Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* Lock to allow exclusive modification to the device and opp lists */
33DEFINE_MUTEX(opp_table_lock);
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
36
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41{
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(&opp_table->lock);
53 return found;
54}
55
56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57{
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68}
69
70/**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
81struct opp_table *_find_opp_table(struct device *dev)
82{
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
93
94 return opp_table;
95}
96
97/*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
104static bool assert_single_clk(struct opp_table *opp_table,
105 unsigned int __always_unused index)
106{
107 return !WARN_ON(opp_table->clk_count > 1);
108}
109
110/*
111 * Returns true if clock table is large enough to contain the clock index.
112 */
113static bool assert_clk_index(struct opp_table *opp_table,
114 unsigned int index)
115{
116 return opp_table->clk_count > index;
117}
118
119/*
120 * Returns true if bandwidth table is large enough to contain the bandwidth index.
121 */
122static bool assert_bandwidth_index(struct opp_table *opp_table,
123 unsigned int index)
124{
125 return opp_table->path_count > index;
126}
127
128/**
129 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
130 * @opp: opp for which voltage has to be returned for
131 *
132 * Return: voltage in micro volt corresponding to the opp, else
133 * return 0
134 *
135 * This is useful only for devices with single power supply.
136 */
137unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp)) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->supplies[0].u_volt;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
147
148/**
149 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
150 * @opp: opp for which voltage has to be returned for
151 * @supplies: Placeholder for copying the supply information.
152 *
153 * Return: negative error number on failure, 0 otherwise on success after
154 * setting @supplies.
155 *
156 * This can be used for devices with any number of power supplies. The caller
157 * must ensure the @supplies array must contain space for each regulator.
158 */
159int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
160 struct dev_pm_opp_supply *supplies)
161{
162 if (IS_ERR_OR_NULL(opp) || !supplies) {
163 pr_err("%s: Invalid parameters\n", __func__);
164 return -EINVAL;
165 }
166
167 memcpy(supplies, opp->supplies,
168 sizeof(*supplies) * opp->opp_table->regulator_count);
169 return 0;
170}
171EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
172
173/**
174 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
175 * @opp: opp for which power has to be returned for
176 *
177 * Return: power in micro watt corresponding to the opp, else
178 * return 0
179 *
180 * This is useful only for devices with single power supply.
181 */
182unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
183{
184 unsigned long opp_power = 0;
185 int i;
186
187 if (IS_ERR_OR_NULL(opp)) {
188 pr_err("%s: Invalid parameters\n", __func__);
189 return 0;
190 }
191 for (i = 0; i < opp->opp_table->regulator_count; i++)
192 opp_power += opp->supplies[i].u_watt;
193
194 return opp_power;
195}
196EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
197
198/**
199 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
200 * available opp with specified index
201 * @opp: opp for which frequency has to be returned for
202 * @index: index of the frequency within the required opp
203 *
204 * Return: frequency in hertz corresponding to the opp with specified index,
205 * else return 0
206 */
207unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
208{
209 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
210 pr_err("%s: Invalid parameters\n", __func__);
211 return 0;
212 }
213
214 return opp->rates[index];
215}
216EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
217
218/**
219 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
220 * @opp: opp for which level value has to be returned for
221 *
222 * Return: level read from device tree corresponding to the opp, else
223 * return U32_MAX.
224 */
225unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
226{
227 if (IS_ERR_OR_NULL(opp) || !opp->available) {
228 pr_err("%s: Invalid parameters\n", __func__);
229 return 0;
230 }
231
232 return opp->level;
233}
234EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
235
236/**
237 * dev_pm_opp_get_required_pstate() - Gets the required performance state
238 * corresponding to an available opp
239 * @opp: opp for which performance state has to be returned for
240 * @index: index of the required opp
241 *
242 * Return: performance state read from device tree corresponding to the
243 * required opp, else return U32_MAX.
244 */
245unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
246 unsigned int index)
247{
248 if (IS_ERR_OR_NULL(opp) || !opp->available ||
249 index >= opp->opp_table->required_opp_count) {
250 pr_err("%s: Invalid parameters\n", __func__);
251 return 0;
252 }
253
254 /* required-opps not fully initialized yet */
255 if (lazy_linking_pending(opp->opp_table))
256 return 0;
257
258 /* The required OPP table must belong to a genpd */
259 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
260 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
261 return 0;
262 }
263
264 return opp->required_opps[index]->level;
265}
266EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
267
268/**
269 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
270 * @opp: opp for which turbo mode is being verified
271 *
272 * Turbo OPPs are not for normal use, and can be enabled (under certain
273 * conditions) for short duration of times to finish high throughput work
274 * quickly. Running on them for longer times may overheat the chip.
275 *
276 * Return: true if opp is turbo opp, else false.
277 */
278bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
279{
280 if (IS_ERR_OR_NULL(opp) || !opp->available) {
281 pr_err("%s: Invalid parameters\n", __func__);
282 return false;
283 }
284
285 return opp->turbo;
286}
287EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
288
289/**
290 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
291 * @dev: device for which we do this operation
292 *
293 * Return: This function returns the max clock latency in nanoseconds.
294 */
295unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
296{
297 struct opp_table *opp_table;
298 unsigned long clock_latency_ns;
299
300 opp_table = _find_opp_table(dev);
301 if (IS_ERR(opp_table))
302 return 0;
303
304 clock_latency_ns = opp_table->clock_latency_ns_max;
305
306 dev_pm_opp_put_opp_table(opp_table);
307
308 return clock_latency_ns;
309}
310EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
311
312/**
313 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
314 * @dev: device for which we do this operation
315 *
316 * Return: This function returns the max voltage latency in nanoseconds.
317 */
318unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
319{
320 struct opp_table *opp_table;
321 struct dev_pm_opp *opp;
322 struct regulator *reg;
323 unsigned long latency_ns = 0;
324 int ret, i, count;
325 struct {
326 unsigned long min;
327 unsigned long max;
328 } *uV;
329
330 opp_table = _find_opp_table(dev);
331 if (IS_ERR(opp_table))
332 return 0;
333
334 /* Regulator may not be required for the device */
335 if (!opp_table->regulators)
336 goto put_opp_table;
337
338 count = opp_table->regulator_count;
339
340 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
341 if (!uV)
342 goto put_opp_table;
343
344 mutex_lock(&opp_table->lock);
345
346 for (i = 0; i < count; i++) {
347 uV[i].min = ~0;
348 uV[i].max = 0;
349
350 list_for_each_entry(opp, &opp_table->opp_list, node) {
351 if (!opp->available)
352 continue;
353
354 if (opp->supplies[i].u_volt_min < uV[i].min)
355 uV[i].min = opp->supplies[i].u_volt_min;
356 if (opp->supplies[i].u_volt_max > uV[i].max)
357 uV[i].max = opp->supplies[i].u_volt_max;
358 }
359 }
360
361 mutex_unlock(&opp_table->lock);
362
363 /*
364 * The caller needs to ensure that opp_table (and hence the regulator)
365 * isn't freed, while we are executing this routine.
366 */
367 for (i = 0; i < count; i++) {
368 reg = opp_table->regulators[i];
369 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
370 if (ret > 0)
371 latency_ns += ret * 1000;
372 }
373
374 kfree(uV);
375put_opp_table:
376 dev_pm_opp_put_opp_table(opp_table);
377
378 return latency_ns;
379}
380EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
381
382/**
383 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
384 * nanoseconds
385 * @dev: device for which we do this operation
386 *
387 * Return: This function returns the max transition latency, in nanoseconds, to
388 * switch from one OPP to other.
389 */
390unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
391{
392 return dev_pm_opp_get_max_volt_latency(dev) +
393 dev_pm_opp_get_max_clock_latency(dev);
394}
395EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
396
397/**
398 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
399 * @dev: device for which we do this operation
400 *
401 * Return: This function returns the frequency of the OPP marked as suspend_opp
402 * if one is available, else returns 0;
403 */
404unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
405{
406 struct opp_table *opp_table;
407 unsigned long freq = 0;
408
409 opp_table = _find_opp_table(dev);
410 if (IS_ERR(opp_table))
411 return 0;
412
413 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
414 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
415
416 dev_pm_opp_put_opp_table(opp_table);
417
418 return freq;
419}
420EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
421
422int _get_opp_count(struct opp_table *opp_table)
423{
424 struct dev_pm_opp *opp;
425 int count = 0;
426
427 mutex_lock(&opp_table->lock);
428
429 list_for_each_entry(opp, &opp_table->opp_list, node) {
430 if (opp->available)
431 count++;
432 }
433
434 mutex_unlock(&opp_table->lock);
435
436 return count;
437}
438
439/**
440 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
441 * @dev: device for which we do this operation
442 *
443 * Return: This function returns the number of available opps if there are any,
444 * else returns 0 if none or the corresponding error value.
445 */
446int dev_pm_opp_get_opp_count(struct device *dev)
447{
448 struct opp_table *opp_table;
449 int count;
450
451 opp_table = _find_opp_table(dev);
452 if (IS_ERR(opp_table)) {
453 count = PTR_ERR(opp_table);
454 dev_dbg(dev, "%s: OPP table not found (%d)\n",
455 __func__, count);
456 return count;
457 }
458
459 count = _get_opp_count(opp_table);
460 dev_pm_opp_put_opp_table(opp_table);
461
462 return count;
463}
464EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
465
466/* Helpers to read keys */
467static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
468{
469 return opp->rates[index];
470}
471
472static unsigned long _read_level(struct dev_pm_opp *opp, int index)
473{
474 return opp->level;
475}
476
477static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
478{
479 return opp->bandwidth[index].peak;
480}
481
482/* Generic comparison helpers */
483static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
484 unsigned long opp_key, unsigned long key)
485{
486 if (opp_key == key) {
487 *opp = temp_opp;
488 return true;
489 }
490
491 return false;
492}
493
494static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
495 unsigned long opp_key, unsigned long key)
496{
497 if (opp_key >= key) {
498 *opp = temp_opp;
499 return true;
500 }
501
502 return false;
503}
504
505static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
506 unsigned long opp_key, unsigned long key)
507{
508 if (opp_key > key)
509 return true;
510
511 *opp = temp_opp;
512 return false;
513}
514
515/* Generic key finding helpers */
516static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
517 unsigned long *key, int index, bool available,
518 unsigned long (*read)(struct dev_pm_opp *opp, int index),
519 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
520 unsigned long opp_key, unsigned long key),
521 bool (*assert)(struct opp_table *opp_table, unsigned int index))
522{
523 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
524
525 /* Assert that the requirement is met */
526 if (assert && !assert(opp_table, index))
527 return ERR_PTR(-EINVAL);
528
529 mutex_lock(&opp_table->lock);
530
531 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
532 if (temp_opp->available == available) {
533 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
534 break;
535 }
536 }
537
538 /* Increment the reference count of OPP */
539 if (!IS_ERR(opp)) {
540 *key = read(opp, index);
541 dev_pm_opp_get(opp);
542 }
543
544 mutex_unlock(&opp_table->lock);
545
546 return opp;
547}
548
549static struct dev_pm_opp *
550_find_key(struct device *dev, unsigned long *key, int index, bool available,
551 unsigned long (*read)(struct dev_pm_opp *opp, int index),
552 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
553 unsigned long opp_key, unsigned long key),
554 bool (*assert)(struct opp_table *opp_table, unsigned int index))
555{
556 struct opp_table *opp_table;
557 struct dev_pm_opp *opp;
558
559 opp_table = _find_opp_table(dev);
560 if (IS_ERR(opp_table)) {
561 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
562 PTR_ERR(opp_table));
563 return ERR_CAST(opp_table);
564 }
565
566 opp = _opp_table_find_key(opp_table, key, index, available, read,
567 compare, assert);
568
569 dev_pm_opp_put_opp_table(opp_table);
570
571 return opp;
572}
573
574static struct dev_pm_opp *_find_key_exact(struct device *dev,
575 unsigned long key, int index, bool available,
576 unsigned long (*read)(struct dev_pm_opp *opp, int index),
577 bool (*assert)(struct opp_table *opp_table, unsigned int index))
578{
579 /*
580 * The value of key will be updated here, but will be ignored as the
581 * caller doesn't need it.
582 */
583 return _find_key(dev, &key, index, available, read, _compare_exact,
584 assert);
585}
586
587static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
588 unsigned long *key, int index, bool available,
589 unsigned long (*read)(struct dev_pm_opp *opp, int index),
590 bool (*assert)(struct opp_table *opp_table, unsigned int index))
591{
592 return _opp_table_find_key(opp_table, key, index, available, read,
593 _compare_ceil, assert);
594}
595
596static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
597 int index, bool available,
598 unsigned long (*read)(struct dev_pm_opp *opp, int index),
599 bool (*assert)(struct opp_table *opp_table, unsigned int index))
600{
601 return _find_key(dev, key, index, available, read, _compare_ceil,
602 assert);
603}
604
605static struct dev_pm_opp *_find_key_floor(struct device *dev,
606 unsigned long *key, int index, bool available,
607 unsigned long (*read)(struct dev_pm_opp *opp, int index),
608 bool (*assert)(struct opp_table *opp_table, unsigned int index))
609{
610 return _find_key(dev, key, index, available, read, _compare_floor,
611 assert);
612}
613
614/**
615 * dev_pm_opp_find_freq_exact() - search for an exact frequency
616 * @dev: device for which we do this operation
617 * @freq: frequency to search for
618 * @available: true/false - match for available opp
619 *
620 * Return: Searches for exact match in the opp table and returns pointer to the
621 * matching opp if found, else returns ERR_PTR in case of error and should
622 * be handled using IS_ERR. Error return values can be:
623 * EINVAL: for bad pointer
624 * ERANGE: no match found for search
625 * ENODEV: if device not found in list of registered devices
626 *
627 * Note: available is a modifier for the search. if available=true, then the
628 * match is for exact matching frequency and is available in the stored OPP
629 * table. if false, the match is for exact frequency which is not available.
630 *
631 * This provides a mechanism to enable an opp which is not available currently
632 * or the opposite as well.
633 *
634 * The callers are required to call dev_pm_opp_put() for the returned OPP after
635 * use.
636 */
637struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
638 unsigned long freq, bool available)
639{
640 return _find_key_exact(dev, freq, 0, available, _read_freq,
641 assert_single_clk);
642}
643EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
644
645/**
646 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
647 * clock corresponding to the index
648 * @dev: Device for which we do this operation
649 * @freq: frequency to search for
650 * @index: Clock index
651 * @available: true/false - match for available opp
652 *
653 * Search for the matching exact OPP for the clock corresponding to the
654 * specified index from a starting freq for a device.
655 *
656 * Return: matching *opp , else returns ERR_PTR in case of error and should be
657 * handled using IS_ERR. Error return values can be:
658 * EINVAL: for bad pointer
659 * ERANGE: no match found for search
660 * ENODEV: if device not found in list of registered devices
661 *
662 * The callers are required to call dev_pm_opp_put() for the returned OPP after
663 * use.
664 */
665struct dev_pm_opp *
666dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
667 u32 index, bool available)
668{
669 return _find_key_exact(dev, freq, index, available, _read_freq,
670 assert_clk_index);
671}
672EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
673
674static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
675 unsigned long *freq)
676{
677 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
678 assert_single_clk);
679}
680
681/**
682 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
683 * @dev: device for which we do this operation
684 * @freq: Start frequency
685 *
686 * Search for the matching ceil *available* OPP from a starting freq
687 * for a device.
688 *
689 * Return: matching *opp and refreshes *freq accordingly, else returns
690 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
691 * values can be:
692 * EINVAL: for bad pointer
693 * ERANGE: no match found for search
694 * ENODEV: if device not found in list of registered devices
695 *
696 * The callers are required to call dev_pm_opp_put() for the returned OPP after
697 * use.
698 */
699struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
700 unsigned long *freq)
701{
702 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
703}
704EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
705
706/**
707 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
708 * clock corresponding to the index
709 * @dev: Device for which we do this operation
710 * @freq: Start frequency
711 * @index: Clock index
712 *
713 * Search for the matching ceil *available* OPP for the clock corresponding to
714 * the specified index from a starting freq for a device.
715 *
716 * Return: matching *opp and refreshes *freq accordingly, else returns
717 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
718 * values can be:
719 * EINVAL: for bad pointer
720 * ERANGE: no match found for search
721 * ENODEV: if device not found in list of registered devices
722 *
723 * The callers are required to call dev_pm_opp_put() for the returned OPP after
724 * use.
725 */
726struct dev_pm_opp *
727dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
728 u32 index)
729{
730 return _find_key_ceil(dev, freq, index, true, _read_freq,
731 assert_clk_index);
732}
733EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
734
735/**
736 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
737 * @dev: device for which we do this operation
738 * @freq: Start frequency
739 *
740 * Search for the matching floor *available* OPP from a starting freq
741 * for a device.
742 *
743 * Return: matching *opp and refreshes *freq accordingly, else returns
744 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
745 * values can be:
746 * EINVAL: for bad pointer
747 * ERANGE: no match found for search
748 * ENODEV: if device not found in list of registered devices
749 *
750 * The callers are required to call dev_pm_opp_put() for the returned OPP after
751 * use.
752 */
753struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
754 unsigned long *freq)
755{
756 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
757}
758EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
759
760/**
761 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
762 * clock corresponding to the index
763 * @dev: Device for which we do this operation
764 * @freq: Start frequency
765 * @index: Clock index
766 *
767 * Search for the matching floor *available* OPP for the clock corresponding to
768 * the specified index from a starting freq for a device.
769 *
770 * Return: matching *opp and refreshes *freq accordingly, else returns
771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772 * values can be:
773 * EINVAL: for bad pointer
774 * ERANGE: no match found for search
775 * ENODEV: if device not found in list of registered devices
776 *
777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
778 * use.
779 */
780struct dev_pm_opp *
781dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
782 u32 index)
783{
784 return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
785}
786EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
787
788/**
789 * dev_pm_opp_find_level_exact() - search for an exact level
790 * @dev: device for which we do this operation
791 * @level: level to search for
792 *
793 * Return: Searches for exact match in the opp table and returns pointer to the
794 * matching opp if found, else returns ERR_PTR in case of error and should
795 * be handled using IS_ERR. Error return values can be:
796 * EINVAL: for bad pointer
797 * ERANGE: no match found for search
798 * ENODEV: if device not found in list of registered devices
799 *
800 * The callers are required to call dev_pm_opp_put() for the returned OPP after
801 * use.
802 */
803struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
804 unsigned int level)
805{
806 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
807}
808EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
809
810/**
811 * dev_pm_opp_find_level_ceil() - search for an rounded up level
812 * @dev: device for which we do this operation
813 * @level: level to search for
814 *
815 * Return: Searches for rounded up match in the opp table and returns pointer
816 * to the matching opp if found, else returns ERR_PTR in case of error and
817 * should be handled using IS_ERR. Error return values can be:
818 * EINVAL: for bad pointer
819 * ERANGE: no match found for search
820 * ENODEV: if device not found in list of registered devices
821 *
822 * The callers are required to call dev_pm_opp_put() for the returned OPP after
823 * use.
824 */
825struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
826 unsigned int *level)
827{
828 unsigned long temp = *level;
829 struct dev_pm_opp *opp;
830
831 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
832 if (IS_ERR(opp))
833 return opp;
834
835 /* False match */
836 if (temp == OPP_LEVEL_UNSET) {
837 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
838 dev_pm_opp_put(opp);
839 return ERR_PTR(-ENODEV);
840 }
841
842 *level = temp;
843 return opp;
844}
845EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
846
847/**
848 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
849 * @dev: device for which we do this operation
850 * @level: Start level
851 *
852 * Search for the matching floor *available* OPP from a starting level
853 * for a device.
854 *
855 * Return: matching *opp and refreshes *level accordingly, else returns
856 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
857 * values can be:
858 * EINVAL: for bad pointer
859 * ERANGE: no match found for search
860 * ENODEV: if device not found in list of registered devices
861 *
862 * The callers are required to call dev_pm_opp_put() for the returned OPP after
863 * use.
864 */
865struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
866 unsigned int *level)
867{
868 unsigned long temp = *level;
869 struct dev_pm_opp *opp;
870
871 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
872 *level = temp;
873 return opp;
874}
875EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
876
877/**
878 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
879 * @dev: device for which we do this operation
880 * @bw: start bandwidth
881 * @index: which bandwidth to compare, in case of OPPs with several values
882 *
883 * Search for the matching floor *available* OPP from a starting bandwidth
884 * for a device.
885 *
886 * Return: matching *opp and refreshes *bw accordingly, else returns
887 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
888 * values can be:
889 * EINVAL: for bad pointer
890 * ERANGE: no match found for search
891 * ENODEV: if device not found in list of registered devices
892 *
893 * The callers are required to call dev_pm_opp_put() for the returned OPP after
894 * use.
895 */
896struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
897 int index)
898{
899 unsigned long temp = *bw;
900 struct dev_pm_opp *opp;
901
902 opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
903 assert_bandwidth_index);
904 *bw = temp;
905 return opp;
906}
907EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
908
909/**
910 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
911 * @dev: device for which we do this operation
912 * @bw: start bandwidth
913 * @index: which bandwidth to compare, in case of OPPs with several values
914 *
915 * Search for the matching floor *available* OPP from a starting bandwidth
916 * for a device.
917 *
918 * Return: matching *opp and refreshes *bw accordingly, else returns
919 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
920 * values can be:
921 * EINVAL: for bad pointer
922 * ERANGE: no match found for search
923 * ENODEV: if device not found in list of registered devices
924 *
925 * The callers are required to call dev_pm_opp_put() for the returned OPP after
926 * use.
927 */
928struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
929 unsigned int *bw, int index)
930{
931 unsigned long temp = *bw;
932 struct dev_pm_opp *opp;
933
934 opp = _find_key_floor(dev, &temp, index, true, _read_bw,
935 assert_bandwidth_index);
936 *bw = temp;
937 return opp;
938}
939EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
940
941static int _set_opp_voltage(struct device *dev, struct regulator *reg,
942 struct dev_pm_opp_supply *supply)
943{
944 int ret;
945
946 /* Regulator not available for device */
947 if (IS_ERR(reg)) {
948 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
949 PTR_ERR(reg));
950 return 0;
951 }
952
953 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
954 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
955
956 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
957 supply->u_volt, supply->u_volt_max);
958 if (ret)
959 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
960 __func__, supply->u_volt_min, supply->u_volt,
961 supply->u_volt_max, ret);
962
963 return ret;
964}
965
966static int
967_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
968 struct dev_pm_opp *opp, void *data, bool scaling_down)
969{
970 unsigned long *target = data;
971 unsigned long freq;
972 int ret;
973
974 /* One of target and opp must be available */
975 if (target) {
976 freq = *target;
977 } else if (opp) {
978 freq = opp->rates[0];
979 } else {
980 WARN_ON(1);
981 return -EINVAL;
982 }
983
984 ret = clk_set_rate(opp_table->clk, freq);
985 if (ret) {
986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 ret);
988 } else {
989 opp_table->current_rate_single_clk = freq;
990 }
991
992 return ret;
993}
994
995/*
996 * Simple implementation for configuring multiple clocks. Configure clocks in
997 * the order in which they are present in the array while scaling up.
998 */
999int dev_pm_opp_config_clks_simple(struct device *dev,
1000 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
1001 bool scaling_down)
1002{
1003 int ret, i;
1004
1005 if (scaling_down) {
1006 for (i = opp_table->clk_count - 1; i >= 0; i--) {
1007 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1008 if (ret) {
1009 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1010 ret);
1011 return ret;
1012 }
1013 }
1014 } else {
1015 for (i = 0; i < opp_table->clk_count; i++) {
1016 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1017 if (ret) {
1018 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1019 ret);
1020 return ret;
1021 }
1022 }
1023 }
1024
1025 return 0;
1026}
1027EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1028
1029static int _opp_config_regulator_single(struct device *dev,
1030 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1031 struct regulator **regulators, unsigned int count)
1032{
1033 struct regulator *reg = regulators[0];
1034 int ret;
1035
1036 /* This function only supports single regulator per device */
1037 if (WARN_ON(count > 1)) {
1038 dev_err(dev, "multiple regulators are not supported\n");
1039 return -EINVAL;
1040 }
1041
1042 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1043 if (ret)
1044 return ret;
1045
1046 /*
1047 * Enable the regulator after setting its voltages, otherwise it breaks
1048 * some boot-enabled regulators.
1049 */
1050 if (unlikely(!new_opp->opp_table->enabled)) {
1051 ret = regulator_enable(reg);
1052 if (ret < 0)
1053 dev_warn(dev, "Failed to enable regulator: %d", ret);
1054 }
1055
1056 return 0;
1057}
1058
1059static int _set_opp_bw(const struct opp_table *opp_table,
1060 struct dev_pm_opp *opp, struct device *dev)
1061{
1062 u32 avg, peak;
1063 int i, ret;
1064
1065 if (!opp_table->paths)
1066 return 0;
1067
1068 for (i = 0; i < opp_table->path_count; i++) {
1069 if (!opp) {
1070 avg = 0;
1071 peak = 0;
1072 } else {
1073 avg = opp->bandwidth[i].avg;
1074 peak = opp->bandwidth[i].peak;
1075 }
1076 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1077 if (ret) {
1078 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1079 opp ? "set" : "remove", i, ret);
1080 return ret;
1081 }
1082 }
1083
1084 return 0;
1085}
1086
1087static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1088{
1089 unsigned int level = 0;
1090 int ret = 0;
1091
1092 if (opp) {
1093 if (opp->level == OPP_LEVEL_UNSET)
1094 return 0;
1095
1096 level = opp->level;
1097 }
1098
1099 /* Request a new performance state through the device's PM domain. */
1100 ret = dev_pm_domain_set_performance_state(dev, level);
1101 if (ret)
1102 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1103 ret);
1104
1105 return ret;
1106}
1107
1108/* This is only called for PM domain for now */
1109static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1110 struct dev_pm_opp *opp, bool up)
1111{
1112 struct device **devs = opp_table->required_devs;
1113 struct dev_pm_opp *required_opp;
1114 int index, target, delta, ret;
1115
1116 if (!devs)
1117 return 0;
1118
1119 /* required-opps not fully initialized yet */
1120 if (lazy_linking_pending(opp_table))
1121 return -EBUSY;
1122
1123 /* Scaling up? Set required OPPs in normal order, else reverse */
1124 if (up) {
1125 index = 0;
1126 target = opp_table->required_opp_count;
1127 delta = 1;
1128 } else {
1129 index = opp_table->required_opp_count - 1;
1130 target = -1;
1131 delta = -1;
1132 }
1133
1134 while (index != target) {
1135 if (devs[index]) {
1136 required_opp = opp ? opp->required_opps[index] : NULL;
1137
1138 ret = _set_opp_level(devs[index], required_opp);
1139 if (ret)
1140 return ret;
1141 }
1142
1143 index += delta;
1144 }
1145
1146 return 0;
1147}
1148
1149static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1150{
1151 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1152 unsigned long freq;
1153
1154 if (!IS_ERR(opp_table->clk)) {
1155 freq = clk_get_rate(opp_table->clk);
1156 opp = _find_freq_ceil(opp_table, &freq);
1157 }
1158
1159 /*
1160 * Unable to find the current OPP ? Pick the first from the list since
1161 * it is in ascending order, otherwise rest of the code will need to
1162 * make special checks to validate current_opp.
1163 */
1164 if (IS_ERR(opp)) {
1165 mutex_lock(&opp_table->lock);
1166 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1167 dev_pm_opp_get(opp);
1168 mutex_unlock(&opp_table->lock);
1169 }
1170
1171 opp_table->current_opp = opp;
1172}
1173
1174static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1175{
1176 int ret;
1177
1178 if (!opp_table->enabled)
1179 return 0;
1180
1181 /*
1182 * Some drivers need to support cases where some platforms may
1183 * have OPP table for the device, while others don't and
1184 * opp_set_rate() just needs to behave like clk_set_rate().
1185 */
1186 if (!_get_opp_count(opp_table))
1187 return 0;
1188
1189 ret = _set_opp_bw(opp_table, NULL, dev);
1190 if (ret)
1191 return ret;
1192
1193 if (opp_table->regulators)
1194 regulator_disable(opp_table->regulators[0]);
1195
1196 ret = _set_opp_level(dev, NULL);
1197 if (ret)
1198 goto out;
1199
1200 ret = _set_required_opps(dev, opp_table, NULL, false);
1201
1202out:
1203 opp_table->enabled = false;
1204 return ret;
1205}
1206
1207static int _set_opp(struct device *dev, struct opp_table *opp_table,
1208 struct dev_pm_opp *opp, void *clk_data, bool forced)
1209{
1210 struct dev_pm_opp *old_opp;
1211 int scaling_down, ret;
1212
1213 if (unlikely(!opp))
1214 return _disable_opp_table(dev, opp_table);
1215
1216 /* Find the currently set OPP if we don't know already */
1217 if (unlikely(!opp_table->current_opp))
1218 _find_current_opp(dev, opp_table);
1219
1220 old_opp = opp_table->current_opp;
1221
1222 /* Return early if nothing to do */
1223 if (!forced && old_opp == opp && opp_table->enabled) {
1224 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1225 return 0;
1226 }
1227
1228 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1229 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1230 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1231 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1232
1233 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1234 if (scaling_down == -1)
1235 scaling_down = 0;
1236
1237 /* Scaling up? Configure required OPPs before frequency */
1238 if (!scaling_down) {
1239 ret = _set_required_opps(dev, opp_table, opp, true);
1240 if (ret) {
1241 dev_err(dev, "Failed to set required opps: %d\n", ret);
1242 return ret;
1243 }
1244
1245 ret = _set_opp_level(dev, opp);
1246 if (ret)
1247 return ret;
1248
1249 ret = _set_opp_bw(opp_table, opp, dev);
1250 if (ret) {
1251 dev_err(dev, "Failed to set bw: %d\n", ret);
1252 return ret;
1253 }
1254
1255 if (opp_table->config_regulators) {
1256 ret = opp_table->config_regulators(dev, old_opp, opp,
1257 opp_table->regulators,
1258 opp_table->regulator_count);
1259 if (ret) {
1260 dev_err(dev, "Failed to set regulator voltages: %d\n",
1261 ret);
1262 return ret;
1263 }
1264 }
1265 }
1266
1267 if (opp_table->config_clks) {
1268 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1269 if (ret)
1270 return ret;
1271 }
1272
1273 /* Scaling down? Configure required OPPs after frequency */
1274 if (scaling_down) {
1275 if (opp_table->config_regulators) {
1276 ret = opp_table->config_regulators(dev, old_opp, opp,
1277 opp_table->regulators,
1278 opp_table->regulator_count);
1279 if (ret) {
1280 dev_err(dev, "Failed to set regulator voltages: %d\n",
1281 ret);
1282 return ret;
1283 }
1284 }
1285
1286 ret = _set_opp_bw(opp_table, opp, dev);
1287 if (ret) {
1288 dev_err(dev, "Failed to set bw: %d\n", ret);
1289 return ret;
1290 }
1291
1292 ret = _set_opp_level(dev, opp);
1293 if (ret)
1294 return ret;
1295
1296 ret = _set_required_opps(dev, opp_table, opp, false);
1297 if (ret) {
1298 dev_err(dev, "Failed to set required opps: %d\n", ret);
1299 return ret;
1300 }
1301 }
1302
1303 opp_table->enabled = true;
1304 dev_pm_opp_put(old_opp);
1305
1306 /* Make sure current_opp doesn't get freed */
1307 dev_pm_opp_get(opp);
1308 opp_table->current_opp = opp;
1309
1310 return ret;
1311}
1312
1313/**
1314 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1315 * @dev: device for which we do this operation
1316 * @target_freq: frequency to achieve
1317 *
1318 * This configures the power-supplies to the levels specified by the OPP
1319 * corresponding to the target_freq, and programs the clock to a value <=
1320 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1321 * provided by the opp, should have already rounded to the target OPP's
1322 * frequency.
1323 */
1324int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1325{
1326 struct opp_table *opp_table;
1327 unsigned long freq = 0, temp_freq;
1328 struct dev_pm_opp *opp = NULL;
1329 bool forced = false;
1330 int ret;
1331
1332 opp_table = _find_opp_table(dev);
1333 if (IS_ERR(opp_table)) {
1334 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1335 return PTR_ERR(opp_table);
1336 }
1337
1338 if (target_freq) {
1339 /*
1340 * For IO devices which require an OPP on some platforms/SoCs
1341 * while just needing to scale the clock on some others
1342 * we look for empty OPP tables with just a clock handle and
1343 * scale only the clk. This makes dev_pm_opp_set_rate()
1344 * equivalent to a clk_set_rate()
1345 */
1346 if (!_get_opp_count(opp_table)) {
1347 ret = opp_table->config_clks(dev, opp_table, NULL,
1348 &target_freq, false);
1349 goto put_opp_table;
1350 }
1351
1352 freq = clk_round_rate(opp_table->clk, target_freq);
1353 if ((long)freq <= 0)
1354 freq = target_freq;
1355
1356 /*
1357 * The clock driver may support finer resolution of the
1358 * frequencies than the OPP table, don't update the frequency we
1359 * pass to clk_set_rate() here.
1360 */
1361 temp_freq = freq;
1362 opp = _find_freq_ceil(opp_table, &temp_freq);
1363 if (IS_ERR(opp)) {
1364 ret = PTR_ERR(opp);
1365 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1366 __func__, freq, ret);
1367 goto put_opp_table;
1368 }
1369
1370 /*
1371 * An OPP entry specifies the highest frequency at which other
1372 * properties of the OPP entry apply. Even if the new OPP is
1373 * same as the old one, we may still reach here for a different
1374 * value of the frequency. In such a case, do not abort but
1375 * configure the hardware to the desired frequency forcefully.
1376 */
1377 forced = opp_table->current_rate_single_clk != freq;
1378 }
1379
1380 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1381
1382 if (freq)
1383 dev_pm_opp_put(opp);
1384
1385put_opp_table:
1386 dev_pm_opp_put_opp_table(opp_table);
1387 return ret;
1388}
1389EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1390
1391/**
1392 * dev_pm_opp_set_opp() - Configure device for OPP
1393 * @dev: device for which we do this operation
1394 * @opp: OPP to set to
1395 *
1396 * This configures the device based on the properties of the OPP passed to this
1397 * routine.
1398 *
1399 * Return: 0 on success, a negative error number otherwise.
1400 */
1401int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1402{
1403 struct opp_table *opp_table;
1404 int ret;
1405
1406 opp_table = _find_opp_table(dev);
1407 if (IS_ERR(opp_table)) {
1408 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1409 return PTR_ERR(opp_table);
1410 }
1411
1412 ret = _set_opp(dev, opp_table, opp, NULL, false);
1413 dev_pm_opp_put_opp_table(opp_table);
1414
1415 return ret;
1416}
1417EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1418
1419/* OPP-dev Helpers */
1420static void _remove_opp_dev(struct opp_device *opp_dev,
1421 struct opp_table *opp_table)
1422{
1423 opp_debug_unregister(opp_dev, opp_table);
1424 list_del(&opp_dev->node);
1425 kfree(opp_dev);
1426}
1427
1428struct opp_device *_add_opp_dev(const struct device *dev,
1429 struct opp_table *opp_table)
1430{
1431 struct opp_device *opp_dev;
1432
1433 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1434 if (!opp_dev)
1435 return NULL;
1436
1437 /* Initialize opp-dev */
1438 opp_dev->dev = dev;
1439
1440 mutex_lock(&opp_table->lock);
1441 list_add(&opp_dev->node, &opp_table->dev_list);
1442 mutex_unlock(&opp_table->lock);
1443
1444 /* Create debugfs entries for the opp_table */
1445 opp_debug_register(opp_dev, opp_table);
1446
1447 return opp_dev;
1448}
1449
1450static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1451{
1452 struct opp_table *opp_table;
1453 struct opp_device *opp_dev;
1454 int ret;
1455
1456 /*
1457 * Allocate a new OPP table. In the infrequent case where a new
1458 * device is needed to be added, we pay this penalty.
1459 */
1460 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1461 if (!opp_table)
1462 return ERR_PTR(-ENOMEM);
1463
1464 mutex_init(&opp_table->lock);
1465 INIT_LIST_HEAD(&opp_table->dev_list);
1466 INIT_LIST_HEAD(&opp_table->lazy);
1467
1468 opp_table->clk = ERR_PTR(-ENODEV);
1469
1470 /* Mark regulator count uninitialized */
1471 opp_table->regulator_count = -1;
1472
1473 opp_dev = _add_opp_dev(dev, opp_table);
1474 if (!opp_dev) {
1475 ret = -ENOMEM;
1476 goto err;
1477 }
1478
1479 _of_init_opp_table(opp_table, dev, index);
1480
1481 /* Find interconnect path(s) for the device */
1482 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1483 if (ret) {
1484 if (ret == -EPROBE_DEFER)
1485 goto remove_opp_dev;
1486
1487 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1488 __func__, ret);
1489 }
1490
1491 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1492 INIT_LIST_HEAD(&opp_table->opp_list);
1493 kref_init(&opp_table->kref);
1494
1495 return opp_table;
1496
1497remove_opp_dev:
1498 _of_clear_opp_table(opp_table);
1499 _remove_opp_dev(opp_dev, opp_table);
1500 mutex_destroy(&opp_table->lock);
1501err:
1502 kfree(opp_table);
1503 return ERR_PTR(ret);
1504}
1505
1506void _get_opp_table_kref(struct opp_table *opp_table)
1507{
1508 kref_get(&opp_table->kref);
1509}
1510
1511static struct opp_table *_update_opp_table_clk(struct device *dev,
1512 struct opp_table *opp_table,
1513 bool getclk)
1514{
1515 int ret;
1516
1517 /*
1518 * Return early if we don't need to get clk or we have already done it
1519 * earlier.
1520 */
1521 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1522 opp_table->clks)
1523 return opp_table;
1524
1525 /* Find clk for the device */
1526 opp_table->clk = clk_get(dev, NULL);
1527
1528 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1529 if (!ret) {
1530 opp_table->config_clks = _opp_config_clk_single;
1531 opp_table->clk_count = 1;
1532 return opp_table;
1533 }
1534
1535 if (ret == -ENOENT) {
1536 /*
1537 * There are few platforms which don't want the OPP core to
1538 * manage device's clock settings. In such cases neither the
1539 * platform provides the clks explicitly to us, nor the DT
1540 * contains a valid clk entry. The OPP nodes in DT may still
1541 * contain "opp-hz" property though, which we need to parse and
1542 * allow the platform to find an OPP based on freq later on.
1543 *
1544 * This is a simple solution to take care of such corner cases,
1545 * i.e. make the clk_count 1, which lets us allocate space for
1546 * frequency in opp->rates and also parse the entries in DT.
1547 */
1548 opp_table->clk_count = 1;
1549
1550 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1551 return opp_table;
1552 }
1553
1554 dev_pm_opp_put_opp_table(opp_table);
1555 dev_err_probe(dev, ret, "Couldn't find clock\n");
1556
1557 return ERR_PTR(ret);
1558}
1559
1560/*
1561 * We need to make sure that the OPP table for a device doesn't get added twice,
1562 * if this routine gets called in parallel with the same device pointer.
1563 *
1564 * The simplest way to enforce that is to perform everything (find existing
1565 * table and if not found, create a new one) under the opp_table_lock, so only
1566 * one creator gets access to the same. But that expands the critical section
1567 * under the lock and may end up causing circular dependencies with frameworks
1568 * like debugfs, interconnect or clock framework as they may be direct or
1569 * indirect users of OPP core.
1570 *
1571 * And for that reason we have to go for a bit tricky implementation here, which
1572 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1573 * of adding an OPP table and others should wait for it to finish.
1574 */
1575struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1576 bool getclk)
1577{
1578 struct opp_table *opp_table;
1579
1580again:
1581 mutex_lock(&opp_table_lock);
1582
1583 opp_table = _find_opp_table_unlocked(dev);
1584 if (!IS_ERR(opp_table))
1585 goto unlock;
1586
1587 /*
1588 * The opp_tables list or an OPP table's dev_list is getting updated by
1589 * another user, wait for it to finish.
1590 */
1591 if (unlikely(opp_tables_busy)) {
1592 mutex_unlock(&opp_table_lock);
1593 cpu_relax();
1594 goto again;
1595 }
1596
1597 opp_tables_busy = true;
1598 opp_table = _managed_opp(dev, index);
1599
1600 /* Drop the lock to reduce the size of critical section */
1601 mutex_unlock(&opp_table_lock);
1602
1603 if (opp_table) {
1604 if (!_add_opp_dev(dev, opp_table)) {
1605 dev_pm_opp_put_opp_table(opp_table);
1606 opp_table = ERR_PTR(-ENOMEM);
1607 }
1608
1609 mutex_lock(&opp_table_lock);
1610 } else {
1611 opp_table = _allocate_opp_table(dev, index);
1612
1613 mutex_lock(&opp_table_lock);
1614 if (!IS_ERR(opp_table))
1615 list_add(&opp_table->node, &opp_tables);
1616 }
1617
1618 opp_tables_busy = false;
1619
1620unlock:
1621 mutex_unlock(&opp_table_lock);
1622
1623 return _update_opp_table_clk(dev, opp_table, getclk);
1624}
1625
1626static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1627{
1628 return _add_opp_table_indexed(dev, 0, getclk);
1629}
1630
1631struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1632{
1633 return _find_opp_table(dev);
1634}
1635EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1636
1637static void _opp_table_kref_release(struct kref *kref)
1638{
1639 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1640 struct opp_device *opp_dev, *temp;
1641 int i;
1642
1643 /* Drop the lock as soon as we can */
1644 list_del(&opp_table->node);
1645 mutex_unlock(&opp_table_lock);
1646
1647 if (opp_table->current_opp)
1648 dev_pm_opp_put(opp_table->current_opp);
1649
1650 _of_clear_opp_table(opp_table);
1651
1652 /* Release automatically acquired single clk */
1653 if (!IS_ERR(opp_table->clk))
1654 clk_put(opp_table->clk);
1655
1656 if (opp_table->paths) {
1657 for (i = 0; i < opp_table->path_count; i++)
1658 icc_put(opp_table->paths[i]);
1659 kfree(opp_table->paths);
1660 }
1661
1662 WARN_ON(!list_empty(&opp_table->opp_list));
1663
1664 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1665 _remove_opp_dev(opp_dev, opp_table);
1666
1667 mutex_destroy(&opp_table->lock);
1668 kfree(opp_table);
1669}
1670
1671void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1672{
1673 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1674 &opp_table_lock);
1675}
1676EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1677
1678void _opp_free(struct dev_pm_opp *opp)
1679{
1680 kfree(opp);
1681}
1682
1683static void _opp_kref_release(struct kref *kref)
1684{
1685 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1686 struct opp_table *opp_table = opp->opp_table;
1687
1688 list_del(&opp->node);
1689 mutex_unlock(&opp_table->lock);
1690
1691 /*
1692 * Notify the changes in the availability of the operable
1693 * frequency/voltage list.
1694 */
1695 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1696 _of_clear_opp(opp_table, opp);
1697 opp_debug_remove_one(opp);
1698 kfree(opp);
1699}
1700
1701void dev_pm_opp_get(struct dev_pm_opp *opp)
1702{
1703 kref_get(&opp->kref);
1704}
1705
1706void dev_pm_opp_put(struct dev_pm_opp *opp)
1707{
1708 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1709}
1710EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1711
1712/**
1713 * dev_pm_opp_remove() - Remove an OPP from OPP table
1714 * @dev: device for which we do this operation
1715 * @freq: OPP to remove with matching 'freq'
1716 *
1717 * This function removes an opp from the opp table.
1718 */
1719void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1720{
1721 struct dev_pm_opp *opp = NULL, *iter;
1722 struct opp_table *opp_table;
1723
1724 opp_table = _find_opp_table(dev);
1725 if (IS_ERR(opp_table))
1726 return;
1727
1728 if (!assert_single_clk(opp_table, 0))
1729 goto put_table;
1730
1731 mutex_lock(&opp_table->lock);
1732
1733 list_for_each_entry(iter, &opp_table->opp_list, node) {
1734 if (iter->rates[0] == freq) {
1735 opp = iter;
1736 break;
1737 }
1738 }
1739
1740 mutex_unlock(&opp_table->lock);
1741
1742 if (opp) {
1743 dev_pm_opp_put(opp);
1744
1745 /* Drop the reference taken by dev_pm_opp_add() */
1746 dev_pm_opp_put_opp_table(opp_table);
1747 } else {
1748 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1749 __func__, freq);
1750 }
1751
1752put_table:
1753 /* Drop the reference taken by _find_opp_table() */
1754 dev_pm_opp_put_opp_table(opp_table);
1755}
1756EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1757
1758static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1759 bool dynamic)
1760{
1761 struct dev_pm_opp *opp = NULL, *temp;
1762
1763 mutex_lock(&opp_table->lock);
1764 list_for_each_entry(temp, &opp_table->opp_list, node) {
1765 /*
1766 * Refcount must be dropped only once for each OPP by OPP core,
1767 * do that with help of "removed" flag.
1768 */
1769 if (!temp->removed && dynamic == temp->dynamic) {
1770 opp = temp;
1771 break;
1772 }
1773 }
1774
1775 mutex_unlock(&opp_table->lock);
1776 return opp;
1777}
1778
1779/*
1780 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1781 * happen lock less to avoid circular dependency issues. This routine must be
1782 * called without the opp_table->lock held.
1783 */
1784static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1785{
1786 struct dev_pm_opp *opp;
1787
1788 while ((opp = _opp_get_next(opp_table, dynamic))) {
1789 opp->removed = true;
1790 dev_pm_opp_put(opp);
1791
1792 /* Drop the references taken by dev_pm_opp_add() */
1793 if (dynamic)
1794 dev_pm_opp_put_opp_table(opp_table);
1795 }
1796}
1797
1798bool _opp_remove_all_static(struct opp_table *opp_table)
1799{
1800 mutex_lock(&opp_table->lock);
1801
1802 if (!opp_table->parsed_static_opps) {
1803 mutex_unlock(&opp_table->lock);
1804 return false;
1805 }
1806
1807 if (--opp_table->parsed_static_opps) {
1808 mutex_unlock(&opp_table->lock);
1809 return true;
1810 }
1811
1812 mutex_unlock(&opp_table->lock);
1813
1814 _opp_remove_all(opp_table, false);
1815 return true;
1816}
1817
1818/**
1819 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1820 * @dev: device for which we do this operation
1821 *
1822 * This function removes all dynamically created OPPs from the opp table.
1823 */
1824void dev_pm_opp_remove_all_dynamic(struct device *dev)
1825{
1826 struct opp_table *opp_table;
1827
1828 opp_table = _find_opp_table(dev);
1829 if (IS_ERR(opp_table))
1830 return;
1831
1832 _opp_remove_all(opp_table, true);
1833
1834 /* Drop the reference taken by _find_opp_table() */
1835 dev_pm_opp_put_opp_table(opp_table);
1836}
1837EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1838
1839struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1840{
1841 struct dev_pm_opp *opp;
1842 int supply_count, supply_size, icc_size, clk_size;
1843
1844 /* Allocate space for at least one supply */
1845 supply_count = opp_table->regulator_count > 0 ?
1846 opp_table->regulator_count : 1;
1847 supply_size = sizeof(*opp->supplies) * supply_count;
1848 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1849 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1850
1851 /* allocate new OPP node and supplies structures */
1852 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1853 if (!opp)
1854 return NULL;
1855
1856 /* Put the supplies, bw and clock at the end of the OPP structure */
1857 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1858
1859 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1860
1861 if (icc_size)
1862 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1863
1864 INIT_LIST_HEAD(&opp->node);
1865
1866 opp->level = OPP_LEVEL_UNSET;
1867
1868 return opp;
1869}
1870
1871static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1872 struct opp_table *opp_table)
1873{
1874 struct regulator *reg;
1875 int i;
1876
1877 if (!opp_table->regulators)
1878 return true;
1879
1880 for (i = 0; i < opp_table->regulator_count; i++) {
1881 reg = opp_table->regulators[i];
1882
1883 if (!regulator_is_supported_voltage(reg,
1884 opp->supplies[i].u_volt_min,
1885 opp->supplies[i].u_volt_max)) {
1886 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1887 __func__, opp->supplies[i].u_volt_min,
1888 opp->supplies[i].u_volt_max);
1889 return false;
1890 }
1891 }
1892
1893 return true;
1894}
1895
1896static int _opp_compare_rate(struct opp_table *opp_table,
1897 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1898{
1899 int i;
1900
1901 for (i = 0; i < opp_table->clk_count; i++) {
1902 if (opp1->rates[i] != opp2->rates[i])
1903 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1904 }
1905
1906 /* Same rates for both OPPs */
1907 return 0;
1908}
1909
1910static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1911 struct dev_pm_opp *opp2)
1912{
1913 int i;
1914
1915 for (i = 0; i < opp_table->path_count; i++) {
1916 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1917 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1918 }
1919
1920 /* Same bw for both OPPs */
1921 return 0;
1922}
1923
1924/*
1925 * Returns
1926 * 0: opp1 == opp2
1927 * 1: opp1 > opp2
1928 * -1: opp1 < opp2
1929 */
1930int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1931 struct dev_pm_opp *opp2)
1932{
1933 int ret;
1934
1935 ret = _opp_compare_rate(opp_table, opp1, opp2);
1936 if (ret)
1937 return ret;
1938
1939 ret = _opp_compare_bw(opp_table, opp1, opp2);
1940 if (ret)
1941 return ret;
1942
1943 if (opp1->level != opp2->level)
1944 return opp1->level < opp2->level ? -1 : 1;
1945
1946 /* Duplicate OPPs */
1947 return 0;
1948}
1949
1950static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1951 struct opp_table *opp_table,
1952 struct list_head **head)
1953{
1954 struct dev_pm_opp *opp;
1955 int opp_cmp;
1956
1957 /*
1958 * Insert new OPP in order of increasing frequency and discard if
1959 * already present.
1960 *
1961 * Need to use &opp_table->opp_list in the condition part of the 'for'
1962 * loop, don't replace it with head otherwise it will become an infinite
1963 * loop.
1964 */
1965 list_for_each_entry(opp, &opp_table->opp_list, node) {
1966 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1967 if (opp_cmp > 0) {
1968 *head = &opp->node;
1969 continue;
1970 }
1971
1972 if (opp_cmp < 0)
1973 return 0;
1974
1975 /* Duplicate OPPs */
1976 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1977 __func__, opp->rates[0], opp->supplies[0].u_volt,
1978 opp->available, new_opp->rates[0],
1979 new_opp->supplies[0].u_volt, new_opp->available);
1980
1981 /* Should we compare voltages for all regulators here ? */
1982 return opp->available &&
1983 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1984 }
1985
1986 return 0;
1987}
1988
1989void _required_opps_available(struct dev_pm_opp *opp, int count)
1990{
1991 int i;
1992
1993 for (i = 0; i < count; i++) {
1994 if (opp->required_opps[i]->available)
1995 continue;
1996
1997 opp->available = false;
1998 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1999 __func__, opp->required_opps[i]->np, opp->rates[0]);
2000 return;
2001 }
2002}
2003
2004/*
2005 * Returns:
2006 * 0: On success. And appropriate error message for duplicate OPPs.
2007 * -EBUSY: For OPP with same freq/volt and is available. The callers of
2008 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2009 * sure we don't print error messages unnecessarily if different parts of
2010 * kernel try to initialize the OPP table.
2011 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2012 * should be considered an error by the callers of _opp_add().
2013 */
2014int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2015 struct opp_table *opp_table)
2016{
2017 struct list_head *head;
2018 int ret;
2019
2020 mutex_lock(&opp_table->lock);
2021 head = &opp_table->opp_list;
2022
2023 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2024 if (ret) {
2025 mutex_unlock(&opp_table->lock);
2026 return ret;
2027 }
2028
2029 list_add(&new_opp->node, head);
2030 mutex_unlock(&opp_table->lock);
2031
2032 new_opp->opp_table = opp_table;
2033 kref_init(&new_opp->kref);
2034
2035 opp_debug_create_one(new_opp, opp_table);
2036
2037 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2038 new_opp->available = false;
2039 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2040 __func__, new_opp->rates[0]);
2041 }
2042
2043 /* required-opps not fully initialized yet */
2044 if (lazy_linking_pending(opp_table))
2045 return 0;
2046
2047 _required_opps_available(new_opp, opp_table->required_opp_count);
2048
2049 return 0;
2050}
2051
2052/**
2053 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2054 * @opp_table: OPP table
2055 * @dev: device for which we do this operation
2056 * @data: The OPP data for the OPP to add
2057 * @dynamic: Dynamically added OPPs.
2058 *
2059 * This function adds an opp definition to the opp table and returns status.
2060 * The opp is made available by default and it can be controlled using
2061 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2062 *
2063 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2064 * and freed by dev_pm_opp_of_remove_table.
2065 *
2066 * Return:
2067 * 0 On success OR
2068 * Duplicate OPPs (both freq and volt are same) and opp->available
2069 * -EEXIST Freq are same and volt are different OR
2070 * Duplicate OPPs (both freq and volt are same) and !opp->available
2071 * -ENOMEM Memory allocation failure
2072 */
2073int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2074 struct dev_pm_opp_data *data, bool dynamic)
2075{
2076 struct dev_pm_opp *new_opp;
2077 unsigned long tol, u_volt = data->u_volt;
2078 int ret;
2079
2080 if (!assert_single_clk(opp_table, 0))
2081 return -EINVAL;
2082
2083 new_opp = _opp_allocate(opp_table);
2084 if (!new_opp)
2085 return -ENOMEM;
2086
2087 /* populate the opp table */
2088 new_opp->rates[0] = data->freq;
2089 new_opp->level = data->level;
2090 new_opp->turbo = data->turbo;
2091 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2092 new_opp->supplies[0].u_volt = u_volt;
2093 new_opp->supplies[0].u_volt_min = u_volt - tol;
2094 new_opp->supplies[0].u_volt_max = u_volt + tol;
2095 new_opp->available = true;
2096 new_opp->dynamic = dynamic;
2097
2098 ret = _opp_add(dev, new_opp, opp_table);
2099 if (ret) {
2100 /* Don't return error for duplicate OPPs */
2101 if (ret == -EBUSY)
2102 ret = 0;
2103 goto free_opp;
2104 }
2105
2106 /*
2107 * Notify the changes in the availability of the operable
2108 * frequency/voltage list.
2109 */
2110 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2111 return 0;
2112
2113free_opp:
2114 _opp_free(new_opp);
2115
2116 return ret;
2117}
2118
2119/*
2120 * This is required only for the V2 bindings, and it enables a platform to
2121 * specify the hierarchy of versions it supports. OPP layer will then enable
2122 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2123 * property.
2124 */
2125static int _opp_set_supported_hw(struct opp_table *opp_table,
2126 const u32 *versions, unsigned int count)
2127{
2128 /* Another CPU that shares the OPP table has set the property ? */
2129 if (opp_table->supported_hw)
2130 return 0;
2131
2132 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2133 GFP_KERNEL);
2134 if (!opp_table->supported_hw)
2135 return -ENOMEM;
2136
2137 opp_table->supported_hw_count = count;
2138
2139 return 0;
2140}
2141
2142static void _opp_put_supported_hw(struct opp_table *opp_table)
2143{
2144 if (opp_table->supported_hw) {
2145 kfree(opp_table->supported_hw);
2146 opp_table->supported_hw = NULL;
2147 opp_table->supported_hw_count = 0;
2148 }
2149}
2150
2151/*
2152 * This is required only for the V2 bindings, and it enables a platform to
2153 * specify the extn to be used for certain property names. The properties to
2154 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2155 * should postfix the property name with -<name> while looking for them.
2156 */
2157static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2158{
2159 /* Another CPU that shares the OPP table has set the property ? */
2160 if (!opp_table->prop_name) {
2161 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2162 if (!opp_table->prop_name)
2163 return -ENOMEM;
2164 }
2165
2166 return 0;
2167}
2168
2169static void _opp_put_prop_name(struct opp_table *opp_table)
2170{
2171 if (opp_table->prop_name) {
2172 kfree(opp_table->prop_name);
2173 opp_table->prop_name = NULL;
2174 }
2175}
2176
2177/*
2178 * In order to support OPP switching, OPP layer needs to know the name of the
2179 * device's regulators, as the core would be required to switch voltages as
2180 * well.
2181 *
2182 * This must be called before any OPPs are initialized for the device.
2183 */
2184static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2185 const char * const names[])
2186{
2187 const char * const *temp = names;
2188 struct regulator *reg;
2189 int count = 0, ret, i;
2190
2191 /* Count number of regulators */
2192 while (*temp++)
2193 count++;
2194
2195 if (!count)
2196 return -EINVAL;
2197
2198 /* Another CPU that shares the OPP table has set the regulators ? */
2199 if (opp_table->regulators)
2200 return 0;
2201
2202 opp_table->regulators = kmalloc_array(count,
2203 sizeof(*opp_table->regulators),
2204 GFP_KERNEL);
2205 if (!opp_table->regulators)
2206 return -ENOMEM;
2207
2208 for (i = 0; i < count; i++) {
2209 reg = regulator_get_optional(dev, names[i]);
2210 if (IS_ERR(reg)) {
2211 ret = dev_err_probe(dev, PTR_ERR(reg),
2212 "%s: no regulator (%s) found\n",
2213 __func__, names[i]);
2214 goto free_regulators;
2215 }
2216
2217 opp_table->regulators[i] = reg;
2218 }
2219
2220 opp_table->regulator_count = count;
2221
2222 /* Set generic config_regulators() for single regulators here */
2223 if (count == 1)
2224 opp_table->config_regulators = _opp_config_regulator_single;
2225
2226 return 0;
2227
2228free_regulators:
2229 while (i != 0)
2230 regulator_put(opp_table->regulators[--i]);
2231
2232 kfree(opp_table->regulators);
2233 opp_table->regulators = NULL;
2234 opp_table->regulator_count = -1;
2235
2236 return ret;
2237}
2238
2239static void _opp_put_regulators(struct opp_table *opp_table)
2240{
2241 int i;
2242
2243 if (!opp_table->regulators)
2244 return;
2245
2246 if (opp_table->enabled) {
2247 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2248 regulator_disable(opp_table->regulators[i]);
2249 }
2250
2251 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2252 regulator_put(opp_table->regulators[i]);
2253
2254 kfree(opp_table->regulators);
2255 opp_table->regulators = NULL;
2256 opp_table->regulator_count = -1;
2257}
2258
2259static void _put_clks(struct opp_table *opp_table, int count)
2260{
2261 int i;
2262
2263 for (i = count - 1; i >= 0; i--)
2264 clk_put(opp_table->clks[i]);
2265
2266 kfree(opp_table->clks);
2267 opp_table->clks = NULL;
2268}
2269
2270/*
2271 * In order to support OPP switching, OPP layer needs to get pointers to the
2272 * clocks for the device. Simple cases work fine without using this routine
2273 * (i.e. by passing connection-id as NULL), but for a device with multiple
2274 * clocks available, the OPP core needs to know the exact names of the clks to
2275 * use.
2276 *
2277 * This must be called before any OPPs are initialized for the device.
2278 */
2279static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2280 const char * const names[],
2281 config_clks_t config_clks)
2282{
2283 const char * const *temp = names;
2284 int count = 0, ret, i;
2285 struct clk *clk;
2286
2287 /* Count number of clks */
2288 while (*temp++)
2289 count++;
2290
2291 /*
2292 * This is a special case where we have a single clock, whose connection
2293 * id name is NULL, i.e. first two entries are NULL in the array.
2294 */
2295 if (!count && !names[1])
2296 count = 1;
2297
2298 /* Fail early for invalid configurations */
2299 if (!count || (!config_clks && count > 1))
2300 return -EINVAL;
2301
2302 /* Another CPU that shares the OPP table has set the clkname ? */
2303 if (opp_table->clks)
2304 return 0;
2305
2306 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2307 GFP_KERNEL);
2308 if (!opp_table->clks)
2309 return -ENOMEM;
2310
2311 /* Find clks for the device */
2312 for (i = 0; i < count; i++) {
2313 clk = clk_get(dev, names[i]);
2314 if (IS_ERR(clk)) {
2315 ret = dev_err_probe(dev, PTR_ERR(clk),
2316 "%s: Couldn't find clock with name: %s\n",
2317 __func__, names[i]);
2318 goto free_clks;
2319 }
2320
2321 opp_table->clks[i] = clk;
2322 }
2323
2324 opp_table->clk_count = count;
2325 opp_table->config_clks = config_clks;
2326
2327 /* Set generic single clk set here */
2328 if (count == 1) {
2329 if (!opp_table->config_clks)
2330 opp_table->config_clks = _opp_config_clk_single;
2331
2332 /*
2333 * We could have just dropped the "clk" field and used "clks"
2334 * everywhere. Instead we kept the "clk" field around for
2335 * following reasons:
2336 *
2337 * - avoiding clks[0] everywhere else.
2338 * - not running single clk helpers for multiple clk usecase by
2339 * mistake.
2340 *
2341 * Since this is single-clk case, just update the clk pointer
2342 * too.
2343 */
2344 opp_table->clk = opp_table->clks[0];
2345 }
2346
2347 return 0;
2348
2349free_clks:
2350 _put_clks(opp_table, i);
2351 return ret;
2352}
2353
2354static void _opp_put_clknames(struct opp_table *opp_table)
2355{
2356 if (!opp_table->clks)
2357 return;
2358
2359 opp_table->config_clks = NULL;
2360 opp_table->clk = ERR_PTR(-ENODEV);
2361
2362 _put_clks(opp_table, opp_table->clk_count);
2363}
2364
2365/*
2366 * This is useful to support platforms with multiple regulators per device.
2367 *
2368 * This must be called before any OPPs are initialized for the device.
2369 */
2370static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2371 struct device *dev, config_regulators_t config_regulators)
2372{
2373 /* Another CPU that shares the OPP table has set the helper ? */
2374 if (!opp_table->config_regulators)
2375 opp_table->config_regulators = config_regulators;
2376
2377 return 0;
2378}
2379
2380static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2381{
2382 if (opp_table->config_regulators)
2383 opp_table->config_regulators = NULL;
2384}
2385
2386static int _opp_set_required_dev(struct opp_table *opp_table,
2387 struct device *dev,
2388 struct device *required_dev,
2389 unsigned int index)
2390{
2391 struct opp_table *required_table, *pd_table;
2392 struct device *gdev;
2393
2394 /* Genpd core takes care of propagation to parent genpd */
2395 if (opp_table->is_genpd) {
2396 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2397 return -EOPNOTSUPP;
2398 }
2399
2400 if (index >= opp_table->required_opp_count) {
2401 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2402 return -EINVAL;
2403 }
2404
2405 required_table = opp_table->required_opp_tables[index];
2406 if (IS_ERR(required_table)) {
2407 dev_err(dev, "Missing OPP table, unable to set the required devs\n");
2408 return -ENODEV;
2409 }
2410
2411 /*
2412 * The required_opp_tables parsing is not perfect, as the OPP core does
2413 * the parsing solely based on the DT node pointers. The core sets the
2414 * required_opp_tables entry to the first OPP table in the "opp_tables"
2415 * list, that matches with the node pointer.
2416 *
2417 * If the target DT OPP table is used by multiple devices and they all
2418 * create separate instances of 'struct opp_table' from it, then it is
2419 * possible that the required_opp_tables entry may be set to the
2420 * incorrect sibling device.
2421 *
2422 * Cross check it again and fix if required.
2423 */
2424 gdev = dev_to_genpd_dev(required_dev);
2425 if (IS_ERR(gdev))
2426 return PTR_ERR(gdev);
2427
2428 pd_table = _find_opp_table(gdev);
2429 if (!IS_ERR(pd_table)) {
2430 if (pd_table != required_table) {
2431 dev_pm_opp_put_opp_table(required_table);
2432 opp_table->required_opp_tables[index] = pd_table;
2433 } else {
2434 dev_pm_opp_put_opp_table(pd_table);
2435 }
2436 }
2437
2438 opp_table->required_devs[index] = required_dev;
2439 return 0;
2440}
2441
2442static void _opp_put_required_dev(struct opp_table *opp_table,
2443 unsigned int index)
2444{
2445 opp_table->required_devs[index] = NULL;
2446}
2447
2448static void _opp_clear_config(struct opp_config_data *data)
2449{
2450 if (data->flags & OPP_CONFIG_REQUIRED_DEV)
2451 _opp_put_required_dev(data->opp_table,
2452 data->required_dev_index);
2453 if (data->flags & OPP_CONFIG_REGULATOR)
2454 _opp_put_regulators(data->opp_table);
2455 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2456 _opp_put_supported_hw(data->opp_table);
2457 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2458 _opp_put_config_regulators_helper(data->opp_table);
2459 if (data->flags & OPP_CONFIG_PROP_NAME)
2460 _opp_put_prop_name(data->opp_table);
2461 if (data->flags & OPP_CONFIG_CLK)
2462 _opp_put_clknames(data->opp_table);
2463
2464 dev_pm_opp_put_opp_table(data->opp_table);
2465 kfree(data);
2466}
2467
2468/**
2469 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2470 * @dev: Device for which configuration is being set.
2471 * @config: OPP configuration.
2472 *
2473 * This allows all device OPP configurations to be performed at once.
2474 *
2475 * This must be called before any OPPs are initialized for the device. This may
2476 * be called multiple times for the same OPP table, for example once for each
2477 * CPU that share the same table. This must be balanced by the same number of
2478 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2479 *
2480 * This returns a token to the caller, which must be passed to
2481 * dev_pm_opp_clear_config() to free the resources later. The value of the
2482 * returned token will be >= 1 for success and negative for errors. The minimum
2483 * value of 1 is chosen here to make it easy for callers to manage the resource.
2484 */
2485int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2486{
2487 struct opp_table *opp_table;
2488 struct opp_config_data *data;
2489 unsigned int id;
2490 int ret;
2491
2492 data = kmalloc(sizeof(*data), GFP_KERNEL);
2493 if (!data)
2494 return -ENOMEM;
2495
2496 opp_table = _add_opp_table(dev, false);
2497 if (IS_ERR(opp_table)) {
2498 kfree(data);
2499 return PTR_ERR(opp_table);
2500 }
2501
2502 data->opp_table = opp_table;
2503 data->flags = 0;
2504
2505 /* This should be called before OPPs are initialized */
2506 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2507 ret = -EBUSY;
2508 goto err;
2509 }
2510
2511 /* Configure clocks */
2512 if (config->clk_names) {
2513 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2514 config->config_clks);
2515 if (ret)
2516 goto err;
2517
2518 data->flags |= OPP_CONFIG_CLK;
2519 } else if (config->config_clks) {
2520 /* Don't allow config callback without clocks */
2521 ret = -EINVAL;
2522 goto err;
2523 }
2524
2525 /* Configure property names */
2526 if (config->prop_name) {
2527 ret = _opp_set_prop_name(opp_table, config->prop_name);
2528 if (ret)
2529 goto err;
2530
2531 data->flags |= OPP_CONFIG_PROP_NAME;
2532 }
2533
2534 /* Configure config_regulators helper */
2535 if (config->config_regulators) {
2536 ret = _opp_set_config_regulators_helper(opp_table, dev,
2537 config->config_regulators);
2538 if (ret)
2539 goto err;
2540
2541 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2542 }
2543
2544 /* Configure supported hardware */
2545 if (config->supported_hw) {
2546 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2547 config->supported_hw_count);
2548 if (ret)
2549 goto err;
2550
2551 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2552 }
2553
2554 /* Configure supplies */
2555 if (config->regulator_names) {
2556 ret = _opp_set_regulators(opp_table, dev,
2557 config->regulator_names);
2558 if (ret)
2559 goto err;
2560
2561 data->flags |= OPP_CONFIG_REGULATOR;
2562 }
2563
2564 if (config->required_dev) {
2565 ret = _opp_set_required_dev(opp_table, dev,
2566 config->required_dev,
2567 config->required_dev_index);
2568 if (ret)
2569 goto err;
2570
2571 data->required_dev_index = config->required_dev_index;
2572 data->flags |= OPP_CONFIG_REQUIRED_DEV;
2573 }
2574
2575 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2576 GFP_KERNEL);
2577 if (ret)
2578 goto err;
2579
2580 return id;
2581
2582err:
2583 _opp_clear_config(data);
2584 return ret;
2585}
2586EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2587
2588/**
2589 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2590 * @token: The token returned by dev_pm_opp_set_config() previously.
2591 *
2592 * This allows all device OPP configurations to be cleared at once. This must be
2593 * called once for each call made to dev_pm_opp_set_config(), in order to free
2594 * the OPPs properly.
2595 *
2596 * Currently the first call itself ends up freeing all the OPP configurations,
2597 * while the later ones only drop the OPP table reference. This works well for
2598 * now as we would never want to use an half initialized OPP table and want to
2599 * remove the configurations together.
2600 */
2601void dev_pm_opp_clear_config(int token)
2602{
2603 struct opp_config_data *data;
2604
2605 /*
2606 * This lets the callers call this unconditionally and keep their code
2607 * simple.
2608 */
2609 if (unlikely(token <= 0))
2610 return;
2611
2612 data = xa_erase(&opp_configs, token);
2613 if (WARN_ON(!data))
2614 return;
2615
2616 _opp_clear_config(data);
2617}
2618EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2619
2620static void devm_pm_opp_config_release(void *token)
2621{
2622 dev_pm_opp_clear_config((unsigned long)token);
2623}
2624
2625/**
2626 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2627 * @dev: Device for which configuration is being set.
2628 * @config: OPP configuration.
2629 *
2630 * This allows all device OPP configurations to be performed at once.
2631 * This is a resource-managed variant of dev_pm_opp_set_config().
2632 *
2633 * Return: 0 on success and errorno otherwise.
2634 */
2635int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2636{
2637 int token = dev_pm_opp_set_config(dev, config);
2638
2639 if (token < 0)
2640 return token;
2641
2642 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2643 (void *) ((unsigned long) token));
2644}
2645EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2646
2647/**
2648 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2649 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2650 * @dst_table: Required OPP table of the @src_table.
2651 * @src_opp: OPP from the @src_table.
2652 *
2653 * This function returns the OPP (present in @dst_table) pointed out by the
2654 * "required-opps" property of the @src_opp (present in @src_table).
2655 *
2656 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2657 * use.
2658 *
2659 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2660 */
2661struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2662 struct opp_table *dst_table,
2663 struct dev_pm_opp *src_opp)
2664{
2665 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2666 int i;
2667
2668 if (!src_table || !dst_table || !src_opp ||
2669 !src_table->required_opp_tables)
2670 return ERR_PTR(-EINVAL);
2671
2672 /* required-opps not fully initialized yet */
2673 if (lazy_linking_pending(src_table))
2674 return ERR_PTR(-EBUSY);
2675
2676 for (i = 0; i < src_table->required_opp_count; i++) {
2677 if (src_table->required_opp_tables[i] == dst_table) {
2678 mutex_lock(&src_table->lock);
2679
2680 list_for_each_entry(opp, &src_table->opp_list, node) {
2681 if (opp == src_opp) {
2682 dest_opp = opp->required_opps[i];
2683 dev_pm_opp_get(dest_opp);
2684 break;
2685 }
2686 }
2687
2688 mutex_unlock(&src_table->lock);
2689 break;
2690 }
2691 }
2692
2693 if (IS_ERR(dest_opp)) {
2694 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2695 src_table, dst_table);
2696 }
2697
2698 return dest_opp;
2699}
2700EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2701
2702/**
2703 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2704 * @src_table: OPP table which has dst_table as one of its required OPP table.
2705 * @dst_table: Required OPP table of the src_table.
2706 * @pstate: Current performance state of the src_table.
2707 *
2708 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2709 * "required-opps" property of the OPP (present in @src_table) which has
2710 * performance state set to @pstate.
2711 *
2712 * Return: Zero or positive performance state on success, otherwise negative
2713 * value on errors.
2714 */
2715int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2716 struct opp_table *dst_table,
2717 unsigned int pstate)
2718{
2719 struct dev_pm_opp *opp;
2720 int dest_pstate = -EINVAL;
2721 int i;
2722
2723 /*
2724 * Normally the src_table will have the "required_opps" property set to
2725 * point to one of the OPPs in the dst_table, but in some cases the
2726 * genpd and its master have one to one mapping of performance states
2727 * and so none of them have the "required-opps" property set. Return the
2728 * pstate of the src_table as it is in such cases.
2729 */
2730 if (!src_table || !src_table->required_opp_count)
2731 return pstate;
2732
2733 /* Both OPP tables must belong to genpds */
2734 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2735 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2736 return -EINVAL;
2737 }
2738
2739 /* required-opps not fully initialized yet */
2740 if (lazy_linking_pending(src_table))
2741 return -EBUSY;
2742
2743 for (i = 0; i < src_table->required_opp_count; i++) {
2744 if (src_table->required_opp_tables[i]->np == dst_table->np)
2745 break;
2746 }
2747
2748 if (unlikely(i == src_table->required_opp_count)) {
2749 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2750 __func__, src_table, dst_table);
2751 return -EINVAL;
2752 }
2753
2754 mutex_lock(&src_table->lock);
2755
2756 list_for_each_entry(opp, &src_table->opp_list, node) {
2757 if (opp->level == pstate) {
2758 dest_pstate = opp->required_opps[i]->level;
2759 goto unlock;
2760 }
2761 }
2762
2763 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2764 dst_table);
2765
2766unlock:
2767 mutex_unlock(&src_table->lock);
2768
2769 return dest_pstate;
2770}
2771
2772/**
2773 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2774 * @dev: The device for which we do this operation
2775 * @data: The OPP data for the OPP to add
2776 *
2777 * This function adds an opp definition to the opp table and returns status.
2778 * The opp is made available by default and it can be controlled using
2779 * dev_pm_opp_enable/disable functions.
2780 *
2781 * Return:
2782 * 0 On success OR
2783 * Duplicate OPPs (both freq and volt are same) and opp->available
2784 * -EEXIST Freq are same and volt are different OR
2785 * Duplicate OPPs (both freq and volt are same) and !opp->available
2786 * -ENOMEM Memory allocation failure
2787 */
2788int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2789{
2790 struct opp_table *opp_table;
2791 int ret;
2792
2793 opp_table = _add_opp_table(dev, true);
2794 if (IS_ERR(opp_table))
2795 return PTR_ERR(opp_table);
2796
2797 /* Fix regulator count for dynamic OPPs */
2798 opp_table->regulator_count = 1;
2799
2800 ret = _opp_add_v1(opp_table, dev, data, true);
2801 if (ret)
2802 dev_pm_opp_put_opp_table(opp_table);
2803
2804 return ret;
2805}
2806EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2807
2808/**
2809 * _opp_set_availability() - helper to set the availability of an opp
2810 * @dev: device for which we do this operation
2811 * @freq: OPP frequency to modify availability
2812 * @availability_req: availability status requested for this opp
2813 *
2814 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2815 * which is isolated here.
2816 *
2817 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2818 * copy operation, returns 0 if no modification was done OR modification was
2819 * successful.
2820 */
2821static int _opp_set_availability(struct device *dev, unsigned long freq,
2822 bool availability_req)
2823{
2824 struct opp_table *opp_table;
2825 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2826 int r = 0;
2827
2828 /* Find the opp_table */
2829 opp_table = _find_opp_table(dev);
2830 if (IS_ERR(opp_table)) {
2831 r = PTR_ERR(opp_table);
2832 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2833 return r;
2834 }
2835
2836 if (!assert_single_clk(opp_table, 0)) {
2837 r = -EINVAL;
2838 goto put_table;
2839 }
2840
2841 mutex_lock(&opp_table->lock);
2842
2843 /* Do we have the frequency? */
2844 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2845 if (tmp_opp->rates[0] == freq) {
2846 opp = tmp_opp;
2847 break;
2848 }
2849 }
2850
2851 if (IS_ERR(opp)) {
2852 r = PTR_ERR(opp);
2853 goto unlock;
2854 }
2855
2856 /* Is update really needed? */
2857 if (opp->available == availability_req)
2858 goto unlock;
2859
2860 opp->available = availability_req;
2861
2862 dev_pm_opp_get(opp);
2863 mutex_unlock(&opp_table->lock);
2864
2865 /* Notify the change of the OPP availability */
2866 if (availability_req)
2867 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2868 opp);
2869 else
2870 blocking_notifier_call_chain(&opp_table->head,
2871 OPP_EVENT_DISABLE, opp);
2872
2873 dev_pm_opp_put(opp);
2874 goto put_table;
2875
2876unlock:
2877 mutex_unlock(&opp_table->lock);
2878put_table:
2879 dev_pm_opp_put_opp_table(opp_table);
2880 return r;
2881}
2882
2883/**
2884 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2885 * @dev: device for which we do this operation
2886 * @freq: OPP frequency to adjust voltage of
2887 * @u_volt: new OPP target voltage
2888 * @u_volt_min: new OPP min voltage
2889 * @u_volt_max: new OPP max voltage
2890 *
2891 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2892 * copy operation, returns 0 if no modifcation was done OR modification was
2893 * successful.
2894 */
2895int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2896 unsigned long u_volt, unsigned long u_volt_min,
2897 unsigned long u_volt_max)
2898
2899{
2900 struct opp_table *opp_table;
2901 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2902 int r = 0;
2903
2904 /* Find the opp_table */
2905 opp_table = _find_opp_table(dev);
2906 if (IS_ERR(opp_table)) {
2907 r = PTR_ERR(opp_table);
2908 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2909 return r;
2910 }
2911
2912 if (!assert_single_clk(opp_table, 0)) {
2913 r = -EINVAL;
2914 goto put_table;
2915 }
2916
2917 mutex_lock(&opp_table->lock);
2918
2919 /* Do we have the frequency? */
2920 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2921 if (tmp_opp->rates[0] == freq) {
2922 opp = tmp_opp;
2923 break;
2924 }
2925 }
2926
2927 if (IS_ERR(opp)) {
2928 r = PTR_ERR(opp);
2929 goto adjust_unlock;
2930 }
2931
2932 /* Is update really needed? */
2933 if (opp->supplies->u_volt == u_volt)
2934 goto adjust_unlock;
2935
2936 opp->supplies->u_volt = u_volt;
2937 opp->supplies->u_volt_min = u_volt_min;
2938 opp->supplies->u_volt_max = u_volt_max;
2939
2940 dev_pm_opp_get(opp);
2941 mutex_unlock(&opp_table->lock);
2942
2943 /* Notify the voltage change of the OPP */
2944 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2945 opp);
2946
2947 dev_pm_opp_put(opp);
2948 goto put_table;
2949
2950adjust_unlock:
2951 mutex_unlock(&opp_table->lock);
2952put_table:
2953 dev_pm_opp_put_opp_table(opp_table);
2954 return r;
2955}
2956EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2957
2958/**
2959 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2960 * @dev: device for which we do this operation
2961 *
2962 * Sync voltage state of the OPP table regulators.
2963 *
2964 * Return: 0 on success or a negative error value.
2965 */
2966int dev_pm_opp_sync_regulators(struct device *dev)
2967{
2968 struct opp_table *opp_table;
2969 struct regulator *reg;
2970 int i, ret = 0;
2971
2972 /* Device may not have OPP table */
2973 opp_table = _find_opp_table(dev);
2974 if (IS_ERR(opp_table))
2975 return 0;
2976
2977 /* Regulator may not be required for the device */
2978 if (unlikely(!opp_table->regulators))
2979 goto put_table;
2980
2981 /* Nothing to sync if voltage wasn't changed */
2982 if (!opp_table->enabled)
2983 goto put_table;
2984
2985 for (i = 0; i < opp_table->regulator_count; i++) {
2986 reg = opp_table->regulators[i];
2987 ret = regulator_sync_voltage(reg);
2988 if (ret)
2989 break;
2990 }
2991put_table:
2992 /* Drop reference taken by _find_opp_table() */
2993 dev_pm_opp_put_opp_table(opp_table);
2994
2995 return ret;
2996}
2997EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2998
2999/**
3000 * dev_pm_opp_enable() - Enable a specific OPP
3001 * @dev: device for which we do this operation
3002 * @freq: OPP frequency to enable
3003 *
3004 * Enables a provided opp. If the operation is valid, this returns 0, else the
3005 * corresponding error value. It is meant to be used for users an OPP available
3006 * after being temporarily made unavailable with dev_pm_opp_disable.
3007 *
3008 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3009 * copy operation, returns 0 if no modification was done OR modification was
3010 * successful.
3011 */
3012int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3013{
3014 return _opp_set_availability(dev, freq, true);
3015}
3016EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3017
3018/**
3019 * dev_pm_opp_disable() - Disable a specific OPP
3020 * @dev: device for which we do this operation
3021 * @freq: OPP frequency to disable
3022 *
3023 * Disables a provided opp. If the operation is valid, this returns
3024 * 0, else the corresponding error value. It is meant to be a temporary
3025 * control by users to make this OPP not available until the circumstances are
3026 * right to make it available again (with a call to dev_pm_opp_enable).
3027 *
3028 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3029 * copy operation, returns 0 if no modification was done OR modification was
3030 * successful.
3031 */
3032int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3033{
3034 return _opp_set_availability(dev, freq, false);
3035}
3036EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3037
3038/**
3039 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3040 * @dev: Device for which notifier needs to be registered
3041 * @nb: Notifier block to be registered
3042 *
3043 * Return: 0 on success or a negative error value.
3044 */
3045int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3046{
3047 struct opp_table *opp_table;
3048 int ret;
3049
3050 opp_table = _find_opp_table(dev);
3051 if (IS_ERR(opp_table))
3052 return PTR_ERR(opp_table);
3053
3054 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3055
3056 dev_pm_opp_put_opp_table(opp_table);
3057
3058 return ret;
3059}
3060EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3061
3062/**
3063 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3064 * @dev: Device for which notifier needs to be unregistered
3065 * @nb: Notifier block to be unregistered
3066 *
3067 * Return: 0 on success or a negative error value.
3068 */
3069int dev_pm_opp_unregister_notifier(struct device *dev,
3070 struct notifier_block *nb)
3071{
3072 struct opp_table *opp_table;
3073 int ret;
3074
3075 opp_table = _find_opp_table(dev);
3076 if (IS_ERR(opp_table))
3077 return PTR_ERR(opp_table);
3078
3079 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3080
3081 dev_pm_opp_put_opp_table(opp_table);
3082
3083 return ret;
3084}
3085EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3086
3087/**
3088 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3089 * @dev: device pointer used to lookup OPP table.
3090 *
3091 * Free both OPPs created using static entries present in DT and the
3092 * dynamically added entries.
3093 */
3094void dev_pm_opp_remove_table(struct device *dev)
3095{
3096 struct opp_table *opp_table;
3097
3098 /* Check for existing table for 'dev' */
3099 opp_table = _find_opp_table(dev);
3100 if (IS_ERR(opp_table)) {
3101 int error = PTR_ERR(opp_table);
3102
3103 if (error != -ENODEV)
3104 WARN(1, "%s: opp_table: %d\n",
3105 IS_ERR_OR_NULL(dev) ?
3106 "Invalid device" : dev_name(dev),
3107 error);
3108 return;
3109 }
3110
3111 /*
3112 * Drop the extra reference only if the OPP table was successfully added
3113 * with dev_pm_opp_of_add_table() earlier.
3114 **/
3115 if (_opp_remove_all_static(opp_table))
3116 dev_pm_opp_put_opp_table(opp_table);
3117
3118 /* Drop reference taken by _find_opp_table() */
3119 dev_pm_opp_put_opp_table(opp_table);
3120}
3121EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* OPP tables with uninitialized required OPPs */
33LIST_HEAD(lazy_opp_tables);
34
35/* Lock to allow exclusive modification to the device and opp lists */
36DEFINE_MUTEX(opp_table_lock);
37/* Flag indicating that opp_tables list is being updated at the moment */
38static bool opp_tables_busy;
39
40/* OPP ID allocator */
41static DEFINE_XARRAY_ALLOC1(opp_configs);
42
43static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
44{
45 struct opp_device *opp_dev;
46 bool found = false;
47
48 mutex_lock(&opp_table->lock);
49 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
50 if (opp_dev->dev == dev) {
51 found = true;
52 break;
53 }
54
55 mutex_unlock(&opp_table->lock);
56 return found;
57}
58
59static struct opp_table *_find_opp_table_unlocked(struct device *dev)
60{
61 struct opp_table *opp_table;
62
63 list_for_each_entry(opp_table, &opp_tables, node) {
64 if (_find_opp_dev(dev, opp_table)) {
65 _get_opp_table_kref(opp_table);
66 return opp_table;
67 }
68 }
69
70 return ERR_PTR(-ENODEV);
71}
72
73/**
74 * _find_opp_table() - find opp_table struct using device pointer
75 * @dev: device pointer used to lookup OPP table
76 *
77 * Search OPP table for one containing matching device.
78 *
79 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
80 * -EINVAL based on type of error.
81 *
82 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
83 */
84struct opp_table *_find_opp_table(struct device *dev)
85{
86 struct opp_table *opp_table;
87
88 if (IS_ERR_OR_NULL(dev)) {
89 pr_err("%s: Invalid parameters\n", __func__);
90 return ERR_PTR(-EINVAL);
91 }
92
93 mutex_lock(&opp_table_lock);
94 opp_table = _find_opp_table_unlocked(dev);
95 mutex_unlock(&opp_table_lock);
96
97 return opp_table;
98}
99
100/*
101 * Returns true if multiple clocks aren't there, else returns false with WARN.
102 *
103 * We don't force clk_count == 1 here as there are users who don't have a clock
104 * representation in the OPP table and manage the clock configuration themselves
105 * in an platform specific way.
106 */
107static bool assert_single_clk(struct opp_table *opp_table)
108{
109 return !WARN_ON(opp_table->clk_count > 1);
110}
111
112/**
113 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
114 * @opp: opp for which voltage has to be returned for
115 *
116 * Return: voltage in micro volt corresponding to the opp, else
117 * return 0
118 *
119 * This is useful only for devices with single power supply.
120 */
121unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
122{
123 if (IS_ERR_OR_NULL(opp)) {
124 pr_err("%s: Invalid parameters\n", __func__);
125 return 0;
126 }
127
128 return opp->supplies[0].u_volt;
129}
130EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
131
132/**
133 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
134 * @opp: opp for which voltage has to be returned for
135 * @supplies: Placeholder for copying the supply information.
136 *
137 * Return: negative error number on failure, 0 otherwise on success after
138 * setting @supplies.
139 *
140 * This can be used for devices with any number of power supplies. The caller
141 * must ensure the @supplies array must contain space for each regulator.
142 */
143int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
144 struct dev_pm_opp_supply *supplies)
145{
146 if (IS_ERR_OR_NULL(opp) || !supplies) {
147 pr_err("%s: Invalid parameters\n", __func__);
148 return -EINVAL;
149 }
150
151 memcpy(supplies, opp->supplies,
152 sizeof(*supplies) * opp->opp_table->regulator_count);
153 return 0;
154}
155EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
156
157/**
158 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
159 * @opp: opp for which power has to be returned for
160 *
161 * Return: power in micro watt corresponding to the opp, else
162 * return 0
163 *
164 * This is useful only for devices with single power supply.
165 */
166unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
167{
168 unsigned long opp_power = 0;
169 int i;
170
171 if (IS_ERR_OR_NULL(opp)) {
172 pr_err("%s: Invalid parameters\n", __func__);
173 return 0;
174 }
175 for (i = 0; i < opp->opp_table->regulator_count; i++)
176 opp_power += opp->supplies[i].u_watt;
177
178 return opp_power;
179}
180EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
181
182/**
183 * dev_pm_opp_get_freq() - Gets the frequency corresponding to an available opp
184 * @opp: opp for which frequency has to be returned for
185 *
186 * Return: frequency in hertz corresponding to the opp, else
187 * return 0
188 */
189unsigned long dev_pm_opp_get_freq(struct dev_pm_opp *opp)
190{
191 if (IS_ERR_OR_NULL(opp)) {
192 pr_err("%s: Invalid parameters\n", __func__);
193 return 0;
194 }
195
196 if (!assert_single_clk(opp->opp_table))
197 return 0;
198
199 return opp->rates[0];
200}
201EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq);
202
203/**
204 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
205 * @opp: opp for which level value has to be returned for
206 *
207 * Return: level read from device tree corresponding to the opp, else
208 * return 0.
209 */
210unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
211{
212 if (IS_ERR_OR_NULL(opp) || !opp->available) {
213 pr_err("%s: Invalid parameters\n", __func__);
214 return 0;
215 }
216
217 return opp->level;
218}
219EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
220
221/**
222 * dev_pm_opp_get_required_pstate() - Gets the required performance state
223 * corresponding to an available opp
224 * @opp: opp for which performance state has to be returned for
225 * @index: index of the required opp
226 *
227 * Return: performance state read from device tree corresponding to the
228 * required opp, else return 0.
229 */
230unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
231 unsigned int index)
232{
233 if (IS_ERR_OR_NULL(opp) || !opp->available ||
234 index >= opp->opp_table->required_opp_count) {
235 pr_err("%s: Invalid parameters\n", __func__);
236 return 0;
237 }
238
239 /* required-opps not fully initialized yet */
240 if (lazy_linking_pending(opp->opp_table))
241 return 0;
242
243 return opp->required_opps[index]->pstate;
244}
245EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
246
247/**
248 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
249 * @opp: opp for which turbo mode is being verified
250 *
251 * Turbo OPPs are not for normal use, and can be enabled (under certain
252 * conditions) for short duration of times to finish high throughput work
253 * quickly. Running on them for longer times may overheat the chip.
254 *
255 * Return: true if opp is turbo opp, else false.
256 */
257bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
258{
259 if (IS_ERR_OR_NULL(opp) || !opp->available) {
260 pr_err("%s: Invalid parameters\n", __func__);
261 return false;
262 }
263
264 return opp->turbo;
265}
266EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
267
268/**
269 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
270 * @dev: device for which we do this operation
271 *
272 * Return: This function returns the max clock latency in nanoseconds.
273 */
274unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
275{
276 struct opp_table *opp_table;
277 unsigned long clock_latency_ns;
278
279 opp_table = _find_opp_table(dev);
280 if (IS_ERR(opp_table))
281 return 0;
282
283 clock_latency_ns = opp_table->clock_latency_ns_max;
284
285 dev_pm_opp_put_opp_table(opp_table);
286
287 return clock_latency_ns;
288}
289EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
290
291/**
292 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
293 * @dev: device for which we do this operation
294 *
295 * Return: This function returns the max voltage latency in nanoseconds.
296 */
297unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
298{
299 struct opp_table *opp_table;
300 struct dev_pm_opp *opp;
301 struct regulator *reg;
302 unsigned long latency_ns = 0;
303 int ret, i, count;
304 struct {
305 unsigned long min;
306 unsigned long max;
307 } *uV;
308
309 opp_table = _find_opp_table(dev);
310 if (IS_ERR(opp_table))
311 return 0;
312
313 /* Regulator may not be required for the device */
314 if (!opp_table->regulators)
315 goto put_opp_table;
316
317 count = opp_table->regulator_count;
318
319 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
320 if (!uV)
321 goto put_opp_table;
322
323 mutex_lock(&opp_table->lock);
324
325 for (i = 0; i < count; i++) {
326 uV[i].min = ~0;
327 uV[i].max = 0;
328
329 list_for_each_entry(opp, &opp_table->opp_list, node) {
330 if (!opp->available)
331 continue;
332
333 if (opp->supplies[i].u_volt_min < uV[i].min)
334 uV[i].min = opp->supplies[i].u_volt_min;
335 if (opp->supplies[i].u_volt_max > uV[i].max)
336 uV[i].max = opp->supplies[i].u_volt_max;
337 }
338 }
339
340 mutex_unlock(&opp_table->lock);
341
342 /*
343 * The caller needs to ensure that opp_table (and hence the regulator)
344 * isn't freed, while we are executing this routine.
345 */
346 for (i = 0; i < count; i++) {
347 reg = opp_table->regulators[i];
348 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
349 if (ret > 0)
350 latency_ns += ret * 1000;
351 }
352
353 kfree(uV);
354put_opp_table:
355 dev_pm_opp_put_opp_table(opp_table);
356
357 return latency_ns;
358}
359EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
360
361/**
362 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
363 * nanoseconds
364 * @dev: device for which we do this operation
365 *
366 * Return: This function returns the max transition latency, in nanoseconds, to
367 * switch from one OPP to other.
368 */
369unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
370{
371 return dev_pm_opp_get_max_volt_latency(dev) +
372 dev_pm_opp_get_max_clock_latency(dev);
373}
374EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
375
376/**
377 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
378 * @dev: device for which we do this operation
379 *
380 * Return: This function returns the frequency of the OPP marked as suspend_opp
381 * if one is available, else returns 0;
382 */
383unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
384{
385 struct opp_table *opp_table;
386 unsigned long freq = 0;
387
388 opp_table = _find_opp_table(dev);
389 if (IS_ERR(opp_table))
390 return 0;
391
392 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
393 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
394
395 dev_pm_opp_put_opp_table(opp_table);
396
397 return freq;
398}
399EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
400
401int _get_opp_count(struct opp_table *opp_table)
402{
403 struct dev_pm_opp *opp;
404 int count = 0;
405
406 mutex_lock(&opp_table->lock);
407
408 list_for_each_entry(opp, &opp_table->opp_list, node) {
409 if (opp->available)
410 count++;
411 }
412
413 mutex_unlock(&opp_table->lock);
414
415 return count;
416}
417
418/**
419 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
420 * @dev: device for which we do this operation
421 *
422 * Return: This function returns the number of available opps if there are any,
423 * else returns 0 if none or the corresponding error value.
424 */
425int dev_pm_opp_get_opp_count(struct device *dev)
426{
427 struct opp_table *opp_table;
428 int count;
429
430 opp_table = _find_opp_table(dev);
431 if (IS_ERR(opp_table)) {
432 count = PTR_ERR(opp_table);
433 dev_dbg(dev, "%s: OPP table not found (%d)\n",
434 __func__, count);
435 return count;
436 }
437
438 count = _get_opp_count(opp_table);
439 dev_pm_opp_put_opp_table(opp_table);
440
441 return count;
442}
443EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
444
445/* Helpers to read keys */
446static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
447{
448 return opp->rates[0];
449}
450
451static unsigned long _read_level(struct dev_pm_opp *opp, int index)
452{
453 return opp->level;
454}
455
456static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
457{
458 return opp->bandwidth[index].peak;
459}
460
461/* Generic comparison helpers */
462static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
463 unsigned long opp_key, unsigned long key)
464{
465 if (opp_key == key) {
466 *opp = temp_opp;
467 return true;
468 }
469
470 return false;
471}
472
473static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
474 unsigned long opp_key, unsigned long key)
475{
476 if (opp_key >= key) {
477 *opp = temp_opp;
478 return true;
479 }
480
481 return false;
482}
483
484static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
485 unsigned long opp_key, unsigned long key)
486{
487 if (opp_key > key)
488 return true;
489
490 *opp = temp_opp;
491 return false;
492}
493
494/* Generic key finding helpers */
495static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
496 unsigned long *key, int index, bool available,
497 unsigned long (*read)(struct dev_pm_opp *opp, int index),
498 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
499 unsigned long opp_key, unsigned long key),
500 bool (*assert)(struct opp_table *opp_table))
501{
502 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
503
504 /* Assert that the requirement is met */
505 if (assert && !assert(opp_table))
506 return ERR_PTR(-EINVAL);
507
508 mutex_lock(&opp_table->lock);
509
510 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
511 if (temp_opp->available == available) {
512 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
513 break;
514 }
515 }
516
517 /* Increment the reference count of OPP */
518 if (!IS_ERR(opp)) {
519 *key = read(opp, index);
520 dev_pm_opp_get(opp);
521 }
522
523 mutex_unlock(&opp_table->lock);
524
525 return opp;
526}
527
528static struct dev_pm_opp *
529_find_key(struct device *dev, unsigned long *key, int index, bool available,
530 unsigned long (*read)(struct dev_pm_opp *opp, int index),
531 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
532 unsigned long opp_key, unsigned long key),
533 bool (*assert)(struct opp_table *opp_table))
534{
535 struct opp_table *opp_table;
536 struct dev_pm_opp *opp;
537
538 opp_table = _find_opp_table(dev);
539 if (IS_ERR(opp_table)) {
540 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
541 PTR_ERR(opp_table));
542 return ERR_CAST(opp_table);
543 }
544
545 opp = _opp_table_find_key(opp_table, key, index, available, read,
546 compare, assert);
547
548 dev_pm_opp_put_opp_table(opp_table);
549
550 return opp;
551}
552
553static struct dev_pm_opp *_find_key_exact(struct device *dev,
554 unsigned long key, int index, bool available,
555 unsigned long (*read)(struct dev_pm_opp *opp, int index),
556 bool (*assert)(struct opp_table *opp_table))
557{
558 /*
559 * The value of key will be updated here, but will be ignored as the
560 * caller doesn't need it.
561 */
562 return _find_key(dev, &key, index, available, read, _compare_exact,
563 assert);
564}
565
566static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
567 unsigned long *key, int index, bool available,
568 unsigned long (*read)(struct dev_pm_opp *opp, int index),
569 bool (*assert)(struct opp_table *opp_table))
570{
571 return _opp_table_find_key(opp_table, key, index, available, read,
572 _compare_ceil, assert);
573}
574
575static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
576 int index, bool available,
577 unsigned long (*read)(struct dev_pm_opp *opp, int index),
578 bool (*assert)(struct opp_table *opp_table))
579{
580 return _find_key(dev, key, index, available, read, _compare_ceil,
581 assert);
582}
583
584static struct dev_pm_opp *_find_key_floor(struct device *dev,
585 unsigned long *key, int index, bool available,
586 unsigned long (*read)(struct dev_pm_opp *opp, int index),
587 bool (*assert)(struct opp_table *opp_table))
588{
589 return _find_key(dev, key, index, available, read, _compare_floor,
590 assert);
591}
592
593/**
594 * dev_pm_opp_find_freq_exact() - search for an exact frequency
595 * @dev: device for which we do this operation
596 * @freq: frequency to search for
597 * @available: true/false - match for available opp
598 *
599 * Return: Searches for exact match in the opp table and returns pointer to the
600 * matching opp if found, else returns ERR_PTR in case of error and should
601 * be handled using IS_ERR. Error return values can be:
602 * EINVAL: for bad pointer
603 * ERANGE: no match found for search
604 * ENODEV: if device not found in list of registered devices
605 *
606 * Note: available is a modifier for the search. if available=true, then the
607 * match is for exact matching frequency and is available in the stored OPP
608 * table. if false, the match is for exact frequency which is not available.
609 *
610 * This provides a mechanism to enable an opp which is not available currently
611 * or the opposite as well.
612 *
613 * The callers are required to call dev_pm_opp_put() for the returned OPP after
614 * use.
615 */
616struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
617 unsigned long freq, bool available)
618{
619 return _find_key_exact(dev, freq, 0, available, _read_freq,
620 assert_single_clk);
621}
622EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
623
624static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
625 unsigned long *freq)
626{
627 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
628 assert_single_clk);
629}
630
631/**
632 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
633 * @dev: device for which we do this operation
634 * @freq: Start frequency
635 *
636 * Search for the matching ceil *available* OPP from a starting freq
637 * for a device.
638 *
639 * Return: matching *opp and refreshes *freq accordingly, else returns
640 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
641 * values can be:
642 * EINVAL: for bad pointer
643 * ERANGE: no match found for search
644 * ENODEV: if device not found in list of registered devices
645 *
646 * The callers are required to call dev_pm_opp_put() for the returned OPP after
647 * use.
648 */
649struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
650 unsigned long *freq)
651{
652 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
653}
654EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
655
656/**
657 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
658 * @dev: device for which we do this operation
659 * @freq: Start frequency
660 *
661 * Search for the matching floor *available* OPP from a starting freq
662 * for a device.
663 *
664 * Return: matching *opp and refreshes *freq accordingly, else returns
665 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
666 * values can be:
667 * EINVAL: for bad pointer
668 * ERANGE: no match found for search
669 * ENODEV: if device not found in list of registered devices
670 *
671 * The callers are required to call dev_pm_opp_put() for the returned OPP after
672 * use.
673 */
674struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
675 unsigned long *freq)
676{
677 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
678}
679EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
680
681/**
682 * dev_pm_opp_find_level_exact() - search for an exact level
683 * @dev: device for which we do this operation
684 * @level: level to search for
685 *
686 * Return: Searches for exact match in the opp table and returns pointer to the
687 * matching opp if found, else returns ERR_PTR in case of error and should
688 * be handled using IS_ERR. Error return values can be:
689 * EINVAL: for bad pointer
690 * ERANGE: no match found for search
691 * ENODEV: if device not found in list of registered devices
692 *
693 * The callers are required to call dev_pm_opp_put() for the returned OPP after
694 * use.
695 */
696struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
697 unsigned int level)
698{
699 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
700}
701EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
702
703/**
704 * dev_pm_opp_find_level_ceil() - search for an rounded up level
705 * @dev: device for which we do this operation
706 * @level: level to search for
707 *
708 * Return: Searches for rounded up match in the opp table and returns pointer
709 * to the matching opp if found, else returns ERR_PTR in case of error and
710 * should be handled using IS_ERR. Error return values can be:
711 * EINVAL: for bad pointer
712 * ERANGE: no match found for search
713 * ENODEV: if device not found in list of registered devices
714 *
715 * The callers are required to call dev_pm_opp_put() for the returned OPP after
716 * use.
717 */
718struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
719 unsigned int *level)
720{
721 unsigned long temp = *level;
722 struct dev_pm_opp *opp;
723
724 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
725 *level = temp;
726 return opp;
727}
728EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
729
730/**
731 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
732 * @dev: device for which we do this operation
733 * @bw: start bandwidth
734 * @index: which bandwidth to compare, in case of OPPs with several values
735 *
736 * Search for the matching floor *available* OPP from a starting bandwidth
737 * for a device.
738 *
739 * Return: matching *opp and refreshes *bw accordingly, else returns
740 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
741 * values can be:
742 * EINVAL: for bad pointer
743 * ERANGE: no match found for search
744 * ENODEV: if device not found in list of registered devices
745 *
746 * The callers are required to call dev_pm_opp_put() for the returned OPP after
747 * use.
748 */
749struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
750 int index)
751{
752 unsigned long temp = *bw;
753 struct dev_pm_opp *opp;
754
755 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
756 *bw = temp;
757 return opp;
758}
759EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
760
761/**
762 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
763 * @dev: device for which we do this operation
764 * @bw: start bandwidth
765 * @index: which bandwidth to compare, in case of OPPs with several values
766 *
767 * Search for the matching floor *available* OPP from a starting bandwidth
768 * for a device.
769 *
770 * Return: matching *opp and refreshes *bw accordingly, else returns
771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772 * values can be:
773 * EINVAL: for bad pointer
774 * ERANGE: no match found for search
775 * ENODEV: if device not found in list of registered devices
776 *
777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
778 * use.
779 */
780struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
781 unsigned int *bw, int index)
782{
783 unsigned long temp = *bw;
784 struct dev_pm_opp *opp;
785
786 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
787 *bw = temp;
788 return opp;
789}
790EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
791
792static int _set_opp_voltage(struct device *dev, struct regulator *reg,
793 struct dev_pm_opp_supply *supply)
794{
795 int ret;
796
797 /* Regulator not available for device */
798 if (IS_ERR(reg)) {
799 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
800 PTR_ERR(reg));
801 return 0;
802 }
803
804 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
805 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
806
807 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
808 supply->u_volt, supply->u_volt_max);
809 if (ret)
810 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
811 __func__, supply->u_volt_min, supply->u_volt,
812 supply->u_volt_max, ret);
813
814 return ret;
815}
816
817static int
818_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
819 struct dev_pm_opp *opp, void *data, bool scaling_down)
820{
821 unsigned long *target = data;
822 unsigned long freq;
823 int ret;
824
825 /* One of target and opp must be available */
826 if (target) {
827 freq = *target;
828 } else if (opp) {
829 freq = opp->rates[0];
830 } else {
831 WARN_ON(1);
832 return -EINVAL;
833 }
834
835 ret = clk_set_rate(opp_table->clk, freq);
836 if (ret) {
837 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
838 ret);
839 } else {
840 opp_table->rate_clk_single = freq;
841 }
842
843 return ret;
844}
845
846/*
847 * Simple implementation for configuring multiple clocks. Configure clocks in
848 * the order in which they are present in the array while scaling up.
849 */
850int dev_pm_opp_config_clks_simple(struct device *dev,
851 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
852 bool scaling_down)
853{
854 int ret, i;
855
856 if (scaling_down) {
857 for (i = opp_table->clk_count - 1; i >= 0; i--) {
858 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
859 if (ret) {
860 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
861 ret);
862 return ret;
863 }
864 }
865 } else {
866 for (i = 0; i < opp_table->clk_count; i++) {
867 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
868 if (ret) {
869 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
870 ret);
871 return ret;
872 }
873 }
874 }
875
876 return 0;
877}
878EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
879
880static int _opp_config_regulator_single(struct device *dev,
881 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
882 struct regulator **regulators, unsigned int count)
883{
884 struct regulator *reg = regulators[0];
885 int ret;
886
887 /* This function only supports single regulator per device */
888 if (WARN_ON(count > 1)) {
889 dev_err(dev, "multiple regulators are not supported\n");
890 return -EINVAL;
891 }
892
893 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
894 if (ret)
895 return ret;
896
897 /*
898 * Enable the regulator after setting its voltages, otherwise it breaks
899 * some boot-enabled regulators.
900 */
901 if (unlikely(!new_opp->opp_table->enabled)) {
902 ret = regulator_enable(reg);
903 if (ret < 0)
904 dev_warn(dev, "Failed to enable regulator: %d", ret);
905 }
906
907 return 0;
908}
909
910static int _set_opp_bw(const struct opp_table *opp_table,
911 struct dev_pm_opp *opp, struct device *dev)
912{
913 u32 avg, peak;
914 int i, ret;
915
916 if (!opp_table->paths)
917 return 0;
918
919 for (i = 0; i < opp_table->path_count; i++) {
920 if (!opp) {
921 avg = 0;
922 peak = 0;
923 } else {
924 avg = opp->bandwidth[i].avg;
925 peak = opp->bandwidth[i].peak;
926 }
927 ret = icc_set_bw(opp_table->paths[i], avg, peak);
928 if (ret) {
929 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
930 opp ? "set" : "remove", i, ret);
931 return ret;
932 }
933 }
934
935 return 0;
936}
937
938static int _set_required_opp(struct device *dev, struct device *pd_dev,
939 struct dev_pm_opp *opp, int i)
940{
941 unsigned int pstate = likely(opp) ? opp->required_opps[i]->pstate : 0;
942 int ret;
943
944 if (!pd_dev)
945 return 0;
946
947 ret = dev_pm_genpd_set_performance_state(pd_dev, pstate);
948 if (ret) {
949 dev_err(dev, "Failed to set performance state of %s: %d (%d)\n",
950 dev_name(pd_dev), pstate, ret);
951 }
952
953 return ret;
954}
955
956/* This is only called for PM domain for now */
957static int _set_required_opps(struct device *dev,
958 struct opp_table *opp_table,
959 struct dev_pm_opp *opp, bool up)
960{
961 struct opp_table **required_opp_tables = opp_table->required_opp_tables;
962 struct device **genpd_virt_devs = opp_table->genpd_virt_devs;
963 int i, ret = 0;
964
965 if (!required_opp_tables)
966 return 0;
967
968 /* required-opps not fully initialized yet */
969 if (lazy_linking_pending(opp_table))
970 return -EBUSY;
971
972 /*
973 * We only support genpd's OPPs in the "required-opps" for now, as we
974 * don't know much about other use cases. Error out if the required OPP
975 * doesn't belong to a genpd.
976 */
977 if (unlikely(!required_opp_tables[0]->is_genpd)) {
978 dev_err(dev, "required-opps don't belong to a genpd\n");
979 return -ENOENT;
980 }
981
982 /* Single genpd case */
983 if (!genpd_virt_devs)
984 return _set_required_opp(dev, dev, opp, 0);
985
986 /* Multiple genpd case */
987
988 /*
989 * Acquire genpd_virt_dev_lock to make sure we don't use a genpd_dev
990 * after it is freed from another thread.
991 */
992 mutex_lock(&opp_table->genpd_virt_dev_lock);
993
994 /* Scaling up? Set required OPPs in normal order, else reverse */
995 if (up) {
996 for (i = 0; i < opp_table->required_opp_count; i++) {
997 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
998 if (ret)
999 break;
1000 }
1001 } else {
1002 for (i = opp_table->required_opp_count - 1; i >= 0; i--) {
1003 ret = _set_required_opp(dev, genpd_virt_devs[i], opp, i);
1004 if (ret)
1005 break;
1006 }
1007 }
1008
1009 mutex_unlock(&opp_table->genpd_virt_dev_lock);
1010
1011 return ret;
1012}
1013
1014static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1015{
1016 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1017 unsigned long freq;
1018
1019 if (!IS_ERR(opp_table->clk)) {
1020 freq = clk_get_rate(opp_table->clk);
1021 opp = _find_freq_ceil(opp_table, &freq);
1022 }
1023
1024 /*
1025 * Unable to find the current OPP ? Pick the first from the list since
1026 * it is in ascending order, otherwise rest of the code will need to
1027 * make special checks to validate current_opp.
1028 */
1029 if (IS_ERR(opp)) {
1030 mutex_lock(&opp_table->lock);
1031 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1032 dev_pm_opp_get(opp);
1033 mutex_unlock(&opp_table->lock);
1034 }
1035
1036 opp_table->current_opp = opp;
1037}
1038
1039static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1040{
1041 int ret;
1042
1043 if (!opp_table->enabled)
1044 return 0;
1045
1046 /*
1047 * Some drivers need to support cases where some platforms may
1048 * have OPP table for the device, while others don't and
1049 * opp_set_rate() just needs to behave like clk_set_rate().
1050 */
1051 if (!_get_opp_count(opp_table))
1052 return 0;
1053
1054 ret = _set_opp_bw(opp_table, NULL, dev);
1055 if (ret)
1056 return ret;
1057
1058 if (opp_table->regulators)
1059 regulator_disable(opp_table->regulators[0]);
1060
1061 ret = _set_required_opps(dev, opp_table, NULL, false);
1062
1063 opp_table->enabled = false;
1064 return ret;
1065}
1066
1067static int _set_opp(struct device *dev, struct opp_table *opp_table,
1068 struct dev_pm_opp *opp, void *clk_data, bool forced)
1069{
1070 struct dev_pm_opp *old_opp;
1071 int scaling_down, ret;
1072
1073 if (unlikely(!opp))
1074 return _disable_opp_table(dev, opp_table);
1075
1076 /* Find the currently set OPP if we don't know already */
1077 if (unlikely(!opp_table->current_opp))
1078 _find_current_opp(dev, opp_table);
1079
1080 old_opp = opp_table->current_opp;
1081
1082 /* Return early if nothing to do */
1083 if (!forced && old_opp == opp && opp_table->enabled) {
1084 dev_dbg(dev, "%s: OPPs are same, nothing to do\n", __func__);
1085 return 0;
1086 }
1087
1088 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1089 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1090 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1091 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1092
1093 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1094 if (scaling_down == -1)
1095 scaling_down = 0;
1096
1097 /* Scaling up? Configure required OPPs before frequency */
1098 if (!scaling_down) {
1099 ret = _set_required_opps(dev, opp_table, opp, true);
1100 if (ret) {
1101 dev_err(dev, "Failed to set required opps: %d\n", ret);
1102 return ret;
1103 }
1104
1105 ret = _set_opp_bw(opp_table, opp, dev);
1106 if (ret) {
1107 dev_err(dev, "Failed to set bw: %d\n", ret);
1108 return ret;
1109 }
1110
1111 if (opp_table->config_regulators) {
1112 ret = opp_table->config_regulators(dev, old_opp, opp,
1113 opp_table->regulators,
1114 opp_table->regulator_count);
1115 if (ret) {
1116 dev_err(dev, "Failed to set regulator voltages: %d\n",
1117 ret);
1118 return ret;
1119 }
1120 }
1121 }
1122
1123 if (opp_table->config_clks) {
1124 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1125 if (ret)
1126 return ret;
1127 }
1128
1129 /* Scaling down? Configure required OPPs after frequency */
1130 if (scaling_down) {
1131 if (opp_table->config_regulators) {
1132 ret = opp_table->config_regulators(dev, old_opp, opp,
1133 opp_table->regulators,
1134 opp_table->regulator_count);
1135 if (ret) {
1136 dev_err(dev, "Failed to set regulator voltages: %d\n",
1137 ret);
1138 return ret;
1139 }
1140 }
1141
1142 ret = _set_opp_bw(opp_table, opp, dev);
1143 if (ret) {
1144 dev_err(dev, "Failed to set bw: %d\n", ret);
1145 return ret;
1146 }
1147
1148 ret = _set_required_opps(dev, opp_table, opp, false);
1149 if (ret) {
1150 dev_err(dev, "Failed to set required opps: %d\n", ret);
1151 return ret;
1152 }
1153 }
1154
1155 opp_table->enabled = true;
1156 dev_pm_opp_put(old_opp);
1157
1158 /* Make sure current_opp doesn't get freed */
1159 dev_pm_opp_get(opp);
1160 opp_table->current_opp = opp;
1161
1162 return ret;
1163}
1164
1165/**
1166 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1167 * @dev: device for which we do this operation
1168 * @target_freq: frequency to achieve
1169 *
1170 * This configures the power-supplies to the levels specified by the OPP
1171 * corresponding to the target_freq, and programs the clock to a value <=
1172 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1173 * provided by the opp, should have already rounded to the target OPP's
1174 * frequency.
1175 */
1176int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1177{
1178 struct opp_table *opp_table;
1179 unsigned long freq = 0, temp_freq;
1180 struct dev_pm_opp *opp = NULL;
1181 bool forced = false;
1182 int ret;
1183
1184 opp_table = _find_opp_table(dev);
1185 if (IS_ERR(opp_table)) {
1186 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1187 return PTR_ERR(opp_table);
1188 }
1189
1190 if (target_freq) {
1191 /*
1192 * For IO devices which require an OPP on some platforms/SoCs
1193 * while just needing to scale the clock on some others
1194 * we look for empty OPP tables with just a clock handle and
1195 * scale only the clk. This makes dev_pm_opp_set_rate()
1196 * equivalent to a clk_set_rate()
1197 */
1198 if (!_get_opp_count(opp_table)) {
1199 ret = opp_table->config_clks(dev, opp_table, NULL,
1200 &target_freq, false);
1201 goto put_opp_table;
1202 }
1203
1204 freq = clk_round_rate(opp_table->clk, target_freq);
1205 if ((long)freq <= 0)
1206 freq = target_freq;
1207
1208 /*
1209 * The clock driver may support finer resolution of the
1210 * frequencies than the OPP table, don't update the frequency we
1211 * pass to clk_set_rate() here.
1212 */
1213 temp_freq = freq;
1214 opp = _find_freq_ceil(opp_table, &temp_freq);
1215 if (IS_ERR(opp)) {
1216 ret = PTR_ERR(opp);
1217 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1218 __func__, freq, ret);
1219 goto put_opp_table;
1220 }
1221
1222 /*
1223 * An OPP entry specifies the highest frequency at which other
1224 * properties of the OPP entry apply. Even if the new OPP is
1225 * same as the old one, we may still reach here for a different
1226 * value of the frequency. In such a case, do not abort but
1227 * configure the hardware to the desired frequency forcefully.
1228 */
1229 forced = opp_table->rate_clk_single != target_freq;
1230 }
1231
1232 ret = _set_opp(dev, opp_table, opp, &target_freq, forced);
1233
1234 if (target_freq)
1235 dev_pm_opp_put(opp);
1236
1237put_opp_table:
1238 dev_pm_opp_put_opp_table(opp_table);
1239 return ret;
1240}
1241EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1242
1243/**
1244 * dev_pm_opp_set_opp() - Configure device for OPP
1245 * @dev: device for which we do this operation
1246 * @opp: OPP to set to
1247 *
1248 * This configures the device based on the properties of the OPP passed to this
1249 * routine.
1250 *
1251 * Return: 0 on success, a negative error number otherwise.
1252 */
1253int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1254{
1255 struct opp_table *opp_table;
1256 int ret;
1257
1258 opp_table = _find_opp_table(dev);
1259 if (IS_ERR(opp_table)) {
1260 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1261 return PTR_ERR(opp_table);
1262 }
1263
1264 ret = _set_opp(dev, opp_table, opp, NULL, false);
1265 dev_pm_opp_put_opp_table(opp_table);
1266
1267 return ret;
1268}
1269EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1270
1271/* OPP-dev Helpers */
1272static void _remove_opp_dev(struct opp_device *opp_dev,
1273 struct opp_table *opp_table)
1274{
1275 opp_debug_unregister(opp_dev, opp_table);
1276 list_del(&opp_dev->node);
1277 kfree(opp_dev);
1278}
1279
1280struct opp_device *_add_opp_dev(const struct device *dev,
1281 struct opp_table *opp_table)
1282{
1283 struct opp_device *opp_dev;
1284
1285 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1286 if (!opp_dev)
1287 return NULL;
1288
1289 /* Initialize opp-dev */
1290 opp_dev->dev = dev;
1291
1292 mutex_lock(&opp_table->lock);
1293 list_add(&opp_dev->node, &opp_table->dev_list);
1294 mutex_unlock(&opp_table->lock);
1295
1296 /* Create debugfs entries for the opp_table */
1297 opp_debug_register(opp_dev, opp_table);
1298
1299 return opp_dev;
1300}
1301
1302static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1303{
1304 struct opp_table *opp_table;
1305 struct opp_device *opp_dev;
1306 int ret;
1307
1308 /*
1309 * Allocate a new OPP table. In the infrequent case where a new
1310 * device is needed to be added, we pay this penalty.
1311 */
1312 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1313 if (!opp_table)
1314 return ERR_PTR(-ENOMEM);
1315
1316 mutex_init(&opp_table->lock);
1317 mutex_init(&opp_table->genpd_virt_dev_lock);
1318 INIT_LIST_HEAD(&opp_table->dev_list);
1319 INIT_LIST_HEAD(&opp_table->lazy);
1320
1321 opp_table->clk = ERR_PTR(-ENODEV);
1322
1323 /* Mark regulator count uninitialized */
1324 opp_table->regulator_count = -1;
1325
1326 opp_dev = _add_opp_dev(dev, opp_table);
1327 if (!opp_dev) {
1328 ret = -ENOMEM;
1329 goto err;
1330 }
1331
1332 _of_init_opp_table(opp_table, dev, index);
1333
1334 /* Find interconnect path(s) for the device */
1335 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1336 if (ret) {
1337 if (ret == -EPROBE_DEFER)
1338 goto remove_opp_dev;
1339
1340 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1341 __func__, ret);
1342 }
1343
1344 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1345 INIT_LIST_HEAD(&opp_table->opp_list);
1346 kref_init(&opp_table->kref);
1347
1348 return opp_table;
1349
1350remove_opp_dev:
1351 _remove_opp_dev(opp_dev, opp_table);
1352err:
1353 kfree(opp_table);
1354 return ERR_PTR(ret);
1355}
1356
1357void _get_opp_table_kref(struct opp_table *opp_table)
1358{
1359 kref_get(&opp_table->kref);
1360}
1361
1362static struct opp_table *_update_opp_table_clk(struct device *dev,
1363 struct opp_table *opp_table,
1364 bool getclk)
1365{
1366 int ret;
1367
1368 /*
1369 * Return early if we don't need to get clk or we have already done it
1370 * earlier.
1371 */
1372 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1373 opp_table->clks)
1374 return opp_table;
1375
1376 /* Find clk for the device */
1377 opp_table->clk = clk_get(dev, NULL);
1378
1379 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1380 if (!ret) {
1381 opp_table->config_clks = _opp_config_clk_single;
1382 opp_table->clk_count = 1;
1383 return opp_table;
1384 }
1385
1386 if (ret == -ENOENT) {
1387 /*
1388 * There are few platforms which don't want the OPP core to
1389 * manage device's clock settings. In such cases neither the
1390 * platform provides the clks explicitly to us, nor the DT
1391 * contains a valid clk entry. The OPP nodes in DT may still
1392 * contain "opp-hz" property though, which we need to parse and
1393 * allow the platform to find an OPP based on freq later on.
1394 *
1395 * This is a simple solution to take care of such corner cases,
1396 * i.e. make the clk_count 1, which lets us allocate space for
1397 * frequency in opp->rates and also parse the entries in DT.
1398 */
1399 opp_table->clk_count = 1;
1400
1401 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1402 return opp_table;
1403 }
1404
1405 dev_pm_opp_put_opp_table(opp_table);
1406 dev_err_probe(dev, ret, "Couldn't find clock\n");
1407
1408 return ERR_PTR(ret);
1409}
1410
1411/*
1412 * We need to make sure that the OPP table for a device doesn't get added twice,
1413 * if this routine gets called in parallel with the same device pointer.
1414 *
1415 * The simplest way to enforce that is to perform everything (find existing
1416 * table and if not found, create a new one) under the opp_table_lock, so only
1417 * one creator gets access to the same. But that expands the critical section
1418 * under the lock and may end up causing circular dependencies with frameworks
1419 * like debugfs, interconnect or clock framework as they may be direct or
1420 * indirect users of OPP core.
1421 *
1422 * And for that reason we have to go for a bit tricky implementation here, which
1423 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1424 * of adding an OPP table and others should wait for it to finish.
1425 */
1426struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1427 bool getclk)
1428{
1429 struct opp_table *opp_table;
1430
1431again:
1432 mutex_lock(&opp_table_lock);
1433
1434 opp_table = _find_opp_table_unlocked(dev);
1435 if (!IS_ERR(opp_table))
1436 goto unlock;
1437
1438 /*
1439 * The opp_tables list or an OPP table's dev_list is getting updated by
1440 * another user, wait for it to finish.
1441 */
1442 if (unlikely(opp_tables_busy)) {
1443 mutex_unlock(&opp_table_lock);
1444 cpu_relax();
1445 goto again;
1446 }
1447
1448 opp_tables_busy = true;
1449 opp_table = _managed_opp(dev, index);
1450
1451 /* Drop the lock to reduce the size of critical section */
1452 mutex_unlock(&opp_table_lock);
1453
1454 if (opp_table) {
1455 if (!_add_opp_dev(dev, opp_table)) {
1456 dev_pm_opp_put_opp_table(opp_table);
1457 opp_table = ERR_PTR(-ENOMEM);
1458 }
1459
1460 mutex_lock(&opp_table_lock);
1461 } else {
1462 opp_table = _allocate_opp_table(dev, index);
1463
1464 mutex_lock(&opp_table_lock);
1465 if (!IS_ERR(opp_table))
1466 list_add(&opp_table->node, &opp_tables);
1467 }
1468
1469 opp_tables_busy = false;
1470
1471unlock:
1472 mutex_unlock(&opp_table_lock);
1473
1474 return _update_opp_table_clk(dev, opp_table, getclk);
1475}
1476
1477static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1478{
1479 return _add_opp_table_indexed(dev, 0, getclk);
1480}
1481
1482struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1483{
1484 return _find_opp_table(dev);
1485}
1486EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1487
1488static void _opp_table_kref_release(struct kref *kref)
1489{
1490 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1491 struct opp_device *opp_dev, *temp;
1492 int i;
1493
1494 /* Drop the lock as soon as we can */
1495 list_del(&opp_table->node);
1496 mutex_unlock(&opp_table_lock);
1497
1498 if (opp_table->current_opp)
1499 dev_pm_opp_put(opp_table->current_opp);
1500
1501 _of_clear_opp_table(opp_table);
1502
1503 /* Release automatically acquired single clk */
1504 if (!IS_ERR(opp_table->clk))
1505 clk_put(opp_table->clk);
1506
1507 if (opp_table->paths) {
1508 for (i = 0; i < opp_table->path_count; i++)
1509 icc_put(opp_table->paths[i]);
1510 kfree(opp_table->paths);
1511 }
1512
1513 WARN_ON(!list_empty(&opp_table->opp_list));
1514
1515 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node) {
1516 /*
1517 * The OPP table is getting removed, drop the performance state
1518 * constraints.
1519 */
1520 if (opp_table->genpd_performance_state)
1521 dev_pm_genpd_set_performance_state((struct device *)(opp_dev->dev), 0);
1522
1523 _remove_opp_dev(opp_dev, opp_table);
1524 }
1525
1526 mutex_destroy(&opp_table->genpd_virt_dev_lock);
1527 mutex_destroy(&opp_table->lock);
1528 kfree(opp_table);
1529}
1530
1531void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1532{
1533 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1534 &opp_table_lock);
1535}
1536EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1537
1538void _opp_free(struct dev_pm_opp *opp)
1539{
1540 kfree(opp);
1541}
1542
1543static void _opp_kref_release(struct kref *kref)
1544{
1545 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1546 struct opp_table *opp_table = opp->opp_table;
1547
1548 list_del(&opp->node);
1549 mutex_unlock(&opp_table->lock);
1550
1551 /*
1552 * Notify the changes in the availability of the operable
1553 * frequency/voltage list.
1554 */
1555 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1556 _of_clear_opp(opp_table, opp);
1557 opp_debug_remove_one(opp);
1558 kfree(opp);
1559}
1560
1561void dev_pm_opp_get(struct dev_pm_opp *opp)
1562{
1563 kref_get(&opp->kref);
1564}
1565
1566void dev_pm_opp_put(struct dev_pm_opp *opp)
1567{
1568 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1569}
1570EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1571
1572/**
1573 * dev_pm_opp_remove() - Remove an OPP from OPP table
1574 * @dev: device for which we do this operation
1575 * @freq: OPP to remove with matching 'freq'
1576 *
1577 * This function removes an opp from the opp table.
1578 */
1579void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1580{
1581 struct dev_pm_opp *opp = NULL, *iter;
1582 struct opp_table *opp_table;
1583
1584 opp_table = _find_opp_table(dev);
1585 if (IS_ERR(opp_table))
1586 return;
1587
1588 if (!assert_single_clk(opp_table))
1589 goto put_table;
1590
1591 mutex_lock(&opp_table->lock);
1592
1593 list_for_each_entry(iter, &opp_table->opp_list, node) {
1594 if (iter->rates[0] == freq) {
1595 opp = iter;
1596 break;
1597 }
1598 }
1599
1600 mutex_unlock(&opp_table->lock);
1601
1602 if (opp) {
1603 dev_pm_opp_put(opp);
1604
1605 /* Drop the reference taken by dev_pm_opp_add() */
1606 dev_pm_opp_put_opp_table(opp_table);
1607 } else {
1608 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1609 __func__, freq);
1610 }
1611
1612put_table:
1613 /* Drop the reference taken by _find_opp_table() */
1614 dev_pm_opp_put_opp_table(opp_table);
1615}
1616EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1617
1618static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1619 bool dynamic)
1620{
1621 struct dev_pm_opp *opp = NULL, *temp;
1622
1623 mutex_lock(&opp_table->lock);
1624 list_for_each_entry(temp, &opp_table->opp_list, node) {
1625 /*
1626 * Refcount must be dropped only once for each OPP by OPP core,
1627 * do that with help of "removed" flag.
1628 */
1629 if (!temp->removed && dynamic == temp->dynamic) {
1630 opp = temp;
1631 break;
1632 }
1633 }
1634
1635 mutex_unlock(&opp_table->lock);
1636 return opp;
1637}
1638
1639/*
1640 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1641 * happen lock less to avoid circular dependency issues. This routine must be
1642 * called without the opp_table->lock held.
1643 */
1644static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1645{
1646 struct dev_pm_opp *opp;
1647
1648 while ((opp = _opp_get_next(opp_table, dynamic))) {
1649 opp->removed = true;
1650 dev_pm_opp_put(opp);
1651
1652 /* Drop the references taken by dev_pm_opp_add() */
1653 if (dynamic)
1654 dev_pm_opp_put_opp_table(opp_table);
1655 }
1656}
1657
1658bool _opp_remove_all_static(struct opp_table *opp_table)
1659{
1660 mutex_lock(&opp_table->lock);
1661
1662 if (!opp_table->parsed_static_opps) {
1663 mutex_unlock(&opp_table->lock);
1664 return false;
1665 }
1666
1667 if (--opp_table->parsed_static_opps) {
1668 mutex_unlock(&opp_table->lock);
1669 return true;
1670 }
1671
1672 mutex_unlock(&opp_table->lock);
1673
1674 _opp_remove_all(opp_table, false);
1675 return true;
1676}
1677
1678/**
1679 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1680 * @dev: device for which we do this operation
1681 *
1682 * This function removes all dynamically created OPPs from the opp table.
1683 */
1684void dev_pm_opp_remove_all_dynamic(struct device *dev)
1685{
1686 struct opp_table *opp_table;
1687
1688 opp_table = _find_opp_table(dev);
1689 if (IS_ERR(opp_table))
1690 return;
1691
1692 _opp_remove_all(opp_table, true);
1693
1694 /* Drop the reference taken by _find_opp_table() */
1695 dev_pm_opp_put_opp_table(opp_table);
1696}
1697EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1698
1699struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1700{
1701 struct dev_pm_opp *opp;
1702 int supply_count, supply_size, icc_size, clk_size;
1703
1704 /* Allocate space for at least one supply */
1705 supply_count = opp_table->regulator_count > 0 ?
1706 opp_table->regulator_count : 1;
1707 supply_size = sizeof(*opp->supplies) * supply_count;
1708 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1709 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1710
1711 /* allocate new OPP node and supplies structures */
1712 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1713 if (!opp)
1714 return NULL;
1715
1716 /* Put the supplies, bw and clock at the end of the OPP structure */
1717 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1718
1719 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1720
1721 if (icc_size)
1722 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1723
1724 INIT_LIST_HEAD(&opp->node);
1725
1726 return opp;
1727}
1728
1729static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1730 struct opp_table *opp_table)
1731{
1732 struct regulator *reg;
1733 int i;
1734
1735 if (!opp_table->regulators)
1736 return true;
1737
1738 for (i = 0; i < opp_table->regulator_count; i++) {
1739 reg = opp_table->regulators[i];
1740
1741 if (!regulator_is_supported_voltage(reg,
1742 opp->supplies[i].u_volt_min,
1743 opp->supplies[i].u_volt_max)) {
1744 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1745 __func__, opp->supplies[i].u_volt_min,
1746 opp->supplies[i].u_volt_max);
1747 return false;
1748 }
1749 }
1750
1751 return true;
1752}
1753
1754static int _opp_compare_rate(struct opp_table *opp_table,
1755 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1756{
1757 int i;
1758
1759 for (i = 0; i < opp_table->clk_count; i++) {
1760 if (opp1->rates[i] != opp2->rates[i])
1761 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1762 }
1763
1764 /* Same rates for both OPPs */
1765 return 0;
1766}
1767
1768static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1769 struct dev_pm_opp *opp2)
1770{
1771 int i;
1772
1773 for (i = 0; i < opp_table->path_count; i++) {
1774 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1775 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1776 }
1777
1778 /* Same bw for both OPPs */
1779 return 0;
1780}
1781
1782/*
1783 * Returns
1784 * 0: opp1 == opp2
1785 * 1: opp1 > opp2
1786 * -1: opp1 < opp2
1787 */
1788int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1789 struct dev_pm_opp *opp2)
1790{
1791 int ret;
1792
1793 ret = _opp_compare_rate(opp_table, opp1, opp2);
1794 if (ret)
1795 return ret;
1796
1797 ret = _opp_compare_bw(opp_table, opp1, opp2);
1798 if (ret)
1799 return ret;
1800
1801 if (opp1->level != opp2->level)
1802 return opp1->level < opp2->level ? -1 : 1;
1803
1804 /* Duplicate OPPs */
1805 return 0;
1806}
1807
1808static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1809 struct opp_table *opp_table,
1810 struct list_head **head)
1811{
1812 struct dev_pm_opp *opp;
1813 int opp_cmp;
1814
1815 /*
1816 * Insert new OPP in order of increasing frequency and discard if
1817 * already present.
1818 *
1819 * Need to use &opp_table->opp_list in the condition part of the 'for'
1820 * loop, don't replace it with head otherwise it will become an infinite
1821 * loop.
1822 */
1823 list_for_each_entry(opp, &opp_table->opp_list, node) {
1824 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1825 if (opp_cmp > 0) {
1826 *head = &opp->node;
1827 continue;
1828 }
1829
1830 if (opp_cmp < 0)
1831 return 0;
1832
1833 /* Duplicate OPPs */
1834 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1835 __func__, opp->rates[0], opp->supplies[0].u_volt,
1836 opp->available, new_opp->rates[0],
1837 new_opp->supplies[0].u_volt, new_opp->available);
1838
1839 /* Should we compare voltages for all regulators here ? */
1840 return opp->available &&
1841 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1842 }
1843
1844 return 0;
1845}
1846
1847void _required_opps_available(struct dev_pm_opp *opp, int count)
1848{
1849 int i;
1850
1851 for (i = 0; i < count; i++) {
1852 if (opp->required_opps[i]->available)
1853 continue;
1854
1855 opp->available = false;
1856 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1857 __func__, opp->required_opps[i]->np, opp->rates[0]);
1858 return;
1859 }
1860}
1861
1862/*
1863 * Returns:
1864 * 0: On success. And appropriate error message for duplicate OPPs.
1865 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1866 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1867 * sure we don't print error messages unnecessarily if different parts of
1868 * kernel try to initialize the OPP table.
1869 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1870 * should be considered an error by the callers of _opp_add().
1871 */
1872int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1873 struct opp_table *opp_table)
1874{
1875 struct list_head *head;
1876 int ret;
1877
1878 mutex_lock(&opp_table->lock);
1879 head = &opp_table->opp_list;
1880
1881 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
1882 if (ret) {
1883 mutex_unlock(&opp_table->lock);
1884 return ret;
1885 }
1886
1887 list_add(&new_opp->node, head);
1888 mutex_unlock(&opp_table->lock);
1889
1890 new_opp->opp_table = opp_table;
1891 kref_init(&new_opp->kref);
1892
1893 opp_debug_create_one(new_opp, opp_table);
1894
1895 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
1896 new_opp->available = false;
1897 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
1898 __func__, new_opp->rates[0]);
1899 }
1900
1901 /* required-opps not fully initialized yet */
1902 if (lazy_linking_pending(opp_table))
1903 return 0;
1904
1905 _required_opps_available(new_opp, opp_table->required_opp_count);
1906
1907 return 0;
1908}
1909
1910/**
1911 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
1912 * @opp_table: OPP table
1913 * @dev: device for which we do this operation
1914 * @freq: Frequency in Hz for this OPP
1915 * @u_volt: Voltage in uVolts for this OPP
1916 * @dynamic: Dynamically added OPPs.
1917 *
1918 * This function adds an opp definition to the opp table and returns status.
1919 * The opp is made available by default and it can be controlled using
1920 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
1921 *
1922 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
1923 * and freed by dev_pm_opp_of_remove_table.
1924 *
1925 * Return:
1926 * 0 On success OR
1927 * Duplicate OPPs (both freq and volt are same) and opp->available
1928 * -EEXIST Freq are same and volt are different OR
1929 * Duplicate OPPs (both freq and volt are same) and !opp->available
1930 * -ENOMEM Memory allocation failure
1931 */
1932int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
1933 unsigned long freq, long u_volt, bool dynamic)
1934{
1935 struct dev_pm_opp *new_opp;
1936 unsigned long tol;
1937 int ret;
1938
1939 if (!assert_single_clk(opp_table))
1940 return -EINVAL;
1941
1942 new_opp = _opp_allocate(opp_table);
1943 if (!new_opp)
1944 return -ENOMEM;
1945
1946 /* populate the opp table */
1947 new_opp->rates[0] = freq;
1948 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
1949 new_opp->supplies[0].u_volt = u_volt;
1950 new_opp->supplies[0].u_volt_min = u_volt - tol;
1951 new_opp->supplies[0].u_volt_max = u_volt + tol;
1952 new_opp->available = true;
1953 new_opp->dynamic = dynamic;
1954
1955 ret = _opp_add(dev, new_opp, opp_table);
1956 if (ret) {
1957 /* Don't return error for duplicate OPPs */
1958 if (ret == -EBUSY)
1959 ret = 0;
1960 goto free_opp;
1961 }
1962
1963 /*
1964 * Notify the changes in the availability of the operable
1965 * frequency/voltage list.
1966 */
1967 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
1968 return 0;
1969
1970free_opp:
1971 _opp_free(new_opp);
1972
1973 return ret;
1974}
1975
1976/**
1977 * _opp_set_supported_hw() - Set supported platforms
1978 * @dev: Device for which supported-hw has to be set.
1979 * @versions: Array of hierarchy of versions to match.
1980 * @count: Number of elements in the array.
1981 *
1982 * This is required only for the V2 bindings, and it enables a platform to
1983 * specify the hierarchy of versions it supports. OPP layer will then enable
1984 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
1985 * property.
1986 */
1987static int _opp_set_supported_hw(struct opp_table *opp_table,
1988 const u32 *versions, unsigned int count)
1989{
1990 /* Another CPU that shares the OPP table has set the property ? */
1991 if (opp_table->supported_hw)
1992 return 0;
1993
1994 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
1995 GFP_KERNEL);
1996 if (!opp_table->supported_hw)
1997 return -ENOMEM;
1998
1999 opp_table->supported_hw_count = count;
2000
2001 return 0;
2002}
2003
2004/**
2005 * _opp_put_supported_hw() - Releases resources blocked for supported hw
2006 * @opp_table: OPP table returned by _opp_set_supported_hw().
2007 *
2008 * This is required only for the V2 bindings, and is called for a matching
2009 * _opp_set_supported_hw(). Until this is called, the opp_table structure
2010 * will not be freed.
2011 */
2012static void _opp_put_supported_hw(struct opp_table *opp_table)
2013{
2014 if (opp_table->supported_hw) {
2015 kfree(opp_table->supported_hw);
2016 opp_table->supported_hw = NULL;
2017 opp_table->supported_hw_count = 0;
2018 }
2019}
2020
2021/**
2022 * _opp_set_prop_name() - Set prop-extn name
2023 * @dev: Device for which the prop-name has to be set.
2024 * @name: name to postfix to properties.
2025 *
2026 * This is required only for the V2 bindings, and it enables a platform to
2027 * specify the extn to be used for certain property names. The properties to
2028 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2029 * should postfix the property name with -<name> while looking for them.
2030 */
2031static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2032{
2033 /* Another CPU that shares the OPP table has set the property ? */
2034 if (!opp_table->prop_name) {
2035 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2036 if (!opp_table->prop_name)
2037 return -ENOMEM;
2038 }
2039
2040 return 0;
2041}
2042
2043/**
2044 * _opp_put_prop_name() - Releases resources blocked for prop-name
2045 * @opp_table: OPP table returned by _opp_set_prop_name().
2046 *
2047 * This is required only for the V2 bindings, and is called for a matching
2048 * _opp_set_prop_name(). Until this is called, the opp_table structure
2049 * will not be freed.
2050 */
2051static void _opp_put_prop_name(struct opp_table *opp_table)
2052{
2053 if (opp_table->prop_name) {
2054 kfree(opp_table->prop_name);
2055 opp_table->prop_name = NULL;
2056 }
2057}
2058
2059/**
2060 * _opp_set_regulators() - Set regulator names for the device
2061 * @dev: Device for which regulator name is being set.
2062 * @names: Array of pointers to the names of the regulator.
2063 * @count: Number of regulators.
2064 *
2065 * In order to support OPP switching, OPP layer needs to know the name of the
2066 * device's regulators, as the core would be required to switch voltages as
2067 * well.
2068 *
2069 * This must be called before any OPPs are initialized for the device.
2070 */
2071static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2072 const char * const names[])
2073{
2074 const char * const *temp = names;
2075 struct regulator *reg;
2076 int count = 0, ret, i;
2077
2078 /* Count number of regulators */
2079 while (*temp++)
2080 count++;
2081
2082 if (!count)
2083 return -EINVAL;
2084
2085 /* Another CPU that shares the OPP table has set the regulators ? */
2086 if (opp_table->regulators)
2087 return 0;
2088
2089 opp_table->regulators = kmalloc_array(count,
2090 sizeof(*opp_table->regulators),
2091 GFP_KERNEL);
2092 if (!opp_table->regulators)
2093 return -ENOMEM;
2094
2095 for (i = 0; i < count; i++) {
2096 reg = regulator_get_optional(dev, names[i]);
2097 if (IS_ERR(reg)) {
2098 ret = dev_err_probe(dev, PTR_ERR(reg),
2099 "%s: no regulator (%s) found\n",
2100 __func__, names[i]);
2101 goto free_regulators;
2102 }
2103
2104 opp_table->regulators[i] = reg;
2105 }
2106
2107 opp_table->regulator_count = count;
2108
2109 /* Set generic config_regulators() for single regulators here */
2110 if (count == 1)
2111 opp_table->config_regulators = _opp_config_regulator_single;
2112
2113 return 0;
2114
2115free_regulators:
2116 while (i != 0)
2117 regulator_put(opp_table->regulators[--i]);
2118
2119 kfree(opp_table->regulators);
2120 opp_table->regulators = NULL;
2121 opp_table->regulator_count = -1;
2122
2123 return ret;
2124}
2125
2126/**
2127 * _opp_put_regulators() - Releases resources blocked for regulator
2128 * @opp_table: OPP table returned from _opp_set_regulators().
2129 */
2130static void _opp_put_regulators(struct opp_table *opp_table)
2131{
2132 int i;
2133
2134 if (!opp_table->regulators)
2135 return;
2136
2137 if (opp_table->enabled) {
2138 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2139 regulator_disable(opp_table->regulators[i]);
2140 }
2141
2142 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2143 regulator_put(opp_table->regulators[i]);
2144
2145 kfree(opp_table->regulators);
2146 opp_table->regulators = NULL;
2147 opp_table->regulator_count = -1;
2148}
2149
2150static void _put_clks(struct opp_table *opp_table, int count)
2151{
2152 int i;
2153
2154 for (i = count - 1; i >= 0; i--)
2155 clk_put(opp_table->clks[i]);
2156
2157 kfree(opp_table->clks);
2158 opp_table->clks = NULL;
2159}
2160
2161/**
2162 * _opp_set_clknames() - Set clk names for the device
2163 * @dev: Device for which clk names is being set.
2164 * @names: Clk names.
2165 *
2166 * In order to support OPP switching, OPP layer needs to get pointers to the
2167 * clocks for the device. Simple cases work fine without using this routine
2168 * (i.e. by passing connection-id as NULL), but for a device with multiple
2169 * clocks available, the OPP core needs to know the exact names of the clks to
2170 * use.
2171 *
2172 * This must be called before any OPPs are initialized for the device.
2173 */
2174static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2175 const char * const names[],
2176 config_clks_t config_clks)
2177{
2178 const char * const *temp = names;
2179 int count = 0, ret, i;
2180 struct clk *clk;
2181
2182 /* Count number of clks */
2183 while (*temp++)
2184 count++;
2185
2186 /*
2187 * This is a special case where we have a single clock, whose connection
2188 * id name is NULL, i.e. first two entries are NULL in the array.
2189 */
2190 if (!count && !names[1])
2191 count = 1;
2192
2193 /* Fail early for invalid configurations */
2194 if (!count || (!config_clks && count > 1))
2195 return -EINVAL;
2196
2197 /* Another CPU that shares the OPP table has set the clkname ? */
2198 if (opp_table->clks)
2199 return 0;
2200
2201 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2202 GFP_KERNEL);
2203 if (!opp_table->clks)
2204 return -ENOMEM;
2205
2206 /* Find clks for the device */
2207 for (i = 0; i < count; i++) {
2208 clk = clk_get(dev, names[i]);
2209 if (IS_ERR(clk)) {
2210 ret = dev_err_probe(dev, PTR_ERR(clk),
2211 "%s: Couldn't find clock with name: %s\n",
2212 __func__, names[i]);
2213 goto free_clks;
2214 }
2215
2216 opp_table->clks[i] = clk;
2217 }
2218
2219 opp_table->clk_count = count;
2220 opp_table->config_clks = config_clks;
2221
2222 /* Set generic single clk set here */
2223 if (count == 1) {
2224 if (!opp_table->config_clks)
2225 opp_table->config_clks = _opp_config_clk_single;
2226
2227 /*
2228 * We could have just dropped the "clk" field and used "clks"
2229 * everywhere. Instead we kept the "clk" field around for
2230 * following reasons:
2231 *
2232 * - avoiding clks[0] everywhere else.
2233 * - not running single clk helpers for multiple clk usecase by
2234 * mistake.
2235 *
2236 * Since this is single-clk case, just update the clk pointer
2237 * too.
2238 */
2239 opp_table->clk = opp_table->clks[0];
2240 }
2241
2242 return 0;
2243
2244free_clks:
2245 _put_clks(opp_table, i);
2246 return ret;
2247}
2248
2249/**
2250 * _opp_put_clknames() - Releases resources blocked for clks.
2251 * @opp_table: OPP table returned from _opp_set_clknames().
2252 */
2253static void _opp_put_clknames(struct opp_table *opp_table)
2254{
2255 if (!opp_table->clks)
2256 return;
2257
2258 opp_table->config_clks = NULL;
2259 opp_table->clk = ERR_PTR(-ENODEV);
2260
2261 _put_clks(opp_table, opp_table->clk_count);
2262}
2263
2264/**
2265 * _opp_set_config_regulators_helper() - Register custom set regulator helper.
2266 * @dev: Device for which the helper is getting registered.
2267 * @config_regulators: Custom set regulator helper.
2268 *
2269 * This is useful to support platforms with multiple regulators per device.
2270 *
2271 * This must be called before any OPPs are initialized for the device.
2272 */
2273static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2274 struct device *dev, config_regulators_t config_regulators)
2275{
2276 /* Another CPU that shares the OPP table has set the helper ? */
2277 if (!opp_table->config_regulators)
2278 opp_table->config_regulators = config_regulators;
2279
2280 return 0;
2281}
2282
2283/**
2284 * _opp_put_config_regulators_helper() - Releases resources blocked for
2285 * config_regulators helper.
2286 * @opp_table: OPP table returned from _opp_set_config_regulators_helper().
2287 *
2288 * Release resources blocked for platform specific config_regulators helper.
2289 */
2290static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2291{
2292 if (opp_table->config_regulators)
2293 opp_table->config_regulators = NULL;
2294}
2295
2296static void _detach_genpd(struct opp_table *opp_table)
2297{
2298 int index;
2299
2300 if (!opp_table->genpd_virt_devs)
2301 return;
2302
2303 for (index = 0; index < opp_table->required_opp_count; index++) {
2304 if (!opp_table->genpd_virt_devs[index])
2305 continue;
2306
2307 dev_pm_domain_detach(opp_table->genpd_virt_devs[index], false);
2308 opp_table->genpd_virt_devs[index] = NULL;
2309 }
2310
2311 kfree(opp_table->genpd_virt_devs);
2312 opp_table->genpd_virt_devs = NULL;
2313}
2314
2315/**
2316 * _opp_attach_genpd - Attach genpd(s) for the device and save virtual device pointer
2317 * @dev: Consumer device for which the genpd is getting attached.
2318 * @names: Null terminated array of pointers containing names of genpd to attach.
2319 * @virt_devs: Pointer to return the array of virtual devices.
2320 *
2321 * Multiple generic power domains for a device are supported with the help of
2322 * virtual genpd devices, which are created for each consumer device - genpd
2323 * pair. These are the device structures which are attached to the power domain
2324 * and are required by the OPP core to set the performance state of the genpd.
2325 * The same API also works for the case where single genpd is available and so
2326 * we don't need to support that separately.
2327 *
2328 * This helper will normally be called by the consumer driver of the device
2329 * "dev", as only that has details of the genpd names.
2330 *
2331 * This helper needs to be called once with a list of all genpd to attach.
2332 * Otherwise the original device structure will be used instead by the OPP core.
2333 *
2334 * The order of entries in the names array must match the order in which
2335 * "required-opps" are added in DT.
2336 */
2337static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2338 const char * const *names, struct device ***virt_devs)
2339{
2340 struct device *virt_dev;
2341 int index = 0, ret = -EINVAL;
2342 const char * const *name = names;
2343
2344 if (opp_table->genpd_virt_devs)
2345 return 0;
2346
2347 /*
2348 * If the genpd's OPP table isn't already initialized, parsing of the
2349 * required-opps fail for dev. We should retry this after genpd's OPP
2350 * table is added.
2351 */
2352 if (!opp_table->required_opp_count)
2353 return -EPROBE_DEFER;
2354
2355 mutex_lock(&opp_table->genpd_virt_dev_lock);
2356
2357 opp_table->genpd_virt_devs = kcalloc(opp_table->required_opp_count,
2358 sizeof(*opp_table->genpd_virt_devs),
2359 GFP_KERNEL);
2360 if (!opp_table->genpd_virt_devs)
2361 goto unlock;
2362
2363 while (*name) {
2364 if (index >= opp_table->required_opp_count) {
2365 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2366 *name, opp_table->required_opp_count, index);
2367 goto err;
2368 }
2369
2370 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2371 if (IS_ERR_OR_NULL(virt_dev)) {
2372 ret = PTR_ERR(virt_dev) ? : -ENODEV;
2373 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2374 goto err;
2375 }
2376
2377 opp_table->genpd_virt_devs[index] = virt_dev;
2378 index++;
2379 name++;
2380 }
2381
2382 if (virt_devs)
2383 *virt_devs = opp_table->genpd_virt_devs;
2384 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2385
2386 return 0;
2387
2388err:
2389 _detach_genpd(opp_table);
2390unlock:
2391 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2392 return ret;
2393
2394}
2395
2396/**
2397 * _opp_detach_genpd() - Detach genpd(s) from the device.
2398 * @opp_table: OPP table returned by _opp_attach_genpd().
2399 *
2400 * This detaches the genpd(s), resets the virtual device pointers, and puts the
2401 * OPP table.
2402 */
2403static void _opp_detach_genpd(struct opp_table *opp_table)
2404{
2405 /*
2406 * Acquire genpd_virt_dev_lock to make sure virt_dev isn't getting
2407 * used in parallel.
2408 */
2409 mutex_lock(&opp_table->genpd_virt_dev_lock);
2410 _detach_genpd(opp_table);
2411 mutex_unlock(&opp_table->genpd_virt_dev_lock);
2412}
2413
2414static void _opp_clear_config(struct opp_config_data *data)
2415{
2416 if (data->flags & OPP_CONFIG_GENPD)
2417 _opp_detach_genpd(data->opp_table);
2418 if (data->flags & OPP_CONFIG_REGULATOR)
2419 _opp_put_regulators(data->opp_table);
2420 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2421 _opp_put_supported_hw(data->opp_table);
2422 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2423 _opp_put_config_regulators_helper(data->opp_table);
2424 if (data->flags & OPP_CONFIG_PROP_NAME)
2425 _opp_put_prop_name(data->opp_table);
2426 if (data->flags & OPP_CONFIG_CLK)
2427 _opp_put_clknames(data->opp_table);
2428
2429 dev_pm_opp_put_opp_table(data->opp_table);
2430 kfree(data);
2431}
2432
2433/**
2434 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2435 * @dev: Device for which configuration is being set.
2436 * @config: OPP configuration.
2437 *
2438 * This allows all device OPP configurations to be performed at once.
2439 *
2440 * This must be called before any OPPs are initialized for the device. This may
2441 * be called multiple times for the same OPP table, for example once for each
2442 * CPU that share the same table. This must be balanced by the same number of
2443 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2444 *
2445 * This returns a token to the caller, which must be passed to
2446 * dev_pm_opp_clear_config() to free the resources later. The value of the
2447 * returned token will be >= 1 for success and negative for errors. The minimum
2448 * value of 1 is chosen here to make it easy for callers to manage the resource.
2449 */
2450int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2451{
2452 struct opp_table *opp_table;
2453 struct opp_config_data *data;
2454 unsigned int id;
2455 int ret;
2456
2457 data = kmalloc(sizeof(*data), GFP_KERNEL);
2458 if (!data)
2459 return -ENOMEM;
2460
2461 opp_table = _add_opp_table(dev, false);
2462 if (IS_ERR(opp_table)) {
2463 kfree(data);
2464 return PTR_ERR(opp_table);
2465 }
2466
2467 data->opp_table = opp_table;
2468 data->flags = 0;
2469
2470 /* This should be called before OPPs are initialized */
2471 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2472 ret = -EBUSY;
2473 goto err;
2474 }
2475
2476 /* Configure clocks */
2477 if (config->clk_names) {
2478 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2479 config->config_clks);
2480 if (ret)
2481 goto err;
2482
2483 data->flags |= OPP_CONFIG_CLK;
2484 } else if (config->config_clks) {
2485 /* Don't allow config callback without clocks */
2486 ret = -EINVAL;
2487 goto err;
2488 }
2489
2490 /* Configure property names */
2491 if (config->prop_name) {
2492 ret = _opp_set_prop_name(opp_table, config->prop_name);
2493 if (ret)
2494 goto err;
2495
2496 data->flags |= OPP_CONFIG_PROP_NAME;
2497 }
2498
2499 /* Configure config_regulators helper */
2500 if (config->config_regulators) {
2501 ret = _opp_set_config_regulators_helper(opp_table, dev,
2502 config->config_regulators);
2503 if (ret)
2504 goto err;
2505
2506 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2507 }
2508
2509 /* Configure supported hardware */
2510 if (config->supported_hw) {
2511 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2512 config->supported_hw_count);
2513 if (ret)
2514 goto err;
2515
2516 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2517 }
2518
2519 /* Configure supplies */
2520 if (config->regulator_names) {
2521 ret = _opp_set_regulators(opp_table, dev,
2522 config->regulator_names);
2523 if (ret)
2524 goto err;
2525
2526 data->flags |= OPP_CONFIG_REGULATOR;
2527 }
2528
2529 /* Attach genpds */
2530 if (config->genpd_names) {
2531 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2532 config->virt_devs);
2533 if (ret)
2534 goto err;
2535
2536 data->flags |= OPP_CONFIG_GENPD;
2537 }
2538
2539 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2540 GFP_KERNEL);
2541 if (ret)
2542 goto err;
2543
2544 return id;
2545
2546err:
2547 _opp_clear_config(data);
2548 return ret;
2549}
2550EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2551
2552/**
2553 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2554 * @opp_table: OPP table returned from dev_pm_opp_set_config().
2555 *
2556 * This allows all device OPP configurations to be cleared at once. This must be
2557 * called once for each call made to dev_pm_opp_set_config(), in order to free
2558 * the OPPs properly.
2559 *
2560 * Currently the first call itself ends up freeing all the OPP configurations,
2561 * while the later ones only drop the OPP table reference. This works well for
2562 * now as we would never want to use an half initialized OPP table and want to
2563 * remove the configurations together.
2564 */
2565void dev_pm_opp_clear_config(int token)
2566{
2567 struct opp_config_data *data;
2568
2569 /*
2570 * This lets the callers call this unconditionally and keep their code
2571 * simple.
2572 */
2573 if (unlikely(token <= 0))
2574 return;
2575
2576 data = xa_erase(&opp_configs, token);
2577 if (WARN_ON(!data))
2578 return;
2579
2580 _opp_clear_config(data);
2581}
2582EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2583
2584static void devm_pm_opp_config_release(void *token)
2585{
2586 dev_pm_opp_clear_config((unsigned long)token);
2587}
2588
2589/**
2590 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2591 * @dev: Device for which configuration is being set.
2592 * @config: OPP configuration.
2593 *
2594 * This allows all device OPP configurations to be performed at once.
2595 * This is a resource-managed variant of dev_pm_opp_set_config().
2596 *
2597 * Return: 0 on success and errorno otherwise.
2598 */
2599int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2600{
2601 int token = dev_pm_opp_set_config(dev, config);
2602
2603 if (token < 0)
2604 return token;
2605
2606 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2607 (void *) ((unsigned long) token));
2608}
2609EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2610
2611/**
2612 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2613 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2614 * @dst_table: Required OPP table of the @src_table.
2615 * @src_opp: OPP from the @src_table.
2616 *
2617 * This function returns the OPP (present in @dst_table) pointed out by the
2618 * "required-opps" property of the @src_opp (present in @src_table).
2619 *
2620 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2621 * use.
2622 *
2623 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2624 */
2625struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2626 struct opp_table *dst_table,
2627 struct dev_pm_opp *src_opp)
2628{
2629 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2630 int i;
2631
2632 if (!src_table || !dst_table || !src_opp ||
2633 !src_table->required_opp_tables)
2634 return ERR_PTR(-EINVAL);
2635
2636 /* required-opps not fully initialized yet */
2637 if (lazy_linking_pending(src_table))
2638 return ERR_PTR(-EBUSY);
2639
2640 for (i = 0; i < src_table->required_opp_count; i++) {
2641 if (src_table->required_opp_tables[i] == dst_table) {
2642 mutex_lock(&src_table->lock);
2643
2644 list_for_each_entry(opp, &src_table->opp_list, node) {
2645 if (opp == src_opp) {
2646 dest_opp = opp->required_opps[i];
2647 dev_pm_opp_get(dest_opp);
2648 break;
2649 }
2650 }
2651
2652 mutex_unlock(&src_table->lock);
2653 break;
2654 }
2655 }
2656
2657 if (IS_ERR(dest_opp)) {
2658 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2659 src_table, dst_table);
2660 }
2661
2662 return dest_opp;
2663}
2664EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2665
2666/**
2667 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2668 * @src_table: OPP table which has dst_table as one of its required OPP table.
2669 * @dst_table: Required OPP table of the src_table.
2670 * @pstate: Current performance state of the src_table.
2671 *
2672 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2673 * "required-opps" property of the OPP (present in @src_table) which has
2674 * performance state set to @pstate.
2675 *
2676 * Return: Zero or positive performance state on success, otherwise negative
2677 * value on errors.
2678 */
2679int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2680 struct opp_table *dst_table,
2681 unsigned int pstate)
2682{
2683 struct dev_pm_opp *opp;
2684 int dest_pstate = -EINVAL;
2685 int i;
2686
2687 /*
2688 * Normally the src_table will have the "required_opps" property set to
2689 * point to one of the OPPs in the dst_table, but in some cases the
2690 * genpd and its master have one to one mapping of performance states
2691 * and so none of them have the "required-opps" property set. Return the
2692 * pstate of the src_table as it is in such cases.
2693 */
2694 if (!src_table || !src_table->required_opp_count)
2695 return pstate;
2696
2697 /* required-opps not fully initialized yet */
2698 if (lazy_linking_pending(src_table))
2699 return -EBUSY;
2700
2701 for (i = 0; i < src_table->required_opp_count; i++) {
2702 if (src_table->required_opp_tables[i]->np == dst_table->np)
2703 break;
2704 }
2705
2706 if (unlikely(i == src_table->required_opp_count)) {
2707 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2708 __func__, src_table, dst_table);
2709 return -EINVAL;
2710 }
2711
2712 mutex_lock(&src_table->lock);
2713
2714 list_for_each_entry(opp, &src_table->opp_list, node) {
2715 if (opp->pstate == pstate) {
2716 dest_pstate = opp->required_opps[i]->pstate;
2717 goto unlock;
2718 }
2719 }
2720
2721 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2722 dst_table);
2723
2724unlock:
2725 mutex_unlock(&src_table->lock);
2726
2727 return dest_pstate;
2728}
2729
2730/**
2731 * dev_pm_opp_add() - Add an OPP table from a table definitions
2732 * @dev: device for which we do this operation
2733 * @freq: Frequency in Hz for this OPP
2734 * @u_volt: Voltage in uVolts for this OPP
2735 *
2736 * This function adds an opp definition to the opp table and returns status.
2737 * The opp is made available by default and it can be controlled using
2738 * dev_pm_opp_enable/disable functions.
2739 *
2740 * Return:
2741 * 0 On success OR
2742 * Duplicate OPPs (both freq and volt are same) and opp->available
2743 * -EEXIST Freq are same and volt are different OR
2744 * Duplicate OPPs (both freq and volt are same) and !opp->available
2745 * -ENOMEM Memory allocation failure
2746 */
2747int dev_pm_opp_add(struct device *dev, unsigned long freq, unsigned long u_volt)
2748{
2749 struct opp_table *opp_table;
2750 int ret;
2751
2752 opp_table = _add_opp_table(dev, true);
2753 if (IS_ERR(opp_table))
2754 return PTR_ERR(opp_table);
2755
2756 /* Fix regulator count for dynamic OPPs */
2757 opp_table->regulator_count = 1;
2758
2759 ret = _opp_add_v1(opp_table, dev, freq, u_volt, true);
2760 if (ret)
2761 dev_pm_opp_put_opp_table(opp_table);
2762
2763 return ret;
2764}
2765EXPORT_SYMBOL_GPL(dev_pm_opp_add);
2766
2767/**
2768 * _opp_set_availability() - helper to set the availability of an opp
2769 * @dev: device for which we do this operation
2770 * @freq: OPP frequency to modify availability
2771 * @availability_req: availability status requested for this opp
2772 *
2773 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2774 * which is isolated here.
2775 *
2776 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2777 * copy operation, returns 0 if no modification was done OR modification was
2778 * successful.
2779 */
2780static int _opp_set_availability(struct device *dev, unsigned long freq,
2781 bool availability_req)
2782{
2783 struct opp_table *opp_table;
2784 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2785 int r = 0;
2786
2787 /* Find the opp_table */
2788 opp_table = _find_opp_table(dev);
2789 if (IS_ERR(opp_table)) {
2790 r = PTR_ERR(opp_table);
2791 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2792 return r;
2793 }
2794
2795 if (!assert_single_clk(opp_table)) {
2796 r = -EINVAL;
2797 goto put_table;
2798 }
2799
2800 mutex_lock(&opp_table->lock);
2801
2802 /* Do we have the frequency? */
2803 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2804 if (tmp_opp->rates[0] == freq) {
2805 opp = tmp_opp;
2806 break;
2807 }
2808 }
2809
2810 if (IS_ERR(opp)) {
2811 r = PTR_ERR(opp);
2812 goto unlock;
2813 }
2814
2815 /* Is update really needed? */
2816 if (opp->available == availability_req)
2817 goto unlock;
2818
2819 opp->available = availability_req;
2820
2821 dev_pm_opp_get(opp);
2822 mutex_unlock(&opp_table->lock);
2823
2824 /* Notify the change of the OPP availability */
2825 if (availability_req)
2826 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2827 opp);
2828 else
2829 blocking_notifier_call_chain(&opp_table->head,
2830 OPP_EVENT_DISABLE, opp);
2831
2832 dev_pm_opp_put(opp);
2833 goto put_table;
2834
2835unlock:
2836 mutex_unlock(&opp_table->lock);
2837put_table:
2838 dev_pm_opp_put_opp_table(opp_table);
2839 return r;
2840}
2841
2842/**
2843 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2844 * @dev: device for which we do this operation
2845 * @freq: OPP frequency to adjust voltage of
2846 * @u_volt: new OPP target voltage
2847 * @u_volt_min: new OPP min voltage
2848 * @u_volt_max: new OPP max voltage
2849 *
2850 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2851 * copy operation, returns 0 if no modifcation was done OR modification was
2852 * successful.
2853 */
2854int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2855 unsigned long u_volt, unsigned long u_volt_min,
2856 unsigned long u_volt_max)
2857
2858{
2859 struct opp_table *opp_table;
2860 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2861 int r = 0;
2862
2863 /* Find the opp_table */
2864 opp_table = _find_opp_table(dev);
2865 if (IS_ERR(opp_table)) {
2866 r = PTR_ERR(opp_table);
2867 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2868 return r;
2869 }
2870
2871 if (!assert_single_clk(opp_table)) {
2872 r = -EINVAL;
2873 goto put_table;
2874 }
2875
2876 mutex_lock(&opp_table->lock);
2877
2878 /* Do we have the frequency? */
2879 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2880 if (tmp_opp->rates[0] == freq) {
2881 opp = tmp_opp;
2882 break;
2883 }
2884 }
2885
2886 if (IS_ERR(opp)) {
2887 r = PTR_ERR(opp);
2888 goto adjust_unlock;
2889 }
2890
2891 /* Is update really needed? */
2892 if (opp->supplies->u_volt == u_volt)
2893 goto adjust_unlock;
2894
2895 opp->supplies->u_volt = u_volt;
2896 opp->supplies->u_volt_min = u_volt_min;
2897 opp->supplies->u_volt_max = u_volt_max;
2898
2899 dev_pm_opp_get(opp);
2900 mutex_unlock(&opp_table->lock);
2901
2902 /* Notify the voltage change of the OPP */
2903 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2904 opp);
2905
2906 dev_pm_opp_put(opp);
2907 goto put_table;
2908
2909adjust_unlock:
2910 mutex_unlock(&opp_table->lock);
2911put_table:
2912 dev_pm_opp_put_opp_table(opp_table);
2913 return r;
2914}
2915EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2916
2917/**
2918 * dev_pm_opp_enable() - Enable a specific OPP
2919 * @dev: device for which we do this operation
2920 * @freq: OPP frequency to enable
2921 *
2922 * Enables a provided opp. If the operation is valid, this returns 0, else the
2923 * corresponding error value. It is meant to be used for users an OPP available
2924 * after being temporarily made unavailable with dev_pm_opp_disable.
2925 *
2926 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2927 * copy operation, returns 0 if no modification was done OR modification was
2928 * successful.
2929 */
2930int dev_pm_opp_enable(struct device *dev, unsigned long freq)
2931{
2932 return _opp_set_availability(dev, freq, true);
2933}
2934EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
2935
2936/**
2937 * dev_pm_opp_disable() - Disable a specific OPP
2938 * @dev: device for which we do this operation
2939 * @freq: OPP frequency to disable
2940 *
2941 * Disables a provided opp. If the operation is valid, this returns
2942 * 0, else the corresponding error value. It is meant to be a temporary
2943 * control by users to make this OPP not available until the circumstances are
2944 * right to make it available again (with a call to dev_pm_opp_enable).
2945 *
2946 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2947 * copy operation, returns 0 if no modification was done OR modification was
2948 * successful.
2949 */
2950int dev_pm_opp_disable(struct device *dev, unsigned long freq)
2951{
2952 return _opp_set_availability(dev, freq, false);
2953}
2954EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
2955
2956/**
2957 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
2958 * @dev: Device for which notifier needs to be registered
2959 * @nb: Notifier block to be registered
2960 *
2961 * Return: 0 on success or a negative error value.
2962 */
2963int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
2964{
2965 struct opp_table *opp_table;
2966 int ret;
2967
2968 opp_table = _find_opp_table(dev);
2969 if (IS_ERR(opp_table))
2970 return PTR_ERR(opp_table);
2971
2972 ret = blocking_notifier_chain_register(&opp_table->head, nb);
2973
2974 dev_pm_opp_put_opp_table(opp_table);
2975
2976 return ret;
2977}
2978EXPORT_SYMBOL(dev_pm_opp_register_notifier);
2979
2980/**
2981 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
2982 * @dev: Device for which notifier needs to be unregistered
2983 * @nb: Notifier block to be unregistered
2984 *
2985 * Return: 0 on success or a negative error value.
2986 */
2987int dev_pm_opp_unregister_notifier(struct device *dev,
2988 struct notifier_block *nb)
2989{
2990 struct opp_table *opp_table;
2991 int ret;
2992
2993 opp_table = _find_opp_table(dev);
2994 if (IS_ERR(opp_table))
2995 return PTR_ERR(opp_table);
2996
2997 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
2998
2999 dev_pm_opp_put_opp_table(opp_table);
3000
3001 return ret;
3002}
3003EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3004
3005/**
3006 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3007 * @dev: device pointer used to lookup OPP table.
3008 *
3009 * Free both OPPs created using static entries present in DT and the
3010 * dynamically added entries.
3011 */
3012void dev_pm_opp_remove_table(struct device *dev)
3013{
3014 struct opp_table *opp_table;
3015
3016 /* Check for existing table for 'dev' */
3017 opp_table = _find_opp_table(dev);
3018 if (IS_ERR(opp_table)) {
3019 int error = PTR_ERR(opp_table);
3020
3021 if (error != -ENODEV)
3022 WARN(1, "%s: opp_table: %d\n",
3023 IS_ERR_OR_NULL(dev) ?
3024 "Invalid device" : dev_name(dev),
3025 error);
3026 return;
3027 }
3028
3029 /*
3030 * Drop the extra reference only if the OPP table was successfully added
3031 * with dev_pm_opp_of_add_table() earlier.
3032 **/
3033 if (_opp_remove_all_static(opp_table))
3034 dev_pm_opp_put_opp_table(opp_table);
3035
3036 /* Drop reference taken by _find_opp_table() */
3037 dev_pm_opp_put_opp_table(opp_table);
3038}
3039EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
3040
3041/**
3042 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3043 * @dev: device for which we do this operation
3044 *
3045 * Sync voltage state of the OPP table regulators.
3046 *
3047 * Return: 0 on success or a negative error value.
3048 */
3049int dev_pm_opp_sync_regulators(struct device *dev)
3050{
3051 struct opp_table *opp_table;
3052 struct regulator *reg;
3053 int i, ret = 0;
3054
3055 /* Device may not have OPP table */
3056 opp_table = _find_opp_table(dev);
3057 if (IS_ERR(opp_table))
3058 return 0;
3059
3060 /* Regulator may not be required for the device */
3061 if (unlikely(!opp_table->regulators))
3062 goto put_table;
3063
3064 /* Nothing to sync if voltage wasn't changed */
3065 if (!opp_table->enabled)
3066 goto put_table;
3067
3068 for (i = 0; i < opp_table->regulator_count; i++) {
3069 reg = opp_table->regulators[i];
3070 ret = regulator_sync_voltage(reg);
3071 if (ret)
3072 break;
3073 }
3074put_table:
3075 /* Drop reference taken by _find_opp_table() */
3076 dev_pm_opp_put_opp_table(opp_table);
3077
3078 return ret;
3079}
3080EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);