Linux Audio

Check our new training course

Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/device.h>
  17#include <linux/export.h>
  18#include <linux/pm_domain.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/slab.h>
  21#include <linux/xarray.h>
  22
  23#include "opp.h"
  24
  25/*
  26 * The root of the list of all opp-tables. All opp_table structures branch off
  27 * from here, with each opp_table containing the list of opps it supports in
  28 * various states of availability.
  29 */
  30LIST_HEAD(opp_tables);
  31
  32/* Lock to allow exclusive modification to the device and opp lists */
  33DEFINE_MUTEX(opp_table_lock);
  34/* Flag indicating that opp_tables list is being updated at the moment */
  35static bool opp_tables_busy;
  36
  37/* OPP ID allocator */
  38static DEFINE_XARRAY_ALLOC1(opp_configs);
  39
  40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
  41{
  42	struct opp_device *opp_dev;
  43	bool found = false;
  44
  45	mutex_lock(&opp_table->lock);
  46	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  47		if (opp_dev->dev == dev) {
  48			found = true;
  49			break;
  50		}
  51
  52	mutex_unlock(&opp_table->lock);
  53	return found;
  54}
  55
  56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  57{
  58	struct opp_table *opp_table;
  59
  60	list_for_each_entry(opp_table, &opp_tables, node) {
  61		if (_find_opp_dev(dev, opp_table)) {
  62			_get_opp_table_kref(opp_table);
  63			return opp_table;
  64		}
  65	}
  66
  67	return ERR_PTR(-ENODEV);
  68}
  69
  70/**
  71 * _find_opp_table() - find opp_table struct using device pointer
  72 * @dev:	device pointer used to lookup OPP table
  73 *
  74 * Search OPP table for one containing matching device.
  75 *
  76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  77 * -EINVAL based on type of error.
  78 *
  79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  80 */
  81struct opp_table *_find_opp_table(struct device *dev)
  82{
  83	struct opp_table *opp_table;
  84
  85	if (IS_ERR_OR_NULL(dev)) {
  86		pr_err("%s: Invalid parameters\n", __func__);
  87		return ERR_PTR(-EINVAL);
  88	}
  89
  90	mutex_lock(&opp_table_lock);
  91	opp_table = _find_opp_table_unlocked(dev);
  92	mutex_unlock(&opp_table_lock);
  93
  94	return opp_table;
  95}
  96
  97/*
  98 * Returns true if multiple clocks aren't there, else returns false with WARN.
  99 *
 100 * We don't force clk_count == 1 here as there are users who don't have a clock
 101 * representation in the OPP table and manage the clock configuration themselves
 102 * in an platform specific way.
 103 */
 104static bool assert_single_clk(struct opp_table *opp_table,
 105			      unsigned int __always_unused index)
 106{
 107	return !WARN_ON(opp_table->clk_count > 1);
 108}
 109
 110/*
 111 * Returns true if clock table is large enough to contain the clock index.
 112 */
 113static bool assert_clk_index(struct opp_table *opp_table,
 114			     unsigned int index)
 115{
 116	return opp_table->clk_count > index;
 117}
 118
 119/*
 120 * Returns true if bandwidth table is large enough to contain the bandwidth index.
 121 */
 122static bool assert_bandwidth_index(struct opp_table *opp_table,
 123				   unsigned int index)
 124{
 125	return opp_table->path_count > index;
 126}
 127
 128/**
 129 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
 130 * @opp:	opp for which voltage has to be returned for
 131 *
 132 * Return: voltage in micro volt corresponding to the opp, else
 133 * return 0
 134 *
 135 * This is useful only for devices with single power supply.
 136 */
 137unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 138{
 139	if (IS_ERR_OR_NULL(opp)) {
 140		pr_err("%s: Invalid parameters\n", __func__);
 141		return 0;
 142	}
 143
 144	return opp->supplies[0].u_volt;
 145}
 146EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 147
 148/**
 149 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
 150 * @opp:	opp for which voltage has to be returned for
 151 * @supplies:	Placeholder for copying the supply information.
 152 *
 153 * Return: negative error number on failure, 0 otherwise on success after
 154 * setting @supplies.
 155 *
 156 * This can be used for devices with any number of power supplies. The caller
 157 * must ensure the @supplies array must contain space for each regulator.
 158 */
 159int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
 160			    struct dev_pm_opp_supply *supplies)
 161{
 162	if (IS_ERR_OR_NULL(opp) || !supplies) {
 163		pr_err("%s: Invalid parameters\n", __func__);
 164		return -EINVAL;
 165	}
 166
 167	memcpy(supplies, opp->supplies,
 168	       sizeof(*supplies) * opp->opp_table->regulator_count);
 169	return 0;
 170}
 171EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
 172
 173/**
 174 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
 175 * @opp:	opp for which power has to be returned for
 176 *
 177 * Return: power in micro watt corresponding to the opp, else
 178 * return 0
 179 *
 180 * This is useful only for devices with single power supply.
 181 */
 182unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
 183{
 184	unsigned long opp_power = 0;
 185	int i;
 186
 187	if (IS_ERR_OR_NULL(opp)) {
 188		pr_err("%s: Invalid parameters\n", __func__);
 189		return 0;
 190	}
 191	for (i = 0; i < opp->opp_table->regulator_count; i++)
 192		opp_power += opp->supplies[i].u_watt;
 193
 194	return opp_power;
 195}
 196EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
 197
 198/**
 199 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
 200 *				   available opp with specified index
 201 * @opp: opp for which frequency has to be returned for
 202 * @index: index of the frequency within the required opp
 203 *
 204 * Return: frequency in hertz corresponding to the opp with specified index,
 205 * else return 0
 206 */
 207unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
 208{
 209	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
 210		pr_err("%s: Invalid parameters\n", __func__);
 211		return 0;
 212	}
 213
 214	return opp->rates[index];
 215}
 216EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
 217
 218/**
 219 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 220 * @opp:	opp for which level value has to be returned for
 221 *
 222 * Return: level read from device tree corresponding to the opp, else
 223 * return U32_MAX.
 224 */
 225unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 226{
 227	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 228		pr_err("%s: Invalid parameters\n", __func__);
 229		return 0;
 230	}
 231
 232	return opp->level;
 233}
 234EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 235
 236/**
 237 * dev_pm_opp_get_required_pstate() - Gets the required performance state
 238 *                                    corresponding to an available opp
 239 * @opp:	opp for which performance state has to be returned for
 240 * @index:	index of the required opp
 241 *
 242 * Return: performance state read from device tree corresponding to the
 243 * required opp, else return U32_MAX.
 244 */
 245unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
 246					    unsigned int index)
 247{
 248	if (IS_ERR_OR_NULL(opp) || !opp->available ||
 249	    index >= opp->opp_table->required_opp_count) {
 250		pr_err("%s: Invalid parameters\n", __func__);
 251		return 0;
 252	}
 253
 254	/* required-opps not fully initialized yet */
 255	if (lazy_linking_pending(opp->opp_table))
 256		return 0;
 257
 258	/* The required OPP table must belong to a genpd */
 259	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
 260		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
 261		return 0;
 262	}
 263
 264	return opp->required_opps[index]->level;
 265}
 266EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
 267
 268/**
 269 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 270 * @opp: opp for which turbo mode is being verified
 271 *
 272 * Turbo OPPs are not for normal use, and can be enabled (under certain
 273 * conditions) for short duration of times to finish high throughput work
 274 * quickly. Running on them for longer times may overheat the chip.
 275 *
 276 * Return: true if opp is turbo opp, else false.
 277 */
 278bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 279{
 280	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 281		pr_err("%s: Invalid parameters\n", __func__);
 282		return false;
 283	}
 284
 285	return opp->turbo;
 286}
 287EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 288
 289/**
 290 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 291 * @dev:	device for which we do this operation
 292 *
 293 * Return: This function returns the max clock latency in nanoseconds.
 294 */
 295unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 296{
 297	struct opp_table *opp_table;
 298	unsigned long clock_latency_ns;
 299
 300	opp_table = _find_opp_table(dev);
 301	if (IS_ERR(opp_table))
 302		return 0;
 303
 304	clock_latency_ns = opp_table->clock_latency_ns_max;
 305
 306	dev_pm_opp_put_opp_table(opp_table);
 307
 308	return clock_latency_ns;
 309}
 310EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 311
 312/**
 313 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 314 * @dev: device for which we do this operation
 315 *
 316 * Return: This function returns the max voltage latency in nanoseconds.
 317 */
 318unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 319{
 320	struct opp_table *opp_table;
 321	struct dev_pm_opp *opp;
 322	struct regulator *reg;
 323	unsigned long latency_ns = 0;
 324	int ret, i, count;
 325	struct {
 326		unsigned long min;
 327		unsigned long max;
 328	} *uV;
 329
 330	opp_table = _find_opp_table(dev);
 331	if (IS_ERR(opp_table))
 332		return 0;
 333
 334	/* Regulator may not be required for the device */
 335	if (!opp_table->regulators)
 336		goto put_opp_table;
 337
 338	count = opp_table->regulator_count;
 339
 340	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 341	if (!uV)
 342		goto put_opp_table;
 343
 344	mutex_lock(&opp_table->lock);
 345
 346	for (i = 0; i < count; i++) {
 347		uV[i].min = ~0;
 348		uV[i].max = 0;
 349
 350		list_for_each_entry(opp, &opp_table->opp_list, node) {
 351			if (!opp->available)
 352				continue;
 353
 354			if (opp->supplies[i].u_volt_min < uV[i].min)
 355				uV[i].min = opp->supplies[i].u_volt_min;
 356			if (opp->supplies[i].u_volt_max > uV[i].max)
 357				uV[i].max = opp->supplies[i].u_volt_max;
 358		}
 359	}
 360
 361	mutex_unlock(&opp_table->lock);
 362
 363	/*
 364	 * The caller needs to ensure that opp_table (and hence the regulator)
 365	 * isn't freed, while we are executing this routine.
 366	 */
 367	for (i = 0; i < count; i++) {
 368		reg = opp_table->regulators[i];
 369		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 370		if (ret > 0)
 371			latency_ns += ret * 1000;
 372	}
 373
 374	kfree(uV);
 375put_opp_table:
 376	dev_pm_opp_put_opp_table(opp_table);
 377
 378	return latency_ns;
 379}
 380EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 381
 382/**
 383 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 384 *					     nanoseconds
 385 * @dev: device for which we do this operation
 386 *
 387 * Return: This function returns the max transition latency, in nanoseconds, to
 388 * switch from one OPP to other.
 389 */
 390unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 391{
 392	return dev_pm_opp_get_max_volt_latency(dev) +
 393		dev_pm_opp_get_max_clock_latency(dev);
 394}
 395EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 396
 397/**
 398 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 399 * @dev:	device for which we do this operation
 400 *
 401 * Return: This function returns the frequency of the OPP marked as suspend_opp
 402 * if one is available, else returns 0;
 403 */
 404unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 405{
 406	struct opp_table *opp_table;
 407	unsigned long freq = 0;
 408
 409	opp_table = _find_opp_table(dev);
 410	if (IS_ERR(opp_table))
 411		return 0;
 412
 413	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 414		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 415
 416	dev_pm_opp_put_opp_table(opp_table);
 417
 418	return freq;
 419}
 420EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 421
 422int _get_opp_count(struct opp_table *opp_table)
 423{
 424	struct dev_pm_opp *opp;
 425	int count = 0;
 426
 427	mutex_lock(&opp_table->lock);
 428
 429	list_for_each_entry(opp, &opp_table->opp_list, node) {
 430		if (opp->available)
 431			count++;
 432	}
 433
 434	mutex_unlock(&opp_table->lock);
 435
 436	return count;
 437}
 438
 439/**
 440 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 441 * @dev:	device for which we do this operation
 442 *
 443 * Return: This function returns the number of available opps if there are any,
 444 * else returns 0 if none or the corresponding error value.
 445 */
 446int dev_pm_opp_get_opp_count(struct device *dev)
 447{
 448	struct opp_table *opp_table;
 449	int count;
 450
 451	opp_table = _find_opp_table(dev);
 452	if (IS_ERR(opp_table)) {
 453		count = PTR_ERR(opp_table);
 454		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 455			__func__, count);
 456		return count;
 457	}
 458
 459	count = _get_opp_count(opp_table);
 460	dev_pm_opp_put_opp_table(opp_table);
 461
 462	return count;
 463}
 464EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 465
 466/* Helpers to read keys */
 467static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
 468{
 469	return opp->rates[index];
 470}
 471
 472static unsigned long _read_level(struct dev_pm_opp *opp, int index)
 473{
 474	return opp->level;
 475}
 476
 477static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
 478{
 479	return opp->bandwidth[index].peak;
 480}
 481
 482/* Generic comparison helpers */
 483static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 484			   unsigned long opp_key, unsigned long key)
 485{
 486	if (opp_key == key) {
 487		*opp = temp_opp;
 488		return true;
 489	}
 490
 491	return false;
 492}
 493
 494static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 495			  unsigned long opp_key, unsigned long key)
 496{
 497	if (opp_key >= key) {
 498		*opp = temp_opp;
 499		return true;
 500	}
 501
 502	return false;
 503}
 504
 505static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 506			   unsigned long opp_key, unsigned long key)
 507{
 508	if (opp_key > key)
 509		return true;
 510
 511	*opp = temp_opp;
 512	return false;
 513}
 514
 515/* Generic key finding helpers */
 516static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
 517		unsigned long *key, int index, bool available,
 518		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 519		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 520				unsigned long opp_key, unsigned long key),
 521		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 522{
 523	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 524
 525	/* Assert that the requirement is met */
 526	if (assert && !assert(opp_table, index))
 527		return ERR_PTR(-EINVAL);
 528
 529	mutex_lock(&opp_table->lock);
 530
 531	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 532		if (temp_opp->available == available) {
 533			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
 534				break;
 535		}
 536	}
 537
 538	/* Increment the reference count of OPP */
 539	if (!IS_ERR(opp)) {
 540		*key = read(opp, index);
 541		dev_pm_opp_get(opp);
 542	}
 543
 544	mutex_unlock(&opp_table->lock);
 545
 546	return opp;
 547}
 548
 549static struct dev_pm_opp *
 550_find_key(struct device *dev, unsigned long *key, int index, bool available,
 551	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
 552	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 553			  unsigned long opp_key, unsigned long key),
 554	  bool (*assert)(struct opp_table *opp_table, unsigned int index))
 555{
 556	struct opp_table *opp_table;
 557	struct dev_pm_opp *opp;
 558
 559	opp_table = _find_opp_table(dev);
 560	if (IS_ERR(opp_table)) {
 561		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
 562			PTR_ERR(opp_table));
 563		return ERR_CAST(opp_table);
 564	}
 565
 566	opp = _opp_table_find_key(opp_table, key, index, available, read,
 567				  compare, assert);
 568
 569	dev_pm_opp_put_opp_table(opp_table);
 570
 571	return opp;
 572}
 573
 574static struct dev_pm_opp *_find_key_exact(struct device *dev,
 575		unsigned long key, int index, bool available,
 576		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 577		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 578{
 579	/*
 580	 * The value of key will be updated here, but will be ignored as the
 581	 * caller doesn't need it.
 582	 */
 583	return _find_key(dev, &key, index, available, read, _compare_exact,
 584			 assert);
 585}
 586
 587static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
 588		unsigned long *key, int index, bool available,
 589		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 590		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 591{
 592	return _opp_table_find_key(opp_table, key, index, available, read,
 593				   _compare_ceil, assert);
 594}
 595
 596static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
 597		int index, bool available,
 598		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 599		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 600{
 601	return _find_key(dev, key, index, available, read, _compare_ceil,
 602			 assert);
 603}
 604
 605static struct dev_pm_opp *_find_key_floor(struct device *dev,
 606		unsigned long *key, int index, bool available,
 607		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 608		bool (*assert)(struct opp_table *opp_table, unsigned int index))
 609{
 610	return _find_key(dev, key, index, available, read, _compare_floor,
 611			 assert);
 612}
 613
 614/**
 615 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 616 * @dev:		device for which we do this operation
 617 * @freq:		frequency to search for
 618 * @available:		true/false - match for available opp
 619 *
 620 * Return: Searches for exact match in the opp table and returns pointer to the
 621 * matching opp if found, else returns ERR_PTR in case of error and should
 622 * be handled using IS_ERR. Error return values can be:
 623 * EINVAL:	for bad pointer
 624 * ERANGE:	no match found for search
 625 * ENODEV:	if device not found in list of registered devices
 626 *
 627 * Note: available is a modifier for the search. if available=true, then the
 628 * match is for exact matching frequency and is available in the stored OPP
 629 * table. if false, the match is for exact frequency which is not available.
 630 *
 631 * This provides a mechanism to enable an opp which is not available currently
 632 * or the opposite as well.
 633 *
 634 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 635 * use.
 636 */
 637struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 638		unsigned long freq, bool available)
 639{
 640	return _find_key_exact(dev, freq, 0, available, _read_freq,
 641			       assert_single_clk);
 642}
 643EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 644
 645/**
 646 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
 647 *					 clock corresponding to the index
 648 * @dev:	Device for which we do this operation
 649 * @freq:	frequency to search for
 650 * @index:	Clock index
 651 * @available:	true/false - match for available opp
 652 *
 653 * Search for the matching exact OPP for the clock corresponding to the
 654 * specified index from a starting freq for a device.
 655 *
 656 * Return: matching *opp , else returns ERR_PTR in case of error and should be
 657 * handled using IS_ERR. Error return values can be:
 658 * EINVAL:	for bad pointer
 659 * ERANGE:	no match found for search
 660 * ENODEV:	if device not found in list of registered devices
 661 *
 662 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 663 * use.
 664 */
 665struct dev_pm_opp *
 666dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
 667				   u32 index, bool available)
 668{
 669	return _find_key_exact(dev, freq, index, available, _read_freq,
 670			       assert_clk_index);
 671}
 672EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
 673
 674static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 675						   unsigned long *freq)
 676{
 677	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
 678					assert_single_clk);
 679}
 680
 681/**
 682 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 683 * @dev:	device for which we do this operation
 684 * @freq:	Start frequency
 685 *
 686 * Search for the matching ceil *available* OPP from a starting freq
 687 * for a device.
 688 *
 689 * Return: matching *opp and refreshes *freq accordingly, else returns
 690 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 691 * values can be:
 692 * EINVAL:	for bad pointer
 693 * ERANGE:	no match found for search
 694 * ENODEV:	if device not found in list of registered devices
 695 *
 696 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 697 * use.
 698 */
 699struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 700					     unsigned long *freq)
 701{
 702	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
 703}
 704EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 705
 706/**
 707 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
 708 *					 clock corresponding to the index
 709 * @dev:	Device for which we do this operation
 710 * @freq:	Start frequency
 711 * @index:	Clock index
 712 *
 713 * Search for the matching ceil *available* OPP for the clock corresponding to
 714 * the specified index from a starting freq for a device.
 715 *
 716 * Return: matching *opp and refreshes *freq accordingly, else returns
 717 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 718 * values can be:
 719 * EINVAL:	for bad pointer
 720 * ERANGE:	no match found for search
 721 * ENODEV:	if device not found in list of registered devices
 722 *
 723 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 724 * use.
 725 */
 726struct dev_pm_opp *
 727dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
 728				  u32 index)
 729{
 730	return _find_key_ceil(dev, freq, index, true, _read_freq,
 731			      assert_clk_index);
 732}
 733EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
 734
 735/**
 736 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 737 * @dev:	device for which we do this operation
 738 * @freq:	Start frequency
 739 *
 740 * Search for the matching floor *available* OPP from a starting freq
 741 * for a device.
 742 *
 743 * Return: matching *opp and refreshes *freq accordingly, else returns
 744 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 745 * values can be:
 746 * EINVAL:	for bad pointer
 747 * ERANGE:	no match found for search
 748 * ENODEV:	if device not found in list of registered devices
 749 *
 750 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 751 * use.
 752 */
 753struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 754					      unsigned long *freq)
 755{
 756	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
 757}
 758EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 759
 760/**
 761 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
 762 *					  clock corresponding to the index
 763 * @dev:	Device for which we do this operation
 764 * @freq:	Start frequency
 765 * @index:	Clock index
 766 *
 767 * Search for the matching floor *available* OPP for the clock corresponding to
 768 * the specified index from a starting freq for a device.
 769 *
 770 * Return: matching *opp and refreshes *freq accordingly, else returns
 771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 772 * values can be:
 773 * EINVAL:	for bad pointer
 774 * ERANGE:	no match found for search
 775 * ENODEV:	if device not found in list of registered devices
 776 *
 777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 778 * use.
 779 */
 780struct dev_pm_opp *
 781dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
 782				   u32 index)
 783{
 784	return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
 785}
 786EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
 787
 788/**
 789 * dev_pm_opp_find_level_exact() - search for an exact level
 790 * @dev:		device for which we do this operation
 791 * @level:		level to search for
 792 *
 793 * Return: Searches for exact match in the opp table and returns pointer to the
 794 * matching opp if found, else returns ERR_PTR in case of error and should
 795 * be handled using IS_ERR. Error return values can be:
 796 * EINVAL:	for bad pointer
 797 * ERANGE:	no match found for search
 798 * ENODEV:	if device not found in list of registered devices
 799 *
 800 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 801 * use.
 802 */
 803struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 804					       unsigned int level)
 805{
 806	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
 807}
 808EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 809
 810/**
 811 * dev_pm_opp_find_level_ceil() - search for an rounded up level
 812 * @dev:		device for which we do this operation
 813 * @level:		level to search for
 814 *
 815 * Return: Searches for rounded up match in the opp table and returns pointer
 816 * to the  matching opp if found, else returns ERR_PTR in case of error and
 817 * should be handled using IS_ERR. Error return values can be:
 818 * EINVAL:	for bad pointer
 819 * ERANGE:	no match found for search
 820 * ENODEV:	if device not found in list of registered devices
 821 *
 822 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 823 * use.
 824 */
 825struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
 826					      unsigned int *level)
 827{
 828	unsigned long temp = *level;
 829	struct dev_pm_opp *opp;
 830
 831	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
 832	if (IS_ERR(opp))
 833		return opp;
 834
 835	/* False match */
 836	if (temp == OPP_LEVEL_UNSET) {
 837		dev_err(dev, "%s: OPP levels aren't available\n", __func__);
 838		dev_pm_opp_put(opp);
 839		return ERR_PTR(-ENODEV);
 840	}
 841
 842	*level = temp;
 843	return opp;
 844}
 845EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
 846
 847/**
 848 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
 849 * @dev:	device for which we do this operation
 850 * @level:	Start level
 851 *
 852 * Search for the matching floor *available* OPP from a starting level
 853 * for a device.
 854 *
 855 * Return: matching *opp and refreshes *level accordingly, else returns
 856 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 857 * values can be:
 858 * EINVAL:	for bad pointer
 859 * ERANGE:	no match found for search
 860 * ENODEV:	if device not found in list of registered devices
 861 *
 862 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 863 * use.
 864 */
 865struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
 866					       unsigned int *level)
 867{
 868	unsigned long temp = *level;
 869	struct dev_pm_opp *opp;
 870
 871	opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
 872	*level = temp;
 873	return opp;
 874}
 875EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
 876
 877/**
 878 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
 879 * @dev:	device for which we do this operation
 880 * @bw:	start bandwidth
 881 * @index:	which bandwidth to compare, in case of OPPs with several values
 882 *
 883 * Search for the matching floor *available* OPP from a starting bandwidth
 884 * for a device.
 885 *
 886 * Return: matching *opp and refreshes *bw accordingly, else returns
 887 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 888 * values can be:
 889 * EINVAL:	for bad pointer
 890 * ERANGE:	no match found for search
 891 * ENODEV:	if device not found in list of registered devices
 892 *
 893 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 894 * use.
 895 */
 896struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
 897					   int index)
 898{
 899	unsigned long temp = *bw;
 900	struct dev_pm_opp *opp;
 901
 902	opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
 903			     assert_bandwidth_index);
 904	*bw = temp;
 905	return opp;
 906}
 907EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
 908
 909/**
 910 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
 911 * @dev:	device for which we do this operation
 912 * @bw:	start bandwidth
 913 * @index:	which bandwidth to compare, in case of OPPs with several values
 914 *
 915 * Search for the matching floor *available* OPP from a starting bandwidth
 916 * for a device.
 917 *
 918 * Return: matching *opp and refreshes *bw accordingly, else returns
 919 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 920 * values can be:
 921 * EINVAL:	for bad pointer
 922 * ERANGE:	no match found for search
 923 * ENODEV:	if device not found in list of registered devices
 924 *
 925 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 926 * use.
 927 */
 928struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
 929					    unsigned int *bw, int index)
 930{
 931	unsigned long temp = *bw;
 932	struct dev_pm_opp *opp;
 933
 934	opp = _find_key_floor(dev, &temp, index, true, _read_bw,
 935			      assert_bandwidth_index);
 936	*bw = temp;
 937	return opp;
 938}
 939EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
 940
 941static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 942			    struct dev_pm_opp_supply *supply)
 943{
 944	int ret;
 945
 946	/* Regulator not available for device */
 947	if (IS_ERR(reg)) {
 948		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 949			PTR_ERR(reg));
 950		return 0;
 951	}
 952
 953	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 954		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 955
 956	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 957					    supply->u_volt, supply->u_volt_max);
 958	if (ret)
 959		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 960			__func__, supply->u_volt_min, supply->u_volt,
 961			supply->u_volt_max, ret);
 962
 963	return ret;
 964}
 965
 966static int
 967_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
 968		       struct dev_pm_opp *opp, void *data, bool scaling_down)
 969{
 970	unsigned long *target = data;
 971	unsigned long freq;
 972	int ret;
 973
 974	/* One of target and opp must be available */
 975	if (target) {
 976		freq = *target;
 977	} else if (opp) {
 978		freq = opp->rates[0];
 979	} else {
 980		WARN_ON(1);
 981		return -EINVAL;
 982	}
 983
 984	ret = clk_set_rate(opp_table->clk, freq);
 985	if (ret) {
 986		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 987			ret);
 988	} else {
 989		opp_table->current_rate_single_clk = freq;
 990	}
 991
 992	return ret;
 993}
 994
 995/*
 996 * Simple implementation for configuring multiple clocks. Configure clocks in
 997 * the order in which they are present in the array while scaling up.
 998 */
 999int dev_pm_opp_config_clks_simple(struct device *dev,
1000		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
1001		bool scaling_down)
1002{
1003	int ret, i;
1004
1005	if (scaling_down) {
1006		for (i = opp_table->clk_count - 1; i >= 0; i--) {
1007			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1008			if (ret) {
1009				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1010					ret);
1011				return ret;
1012			}
1013		}
1014	} else {
1015		for (i = 0; i < opp_table->clk_count; i++) {
1016			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1017			if (ret) {
1018				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1019					ret);
1020				return ret;
1021			}
1022		}
1023	}
1024
1025	return 0;
1026}
1027EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1028
1029static int _opp_config_regulator_single(struct device *dev,
1030			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1031			struct regulator **regulators, unsigned int count)
1032{
1033	struct regulator *reg = regulators[0];
1034	int ret;
1035
1036	/* This function only supports single regulator per device */
1037	if (WARN_ON(count > 1)) {
1038		dev_err(dev, "multiple regulators are not supported\n");
1039		return -EINVAL;
1040	}
1041
1042	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1043	if (ret)
1044		return ret;
1045
1046	/*
1047	 * Enable the regulator after setting its voltages, otherwise it breaks
1048	 * some boot-enabled regulators.
1049	 */
1050	if (unlikely(!new_opp->opp_table->enabled)) {
1051		ret = regulator_enable(reg);
1052		if (ret < 0)
1053			dev_warn(dev, "Failed to enable regulator: %d", ret);
1054	}
1055
1056	return 0;
1057}
1058
1059static int _set_opp_bw(const struct opp_table *opp_table,
1060		       struct dev_pm_opp *opp, struct device *dev)
1061{
1062	u32 avg, peak;
1063	int i, ret;
1064
1065	if (!opp_table->paths)
1066		return 0;
1067
1068	for (i = 0; i < opp_table->path_count; i++) {
1069		if (!opp) {
1070			avg = 0;
1071			peak = 0;
1072		} else {
1073			avg = opp->bandwidth[i].avg;
1074			peak = opp->bandwidth[i].peak;
1075		}
1076		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1077		if (ret) {
1078			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1079				opp ? "set" : "remove", i, ret);
1080			return ret;
1081		}
1082	}
1083
1084	return 0;
1085}
1086
1087static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1088{
1089	unsigned int level = 0;
1090	int ret = 0;
1091
1092	if (opp) {
1093		if (opp->level == OPP_LEVEL_UNSET)
1094			return 0;
1095
1096		level = opp->level;
1097	}
1098
1099	/* Request a new performance state through the device's PM domain. */
1100	ret = dev_pm_domain_set_performance_state(dev, level);
1101	if (ret)
1102		dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1103			ret);
1104
1105	return ret;
1106}
1107
1108/* This is only called for PM domain for now */
1109static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1110			      struct dev_pm_opp *opp, bool up)
1111{
1112	struct device **devs = opp_table->required_devs;
1113	struct dev_pm_opp *required_opp;
1114	int index, target, delta, ret;
1115
1116	if (!devs)
1117		return 0;
1118
1119	/* required-opps not fully initialized yet */
1120	if (lazy_linking_pending(opp_table))
1121		return -EBUSY;
1122
1123	/* Scaling up? Set required OPPs in normal order, else reverse */
1124	if (up) {
1125		index = 0;
1126		target = opp_table->required_opp_count;
1127		delta = 1;
1128	} else {
1129		index = opp_table->required_opp_count - 1;
1130		target = -1;
1131		delta = -1;
1132	}
1133
1134	while (index != target) {
1135		if (devs[index]) {
1136			required_opp = opp ? opp->required_opps[index] : NULL;
1137
1138			ret = _set_opp_level(devs[index], required_opp);
1139			if (ret)
1140				return ret;
1141		}
1142
1143		index += delta;
1144	}
1145
1146	return 0;
1147}
1148
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1149static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1150{
1151	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1152	unsigned long freq;
1153
1154	if (!IS_ERR(opp_table->clk)) {
1155		freq = clk_get_rate(opp_table->clk);
1156		opp = _find_freq_ceil(opp_table, &freq);
1157	}
1158
1159	/*
1160	 * Unable to find the current OPP ? Pick the first from the list since
1161	 * it is in ascending order, otherwise rest of the code will need to
1162	 * make special checks to validate current_opp.
1163	 */
1164	if (IS_ERR(opp)) {
1165		mutex_lock(&opp_table->lock);
1166		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1167		dev_pm_opp_get(opp);
1168		mutex_unlock(&opp_table->lock);
1169	}
1170
1171	opp_table->current_opp = opp;
1172}
1173
1174static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1175{
1176	int ret;
1177
1178	if (!opp_table->enabled)
1179		return 0;
1180
1181	/*
1182	 * Some drivers need to support cases where some platforms may
1183	 * have OPP table for the device, while others don't and
1184	 * opp_set_rate() just needs to behave like clk_set_rate().
1185	 */
1186	if (!_get_opp_count(opp_table))
1187		return 0;
1188
1189	ret = _set_opp_bw(opp_table, NULL, dev);
1190	if (ret)
1191		return ret;
1192
1193	if (opp_table->regulators)
1194		regulator_disable(opp_table->regulators[0]);
1195
1196	ret = _set_opp_level(dev, NULL);
1197	if (ret)
1198		goto out;
1199
1200	ret = _set_required_opps(dev, opp_table, NULL, false);
1201
1202out:
1203	opp_table->enabled = false;
1204	return ret;
1205}
1206
1207static int _set_opp(struct device *dev, struct opp_table *opp_table,
1208		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1209{
1210	struct dev_pm_opp *old_opp;
1211	int scaling_down, ret;
1212
1213	if (unlikely(!opp))
1214		return _disable_opp_table(dev, opp_table);
1215
1216	/* Find the currently set OPP if we don't know already */
1217	if (unlikely(!opp_table->current_opp))
1218		_find_current_opp(dev, opp_table);
1219
1220	old_opp = opp_table->current_opp;
1221
1222	/* Return early if nothing to do */
1223	if (!forced && old_opp == opp && opp_table->enabled) {
1224		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1225		return 0;
1226	}
1227
1228	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1229		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1230		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1231		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1232
1233	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1234	if (scaling_down == -1)
1235		scaling_down = 0;
1236
1237	/* Scaling up? Configure required OPPs before frequency */
1238	if (!scaling_down) {
1239		ret = _set_required_opps(dev, opp_table, opp, true);
1240		if (ret) {
1241			dev_err(dev, "Failed to set required opps: %d\n", ret);
1242			return ret;
1243		}
1244
1245		ret = _set_opp_level(dev, opp);
1246		if (ret)
1247			return ret;
1248
1249		ret = _set_opp_bw(opp_table, opp, dev);
1250		if (ret) {
1251			dev_err(dev, "Failed to set bw: %d\n", ret);
1252			return ret;
1253		}
1254
1255		if (opp_table->config_regulators) {
1256			ret = opp_table->config_regulators(dev, old_opp, opp,
1257							   opp_table->regulators,
1258							   opp_table->regulator_count);
1259			if (ret) {
1260				dev_err(dev, "Failed to set regulator voltages: %d\n",
1261					ret);
1262				return ret;
1263			}
1264		}
1265	}
1266
1267	if (opp_table->config_clks) {
1268		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1269		if (ret)
1270			return ret;
1271	}
1272
1273	/* Scaling down? Configure required OPPs after frequency */
1274	if (scaling_down) {
1275		if (opp_table->config_regulators) {
1276			ret = opp_table->config_regulators(dev, old_opp, opp,
1277							   opp_table->regulators,
1278							   opp_table->regulator_count);
1279			if (ret) {
1280				dev_err(dev, "Failed to set regulator voltages: %d\n",
1281					ret);
1282				return ret;
1283			}
1284		}
1285
1286		ret = _set_opp_bw(opp_table, opp, dev);
1287		if (ret) {
1288			dev_err(dev, "Failed to set bw: %d\n", ret);
1289			return ret;
1290		}
1291
1292		ret = _set_opp_level(dev, opp);
1293		if (ret)
1294			return ret;
1295
1296		ret = _set_required_opps(dev, opp_table, opp, false);
1297		if (ret) {
1298			dev_err(dev, "Failed to set required opps: %d\n", ret);
1299			return ret;
1300		}
1301	}
1302
1303	opp_table->enabled = true;
1304	dev_pm_opp_put(old_opp);
1305
1306	/* Make sure current_opp doesn't get freed */
1307	dev_pm_opp_get(opp);
1308	opp_table->current_opp = opp;
1309
1310	return ret;
1311}
1312
1313/**
1314 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1315 * @dev:	 device for which we do this operation
1316 * @target_freq: frequency to achieve
1317 *
1318 * This configures the power-supplies to the levels specified by the OPP
1319 * corresponding to the target_freq, and programs the clock to a value <=
1320 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1321 * provided by the opp, should have already rounded to the target OPP's
1322 * frequency.
1323 */
1324int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1325{
1326	struct opp_table *opp_table;
1327	unsigned long freq = 0, temp_freq;
1328	struct dev_pm_opp *opp = NULL;
1329	bool forced = false;
1330	int ret;
1331
1332	opp_table = _find_opp_table(dev);
1333	if (IS_ERR(opp_table)) {
1334		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1335		return PTR_ERR(opp_table);
1336	}
1337
1338	if (target_freq) {
1339		/*
1340		 * For IO devices which require an OPP on some platforms/SoCs
1341		 * while just needing to scale the clock on some others
1342		 * we look for empty OPP tables with just a clock handle and
1343		 * scale only the clk. This makes dev_pm_opp_set_rate()
1344		 * equivalent to a clk_set_rate()
1345		 */
1346		if (!_get_opp_count(opp_table)) {
1347			ret = opp_table->config_clks(dev, opp_table, NULL,
1348						     &target_freq, false);
1349			goto put_opp_table;
1350		}
1351
1352		freq = clk_round_rate(opp_table->clk, target_freq);
1353		if ((long)freq <= 0)
1354			freq = target_freq;
1355
1356		/*
1357		 * The clock driver may support finer resolution of the
1358		 * frequencies than the OPP table, don't update the frequency we
1359		 * pass to clk_set_rate() here.
1360		 */
1361		temp_freq = freq;
1362		opp = _find_freq_ceil(opp_table, &temp_freq);
1363		if (IS_ERR(opp)) {
1364			ret = PTR_ERR(opp);
1365			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1366				__func__, freq, ret);
1367			goto put_opp_table;
1368		}
1369
1370		/*
1371		 * An OPP entry specifies the highest frequency at which other
1372		 * properties of the OPP entry apply. Even if the new OPP is
1373		 * same as the old one, we may still reach here for a different
1374		 * value of the frequency. In such a case, do not abort but
1375		 * configure the hardware to the desired frequency forcefully.
1376		 */
1377		forced = opp_table->current_rate_single_clk != freq;
1378	}
1379
1380	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1381
1382	if (freq)
1383		dev_pm_opp_put(opp);
1384
1385put_opp_table:
1386	dev_pm_opp_put_opp_table(opp_table);
1387	return ret;
1388}
1389EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1390
1391/**
1392 * dev_pm_opp_set_opp() - Configure device for OPP
1393 * @dev: device for which we do this operation
1394 * @opp: OPP to set to
1395 *
1396 * This configures the device based on the properties of the OPP passed to this
1397 * routine.
1398 *
1399 * Return: 0 on success, a negative error number otherwise.
1400 */
1401int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1402{
1403	struct opp_table *opp_table;
1404	int ret;
1405
1406	opp_table = _find_opp_table(dev);
1407	if (IS_ERR(opp_table)) {
1408		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1409		return PTR_ERR(opp_table);
1410	}
1411
1412	ret = _set_opp(dev, opp_table, opp, NULL, false);
1413	dev_pm_opp_put_opp_table(opp_table);
1414
1415	return ret;
1416}
1417EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1418
1419/* OPP-dev Helpers */
1420static void _remove_opp_dev(struct opp_device *opp_dev,
1421			    struct opp_table *opp_table)
1422{
1423	opp_debug_unregister(opp_dev, opp_table);
1424	list_del(&opp_dev->node);
1425	kfree(opp_dev);
1426}
1427
1428struct opp_device *_add_opp_dev(const struct device *dev,
1429				struct opp_table *opp_table)
1430{
1431	struct opp_device *opp_dev;
1432
1433	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1434	if (!opp_dev)
1435		return NULL;
1436
1437	/* Initialize opp-dev */
1438	opp_dev->dev = dev;
1439
1440	mutex_lock(&opp_table->lock);
1441	list_add(&opp_dev->node, &opp_table->dev_list);
1442	mutex_unlock(&opp_table->lock);
1443
1444	/* Create debugfs entries for the opp_table */
1445	opp_debug_register(opp_dev, opp_table);
1446
1447	return opp_dev;
1448}
1449
1450static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1451{
1452	struct opp_table *opp_table;
1453	struct opp_device *opp_dev;
1454	int ret;
1455
1456	/*
1457	 * Allocate a new OPP table. In the infrequent case where a new
1458	 * device is needed to be added, we pay this penalty.
1459	 */
1460	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1461	if (!opp_table)
1462		return ERR_PTR(-ENOMEM);
1463
1464	mutex_init(&opp_table->lock);
1465	INIT_LIST_HEAD(&opp_table->dev_list);
1466	INIT_LIST_HEAD(&opp_table->lazy);
1467
1468	opp_table->clk = ERR_PTR(-ENODEV);
1469
1470	/* Mark regulator count uninitialized */
1471	opp_table->regulator_count = -1;
1472
1473	opp_dev = _add_opp_dev(dev, opp_table);
1474	if (!opp_dev) {
1475		ret = -ENOMEM;
1476		goto err;
1477	}
1478
1479	_of_init_opp_table(opp_table, dev, index);
1480
1481	/* Find interconnect path(s) for the device */
1482	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1483	if (ret) {
1484		if (ret == -EPROBE_DEFER)
1485			goto remove_opp_dev;
1486
1487		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1488			 __func__, ret);
1489	}
1490
1491	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1492	INIT_LIST_HEAD(&opp_table->opp_list);
1493	kref_init(&opp_table->kref);
1494
1495	return opp_table;
1496
1497remove_opp_dev:
1498	_of_clear_opp_table(opp_table);
1499	_remove_opp_dev(opp_dev, opp_table);
1500	mutex_destroy(&opp_table->lock);
1501err:
1502	kfree(opp_table);
1503	return ERR_PTR(ret);
1504}
1505
1506void _get_opp_table_kref(struct opp_table *opp_table)
1507{
1508	kref_get(&opp_table->kref);
1509}
1510
1511static struct opp_table *_update_opp_table_clk(struct device *dev,
1512					       struct opp_table *opp_table,
1513					       bool getclk)
1514{
1515	int ret;
1516
1517	/*
1518	 * Return early if we don't need to get clk or we have already done it
1519	 * earlier.
1520	 */
1521	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1522	    opp_table->clks)
1523		return opp_table;
1524
1525	/* Find clk for the device */
1526	opp_table->clk = clk_get(dev, NULL);
1527
1528	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1529	if (!ret) {
1530		opp_table->config_clks = _opp_config_clk_single;
1531		opp_table->clk_count = 1;
1532		return opp_table;
1533	}
1534
1535	if (ret == -ENOENT) {
1536		/*
1537		 * There are few platforms which don't want the OPP core to
1538		 * manage device's clock settings. In such cases neither the
1539		 * platform provides the clks explicitly to us, nor the DT
1540		 * contains a valid clk entry. The OPP nodes in DT may still
1541		 * contain "opp-hz" property though, which we need to parse and
1542		 * allow the platform to find an OPP based on freq later on.
1543		 *
1544		 * This is a simple solution to take care of such corner cases,
1545		 * i.e. make the clk_count 1, which lets us allocate space for
1546		 * frequency in opp->rates and also parse the entries in DT.
1547		 */
1548		opp_table->clk_count = 1;
1549
1550		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1551		return opp_table;
1552	}
1553
1554	dev_pm_opp_put_opp_table(opp_table);
1555	dev_err_probe(dev, ret, "Couldn't find clock\n");
1556
1557	return ERR_PTR(ret);
1558}
1559
1560/*
1561 * We need to make sure that the OPP table for a device doesn't get added twice,
1562 * if this routine gets called in parallel with the same device pointer.
1563 *
1564 * The simplest way to enforce that is to perform everything (find existing
1565 * table and if not found, create a new one) under the opp_table_lock, so only
1566 * one creator gets access to the same. But that expands the critical section
1567 * under the lock and may end up causing circular dependencies with frameworks
1568 * like debugfs, interconnect or clock framework as they may be direct or
1569 * indirect users of OPP core.
1570 *
1571 * And for that reason we have to go for a bit tricky implementation here, which
1572 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1573 * of adding an OPP table and others should wait for it to finish.
1574 */
1575struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1576					 bool getclk)
1577{
1578	struct opp_table *opp_table;
1579
1580again:
1581	mutex_lock(&opp_table_lock);
1582
1583	opp_table = _find_opp_table_unlocked(dev);
1584	if (!IS_ERR(opp_table))
1585		goto unlock;
1586
1587	/*
1588	 * The opp_tables list or an OPP table's dev_list is getting updated by
1589	 * another user, wait for it to finish.
1590	 */
1591	if (unlikely(opp_tables_busy)) {
1592		mutex_unlock(&opp_table_lock);
1593		cpu_relax();
1594		goto again;
1595	}
1596
1597	opp_tables_busy = true;
1598	opp_table = _managed_opp(dev, index);
1599
1600	/* Drop the lock to reduce the size of critical section */
1601	mutex_unlock(&opp_table_lock);
1602
1603	if (opp_table) {
1604		if (!_add_opp_dev(dev, opp_table)) {
1605			dev_pm_opp_put_opp_table(opp_table);
1606			opp_table = ERR_PTR(-ENOMEM);
1607		}
1608
1609		mutex_lock(&opp_table_lock);
1610	} else {
1611		opp_table = _allocate_opp_table(dev, index);
1612
1613		mutex_lock(&opp_table_lock);
1614		if (!IS_ERR(opp_table))
1615			list_add(&opp_table->node, &opp_tables);
1616	}
1617
1618	opp_tables_busy = false;
1619
1620unlock:
1621	mutex_unlock(&opp_table_lock);
1622
1623	return _update_opp_table_clk(dev, opp_table, getclk);
1624}
1625
1626static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1627{
1628	return _add_opp_table_indexed(dev, 0, getclk);
1629}
1630
1631struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1632{
1633	return _find_opp_table(dev);
1634}
1635EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1636
1637static void _opp_table_kref_release(struct kref *kref)
1638{
1639	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1640	struct opp_device *opp_dev, *temp;
1641	int i;
1642
1643	/* Drop the lock as soon as we can */
1644	list_del(&opp_table->node);
1645	mutex_unlock(&opp_table_lock);
1646
1647	if (opp_table->current_opp)
1648		dev_pm_opp_put(opp_table->current_opp);
1649
1650	_of_clear_opp_table(opp_table);
1651
1652	/* Release automatically acquired single clk */
1653	if (!IS_ERR(opp_table->clk))
1654		clk_put(opp_table->clk);
1655
1656	if (opp_table->paths) {
1657		for (i = 0; i < opp_table->path_count; i++)
1658			icc_put(opp_table->paths[i]);
1659		kfree(opp_table->paths);
1660	}
1661
1662	WARN_ON(!list_empty(&opp_table->opp_list));
1663
1664	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1665		_remove_opp_dev(opp_dev, opp_table);
1666
1667	mutex_destroy(&opp_table->lock);
1668	kfree(opp_table);
1669}
1670
1671void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1672{
1673	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1674		       &opp_table_lock);
1675}
1676EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1677
1678void _opp_free(struct dev_pm_opp *opp)
1679{
1680	kfree(opp);
1681}
1682
1683static void _opp_kref_release(struct kref *kref)
1684{
1685	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1686	struct opp_table *opp_table = opp->opp_table;
1687
1688	list_del(&opp->node);
1689	mutex_unlock(&opp_table->lock);
1690
1691	/*
1692	 * Notify the changes in the availability of the operable
1693	 * frequency/voltage list.
1694	 */
1695	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1696	_of_clear_opp(opp_table, opp);
1697	opp_debug_remove_one(opp);
1698	kfree(opp);
1699}
1700
1701void dev_pm_opp_get(struct dev_pm_opp *opp)
1702{
1703	kref_get(&opp->kref);
1704}
1705
1706void dev_pm_opp_put(struct dev_pm_opp *opp)
1707{
1708	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1709}
1710EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1711
1712/**
1713 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1714 * @dev:	device for which we do this operation
1715 * @freq:	OPP to remove with matching 'freq'
1716 *
1717 * This function removes an opp from the opp table.
1718 */
1719void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1720{
1721	struct dev_pm_opp *opp = NULL, *iter;
1722	struct opp_table *opp_table;
1723
1724	opp_table = _find_opp_table(dev);
1725	if (IS_ERR(opp_table))
1726		return;
1727
1728	if (!assert_single_clk(opp_table, 0))
1729		goto put_table;
1730
1731	mutex_lock(&opp_table->lock);
1732
1733	list_for_each_entry(iter, &opp_table->opp_list, node) {
1734		if (iter->rates[0] == freq) {
1735			opp = iter;
1736			break;
1737		}
1738	}
1739
1740	mutex_unlock(&opp_table->lock);
1741
1742	if (opp) {
1743		dev_pm_opp_put(opp);
1744
1745		/* Drop the reference taken by dev_pm_opp_add() */
1746		dev_pm_opp_put_opp_table(opp_table);
1747	} else {
1748		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1749			 __func__, freq);
1750	}
1751
1752put_table:
1753	/* Drop the reference taken by _find_opp_table() */
1754	dev_pm_opp_put_opp_table(opp_table);
1755}
1756EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1757
1758static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1759					bool dynamic)
1760{
1761	struct dev_pm_opp *opp = NULL, *temp;
1762
1763	mutex_lock(&opp_table->lock);
1764	list_for_each_entry(temp, &opp_table->opp_list, node) {
1765		/*
1766		 * Refcount must be dropped only once for each OPP by OPP core,
1767		 * do that with help of "removed" flag.
1768		 */
1769		if (!temp->removed && dynamic == temp->dynamic) {
1770			opp = temp;
1771			break;
1772		}
1773	}
1774
1775	mutex_unlock(&opp_table->lock);
1776	return opp;
1777}
1778
1779/*
1780 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1781 * happen lock less to avoid circular dependency issues. This routine must be
1782 * called without the opp_table->lock held.
1783 */
1784static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1785{
1786	struct dev_pm_opp *opp;
1787
1788	while ((opp = _opp_get_next(opp_table, dynamic))) {
1789		opp->removed = true;
1790		dev_pm_opp_put(opp);
1791
1792		/* Drop the references taken by dev_pm_opp_add() */
1793		if (dynamic)
1794			dev_pm_opp_put_opp_table(opp_table);
1795	}
1796}
1797
1798bool _opp_remove_all_static(struct opp_table *opp_table)
1799{
1800	mutex_lock(&opp_table->lock);
1801
1802	if (!opp_table->parsed_static_opps) {
1803		mutex_unlock(&opp_table->lock);
1804		return false;
1805	}
1806
1807	if (--opp_table->parsed_static_opps) {
1808		mutex_unlock(&opp_table->lock);
1809		return true;
1810	}
1811
1812	mutex_unlock(&opp_table->lock);
1813
1814	_opp_remove_all(opp_table, false);
1815	return true;
1816}
1817
1818/**
1819 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1820 * @dev:	device for which we do this operation
1821 *
1822 * This function removes all dynamically created OPPs from the opp table.
1823 */
1824void dev_pm_opp_remove_all_dynamic(struct device *dev)
1825{
1826	struct opp_table *opp_table;
1827
1828	opp_table = _find_opp_table(dev);
1829	if (IS_ERR(opp_table))
1830		return;
1831
1832	_opp_remove_all(opp_table, true);
1833
1834	/* Drop the reference taken by _find_opp_table() */
1835	dev_pm_opp_put_opp_table(opp_table);
1836}
1837EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1838
1839struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1840{
1841	struct dev_pm_opp *opp;
1842	int supply_count, supply_size, icc_size, clk_size;
1843
1844	/* Allocate space for at least one supply */
1845	supply_count = opp_table->regulator_count > 0 ?
1846			opp_table->regulator_count : 1;
1847	supply_size = sizeof(*opp->supplies) * supply_count;
1848	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1849	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1850
1851	/* allocate new OPP node and supplies structures */
1852	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1853	if (!opp)
1854		return NULL;
1855
1856	/* Put the supplies, bw and clock at the end of the OPP structure */
1857	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1858
1859	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1860
1861	if (icc_size)
1862		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1863
1864	INIT_LIST_HEAD(&opp->node);
1865
1866	opp->level = OPP_LEVEL_UNSET;
1867
1868	return opp;
1869}
1870
1871static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1872					 struct opp_table *opp_table)
1873{
1874	struct regulator *reg;
1875	int i;
1876
1877	if (!opp_table->regulators)
1878		return true;
1879
1880	for (i = 0; i < opp_table->regulator_count; i++) {
1881		reg = opp_table->regulators[i];
1882
1883		if (!regulator_is_supported_voltage(reg,
1884					opp->supplies[i].u_volt_min,
1885					opp->supplies[i].u_volt_max)) {
1886			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1887				__func__, opp->supplies[i].u_volt_min,
1888				opp->supplies[i].u_volt_max);
1889			return false;
1890		}
1891	}
1892
1893	return true;
1894}
1895
1896static int _opp_compare_rate(struct opp_table *opp_table,
1897			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1898{
1899	int i;
1900
1901	for (i = 0; i < opp_table->clk_count; i++) {
1902		if (opp1->rates[i] != opp2->rates[i])
1903			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1904	}
1905
1906	/* Same rates for both OPPs */
1907	return 0;
1908}
1909
1910static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1911			   struct dev_pm_opp *opp2)
1912{
1913	int i;
1914
1915	for (i = 0; i < opp_table->path_count; i++) {
1916		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1917			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1918	}
1919
1920	/* Same bw for both OPPs */
1921	return 0;
1922}
1923
1924/*
1925 * Returns
1926 * 0: opp1 == opp2
1927 * 1: opp1 > opp2
1928 * -1: opp1 < opp2
1929 */
1930int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1931		     struct dev_pm_opp *opp2)
1932{
1933	int ret;
1934
1935	ret = _opp_compare_rate(opp_table, opp1, opp2);
1936	if (ret)
1937		return ret;
1938
1939	ret = _opp_compare_bw(opp_table, opp1, opp2);
1940	if (ret)
1941		return ret;
1942
1943	if (opp1->level != opp2->level)
1944		return opp1->level < opp2->level ? -1 : 1;
1945
1946	/* Duplicate OPPs */
1947	return 0;
1948}
1949
1950static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1951			     struct opp_table *opp_table,
1952			     struct list_head **head)
1953{
1954	struct dev_pm_opp *opp;
1955	int opp_cmp;
1956
1957	/*
1958	 * Insert new OPP in order of increasing frequency and discard if
1959	 * already present.
1960	 *
1961	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1962	 * loop, don't replace it with head otherwise it will become an infinite
1963	 * loop.
1964	 */
1965	list_for_each_entry(opp, &opp_table->opp_list, node) {
1966		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1967		if (opp_cmp > 0) {
1968			*head = &opp->node;
1969			continue;
1970		}
1971
1972		if (opp_cmp < 0)
1973			return 0;
1974
1975		/* Duplicate OPPs */
1976		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1977			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1978			 opp->available, new_opp->rates[0],
1979			 new_opp->supplies[0].u_volt, new_opp->available);
1980
1981		/* Should we compare voltages for all regulators here ? */
1982		return opp->available &&
1983		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1984	}
1985
1986	return 0;
1987}
1988
1989void _required_opps_available(struct dev_pm_opp *opp, int count)
1990{
1991	int i;
1992
1993	for (i = 0; i < count; i++) {
1994		if (opp->required_opps[i]->available)
1995			continue;
1996
1997		opp->available = false;
1998		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1999			 __func__, opp->required_opps[i]->np, opp->rates[0]);
2000		return;
2001	}
2002}
2003
2004/*
2005 * Returns:
2006 * 0: On success. And appropriate error message for duplicate OPPs.
2007 * -EBUSY: For OPP with same freq/volt and is available. The callers of
2008 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2009 *  sure we don't print error messages unnecessarily if different parts of
2010 *  kernel try to initialize the OPP table.
2011 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2012 *  should be considered an error by the callers of _opp_add().
2013 */
2014int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2015	     struct opp_table *opp_table)
2016{
2017	struct list_head *head;
2018	int ret;
2019
2020	mutex_lock(&opp_table->lock);
2021	head = &opp_table->opp_list;
2022
2023	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2024	if (ret) {
2025		mutex_unlock(&opp_table->lock);
2026		return ret;
2027	}
2028
2029	list_add(&new_opp->node, head);
2030	mutex_unlock(&opp_table->lock);
2031
2032	new_opp->opp_table = opp_table;
2033	kref_init(&new_opp->kref);
2034
2035	opp_debug_create_one(new_opp, opp_table);
2036
2037	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2038		new_opp->available = false;
2039		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2040			 __func__, new_opp->rates[0]);
2041	}
2042
2043	/* required-opps not fully initialized yet */
2044	if (lazy_linking_pending(opp_table))
2045		return 0;
2046
2047	_required_opps_available(new_opp, opp_table->required_opp_count);
2048
2049	return 0;
2050}
2051
2052/**
2053 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2054 * @opp_table:	OPP table
2055 * @dev:	device for which we do this operation
2056 * @data:	The OPP data for the OPP to add
2057 * @dynamic:	Dynamically added OPPs.
2058 *
2059 * This function adds an opp definition to the opp table and returns status.
2060 * The opp is made available by default and it can be controlled using
2061 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2062 *
2063 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2064 * and freed by dev_pm_opp_of_remove_table.
2065 *
2066 * Return:
2067 * 0		On success OR
2068 *		Duplicate OPPs (both freq and volt are same) and opp->available
2069 * -EEXIST	Freq are same and volt are different OR
2070 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2071 * -ENOMEM	Memory allocation failure
2072 */
2073int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2074		struct dev_pm_opp_data *data, bool dynamic)
2075{
2076	struct dev_pm_opp *new_opp;
2077	unsigned long tol, u_volt = data->u_volt;
2078	int ret;
2079
2080	if (!assert_single_clk(opp_table, 0))
2081		return -EINVAL;
2082
2083	new_opp = _opp_allocate(opp_table);
2084	if (!new_opp)
2085		return -ENOMEM;
2086
2087	/* populate the opp table */
2088	new_opp->rates[0] = data->freq;
2089	new_opp->level = data->level;
2090	new_opp->turbo = data->turbo;
2091	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2092	new_opp->supplies[0].u_volt = u_volt;
2093	new_opp->supplies[0].u_volt_min = u_volt - tol;
2094	new_opp->supplies[0].u_volt_max = u_volt + tol;
2095	new_opp->available = true;
2096	new_opp->dynamic = dynamic;
2097
2098	ret = _opp_add(dev, new_opp, opp_table);
2099	if (ret) {
2100		/* Don't return error for duplicate OPPs */
2101		if (ret == -EBUSY)
2102			ret = 0;
2103		goto free_opp;
2104	}
2105
2106	/*
2107	 * Notify the changes in the availability of the operable
2108	 * frequency/voltage list.
2109	 */
2110	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2111	return 0;
2112
2113free_opp:
2114	_opp_free(new_opp);
2115
2116	return ret;
2117}
2118
2119/*
2120 * This is required only for the V2 bindings, and it enables a platform to
2121 * specify the hierarchy of versions it supports. OPP layer will then enable
2122 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2123 * property.
2124 */
2125static int _opp_set_supported_hw(struct opp_table *opp_table,
2126				 const u32 *versions, unsigned int count)
2127{
2128	/* Another CPU that shares the OPP table has set the property ? */
2129	if (opp_table->supported_hw)
2130		return 0;
2131
2132	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2133					GFP_KERNEL);
2134	if (!opp_table->supported_hw)
2135		return -ENOMEM;
2136
2137	opp_table->supported_hw_count = count;
2138
2139	return 0;
2140}
2141
2142static void _opp_put_supported_hw(struct opp_table *opp_table)
2143{
2144	if (opp_table->supported_hw) {
2145		kfree(opp_table->supported_hw);
2146		opp_table->supported_hw = NULL;
2147		opp_table->supported_hw_count = 0;
2148	}
2149}
2150
2151/*
2152 * This is required only for the V2 bindings, and it enables a platform to
2153 * specify the extn to be used for certain property names. The properties to
2154 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2155 * should postfix the property name with -<name> while looking for them.
2156 */
2157static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2158{
2159	/* Another CPU that shares the OPP table has set the property ? */
2160	if (!opp_table->prop_name) {
2161		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2162		if (!opp_table->prop_name)
2163			return -ENOMEM;
2164	}
2165
2166	return 0;
2167}
2168
2169static void _opp_put_prop_name(struct opp_table *opp_table)
2170{
2171	if (opp_table->prop_name) {
2172		kfree(opp_table->prop_name);
2173		opp_table->prop_name = NULL;
2174	}
2175}
2176
2177/*
2178 * In order to support OPP switching, OPP layer needs to know the name of the
2179 * device's regulators, as the core would be required to switch voltages as
2180 * well.
2181 *
2182 * This must be called before any OPPs are initialized for the device.
2183 */
2184static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2185			       const char * const names[])
2186{
2187	const char * const *temp = names;
2188	struct regulator *reg;
2189	int count = 0, ret, i;
2190
2191	/* Count number of regulators */
2192	while (*temp++)
2193		count++;
2194
2195	if (!count)
2196		return -EINVAL;
2197
2198	/* Another CPU that shares the OPP table has set the regulators ? */
2199	if (opp_table->regulators)
2200		return 0;
2201
2202	opp_table->regulators = kmalloc_array(count,
2203					      sizeof(*opp_table->regulators),
2204					      GFP_KERNEL);
2205	if (!opp_table->regulators)
2206		return -ENOMEM;
2207
2208	for (i = 0; i < count; i++) {
2209		reg = regulator_get_optional(dev, names[i]);
2210		if (IS_ERR(reg)) {
2211			ret = dev_err_probe(dev, PTR_ERR(reg),
2212					    "%s: no regulator (%s) found\n",
2213					    __func__, names[i]);
2214			goto free_regulators;
2215		}
2216
2217		opp_table->regulators[i] = reg;
2218	}
2219
2220	opp_table->regulator_count = count;
2221
2222	/* Set generic config_regulators() for single regulators here */
2223	if (count == 1)
2224		opp_table->config_regulators = _opp_config_regulator_single;
2225
2226	return 0;
2227
2228free_regulators:
2229	while (i != 0)
2230		regulator_put(opp_table->regulators[--i]);
2231
2232	kfree(opp_table->regulators);
2233	opp_table->regulators = NULL;
2234	opp_table->regulator_count = -1;
2235
2236	return ret;
2237}
2238
2239static void _opp_put_regulators(struct opp_table *opp_table)
2240{
2241	int i;
2242
2243	if (!opp_table->regulators)
2244		return;
2245
2246	if (opp_table->enabled) {
2247		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2248			regulator_disable(opp_table->regulators[i]);
2249	}
2250
2251	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2252		regulator_put(opp_table->regulators[i]);
2253
2254	kfree(opp_table->regulators);
2255	opp_table->regulators = NULL;
2256	opp_table->regulator_count = -1;
2257}
2258
2259static void _put_clks(struct opp_table *opp_table, int count)
2260{
2261	int i;
2262
2263	for (i = count - 1; i >= 0; i--)
2264		clk_put(opp_table->clks[i]);
2265
2266	kfree(opp_table->clks);
2267	opp_table->clks = NULL;
2268}
2269
2270/*
2271 * In order to support OPP switching, OPP layer needs to get pointers to the
2272 * clocks for the device. Simple cases work fine without using this routine
2273 * (i.e. by passing connection-id as NULL), but for a device with multiple
2274 * clocks available, the OPP core needs to know the exact names of the clks to
2275 * use.
2276 *
2277 * This must be called before any OPPs are initialized for the device.
2278 */
2279static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2280			     const char * const names[],
2281			     config_clks_t config_clks)
2282{
2283	const char * const *temp = names;
2284	int count = 0, ret, i;
2285	struct clk *clk;
2286
2287	/* Count number of clks */
2288	while (*temp++)
2289		count++;
2290
2291	/*
2292	 * This is a special case where we have a single clock, whose connection
2293	 * id name is NULL, i.e. first two entries are NULL in the array.
2294	 */
2295	if (!count && !names[1])
2296		count = 1;
2297
2298	/* Fail early for invalid configurations */
2299	if (!count || (!config_clks && count > 1))
2300		return -EINVAL;
2301
2302	/* Another CPU that shares the OPP table has set the clkname ? */
2303	if (opp_table->clks)
2304		return 0;
2305
2306	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2307					GFP_KERNEL);
2308	if (!opp_table->clks)
2309		return -ENOMEM;
2310
2311	/* Find clks for the device */
2312	for (i = 0; i < count; i++) {
2313		clk = clk_get(dev, names[i]);
2314		if (IS_ERR(clk)) {
2315			ret = dev_err_probe(dev, PTR_ERR(clk),
2316					    "%s: Couldn't find clock with name: %s\n",
2317					    __func__, names[i]);
2318			goto free_clks;
2319		}
2320
2321		opp_table->clks[i] = clk;
2322	}
2323
2324	opp_table->clk_count = count;
2325	opp_table->config_clks = config_clks;
2326
2327	/* Set generic single clk set here */
2328	if (count == 1) {
2329		if (!opp_table->config_clks)
2330			opp_table->config_clks = _opp_config_clk_single;
2331
2332		/*
2333		 * We could have just dropped the "clk" field and used "clks"
2334		 * everywhere. Instead we kept the "clk" field around for
2335		 * following reasons:
2336		 *
2337		 * - avoiding clks[0] everywhere else.
2338		 * - not running single clk helpers for multiple clk usecase by
2339		 *   mistake.
2340		 *
2341		 * Since this is single-clk case, just update the clk pointer
2342		 * too.
2343		 */
2344		opp_table->clk = opp_table->clks[0];
2345	}
2346
2347	return 0;
2348
2349free_clks:
2350	_put_clks(opp_table, i);
2351	return ret;
2352}
2353
2354static void _opp_put_clknames(struct opp_table *opp_table)
2355{
2356	if (!opp_table->clks)
2357		return;
2358
2359	opp_table->config_clks = NULL;
2360	opp_table->clk = ERR_PTR(-ENODEV);
2361
2362	_put_clks(opp_table, opp_table->clk_count);
2363}
2364
2365/*
2366 * This is useful to support platforms with multiple regulators per device.
2367 *
2368 * This must be called before any OPPs are initialized for the device.
2369 */
2370static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2371		struct device *dev, config_regulators_t config_regulators)
2372{
2373	/* Another CPU that shares the OPP table has set the helper ? */
2374	if (!opp_table->config_regulators)
2375		opp_table->config_regulators = config_regulators;
2376
2377	return 0;
2378}
2379
2380static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2381{
2382	if (opp_table->config_regulators)
2383		opp_table->config_regulators = NULL;
2384}
2385
2386static int _opp_set_required_dev(struct opp_table *opp_table,
2387				 struct device *dev,
2388				 struct device *required_dev,
2389				 unsigned int index)
2390{
2391	struct opp_table *required_table, *pd_table;
2392	struct device *gdev;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2393
2394	/* Genpd core takes care of propagation to parent genpd */
2395	if (opp_table->is_genpd) {
2396		dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2397		return -EOPNOTSUPP;
2398	}
2399
2400	if (index >= opp_table->required_opp_count) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2401		dev_err(dev, "Required OPPs not available, can't set required devs\n");
2402		return -EINVAL;
2403	}
2404
2405	required_table = opp_table->required_opp_tables[index];
2406	if (IS_ERR(required_table)) {
2407		dev_err(dev, "Missing OPP table, unable to set the required devs\n");
2408		return -ENODEV;
2409	}
2410
2411	/*
2412	 * The required_opp_tables parsing is not perfect, as the OPP core does
2413	 * the parsing solely based on the DT node pointers. The core sets the
2414	 * required_opp_tables entry to the first OPP table in the "opp_tables"
2415	 * list, that matches with the node pointer.
2416	 *
2417	 * If the target DT OPP table is used by multiple devices and they all
2418	 * create separate instances of 'struct opp_table' from it, then it is
2419	 * possible that the required_opp_tables entry may be set to the
2420	 * incorrect sibling device.
2421	 *
2422	 * Cross check it again and fix if required.
2423	 */
2424	gdev = dev_to_genpd_dev(required_dev);
2425	if (IS_ERR(gdev))
2426		return PTR_ERR(gdev);
2427
2428	pd_table = _find_opp_table(gdev);
2429	if (!IS_ERR(pd_table)) {
2430		if (pd_table != required_table) {
2431			dev_pm_opp_put_opp_table(required_table);
2432			opp_table->required_opp_tables[index] = pd_table;
2433		} else {
2434			dev_pm_opp_put_opp_table(pd_table);
2435		}
 
 
2436	}
2437
2438	opp_table->required_devs[index] = required_dev;
2439	return 0;
2440}
2441
2442static void _opp_put_required_dev(struct opp_table *opp_table,
2443				  unsigned int index)
2444{
2445	opp_table->required_devs[index] = NULL;
 
 
 
2446}
2447
2448static void _opp_clear_config(struct opp_config_data *data)
2449{
2450	if (data->flags & OPP_CONFIG_REQUIRED_DEV)
2451		_opp_put_required_dev(data->opp_table,
2452				      data->required_dev_index);
 
 
2453	if (data->flags & OPP_CONFIG_REGULATOR)
2454		_opp_put_regulators(data->opp_table);
2455	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2456		_opp_put_supported_hw(data->opp_table);
2457	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2458		_opp_put_config_regulators_helper(data->opp_table);
2459	if (data->flags & OPP_CONFIG_PROP_NAME)
2460		_opp_put_prop_name(data->opp_table);
2461	if (data->flags & OPP_CONFIG_CLK)
2462		_opp_put_clknames(data->opp_table);
2463
2464	dev_pm_opp_put_opp_table(data->opp_table);
2465	kfree(data);
2466}
2467
2468/**
2469 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2470 * @dev: Device for which configuration is being set.
2471 * @config: OPP configuration.
2472 *
2473 * This allows all device OPP configurations to be performed at once.
2474 *
2475 * This must be called before any OPPs are initialized for the device. This may
2476 * be called multiple times for the same OPP table, for example once for each
2477 * CPU that share the same table. This must be balanced by the same number of
2478 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2479 *
2480 * This returns a token to the caller, which must be passed to
2481 * dev_pm_opp_clear_config() to free the resources later. The value of the
2482 * returned token will be >= 1 for success and negative for errors. The minimum
2483 * value of 1 is chosen here to make it easy for callers to manage the resource.
2484 */
2485int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2486{
2487	struct opp_table *opp_table;
2488	struct opp_config_data *data;
2489	unsigned int id;
2490	int ret;
2491
2492	data = kmalloc(sizeof(*data), GFP_KERNEL);
2493	if (!data)
2494		return -ENOMEM;
2495
2496	opp_table = _add_opp_table(dev, false);
2497	if (IS_ERR(opp_table)) {
2498		kfree(data);
2499		return PTR_ERR(opp_table);
2500	}
2501
2502	data->opp_table = opp_table;
2503	data->flags = 0;
2504
2505	/* This should be called before OPPs are initialized */
2506	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2507		ret = -EBUSY;
2508		goto err;
2509	}
2510
2511	/* Configure clocks */
2512	if (config->clk_names) {
2513		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2514					config->config_clks);
2515		if (ret)
2516			goto err;
2517
2518		data->flags |= OPP_CONFIG_CLK;
2519	} else if (config->config_clks) {
2520		/* Don't allow config callback without clocks */
2521		ret = -EINVAL;
2522		goto err;
2523	}
2524
2525	/* Configure property names */
2526	if (config->prop_name) {
2527		ret = _opp_set_prop_name(opp_table, config->prop_name);
2528		if (ret)
2529			goto err;
2530
2531		data->flags |= OPP_CONFIG_PROP_NAME;
2532	}
2533
2534	/* Configure config_regulators helper */
2535	if (config->config_regulators) {
2536		ret = _opp_set_config_regulators_helper(opp_table, dev,
2537						config->config_regulators);
2538		if (ret)
2539			goto err;
2540
2541		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2542	}
2543
2544	/* Configure supported hardware */
2545	if (config->supported_hw) {
2546		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2547					    config->supported_hw_count);
2548		if (ret)
2549			goto err;
2550
2551		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2552	}
2553
2554	/* Configure supplies */
2555	if (config->regulator_names) {
2556		ret = _opp_set_regulators(opp_table, dev,
2557					  config->regulator_names);
2558		if (ret)
2559			goto err;
2560
2561		data->flags |= OPP_CONFIG_REGULATOR;
2562	}
2563
2564	if (config->required_dev) {
2565		ret = _opp_set_required_dev(opp_table, dev,
2566					    config->required_dev,
2567					    config->required_dev_index);
 
 
 
 
 
 
 
 
 
 
2568		if (ret)
2569			goto err;
2570
2571		data->required_dev_index = config->required_dev_index;
2572		data->flags |= OPP_CONFIG_REQUIRED_DEV;
2573	}
2574
2575	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2576		       GFP_KERNEL);
2577	if (ret)
2578		goto err;
2579
2580	return id;
2581
2582err:
2583	_opp_clear_config(data);
2584	return ret;
2585}
2586EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2587
2588/**
2589 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2590 * @token: The token returned by dev_pm_opp_set_config() previously.
2591 *
2592 * This allows all device OPP configurations to be cleared at once. This must be
2593 * called once for each call made to dev_pm_opp_set_config(), in order to free
2594 * the OPPs properly.
2595 *
2596 * Currently the first call itself ends up freeing all the OPP configurations,
2597 * while the later ones only drop the OPP table reference. This works well for
2598 * now as we would never want to use an half initialized OPP table and want to
2599 * remove the configurations together.
2600 */
2601void dev_pm_opp_clear_config(int token)
2602{
2603	struct opp_config_data *data;
2604
2605	/*
2606	 * This lets the callers call this unconditionally and keep their code
2607	 * simple.
2608	 */
2609	if (unlikely(token <= 0))
2610		return;
2611
2612	data = xa_erase(&opp_configs, token);
2613	if (WARN_ON(!data))
2614		return;
2615
2616	_opp_clear_config(data);
2617}
2618EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2619
2620static void devm_pm_opp_config_release(void *token)
2621{
2622	dev_pm_opp_clear_config((unsigned long)token);
2623}
2624
2625/**
2626 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2627 * @dev: Device for which configuration is being set.
2628 * @config: OPP configuration.
2629 *
2630 * This allows all device OPP configurations to be performed at once.
2631 * This is a resource-managed variant of dev_pm_opp_set_config().
2632 *
2633 * Return: 0 on success and errorno otherwise.
2634 */
2635int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2636{
2637	int token = dev_pm_opp_set_config(dev, config);
2638
2639	if (token < 0)
2640		return token;
2641
2642	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2643					(void *) ((unsigned long) token));
2644}
2645EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2646
2647/**
2648 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2649 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2650 * @dst_table: Required OPP table of the @src_table.
2651 * @src_opp: OPP from the @src_table.
2652 *
2653 * This function returns the OPP (present in @dst_table) pointed out by the
2654 * "required-opps" property of the @src_opp (present in @src_table).
2655 *
2656 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2657 * use.
2658 *
2659 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2660 */
2661struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2662						 struct opp_table *dst_table,
2663						 struct dev_pm_opp *src_opp)
2664{
2665	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2666	int i;
2667
2668	if (!src_table || !dst_table || !src_opp ||
2669	    !src_table->required_opp_tables)
2670		return ERR_PTR(-EINVAL);
2671
2672	/* required-opps not fully initialized yet */
2673	if (lazy_linking_pending(src_table))
2674		return ERR_PTR(-EBUSY);
2675
2676	for (i = 0; i < src_table->required_opp_count; i++) {
2677		if (src_table->required_opp_tables[i] == dst_table) {
2678			mutex_lock(&src_table->lock);
2679
2680			list_for_each_entry(opp, &src_table->opp_list, node) {
2681				if (opp == src_opp) {
2682					dest_opp = opp->required_opps[i];
2683					dev_pm_opp_get(dest_opp);
2684					break;
2685				}
2686			}
2687
2688			mutex_unlock(&src_table->lock);
2689			break;
2690		}
2691	}
2692
2693	if (IS_ERR(dest_opp)) {
2694		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2695		       src_table, dst_table);
2696	}
2697
2698	return dest_opp;
2699}
2700EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2701
2702/**
2703 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2704 * @src_table: OPP table which has dst_table as one of its required OPP table.
2705 * @dst_table: Required OPP table of the src_table.
2706 * @pstate: Current performance state of the src_table.
2707 *
2708 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2709 * "required-opps" property of the OPP (present in @src_table) which has
2710 * performance state set to @pstate.
2711 *
2712 * Return: Zero or positive performance state on success, otherwise negative
2713 * value on errors.
2714 */
2715int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2716				       struct opp_table *dst_table,
2717				       unsigned int pstate)
2718{
2719	struct dev_pm_opp *opp;
2720	int dest_pstate = -EINVAL;
2721	int i;
2722
2723	/*
2724	 * Normally the src_table will have the "required_opps" property set to
2725	 * point to one of the OPPs in the dst_table, but in some cases the
2726	 * genpd and its master have one to one mapping of performance states
2727	 * and so none of them have the "required-opps" property set. Return the
2728	 * pstate of the src_table as it is in such cases.
2729	 */
2730	if (!src_table || !src_table->required_opp_count)
2731		return pstate;
2732
2733	/* Both OPP tables must belong to genpds */
2734	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2735		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2736		return -EINVAL;
2737	}
2738
2739	/* required-opps not fully initialized yet */
2740	if (lazy_linking_pending(src_table))
2741		return -EBUSY;
2742
2743	for (i = 0; i < src_table->required_opp_count; i++) {
2744		if (src_table->required_opp_tables[i]->np == dst_table->np)
2745			break;
2746	}
2747
2748	if (unlikely(i == src_table->required_opp_count)) {
2749		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2750		       __func__, src_table, dst_table);
2751		return -EINVAL;
2752	}
2753
2754	mutex_lock(&src_table->lock);
2755
2756	list_for_each_entry(opp, &src_table->opp_list, node) {
2757		if (opp->level == pstate) {
2758			dest_pstate = opp->required_opps[i]->level;
2759			goto unlock;
2760		}
2761	}
2762
2763	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2764	       dst_table);
2765
2766unlock:
2767	mutex_unlock(&src_table->lock);
2768
2769	return dest_pstate;
2770}
2771
2772/**
2773 * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
2774 * @dev:	The device for which we do this operation
2775 * @data:	The OPP data for the OPP to add
2776 *
2777 * This function adds an opp definition to the opp table and returns status.
2778 * The opp is made available by default and it can be controlled using
2779 * dev_pm_opp_enable/disable functions.
2780 *
2781 * Return:
2782 * 0		On success OR
2783 *		Duplicate OPPs (both freq and volt are same) and opp->available
2784 * -EEXIST	Freq are same and volt are different OR
2785 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2786 * -ENOMEM	Memory allocation failure
2787 */
2788int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2789{
2790	struct opp_table *opp_table;
2791	int ret;
2792
2793	opp_table = _add_opp_table(dev, true);
2794	if (IS_ERR(opp_table))
2795		return PTR_ERR(opp_table);
2796
2797	/* Fix regulator count for dynamic OPPs */
2798	opp_table->regulator_count = 1;
2799
2800	ret = _opp_add_v1(opp_table, dev, data, true);
2801	if (ret)
2802		dev_pm_opp_put_opp_table(opp_table);
2803
2804	return ret;
2805}
2806EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2807
2808/**
2809 * _opp_set_availability() - helper to set the availability of an opp
2810 * @dev:		device for which we do this operation
2811 * @freq:		OPP frequency to modify availability
2812 * @availability_req:	availability status requested for this opp
2813 *
2814 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2815 * which is isolated here.
2816 *
2817 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2818 * copy operation, returns 0 if no modification was done OR modification was
2819 * successful.
2820 */
2821static int _opp_set_availability(struct device *dev, unsigned long freq,
2822				 bool availability_req)
2823{
2824	struct opp_table *opp_table;
2825	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2826	int r = 0;
2827
2828	/* Find the opp_table */
2829	opp_table = _find_opp_table(dev);
2830	if (IS_ERR(opp_table)) {
2831		r = PTR_ERR(opp_table);
2832		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2833		return r;
2834	}
2835
2836	if (!assert_single_clk(opp_table, 0)) {
2837		r = -EINVAL;
2838		goto put_table;
2839	}
2840
2841	mutex_lock(&opp_table->lock);
2842
2843	/* Do we have the frequency? */
2844	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2845		if (tmp_opp->rates[0] == freq) {
2846			opp = tmp_opp;
2847			break;
2848		}
2849	}
2850
2851	if (IS_ERR(opp)) {
2852		r = PTR_ERR(opp);
2853		goto unlock;
2854	}
2855
2856	/* Is update really needed? */
2857	if (opp->available == availability_req)
2858		goto unlock;
2859
2860	opp->available = availability_req;
2861
2862	dev_pm_opp_get(opp);
2863	mutex_unlock(&opp_table->lock);
2864
2865	/* Notify the change of the OPP availability */
2866	if (availability_req)
2867		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2868					     opp);
2869	else
2870		blocking_notifier_call_chain(&opp_table->head,
2871					     OPP_EVENT_DISABLE, opp);
2872
2873	dev_pm_opp_put(opp);
2874	goto put_table;
2875
2876unlock:
2877	mutex_unlock(&opp_table->lock);
2878put_table:
2879	dev_pm_opp_put_opp_table(opp_table);
2880	return r;
2881}
2882
2883/**
2884 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2885 * @dev:		device for which we do this operation
2886 * @freq:		OPP frequency to adjust voltage of
2887 * @u_volt:		new OPP target voltage
2888 * @u_volt_min:		new OPP min voltage
2889 * @u_volt_max:		new OPP max voltage
2890 *
2891 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2892 * copy operation, returns 0 if no modifcation was done OR modification was
2893 * successful.
2894 */
2895int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2896			      unsigned long u_volt, unsigned long u_volt_min,
2897			      unsigned long u_volt_max)
2898
2899{
2900	struct opp_table *opp_table;
2901	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2902	int r = 0;
2903
2904	/* Find the opp_table */
2905	opp_table = _find_opp_table(dev);
2906	if (IS_ERR(opp_table)) {
2907		r = PTR_ERR(opp_table);
2908		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2909		return r;
2910	}
2911
2912	if (!assert_single_clk(opp_table, 0)) {
2913		r = -EINVAL;
2914		goto put_table;
2915	}
2916
2917	mutex_lock(&opp_table->lock);
2918
2919	/* Do we have the frequency? */
2920	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2921		if (tmp_opp->rates[0] == freq) {
2922			opp = tmp_opp;
2923			break;
2924		}
2925	}
2926
2927	if (IS_ERR(opp)) {
2928		r = PTR_ERR(opp);
2929		goto adjust_unlock;
2930	}
2931
2932	/* Is update really needed? */
2933	if (opp->supplies->u_volt == u_volt)
2934		goto adjust_unlock;
2935
2936	opp->supplies->u_volt = u_volt;
2937	opp->supplies->u_volt_min = u_volt_min;
2938	opp->supplies->u_volt_max = u_volt_max;
2939
2940	dev_pm_opp_get(opp);
2941	mutex_unlock(&opp_table->lock);
2942
2943	/* Notify the voltage change of the OPP */
2944	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2945				     opp);
2946
2947	dev_pm_opp_put(opp);
2948	goto put_table;
2949
2950adjust_unlock:
2951	mutex_unlock(&opp_table->lock);
2952put_table:
2953	dev_pm_opp_put_opp_table(opp_table);
2954	return r;
2955}
2956EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2957
2958/**
2959 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2960 * @dev:	device for which we do this operation
2961 *
2962 * Sync voltage state of the OPP table regulators.
2963 *
2964 * Return: 0 on success or a negative error value.
2965 */
2966int dev_pm_opp_sync_regulators(struct device *dev)
2967{
2968	struct opp_table *opp_table;
2969	struct regulator *reg;
2970	int i, ret = 0;
2971
2972	/* Device may not have OPP table */
2973	opp_table = _find_opp_table(dev);
2974	if (IS_ERR(opp_table))
2975		return 0;
2976
2977	/* Regulator may not be required for the device */
2978	if (unlikely(!opp_table->regulators))
2979		goto put_table;
2980
2981	/* Nothing to sync if voltage wasn't changed */
2982	if (!opp_table->enabled)
2983		goto put_table;
2984
2985	for (i = 0; i < opp_table->regulator_count; i++) {
2986		reg = opp_table->regulators[i];
2987		ret = regulator_sync_voltage(reg);
2988		if (ret)
2989			break;
2990	}
2991put_table:
2992	/* Drop reference taken by _find_opp_table() */
2993	dev_pm_opp_put_opp_table(opp_table);
2994
2995	return ret;
2996}
2997EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2998
2999/**
3000 * dev_pm_opp_enable() - Enable a specific OPP
3001 * @dev:	device for which we do this operation
3002 * @freq:	OPP frequency to enable
3003 *
3004 * Enables a provided opp. If the operation is valid, this returns 0, else the
3005 * corresponding error value. It is meant to be used for users an OPP available
3006 * after being temporarily made unavailable with dev_pm_opp_disable.
3007 *
3008 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3009 * copy operation, returns 0 if no modification was done OR modification was
3010 * successful.
3011 */
3012int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3013{
3014	return _opp_set_availability(dev, freq, true);
3015}
3016EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3017
3018/**
3019 * dev_pm_opp_disable() - Disable a specific OPP
3020 * @dev:	device for which we do this operation
3021 * @freq:	OPP frequency to disable
3022 *
3023 * Disables a provided opp. If the operation is valid, this returns
3024 * 0, else the corresponding error value. It is meant to be a temporary
3025 * control by users to make this OPP not available until the circumstances are
3026 * right to make it available again (with a call to dev_pm_opp_enable).
3027 *
3028 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3029 * copy operation, returns 0 if no modification was done OR modification was
3030 * successful.
3031 */
3032int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3033{
3034	return _opp_set_availability(dev, freq, false);
3035}
3036EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3037
3038/**
3039 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3040 * @dev:	Device for which notifier needs to be registered
3041 * @nb:		Notifier block to be registered
3042 *
3043 * Return: 0 on success or a negative error value.
3044 */
3045int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3046{
3047	struct opp_table *opp_table;
3048	int ret;
3049
3050	opp_table = _find_opp_table(dev);
3051	if (IS_ERR(opp_table))
3052		return PTR_ERR(opp_table);
3053
3054	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3055
3056	dev_pm_opp_put_opp_table(opp_table);
3057
3058	return ret;
3059}
3060EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3061
3062/**
3063 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3064 * @dev:	Device for which notifier needs to be unregistered
3065 * @nb:		Notifier block to be unregistered
3066 *
3067 * Return: 0 on success or a negative error value.
3068 */
3069int dev_pm_opp_unregister_notifier(struct device *dev,
3070				   struct notifier_block *nb)
3071{
3072	struct opp_table *opp_table;
3073	int ret;
3074
3075	opp_table = _find_opp_table(dev);
3076	if (IS_ERR(opp_table))
3077		return PTR_ERR(opp_table);
3078
3079	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3080
3081	dev_pm_opp_put_opp_table(opp_table);
3082
3083	return ret;
3084}
3085EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3086
3087/**
3088 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3089 * @dev:	device pointer used to lookup OPP table.
3090 *
3091 * Free both OPPs created using static entries present in DT and the
3092 * dynamically added entries.
3093 */
3094void dev_pm_opp_remove_table(struct device *dev)
3095{
3096	struct opp_table *opp_table;
3097
3098	/* Check for existing table for 'dev' */
3099	opp_table = _find_opp_table(dev);
3100	if (IS_ERR(opp_table)) {
3101		int error = PTR_ERR(opp_table);
3102
3103		if (error != -ENODEV)
3104			WARN(1, "%s: opp_table: %d\n",
3105			     IS_ERR_OR_NULL(dev) ?
3106					"Invalid device" : dev_name(dev),
3107			     error);
3108		return;
3109	}
3110
3111	/*
3112	 * Drop the extra reference only if the OPP table was successfully added
3113	 * with dev_pm_opp_of_add_table() earlier.
3114	 **/
3115	if (_opp_remove_all_static(opp_table))
3116		dev_pm_opp_put_opp_table(opp_table);
3117
3118	/* Drop reference taken by _find_opp_table() */
3119	dev_pm_opp_put_opp_table(opp_table);
3120}
3121EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
v6.8
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Generic OPP Interface
   4 *
   5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
   6 *	Nishanth Menon
   7 *	Romit Dasgupta
   8 *	Kevin Hilman
   9 */
  10
  11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  12
  13#include <linux/clk.h>
  14#include <linux/errno.h>
  15#include <linux/err.h>
  16#include <linux/device.h>
  17#include <linux/export.h>
  18#include <linux/pm_domain.h>
  19#include <linux/regulator/consumer.h>
  20#include <linux/slab.h>
  21#include <linux/xarray.h>
  22
  23#include "opp.h"
  24
  25/*
  26 * The root of the list of all opp-tables. All opp_table structures branch off
  27 * from here, with each opp_table containing the list of opps it supports in
  28 * various states of availability.
  29 */
  30LIST_HEAD(opp_tables);
  31
  32/* Lock to allow exclusive modification to the device and opp lists */
  33DEFINE_MUTEX(opp_table_lock);
  34/* Flag indicating that opp_tables list is being updated at the moment */
  35static bool opp_tables_busy;
  36
  37/* OPP ID allocator */
  38static DEFINE_XARRAY_ALLOC1(opp_configs);
  39
  40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
  41{
  42	struct opp_device *opp_dev;
  43	bool found = false;
  44
  45	mutex_lock(&opp_table->lock);
  46	list_for_each_entry(opp_dev, &opp_table->dev_list, node)
  47		if (opp_dev->dev == dev) {
  48			found = true;
  49			break;
  50		}
  51
  52	mutex_unlock(&opp_table->lock);
  53	return found;
  54}
  55
  56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
  57{
  58	struct opp_table *opp_table;
  59
  60	list_for_each_entry(opp_table, &opp_tables, node) {
  61		if (_find_opp_dev(dev, opp_table)) {
  62			_get_opp_table_kref(opp_table);
  63			return opp_table;
  64		}
  65	}
  66
  67	return ERR_PTR(-ENODEV);
  68}
  69
  70/**
  71 * _find_opp_table() - find opp_table struct using device pointer
  72 * @dev:	device pointer used to lookup OPP table
  73 *
  74 * Search OPP table for one containing matching device.
  75 *
  76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
  77 * -EINVAL based on type of error.
  78 *
  79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
  80 */
  81struct opp_table *_find_opp_table(struct device *dev)
  82{
  83	struct opp_table *opp_table;
  84
  85	if (IS_ERR_OR_NULL(dev)) {
  86		pr_err("%s: Invalid parameters\n", __func__);
  87		return ERR_PTR(-EINVAL);
  88	}
  89
  90	mutex_lock(&opp_table_lock);
  91	opp_table = _find_opp_table_unlocked(dev);
  92	mutex_unlock(&opp_table_lock);
  93
  94	return opp_table;
  95}
  96
  97/*
  98 * Returns true if multiple clocks aren't there, else returns false with WARN.
  99 *
 100 * We don't force clk_count == 1 here as there are users who don't have a clock
 101 * representation in the OPP table and manage the clock configuration themselves
 102 * in an platform specific way.
 103 */
 104static bool assert_single_clk(struct opp_table *opp_table)
 
 105{
 106	return !WARN_ON(opp_table->clk_count > 1);
 107}
 108
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 109/**
 110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
 111 * @opp:	opp for which voltage has to be returned for
 112 *
 113 * Return: voltage in micro volt corresponding to the opp, else
 114 * return 0
 115 *
 116 * This is useful only for devices with single power supply.
 117 */
 118unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
 119{
 120	if (IS_ERR_OR_NULL(opp)) {
 121		pr_err("%s: Invalid parameters\n", __func__);
 122		return 0;
 123	}
 124
 125	return opp->supplies[0].u_volt;
 126}
 127EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
 128
 129/**
 130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
 131 * @opp:	opp for which voltage has to be returned for
 132 * @supplies:	Placeholder for copying the supply information.
 133 *
 134 * Return: negative error number on failure, 0 otherwise on success after
 135 * setting @supplies.
 136 *
 137 * This can be used for devices with any number of power supplies. The caller
 138 * must ensure the @supplies array must contain space for each regulator.
 139 */
 140int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
 141			    struct dev_pm_opp_supply *supplies)
 142{
 143	if (IS_ERR_OR_NULL(opp) || !supplies) {
 144		pr_err("%s: Invalid parameters\n", __func__);
 145		return -EINVAL;
 146	}
 147
 148	memcpy(supplies, opp->supplies,
 149	       sizeof(*supplies) * opp->opp_table->regulator_count);
 150	return 0;
 151}
 152EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
 153
 154/**
 155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
 156 * @opp:	opp for which power has to be returned for
 157 *
 158 * Return: power in micro watt corresponding to the opp, else
 159 * return 0
 160 *
 161 * This is useful only for devices with single power supply.
 162 */
 163unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
 164{
 165	unsigned long opp_power = 0;
 166	int i;
 167
 168	if (IS_ERR_OR_NULL(opp)) {
 169		pr_err("%s: Invalid parameters\n", __func__);
 170		return 0;
 171	}
 172	for (i = 0; i < opp->opp_table->regulator_count; i++)
 173		opp_power += opp->supplies[i].u_watt;
 174
 175	return opp_power;
 176}
 177EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
 178
 179/**
 180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
 181 *				   available opp with specified index
 182 * @opp: opp for which frequency has to be returned for
 183 * @index: index of the frequency within the required opp
 184 *
 185 * Return: frequency in hertz corresponding to the opp with specified index,
 186 * else return 0
 187 */
 188unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
 189{
 190	if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
 191		pr_err("%s: Invalid parameters\n", __func__);
 192		return 0;
 193	}
 194
 195	return opp->rates[index];
 196}
 197EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
 198
 199/**
 200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
 201 * @opp:	opp for which level value has to be returned for
 202 *
 203 * Return: level read from device tree corresponding to the opp, else
 204 * return U32_MAX.
 205 */
 206unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
 207{
 208	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 209		pr_err("%s: Invalid parameters\n", __func__);
 210		return 0;
 211	}
 212
 213	return opp->level;
 214}
 215EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
 216
 217/**
 218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
 219 *                                    corresponding to an available opp
 220 * @opp:	opp for which performance state has to be returned for
 221 * @index:	index of the required opp
 222 *
 223 * Return: performance state read from device tree corresponding to the
 224 * required opp, else return U32_MAX.
 225 */
 226unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
 227					    unsigned int index)
 228{
 229	if (IS_ERR_OR_NULL(opp) || !opp->available ||
 230	    index >= opp->opp_table->required_opp_count) {
 231		pr_err("%s: Invalid parameters\n", __func__);
 232		return 0;
 233	}
 234
 235	/* required-opps not fully initialized yet */
 236	if (lazy_linking_pending(opp->opp_table))
 237		return 0;
 238
 239	/* The required OPP table must belong to a genpd */
 240	if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
 241		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
 242		return 0;
 243	}
 244
 245	return opp->required_opps[index]->level;
 246}
 247EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
 248
 249/**
 250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
 251 * @opp: opp for which turbo mode is being verified
 252 *
 253 * Turbo OPPs are not for normal use, and can be enabled (under certain
 254 * conditions) for short duration of times to finish high throughput work
 255 * quickly. Running on them for longer times may overheat the chip.
 256 *
 257 * Return: true if opp is turbo opp, else false.
 258 */
 259bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
 260{
 261	if (IS_ERR_OR_NULL(opp) || !opp->available) {
 262		pr_err("%s: Invalid parameters\n", __func__);
 263		return false;
 264	}
 265
 266	return opp->turbo;
 267}
 268EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
 269
 270/**
 271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
 272 * @dev:	device for which we do this operation
 273 *
 274 * Return: This function returns the max clock latency in nanoseconds.
 275 */
 276unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
 277{
 278	struct opp_table *opp_table;
 279	unsigned long clock_latency_ns;
 280
 281	opp_table = _find_opp_table(dev);
 282	if (IS_ERR(opp_table))
 283		return 0;
 284
 285	clock_latency_ns = opp_table->clock_latency_ns_max;
 286
 287	dev_pm_opp_put_opp_table(opp_table);
 288
 289	return clock_latency_ns;
 290}
 291EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
 292
 293/**
 294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
 295 * @dev: device for which we do this operation
 296 *
 297 * Return: This function returns the max voltage latency in nanoseconds.
 298 */
 299unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
 300{
 301	struct opp_table *opp_table;
 302	struct dev_pm_opp *opp;
 303	struct regulator *reg;
 304	unsigned long latency_ns = 0;
 305	int ret, i, count;
 306	struct {
 307		unsigned long min;
 308		unsigned long max;
 309	} *uV;
 310
 311	opp_table = _find_opp_table(dev);
 312	if (IS_ERR(opp_table))
 313		return 0;
 314
 315	/* Regulator may not be required for the device */
 316	if (!opp_table->regulators)
 317		goto put_opp_table;
 318
 319	count = opp_table->regulator_count;
 320
 321	uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
 322	if (!uV)
 323		goto put_opp_table;
 324
 325	mutex_lock(&opp_table->lock);
 326
 327	for (i = 0; i < count; i++) {
 328		uV[i].min = ~0;
 329		uV[i].max = 0;
 330
 331		list_for_each_entry(opp, &opp_table->opp_list, node) {
 332			if (!opp->available)
 333				continue;
 334
 335			if (opp->supplies[i].u_volt_min < uV[i].min)
 336				uV[i].min = opp->supplies[i].u_volt_min;
 337			if (opp->supplies[i].u_volt_max > uV[i].max)
 338				uV[i].max = opp->supplies[i].u_volt_max;
 339		}
 340	}
 341
 342	mutex_unlock(&opp_table->lock);
 343
 344	/*
 345	 * The caller needs to ensure that opp_table (and hence the regulator)
 346	 * isn't freed, while we are executing this routine.
 347	 */
 348	for (i = 0; i < count; i++) {
 349		reg = opp_table->regulators[i];
 350		ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
 351		if (ret > 0)
 352			latency_ns += ret * 1000;
 353	}
 354
 355	kfree(uV);
 356put_opp_table:
 357	dev_pm_opp_put_opp_table(opp_table);
 358
 359	return latency_ns;
 360}
 361EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
 362
 363/**
 364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
 365 *					     nanoseconds
 366 * @dev: device for which we do this operation
 367 *
 368 * Return: This function returns the max transition latency, in nanoseconds, to
 369 * switch from one OPP to other.
 370 */
 371unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
 372{
 373	return dev_pm_opp_get_max_volt_latency(dev) +
 374		dev_pm_opp_get_max_clock_latency(dev);
 375}
 376EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
 377
 378/**
 379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
 380 * @dev:	device for which we do this operation
 381 *
 382 * Return: This function returns the frequency of the OPP marked as suspend_opp
 383 * if one is available, else returns 0;
 384 */
 385unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
 386{
 387	struct opp_table *opp_table;
 388	unsigned long freq = 0;
 389
 390	opp_table = _find_opp_table(dev);
 391	if (IS_ERR(opp_table))
 392		return 0;
 393
 394	if (opp_table->suspend_opp && opp_table->suspend_opp->available)
 395		freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
 396
 397	dev_pm_opp_put_opp_table(opp_table);
 398
 399	return freq;
 400}
 401EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
 402
 403int _get_opp_count(struct opp_table *opp_table)
 404{
 405	struct dev_pm_opp *opp;
 406	int count = 0;
 407
 408	mutex_lock(&opp_table->lock);
 409
 410	list_for_each_entry(opp, &opp_table->opp_list, node) {
 411		if (opp->available)
 412			count++;
 413	}
 414
 415	mutex_unlock(&opp_table->lock);
 416
 417	return count;
 418}
 419
 420/**
 421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
 422 * @dev:	device for which we do this operation
 423 *
 424 * Return: This function returns the number of available opps if there are any,
 425 * else returns 0 if none or the corresponding error value.
 426 */
 427int dev_pm_opp_get_opp_count(struct device *dev)
 428{
 429	struct opp_table *opp_table;
 430	int count;
 431
 432	opp_table = _find_opp_table(dev);
 433	if (IS_ERR(opp_table)) {
 434		count = PTR_ERR(opp_table);
 435		dev_dbg(dev, "%s: OPP table not found (%d)\n",
 436			__func__, count);
 437		return count;
 438	}
 439
 440	count = _get_opp_count(opp_table);
 441	dev_pm_opp_put_opp_table(opp_table);
 442
 443	return count;
 444}
 445EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
 446
 447/* Helpers to read keys */
 448static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
 449{
 450	return opp->rates[index];
 451}
 452
 453static unsigned long _read_level(struct dev_pm_opp *opp, int index)
 454{
 455	return opp->level;
 456}
 457
 458static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
 459{
 460	return opp->bandwidth[index].peak;
 461}
 462
 463/* Generic comparison helpers */
 464static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 465			   unsigned long opp_key, unsigned long key)
 466{
 467	if (opp_key == key) {
 468		*opp = temp_opp;
 469		return true;
 470	}
 471
 472	return false;
 473}
 474
 475static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 476			  unsigned long opp_key, unsigned long key)
 477{
 478	if (opp_key >= key) {
 479		*opp = temp_opp;
 480		return true;
 481	}
 482
 483	return false;
 484}
 485
 486static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 487			   unsigned long opp_key, unsigned long key)
 488{
 489	if (opp_key > key)
 490		return true;
 491
 492	*opp = temp_opp;
 493	return false;
 494}
 495
 496/* Generic key finding helpers */
 497static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
 498		unsigned long *key, int index, bool available,
 499		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 500		bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 501				unsigned long opp_key, unsigned long key),
 502		bool (*assert)(struct opp_table *opp_table))
 503{
 504	struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
 505
 506	/* Assert that the requirement is met */
 507	if (assert && !assert(opp_table))
 508		return ERR_PTR(-EINVAL);
 509
 510	mutex_lock(&opp_table->lock);
 511
 512	list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
 513		if (temp_opp->available == available) {
 514			if (compare(&opp, temp_opp, read(temp_opp, index), *key))
 515				break;
 516		}
 517	}
 518
 519	/* Increment the reference count of OPP */
 520	if (!IS_ERR(opp)) {
 521		*key = read(opp, index);
 522		dev_pm_opp_get(opp);
 523	}
 524
 525	mutex_unlock(&opp_table->lock);
 526
 527	return opp;
 528}
 529
 530static struct dev_pm_opp *
 531_find_key(struct device *dev, unsigned long *key, int index, bool available,
 532	  unsigned long (*read)(struct dev_pm_opp *opp, int index),
 533	  bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
 534			  unsigned long opp_key, unsigned long key),
 535	  bool (*assert)(struct opp_table *opp_table))
 536{
 537	struct opp_table *opp_table;
 538	struct dev_pm_opp *opp;
 539
 540	opp_table = _find_opp_table(dev);
 541	if (IS_ERR(opp_table)) {
 542		dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
 543			PTR_ERR(opp_table));
 544		return ERR_CAST(opp_table);
 545	}
 546
 547	opp = _opp_table_find_key(opp_table, key, index, available, read,
 548				  compare, assert);
 549
 550	dev_pm_opp_put_opp_table(opp_table);
 551
 552	return opp;
 553}
 554
 555static struct dev_pm_opp *_find_key_exact(struct device *dev,
 556		unsigned long key, int index, bool available,
 557		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 558		bool (*assert)(struct opp_table *opp_table))
 559{
 560	/*
 561	 * The value of key will be updated here, but will be ignored as the
 562	 * caller doesn't need it.
 563	 */
 564	return _find_key(dev, &key, index, available, read, _compare_exact,
 565			 assert);
 566}
 567
 568static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
 569		unsigned long *key, int index, bool available,
 570		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 571		bool (*assert)(struct opp_table *opp_table))
 572{
 573	return _opp_table_find_key(opp_table, key, index, available, read,
 574				   _compare_ceil, assert);
 575}
 576
 577static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
 578		int index, bool available,
 579		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 580		bool (*assert)(struct opp_table *opp_table))
 581{
 582	return _find_key(dev, key, index, available, read, _compare_ceil,
 583			 assert);
 584}
 585
 586static struct dev_pm_opp *_find_key_floor(struct device *dev,
 587		unsigned long *key, int index, bool available,
 588		unsigned long (*read)(struct dev_pm_opp *opp, int index),
 589		bool (*assert)(struct opp_table *opp_table))
 590{
 591	return _find_key(dev, key, index, available, read, _compare_floor,
 592			 assert);
 593}
 594
 595/**
 596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
 597 * @dev:		device for which we do this operation
 598 * @freq:		frequency to search for
 599 * @available:		true/false - match for available opp
 600 *
 601 * Return: Searches for exact match in the opp table and returns pointer to the
 602 * matching opp if found, else returns ERR_PTR in case of error and should
 603 * be handled using IS_ERR. Error return values can be:
 604 * EINVAL:	for bad pointer
 605 * ERANGE:	no match found for search
 606 * ENODEV:	if device not found in list of registered devices
 607 *
 608 * Note: available is a modifier for the search. if available=true, then the
 609 * match is for exact matching frequency and is available in the stored OPP
 610 * table. if false, the match is for exact frequency which is not available.
 611 *
 612 * This provides a mechanism to enable an opp which is not available currently
 613 * or the opposite as well.
 614 *
 615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 616 * use.
 617 */
 618struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
 619		unsigned long freq, bool available)
 620{
 621	return _find_key_exact(dev, freq, 0, available, _read_freq,
 622			       assert_single_clk);
 623}
 624EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
 625
 626/**
 627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
 628 *					 clock corresponding to the index
 629 * @dev:	Device for which we do this operation
 630 * @freq:	frequency to search for
 631 * @index:	Clock index
 632 * @available:	true/false - match for available opp
 633 *
 634 * Search for the matching exact OPP for the clock corresponding to the
 635 * specified index from a starting freq for a device.
 636 *
 637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
 638 * handled using IS_ERR. Error return values can be:
 639 * EINVAL:	for bad pointer
 640 * ERANGE:	no match found for search
 641 * ENODEV:	if device not found in list of registered devices
 642 *
 643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 644 * use.
 645 */
 646struct dev_pm_opp *
 647dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
 648				   u32 index, bool available)
 649{
 650	return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
 
 651}
 652EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
 653
 654static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
 655						   unsigned long *freq)
 656{
 657	return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
 658					assert_single_clk);
 659}
 660
 661/**
 662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
 663 * @dev:	device for which we do this operation
 664 * @freq:	Start frequency
 665 *
 666 * Search for the matching ceil *available* OPP from a starting freq
 667 * for a device.
 668 *
 669 * Return: matching *opp and refreshes *freq accordingly, else returns
 670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 671 * values can be:
 672 * EINVAL:	for bad pointer
 673 * ERANGE:	no match found for search
 674 * ENODEV:	if device not found in list of registered devices
 675 *
 676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 677 * use.
 678 */
 679struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
 680					     unsigned long *freq)
 681{
 682	return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
 683}
 684EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
 685
 686/**
 687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
 688 *					 clock corresponding to the index
 689 * @dev:	Device for which we do this operation
 690 * @freq:	Start frequency
 691 * @index:	Clock index
 692 *
 693 * Search for the matching ceil *available* OPP for the clock corresponding to
 694 * the specified index from a starting freq for a device.
 695 *
 696 * Return: matching *opp and refreshes *freq accordingly, else returns
 697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 698 * values can be:
 699 * EINVAL:	for bad pointer
 700 * ERANGE:	no match found for search
 701 * ENODEV:	if device not found in list of registered devices
 702 *
 703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 704 * use.
 705 */
 706struct dev_pm_opp *
 707dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
 708				  u32 index)
 709{
 710	return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
 
 711}
 712EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
 713
 714/**
 715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
 716 * @dev:	device for which we do this operation
 717 * @freq:	Start frequency
 718 *
 719 * Search for the matching floor *available* OPP from a starting freq
 720 * for a device.
 721 *
 722 * Return: matching *opp and refreshes *freq accordingly, else returns
 723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 724 * values can be:
 725 * EINVAL:	for bad pointer
 726 * ERANGE:	no match found for search
 727 * ENODEV:	if device not found in list of registered devices
 728 *
 729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 730 * use.
 731 */
 732struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
 733					      unsigned long *freq)
 734{
 735	return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
 736}
 737EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
 738
 739/**
 740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
 741 *					  clock corresponding to the index
 742 * @dev:	Device for which we do this operation
 743 * @freq:	Start frequency
 744 * @index:	Clock index
 745 *
 746 * Search for the matching floor *available* OPP for the clock corresponding to
 747 * the specified index from a starting freq for a device.
 748 *
 749 * Return: matching *opp and refreshes *freq accordingly, else returns
 750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 751 * values can be:
 752 * EINVAL:	for bad pointer
 753 * ERANGE:	no match found for search
 754 * ENODEV:	if device not found in list of registered devices
 755 *
 756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 757 * use.
 758 */
 759struct dev_pm_opp *
 760dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
 761				   u32 index)
 762{
 763	return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
 764}
 765EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
 766
 767/**
 768 * dev_pm_opp_find_level_exact() - search for an exact level
 769 * @dev:		device for which we do this operation
 770 * @level:		level to search for
 771 *
 772 * Return: Searches for exact match in the opp table and returns pointer to the
 773 * matching opp if found, else returns ERR_PTR in case of error and should
 774 * be handled using IS_ERR. Error return values can be:
 775 * EINVAL:	for bad pointer
 776 * ERANGE:	no match found for search
 777 * ENODEV:	if device not found in list of registered devices
 778 *
 779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 780 * use.
 781 */
 782struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
 783					       unsigned int level)
 784{
 785	return _find_key_exact(dev, level, 0, true, _read_level, NULL);
 786}
 787EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
 788
 789/**
 790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
 791 * @dev:		device for which we do this operation
 792 * @level:		level to search for
 793 *
 794 * Return: Searches for rounded up match in the opp table and returns pointer
 795 * to the  matching opp if found, else returns ERR_PTR in case of error and
 796 * should be handled using IS_ERR. Error return values can be:
 797 * EINVAL:	for bad pointer
 798 * ERANGE:	no match found for search
 799 * ENODEV:	if device not found in list of registered devices
 800 *
 801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 802 * use.
 803 */
 804struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
 805					      unsigned int *level)
 806{
 807	unsigned long temp = *level;
 808	struct dev_pm_opp *opp;
 809
 810	opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
 811	if (IS_ERR(opp))
 812		return opp;
 813
 814	/* False match */
 815	if (temp == OPP_LEVEL_UNSET) {
 816		dev_err(dev, "%s: OPP levels aren't available\n", __func__);
 817		dev_pm_opp_put(opp);
 818		return ERR_PTR(-ENODEV);
 819	}
 820
 821	*level = temp;
 822	return opp;
 823}
 824EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
 825
 826/**
 827 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
 828 * @dev:	device for which we do this operation
 829 * @level:	Start level
 830 *
 831 * Search for the matching floor *available* OPP from a starting level
 832 * for a device.
 833 *
 834 * Return: matching *opp and refreshes *level accordingly, else returns
 835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 836 * values can be:
 837 * EINVAL:	for bad pointer
 838 * ERANGE:	no match found for search
 839 * ENODEV:	if device not found in list of registered devices
 840 *
 841 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 842 * use.
 843 */
 844struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
 845					       unsigned int *level)
 846{
 847	unsigned long temp = *level;
 848	struct dev_pm_opp *opp;
 849
 850	opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
 851	*level = temp;
 852	return opp;
 853}
 854EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
 855
 856/**
 857 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
 858 * @dev:	device for which we do this operation
 859 * @bw:	start bandwidth
 860 * @index:	which bandwidth to compare, in case of OPPs with several values
 861 *
 862 * Search for the matching floor *available* OPP from a starting bandwidth
 863 * for a device.
 864 *
 865 * Return: matching *opp and refreshes *bw accordingly, else returns
 866 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 867 * values can be:
 868 * EINVAL:	for bad pointer
 869 * ERANGE:	no match found for search
 870 * ENODEV:	if device not found in list of registered devices
 871 *
 872 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 873 * use.
 874 */
 875struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
 876					   int index)
 877{
 878	unsigned long temp = *bw;
 879	struct dev_pm_opp *opp;
 880
 881	opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
 
 882	*bw = temp;
 883	return opp;
 884}
 885EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
 886
 887/**
 888 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
 889 * @dev:	device for which we do this operation
 890 * @bw:	start bandwidth
 891 * @index:	which bandwidth to compare, in case of OPPs with several values
 892 *
 893 * Search for the matching floor *available* OPP from a starting bandwidth
 894 * for a device.
 895 *
 896 * Return: matching *opp and refreshes *bw accordingly, else returns
 897 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
 898 * values can be:
 899 * EINVAL:	for bad pointer
 900 * ERANGE:	no match found for search
 901 * ENODEV:	if device not found in list of registered devices
 902 *
 903 * The callers are required to call dev_pm_opp_put() for the returned OPP after
 904 * use.
 905 */
 906struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
 907					    unsigned int *bw, int index)
 908{
 909	unsigned long temp = *bw;
 910	struct dev_pm_opp *opp;
 911
 912	opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
 
 913	*bw = temp;
 914	return opp;
 915}
 916EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
 917
 918static int _set_opp_voltage(struct device *dev, struct regulator *reg,
 919			    struct dev_pm_opp_supply *supply)
 920{
 921	int ret;
 922
 923	/* Regulator not available for device */
 924	if (IS_ERR(reg)) {
 925		dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
 926			PTR_ERR(reg));
 927		return 0;
 928	}
 929
 930	dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
 931		supply->u_volt_min, supply->u_volt, supply->u_volt_max);
 932
 933	ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
 934					    supply->u_volt, supply->u_volt_max);
 935	if (ret)
 936		dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
 937			__func__, supply->u_volt_min, supply->u_volt,
 938			supply->u_volt_max, ret);
 939
 940	return ret;
 941}
 942
 943static int
 944_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
 945		       struct dev_pm_opp *opp, void *data, bool scaling_down)
 946{
 947	unsigned long *target = data;
 948	unsigned long freq;
 949	int ret;
 950
 951	/* One of target and opp must be available */
 952	if (target) {
 953		freq = *target;
 954	} else if (opp) {
 955		freq = opp->rates[0];
 956	} else {
 957		WARN_ON(1);
 958		return -EINVAL;
 959	}
 960
 961	ret = clk_set_rate(opp_table->clk, freq);
 962	if (ret) {
 963		dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 964			ret);
 965	} else {
 966		opp_table->current_rate_single_clk = freq;
 967	}
 968
 969	return ret;
 970}
 971
 972/*
 973 * Simple implementation for configuring multiple clocks. Configure clocks in
 974 * the order in which they are present in the array while scaling up.
 975 */
 976int dev_pm_opp_config_clks_simple(struct device *dev,
 977		struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
 978		bool scaling_down)
 979{
 980	int ret, i;
 981
 982	if (scaling_down) {
 983		for (i = opp_table->clk_count - 1; i >= 0; i--) {
 984			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
 985			if (ret) {
 986				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 987					ret);
 988				return ret;
 989			}
 990		}
 991	} else {
 992		for (i = 0; i < opp_table->clk_count; i++) {
 993			ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
 994			if (ret) {
 995				dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
 996					ret);
 997				return ret;
 998			}
 999		}
1000	}
1001
1002	return 0;
1003}
1004EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1005
1006static int _opp_config_regulator_single(struct device *dev,
1007			struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1008			struct regulator **regulators, unsigned int count)
1009{
1010	struct regulator *reg = regulators[0];
1011	int ret;
1012
1013	/* This function only supports single regulator per device */
1014	if (WARN_ON(count > 1)) {
1015		dev_err(dev, "multiple regulators are not supported\n");
1016		return -EINVAL;
1017	}
1018
1019	ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1020	if (ret)
1021		return ret;
1022
1023	/*
1024	 * Enable the regulator after setting its voltages, otherwise it breaks
1025	 * some boot-enabled regulators.
1026	 */
1027	if (unlikely(!new_opp->opp_table->enabled)) {
1028		ret = regulator_enable(reg);
1029		if (ret < 0)
1030			dev_warn(dev, "Failed to enable regulator: %d", ret);
1031	}
1032
1033	return 0;
1034}
1035
1036static int _set_opp_bw(const struct opp_table *opp_table,
1037		       struct dev_pm_opp *opp, struct device *dev)
1038{
1039	u32 avg, peak;
1040	int i, ret;
1041
1042	if (!opp_table->paths)
1043		return 0;
1044
1045	for (i = 0; i < opp_table->path_count; i++) {
1046		if (!opp) {
1047			avg = 0;
1048			peak = 0;
1049		} else {
1050			avg = opp->bandwidth[i].avg;
1051			peak = opp->bandwidth[i].peak;
1052		}
1053		ret = icc_set_bw(opp_table->paths[i], avg, peak);
1054		if (ret) {
1055			dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1056				opp ? "set" : "remove", i, ret);
1057			return ret;
1058		}
1059	}
1060
1061	return 0;
1062}
1063
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1064/* This is only called for PM domain for now */
1065static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1066			      struct dev_pm_opp *opp, bool up)
1067{
1068	struct device **devs = opp_table->required_devs;
1069	struct dev_pm_opp *required_opp;
1070	int index, target, delta, ret;
1071
1072	if (!devs)
1073		return 0;
1074
1075	/* required-opps not fully initialized yet */
1076	if (lazy_linking_pending(opp_table))
1077		return -EBUSY;
1078
1079	/* Scaling up? Set required OPPs in normal order, else reverse */
1080	if (up) {
1081		index = 0;
1082		target = opp_table->required_opp_count;
1083		delta = 1;
1084	} else {
1085		index = opp_table->required_opp_count - 1;
1086		target = -1;
1087		delta = -1;
1088	}
1089
1090	while (index != target) {
1091		if (devs[index]) {
1092			required_opp = opp ? opp->required_opps[index] : NULL;
1093
1094			ret = dev_pm_opp_set_opp(devs[index], required_opp);
1095			if (ret)
1096				return ret;
1097		}
1098
1099		index += delta;
1100	}
1101
1102	return 0;
1103}
1104
1105static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1106			  struct dev_pm_opp *opp)
1107{
1108	unsigned int level = 0;
1109	int ret = 0;
1110
1111	if (opp) {
1112		if (opp->level == OPP_LEVEL_UNSET)
1113			return 0;
1114
1115		level = opp->level;
1116	}
1117
1118	/* Request a new performance state through the device's PM domain. */
1119	ret = dev_pm_domain_set_performance_state(dev, level);
1120	if (ret)
1121		dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1122			ret);
1123
1124	return ret;
1125}
1126
1127static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1128{
1129	struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1130	unsigned long freq;
1131
1132	if (!IS_ERR(opp_table->clk)) {
1133		freq = clk_get_rate(opp_table->clk);
1134		opp = _find_freq_ceil(opp_table, &freq);
1135	}
1136
1137	/*
1138	 * Unable to find the current OPP ? Pick the first from the list since
1139	 * it is in ascending order, otherwise rest of the code will need to
1140	 * make special checks to validate current_opp.
1141	 */
1142	if (IS_ERR(opp)) {
1143		mutex_lock(&opp_table->lock);
1144		opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1145		dev_pm_opp_get(opp);
1146		mutex_unlock(&opp_table->lock);
1147	}
1148
1149	opp_table->current_opp = opp;
1150}
1151
1152static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1153{
1154	int ret;
1155
1156	if (!opp_table->enabled)
1157		return 0;
1158
1159	/*
1160	 * Some drivers need to support cases where some platforms may
1161	 * have OPP table for the device, while others don't and
1162	 * opp_set_rate() just needs to behave like clk_set_rate().
1163	 */
1164	if (!_get_opp_count(opp_table))
1165		return 0;
1166
1167	ret = _set_opp_bw(opp_table, NULL, dev);
1168	if (ret)
1169		return ret;
1170
1171	if (opp_table->regulators)
1172		regulator_disable(opp_table->regulators[0]);
1173
1174	ret = _set_opp_level(dev, opp_table, NULL);
1175	if (ret)
1176		goto out;
1177
1178	ret = _set_required_opps(dev, opp_table, NULL, false);
1179
1180out:
1181	opp_table->enabled = false;
1182	return ret;
1183}
1184
1185static int _set_opp(struct device *dev, struct opp_table *opp_table,
1186		    struct dev_pm_opp *opp, void *clk_data, bool forced)
1187{
1188	struct dev_pm_opp *old_opp;
1189	int scaling_down, ret;
1190
1191	if (unlikely(!opp))
1192		return _disable_opp_table(dev, opp_table);
1193
1194	/* Find the currently set OPP if we don't know already */
1195	if (unlikely(!opp_table->current_opp))
1196		_find_current_opp(dev, opp_table);
1197
1198	old_opp = opp_table->current_opp;
1199
1200	/* Return early if nothing to do */
1201	if (!forced && old_opp == opp && opp_table->enabled) {
1202		dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1203		return 0;
1204	}
1205
1206	dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1207		__func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1208		opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1209		opp->bandwidth ? opp->bandwidth[0].peak : 0);
1210
1211	scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1212	if (scaling_down == -1)
1213		scaling_down = 0;
1214
1215	/* Scaling up? Configure required OPPs before frequency */
1216	if (!scaling_down) {
1217		ret = _set_required_opps(dev, opp_table, opp, true);
1218		if (ret) {
1219			dev_err(dev, "Failed to set required opps: %d\n", ret);
1220			return ret;
1221		}
1222
1223		ret = _set_opp_level(dev, opp_table, opp);
1224		if (ret)
1225			return ret;
1226
1227		ret = _set_opp_bw(opp_table, opp, dev);
1228		if (ret) {
1229			dev_err(dev, "Failed to set bw: %d\n", ret);
1230			return ret;
1231		}
1232
1233		if (opp_table->config_regulators) {
1234			ret = opp_table->config_regulators(dev, old_opp, opp,
1235							   opp_table->regulators,
1236							   opp_table->regulator_count);
1237			if (ret) {
1238				dev_err(dev, "Failed to set regulator voltages: %d\n",
1239					ret);
1240				return ret;
1241			}
1242		}
1243	}
1244
1245	if (opp_table->config_clks) {
1246		ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1247		if (ret)
1248			return ret;
1249	}
1250
1251	/* Scaling down? Configure required OPPs after frequency */
1252	if (scaling_down) {
1253		if (opp_table->config_regulators) {
1254			ret = opp_table->config_regulators(dev, old_opp, opp,
1255							   opp_table->regulators,
1256							   opp_table->regulator_count);
1257			if (ret) {
1258				dev_err(dev, "Failed to set regulator voltages: %d\n",
1259					ret);
1260				return ret;
1261			}
1262		}
1263
1264		ret = _set_opp_bw(opp_table, opp, dev);
1265		if (ret) {
1266			dev_err(dev, "Failed to set bw: %d\n", ret);
1267			return ret;
1268		}
1269
1270		ret = _set_opp_level(dev, opp_table, opp);
1271		if (ret)
1272			return ret;
1273
1274		ret = _set_required_opps(dev, opp_table, opp, false);
1275		if (ret) {
1276			dev_err(dev, "Failed to set required opps: %d\n", ret);
1277			return ret;
1278		}
1279	}
1280
1281	opp_table->enabled = true;
1282	dev_pm_opp_put(old_opp);
1283
1284	/* Make sure current_opp doesn't get freed */
1285	dev_pm_opp_get(opp);
1286	opp_table->current_opp = opp;
1287
1288	return ret;
1289}
1290
1291/**
1292 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1293 * @dev:	 device for which we do this operation
1294 * @target_freq: frequency to achieve
1295 *
1296 * This configures the power-supplies to the levels specified by the OPP
1297 * corresponding to the target_freq, and programs the clock to a value <=
1298 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1299 * provided by the opp, should have already rounded to the target OPP's
1300 * frequency.
1301 */
1302int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1303{
1304	struct opp_table *opp_table;
1305	unsigned long freq = 0, temp_freq;
1306	struct dev_pm_opp *opp = NULL;
1307	bool forced = false;
1308	int ret;
1309
1310	opp_table = _find_opp_table(dev);
1311	if (IS_ERR(opp_table)) {
1312		dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1313		return PTR_ERR(opp_table);
1314	}
1315
1316	if (target_freq) {
1317		/*
1318		 * For IO devices which require an OPP on some platforms/SoCs
1319		 * while just needing to scale the clock on some others
1320		 * we look for empty OPP tables with just a clock handle and
1321		 * scale only the clk. This makes dev_pm_opp_set_rate()
1322		 * equivalent to a clk_set_rate()
1323		 */
1324		if (!_get_opp_count(opp_table)) {
1325			ret = opp_table->config_clks(dev, opp_table, NULL,
1326						     &target_freq, false);
1327			goto put_opp_table;
1328		}
1329
1330		freq = clk_round_rate(opp_table->clk, target_freq);
1331		if ((long)freq <= 0)
1332			freq = target_freq;
1333
1334		/*
1335		 * The clock driver may support finer resolution of the
1336		 * frequencies than the OPP table, don't update the frequency we
1337		 * pass to clk_set_rate() here.
1338		 */
1339		temp_freq = freq;
1340		opp = _find_freq_ceil(opp_table, &temp_freq);
1341		if (IS_ERR(opp)) {
1342			ret = PTR_ERR(opp);
1343			dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1344				__func__, freq, ret);
1345			goto put_opp_table;
1346		}
1347
1348		/*
1349		 * An OPP entry specifies the highest frequency at which other
1350		 * properties of the OPP entry apply. Even if the new OPP is
1351		 * same as the old one, we may still reach here for a different
1352		 * value of the frequency. In such a case, do not abort but
1353		 * configure the hardware to the desired frequency forcefully.
1354		 */
1355		forced = opp_table->current_rate_single_clk != freq;
1356	}
1357
1358	ret = _set_opp(dev, opp_table, opp, &freq, forced);
1359
1360	if (freq)
1361		dev_pm_opp_put(opp);
1362
1363put_opp_table:
1364	dev_pm_opp_put_opp_table(opp_table);
1365	return ret;
1366}
1367EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1368
1369/**
1370 * dev_pm_opp_set_opp() - Configure device for OPP
1371 * @dev: device for which we do this operation
1372 * @opp: OPP to set to
1373 *
1374 * This configures the device based on the properties of the OPP passed to this
1375 * routine.
1376 *
1377 * Return: 0 on success, a negative error number otherwise.
1378 */
1379int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1380{
1381	struct opp_table *opp_table;
1382	int ret;
1383
1384	opp_table = _find_opp_table(dev);
1385	if (IS_ERR(opp_table)) {
1386		dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1387		return PTR_ERR(opp_table);
1388	}
1389
1390	ret = _set_opp(dev, opp_table, opp, NULL, false);
1391	dev_pm_opp_put_opp_table(opp_table);
1392
1393	return ret;
1394}
1395EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1396
1397/* OPP-dev Helpers */
1398static void _remove_opp_dev(struct opp_device *opp_dev,
1399			    struct opp_table *opp_table)
1400{
1401	opp_debug_unregister(opp_dev, opp_table);
1402	list_del(&opp_dev->node);
1403	kfree(opp_dev);
1404}
1405
1406struct opp_device *_add_opp_dev(const struct device *dev,
1407				struct opp_table *opp_table)
1408{
1409	struct opp_device *opp_dev;
1410
1411	opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1412	if (!opp_dev)
1413		return NULL;
1414
1415	/* Initialize opp-dev */
1416	opp_dev->dev = dev;
1417
1418	mutex_lock(&opp_table->lock);
1419	list_add(&opp_dev->node, &opp_table->dev_list);
1420	mutex_unlock(&opp_table->lock);
1421
1422	/* Create debugfs entries for the opp_table */
1423	opp_debug_register(opp_dev, opp_table);
1424
1425	return opp_dev;
1426}
1427
1428static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1429{
1430	struct opp_table *opp_table;
1431	struct opp_device *opp_dev;
1432	int ret;
1433
1434	/*
1435	 * Allocate a new OPP table. In the infrequent case where a new
1436	 * device is needed to be added, we pay this penalty.
1437	 */
1438	opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1439	if (!opp_table)
1440		return ERR_PTR(-ENOMEM);
1441
1442	mutex_init(&opp_table->lock);
1443	INIT_LIST_HEAD(&opp_table->dev_list);
1444	INIT_LIST_HEAD(&opp_table->lazy);
1445
1446	opp_table->clk = ERR_PTR(-ENODEV);
1447
1448	/* Mark regulator count uninitialized */
1449	opp_table->regulator_count = -1;
1450
1451	opp_dev = _add_opp_dev(dev, opp_table);
1452	if (!opp_dev) {
1453		ret = -ENOMEM;
1454		goto err;
1455	}
1456
1457	_of_init_opp_table(opp_table, dev, index);
1458
1459	/* Find interconnect path(s) for the device */
1460	ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1461	if (ret) {
1462		if (ret == -EPROBE_DEFER)
1463			goto remove_opp_dev;
1464
1465		dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1466			 __func__, ret);
1467	}
1468
1469	BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1470	INIT_LIST_HEAD(&opp_table->opp_list);
1471	kref_init(&opp_table->kref);
1472
1473	return opp_table;
1474
1475remove_opp_dev:
1476	_of_clear_opp_table(opp_table);
1477	_remove_opp_dev(opp_dev, opp_table);
1478	mutex_destroy(&opp_table->lock);
1479err:
1480	kfree(opp_table);
1481	return ERR_PTR(ret);
1482}
1483
1484void _get_opp_table_kref(struct opp_table *opp_table)
1485{
1486	kref_get(&opp_table->kref);
1487}
1488
1489static struct opp_table *_update_opp_table_clk(struct device *dev,
1490					       struct opp_table *opp_table,
1491					       bool getclk)
1492{
1493	int ret;
1494
1495	/*
1496	 * Return early if we don't need to get clk or we have already done it
1497	 * earlier.
1498	 */
1499	if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1500	    opp_table->clks)
1501		return opp_table;
1502
1503	/* Find clk for the device */
1504	opp_table->clk = clk_get(dev, NULL);
1505
1506	ret = PTR_ERR_OR_ZERO(opp_table->clk);
1507	if (!ret) {
1508		opp_table->config_clks = _opp_config_clk_single;
1509		opp_table->clk_count = 1;
1510		return opp_table;
1511	}
1512
1513	if (ret == -ENOENT) {
1514		/*
1515		 * There are few platforms which don't want the OPP core to
1516		 * manage device's clock settings. In such cases neither the
1517		 * platform provides the clks explicitly to us, nor the DT
1518		 * contains a valid clk entry. The OPP nodes in DT may still
1519		 * contain "opp-hz" property though, which we need to parse and
1520		 * allow the platform to find an OPP based on freq later on.
1521		 *
1522		 * This is a simple solution to take care of such corner cases,
1523		 * i.e. make the clk_count 1, which lets us allocate space for
1524		 * frequency in opp->rates and also parse the entries in DT.
1525		 */
1526		opp_table->clk_count = 1;
1527
1528		dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1529		return opp_table;
1530	}
1531
1532	dev_pm_opp_put_opp_table(opp_table);
1533	dev_err_probe(dev, ret, "Couldn't find clock\n");
1534
1535	return ERR_PTR(ret);
1536}
1537
1538/*
1539 * We need to make sure that the OPP table for a device doesn't get added twice,
1540 * if this routine gets called in parallel with the same device pointer.
1541 *
1542 * The simplest way to enforce that is to perform everything (find existing
1543 * table and if not found, create a new one) under the opp_table_lock, so only
1544 * one creator gets access to the same. But that expands the critical section
1545 * under the lock and may end up causing circular dependencies with frameworks
1546 * like debugfs, interconnect or clock framework as they may be direct or
1547 * indirect users of OPP core.
1548 *
1549 * And for that reason we have to go for a bit tricky implementation here, which
1550 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1551 * of adding an OPP table and others should wait for it to finish.
1552 */
1553struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1554					 bool getclk)
1555{
1556	struct opp_table *opp_table;
1557
1558again:
1559	mutex_lock(&opp_table_lock);
1560
1561	opp_table = _find_opp_table_unlocked(dev);
1562	if (!IS_ERR(opp_table))
1563		goto unlock;
1564
1565	/*
1566	 * The opp_tables list or an OPP table's dev_list is getting updated by
1567	 * another user, wait for it to finish.
1568	 */
1569	if (unlikely(opp_tables_busy)) {
1570		mutex_unlock(&opp_table_lock);
1571		cpu_relax();
1572		goto again;
1573	}
1574
1575	opp_tables_busy = true;
1576	opp_table = _managed_opp(dev, index);
1577
1578	/* Drop the lock to reduce the size of critical section */
1579	mutex_unlock(&opp_table_lock);
1580
1581	if (opp_table) {
1582		if (!_add_opp_dev(dev, opp_table)) {
1583			dev_pm_opp_put_opp_table(opp_table);
1584			opp_table = ERR_PTR(-ENOMEM);
1585		}
1586
1587		mutex_lock(&opp_table_lock);
1588	} else {
1589		opp_table = _allocate_opp_table(dev, index);
1590
1591		mutex_lock(&opp_table_lock);
1592		if (!IS_ERR(opp_table))
1593			list_add(&opp_table->node, &opp_tables);
1594	}
1595
1596	opp_tables_busy = false;
1597
1598unlock:
1599	mutex_unlock(&opp_table_lock);
1600
1601	return _update_opp_table_clk(dev, opp_table, getclk);
1602}
1603
1604static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1605{
1606	return _add_opp_table_indexed(dev, 0, getclk);
1607}
1608
1609struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1610{
1611	return _find_opp_table(dev);
1612}
1613EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1614
1615static void _opp_table_kref_release(struct kref *kref)
1616{
1617	struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1618	struct opp_device *opp_dev, *temp;
1619	int i;
1620
1621	/* Drop the lock as soon as we can */
1622	list_del(&opp_table->node);
1623	mutex_unlock(&opp_table_lock);
1624
1625	if (opp_table->current_opp)
1626		dev_pm_opp_put(opp_table->current_opp);
1627
1628	_of_clear_opp_table(opp_table);
1629
1630	/* Release automatically acquired single clk */
1631	if (!IS_ERR(opp_table->clk))
1632		clk_put(opp_table->clk);
1633
1634	if (opp_table->paths) {
1635		for (i = 0; i < opp_table->path_count; i++)
1636			icc_put(opp_table->paths[i]);
1637		kfree(opp_table->paths);
1638	}
1639
1640	WARN_ON(!list_empty(&opp_table->opp_list));
1641
1642	list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1643		_remove_opp_dev(opp_dev, opp_table);
1644
1645	mutex_destroy(&opp_table->lock);
1646	kfree(opp_table);
1647}
1648
1649void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1650{
1651	kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1652		       &opp_table_lock);
1653}
1654EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1655
1656void _opp_free(struct dev_pm_opp *opp)
1657{
1658	kfree(opp);
1659}
1660
1661static void _opp_kref_release(struct kref *kref)
1662{
1663	struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1664	struct opp_table *opp_table = opp->opp_table;
1665
1666	list_del(&opp->node);
1667	mutex_unlock(&opp_table->lock);
1668
1669	/*
1670	 * Notify the changes in the availability of the operable
1671	 * frequency/voltage list.
1672	 */
1673	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1674	_of_clear_opp(opp_table, opp);
1675	opp_debug_remove_one(opp);
1676	kfree(opp);
1677}
1678
1679void dev_pm_opp_get(struct dev_pm_opp *opp)
1680{
1681	kref_get(&opp->kref);
1682}
1683
1684void dev_pm_opp_put(struct dev_pm_opp *opp)
1685{
1686	kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1687}
1688EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1689
1690/**
1691 * dev_pm_opp_remove()  - Remove an OPP from OPP table
1692 * @dev:	device for which we do this operation
1693 * @freq:	OPP to remove with matching 'freq'
1694 *
1695 * This function removes an opp from the opp table.
1696 */
1697void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1698{
1699	struct dev_pm_opp *opp = NULL, *iter;
1700	struct opp_table *opp_table;
1701
1702	opp_table = _find_opp_table(dev);
1703	if (IS_ERR(opp_table))
1704		return;
1705
1706	if (!assert_single_clk(opp_table))
1707		goto put_table;
1708
1709	mutex_lock(&opp_table->lock);
1710
1711	list_for_each_entry(iter, &opp_table->opp_list, node) {
1712		if (iter->rates[0] == freq) {
1713			opp = iter;
1714			break;
1715		}
1716	}
1717
1718	mutex_unlock(&opp_table->lock);
1719
1720	if (opp) {
1721		dev_pm_opp_put(opp);
1722
1723		/* Drop the reference taken by dev_pm_opp_add() */
1724		dev_pm_opp_put_opp_table(opp_table);
1725	} else {
1726		dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1727			 __func__, freq);
1728	}
1729
1730put_table:
1731	/* Drop the reference taken by _find_opp_table() */
1732	dev_pm_opp_put_opp_table(opp_table);
1733}
1734EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1735
1736static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1737					bool dynamic)
1738{
1739	struct dev_pm_opp *opp = NULL, *temp;
1740
1741	mutex_lock(&opp_table->lock);
1742	list_for_each_entry(temp, &opp_table->opp_list, node) {
1743		/*
1744		 * Refcount must be dropped only once for each OPP by OPP core,
1745		 * do that with help of "removed" flag.
1746		 */
1747		if (!temp->removed && dynamic == temp->dynamic) {
1748			opp = temp;
1749			break;
1750		}
1751	}
1752
1753	mutex_unlock(&opp_table->lock);
1754	return opp;
1755}
1756
1757/*
1758 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1759 * happen lock less to avoid circular dependency issues. This routine must be
1760 * called without the opp_table->lock held.
1761 */
1762static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1763{
1764	struct dev_pm_opp *opp;
1765
1766	while ((opp = _opp_get_next(opp_table, dynamic))) {
1767		opp->removed = true;
1768		dev_pm_opp_put(opp);
1769
1770		/* Drop the references taken by dev_pm_opp_add() */
1771		if (dynamic)
1772			dev_pm_opp_put_opp_table(opp_table);
1773	}
1774}
1775
1776bool _opp_remove_all_static(struct opp_table *opp_table)
1777{
1778	mutex_lock(&opp_table->lock);
1779
1780	if (!opp_table->parsed_static_opps) {
1781		mutex_unlock(&opp_table->lock);
1782		return false;
1783	}
1784
1785	if (--opp_table->parsed_static_opps) {
1786		mutex_unlock(&opp_table->lock);
1787		return true;
1788	}
1789
1790	mutex_unlock(&opp_table->lock);
1791
1792	_opp_remove_all(opp_table, false);
1793	return true;
1794}
1795
1796/**
1797 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1798 * @dev:	device for which we do this operation
1799 *
1800 * This function removes all dynamically created OPPs from the opp table.
1801 */
1802void dev_pm_opp_remove_all_dynamic(struct device *dev)
1803{
1804	struct opp_table *opp_table;
1805
1806	opp_table = _find_opp_table(dev);
1807	if (IS_ERR(opp_table))
1808		return;
1809
1810	_opp_remove_all(opp_table, true);
1811
1812	/* Drop the reference taken by _find_opp_table() */
1813	dev_pm_opp_put_opp_table(opp_table);
1814}
1815EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1816
1817struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1818{
1819	struct dev_pm_opp *opp;
1820	int supply_count, supply_size, icc_size, clk_size;
1821
1822	/* Allocate space for at least one supply */
1823	supply_count = opp_table->regulator_count > 0 ?
1824			opp_table->regulator_count : 1;
1825	supply_size = sizeof(*opp->supplies) * supply_count;
1826	clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1827	icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1828
1829	/* allocate new OPP node and supplies structures */
1830	opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1831	if (!opp)
1832		return NULL;
1833
1834	/* Put the supplies, bw and clock at the end of the OPP structure */
1835	opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1836
1837	opp->rates = (unsigned long *)(opp->supplies + supply_count);
1838
1839	if (icc_size)
1840		opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1841
1842	INIT_LIST_HEAD(&opp->node);
1843
1844	opp->level = OPP_LEVEL_UNSET;
1845
1846	return opp;
1847}
1848
1849static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1850					 struct opp_table *opp_table)
1851{
1852	struct regulator *reg;
1853	int i;
1854
1855	if (!opp_table->regulators)
1856		return true;
1857
1858	for (i = 0; i < opp_table->regulator_count; i++) {
1859		reg = opp_table->regulators[i];
1860
1861		if (!regulator_is_supported_voltage(reg,
1862					opp->supplies[i].u_volt_min,
1863					opp->supplies[i].u_volt_max)) {
1864			pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1865				__func__, opp->supplies[i].u_volt_min,
1866				opp->supplies[i].u_volt_max);
1867			return false;
1868		}
1869	}
1870
1871	return true;
1872}
1873
1874static int _opp_compare_rate(struct opp_table *opp_table,
1875			     struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1876{
1877	int i;
1878
1879	for (i = 0; i < opp_table->clk_count; i++) {
1880		if (opp1->rates[i] != opp2->rates[i])
1881			return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1882	}
1883
1884	/* Same rates for both OPPs */
1885	return 0;
1886}
1887
1888static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1889			   struct dev_pm_opp *opp2)
1890{
1891	int i;
1892
1893	for (i = 0; i < opp_table->path_count; i++) {
1894		if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1895			return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1896	}
1897
1898	/* Same bw for both OPPs */
1899	return 0;
1900}
1901
1902/*
1903 * Returns
1904 * 0: opp1 == opp2
1905 * 1: opp1 > opp2
1906 * -1: opp1 < opp2
1907 */
1908int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1909		     struct dev_pm_opp *opp2)
1910{
1911	int ret;
1912
1913	ret = _opp_compare_rate(opp_table, opp1, opp2);
1914	if (ret)
1915		return ret;
1916
1917	ret = _opp_compare_bw(opp_table, opp1, opp2);
1918	if (ret)
1919		return ret;
1920
1921	if (opp1->level != opp2->level)
1922		return opp1->level < opp2->level ? -1 : 1;
1923
1924	/* Duplicate OPPs */
1925	return 0;
1926}
1927
1928static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1929			     struct opp_table *opp_table,
1930			     struct list_head **head)
1931{
1932	struct dev_pm_opp *opp;
1933	int opp_cmp;
1934
1935	/*
1936	 * Insert new OPP in order of increasing frequency and discard if
1937	 * already present.
1938	 *
1939	 * Need to use &opp_table->opp_list in the condition part of the 'for'
1940	 * loop, don't replace it with head otherwise it will become an infinite
1941	 * loop.
1942	 */
1943	list_for_each_entry(opp, &opp_table->opp_list, node) {
1944		opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1945		if (opp_cmp > 0) {
1946			*head = &opp->node;
1947			continue;
1948		}
1949
1950		if (opp_cmp < 0)
1951			return 0;
1952
1953		/* Duplicate OPPs */
1954		dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1955			 __func__, opp->rates[0], opp->supplies[0].u_volt,
1956			 opp->available, new_opp->rates[0],
1957			 new_opp->supplies[0].u_volt, new_opp->available);
1958
1959		/* Should we compare voltages for all regulators here ? */
1960		return opp->available &&
1961		       new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1962	}
1963
1964	return 0;
1965}
1966
1967void _required_opps_available(struct dev_pm_opp *opp, int count)
1968{
1969	int i;
1970
1971	for (i = 0; i < count; i++) {
1972		if (opp->required_opps[i]->available)
1973			continue;
1974
1975		opp->available = false;
1976		pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1977			 __func__, opp->required_opps[i]->np, opp->rates[0]);
1978		return;
1979	}
1980}
1981
1982/*
1983 * Returns:
1984 * 0: On success. And appropriate error message for duplicate OPPs.
1985 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1986 *  _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1987 *  sure we don't print error messages unnecessarily if different parts of
1988 *  kernel try to initialize the OPP table.
1989 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1990 *  should be considered an error by the callers of _opp_add().
1991 */
1992int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1993	     struct opp_table *opp_table)
1994{
1995	struct list_head *head;
1996	int ret;
1997
1998	mutex_lock(&opp_table->lock);
1999	head = &opp_table->opp_list;
2000
2001	ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2002	if (ret) {
2003		mutex_unlock(&opp_table->lock);
2004		return ret;
2005	}
2006
2007	list_add(&new_opp->node, head);
2008	mutex_unlock(&opp_table->lock);
2009
2010	new_opp->opp_table = opp_table;
2011	kref_init(&new_opp->kref);
2012
2013	opp_debug_create_one(new_opp, opp_table);
2014
2015	if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2016		new_opp->available = false;
2017		dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2018			 __func__, new_opp->rates[0]);
2019	}
2020
2021	/* required-opps not fully initialized yet */
2022	if (lazy_linking_pending(opp_table))
2023		return 0;
2024
2025	_required_opps_available(new_opp, opp_table->required_opp_count);
2026
2027	return 0;
2028}
2029
2030/**
2031 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2032 * @opp_table:	OPP table
2033 * @dev:	device for which we do this operation
2034 * @data:	The OPP data for the OPP to add
2035 * @dynamic:	Dynamically added OPPs.
2036 *
2037 * This function adds an opp definition to the opp table and returns status.
2038 * The opp is made available by default and it can be controlled using
2039 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2040 *
2041 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2042 * and freed by dev_pm_opp_of_remove_table.
2043 *
2044 * Return:
2045 * 0		On success OR
2046 *		Duplicate OPPs (both freq and volt are same) and opp->available
2047 * -EEXIST	Freq are same and volt are different OR
2048 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2049 * -ENOMEM	Memory allocation failure
2050 */
2051int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2052		struct dev_pm_opp_data *data, bool dynamic)
2053{
2054	struct dev_pm_opp *new_opp;
2055	unsigned long tol, u_volt = data->u_volt;
2056	int ret;
2057
2058	if (!assert_single_clk(opp_table))
2059		return -EINVAL;
2060
2061	new_opp = _opp_allocate(opp_table);
2062	if (!new_opp)
2063		return -ENOMEM;
2064
2065	/* populate the opp table */
2066	new_opp->rates[0] = data->freq;
2067	new_opp->level = data->level;
 
2068	tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2069	new_opp->supplies[0].u_volt = u_volt;
2070	new_opp->supplies[0].u_volt_min = u_volt - tol;
2071	new_opp->supplies[0].u_volt_max = u_volt + tol;
2072	new_opp->available = true;
2073	new_opp->dynamic = dynamic;
2074
2075	ret = _opp_add(dev, new_opp, opp_table);
2076	if (ret) {
2077		/* Don't return error for duplicate OPPs */
2078		if (ret == -EBUSY)
2079			ret = 0;
2080		goto free_opp;
2081	}
2082
2083	/*
2084	 * Notify the changes in the availability of the operable
2085	 * frequency/voltage list.
2086	 */
2087	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2088	return 0;
2089
2090free_opp:
2091	_opp_free(new_opp);
2092
2093	return ret;
2094}
2095
2096/*
2097 * This is required only for the V2 bindings, and it enables a platform to
2098 * specify the hierarchy of versions it supports. OPP layer will then enable
2099 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2100 * property.
2101 */
2102static int _opp_set_supported_hw(struct opp_table *opp_table,
2103				 const u32 *versions, unsigned int count)
2104{
2105	/* Another CPU that shares the OPP table has set the property ? */
2106	if (opp_table->supported_hw)
2107		return 0;
2108
2109	opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2110					GFP_KERNEL);
2111	if (!opp_table->supported_hw)
2112		return -ENOMEM;
2113
2114	opp_table->supported_hw_count = count;
2115
2116	return 0;
2117}
2118
2119static void _opp_put_supported_hw(struct opp_table *opp_table)
2120{
2121	if (opp_table->supported_hw) {
2122		kfree(opp_table->supported_hw);
2123		opp_table->supported_hw = NULL;
2124		opp_table->supported_hw_count = 0;
2125	}
2126}
2127
2128/*
2129 * This is required only for the V2 bindings, and it enables a platform to
2130 * specify the extn to be used for certain property names. The properties to
2131 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2132 * should postfix the property name with -<name> while looking for them.
2133 */
2134static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2135{
2136	/* Another CPU that shares the OPP table has set the property ? */
2137	if (!opp_table->prop_name) {
2138		opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2139		if (!opp_table->prop_name)
2140			return -ENOMEM;
2141	}
2142
2143	return 0;
2144}
2145
2146static void _opp_put_prop_name(struct opp_table *opp_table)
2147{
2148	if (opp_table->prop_name) {
2149		kfree(opp_table->prop_name);
2150		opp_table->prop_name = NULL;
2151	}
2152}
2153
2154/*
2155 * In order to support OPP switching, OPP layer needs to know the name of the
2156 * device's regulators, as the core would be required to switch voltages as
2157 * well.
2158 *
2159 * This must be called before any OPPs are initialized for the device.
2160 */
2161static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2162			       const char * const names[])
2163{
2164	const char * const *temp = names;
2165	struct regulator *reg;
2166	int count = 0, ret, i;
2167
2168	/* Count number of regulators */
2169	while (*temp++)
2170		count++;
2171
2172	if (!count)
2173		return -EINVAL;
2174
2175	/* Another CPU that shares the OPP table has set the regulators ? */
2176	if (opp_table->regulators)
2177		return 0;
2178
2179	opp_table->regulators = kmalloc_array(count,
2180					      sizeof(*opp_table->regulators),
2181					      GFP_KERNEL);
2182	if (!opp_table->regulators)
2183		return -ENOMEM;
2184
2185	for (i = 0; i < count; i++) {
2186		reg = regulator_get_optional(dev, names[i]);
2187		if (IS_ERR(reg)) {
2188			ret = dev_err_probe(dev, PTR_ERR(reg),
2189					    "%s: no regulator (%s) found\n",
2190					    __func__, names[i]);
2191			goto free_regulators;
2192		}
2193
2194		opp_table->regulators[i] = reg;
2195	}
2196
2197	opp_table->regulator_count = count;
2198
2199	/* Set generic config_regulators() for single regulators here */
2200	if (count == 1)
2201		opp_table->config_regulators = _opp_config_regulator_single;
2202
2203	return 0;
2204
2205free_regulators:
2206	while (i != 0)
2207		regulator_put(opp_table->regulators[--i]);
2208
2209	kfree(opp_table->regulators);
2210	opp_table->regulators = NULL;
2211	opp_table->regulator_count = -1;
2212
2213	return ret;
2214}
2215
2216static void _opp_put_regulators(struct opp_table *opp_table)
2217{
2218	int i;
2219
2220	if (!opp_table->regulators)
2221		return;
2222
2223	if (opp_table->enabled) {
2224		for (i = opp_table->regulator_count - 1; i >= 0; i--)
2225			regulator_disable(opp_table->regulators[i]);
2226	}
2227
2228	for (i = opp_table->regulator_count - 1; i >= 0; i--)
2229		regulator_put(opp_table->regulators[i]);
2230
2231	kfree(opp_table->regulators);
2232	opp_table->regulators = NULL;
2233	opp_table->regulator_count = -1;
2234}
2235
2236static void _put_clks(struct opp_table *opp_table, int count)
2237{
2238	int i;
2239
2240	for (i = count - 1; i >= 0; i--)
2241		clk_put(opp_table->clks[i]);
2242
2243	kfree(opp_table->clks);
2244	opp_table->clks = NULL;
2245}
2246
2247/*
2248 * In order to support OPP switching, OPP layer needs to get pointers to the
2249 * clocks for the device. Simple cases work fine without using this routine
2250 * (i.e. by passing connection-id as NULL), but for a device with multiple
2251 * clocks available, the OPP core needs to know the exact names of the clks to
2252 * use.
2253 *
2254 * This must be called before any OPPs are initialized for the device.
2255 */
2256static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2257			     const char * const names[],
2258			     config_clks_t config_clks)
2259{
2260	const char * const *temp = names;
2261	int count = 0, ret, i;
2262	struct clk *clk;
2263
2264	/* Count number of clks */
2265	while (*temp++)
2266		count++;
2267
2268	/*
2269	 * This is a special case where we have a single clock, whose connection
2270	 * id name is NULL, i.e. first two entries are NULL in the array.
2271	 */
2272	if (!count && !names[1])
2273		count = 1;
2274
2275	/* Fail early for invalid configurations */
2276	if (!count || (!config_clks && count > 1))
2277		return -EINVAL;
2278
2279	/* Another CPU that shares the OPP table has set the clkname ? */
2280	if (opp_table->clks)
2281		return 0;
2282
2283	opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2284					GFP_KERNEL);
2285	if (!opp_table->clks)
2286		return -ENOMEM;
2287
2288	/* Find clks for the device */
2289	for (i = 0; i < count; i++) {
2290		clk = clk_get(dev, names[i]);
2291		if (IS_ERR(clk)) {
2292			ret = dev_err_probe(dev, PTR_ERR(clk),
2293					    "%s: Couldn't find clock with name: %s\n",
2294					    __func__, names[i]);
2295			goto free_clks;
2296		}
2297
2298		opp_table->clks[i] = clk;
2299	}
2300
2301	opp_table->clk_count = count;
2302	opp_table->config_clks = config_clks;
2303
2304	/* Set generic single clk set here */
2305	if (count == 1) {
2306		if (!opp_table->config_clks)
2307			opp_table->config_clks = _opp_config_clk_single;
2308
2309		/*
2310		 * We could have just dropped the "clk" field and used "clks"
2311		 * everywhere. Instead we kept the "clk" field around for
2312		 * following reasons:
2313		 *
2314		 * - avoiding clks[0] everywhere else.
2315		 * - not running single clk helpers for multiple clk usecase by
2316		 *   mistake.
2317		 *
2318		 * Since this is single-clk case, just update the clk pointer
2319		 * too.
2320		 */
2321		opp_table->clk = opp_table->clks[0];
2322	}
2323
2324	return 0;
2325
2326free_clks:
2327	_put_clks(opp_table, i);
2328	return ret;
2329}
2330
2331static void _opp_put_clknames(struct opp_table *opp_table)
2332{
2333	if (!opp_table->clks)
2334		return;
2335
2336	opp_table->config_clks = NULL;
2337	opp_table->clk = ERR_PTR(-ENODEV);
2338
2339	_put_clks(opp_table, opp_table->clk_count);
2340}
2341
2342/*
2343 * This is useful to support platforms with multiple regulators per device.
2344 *
2345 * This must be called before any OPPs are initialized for the device.
2346 */
2347static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2348		struct device *dev, config_regulators_t config_regulators)
2349{
2350	/* Another CPU that shares the OPP table has set the helper ? */
2351	if (!opp_table->config_regulators)
2352		opp_table->config_regulators = config_regulators;
2353
2354	return 0;
2355}
2356
2357static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2358{
2359	if (opp_table->config_regulators)
2360		opp_table->config_regulators = NULL;
2361}
2362
2363static void _opp_detach_genpd(struct opp_table *opp_table)
 
 
 
2364{
2365	int index;
2366
2367	for (index = 0; index < opp_table->required_opp_count; index++) {
2368		if (!opp_table->required_devs[index])
2369			continue;
2370
2371		dev_pm_domain_detach(opp_table->required_devs[index], false);
2372		opp_table->required_devs[index] = NULL;
2373	}
2374}
2375
2376/*
2377 * Multiple generic power domains for a device are supported with the help of
2378 * virtual genpd devices, which are created for each consumer device - genpd
2379 * pair. These are the device structures which are attached to the power domain
2380 * and are required by the OPP core to set the performance state of the genpd.
2381 * The same API also works for the case where single genpd is available and so
2382 * we don't need to support that separately.
2383 *
2384 * This helper will normally be called by the consumer driver of the device
2385 * "dev", as only that has details of the genpd names.
2386 *
2387 * This helper needs to be called once with a list of all genpd to attach.
2388 * Otherwise the original device structure will be used instead by the OPP core.
2389 *
2390 * The order of entries in the names array must match the order in which
2391 * "required-opps" are added in DT.
2392 */
2393static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2394			const char * const *names, struct device ***virt_devs)
2395{
2396	struct device *virt_dev;
2397	int index = 0, ret = -EINVAL;
2398	const char * const *name = names;
2399
2400	if (!opp_table->required_devs) {
2401		dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2402		return -EINVAL;
2403	}
2404
2405	/* Genpd core takes care of propagation to parent genpd */
2406	if (opp_table->is_genpd) {
2407		dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2408		return -EOPNOTSUPP;
2409	}
2410
2411	/* Checking only the first one is enough ? */
2412	if (opp_table->required_devs[0])
2413		return 0;
2414
2415	while (*name) {
2416		if (index >= opp_table->required_opp_count) {
2417			dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2418				*name, opp_table->required_opp_count, index);
2419			goto err;
2420		}
2421
2422		virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2423		if (IS_ERR_OR_NULL(virt_dev)) {
2424			ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2425			dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2426			goto err;
2427		}
2428
2429		/*
2430		 * Add the virtual genpd device as a user of the OPP table, so
2431		 * we can call dev_pm_opp_set_opp() on it directly.
2432		 *
2433		 * This will be automatically removed when the OPP table is
2434		 * removed, don't need to handle that here.
2435		 */
2436		if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) {
2437			ret = -ENOMEM;
2438			goto err;
2439		}
2440
2441		opp_table->required_devs[index] = virt_dev;
2442		index++;
2443		name++;
2444	}
2445
2446	if (virt_devs)
2447		*virt_devs = opp_table->required_devs;
2448
2449	return 0;
2450
2451err:
2452	_opp_detach_genpd(opp_table);
2453	return ret;
2454
2455}
2456
2457static int _opp_set_required_devs(struct opp_table *opp_table,
2458				  struct device *dev,
2459				  struct device **required_devs)
2460{
2461	int i;
2462
2463	if (!opp_table->required_devs) {
2464		dev_err(dev, "Required OPPs not available, can't set required devs\n");
2465		return -EINVAL;
2466	}
2467
2468	/* Another device that shares the OPP table has set the required devs ? */
2469	if (opp_table->required_devs[0])
2470		return 0;
 
 
2471
2472	for (i = 0; i < opp_table->required_opp_count; i++) {
2473		/* Genpd core takes care of propagation to parent genpd */
2474		if (required_devs[i] && opp_table->is_genpd &&
2475		    opp_table->required_opp_tables[i]->is_genpd) {
2476			dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2477			return -EOPNOTSUPP;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2478		}
2479
2480		opp_table->required_devs[i] = required_devs[i];
2481	}
2482
 
2483	return 0;
2484}
2485
2486static void _opp_put_required_devs(struct opp_table *opp_table)
 
2487{
2488	int i;
2489
2490	for (i = 0; i < opp_table->required_opp_count; i++)
2491		opp_table->required_devs[i] = NULL;
2492}
2493
2494static void _opp_clear_config(struct opp_config_data *data)
2495{
2496	if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2497		_opp_put_required_devs(data->opp_table);
2498	else if (data->flags & OPP_CONFIG_GENPD)
2499		_opp_detach_genpd(data->opp_table);
2500
2501	if (data->flags & OPP_CONFIG_REGULATOR)
2502		_opp_put_regulators(data->opp_table);
2503	if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2504		_opp_put_supported_hw(data->opp_table);
2505	if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2506		_opp_put_config_regulators_helper(data->opp_table);
2507	if (data->flags & OPP_CONFIG_PROP_NAME)
2508		_opp_put_prop_name(data->opp_table);
2509	if (data->flags & OPP_CONFIG_CLK)
2510		_opp_put_clknames(data->opp_table);
2511
2512	dev_pm_opp_put_opp_table(data->opp_table);
2513	kfree(data);
2514}
2515
2516/**
2517 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2518 * @dev: Device for which configuration is being set.
2519 * @config: OPP configuration.
2520 *
2521 * This allows all device OPP configurations to be performed at once.
2522 *
2523 * This must be called before any OPPs are initialized for the device. This may
2524 * be called multiple times for the same OPP table, for example once for each
2525 * CPU that share the same table. This must be balanced by the same number of
2526 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2527 *
2528 * This returns a token to the caller, which must be passed to
2529 * dev_pm_opp_clear_config() to free the resources later. The value of the
2530 * returned token will be >= 1 for success and negative for errors. The minimum
2531 * value of 1 is chosen here to make it easy for callers to manage the resource.
2532 */
2533int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2534{
2535	struct opp_table *opp_table;
2536	struct opp_config_data *data;
2537	unsigned int id;
2538	int ret;
2539
2540	data = kmalloc(sizeof(*data), GFP_KERNEL);
2541	if (!data)
2542		return -ENOMEM;
2543
2544	opp_table = _add_opp_table(dev, false);
2545	if (IS_ERR(opp_table)) {
2546		kfree(data);
2547		return PTR_ERR(opp_table);
2548	}
2549
2550	data->opp_table = opp_table;
2551	data->flags = 0;
2552
2553	/* This should be called before OPPs are initialized */
2554	if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2555		ret = -EBUSY;
2556		goto err;
2557	}
2558
2559	/* Configure clocks */
2560	if (config->clk_names) {
2561		ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2562					config->config_clks);
2563		if (ret)
2564			goto err;
2565
2566		data->flags |= OPP_CONFIG_CLK;
2567	} else if (config->config_clks) {
2568		/* Don't allow config callback without clocks */
2569		ret = -EINVAL;
2570		goto err;
2571	}
2572
2573	/* Configure property names */
2574	if (config->prop_name) {
2575		ret = _opp_set_prop_name(opp_table, config->prop_name);
2576		if (ret)
2577			goto err;
2578
2579		data->flags |= OPP_CONFIG_PROP_NAME;
2580	}
2581
2582	/* Configure config_regulators helper */
2583	if (config->config_regulators) {
2584		ret = _opp_set_config_regulators_helper(opp_table, dev,
2585						config->config_regulators);
2586		if (ret)
2587			goto err;
2588
2589		data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2590	}
2591
2592	/* Configure supported hardware */
2593	if (config->supported_hw) {
2594		ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2595					    config->supported_hw_count);
2596		if (ret)
2597			goto err;
2598
2599		data->flags |= OPP_CONFIG_SUPPORTED_HW;
2600	}
2601
2602	/* Configure supplies */
2603	if (config->regulator_names) {
2604		ret = _opp_set_regulators(opp_table, dev,
2605					  config->regulator_names);
2606		if (ret)
2607			goto err;
2608
2609		data->flags |= OPP_CONFIG_REGULATOR;
2610	}
2611
2612	/* Attach genpds */
2613	if (config->genpd_names) {
2614		if (config->required_devs)
2615			goto err;
2616
2617		ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2618					config->virt_devs);
2619		if (ret)
2620			goto err;
2621
2622		data->flags |= OPP_CONFIG_GENPD;
2623	} else if (config->required_devs) {
2624		ret = _opp_set_required_devs(opp_table, dev,
2625					     config->required_devs);
2626		if (ret)
2627			goto err;
2628
2629		data->flags |= OPP_CONFIG_REQUIRED_DEVS;
 
2630	}
2631
2632	ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2633		       GFP_KERNEL);
2634	if (ret)
2635		goto err;
2636
2637	return id;
2638
2639err:
2640	_opp_clear_config(data);
2641	return ret;
2642}
2643EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2644
2645/**
2646 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2647 * @token: The token returned by dev_pm_opp_set_config() previously.
2648 *
2649 * This allows all device OPP configurations to be cleared at once. This must be
2650 * called once for each call made to dev_pm_opp_set_config(), in order to free
2651 * the OPPs properly.
2652 *
2653 * Currently the first call itself ends up freeing all the OPP configurations,
2654 * while the later ones only drop the OPP table reference. This works well for
2655 * now as we would never want to use an half initialized OPP table and want to
2656 * remove the configurations together.
2657 */
2658void dev_pm_opp_clear_config(int token)
2659{
2660	struct opp_config_data *data;
2661
2662	/*
2663	 * This lets the callers call this unconditionally and keep their code
2664	 * simple.
2665	 */
2666	if (unlikely(token <= 0))
2667		return;
2668
2669	data = xa_erase(&opp_configs, token);
2670	if (WARN_ON(!data))
2671		return;
2672
2673	_opp_clear_config(data);
2674}
2675EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2676
2677static void devm_pm_opp_config_release(void *token)
2678{
2679	dev_pm_opp_clear_config((unsigned long)token);
2680}
2681
2682/**
2683 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2684 * @dev: Device for which configuration is being set.
2685 * @config: OPP configuration.
2686 *
2687 * This allows all device OPP configurations to be performed at once.
2688 * This is a resource-managed variant of dev_pm_opp_set_config().
2689 *
2690 * Return: 0 on success and errorno otherwise.
2691 */
2692int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2693{
2694	int token = dev_pm_opp_set_config(dev, config);
2695
2696	if (token < 0)
2697		return token;
2698
2699	return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2700					(void *) ((unsigned long) token));
2701}
2702EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2703
2704/**
2705 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2706 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2707 * @dst_table: Required OPP table of the @src_table.
2708 * @src_opp: OPP from the @src_table.
2709 *
2710 * This function returns the OPP (present in @dst_table) pointed out by the
2711 * "required-opps" property of the @src_opp (present in @src_table).
2712 *
2713 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2714 * use.
2715 *
2716 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2717 */
2718struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2719						 struct opp_table *dst_table,
2720						 struct dev_pm_opp *src_opp)
2721{
2722	struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2723	int i;
2724
2725	if (!src_table || !dst_table || !src_opp ||
2726	    !src_table->required_opp_tables)
2727		return ERR_PTR(-EINVAL);
2728
2729	/* required-opps not fully initialized yet */
2730	if (lazy_linking_pending(src_table))
2731		return ERR_PTR(-EBUSY);
2732
2733	for (i = 0; i < src_table->required_opp_count; i++) {
2734		if (src_table->required_opp_tables[i] == dst_table) {
2735			mutex_lock(&src_table->lock);
2736
2737			list_for_each_entry(opp, &src_table->opp_list, node) {
2738				if (opp == src_opp) {
2739					dest_opp = opp->required_opps[i];
2740					dev_pm_opp_get(dest_opp);
2741					break;
2742				}
2743			}
2744
2745			mutex_unlock(&src_table->lock);
2746			break;
2747		}
2748	}
2749
2750	if (IS_ERR(dest_opp)) {
2751		pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2752		       src_table, dst_table);
2753	}
2754
2755	return dest_opp;
2756}
2757EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2758
2759/**
2760 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2761 * @src_table: OPP table which has dst_table as one of its required OPP table.
2762 * @dst_table: Required OPP table of the src_table.
2763 * @pstate: Current performance state of the src_table.
2764 *
2765 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2766 * "required-opps" property of the OPP (present in @src_table) which has
2767 * performance state set to @pstate.
2768 *
2769 * Return: Zero or positive performance state on success, otherwise negative
2770 * value on errors.
2771 */
2772int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2773				       struct opp_table *dst_table,
2774				       unsigned int pstate)
2775{
2776	struct dev_pm_opp *opp;
2777	int dest_pstate = -EINVAL;
2778	int i;
2779
2780	/*
2781	 * Normally the src_table will have the "required_opps" property set to
2782	 * point to one of the OPPs in the dst_table, but in some cases the
2783	 * genpd and its master have one to one mapping of performance states
2784	 * and so none of them have the "required-opps" property set. Return the
2785	 * pstate of the src_table as it is in such cases.
2786	 */
2787	if (!src_table || !src_table->required_opp_count)
2788		return pstate;
2789
2790	/* Both OPP tables must belong to genpds */
2791	if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2792		pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2793		return -EINVAL;
2794	}
2795
2796	/* required-opps not fully initialized yet */
2797	if (lazy_linking_pending(src_table))
2798		return -EBUSY;
2799
2800	for (i = 0; i < src_table->required_opp_count; i++) {
2801		if (src_table->required_opp_tables[i]->np == dst_table->np)
2802			break;
2803	}
2804
2805	if (unlikely(i == src_table->required_opp_count)) {
2806		pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2807		       __func__, src_table, dst_table);
2808		return -EINVAL;
2809	}
2810
2811	mutex_lock(&src_table->lock);
2812
2813	list_for_each_entry(opp, &src_table->opp_list, node) {
2814		if (opp->level == pstate) {
2815			dest_pstate = opp->required_opps[i]->level;
2816			goto unlock;
2817		}
2818	}
2819
2820	pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2821	       dst_table);
2822
2823unlock:
2824	mutex_unlock(&src_table->lock);
2825
2826	return dest_pstate;
2827}
2828
2829/**
2830 * dev_pm_opp_add_dynamic()  - Add an OPP table from a table definitions
2831 * @dev:	The device for which we do this operation
2832 * @data:	The OPP data for the OPP to add
2833 *
2834 * This function adds an opp definition to the opp table and returns status.
2835 * The opp is made available by default and it can be controlled using
2836 * dev_pm_opp_enable/disable functions.
2837 *
2838 * Return:
2839 * 0		On success OR
2840 *		Duplicate OPPs (both freq and volt are same) and opp->available
2841 * -EEXIST	Freq are same and volt are different OR
2842 *		Duplicate OPPs (both freq and volt are same) and !opp->available
2843 * -ENOMEM	Memory allocation failure
2844 */
2845int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2846{
2847	struct opp_table *opp_table;
2848	int ret;
2849
2850	opp_table = _add_opp_table(dev, true);
2851	if (IS_ERR(opp_table))
2852		return PTR_ERR(opp_table);
2853
2854	/* Fix regulator count for dynamic OPPs */
2855	opp_table->regulator_count = 1;
2856
2857	ret = _opp_add_v1(opp_table, dev, data, true);
2858	if (ret)
2859		dev_pm_opp_put_opp_table(opp_table);
2860
2861	return ret;
2862}
2863EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2864
2865/**
2866 * _opp_set_availability() - helper to set the availability of an opp
2867 * @dev:		device for which we do this operation
2868 * @freq:		OPP frequency to modify availability
2869 * @availability_req:	availability status requested for this opp
2870 *
2871 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2872 * which is isolated here.
2873 *
2874 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2875 * copy operation, returns 0 if no modification was done OR modification was
2876 * successful.
2877 */
2878static int _opp_set_availability(struct device *dev, unsigned long freq,
2879				 bool availability_req)
2880{
2881	struct opp_table *opp_table;
2882	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2883	int r = 0;
2884
2885	/* Find the opp_table */
2886	opp_table = _find_opp_table(dev);
2887	if (IS_ERR(opp_table)) {
2888		r = PTR_ERR(opp_table);
2889		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2890		return r;
2891	}
2892
2893	if (!assert_single_clk(opp_table)) {
2894		r = -EINVAL;
2895		goto put_table;
2896	}
2897
2898	mutex_lock(&opp_table->lock);
2899
2900	/* Do we have the frequency? */
2901	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2902		if (tmp_opp->rates[0] == freq) {
2903			opp = tmp_opp;
2904			break;
2905		}
2906	}
2907
2908	if (IS_ERR(opp)) {
2909		r = PTR_ERR(opp);
2910		goto unlock;
2911	}
2912
2913	/* Is update really needed? */
2914	if (opp->available == availability_req)
2915		goto unlock;
2916
2917	opp->available = availability_req;
2918
2919	dev_pm_opp_get(opp);
2920	mutex_unlock(&opp_table->lock);
2921
2922	/* Notify the change of the OPP availability */
2923	if (availability_req)
2924		blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2925					     opp);
2926	else
2927		blocking_notifier_call_chain(&opp_table->head,
2928					     OPP_EVENT_DISABLE, opp);
2929
2930	dev_pm_opp_put(opp);
2931	goto put_table;
2932
2933unlock:
2934	mutex_unlock(&opp_table->lock);
2935put_table:
2936	dev_pm_opp_put_opp_table(opp_table);
2937	return r;
2938}
2939
2940/**
2941 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2942 * @dev:		device for which we do this operation
2943 * @freq:		OPP frequency to adjust voltage of
2944 * @u_volt:		new OPP target voltage
2945 * @u_volt_min:		new OPP min voltage
2946 * @u_volt_max:		new OPP max voltage
2947 *
2948 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2949 * copy operation, returns 0 if no modifcation was done OR modification was
2950 * successful.
2951 */
2952int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2953			      unsigned long u_volt, unsigned long u_volt_min,
2954			      unsigned long u_volt_max)
2955
2956{
2957	struct opp_table *opp_table;
2958	struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2959	int r = 0;
2960
2961	/* Find the opp_table */
2962	opp_table = _find_opp_table(dev);
2963	if (IS_ERR(opp_table)) {
2964		r = PTR_ERR(opp_table);
2965		dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2966		return r;
2967	}
2968
2969	if (!assert_single_clk(opp_table)) {
2970		r = -EINVAL;
2971		goto put_table;
2972	}
2973
2974	mutex_lock(&opp_table->lock);
2975
2976	/* Do we have the frequency? */
2977	list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2978		if (tmp_opp->rates[0] == freq) {
2979			opp = tmp_opp;
2980			break;
2981		}
2982	}
2983
2984	if (IS_ERR(opp)) {
2985		r = PTR_ERR(opp);
2986		goto adjust_unlock;
2987	}
2988
2989	/* Is update really needed? */
2990	if (opp->supplies->u_volt == u_volt)
2991		goto adjust_unlock;
2992
2993	opp->supplies->u_volt = u_volt;
2994	opp->supplies->u_volt_min = u_volt_min;
2995	opp->supplies->u_volt_max = u_volt_max;
2996
2997	dev_pm_opp_get(opp);
2998	mutex_unlock(&opp_table->lock);
2999
3000	/* Notify the voltage change of the OPP */
3001	blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3002				     opp);
3003
3004	dev_pm_opp_put(opp);
3005	goto put_table;
3006
3007adjust_unlock:
3008	mutex_unlock(&opp_table->lock);
3009put_table:
3010	dev_pm_opp_put_opp_table(opp_table);
3011	return r;
3012}
3013EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3014
3015/**
3016 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3017 * @dev:	device for which we do this operation
3018 *
3019 * Sync voltage state of the OPP table regulators.
3020 *
3021 * Return: 0 on success or a negative error value.
3022 */
3023int dev_pm_opp_sync_regulators(struct device *dev)
3024{
3025	struct opp_table *opp_table;
3026	struct regulator *reg;
3027	int i, ret = 0;
3028
3029	/* Device may not have OPP table */
3030	opp_table = _find_opp_table(dev);
3031	if (IS_ERR(opp_table))
3032		return 0;
3033
3034	/* Regulator may not be required for the device */
3035	if (unlikely(!opp_table->regulators))
3036		goto put_table;
3037
3038	/* Nothing to sync if voltage wasn't changed */
3039	if (!opp_table->enabled)
3040		goto put_table;
3041
3042	for (i = 0; i < opp_table->regulator_count; i++) {
3043		reg = opp_table->regulators[i];
3044		ret = regulator_sync_voltage(reg);
3045		if (ret)
3046			break;
3047	}
3048put_table:
3049	/* Drop reference taken by _find_opp_table() */
3050	dev_pm_opp_put_opp_table(opp_table);
3051
3052	return ret;
3053}
3054EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3055
3056/**
3057 * dev_pm_opp_enable() - Enable a specific OPP
3058 * @dev:	device for which we do this operation
3059 * @freq:	OPP frequency to enable
3060 *
3061 * Enables a provided opp. If the operation is valid, this returns 0, else the
3062 * corresponding error value. It is meant to be used for users an OPP available
3063 * after being temporarily made unavailable with dev_pm_opp_disable.
3064 *
3065 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3066 * copy operation, returns 0 if no modification was done OR modification was
3067 * successful.
3068 */
3069int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3070{
3071	return _opp_set_availability(dev, freq, true);
3072}
3073EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3074
3075/**
3076 * dev_pm_opp_disable() - Disable a specific OPP
3077 * @dev:	device for which we do this operation
3078 * @freq:	OPP frequency to disable
3079 *
3080 * Disables a provided opp. If the operation is valid, this returns
3081 * 0, else the corresponding error value. It is meant to be a temporary
3082 * control by users to make this OPP not available until the circumstances are
3083 * right to make it available again (with a call to dev_pm_opp_enable).
3084 *
3085 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3086 * copy operation, returns 0 if no modification was done OR modification was
3087 * successful.
3088 */
3089int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3090{
3091	return _opp_set_availability(dev, freq, false);
3092}
3093EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3094
3095/**
3096 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3097 * @dev:	Device for which notifier needs to be registered
3098 * @nb:		Notifier block to be registered
3099 *
3100 * Return: 0 on success or a negative error value.
3101 */
3102int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3103{
3104	struct opp_table *opp_table;
3105	int ret;
3106
3107	opp_table = _find_opp_table(dev);
3108	if (IS_ERR(opp_table))
3109		return PTR_ERR(opp_table);
3110
3111	ret = blocking_notifier_chain_register(&opp_table->head, nb);
3112
3113	dev_pm_opp_put_opp_table(opp_table);
3114
3115	return ret;
3116}
3117EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3118
3119/**
3120 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3121 * @dev:	Device for which notifier needs to be unregistered
3122 * @nb:		Notifier block to be unregistered
3123 *
3124 * Return: 0 on success or a negative error value.
3125 */
3126int dev_pm_opp_unregister_notifier(struct device *dev,
3127				   struct notifier_block *nb)
3128{
3129	struct opp_table *opp_table;
3130	int ret;
3131
3132	opp_table = _find_opp_table(dev);
3133	if (IS_ERR(opp_table))
3134		return PTR_ERR(opp_table);
3135
3136	ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3137
3138	dev_pm_opp_put_opp_table(opp_table);
3139
3140	return ret;
3141}
3142EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3143
3144/**
3145 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3146 * @dev:	device pointer used to lookup OPP table.
3147 *
3148 * Free both OPPs created using static entries present in DT and the
3149 * dynamically added entries.
3150 */
3151void dev_pm_opp_remove_table(struct device *dev)
3152{
3153	struct opp_table *opp_table;
3154
3155	/* Check for existing table for 'dev' */
3156	opp_table = _find_opp_table(dev);
3157	if (IS_ERR(opp_table)) {
3158		int error = PTR_ERR(opp_table);
3159
3160		if (error != -ENODEV)
3161			WARN(1, "%s: opp_table: %d\n",
3162			     IS_ERR_OR_NULL(dev) ?
3163					"Invalid device" : dev_name(dev),
3164			     error);
3165		return;
3166	}
3167
3168	/*
3169	 * Drop the extra reference only if the OPP table was successfully added
3170	 * with dev_pm_opp_of_add_table() earlier.
3171	 **/
3172	if (_opp_remove_all_static(opp_table))
3173		dev_pm_opp_put_opp_table(opp_table);
3174
3175	/* Drop reference taken by _find_opp_table() */
3176	dev_pm_opp_put_opp_table(opp_table);
3177}
3178EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);