Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/device.h>
  17#include <linux/export.h>
  18#include <linux/pm_domain.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/slab.h>
  21#include <linux/xarray.h>
  22
  23#include "opp.h"
  24
  25/*
  26 * The root of the list of all opp-tables. All opp_table structures branch off
  27 * from here, with each opp_table containing the list of opps it supports in
  28 * various states of availability.
  29 */
  30LIST_HEAD(opp_tables);
  31
 
 
 
  32/* Lock to allow exclusive modification to the device and opp lists */
  33DEFINE_MUTEX(opp_table_lock);
  34/* Flag indicating that opp_tables list is being updated at the moment */
  35static bool opp_tables_busy;
  36
  37/* OPP ID allocator */
  38static DEFINE_XARRAY_ALLOC1(opp_configs);
  39
  40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
  41{
  42	struct opp_device *opp_dev;
  43	bool found = false;
  44
  45	mutex_lock(&opp_table->lock);
  46	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  47		if (opp_dev->dev == dev) {
  48			found = true;
  49			break;
  50		}
  51
  52	mutex_unlock(&opp_table->lock);
  53	return found;
  54}
  55
  56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  57{
  58	struct opp_table *opp_table;
  59
  60	list_for_each_entry(opp_table, &opp_tables, node) {
  61		if (_find_opp_dev(dev, opp_table)) {
  62			_get_opp_table_kref(opp_table);
  63			return opp_table;
  64		}
  65	}
  66
  67	return ERR_PTR(-ENODEV);
  68}
  69
  70/**
  71 * _find_opp_table() - find opp_table struct using device pointer
  72 * @dev:	device pointer used to lookup OPP table
  73 *
  74 * Search OPP table for one containing matching device.
  75 *
  76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  77 * -EINVAL based on type of error.
  78 *
  79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  80 */
  81struct opp_table *_find_opp_table(struct device *dev)
  82{
  83	struct opp_table *opp_table;
  84
  85	if (IS_ERR_OR_NULL(dev)) {
  86		pr_err("%s: Invalid parameters\n", __func__);
  87		return ERR_PTR(-EINVAL);
  88	}
  89
  90	mutex_lock(&opp_table_lock);
  91	opp_table = _find_opp_table_unlocked(dev);
  92	mutex_unlock(&opp_table_lock);
  93
  94	return opp_table;
  95}
  96
  97/*
  98 * Returns true if multiple clocks aren't there, else returns false with WARN.
  99 *
 100 * We don't force clk_count == 1 here as there are users who don't have a clock
 101 * representation in the OPP table and manage the clock configuration themselves
 102 * in an platform specific way.
 103 */
 104static bool assert_single_clk(struct opp_table *opp_table,
 105			      unsigned int __always_unused index)
 106{
 107	return !WARN_ON(opp_table->clk_count > 1);
 108}
 109
 110/*
 111 * Returns true if clock table is large enough to contain the clock index.
 112 */
 113static bool assert_clk_index(struct opp_table *opp_table,
 114			     unsigned int index)
 115{
 116	return opp_table->clk_count > index;
 117}
 118
 119/*
 120 * Returns true if bandwidth table is large enough to contain the bandwidth index.
 121 */
 122static bool assert_bandwidth_index(struct opp_table *opp_table,
 123				   unsigned int index)
 124{
 125	return opp_table->path_count > index;
 126}
 127
 128/**
 129 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
 130 * @opp:	opp for which voltage has to be returned for
 131 *
 132 * Return: voltage in micro volt corresponding to the opp, else
 133 * return 0
 134 *
 135 * This is useful only for devices with single power supply.
 136 */
 137unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 138{
 139	if (IS_ERR_OR_NULL(opp)) {
 140		pr_err("%s: Invalid parameters\n", __func__);
 141		return 0;
 142	}
 143
 144	return opp->supplies[0].u_volt;
 145}
 146EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 147
 148/**
 149 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
 150 * @opp:	opp for which voltage has to be returned for
 151 * @supplies:	Placeholder for copying the supply information.
 152 *
 153 * Return: negative error number on failure, 0 otherwise on success after
 154 * setting @supplies.
 155 *
 156 * This can be used for devices with any number of power supplies. The caller
 157 * must ensure the @supplies array must contain space for each regulator.
 158 */
 159int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
 160			    struct dev_pm_opp_supply *supplies)
 161{
 162	if (IS_ERR_OR_NULL(opp) || !supplies) {
 163		pr_err("%s: Invalid parameters\n", __func__);
 164		return -EINVAL;
 165	}
 166
 167	memcpy(supplies, opp->supplies,
 168	       sizeof(*supplies) * opp->opp_table->regulator_count);
 169	return 0;
 170}
 171EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
 172
 173/**
 174 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
 175 * @opp:	opp for which power has to be returned for
 176 *
 177 * Return: power in micro watt corresponding to the opp, else
 178 * return 0
 179 *
 180 * This is useful only for devices with single power supply.
 181 */
 182unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
 183{
 184	unsigned long opp_power = 0;
 185	int i;
 186
 187	if (IS_ERR_OR_NULL(opp)) {
 188		pr_err("%s: Invalid parameters\n", __func__);
 189		return 0;
 190	}
 191	for (i = 0; i < opp->opp_table->regulator_count; i++)
 192		opp_power += opp->supplies[i].u_watt;
 193
 194	return opp_power;
 195}
 196EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
 197
 198/**
 199 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
 200 *				   available opp with specified index
 201 * @opp: opp for which frequency has to be returned for
 202 * @index: index of the frequency within the required opp
 203 *
 204 * Return: frequency in hertz corresponding to the opp with specified index,
 205 * else return 0
 206 */
 207unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
 208{
 209	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
 210		pr_err("%s: Invalid parameters\n", __func__);
 211		return 0;
 212	}
 213
 214	return opp->rates[index];
 
 
 
 215}
 216EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
 217
 218/**
 219 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 220 * @opp:	opp for which level value has to be returned for
 221 *
 222 * Return: level read from device tree corresponding to the opp, else
 223 * return U32_MAX.
 224 */
 225unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 226{
 227	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 228		pr_err("%s: Invalid parameters\n", __func__);
 229		return 0;
 230	}
 231
 232	return opp->level;
 233}
 234EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 235
 236/**
 237 * dev_pm_opp_get_required_pstate() - Gets the required performance state
 238 *                                    corresponding to an available opp
 239 * @opp:	opp for which performance state has to be returned for
 240 * @index:	index of the required opp
 241 *
 242 * Return: performance state read from device tree corresponding to the
 243 * required opp, else return U32_MAX.
 244 */
 245unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
 246					    unsigned int index)
 247{
 248	if (IS_ERR_OR_NULL(opp) || !opp->available ||
 249	    index >= opp->opp_table->required_opp_count) {
 250		pr_err("%s: Invalid parameters\n", __func__);
 251		return 0;
 252	}
 253
 254	/* required-opps not fully initialized yet */
 255	if (lazy_linking_pending(opp->opp_table))
 256		return 0;
 257
 258	/* The required OPP table must belong to a genpd */
 259	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
 260		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
 261		return 0;
 262	}
 263
 264	return opp->required_opps[index]->level;
 265}
 266EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
 267
 268/**
 269 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 270 * @opp: opp for which turbo mode is being verified
 271 *
 272 * Turbo OPPs are not for normal use, and can be enabled (under certain
 273 * conditions) for short duration of times to finish high throughput work
 274 * quickly. Running on them for longer times may overheat the chip.
 275 *
 276 * Return: true if opp is turbo opp, else false.
 277 */
 278bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 279{
 280	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 281		pr_err("%s: Invalid parameters\n", __func__);
 282		return false;
 283	}
 284
 285	return opp->turbo;
 286}
 287EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 288
 289/**
 290 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 291 * @dev:	device for which we do this operation
 292 *
 293 * Return: This function returns the max clock latency in nanoseconds.
 294 */
 295unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 296{
 297	struct opp_table *opp_table;
 298	unsigned long clock_latency_ns;
 299
 300	opp_table = _find_opp_table(dev);
 301	if (IS_ERR(opp_table))
 302		return 0;
 303
 304	clock_latency_ns = opp_table->clock_latency_ns_max;
 305
 306	dev_pm_opp_put_opp_table(opp_table);
 307
 308	return clock_latency_ns;
 309}
 310EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 311
 312/**
 313 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 314 * @dev: device for which we do this operation
 315 *
 316 * Return: This function returns the max voltage latency in nanoseconds.
 317 */
 318unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 319{
 320	struct opp_table *opp_table;
 321	struct dev_pm_opp *opp;
 322	struct regulator *reg;
 323	unsigned long latency_ns = 0;
 324	int ret, i, count;
 325	struct {
 326		unsigned long min;
 327		unsigned long max;
 328	} *uV;
 329
 330	opp_table = _find_opp_table(dev);
 331	if (IS_ERR(opp_table))
 332		return 0;
 333
 334	/* Regulator may not be required for the device */
 335	if (!opp_table->regulators)
 336		goto put_opp_table;
 337
 338	count = opp_table->regulator_count;
 339
 340	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 341	if (!uV)
 342		goto put_opp_table;
 343
 344	mutex_lock(&opp_table->lock);
 345
 346	for (i = 0; i < count; i++) {
 347		uV[i].min = ~0;
 348		uV[i].max = 0;
 349
 350		list_for_each_entry(opp, &opp_table->opp_list, node) {
 351			if (!opp->available)
 352				continue;
 353
 354			if (opp->supplies[i].u_volt_min < uV[i].min)
 355				uV[i].min = opp->supplies[i].u_volt_min;
 356			if (opp->supplies[i].u_volt_max > uV[i].max)
 357				uV[i].max = opp->supplies[i].u_volt_max;
 358		}
 359	}
 360
 361	mutex_unlock(&opp_table->lock);
 362
 363	/*
 364	 * The caller needs to ensure that opp_table (and hence the regulator)
 365	 * isn't freed, while we are executing this routine.
 366	 */
 367	for (i = 0; i < count; i++) {
 368		reg = opp_table->regulators[i];
 369		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 370		if (ret > 0)
 371			latency_ns += ret * 1000;
 372	}
 373
 374	kfree(uV);
 375put_opp_table:
 376	dev_pm_opp_put_opp_table(opp_table);
 377
 378	return latency_ns;
 379}
 380EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 381
 382/**
 383 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 384 *					     nanoseconds
 385 * @dev: device for which we do this operation
 386 *
 387 * Return: This function returns the max transition latency, in nanoseconds, to
 388 * switch from one OPP to other.
 389 */
 390unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 391{
 392	return dev_pm_opp_get_max_volt_latency(dev) +
 393		dev_pm_opp_get_max_clock_latency(dev);
 394}
 395EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 396
 397/**
 398 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 399 * @dev:	device for which we do this operation
 400 *
 401 * Return: This function returns the frequency of the OPP marked as suspend_opp
 402 * if one is available, else returns 0;
 403 */
 404unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 405{
 406	struct opp_table *opp_table;
 407	unsigned long freq = 0;
 408
 409	opp_table = _find_opp_table(dev);
 410	if (IS_ERR(opp_table))
 411		return 0;
 412
 413	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 414		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 415
 416	dev_pm_opp_put_opp_table(opp_table);
 417
 418	return freq;
 419}
 420EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 421
 422int _get_opp_count(struct opp_table *opp_table)
 423{
 424	struct dev_pm_opp *opp;
 425	int count = 0;
 426
 427	mutex_lock(&opp_table->lock);
 428
 429	list_for_each_entry(opp, &opp_table->opp_list, node) {
 430		if (opp->available)
 431			count++;
 432	}
 433
 434	mutex_unlock(&opp_table->lock);
 435
 436	return count;
 437}
 438
 439/**
 440 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 441 * @dev:	device for which we do this operation
 442 *
 443 * Return: This function returns the number of available opps if there are any,
 444 * else returns 0 if none or the corresponding error value.
 445 */
 446int dev_pm_opp_get_opp_count(struct device *dev)
 447{
 448	struct opp_table *opp_table;
 449	int count;
 450
 451	opp_table = _find_opp_table(dev);
 452	if (IS_ERR(opp_table)) {
 453		count = PTR_ERR(opp_table);
 454		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 455			__func__, count);
 456		return count;
 457	}
 458
 459	count = _get_opp_count(opp_table);
 460	dev_pm_opp_put_opp_table(opp_table);
 461
 462	return count;
 463}
 464EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 465
 466/* Helpers to read keys */
 467static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
 468{
 469	return opp->rates[index];
 470}
 471
 472static unsigned long _read_level(struct dev_pm_opp *opp, int index)
 473{
 474	return opp->level;
 475}
 476
 477static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
 478{
 479	return opp->bandwidth[index].peak;
 480}
 481
 482/* Generic comparison helpers */
 483static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 484			   unsigned long opp_key, unsigned long key)
 485{
 486	if (opp_key == key) {
 487		*opp = temp_opp;
 488		return true;
 489	}
 490
 491	return false;
 492}
 493
 494static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 495			  unsigned long opp_key, unsigned long key)
 496{
 497	if (opp_key >= key) {
 498		*opp = temp_opp;
 499		return true;
 500	}
 501
 502	return false;
 503}
 504
 505static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 506			   unsigned long opp_key, unsigned long key)
 507{
 508	if (opp_key > key)
 509		return true;
 510
 511	*opp = temp_opp;
 512	return false;
 513}
 514
 515/* Generic key finding helpers */
 516static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
 517		unsigned long *key, int index, bool available,
 518		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 519		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 520				unsigned long opp_key, unsigned long key),
 521		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 522{
 523	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 524
 525	/* Assert that the requirement is met */
 526	if (assert && !assert(opp_table, index))
 527		return ERR_PTR(-EINVAL);
 528
 529	mutex_lock(&opp_table->lock);
 530
 531	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 532		if (temp_opp->available == available) {
 533			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
 534				break;
 535		}
 536	}
 537
 538	/* Increment the reference count of OPP */
 539	if (!IS_ERR(opp)) {
 540		*key = read(opp, index);
 541		dev_pm_opp_get(opp);
 542	}
 543
 544	mutex_unlock(&opp_table->lock);
 545
 546	return opp;
 547}
 548
 549static struct dev_pm_opp *
 550_find_key(struct device *dev, unsigned long *key, int index, bool available,
 551	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
 552	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 553			  unsigned long opp_key, unsigned long key),
 554	  bool (*assert)(struct opp_table *opp_table, unsigned int index))
 555{
 556	struct opp_table *opp_table;
 557	struct dev_pm_opp *opp;
 558
 559	opp_table = _find_opp_table(dev);
 560	if (IS_ERR(opp_table)) {
 561		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
 562			PTR_ERR(opp_table));
 563		return ERR_CAST(opp_table);
 564	}
 565
 566	opp = _opp_table_find_key(opp_table, key, index, available, read,
 567				  compare, assert);
 568
 569	dev_pm_opp_put_opp_table(opp_table);
 570
 571	return opp;
 572}
 573
 574static struct dev_pm_opp *_find_key_exact(struct device *dev,
 575		unsigned long key, int index, bool available,
 576		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 577		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 578{
 579	/*
 580	 * The value of key will be updated here, but will be ignored as the
 581	 * caller doesn't need it.
 582	 */
 583	return _find_key(dev, &key, index, available, read, _compare_exact,
 584			 assert);
 585}
 586
 587static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
 588		unsigned long *key, int index, bool available,
 589		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 590		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 591{
 592	return _opp_table_find_key(opp_table, key, index, available, read,
 593				   _compare_ceil, assert);
 594}
 595
 596static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
 597		int index, bool available,
 598		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 599		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 600{
 601	return _find_key(dev, key, index, available, read, _compare_ceil,
 602			 assert);
 603}
 604
 605static struct dev_pm_opp *_find_key_floor(struct device *dev,
 606		unsigned long *key, int index, bool available,
 607		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 608		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 609{
 610	return _find_key(dev, key, index, available, read, _compare_floor,
 611			 assert);
 612}
 613
 614/**
 615 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 616 * @dev:		device for which we do this operation
 617 * @freq:		frequency to search for
 618 * @available:		true/false - match for available opp
 619 *
 620 * Return: Searches for exact match in the opp table and returns pointer to the
 621 * matching opp if found, else returns ERR_PTR in case of error and should
 622 * be handled using IS_ERR. Error return values can be:
 623 * EINVAL:	for bad pointer
 624 * ERANGE:	no match found for search
 625 * ENODEV:	if device not found in list of registered devices
 626 *
 627 * Note: available is a modifier for the search. if available=true, then the
 628 * match is for exact matching frequency and is available in the stored OPP
 629 * table. if false, the match is for exact frequency which is not available.
 630 *
 631 * This provides a mechanism to enable an opp which is not available currently
 632 * or the opposite as well.
 633 *
 634 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 635 * use.
 636 */
 637struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 638		unsigned long freq, bool available)
 639{
 640	return _find_key_exact(dev, freq, 0, available, _read_freq,
 641			       assert_single_clk);
 642}
 643EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 644
 645/**
 646 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
 647 *					 clock corresponding to the index
 648 * @dev:	Device for which we do this operation
 649 * @freq:	frequency to search for
 650 * @index:	Clock index
 651 * @available:	true/false - match for available opp
 652 *
 653 * Search for the matching exact OPP for the clock corresponding to the
 654 * specified index from a starting freq for a device.
 655 *
 656 * Return: matching *opp , else returns ERR_PTR in case of error and should be
 657 * handled using IS_ERR. Error return values can be:
 658 * EINVAL:	for bad pointer
 659 * ERANGE:	no match found for search
 660 * ENODEV:	if device not found in list of registered devices
 661 *
 662 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 663 * use.
 664 */
 665struct dev_pm_opp *
 666dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
 667				   u32 index, bool available)
 668{
 669	return _find_key_exact(dev, freq, index, available, _read_freq,
 670			       assert_clk_index);
 671}
 672EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
 673
 674static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 675						   unsigned long *freq)
 676{
 677	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
 678					assert_single_clk);
 679}
 680
 681/**
 682 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 683 * @dev:	device for which we do this operation
 684 * @freq:	Start frequency
 685 *
 686 * Search for the matching ceil *available* OPP from a starting freq
 687 * for a device.
 688 *
 689 * Return: matching *opp and refreshes *freq accordingly, else returns
 690 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 691 * values can be:
 692 * EINVAL:	for bad pointer
 693 * ERANGE:	no match found for search
 694 * ENODEV:	if device not found in list of registered devices
 695 *
 696 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 697 * use.
 698 */
 699struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 700					     unsigned long *freq)
 701{
 702	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
 703}
 704EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 705
 706/**
 707 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
 708 *					 clock corresponding to the index
 709 * @dev:	Device for which we do this operation
 710 * @freq:	Start frequency
 711 * @index:	Clock index
 712 *
 713 * Search for the matching ceil *available* OPP for the clock corresponding to
 714 * the specified index from a starting freq for a device.
 715 *
 716 * Return: matching *opp and refreshes *freq accordingly, else returns
 717 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 718 * values can be:
 719 * EINVAL:	for bad pointer
 720 * ERANGE:	no match found for search
 721 * ENODEV:	if device not found in list of registered devices
 722 *
 723 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 724 * use.
 725 */
 726struct dev_pm_opp *
 727dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
 728				  u32 index)
 729{
 730	return _find_key_ceil(dev, freq, index, true, _read_freq,
 731			      assert_clk_index);
 732}
 733EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
 734
 735/**
 736 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 737 * @dev:	device for which we do this operation
 738 * @freq:	Start frequency
 739 *
 740 * Search for the matching floor *available* OPP from a starting freq
 741 * for a device.
 742 *
 743 * Return: matching *opp and refreshes *freq accordingly, else returns
 744 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 745 * values can be:
 746 * EINVAL:	for bad pointer
 747 * ERANGE:	no match found for search
 748 * ENODEV:	if device not found in list of registered devices
 749 *
 750 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 751 * use.
 752 */
 753struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 754					      unsigned long *freq)
 755{
 756	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
 757}
 758EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 759
 760/**
 761 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
 762 *					  clock corresponding to the index
 763 * @dev:	Device for which we do this operation
 764 * @freq:	Start frequency
 765 * @index:	Clock index
 766 *
 767 * Search for the matching floor *available* OPP for the clock corresponding to
 768 * the specified index from a starting freq for a device.
 769 *
 770 * Return: matching *opp and refreshes *freq accordingly, else returns
 771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 772 * values can be:
 773 * EINVAL:	for bad pointer
 774 * ERANGE:	no match found for search
 775 * ENODEV:	if device not found in list of registered devices
 776 *
 777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 778 * use.
 779 */
 780struct dev_pm_opp *
 781dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
 782				   u32 index)
 783{
 784	return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
 785}
 786EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
 787
 788/**
 789 * dev_pm_opp_find_level_exact() - search for an exact level
 790 * @dev:		device for which we do this operation
 791 * @level:		level to search for
 792 *
 793 * Return: Searches for exact match in the opp table and returns pointer to the
 794 * matching opp if found, else returns ERR_PTR in case of error and should
 795 * be handled using IS_ERR. Error return values can be:
 796 * EINVAL:	for bad pointer
 797 * ERANGE:	no match found for search
 798 * ENODEV:	if device not found in list of registered devices
 799 *
 800 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 801 * use.
 802 */
 803struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 804					       unsigned int level)
 805{
 806	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
 807}
 808EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 809
 810/**
 811 * dev_pm_opp_find_level_ceil() - search for an rounded up level
 812 * @dev:		device for which we do this operation
 813 * @level:		level to search for
 814 *
 815 * Return: Searches for rounded up match in the opp table and returns pointer
 816 * to the  matching opp if found, else returns ERR_PTR in case of error and
 817 * should be handled using IS_ERR. Error return values can be:
 818 * EINVAL:	for bad pointer
 819 * ERANGE:	no match found for search
 820 * ENODEV:	if device not found in list of registered devices
 821 *
 822 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 823 * use.
 824 */
 825struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
 826					      unsigned int *level)
 827{
 828	unsigned long temp = *level;
 829	struct dev_pm_opp *opp;
 830
 831	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
 832	if (IS_ERR(opp))
 833		return opp;
 834
 835	/* False match */
 836	if (temp == OPP_LEVEL_UNSET) {
 837		dev_err(dev, "%s: OPP levels aren't available\n", __func__);
 838		dev_pm_opp_put(opp);
 839		return ERR_PTR(-ENODEV);
 840	}
 841
 842	*level = temp;
 843	return opp;
 844}
 845EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
 846
 847/**
 848 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
 849 * @dev:	device for which we do this operation
 850 * @level:	Start level
 851 *
 852 * Search for the matching floor *available* OPP from a starting level
 853 * for a device.
 854 *
 855 * Return: matching *opp and refreshes *level accordingly, else returns
 856 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 857 * values can be:
 858 * EINVAL:	for bad pointer
 859 * ERANGE:	no match found for search
 860 * ENODEV:	if device not found in list of registered devices
 861 *
 862 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 863 * use.
 864 */
 865struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
 866					       unsigned int *level)
 867{
 868	unsigned long temp = *level;
 869	struct dev_pm_opp *opp;
 870
 871	opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
 872	*level = temp;
 873	return opp;
 874}
 875EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
 876
 877/**
 878 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
 879 * @dev:	device for which we do this operation
 880 * @bw:	start bandwidth
 881 * @index:	which bandwidth to compare, in case of OPPs with several values
 882 *
 883 * Search for the matching floor *available* OPP from a starting bandwidth
 884 * for a device.
 885 *
 886 * Return: matching *opp and refreshes *bw accordingly, else returns
 887 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 888 * values can be:
 889 * EINVAL:	for bad pointer
 890 * ERANGE:	no match found for search
 891 * ENODEV:	if device not found in list of registered devices
 892 *
 893 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 894 * use.
 895 */
 896struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
 897					   int index)
 898{
 899	unsigned long temp = *bw;
 900	struct dev_pm_opp *opp;
 901
 902	opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
 903			     assert_bandwidth_index);
 904	*bw = temp;
 905	return opp;
 906}
 907EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
 908
 909/**
 910 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
 911 * @dev:	device for which we do this operation
 912 * @bw:	start bandwidth
 913 * @index:	which bandwidth to compare, in case of OPPs with several values
 914 *
 915 * Search for the matching floor *available* OPP from a starting bandwidth
 916 * for a device.
 917 *
 918 * Return: matching *opp and refreshes *bw accordingly, else returns
 919 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 920 * values can be:
 921 * EINVAL:	for bad pointer
 922 * ERANGE:	no match found for search
 923 * ENODEV:	if device not found in list of registered devices
 924 *
 925 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 926 * use.
 927 */
 928struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
 929					    unsigned int *bw, int index)
 930{
 931	unsigned long temp = *bw;
 932	struct dev_pm_opp *opp;
 933
 934	opp = _find_key_floor(dev, &temp, index, true, _read_bw,
 935			      assert_bandwidth_index);
 936	*bw = temp;
 937	return opp;
 938}
 939EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
 940
 941static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 942			    struct dev_pm_opp_supply *supply)
 943{
 944	int ret;
 945
 946	/* Regulator not available for device */
 947	if (IS_ERR(reg)) {
 948		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 949			PTR_ERR(reg));
 950		return 0;
 951	}
 952
 953	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 954		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 955
 956	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 957					    supply->u_volt, supply->u_volt_max);
 958	if (ret)
 959		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 960			__func__, supply->u_volt_min, supply->u_volt,
 961			supply->u_volt_max, ret);
 962
 963	return ret;
 964}
 965
 966static int
 967_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
 968		       struct dev_pm_opp *opp, void *data, bool scaling_down)
 969{
 970	unsigned long *target = data;
 971	unsigned long freq;
 972	int ret;
 973
 974	/* One of target and opp must be available */
 975	if (target) {
 976		freq = *target;
 977	} else if (opp) {
 978		freq = opp->rates[0];
 979	} else {
 980		WARN_ON(1);
 981		return -EINVAL;
 982	}
 983
 984	ret = clk_set_rate(opp_table->clk, freq);
 985	if (ret) {
 986		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 987			ret);
 988	} else {
 989		opp_table->current_rate_single_clk = freq;
 990	}
 991
 992	return ret;
 993}
 994
 995/*
 996 * Simple implementation for configuring multiple clocks. Configure clocks in
 997 * the order in which they are present in the array while scaling up.
 998 */
 999int dev_pm_opp_config_clks_simple(struct device *dev,
1000		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
1001		bool scaling_down)
1002{
1003	int ret, i;
1004
1005	if (scaling_down) {
1006		for (i = opp_table->clk_count - 1; i >= 0; i--) {
1007			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1008			if (ret) {
1009				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1010					ret);
1011				return ret;
1012			}
1013		}
1014	} else {
1015		for (i = 0; i < opp_table->clk_count; i++) {
1016			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1017			if (ret) {
1018				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1019					ret);
1020				return ret;
1021			}
1022		}
1023	}
1024
1025	return 0;
1026}
1027EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1028
1029static int _opp_config_regulator_single(struct device *dev,
1030			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1031			struct regulator **regulators, unsigned int count)
1032{
1033	struct regulator *reg = regulators[0];
1034	int ret;
1035
1036	/* This function only supports single regulator per device */
1037	if (WARN_ON(count > 1)) {
1038		dev_err(dev, "multiple regulators are not supported\n");
1039		return -EINVAL;
1040	}
1041
1042	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1043	if (ret)
1044		return ret;
1045
1046	/*
1047	 * Enable the regulator after setting its voltages, otherwise it breaks
1048	 * some boot-enabled regulators.
1049	 */
1050	if (unlikely(!new_opp->opp_table->enabled)) {
1051		ret = regulator_enable(reg);
1052		if (ret < 0)
1053			dev_warn(dev, "Failed to enable regulator: %d", ret);
1054	}
1055
1056	return 0;
1057}
1058
1059static int _set_opp_bw(const struct opp_table *opp_table,
1060		       struct dev_pm_opp *opp, struct device *dev)
1061{
1062	u32 avg, peak;
1063	int i, ret;
1064
1065	if (!opp_table->paths)
1066		return 0;
1067
1068	for (i = 0; i < opp_table->path_count; i++) {
1069		if (!opp) {
1070			avg = 0;
1071			peak = 0;
1072		} else {
1073			avg = opp->bandwidth[i].avg;
1074			peak = opp->bandwidth[i].peak;
1075		}
1076		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1077		if (ret) {
1078			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1079				opp ? "set" : "remove", i, ret);
1080			return ret;
1081		}
1082	}
1083
1084	return 0;
1085}
1086
1087static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
 
1088{
1089	unsigned int level = 0;
1090	int ret = 0;
1091
1092	if (opp) {
1093		if (opp->level == OPP_LEVEL_UNSET)
1094			return 0;
1095
1096		level = opp->level;
 
 
 
1097	}
1098
1099	/* Request a new performance state through the device's PM domain. */
1100	ret = dev_pm_domain_set_performance_state(dev, level);
1101	if (ret)
1102		dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1103			ret);
1104
1105	return ret;
1106}
1107
1108/* This is only called for PM domain for now */
1109static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
 
1110			      struct dev_pm_opp *opp, bool up)
1111{
1112	struct device **devs = opp_table->required_devs;
1113	struct dev_pm_opp *required_opp;
1114	int index, target, delta, ret;
1115
1116	if (!devs)
1117		return 0;
1118
1119	/* required-opps not fully initialized yet */
1120	if (lazy_linking_pending(opp_table))
1121		return -EBUSY;
1122
1123	/* Scaling up? Set required OPPs in normal order, else reverse */
1124	if (up) {
1125		index = 0;
1126		target = opp_table->required_opp_count;
1127		delta = 1;
1128	} else {
1129		index = opp_table->required_opp_count - 1;
1130		target = -1;
1131		delta = -1;
1132	}
1133
1134	while (index != target) {
1135		if (devs[index]) {
1136			required_opp = opp ? opp->required_opps[index] : NULL;
 
 
1137
1138			ret = _set_opp_level(devs[index], required_opp);
 
 
 
 
 
 
 
 
 
1139			if (ret)
1140				return ret;
 
 
 
 
 
 
1141		}
1142
1143		index += delta;
1144	}
1145
1146	return 0;
 
 
1147}
1148
1149static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1150{
1151	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1152	unsigned long freq;
1153
1154	if (!IS_ERR(opp_table->clk)) {
1155		freq = clk_get_rate(opp_table->clk);
1156		opp = _find_freq_ceil(opp_table, &freq);
1157	}
1158
1159	/*
1160	 * Unable to find the current OPP ? Pick the first from the list since
1161	 * it is in ascending order, otherwise rest of the code will need to
1162	 * make special checks to validate current_opp.
1163	 */
1164	if (IS_ERR(opp)) {
1165		mutex_lock(&opp_table->lock);
1166		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1167		dev_pm_opp_get(opp);
1168		mutex_unlock(&opp_table->lock);
1169	}
1170
1171	opp_table->current_opp = opp;
1172}
1173
1174static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1175{
1176	int ret;
1177
1178	if (!opp_table->enabled)
1179		return 0;
1180
1181	/*
1182	 * Some drivers need to support cases where some platforms may
1183	 * have OPP table for the device, while others don't and
1184	 * opp_set_rate() just needs to behave like clk_set_rate().
1185	 */
1186	if (!_get_opp_count(opp_table))
1187		return 0;
1188
1189	ret = _set_opp_bw(opp_table, NULL, dev);
1190	if (ret)
1191		return ret;
1192
1193	if (opp_table->regulators)
1194		regulator_disable(opp_table->regulators[0]);
1195
1196	ret = _set_opp_level(dev, NULL);
1197	if (ret)
1198		goto out;
1199
1200	ret = _set_required_opps(dev, opp_table, NULL, false);
1201
1202out:
1203	opp_table->enabled = false;
1204	return ret;
1205}
1206
1207static int _set_opp(struct device *dev, struct opp_table *opp_table,
1208		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1209{
1210	struct dev_pm_opp *old_opp;
1211	int scaling_down, ret;
1212
1213	if (unlikely(!opp))
1214		return _disable_opp_table(dev, opp_table);
1215
1216	/* Find the currently set OPP if we don't know already */
1217	if (unlikely(!opp_table->current_opp))
1218		_find_current_opp(dev, opp_table);
1219
1220	old_opp = opp_table->current_opp;
1221
1222	/* Return early if nothing to do */
1223	if (!forced && old_opp == opp && opp_table->enabled) {
1224		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1225		return 0;
1226	}
1227
1228	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1229		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1230		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1231		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1232
1233	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1234	if (scaling_down == -1)
1235		scaling_down = 0;
1236
1237	/* Scaling up? Configure required OPPs before frequency */
1238	if (!scaling_down) {
1239		ret = _set_required_opps(dev, opp_table, opp, true);
1240		if (ret) {
1241			dev_err(dev, "Failed to set required opps: %d\n", ret);
1242			return ret;
1243		}
1244
1245		ret = _set_opp_level(dev, opp);
1246		if (ret)
1247			return ret;
1248
1249		ret = _set_opp_bw(opp_table, opp, dev);
1250		if (ret) {
1251			dev_err(dev, "Failed to set bw: %d\n", ret);
1252			return ret;
1253		}
1254
1255		if (opp_table->config_regulators) {
1256			ret = opp_table->config_regulators(dev, old_opp, opp,
1257							   opp_table->regulators,
1258							   opp_table->regulator_count);
1259			if (ret) {
1260				dev_err(dev, "Failed to set regulator voltages: %d\n",
1261					ret);
1262				return ret;
1263			}
1264		}
1265	}
1266
1267	if (opp_table->config_clks) {
1268		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1269		if (ret)
1270			return ret;
1271	}
1272
1273	/* Scaling down? Configure required OPPs after frequency */
1274	if (scaling_down) {
1275		if (opp_table->config_regulators) {
1276			ret = opp_table->config_regulators(dev, old_opp, opp,
1277							   opp_table->regulators,
1278							   opp_table->regulator_count);
1279			if (ret) {
1280				dev_err(dev, "Failed to set regulator voltages: %d\n",
1281					ret);
1282				return ret;
1283			}
1284		}
1285
1286		ret = _set_opp_bw(opp_table, opp, dev);
1287		if (ret) {
1288			dev_err(dev, "Failed to set bw: %d\n", ret);
1289			return ret;
1290		}
1291
1292		ret = _set_opp_level(dev, opp);
1293		if (ret)
1294			return ret;
1295
1296		ret = _set_required_opps(dev, opp_table, opp, false);
1297		if (ret) {
1298			dev_err(dev, "Failed to set required opps: %d\n", ret);
1299			return ret;
1300		}
1301	}
1302
1303	opp_table->enabled = true;
1304	dev_pm_opp_put(old_opp);
1305
1306	/* Make sure current_opp doesn't get freed */
1307	dev_pm_opp_get(opp);
1308	opp_table->current_opp = opp;
1309
1310	return ret;
1311}
1312
1313/**
1314 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1315 * @dev:	 device for which we do this operation
1316 * @target_freq: frequency to achieve
1317 *
1318 * This configures the power-supplies to the levels specified by the OPP
1319 * corresponding to the target_freq, and programs the clock to a value <=
1320 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1321 * provided by the opp, should have already rounded to the target OPP's
1322 * frequency.
1323 */
1324int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1325{
1326	struct opp_table *opp_table;
1327	unsigned long freq = 0, temp_freq;
1328	struct dev_pm_opp *opp = NULL;
1329	bool forced = false;
1330	int ret;
1331
1332	opp_table = _find_opp_table(dev);
1333	if (IS_ERR(opp_table)) {
1334		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1335		return PTR_ERR(opp_table);
1336	}
1337
1338	if (target_freq) {
1339		/*
1340		 * For IO devices which require an OPP on some platforms/SoCs
1341		 * while just needing to scale the clock on some others
1342		 * we look for empty OPP tables with just a clock handle and
1343		 * scale only the clk. This makes dev_pm_opp_set_rate()
1344		 * equivalent to a clk_set_rate()
1345		 */
1346		if (!_get_opp_count(opp_table)) {
1347			ret = opp_table->config_clks(dev, opp_table, NULL,
1348						     &target_freq, false);
1349			goto put_opp_table;
1350		}
1351
1352		freq = clk_round_rate(opp_table->clk, target_freq);
1353		if ((long)freq <= 0)
1354			freq = target_freq;
1355
1356		/*
1357		 * The clock driver may support finer resolution of the
1358		 * frequencies than the OPP table, don't update the frequency we
1359		 * pass to clk_set_rate() here.
1360		 */
1361		temp_freq = freq;
1362		opp = _find_freq_ceil(opp_table, &temp_freq);
1363		if (IS_ERR(opp)) {
1364			ret = PTR_ERR(opp);
1365			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1366				__func__, freq, ret);
1367			goto put_opp_table;
1368		}
1369
1370		/*
1371		 * An OPP entry specifies the highest frequency at which other
1372		 * properties of the OPP entry apply. Even if the new OPP is
1373		 * same as the old one, we may still reach here for a different
1374		 * value of the frequency. In such a case, do not abort but
1375		 * configure the hardware to the desired frequency forcefully.
1376		 */
1377		forced = opp_table->current_rate_single_clk != freq;
1378	}
1379
1380	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1381
1382	if (freq)
1383		dev_pm_opp_put(opp);
1384
1385put_opp_table:
1386	dev_pm_opp_put_opp_table(opp_table);
1387	return ret;
1388}
1389EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1390
1391/**
1392 * dev_pm_opp_set_opp() - Configure device for OPP
1393 * @dev: device for which we do this operation
1394 * @opp: OPP to set to
1395 *
1396 * This configures the device based on the properties of the OPP passed to this
1397 * routine.
1398 *
1399 * Return: 0 on success, a negative error number otherwise.
1400 */
1401int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1402{
1403	struct opp_table *opp_table;
1404	int ret;
1405
1406	opp_table = _find_opp_table(dev);
1407	if (IS_ERR(opp_table)) {
1408		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1409		return PTR_ERR(opp_table);
1410	}
1411
1412	ret = _set_opp(dev, opp_table, opp, NULL, false);
1413	dev_pm_opp_put_opp_table(opp_table);
1414
1415	return ret;
1416}
1417EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1418
1419/* OPP-dev Helpers */
1420static void _remove_opp_dev(struct opp_device *opp_dev,
1421			    struct opp_table *opp_table)
1422{
1423	opp_debug_unregister(opp_dev, opp_table);
1424	list_del(&opp_dev->node);
1425	kfree(opp_dev);
1426}
1427
1428struct opp_device *_add_opp_dev(const struct device *dev,
1429				struct opp_table *opp_table)
1430{
1431	struct opp_device *opp_dev;
1432
1433	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1434	if (!opp_dev)
1435		return NULL;
1436
1437	/* Initialize opp-dev */
1438	opp_dev->dev = dev;
1439
1440	mutex_lock(&opp_table->lock);
1441	list_add(&opp_dev->node, &opp_table->dev_list);
1442	mutex_unlock(&opp_table->lock);
1443
1444	/* Create debugfs entries for the opp_table */
1445	opp_debug_register(opp_dev, opp_table);
1446
1447	return opp_dev;
1448}
1449
1450static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1451{
1452	struct opp_table *opp_table;
1453	struct opp_device *opp_dev;
1454	int ret;
1455
1456	/*
1457	 * Allocate a new OPP table. In the infrequent case where a new
1458	 * device is needed to be added, we pay this penalty.
1459	 */
1460	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1461	if (!opp_table)
1462		return ERR_PTR(-ENOMEM);
1463
1464	mutex_init(&opp_table->lock);
 
1465	INIT_LIST_HEAD(&opp_table->dev_list);
1466	INIT_LIST_HEAD(&opp_table->lazy);
1467
1468	opp_table->clk = ERR_PTR(-ENODEV);
1469
1470	/* Mark regulator count uninitialized */
1471	opp_table->regulator_count = -1;
1472
1473	opp_dev = _add_opp_dev(dev, opp_table);
1474	if (!opp_dev) {
1475		ret = -ENOMEM;
1476		goto err;
1477	}
1478
1479	_of_init_opp_table(opp_table, dev, index);
1480
1481	/* Find interconnect path(s) for the device */
1482	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1483	if (ret) {
1484		if (ret == -EPROBE_DEFER)
1485			goto remove_opp_dev;
1486
1487		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1488			 __func__, ret);
1489	}
1490
1491	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1492	INIT_LIST_HEAD(&opp_table->opp_list);
1493	kref_init(&opp_table->kref);
1494
1495	return opp_table;
1496
1497remove_opp_dev:
1498	_of_clear_opp_table(opp_table);
1499	_remove_opp_dev(opp_dev, opp_table);
1500	mutex_destroy(&opp_table->lock);
1501err:
1502	kfree(opp_table);
1503	return ERR_PTR(ret);
1504}
1505
1506void _get_opp_table_kref(struct opp_table *opp_table)
1507{
1508	kref_get(&opp_table->kref);
1509}
1510
1511static struct opp_table *_update_opp_table_clk(struct device *dev,
1512					       struct opp_table *opp_table,
1513					       bool getclk)
1514{
1515	int ret;
1516
1517	/*
1518	 * Return early if we don't need to get clk or we have already done it
1519	 * earlier.
1520	 */
1521	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1522	    opp_table->clks)
1523		return opp_table;
1524
1525	/* Find clk for the device */
1526	opp_table->clk = clk_get(dev, NULL);
1527
1528	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1529	if (!ret) {
1530		opp_table->config_clks = _opp_config_clk_single;
1531		opp_table->clk_count = 1;
1532		return opp_table;
1533	}
1534
1535	if (ret == -ENOENT) {
1536		/*
1537		 * There are few platforms which don't want the OPP core to
1538		 * manage device's clock settings. In such cases neither the
1539		 * platform provides the clks explicitly to us, nor the DT
1540		 * contains a valid clk entry. The OPP nodes in DT may still
1541		 * contain "opp-hz" property though, which we need to parse and
1542		 * allow the platform to find an OPP based on freq later on.
1543		 *
1544		 * This is a simple solution to take care of such corner cases,
1545		 * i.e. make the clk_count 1, which lets us allocate space for
1546		 * frequency in opp->rates and also parse the entries in DT.
1547		 */
1548		opp_table->clk_count = 1;
1549
1550		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1551		return opp_table;
1552	}
1553
1554	dev_pm_opp_put_opp_table(opp_table);
1555	dev_err_probe(dev, ret, "Couldn't find clock\n");
1556
1557	return ERR_PTR(ret);
1558}
1559
1560/*
1561 * We need to make sure that the OPP table for a device doesn't get added twice,
1562 * if this routine gets called in parallel with the same device pointer.
1563 *
1564 * The simplest way to enforce that is to perform everything (find existing
1565 * table and if not found, create a new one) under the opp_table_lock, so only
1566 * one creator gets access to the same. But that expands the critical section
1567 * under the lock and may end up causing circular dependencies with frameworks
1568 * like debugfs, interconnect or clock framework as they may be direct or
1569 * indirect users of OPP core.
1570 *
1571 * And for that reason we have to go for a bit tricky implementation here, which
1572 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1573 * of adding an OPP table and others should wait for it to finish.
1574 */
1575struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1576					 bool getclk)
1577{
1578	struct opp_table *opp_table;
1579
1580again:
1581	mutex_lock(&opp_table_lock);
1582
1583	opp_table = _find_opp_table_unlocked(dev);
1584	if (!IS_ERR(opp_table))
1585		goto unlock;
1586
1587	/*
1588	 * The opp_tables list or an OPP table's dev_list is getting updated by
1589	 * another user, wait for it to finish.
1590	 */
1591	if (unlikely(opp_tables_busy)) {
1592		mutex_unlock(&opp_table_lock);
1593		cpu_relax();
1594		goto again;
1595	}
1596
1597	opp_tables_busy = true;
1598	opp_table = _managed_opp(dev, index);
1599
1600	/* Drop the lock to reduce the size of critical section */
1601	mutex_unlock(&opp_table_lock);
1602
1603	if (opp_table) {
1604		if (!_add_opp_dev(dev, opp_table)) {
1605			dev_pm_opp_put_opp_table(opp_table);
1606			opp_table = ERR_PTR(-ENOMEM);
1607		}
1608
1609		mutex_lock(&opp_table_lock);
1610	} else {
1611		opp_table = _allocate_opp_table(dev, index);
1612
1613		mutex_lock(&opp_table_lock);
1614		if (!IS_ERR(opp_table))
1615			list_add(&opp_table->node, &opp_tables);
1616	}
1617
1618	opp_tables_busy = false;
1619
1620unlock:
1621	mutex_unlock(&opp_table_lock);
1622
1623	return _update_opp_table_clk(dev, opp_table, getclk);
1624}
1625
1626static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1627{
1628	return _add_opp_table_indexed(dev, 0, getclk);
1629}
1630
1631struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1632{
1633	return _find_opp_table(dev);
1634}
1635EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1636
1637static void _opp_table_kref_release(struct kref *kref)
1638{
1639	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1640	struct opp_device *opp_dev, *temp;
1641	int i;
1642
1643	/* Drop the lock as soon as we can */
1644	list_del(&opp_table->node);
1645	mutex_unlock(&opp_table_lock);
1646
1647	if (opp_table->current_opp)
1648		dev_pm_opp_put(opp_table->current_opp);
1649
1650	_of_clear_opp_table(opp_table);
1651
1652	/* Release automatically acquired single clk */
1653	if (!IS_ERR(opp_table->clk))
1654		clk_put(opp_table->clk);
1655
1656	if (opp_table->paths) {
1657		for (i = 0; i < opp_table->path_count; i++)
1658			icc_put(opp_table->paths[i]);
1659		kfree(opp_table->paths);
1660	}
1661
1662	WARN_ON(!list_empty(&opp_table->opp_list));
1663
1664	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
 
 
 
 
 
 
 
1665		_remove_opp_dev(opp_dev, opp_table);
 
1666
 
1667	mutex_destroy(&opp_table->lock);
1668	kfree(opp_table);
1669}
1670
1671void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1672{
1673	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1674		       &opp_table_lock);
1675}
1676EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1677
1678void _opp_free(struct dev_pm_opp *opp)
1679{
1680	kfree(opp);
1681}
1682
1683static void _opp_kref_release(struct kref *kref)
1684{
1685	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1686	struct opp_table *opp_table = opp->opp_table;
1687
1688	list_del(&opp->node);
1689	mutex_unlock(&opp_table->lock);
1690
1691	/*
1692	 * Notify the changes in the availability of the operable
1693	 * frequency/voltage list.
1694	 */
1695	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1696	_of_clear_opp(opp_table, opp);
1697	opp_debug_remove_one(opp);
1698	kfree(opp);
1699}
1700
1701void dev_pm_opp_get(struct dev_pm_opp *opp)
1702{
1703	kref_get(&opp->kref);
1704}
1705
1706void dev_pm_opp_put(struct dev_pm_opp *opp)
1707{
1708	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1709}
1710EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1711
1712/**
1713 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1714 * @dev:	device for which we do this operation
1715 * @freq:	OPP to remove with matching 'freq'
1716 *
1717 * This function removes an opp from the opp table.
1718 */
1719void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1720{
1721	struct dev_pm_opp *opp = NULL, *iter;
1722	struct opp_table *opp_table;
1723
1724	opp_table = _find_opp_table(dev);
1725	if (IS_ERR(opp_table))
1726		return;
1727
1728	if (!assert_single_clk(opp_table, 0))
1729		goto put_table;
1730
1731	mutex_lock(&opp_table->lock);
1732
1733	list_for_each_entry(iter, &opp_table->opp_list, node) {
1734		if (iter->rates[0] == freq) {
1735			opp = iter;
1736			break;
1737		}
1738	}
1739
1740	mutex_unlock(&opp_table->lock);
1741
1742	if (opp) {
1743		dev_pm_opp_put(opp);
1744
1745		/* Drop the reference taken by dev_pm_opp_add() */
1746		dev_pm_opp_put_opp_table(opp_table);
1747	} else {
1748		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1749			 __func__, freq);
1750	}
1751
1752put_table:
1753	/* Drop the reference taken by _find_opp_table() */
1754	dev_pm_opp_put_opp_table(opp_table);
1755}
1756EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1757
1758static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1759					bool dynamic)
1760{
1761	struct dev_pm_opp *opp = NULL, *temp;
1762
1763	mutex_lock(&opp_table->lock);
1764	list_for_each_entry(temp, &opp_table->opp_list, node) {
1765		/*
1766		 * Refcount must be dropped only once for each OPP by OPP core,
1767		 * do that with help of "removed" flag.
1768		 */
1769		if (!temp->removed && dynamic == temp->dynamic) {
1770			opp = temp;
1771			break;
1772		}
1773	}
1774
1775	mutex_unlock(&opp_table->lock);
1776	return opp;
1777}
1778
1779/*
1780 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1781 * happen lock less to avoid circular dependency issues. This routine must be
1782 * called without the opp_table->lock held.
1783 */
1784static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1785{
1786	struct dev_pm_opp *opp;
1787
1788	while ((opp = _opp_get_next(opp_table, dynamic))) {
1789		opp->removed = true;
1790		dev_pm_opp_put(opp);
1791
1792		/* Drop the references taken by dev_pm_opp_add() */
1793		if (dynamic)
1794			dev_pm_opp_put_opp_table(opp_table);
1795	}
1796}
1797
1798bool _opp_remove_all_static(struct opp_table *opp_table)
1799{
1800	mutex_lock(&opp_table->lock);
1801
1802	if (!opp_table->parsed_static_opps) {
1803		mutex_unlock(&opp_table->lock);
1804		return false;
1805	}
1806
1807	if (--opp_table->parsed_static_opps) {
1808		mutex_unlock(&opp_table->lock);
1809		return true;
1810	}
1811
1812	mutex_unlock(&opp_table->lock);
1813
1814	_opp_remove_all(opp_table, false);
1815	return true;
1816}
1817
1818/**
1819 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1820 * @dev:	device for which we do this operation
1821 *
1822 * This function removes all dynamically created OPPs from the opp table.
1823 */
1824void dev_pm_opp_remove_all_dynamic(struct device *dev)
1825{
1826	struct opp_table *opp_table;
1827
1828	opp_table = _find_opp_table(dev);
1829	if (IS_ERR(opp_table))
1830		return;
1831
1832	_opp_remove_all(opp_table, true);
1833
1834	/* Drop the reference taken by _find_opp_table() */
1835	dev_pm_opp_put_opp_table(opp_table);
1836}
1837EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1838
1839struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1840{
1841	struct dev_pm_opp *opp;
1842	int supply_count, supply_size, icc_size, clk_size;
1843
1844	/* Allocate space for at least one supply */
1845	supply_count = opp_table->regulator_count > 0 ?
1846			opp_table->regulator_count : 1;
1847	supply_size = sizeof(*opp->supplies) * supply_count;
1848	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1849	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1850
1851	/* allocate new OPP node and supplies structures */
1852	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1853	if (!opp)
1854		return NULL;
1855
1856	/* Put the supplies, bw and clock at the end of the OPP structure */
1857	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1858
1859	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1860
1861	if (icc_size)
1862		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1863
1864	INIT_LIST_HEAD(&opp->node);
1865
1866	opp->level = OPP_LEVEL_UNSET;
1867
1868	return opp;
1869}
1870
1871static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1872					 struct opp_table *opp_table)
1873{
1874	struct regulator *reg;
1875	int i;
1876
1877	if (!opp_table->regulators)
1878		return true;
1879
1880	for (i = 0; i < opp_table->regulator_count; i++) {
1881		reg = opp_table->regulators[i];
1882
1883		if (!regulator_is_supported_voltage(reg,
1884					opp->supplies[i].u_volt_min,
1885					opp->supplies[i].u_volt_max)) {
1886			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1887				__func__, opp->supplies[i].u_volt_min,
1888				opp->supplies[i].u_volt_max);
1889			return false;
1890		}
1891	}
1892
1893	return true;
1894}
1895
1896static int _opp_compare_rate(struct opp_table *opp_table,
1897			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1898{
1899	int i;
1900
1901	for (i = 0; i < opp_table->clk_count; i++) {
1902		if (opp1->rates[i] != opp2->rates[i])
1903			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1904	}
1905
1906	/* Same rates for both OPPs */
1907	return 0;
1908}
1909
1910static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1911			   struct dev_pm_opp *opp2)
1912{
1913	int i;
1914
1915	for (i = 0; i < opp_table->path_count; i++) {
1916		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1917			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1918	}
1919
1920	/* Same bw for both OPPs */
1921	return 0;
1922}
1923
1924/*
1925 * Returns
1926 * 0: opp1 == opp2
1927 * 1: opp1 > opp2
1928 * -1: opp1 < opp2
1929 */
1930int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1931		     struct dev_pm_opp *opp2)
1932{
1933	int ret;
1934
1935	ret = _opp_compare_rate(opp_table, opp1, opp2);
1936	if (ret)
1937		return ret;
1938
1939	ret = _opp_compare_bw(opp_table, opp1, opp2);
1940	if (ret)
1941		return ret;
1942
1943	if (opp1->level != opp2->level)
1944		return opp1->level < opp2->level ? -1 : 1;
1945
1946	/* Duplicate OPPs */
1947	return 0;
1948}
1949
1950static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1951			     struct opp_table *opp_table,
1952			     struct list_head **head)
1953{
1954	struct dev_pm_opp *opp;
1955	int opp_cmp;
1956
1957	/*
1958	 * Insert new OPP in order of increasing frequency and discard if
1959	 * already present.
1960	 *
1961	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1962	 * loop, don't replace it with head otherwise it will become an infinite
1963	 * loop.
1964	 */
1965	list_for_each_entry(opp, &opp_table->opp_list, node) {
1966		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1967		if (opp_cmp > 0) {
1968			*head = &opp->node;
1969			continue;
1970		}
1971
1972		if (opp_cmp < 0)
1973			return 0;
1974
1975		/* Duplicate OPPs */
1976		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1977			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1978			 opp->available, new_opp->rates[0],
1979			 new_opp->supplies[0].u_volt, new_opp->available);
1980
1981		/* Should we compare voltages for all regulators here ? */
1982		return opp->available &&
1983		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1984	}
1985
1986	return 0;
1987}
1988
1989void _required_opps_available(struct dev_pm_opp *opp, int count)
1990{
1991	int i;
1992
1993	for (i = 0; i < count; i++) {
1994		if (opp->required_opps[i]->available)
1995			continue;
1996
1997		opp->available = false;
1998		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1999			 __func__, opp->required_opps[i]->np, opp->rates[0]);
2000		return;
2001	}
2002}
2003
2004/*
2005 * Returns:
2006 * 0: On success. And appropriate error message for duplicate OPPs.
2007 * -EBUSY: For OPP with same freq/volt and is available. The callers of
2008 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2009 *  sure we don't print error messages unnecessarily if different parts of
2010 *  kernel try to initialize the OPP table.
2011 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2012 *  should be considered an error by the callers of _opp_add().
2013 */
2014int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2015	     struct opp_table *opp_table)
2016{
2017	struct list_head *head;
2018	int ret;
2019
2020	mutex_lock(&opp_table->lock);
2021	head = &opp_table->opp_list;
2022
2023	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2024	if (ret) {
2025		mutex_unlock(&opp_table->lock);
2026		return ret;
2027	}
2028
2029	list_add(&new_opp->node, head);
2030	mutex_unlock(&opp_table->lock);
2031
2032	new_opp->opp_table = opp_table;
2033	kref_init(&new_opp->kref);
2034
2035	opp_debug_create_one(new_opp, opp_table);
2036
2037	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2038		new_opp->available = false;
2039		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2040			 __func__, new_opp->rates[0]);
2041	}
2042
2043	/* required-opps not fully initialized yet */
2044	if (lazy_linking_pending(opp_table))
2045		return 0;
2046
2047	_required_opps_available(new_opp, opp_table->required_opp_count);
2048
2049	return 0;
2050}
2051
2052/**
2053 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2054 * @opp_table:	OPP table
2055 * @dev:	device for which we do this operation
2056 * @data:	The OPP data for the OPP to add
 
2057 * @dynamic:	Dynamically added OPPs.
2058 *
2059 * This function adds an opp definition to the opp table and returns status.
2060 * The opp is made available by default and it can be controlled using
2061 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2062 *
2063 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2064 * and freed by dev_pm_opp_of_remove_table.
2065 *
2066 * Return:
2067 * 0		On success OR
2068 *		Duplicate OPPs (both freq and volt are same) and opp->available
2069 * -EEXIST	Freq are same and volt are different OR
2070 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2071 * -ENOMEM	Memory allocation failure
2072 */
2073int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2074		struct dev_pm_opp_data *data, bool dynamic)
2075{
2076	struct dev_pm_opp *new_opp;
2077	unsigned long tol, u_volt = data->u_volt;
2078	int ret;
2079
2080	if (!assert_single_clk(opp_table, 0))
2081		return -EINVAL;
2082
2083	new_opp = _opp_allocate(opp_table);
2084	if (!new_opp)
2085		return -ENOMEM;
2086
2087	/* populate the opp table */
2088	new_opp->rates[0] = data->freq;
2089	new_opp->level = data->level;
2090	new_opp->turbo = data->turbo;
2091	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2092	new_opp->supplies[0].u_volt = u_volt;
2093	new_opp->supplies[0].u_volt_min = u_volt - tol;
2094	new_opp->supplies[0].u_volt_max = u_volt + tol;
2095	new_opp->available = true;
2096	new_opp->dynamic = dynamic;
2097
2098	ret = _opp_add(dev, new_opp, opp_table);
2099	if (ret) {
2100		/* Don't return error for duplicate OPPs */
2101		if (ret == -EBUSY)
2102			ret = 0;
2103		goto free_opp;
2104	}
2105
2106	/*
2107	 * Notify the changes in the availability of the operable
2108	 * frequency/voltage list.
2109	 */
2110	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2111	return 0;
2112
2113free_opp:
2114	_opp_free(new_opp);
2115
2116	return ret;
2117}
2118
2119/*
 
 
 
 
 
2120 * This is required only for the V2 bindings, and it enables a platform to
2121 * specify the hierarchy of versions it supports. OPP layer will then enable
2122 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2123 * property.
2124 */
2125static int _opp_set_supported_hw(struct opp_table *opp_table,
2126				 const u32 *versions, unsigned int count)
2127{
2128	/* Another CPU that shares the OPP table has set the property ? */
2129	if (opp_table->supported_hw)
2130		return 0;
2131
2132	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2133					GFP_KERNEL);
2134	if (!opp_table->supported_hw)
2135		return -ENOMEM;
2136
2137	opp_table->supported_hw_count = count;
2138
2139	return 0;
2140}
2141
 
 
 
 
 
 
 
 
2142static void _opp_put_supported_hw(struct opp_table *opp_table)
2143{
2144	if (opp_table->supported_hw) {
2145		kfree(opp_table->supported_hw);
2146		opp_table->supported_hw = NULL;
2147		opp_table->supported_hw_count = 0;
2148	}
2149}
2150
2151/*
 
 
 
 
2152 * This is required only for the V2 bindings, and it enables a platform to
2153 * specify the extn to be used for certain property names. The properties to
2154 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2155 * should postfix the property name with -<name> while looking for them.
2156 */
2157static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2158{
2159	/* Another CPU that shares the OPP table has set the property ? */
2160	if (!opp_table->prop_name) {
2161		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2162		if (!opp_table->prop_name)
2163			return -ENOMEM;
2164	}
2165
2166	return 0;
2167}
2168
 
 
 
 
 
 
 
 
2169static void _opp_put_prop_name(struct opp_table *opp_table)
2170{
2171	if (opp_table->prop_name) {
2172		kfree(opp_table->prop_name);
2173		opp_table->prop_name = NULL;
2174	}
2175}
2176
2177/*
 
 
 
 
 
2178 * In order to support OPP switching, OPP layer needs to know the name of the
2179 * device's regulators, as the core would be required to switch voltages as
2180 * well.
2181 *
2182 * This must be called before any OPPs are initialized for the device.
2183 */
2184static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2185			       const char * const names[])
2186{
2187	const char * const *temp = names;
2188	struct regulator *reg;
2189	int count = 0, ret, i;
2190
2191	/* Count number of regulators */
2192	while (*temp++)
2193		count++;
2194
2195	if (!count)
2196		return -EINVAL;
2197
2198	/* Another CPU that shares the OPP table has set the regulators ? */
2199	if (opp_table->regulators)
2200		return 0;
2201
2202	opp_table->regulators = kmalloc_array(count,
2203					      sizeof(*opp_table->regulators),
2204					      GFP_KERNEL);
2205	if (!opp_table->regulators)
2206		return -ENOMEM;
2207
2208	for (i = 0; i < count; i++) {
2209		reg = regulator_get_optional(dev, names[i]);
2210		if (IS_ERR(reg)) {
2211			ret = dev_err_probe(dev, PTR_ERR(reg),
2212					    "%s: no regulator (%s) found\n",
2213					    __func__, names[i]);
2214			goto free_regulators;
2215		}
2216
2217		opp_table->regulators[i] = reg;
2218	}
2219
2220	opp_table->regulator_count = count;
2221
2222	/* Set generic config_regulators() for single regulators here */
2223	if (count == 1)
2224		opp_table->config_regulators = _opp_config_regulator_single;
2225
2226	return 0;
2227
2228free_regulators:
2229	while (i != 0)
2230		regulator_put(opp_table->regulators[--i]);
2231
2232	kfree(opp_table->regulators);
2233	opp_table->regulators = NULL;
2234	opp_table->regulator_count = -1;
2235
2236	return ret;
2237}
2238
 
 
 
 
2239static void _opp_put_regulators(struct opp_table *opp_table)
2240{
2241	int i;
2242
2243	if (!opp_table->regulators)
2244		return;
2245
2246	if (opp_table->enabled) {
2247		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2248			regulator_disable(opp_table->regulators[i]);
2249	}
2250
2251	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2252		regulator_put(opp_table->regulators[i]);
2253
2254	kfree(opp_table->regulators);
2255	opp_table->regulators = NULL;
2256	opp_table->regulator_count = -1;
2257}
2258
2259static void _put_clks(struct opp_table *opp_table, int count)
2260{
2261	int i;
2262
2263	for (i = count - 1; i >= 0; i--)
2264		clk_put(opp_table->clks[i]);
2265
2266	kfree(opp_table->clks);
2267	opp_table->clks = NULL;
2268}
2269
2270/*
 
 
 
 
2271 * In order to support OPP switching, OPP layer needs to get pointers to the
2272 * clocks for the device. Simple cases work fine without using this routine
2273 * (i.e. by passing connection-id as NULL), but for a device with multiple
2274 * clocks available, the OPP core needs to know the exact names of the clks to
2275 * use.
2276 *
2277 * This must be called before any OPPs are initialized for the device.
2278 */
2279static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2280			     const char * const names[],
2281			     config_clks_t config_clks)
2282{
2283	const char * const *temp = names;
2284	int count = 0, ret, i;
2285	struct clk *clk;
2286
2287	/* Count number of clks */
2288	while (*temp++)
2289		count++;
2290
2291	/*
2292	 * This is a special case where we have a single clock, whose connection
2293	 * id name is NULL, i.e. first two entries are NULL in the array.
2294	 */
2295	if (!count && !names[1])
2296		count = 1;
2297
2298	/* Fail early for invalid configurations */
2299	if (!count || (!config_clks && count > 1))
2300		return -EINVAL;
2301
2302	/* Another CPU that shares the OPP table has set the clkname ? */
2303	if (opp_table->clks)
2304		return 0;
2305
2306	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2307					GFP_KERNEL);
2308	if (!opp_table->clks)
2309		return -ENOMEM;
2310
2311	/* Find clks for the device */
2312	for (i = 0; i < count; i++) {
2313		clk = clk_get(dev, names[i]);
2314		if (IS_ERR(clk)) {
2315			ret = dev_err_probe(dev, PTR_ERR(clk),
2316					    "%s: Couldn't find clock with name: %s\n",
2317					    __func__, names[i]);
2318			goto free_clks;
2319		}
2320
2321		opp_table->clks[i] = clk;
2322	}
2323
2324	opp_table->clk_count = count;
2325	opp_table->config_clks = config_clks;
2326
2327	/* Set generic single clk set here */
2328	if (count == 1) {
2329		if (!opp_table->config_clks)
2330			opp_table->config_clks = _opp_config_clk_single;
2331
2332		/*
2333		 * We could have just dropped the "clk" field and used "clks"
2334		 * everywhere. Instead we kept the "clk" field around for
2335		 * following reasons:
2336		 *
2337		 * - avoiding clks[0] everywhere else.
2338		 * - not running single clk helpers for multiple clk usecase by
2339		 *   mistake.
2340		 *
2341		 * Since this is single-clk case, just update the clk pointer
2342		 * too.
2343		 */
2344		opp_table->clk = opp_table->clks[0];
2345	}
2346
2347	return 0;
2348
2349free_clks:
2350	_put_clks(opp_table, i);
2351	return ret;
2352}
2353
 
 
 
 
2354static void _opp_put_clknames(struct opp_table *opp_table)
2355{
2356	if (!opp_table->clks)
2357		return;
2358
2359	opp_table->config_clks = NULL;
2360	opp_table->clk = ERR_PTR(-ENODEV);
2361
2362	_put_clks(opp_table, opp_table->clk_count);
2363}
2364
2365/*
 
 
 
 
2366 * This is useful to support platforms with multiple regulators per device.
2367 *
2368 * This must be called before any OPPs are initialized for the device.
2369 */
2370static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2371		struct device *dev, config_regulators_t config_regulators)
2372{
2373	/* Another CPU that shares the OPP table has set the helper ? */
2374	if (!opp_table->config_regulators)
2375		opp_table->config_regulators = config_regulators;
2376
2377	return 0;
2378}
2379
 
 
 
 
 
 
 
2380static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2381{
2382	if (opp_table->config_regulators)
2383		opp_table->config_regulators = NULL;
2384}
2385
2386static int _opp_set_required_dev(struct opp_table *opp_table,
2387				 struct device *dev,
2388				 struct device *required_dev,
2389				 unsigned int index)
2390{
2391	struct opp_table *required_table, *pd_table;
2392	struct device *gdev;
2393
2394	/* Genpd core takes care of propagation to parent genpd */
2395	if (opp_table->is_genpd) {
2396		dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2397		return -EOPNOTSUPP;
2398	}
2399
2400	if (index >= opp_table->required_opp_count) {
2401		dev_err(dev, "Required OPPs not available, can't set required devs\n");
2402		return -EINVAL;
2403	}
2404
2405	required_table = opp_table->required_opp_tables[index];
2406	if (IS_ERR(required_table)) {
2407		dev_err(dev, "Missing OPP table, unable to set the required devs\n");
2408		return -ENODEV;
 
 
2409	}
2410
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2411	/*
2412	 * The required_opp_tables parsing is not perfect, as the OPP core does
2413	 * the parsing solely based on the DT node pointers. The core sets the
2414	 * required_opp_tables entry to the first OPP table in the "opp_tables"
2415	 * list, that matches with the node pointer.
2416	 *
2417	 * If the target DT OPP table is used by multiple devices and they all
2418	 * create separate instances of 'struct opp_table' from it, then it is
2419	 * possible that the required_opp_tables entry may be set to the
2420	 * incorrect sibling device.
2421	 *
2422	 * Cross check it again and fix if required.
2423	 */
2424	gdev = dev_to_genpd_dev(required_dev);
2425	if (IS_ERR(gdev))
2426		return PTR_ERR(gdev);
2427
2428	pd_table = _find_opp_table(gdev);
2429	if (!IS_ERR(pd_table)) {
2430		if (pd_table != required_table) {
2431			dev_pm_opp_put_opp_table(required_table);
2432			opp_table->required_opp_tables[index] = pd_table;
2433		} else {
2434			dev_pm_opp_put_opp_table(pd_table);
 
 
 
 
 
 
 
 
 
 
 
 
2435		}
 
 
 
 
2436	}
2437
2438	opp_table->required_devs[index] = required_dev;
 
 
 
2439	return 0;
 
 
 
 
 
 
 
2440}
2441
2442static void _opp_put_required_dev(struct opp_table *opp_table,
2443				  unsigned int index)
 
 
 
 
 
 
2444{
2445	opp_table->required_devs[index] = NULL;
 
 
 
 
 
 
2446}
2447
2448static void _opp_clear_config(struct opp_config_data *data)
2449{
2450	if (data->flags & OPP_CONFIG_REQUIRED_DEV)
2451		_opp_put_required_dev(data->opp_table,
2452				      data->required_dev_index);
2453	if (data->flags & OPP_CONFIG_REGULATOR)
2454		_opp_put_regulators(data->opp_table);
2455	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2456		_opp_put_supported_hw(data->opp_table);
2457	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2458		_opp_put_config_regulators_helper(data->opp_table);
2459	if (data->flags & OPP_CONFIG_PROP_NAME)
2460		_opp_put_prop_name(data->opp_table);
2461	if (data->flags & OPP_CONFIG_CLK)
2462		_opp_put_clknames(data->opp_table);
2463
2464	dev_pm_opp_put_opp_table(data->opp_table);
2465	kfree(data);
2466}
2467
2468/**
2469 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2470 * @dev: Device for which configuration is being set.
2471 * @config: OPP configuration.
2472 *
2473 * This allows all device OPP configurations to be performed at once.
2474 *
2475 * This must be called before any OPPs are initialized for the device. This may
2476 * be called multiple times for the same OPP table, for example once for each
2477 * CPU that share the same table. This must be balanced by the same number of
2478 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2479 *
2480 * This returns a token to the caller, which must be passed to
2481 * dev_pm_opp_clear_config() to free the resources later. The value of the
2482 * returned token will be >= 1 for success and negative for errors. The minimum
2483 * value of 1 is chosen here to make it easy for callers to manage the resource.
2484 */
2485int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2486{
2487	struct opp_table *opp_table;
2488	struct opp_config_data *data;
2489	unsigned int id;
2490	int ret;
2491
2492	data = kmalloc(sizeof(*data), GFP_KERNEL);
2493	if (!data)
2494		return -ENOMEM;
2495
2496	opp_table = _add_opp_table(dev, false);
2497	if (IS_ERR(opp_table)) {
2498		kfree(data);
2499		return PTR_ERR(opp_table);
2500	}
2501
2502	data->opp_table = opp_table;
2503	data->flags = 0;
2504
2505	/* This should be called before OPPs are initialized */
2506	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2507		ret = -EBUSY;
2508		goto err;
2509	}
2510
2511	/* Configure clocks */
2512	if (config->clk_names) {
2513		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2514					config->config_clks);
2515		if (ret)
2516			goto err;
2517
2518		data->flags |= OPP_CONFIG_CLK;
2519	} else if (config->config_clks) {
2520		/* Don't allow config callback without clocks */
2521		ret = -EINVAL;
2522		goto err;
2523	}
2524
2525	/* Configure property names */
2526	if (config->prop_name) {
2527		ret = _opp_set_prop_name(opp_table, config->prop_name);
2528		if (ret)
2529			goto err;
2530
2531		data->flags |= OPP_CONFIG_PROP_NAME;
2532	}
2533
2534	/* Configure config_regulators helper */
2535	if (config->config_regulators) {
2536		ret = _opp_set_config_regulators_helper(opp_table, dev,
2537						config->config_regulators);
2538		if (ret)
2539			goto err;
2540
2541		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2542	}
2543
2544	/* Configure supported hardware */
2545	if (config->supported_hw) {
2546		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2547					    config->supported_hw_count);
2548		if (ret)
2549			goto err;
2550
2551		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2552	}
2553
2554	/* Configure supplies */
2555	if (config->regulator_names) {
2556		ret = _opp_set_regulators(opp_table, dev,
2557					  config->regulator_names);
2558		if (ret)
2559			goto err;
2560
2561		data->flags |= OPP_CONFIG_REGULATOR;
2562	}
2563
2564	if (config->required_dev) {
2565		ret = _opp_set_required_dev(opp_table, dev,
2566					    config->required_dev,
2567					    config->required_dev_index);
2568		if (ret)
2569			goto err;
2570
2571		data->required_dev_index = config->required_dev_index;
2572		data->flags |= OPP_CONFIG_REQUIRED_DEV;
2573	}
2574
2575	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2576		       GFP_KERNEL);
2577	if (ret)
2578		goto err;
2579
2580	return id;
2581
2582err:
2583	_opp_clear_config(data);
2584	return ret;
2585}
2586EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2587
2588/**
2589 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2590 * @token: The token returned by dev_pm_opp_set_config() previously.
2591 *
2592 * This allows all device OPP configurations to be cleared at once. This must be
2593 * called once for each call made to dev_pm_opp_set_config(), in order to free
2594 * the OPPs properly.
2595 *
2596 * Currently the first call itself ends up freeing all the OPP configurations,
2597 * while the later ones only drop the OPP table reference. This works well for
2598 * now as we would never want to use an half initialized OPP table and want to
2599 * remove the configurations together.
2600 */
2601void dev_pm_opp_clear_config(int token)
2602{
2603	struct opp_config_data *data;
2604
2605	/*
2606	 * This lets the callers call this unconditionally and keep their code
2607	 * simple.
2608	 */
2609	if (unlikely(token <= 0))
2610		return;
2611
2612	data = xa_erase(&opp_configs, token);
2613	if (WARN_ON(!data))
2614		return;
2615
2616	_opp_clear_config(data);
2617}
2618EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2619
2620static void devm_pm_opp_config_release(void *token)
2621{
2622	dev_pm_opp_clear_config((unsigned long)token);
2623}
2624
2625/**
2626 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2627 * @dev: Device for which configuration is being set.
2628 * @config: OPP configuration.
2629 *
2630 * This allows all device OPP configurations to be performed at once.
2631 * This is a resource-managed variant of dev_pm_opp_set_config().
2632 *
2633 * Return: 0 on success and errorno otherwise.
2634 */
2635int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2636{
2637	int token = dev_pm_opp_set_config(dev, config);
2638
2639	if (token < 0)
2640		return token;
2641
2642	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2643					(void *) ((unsigned long) token));
2644}
2645EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2646
2647/**
2648 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2649 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2650 * @dst_table: Required OPP table of the @src_table.
2651 * @src_opp: OPP from the @src_table.
2652 *
2653 * This function returns the OPP (present in @dst_table) pointed out by the
2654 * "required-opps" property of the @src_opp (present in @src_table).
2655 *
2656 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2657 * use.
2658 *
2659 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2660 */
2661struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2662						 struct opp_table *dst_table,
2663						 struct dev_pm_opp *src_opp)
2664{
2665	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2666	int i;
2667
2668	if (!src_table || !dst_table || !src_opp ||
2669	    !src_table->required_opp_tables)
2670		return ERR_PTR(-EINVAL);
2671
2672	/* required-opps not fully initialized yet */
2673	if (lazy_linking_pending(src_table))
2674		return ERR_PTR(-EBUSY);
2675
2676	for (i = 0; i < src_table->required_opp_count; i++) {
2677		if (src_table->required_opp_tables[i] == dst_table) {
2678			mutex_lock(&src_table->lock);
2679
2680			list_for_each_entry(opp, &src_table->opp_list, node) {
2681				if (opp == src_opp) {
2682					dest_opp = opp->required_opps[i];
2683					dev_pm_opp_get(dest_opp);
2684					break;
2685				}
2686			}
2687
2688			mutex_unlock(&src_table->lock);
2689			break;
2690		}
2691	}
2692
2693	if (IS_ERR(dest_opp)) {
2694		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2695		       src_table, dst_table);
2696	}
2697
2698	return dest_opp;
2699}
2700EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2701
2702/**
2703 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2704 * @src_table: OPP table which has dst_table as one of its required OPP table.
2705 * @dst_table: Required OPP table of the src_table.
2706 * @pstate: Current performance state of the src_table.
2707 *
2708 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2709 * "required-opps" property of the OPP (present in @src_table) which has
2710 * performance state set to @pstate.
2711 *
2712 * Return: Zero or positive performance state on success, otherwise negative
2713 * value on errors.
2714 */
2715int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2716				       struct opp_table *dst_table,
2717				       unsigned int pstate)
2718{
2719	struct dev_pm_opp *opp;
2720	int dest_pstate = -EINVAL;
2721	int i;
2722
2723	/*
2724	 * Normally the src_table will have the "required_opps" property set to
2725	 * point to one of the OPPs in the dst_table, but in some cases the
2726	 * genpd and its master have one to one mapping of performance states
2727	 * and so none of them have the "required-opps" property set. Return the
2728	 * pstate of the src_table as it is in such cases.
2729	 */
2730	if (!src_table || !src_table->required_opp_count)
2731		return pstate;
2732
2733	/* Both OPP tables must belong to genpds */
2734	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2735		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2736		return -EINVAL;
2737	}
2738
2739	/* required-opps not fully initialized yet */
2740	if (lazy_linking_pending(src_table))
2741		return -EBUSY;
2742
2743	for (i = 0; i < src_table->required_opp_count; i++) {
2744		if (src_table->required_opp_tables[i]->np == dst_table->np)
2745			break;
2746	}
2747
2748	if (unlikely(i == src_table->required_opp_count)) {
2749		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2750		       __func__, src_table, dst_table);
2751		return -EINVAL;
2752	}
2753
2754	mutex_lock(&src_table->lock);
2755
2756	list_for_each_entry(opp, &src_table->opp_list, node) {
2757		if (opp->level == pstate) {
2758			dest_pstate = opp->required_opps[i]->level;
2759			goto unlock;
2760		}
2761	}
2762
2763	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2764	       dst_table);
2765
2766unlock:
2767	mutex_unlock(&src_table->lock);
2768
2769	return dest_pstate;
2770}
2771
2772/**
2773 * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
2774 * @dev:	The device for which we do this operation
2775 * @data:	The OPP data for the OPP to add
 
2776 *
2777 * This function adds an opp definition to the opp table and returns status.
2778 * The opp is made available by default and it can be controlled using
2779 * dev_pm_opp_enable/disable functions.
2780 *
2781 * Return:
2782 * 0		On success OR
2783 *		Duplicate OPPs (both freq and volt are same) and opp->available
2784 * -EEXIST	Freq are same and volt are different OR
2785 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2786 * -ENOMEM	Memory allocation failure
2787 */
2788int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2789{
2790	struct opp_table *opp_table;
2791	int ret;
2792
2793	opp_table = _add_opp_table(dev, true);
2794	if (IS_ERR(opp_table))
2795		return PTR_ERR(opp_table);
2796
2797	/* Fix regulator count for dynamic OPPs */
2798	opp_table->regulator_count = 1;
2799
2800	ret = _opp_add_v1(opp_table, dev, data, true);
2801	if (ret)
2802		dev_pm_opp_put_opp_table(opp_table);
2803
2804	return ret;
2805}
2806EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2807
2808/**
2809 * _opp_set_availability() - helper to set the availability of an opp
2810 * @dev:		device for which we do this operation
2811 * @freq:		OPP frequency to modify availability
2812 * @availability_req:	availability status requested for this opp
2813 *
2814 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2815 * which is isolated here.
2816 *
2817 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2818 * copy operation, returns 0 if no modification was done OR modification was
2819 * successful.
2820 */
2821static int _opp_set_availability(struct device *dev, unsigned long freq,
2822				 bool availability_req)
2823{
2824	struct opp_table *opp_table;
2825	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2826	int r = 0;
2827
2828	/* Find the opp_table */
2829	opp_table = _find_opp_table(dev);
2830	if (IS_ERR(opp_table)) {
2831		r = PTR_ERR(opp_table);
2832		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2833		return r;
2834	}
2835
2836	if (!assert_single_clk(opp_table, 0)) {
2837		r = -EINVAL;
2838		goto put_table;
2839	}
2840
2841	mutex_lock(&opp_table->lock);
2842
2843	/* Do we have the frequency? */
2844	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2845		if (tmp_opp->rates[0] == freq) {
2846			opp = tmp_opp;
2847			break;
2848		}
2849	}
2850
2851	if (IS_ERR(opp)) {
2852		r = PTR_ERR(opp);
2853		goto unlock;
2854	}
2855
2856	/* Is update really needed? */
2857	if (opp->available == availability_req)
2858		goto unlock;
2859
2860	opp->available = availability_req;
2861
2862	dev_pm_opp_get(opp);
2863	mutex_unlock(&opp_table->lock);
2864
2865	/* Notify the change of the OPP availability */
2866	if (availability_req)
2867		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2868					     opp);
2869	else
2870		blocking_notifier_call_chain(&opp_table->head,
2871					     OPP_EVENT_DISABLE, opp);
2872
2873	dev_pm_opp_put(opp);
2874	goto put_table;
2875
2876unlock:
2877	mutex_unlock(&opp_table->lock);
2878put_table:
2879	dev_pm_opp_put_opp_table(opp_table);
2880	return r;
2881}
2882
2883/**
2884 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2885 * @dev:		device for which we do this operation
2886 * @freq:		OPP frequency to adjust voltage of
2887 * @u_volt:		new OPP target voltage
2888 * @u_volt_min:		new OPP min voltage
2889 * @u_volt_max:		new OPP max voltage
2890 *
2891 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2892 * copy operation, returns 0 if no modifcation was done OR modification was
2893 * successful.
2894 */
2895int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2896			      unsigned long u_volt, unsigned long u_volt_min,
2897			      unsigned long u_volt_max)
2898
2899{
2900	struct opp_table *opp_table;
2901	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2902	int r = 0;
2903
2904	/* Find the opp_table */
2905	opp_table = _find_opp_table(dev);
2906	if (IS_ERR(opp_table)) {
2907		r = PTR_ERR(opp_table);
2908		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2909		return r;
2910	}
2911
2912	if (!assert_single_clk(opp_table, 0)) {
2913		r = -EINVAL;
2914		goto put_table;
2915	}
2916
2917	mutex_lock(&opp_table->lock);
2918
2919	/* Do we have the frequency? */
2920	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2921		if (tmp_opp->rates[0] == freq) {
2922			opp = tmp_opp;
2923			break;
2924		}
2925	}
2926
2927	if (IS_ERR(opp)) {
2928		r = PTR_ERR(opp);
2929		goto adjust_unlock;
2930	}
2931
2932	/* Is update really needed? */
2933	if (opp->supplies->u_volt == u_volt)
2934		goto adjust_unlock;
2935
2936	opp->supplies->u_volt = u_volt;
2937	opp->supplies->u_volt_min = u_volt_min;
2938	opp->supplies->u_volt_max = u_volt_max;
2939
2940	dev_pm_opp_get(opp);
2941	mutex_unlock(&opp_table->lock);
2942
2943	/* Notify the voltage change of the OPP */
2944	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2945				     opp);
2946
2947	dev_pm_opp_put(opp);
2948	goto put_table;
2949
2950adjust_unlock:
2951	mutex_unlock(&opp_table->lock);
2952put_table:
2953	dev_pm_opp_put_opp_table(opp_table);
2954	return r;
2955}
2956EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2957
2958/**
2959 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2960 * @dev:	device for which we do this operation
2961 *
2962 * Sync voltage state of the OPP table regulators.
2963 *
2964 * Return: 0 on success or a negative error value.
2965 */
2966int dev_pm_opp_sync_regulators(struct device *dev)
2967{
2968	struct opp_table *opp_table;
2969	struct regulator *reg;
2970	int i, ret = 0;
2971
2972	/* Device may not have OPP table */
2973	opp_table = _find_opp_table(dev);
2974	if (IS_ERR(opp_table))
2975		return 0;
2976
2977	/* Regulator may not be required for the device */
2978	if (unlikely(!opp_table->regulators))
2979		goto put_table;
2980
2981	/* Nothing to sync if voltage wasn't changed */
2982	if (!opp_table->enabled)
2983		goto put_table;
2984
2985	for (i = 0; i < opp_table->regulator_count; i++) {
2986		reg = opp_table->regulators[i];
2987		ret = regulator_sync_voltage(reg);
2988		if (ret)
2989			break;
2990	}
2991put_table:
2992	/* Drop reference taken by _find_opp_table() */
2993	dev_pm_opp_put_opp_table(opp_table);
2994
2995	return ret;
2996}
2997EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2998
2999/**
3000 * dev_pm_opp_enable() - Enable a specific OPP
3001 * @dev:	device for which we do this operation
3002 * @freq:	OPP frequency to enable
3003 *
3004 * Enables a provided opp. If the operation is valid, this returns 0, else the
3005 * corresponding error value. It is meant to be used for users an OPP available
3006 * after being temporarily made unavailable with dev_pm_opp_disable.
3007 *
3008 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3009 * copy operation, returns 0 if no modification was done OR modification was
3010 * successful.
3011 */
3012int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3013{
3014	return _opp_set_availability(dev, freq, true);
3015}
3016EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3017
3018/**
3019 * dev_pm_opp_disable() - Disable a specific OPP
3020 * @dev:	device for which we do this operation
3021 * @freq:	OPP frequency to disable
3022 *
3023 * Disables a provided opp. If the operation is valid, this returns
3024 * 0, else the corresponding error value. It is meant to be a temporary
3025 * control by users to make this OPP not available until the circumstances are
3026 * right to make it available again (with a call to dev_pm_opp_enable).
3027 *
3028 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3029 * copy operation, returns 0 if no modification was done OR modification was
3030 * successful.
3031 */
3032int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3033{
3034	return _opp_set_availability(dev, freq, false);
3035}
3036EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3037
3038/**
3039 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3040 * @dev:	Device for which notifier needs to be registered
3041 * @nb:		Notifier block to be registered
3042 *
3043 * Return: 0 on success or a negative error value.
3044 */
3045int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3046{
3047	struct opp_table *opp_table;
3048	int ret;
3049
3050	opp_table = _find_opp_table(dev);
3051	if (IS_ERR(opp_table))
3052		return PTR_ERR(opp_table);
3053
3054	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3055
3056	dev_pm_opp_put_opp_table(opp_table);
3057
3058	return ret;
3059}
3060EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3061
3062/**
3063 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3064 * @dev:	Device for which notifier needs to be unregistered
3065 * @nb:		Notifier block to be unregistered
3066 *
3067 * Return: 0 on success or a negative error value.
3068 */
3069int dev_pm_opp_unregister_notifier(struct device *dev,
3070				   struct notifier_block *nb)
3071{
3072	struct opp_table *opp_table;
3073	int ret;
3074
3075	opp_table = _find_opp_table(dev);
3076	if (IS_ERR(opp_table))
3077		return PTR_ERR(opp_table);
3078
3079	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3080
3081	dev_pm_opp_put_opp_table(opp_table);
3082
3083	return ret;
3084}
3085EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3086
3087/**
3088 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3089 * @dev:	device pointer used to lookup OPP table.
3090 *
3091 * Free both OPPs created using static entries present in DT and the
3092 * dynamically added entries.
3093 */
3094void dev_pm_opp_remove_table(struct device *dev)
3095{
3096	struct opp_table *opp_table;
3097
3098	/* Check for existing table for 'dev' */
3099	opp_table = _find_opp_table(dev);
3100	if (IS_ERR(opp_table)) {
3101		int error = PTR_ERR(opp_table);
3102
3103		if (error != -ENODEV)
3104			WARN(1, "%s: opp_table: %d\n",
3105			     IS_ERR_OR_NULL(dev) ?
3106					"Invalid device" : dev_name(dev),
3107			     error);
3108		return;
3109	}
3110
3111	/*
3112	 * Drop the extra reference only if the OPP table was successfully added
3113	 * with dev_pm_opp_of_add_table() earlier.
3114	 **/
3115	if (_opp_remove_all_static(opp_table))
3116		dev_pm_opp_put_opp_table(opp_table);
3117
3118	/* Drop reference taken by _find_opp_table() */
3119	dev_pm_opp_put_opp_table(opp_table);
3120}
3121EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
v6.2
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/device.h>
  17#include <linux/export.h>
  18#include <linux/pm_domain.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/slab.h>
  21#include <linux/xarray.h>
  22
  23#include "opp.h"
  24
  25/*
  26 * The root of the list of all opp-tables. All opp_table structures branch off
  27 * from here, with each opp_table containing the list of opps it supports in
  28 * various states of availability.
  29 */
  30LIST_HEAD(opp_tables);
  31
  32/* OPP tables with uninitialized required OPPs */
  33LIST_HEAD(lazy_opp_tables);
  34
  35/* Lock to allow exclusive modification to the device and opp lists */
  36DEFINE_MUTEX(opp_table_lock);
  37/* Flag indicating that opp_tables list is being updated at the moment */
  38static bool opp_tables_busy;
  39
  40/* OPP ID allocator */
  41static DEFINE_XARRAY_ALLOC1(opp_configs);
  42
  43static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
  44{
  45	struct opp_device *opp_dev;
  46	bool found = false;
  47
  48	mutex_lock(&opp_table->lock);
  49	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  50		if (opp_dev->dev == dev) {
  51			found = true;
  52			break;
  53		}
  54
  55	mutex_unlock(&opp_table->lock);
  56	return found;
  57}
  58
  59static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  60{
  61	struct opp_table *opp_table;
  62
  63	list_for_each_entry(opp_table, &opp_tables, node) {
  64		if (_find_opp_dev(dev, opp_table)) {
  65			_get_opp_table_kref(opp_table);
  66			return opp_table;
  67		}
  68	}
  69
  70	return ERR_PTR(-ENODEV);
  71}
  72
  73/**
  74 * _find_opp_table() - find opp_table struct using device pointer
  75 * @dev:	device pointer used to lookup OPP table
  76 *
  77 * Search OPP table for one containing matching device.
  78 *
  79 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  80 * -EINVAL based on type of error.
  81 *
  82 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  83 */
  84struct opp_table *_find_opp_table(struct device *dev)
  85{
  86	struct opp_table *opp_table;
  87
  88	if (IS_ERR_OR_NULL(dev)) {
  89		pr_err("%s: Invalid parameters\n", __func__);
  90		return ERR_PTR(-EINVAL);
  91	}
  92
  93	mutex_lock(&opp_table_lock);
  94	opp_table = _find_opp_table_unlocked(dev);
  95	mutex_unlock(&opp_table_lock);
  96
  97	return opp_table;
  98}
  99
 100/*
 101 * Returns true if multiple clocks aren't there, else returns false with WARN.
 102 *
 103 * We don't force clk_count == 1 here as there are users who don't have a clock
 104 * representation in the OPP table and manage the clock configuration themselves
 105 * in an platform specific way.
 106 */
 107static bool assert_single_clk(struct opp_table *opp_table)
 
 108{
 109	return !WARN_ON(opp_table->clk_count > 1);
 110}
 111
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112/**
 113 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
 114 * @opp:	opp for which voltage has to be returned for
 115 *
 116 * Return: voltage in micro volt corresponding to the opp, else
 117 * return 0
 118 *
 119 * This is useful only for devices with single power supply.
 120 */
 121unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 122{
 123	if (IS_ERR_OR_NULL(opp)) {
 124		pr_err("%s: Invalid parameters\n", __func__);
 125		return 0;
 126	}
 127
 128	return opp->supplies[0].u_volt;
 129}
 130EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 131
 132/**
 133 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
 134 * @opp:	opp for which voltage has to be returned for
 135 * @supplies:	Placeholder for copying the supply information.
 136 *
 137 * Return: negative error number on failure, 0 otherwise on success after
 138 * setting @supplies.
 139 *
 140 * This can be used for devices with any number of power supplies. The caller
 141 * must ensure the @supplies array must contain space for each regulator.
 142 */
 143int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
 144			    struct dev_pm_opp_supply *supplies)
 145{
 146	if (IS_ERR_OR_NULL(opp) || !supplies) {
 147		pr_err("%s: Invalid parameters\n", __func__);
 148		return -EINVAL;
 149	}
 150
 151	memcpy(supplies, opp->supplies,
 152	       sizeof(*supplies) * opp->opp_table->regulator_count);
 153	return 0;
 154}
 155EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
 156
 157/**
 158 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
 159 * @opp:	opp for which power has to be returned for
 160 *
 161 * Return: power in micro watt corresponding to the opp, else
 162 * return 0
 163 *
 164 * This is useful only for devices with single power supply.
 165 */
 166unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
 167{
 168	unsigned long opp_power = 0;
 169	int i;
 170
 171	if (IS_ERR_OR_NULL(opp)) {
 172		pr_err("%s: Invalid parameters\n", __func__);
 173		return 0;
 174	}
 175	for (i = 0; i < opp->opp_table->regulator_count; i++)
 176		opp_power += opp->supplies[i].u_watt;
 177
 178	return opp_power;
 179}
 180EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
 181
 182/**
 183 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
 184 * @opp:	opp for which frequency has to be returned for
 
 
 185 *
 186 * Return: frequency in hertz corresponding to the opp, else
 187 * return 0
 188 */
 189unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
 190{
 191	if (IS_ERR_OR_NULL(opp)) {
 192		pr_err("%s: Invalid parameters\n", __func__);
 193		return 0;
 194	}
 195
 196	if (!assert_single_clk(opp->opp_table))
 197		return 0;
 198
 199	return opp->rates[0];
 200}
 201EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
 202
 203/**
 204 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 205 * @opp:	opp for which level value has to be returned for
 206 *
 207 * Return: level read from device tree corresponding to the opp, else
 208 * return 0.
 209 */
 210unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 211{
 212	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 213		pr_err("%s: Invalid parameters\n", __func__);
 214		return 0;
 215	}
 216
 217	return opp->level;
 218}
 219EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 220
 221/**
 222 * dev_pm_opp_get_required_pstate() - Gets the required performance state
 223 *                                    corresponding to an available opp
 224 * @opp:	opp for which performance state has to be returned for
 225 * @index:	index of the required opp
 226 *
 227 * Return: performance state read from device tree corresponding to the
 228 * required opp, else return 0.
 229 */
 230unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
 231					    unsigned int index)
 232{
 233	if (IS_ERR_OR_NULL(opp) || !opp->available ||
 234	    index >= opp->opp_table->required_opp_count) {
 235		pr_err("%s: Invalid parameters\n", __func__);
 236		return 0;
 237	}
 238
 239	/* required-opps not fully initialized yet */
 240	if (lazy_linking_pending(opp->opp_table))
 241		return 0;
 242
 243	return opp->required_opps[index]->pstate;
 
 
 
 
 
 
 244}
 245EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
 246
 247/**
 248 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 249 * @opp: opp for which turbo mode is being verified
 250 *
 251 * Turbo OPPs are not for normal use, and can be enabled (under certain
 252 * conditions) for short duration of times to finish high throughput work
 253 * quickly. Running on them for longer times may overheat the chip.
 254 *
 255 * Return: true if opp is turbo opp, else false.
 256 */
 257bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 258{
 259	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 260		pr_err("%s: Invalid parameters\n", __func__);
 261		return false;
 262	}
 263
 264	return opp->turbo;
 265}
 266EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 267
 268/**
 269 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 270 * @dev:	device for which we do this operation
 271 *
 272 * Return: This function returns the max clock latency in nanoseconds.
 273 */
 274unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 275{
 276	struct opp_table *opp_table;
 277	unsigned long clock_latency_ns;
 278
 279	opp_table = _find_opp_table(dev);
 280	if (IS_ERR(opp_table))
 281		return 0;
 282
 283	clock_latency_ns = opp_table->clock_latency_ns_max;
 284
 285	dev_pm_opp_put_opp_table(opp_table);
 286
 287	return clock_latency_ns;
 288}
 289EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 290
 291/**
 292 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 293 * @dev: device for which we do this operation
 294 *
 295 * Return: This function returns the max voltage latency in nanoseconds.
 296 */
 297unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 298{
 299	struct opp_table *opp_table;
 300	struct dev_pm_opp *opp;
 301	struct regulator *reg;
 302	unsigned long latency_ns = 0;
 303	int ret, i, count;
 304	struct {
 305		unsigned long min;
 306		unsigned long max;
 307	} *uV;
 308
 309	opp_table = _find_opp_table(dev);
 310	if (IS_ERR(opp_table))
 311		return 0;
 312
 313	/* Regulator may not be required for the device */
 314	if (!opp_table->regulators)
 315		goto put_opp_table;
 316
 317	count = opp_table->regulator_count;
 318
 319	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 320	if (!uV)
 321		goto put_opp_table;
 322
 323	mutex_lock(&opp_table->lock);
 324
 325	for (i = 0; i < count; i++) {
 326		uV[i].min = ~0;
 327		uV[i].max = 0;
 328
 329		list_for_each_entry(opp, &opp_table->opp_list, node) {
 330			if (!opp->available)
 331				continue;
 332
 333			if (opp->supplies[i].u_volt_min < uV[i].min)
 334				uV[i].min = opp->supplies[i].u_volt_min;
 335			if (opp->supplies[i].u_volt_max > uV[i].max)
 336				uV[i].max = opp->supplies[i].u_volt_max;
 337		}
 338	}
 339
 340	mutex_unlock(&opp_table->lock);
 341
 342	/*
 343	 * The caller needs to ensure that opp_table (and hence the regulator)
 344	 * isn't freed, while we are executing this routine.
 345	 */
 346	for (i = 0; i < count; i++) {
 347		reg = opp_table->regulators[i];
 348		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 349		if (ret > 0)
 350			latency_ns += ret * 1000;
 351	}
 352
 353	kfree(uV);
 354put_opp_table:
 355	dev_pm_opp_put_opp_table(opp_table);
 356
 357	return latency_ns;
 358}
 359EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 360
 361/**
 362 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 363 *					     nanoseconds
 364 * @dev: device for which we do this operation
 365 *
 366 * Return: This function returns the max transition latency, in nanoseconds, to
 367 * switch from one OPP to other.
 368 */
 369unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 370{
 371	return dev_pm_opp_get_max_volt_latency(dev) +
 372		dev_pm_opp_get_max_clock_latency(dev);
 373}
 374EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 375
 376/**
 377 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 378 * @dev:	device for which we do this operation
 379 *
 380 * Return: This function returns the frequency of the OPP marked as suspend_opp
 381 * if one is available, else returns 0;
 382 */
 383unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 384{
 385	struct opp_table *opp_table;
 386	unsigned long freq = 0;
 387
 388	opp_table = _find_opp_table(dev);
 389	if (IS_ERR(opp_table))
 390		return 0;
 391
 392	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 393		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 394
 395	dev_pm_opp_put_opp_table(opp_table);
 396
 397	return freq;
 398}
 399EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 400
 401int _get_opp_count(struct opp_table *opp_table)
 402{
 403	struct dev_pm_opp *opp;
 404	int count = 0;
 405
 406	mutex_lock(&opp_table->lock);
 407
 408	list_for_each_entry(opp, &opp_table->opp_list, node) {
 409		if (opp->available)
 410			count++;
 411	}
 412
 413	mutex_unlock(&opp_table->lock);
 414
 415	return count;
 416}
 417
 418/**
 419 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 420 * @dev:	device for which we do this operation
 421 *
 422 * Return: This function returns the number of available opps if there are any,
 423 * else returns 0 if none or the corresponding error value.
 424 */
 425int dev_pm_opp_get_opp_count(struct device *dev)
 426{
 427	struct opp_table *opp_table;
 428	int count;
 429
 430	opp_table = _find_opp_table(dev);
 431	if (IS_ERR(opp_table)) {
 432		count = PTR_ERR(opp_table);
 433		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 434			__func__, count);
 435		return count;
 436	}
 437
 438	count = _get_opp_count(opp_table);
 439	dev_pm_opp_put_opp_table(opp_table);
 440
 441	return count;
 442}
 443EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 444
 445/* Helpers to read keys */
 446static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
 447{
 448	return opp->rates[0];
 449}
 450
 451static unsigned long _read_level(struct dev_pm_opp *opp, int index)
 452{
 453	return opp->level;
 454}
 455
 456static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
 457{
 458	return opp->bandwidth[index].peak;
 459}
 460
 461/* Generic comparison helpers */
 462static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 463			   unsigned long opp_key, unsigned long key)
 464{
 465	if (opp_key == key) {
 466		*opp = temp_opp;
 467		return true;
 468	}
 469
 470	return false;
 471}
 472
 473static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 474			  unsigned long opp_key, unsigned long key)
 475{
 476	if (opp_key >= key) {
 477		*opp = temp_opp;
 478		return true;
 479	}
 480
 481	return false;
 482}
 483
 484static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 485			   unsigned long opp_key, unsigned long key)
 486{
 487	if (opp_key > key)
 488		return true;
 489
 490	*opp = temp_opp;
 491	return false;
 492}
 493
 494/* Generic key finding helpers */
 495static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
 496		unsigned long *key, int index, bool available,
 497		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 498		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 499				unsigned long opp_key, unsigned long key),
 500		bool (*assert)(struct opp_table *opp_table))
 501{
 502	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 503
 504	/* Assert that the requirement is met */
 505	if (assert && !assert(opp_table))
 506		return ERR_PTR(-EINVAL);
 507
 508	mutex_lock(&opp_table->lock);
 509
 510	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 511		if (temp_opp->available == available) {
 512			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
 513				break;
 514		}
 515	}
 516
 517	/* Increment the reference count of OPP */
 518	if (!IS_ERR(opp)) {
 519		*key = read(opp, index);
 520		dev_pm_opp_get(opp);
 521	}
 522
 523	mutex_unlock(&opp_table->lock);
 524
 525	return opp;
 526}
 527
 528static struct dev_pm_opp *
 529_find_key(struct device *dev, unsigned long *key, int index, bool available,
 530	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
 531	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 532			  unsigned long opp_key, unsigned long key),
 533	  bool (*assert)(struct opp_table *opp_table))
 534{
 535	struct opp_table *opp_table;
 536	struct dev_pm_opp *opp;
 537
 538	opp_table = _find_opp_table(dev);
 539	if (IS_ERR(opp_table)) {
 540		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
 541			PTR_ERR(opp_table));
 542		return ERR_CAST(opp_table);
 543	}
 544
 545	opp = _opp_table_find_key(opp_table, key, index, available, read,
 546				  compare, assert);
 547
 548	dev_pm_opp_put_opp_table(opp_table);
 549
 550	return opp;
 551}
 552
 553static struct dev_pm_opp *_find_key_exact(struct device *dev,
 554		unsigned long key, int index, bool available,
 555		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 556		bool (*assert)(struct opp_table *opp_table))
 557{
 558	/*
 559	 * The value of key will be updated here, but will be ignored as the
 560	 * caller doesn't need it.
 561	 */
 562	return _find_key(dev, &key, index, available, read, _compare_exact,
 563			 assert);
 564}
 565
 566static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
 567		unsigned long *key, int index, bool available,
 568		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 569		bool (*assert)(struct opp_table *opp_table))
 570{
 571	return _opp_table_find_key(opp_table, key, index, available, read,
 572				   _compare_ceil, assert);
 573}
 574
 575static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
 576		int index, bool available,
 577		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 578		bool (*assert)(struct opp_table *opp_table))
 579{
 580	return _find_key(dev, key, index, available, read, _compare_ceil,
 581			 assert);
 582}
 583
 584static struct dev_pm_opp *_find_key_floor(struct device *dev,
 585		unsigned long *key, int index, bool available,
 586		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 587		bool (*assert)(struct opp_table *opp_table))
 588{
 589	return _find_key(dev, key, index, available, read, _compare_floor,
 590			 assert);
 591}
 592
 593/**
 594 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 595 * @dev:		device for which we do this operation
 596 * @freq:		frequency to search for
 597 * @available:		true/false - match for available opp
 598 *
 599 * Return: Searches for exact match in the opp table and returns pointer to the
 600 * matching opp if found, else returns ERR_PTR in case of error and should
 601 * be handled using IS_ERR. Error return values can be:
 602 * EINVAL:	for bad pointer
 603 * ERANGE:	no match found for search
 604 * ENODEV:	if device not found in list of registered devices
 605 *
 606 * Note: available is a modifier for the search. if available=true, then the
 607 * match is for exact matching frequency and is available in the stored OPP
 608 * table. if false, the match is for exact frequency which is not available.
 609 *
 610 * This provides a mechanism to enable an opp which is not available currently
 611 * or the opposite as well.
 612 *
 613 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 614 * use.
 615 */
 616struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 617		unsigned long freq, bool available)
 618{
 619	return _find_key_exact(dev, freq, 0, available, _read_freq,
 620			       assert_single_clk);
 621}
 622EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 623
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 624static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 625						   unsigned long *freq)
 626{
 627	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
 628					assert_single_clk);
 629}
 630
 631/**
 632 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 633 * @dev:	device for which we do this operation
 634 * @freq:	Start frequency
 635 *
 636 * Search for the matching ceil *available* OPP from a starting freq
 637 * for a device.
 638 *
 639 * Return: matching *opp and refreshes *freq accordingly, else returns
 640 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 641 * values can be:
 642 * EINVAL:	for bad pointer
 643 * ERANGE:	no match found for search
 644 * ENODEV:	if device not found in list of registered devices
 645 *
 646 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 647 * use.
 648 */
 649struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 650					     unsigned long *freq)
 651{
 652	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
 653}
 654EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 655
 656/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 657 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 658 * @dev:	device for which we do this operation
 659 * @freq:	Start frequency
 660 *
 661 * Search for the matching floor *available* OPP from a starting freq
 662 * for a device.
 663 *
 664 * Return: matching *opp and refreshes *freq accordingly, else returns
 665 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 666 * values can be:
 667 * EINVAL:	for bad pointer
 668 * ERANGE:	no match found for search
 669 * ENODEV:	if device not found in list of registered devices
 670 *
 671 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 672 * use.
 673 */
 674struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 675					      unsigned long *freq)
 676{
 677	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
 678}
 679EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 680
 681/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 682 * dev_pm_opp_find_level_exact() - search for an exact level
 683 * @dev:		device for which we do this operation
 684 * @level:		level to search for
 685 *
 686 * Return: Searches for exact match in the opp table and returns pointer to the
 687 * matching opp if found, else returns ERR_PTR in case of error and should
 688 * be handled using IS_ERR. Error return values can be:
 689 * EINVAL:	for bad pointer
 690 * ERANGE:	no match found for search
 691 * ENODEV:	if device not found in list of registered devices
 692 *
 693 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 694 * use.
 695 */
 696struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 697					       unsigned int level)
 698{
 699	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
 700}
 701EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 702
 703/**
 704 * dev_pm_opp_find_level_ceil() - search for an rounded up level
 705 * @dev:		device for which we do this operation
 706 * @level:		level to search for
 707 *
 708 * Return: Searches for rounded up match in the opp table and returns pointer
 709 * to the  matching opp if found, else returns ERR_PTR in case of error and
 710 * should be handled using IS_ERR. Error return values can be:
 711 * EINVAL:	for bad pointer
 712 * ERANGE:	no match found for search
 713 * ENODEV:	if device not found in list of registered devices
 714 *
 715 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 716 * use.
 717 */
 718struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
 719					      unsigned int *level)
 720{
 721	unsigned long temp = *level;
 722	struct dev_pm_opp *opp;
 723
 724	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
 
 
 
 
 
 
 
 
 
 
 725	*level = temp;
 726	return opp;
 727}
 728EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
 729
 730/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
 732 * @dev:	device for which we do this operation
 733 * @bw:	start bandwidth
 734 * @index:	which bandwidth to compare, in case of OPPs with several values
 735 *
 736 * Search for the matching floor *available* OPP from a starting bandwidth
 737 * for a device.
 738 *
 739 * Return: matching *opp and refreshes *bw accordingly, else returns
 740 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 741 * values can be:
 742 * EINVAL:	for bad pointer
 743 * ERANGE:	no match found for search
 744 * ENODEV:	if device not found in list of registered devices
 745 *
 746 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 747 * use.
 748 */
 749struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
 750					   int index)
 751{
 752	unsigned long temp = *bw;
 753	struct dev_pm_opp *opp;
 754
 755	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
 
 756	*bw = temp;
 757	return opp;
 758}
 759EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
 760
 761/**
 762 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
 763 * @dev:	device for which we do this operation
 764 * @bw:	start bandwidth
 765 * @index:	which bandwidth to compare, in case of OPPs with several values
 766 *
 767 * Search for the matching floor *available* OPP from a starting bandwidth
 768 * for a device.
 769 *
 770 * Return: matching *opp and refreshes *bw accordingly, else returns
 771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 772 * values can be:
 773 * EINVAL:	for bad pointer
 774 * ERANGE:	no match found for search
 775 * ENODEV:	if device not found in list of registered devices
 776 *
 777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 778 * use.
 779 */
 780struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
 781					    unsigned int *bw, int index)
 782{
 783	unsigned long temp = *bw;
 784	struct dev_pm_opp *opp;
 785
 786	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
 
 787	*bw = temp;
 788	return opp;
 789}
 790EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
 791
 792static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 793			    struct dev_pm_opp_supply *supply)
 794{
 795	int ret;
 796
 797	/* Regulator not available for device */
 798	if (IS_ERR(reg)) {
 799		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 800			PTR_ERR(reg));
 801		return 0;
 802	}
 803
 804	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 805		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 806
 807	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 808					    supply->u_volt, supply->u_volt_max);
 809	if (ret)
 810		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 811			__func__, supply->u_volt_min, supply->u_volt,
 812			supply->u_volt_max, ret);
 813
 814	return ret;
 815}
 816
 817static int
 818_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
 819		       struct dev_pm_opp *opp, void *data, bool scaling_down)
 820{
 821	unsigned long *target = data;
 822	unsigned long freq;
 823	int ret;
 824
 825	/* One of target and opp must be available */
 826	if (target) {
 827		freq = *target;
 828	} else if (opp) {
 829		freq = opp->rates[0];
 830	} else {
 831		WARN_ON(1);
 832		return -EINVAL;
 833	}
 834
 835	ret = clk_set_rate(opp_table->clk, freq);
 836	if (ret) {
 837		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 838			ret);
 839	} else {
 840		opp_table->rate_clk_single = freq;
 841	}
 842
 843	return ret;
 844}
 845
 846/*
 847 * Simple implementation for configuring multiple clocks. Configure clocks in
 848 * the order in which they are present in the array while scaling up.
 849 */
 850int dev_pm_opp_config_clks_simple(struct device *dev,
 851		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
 852		bool scaling_down)
 853{
 854	int ret, i;
 855
 856	if (scaling_down) {
 857		for (i = opp_table->clk_count - 1; i >= 0; i--) {
 858			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
 859			if (ret) {
 860				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 861					ret);
 862				return ret;
 863			}
 864		}
 865	} else {
 866		for (i = 0; i < opp_table->clk_count; i++) {
 867			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
 868			if (ret) {
 869				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 870					ret);
 871				return ret;
 872			}
 873		}
 874	}
 875
 876	return 0;
 877}
 878EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
 879
 880static int _opp_config_regulator_single(struct device *dev,
 881			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
 882			struct regulator **regulators, unsigned int count)
 883{
 884	struct regulator *reg = regulators[0];
 885	int ret;
 886
 887	/* This function only supports single regulator per device */
 888	if (WARN_ON(count > 1)) {
 889		dev_err(dev, "multiple regulators are not supported\n");
 890		return -EINVAL;
 891	}
 892
 893	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
 894	if (ret)
 895		return ret;
 896
 897	/*
 898	 * Enable the regulator after setting its voltages, otherwise it breaks
 899	 * some boot-enabled regulators.
 900	 */
 901	if (unlikely(!new_opp->opp_table->enabled)) {
 902		ret = regulator_enable(reg);
 903		if (ret < 0)
 904			dev_warn(dev, "Failed to enable regulator: %d", ret);
 905	}
 906
 907	return 0;
 908}
 909
 910static int _set_opp_bw(const struct opp_table *opp_table,
 911		       struct dev_pm_opp *opp, struct device *dev)
 912{
 913	u32 avg, peak;
 914	int i, ret;
 915
 916	if (!opp_table->paths)
 917		return 0;
 918
 919	for (i = 0; i < opp_table->path_count; i++) {
 920		if (!opp) {
 921			avg = 0;
 922			peak = 0;
 923		} else {
 924			avg = opp->bandwidth[i].avg;
 925			peak = opp->bandwidth[i].peak;
 926		}
 927		ret = icc_set_bw(opp_table->paths[i], avg, peak);
 928		if (ret) {
 929			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
 930				opp ? "set" : "remove", i, ret);
 931			return ret;
 932		}
 933	}
 934
 935	return 0;
 936}
 937
 938static int _set_required_opp(struct device *dev, struct device *pd_dev,
 939			     struct dev_pm_opp *opp, int i)
 940{
 941	unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
 942	int ret;
 943
 944	if (!pd_dev)
 945		return 0;
 
 946
 947	ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
 948	if (ret) {
 949		dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
 950			dev_name(pd_dev), pstate, ret);
 951	}
 952
 
 
 
 
 
 
 953	return ret;
 954}
 955
 956/* This is only called for PM domain for now */
 957static int _set_required_opps(struct device *dev,
 958			      struct opp_table *opp_table,
 959			      struct dev_pm_opp *opp, bool up)
 960{
 961	struct opp_table **required_opp_tables = opp_table->required_opp_tables;
 962	struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
 963	int i, ret = 0;
 964
 965	if (!required_opp_tables)
 966		return 0;
 967
 968	/* required-opps not fully initialized yet */
 969	if (lazy_linking_pending(opp_table))
 970		return -EBUSY;
 971
 972	/*
 973	 * We only support genpd's OPPs in the "required-opps" for now, as we
 974	 * don't know much about other use cases. Error out if the required OPP
 975	 * doesn't belong to a genpd.
 976	 */
 977	if (unlikely(!required_opp_tables[0]->is_genpd)) {
 978		dev_err(dev, "required-opps don't belong to a genpd\n");
 979		return -ENOENT;
 
 980	}
 981
 982	/* Single genpd case */
 983	if (!genpd_virt_devs)
 984		return _set_required_opp(dev, dev, opp, 0);
 985
 986	/* Multiple genpd case */
 987
 988	/*
 989	 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
 990	 * after it is freed from another thread.
 991	 */
 992	mutex_lock(&opp_table->genpd_virt_dev_lock);
 993
 994	/* Scaling up? Set required OPPs in normal order, else reverse */
 995	if (up) {
 996		for (i = 0; i < opp_table->required_opp_count; i++) {
 997			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
 998			if (ret)
 999				break;
1000		}
1001	} else {
1002		for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1003			ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
1004			if (ret)
1005				break;
1006		}
 
 
1007	}
1008
1009	mutex_unlock(&opp_table->genpd_virt_dev_lock);
1010
1011	return ret;
1012}
1013
1014static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1015{
1016	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1017	unsigned long freq;
1018
1019	if (!IS_ERR(opp_table->clk)) {
1020		freq = clk_get_rate(opp_table->clk);
1021		opp = _find_freq_ceil(opp_table, &freq);
1022	}
1023
1024	/*
1025	 * Unable to find the current OPP ? Pick the first from the list since
1026	 * it is in ascending order, otherwise rest of the code will need to
1027	 * make special checks to validate current_opp.
1028	 */
1029	if (IS_ERR(opp)) {
1030		mutex_lock(&opp_table->lock);
1031		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1032		dev_pm_opp_get(opp);
1033		mutex_unlock(&opp_table->lock);
1034	}
1035
1036	opp_table->current_opp = opp;
1037}
1038
1039static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1040{
1041	int ret;
1042
1043	if (!opp_table->enabled)
1044		return 0;
1045
1046	/*
1047	 * Some drivers need to support cases where some platforms may
1048	 * have OPP table for the device, while others don't and
1049	 * opp_set_rate() just needs to behave like clk_set_rate().
1050	 */
1051	if (!_get_opp_count(opp_table))
1052		return 0;
1053
1054	ret = _set_opp_bw(opp_table, NULL, dev);
1055	if (ret)
1056		return ret;
1057
1058	if (opp_table->regulators)
1059		regulator_disable(opp_table->regulators[0]);
1060
 
 
 
 
1061	ret = _set_required_opps(dev, opp_table, NULL, false);
1062
 
1063	opp_table->enabled = false;
1064	return ret;
1065}
1066
1067static int _set_opp(struct device *dev, struct opp_table *opp_table,
1068		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1069{
1070	struct dev_pm_opp *old_opp;
1071	int scaling_down, ret;
1072
1073	if (unlikely(!opp))
1074		return _disable_opp_table(dev, opp_table);
1075
1076	/* Find the currently set OPP if we don't know already */
1077	if (unlikely(!opp_table->current_opp))
1078		_find_current_opp(dev, opp_table);
1079
1080	old_opp = opp_table->current_opp;
1081
1082	/* Return early if nothing to do */
1083	if (!forced && old_opp == opp && opp_table->enabled) {
1084		dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1085		return 0;
1086	}
1087
1088	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1089		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1090		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1091		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1092
1093	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1094	if (scaling_down == -1)
1095		scaling_down = 0;
1096
1097	/* Scaling up? Configure required OPPs before frequency */
1098	if (!scaling_down) {
1099		ret = _set_required_opps(dev, opp_table, opp, true);
1100		if (ret) {
1101			dev_err(dev, "Failed to set required opps: %d\n", ret);
1102			return ret;
1103		}
1104
 
 
 
 
1105		ret = _set_opp_bw(opp_table, opp, dev);
1106		if (ret) {
1107			dev_err(dev, "Failed to set bw: %d\n", ret);
1108			return ret;
1109		}
1110
1111		if (opp_table->config_regulators) {
1112			ret = opp_table->config_regulators(dev, old_opp, opp,
1113							   opp_table->regulators,
1114							   opp_table->regulator_count);
1115			if (ret) {
1116				dev_err(dev, "Failed to set regulator voltages: %d\n",
1117					ret);
1118				return ret;
1119			}
1120		}
1121	}
1122
1123	if (opp_table->config_clks) {
1124		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1125		if (ret)
1126			return ret;
1127	}
1128
1129	/* Scaling down? Configure required OPPs after frequency */
1130	if (scaling_down) {
1131		if (opp_table->config_regulators) {
1132			ret = opp_table->config_regulators(dev, old_opp, opp,
1133							   opp_table->regulators,
1134							   opp_table->regulator_count);
1135			if (ret) {
1136				dev_err(dev, "Failed to set regulator voltages: %d\n",
1137					ret);
1138				return ret;
1139			}
1140		}
1141
1142		ret = _set_opp_bw(opp_table, opp, dev);
1143		if (ret) {
1144			dev_err(dev, "Failed to set bw: %d\n", ret);
1145			return ret;
1146		}
1147
 
 
 
 
1148		ret = _set_required_opps(dev, opp_table, opp, false);
1149		if (ret) {
1150			dev_err(dev, "Failed to set required opps: %d\n", ret);
1151			return ret;
1152		}
1153	}
1154
1155	opp_table->enabled = true;
1156	dev_pm_opp_put(old_opp);
1157
1158	/* Make sure current_opp doesn't get freed */
1159	dev_pm_opp_get(opp);
1160	opp_table->current_opp = opp;
1161
1162	return ret;
1163}
1164
1165/**
1166 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1167 * @dev:	 device for which we do this operation
1168 * @target_freq: frequency to achieve
1169 *
1170 * This configures the power-supplies to the levels specified by the OPP
1171 * corresponding to the target_freq, and programs the clock to a value <=
1172 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1173 * provided by the opp, should have already rounded to the target OPP's
1174 * frequency.
1175 */
1176int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1177{
1178	struct opp_table *opp_table;
1179	unsigned long freq = 0, temp_freq;
1180	struct dev_pm_opp *opp = NULL;
1181	bool forced = false;
1182	int ret;
1183
1184	opp_table = _find_opp_table(dev);
1185	if (IS_ERR(opp_table)) {
1186		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1187		return PTR_ERR(opp_table);
1188	}
1189
1190	if (target_freq) {
1191		/*
1192		 * For IO devices which require an OPP on some platforms/SoCs
1193		 * while just needing to scale the clock on some others
1194		 * we look for empty OPP tables with just a clock handle and
1195		 * scale only the clk. This makes dev_pm_opp_set_rate()
1196		 * equivalent to a clk_set_rate()
1197		 */
1198		if (!_get_opp_count(opp_table)) {
1199			ret = opp_table->config_clks(dev, opp_table, NULL,
1200						     &target_freq, false);
1201			goto put_opp_table;
1202		}
1203
1204		freq = clk_round_rate(opp_table->clk, target_freq);
1205		if ((long)freq <= 0)
1206			freq = target_freq;
1207
1208		/*
1209		 * The clock driver may support finer resolution of the
1210		 * frequencies than the OPP table, don't update the frequency we
1211		 * pass to clk_set_rate() here.
1212		 */
1213		temp_freq = freq;
1214		opp = _find_freq_ceil(opp_table, &temp_freq);
1215		if (IS_ERR(opp)) {
1216			ret = PTR_ERR(opp);
1217			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1218				__func__, freq, ret);
1219			goto put_opp_table;
1220		}
1221
1222		/*
1223		 * An OPP entry specifies the highest frequency at which other
1224		 * properties of the OPP entry apply. Even if the new OPP is
1225		 * same as the old one, we may still reach here for a different
1226		 * value of the frequency. In such a case, do not abort but
1227		 * configure the hardware to the desired frequency forcefully.
1228		 */
1229		forced = opp_table->rate_clk_single != target_freq;
1230	}
1231
1232	ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
1233
1234	if (target_freq)
1235		dev_pm_opp_put(opp);
1236
1237put_opp_table:
1238	dev_pm_opp_put_opp_table(opp_table);
1239	return ret;
1240}
1241EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1242
1243/**
1244 * dev_pm_opp_set_opp() - Configure device for OPP
1245 * @dev: device for which we do this operation
1246 * @opp: OPP to set to
1247 *
1248 * This configures the device based on the properties of the OPP passed to this
1249 * routine.
1250 *
1251 * Return: 0 on success, a negative error number otherwise.
1252 */
1253int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1254{
1255	struct opp_table *opp_table;
1256	int ret;
1257
1258	opp_table = _find_opp_table(dev);
1259	if (IS_ERR(opp_table)) {
1260		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1261		return PTR_ERR(opp_table);
1262	}
1263
1264	ret = _set_opp(dev, opp_table, opp, NULL, false);
1265	dev_pm_opp_put_opp_table(opp_table);
1266
1267	return ret;
1268}
1269EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1270
1271/* OPP-dev Helpers */
1272static void _remove_opp_dev(struct opp_device *opp_dev,
1273			    struct opp_table *opp_table)
1274{
1275	opp_debug_unregister(opp_dev, opp_table);
1276	list_del(&opp_dev->node);
1277	kfree(opp_dev);
1278}
1279
1280struct opp_device *_add_opp_dev(const struct device *dev,
1281				struct opp_table *opp_table)
1282{
1283	struct opp_device *opp_dev;
1284
1285	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1286	if (!opp_dev)
1287		return NULL;
1288
1289	/* Initialize opp-dev */
1290	opp_dev->dev = dev;
1291
1292	mutex_lock(&opp_table->lock);
1293	list_add(&opp_dev->node, &opp_table->dev_list);
1294	mutex_unlock(&opp_table->lock);
1295
1296	/* Create debugfs entries for the opp_table */
1297	opp_debug_register(opp_dev, opp_table);
1298
1299	return opp_dev;
1300}
1301
1302static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1303{
1304	struct opp_table *opp_table;
1305	struct opp_device *opp_dev;
1306	int ret;
1307
1308	/*
1309	 * Allocate a new OPP table. In the infrequent case where a new
1310	 * device is needed to be added, we pay this penalty.
1311	 */
1312	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1313	if (!opp_table)
1314		return ERR_PTR(-ENOMEM);
1315
1316	mutex_init(&opp_table->lock);
1317	mutex_init(&opp_table->genpd_virt_dev_lock);
1318	INIT_LIST_HEAD(&opp_table->dev_list);
1319	INIT_LIST_HEAD(&opp_table->lazy);
1320
1321	opp_table->clk = ERR_PTR(-ENODEV);
1322
1323	/* Mark regulator count uninitialized */
1324	opp_table->regulator_count = -1;
1325
1326	opp_dev = _add_opp_dev(dev, opp_table);
1327	if (!opp_dev) {
1328		ret = -ENOMEM;
1329		goto err;
1330	}
1331
1332	_of_init_opp_table(opp_table, dev, index);
1333
1334	/* Find interconnect path(s) for the device */
1335	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1336	if (ret) {
1337		if (ret == -EPROBE_DEFER)
1338			goto remove_opp_dev;
1339
1340		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1341			 __func__, ret);
1342	}
1343
1344	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1345	INIT_LIST_HEAD(&opp_table->opp_list);
1346	kref_init(&opp_table->kref);
1347
1348	return opp_table;
1349
1350remove_opp_dev:
 
1351	_remove_opp_dev(opp_dev, opp_table);
 
1352err:
1353	kfree(opp_table);
1354	return ERR_PTR(ret);
1355}
1356
1357void _get_opp_table_kref(struct opp_table *opp_table)
1358{
1359	kref_get(&opp_table->kref);
1360}
1361
1362static struct opp_table *_update_opp_table_clk(struct device *dev,
1363					       struct opp_table *opp_table,
1364					       bool getclk)
1365{
1366	int ret;
1367
1368	/*
1369	 * Return early if we don't need to get clk or we have already done it
1370	 * earlier.
1371	 */
1372	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1373	    opp_table->clks)
1374		return opp_table;
1375
1376	/* Find clk for the device */
1377	opp_table->clk = clk_get(dev, NULL);
1378
1379	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1380	if (!ret) {
1381		opp_table->config_clks = _opp_config_clk_single;
1382		opp_table->clk_count = 1;
1383		return opp_table;
1384	}
1385
1386	if (ret == -ENOENT) {
1387		/*
1388		 * There are few platforms which don't want the OPP core to
1389		 * manage device's clock settings. In such cases neither the
1390		 * platform provides the clks explicitly to us, nor the DT
1391		 * contains a valid clk entry. The OPP nodes in DT may still
1392		 * contain "opp-hz" property though, which we need to parse and
1393		 * allow the platform to find an OPP based on freq later on.
1394		 *
1395		 * This is a simple solution to take care of such corner cases,
1396		 * i.e. make the clk_count 1, which lets us allocate space for
1397		 * frequency in opp->rates and also parse the entries in DT.
1398		 */
1399		opp_table->clk_count = 1;
1400
1401		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1402		return opp_table;
1403	}
1404
1405	dev_pm_opp_put_opp_table(opp_table);
1406	dev_err_probe(dev, ret, "Couldn't find clock\n");
1407
1408	return ERR_PTR(ret);
1409}
1410
1411/*
1412 * We need to make sure that the OPP table for a device doesn't get added twice,
1413 * if this routine gets called in parallel with the same device pointer.
1414 *
1415 * The simplest way to enforce that is to perform everything (find existing
1416 * table and if not found, create a new one) under the opp_table_lock, so only
1417 * one creator gets access to the same. But that expands the critical section
1418 * under the lock and may end up causing circular dependencies with frameworks
1419 * like debugfs, interconnect or clock framework as they may be direct or
1420 * indirect users of OPP core.
1421 *
1422 * And for that reason we have to go for a bit tricky implementation here, which
1423 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1424 * of adding an OPP table and others should wait for it to finish.
1425 */
1426struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1427					 bool getclk)
1428{
1429	struct opp_table *opp_table;
1430
1431again:
1432	mutex_lock(&opp_table_lock);
1433
1434	opp_table = _find_opp_table_unlocked(dev);
1435	if (!IS_ERR(opp_table))
1436		goto unlock;
1437
1438	/*
1439	 * The opp_tables list or an OPP table's dev_list is getting updated by
1440	 * another user, wait for it to finish.
1441	 */
1442	if (unlikely(opp_tables_busy)) {
1443		mutex_unlock(&opp_table_lock);
1444		cpu_relax();
1445		goto again;
1446	}
1447
1448	opp_tables_busy = true;
1449	opp_table = _managed_opp(dev, index);
1450
1451	/* Drop the lock to reduce the size of critical section */
1452	mutex_unlock(&opp_table_lock);
1453
1454	if (opp_table) {
1455		if (!_add_opp_dev(dev, opp_table)) {
1456			dev_pm_opp_put_opp_table(opp_table);
1457			opp_table = ERR_PTR(-ENOMEM);
1458		}
1459
1460		mutex_lock(&opp_table_lock);
1461	} else {
1462		opp_table = _allocate_opp_table(dev, index);
1463
1464		mutex_lock(&opp_table_lock);
1465		if (!IS_ERR(opp_table))
1466			list_add(&opp_table->node, &opp_tables);
1467	}
1468
1469	opp_tables_busy = false;
1470
1471unlock:
1472	mutex_unlock(&opp_table_lock);
1473
1474	return _update_opp_table_clk(dev, opp_table, getclk);
1475}
1476
1477static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1478{
1479	return _add_opp_table_indexed(dev, 0, getclk);
1480}
1481
1482struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1483{
1484	return _find_opp_table(dev);
1485}
1486EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1487
1488static void _opp_table_kref_release(struct kref *kref)
1489{
1490	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1491	struct opp_device *opp_dev, *temp;
1492	int i;
1493
1494	/* Drop the lock as soon as we can */
1495	list_del(&opp_table->node);
1496	mutex_unlock(&opp_table_lock);
1497
1498	if (opp_table->current_opp)
1499		dev_pm_opp_put(opp_table->current_opp);
1500
1501	_of_clear_opp_table(opp_table);
1502
1503	/* Release automatically acquired single clk */
1504	if (!IS_ERR(opp_table->clk))
1505		clk_put(opp_table->clk);
1506
1507	if (opp_table->paths) {
1508		for (i = 0; i < opp_table->path_count; i++)
1509			icc_put(opp_table->paths[i]);
1510		kfree(opp_table->paths);
1511	}
1512
1513	WARN_ON(!list_empty(&opp_table->opp_list));
1514
1515	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1516		/*
1517		 * The OPP table is getting removed, drop the performance state
1518		 * constraints.
1519		 */
1520		if (opp_table->genpd_performance_state)
1521			dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1522
1523		_remove_opp_dev(opp_dev, opp_table);
1524	}
1525
1526	mutex_destroy(&opp_table->genpd_virt_dev_lock);
1527	mutex_destroy(&opp_table->lock);
1528	kfree(opp_table);
1529}
1530
1531void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1532{
1533	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1534		       &opp_table_lock);
1535}
1536EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1537
1538void _opp_free(struct dev_pm_opp *opp)
1539{
1540	kfree(opp);
1541}
1542
1543static void _opp_kref_release(struct kref *kref)
1544{
1545	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1546	struct opp_table *opp_table = opp->opp_table;
1547
1548	list_del(&opp->node);
1549	mutex_unlock(&opp_table->lock);
1550
1551	/*
1552	 * Notify the changes in the availability of the operable
1553	 * frequency/voltage list.
1554	 */
1555	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1556	_of_clear_opp(opp_table, opp);
1557	opp_debug_remove_one(opp);
1558	kfree(opp);
1559}
1560
1561void dev_pm_opp_get(struct dev_pm_opp *opp)
1562{
1563	kref_get(&opp->kref);
1564}
1565
1566void dev_pm_opp_put(struct dev_pm_opp *opp)
1567{
1568	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1569}
1570EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1571
1572/**
1573 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1574 * @dev:	device for which we do this operation
1575 * @freq:	OPP to remove with matching 'freq'
1576 *
1577 * This function removes an opp from the opp table.
1578 */
1579void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1580{
1581	struct dev_pm_opp *opp = NULL, *iter;
1582	struct opp_table *opp_table;
1583
1584	opp_table = _find_opp_table(dev);
1585	if (IS_ERR(opp_table))
1586		return;
1587
1588	if (!assert_single_clk(opp_table))
1589		goto put_table;
1590
1591	mutex_lock(&opp_table->lock);
1592
1593	list_for_each_entry(iter, &opp_table->opp_list, node) {
1594		if (iter->rates[0] == freq) {
1595			opp = iter;
1596			break;
1597		}
1598	}
1599
1600	mutex_unlock(&opp_table->lock);
1601
1602	if (opp) {
1603		dev_pm_opp_put(opp);
1604
1605		/* Drop the reference taken by dev_pm_opp_add() */
1606		dev_pm_opp_put_opp_table(opp_table);
1607	} else {
1608		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1609			 __func__, freq);
1610	}
1611
1612put_table:
1613	/* Drop the reference taken by _find_opp_table() */
1614	dev_pm_opp_put_opp_table(opp_table);
1615}
1616EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1617
1618static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1619					bool dynamic)
1620{
1621	struct dev_pm_opp *opp = NULL, *temp;
1622
1623	mutex_lock(&opp_table->lock);
1624	list_for_each_entry(temp, &opp_table->opp_list, node) {
1625		/*
1626		 * Refcount must be dropped only once for each OPP by OPP core,
1627		 * do that with help of "removed" flag.
1628		 */
1629		if (!temp->removed && dynamic == temp->dynamic) {
1630			opp = temp;
1631			break;
1632		}
1633	}
1634
1635	mutex_unlock(&opp_table->lock);
1636	return opp;
1637}
1638
1639/*
1640 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1641 * happen lock less to avoid circular dependency issues. This routine must be
1642 * called without the opp_table->lock held.
1643 */
1644static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1645{
1646	struct dev_pm_opp *opp;
1647
1648	while ((opp = _opp_get_next(opp_table, dynamic))) {
1649		opp->removed = true;
1650		dev_pm_opp_put(opp);
1651
1652		/* Drop the references taken by dev_pm_opp_add() */
1653		if (dynamic)
1654			dev_pm_opp_put_opp_table(opp_table);
1655	}
1656}
1657
1658bool _opp_remove_all_static(struct opp_table *opp_table)
1659{
1660	mutex_lock(&opp_table->lock);
1661
1662	if (!opp_table->parsed_static_opps) {
1663		mutex_unlock(&opp_table->lock);
1664		return false;
1665	}
1666
1667	if (--opp_table->parsed_static_opps) {
1668		mutex_unlock(&opp_table->lock);
1669		return true;
1670	}
1671
1672	mutex_unlock(&opp_table->lock);
1673
1674	_opp_remove_all(opp_table, false);
1675	return true;
1676}
1677
1678/**
1679 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1680 * @dev:	device for which we do this operation
1681 *
1682 * This function removes all dynamically created OPPs from the opp table.
1683 */
1684void dev_pm_opp_remove_all_dynamic(struct device *dev)
1685{
1686	struct opp_table *opp_table;
1687
1688	opp_table = _find_opp_table(dev);
1689	if (IS_ERR(opp_table))
1690		return;
1691
1692	_opp_remove_all(opp_table, true);
1693
1694	/* Drop the reference taken by _find_opp_table() */
1695	dev_pm_opp_put_opp_table(opp_table);
1696}
1697EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1698
1699struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1700{
1701	struct dev_pm_opp *opp;
1702	int supply_count, supply_size, icc_size, clk_size;
1703
1704	/* Allocate space for at least one supply */
1705	supply_count = opp_table->regulator_count > 0 ?
1706			opp_table->regulator_count : 1;
1707	supply_size = sizeof(*opp->supplies) * supply_count;
1708	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1709	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1710
1711	/* allocate new OPP node and supplies structures */
1712	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1713	if (!opp)
1714		return NULL;
1715
1716	/* Put the supplies, bw and clock at the end of the OPP structure */
1717	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1718
1719	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1720
1721	if (icc_size)
1722		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1723
1724	INIT_LIST_HEAD(&opp->node);
1725
 
 
1726	return opp;
1727}
1728
1729static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1730					 struct opp_table *opp_table)
1731{
1732	struct regulator *reg;
1733	int i;
1734
1735	if (!opp_table->regulators)
1736		return true;
1737
1738	for (i = 0; i < opp_table->regulator_count; i++) {
1739		reg = opp_table->regulators[i];
1740
1741		if (!regulator_is_supported_voltage(reg,
1742					opp->supplies[i].u_volt_min,
1743					opp->supplies[i].u_volt_max)) {
1744			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1745				__func__, opp->supplies[i].u_volt_min,
1746				opp->supplies[i].u_volt_max);
1747			return false;
1748		}
1749	}
1750
1751	return true;
1752}
1753
1754static int _opp_compare_rate(struct opp_table *opp_table,
1755			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1756{
1757	int i;
1758
1759	for (i = 0; i < opp_table->clk_count; i++) {
1760		if (opp1->rates[i] != opp2->rates[i])
1761			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1762	}
1763
1764	/* Same rates for both OPPs */
1765	return 0;
1766}
1767
1768static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1769			   struct dev_pm_opp *opp2)
1770{
1771	int i;
1772
1773	for (i = 0; i < opp_table->path_count; i++) {
1774		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1775			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1776	}
1777
1778	/* Same bw for both OPPs */
1779	return 0;
1780}
1781
1782/*
1783 * Returns
1784 * 0: opp1 == opp2
1785 * 1: opp1 > opp2
1786 * -1: opp1 < opp2
1787 */
1788int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1789		     struct dev_pm_opp *opp2)
1790{
1791	int ret;
1792
1793	ret = _opp_compare_rate(opp_table, opp1, opp2);
1794	if (ret)
1795		return ret;
1796
1797	ret = _opp_compare_bw(opp_table, opp1, opp2);
1798	if (ret)
1799		return ret;
1800
1801	if (opp1->level != opp2->level)
1802		return opp1->level < opp2->level ? -1 : 1;
1803
1804	/* Duplicate OPPs */
1805	return 0;
1806}
1807
1808static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1809			     struct opp_table *opp_table,
1810			     struct list_head **head)
1811{
1812	struct dev_pm_opp *opp;
1813	int opp_cmp;
1814
1815	/*
1816	 * Insert new OPP in order of increasing frequency and discard if
1817	 * already present.
1818	 *
1819	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1820	 * loop, don't replace it with head otherwise it will become an infinite
1821	 * loop.
1822	 */
1823	list_for_each_entry(opp, &opp_table->opp_list, node) {
1824		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1825		if (opp_cmp > 0) {
1826			*head = &opp->node;
1827			continue;
1828		}
1829
1830		if (opp_cmp < 0)
1831			return 0;
1832
1833		/* Duplicate OPPs */
1834		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1835			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1836			 opp->available, new_opp->rates[0],
1837			 new_opp->supplies[0].u_volt, new_opp->available);
1838
1839		/* Should we compare voltages for all regulators here ? */
1840		return opp->available &&
1841		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1842	}
1843
1844	return 0;
1845}
1846
1847void _required_opps_available(struct dev_pm_opp *opp, int count)
1848{
1849	int i;
1850
1851	for (i = 0; i < count; i++) {
1852		if (opp->required_opps[i]->available)
1853			continue;
1854
1855		opp->available = false;
1856		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1857			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1858		return;
1859	}
1860}
1861
1862/*
1863 * Returns:
1864 * 0: On success. And appropriate error message for duplicate OPPs.
1865 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1866 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1867 *  sure we don't print error messages unnecessarily if different parts of
1868 *  kernel try to initialize the OPP table.
1869 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1870 *  should be considered an error by the callers of _opp_add().
1871 */
1872int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1873	     struct opp_table *opp_table)
1874{
1875	struct list_head *head;
1876	int ret;
1877
1878	mutex_lock(&opp_table->lock);
1879	head = &opp_table->opp_list;
1880
1881	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1882	if (ret) {
1883		mutex_unlock(&opp_table->lock);
1884		return ret;
1885	}
1886
1887	list_add(&new_opp->node, head);
1888	mutex_unlock(&opp_table->lock);
1889
1890	new_opp->opp_table = opp_table;
1891	kref_init(&new_opp->kref);
1892
1893	opp_debug_create_one(new_opp, opp_table);
1894
1895	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1896		new_opp->available = false;
1897		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1898			 __func__, new_opp->rates[0]);
1899	}
1900
1901	/* required-opps not fully initialized yet */
1902	if (lazy_linking_pending(opp_table))
1903		return 0;
1904
1905	_required_opps_available(new_opp, opp_table->required_opp_count);
1906
1907	return 0;
1908}
1909
1910/**
1911 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1912 * @opp_table:	OPP table
1913 * @dev:	device for which we do this operation
1914 * @freq:	Frequency in Hz for this OPP
1915 * @u_volt:	Voltage in uVolts for this OPP
1916 * @dynamic:	Dynamically added OPPs.
1917 *
1918 * This function adds an opp definition to the opp table and returns status.
1919 * The opp is made available by default and it can be controlled using
1920 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1921 *
1922 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1923 * and freed by dev_pm_opp_of_remove_table.
1924 *
1925 * Return:
1926 * 0		On success OR
1927 *		Duplicate OPPs (both freq and volt are same) and opp->available
1928 * -EEXIST	Freq are same and volt are different OR
1929 *		Duplicate OPPs (both freq and volt are same) and !opp->available
1930 * -ENOMEM	Memory allocation failure
1931 */
1932int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1933		unsigned long freq, long u_volt, bool dynamic)
1934{
1935	struct dev_pm_opp *new_opp;
1936	unsigned long tol;
1937	int ret;
1938
1939	if (!assert_single_clk(opp_table))
1940		return -EINVAL;
1941
1942	new_opp = _opp_allocate(opp_table);
1943	if (!new_opp)
1944		return -ENOMEM;
1945
1946	/* populate the opp table */
1947	new_opp->rates[0] = freq;
 
 
1948	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1949	new_opp->supplies[0].u_volt = u_volt;
1950	new_opp->supplies[0].u_volt_min = u_volt - tol;
1951	new_opp->supplies[0].u_volt_max = u_volt + tol;
1952	new_opp->available = true;
1953	new_opp->dynamic = dynamic;
1954
1955	ret = _opp_add(dev, new_opp, opp_table);
1956	if (ret) {
1957		/* Don't return error for duplicate OPPs */
1958		if (ret == -EBUSY)
1959			ret = 0;
1960		goto free_opp;
1961	}
1962
1963	/*
1964	 * Notify the changes in the availability of the operable
1965	 * frequency/voltage list.
1966	 */
1967	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1968	return 0;
1969
1970free_opp:
1971	_opp_free(new_opp);
1972
1973	return ret;
1974}
1975
1976/**
1977 * _opp_set_supported_hw() - Set supported platforms
1978 * @dev: Device for which supported-hw has to be set.
1979 * @versions: Array of hierarchy of versions to match.
1980 * @count: Number of elements in the array.
1981 *
1982 * This is required only for the V2 bindings, and it enables a platform to
1983 * specify the hierarchy of versions it supports. OPP layer will then enable
1984 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1985 * property.
1986 */
1987static int _opp_set_supported_hw(struct opp_table *opp_table,
1988				 const u32 *versions, unsigned int count)
1989{
1990	/* Another CPU that shares the OPP table has set the property ? */
1991	if (opp_table->supported_hw)
1992		return 0;
1993
1994	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1995					GFP_KERNEL);
1996	if (!opp_table->supported_hw)
1997		return -ENOMEM;
1998
1999	opp_table->supported_hw_count = count;
2000
2001	return 0;
2002}
2003
2004/**
2005 * _opp_put_supported_hw() - Releases resources blocked for supported hw
2006 * @opp_table: OPP table returned by _opp_set_supported_hw().
2007 *
2008 * This is required only for the V2 bindings, and is called for a matching
2009 * _opp_set_supported_hw(). Until this is called, the opp_table structure
2010 * will not be freed.
2011 */
2012static void _opp_put_supported_hw(struct opp_table *opp_table)
2013{
2014	if (opp_table->supported_hw) {
2015		kfree(opp_table->supported_hw);
2016		opp_table->supported_hw = NULL;
2017		opp_table->supported_hw_count = 0;
2018	}
2019}
2020
2021/**
2022 * _opp_set_prop_name() - Set prop-extn name
2023 * @dev: Device for which the prop-name has to be set.
2024 * @name: name to postfix to properties.
2025 *
2026 * This is required only for the V2 bindings, and it enables a platform to
2027 * specify the extn to be used for certain property names. The properties to
2028 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2029 * should postfix the property name with -<name> while looking for them.
2030 */
2031static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2032{
2033	/* Another CPU that shares the OPP table has set the property ? */
2034	if (!opp_table->prop_name) {
2035		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2036		if (!opp_table->prop_name)
2037			return -ENOMEM;
2038	}
2039
2040	return 0;
2041}
2042
2043/**
2044 * _opp_put_prop_name() - Releases resources blocked for prop-name
2045 * @opp_table: OPP table returned by _opp_set_prop_name().
2046 *
2047 * This is required only for the V2 bindings, and is called for a matching
2048 * _opp_set_prop_name(). Until this is called, the opp_table structure
2049 * will not be freed.
2050 */
2051static void _opp_put_prop_name(struct opp_table *opp_table)
2052{
2053	if (opp_table->prop_name) {
2054		kfree(opp_table->prop_name);
2055		opp_table->prop_name = NULL;
2056	}
2057}
2058
2059/**
2060 * _opp_set_regulators() - Set regulator names for the device
2061 * @dev: Device for which regulator name is being set.
2062 * @names: Array of pointers to the names of the regulator.
2063 * @count: Number of regulators.
2064 *
2065 * In order to support OPP switching, OPP layer needs to know the name of the
2066 * device's regulators, as the core would be required to switch voltages as
2067 * well.
2068 *
2069 * This must be called before any OPPs are initialized for the device.
2070 */
2071static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2072			       const char * const names[])
2073{
2074	const char * const *temp = names;
2075	struct regulator *reg;
2076	int count = 0, ret, i;
2077
2078	/* Count number of regulators */
2079	while (*temp++)
2080		count++;
2081
2082	if (!count)
2083		return -EINVAL;
2084
2085	/* Another CPU that shares the OPP table has set the regulators ? */
2086	if (opp_table->regulators)
2087		return 0;
2088
2089	opp_table->regulators = kmalloc_array(count,
2090					      sizeof(*opp_table->regulators),
2091					      GFP_KERNEL);
2092	if (!opp_table->regulators)
2093		return -ENOMEM;
2094
2095	for (i = 0; i < count; i++) {
2096		reg = regulator_get_optional(dev, names[i]);
2097		if (IS_ERR(reg)) {
2098			ret = dev_err_probe(dev, PTR_ERR(reg),
2099					    "%s: no regulator (%s) found\n",
2100					    __func__, names[i]);
2101			goto free_regulators;
2102		}
2103
2104		opp_table->regulators[i] = reg;
2105	}
2106
2107	opp_table->regulator_count = count;
2108
2109	/* Set generic config_regulators() for single regulators here */
2110	if (count == 1)
2111		opp_table->config_regulators = _opp_config_regulator_single;
2112
2113	return 0;
2114
2115free_regulators:
2116	while (i != 0)
2117		regulator_put(opp_table->regulators[--i]);
2118
2119	kfree(opp_table->regulators);
2120	opp_table->regulators = NULL;
2121	opp_table->regulator_count = -1;
2122
2123	return ret;
2124}
2125
2126/**
2127 * _opp_put_regulators() - Releases resources blocked for regulator
2128 * @opp_table: OPP table returned from _opp_set_regulators().
2129 */
2130static void _opp_put_regulators(struct opp_table *opp_table)
2131{
2132	int i;
2133
2134	if (!opp_table->regulators)
2135		return;
2136
2137	if (opp_table->enabled) {
2138		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2139			regulator_disable(opp_table->regulators[i]);
2140	}
2141
2142	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2143		regulator_put(opp_table->regulators[i]);
2144
2145	kfree(opp_table->regulators);
2146	opp_table->regulators = NULL;
2147	opp_table->regulator_count = -1;
2148}
2149
2150static void _put_clks(struct opp_table *opp_table, int count)
2151{
2152	int i;
2153
2154	for (i = count - 1; i >= 0; i--)
2155		clk_put(opp_table->clks[i]);
2156
2157	kfree(opp_table->clks);
2158	opp_table->clks = NULL;
2159}
2160
2161/**
2162 * _opp_set_clknames() - Set clk names for the device
2163 * @dev: Device for which clk names is being set.
2164 * @names: Clk names.
2165 *
2166 * In order to support OPP switching, OPP layer needs to get pointers to the
2167 * clocks for the device. Simple cases work fine without using this routine
2168 * (i.e. by passing connection-id as NULL), but for a device with multiple
2169 * clocks available, the OPP core needs to know the exact names of the clks to
2170 * use.
2171 *
2172 * This must be called before any OPPs are initialized for the device.
2173 */
2174static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2175			     const char * const names[],
2176			     config_clks_t config_clks)
2177{
2178	const char * const *temp = names;
2179	int count = 0, ret, i;
2180	struct clk *clk;
2181
2182	/* Count number of clks */
2183	while (*temp++)
2184		count++;
2185
2186	/*
2187	 * This is a special case where we have a single clock, whose connection
2188	 * id name is NULL, i.e. first two entries are NULL in the array.
2189	 */
2190	if (!count && !names[1])
2191		count = 1;
2192
2193	/* Fail early for invalid configurations */
2194	if (!count || (!config_clks && count > 1))
2195		return -EINVAL;
2196
2197	/* Another CPU that shares the OPP table has set the clkname ? */
2198	if (opp_table->clks)
2199		return 0;
2200
2201	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2202					GFP_KERNEL);
2203	if (!opp_table->clks)
2204		return -ENOMEM;
2205
2206	/* Find clks for the device */
2207	for (i = 0; i < count; i++) {
2208		clk = clk_get(dev, names[i]);
2209		if (IS_ERR(clk)) {
2210			ret = dev_err_probe(dev, PTR_ERR(clk),
2211					    "%s: Couldn't find clock with name: %s\n",
2212					    __func__, names[i]);
2213			goto free_clks;
2214		}
2215
2216		opp_table->clks[i] = clk;
2217	}
2218
2219	opp_table->clk_count = count;
2220	opp_table->config_clks = config_clks;
2221
2222	/* Set generic single clk set here */
2223	if (count == 1) {
2224		if (!opp_table->config_clks)
2225			opp_table->config_clks = _opp_config_clk_single;
2226
2227		/*
2228		 * We could have just dropped the "clk" field and used "clks"
2229		 * everywhere. Instead we kept the "clk" field around for
2230		 * following reasons:
2231		 *
2232		 * - avoiding clks[0] everywhere else.
2233		 * - not running single clk helpers for multiple clk usecase by
2234		 *   mistake.
2235		 *
2236		 * Since this is single-clk case, just update the clk pointer
2237		 * too.
2238		 */
2239		opp_table->clk = opp_table->clks[0];
2240	}
2241
2242	return 0;
2243
2244free_clks:
2245	_put_clks(opp_table, i);
2246	return ret;
2247}
2248
2249/**
2250 * _opp_put_clknames() - Releases resources blocked for clks.
2251 * @opp_table: OPP table returned from _opp_set_clknames().
2252 */
2253static void _opp_put_clknames(struct opp_table *opp_table)
2254{
2255	if (!opp_table->clks)
2256		return;
2257
2258	opp_table->config_clks = NULL;
2259	opp_table->clk = ERR_PTR(-ENODEV);
2260
2261	_put_clks(opp_table, opp_table->clk_count);
2262}
2263
2264/**
2265 * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2266 * @dev: Device for which the helper is getting registered.
2267 * @config_regulators: Custom set regulator helper.
2268 *
2269 * This is useful to support platforms with multiple regulators per device.
2270 *
2271 * This must be called before any OPPs are initialized for the device.
2272 */
2273static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2274		struct device *dev, config_regulators_t config_regulators)
2275{
2276	/* Another CPU that shares the OPP table has set the helper ? */
2277	if (!opp_table->config_regulators)
2278		opp_table->config_regulators = config_regulators;
2279
2280	return 0;
2281}
2282
2283/**
2284 * _opp_put_config_regulators_helper() - Releases resources blocked for
2285 *					 config_regulators helper.
2286 * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2287 *
2288 * Release resources blocked for platform specific config_regulators helper.
2289 */
2290static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2291{
2292	if (opp_table->config_regulators)
2293		opp_table->config_regulators = NULL;
2294}
2295
2296static void _detach_genpd(struct opp_table *opp_table)
2297{
2298	int index;
 
 
 
 
 
 
 
 
 
 
2299
2300	if (!opp_table->genpd_virt_devs)
2301		return;
 
 
2302
2303	for (index = 0; index < opp_table->required_opp_count; index++) {
2304		if (!opp_table->genpd_virt_devs[index])
2305			continue;
2306
2307		dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2308		opp_table->genpd_virt_devs[index] = NULL;
2309	}
2310
2311	kfree(opp_table->genpd_virt_devs);
2312	opp_table->genpd_virt_devs = NULL;
2313}
2314
2315/**
2316 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2317 * @dev: Consumer device for which the genpd is getting attached.
2318 * @names: Null terminated array of pointers containing names of genpd to attach.
2319 * @virt_devs: Pointer to return the array of virtual devices.
2320 *
2321 * Multiple generic power domains for a device are supported with the help of
2322 * virtual genpd devices, which are created for each consumer device - genpd
2323 * pair. These are the device structures which are attached to the power domain
2324 * and are required by the OPP core to set the performance state of the genpd.
2325 * The same API also works for the case where single genpd is available and so
2326 * we don't need to support that separately.
2327 *
2328 * This helper will normally be called by the consumer driver of the device
2329 * "dev", as only that has details of the genpd names.
2330 *
2331 * This helper needs to be called once with a list of all genpd to attach.
2332 * Otherwise the original device structure will be used instead by the OPP core.
2333 *
2334 * The order of entries in the names array must match the order in which
2335 * "required-opps" are added in DT.
2336 */
2337static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2338			const char * const *names, struct device ***virt_devs)
2339{
2340	struct device *virt_dev;
2341	int index = 0, ret = -EINVAL;
2342	const char * const *name = names;
2343
2344	if (opp_table->genpd_virt_devs)
2345		return 0;
2346
2347	/*
2348	 * If the genpd's OPP table isn't already initialized, parsing of the
2349	 * required-opps fail for dev. We should retry this after genpd's OPP
2350	 * table is added.
 
 
 
 
 
 
 
 
2351	 */
2352	if (!opp_table->required_opp_count)
2353		return -EPROBE_DEFER;
2354
2355	mutex_lock(&opp_table->genpd_virt_dev_lock);
2356
2357	opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2358					     sizeof(*opp_table->genpd_virt_devs),
2359					     GFP_KERNEL);
2360	if (!opp_table->genpd_virt_devs)
2361		goto unlock;
2362
2363	while (*name) {
2364		if (index >= opp_table->required_opp_count) {
2365			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2366				*name, opp_table->required_opp_count, index);
2367			goto err;
2368		}
2369
2370		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2371		if (IS_ERR_OR_NULL(virt_dev)) {
2372			ret = PTR_ERR(virt_dev) ? : -ENODEV;
2373			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2374			goto err;
2375		}
2376
2377		opp_table->genpd_virt_devs[index] = virt_dev;
2378		index++;
2379		name++;
2380	}
2381
2382	if (virt_devs)
2383		*virt_devs = opp_table->genpd_virt_devs;
2384	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2385
2386	return 0;
2387
2388err:
2389	_detach_genpd(opp_table);
2390unlock:
2391	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2392	return ret;
2393
2394}
2395
2396/**
2397 * _opp_detach_genpd() - Detach genpd(s) from the device.
2398 * @opp_table: OPP table returned by _opp_attach_genpd().
2399 *
2400 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2401 * OPP table.
2402 */
2403static void _opp_detach_genpd(struct opp_table *opp_table)
2404{
2405	/*
2406	 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2407	 * used in parallel.
2408	 */
2409	mutex_lock(&opp_table->genpd_virt_dev_lock);
2410	_detach_genpd(opp_table);
2411	mutex_unlock(&opp_table->genpd_virt_dev_lock);
2412}
2413
2414static void _opp_clear_config(struct opp_config_data *data)
2415{
2416	if (data->flags & OPP_CONFIG_GENPD)
2417		_opp_detach_genpd(data->opp_table);
 
2418	if (data->flags & OPP_CONFIG_REGULATOR)
2419		_opp_put_regulators(data->opp_table);
2420	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2421		_opp_put_supported_hw(data->opp_table);
2422	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2423		_opp_put_config_regulators_helper(data->opp_table);
2424	if (data->flags & OPP_CONFIG_PROP_NAME)
2425		_opp_put_prop_name(data->opp_table);
2426	if (data->flags & OPP_CONFIG_CLK)
2427		_opp_put_clknames(data->opp_table);
2428
2429	dev_pm_opp_put_opp_table(data->opp_table);
2430	kfree(data);
2431}
2432
2433/**
2434 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2435 * @dev: Device for which configuration is being set.
2436 * @config: OPP configuration.
2437 *
2438 * This allows all device OPP configurations to be performed at once.
2439 *
2440 * This must be called before any OPPs are initialized for the device. This may
2441 * be called multiple times for the same OPP table, for example once for each
2442 * CPU that share the same table. This must be balanced by the same number of
2443 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2444 *
2445 * This returns a token to the caller, which must be passed to
2446 * dev_pm_opp_clear_config() to free the resources later. The value of the
2447 * returned token will be >= 1 for success and negative for errors. The minimum
2448 * value of 1 is chosen here to make it easy for callers to manage the resource.
2449 */
2450int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2451{
2452	struct opp_table *opp_table;
2453	struct opp_config_data *data;
2454	unsigned int id;
2455	int ret;
2456
2457	data = kmalloc(sizeof(*data), GFP_KERNEL);
2458	if (!data)
2459		return -ENOMEM;
2460
2461	opp_table = _add_opp_table(dev, false);
2462	if (IS_ERR(opp_table)) {
2463		kfree(data);
2464		return PTR_ERR(opp_table);
2465	}
2466
2467	data->opp_table = opp_table;
2468	data->flags = 0;
2469
2470	/* This should be called before OPPs are initialized */
2471	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2472		ret = -EBUSY;
2473		goto err;
2474	}
2475
2476	/* Configure clocks */
2477	if (config->clk_names) {
2478		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2479					config->config_clks);
2480		if (ret)
2481			goto err;
2482
2483		data->flags |= OPP_CONFIG_CLK;
2484	} else if (config->config_clks) {
2485		/* Don't allow config callback without clocks */
2486		ret = -EINVAL;
2487		goto err;
2488	}
2489
2490	/* Configure property names */
2491	if (config->prop_name) {
2492		ret = _opp_set_prop_name(opp_table, config->prop_name);
2493		if (ret)
2494			goto err;
2495
2496		data->flags |= OPP_CONFIG_PROP_NAME;
2497	}
2498
2499	/* Configure config_regulators helper */
2500	if (config->config_regulators) {
2501		ret = _opp_set_config_regulators_helper(opp_table, dev,
2502						config->config_regulators);
2503		if (ret)
2504			goto err;
2505
2506		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2507	}
2508
2509	/* Configure supported hardware */
2510	if (config->supported_hw) {
2511		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2512					    config->supported_hw_count);
2513		if (ret)
2514			goto err;
2515
2516		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2517	}
2518
2519	/* Configure supplies */
2520	if (config->regulator_names) {
2521		ret = _opp_set_regulators(opp_table, dev,
2522					  config->regulator_names);
2523		if (ret)
2524			goto err;
2525
2526		data->flags |= OPP_CONFIG_REGULATOR;
2527	}
2528
2529	/* Attach genpds */
2530	if (config->genpd_names) {
2531		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2532					config->virt_devs);
2533		if (ret)
2534			goto err;
2535
2536		data->flags |= OPP_CONFIG_GENPD;
 
2537	}
2538
2539	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2540		       GFP_KERNEL);
2541	if (ret)
2542		goto err;
2543
2544	return id;
2545
2546err:
2547	_opp_clear_config(data);
2548	return ret;
2549}
2550EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2551
2552/**
2553 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2554 * @opp_table: OPP table returned from dev_pm_opp_set_config().
2555 *
2556 * This allows all device OPP configurations to be cleared at once. This must be
2557 * called once for each call made to dev_pm_opp_set_config(), in order to free
2558 * the OPPs properly.
2559 *
2560 * Currently the first call itself ends up freeing all the OPP configurations,
2561 * while the later ones only drop the OPP table reference. This works well for
2562 * now as we would never want to use an half initialized OPP table and want to
2563 * remove the configurations together.
2564 */
2565void dev_pm_opp_clear_config(int token)
2566{
2567	struct opp_config_data *data;
2568
2569	/*
2570	 * This lets the callers call this unconditionally and keep their code
2571	 * simple.
2572	 */
2573	if (unlikely(token <= 0))
2574		return;
2575
2576	data = xa_erase(&opp_configs, token);
2577	if (WARN_ON(!data))
2578		return;
2579
2580	_opp_clear_config(data);
2581}
2582EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2583
2584static void devm_pm_opp_config_release(void *token)
2585{
2586	dev_pm_opp_clear_config((unsigned long)token);
2587}
2588
2589/**
2590 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2591 * @dev: Device for which configuration is being set.
2592 * @config: OPP configuration.
2593 *
2594 * This allows all device OPP configurations to be performed at once.
2595 * This is a resource-managed variant of dev_pm_opp_set_config().
2596 *
2597 * Return: 0 on success and errorno otherwise.
2598 */
2599int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2600{
2601	int token = dev_pm_opp_set_config(dev, config);
2602
2603	if (token < 0)
2604		return token;
2605
2606	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2607					(void *) ((unsigned long) token));
2608}
2609EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2610
2611/**
2612 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2613 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2614 * @dst_table: Required OPP table of the @src_table.
2615 * @src_opp: OPP from the @src_table.
2616 *
2617 * This function returns the OPP (present in @dst_table) pointed out by the
2618 * "required-opps" property of the @src_opp (present in @src_table).
2619 *
2620 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2621 * use.
2622 *
2623 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2624 */
2625struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2626						 struct opp_table *dst_table,
2627						 struct dev_pm_opp *src_opp)
2628{
2629	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2630	int i;
2631
2632	if (!src_table || !dst_table || !src_opp ||
2633	    !src_table->required_opp_tables)
2634		return ERR_PTR(-EINVAL);
2635
2636	/* required-opps not fully initialized yet */
2637	if (lazy_linking_pending(src_table))
2638		return ERR_PTR(-EBUSY);
2639
2640	for (i = 0; i < src_table->required_opp_count; i++) {
2641		if (src_table->required_opp_tables[i] == dst_table) {
2642			mutex_lock(&src_table->lock);
2643
2644			list_for_each_entry(opp, &src_table->opp_list, node) {
2645				if (opp == src_opp) {
2646					dest_opp = opp->required_opps[i];
2647					dev_pm_opp_get(dest_opp);
2648					break;
2649				}
2650			}
2651
2652			mutex_unlock(&src_table->lock);
2653			break;
2654		}
2655	}
2656
2657	if (IS_ERR(dest_opp)) {
2658		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2659		       src_table, dst_table);
2660	}
2661
2662	return dest_opp;
2663}
2664EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2665
2666/**
2667 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2668 * @src_table: OPP table which has dst_table as one of its required OPP table.
2669 * @dst_table: Required OPP table of the src_table.
2670 * @pstate: Current performance state of the src_table.
2671 *
2672 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2673 * "required-opps" property of the OPP (present in @src_table) which has
2674 * performance state set to @pstate.
2675 *
2676 * Return: Zero or positive performance state on success, otherwise negative
2677 * value on errors.
2678 */
2679int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2680				       struct opp_table *dst_table,
2681				       unsigned int pstate)
2682{
2683	struct dev_pm_opp *opp;
2684	int dest_pstate = -EINVAL;
2685	int i;
2686
2687	/*
2688	 * Normally the src_table will have the "required_opps" property set to
2689	 * point to one of the OPPs in the dst_table, but in some cases the
2690	 * genpd and its master have one to one mapping of performance states
2691	 * and so none of them have the "required-opps" property set. Return the
2692	 * pstate of the src_table as it is in such cases.
2693	 */
2694	if (!src_table || !src_table->required_opp_count)
2695		return pstate;
2696
 
 
 
 
 
 
2697	/* required-opps not fully initialized yet */
2698	if (lazy_linking_pending(src_table))
2699		return -EBUSY;
2700
2701	for (i = 0; i < src_table->required_opp_count; i++) {
2702		if (src_table->required_opp_tables[i]->np == dst_table->np)
2703			break;
2704	}
2705
2706	if (unlikely(i == src_table->required_opp_count)) {
2707		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2708		       __func__, src_table, dst_table);
2709		return -EINVAL;
2710	}
2711
2712	mutex_lock(&src_table->lock);
2713
2714	list_for_each_entry(opp, &src_table->opp_list, node) {
2715		if (opp->pstate == pstate) {
2716			dest_pstate = opp->required_opps[i]->pstate;
2717			goto unlock;
2718		}
2719	}
2720
2721	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2722	       dst_table);
2723
2724unlock:
2725	mutex_unlock(&src_table->lock);
2726
2727	return dest_pstate;
2728}
2729
2730/**
2731 * dev_pm_opp_add()  - Add an OPP table from a table definitions
2732 * @dev:	device for which we do this operation
2733 * @freq:	Frequency in Hz for this OPP
2734 * @u_volt:	Voltage in uVolts for this OPP
2735 *
2736 * This function adds an opp definition to the opp table and returns status.
2737 * The opp is made available by default and it can be controlled using
2738 * dev_pm_opp_enable/disable functions.
2739 *
2740 * Return:
2741 * 0		On success OR
2742 *		Duplicate OPPs (both freq and volt are same) and opp->available
2743 * -EEXIST	Freq are same and volt are different OR
2744 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2745 * -ENOMEM	Memory allocation failure
2746 */
2747int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2748{
2749	struct opp_table *opp_table;
2750	int ret;
2751
2752	opp_table = _add_opp_table(dev, true);
2753	if (IS_ERR(opp_table))
2754		return PTR_ERR(opp_table);
2755
2756	/* Fix regulator count for dynamic OPPs */
2757	opp_table->regulator_count = 1;
2758
2759	ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2760	if (ret)
2761		dev_pm_opp_put_opp_table(opp_table);
2762
2763	return ret;
2764}
2765EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2766
2767/**
2768 * _opp_set_availability() - helper to set the availability of an opp
2769 * @dev:		device for which we do this operation
2770 * @freq:		OPP frequency to modify availability
2771 * @availability_req:	availability status requested for this opp
2772 *
2773 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2774 * which is isolated here.
2775 *
2776 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2777 * copy operation, returns 0 if no modification was done OR modification was
2778 * successful.
2779 */
2780static int _opp_set_availability(struct device *dev, unsigned long freq,
2781				 bool availability_req)
2782{
2783	struct opp_table *opp_table;
2784	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2785	int r = 0;
2786
2787	/* Find the opp_table */
2788	opp_table = _find_opp_table(dev);
2789	if (IS_ERR(opp_table)) {
2790		r = PTR_ERR(opp_table);
2791		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2792		return r;
2793	}
2794
2795	if (!assert_single_clk(opp_table)) {
2796		r = -EINVAL;
2797		goto put_table;
2798	}
2799
2800	mutex_lock(&opp_table->lock);
2801
2802	/* Do we have the frequency? */
2803	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2804		if (tmp_opp->rates[0] == freq) {
2805			opp = tmp_opp;
2806			break;
2807		}
2808	}
2809
2810	if (IS_ERR(opp)) {
2811		r = PTR_ERR(opp);
2812		goto unlock;
2813	}
2814
2815	/* Is update really needed? */
2816	if (opp->available == availability_req)
2817		goto unlock;
2818
2819	opp->available = availability_req;
2820
2821	dev_pm_opp_get(opp);
2822	mutex_unlock(&opp_table->lock);
2823
2824	/* Notify the change of the OPP availability */
2825	if (availability_req)
2826		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2827					     opp);
2828	else
2829		blocking_notifier_call_chain(&opp_table->head,
2830					     OPP_EVENT_DISABLE, opp);
2831
2832	dev_pm_opp_put(opp);
2833	goto put_table;
2834
2835unlock:
2836	mutex_unlock(&opp_table->lock);
2837put_table:
2838	dev_pm_opp_put_opp_table(opp_table);
2839	return r;
2840}
2841
2842/**
2843 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2844 * @dev:		device for which we do this operation
2845 * @freq:		OPP frequency to adjust voltage of
2846 * @u_volt:		new OPP target voltage
2847 * @u_volt_min:		new OPP min voltage
2848 * @u_volt_max:		new OPP max voltage
2849 *
2850 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2851 * copy operation, returns 0 if no modifcation was done OR modification was
2852 * successful.
2853 */
2854int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2855			      unsigned long u_volt, unsigned long u_volt_min,
2856			      unsigned long u_volt_max)
2857
2858{
2859	struct opp_table *opp_table;
2860	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2861	int r = 0;
2862
2863	/* Find the opp_table */
2864	opp_table = _find_opp_table(dev);
2865	if (IS_ERR(opp_table)) {
2866		r = PTR_ERR(opp_table);
2867		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2868		return r;
2869	}
2870
2871	if (!assert_single_clk(opp_table)) {
2872		r = -EINVAL;
2873		goto put_table;
2874	}
2875
2876	mutex_lock(&opp_table->lock);
2877
2878	/* Do we have the frequency? */
2879	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2880		if (tmp_opp->rates[0] == freq) {
2881			opp = tmp_opp;
2882			break;
2883		}
2884	}
2885
2886	if (IS_ERR(opp)) {
2887		r = PTR_ERR(opp);
2888		goto adjust_unlock;
2889	}
2890
2891	/* Is update really needed? */
2892	if (opp->supplies->u_volt == u_volt)
2893		goto adjust_unlock;
2894
2895	opp->supplies->u_volt = u_volt;
2896	opp->supplies->u_volt_min = u_volt_min;
2897	opp->supplies->u_volt_max = u_volt_max;
2898
2899	dev_pm_opp_get(opp);
2900	mutex_unlock(&opp_table->lock);
2901
2902	/* Notify the voltage change of the OPP */
2903	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2904				     opp);
2905
2906	dev_pm_opp_put(opp);
2907	goto put_table;
2908
2909adjust_unlock:
2910	mutex_unlock(&opp_table->lock);
2911put_table:
2912	dev_pm_opp_put_opp_table(opp_table);
2913	return r;
2914}
2915EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2916
2917/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2918 * dev_pm_opp_enable() - Enable a specific OPP
2919 * @dev:	device for which we do this operation
2920 * @freq:	OPP frequency to enable
2921 *
2922 * Enables a provided opp. If the operation is valid, this returns 0, else the
2923 * corresponding error value. It is meant to be used for users an OPP available
2924 * after being temporarily made unavailable with dev_pm_opp_disable.
2925 *
2926 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2927 * copy operation, returns 0 if no modification was done OR modification was
2928 * successful.
2929 */
2930int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2931{
2932	return _opp_set_availability(dev, freq, true);
2933}
2934EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2935
2936/**
2937 * dev_pm_opp_disable() - Disable a specific OPP
2938 * @dev:	device for which we do this operation
2939 * @freq:	OPP frequency to disable
2940 *
2941 * Disables a provided opp. If the operation is valid, this returns
2942 * 0, else the corresponding error value. It is meant to be a temporary
2943 * control by users to make this OPP not available until the circumstances are
2944 * right to make it available again (with a call to dev_pm_opp_enable).
2945 *
2946 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2947 * copy operation, returns 0 if no modification was done OR modification was
2948 * successful.
2949 */
2950int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2951{
2952	return _opp_set_availability(dev, freq, false);
2953}
2954EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2955
2956/**
2957 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2958 * @dev:	Device for which notifier needs to be registered
2959 * @nb:		Notifier block to be registered
2960 *
2961 * Return: 0 on success or a negative error value.
2962 */
2963int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2964{
2965	struct opp_table *opp_table;
2966	int ret;
2967
2968	opp_table = _find_opp_table(dev);
2969	if (IS_ERR(opp_table))
2970		return PTR_ERR(opp_table);
2971
2972	ret = blocking_notifier_chain_register(&opp_table->head, nb);
2973
2974	dev_pm_opp_put_opp_table(opp_table);
2975
2976	return ret;
2977}
2978EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2979
2980/**
2981 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2982 * @dev:	Device for which notifier needs to be unregistered
2983 * @nb:		Notifier block to be unregistered
2984 *
2985 * Return: 0 on success or a negative error value.
2986 */
2987int dev_pm_opp_unregister_notifier(struct device *dev,
2988				   struct notifier_block *nb)
2989{
2990	struct opp_table *opp_table;
2991	int ret;
2992
2993	opp_table = _find_opp_table(dev);
2994	if (IS_ERR(opp_table))
2995		return PTR_ERR(opp_table);
2996
2997	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2998
2999	dev_pm_opp_put_opp_table(opp_table);
3000
3001	return ret;
3002}
3003EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3004
3005/**
3006 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3007 * @dev:	device pointer used to lookup OPP table.
3008 *
3009 * Free both OPPs created using static entries present in DT and the
3010 * dynamically added entries.
3011 */
3012void dev_pm_opp_remove_table(struct device *dev)
3013{
3014	struct opp_table *opp_table;
3015
3016	/* Check for existing table for 'dev' */
3017	opp_table = _find_opp_table(dev);
3018	if (IS_ERR(opp_table)) {
3019		int error = PTR_ERR(opp_table);
3020
3021		if (error != -ENODEV)
3022			WARN(1, "%s: opp_table: %d\n",
3023			     IS_ERR_OR_NULL(dev) ?
3024					"Invalid device" : dev_name(dev),
3025			     error);
3026		return;
3027	}
3028
3029	/*
3030	 * Drop the extra reference only if the OPP table was successfully added
3031	 * with dev_pm_opp_of_add_table() earlier.
3032	 **/
3033	if (_opp_remove_all_static(opp_table))
3034		dev_pm_opp_put_opp_table(opp_table);
3035
3036	/* Drop reference taken by _find_opp_table() */
3037	dev_pm_opp_put_opp_table(opp_table);
3038}
3039EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3040
3041/**
3042 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3043 * @dev:	device for which we do this operation
3044 *
3045 * Sync voltage state of the OPP table regulators.
3046 *
3047 * Return: 0 on success or a negative error value.
3048 */
3049int dev_pm_opp_sync_regulators(struct device *dev)
3050{
3051	struct opp_table *opp_table;
3052	struct regulator *reg;
3053	int i, ret = 0;
3054
3055	/* Device may not have OPP table */
3056	opp_table = _find_opp_table(dev);
3057	if (IS_ERR(opp_table))
3058		return 0;
3059
3060	/* Regulator may not be required for the device */
3061	if (unlikely(!opp_table->regulators))
3062		goto put_table;
3063
3064	/* Nothing to sync if voltage wasn't changed */
3065	if (!opp_table->enabled)
3066		goto put_table;
3067
3068	for (i = 0; i < opp_table->regulator_count; i++) {
3069		reg = opp_table->regulators[i];
3070		ret = regulator_sync_voltage(reg);
3071		if (ret)
3072			break;
3073	}
3074put_table:
3075	/* Drop reference taken by _find_opp_table() */
3076	dev_pm_opp_put_opp_table(opp_table);
3077
3078	return ret;
3079}
3080EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);