ENODEV: if device not found in list of registered devices
776 *
777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
778 * use.
779 */
780struct dev_pm_opp *
781dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
782 u32 index)
783{
784 return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
785}
786EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
787
788/**
789 * dev_pm_opp_find_level_exact() - search for an exact level
790 * @dev: device for which we do this operation
791 * @level: level to search for
792 *
793 * Return: Searches for exact match in the opp table and returns pointer to the
794 * matching opp if found, else returns ERR_PTR in case of error and should
795 * be handled using IS_ERR. Error return values can be:
796 * EINVAL: for bad pointer
797 * ERANGE: no match found for search
798 * ENODEV: if device not found in list of registered devices
799 *
800 * The callers are required to call dev_pm_opp_put() for the returned OPP after
801 * use.
802 */
803struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
804 unsigned int level)
805{
806 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
807}
808EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
809
810/**
811 * dev_pm_opp_find_level_ceil() - search for an rounded up level
812 * @dev: device for which we do this operation
813 * @level: level to search for
814 *
815 * Return: Searches for rounded up match in the opp table and returns pointer
816 * to the matching opp if found, else returns ERR_PTR in case of error and
817 * should be handled using IS_ERR. Error return values can be:
818 * EINVAL: for bad pointer
819 * ERANGE: no match found for search
820 * ENODEV: if device not found in list of registered devices
821 *
822 * The callers are required to call dev_pm_opp_put() for the returned OPP after
823 * use.
824 */
825struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
826 unsigned int *level)
827{
828 unsigned long temp = *level;
829 struct dev_pm_opp *opp;
830
831 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
832 if (IS_ERR(opp))
833 return opp;
834
835 /* False match */
836 if (temp == OPP_LEVEL_UNSET) {
837 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
838 dev_pm_opp_put(opp);
839 return ERR_PTR(-ENODEV);
840 }
841
842 *level = temp;
843 return opp;
844}
845EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
846
847/**
848 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
849 * @dev: device for which we do this operation
850 * @level: Start level
851 *
852 * Search for the matching floor *available* OPP from a starting level
853 * for a device.
854 *
855 * Return: matching *opp and refreshes *level accordingly, else returns
856 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
857 * values can be:
858 * EINVAL: for bad pointer
859 * ERANGE: no match found for search
860 * ENODEV: if device not found in list of registered devices
861 *
862 * The callers are required to call dev_pm_opp_put() for the returned OPP after
863 * use.
864 */
865struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
866 unsigned int *level)
867{
868 unsigned long temp = *level;
869 struct dev_pm_opp *opp;
870
871 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
872 *level = temp;
873 return opp;
874}
875EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
876
877/**
878 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
879 * @dev: device for which we do this operation
880 * @bw: start bandwidth
881 * @index: which bandwidth to compare, in case of OPPs with several values
882 *
883 * Search for the matching floor *available* OPP from a starting bandwidth
884 * for a device.
885 *
886 * Return: matching *opp and refreshes *bw accordingly, else returns
887 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
888 * values can be:
889 * EINVAL: for bad pointer
890 * ERANGE: no match found for search
891 * ENODEV: if device not found in list of registered devices
892 *
893 * The callers are required to call dev_pm_opp_put() for the returned OPP after
894 * use.
895 */
896struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
897 int index)
898{
899 unsigned long temp = *bw;
900 struct dev_pm_opp *opp;
901
902 opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
903 assert_bandwidth_index);
904 *bw = temp;
905 return opp;
906}
907EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
908
909/**
910 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
911 * @dev: device for which we do this operation
912 * @bw: start bandwidth
913 * @index: which bandwidth to compare, in case of OPPs with several values
914 *
915 * Search for the matching floor *available* OPP from a starting bandwidth
916 * for a device.
917 *
918 * Return: matching *opp and refreshes *bw accordingly, else returns
919 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
920 * values can be:
921 * EINVAL: for bad pointer
922 * ERANGE: no match found for search
923 * ENODEV: if device not found in list of registered devices
924 *
925 * The callers are required to call dev_pm_opp_put() for the returned OPP after
926 * use.
927 */
928struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
929 unsigned int *bw, int index)
930{
931 unsigned long temp = *bw;
932 struct dev_pm_opp *opp;
933
934 opp = _find_key_floor(dev, &temp, index, true, _read_bw,
935 assert_bandwidth_index);
936 *bw = temp;
937 return opp;
938}
939EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
940
941static int _set_opp_voltage(struct device *dev, struct regulator *reg,
942 struct dev_pm_opp_supply *supply)
943{
944 int ret;
945
946 /* Regulator not available for device */
947 if (IS_ERR(reg)) {
948 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
949 PTR_ERR(reg));
950 return 0;
951 }
952
953 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
954 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
955
956 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
957 supply->u_volt, supply->u_volt_max);
958 if (ret)
959 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
960 __func__, supply->u_volt_min, supply->u_volt,
961 supply->u_volt_max, ret);
962
963 return ret;
964}
965
966static int
967_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
968 struct dev_pm_opp *opp, void *data, bool scaling_down)
969{
970 unsigned long *target = data;
971 unsigned long freq;
972 int ret;
973
974 /* One of target and opp must be available */
975 if (target) {
976 freq = *target;
977 } else if (opp) {
978 freq = opp->rates[0];
979 } else {
980 WARN_ON(1);
981 return -EINVAL;
982 }
983
984 ret = clk_set_rate(opp_table->clk, freq);
985 if (ret) {
986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 ret);
988 } else {
989 opp_table->current_rate_single_clk = freq;
990 }
991
992 return ret;
993}
994
995/*
996 * Simple implementation for configuring multiple clocks. Configure clocks in
997 * the order in which they are present in the array while scaling up.
998 */
999int dev_pm_opp_config_clks_simple(struct device *dev,
1000 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
1001 bool scaling_down)
1002{
1003 int ret, i;
1004
1005 if (scaling_down) {
1006 for (i = opp_table->clk_count - 1; i >= 0; i--) {
1007 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1008 if (ret) {
1009 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1010 ret);
1011 return ret;
1012 }
1013 }
1014 } else {
1015 for (i = 0; i < opp_table->clk_count; i++) {
1016 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1017 if (ret) {
1018 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1019 ret);
1020 return ret;
1021 }
1022 }
1023 }
1024
1025 return 0;
1026}
1027EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1028
1029static int _opp_config_regulator_single(struct device *dev,
1030 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1031 struct regulator **regulators, unsigned int count)
1032{
1033 struct regulator *reg = regulators[0];
1034 int ret;
1035
1036 /* This function only supports single regulator per device */
1037 if (WARN_ON(count > 1)) {
1038 dev_err(dev, "multiple regulators are not supported\n");
1039 return -EINVAL;
1040 }
1041
1042 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1043 if (ret)
1044 return ret;
1045
1046 /*
1047 * Enable the regulator after setting its voltages, otherwise it breaks
1048 * some boot-enabled regulators.
1049 */
1050 if (unlikely(!new_opp->opp_table->enabled)) {
1051 ret = regulator_enable(reg);
1052 if (ret < 0)
1053 dev_warn(dev, "Failed to enable regulator: %d", ret);
1054 }
1055
1056 return 0;
1057}
1058
1059static int _set_opp_bw(const struct opp_table *opp_table,
1060 struct dev_pm_opp *opp, struct device *dev)
1061{
1062 u32 avg, peak;
1063 int i, ret;
1064
1065 if (!opp_table->paths)
1066 return 0;
1067
1068 for (i = 0; i < opp_table->path_count; i++) {
1069 if (!opp) {
1070 avg = 0;
1071 peak = 0;
1072 } else {
1073 avg = opp->bandwidth[i].avg;
1074 peak = opp->bandwidth[i].peak;
1075 }
1076 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1077 if (ret) {
1078 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1079 opp ? "set" : "remove", i, ret);
1080 return ret;
1081 }
1082 }
1083
1084 return 0;
1085}
1086
1087static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1088{
1089 unsigned int level = 0;
1090 int ret = 0;
1091
1092 if (opp) {
1093 if (opp->level == OPP_LEVEL_UNSET)
1094 return 0;
1095
1096 level = opp->level;
1097 }
1098
1099 /* Request a new performance state through the device's PM domain. */
1100 ret = dev_pm_domain_set_performance_state(dev, level);
1101 if (ret)
1102 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1103 ret);
1104
1105 return ret;
1106}
1107
1108/* This is only called for PM domain for now */
1109static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1110 struct dev_pm_opp *opp, bool up)
1111{
1112 struct device **devs = opp_table->required_devs;
1113 struct dev_pm_opp *required_opp;
1114 int index, target, delta, ret;
1115
1116 if (!devs)
1117 return 0;
1118
1119 /* required-opps not fully initialized yet */
1120 if (lazy_linking_pending(opp_table))
1121 return -EBUSY;
1122
1123 /* Scaling up? Set required OPPs in normal order, else reverse */
1124 if (up) {
1125 index = 0;
1126 target = opp_table->required_opp_count;
1127 delta = 1;
1128 } else {
1129 index = opp_table->required_opp_count - 1;
1130 target = -1;
1131 delta = -1;
1132 }
1133
1134 while (index != target) {
1135 if (devs[index]) {
1136 required_opp = opp ? opp->required_opps[index] : NULL;
1137
1138 ret = _set_opp_level(devs[index], required_opp);
1139 if (ret)
1140 return ret;
1141 }
1142
1143 index += delta;
1144 }
1145
1146 return 0;
1147}
1148
1149static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1150{
1151 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1152 unsigned long freq;
1153
1154 if (!IS_ERR(opp_table->clk)) {
1155 freq = clk_get_rate(opp_table->clk);
1156 opp = _find_freq_ceil(opp_table, &freq);
1157 }
1158
1159 /*
1160 * Unable to find the current OPP ? Pick the first from the list since
1161 * it is in ascending order, otherwise rest of the code will need to
1162 * make special checks to validate current_opp.
1163 */
1164 if (IS_ERR(opp)) {
1165 mutex_lock(&opp_table->lock);
1166 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1167 dev_pm_opp_get(opp);
1168 mutex_unlock(&opp_table->lock);
1169 }
1170
1171 opp_table->current_opp = opp;
1172}
1173
1174static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1175{
1176 int ret;
1177
1178 if (!opp_table->enabled)
1179 return 0;
1180
1181 /*
1182 * Some drivers need to support cases where some platforms may
1183 * have OPP table for the device, while others don't and
1184 * opp_set_rate() just needs to behave like clk_set_rate().
1185 */
1186 if (!_get_opp_count(opp_table))
1187 return 0;
1188
1189 ret = _set_opp_bw(opp_table, NULL, dev);
1190 if (ret)
1191 return ret;
1192
1193 if (opp_table->regulators)
1194 regulator_disable(opp_table->regulators[0]);
1195
1196 ret = _set_opp_level(dev, NULL);
1197 if (ret)
1198 goto out;
1199
1200 ret = _set_required_opps(dev, opp_table, NULL, false);
1201
1202out:
1203 opp_table->enabled = false;
1204 return ret;
1205}
1206
1207static int _set_opp(struct device *dev, struct opp_table *opp_table,
1208 struct dev_pm_opp *opp, void *clk_data, bool forced)
1209{
1210 struct dev_pm_opp *old_opp;
1211 int scaling_down, ret;
1212
1213 if (unlikely(!opp))
1214 return _disable_opp_table(dev, opp_table);
1215
1216 /* Find the currently set OPP if we don't know already */
1217 if (unlikely(!opp_table->current_opp))
1218 _find_current_opp(dev, opp_table);
1219
1220 old_opp = opp_table->current_opp;
1221
1222 /* Return early if nothing to do */
1223 if (!forced && old_opp == opp && opp_table->enabled) {
1224 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1225 return 0;
1226 }
1227
1228 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1229 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1230 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1231 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1232
1233 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1234 if (scaling_down == -1)
1235 scaling_down = 0;
1236
1237 /* Scaling up? Configure required OPPs before frequency */
1238 if (!scaling_down) {
1239 ret = _set_required_opps(dev, opp_table, opp, true);
1240 if (ret) {
1241 dev_err(dev, "Failed to set required opps: %d\n", ret);
1242 return ret;
1243 }
1244
1245 ret = _set_opp_level(dev, opp);
1246 if (ret)
1247 return ret;
1248
1249 ret = _set_opp_bw(opp_table, opp, dev);
1250 if (ret) {
1251 dev_err(dev, "Failed to set bw: %d\n", ret);
1252 return ret;
1253 }
1254
1255 if (opp_table->config_regulators) {
1256 ret = opp_table->config_regulators(dev, old_opp, opp,
1257 opp_table->regulators,
1258 opp_table->regulator_count);
1259 if (ret) {
1260 dev_err(dev, "Failed to set regulator voltages: %d\n",
1261 ret);
1262 return ret;
1263 }
1264 }
1265 }
1266
1267 if (opp_table->config_clks) {
1268 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1269 if (ret)
1270 return ret;
1271 }
1272
1273 /* Scaling down? Configure required OPPs after frequency */
1274 if (scaling_down) {
1275 if (opp_table->config_regulators) {
1276 ret = opp_table->config_regulators(dev, old_opp, opp,
1277 opp_table->regulators,
1278 opp_table->regulator_count);
1279 if (ret) {
1280 dev_err(dev, "Failed to set regulator voltages: %d\n",
1281 ret);
1282 return ret;
1283 }
1284 }
1285
1286 ret = _set_opp_bw(opp_table, opp, dev);
1287 if (ret) {
1288 dev_err(dev, "Failed to set bw: %d\n", ret);
1289 return ret;
1290 }
1291
1292 ret = _set_opp_level(dev, opp);
1293 if (ret)
1294 return ret;
1295
1296 ret = _set_required_opps(dev, opp_table, opp, false);
1297 if (ret) {
1298 dev_err(dev, "Failed to set required opps: %d\n", ret);
1299 return ret;
1300 }
1301 }
1302
1303 opp_table->enabled = true;
1304 dev_pm_opp_put(old_opp);
1305
1306 /* Make sure current_opp doesn't get freed */
1307 dev_pm_opp_get(opp);
1308 opp_table->current_opp = opp;
1309
1310 return ret;
1311}
1312
1313/**
1314 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1315 * @dev: device for which we do this operation
1316 * @target_freq: frequency to achieve
1317 *
1318 * This configures the power-supplies to the levels specified by the OPP
1319 * corresponding to the target_freq, and programs the clock to a value <=
1320 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1321 * provided by the opp, should have already rounded to the target OPP's
1322 * frequency.
1323 */
1324int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1325{
1326 struct opp_table *opp_table;
1327 unsigned long freq = 0, temp_freq;
1328 struct dev_pm_opp *opp = NULL;
1329 bool forced = false;
1330 int ret;
1331
1332 opp_table = _find_opp_table(dev);
1333 if (IS_ERR(opp_table)) {
1334 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1335 return PTR_ERR(opp_table);
1336 }
1337
1338 if (target_freq) {
1339 /*
1340 * For IO devices which require an OPP on some platforms/SoCs
1341 * while just needing to scale the clock on some others
1342 * we look for empty OPP tables with just a clock handle and
1343 * scale only the clk. This makes dev_pm_opp_set_rate()
1344 * equivalent to a clk_set_rate()
1345 */
1346 if (!_get_opp_count(opp_table)) {
1347 ret = opp_table->config_clks(dev, opp_table, NULL,
1348 &target_freq, false);
1349 goto put_opp_table;
1350 }
1351
1352 freq = clk_round_rate(opp_table->clk, target_freq);
1353 if ((long)freq <= 0)
1354 freq = target_freq;
1355
1356 /*
1357 * The clock driver may support finer resolution of the
1358 * frequencies than the OPP table, don't update the frequency we
1359 * pass to clk_set_rate() here.
1360 */
1361 temp_freq = freq;
1362 opp = _find_freq_ceil(opp_table, &temp_freq);
1363 if (IS_ERR(opp)) {
1364 ret = PTR_ERR(opp);
1365 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1366 __func__, freq, ret);
1367 goto put_opp_table;
1368 }
1369
1370 /*
1371 * An OPP entry specifies the highest frequency at which other
1372 * properties of the OPP entry apply. Even if the new OPP is
1373 * same as the old one, we may still reach here for a different
1374 * value of the frequency. In such a case, do not abort but
1375 * configure the hardware to the desired frequency forcefully.
1376 */
1377 forced = opp_table->current_rate_single_clk != freq;
1378 }
1379
1380 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1381
1382 if (freq)
1383 dev_pm_opp_put(opp);
1384
1385put_opp_table:
1386 dev_pm_opp_put_opp_table(opp_table);
1387 return ret;
1388}
1389EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1390
1391/**
1392 * dev_pm_opp_set_opp() - Configure device for OPP
1393 * @dev: device for which we do this operation
1394 * @opp: OPP to set to
1395 *
1396 * This configures the device based on the properties of the OPP passed to this
1397 * routine.
1398 *
1399 * Return: 0 on success, a negative error number otherwise.
1400 */
1401int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1402{
1403 struct opp_table *opp_table;
1404 int ret;
1405
1406 opp_table = _find_opp_table(dev);
1407 if (IS_ERR(opp_table)) {
1408 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1409 return PTR_ERR(opp_table);
1410 }
1411
1412 ret = _set_opp(dev, opp_table, opp, NULL, false);
1413 dev_pm_opp_put_opp_table(opp_table);
1414
1415 return ret;
1416}
1417EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1418
1419/* OPP-dev Helpers */
1420static void _remove_opp_dev(struct opp_device *opp_dev,
1421 struct opp_table *opp_table)
1422{
1423 opp_debug_unregister(opp_dev, opp_table);
1424 list_del(&opp_dev->node);
1425 kfree(opp_dev);
1426}
1427
1428struct opp_device *_add_opp_dev(const struct device *dev,
1429 struct opp_table *opp_table)
1430{
1431 struct opp_device *opp_dev;
1432
1433 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1434 if (!opp_dev)
1435 return NULL;
1436
1437 /* Initialize opp-dev */
1438 opp_dev->dev = dev;
1439
1440 mutex_lock(&opp_table->lock);
1441 list_add(&opp_dev->node, &opp_table->dev_list);
1442 mutex_unlock(&opp_table->lock);
1443
1444 /* Create debugfs entries for the opp_table */
1445 opp_debug_register(opp_dev, opp_table);
1446
1447 return opp_dev;
1448}
1449
1450static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1451{
1452 struct opp_table *opp_table;
1453 struct opp_device *opp_dev;
1454 int ret;
1455
1456 /*
1457 * Allocate a new OPP table. In the infrequent case where a new
1458 * device is needed to be added, we pay this penalty.
1459 */
1460 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1461 if (!opp_table)
1462 return ERR_PTR(-ENOMEM);
1463
1464 mutex_init(&opp_table->lock);
1465 INIT_LIST_HEAD(&opp_table->dev_list);
1466 INIT_LIST_HEAD(&opp_table->lazy);
1467
1468 opp_table->clk = ERR_PTR(-ENODEV);
1469
1470 /* Mark regulator count uninitialized */
1471 opp_table->regulator_count = -1;
1472
1473 opp_dev = _add_opp_dev(dev, opp_table);
1474 if (!opp_dev) {
1475 ret = -ENOMEM;
1476 goto err;
1477 }
1478
1479 _of_init_opp_table(opp_table, dev, index);
1480
1481 /* Find interconnect path(s) for the device */
1482 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1483 if (ret) {
1484 if (ret == -EPROBE_DEFER)
1485 goto remove_opp_dev;
1486
1487 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1488 __func__, ret);
1489 }
1490
1491 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1492 INIT_LIST_HEAD(&opp_table->opp_list);
1493 kref_init(&opp_table->kref);
1494
1495 return opp_table;
1496
1497remove_opp_dev:
1498 _of_clear_opp_table(opp_table);
1499 _remove_opp_dev(opp_dev, opp_table);
1500 mutex_destroy(&opp_table->lock);
1501err:
1502 kfree(opp_table);
1503 return ERR_PTR(ret);
1504}
1505
1506void _get_opp_table_kref(struct opp_table *opp_table)
1507{
1508 kref_get(&opp_table->kref);
1509}
1510
1511static struct opp_table *_update_opp_table_clk(struct device *dev,
1512 struct opp_table *opp_table,
1513 bool getclk)
1514{
1515 int ret;
1516
1517 /*
1518 * Return early if we don't need to get clk or we have already done it
1519 * earlier.
1520 */
1521 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1522 opp_table->clks)
1523 return opp_table;
1524
1525 /* Find clk for the device */
1526 opp_table->clk = clk_get(dev, NULL);
1527
1528 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1529 if (!ret) {
1530 opp_table->config_clks = _opp_config_clk_single;
1531 opp_table->clk_count = 1;
1532 return opp_table;
1533 }
1534
1535 if (ret == -ENOENT) {
1536 /*
1537 * There are few platforms which don't want the OPP core to
1538 * manage device's clock settings. In such cases neither the
1539 * platform provides the clks explicitly to us, nor the DT
1540 * contains a valid clk entry. The OPP nodes in DT may still
1541 * contain "opp-hz" property though, which we need to parse and
1542 * allow the platform to find an OPP based on freq later on.
1543 *
1544 * This is a simple solution to take care of such corner cases,
1545 * i.e. make the clk_count 1, which lets us allocate space for
1546 * frequency in opp->rates and also parse the entries in DT.
1547 */
1548 opp_table->clk_count = 1;
1549
1550 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1551 return opp_table;
1552 }
1553
1554 dev_pm_opp_put_opp_table(opp_table);
1555 dev_err_probe(dev, ret, "Couldn't find clock\n");
1556
1557 return ERR_PTR(ret);
1558}
1559
1560/*
1561 * We need to make sure that the OPP table for a device doesn't get added twice,
1562 * if this routine gets called in parallel with the same device pointer.
1563 *
1564 * The simplest way to enforce that is to perform everything (find existing
1565 * table and if not found, create a new one) under the opp_table_lock, so only
1566 * one creator gets access to the same. But that expands the critical section
1567 * under the lock and may end up causing circular dependencies with frameworks
1568 * like debugfs, interconnect or clock framework as they may be direct or
1569 * indirect users of OPP core.
1570 *
1571 * And for that reason we have to go for a bit tricky implementation here, which
1572 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1573 * of adding an OPP table and others should wait for it to finish.
1574 */
1575struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1576 bool getclk)
1577{
1578 struct opp_table *opp_table;
1579
1580again:
1581 mutex_lock(&opp_table_lock);
1582
1583 opp_table = _find_opp_table_unlocked(dev);
1584 if (!IS_ERR(opp_table))
1585 goto unlock;
1586
1587 /*
1588 * The opp_tables list or an OPP table's dev_list is getting updated by
1589 * another user, wait for it to finish.
1590 */
1591 if (unlikely(opp_tables_busy)) {
1592 mutex_unlock(&opp_table_lock);
1593 cpu_relax();
1594 goto again;
1595 }
1596
1597 opp_tables_busy = true;
1598 opp_table = _managed_opp(dev, index);
1599
1600 /* Drop the lock to reduce the size of critical section */
1601 mutex_unlock(&opp_table_lock);
1602
1603 if (opp_table) {
1604 if (!_add_opp_dev(dev, opp_table)) {
1605 dev_pm_opp_put_opp_table(opp_table);
1606 opp_table = ERR_PTR(-ENOMEM);
1607 }
1608
1609 mutex_lock(&opp_table_lock);
1610 } else {
1611 opp_table = _allocate_opp_table(dev, index);
1612
1613 mutex_lock(&opp_table_lock);
1614 if (!IS_ERR(opp_table))
1615 list_add(&opp_table->node, &opp_tables);
1616 }
1617
1618 opp_tables_busy = false;
1619
1620unlock:
1621 mutex_unlock(&opp_table_lock);
1622
1623 return _update_opp_table_clk(dev, opp_table, getclk);
1624}
1625
1626static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1627{
1628 return _add_opp_table_indexed(dev, 0, getclk);
1629}
1630
1631struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1632{
1633 return _find_opp_table(dev);
1634}
1635EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1636
1637static void _opp_table_kref_release(struct kref *kref)
1638{
1639 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1640 struct opp_device *opp_dev, *temp;
1641 int i;
1642
1643 /* Drop the lock as soon as we can */
1644 list_del(&opp_table->node);
1645 mutex_unlock(&opp_table_lock);
1646
1647 if (opp_table->current_opp)
1648 dev_pm_opp_put(opp_table->current_opp);
1649
1650 _of_clear_opp_table(opp_table);
1651
1652 /* Release automatically acquired single clk */
1653 if (!IS_ERR(opp_table->clk))
1654 clk_put(opp_table->clk);
1655
1656 if (opp_table->paths) {
1657 for (i = 0; i < opp_table->path_count; i++)
1658 icc_put(opp_table->paths[i]);
1659 kfree(opp_table->paths);
1660 }
1661
1662 WARN_ON(!list_empty(&opp_table->opp_list));
1663
1664 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1665 _remove_opp_dev(opp_dev, opp_table);
1666
1667 mutex_destroy(&opp_table->lock);
1668 kfree(opp_table);
1669}
1670
1671void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1672{
1673 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1674 &opp_table_lock);
1675}
1676EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1677
1678void _opp_free(struct dev_pm_opp *opp)
1679{
1680 kfree(opp);
1681}
1682
1683static void _opp_kref_release(struct kref *kref)
1684{
1685 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1686 struct opp_table *opp_table = opp->opp_table;
1687
1688 list_del(&opp->node);
1689 mutex_unlock(&opp_table->lock);
1690
1691 /*
1692 * Notify the changes in the availability of the operable
1693 * frequency/voltage list.
1694 */
1695 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1696 _of_clear_opp(opp_table, opp);
1697 opp_debug_remove_one(opp);
1698 kfree(opp);
1699}
1700
1701void dev_pm_opp_get(struct dev_pm_opp *opp)
1702{
1703 kref_get(&opp->kref);
1704}
1705
1706void dev_pm_opp_put(struct dev_pm_opp *opp)
1707{
1708 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1709}
1710EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1711
1712/**
1713 * dev_pm_opp_remove() - Remove an OPP from OPP table
1714 * @dev: device for which we do this operation
1715 * @freq: OPP to remove with matching 'freq'
1716 *
1717 * This function removes an opp from the opp table.
1718 */
1719void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1720{
1721 struct dev_pm_opp *opp = NULL, *iter;
1722 struct opp_table *opp_table;
1723
1724 opp_table = _find_opp_table(dev);
1725 if (IS_ERR(opp_table))
1726 return;
1727
1728 if (!assert_single_clk(opp_table, 0))
1729 goto put_table;
1730
1731 mutex_lock(&opp_table->lock);
1732
1733 list_for_each_entry(iter, &opp_table->opp_list, node) {
1734 if (iter->rates[0] == freq) {
1735 opp = iter;
1736 break;
1737 }
1738 }
1739
1740 mutex_unlock(&opp_table->lock);
1741
1742 if (opp) {
1743 dev_pm_opp_put(opp);
1744
1745 /* Drop the reference taken by dev_pm_opp_add() */
1746 dev_pm_opp_put_opp_table(opp_table);
1747 } else {
1748 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1749 __func__, freq);
1750 }
1751
1752put_table:
1753 /* Drop the reference taken by _find_opp_table() */
1754 dev_pm_opp_put_opp_table(opp_table);
1755}
1756EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1757
1758static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1759 bool dynamic)
1760{
1761 struct dev_pm_opp *opp = NULL, *temp;
1762
1763 mutex_lock(&opp_table->lock);
1764 list_for_each_entry(temp, &opp_table->opp_list, node) {
1765 /*
1766 * Refcount must be dropped only once for each OPP by OPP core,
1767 * do that with help of "removed" flag.
1768 */
1769 if (!temp->removed && dynamic == temp->dynamic) {
1770 opp = temp;
1771 break;
1772 }
1773 }
1774
1775 mutex_unlock(&opp_table->lock);
1776 return opp;
1777}
1778
1779/*
1780 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1781 * happen lock less to avoid circular dependency issues. This routine must be
1782 * called without the opp_table->lock held.
1783 */
1784static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1785{
1786 struct dev_pm_opp *opp;
1787
1788 while ((opp = _opp_get_next(opp_table, dynamic))) {
1789 opp->removed = true;
1790 dev_pm_opp_put(opp);
1791
1792 /* Drop the references taken by dev_pm_opp_add() */
1793 if (dynamic)
1794 dev_pm_opp_put_opp_table(opp_table);
1795 }
1796}
1797
1798bool _opp_remove_all_static(struct opp_table *opp_table)
1799{
1800 mutex_lock(&opp_table->lock);
1801
1802 if (!opp_table->parsed_static_opps) {
1803 mutex_unlock(&opp_table->lock);
1804 return false;
1805 }
1806
1807 if (--opp_table->parsed_static_opps) {
1808 mutex_unlock(&opp_table->lock);
1809 return true;
1810 }
1811
1812 mutex_unlock(&opp_table->lock);
1813
1814 _opp_remove_all(opp_table, false);
1815 return true;
1816}
1817
1818/**
1819 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1820 * @dev: device for which we do this operation
1821 *
1822 * This function removes all dynamically created OPPs from the opp table.
1823 */
1824void dev_pm_opp_remove_all_dynamic(struct device *dev)
1825{
1826 struct opp_table *opp_table;
1827
1828 opp_table = _find_opp_table(dev);
1829 if (IS_ERR(opp_table))
1830 return;
1831
1832 _opp_remove_all(opp_table, true);
1833
1834 /* Drop the reference taken by _find_opp_table() */
1835 dev_pm_opp_put_opp_table(opp_table);
1836}
1837EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1838
1839struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1840{
1841 struct dev_pm_opp *opp;
1842 int supply_count, supply_size, icc_size, clk_size;
1843
1844 /* Allocate space for at least one supply */
1845 supply_count = opp_table->regulator_count > 0 ?
1846 opp_table->regulator_count : 1;
1847 supply_size = sizeof(*opp->supplies) * supply_count;
1848 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1849 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1850
1851 /* allocate new OPP node and supplies structures */
1852 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1853 if (!opp)
1854 return NULL;
1855
1856 /* Put the supplies, bw and clock at the end of the OPP structure */
1857 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1858
1859 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1860
1861 if (icc_size)
1862 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1863
1864 INIT_LIST_HEAD(&opp->node);
1865
1866 opp->level = OPP_LEVEL_UNSET;
1867
1868 return opp;
1869}
1870
1871static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1872 struct opp_table *opp_table)
1873{
1874 struct regulator *reg;
1875 int i;
1876
1877 if (!opp_table->regulators)
1878 return true;
1879
1880 for (i = 0; i < opp_table->regulator_count; i++) {
1881 reg = opp_table->regulators[i];
1882
1883 if (!regulator_is_supported_voltage(reg,
1884 opp->supplies[i].u_volt_min,
1885 opp->supplies[i].u_volt_max)) {
1886 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1887 __func__, opp->supplies[i].u_volt_min,
1888 opp->supplies[i].u_volt_max);
1889 return false;
1890 }
1891 }
1892
1893 return true;
1894}
1895
1896static int _opp_compare_rate(struct opp_table *opp_table,
1897 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1898{
1899 int i;
1900
1901 for (i = 0; i < opp_table->clk_count; i++) {
1902 if (opp1->rates[i] != opp2->rates[i])
1903 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1904 }
1905
1906 /* Same rates for both OPPs */
1907 return 0;
1908}
1909
1910static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1911 struct dev_pm_opp *opp2)
1912{
1913 int i;
1914
1915 for (i = 0; i < opp_table->path_count; i++) {
1916 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1917 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1918 }
1919
1920 /* Same bw for both OPPs */
1921 return 0;
1922}
1923
1924/*
1925 * Returns
1926 * 0: opp1 == opp2
1927 * 1: opp1 > opp2
1928 * -1: opp1 < opp2
1929 */
1930int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1931 struct dev_pm_opp *opp2)
1932{
1933 int ret;
1934
1935 ret = _opp_compare_rate(opp_table, opp1, opp2);
1936 if (ret)
1937 return ret;
1938
1939 ret = _opp_compare_bw(opp_table, opp1, opp2);
1940 if (ret)
1941 return ret;
1942
1943 if (opp1->level != opp2->level)
1944 return opp1->level < opp2->level ? -1 : 1;
1945
1946 /* Duplicate OPPs */
1947 return 0;
1948}
1949
1950static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1951 struct opp_table *opp_table,
1952 struct list_head **head)
1953{
1954 struct dev_pm_opp *opp;
1955 int opp_cmp;
1956
1957 /*
1958 * Insert new OPP in order of increasing frequency and discard if
1959 * already present.
1960 *
1961 * Need to use &opp_table->opp_list in the condition part of the 'for'
1962 * loop, don't replace it with head otherwise it will become an infinite
1963 * loop.
1964 */
1965 list_for_each_entry(opp, &opp_table->opp_list, node) {
1966 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1967 if (opp_cmp > 0) {
1968 *head = &opp->node;
1969 continue;
1970 }
1971
1972 if (opp_cmp < 0)
1973 return 0;
1974
1975 /* Duplicate OPPs */
1976 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1977 __func__, opp->rates[0], opp->supplies[0].u_volt,
1978 opp->available, new_opp->rates[0],
1979 new_opp->supplies[0].u_volt, new_opp->available);
1980
1981 /* Should we compare voltages for all regulators here ? */
1982 return opp->available &&
1983 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1984 }
1985
1986 return 0;
1987}
1988
1989void _required_opps_available(struct dev_pm_opp *opp, int count)
1990{
1991 int i;
1992
1993 for (i = 0; i < count; i++) {
1994 if (opp->required_opps[i]->available)
1995 continue;
1996
1997 opp->available = false;
1998 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1999 __func__, opp->required_opps[i]->np, opp->rates[0]);
2000 return;
2001 }
2002}
2003
2004/*
2005 * Returns:
2006 * 0: On success. And appropriate error message for duplicate OPPs.
2007 * -EBUSY: For OPP with same freq/volt and is available. The callers of
2008 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2009 * sure we don't print error messages unnecessarily if different parts of
2010 * kernel try to initialize the OPP table.
2011 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2012 * should be considered an error by the callers of _opp_add().
2013 */
2014int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2015 struct opp_table *opp_table)
2016{
2017 struct list_head *head;
2018 int ret;
2019
2020 mutex_lock(&opp_table->lock);
2021 head = &opp_table->opp_list;
2022
2023 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2024 if (ret) {
2025 mutex_unlock(&opp_table->lock);
2026 return ret;
2027 }
2028
2029 list_add(&new_opp->node, head);
2030 mutex_unlock(&opp_table->lock);
2031
2032 new_opp->opp_table = opp_table;
2033 kref_init(&new_opp->kref);
2034
2035 opp_debug_create_one(new_opp, opp_table);
2036
2037 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2038 new_opp->available = false;
2039 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2040 __func__, new_opp->rates[0]);
2041 }
2042
2043 /* required-opps not fully initialized yet */
2044 if (lazy_linking_pending(opp_table))
2045 return 0;
2046
2047 _required_opps_available(new_opp, opp_table->required_opp_count);
2048
2049 return 0;
2050}
2051
2052/**
2053 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2054 * @opp_table: OPP table
2055 * @dev: device for which we do this operation
2056 * @data: The OPP data for the OPP to add
2057 * @dynamic: Dynamically added OPPs.
2058 *
2059 * This function adds an opp definition to the opp table and returns status.
2060 * The opp is made available by default and it can be controlled using
2061 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2062 *
2063 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2064 * and freed by dev_pm_opp_of_remove_table.
2065 *
2066 * Return:
2067 * 0 On success OR
2068 * Duplicate OPPs (both freq and volt are same) and opp->available
2069 * -EEXIST Freq are same and volt are different OR
2070 * Duplicate OPPs (both freq and volt are same) and !opp->available
2071 * -ENOMEM Memory allocation failure
2072 */
2073int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2074 struct dev_pm_opp_data *data, bool dynamic)
2075{
2076 struct dev_pm_opp *new_opp;
2077 unsigned long tol, u_volt = data->u_volt;
2078 int ret;
2079
2080 if (!assert_single_clk(opp_table, 0))
2081 return -EINVAL;
2082
2083 new_opp = _opp_allocate(opp_table);
2084 if (!new_opp)
2085 return -ENOMEM;
2086
2087 /* populate the opp table */
2088 new_opp->rates[0] = data->freq;
2089 new_opp->level = data->level;
2090 new_opp->turbo = data->turbo;
2091 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2092 new_opp->supplies[0].u_volt = u_volt;
2093 new_opp->supplies[0].u_volt_min = u_volt - tol;
2094 new_opp->supplies[0].u_volt_max = u_volt + tol;
2095 new_opp->available = true;
2096 new_opp->dynamic = dynamic;
2097
2098 ret = _opp_add(dev, new_opp, opp_table);
2099 if (ret) {
2100 /* Don't return error for duplicate OPPs */
2101 if (ret == -EBUSY)
2102 ret = 0;
2103 goto free_opp;
2104 }
2105
2106 /*
2107 * Notify the changes in the availability of the operable
2108 * frequency/voltage list.
2109 */
2110 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2111 return 0;
2112
2113free_opp:
2114 _opp_free(new_opp);
2115
2116 return ret;
2117}
2118
2119/*
2120 * This is required only for the V2 bindings, and it enables a platform to
2121 * specify the hierarchy of versions it supports. OPP layer will then enable
2122 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2123 * property.
2124 */
2125static int _opp_set_supported_hw(struct opp_table *opp_table,
2126 const u32 *versions, unsigned int count)
2127{
2128 /* Another CPU that shares the OPP table has set the property ? */
2129 if (opp_table->supported_hw)
2130 return 0;
2131
2132 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2133 GFP_KERNEL);
2134 if (!opp_table->supported_hw)
2135 return -ENOMEM;
2136
2137 opp_table->supported_hw_count = count;
2138
2139 return 0;
2140}
2141
2142static void _opp_put_supported_hw(struct opp_table *opp_table)
2143{
2144 if (opp_table->supported_hw) {
2145 kfree(opp_table->supported_hw);
2146 opp_table->supported_hw = NULL;
2147 opp_table->supported_hw_count = 0;
2148 }
2149}
2150
2151/*
2152 * This is required only for the V2 bindings, and it enables a platform to
2153 * specify the extn to be used for certain property names. The properties to
2154 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2155 * should postfix the property name with -<name> while looking for them.
2156 */
2157static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2158{
2159 /* Another CPU that shares the OPP table has set the property ? */
2160 if (!opp_table->prop_name) {
2161 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2162 if (!opp_table->prop_name)
2163 return -ENOMEM;
2164 }
2165
2166 return 0;
2167}
2168
2169static void _opp_put_prop_name(struct opp_table *opp_table)
2170{
2171 if (opp_table->prop_name) {
2172 kfree(opp_table->prop_name);
2173 opp_table->prop_name = NULL;
2174 }
2175}
2176
2177/*
2178 * In order to support OPP switching, OPP layer needs to know the name of the
2179 * device's regulators, as the core would be required to switch voltages as
2180 * well.
2181 *
2182 * This must be called before any OPPs are initialized for the device.
2183 */
2184static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2185 const char * const names[])
2186{
2187 const char * const *temp = names;
2188 struct regulator *reg;
2189 int count = 0, ret, i;
2190
2191 /* Count number of regulators */
2192 while (*temp++)
2193 count++;
2194
2195 if (!count)
2196 return -EINVAL;
2197
2198 /* Another CPU that shares the OPP table has set the regulators ? */
2199 if (opp_table->regulators)
2200 return 0;
2201
2202 opp_table->regulators = kmalloc_array(count,
2203 sizeof(*opp_table->regulators),
2204 GFP_KERNEL);
2205 if (!opp_table->regulators)
2206 return -ENOMEM;
2207
2208 for (i = 0; i < count; i++) {
2209 reg = regulator_get_optional(dev, names[i]);
2210 if (IS_ERR(reg)) {
2211 ret = dev_err_probe(dev, PTR_ERR(reg),
2212 "%s: no regulator (%s) found\n",
2213 __func__, names[i]);
2214 goto free_regulators;
2215 }
2216
2217 opp_table->regulators[i] = reg;
2218 }
2219
2220 opp_table->regulator_count = count;
2221
2222 /* Set generic config_regulators() for single regulators here */
2223 if (count == 1)
2224 opp_table->config_regulators = _opp_config_regulator_single;
2225
2226 return 0;
2227
2228free_regulators:
2229 while (i != 0)
2230 regulator_put(opp_table->regulators[--i]);
2231
2232 kfree(opp_table->regulators);
2233 opp_table->regulators = NULL;
2234 opp_table->regulator_count = -1;
2235
2236 return ret;
2237}
2238
2239static void _opp_put_regulators(struct opp_table *opp_table)
2240{
2241 int i;
2242
2243 if (!opp_table->regulators)
2244 return;
2245
2246 if (opp_table->enabled) {
2247 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2248 regulator_disable(opp_table->regulators[i]);
2249 }
2250
2251 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2252 regulator_put(opp_table->regulators[i]);
2253
2254 kfree(opp_table->regulators);
2255 opp_table->regulators = NULL;
2256 opp_table->regulator_count = -1;
2257}
2258
2259static void _put_clks(struct opp_table *opp_table, int count)
2260{
2261 int i;
2262
2263 for (i = count - 1; i >= 0; i--)
2264 clk_put(opp_table->clks[i]);
2265
2266 kfree(opp_table->clks);
2267 opp_table->clks = NULL;
2268}
2269
2270/*
2271 * In order to support OPP switching, OPP layer needs to get pointers to the
2272 * clocks for the device. Simple cases work fine without using this routine
2273 * (i.e. by passing connection-id as NULL), but for a device with multiple
2274 * clocks available, the OPP core needs to know the exact names of the clks to
2275 * use.
2276 *
2277 * This must be called before any OPPs are initialized for the device.
2278 */
2279static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2280 const char * const names[],
2281 config_clks_t config_clks)
2282{
2283 const char * const *temp = names;
2284 int count = 0, ret, i;
2285 struct clk *clk;
2286
2287 /* Count number of clks */
2288 while (*temp++)
2289 count++;
2290
2291 /*
2292 * This is a special case where we have a single clock, whose connection
2293 * id name is NULL, i.e. first two entries are NULL in the array.
2294 */
2295 if (!count && !names[1])
2296 count = 1;
2297
2298 /* Fail early for invalid configurations */
2299 if (!count || (!config_clks && count > 1))
2300 return -EINVAL;
2301
2302 /* Another CPU that shares the OPP table has set the clkname ? */
2303 if (opp_table->clks)
2304 return 0;
2305
2306 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2307 GFP_KERNEL);
2308 if (!opp_table->clks)
2309 return -ENOMEM;
2310
2311 /* Find clks for the device */
2312 for (i = 0; i < count; i++) {
2313 clk = clk_get(dev, names[i]);
2314 if (IS_ERR(clk)) {
2315 ret = dev_err_probe(dev, PTR_ERR(clk),
2316 "%s: Couldn't find clock with name: %s\n",
2317 __func__, names[i]);
2318 goto free_clks;
2319 }
2320
2321 opp_table->clks[i] = clk;
2322 }
2323
2324 opp_table->clk_count = count;
2325 opp_table->config_clks = config_clks;
2326
2327 /* Set generic single clk set here */
2328 if (count == 1) {
2329 if (!opp_table->config_clks)
2330 opp_table->config_clks = _opp_config_clk_single;
2331
2332 /*
2333 * We could have just dropped the "clk" field and used "clks"
2334 * everywhere. Instead we kept the "clk" field around for
2335 * following reasons:
2336 *
2337 * - avoiding clks[0] everywhere else.
2338 * - not running single clk helpers for multiple clk usecase by
2339 * mistake.
2340 *
2341 * Since this is single-clk case, just update the clk pointer
2342 * too.
2343 */
2344 opp_table->clk = opp_table->clks[0];
2345 }
2346
2347 return 0;
2348
2349free_clks:
2350 _put_clks(opp_table, i);
2351 return ret;
2352}
2353
2354static void _opp_put_clknames(struct opp_table *opp_table)
2355{
2356 if (!opp_table->clks)
2357 return;
2358
2359 opp_table->config_clks = NULL;
2360 opp_table->clk = ERR_PTR(-ENODEV);
2361
2362 _put_clks(opp_table, opp_table->clk_count);
2363}
2364
2365/*
2366 * This is useful to support platforms with multiple regulators per device.
2367 *
2368 * This must be called before any OPPs are initialized for the device.
2369 */
2370static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2371 struct device *dev, config_regulators_t config_regulators)
2372{
2373 /* Another CPU that shares the OPP table has set the helper ? */
2374 if (!opp_table->config_regulators)
2375 opp_table->config_regulators = config_regulators;
2376
2377 return 0;
2378}
2379
2380static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2381{
2382 if (opp_table->config_regulators)
2383 opp_table->config_regulators = NULL;
2384}
2385
2386static int _opp_set_required_dev(struct opp_table *opp_table,
2387 struct device *dev,
2388 struct device *required_dev,
2389 unsigned int index)
2390{
2391 struct opp_table *required_table, *pd_table;
2392 struct device *gdev;
2393
2394 /* Genpd core takes care of propagation to parent genpd */
2395 if (opp_table->is_genpd) {
2396 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2397 return -EOPNOTSUPP;
2398 }
2399
2400 if (index >= opp_table->required_opp_count) {
2401 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2402 return -EINVAL;
2403 }
2404
2405 required_table = opp_table->required_opp_tables[index];
2406 if (IS_ERR(required_table)) {
2407 dev_err(dev, "Missing OPP table, unable to set the required devs\n");
2408 return -ENODEV;
2409 }
2410
2411 /*
2412 * The required_opp_tables parsing is not perfect, as the OPP core does
2413 * the parsing solely based on the DT node pointers. The core sets the
2414 * required_opp_tables entry to the first OPP table in the "opp_tables"
2415 * list, that matches with the node pointer.
2416 *
2417 * If the target DT OPP table is used by multiple devices and they all
2418 * create separate instances of 'struct opp_table' from it, then it is
2419 * possible that the required_opp_tables entry may be set to the
2420 * incorrect sibling device.
2421 *
2422 * Cross check it again and fix if required.
2423 */
2424 gdev = dev_to_genpd_dev(required_dev);
2425 if (IS_ERR(gdev))
2426 return PTR_ERR(gdev);
2427
2428 pd_table = _find_opp_table(gdev);
2429 if (!IS_ERR(pd_table)) {
2430 if (pd_table != required_table) {
2431 dev_pm_opp_put_opp_table(required_table);
2432 opp_table->required_opp_tables[index] = pd_table;
2433 } else {
2434 dev_pm_opp_put_opp_table(pd_table);
2435 }
2436 }
2437
2438 opp_table->required_devs[index] = required_dev;
2439 return 0;
2440}
2441
2442static void _opp_put_required_dev(struct opp_table *opp_table,
2443 unsigned int index)
2444{
2445 opp_table->required_devs[index] = NULL;
2446}
2447
2448static void _opp_clear_config(struct opp_config_data *data)
2449{
2450 if (data->flags & OPP_CONFIG_REQUIRED_DEV)
2451 _opp_put_required_dev(data->opp_table,
2452 data->required_dev_index);
2453 if (data->flags & OPP_CONFIG_REGULATOR)
2454 _opp_put_regulators(data->opp_table);
2455 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2456 _opp_put_supported_hw(data->opp_table);
2457 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2458 _opp_put_config_regulators_helper(data->opp_table);
2459 if (data->flags & OPP_CONFIG_PROP_NAME)
2460 _opp_put_prop_name(data->opp_table);
2461 if (data->flags & OPP_CONFIG_CLK)
2462 _opp_put_clknames(data->opp_table);
2463
2464 dev_pm_opp_put_opp_table(data->opp_table);
2465 kfree(data);
2466}
2467
2468/**
2469 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2470 * @dev: Device for which configuration is being set.
2471 * @config: OPP configuration.
2472 *
2473 * This allows all device OPP configurations to be performed at once.
2474 *
2475 * This must be called before any OPPs are initialized for the device. This may
2476 * be called multiple times for the same OPP table, for example once for each
2477 * CPU that share the same table. This must be balanced by the same number of
2478 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2479 *
2480 * This returns a token to the caller, which must be passed to
2481 * dev_pm_opp_clear_config() to free the resources later. The value of the
2482 * returned token will be >= 1 for success and negative for errors. The minimum
2483 * value of 1 is chosen here to make it easy for callers to manage the resource.
2484 */
2485int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2486{
2487 struct opp_table *opp_table;
2488 struct opp_config_data *data;
2489 unsigned int id;
2490 int ret;
2491
2492 data = kmalloc(sizeof(*data), GFP_KERNEL);
2493 if (!data)
2494 return -ENOMEM;
2495
2496 opp_table = _add_opp_table(dev, false);
2497 if (IS_ERR(opp_table)) {
2498 kfree(data);
2499 return PTR_ERR(opp_table);
2500 }
2501
2502 data->opp_table = opp_table;
2503 data->flags = 0;
2504
2505 /* This should be called before OPPs are initialized */
2506 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2507 ret = -EBUSY;
2508 goto err;
2509 }
2510
2511 /* Configure clocks */
2512 if (config->clk_names) {
2513 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2514 config->config_clks);
2515 if (ret)
2516 goto err;
2517
2518 data->flags |= OPP_CONFIG_CLK;
2519 } else if (config->config_clks) {
2520 /* Don't allow config callback without clocks */
2521 ret = -EINVAL;
2522 goto err;
2523 }
2524
2525 /* Configure property names */
2526 if (config->prop_name) {
2527 ret = _opp_set_prop_name(opp_table, config->prop_name);
2528 if (ret)
2529 goto err;
2530
2531 data->flags |= OPP_CONFIG_PROP_NAME;
2532 }
2533
2534 /* Configure config_regulators helper */
2535 if (config->config_regulators) {
2536 ret = _opp_set_config_regulators_helper(opp_table, dev,
2537 config->config_regulators);
2538 if (ret)
2539 goto err;
2540
2541 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2542 }
2543
2544 /* Configure supported hardware */
2545 if (config->supported_hw) {
2546 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2547 config->supported_hw_count);
2548 if (ret)
2549 goto err;
2550
2551 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2552 }
2553
2554 /* Configure supplies */
2555 if (config->regulator_names) {
2556 ret = _opp_set_regulators(opp_table, dev,
2557 config->regulator_names);
2558 if (ret)
2559 goto err;
2560
2561 data->flags |= OPP_CONFIG_REGULATOR;
2562 }
2563
2564 if (config->required_dev) {
2565 ret = _opp_set_required_dev(opp_table, dev,
2566 config->required_dev,
2567 config->required_dev_index);
2568 if (ret)
2569 goto err;
2570
2571 data->required_dev_index = config->required_dev_index;
2572 data->flags |= OPP_CONFIG_REQUIRED_DEV;
2573 }
2574
2575 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2576 GFP_KERNEL);
2577 if (ret)
2578 goto err;
2579
2580 return id;
2581
2582err:
2583 _opp_clear_config(data);
2584 return ret;
2585}
2586EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2587
2588/**
2589 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2590 * @token: The token returned by dev_pm_opp_set_config() previously.
2591 *
2592 * This allows all device OPP configurations to be cleared at once. This must be
2593 * called once for each call made to dev_pm_opp_set_config(), in order to free
2594 * the OPPs properly.
2595 *
2596 * Currently the first call itself ends up freeing all the OPP configurations,
2597 * while the later ones only drop the OPP table reference. This works well for
2598 * now as we would never want to use an half initialized OPP table and want to
2599 * remove the configurations together.
2600 */
2601void dev_pm_opp_clear_config(int token)
2602{
2603 struct opp_config_data *data;
2604
2605 /*
2606 * This lets the callers call this unconditionally and keep their code
2607 * simple.
2608 */
2609 if (unlikely(token <= 0))
2610 return;
2611
2612 data = xa_erase(&opp_configs, token);
2613 if (WARN_ON(!data))
2614 return;
2615
2616 _opp_clear_config(data);
2617}
2618EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2619
2620static void devm_pm_opp_config_release(void *token)
2621{
2622 dev_pm_opp_clear_config((unsigned long)token);
2623}
2624
2625/**
2626 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2627 * @dev: Device for which configuration is being set.
2628 * @config: OPP configuration.
2629 *
2630 * This allows all device OPP configurations to be performed at once.
2631 * This is a resource-managed variant of dev_pm_opp_set_config().
2632 *
2633 * Return: 0 on success and errorno otherwise.
2634 */
2635int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2636{
2637 int token = dev_pm_opp_set_config(dev, config);
2638
2639 if (token < 0)
2640 return token;
2641
2642 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2643 (void *) ((unsigned long) token));
2644}
2645EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2646
2647/**
2648 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2649 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2650 * @dst_table: Required OPP table of the @src_table.
2651 * @src_opp: OPP from the @src_table.
2652 *
2653 * This function returns the OPP (present in @dst_table) pointed out by the
2654 * "required-opps" property of the @src_opp (present in @src_table).
2655 *
2656 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2657 * use.
2658 *
2659 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2660 */
2661struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2662 struct opp_table *dst_table,
2663 struct dev_pm_opp *src_opp)
2664{
2665 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2666 int i;
2667
2668 if (!src_table || !dst_table || !src_opp ||
2669 !src_table->required_opp_tables)
2670 return ERR_PTR(-EINVAL);
2671
2672 /* required-opps not fully initialized yet */
2673 if (lazy_linking_pending(src_table))
2674 return ERR_PTR(-EBUSY);
2675
2676 for (i = 0; i < src_table->required_opp_count; i++) {
2677 if (src_table->required_opp_tables[i] == dst_table) {
2678 mutex_lock(&src_table->lock);
2679
2680 list_for_each_entry(opp, &src_table->opp_list, node) {
2681 if (opp == src_opp) {
2682 dest_opp = opp->required_opps[i];
2683 dev_pm_opp_get(dest_opp);
2684 break;
2685 }
2686 }
2687
2688 mutex_unlock(&src_table->lock);
2689 break;
2690 }
2691 }
2692
2693 if (IS_ERR(dest_opp)) {
2694 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2695 src_table, dst_table);
2696 }
2697
2698 return dest_opp;
2699}
2700EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2701
2702/**
2703 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2704 * @src_table: OPP table which has dst_table as one of its required OPP table.
2705 * @dst_table: Required OPP table of the src_table.
2706 * @pstate: Current performance state of the src_table.
2707 *
2708 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2709 * "required-opps" property of the OPP (present in @src_table) which has
2710 * performance state set to @pstate.
2711 *
2712 * Return: Zero or positive performance state on success, otherwise negative
2713 * value on errors.
2714 */
2715int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2716 struct opp_table *dst_table,
2717 unsigned int pstate)
2718{
2719 struct dev_pm_opp *opp;
2720 int dest_pstate = -EINVAL;
2721 int i;
2722
2723 /*
2724 * Normally the src_table will have the "required_opps" property set to
2725 * point to one of the OPPs in the dst_table, but in some cases the
2726 * genpd and its master have one to one mapping of performance states
2727 * and so none of them have the "required-opps" property set. Return the
2728 * pstate of the src_table as it is in such cases.
2729 */
2730 if (!src_table || !src_table->required_opp_count)
2731 return pstate;
2732
2733 /* Both OPP tables must belong to genpds */
2734 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2735 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2736 return -EINVAL;
2737 }
2738
2739 /* required-opps not fully initialized yet */
2740 if (lazy_linking_pending(src_table))
2741 return -EBUSY;
2742
2743 for (i = 0; i < src_table->required_opp_count; i++) {
2744 if (src_table->required_opp_tables[i]->np == dst_table->np)
2745 break;
2746 }
2747
2748 if (unlikely(i == src_table->required_opp_count)) {
2749 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2750 __func__, src_table, dst_table);
2751 return -EINVAL;
2752 }
2753
2754 mutex_lock(&src_table->lock);
2755
2756 list_for_each_entry(opp, &src_table->opp_list, node) {
2757 if (opp->level == pstate) {
2758 dest_pstate = opp->required_opps[i]->level;
2759 goto unlock;
2760 }
2761 }
2762
2763 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2764 dst_table);
2765
2766unlock:
2767 mutex_unlock(&src_table->lock);
2768
2769 return dest_pstate;
2770}
2771
2772/**
2773 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2774 * @dev: The device for which we do this operation
2775 * @data: The OPP data for the OPP to add
2776 *
2777 * This function adds an opp definition to the opp table and returns status.
2778 * The opp is made available by default and it can be controlled using
2779 * dev_pm_opp_enable/disable functions.
2780 *
2781 * Return:
2782 * 0 On success OR
2783 * Duplicate OPPs (both freq and volt are same) and opp->available
2784 * -EEXIST Freq are same and volt are different OR
2785 * Duplicate OPPs (both freq and volt are same) and !opp->available
2786 * -ENOMEM Memory allocation failure
2787 */
2788int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2789{
2790 struct opp_table *opp_table;
2791 int ret;
2792
2793 opp_table = _add_opp_table(dev, true);
2794 if (IS_ERR(opp_table))
2795 return PTR_ERR(opp_table);
2796
2797 /* Fix regulator count for dynamic OPPs */
2798 opp_table->regulator_count = 1;
2799
2800 ret = _opp_add_v1(opp_table, dev, data, true);
2801 if (ret)
2802 dev_pm_opp_put_opp_table(opp_table);
2803
2804 return ret;
2805}
2806EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2807
2808/**
2809 * _opp_set_availability() - helper to set the availability of an opp
2810 * @dev: device for which we do this operation
2811 * @freq: OPP frequency to modify availability
2812 * @availability_req: availability status requested for this opp
2813 *
2814 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2815 * which is isolated here.
2816 *
2817 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2818 * copy operation, returns 0 if no modification was done OR modification was
2819 * successful.
2820 */
2821static int _opp_set_availability(struct device *dev, unsigned long freq,
2822 bool availability_req)
2823{
2824 struct opp_table *opp_table;
2825 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2826 int r = 0;
2827
2828 /* Find the opp_table */
2829 opp_table = _find_opp_table(dev);
2830 if (IS_ERR(opp_table)) {
2831 r = PTR_ERR(opp_table);
2832 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2833 return r;
2834 }
2835
2836 if (!assert_single_clk(opp_table, 0)) {
2837 r = -EINVAL;
2838 goto put_table;
2839 }
2840
2841 mutex_lock(&opp_table->lock);
2842
2843 /* Do we have the frequency? */
2844 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2845 if (tmp_opp->rates[0] == freq) {
2846 opp = tmp_opp;
2847 break;
2848 }
2849 }
2850
2851 if (IS_ERR(opp)) {
2852 r = PTR_ERR(opp);
2853 goto unlock;
2854 }
2855
2856 /* Is update really needed? */
2857 if (opp->available == availability_req)
2858 goto unlock;
2859
2860 opp->available = availability_req;
2861
2862 dev_pm_opp_get(opp);
2863 mutex_unlock(&opp_table->lock);
2864
2865 /* Notify the change of the OPP availability */
2866 if (availability_req)
2867 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2868 opp);
2869 else
2870 blocking_notifier_call_chain(&opp_table->head,
2871 OPP_EVENT_DISABLE, opp);
2872
2873 dev_pm_opp_put(opp);
2874 goto put_table;
2875
2876unlock:
2877 mutex_unlock(&opp_table->lock);
2878put_table:
2879 dev_pm_opp_put_opp_table(opp_table);
2880 return r;
2881}
2882
2883/**
2884 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2885 * @dev: device for which we do this operation
2886 * @freq: OPP frequency to adjust voltage of
2887 * @u_volt: new OPP target voltage
2888 * @u_volt_min: new OPP min voltage
2889 * @u_volt_max: new OPP max voltage
2890 *
2891 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2892 * copy operation, returns 0 if no modifcation was done OR modification was
2893 * successful.
2894 */
2895int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2896 unsigned long u_volt, unsigned long u_volt_min,
2897 unsigned long u_volt_max)
2898
2899{
2900 struct opp_table *opp_table;
2901 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2902 int r = 0;
2903
2904 /* Find the opp_table */
2905 opp_table = _find_opp_table(dev);
2906 if (IS_ERR(opp_table)) {
2907 r = PTR_ERR(opp_table);
2908 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2909 return r;
2910 }
2911
2912 if (!assert_single_clk(opp_table, 0)) {
2913 r = -EINVAL;
2914 goto put_table;
2915 }
2916
2917 mutex_lock(&opp_table->lock);
2918
2919 /* Do we have the frequency? */
2920 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2921 if (tmp_opp->rates[0] == freq) {
2922 opp = tmp_opp;
2923 break;
2924 }
2925 }
2926
2927 if (IS_ERR(opp)) {
2928 r = PTR_ERR(opp);
2929 goto adjust_unlock;
2930 }
2931
2932 /* Is update really needed? */
2933 if (opp->supplies->u_volt == u_volt)
2934 goto adjust_unlock;
2935
2936 opp->supplies->u_volt = u_volt;
2937 opp->supplies->u_volt_min = u_volt_min;
2938 opp->supplies->u_volt_max = u_volt_max;
2939
2940 dev_pm_opp_get(opp);
2941 mutex_unlock(&opp_table->lock);
2942
2943 /* Notify the voltage change of the OPP */
2944 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2945 opp);
2946
2947 dev_pm_opp_put(opp);
2948 goto put_table;
2949
2950adjust_unlock:
2951 mutex_unlock(&opp_table->lock);
2952put_table:
2953 dev_pm_opp_put_opp_table(opp_table);
2954 return r;
2955}
2956EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2957
2958/**
2959 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2960 * @dev: device for which we do this operation
2961 *
2962 * Sync voltage state of the OPP table regulators.
2963 *
2964 * Return: 0 on success or a negative error value.
2965 */
2966int dev_pm_opp_sync_regulators(struct device *dev)
2967{
2968 struct opp_table *opp_table;
2969 struct regulator *reg;
2970 int i, ret = 0;
2971
2972 /* Device may not have OPP table */
2973 opp_table = _find_opp_table(dev);
2974 if (IS_ERR(opp_table))
2975 return 0;
2976
2977 /* Regulator may not be required for the device */
2978 if (unlikely(!opp_table->regulators))
2979 goto put_table;
2980
2981 /* Nothing to sync if voltage wasn't changed */
2982 if (!opp_table->enabled)
2983 goto put_table;
2984
2985 for (i = 0; i < opp_table->regulator_count; i++) {
2986 reg = opp_table->regulators[i];
2987 ret = regulator_sync_voltage(reg);
2988 if (ret)
2989 break;
2990 }
2991put_table:
2992 /* Drop reference taken by _find_opp_table() */
2993 dev_pm_opp_put_opp_table(opp_table);
2994
2995 return ret;
2996}
2997EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2998
2999/**
3000 * dev_pm_opp_enable() - Enable a specific OPP
3001 * @dev: device for which we do this operation
3002 * @freq: OPP frequency to enable
3003 *
3004 * Enables a provided opp. If the operation is valid, this returns 0, else the
3005 * corresponding error value. It is meant to be used for users an OPP available
3006 * after being temporarily made unavailable with dev_pm_opp_disable.
3007 *
3008 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3009 * copy operation, returns 0 if no modification was done OR modification was
3010 * successful.
3011 */
3012int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3013{
3014 return _opp_set_availability(dev, freq, true);
3015}
3016EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3017
3018/**
3019 * dev_pm_opp_disable() - Disable a specific OPP
3020 * @dev: device for which we do this operation
3021 * @freq: OPP frequency to disable
3022 *
3023 * Disables a provided opp. If the operation is valid, this returns
3024 * 0, else the corresponding error value. It is meant to be a temporary
3025 * control by users to make this OPP not available until the circumstances are
3026 * right to make it available again (with a call to dev_pm_opp_enable).
3027 *
3028 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3029 * copy operation, returns 0 if no modification was done OR modification was
3030 * successful.
3031 */
3032int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3033{
3034 return _opp_set_availability(dev, freq, false);
3035}
3036EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3037
3038/**
3039 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3040 * @dev: Device for which notifier needs to be registered
3041 * @nb: Notifier block to be registered
3042 *
3043 * Return: 0 on success or a negative error value.
3044 */
3045int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3046{
3047 struct opp_table *opp_table;
3048 int ret;
3049
3050 opp_table = _find_opp_table(dev);
3051 if (IS_ERR(opp_table))
3052 return PTR_ERR(opp_table);
3053
3054 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3055
3056 dev_pm_opp_put_opp_table(opp_table);
3057
3058 return ret;
3059}
3060EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3061
3062/**
3063 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3064 * @dev: Device for which notifier needs to be unregistered
3065 * @nb: Notifier block to be unregistered
3066 *
3067 * Return: 0 on success or a negative error value.
3068 */
3069int dev_pm_opp_unregister_notifier(struct device *dev,
3070 struct notifier_block *nb)
3071{
3072 struct opp_table *opp_table;
3073 int ret;
3074
3075 opp_table = _find_opp_table(dev);
3076 if (IS_ERR(opp_table))
3077 return PTR_ERR(opp_table);
3078
3079 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3080
3081 dev_pm_opp_put_opp_table(opp_table);
3082
3083 return ret;
3084}
3085EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3086
3087/**
3088 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3089 * @dev: device pointer used to lookup OPP table.
3090 *
3091 * Free both OPPs created using static entries present in DT and the
3092 * dynamically added entries.
3093 */
3094void dev_pm_opp_remove_table(struct device *dev)
3095{
3096 struct opp_table *opp_table;
3097
3098 /* Check for existing table for 'dev' */
3099 opp_table = _find_opp_table(dev);
3100 if (IS_ERR(opp_table)) {
3101 int error = PTR_ERR(opp_table);
3102
3103 if (error != -ENODEV)
3104 WARN(1, "%s: opp_table: %d\n",
3105 IS_ERR_OR_NULL(dev) ?
3106 "Invalid device" : dev_name(dev),
3107 error);
3108 return;
3109 }
3110
3111 /*
3112 * Drop the extra reference only if the OPP table was successfully added
3113 * with dev_pm_opp_of_add_table() earlier.
3114 **/
3115 if (_opp_remove_all_static(opp_table))
3116 dev_pm_opp_put_opp_table(opp_table);
3117
3118 /* Drop reference taken by _find_opp_table() */
3119 dev_pm_opp_put_opp_table(opp_table);
3120}
3121EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/slab.h>
17#include <linux/device.h>
18#include <linux/export.h>
19#include <linux/pm_domain.h>
20#include <linux/regulator/consumer.h>
21
22#include "opp.h"
23
24/*
25 * The root of the list of all opp-tables. All opp_table structures branch off
26 * from here, with each opp_table containing the list of opps it supports in
27 * various states of availability.
28 */
29LIST_HEAD(opp_tables);
30
31/* OPP tables with uninitialized required OPPs */
32LIST_HEAD(lazy_opp_tables);
33
34/* Lock to allow exclusive modification to the device and opp lists */
35DEFINE_MUTEX(opp_table_lock);
36/* Flag indicating that opp_tables list is being updated at the moment */
37static bool opp_tables_busy;
38
39static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
40{
41 struct opp_device *opp_dev;
42 bool found = false;
43
44 mutex_lock(&opp_table->lock);
45 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
46 if (opp_dev->dev == dev) {
47 found = true;
48 break;
49 }
50
51 mutex_unlock(&opp_table->lock);
52 return found;
53}
54
55static struct opp_table *_find_opp_table_unlocked(struct device *dev)
56{
57 struct opp_table *opp_table;
58
59 list_for_each_entry(opp_table, &opp_tables, node) {
60 if (_find_opp_dev(dev, opp_table)) {
61 _get_opp_table_kref(opp_table);
62 return opp_table;
63 }
64 }
65
66 return ERR_PTR(-ENODEV);
67}
68
69/**
70 * _find_opp_table() - find opp_table struct using device pointer
71 * @dev: device pointer used to lookup OPP table
72 *
73 * Search OPP table for one containing matching device.
74 *
75 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
76 * -EINVAL based on type of error.
77 *
78 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
79 */
80struct opp_table *_find_opp_table(struct device *dev)
81{
82 struct opp_table *opp_table;
83
84 if (IS_ERR_OR_NULL(dev)) {
85 pr_err("%s: Invalid parameters\n", __func__);
86 return ERR_PTR(-EINVAL);
87 }
88
89 mutex_lock(&opp_table_lock);
90 opp_table = _find_opp_table_unlocked(dev);
91 mutex_unlock(&opp_table_lock);
92
93 return opp_table;
94}
95
96/**
97 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
98 * @opp: opp for which voltage has to be returned for
99 *
100 * Return: voltage in micro volt corresponding to the opp, else
101 * return 0
102 *
103 * This is useful only for devices with single power supply.
104 */
105unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
106{
107 if (IS_ERR_OR_NULL(opp)) {
108 pr_err("%s: Invalid parameters\n", __func__);
109 return 0;
110 }
111
112 return opp->supplies[0].u_volt;
113}
114EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
115
116/**
117 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
118 * @opp: opp for which frequency has to be returned for
119 *
120 * Return: frequency in hertz corresponding to the opp, else
121 * return 0
122 */
123unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
124{
125 if (IS_ERR_OR_NULL(opp)) {
126 pr_err("%s: Invalid parameters\n", __func__);
127 return 0;
128 }
129
130 return opp->rate;
131}
132EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
133
134/**
135 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
136 * @opp: opp for which level value has to be returned for
137 *
138 * Return: level read from device tree corresponding to the opp, else
139 * return 0.
140 */
141unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
142{
143 if (IS_ERR_OR_NULL(opp) || !opp->available) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return 0;
146 }
147
148 return opp->level;
149}
150EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
151
152/**
153 * dev_pm_opp_get_required_pstate() - Gets the required performance state
154 * corresponding to an available opp
155 * @opp: opp for which performance state has to be returned for
156 * @index: index of the required opp
157 *
158 * Return: performance state read from device tree corresponding to the
159 * required opp, else return 0.
160 */
161unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
162 unsigned int index)
163{
164 if (IS_ERR_OR_NULL(opp) || !opp->available ||
165 index >= opp->opp_table->required_opp_count) {
166 pr_err("%s: Invalid parameters\n", __func__);
167 return 0;
168 }
169
170 /* required-opps not fully initialized yet */
171 if (lazy_linking_pending(opp->opp_table))
172 return 0;
173
174 return opp->required_opps[index]->pstate;
175}
176EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
177
178/**
179 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
180 * @opp: opp for which turbo mode is being verified
181 *
182 * Turbo OPPs are not for normal use, and can be enabled (under certain
183 * conditions) for short duration of times to finish high throughput work
184 * quickly. Running on them for longer times may overheat the chip.
185 *
186 * Return: true if opp is turbo opp, else false.
187 */
188bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
189{
190 if (IS_ERR_OR_NULL(opp) || !opp->available) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return false;
193 }
194
195 return opp->turbo;
196}
197EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
198
199/**
200 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
201 * @dev: device for which we do this operation
202 *
203 * Return: This function returns the max clock latency in nanoseconds.
204 */
205unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
206{
207 struct opp_table *opp_table;
208 unsigned long clock_latency_ns;
209
210 opp_table = _find_opp_table(dev);
211 if (IS_ERR(opp_table))
212 return 0;
213
214 clock_latency_ns = opp_table->clock_latency_ns_max;
215
216 dev_pm_opp_put_opp_table(opp_table);
217
218 return clock_latency_ns;
219}
220EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
221
222/**
223 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
224 * @dev: device for which we do this operation
225 *
226 * Return: This function returns the max voltage latency in nanoseconds.
227 */
228unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
229{
230 struct opp_table *opp_table;
231 struct dev_pm_opp *opp;
232 struct regulator *reg;
233 unsigned long latency_ns = 0;
234 int ret, i, count;
235 struct {
236 unsigned long min;
237 unsigned long max;
238 } *uV;
239
240 opp_table = _find_opp_table(dev);
241 if (IS_ERR(opp_table))
242 return 0;
243
244 /* Regulator may not be required for the device */
245 if (!opp_table->regulators)
246 goto put_opp_table;
247
248 count = opp_table->regulator_count;
249
250 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
251 if (!uV)
252 goto put_opp_table;
253
254 mutex_lock(&opp_table->lock);
255
256 for (i = 0; i < count; i++) {
257 uV[i].min = ~0;
258 uV[i].max = 0;
259
260 list_for_each_entry(opp, &opp_table->opp_list, node) {
261 if (!opp->available)
262 continue;
263
264 if (opp->supplies[i].u_volt_min < uV[i].min)
265 uV[i].min = opp->supplies[i].u_volt_min;
266 if (opp->supplies[i].u_volt_max > uV[i].max)
267 uV[i].max = opp->supplies[i].u_volt_max;
268 }
269 }
270
271 mutex_unlock(&opp_table->lock);
272
273 /*
274 * The caller needs to ensure that opp_table (and hence the regulator)
275 * isn't freed, while we are executing this routine.
276 */
277 for (i = 0; i < count; i++) {
278 reg = opp_table->regulators[i];
279 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
280 if (ret > 0)
281 latency_ns += ret * 1000;
282 }
283
284 kfree(uV);
285put_opp_table:
286 dev_pm_opp_put_opp_table(opp_table);
287
288 return latency_ns;
289}
290EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
291
292/**
293 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
294 * nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max transition latency, in nanoseconds, to
298 * switch from one OPP to other.
299 */
300unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
301{
302 return dev_pm_opp_get_max_volt_latency(dev) +
303 dev_pm_opp_get_max_clock_latency(dev);
304}
305EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
306
307/**
308 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
309 * @dev: device for which we do this operation
310 *
311 * Return: This function returns the frequency of the OPP marked as suspend_opp
312 * if one is available, else returns 0;
313 */
314unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
315{
316 struct opp_table *opp_table;
317 unsigned long freq = 0;
318
319 opp_table = _find_opp_table(dev);
320 if (IS_ERR(opp_table))
321 return 0;
322
323 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
324 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
325
326 dev_pm_opp_put_opp_table(opp_table);
327
328 return freq;
329}
330EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
331
332int _get_opp_count(struct opp_table *opp_table)
333{
334 struct dev_pm_opp *opp;
335 int count = 0;
336
337 mutex_lock(&opp_table->lock);
338
339 list_for_each_entry(opp, &opp_table->opp_list, node) {
340 if (opp->available)
341 count++;
342 }
343
344 mutex_unlock(&opp_table->lock);
345
346 return count;
347}
348
349/**
350 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
351 * @dev: device for which we do this operation
352 *
353 * Return: This function returns the number of available opps if there are any,
354 * else returns 0 if none or the corresponding error value.
355 */
356int dev_pm_opp_get_opp_count(struct device *dev)
357{
358 struct opp_table *opp_table;
359 int count;
360
361 opp_table = _find_opp_table(dev);
362 if (IS_ERR(opp_table)) {
363 count = PTR_ERR(opp_table);
364 dev_dbg(dev, "%s: OPP table not found (%d)\n",
365 __func__, count);
366 return count;
367 }
368
369 count = _get_opp_count(opp_table);
370 dev_pm_opp_put_opp_table(opp_table);
371
372 return count;
373}
374EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
375
376/**
377 * dev_pm_opp_find_freq_exact() - search for an exact frequency
378 * @dev: device for which we do this operation
379 * @freq: frequency to search for
380 * @available: true/false - match for available opp
381 *
382 * Return: Searches for exact match in the opp table and returns pointer to the
383 * matching opp if found, else returns ERR_PTR in case of error and should
384 * be handled using IS_ERR. Error return values can be:
385 * EINVAL: for bad pointer
386 * ERANGE: no match found for search
387 * ENODEV: if device not found in list of registered devices
388 *
389 * Note: available is a modifier for the search. if available=true, then the
390 * match is for exact matching frequency and is available in the stored OPP
391 * table. if false, the match is for exact frequency which is not available.
392 *
393 * This provides a mechanism to enable an opp which is not available currently
394 * or the opposite as well.
395 *
396 * The callers are required to call dev_pm_opp_put() for the returned OPP after
397 * use.
398 */
399struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
400 unsigned long freq,
401 bool available)
402{
403 struct opp_table *opp_table;
404 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
405
406 opp_table = _find_opp_table(dev);
407 if (IS_ERR(opp_table)) {
408 int r = PTR_ERR(opp_table);
409
410 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
411 return ERR_PTR(r);
412 }
413
414 mutex_lock(&opp_table->lock);
415
416 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
417 if (temp_opp->available == available &&
418 temp_opp->rate == freq) {
419 opp = temp_opp;
420
421 /* Increment the reference count of OPP */
422 dev_pm_opp_get(opp);
423 break;
424 }
425 }
426
427 mutex_unlock(&opp_table->lock);
428 dev_pm_opp_put_opp_table(opp_table);
429
430 return opp;
431}
432EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
433
434/**
435 * dev_pm_opp_find_level_exact() - search for an exact level
436 * @dev: device for which we do this operation
437 * @level: level to search for
438 *
439 * Return: Searches for exact match in the opp table and returns pointer to the
440 * matching opp if found, else returns ERR_PTR in case of error and should
441 * be handled using IS_ERR. Error return values can be:
442 * EINVAL: for bad pointer
443 * ERANGE: no match found for search
444 * ENODEV: if device not found in list of registered devices
445 *
446 * The callers are required to call dev_pm_opp_put() for the returned OPP after
447 * use.
448 */
449struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
450 unsigned int level)
451{
452 struct opp_table *opp_table;
453 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
454
455 opp_table = _find_opp_table(dev);
456 if (IS_ERR(opp_table)) {
457 int r = PTR_ERR(opp_table);
458
459 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
460 return ERR_PTR(r);
461 }
462
463 mutex_lock(&opp_table->lock);
464
465 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
466 if (temp_opp->level == level) {
467 opp = temp_opp;
468
469 /* Increment the reference count of OPP */
470 dev_pm_opp_get(opp);
471 break;
472 }
473 }
474
475 mutex_unlock(&opp_table->lock);
476 dev_pm_opp_put_opp_table(opp_table);
477
478 return opp;
479}
480EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
481
482/**
483 * dev_pm_opp_find_level_ceil() - search for an rounded up level
484 * @dev: device for which we do this operation
485 * @level: level to search for
486 *
487 * Return: Searches for rounded up match in the opp table and returns pointer
488 * to the matching opp if found, else returns ERR_PTR in case of error and
489 * should be handled using IS_ERR. Error return values can be:
490 * EINVAL: for bad pointer
491 * ERANGE: no match found for search
492 * ENODEV: if device not found in list of registered devices
493 *
494 * The callers are required to call dev_pm_opp_put() for the returned OPP after
495 * use.
496 */
497struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
498 unsigned int *level)
499{
500 struct opp_table *opp_table;
501 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
502
503 opp_table = _find_opp_table(dev);
504 if (IS_ERR(opp_table)) {
505 int r = PTR_ERR(opp_table);
506
507 dev_err(dev, "%s: OPP table not found (%d)\n", __func__, r);
508 return ERR_PTR(r);
509 }
510
511 mutex_lock(&opp_table->lock);
512
513 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
514 if (temp_opp->available && temp_opp->level >= *level) {
515 opp = temp_opp;
516 *level = opp->level;
517
518 /* Increment the reference count of OPP */
519 dev_pm_opp_get(opp);
520 break;
521 }
522 }
523
524 mutex_unlock(&opp_table->lock);
525 dev_pm_opp_put_opp_table(opp_table);
526
527 return opp;
528}
529EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
530
531static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
532 unsigned long *freq)
533{
534 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
535
536 mutex_lock(&opp_table->lock);
537
538 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
539 if (temp_opp->available && temp_opp->rate >= *freq) {
540 opp = temp_opp;
541 *freq = opp->rate;
542
543 /* Increment the reference count of OPP */
544 dev_pm_opp_get(opp);
545 break;
546 }
547 }
548
549 mutex_unlock(&opp_table->lock);
550
551 return opp;
552}
553
554/**
555 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
556 * @dev: device for which we do this operation
557 * @freq: Start frequency
558 *
559 * Search for the matching ceil *available* OPP from a starting freq
560 * for a device.
561 *
562 * Return: matching *opp and refreshes *freq accordingly, else returns
563 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
564 * values can be:
565 * EINVAL: for bad pointer
566 * ERANGE: no match found for search
567 * ENODEV: if device not found in list of registered devices
568 *
569 * The callers are required to call dev_pm_opp_put() for the returned OPP after
570 * use.
571 */
572struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
573 unsigned long *freq)
574{
575 struct opp_table *opp_table;
576 struct dev_pm_opp *opp;
577
578 if (!dev || !freq) {
579 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
580 return ERR_PTR(-EINVAL);
581 }
582
583 opp_table = _find_opp_table(dev);
584 if (IS_ERR(opp_table))
585 return ERR_CAST(opp_table);
586
587 opp = _find_freq_ceil(opp_table, freq);
588
589 dev_pm_opp_put_opp_table(opp_table);
590
591 return opp;
592}
593EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
594
595/**
596 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
597 * @dev: device for which we do this operation
598 * @freq: Start frequency
599 *
600 * Search for the matching floor *available* OPP from a starting freq
601 * for a device.
602 *
603 * Return: matching *opp and refreshes *freq accordingly, else returns
604 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
605 * values can be:
606 * EINVAL: for bad pointer
607 * ERANGE: no match found for search
608 * ENODEV: if device not found in list of registered devices
609 *
610 * The callers are required to call dev_pm_opp_put() for the returned OPP after
611 * use.
612 */
613struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
614 unsigned long *freq)
615{
616 struct opp_table *opp_table;
617 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
618
619 if (!dev || !freq) {
620 dev_err(dev, "%s: Invalid argument freq=%p\n", __func__, freq);
621 return ERR_PTR(-EINVAL);
622 }
623
624 opp_table = _find_opp_table(dev);
625 if (IS_ERR(opp_table))
626 return ERR_CAST(opp_table);
627
628 mutex_lock(&opp_table->lock);
629
630 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
631 if (temp_opp->available) {
632 /* go to the next node, before choosing prev */
633 if (temp_opp->rate > *freq)
634 break;
635 else
636 opp = temp_opp;
637 }
638 }
639
640 /* Increment the reference count of OPP */
641 if (!IS_ERR(opp))
642 dev_pm_opp_get(opp);
643 mutex_unlock(&opp_table->lock);
644 dev_pm_opp_put_opp_table(opp_table);
645
646 if (!IS_ERR(opp))
647 *freq = opp->rate;
648
649 return opp;
650}
651EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
652
653/**
654 * dev_pm_opp_find_freq_ceil_by_volt() - Find OPP with highest frequency for
655 * target voltage.
656 * @dev: Device for which we do this operation.
657 * @u_volt: Target voltage.
658 *
659 * Search for OPP with highest (ceil) frequency and has voltage <= u_volt.
660 *
661 * Return: matching *opp, else returns ERR_PTR in case of error which should be
662 * handled using IS_ERR.
663 *
664 * Error return values can be:
665 * EINVAL: bad parameters
666 *
667 * The callers are required to call dev_pm_opp_put() for the returned OPP after
668 * use.
669 */
670struct dev_pm_opp *dev_pm_opp_find_freq_ceil_by_volt(struct device *dev,
671 unsigned long u_volt)
672{
673 struct opp_table *opp_table;
674 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
675
676 if (!dev || !u_volt) {
677 dev_err(dev, "%s: Invalid argument volt=%lu\n", __func__,
678 u_volt);
679 return ERR_PTR(-EINVAL);
680 }
681
682 opp_table = _find_opp_table(dev);
683 if (IS_ERR(opp_table))
684 return ERR_CAST(opp_table);
685
686 mutex_lock(&opp_table->lock);
687
688 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
689 if (temp_opp->available) {
690 if (temp_opp->supplies[0].u_volt > u_volt)
691 break;
692 opp = temp_opp;
693 }
694 }
695
696 /* Increment the reference count of OPP */
697 if (!IS_ERR(opp))
698 dev_pm_opp_get(opp);
699
700 mutex_unlock(&opp_table->lock);
701 dev_pm_opp_put_opp_table(opp_table);
702
703 return opp;
704}
705EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_by_volt);
706
707static int _set_opp_voltage(struct device *dev, struct regulator *reg,
708 struct dev_pm_opp_supply *supply)
709{
710 int ret;
711
712 /* Regulator not available for device */
713 if (IS_ERR(reg)) {
714 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
715 PTR_ERR(reg));
716 return 0;
717 }
718
719 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
720 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
721
722 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
723 supply->u_volt, supply->u_volt_max);
724 if (ret)
725 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
726 __func__, supply->u_volt_min, supply->u_volt,
727 supply->u_volt_max, ret);
728
729 return ret;
730}
731
732static inline int _generic_set_opp_clk_only(struct device *dev, struct clk *clk,
733 unsigned long freq)
734{
735 int ret;
736
737 /* We may reach here for devices which don't change frequency */
738 if (IS_ERR(clk))
739 return 0;
740
741 ret = clk_set_rate(clk, freq);
742 if (ret) {
743 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
744 ret);
745 }
746
747 return ret;
748}
749
750static int _generic_set_opp_regulator(struct opp_table *opp_table,
751 struct device *dev,
752 struct dev_pm_opp *opp,
753 unsigned long freq,
754 int scaling_down)
755{
756 struct regulator *reg = opp_table->regulators[0];
757 struct dev_pm_opp *old_opp = opp_table->current_opp;
758 int ret;
759
760 /* This function only supports single regulator per device */
761 if (WARN_ON(opp_table->regulator_count > 1)) {
762 dev_err(dev, "multiple regulators are not supported\n");
763 return -EINVAL;
764 }
765
766 /* Scaling up? Scale voltage before frequency */
767 if (!scaling_down) {
768 ret = _set_opp_voltage(dev, reg, opp->supplies);
769 if (ret)
770 goto restore_voltage;
771 }
772
773 /* Change frequency */
774 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
775 if (ret)
776 goto restore_voltage;
777
778 /* Scaling down? Scale voltage after frequency */
779 if (scaling_down) {
780 ret = _set_opp_voltage(dev, reg, opp->supplies);
781 if (ret)
782 goto restore_freq;
783 }
784
785 /*
786 * Enable the regulator after setting its voltages, otherwise it breaks
787 * some boot-enabled regulators.
788 */
789 if (unlikely(!opp_table->enabled)) {
790 ret = regulator_enable(reg);
791 if (ret < 0)
792 dev_warn(dev, "Failed to enable regulator: %d", ret);
793 }
794
795 return 0;
796
797restore_freq:
798 if (_generic_set_opp_clk_only(dev, opp_table->clk, old_opp->rate))
799 dev_err(dev, "%s: failed to restore old-freq (%lu Hz)\n",
800 __func__, old_opp->rate);
801restore_voltage:
802 /* This shouldn't harm even if the voltages weren't updated earlier */
803 _set_opp_voltage(dev, reg, old_opp->supplies);
804
805 return ret;
806}
807
808static int _set_opp_bw(const struct opp_table *opp_table,
809 struct dev_pm_opp *opp, struct device *dev)
810{
811 u32 avg, peak;
812 int i, ret;
813
814 if (!opp_table->paths)
815 return 0;
816
817 for (i = 0; i < opp_table->path_count; i++) {
818 if (!opp) {
819 avg = 0;
820 peak = 0;
821 } else {
822 avg = opp->bandwidth[i].avg;
823 peak = opp->bandwidth[i].peak;
824 }
825 ret = icc_set_bw(opp_table->paths[i], avg, peak);
826 if (ret) {
827 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
828 opp ? "set" : "remove", i, ret);
829 return ret;
830 }
831 }
832
833 return 0;
834}
835
836static int _set_opp_custom(const struct opp_table *opp_table,
837 struct device *dev, struct dev_pm_opp *opp,
838 unsigned long freq)
839{
840 struct dev_pm_set_opp_data *data = opp_table->set_opp_data;
841 struct dev_pm_opp *old_opp = opp_table->current_opp;
842 int size;
843
844 /*
845 * We support this only if dev_pm_opp_set_regulators() was called
846 * earlier.
847 */
848 if (opp_table->sod_supplies) {
849 size = sizeof(*old_opp->supplies) * opp_table->regulator_count;
850 memcpy(data->old_opp.supplies, old_opp->supplies, size);
851 memcpy(data->new_opp.supplies, opp->supplies, size);
852 data->regulator_count = opp_table->regulator_count;
853 } else {
854 data->regulator_count = 0;
855 }
856
857 data->regulators = opp_table->regulators;
858 data->clk = opp_table->clk;
859 data->dev = dev;
860 data->old_opp.rate = old_opp->rate;
861 data->new_opp.rate = freq;
862
863 return opp_table->set_opp(data);
864}
865
866static int _set_required_opp(struct device *dev, struct device *pd_dev,
867 struct dev_pm_opp *opp, int i)
868{
869 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
870 int ret;
871
872 if (!pd_dev)
873 return 0;
874
875 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
876 if (ret) {
877 dev_err(dev, "Failed to set performance rate of %s: %d (%d)\n",
878 dev_name(pd_dev), pstate, ret);
879 }
880
881 return ret;
882}
883
884/* This is only called for PM domain for now */
885static int _set_required_opps(struct device *dev,
886 struct opp_table *opp_table,
887 struct dev_pm_opp *opp, bool up)
888{
889 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
890 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
891 int i, ret = 0;
892
893 if (!required_opp_tables)
894 return 0;
895
896 /* required-opps not fully initialized yet */
897 if (lazy_linking_pending(opp_table))
898 return -EBUSY;
899
900 /*
901 * We only support genpd's OPPs in the "required-opps" for now, as we
902 * don't know much about other use cases. Error out if the required OPP
903 * doesn't belong to a genpd.
904 */
905 if (unlikely(!required_opp_tables[0]->is_genpd)) {
906 dev_err(dev, "required-opps don't belong to a genpd\n");
907 return -ENOENT;
908 }
909
910 /* Single genpd case */
911 if (!genpd_virt_devs)
912 return _set_required_opp(dev, dev, opp, 0);
913
914 /* Multiple genpd case */
915
916 /*
917 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
918 * after it is freed from another thread.
919 */
920 mutex_lock(&opp_table->genpd_virt_dev_lock);
921
922 /* Scaling up? Set required OPPs in normal order, else reverse */
923 if (up) {
924 for (i = 0; i < opp_table->required_opp_count; i++) {
925 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
926 if (ret)
927 break;
928 }
929 } else {
930 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
931 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
932 if (ret)
933 break;
934 }
935 }
936
937 mutex_unlock(&opp_table->genpd_virt_dev_lock);
938
939 return ret;
940}
941
942static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
943{
944 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
945 unsigned long freq;
946
947 if (!IS_ERR(opp_table->clk)) {
948 freq = clk_get_rate(opp_table->clk);
949 opp = _find_freq_ceil(opp_table, &freq);
950 }
951
952 /*
953 * Unable to find the current OPP ? Pick the first from the list since
954 * it is in ascending order, otherwise rest of the code will need to
955 * make special checks to validate current_opp.
956 */
957 if (IS_ERR(opp)) {
958 mutex_lock(&opp_table->lock);
959 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
960 dev_pm_opp_get(opp);
961 mutex_unlock(&opp_table->lock);
962 }
963
964 opp_table->current_opp = opp;
965}
966
967static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
968{
969 int ret;
970
971 if (!opp_table->enabled)
972 return 0;
973
974 /*
975 * Some drivers need to support cases where some platforms may
976 * have OPP table for the device, while others don't and
977 * opp_set_rate() just needs to behave like clk_set_rate().
978 */
979 if (!_get_opp_count(opp_table))
980 return 0;
981
982 ret = _set_opp_bw(opp_table, NULL, dev);
983 if (ret)
984 return ret;
985
986 if (opp_table->regulators)
987 regulator_disable(opp_table->regulators[0]);
988
989 ret = _set_required_opps(dev, opp_table, NULL, false);
990
991 opp_table->enabled = false;
992 return ret;
993}
994
995static int _set_opp(struct device *dev, struct opp_table *opp_table,
996 struct dev_pm_opp *opp, unsigned long freq)
997{
998 struct dev_pm_opp *old_opp;
999 int scaling_down, ret;
1000
1001 if (unlikely(!opp))
1002 return _disable_opp_table(dev, opp_table);
1003
1004 /* Find the currently set OPP if we don't know already */
1005 if (unlikely(!opp_table->current_opp))
1006 _find_current_opp(dev, opp_table);
1007
1008 old_opp = opp_table->current_opp;
1009
1010 /* Return early if nothing to do */
1011 if (old_opp == opp && opp_table->current_rate == freq &&
1012 opp_table->enabled) {
1013 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1014 return 0;
1015 }
1016
1017 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1018 __func__, opp_table->current_rate, freq, old_opp->level,
1019 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1020 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1021
1022 scaling_down = _opp_compare_key(old_opp, opp);
1023 if (scaling_down == -1)
1024 scaling_down = 0;
1025
1026 /* Scaling up? Configure required OPPs before frequency */
1027 if (!scaling_down) {
1028 ret = _set_required_opps(dev, opp_table, opp, true);
1029 if (ret) {
1030 dev_err(dev, "Failed to set required opps: %d\n", ret);
1031 return ret;
1032 }
1033
1034 ret = _set_opp_bw(opp_table, opp, dev);
1035 if (ret) {
1036 dev_err(dev, "Failed to set bw: %d\n", ret);
1037 return ret;
1038 }
1039 }
1040
1041 if (opp_table->set_opp) {
1042 ret = _set_opp_custom(opp_table, dev, opp, freq);
1043 } else if (opp_table->regulators) {
1044 ret = _generic_set_opp_regulator(opp_table, dev, opp, freq,
1045 scaling_down);
1046 } else {
1047 /* Only frequency scaling */
1048 ret = _generic_set_opp_clk_only(dev, opp_table->clk, freq);
1049 }
1050
1051 if (ret)
1052 return ret;
1053
1054 /* Scaling down? Configure required OPPs after frequency */
1055 if (scaling_down) {
1056 ret = _set_opp_bw(opp_table, opp, dev);
1057 if (ret) {
1058 dev_err(dev, "Failed to set bw: %d\n", ret);
1059 return ret;
1060 }
1061
1062 ret = _set_required_opps(dev, opp_table, opp, false);
1063 if (ret) {
1064 dev_err(dev, "Failed to set required opps: %d\n", ret);
1065 return ret;
1066 }
1067 }
1068
1069 opp_table->enabled = true;
1070 dev_pm_opp_put(old_opp);
1071
1072 /* Make sure current_opp doesn't get freed */
1073 dev_pm_opp_get(opp);
1074 opp_table->current_opp = opp;
1075 opp_table->current_rate = freq;
1076
1077 return ret;
1078}
1079
1080/**
1081 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1082 * @dev: device for which we do this operation
1083 * @target_freq: frequency to achieve
1084 *
1085 * This configures the power-supplies to the levels specified by the OPP
1086 * corresponding to the target_freq, and programs the clock to a value <=
1087 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1088 * provided by the opp, should have already rounded to the target OPP's
1089 * frequency.
1090 */
1091int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1092{
1093 struct opp_table *opp_table;
1094 unsigned long freq = 0, temp_freq;
1095 struct dev_pm_opp *opp = NULL;
1096 int ret;
1097
1098 opp_table = _find_opp_table(dev);
1099 if (IS_ERR(opp_table)) {
1100 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1101 return PTR_ERR(opp_table);
1102 }
1103
1104 if (target_freq) {
1105 /*
1106 * For IO devices which require an OPP on some platforms/SoCs
1107 * while just needing to scale the clock on some others
1108 * we look for empty OPP tables with just a clock handle and
1109 * scale only the clk. This makes dev_pm_opp_set_rate()
1110 * equivalent to a clk_set_rate()
1111 */
1112 if (!_get_opp_count(opp_table)) {
1113 ret = _generic_set_opp_clk_only(dev, opp_table->clk, target_freq);
1114 goto put_opp_table;
1115 }
1116
1117 freq = clk_round_rate(opp_table->clk, target_freq);
1118 if ((long)freq <= 0)
1119 freq = target_freq;
1120
1121 /*
1122 * The clock driver may support finer resolution of the
1123 * frequencies than the OPP table, don't update the frequency we
1124 * pass to clk_set_rate() here.
1125 */
1126 temp_freq = freq;
1127 opp = _find_freq_ceil(opp_table, &temp_freq);
1128 if (IS_ERR(opp)) {
1129 ret = PTR_ERR(opp);
1130 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1131 __func__, freq, ret);
1132 goto put_opp_table;
1133 }
1134 }
1135
1136 ret = _set_opp(dev, opp_table, opp, freq);
1137
1138 if (target_freq)
1139 dev_pm_opp_put(opp);
1140put_opp_table:
1141 dev_pm_opp_put_opp_table(opp_table);
1142 return ret;
1143}
1144EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1145
1146/**
1147 * dev_pm_opp_set_opp() - Configure device for OPP
1148 * @dev: device for which we do this operation
1149 * @opp: OPP to set to
1150 *
1151 * This configures the device based on the properties of the OPP passed to this
1152 * routine.
1153 *
1154 * Return: 0 on success, a negative error number otherwise.
1155 */
1156int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1157{
1158 struct opp_table *opp_table;
1159 int ret;
1160
1161 opp_table = _find_opp_table(dev);
1162 if (IS_ERR(opp_table)) {
1163 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1164 return PTR_ERR(opp_table);
1165 }
1166
1167 ret = _set_opp(dev, opp_table, opp, opp ? opp->rate : 0);
1168 dev_pm_opp_put_opp_table(opp_table);
1169
1170 return ret;
1171}
1172EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1173
1174/* OPP-dev Helpers */
1175static void _remove_opp_dev(struct opp_device *opp_dev,
1176 struct opp_table *opp_table)
1177{
1178 opp_debug_unregister(opp_dev, opp_table);
1179 list_del(&opp_dev->node);
1180 kfree(opp_dev);
1181}
1182
1183struct opp_device *_add_opp_dev(const struct device *dev,
1184 struct opp_table *opp_table)
1185{
1186 struct opp_device *opp_dev;
1187
1188 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1189 if (!opp_dev)
1190 return NULL;
1191
1192 /* Initialize opp-dev */
1193 opp_dev->dev = dev;
1194
1195 mutex_lock(&opp_table->lock);
1196 list_add(&opp_dev->node, &opp_table->dev_list);
1197 mutex_unlock(&opp_table->lock);
1198
1199 /* Create debugfs entries for the opp_table */
1200 opp_debug_register(opp_dev, opp_table);
1201
1202 return opp_dev;
1203}
1204
1205static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1206{
1207 struct opp_table *opp_table;
1208 struct opp_device *opp_dev;
1209 int ret;
1210
1211 /*
1212 * Allocate a new OPP table. In the infrequent case where a new
1213 * device is needed to be added, we pay this penalty.
1214 */
1215 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1216 if (!opp_table)
1217 return ERR_PTR(-ENOMEM);
1218
1219 mutex_init(&opp_table->lock);
1220 mutex_init(&opp_table->genpd_virt_dev_lock);
1221 INIT_LIST_HEAD(&opp_table->dev_list);
1222 INIT_LIST_HEAD(&opp_table->lazy);
1223
1224 /* Mark regulator count uninitialized */
1225 opp_table->regulator_count = -1;
1226
1227 opp_dev = _add_opp_dev(dev, opp_table);
1228 if (!opp_dev) {
1229 ret = -ENOMEM;
1230 goto err;
1231 }
1232
1233 _of_init_opp_table(opp_table, dev, index);
1234
1235 /* Find interconnect path(s) for the device */
1236 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1237 if (ret) {
1238 if (ret == -EPROBE_DEFER)
1239 goto remove_opp_dev;
1240
1241 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1242 __func__, ret);
1243 }
1244
1245 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1246 INIT_LIST_HEAD(&opp_table->opp_list);
1247 kref_init(&opp_table->kref);
1248
1249 return opp_table;
1250
1251remove_opp_dev:
1252 _remove_opp_dev(opp_dev, opp_table);
1253err:
1254 kfree(opp_table);
1255 return ERR_PTR(ret);
1256}
1257
1258void _get_opp_table_kref(struct opp_table *opp_table)
1259{
1260 kref_get(&opp_table->kref);
1261}
1262
1263static struct opp_table *_update_opp_table_clk(struct device *dev,
1264 struct opp_table *opp_table,
1265 bool getclk)
1266{
1267 int ret;
1268
1269 /*
1270 * Return early if we don't need to get clk or we have already tried it
1271 * earlier.
1272 */
1273 if (!getclk || IS_ERR(opp_table) || opp_table->clk)
1274 return opp_table;
1275
1276 /* Find clk for the device */
1277 opp_table->clk = clk_get(dev, NULL);
1278
1279 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1280 if (!ret)
1281 return opp_table;
1282
1283 if (ret == -ENOENT) {
1284 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1285 return opp_table;
1286 }
1287
1288 dev_pm_opp_put_opp_table(opp_table);
1289 dev_err_probe(dev, ret, "Couldn't find clock\n");
1290
1291 return ERR_PTR(ret);
1292}
1293
1294/*
1295 * We need to make sure that the OPP table for a device doesn't get added twice,
1296 * if this routine gets called in parallel with the same device pointer.
1297 *
1298 * The simplest way to enforce that is to perform everything (find existing
1299 * table and if not found, create a new one) under the opp_table_lock, so only
1300 * one creator gets access to the same. But that expands the critical section
1301 * under the lock and may end up causing circular dependencies with frameworks
1302 * like debugfs, interconnect or clock framework as they may be direct or
1303 * indirect users of OPP core.
1304 *
1305 * And for that reason we have to go for a bit tricky implementation here, which
1306 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1307 * of adding an OPP table and others should wait for it to finish.
1308 */
1309struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1310 bool getclk)
1311{
1312 struct opp_table *opp_table;
1313
1314again:
1315 mutex_lock(&opp_table_lock);
1316
1317 opp_table = _find_opp_table_unlocked(dev);
1318 if (!IS_ERR(opp_table))
1319 goto unlock;
1320
1321 /*
1322 * The opp_tables list or an OPP table's dev_list is getting updated by
1323 * another user, wait for it to finish.
1324 */
1325 if (unlikely(opp_tables_busy)) {
1326 mutex_unlock(&opp_table_lock);
1327 cpu_relax();
1328 goto again;
1329 }
1330
1331 opp_tables_busy = true;
1332 opp_table = _managed_opp(dev, index);
1333
1334 /* Drop the lock to reduce the size of critical section */
1335 mutex_unlock(&opp_table_lock);
1336
1337 if (opp_table) {
1338 if (!_add_opp_dev(dev, opp_table)) {
1339 dev_pm_opp_put_opp_table(opp_table);
1340 opp_table = ERR_PTR(-ENOMEM);
1341 }
1342
1343 mutex_lock(&opp_table_lock);
1344 } else {
1345 opp_table = _allocate_opp_table(dev, index);
1346
1347 mutex_lock(&opp_table_lock);
1348 if (!IS_ERR(opp_table))
1349 list_add(&opp_table->node, &opp_tables);
1350 }
1351
1352 opp_tables_busy = false;
1353
1354unlock:
1355 mutex_unlock(&opp_table_lock);
1356
1357 return _update_opp_table_clk(dev, opp_table, getclk);
1358}
1359
1360static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1361{
1362 return _add_opp_table_indexed(dev, 0, getclk);
1363}
1364
1365struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1366{
1367 return _find_opp_table(dev);
1368}
1369EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1370
1371static void _opp_table_kref_release(struct kref *kref)
1372{
1373 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1374 struct opp_device *opp_dev, *temp;
1375 int i;
1376
1377 /* Drop the lock as soon as we can */
1378 list_del(&opp_table->node);
1379 mutex_unlock(&opp_table_lock);
1380
1381 if (opp_table->current_opp)
1382 dev_pm_opp_put(opp_table->current_opp);
1383
1384 _of_clear_opp_table(opp_table);
1385
1386 /* Release clk */
1387 if (!IS_ERR(opp_table->clk))
1388 clk_put(opp_table->clk);
1389
1390 if (opp_table->paths) {
1391 for (i = 0; i < opp_table->path_count; i++)
1392 icc_put(opp_table->paths[i]);
1393 kfree(opp_table->paths);
1394 }
1395
1396 WARN_ON(!list_empty(&opp_table->opp_list));
1397
1398 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1399 /*
1400 * The OPP table is getting removed, drop the performance state
1401 * constraints.
1402 */
1403 if (opp_table->genpd_performance_state)
1404 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1405
1406 _remove_opp_dev(opp_dev, opp_table);
1407 }
1408
1409 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1410 mutex_destroy(&opp_table->lock);
1411 kfree(opp_table);
1412}
1413
1414void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1415{
1416 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1417 &opp_table_lock);
1418}
1419EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1420
1421void _opp_free(struct dev_pm_opp *opp)
1422{
1423 kfree(opp);
1424}
1425
1426static void _opp_kref_release(struct kref *kref)
1427{
1428 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1429 struct opp_table *opp_table = opp->opp_table;
1430
1431 list_del(&opp->node);
1432 mutex_unlock(&opp_table->lock);
1433
1434 /*
1435 * Notify the changes in the availability of the operable
1436 * frequency/voltage list.
1437 */
1438 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1439 _of_opp_free_required_opps(opp_table, opp);
1440 opp_debug_remove_one(opp);
1441 kfree(opp);
1442}
1443
1444void dev_pm_opp_get(struct dev_pm_opp *opp)
1445{
1446 kref_get(&opp->kref);
1447}
1448
1449void dev_pm_opp_put(struct dev_pm_opp *opp)
1450{
1451 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1452}
1453EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1454
1455/**
1456 * dev_pm_opp_remove() - Remove an OPP from OPP table
1457 * @dev: device for which we do this operation
1458 * @freq: OPP to remove with matching 'freq'
1459 *
1460 * This function removes an opp from the opp table.
1461 */
1462void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1463{
1464 struct dev_pm_opp *opp;
1465 struct opp_table *opp_table;
1466 bool found = false;
1467
1468 opp_table = _find_opp_table(dev);
1469 if (IS_ERR(opp_table))
1470 return;
1471
1472 mutex_lock(&opp_table->lock);
1473
1474 list_for_each_entry(opp, &opp_table->opp_list, node) {
1475 if (opp->rate == freq) {
1476 found = true;
1477 break;
1478 }
1479 }
1480
1481 mutex_unlock(&opp_table->lock);
1482
1483 if (found) {
1484 dev_pm_opp_put(opp);
1485
1486 /* Drop the reference taken by dev_pm_opp_add() */
1487 dev_pm_opp_put_opp_table(opp_table);
1488 } else {
1489 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1490 __func__, freq);
1491 }
1492
1493 /* Drop the reference taken by _find_opp_table() */
1494 dev_pm_opp_put_opp_table(opp_table);
1495}
1496EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1497
1498static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1499 bool dynamic)
1500{
1501 struct dev_pm_opp *opp = NULL, *temp;
1502
1503 mutex_lock(&opp_table->lock);
1504 list_for_each_entry(temp, &opp_table->opp_list, node) {
1505 /*
1506 * Refcount must be dropped only once for each OPP by OPP core,
1507 * do that with help of "removed" flag.
1508 */
1509 if (!temp->removed && dynamic == temp->dynamic) {
1510 opp = temp;
1511 break;
1512 }
1513 }
1514
1515 mutex_unlock(&opp_table->lock);
1516 return opp;
1517}
1518
1519/*
1520 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1521 * happen lock less to avoid circular dependency issues. This routine must be
1522 * called without the opp_table->lock held.
1523 */
1524static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1525{
1526 struct dev_pm_opp *opp;
1527
1528 while ((opp = _opp_get_next(opp_table, dynamic))) {
1529 opp->removed = true;
1530 dev_pm_opp_put(opp);
1531
1532 /* Drop the references taken by dev_pm_opp_add() */
1533 if (dynamic)
1534 dev_pm_opp_put_opp_table(opp_table);
1535 }
1536}
1537
1538bool _opp_remove_all_static(struct opp_table *opp_table)
1539{
1540 mutex_lock(&opp_table->lock);
1541
1542 if (!opp_table->parsed_static_opps) {
1543 mutex_unlock(&opp_table->lock);
1544 return false;
1545 }
1546
1547 if (--opp_table->parsed_static_opps) {
1548 mutex_unlock(&opp_table->lock);
1549 return true;
1550 }
1551
1552 mutex_unlock(&opp_table->lock);
1553
1554 _opp_remove_all(opp_table, false);
1555 return true;
1556}
1557
1558/**
1559 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1560 * @dev: device for which we do this operation
1561 *
1562 * This function removes all dynamically created OPPs from the opp table.
1563 */
1564void dev_pm_opp_remove_all_dynamic(struct device *dev)
1565{
1566 struct opp_table *opp_table;
1567
1568 opp_table = _find_opp_table(dev);
1569 if (IS_ERR(opp_table))
1570 return;
1571
1572 _opp_remove_all(opp_table, true);
1573
1574 /* Drop the reference taken by _find_opp_table() */
1575 dev_pm_opp_put_opp_table(opp_table);
1576}
1577EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1578
1579struct dev_pm_opp *_opp_allocate(struct opp_table *table)
1580{
1581 struct dev_pm_opp *opp;
1582 int supply_count, supply_size, icc_size;
1583
1584 /* Allocate space for at least one supply */
1585 supply_count = table->regulator_count > 0 ? table->regulator_count : 1;
1586 supply_size = sizeof(*opp->supplies) * supply_count;
1587 icc_size = sizeof(*opp->bandwidth) * table->path_count;
1588
1589 /* allocate new OPP node and supplies structures */
1590 opp = kzalloc(sizeof(*opp) + supply_size + icc_size, GFP_KERNEL);
1591
1592 if (!opp)
1593 return NULL;
1594
1595 /* Put the supplies at the end of the OPP structure as an empty array */
1596 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1597 if (icc_size)
1598 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->supplies + supply_count);
1599 INIT_LIST_HEAD(&opp->node);
1600
1601 return opp;
1602}
1603
1604static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1605 struct opp_table *opp_table)
1606{
1607 struct regulator *reg;
1608 int i;
1609
1610 if (!opp_table->regulators)
1611 return true;
1612
1613 for (i = 0; i < opp_table->regulator_count; i++) {
1614 reg = opp_table->regulators[i];
1615
1616 if (!regulator_is_supported_voltage(reg,
1617 opp->supplies[i].u_volt_min,
1618 opp->supplies[i].u_volt_max)) {
1619 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1620 __func__, opp->supplies[i].u_volt_min,
1621 opp->supplies[i].u_volt_max);
1622 return false;
1623 }
1624 }
1625
1626 return true;
1627}
1628
1629int _opp_compare_key(struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1630{
1631 if (opp1->rate != opp2->rate)
1632 return opp1->rate < opp2->rate ? -1 : 1;
1633 if (opp1->bandwidth && opp2->bandwidth &&
1634 opp1->bandwidth[0].peak != opp2->bandwidth[0].peak)
1635 return opp1->bandwidth[0].peak < opp2->bandwidth[0].peak ? -1 : 1;
1636 if (opp1->level != opp2->level)
1637 return opp1->level < opp2->level ? -1 : 1;
1638 return 0;
1639}
1640
1641static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1642 struct opp_table *opp_table,
1643 struct list_head **head)
1644{
1645 struct dev_pm_opp *opp;
1646 int opp_cmp;
1647
1648 /*
1649 * Insert new OPP in order of increasing frequency and discard if
1650 * already present.
1651 *
1652 * Need to use &opp_table->opp_list in the condition part of the 'for'
1653 * loop, don't replace it with head otherwise it will become an infinite
1654 * loop.
1655 */
1656 list_for_each_entry(opp, &opp_table->opp_list, node) {
1657 opp_cmp = _opp_compare_key(new_opp, opp);
1658 if (opp_cmp > 0) {
1659 *head = &opp->node;
1660 continue;
1661 }
1662
1663 if (opp_cmp < 0)
1664 return 0;
1665
1666 /* Duplicate OPPs */
1667 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1668 __func__, opp->rate, opp->supplies[0].u_volt,
1669 opp->available, new_opp->rate,
1670 new_opp->supplies[0].u_volt, new_opp->available);
1671
1672 /* Should we compare voltages for all regulators here ? */
1673 return opp->available &&
1674 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1675 }
1676
1677 return 0;
1678}
1679
1680void _required_opps_available(struct dev_pm_opp *opp, int count)
1681{
1682 int i;
1683
1684 for (i = 0; i < count; i++) {
1685 if (opp->required_opps[i]->available)
1686 continue;
1687
1688 opp->available = false;
1689 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1690 __func__, opp->required_opps[i]->np, opp->rate);
1691 return;
1692 }
1693}
1694
1695/*
1696 * Returns:
1697 * 0: On success. And appropriate error message for duplicate OPPs.
1698 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1699 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1700 * sure we don't print error messages unnecessarily if different parts of
1701 * kernel try to initialize the OPP table.
1702 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1703 * should be considered an error by the callers of _opp_add().
1704 */
1705int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1706 struct opp_table *opp_table, bool rate_not_available)
1707{
1708 struct list_head *head;
1709 int ret;
1710
1711 mutex_lock(&opp_table->lock);
1712 head = &opp_table->opp_list;
1713
1714 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1715 if (ret) {
1716 mutex_unlock(&opp_table->lock);
1717 return ret;
1718 }
1719
1720 list_add(&new_opp->node, head);
1721 mutex_unlock(&opp_table->lock);
1722
1723 new_opp->opp_table = opp_table;
1724 kref_init(&new_opp->kref);
1725
1726 opp_debug_create_one(new_opp, opp_table);
1727
1728 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1729 new_opp->available = false;
1730 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1731 __func__, new_opp->rate);
1732 }
1733
1734 /* required-opps not fully initialized yet */
1735 if (lazy_linking_pending(opp_table))
1736 return 0;
1737
1738 _required_opps_available(new_opp, opp_table->required_opp_count);
1739
1740 return 0;
1741}
1742
1743/**
1744 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1745 * @opp_table: OPP table
1746 * @dev: device for which we do this operation
1747 * @freq: Frequency in Hz for this OPP
1748 * @u_volt: Voltage in uVolts for this OPP
1749 * @dynamic: Dynamically added OPPs.
1750 *
1751 * This function adds an opp definition to the opp table and returns status.
1752 * The opp is made available by default and it can be controlled using
1753 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1754 *
1755 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1756 * and freed by dev_pm_opp_of_remove_table.
1757 *
1758 * Return:
1759 * 0 On success OR
1760 * Duplicate OPPs (both freq and volt are same) and opp->available
1761 * -EEXIST Freq are same and volt are different OR
1762 * Duplicate OPPs (both freq and volt are same) and !opp->available
1763 * -ENOMEM Memory allocation failure
1764 */
1765int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1766 unsigned long freq, long u_volt, bool dynamic)
1767{
1768 struct dev_pm_opp *new_opp;
1769 unsigned long tol;
1770 int ret;
1771
1772 new_opp = _opp_allocate(opp_table);
1773 if (!new_opp)
1774 return -ENOMEM;
1775
1776 /* populate the opp table */
1777 new_opp->rate = freq;
1778 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1779 new_opp->supplies[0].u_volt = u_volt;
1780 new_opp->supplies[0].u_volt_min = u_volt - tol;
1781 new_opp->supplies[0].u_volt_max = u_volt + tol;
1782 new_opp->available = true;
1783 new_opp->dynamic = dynamic;
1784
1785 ret = _opp_add(dev, new_opp, opp_table, false);
1786 if (ret) {
1787 /* Don't return error for duplicate OPPs */
1788 if (ret == -EBUSY)
1789 ret = 0;
1790 goto free_opp;
1791 }
1792
1793 /*
1794 * Notify the changes in the availability of the operable
1795 * frequency/voltage list.
1796 */
1797 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1798 return 0;
1799
1800free_opp:
1801 _opp_free(new_opp);
1802
1803 return ret;
1804}
1805
1806/**
1807 * dev_pm_opp_set_supported_hw() - Set supported platforms
1808 * @dev: Device for which supported-hw has to be set.
1809 * @versions: Array of hierarchy of versions to match.
1810 * @count: Number of elements in the array.
1811 *
1812 * This is required only for the V2 bindings, and it enables a platform to
1813 * specify the hierarchy of versions it supports. OPP layer will then enable
1814 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1815 * property.
1816 */
1817struct opp_table *dev_pm_opp_set_supported_hw(struct device *dev,
1818 const u32 *versions, unsigned int count)
1819{
1820 struct opp_table *opp_table;
1821
1822 opp_table = _add_opp_table(dev, false);
1823 if (IS_ERR(opp_table))
1824 return opp_table;
1825
1826 /* Make sure there are no concurrent readers while updating opp_table */
1827 WARN_ON(!list_empty(&opp_table->opp_list));
1828
1829 /* Another CPU that shares the OPP table has set the property ? */
1830 if (opp_table->supported_hw)
1831 return opp_table;
1832
1833 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1834 GFP_KERNEL);
1835 if (!opp_table->supported_hw) {
1836 dev_pm_opp_put_opp_table(opp_table);
1837 return ERR_PTR(-ENOMEM);
1838 }
1839
1840 opp_table->supported_hw_count = count;
1841
1842 return opp_table;
1843}
1844EXPORT_SYMBOL_GPL(dev_pm_opp_set_supported_hw);
1845
1846/**
1847 * dev_pm_opp_put_supported_hw() - Releases resources blocked for supported hw
1848 * @opp_table: OPP table returned by dev_pm_opp_set_supported_hw().
1849 *
1850 * This is required only for the V2 bindings, and is called for a matching
1851 * dev_pm_opp_set_supported_hw(). Until this is called, the opp_table structure
1852 * will not be freed.
1853 */
1854void dev_pm_opp_put_supported_hw(struct opp_table *opp_table)
1855{
1856 if (unlikely(!opp_table))
1857 return;
1858
1859 kfree(opp_table->supported_hw);
1860 opp_table->supported_hw = NULL;
1861 opp_table->supported_hw_count = 0;
1862
1863 dev_pm_opp_put_opp_table(opp_table);
1864}
1865EXPORT_SYMBOL_GPL(dev_pm_opp_put_supported_hw);
1866
1867static void devm_pm_opp_supported_hw_release(void *data)
1868{
1869 dev_pm_opp_put_supported_hw(data);
1870}
1871
1872/**
1873 * devm_pm_opp_set_supported_hw() - Set supported platforms
1874 * @dev: Device for which supported-hw has to be set.
1875 * @versions: Array of hierarchy of versions to match.
1876 * @count: Number of elements in the array.
1877 *
1878 * This is a resource-managed variant of dev_pm_opp_set_supported_hw().
1879 *
1880 * Return: 0 on success and errorno otherwise.
1881 */
1882int devm_pm_opp_set_supported_hw(struct device *dev, const u32 *versions,
1883 unsigned int count)
1884{
1885 struct opp_table *opp_table;
1886
1887 opp_table = dev_pm_opp_set_supported_hw(dev, versions, count);
1888 if (IS_ERR(opp_table))
1889 return PTR_ERR(opp_table);
1890
1891 return devm_add_action_or_reset(dev, devm_pm_opp_supported_hw_release,
1892 opp_table);
1893}
1894EXPORT_SYMBOL_GPL(devm_pm_opp_set_supported_hw);
1895
1896/**
1897 * dev_pm_opp_set_prop_name() - Set prop-extn name
1898 * @dev: Device for which the prop-name has to be set.
1899 * @name: name to postfix to properties.
1900 *
1901 * This is required only for the V2 bindings, and it enables a platform to
1902 * specify the extn to be used for certain property names. The properties to
1903 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
1904 * should postfix the property name with -<name> while looking for them.
1905 */
1906struct opp_table *dev_pm_opp_set_prop_name(struct device *dev, const char *name)
1907{
1908 struct opp_table *opp_table;
1909
1910 opp_table = _add_opp_table(dev, false);
1911 if (IS_ERR(opp_table))
1912 return opp_table;
1913
1914 /* Make sure there are no concurrent readers while updating opp_table */
1915 WARN_ON(!list_empty(&opp_table->opp_list));
1916
1917 /* Another CPU that shares the OPP table has set the property ? */
1918 if (opp_table->prop_name)
1919 return opp_table;
1920
1921 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
1922 if (!opp_table->prop_name) {
1923 dev_pm_opp_put_opp_table(opp_table);
1924 return ERR_PTR(-ENOMEM);
1925 }
1926
1927 return opp_table;
1928}
1929EXPORT_SYMBOL_GPL(dev_pm_opp_set_prop_name);
1930
1931/**
1932 * dev_pm_opp_put_prop_name() - Releases resources blocked for prop-name
1933 * @opp_table: OPP table returned by dev_pm_opp_set_prop_name().
1934 *
1935 * This is required only for the V2 bindings, and is called for a matching
1936 * dev_pm_opp_set_prop_name(). Until this is called, the opp_table structure
1937 * will not be freed.
1938 */
1939void dev_pm_opp_put_prop_name(struct opp_table *opp_table)
1940{
1941 if (unlikely(!opp_table))
1942 return;
1943
1944 kfree(opp_table->prop_name);
1945 opp_table->prop_name = NULL;
1946
1947 dev_pm_opp_put_opp_table(opp_table);
1948}
1949EXPORT_SYMBOL_GPL(dev_pm_opp_put_prop_name);
1950
1951/**
1952 * dev_pm_opp_set_regulators() - Set regulator names for the device
1953 * @dev: Device for which regulator name is being set.
1954 * @names: Array of pointers to the names of the regulator.
1955 * @count: Number of regulators.
1956 *
1957 * In order to support OPP switching, OPP layer needs to know the name of the
1958 * device's regulators, as the core would be required to switch voltages as
1959 * well.
1960 *
1961 * This must be called before any OPPs are initialized for the device.
1962 */
1963struct opp_table *dev_pm_opp_set_regulators(struct device *dev,
1964 const char * const names[],
1965 unsigned int count)
1966{
1967 struct dev_pm_opp_supply *supplies;
1968 struct opp_table *opp_table;
1969 struct regulator *reg;
1970 int ret, i;
1971
1972 opp_table = _add_opp_table(dev, false);
1973 if (IS_ERR(opp_table))
1974 return opp_table;
1975
1976 /* This should be called before OPPs are initialized */
1977 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
1978 ret = -EBUSY;
1979 goto err;
1980 }
1981
1982 /* Another CPU that shares the OPP table has set the regulators ? */
1983 if (opp_table->regulators)
1984 return opp_table;
1985
1986 opp_table->regulators = kmalloc_array(count,
1987 sizeof(*opp_table->regulators),
1988 GFP_KERNEL);
1989 if (!opp_table->regulators) {
1990 ret = -ENOMEM;
1991 goto err;
1992 }
1993
1994 for (i = 0; i < count; i++) {
1995 reg = regulator_get_optional(dev, names[i]);
1996 if (IS_ERR(reg)) {
1997 ret = PTR_ERR(reg);
1998 if (ret != -EPROBE_DEFER)
1999 dev_err(dev, "%s: no regulator (%s) found: %d\n",
2000 __func__, names[i], ret);
2001 goto free_regulators;
2002 }
2003
2004 opp_table->regulators[i] = reg;
2005 }
2006
2007 opp_table->regulator_count = count;
2008
2009 supplies = kmalloc_array(count * 2, sizeof(*supplies), GFP_KERNEL);
2010 if (!supplies) {
2011 ret = -ENOMEM;
2012 goto free_regulators;
2013 }
2014
2015 mutex_lock(&opp_table->lock);
2016 opp_table->sod_supplies = supplies;
2017 if (opp_table->set_opp_data) {
2018 opp_table->set_opp_data->old_opp.supplies = supplies;
2019 opp_table->set_opp_data->new_opp.supplies = supplies + count;
2020 }
2021 mutex_unlock(&opp_table->lock);
2022
2023 return opp_table;
2024
2025free_regulators:
2026 while (i != 0)
2027 regulator_put(opp_table->regulators[--i]);
2028
2029 kfree(opp_table->regulators);
2030 opp_table->regulators = NULL;
2031 opp_table->regulator_count = -1;
2032err:
2033 dev_pm_opp_put_opp_table(opp_table);
2034
2035 return ERR_PTR(ret);
2036}
2037EXPORT_SYMBOL_GPL(dev_pm_opp_set_regulators);
2038
2039/**
2040 * dev_pm_opp_put_regulators() - Releases resources blocked for regulator
2041 * @opp_table: OPP table returned from dev_pm_opp_set_regulators().
2042 */
2043void dev_pm_opp_put_regulators(struct opp_table *opp_table)
2044{
2045 int i;
2046
2047 if (unlikely(!opp_table))
2048 return;
2049
2050 if (!opp_table->regulators)
2051 goto put_opp_table;
2052
2053 if (opp_table->enabled) {
2054 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2055 regulator_disable(opp_table->regulators[i]);
2056 }
2057
2058 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2059 regulator_put(opp_table->regulators[i]);
2060
2061 mutex_lock(&opp_table->lock);
2062 if (opp_table->set_opp_data) {
2063 opp_table->set_opp_data->old_opp.supplies = NULL;
2064 opp_table->set_opp_data->new_opp.supplies = NULL;
2065 }
2066
2067 kfree(opp_table->sod_supplies);
2068 opp_table->sod_supplies = NULL;
2069 mutex_unlock(&opp_table->lock);
2070
2071 kfree(opp_table->regulators);
2072 opp_table->regulators = NULL;
2073 opp_table->regulator_count = -1;
2074
2075put_opp_table:
2076 dev_pm_opp_put_opp_table(opp_table);
2077}
2078EXPORT_SYMBOL_GPL(dev_pm_opp_put_regulators);
2079
2080static void devm_pm_opp_regulators_release(void *data)
2081{
2082 dev_pm_opp_put_regulators(data);
2083}
2084
2085/**
2086 * devm_pm_opp_set_regulators() - Set regulator names for the device
2087 * @dev: Device for which regulator name is being set.
2088 * @names: Array of pointers to the names of the regulator.
2089 * @count: Number of regulators.
2090 *
2091 * This is a resource-managed variant of dev_pm_opp_set_regulators().
2092 *
2093 * Return: 0 on success and errorno otherwise.
2094 */
2095int devm_pm_opp_set_regulators(struct device *dev,
2096 const char * const names[],
2097 unsigned int count)
2098{
2099 struct opp_table *opp_table;
2100
2101 opp_table = dev_pm_opp_set_regulators(dev, names, count);
2102 if (IS_ERR(opp_table))
2103 return PTR_ERR(opp_table);
2104
2105 return devm_add_action_or_reset(dev, devm_pm_opp_regulators_release,
2106 opp_table);
2107}
2108EXPORT_SYMBOL_GPL(devm_pm_opp_set_regulators);
2109
2110/**
2111 * dev_pm_opp_set_clkname() - Set clk name for the device
2112 * @dev: Device for which clk name is being set.
2113 * @name: Clk name.
2114 *
2115 * In order to support OPP switching, OPP layer needs to get pointer to the
2116 * clock for the device. Simple cases work fine without using this routine (i.e.
2117 * by passing connection-id as NULL), but for a device with multiple clocks
2118 * available, the OPP core needs to know the exact name of the clk to use.
2119 *
2120 * This must be called before any OPPs are initialized for the device.
2121 */
2122struct opp_table *dev_pm_opp_set_clkname(struct device *dev, const char *name)
2123{
2124 struct opp_table *opp_table;
2125 int ret;
2126
2127 opp_table = _add_opp_table(dev, false);
2128 if (IS_ERR(opp_table))
2129 return opp_table;
2130
2131 /* This should be called before OPPs are initialized */
2132 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2133 ret = -EBUSY;
2134 goto err;
2135 }
2136
2137 /* clk shouldn't be initialized at this point */
2138 if (WARN_ON(opp_table->clk)) {
2139 ret = -EBUSY;
2140 goto err;
2141 }
2142
2143 /* Find clk for the device */
2144 opp_table->clk = clk_get(dev, name);
2145 if (IS_ERR(opp_table->clk)) {
2146 ret = PTR_ERR(opp_table->clk);
2147 if (ret != -EPROBE_DEFER) {
2148 dev_err(dev, "%s: Couldn't find clock: %d\n", __func__,
2149 ret);
2150 }
2151 goto err;
2152 }
2153
2154 return opp_table;
2155
2156err:
2157 dev_pm_opp_put_opp_table(opp_table);
2158
2159 return ERR_PTR(ret);
2160}
2161EXPORT_SYMBOL_GPL(dev_pm_opp_set_clkname);
2162
2163/**
2164 * dev_pm_opp_put_clkname() - Releases resources blocked for clk.
2165 * @opp_table: OPP table returned from dev_pm_opp_set_clkname().
2166 */
2167void dev_pm_opp_put_clkname(struct opp_table *opp_table)
2168{
2169 if (unlikely(!opp_table))
2170 return;
2171
2172 clk_put(opp_table->clk);
2173 opp_table->clk = ERR_PTR(-EINVAL);
2174
2175 dev_pm_opp_put_opp_table(opp_table);
2176}
2177EXPORT_SYMBOL_GPL(dev_pm_opp_put_clkname);
2178
2179static void devm_pm_opp_clkname_release(void *data)
2180{
2181 dev_pm_opp_put_clkname(data);
2182}
2183
2184/**
2185 * devm_pm_opp_set_clkname() - Set clk name for the device
2186 * @dev: Device for which clk name is being set.
2187 * @name: Clk name.
2188 *
2189 * This is a resource-managed variant of dev_pm_opp_set_clkname().
2190 *
2191 * Return: 0 on success and errorno otherwise.
2192 */
2193int devm_pm_opp_set_clkname(struct device *dev, const char *name)
2194{
2195 struct opp_table *opp_table;
2196
2197 opp_table = dev_pm_opp_set_clkname(dev, name);
2198 if (IS_ERR(opp_table))
2199 return PTR_ERR(opp_table);
2200
2201 return devm_add_action_or_reset(dev, devm_pm_opp_clkname_release,
2202 opp_table);
2203}
2204EXPORT_SYMBOL_GPL(devm_pm_opp_set_clkname);
2205
2206/**
2207 * dev_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2208 * @dev: Device for which the helper is getting registered.
2209 * @set_opp: Custom set OPP helper.
2210 *
2211 * This is useful to support complex platforms (like platforms with multiple
2212 * regulators per device), instead of the generic OPP set rate helper.
2213 *
2214 * This must be called before any OPPs are initialized for the device.
2215 */
2216struct opp_table *dev_pm_opp_register_set_opp_helper(struct device *dev,
2217 int (*set_opp)(struct dev_pm_set_opp_data *data))
2218{
2219 struct dev_pm_set_opp_data *data;
2220 struct opp_table *opp_table;
2221
2222 if (!set_opp)
2223 return ERR_PTR(-EINVAL);
2224
2225 opp_table = _add_opp_table(dev, false);
2226 if (IS_ERR(opp_table))
2227 return opp_table;
2228
2229 /* This should be called before OPPs are initialized */
2230 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2231 dev_pm_opp_put_opp_table(opp_table);
2232 return ERR_PTR(-EBUSY);
2233 }
2234
2235 /* Another CPU that shares the OPP table has set the helper ? */
2236 if (opp_table->set_opp)
2237 return opp_table;
2238
2239 data = kzalloc(sizeof(*data), GFP_KERNEL);
2240 if (!data)
2241 return ERR_PTR(-ENOMEM);
2242
2243 mutex_lock(&opp_table->lock);
2244 opp_table->set_opp_data = data;
2245 if (opp_table->sod_supplies) {
2246 data->old_opp.supplies = opp_table->sod_supplies;
2247 data->new_opp.supplies = opp_table->sod_supplies +
2248 opp_table->regulator_count;
2249 }
2250 mutex_unlock(&opp_table->lock);
2251
2252 opp_table->set_opp = set_opp;
2253
2254 return opp_table;
2255}
2256EXPORT_SYMBOL_GPL(dev_pm_opp_register_set_opp_helper);
2257
2258/**
2259 * dev_pm_opp_unregister_set_opp_helper() - Releases resources blocked for
2260 * set_opp helper
2261 * @opp_table: OPP table returned from dev_pm_opp_register_set_opp_helper().
2262 *
2263 * Release resources blocked for platform specific set_opp helper.
2264 */
2265void dev_pm_opp_unregister_set_opp_helper(struct opp_table *opp_table)
2266{
2267 if (unlikely(!opp_table))
2268 return;
2269
2270 opp_table->set_opp = NULL;
2271
2272 mutex_lock(&opp_table->lock);
2273 kfree(opp_table->set_opp_data);
2274 opp_table->set_opp_data = NULL;
2275 mutex_unlock(&opp_table->lock);
2276
2277 dev_pm_opp_put_opp_table(opp_table);
2278}
2279EXPORT_SYMBOL_GPL(dev_pm_opp_unregister_set_opp_helper);
2280
2281static void devm_pm_opp_unregister_set_opp_helper(void *data)
2282{
2283 dev_pm_opp_unregister_set_opp_helper(data);
2284}
2285
2286/**
2287 * devm_pm_opp_register_set_opp_helper() - Register custom set OPP helper
2288 * @dev: Device for which the helper is getting registered.
2289 * @set_opp: Custom set OPP helper.
2290 *
2291 * This is a resource-managed version of dev_pm_opp_register_set_opp_helper().
2292 *
2293 * Return: 0 on success and errorno otherwise.
2294 */
2295int devm_pm_opp_register_set_opp_helper(struct device *dev,
2296 int (*set_opp)(struct dev_pm_set_opp_data *data))
2297{
2298 struct opp_table *opp_table;
2299
2300 opp_table = dev_pm_opp_register_set_opp_helper(dev, set_opp);
2301 if (IS_ERR(opp_table))
2302 return PTR_ERR(opp_table);
2303
2304 return devm_add_action_or_reset(dev, devm_pm_opp_unregister_set_opp_helper,
2305 opp_table);
2306}
2307EXPORT_SYMBOL_GPL(devm_pm_opp_register_set_opp_helper);
2308
2309static void _opp_detach_genpd(struct opp_table *opp_table)
2310{
2311 int index;
2312
2313 if (!opp_table->genpd_virt_devs)
2314 return;
2315
2316 for (index = 0; index < opp_table->required_opp_count; index++) {
2317 if (!opp_table->genpd_virt_devs[index])
2318 continue;
2319
2320 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2321 opp_table->genpd_virt_devs[index] = NULL;
2322 }
2323
2324 kfree(opp_table->genpd_virt_devs);
2325 opp_table->genpd_virt_devs = NULL;
2326}
2327
2328/**
2329 * dev_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2330 * @dev: Consumer device for which the genpd is getting attached.
2331 * @names: Null terminated array of pointers containing names of genpd to attach.
2332 * @virt_devs: Pointer to return the array of virtual devices.
2333 *
2334 * Multiple generic power domains for a device are supported with the help of
2335 * virtual genpd devices, which are created for each consumer device - genpd
2336 * pair. These are the device structures which are attached to the power domain
2337 * and are required by the OPP core to set the performance state of the genpd.
2338 * The same API also works for the case where single genpd is available and so
2339 * we don't need to support that separately.
2340 *
2341 * This helper will normally be called by the consumer driver of the device
2342 * "dev", as only that has details of the genpd names.
2343 *
2344 * This helper needs to be called once with a list of all genpd to attach.
2345 * Otherwise the original device structure will be used instead by the OPP core.
2346 *
2347 * The order of entries in the names array must match the order in which
2348 * "required-opps" are added in DT.
2349 */
2350struct opp_table *dev_pm_opp_attach_genpd(struct device *dev,
2351 const char **names, struct device ***virt_devs)
2352{
2353 struct opp_table *opp_table;
2354 struct device *virt_dev;
2355 int index = 0, ret = -EINVAL;
2356 const char **name = names;
2357
2358 opp_table = _add_opp_table(dev, false);
2359 if (IS_ERR(opp_table))
2360 return opp_table;
2361
2362 if (opp_table->genpd_virt_devs)
2363 return opp_table;
2364
2365 /*
2366 * If the genpd's OPP table isn't already initialized, parsing of the
2367 * required-opps fail for dev. We should retry this after genpd's OPP
2368 * table is added.
2369 */
2370 if (!opp_table->required_opp_count) {
2371 ret = -EPROBE_DEFER;
2372 goto put_table;
2373 }
2374
2375 mutex_lock(&opp_table->genpd_virt_dev_lock);
2376
2377 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2378 sizeof(*opp_table->genpd_virt_devs),
2379 GFP_KERNEL);
2380 if (!opp_table->genpd_virt_devs)
2381 goto unlock;
2382
2383 while (*name) {
2384 if (index >= opp_table->required_opp_count) {
2385 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2386 *name, opp_table->required_opp_count, index);
2387 goto err;
2388 }
2389
2390 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2391 if (IS_ERR(virt_dev)) {
2392 ret = PTR_ERR(virt_dev);
2393 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2394 goto err;
2395 }
2396
2397 opp_table->genpd_virt_devs[index] = virt_dev;
2398 index++;
2399 name++;
2400 }
2401
2402 if (virt_devs)
2403 *virt_devs = opp_table->genpd_virt_devs;
2404 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2405
2406 return opp_table;
2407
2408err:
2409 _opp_detach_genpd(opp_table);
2410unlock:
2411 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2412
2413put_table:
2414 dev_pm_opp_put_opp_table(opp_table);
2415
2416 return ERR_PTR(ret);
2417}
2418EXPORT_SYMBOL_GPL(dev_pm_opp_attach_genpd);
2419
2420/**
2421 * dev_pm_opp_detach_genpd() - Detach genpd(s) from the device.
2422 * @opp_table: OPP table returned by dev_pm_opp_attach_genpd().
2423 *
2424 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2425 * OPP table.
2426 */
2427void dev_pm_opp_detach_genpd(struct opp_table *opp_table)
2428{
2429 if (unlikely(!opp_table))
2430 return;
2431
2432 /*
2433 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2434 * used in parallel.
2435 */
2436 mutex_lock(&opp_table->genpd_virt_dev_lock);
2437 _opp_detach_genpd(opp_table);
2438 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2439
2440 dev_pm_opp_put_opp_table(opp_table);
2441}
2442EXPORT_SYMBOL_GPL(dev_pm_opp_detach_genpd);
2443
2444static void devm_pm_opp_detach_genpd(void *data)
2445{
2446 dev_pm_opp_detach_genpd(data);
2447}
2448
2449/**
2450 * devm_pm_opp_attach_genpd - Attach genpd(s) for the device and save virtual
2451 * device pointer
2452 * @dev: Consumer device for which the genpd is getting attached.
2453 * @names: Null terminated array of pointers containing names of genpd to attach.
2454 * @virt_devs: Pointer to return the array of virtual devices.
2455 *
2456 * This is a resource-managed version of dev_pm_opp_attach_genpd().
2457 *
2458 * Return: 0 on success and errorno otherwise.
2459 */
2460int devm_pm_opp_attach_genpd(struct device *dev, const char **names,
2461 struct device ***virt_devs)
2462{
2463 struct opp_table *opp_table;
2464
2465 opp_table = dev_pm_opp_attach_genpd(dev, names, virt_devs);
2466 if (IS_ERR(opp_table))
2467 return PTR_ERR(opp_table);
2468
2469 return devm_add_action_or_reset(dev, devm_pm_opp_detach_genpd,
2470 opp_table);
2471}
2472EXPORT_SYMBOL_GPL(devm_pm_opp_attach_genpd);
2473
2474/**
2475 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2476 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2477 * @dst_table: Required OPP table of the @src_table.
2478 * @src_opp: OPP from the @src_table.
2479 *
2480 * This function returns the OPP (present in @dst_table) pointed out by the
2481 * "required-opps" property of the @src_opp (present in @src_table).
2482 *
2483 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2484 * use.
2485 *
2486 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2487 */
2488struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2489 struct opp_table *dst_table,
2490 struct dev_pm_opp *src_opp)
2491{
2492 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2493 int i;
2494
2495 if (!src_table || !dst_table || !src_opp ||
2496 !src_table->required_opp_tables)
2497 return ERR_PTR(-EINVAL);
2498
2499 /* required-opps not fully initialized yet */
2500 if (lazy_linking_pending(src_table))
2501 return ERR_PTR(-EBUSY);
2502
2503 for (i = 0; i < src_table->required_opp_count; i++) {
2504 if (src_table->required_opp_tables[i] == dst_table) {
2505 mutex_lock(&src_table->lock);
2506
2507 list_for_each_entry(opp, &src_table->opp_list, node) {
2508 if (opp == src_opp) {
2509 dest_opp = opp->required_opps[i];
2510 dev_pm_opp_get(dest_opp);
2511 break;
2512 }
2513 }
2514
2515 mutex_unlock(&src_table->lock);
2516 break;
2517 }
2518 }
2519
2520 if (IS_ERR(dest_opp)) {
2521 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2522 src_table, dst_table);
2523 }
2524
2525 return dest_opp;
2526}
2527EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2528
2529/**
2530 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2531 * @src_table: OPP table which has dst_table as one of its required OPP table.
2532 * @dst_table: Required OPP table of the src_table.
2533 * @pstate: Current performance state of the src_table.
2534 *
2535 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2536 * "required-opps" property of the OPP (present in @src_table) which has
2537 * performance state set to @pstate.
2538 *
2539 * Return: Zero or positive performance state on success, otherwise negative
2540 * value on errors.
2541 */
2542int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2543 struct opp_table *dst_table,
2544 unsigned int pstate)
2545{
2546 struct dev_pm_opp *opp;
2547 int dest_pstate = -EINVAL;
2548 int i;
2549
2550 /*
2551 * Normally the src_table will have the "required_opps" property set to
2552 * point to one of the OPPs in the dst_table, but in some cases the
2553 * genpd and its master have one to one mapping of performance states
2554 * and so none of them have the "required-opps" property set. Return the
2555 * pstate of the src_table as it is in such cases.
2556 */
2557 if (!src_table || !src_table->required_opp_count)
2558 return pstate;
2559
2560 /* required-opps not fully initialized yet */
2561 if (lazy_linking_pending(src_table))
2562 return -EBUSY;
2563
2564 for (i = 0; i < src_table->required_opp_count; i++) {
2565 if (src_table->required_opp_tables[i]->np == dst_table->np)
2566 break;
2567 }
2568
2569 if (unlikely(i == src_table->required_opp_count)) {
2570 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2571 __func__, src_table, dst_table);
2572 return -EINVAL;
2573 }
2574
2575 mutex_lock(&src_table->lock);
2576
2577 list_for_each_entry(opp, &src_table->opp_list, node) {
2578 if (opp->pstate == pstate) {
2579 dest_pstate = opp->required_opps[i]->pstate;
2580 goto unlock;
2581 }
2582 }
2583
2584 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2585 dst_table);
2586
2587unlock:
2588 mutex_unlock(&src_table->lock);
2589
2590 return dest_pstate;
2591}
2592
2593/**
2594 * dev_pm_opp_add() - Add an OPP table from a table definitions
2595 * @dev: device for which we do this operation
2596 * @freq: Frequency in Hz for this OPP
2597 * @u_volt: Voltage in uVolts for this OPP
2598 *
2599 * This function adds an opp definition to the opp table and returns status.
2600 * The opp is made available by default and it can be controlled using
2601 * dev_pm_opp_enable/disable functions.
2602 *
2603 * Return:
2604 * 0 On success OR
2605 * Duplicate OPPs (both freq and volt are same) and opp->available
2606 * -EEXIST Freq are same and volt are different OR
2607 * Duplicate OPPs (both freq and volt are same) and !opp->available
2608 * -ENOMEM Memory allocation failure
2609 */
2610int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2611{
2612 struct opp_table *opp_table;
2613 int ret;
2614
2615 opp_table = _add_opp_table(dev, true);
2616 if (IS_ERR(opp_table))
2617 return PTR_ERR(opp_table);
2618
2619 /* Fix regulator count for dynamic OPPs */
2620 opp_table->regulator_count = 1;
2621
2622 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2623 if (ret)
2624 dev_pm_opp_put_opp_table(opp_table);
2625
2626 return ret;
2627}
2628EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2629
2630/**
2631 * _opp_set_availability() - helper to set the availability of an opp
2632 * @dev: device for which we do this operation
2633 * @freq: OPP frequency to modify availability
2634 * @availability_req: availability status requested for this opp
2635 *
2636 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2637 * which is isolated here.
2638 *
2639 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2640 * copy operation, returns 0 if no modification was done OR modification was
2641 * successful.
2642 */
2643static int _opp_set_availability(struct device *dev, unsigned long freq,
2644 bool availability_req)
2645{
2646 struct opp_table *opp_table;
2647 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2648 int r = 0;
2649
2650 /* Find the opp_table */
2651 opp_table = _find_opp_table(dev);
2652 if (IS_ERR(opp_table)) {
2653 r = PTR_ERR(opp_table);
2654 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2655 return r;
2656 }
2657
2658 mutex_lock(&opp_table->lock);
2659
2660 /* Do we have the frequency? */
2661 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2662 if (tmp_opp->rate == freq) {
2663 opp = tmp_opp;
2664 break;
2665 }
2666 }
2667
2668 if (IS_ERR(opp)) {
2669 r = PTR_ERR(opp);
2670 goto unlock;
2671 }
2672
2673 /* Is update really needed? */
2674 if (opp->available == availability_req)
2675 goto unlock;
2676
2677 opp->available = availability_req;
2678
2679 dev_pm_opp_get(opp);
2680 mutex_unlock(&opp_table->lock);
2681
2682 /* Notify the change of the OPP availability */
2683 if (availability_req)
2684 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2685 opp);
2686 else
2687 blocking_notifier_call_chain(&opp_table->head,
2688 OPP_EVENT_DISABLE, opp);
2689
2690 dev_pm_opp_put(opp);
2691 goto put_table;
2692
2693unlock:
2694 mutex_unlock(&opp_table->lock);
2695put_table:
2696 dev_pm_opp_put_opp_table(opp_table);
2697 return r;
2698}
2699
2700/**
2701 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2702 * @dev: device for which we do this operation
2703 * @freq: OPP frequency to adjust voltage of
2704 * @u_volt: new OPP target voltage
2705 * @u_volt_min: new OPP min voltage
2706 * @u_volt_max: new OPP max voltage
2707 *
2708 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2709 * copy operation, returns 0 if no modifcation was done OR modification was
2710 * successful.
2711 */
2712int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2713 unsigned long u_volt, unsigned long u_volt_min,
2714 unsigned long u_volt_max)
2715
2716{
2717 struct opp_table *opp_table;
2718 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2719 int r = 0;
2720
2721 /* Find the opp_table */
2722 opp_table = _find_opp_table(dev);
2723 if (IS_ERR(opp_table)) {
2724 r = PTR_ERR(opp_table);
2725 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2726 return r;
2727 }
2728
2729 mutex_lock(&opp_table->lock);
2730
2731 /* Do we have the frequency? */
2732 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2733 if (tmp_opp->rate == freq) {
2734 opp = tmp_opp;
2735 break;
2736 }
2737 }
2738
2739 if (IS_ERR(opp)) {
2740 r = PTR_ERR(opp);
2741 goto adjust_unlock;
2742 }
2743
2744 /* Is update really needed? */
2745 if (opp->supplies->u_volt == u_volt)
2746 goto adjust_unlock;
2747
2748 opp->supplies->u_volt = u_volt;
2749 opp->supplies->u_volt_min = u_volt_min;
2750 opp->supplies->u_volt_max = u_volt_max;
2751
2752 dev_pm_opp_get(opp);
2753 mutex_unlock(&opp_table->lock);
2754
2755 /* Notify the voltage change of the OPP */
2756 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2757 opp);
2758
2759 dev_pm_opp_put(opp);
2760 goto adjust_put_table;
2761
2762adjust_unlock:
2763 mutex_unlock(&opp_table->lock);
2764adjust_put_table:
2765 dev_pm_opp_put_opp_table(opp_table);
2766 return r;
2767}
2768EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2769
2770/**
2771 * dev_pm_opp_enable() - Enable a specific OPP
2772 * @dev: device for which we do this operation
2773 * @freq: OPP frequency to enable
2774 *
2775 * Enables a provided opp. If the operation is valid, this returns 0, else the
2776 * corresponding error value. It is meant to be used for users an OPP available
2777 * after being temporarily made unavailable with dev_pm_opp_disable.
2778 *
2779 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2780 * copy operation, returns 0 if no modification was done OR modification was
2781 * successful.
2782 */
2783int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2784{
2785 return _opp_set_availability(dev, freq, true);
2786}
2787EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2788
2789/**
2790 * dev_pm_opp_disable() - Disable a specific OPP
2791 * @dev: device for which we do this operation
2792 * @freq: OPP frequency to disable
2793 *
2794 * Disables a provided opp. If the operation is valid, this returns
2795 * 0, else the corresponding error value. It is meant to be a temporary
2796 * control by users to make this OPP not available until the circumstances are
2797 * right to make it available again (with a call to dev_pm_opp_enable).
2798 *
2799 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2800 * copy operation, returns 0 if no modification was done OR modification was
2801 * successful.
2802 */
2803int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2804{
2805 return _opp_set_availability(dev, freq, false);
2806}
2807EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2808
2809/**
2810 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2811 * @dev: Device for which notifier needs to be registered
2812 * @nb: Notifier block to be registered
2813 *
2814 * Return: 0 on success or a negative error value.
2815 */
2816int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2817{
2818 struct opp_table *opp_table;
2819 int ret;
2820
2821 opp_table = _find_opp_table(dev);
2822 if (IS_ERR(opp_table))
2823 return PTR_ERR(opp_table);
2824
2825 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2826
2827 dev_pm_opp_put_opp_table(opp_table);
2828
2829 return ret;
2830}
2831EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2832
2833/**
2834 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2835 * @dev: Device for which notifier needs to be unregistered
2836 * @nb: Notifier block to be unregistered
2837 *
2838 * Return: 0 on success or a negative error value.
2839 */
2840int dev_pm_opp_unregister_notifier(struct device *dev,
2841 struct notifier_block *nb)
2842{
2843 struct opp_table *opp_table;
2844 int ret;
2845
2846 opp_table = _find_opp_table(dev);
2847 if (IS_ERR(opp_table))
2848 return PTR_ERR(opp_table);
2849
2850 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2851
2852 dev_pm_opp_put_opp_table(opp_table);
2853
2854 return ret;
2855}
2856EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
2857
2858/**
2859 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
2860 * @dev: device pointer used to lookup OPP table.
2861 *
2862 * Free both OPPs created using static entries present in DT and the
2863 * dynamically added entries.
2864 */
2865void dev_pm_opp_remove_table(struct device *dev)
2866{
2867 struct opp_table *opp_table;
2868
2869 /* Check for existing table for 'dev' */
2870 opp_table = _find_opp_table(dev);
2871 if (IS_ERR(opp_table)) {
2872 int error = PTR_ERR(opp_table);
2873
2874 if (error != -ENODEV)
2875 WARN(1, "%s: opp_table: %d\n",
2876 IS_ERR_OR_NULL(dev) ?
2877 "Invalid device" : dev_name(dev),
2878 error);
2879 return;
2880 }
2881
2882 /*
2883 * Drop the extra reference only if the OPP table was successfully added
2884 * with dev_pm_opp_of_add_table() earlier.
2885 **/
2886 if (_opp_remove_all_static(opp_table))
2887 dev_pm_opp_put_opp_table(opp_table);
2888
2889 /* Drop reference taken by _find_opp_table() */
2890 dev_pm_opp_put_opp_table(opp_table);
2891}
2892EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
2893
2894/**
2895 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2896 * @dev: device for which we do this operation
2897 *
2898 * Sync voltage state of the OPP table regulators.
2899 *
2900 * Return: 0 on success or a negative error value.
2901 */
2902int dev_pm_opp_sync_regulators(struct device *dev)
2903{
2904 struct opp_table *opp_table;
2905 struct regulator *reg;
2906 int i, ret = 0;
2907
2908 /* Device may not have OPP table */
2909 opp_table = _find_opp_table(dev);
2910 if (IS_ERR(opp_table))
2911 return 0;
2912
2913 /* Regulator may not be required for the device */
2914 if (unlikely(!opp_table->regulators))
2915 goto put_table;
2916
2917 /* Nothing to sync if voltage wasn't changed */
2918 if (!opp_table->enabled)
2919 goto put_table;
2920
2921 for (i = 0; i < opp_table->regulator_count; i++) {
2922 reg = opp_table->regulators[i];
2923 ret = regulator_sync_voltage(reg);
2924 if (ret)
2925 break;
2926 }
2927put_table:
2928 /* Drop reference taken by _find_opp_table() */
2929 dev_pm_opp_put_opp_table(opp_table);
2930
2931 return ret;
2932}
2933EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);