Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* Lock to allow exclusive modification to the device and opp lists */
33DEFINE_MUTEX(opp_table_lock);
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
36
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41{
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(&opp_table->lock);
53 return found;
54}
55
56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57{
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68}
69
70/**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
81struct opp_table *_find_opp_table(struct device *dev)
82{
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
93
94 return opp_table;
95}
96
97/*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
104static bool assert_single_clk(struct opp_table *opp_table,
105 unsigned int __always_unused index)
106{
107 return !WARN_ON(opp_table->clk_count > 1);
108}
109
110/*
111 * Returns true if clock table is large enough to contain the clock index.
112 */
113static bool assert_clk_index(struct opp_table *opp_table,
114 unsigned int index)
115{
116 return opp_table->clk_count > index;
117}
118
119/*
120 * Returns true if bandwidth table is large enough to contain the bandwidth index.
121 */
122static bool assert_bandwidth_index(struct opp_table *opp_table,
123 unsigned int index)
124{
125 return opp_table->path_count > index;
126}
127
128/**
129 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
130 * @opp: opp for which voltage has to be returned for
131 *
132 * Return: voltage in micro volt corresponding to the opp, else
133 * return 0
134 *
135 * This is useful only for devices with single power supply.
136 */
137unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
138{
139 if (IS_ERR_OR_NULL(opp)) {
140 pr_err("%s: Invalid parameters\n", __func__);
141 return 0;
142 }
143
144 return opp->supplies[0].u_volt;
145}
146EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
147
148/**
149 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
150 * @opp: opp for which voltage has to be returned for
151 * @supplies: Placeholder for copying the supply information.
152 *
153 * Return: negative error number on failure, 0 otherwise on success after
154 * setting @supplies.
155 *
156 * This can be used for devices with any number of power supplies. The caller
157 * must ensure the @supplies array must contain space for each regulator.
158 */
159int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
160 struct dev_pm_opp_supply *supplies)
161{
162 if (IS_ERR_OR_NULL(opp) || !supplies) {
163 pr_err("%s: Invalid parameters\n", __func__);
164 return -EINVAL;
165 }
166
167 memcpy(supplies, opp->supplies,
168 sizeof(*supplies) * opp->opp_table->regulator_count);
169 return 0;
170}
171EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
172
173/**
174 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
175 * @opp: opp for which power has to be returned for
176 *
177 * Return: power in micro watt corresponding to the opp, else
178 * return 0
179 *
180 * This is useful only for devices with single power supply.
181 */
182unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
183{
184 unsigned long opp_power = 0;
185 int i;
186
187 if (IS_ERR_OR_NULL(opp)) {
188 pr_err("%s: Invalid parameters\n", __func__);
189 return 0;
190 }
191 for (i = 0; i < opp->opp_table->regulator_count; i++)
192 opp_power += opp->supplies[i].u_watt;
193
194 return opp_power;
195}
196EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
197
198/**
199 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
200 * available opp with specified index
201 * @opp: opp for which frequency has to be returned for
202 * @index: index of the frequency within the required opp
203 *
204 * Return: frequency in hertz corresponding to the opp with specified index,
205 * else return 0
206 */
207unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
208{
209 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
210 pr_err("%s: Invalid parameters\n", __func__);
211 return 0;
212 }
213
214 return opp->rates[index];
215}
216EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
217
218/**
219 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
220 * @opp: opp for which level value has to be returned for
221 *
222 * Return: level read from device tree corresponding to the opp, else
223 * return U32_MAX.
224 */
225unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
226{
227 if (IS_ERR_OR_NULL(opp) || !opp->available) {
228 pr_err("%s: Invalid parameters\n", __func__);
229 return 0;
230 }
231
232 return opp->level;
233}
234EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
235
236/**
237 * dev_pm_opp_get_required_pstate() - Gets the required performance state
238 * corresponding to an available opp
239 * @opp: opp for which performance state has to be returned for
240 * @index: index of the required opp
241 *
242 * Return: performance state read from device tree corresponding to the
243 * required opp, else return U32_MAX.
244 */
245unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
246 unsigned int index)
247{
248 if (IS_ERR_OR_NULL(opp) || !opp->available ||
249 index >= opp->opp_table->required_opp_count) {
250 pr_err("%s: Invalid parameters\n", __func__);
251 return 0;
252 }
253
254 /* required-opps not fully initialized yet */
255 if (lazy_linking_pending(opp->opp_table))
256 return 0;
257
258 /* The required OPP table must belong to a genpd */
259 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
260 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
261 return 0;
262 }
263
264 return opp->required_opps[index]->level;
265}
266EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
267
268/**
269 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
270 * @opp: opp for which turbo mode is being verified
271 *
272 * Turbo OPPs are not for normal use, and can be enabled (under certain
273 * conditions) for short duration of times to finish high throughput work
274 * quickly. Running on them for longer times may overheat the chip.
275 *
276 * Return: true if opp is turbo opp, else false.
277 */
278bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
279{
280 if (IS_ERR_OR_NULL(opp) || !opp->available) {
281 pr_err("%s: Invalid parameters\n", __func__);
282 return false;
283 }
284
285 return opp->turbo;
286}
287EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
288
289/**
290 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
291 * @dev: device for which we do this operation
292 *
293 * Return: This function returns the max clock latency in nanoseconds.
294 */
295unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
296{
297 struct opp_table *opp_table;
298 unsigned long clock_latency_ns;
299
300 opp_table = _find_opp_table(dev);
301 if (IS_ERR(opp_table))
302 return 0;
303
304 clock_latency_ns = opp_table->clock_latency_ns_max;
305
306 dev_pm_opp_put_opp_table(opp_table);
307
308 return clock_latency_ns;
309}
310EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
311
312/**
313 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
314 * @dev: device for which we do this operation
315 *
316 * Return: This function returns the max voltage latency in nanoseconds.
317 */
318unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
319{
320 struct opp_table *opp_table;
321 struct dev_pm_opp *opp;
322 struct regulator *reg;
323 unsigned long latency_ns = 0;
324 int ret, i, count;
325 struct {
326 unsigned long min;
327 unsigned long max;
328 } *uV;
329
330 opp_table = _find_opp_table(dev);
331 if (IS_ERR(opp_table))
332 return 0;
333
334 /* Regulator may not be required for the device */
335 if (!opp_table->regulators)
336 goto put_opp_table;
337
338 count = opp_table->regulator_count;
339
340 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
341 if (!uV)
342 goto put_opp_table;
343
344 mutex_lock(&opp_table->lock);
345
346 for (i = 0; i < count; i++) {
347 uV[i].min = ~0;
348 uV[i].max = 0;
349
350 list_for_each_entry(opp, &opp_table->opp_list, node) {
351 if (!opp->available)
352 continue;
353
354 if (opp->supplies[i].u_volt_min < uV[i].min)
355 uV[i].min = opp->supplies[i].u_volt_min;
356 if (opp->supplies[i].u_volt_max > uV[i].max)
357 uV[i].max = opp->supplies[i].u_volt_max;
358 }
359 }
360
361 mutex_unlock(&opp_table->lock);
362
363 /*
364 * The caller needs to ensure that opp_table (and hence the regulator)
365 * isn't freed, while we are executing this routine.
366 */
367 for (i = 0; i < count; i++) {
368 reg = opp_table->regulators[i];
369 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
370 if (ret > 0)
371 latency_ns += ret * 1000;
372 }
373
374 kfree(uV);
375put_opp_table:
376 dev_pm_opp_put_opp_table(opp_table);
377
378 return latency_ns;
379}
380EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
381
382/**
383 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
384 * nanoseconds
385 * @dev: device for which we do this operation
386 *
387 * Return: This function returns the max transition latency, in nanoseconds, to
388 * switch from one OPP to other.
389 */
390unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
391{
392 return dev_pm_opp_get_max_volt_latency(dev) +
393 dev_pm_opp_get_max_clock_latency(dev);
394}
395EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
396
397/**
398 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
399 * @dev: device for which we do this operation
400 *
401 * Return: This function returns the frequency of the OPP marked as suspend_opp
402 * if one is available, else returns 0;
403 */
404unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
405{
406 struct opp_table *opp_table;
407 unsigned long freq = 0;
408
409 opp_table = _find_opp_table(dev);
410 if (IS_ERR(opp_table))
411 return 0;
412
413 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
414 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
415
416 dev_pm_opp_put_opp_table(opp_table);
417
418 return freq;
419}
420EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
421
422int _get_opp_count(struct opp_table *opp_table)
423{
424 struct dev_pm_opp *opp;
425 int count = 0;
426
427 mutex_lock(&opp_table->lock);
428
429 list_for_each_entry(opp, &opp_table->opp_list, node) {
430 if (opp->available)
431 count++;
432 }
433
434 mutex_unlock(&opp_table->lock);
435
436 return count;
437}
438
439/**
440 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
441 * @dev: device for which we do this operation
442 *
443 * Return: This function returns the number of available opps if there are any,
444 * else returns 0 if none or the corresponding error value.
445 */
446int dev_pm_opp_get_opp_count(struct device *dev)
447{
448 struct opp_table *opp_table;
449 int count;
450
451 opp_table = _find_opp_table(dev);
452 if (IS_ERR(opp_table)) {
453 count = PTR_ERR(opp_table);
454 dev_dbg(dev, "%s: OPP table not found (%d)\n",
455 __func__, count);
456 return count;
457 }
458
459 count = _get_opp_count(opp_table);
460 dev_pm_opp_put_opp_table(opp_table);
461
462 return count;
463}
464EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
465
466/* Helpers to read keys */
467static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
468{
469 return opp->rates[index];
470}
471
472static unsigned long _read_level(struct dev_pm_opp *opp, int index)
473{
474 return opp->level;
475}
476
477static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
478{
479 return opp->bandwidth[index].peak;
480}
481
482/* Generic comparison helpers */
483static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
484 unsigned long opp_key, unsigned long key)
485{
486 if (opp_key == key) {
487 *opp = temp_opp;
488 return true;
489 }
490
491 return false;
492}
493
494static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
495 unsigned long opp_key, unsigned long key)
496{
497 if (opp_key >= key) {
498 *opp = temp_opp;
499 return true;
500 }
501
502 return false;
503}
504
505static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
506 unsigned long opp_key, unsigned long key)
507{
508 if (opp_key > key)
509 return true;
510
511 *opp = temp_opp;
512 return false;
513}
514
515/* Generic key finding helpers */
516static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
517 unsigned long *key, int index, bool available,
518 unsigned long (*read)(struct dev_pm_opp *opp, int index),
519 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
520 unsigned long opp_key, unsigned long key),
521 bool (*assert)(struct opp_table *opp_table, unsigned int index))
522{
523 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
524
525 /* Assert that the requirement is met */
526 if (assert && !assert(opp_table, index))
527 return ERR_PTR(-EINVAL);
528
529 mutex_lock(&opp_table->lock);
530
531 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
532 if (temp_opp->available == available) {
533 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
534 break;
535 }
536 }
537
538 /* Increment the reference count of OPP */
539 if (!IS_ERR(opp)) {
540 *key = read(opp, index);
541 dev_pm_opp_get(opp);
542 }
543
544 mutex_unlock(&opp_table->lock);
545
546 return opp;
547}
548
549static struct dev_pm_opp *
550_find_key(struct device *dev, unsigned long *key, int index, bool available,
551 unsigned long (*read)(struct dev_pm_opp *opp, int index),
552 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
553 unsigned long opp_key, unsigned long key),
554 bool (*assert)(struct opp_table *opp_table, unsigned int index))
555{
556 struct opp_table *opp_table;
557 struct dev_pm_opp *opp;
558
559 opp_table = _find_opp_table(dev);
560 if (IS_ERR(opp_table)) {
561 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
562 PTR_ERR(opp_table));
563 return ERR_CAST(opp_table);
564 }
565
566 opp = _opp_table_find_key(opp_table, key, index, available, read,
567 compare, assert);
568
569 dev_pm_opp_put_opp_table(opp_table);
570
571 return opp;
572}
573
574static struct dev_pm_opp *_find_key_exact(struct device *dev,
575 unsigned long key, int index, bool available,
576 unsigned long (*read)(struct dev_pm_opp *opp, int index),
577 bool (*assert)(struct opp_table *opp_table, unsigned int index))
578{
579 /*
580 * The value of key will be updated here, but will be ignored as the
581 * caller doesn't need it.
582 */
583 return _find_key(dev, &key, index, available, read, _compare_exact,
584 assert);
585}
586
587static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
588 unsigned long *key, int index, bool available,
589 unsigned long (*read)(struct dev_pm_opp *opp, int index),
590 bool (*assert)(struct opp_table *opp_table, unsigned int index))
591{
592 return _opp_table_find_key(opp_table, key, index, available, read,
593 _compare_ceil, assert);
594}
595
596static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
597 int index, bool available,
598 unsigned long (*read)(struct dev_pm_opp *opp, int index),
599 bool (*assert)(struct opp_table *opp_table, unsigned int index))
600{
601 return _find_key(dev, key, index, available, read, _compare_ceil,
602 assert);
603}
604
605static struct dev_pm_opp *_find_key_floor(struct device *dev,
606 unsigned long *key, int index, bool available,
607 unsigned long (*read)(struct dev_pm_opp *opp, int index),
608 bool (*assert)(struct opp_table *opp_table, unsigned int index))
609{
610 return _find_key(dev, key, index, available, read, _compare_floor,
611 assert);
612}
613
614/**
615 * dev_pm_opp_find_freq_exact() - search for an exact frequency
616 * @dev: device for which we do this operation
617 * @freq: frequency to search for
618 * @available: true/false - match for available opp
619 *
620 * Return: Searches for exact match in the opp table and returns pointer to the
621 * matching opp if found, else returns ERR_PTR in case of error and should
622 * be handled using IS_ERR. Error return values can be:
623 * EINVAL: for bad pointer
624 * ERANGE: no match found for search
625 * ENODEV: if device not found in list of registered devices
626 *
627 * Note: available is a modifier for the search. if available=true, then the
628 * match is for exact matching frequency and is available in the stored OPP
629 * table. if false, the match is for exact frequency which is not available.
630 *
631 * This provides a mechanism to enable an opp which is not available currently
632 * or the opposite as well.
633 *
634 * The callers are required to call dev_pm_opp_put() for the returned OPP after
635 * use.
636 */
637struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
638 unsigned long freq, bool available)
639{
640 return _find_key_exact(dev, freq, 0, available, _read_freq,
641 assert_single_clk);
642}
643EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
644
645/**
646 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
647 * clock corresponding to the index
648 * @dev: Device for which we do this operation
649 * @freq: frequency to search for
650 * @index: Clock index
651 * @available: true/false - match for available opp
652 *
653 * Search for the matching exact OPP for the clock corresponding to the
654 * specified index from a starting freq for a device.
655 *
656 * Return: matching *opp , else returns ERR_PTR in case of error and should be
657 * handled using IS_ERR. Error return values can be:
658 * EINVAL: for bad pointer
659 * ERANGE: no match found for search
660 * ENODEV: if device not found in list of registered devices
661 *
662 * The callers are required to call dev_pm_opp_put() for the returned OPP after
663 * use.
664 */
665struct dev_pm_opp *
666dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
667 u32 index, bool available)
668{
669 return _find_key_exact(dev, freq, index, available, _read_freq,
670 assert_clk_index);
671}
672EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
673
674static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
675 unsigned long *freq)
676{
677 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
678 assert_single_clk);
679}
680
681/**
682 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
683 * @dev: device for which we do this operation
684 * @freq: Start frequency
685 *
686 * Search for the matching ceil *available* OPP from a starting freq
687 * for a device.
688 *
689 * Return: matching *opp and refreshes *freq accordingly, else returns
690 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
691 * values can be:
692 * EINVAL: for bad pointer
693 * ERANGE: no match found for search
694 * ENODEV: if device not found in list of registered devices
695 *
696 * The callers are required to call dev_pm_opp_put() for the returned OPP after
697 * use.
698 */
699struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
700 unsigned long *freq)
701{
702 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
703}
704EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
705
706/**
707 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
708 * clock corresponding to the index
709 * @dev: Device for which we do this operation
710 * @freq: Start frequency
711 * @index: Clock index
712 *
713 * Search for the matching ceil *available* OPP for the clock corresponding to
714 * the specified index from a starting freq for a device.
715 *
716 * Return: matching *opp and refreshes *freq accordingly, else returns
717 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
718 * values can be:
719 * EINVAL: for bad pointer
720 * ERANGE: no match found for search
721 * ENODEV: if device not found in list of registered devices
722 *
723 * The callers are required to call dev_pm_opp_put() for the returned OPP after
724 * use.
725 */
726struct dev_pm_opp *
727dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
728 u32 index)
729{
730 return _find_key_ceil(dev, freq, index, true, _read_freq,
731 assert_clk_index);
732}
733EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
734
735/**
736 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
737 * @dev: device for which we do this operation
738 * @freq: Start frequency
739 *
740 * Search for the matching floor *available* OPP from a starting freq
741 * for a device.
742 *
743 * Return: matching *opp and refreshes *freq accordingly, else returns
744 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
745 * values can be:
746 * EINVAL: for bad pointer
747 * ERANGE: no match found for search
748 * ENODEV: if device not found in list of registered devices
749 *
750 * The callers are required to call dev_pm_opp_put() for the returned OPP after
751 * use.
752 */
753struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
754 unsigned long *freq)
755{
756 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
757}
758EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
759
760/**
761 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
762 * clock corresponding to the index
763 * @dev: Device for which we do this operation
764 * @freq: Start frequency
765 * @index: Clock index
766 *
767 * Search for the matching floor *available* OPP for the clock corresponding to
768 * the specified index from a starting freq for a device.
769 *
770 * Return: matching *opp and refreshes *freq accordingly, else returns
771 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
772 * values can be:
773 * EINVAL: for bad pointer
774 * ERANGE: no match found for search
775 * ENODEV: if device not found in list of registered devices
776 *
777 * The callers are required to call dev_pm_opp_put() for the returned OPP after
778 * use.
779 */
780struct dev_pm_opp *
781dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
782 u32 index)
783{
784 return _find_key_floor(dev, freq, index, true, _read_freq, assert_clk_index);
785}
786EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
787
788/**
789 * dev_pm_opp_find_level_exact() - search for an exact level
790 * @dev: device for which we do this operation
791 * @level: level to search for
792 *
793 * Return: Searches for exact match in the opp table and returns pointer to the
794 * matching opp if found, else returns ERR_PTR in case of error and should
795 * be handled using IS_ERR. Error return values can be:
796 * EINVAL: for bad pointer
797 * ERANGE: no match found for search
798 * ENODEV: if device not found in list of registered devices
799 *
800 * The callers are required to call dev_pm_opp_put() for the returned OPP after
801 * use.
802 */
803struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
804 unsigned int level)
805{
806 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
807}
808EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
809
810/**
811 * dev_pm_opp_find_level_ceil() - search for an rounded up level
812 * @dev: device for which we do this operation
813 * @level: level to search for
814 *
815 * Return: Searches for rounded up match in the opp table and returns pointer
816 * to the matching opp if found, else returns ERR_PTR in case of error and
817 * should be handled using IS_ERR. Error return values can be:
818 * EINVAL: for bad pointer
819 * ERANGE: no match found for search
820 * ENODEV: if device not found in list of registered devices
821 *
822 * The callers are required to call dev_pm_opp_put() for the returned OPP after
823 * use.
824 */
825struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
826 unsigned int *level)
827{
828 unsigned long temp = *level;
829 struct dev_pm_opp *opp;
830
831 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
832 if (IS_ERR(opp))
833 return opp;
834
835 /* False match */
836 if (temp == OPP_LEVEL_UNSET) {
837 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
838 dev_pm_opp_put(opp);
839 return ERR_PTR(-ENODEV);
840 }
841
842 *level = temp;
843 return opp;
844}
845EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
846
847/**
848 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
849 * @dev: device for which we do this operation
850 * @level: Start level
851 *
852 * Search for the matching floor *available* OPP from a starting level
853 * for a device.
854 *
855 * Return: matching *opp and refreshes *level accordingly, else returns
856 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
857 * values can be:
858 * EINVAL: for bad pointer
859 * ERANGE: no match found for search
860 * ENODEV: if device not found in list of registered devices
861 *
862 * The callers are required to call dev_pm_opp_put() for the returned OPP after
863 * use.
864 */
865struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
866 unsigned int *level)
867{
868 unsigned long temp = *level;
869 struct dev_pm_opp *opp;
870
871 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
872 *level = temp;
873 return opp;
874}
875EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
876
877/**
878 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
879 * @dev: device for which we do this operation
880 * @bw: start bandwidth
881 * @index: which bandwidth to compare, in case of OPPs with several values
882 *
883 * Search for the matching floor *available* OPP from a starting bandwidth
884 * for a device.
885 *
886 * Return: matching *opp and refreshes *bw accordingly, else returns
887 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
888 * values can be:
889 * EINVAL: for bad pointer
890 * ERANGE: no match found for search
891 * ENODEV: if device not found in list of registered devices
892 *
893 * The callers are required to call dev_pm_opp_put() for the returned OPP after
894 * use.
895 */
896struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
897 int index)
898{
899 unsigned long temp = *bw;
900 struct dev_pm_opp *opp;
901
902 opp = _find_key_ceil(dev, &temp, index, true, _read_bw,
903 assert_bandwidth_index);
904 *bw = temp;
905 return opp;
906}
907EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
908
909/**
910 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
911 * @dev: device for which we do this operation
912 * @bw: start bandwidth
913 * @index: which bandwidth to compare, in case of OPPs with several values
914 *
915 * Search for the matching floor *available* OPP from a starting bandwidth
916 * for a device.
917 *
918 * Return: matching *opp and refreshes *bw accordingly, else returns
919 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
920 * values can be:
921 * EINVAL: for bad pointer
922 * ERANGE: no match found for search
923 * ENODEV: if device not found in list of registered devices
924 *
925 * The callers are required to call dev_pm_opp_put() for the returned OPP after
926 * use.
927 */
928struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
929 unsigned int *bw, int index)
930{
931 unsigned long temp = *bw;
932 struct dev_pm_opp *opp;
933
934 opp = _find_key_floor(dev, &temp, index, true, _read_bw,
935 assert_bandwidth_index);
936 *bw = temp;
937 return opp;
938}
939EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
940
941static int _set_opp_voltage(struct device *dev, struct regulator *reg,
942 struct dev_pm_opp_supply *supply)
943{
944 int ret;
945
946 /* Regulator not available for device */
947 if (IS_ERR(reg)) {
948 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
949 PTR_ERR(reg));
950 return 0;
951 }
952
953 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
954 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
955
956 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
957 supply->u_volt, supply->u_volt_max);
958 if (ret)
959 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
960 __func__, supply->u_volt_min, supply->u_volt,
961 supply->u_volt_max, ret);
962
963 return ret;
964}
965
966static int
967_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
968 struct dev_pm_opp *opp, void *data, bool scaling_down)
969{
970 unsigned long *target = data;
971 unsigned long freq;
972 int ret;
973
974 /* One of target and opp must be available */
975 if (target) {
976 freq = *target;
977 } else if (opp) {
978 freq = opp->rates[0];
979 } else {
980 WARN_ON(1);
981 return -EINVAL;
982 }
983
984 ret = clk_set_rate(opp_table->clk, freq);
985 if (ret) {
986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 ret);
988 } else {
989 opp_table->current_rate_single_clk = freq;
990 }
991
992 return ret;
993}
994
995/*
996 * Simple implementation for configuring multiple clocks. Configure clocks in
997 * the order in which they are present in the array while scaling up.
998 */
999int dev_pm_opp_config_clks_simple(struct device *dev,
1000 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
1001 bool scaling_down)
1002{
1003 int ret, i;
1004
1005 if (scaling_down) {
1006 for (i = opp_table->clk_count - 1; i >= 0; i--) {
1007 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1008 if (ret) {
1009 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1010 ret);
1011 return ret;
1012 }
1013 }
1014 } else {
1015 for (i = 0; i < opp_table->clk_count; i++) {
1016 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
1017 if (ret) {
1018 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
1019 ret);
1020 return ret;
1021 }
1022 }
1023 }
1024
1025 return 0;
1026}
1027EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1028
1029static int _opp_config_regulator_single(struct device *dev,
1030 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1031 struct regulator **regulators, unsigned int count)
1032{
1033 struct regulator *reg = regulators[0];
1034 int ret;
1035
1036 /* This function only supports single regulator per device */
1037 if (WARN_ON(count > 1)) {
1038 dev_err(dev, "multiple regulators are not supported\n");
1039 return -EINVAL;
1040 }
1041
1042 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1043 if (ret)
1044 return ret;
1045
1046 /*
1047 * Enable the regulator after setting its voltages, otherwise it breaks
1048 * some boot-enabled regulators.
1049 */
1050 if (unlikely(!new_opp->opp_table->enabled)) {
1051 ret = regulator_enable(reg);
1052 if (ret < 0)
1053 dev_warn(dev, "Failed to enable regulator: %d", ret);
1054 }
1055
1056 return 0;
1057}
1058
1059static int _set_opp_bw(const struct opp_table *opp_table,
1060 struct dev_pm_opp *opp, struct device *dev)
1061{
1062 u32 avg, peak;
1063 int i, ret;
1064
1065 if (!opp_table->paths)
1066 return 0;
1067
1068 for (i = 0; i < opp_table->path_count; i++) {
1069 if (!opp) {
1070 avg = 0;
1071 peak = 0;
1072 } else {
1073 avg = opp->bandwidth[i].avg;
1074 peak = opp->bandwidth[i].peak;
1075 }
1076 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1077 if (ret) {
1078 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1079 opp ? "set" : "remove", i, ret);
1080 return ret;
1081 }
1082 }
1083
1084 return 0;
1085}
1086
1087static int _set_opp_level(struct device *dev, struct dev_pm_opp *opp)
1088{
1089 unsigned int level = 0;
1090 int ret = 0;
1091
1092 if (opp) {
1093 if (opp->level == OPP_LEVEL_UNSET)
1094 return 0;
1095
1096 level = opp->level;
1097 }
1098
1099 /* Request a new performance state through the device's PM domain. */
1100 ret = dev_pm_domain_set_performance_state(dev, level);
1101 if (ret)
1102 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1103 ret);
1104
1105 return ret;
1106}
1107
1108/* This is only called for PM domain for now */
1109static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1110 struct dev_pm_opp *opp, bool up)
1111{
1112 struct device **devs = opp_table->required_devs;
1113 struct dev_pm_opp *required_opp;
1114 int index, target, delta, ret;
1115
1116 if (!devs)
1117 return 0;
1118
1119 /* required-opps not fully initialized yet */
1120 if (lazy_linking_pending(opp_table))
1121 return -EBUSY;
1122
1123 /* Scaling up? Set required OPPs in normal order, else reverse */
1124 if (up) {
1125 index = 0;
1126 target = opp_table->required_opp_count;
1127 delta = 1;
1128 } else {
1129 index = opp_table->required_opp_count - 1;
1130 target = -1;
1131 delta = -1;
1132 }
1133
1134 while (index != target) {
1135 if (devs[index]) {
1136 required_opp = opp ? opp->required_opps[index] : NULL;
1137
1138 ret = _set_opp_level(devs[index], required_opp);
1139 if (ret)
1140 return ret;
1141 }
1142
1143 index += delta;
1144 }
1145
1146 return 0;
1147}
1148
1149static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1150{
1151 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1152 unsigned long freq;
1153
1154 if (!IS_ERR(opp_table->clk)) {
1155 freq = clk_get_rate(opp_table->clk);
1156 opp = _find_freq_ceil(opp_table, &freq);
1157 }
1158
1159 /*
1160 * Unable to find the current OPP ? Pick the first from the list since
1161 * it is in ascending order, otherwise rest of the code will need to
1162 * make special checks to validate current_opp.
1163 */
1164 if (IS_ERR(opp)) {
1165 mutex_lock(&opp_table->lock);
1166 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1167 dev_pm_opp_get(opp);
1168 mutex_unlock(&opp_table->lock);
1169 }
1170
1171 opp_table->current_opp = opp;
1172}
1173
1174static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1175{
1176 int ret;
1177
1178 if (!opp_table->enabled)
1179 return 0;
1180
1181 /*
1182 * Some drivers need to support cases where some platforms may
1183 * have OPP table for the device, while others don't and
1184 * opp_set_rate() just needs to behave like clk_set_rate().
1185 */
1186 if (!_get_opp_count(opp_table))
1187 return 0;
1188
1189 ret = _set_opp_bw(opp_table, NULL, dev);
1190 if (ret)
1191 return ret;
1192
1193 if (opp_table->regulators)
1194 regulator_disable(opp_table->regulators[0]);
1195
1196 ret = _set_opp_level(dev, NULL);
1197 if (ret)
1198 goto out;
1199
1200 ret = _set_required_opps(dev, opp_table, NULL, false);
1201
1202out:
1203 opp_table->enabled = false;
1204 return ret;
1205}
1206
1207static int _set_opp(struct device *dev, struct opp_table *opp_table,
1208 struct dev_pm_opp *opp, void *clk_data, bool forced)
1209{
1210 struct dev_pm_opp *old_opp;
1211 int scaling_down, ret;
1212
1213 if (unlikely(!opp))
1214 return _disable_opp_table(dev, opp_table);
1215
1216 /* Find the currently set OPP if we don't know already */
1217 if (unlikely(!opp_table->current_opp))
1218 _find_current_opp(dev, opp_table);
1219
1220 old_opp = opp_table->current_opp;
1221
1222 /* Return early if nothing to do */
1223 if (!forced && old_opp == opp && opp_table->enabled) {
1224 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1225 return 0;
1226 }
1227
1228 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1229 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1230 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1231 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1232
1233 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1234 if (scaling_down == -1)
1235 scaling_down = 0;
1236
1237 /* Scaling up? Configure required OPPs before frequency */
1238 if (!scaling_down) {
1239 ret = _set_required_opps(dev, opp_table, opp, true);
1240 if (ret) {
1241 dev_err(dev, "Failed to set required opps: %d\n", ret);
1242 return ret;
1243 }
1244
1245 ret = _set_opp_level(dev, opp);
1246 if (ret)
1247 return ret;
1248
1249 ret = _set_opp_bw(opp_table, opp, dev);
1250 if (ret) {
1251 dev_err(dev, "Failed to set bw: %d\n", ret);
1252 return ret;
1253 }
1254
1255 if (opp_table->config_regulators) {
1256 ret = opp_table->config_regulators(dev, old_opp, opp,
1257 opp_table->regulators,
1258 opp_table->regulator_count);
1259 if (ret) {
1260 dev_err(dev, "Failed to set regulator voltages: %d\n",
1261 ret);
1262 return ret;
1263 }
1264 }
1265 }
1266
1267 if (opp_table->config_clks) {
1268 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1269 if (ret)
1270 return ret;
1271 }
1272
1273 /* Scaling down? Configure required OPPs after frequency */
1274 if (scaling_down) {
1275 if (opp_table->config_regulators) {
1276 ret = opp_table->config_regulators(dev, old_opp, opp,
1277 opp_table->regulators,
1278 opp_table->regulator_count);
1279 if (ret) {
1280 dev_err(dev, "Failed to set regulator voltages: %d\n",
1281 ret);
1282 return ret;
1283 }
1284 }
1285
1286 ret = _set_opp_bw(opp_table, opp, dev);
1287 if (ret) {
1288 dev_err(dev, "Failed to set bw: %d\n", ret);
1289 return ret;
1290 }
1291
1292 ret = _set_opp_level(dev, opp);
1293 if (ret)
1294 return ret;
1295
1296 ret = _set_required_opps(dev, opp_table, opp, false);
1297 if (ret) {
1298 dev_err(dev, "Failed to set required opps: %d\n", ret);
1299 return ret;
1300 }
1301 }
1302
1303 opp_table->enabled = true;
1304 dev_pm_opp_put(old_opp);
1305
1306 /* Make sure current_opp doesn't get freed */
1307 dev_pm_opp_get(opp);
1308 opp_table->current_opp = opp;
1309
1310 return ret;
1311}
1312
1313/**
1314 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1315 * @dev: device for which we do this operation
1316 * @target_freq: frequency to achieve
1317 *
1318 * This configures the power-supplies to the levels specified by the OPP
1319 * corresponding to the target_freq, and programs the clock to a value <=
1320 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1321 * provided by the opp, should have already rounded to the target OPP's
1322 * frequency.
1323 */
1324int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1325{
1326 struct opp_table *opp_table;
1327 unsigned long freq = 0, temp_freq;
1328 struct dev_pm_opp *opp = NULL;
1329 bool forced = false;
1330 int ret;
1331
1332 opp_table = _find_opp_table(dev);
1333 if (IS_ERR(opp_table)) {
1334 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1335 return PTR_ERR(opp_table);
1336 }
1337
1338 if (target_freq) {
1339 /*
1340 * For IO devices which require an OPP on some platforms/SoCs
1341 * while just needing to scale the clock on some others
1342 * we look for empty OPP tables with just a clock handle and
1343 * scale only the clk. This makes dev_pm_opp_set_rate()
1344 * equivalent to a clk_set_rate()
1345 */
1346 if (!_get_opp_count(opp_table)) {
1347 ret = opp_table->config_clks(dev, opp_table, NULL,
1348 &target_freq, false);
1349 goto put_opp_table;
1350 }
1351
1352 freq = clk_round_rate(opp_table->clk, target_freq);
1353 if ((long)freq <= 0)
1354 freq = target_freq;
1355
1356 /*
1357 * The clock driver may support finer resolution of the
1358 * frequencies than the OPP table, don't update the frequency we
1359 * pass to clk_set_rate() here.
1360 */
1361 temp_freq = freq;
1362 opp = _find_freq_ceil(opp_table, &temp_freq);
1363 if (IS_ERR(opp)) {
1364 ret = PTR_ERR(opp);
1365 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1366 __func__, freq, ret);
1367 goto put_opp_table;
1368 }
1369
1370 /*
1371 * An OPP entry specifies the highest frequency at which other
1372 * properties of the OPP entry apply. Even if the new OPP is
1373 * same as the old one, we may still reach here for a different
1374 * value of the frequency. In such a case, do not abort but
1375 * configure the hardware to the desired frequency forcefully.
1376 */
1377 forced = opp_table->current_rate_single_clk != freq;
1378 }
1379
1380 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1381
1382 if (freq)
1383 dev_pm_opp_put(opp);
1384
1385put_opp_table:
1386 dev_pm_opp_put_opp_table(opp_table);
1387 return ret;
1388}
1389EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1390
1391/**
1392 * dev_pm_opp_set_opp() - Configure device for OPP
1393 * @dev: device for which we do this operation
1394 * @opp: OPP to set to
1395 *
1396 * This configures the device based on the properties of the OPP passed to this
1397 * routine.
1398 *
1399 * Return: 0 on success, a negative error number otherwise.
1400 */
1401int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1402{
1403 struct opp_table *opp_table;
1404 int ret;
1405
1406 opp_table = _find_opp_table(dev);
1407 if (IS_ERR(opp_table)) {
1408 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1409 return PTR_ERR(opp_table);
1410 }
1411
1412 ret = _set_opp(dev, opp_table, opp, NULL, false);
1413 dev_pm_opp_put_opp_table(opp_table);
1414
1415 return ret;
1416}
1417EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1418
1419/* OPP-dev Helpers */
1420static void _remove_opp_dev(struct opp_device *opp_dev,
1421 struct opp_table *opp_table)
1422{
1423 opp_debug_unregister(opp_dev, opp_table);
1424 list_del(&opp_dev->node);
1425 kfree(opp_dev);
1426}
1427
1428struct opp_device *_add_opp_dev(const struct device *dev,
1429 struct opp_table *opp_table)
1430{
1431 struct opp_device *opp_dev;
1432
1433 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1434 if (!opp_dev)
1435 return NULL;
1436
1437 /* Initialize opp-dev */
1438 opp_dev->dev = dev;
1439
1440 mutex_lock(&opp_table->lock);
1441 list_add(&opp_dev->node, &opp_table->dev_list);
1442 mutex_unlock(&opp_table->lock);
1443
1444 /* Create debugfs entries for the opp_table */
1445 opp_debug_register(opp_dev, opp_table);
1446
1447 return opp_dev;
1448}
1449
1450static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1451{
1452 struct opp_table *opp_table;
1453 struct opp_device *opp_dev;
1454 int ret;
1455
1456 /*
1457 * Allocate a new OPP table. In the infrequent case where a new
1458 * device is needed to be added, we pay this penalty.
1459 */
1460 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1461 if (!opp_table)
1462 return ERR_PTR(-ENOMEM);
1463
1464 mutex_init(&opp_table->lock);
1465 INIT_LIST_HEAD(&opp_table->dev_list);
1466 INIT_LIST_HEAD(&opp_table->lazy);
1467
1468 opp_table->clk = ERR_PTR(-ENODEV);
1469
1470 /* Mark regulator count uninitialized */
1471 opp_table->regulator_count = -1;
1472
1473 opp_dev = _add_opp_dev(dev, opp_table);
1474 if (!opp_dev) {
1475 ret = -ENOMEM;
1476 goto err;
1477 }
1478
1479 _of_init_opp_table(opp_table, dev, index);
1480
1481 /* Find interconnect path(s) for the device */
1482 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1483 if (ret) {
1484 if (ret == -EPROBE_DEFER)
1485 goto remove_opp_dev;
1486
1487 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1488 __func__, ret);
1489 }
1490
1491 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1492 INIT_LIST_HEAD(&opp_table->opp_list);
1493 kref_init(&opp_table->kref);
1494
1495 return opp_table;
1496
1497remove_opp_dev:
1498 _of_clear_opp_table(opp_table);
1499 _remove_opp_dev(opp_dev, opp_table);
1500 mutex_destroy(&opp_table->lock);
1501err:
1502 kfree(opp_table);
1503 return ERR_PTR(ret);
1504}
1505
1506void _get_opp_table_kref(struct opp_table *opp_table)
1507{
1508 kref_get(&opp_table->kref);
1509}
1510
1511static struct opp_table *_update_opp_table_clk(struct device *dev,
1512 struct opp_table *opp_table,
1513 bool getclk)
1514{
1515 int ret;
1516
1517 /*
1518 * Return early if we don't need to get clk or we have already done it
1519 * earlier.
1520 */
1521 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1522 opp_table->clks)
1523 return opp_table;
1524
1525 /* Find clk for the device */
1526 opp_table->clk = clk_get(dev, NULL);
1527
1528 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1529 if (!ret) {
1530 opp_table->config_clks = _opp_config_clk_single;
1531 opp_table->clk_count = 1;
1532 return opp_table;
1533 }
1534
1535 if (ret == -ENOENT) {
1536 /*
1537 * There are few platforms which don't want the OPP core to
1538 * manage device's clock settings. In such cases neither the
1539 * platform provides the clks explicitly to us, nor the DT
1540 * contains a valid clk entry. The OPP nodes in DT may still
1541 * contain "opp-hz" property though, which we need to parse and
1542 * allow the platform to find an OPP based on freq later on.
1543 *
1544 * This is a simple solution to take care of such corner cases,
1545 * i.e. make the clk_count 1, which lets us allocate space for
1546 * frequency in opp->rates and also parse the entries in DT.
1547 */
1548 opp_table->clk_count = 1;
1549
1550 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1551 return opp_table;
1552 }
1553
1554 dev_pm_opp_put_opp_table(opp_table);
1555 dev_err_probe(dev, ret, "Couldn't find clock\n");
1556
1557 return ERR_PTR(ret);
1558}
1559
1560/*
1561 * We need to make sure that the OPP table for a device doesn't get added twice,
1562 * if this routine gets called in parallel with the same device pointer.
1563 *
1564 * The simplest way to enforce that is to perform everything (find existing
1565 * table and if not found, create a new one) under the opp_table_lock, so only
1566 * one creator gets access to the same. But that expands the critical section
1567 * under the lock and may end up causing circular dependencies with frameworks
1568 * like debugfs, interconnect or clock framework as they may be direct or
1569 * indirect users of OPP core.
1570 *
1571 * And for that reason we have to go for a bit tricky implementation here, which
1572 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1573 * of adding an OPP table and others should wait for it to finish.
1574 */
1575struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1576 bool getclk)
1577{
1578 struct opp_table *opp_table;
1579
1580again:
1581 mutex_lock(&opp_table_lock);
1582
1583 opp_table = _find_opp_table_unlocked(dev);
1584 if (!IS_ERR(opp_table))
1585 goto unlock;
1586
1587 /*
1588 * The opp_tables list or an OPP table's dev_list is getting updated by
1589 * another user, wait for it to finish.
1590 */
1591 if (unlikely(opp_tables_busy)) {
1592 mutex_unlock(&opp_table_lock);
1593 cpu_relax();
1594 goto again;
1595 }
1596
1597 opp_tables_busy = true;
1598 opp_table = _managed_opp(dev, index);
1599
1600 /* Drop the lock to reduce the size of critical section */
1601 mutex_unlock(&opp_table_lock);
1602
1603 if (opp_table) {
1604 if (!_add_opp_dev(dev, opp_table)) {
1605 dev_pm_opp_put_opp_table(opp_table);
1606 opp_table = ERR_PTR(-ENOMEM);
1607 }
1608
1609 mutex_lock(&opp_table_lock);
1610 } else {
1611 opp_table = _allocate_opp_table(dev, index);
1612
1613 mutex_lock(&opp_table_lock);
1614 if (!IS_ERR(opp_table))
1615 list_add(&opp_table->node, &opp_tables);
1616 }
1617
1618 opp_tables_busy = false;
1619
1620unlock:
1621 mutex_unlock(&opp_table_lock);
1622
1623 return _update_opp_table_clk(dev, opp_table, getclk);
1624}
1625
1626static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1627{
1628 return _add_opp_table_indexed(dev, 0, getclk);
1629}
1630
1631struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1632{
1633 return _find_opp_table(dev);
1634}
1635EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1636
1637static void _opp_table_kref_release(struct kref *kref)
1638{
1639 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1640 struct opp_device *opp_dev, *temp;
1641 int i;
1642
1643 /* Drop the lock as soon as we can */
1644 list_del(&opp_table->node);
1645 mutex_unlock(&opp_table_lock);
1646
1647 if (opp_table->current_opp)
1648 dev_pm_opp_put(opp_table->current_opp);
1649
1650 _of_clear_opp_table(opp_table);
1651
1652 /* Release automatically acquired single clk */
1653 if (!IS_ERR(opp_table->clk))
1654 clk_put(opp_table->clk);
1655
1656 if (opp_table->paths) {
1657 for (i = 0; i < opp_table->path_count; i++)
1658 icc_put(opp_table->paths[i]);
1659 kfree(opp_table->paths);
1660 }
1661
1662 WARN_ON(!list_empty(&opp_table->opp_list));
1663
1664 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1665 _remove_opp_dev(opp_dev, opp_table);
1666
1667 mutex_destroy(&opp_table->lock);
1668 kfree(opp_table);
1669}
1670
1671void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1672{
1673 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1674 &opp_table_lock);
1675}
1676EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1677
1678void _opp_free(struct dev_pm_opp *opp)
1679{
1680 kfree(opp);
1681}
1682
1683static void _opp_kref_release(struct kref *kref)
1684{
1685 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1686 struct opp_table *opp_table = opp->opp_table;
1687
1688 list_del(&opp->node);
1689 mutex_unlock(&opp_table->lock);
1690
1691 /*
1692 * Notify the changes in the availability of the operable
1693 * frequency/voltage list.
1694 */
1695 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1696 _of_clear_opp(opp_table, opp);
1697 opp_debug_remove_one(opp);
1698 kfree(opp);
1699}
1700
1701void dev_pm_opp_get(struct dev_pm_opp *opp)
1702{
1703 kref_get(&opp->kref);
1704}
1705
1706void dev_pm_opp_put(struct dev_pm_opp *opp)
1707{
1708 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1709}
1710EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1711
1712/**
1713 * dev_pm_opp_remove() - Remove an OPP from OPP table
1714 * @dev: device for which we do this operation
1715 * @freq: OPP to remove with matching 'freq'
1716 *
1717 * This function removes an opp from the opp table.
1718 */
1719void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1720{
1721 struct dev_pm_opp *opp = NULL, *iter;
1722 struct opp_table *opp_table;
1723
1724 opp_table = _find_opp_table(dev);
1725 if (IS_ERR(opp_table))
1726 return;
1727
1728 if (!assert_single_clk(opp_table, 0))
1729 goto put_table;
1730
1731 mutex_lock(&opp_table->lock);
1732
1733 list_for_each_entry(iter, &opp_table->opp_list, node) {
1734 if (iter->rates[0] == freq) {
1735 opp = iter;
1736 break;
1737 }
1738 }
1739
1740 mutex_unlock(&opp_table->lock);
1741
1742 if (opp) {
1743 dev_pm_opp_put(opp);
1744
1745 /* Drop the reference taken by dev_pm_opp_add() */
1746 dev_pm_opp_put_opp_table(opp_table);
1747 } else {
1748 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1749 __func__, freq);
1750 }
1751
1752put_table:
1753 /* Drop the reference taken by _find_opp_table() */
1754 dev_pm_opp_put_opp_table(opp_table);
1755}
1756EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1757
1758static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1759 bool dynamic)
1760{
1761 struct dev_pm_opp *opp = NULL, *temp;
1762
1763 mutex_lock(&opp_table->lock);
1764 list_for_each_entry(temp, &opp_table->opp_list, node) {
1765 /*
1766 * Refcount must be dropped only once for each OPP by OPP core,
1767 * do that with help of "removed" flag.
1768 */
1769 if (!temp->removed && dynamic == temp->dynamic) {
1770 opp = temp;
1771 break;
1772 }
1773 }
1774
1775 mutex_unlock(&opp_table->lock);
1776 return opp;
1777}
1778
1779/*
1780 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1781 * happen lock less to avoid circular dependency issues. This routine must be
1782 * called without the opp_table->lock held.
1783 */
1784static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1785{
1786 struct dev_pm_opp *opp;
1787
1788 while ((opp = _opp_get_next(opp_table, dynamic))) {
1789 opp->removed = true;
1790 dev_pm_opp_put(opp);
1791
1792 /* Drop the references taken by dev_pm_opp_add() */
1793 if (dynamic)
1794 dev_pm_opp_put_opp_table(opp_table);
1795 }
1796}
1797
1798bool _opp_remove_all_static(struct opp_table *opp_table)
1799{
1800 mutex_lock(&opp_table->lock);
1801
1802 if (!opp_table->parsed_static_opps) {
1803 mutex_unlock(&opp_table->lock);
1804 return false;
1805 }
1806
1807 if (--opp_table->parsed_static_opps) {
1808 mutex_unlock(&opp_table->lock);
1809 return true;
1810 }
1811
1812 mutex_unlock(&opp_table->lock);
1813
1814 _opp_remove_all(opp_table, false);
1815 return true;
1816}
1817
1818/**
1819 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1820 * @dev: device for which we do this operation
1821 *
1822 * This function removes all dynamically created OPPs from the opp table.
1823 */
1824void dev_pm_opp_remove_all_dynamic(struct device *dev)
1825{
1826 struct opp_table *opp_table;
1827
1828 opp_table = _find_opp_table(dev);
1829 if (IS_ERR(opp_table))
1830 return;
1831
1832 _opp_remove_all(opp_table, true);
1833
1834 /* Drop the reference taken by _find_opp_table() */
1835 dev_pm_opp_put_opp_table(opp_table);
1836}
1837EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1838
1839struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1840{
1841 struct dev_pm_opp *opp;
1842 int supply_count, supply_size, icc_size, clk_size;
1843
1844 /* Allocate space for at least one supply */
1845 supply_count = opp_table->regulator_count > 0 ?
1846 opp_table->regulator_count : 1;
1847 supply_size = sizeof(*opp->supplies) * supply_count;
1848 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1849 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1850
1851 /* allocate new OPP node and supplies structures */
1852 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1853 if (!opp)
1854 return NULL;
1855
1856 /* Put the supplies, bw and clock at the end of the OPP structure */
1857 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1858
1859 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1860
1861 if (icc_size)
1862 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1863
1864 INIT_LIST_HEAD(&opp->node);
1865
1866 opp->level = OPP_LEVEL_UNSET;
1867
1868 return opp;
1869}
1870
1871static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1872 struct opp_table *opp_table)
1873{
1874 struct regulator *reg;
1875 int i;
1876
1877 if (!opp_table->regulators)
1878 return true;
1879
1880 for (i = 0; i < opp_table->regulator_count; i++) {
1881 reg = opp_table->regulators[i];
1882
1883 if (!regulator_is_supported_voltage(reg,
1884 opp->supplies[i].u_volt_min,
1885 opp->supplies[i].u_volt_max)) {
1886 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1887 __func__, opp->supplies[i].u_volt_min,
1888 opp->supplies[i].u_volt_max);
1889 return false;
1890 }
1891 }
1892
1893 return true;
1894}
1895
1896static int _opp_compare_rate(struct opp_table *opp_table,
1897 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1898{
1899 int i;
1900
1901 for (i = 0; i < opp_table->clk_count; i++) {
1902 if (opp1->rates[i] != opp2->rates[i])
1903 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1904 }
1905
1906 /* Same rates for both OPPs */
1907 return 0;
1908}
1909
1910static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1911 struct dev_pm_opp *opp2)
1912{
1913 int i;
1914
1915 for (i = 0; i < opp_table->path_count; i++) {
1916 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1917 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1918 }
1919
1920 /* Same bw for both OPPs */
1921 return 0;
1922}
1923
1924/*
1925 * Returns
1926 * 0: opp1 == opp2
1927 * 1: opp1 > opp2
1928 * -1: opp1 < opp2
1929 */
1930int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1931 struct dev_pm_opp *opp2)
1932{
1933 int ret;
1934
1935 ret = _opp_compare_rate(opp_table, opp1, opp2);
1936 if (ret)
1937 return ret;
1938
1939 ret = _opp_compare_bw(opp_table, opp1, opp2);
1940 if (ret)
1941 return ret;
1942
1943 if (opp1->level != opp2->level)
1944 return opp1->level < opp2->level ? -1 : 1;
1945
1946 /* Duplicate OPPs */
1947 return 0;
1948}
1949
1950static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1951 struct opp_table *opp_table,
1952 struct list_head **head)
1953{
1954 struct dev_pm_opp *opp;
1955 int opp_cmp;
1956
1957 /*
1958 * Insert new OPP in order of increasing frequency and discard if
1959 * already present.
1960 *
1961 * Need to use &opp_table->opp_list in the condition part of the 'for'
1962 * loop, don't replace it with head otherwise it will become an infinite
1963 * loop.
1964 */
1965 list_for_each_entry(opp, &opp_table->opp_list, node) {
1966 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1967 if (opp_cmp > 0) {
1968 *head = &opp->node;
1969 continue;
1970 }
1971
1972 if (opp_cmp < 0)
1973 return 0;
1974
1975 /* Duplicate OPPs */
1976 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1977 __func__, opp->rates[0], opp->supplies[0].u_volt,
1978 opp->available, new_opp->rates[0],
1979 new_opp->supplies[0].u_volt, new_opp->available);
1980
1981 /* Should we compare voltages for all regulators here ? */
1982 return opp->available &&
1983 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1984 }
1985
1986 return 0;
1987}
1988
1989void _required_opps_available(struct dev_pm_opp *opp, int count)
1990{
1991 int i;
1992
1993 for (i = 0; i < count; i++) {
1994 if (opp->required_opps[i]->available)
1995 continue;
1996
1997 opp->available = false;
1998 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1999 __func__, opp->required_opps[i]->np, opp->rates[0]);
2000 return;
2001 }
2002}
2003
2004/*
2005 * Returns:
2006 * 0: On success. And appropriate error message for duplicate OPPs.
2007 * -EBUSY: For OPP with same freq/volt and is available. The callers of
2008 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
2009 * sure we don't print error messages unnecessarily if different parts of
2010 * kernel try to initialize the OPP table.
2011 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
2012 * should be considered an error by the callers of _opp_add().
2013 */
2014int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
2015 struct opp_table *opp_table)
2016{
2017 struct list_head *head;
2018 int ret;
2019
2020 mutex_lock(&opp_table->lock);
2021 head = &opp_table->opp_list;
2022
2023 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2024 if (ret) {
2025 mutex_unlock(&opp_table->lock);
2026 return ret;
2027 }
2028
2029 list_add(&new_opp->node, head);
2030 mutex_unlock(&opp_table->lock);
2031
2032 new_opp->opp_table = opp_table;
2033 kref_init(&new_opp->kref);
2034
2035 opp_debug_create_one(new_opp, opp_table);
2036
2037 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2038 new_opp->available = false;
2039 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2040 __func__, new_opp->rates[0]);
2041 }
2042
2043 /* required-opps not fully initialized yet */
2044 if (lazy_linking_pending(opp_table))
2045 return 0;
2046
2047 _required_opps_available(new_opp, opp_table->required_opp_count);
2048
2049 return 0;
2050}
2051
2052/**
2053 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2054 * @opp_table: OPP table
2055 * @dev: device for which we do this operation
2056 * @data: The OPP data for the OPP to add
2057 * @dynamic: Dynamically added OPPs.
2058 *
2059 * This function adds an opp definition to the opp table and returns status.
2060 * The opp is made available by default and it can be controlled using
2061 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2062 *
2063 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2064 * and freed by dev_pm_opp_of_remove_table.
2065 *
2066 * Return:
2067 * 0 On success OR
2068 * Duplicate OPPs (both freq and volt are same) and opp->available
2069 * -EEXIST Freq are same and volt are different OR
2070 * Duplicate OPPs (both freq and volt are same) and !opp->available
2071 * -ENOMEM Memory allocation failure
2072 */
2073int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2074 struct dev_pm_opp_data *data, bool dynamic)
2075{
2076 struct dev_pm_opp *new_opp;
2077 unsigned long tol, u_volt = data->u_volt;
2078 int ret;
2079
2080 if (!assert_single_clk(opp_table, 0))
2081 return -EINVAL;
2082
2083 new_opp = _opp_allocate(opp_table);
2084 if (!new_opp)
2085 return -ENOMEM;
2086
2087 /* populate the opp table */
2088 new_opp->rates[0] = data->freq;
2089 new_opp->level = data->level;
2090 new_opp->turbo = data->turbo;
2091 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2092 new_opp->supplies[0].u_volt = u_volt;
2093 new_opp->supplies[0].u_volt_min = u_volt - tol;
2094 new_opp->supplies[0].u_volt_max = u_volt + tol;
2095 new_opp->available = true;
2096 new_opp->dynamic = dynamic;
2097
2098 ret = _opp_add(dev, new_opp, opp_table);
2099 if (ret) {
2100 /* Don't return error for duplicate OPPs */
2101 if (ret == -EBUSY)
2102 ret = 0;
2103 goto free_opp;
2104 }
2105
2106 /*
2107 * Notify the changes in the availability of the operable
2108 * frequency/voltage list.
2109 */
2110 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2111 return 0;
2112
2113free_opp:
2114 _opp_free(new_opp);
2115
2116 return ret;
2117}
2118
2119/*
2120 * This is required only for the V2 bindings, and it enables a platform to
2121 * specify the hierarchy of versions it supports. OPP layer will then enable
2122 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2123 * property.
2124 */
2125static int _opp_set_supported_hw(struct opp_table *opp_table,
2126 const u32 *versions, unsigned int count)
2127{
2128 /* Another CPU that shares the OPP table has set the property ? */
2129 if (opp_table->supported_hw)
2130 return 0;
2131
2132 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2133 GFP_KERNEL);
2134 if (!opp_table->supported_hw)
2135 return -ENOMEM;
2136
2137 opp_table->supported_hw_count = count;
2138
2139 return 0;
2140}
2141
2142static void _opp_put_supported_hw(struct opp_table *opp_table)
2143{
2144 if (opp_table->supported_hw) {
2145 kfree(opp_table->supported_hw);
2146 opp_table->supported_hw = NULL;
2147 opp_table->supported_hw_count = 0;
2148 }
2149}
2150
2151/*
2152 * This is required only for the V2 bindings, and it enables a platform to
2153 * specify the extn to be used for certain property names. The properties to
2154 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2155 * should postfix the property name with -<name> while looking for them.
2156 */
2157static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2158{
2159 /* Another CPU that shares the OPP table has set the property ? */
2160 if (!opp_table->prop_name) {
2161 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2162 if (!opp_table->prop_name)
2163 return -ENOMEM;
2164 }
2165
2166 return 0;
2167}
2168
2169static void _opp_put_prop_name(struct opp_table *opp_table)
2170{
2171 if (opp_table->prop_name) {
2172 kfree(opp_table->prop_name);
2173 opp_table->prop_name = NULL;
2174 }
2175}
2176
2177/*
2178 * In order to support OPP switching, OPP layer needs to know the name of the
2179 * device's regulators, as the core would be required to switch voltages as
2180 * well.
2181 *
2182 * This must be called before any OPPs are initialized for the device.
2183 */
2184static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2185 const char * const names[])
2186{
2187 const char * const *temp = names;
2188 struct regulator *reg;
2189 int count = 0, ret, i;
2190
2191 /* Count number of regulators */
2192 while (*temp++)
2193 count++;
2194
2195 if (!count)
2196 return -EINVAL;
2197
2198 /* Another CPU that shares the OPP table has set the regulators ? */
2199 if (opp_table->regulators)
2200 return 0;
2201
2202 opp_table->regulators = kmalloc_array(count,
2203 sizeof(*opp_table->regulators),
2204 GFP_KERNEL);
2205 if (!opp_table->regulators)
2206 return -ENOMEM;
2207
2208 for (i = 0; i < count; i++) {
2209 reg = regulator_get_optional(dev, names[i]);
2210 if (IS_ERR(reg)) {
2211 ret = dev_err_probe(dev, PTR_ERR(reg),
2212 "%s: no regulator (%s) found\n",
2213 __func__, names[i]);
2214 goto free_regulators;
2215 }
2216
2217 opp_table->regulators[i] = reg;
2218 }
2219
2220 opp_table->regulator_count = count;
2221
2222 /* Set generic config_regulators() for single regulators here */
2223 if (count == 1)
2224 opp_table->config_regulators = _opp_config_regulator_single;
2225
2226 return 0;
2227
2228free_regulators:
2229 while (i != 0)
2230 regulator_put(opp_table->regulators[--i]);
2231
2232 kfree(opp_table->regulators);
2233 opp_table->regulators = NULL;
2234 opp_table->regulator_count = -1;
2235
2236 return ret;
2237}
2238
2239static void _opp_put_regulators(struct opp_table *opp_table)
2240{
2241 int i;
2242
2243 if (!opp_table->regulators)
2244 return;
2245
2246 if (opp_table->enabled) {
2247 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2248 regulator_disable(opp_table->regulators[i]);
2249 }
2250
2251 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2252 regulator_put(opp_table->regulators[i]);
2253
2254 kfree(opp_table->regulators);
2255 opp_table->regulators = NULL;
2256 opp_table->regulator_count = -1;
2257}
2258
2259static void _put_clks(struct opp_table *opp_table, int count)
2260{
2261 int i;
2262
2263 for (i = count - 1; i >= 0; i--)
2264 clk_put(opp_table->clks[i]);
2265
2266 kfree(opp_table->clks);
2267 opp_table->clks = NULL;
2268}
2269
2270/*
2271 * In order to support OPP switching, OPP layer needs to get pointers to the
2272 * clocks for the device. Simple cases work fine without using this routine
2273 * (i.e. by passing connection-id as NULL), but for a device with multiple
2274 * clocks available, the OPP core needs to know the exact names of the clks to
2275 * use.
2276 *
2277 * This must be called before any OPPs are initialized for the device.
2278 */
2279static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2280 const char * const names[],
2281 config_clks_t config_clks)
2282{
2283 const char * const *temp = names;
2284 int count = 0, ret, i;
2285 struct clk *clk;
2286
2287 /* Count number of clks */
2288 while (*temp++)
2289 count++;
2290
2291 /*
2292 * This is a special case where we have a single clock, whose connection
2293 * id name is NULL, i.e. first two entries are NULL in the array.
2294 */
2295 if (!count && !names[1])
2296 count = 1;
2297
2298 /* Fail early for invalid configurations */
2299 if (!count || (!config_clks && count > 1))
2300 return -EINVAL;
2301
2302 /* Another CPU that shares the OPP table has set the clkname ? */
2303 if (opp_table->clks)
2304 return 0;
2305
2306 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2307 GFP_KERNEL);
2308 if (!opp_table->clks)
2309 return -ENOMEM;
2310
2311 /* Find clks for the device */
2312 for (i = 0; i < count; i++) {
2313 clk = clk_get(dev, names[i]);
2314 if (IS_ERR(clk)) {
2315 ret = dev_err_probe(dev, PTR_ERR(clk),
2316 "%s: Couldn't find clock with name: %s\n",
2317 __func__, names[i]);
2318 goto free_clks;
2319 }
2320
2321 opp_table->clks[i] = clk;
2322 }
2323
2324 opp_table->clk_count = count;
2325 opp_table->config_clks = config_clks;
2326
2327 /* Set generic single clk set here */
2328 if (count == 1) {
2329 if (!opp_table->config_clks)
2330 opp_table->config_clks = _opp_config_clk_single;
2331
2332 /*
2333 * We could have just dropped the "clk" field and used "clks"
2334 * everywhere. Instead we kept the "clk" field around for
2335 * following reasons:
2336 *
2337 * - avoiding clks[0] everywhere else.
2338 * - not running single clk helpers for multiple clk usecase by
2339 * mistake.
2340 *
2341 * Since this is single-clk case, just update the clk pointer
2342 * too.
2343 */
2344 opp_table->clk = opp_table->clks[0];
2345 }
2346
2347 return 0;
2348
2349free_clks:
2350 _put_clks(opp_table, i);
2351 return ret;
2352}
2353
2354static void _opp_put_clknames(struct opp_table *opp_table)
2355{
2356 if (!opp_table->clks)
2357 return;
2358
2359 opp_table->config_clks = NULL;
2360 opp_table->clk = ERR_PTR(-ENODEV);
2361
2362 _put_clks(opp_table, opp_table->clk_count);
2363}
2364
2365/*
2366 * This is useful to support platforms with multiple regulators per device.
2367 *
2368 * This must be called before any OPPs are initialized for the device.
2369 */
2370static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2371 struct device *dev, config_regulators_t config_regulators)
2372{
2373 /* Another CPU that shares the OPP table has set the helper ? */
2374 if (!opp_table->config_regulators)
2375 opp_table->config_regulators = config_regulators;
2376
2377 return 0;
2378}
2379
2380static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2381{
2382 if (opp_table->config_regulators)
2383 opp_table->config_regulators = NULL;
2384}
2385
2386static int _opp_set_required_dev(struct opp_table *opp_table,
2387 struct device *dev,
2388 struct device *required_dev,
2389 unsigned int index)
2390{
2391 struct opp_table *required_table, *pd_table;
2392 struct device *gdev;
2393
2394 /* Genpd core takes care of propagation to parent genpd */
2395 if (opp_table->is_genpd) {
2396 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2397 return -EOPNOTSUPP;
2398 }
2399
2400 if (index >= opp_table->required_opp_count) {
2401 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2402 return -EINVAL;
2403 }
2404
2405 required_table = opp_table->required_opp_tables[index];
2406 if (IS_ERR(required_table)) {
2407 dev_err(dev, "Missing OPP table, unable to set the required devs\n");
2408 return -ENODEV;
2409 }
2410
2411 /*
2412 * The required_opp_tables parsing is not perfect, as the OPP core does
2413 * the parsing solely based on the DT node pointers. The core sets the
2414 * required_opp_tables entry to the first OPP table in the "opp_tables"
2415 * list, that matches with the node pointer.
2416 *
2417 * If the target DT OPP table is used by multiple devices and they all
2418 * create separate instances of 'struct opp_table' from it, then it is
2419 * possible that the required_opp_tables entry may be set to the
2420 * incorrect sibling device.
2421 *
2422 * Cross check it again and fix if required.
2423 */
2424 gdev = dev_to_genpd_dev(required_dev);
2425 if (IS_ERR(gdev))
2426 return PTR_ERR(gdev);
2427
2428 pd_table = _find_opp_table(gdev);
2429 if (!IS_ERR(pd_table)) {
2430 if (pd_table != required_table) {
2431 dev_pm_opp_put_opp_table(required_table);
2432 opp_table->required_opp_tables[index] = pd_table;
2433 } else {
2434 dev_pm_opp_put_opp_table(pd_table);
2435 }
2436 }
2437
2438 opp_table->required_devs[index] = required_dev;
2439 return 0;
2440}
2441
2442static void _opp_put_required_dev(struct opp_table *opp_table,
2443 unsigned int index)
2444{
2445 opp_table->required_devs[index] = NULL;
2446}
2447
2448static void _opp_clear_config(struct opp_config_data *data)
2449{
2450 if (data->flags & OPP_CONFIG_REQUIRED_DEV)
2451 _opp_put_required_dev(data->opp_table,
2452 data->required_dev_index);
2453 if (data->flags & OPP_CONFIG_REGULATOR)
2454 _opp_put_regulators(data->opp_table);
2455 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2456 _opp_put_supported_hw(data->opp_table);
2457 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2458 _opp_put_config_regulators_helper(data->opp_table);
2459 if (data->flags & OPP_CONFIG_PROP_NAME)
2460 _opp_put_prop_name(data->opp_table);
2461 if (data->flags & OPP_CONFIG_CLK)
2462 _opp_put_clknames(data->opp_table);
2463
2464 dev_pm_opp_put_opp_table(data->opp_table);
2465 kfree(data);
2466}
2467
2468/**
2469 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2470 * @dev: Device for which configuration is being set.
2471 * @config: OPP configuration.
2472 *
2473 * This allows all device OPP configurations to be performed at once.
2474 *
2475 * This must be called before any OPPs are initialized for the device. This may
2476 * be called multiple times for the same OPP table, for example once for each
2477 * CPU that share the same table. This must be balanced by the same number of
2478 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2479 *
2480 * This returns a token to the caller, which must be passed to
2481 * dev_pm_opp_clear_config() to free the resources later. The value of the
2482 * returned token will be >= 1 for success and negative for errors. The minimum
2483 * value of 1 is chosen here to make it easy for callers to manage the resource.
2484 */
2485int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2486{
2487 struct opp_table *opp_table;
2488 struct opp_config_data *data;
2489 unsigned int id;
2490 int ret;
2491
2492 data = kmalloc(sizeof(*data), GFP_KERNEL);
2493 if (!data)
2494 return -ENOMEM;
2495
2496 opp_table = _add_opp_table(dev, false);
2497 if (IS_ERR(opp_table)) {
2498 kfree(data);
2499 return PTR_ERR(opp_table);
2500 }
2501
2502 data->opp_table = opp_table;
2503 data->flags = 0;
2504
2505 /* This should be called before OPPs are initialized */
2506 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2507 ret = -EBUSY;
2508 goto err;
2509 }
2510
2511 /* Configure clocks */
2512 if (config->clk_names) {
2513 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2514 config->config_clks);
2515 if (ret)
2516 goto err;
2517
2518 data->flags |= OPP_CONFIG_CLK;
2519 } else if (config->config_clks) {
2520 /* Don't allow config callback without clocks */
2521 ret = -EINVAL;
2522 goto err;
2523 }
2524
2525 /* Configure property names */
2526 if (config->prop_name) {
2527 ret = _opp_set_prop_name(opp_table, config->prop_name);
2528 if (ret)
2529 goto err;
2530
2531 data->flags |= OPP_CONFIG_PROP_NAME;
2532 }
2533
2534 /* Configure config_regulators helper */
2535 if (config->config_regulators) {
2536 ret = _opp_set_config_regulators_helper(opp_table, dev,
2537 config->config_regulators);
2538 if (ret)
2539 goto err;
2540
2541 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2542 }
2543
2544 /* Configure supported hardware */
2545 if (config->supported_hw) {
2546 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2547 config->supported_hw_count);
2548 if (ret)
2549 goto err;
2550
2551 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2552 }
2553
2554 /* Configure supplies */
2555 if (config->regulator_names) {
2556 ret = _opp_set_regulators(opp_table, dev,
2557 config->regulator_names);
2558 if (ret)
2559 goto err;
2560
2561 data->flags |= OPP_CONFIG_REGULATOR;
2562 }
2563
2564 if (config->required_dev) {
2565 ret = _opp_set_required_dev(opp_table, dev,
2566 config->required_dev,
2567 config->required_dev_index);
2568 if (ret)
2569 goto err;
2570
2571 data->required_dev_index = config->required_dev_index;
2572 data->flags |= OPP_CONFIG_REQUIRED_DEV;
2573 }
2574
2575 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2576 GFP_KERNEL);
2577 if (ret)
2578 goto err;
2579
2580 return id;
2581
2582err:
2583 _opp_clear_config(data);
2584 return ret;
2585}
2586EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2587
2588/**
2589 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2590 * @token: The token returned by dev_pm_opp_set_config() previously.
2591 *
2592 * This allows all device OPP configurations to be cleared at once. This must be
2593 * called once for each call made to dev_pm_opp_set_config(), in order to free
2594 * the OPPs properly.
2595 *
2596 * Currently the first call itself ends up freeing all the OPP configurations,
2597 * while the later ones only drop the OPP table reference. This works well for
2598 * now as we would never want to use an half initialized OPP table and want to
2599 * remove the configurations together.
2600 */
2601void dev_pm_opp_clear_config(int token)
2602{
2603 struct opp_config_data *data;
2604
2605 /*
2606 * This lets the callers call this unconditionally and keep their code
2607 * simple.
2608 */
2609 if (unlikely(token <= 0))
2610 return;
2611
2612 data = xa_erase(&opp_configs, token);
2613 if (WARN_ON(!data))
2614 return;
2615
2616 _opp_clear_config(data);
2617}
2618EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2619
2620static void devm_pm_opp_config_release(void *token)
2621{
2622 dev_pm_opp_clear_config((unsigned long)token);
2623}
2624
2625/**
2626 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2627 * @dev: Device for which configuration is being set.
2628 * @config: OPP configuration.
2629 *
2630 * This allows all device OPP configurations to be performed at once.
2631 * This is a resource-managed variant of dev_pm_opp_set_config().
2632 *
2633 * Return: 0 on success and errorno otherwise.
2634 */
2635int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2636{
2637 int token = dev_pm_opp_set_config(dev, config);
2638
2639 if (token < 0)
2640 return token;
2641
2642 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2643 (void *) ((unsigned long) token));
2644}
2645EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2646
2647/**
2648 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2649 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2650 * @dst_table: Required OPP table of the @src_table.
2651 * @src_opp: OPP from the @src_table.
2652 *
2653 * This function returns the OPP (present in @dst_table) pointed out by the
2654 * "required-opps" property of the @src_opp (present in @src_table).
2655 *
2656 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2657 * use.
2658 *
2659 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2660 */
2661struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2662 struct opp_table *dst_table,
2663 struct dev_pm_opp *src_opp)
2664{
2665 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2666 int i;
2667
2668 if (!src_table || !dst_table || !src_opp ||
2669 !src_table->required_opp_tables)
2670 return ERR_PTR(-EINVAL);
2671
2672 /* required-opps not fully initialized yet */
2673 if (lazy_linking_pending(src_table))
2674 return ERR_PTR(-EBUSY);
2675
2676 for (i = 0; i < src_table->required_opp_count; i++) {
2677 if (src_table->required_opp_tables[i] == dst_table) {
2678 mutex_lock(&src_table->lock);
2679
2680 list_for_each_entry(opp, &src_table->opp_list, node) {
2681 if (opp == src_opp) {
2682 dest_opp = opp->required_opps[i];
2683 dev_pm_opp_get(dest_opp);
2684 break;
2685 }
2686 }
2687
2688 mutex_unlock(&src_table->lock);
2689 break;
2690 }
2691 }
2692
2693 if (IS_ERR(dest_opp)) {
2694 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2695 src_table, dst_table);
2696 }
2697
2698 return dest_opp;
2699}
2700EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2701
2702/**
2703 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2704 * @src_table: OPP table which has dst_table as one of its required OPP table.
2705 * @dst_table: Required OPP table of the src_table.
2706 * @pstate: Current performance state of the src_table.
2707 *
2708 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2709 * "required-opps" property of the OPP (present in @src_table) which has
2710 * performance state set to @pstate.
2711 *
2712 * Return: Zero or positive performance state on success, otherwise negative
2713 * value on errors.
2714 */
2715int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2716 struct opp_table *dst_table,
2717 unsigned int pstate)
2718{
2719 struct dev_pm_opp *opp;
2720 int dest_pstate = -EINVAL;
2721 int i;
2722
2723 /*
2724 * Normally the src_table will have the "required_opps" property set to
2725 * point to one of the OPPs in the dst_table, but in some cases the
2726 * genpd and its master have one to one mapping of performance states
2727 * and so none of them have the "required-opps" property set. Return the
2728 * pstate of the src_table as it is in such cases.
2729 */
2730 if (!src_table || !src_table->required_opp_count)
2731 return pstate;
2732
2733 /* Both OPP tables must belong to genpds */
2734 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2735 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2736 return -EINVAL;
2737 }
2738
2739 /* required-opps not fully initialized yet */
2740 if (lazy_linking_pending(src_table))
2741 return -EBUSY;
2742
2743 for (i = 0; i < src_table->required_opp_count; i++) {
2744 if (src_table->required_opp_tables[i]->np == dst_table->np)
2745 break;
2746 }
2747
2748 if (unlikely(i == src_table->required_opp_count)) {
2749 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2750 __func__, src_table, dst_table);
2751 return -EINVAL;
2752 }
2753
2754 mutex_lock(&src_table->lock);
2755
2756 list_for_each_entry(opp, &src_table->opp_list, node) {
2757 if (opp->level == pstate) {
2758 dest_pstate = opp->required_opps[i]->level;
2759 goto unlock;
2760 }
2761 }
2762
2763 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2764 dst_table);
2765
2766unlock:
2767 mutex_unlock(&src_table->lock);
2768
2769 return dest_pstate;
2770}
2771
2772/**
2773 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2774 * @dev: The device for which we do this operation
2775 * @data: The OPP data for the OPP to add
2776 *
2777 * This function adds an opp definition to the opp table and returns status.
2778 * The opp is made available by default and it can be controlled using
2779 * dev_pm_opp_enable/disable functions.
2780 *
2781 * Return:
2782 * 0 On success OR
2783 * Duplicate OPPs (both freq and volt are same) and opp->available
2784 * -EEXIST Freq are same and volt are different OR
2785 * Duplicate OPPs (both freq and volt are same) and !opp->available
2786 * -ENOMEM Memory allocation failure
2787 */
2788int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2789{
2790 struct opp_table *opp_table;
2791 int ret;
2792
2793 opp_table = _add_opp_table(dev, true);
2794 if (IS_ERR(opp_table))
2795 return PTR_ERR(opp_table);
2796
2797 /* Fix regulator count for dynamic OPPs */
2798 opp_table->regulator_count = 1;
2799
2800 ret = _opp_add_v1(opp_table, dev, data, true);
2801 if (ret)
2802 dev_pm_opp_put_opp_table(opp_table);
2803
2804 return ret;
2805}
2806EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2807
2808/**
2809 * _opp_set_availability() - helper to set the availability of an opp
2810 * @dev: device for which we do this operation
2811 * @freq: OPP frequency to modify availability
2812 * @availability_req: availability status requested for this opp
2813 *
2814 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2815 * which is isolated here.
2816 *
2817 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2818 * copy operation, returns 0 if no modification was done OR modification was
2819 * successful.
2820 */
2821static int _opp_set_availability(struct device *dev, unsigned long freq,
2822 bool availability_req)
2823{
2824 struct opp_table *opp_table;
2825 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2826 int r = 0;
2827
2828 /* Find the opp_table */
2829 opp_table = _find_opp_table(dev);
2830 if (IS_ERR(opp_table)) {
2831 r = PTR_ERR(opp_table);
2832 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2833 return r;
2834 }
2835
2836 if (!assert_single_clk(opp_table, 0)) {
2837 r = -EINVAL;
2838 goto put_table;
2839 }
2840
2841 mutex_lock(&opp_table->lock);
2842
2843 /* Do we have the frequency? */
2844 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2845 if (tmp_opp->rates[0] == freq) {
2846 opp = tmp_opp;
2847 break;
2848 }
2849 }
2850
2851 if (IS_ERR(opp)) {
2852 r = PTR_ERR(opp);
2853 goto unlock;
2854 }
2855
2856 /* Is update really needed? */
2857 if (opp->available == availability_req)
2858 goto unlock;
2859
2860 opp->available = availability_req;
2861
2862 dev_pm_opp_get(opp);
2863 mutex_unlock(&opp_table->lock);
2864
2865 /* Notify the change of the OPP availability */
2866 if (availability_req)
2867 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2868 opp);
2869 else
2870 blocking_notifier_call_chain(&opp_table->head,
2871 OPP_EVENT_DISABLE, opp);
2872
2873 dev_pm_opp_put(opp);
2874 goto put_table;
2875
2876unlock:
2877 mutex_unlock(&opp_table->lock);
2878put_table:
2879 dev_pm_opp_put_opp_table(opp_table);
2880 return r;
2881}
2882
2883/**
2884 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2885 * @dev: device for which we do this operation
2886 * @freq: OPP frequency to adjust voltage of
2887 * @u_volt: new OPP target voltage
2888 * @u_volt_min: new OPP min voltage
2889 * @u_volt_max: new OPP max voltage
2890 *
2891 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2892 * copy operation, returns 0 if no modifcation was done OR modification was
2893 * successful.
2894 */
2895int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2896 unsigned long u_volt, unsigned long u_volt_min,
2897 unsigned long u_volt_max)
2898
2899{
2900 struct opp_table *opp_table;
2901 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2902 int r = 0;
2903
2904 /* Find the opp_table */
2905 opp_table = _find_opp_table(dev);
2906 if (IS_ERR(opp_table)) {
2907 r = PTR_ERR(opp_table);
2908 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2909 return r;
2910 }
2911
2912 if (!assert_single_clk(opp_table, 0)) {
2913 r = -EINVAL;
2914 goto put_table;
2915 }
2916
2917 mutex_lock(&opp_table->lock);
2918
2919 /* Do we have the frequency? */
2920 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2921 if (tmp_opp->rates[0] == freq) {
2922 opp = tmp_opp;
2923 break;
2924 }
2925 }
2926
2927 if (IS_ERR(opp)) {
2928 r = PTR_ERR(opp);
2929 goto adjust_unlock;
2930 }
2931
2932 /* Is update really needed? */
2933 if (opp->supplies->u_volt == u_volt)
2934 goto adjust_unlock;
2935
2936 opp->supplies->u_volt = u_volt;
2937 opp->supplies->u_volt_min = u_volt_min;
2938 opp->supplies->u_volt_max = u_volt_max;
2939
2940 dev_pm_opp_get(opp);
2941 mutex_unlock(&opp_table->lock);
2942
2943 /* Notify the voltage change of the OPP */
2944 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
2945 opp);
2946
2947 dev_pm_opp_put(opp);
2948 goto put_table;
2949
2950adjust_unlock:
2951 mutex_unlock(&opp_table->lock);
2952put_table:
2953 dev_pm_opp_put_opp_table(opp_table);
2954 return r;
2955}
2956EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
2957
2958/**
2959 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
2960 * @dev: device for which we do this operation
2961 *
2962 * Sync voltage state of the OPP table regulators.
2963 *
2964 * Return: 0 on success or a negative error value.
2965 */
2966int dev_pm_opp_sync_regulators(struct device *dev)
2967{
2968 struct opp_table *opp_table;
2969 struct regulator *reg;
2970 int i, ret = 0;
2971
2972 /* Device may not have OPP table */
2973 opp_table = _find_opp_table(dev);
2974 if (IS_ERR(opp_table))
2975 return 0;
2976
2977 /* Regulator may not be required for the device */
2978 if (unlikely(!opp_table->regulators))
2979 goto put_table;
2980
2981 /* Nothing to sync if voltage wasn't changed */
2982 if (!opp_table->enabled)
2983 goto put_table;
2984
2985 for (i = 0; i < opp_table->regulator_count; i++) {
2986 reg = opp_table->regulators[i];
2987 ret = regulator_sync_voltage(reg);
2988 if (ret)
2989 break;
2990 }
2991put_table:
2992 /* Drop reference taken by _find_opp_table() */
2993 dev_pm_opp_put_opp_table(opp_table);
2994
2995 return ret;
2996}
2997EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
2998
2999/**
3000 * dev_pm_opp_enable() - Enable a specific OPP
3001 * @dev: device for which we do this operation
3002 * @freq: OPP frequency to enable
3003 *
3004 * Enables a provided opp. If the operation is valid, this returns 0, else the
3005 * corresponding error value. It is meant to be used for users an OPP available
3006 * after being temporarily made unavailable with dev_pm_opp_disable.
3007 *
3008 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3009 * copy operation, returns 0 if no modification was done OR modification was
3010 * successful.
3011 */
3012int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3013{
3014 return _opp_set_availability(dev, freq, true);
3015}
3016EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3017
3018/**
3019 * dev_pm_opp_disable() - Disable a specific OPP
3020 * @dev: device for which we do this operation
3021 * @freq: OPP frequency to disable
3022 *
3023 * Disables a provided opp. If the operation is valid, this returns
3024 * 0, else the corresponding error value. It is meant to be a temporary
3025 * control by users to make this OPP not available until the circumstances are
3026 * right to make it available again (with a call to dev_pm_opp_enable).
3027 *
3028 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3029 * copy operation, returns 0 if no modification was done OR modification was
3030 * successful.
3031 */
3032int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3033{
3034 return _opp_set_availability(dev, freq, false);
3035}
3036EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3037
3038/**
3039 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3040 * @dev: Device for which notifier needs to be registered
3041 * @nb: Notifier block to be registered
3042 *
3043 * Return: 0 on success or a negative error value.
3044 */
3045int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3046{
3047 struct opp_table *opp_table;
3048 int ret;
3049
3050 opp_table = _find_opp_table(dev);
3051 if (IS_ERR(opp_table))
3052 return PTR_ERR(opp_table);
3053
3054 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3055
3056 dev_pm_opp_put_opp_table(opp_table);
3057
3058 return ret;
3059}
3060EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3061
3062/**
3063 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3064 * @dev: Device for which notifier needs to be unregistered
3065 * @nb: Notifier block to be unregistered
3066 *
3067 * Return: 0 on success or a negative error value.
3068 */
3069int dev_pm_opp_unregister_notifier(struct device *dev,
3070 struct notifier_block *nb)
3071{
3072 struct opp_table *opp_table;
3073 int ret;
3074
3075 opp_table = _find_opp_table(dev);
3076 if (IS_ERR(opp_table))
3077 return PTR_ERR(opp_table);
3078
3079 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3080
3081 dev_pm_opp_put_opp_table(opp_table);
3082
3083 return ret;
3084}
3085EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3086
3087/**
3088 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3089 * @dev: device pointer used to lookup OPP table.
3090 *
3091 * Free both OPPs created using static entries present in DT and the
3092 * dynamically added entries.
3093 */
3094void dev_pm_opp_remove_table(struct device *dev)
3095{
3096 struct opp_table *opp_table;
3097
3098 /* Check for existing table for 'dev' */
3099 opp_table = _find_opp_table(dev);
3100 if (IS_ERR(opp_table)) {
3101 int error = PTR_ERR(opp_table);
3102
3103 if (error != -ENODEV)
3104 WARN(1, "%s: opp_table: %d\n",
3105 IS_ERR_OR_NULL(dev) ?
3106 "Invalid device" : dev_name(dev),
3107 error);
3108 return;
3109 }
3110
3111 /*
3112 * Drop the extra reference only if the OPP table was successfully added
3113 * with dev_pm_opp_of_add_table() earlier.
3114 **/
3115 if (_opp_remove_all_static(opp_table))
3116 dev_pm_opp_put_opp_table(opp_table);
3117
3118 /* Drop reference taken by _find_opp_table() */
3119 dev_pm_opp_put_opp_table(opp_table);
3120}
3121EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Generic OPP Interface
4 *
5 * Copyright (C) 2009-2010 Texas Instruments Incorporated.
6 * Nishanth Menon
7 * Romit Dasgupta
8 * Kevin Hilman
9 */
10
11#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12
13#include <linux/clk.h>
14#include <linux/errno.h>
15#include <linux/err.h>
16#include <linux/device.h>
17#include <linux/export.h>
18#include <linux/pm_domain.h>
19#include <linux/regulator/consumer.h>
20#include <linux/slab.h>
21#include <linux/xarray.h>
22
23#include "opp.h"
24
25/*
26 * The root of the list of all opp-tables. All opp_table structures branch off
27 * from here, with each opp_table containing the list of opps it supports in
28 * various states of availability.
29 */
30LIST_HEAD(opp_tables);
31
32/* Lock to allow exclusive modification to the device and opp lists */
33DEFINE_MUTEX(opp_table_lock);
34/* Flag indicating that opp_tables list is being updated at the moment */
35static bool opp_tables_busy;
36
37/* OPP ID allocator */
38static DEFINE_XARRAY_ALLOC1(opp_configs);
39
40static bool _find_opp_dev(const struct device *dev, struct opp_table *opp_table)
41{
42 struct opp_device *opp_dev;
43 bool found = false;
44
45 mutex_lock(&opp_table->lock);
46 list_for_each_entry(opp_dev, &opp_table->dev_list, node)
47 if (opp_dev->dev == dev) {
48 found = true;
49 break;
50 }
51
52 mutex_unlock(&opp_table->lock);
53 return found;
54}
55
56static struct opp_table *_find_opp_table_unlocked(struct device *dev)
57{
58 struct opp_table *opp_table;
59
60 list_for_each_entry(opp_table, &opp_tables, node) {
61 if (_find_opp_dev(dev, opp_table)) {
62 _get_opp_table_kref(opp_table);
63 return opp_table;
64 }
65 }
66
67 return ERR_PTR(-ENODEV);
68}
69
70/**
71 * _find_opp_table() - find opp_table struct using device pointer
72 * @dev: device pointer used to lookup OPP table
73 *
74 * Search OPP table for one containing matching device.
75 *
76 * Return: pointer to 'struct opp_table' if found, otherwise -ENODEV or
77 * -EINVAL based on type of error.
78 *
79 * The callers must call dev_pm_opp_put_opp_table() after the table is used.
80 */
81struct opp_table *_find_opp_table(struct device *dev)
82{
83 struct opp_table *opp_table;
84
85 if (IS_ERR_OR_NULL(dev)) {
86 pr_err("%s: Invalid parameters\n", __func__);
87 return ERR_PTR(-EINVAL);
88 }
89
90 mutex_lock(&opp_table_lock);
91 opp_table = _find_opp_table_unlocked(dev);
92 mutex_unlock(&opp_table_lock);
93
94 return opp_table;
95}
96
97/*
98 * Returns true if multiple clocks aren't there, else returns false with WARN.
99 *
100 * We don't force clk_count == 1 here as there are users who don't have a clock
101 * representation in the OPP table and manage the clock configuration themselves
102 * in an platform specific way.
103 */
104static bool assert_single_clk(struct opp_table *opp_table)
105{
106 return !WARN_ON(opp_table->clk_count > 1);
107}
108
109/**
110 * dev_pm_opp_get_voltage() - Gets the voltage corresponding to an opp
111 * @opp: opp for which voltage has to be returned for
112 *
113 * Return: voltage in micro volt corresponding to the opp, else
114 * return 0
115 *
116 * This is useful only for devices with single power supply.
117 */
118unsigned long dev_pm_opp_get_voltage(struct dev_pm_opp *opp)
119{
120 if (IS_ERR_OR_NULL(opp)) {
121 pr_err("%s: Invalid parameters\n", __func__);
122 return 0;
123 }
124
125 return opp->supplies[0].u_volt;
126}
127EXPORT_SYMBOL_GPL(dev_pm_opp_get_voltage);
128
129/**
130 * dev_pm_opp_get_supplies() - Gets the supply information corresponding to an opp
131 * @opp: opp for which voltage has to be returned for
132 * @supplies: Placeholder for copying the supply information.
133 *
134 * Return: negative error number on failure, 0 otherwise on success after
135 * setting @supplies.
136 *
137 * This can be used for devices with any number of power supplies. The caller
138 * must ensure the @supplies array must contain space for each regulator.
139 */
140int dev_pm_opp_get_supplies(struct dev_pm_opp *opp,
141 struct dev_pm_opp_supply *supplies)
142{
143 if (IS_ERR_OR_NULL(opp) || !supplies) {
144 pr_err("%s: Invalid parameters\n", __func__);
145 return -EINVAL;
146 }
147
148 memcpy(supplies, opp->supplies,
149 sizeof(*supplies) * opp->opp_table->regulator_count);
150 return 0;
151}
152EXPORT_SYMBOL_GPL(dev_pm_opp_get_supplies);
153
154/**
155 * dev_pm_opp_get_power() - Gets the power corresponding to an opp
156 * @opp: opp for which power has to be returned for
157 *
158 * Return: power in micro watt corresponding to the opp, else
159 * return 0
160 *
161 * This is useful only for devices with single power supply.
162 */
163unsigned long dev_pm_opp_get_power(struct dev_pm_opp *opp)
164{
165 unsigned long opp_power = 0;
166 int i;
167
168 if (IS_ERR_OR_NULL(opp)) {
169 pr_err("%s: Invalid parameters\n", __func__);
170 return 0;
171 }
172 for (i = 0; i < opp->opp_table->regulator_count; i++)
173 opp_power += opp->supplies[i].u_watt;
174
175 return opp_power;
176}
177EXPORT_SYMBOL_GPL(dev_pm_opp_get_power);
178
179/**
180 * dev_pm_opp_get_freq_indexed() - Gets the frequency corresponding to an
181 * available opp with specified index
182 * @opp: opp for which frequency has to be returned for
183 * @index: index of the frequency within the required opp
184 *
185 * Return: frequency in hertz corresponding to the opp with specified index,
186 * else return 0
187 */
188unsigned long dev_pm_opp_get_freq_indexed(struct dev_pm_opp *opp, u32 index)
189{
190 if (IS_ERR_OR_NULL(opp) || index >= opp->opp_table->clk_count) {
191 pr_err("%s: Invalid parameters\n", __func__);
192 return 0;
193 }
194
195 return opp->rates[index];
196}
197EXPORT_SYMBOL_GPL(dev_pm_opp_get_freq_indexed);
198
199/**
200 * dev_pm_opp_get_level() - Gets the level corresponding to an available opp
201 * @opp: opp for which level value has to be returned for
202 *
203 * Return: level read from device tree corresponding to the opp, else
204 * return U32_MAX.
205 */
206unsigned int dev_pm_opp_get_level(struct dev_pm_opp *opp)
207{
208 if (IS_ERR_OR_NULL(opp) || !opp->available) {
209 pr_err("%s: Invalid parameters\n", __func__);
210 return 0;
211 }
212
213 return opp->level;
214}
215EXPORT_SYMBOL_GPL(dev_pm_opp_get_level);
216
217/**
218 * dev_pm_opp_get_required_pstate() - Gets the required performance state
219 * corresponding to an available opp
220 * @opp: opp for which performance state has to be returned for
221 * @index: index of the required opp
222 *
223 * Return: performance state read from device tree corresponding to the
224 * required opp, else return U32_MAX.
225 */
226unsigned int dev_pm_opp_get_required_pstate(struct dev_pm_opp *opp,
227 unsigned int index)
228{
229 if (IS_ERR_OR_NULL(opp) || !opp->available ||
230 index >= opp->opp_table->required_opp_count) {
231 pr_err("%s: Invalid parameters\n", __func__);
232 return 0;
233 }
234
235 /* required-opps not fully initialized yet */
236 if (lazy_linking_pending(opp->opp_table))
237 return 0;
238
239 /* The required OPP table must belong to a genpd */
240 if (unlikely(!opp->opp_table->required_opp_tables[index]->is_genpd)) {
241 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
242 return 0;
243 }
244
245 return opp->required_opps[index]->level;
246}
247EXPORT_SYMBOL_GPL(dev_pm_opp_get_required_pstate);
248
249/**
250 * dev_pm_opp_is_turbo() - Returns if opp is turbo OPP or not
251 * @opp: opp for which turbo mode is being verified
252 *
253 * Turbo OPPs are not for normal use, and can be enabled (under certain
254 * conditions) for short duration of times to finish high throughput work
255 * quickly. Running on them for longer times may overheat the chip.
256 *
257 * Return: true if opp is turbo opp, else false.
258 */
259bool dev_pm_opp_is_turbo(struct dev_pm_opp *opp)
260{
261 if (IS_ERR_OR_NULL(opp) || !opp->available) {
262 pr_err("%s: Invalid parameters\n", __func__);
263 return false;
264 }
265
266 return opp->turbo;
267}
268EXPORT_SYMBOL_GPL(dev_pm_opp_is_turbo);
269
270/**
271 * dev_pm_opp_get_max_clock_latency() - Get max clock latency in nanoseconds
272 * @dev: device for which we do this operation
273 *
274 * Return: This function returns the max clock latency in nanoseconds.
275 */
276unsigned long dev_pm_opp_get_max_clock_latency(struct device *dev)
277{
278 struct opp_table *opp_table;
279 unsigned long clock_latency_ns;
280
281 opp_table = _find_opp_table(dev);
282 if (IS_ERR(opp_table))
283 return 0;
284
285 clock_latency_ns = opp_table->clock_latency_ns_max;
286
287 dev_pm_opp_put_opp_table(opp_table);
288
289 return clock_latency_ns;
290}
291EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_clock_latency);
292
293/**
294 * dev_pm_opp_get_max_volt_latency() - Get max voltage latency in nanoseconds
295 * @dev: device for which we do this operation
296 *
297 * Return: This function returns the max voltage latency in nanoseconds.
298 */
299unsigned long dev_pm_opp_get_max_volt_latency(struct device *dev)
300{
301 struct opp_table *opp_table;
302 struct dev_pm_opp *opp;
303 struct regulator *reg;
304 unsigned long latency_ns = 0;
305 int ret, i, count;
306 struct {
307 unsigned long min;
308 unsigned long max;
309 } *uV;
310
311 opp_table = _find_opp_table(dev);
312 if (IS_ERR(opp_table))
313 return 0;
314
315 /* Regulator may not be required for the device */
316 if (!opp_table->regulators)
317 goto put_opp_table;
318
319 count = opp_table->regulator_count;
320
321 uV = kmalloc_array(count, sizeof(*uV), GFP_KERNEL);
322 if (!uV)
323 goto put_opp_table;
324
325 mutex_lock(&opp_table->lock);
326
327 for (i = 0; i < count; i++) {
328 uV[i].min = ~0;
329 uV[i].max = 0;
330
331 list_for_each_entry(opp, &opp_table->opp_list, node) {
332 if (!opp->available)
333 continue;
334
335 if (opp->supplies[i].u_volt_min < uV[i].min)
336 uV[i].min = opp->supplies[i].u_volt_min;
337 if (opp->supplies[i].u_volt_max > uV[i].max)
338 uV[i].max = opp->supplies[i].u_volt_max;
339 }
340 }
341
342 mutex_unlock(&opp_table->lock);
343
344 /*
345 * The caller needs to ensure that opp_table (and hence the regulator)
346 * isn't freed, while we are executing this routine.
347 */
348 for (i = 0; i < count; i++) {
349 reg = opp_table->regulators[i];
350 ret = regulator_set_voltage_time(reg, uV[i].min, uV[i].max);
351 if (ret > 0)
352 latency_ns += ret * 1000;
353 }
354
355 kfree(uV);
356put_opp_table:
357 dev_pm_opp_put_opp_table(opp_table);
358
359 return latency_ns;
360}
361EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_volt_latency);
362
363/**
364 * dev_pm_opp_get_max_transition_latency() - Get max transition latency in
365 * nanoseconds
366 * @dev: device for which we do this operation
367 *
368 * Return: This function returns the max transition latency, in nanoseconds, to
369 * switch from one OPP to other.
370 */
371unsigned long dev_pm_opp_get_max_transition_latency(struct device *dev)
372{
373 return dev_pm_opp_get_max_volt_latency(dev) +
374 dev_pm_opp_get_max_clock_latency(dev);
375}
376EXPORT_SYMBOL_GPL(dev_pm_opp_get_max_transition_latency);
377
378/**
379 * dev_pm_opp_get_suspend_opp_freq() - Get frequency of suspend opp in Hz
380 * @dev: device for which we do this operation
381 *
382 * Return: This function returns the frequency of the OPP marked as suspend_opp
383 * if one is available, else returns 0;
384 */
385unsigned long dev_pm_opp_get_suspend_opp_freq(struct device *dev)
386{
387 struct opp_table *opp_table;
388 unsigned long freq = 0;
389
390 opp_table = _find_opp_table(dev);
391 if (IS_ERR(opp_table))
392 return 0;
393
394 if (opp_table->suspend_opp && opp_table->suspend_opp->available)
395 freq = dev_pm_opp_get_freq(opp_table->suspend_opp);
396
397 dev_pm_opp_put_opp_table(opp_table);
398
399 return freq;
400}
401EXPORT_SYMBOL_GPL(dev_pm_opp_get_suspend_opp_freq);
402
403int _get_opp_count(struct opp_table *opp_table)
404{
405 struct dev_pm_opp *opp;
406 int count = 0;
407
408 mutex_lock(&opp_table->lock);
409
410 list_for_each_entry(opp, &opp_table->opp_list, node) {
411 if (opp->available)
412 count++;
413 }
414
415 mutex_unlock(&opp_table->lock);
416
417 return count;
418}
419
420/**
421 * dev_pm_opp_get_opp_count() - Get number of opps available in the opp table
422 * @dev: device for which we do this operation
423 *
424 * Return: This function returns the number of available opps if there are any,
425 * else returns 0 if none or the corresponding error value.
426 */
427int dev_pm_opp_get_opp_count(struct device *dev)
428{
429 struct opp_table *opp_table;
430 int count;
431
432 opp_table = _find_opp_table(dev);
433 if (IS_ERR(opp_table)) {
434 count = PTR_ERR(opp_table);
435 dev_dbg(dev, "%s: OPP table not found (%d)\n",
436 __func__, count);
437 return count;
438 }
439
440 count = _get_opp_count(opp_table);
441 dev_pm_opp_put_opp_table(opp_table);
442
443 return count;
444}
445EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_count);
446
447/* Helpers to read keys */
448static unsigned long _read_freq(struct dev_pm_opp *opp, int index)
449{
450 return opp->rates[index];
451}
452
453static unsigned long _read_level(struct dev_pm_opp *opp, int index)
454{
455 return opp->level;
456}
457
458static unsigned long _read_bw(struct dev_pm_opp *opp, int index)
459{
460 return opp->bandwidth[index].peak;
461}
462
463/* Generic comparison helpers */
464static bool _compare_exact(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
465 unsigned long opp_key, unsigned long key)
466{
467 if (opp_key == key) {
468 *opp = temp_opp;
469 return true;
470 }
471
472 return false;
473}
474
475static bool _compare_ceil(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
476 unsigned long opp_key, unsigned long key)
477{
478 if (opp_key >= key) {
479 *opp = temp_opp;
480 return true;
481 }
482
483 return false;
484}
485
486static bool _compare_floor(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
487 unsigned long opp_key, unsigned long key)
488{
489 if (opp_key > key)
490 return true;
491
492 *opp = temp_opp;
493 return false;
494}
495
496/* Generic key finding helpers */
497static struct dev_pm_opp *_opp_table_find_key(struct opp_table *opp_table,
498 unsigned long *key, int index, bool available,
499 unsigned long (*read)(struct dev_pm_opp *opp, int index),
500 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
501 unsigned long opp_key, unsigned long key),
502 bool (*assert)(struct opp_table *opp_table))
503{
504 struct dev_pm_opp *temp_opp, *opp = ERR_PTR(-ERANGE);
505
506 /* Assert that the requirement is met */
507 if (assert && !assert(opp_table))
508 return ERR_PTR(-EINVAL);
509
510 mutex_lock(&opp_table->lock);
511
512 list_for_each_entry(temp_opp, &opp_table->opp_list, node) {
513 if (temp_opp->available == available) {
514 if (compare(&opp, temp_opp, read(temp_opp, index), *key))
515 break;
516 }
517 }
518
519 /* Increment the reference count of OPP */
520 if (!IS_ERR(opp)) {
521 *key = read(opp, index);
522 dev_pm_opp_get(opp);
523 }
524
525 mutex_unlock(&opp_table->lock);
526
527 return opp;
528}
529
530static struct dev_pm_opp *
531_find_key(struct device *dev, unsigned long *key, int index, bool available,
532 unsigned long (*read)(struct dev_pm_opp *opp, int index),
533 bool (*compare)(struct dev_pm_opp **opp, struct dev_pm_opp *temp_opp,
534 unsigned long opp_key, unsigned long key),
535 bool (*assert)(struct opp_table *opp_table))
536{
537 struct opp_table *opp_table;
538 struct dev_pm_opp *opp;
539
540 opp_table = _find_opp_table(dev);
541 if (IS_ERR(opp_table)) {
542 dev_err(dev, "%s: OPP table not found (%ld)\n", __func__,
543 PTR_ERR(opp_table));
544 return ERR_CAST(opp_table);
545 }
546
547 opp = _opp_table_find_key(opp_table, key, index, available, read,
548 compare, assert);
549
550 dev_pm_opp_put_opp_table(opp_table);
551
552 return opp;
553}
554
555static struct dev_pm_opp *_find_key_exact(struct device *dev,
556 unsigned long key, int index, bool available,
557 unsigned long (*read)(struct dev_pm_opp *opp, int index),
558 bool (*assert)(struct opp_table *opp_table))
559{
560 /*
561 * The value of key will be updated here, but will be ignored as the
562 * caller doesn't need it.
563 */
564 return _find_key(dev, &key, index, available, read, _compare_exact,
565 assert);
566}
567
568static struct dev_pm_opp *_opp_table_find_key_ceil(struct opp_table *opp_table,
569 unsigned long *key, int index, bool available,
570 unsigned long (*read)(struct dev_pm_opp *opp, int index),
571 bool (*assert)(struct opp_table *opp_table))
572{
573 return _opp_table_find_key(opp_table, key, index, available, read,
574 _compare_ceil, assert);
575}
576
577static struct dev_pm_opp *_find_key_ceil(struct device *dev, unsigned long *key,
578 int index, bool available,
579 unsigned long (*read)(struct dev_pm_opp *opp, int index),
580 bool (*assert)(struct opp_table *opp_table))
581{
582 return _find_key(dev, key, index, available, read, _compare_ceil,
583 assert);
584}
585
586static struct dev_pm_opp *_find_key_floor(struct device *dev,
587 unsigned long *key, int index, bool available,
588 unsigned long (*read)(struct dev_pm_opp *opp, int index),
589 bool (*assert)(struct opp_table *opp_table))
590{
591 return _find_key(dev, key, index, available, read, _compare_floor,
592 assert);
593}
594
595/**
596 * dev_pm_opp_find_freq_exact() - search for an exact frequency
597 * @dev: device for which we do this operation
598 * @freq: frequency to search for
599 * @available: true/false - match for available opp
600 *
601 * Return: Searches for exact match in the opp table and returns pointer to the
602 * matching opp if found, else returns ERR_PTR in case of error and should
603 * be handled using IS_ERR. Error return values can be:
604 * EINVAL: for bad pointer
605 * ERANGE: no match found for search
606 * ENODEV: if device not found in list of registered devices
607 *
608 * Note: available is a modifier for the search. if available=true, then the
609 * match is for exact matching frequency and is available in the stored OPP
610 * table. if false, the match is for exact frequency which is not available.
611 *
612 * This provides a mechanism to enable an opp which is not available currently
613 * or the opposite as well.
614 *
615 * The callers are required to call dev_pm_opp_put() for the returned OPP after
616 * use.
617 */
618struct dev_pm_opp *dev_pm_opp_find_freq_exact(struct device *dev,
619 unsigned long freq, bool available)
620{
621 return _find_key_exact(dev, freq, 0, available, _read_freq,
622 assert_single_clk);
623}
624EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact);
625
626/**
627 * dev_pm_opp_find_freq_exact_indexed() - Search for an exact freq for the
628 * clock corresponding to the index
629 * @dev: Device for which we do this operation
630 * @freq: frequency to search for
631 * @index: Clock index
632 * @available: true/false - match for available opp
633 *
634 * Search for the matching exact OPP for the clock corresponding to the
635 * specified index from a starting freq for a device.
636 *
637 * Return: matching *opp , else returns ERR_PTR in case of error and should be
638 * handled using IS_ERR. Error return values can be:
639 * EINVAL: for bad pointer
640 * ERANGE: no match found for search
641 * ENODEV: if device not found in list of registered devices
642 *
643 * The callers are required to call dev_pm_opp_put() for the returned OPP after
644 * use.
645 */
646struct dev_pm_opp *
647dev_pm_opp_find_freq_exact_indexed(struct device *dev, unsigned long freq,
648 u32 index, bool available)
649{
650 return _find_key_exact(dev, freq, index, available, _read_freq, NULL);
651}
652EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_exact_indexed);
653
654static noinline struct dev_pm_opp *_find_freq_ceil(struct opp_table *opp_table,
655 unsigned long *freq)
656{
657 return _opp_table_find_key_ceil(opp_table, freq, 0, true, _read_freq,
658 assert_single_clk);
659}
660
661/**
662 * dev_pm_opp_find_freq_ceil() - Search for an rounded ceil freq
663 * @dev: device for which we do this operation
664 * @freq: Start frequency
665 *
666 * Search for the matching ceil *available* OPP from a starting freq
667 * for a device.
668 *
669 * Return: matching *opp and refreshes *freq accordingly, else returns
670 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
671 * values can be:
672 * EINVAL: for bad pointer
673 * ERANGE: no match found for search
674 * ENODEV: if device not found in list of registered devices
675 *
676 * The callers are required to call dev_pm_opp_put() for the returned OPP after
677 * use.
678 */
679struct dev_pm_opp *dev_pm_opp_find_freq_ceil(struct device *dev,
680 unsigned long *freq)
681{
682 return _find_key_ceil(dev, freq, 0, true, _read_freq, assert_single_clk);
683}
684EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil);
685
686/**
687 * dev_pm_opp_find_freq_ceil_indexed() - Search for a rounded ceil freq for the
688 * clock corresponding to the index
689 * @dev: Device for which we do this operation
690 * @freq: Start frequency
691 * @index: Clock index
692 *
693 * Search for the matching ceil *available* OPP for the clock corresponding to
694 * the specified index from a starting freq for a device.
695 *
696 * Return: matching *opp and refreshes *freq accordingly, else returns
697 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
698 * values can be:
699 * EINVAL: for bad pointer
700 * ERANGE: no match found for search
701 * ENODEV: if device not found in list of registered devices
702 *
703 * The callers are required to call dev_pm_opp_put() for the returned OPP after
704 * use.
705 */
706struct dev_pm_opp *
707dev_pm_opp_find_freq_ceil_indexed(struct device *dev, unsigned long *freq,
708 u32 index)
709{
710 return _find_key_ceil(dev, freq, index, true, _read_freq, NULL);
711}
712EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_ceil_indexed);
713
714/**
715 * dev_pm_opp_find_freq_floor() - Search for a rounded floor freq
716 * @dev: device for which we do this operation
717 * @freq: Start frequency
718 *
719 * Search for the matching floor *available* OPP from a starting freq
720 * for a device.
721 *
722 * Return: matching *opp and refreshes *freq accordingly, else returns
723 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
724 * values can be:
725 * EINVAL: for bad pointer
726 * ERANGE: no match found for search
727 * ENODEV: if device not found in list of registered devices
728 *
729 * The callers are required to call dev_pm_opp_put() for the returned OPP after
730 * use.
731 */
732struct dev_pm_opp *dev_pm_opp_find_freq_floor(struct device *dev,
733 unsigned long *freq)
734{
735 return _find_key_floor(dev, freq, 0, true, _read_freq, assert_single_clk);
736}
737EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor);
738
739/**
740 * dev_pm_opp_find_freq_floor_indexed() - Search for a rounded floor freq for the
741 * clock corresponding to the index
742 * @dev: Device for which we do this operation
743 * @freq: Start frequency
744 * @index: Clock index
745 *
746 * Search for the matching floor *available* OPP for the clock corresponding to
747 * the specified index from a starting freq for a device.
748 *
749 * Return: matching *opp and refreshes *freq accordingly, else returns
750 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
751 * values can be:
752 * EINVAL: for bad pointer
753 * ERANGE: no match found for search
754 * ENODEV: if device not found in list of registered devices
755 *
756 * The callers are required to call dev_pm_opp_put() for the returned OPP after
757 * use.
758 */
759struct dev_pm_opp *
760dev_pm_opp_find_freq_floor_indexed(struct device *dev, unsigned long *freq,
761 u32 index)
762{
763 return _find_key_floor(dev, freq, index, true, _read_freq, NULL);
764}
765EXPORT_SYMBOL_GPL(dev_pm_opp_find_freq_floor_indexed);
766
767/**
768 * dev_pm_opp_find_level_exact() - search for an exact level
769 * @dev: device for which we do this operation
770 * @level: level to search for
771 *
772 * Return: Searches for exact match in the opp table and returns pointer to the
773 * matching opp if found, else returns ERR_PTR in case of error and should
774 * be handled using IS_ERR. Error return values can be:
775 * EINVAL: for bad pointer
776 * ERANGE: no match found for search
777 * ENODEV: if device not found in list of registered devices
778 *
779 * The callers are required to call dev_pm_opp_put() for the returned OPP after
780 * use.
781 */
782struct dev_pm_opp *dev_pm_opp_find_level_exact(struct device *dev,
783 unsigned int level)
784{
785 return _find_key_exact(dev, level, 0, true, _read_level, NULL);
786}
787EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_exact);
788
789/**
790 * dev_pm_opp_find_level_ceil() - search for an rounded up level
791 * @dev: device for which we do this operation
792 * @level: level to search for
793 *
794 * Return: Searches for rounded up match in the opp table and returns pointer
795 * to the matching opp if found, else returns ERR_PTR in case of error and
796 * should be handled using IS_ERR. Error return values can be:
797 * EINVAL: for bad pointer
798 * ERANGE: no match found for search
799 * ENODEV: if device not found in list of registered devices
800 *
801 * The callers are required to call dev_pm_opp_put() for the returned OPP after
802 * use.
803 */
804struct dev_pm_opp *dev_pm_opp_find_level_ceil(struct device *dev,
805 unsigned int *level)
806{
807 unsigned long temp = *level;
808 struct dev_pm_opp *opp;
809
810 opp = _find_key_ceil(dev, &temp, 0, true, _read_level, NULL);
811 if (IS_ERR(opp))
812 return opp;
813
814 /* False match */
815 if (temp == OPP_LEVEL_UNSET) {
816 dev_err(dev, "%s: OPP levels aren't available\n", __func__);
817 dev_pm_opp_put(opp);
818 return ERR_PTR(-ENODEV);
819 }
820
821 *level = temp;
822 return opp;
823}
824EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_ceil);
825
826/**
827 * dev_pm_opp_find_level_floor() - Search for a rounded floor level
828 * @dev: device for which we do this operation
829 * @level: Start level
830 *
831 * Search for the matching floor *available* OPP from a starting level
832 * for a device.
833 *
834 * Return: matching *opp and refreshes *level accordingly, else returns
835 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
836 * values can be:
837 * EINVAL: for bad pointer
838 * ERANGE: no match found for search
839 * ENODEV: if device not found in list of registered devices
840 *
841 * The callers are required to call dev_pm_opp_put() for the returned OPP after
842 * use.
843 */
844struct dev_pm_opp *dev_pm_opp_find_level_floor(struct device *dev,
845 unsigned int *level)
846{
847 unsigned long temp = *level;
848 struct dev_pm_opp *opp;
849
850 opp = _find_key_floor(dev, &temp, 0, true, _read_level, NULL);
851 *level = temp;
852 return opp;
853}
854EXPORT_SYMBOL_GPL(dev_pm_opp_find_level_floor);
855
856/**
857 * dev_pm_opp_find_bw_ceil() - Search for a rounded ceil bandwidth
858 * @dev: device for which we do this operation
859 * @bw: start bandwidth
860 * @index: which bandwidth to compare, in case of OPPs with several values
861 *
862 * Search for the matching floor *available* OPP from a starting bandwidth
863 * for a device.
864 *
865 * Return: matching *opp and refreshes *bw accordingly, else returns
866 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
867 * values can be:
868 * EINVAL: for bad pointer
869 * ERANGE: no match found for search
870 * ENODEV: if device not found in list of registered devices
871 *
872 * The callers are required to call dev_pm_opp_put() for the returned OPP after
873 * use.
874 */
875struct dev_pm_opp *dev_pm_opp_find_bw_ceil(struct device *dev, unsigned int *bw,
876 int index)
877{
878 unsigned long temp = *bw;
879 struct dev_pm_opp *opp;
880
881 opp = _find_key_ceil(dev, &temp, index, true, _read_bw, NULL);
882 *bw = temp;
883 return opp;
884}
885EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_ceil);
886
887/**
888 * dev_pm_opp_find_bw_floor() - Search for a rounded floor bandwidth
889 * @dev: device for which we do this operation
890 * @bw: start bandwidth
891 * @index: which bandwidth to compare, in case of OPPs with several values
892 *
893 * Search for the matching floor *available* OPP from a starting bandwidth
894 * for a device.
895 *
896 * Return: matching *opp and refreshes *bw accordingly, else returns
897 * ERR_PTR in case of error and should be handled using IS_ERR. Error return
898 * values can be:
899 * EINVAL: for bad pointer
900 * ERANGE: no match found for search
901 * ENODEV: if device not found in list of registered devices
902 *
903 * The callers are required to call dev_pm_opp_put() for the returned OPP after
904 * use.
905 */
906struct dev_pm_opp *dev_pm_opp_find_bw_floor(struct device *dev,
907 unsigned int *bw, int index)
908{
909 unsigned long temp = *bw;
910 struct dev_pm_opp *opp;
911
912 opp = _find_key_floor(dev, &temp, index, true, _read_bw, NULL);
913 *bw = temp;
914 return opp;
915}
916EXPORT_SYMBOL_GPL(dev_pm_opp_find_bw_floor);
917
918static int _set_opp_voltage(struct device *dev, struct regulator *reg,
919 struct dev_pm_opp_supply *supply)
920{
921 int ret;
922
923 /* Regulator not available for device */
924 if (IS_ERR(reg)) {
925 dev_dbg(dev, "%s: regulator not available: %ld\n", __func__,
926 PTR_ERR(reg));
927 return 0;
928 }
929
930 dev_dbg(dev, "%s: voltages (mV): %lu %lu %lu\n", __func__,
931 supply->u_volt_min, supply->u_volt, supply->u_volt_max);
932
933 ret = regulator_set_voltage_triplet(reg, supply->u_volt_min,
934 supply->u_volt, supply->u_volt_max);
935 if (ret)
936 dev_err(dev, "%s: failed to set voltage (%lu %lu %lu mV): %d\n",
937 __func__, supply->u_volt_min, supply->u_volt,
938 supply->u_volt_max, ret);
939
940 return ret;
941}
942
943static int
944_opp_config_clk_single(struct device *dev, struct opp_table *opp_table,
945 struct dev_pm_opp *opp, void *data, bool scaling_down)
946{
947 unsigned long *target = data;
948 unsigned long freq;
949 int ret;
950
951 /* One of target and opp must be available */
952 if (target) {
953 freq = *target;
954 } else if (opp) {
955 freq = opp->rates[0];
956 } else {
957 WARN_ON(1);
958 return -EINVAL;
959 }
960
961 ret = clk_set_rate(opp_table->clk, freq);
962 if (ret) {
963 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
964 ret);
965 } else {
966 opp_table->current_rate_single_clk = freq;
967 }
968
969 return ret;
970}
971
972/*
973 * Simple implementation for configuring multiple clocks. Configure clocks in
974 * the order in which they are present in the array while scaling up.
975 */
976int dev_pm_opp_config_clks_simple(struct device *dev,
977 struct opp_table *opp_table, struct dev_pm_opp *opp, void *data,
978 bool scaling_down)
979{
980 int ret, i;
981
982 if (scaling_down) {
983 for (i = opp_table->clk_count - 1; i >= 0; i--) {
984 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
985 if (ret) {
986 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
987 ret);
988 return ret;
989 }
990 }
991 } else {
992 for (i = 0; i < opp_table->clk_count; i++) {
993 ret = clk_set_rate(opp_table->clks[i], opp->rates[i]);
994 if (ret) {
995 dev_err(dev, "%s: failed to set clock rate: %d\n", __func__,
996 ret);
997 return ret;
998 }
999 }
1000 }
1001
1002 return 0;
1003}
1004EXPORT_SYMBOL_GPL(dev_pm_opp_config_clks_simple);
1005
1006static int _opp_config_regulator_single(struct device *dev,
1007 struct dev_pm_opp *old_opp, struct dev_pm_opp *new_opp,
1008 struct regulator **regulators, unsigned int count)
1009{
1010 struct regulator *reg = regulators[0];
1011 int ret;
1012
1013 /* This function only supports single regulator per device */
1014 if (WARN_ON(count > 1)) {
1015 dev_err(dev, "multiple regulators are not supported\n");
1016 return -EINVAL;
1017 }
1018
1019 ret = _set_opp_voltage(dev, reg, new_opp->supplies);
1020 if (ret)
1021 return ret;
1022
1023 /*
1024 * Enable the regulator after setting its voltages, otherwise it breaks
1025 * some boot-enabled regulators.
1026 */
1027 if (unlikely(!new_opp->opp_table->enabled)) {
1028 ret = regulator_enable(reg);
1029 if (ret < 0)
1030 dev_warn(dev, "Failed to enable regulator: %d", ret);
1031 }
1032
1033 return 0;
1034}
1035
1036static int _set_opp_bw(const struct opp_table *opp_table,
1037 struct dev_pm_opp *opp, struct device *dev)
1038{
1039 u32 avg, peak;
1040 int i, ret;
1041
1042 if (!opp_table->paths)
1043 return 0;
1044
1045 for (i = 0; i < opp_table->path_count; i++) {
1046 if (!opp) {
1047 avg = 0;
1048 peak = 0;
1049 } else {
1050 avg = opp->bandwidth[i].avg;
1051 peak = opp->bandwidth[i].peak;
1052 }
1053 ret = icc_set_bw(opp_table->paths[i], avg, peak);
1054 if (ret) {
1055 dev_err(dev, "Failed to %s bandwidth[%d]: %d\n",
1056 opp ? "set" : "remove", i, ret);
1057 return ret;
1058 }
1059 }
1060
1061 return 0;
1062}
1063
1064/* This is only called for PM domain for now */
1065static int _set_required_opps(struct device *dev, struct opp_table *opp_table,
1066 struct dev_pm_opp *opp, bool up)
1067{
1068 struct device **devs = opp_table->required_devs;
1069 struct dev_pm_opp *required_opp;
1070 int index, target, delta, ret;
1071
1072 if (!devs)
1073 return 0;
1074
1075 /* required-opps not fully initialized yet */
1076 if (lazy_linking_pending(opp_table))
1077 return -EBUSY;
1078
1079 /* Scaling up? Set required OPPs in normal order, else reverse */
1080 if (up) {
1081 index = 0;
1082 target = opp_table->required_opp_count;
1083 delta = 1;
1084 } else {
1085 index = opp_table->required_opp_count - 1;
1086 target = -1;
1087 delta = -1;
1088 }
1089
1090 while (index != target) {
1091 if (devs[index]) {
1092 required_opp = opp ? opp->required_opps[index] : NULL;
1093
1094 ret = dev_pm_opp_set_opp(devs[index], required_opp);
1095 if (ret)
1096 return ret;
1097 }
1098
1099 index += delta;
1100 }
1101
1102 return 0;
1103}
1104
1105static int _set_opp_level(struct device *dev, struct opp_table *opp_table,
1106 struct dev_pm_opp *opp)
1107{
1108 unsigned int level = 0;
1109 int ret = 0;
1110
1111 if (opp) {
1112 if (opp->level == OPP_LEVEL_UNSET)
1113 return 0;
1114
1115 level = opp->level;
1116 }
1117
1118 /* Request a new performance state through the device's PM domain. */
1119 ret = dev_pm_domain_set_performance_state(dev, level);
1120 if (ret)
1121 dev_err(dev, "Failed to set performance state %u (%d)\n", level,
1122 ret);
1123
1124 return ret;
1125}
1126
1127static void _find_current_opp(struct device *dev, struct opp_table *opp_table)
1128{
1129 struct dev_pm_opp *opp = ERR_PTR(-ENODEV);
1130 unsigned long freq;
1131
1132 if (!IS_ERR(opp_table->clk)) {
1133 freq = clk_get_rate(opp_table->clk);
1134 opp = _find_freq_ceil(opp_table, &freq);
1135 }
1136
1137 /*
1138 * Unable to find the current OPP ? Pick the first from the list since
1139 * it is in ascending order, otherwise rest of the code will need to
1140 * make special checks to validate current_opp.
1141 */
1142 if (IS_ERR(opp)) {
1143 mutex_lock(&opp_table->lock);
1144 opp = list_first_entry(&opp_table->opp_list, struct dev_pm_opp, node);
1145 dev_pm_opp_get(opp);
1146 mutex_unlock(&opp_table->lock);
1147 }
1148
1149 opp_table->current_opp = opp;
1150}
1151
1152static int _disable_opp_table(struct device *dev, struct opp_table *opp_table)
1153{
1154 int ret;
1155
1156 if (!opp_table->enabled)
1157 return 0;
1158
1159 /*
1160 * Some drivers need to support cases where some platforms may
1161 * have OPP table for the device, while others don't and
1162 * opp_set_rate() just needs to behave like clk_set_rate().
1163 */
1164 if (!_get_opp_count(opp_table))
1165 return 0;
1166
1167 ret = _set_opp_bw(opp_table, NULL, dev);
1168 if (ret)
1169 return ret;
1170
1171 if (opp_table->regulators)
1172 regulator_disable(opp_table->regulators[0]);
1173
1174 ret = _set_opp_level(dev, opp_table, NULL);
1175 if (ret)
1176 goto out;
1177
1178 ret = _set_required_opps(dev, opp_table, NULL, false);
1179
1180out:
1181 opp_table->enabled = false;
1182 return ret;
1183}
1184
1185static int _set_opp(struct device *dev, struct opp_table *opp_table,
1186 struct dev_pm_opp *opp, void *clk_data, bool forced)
1187{
1188 struct dev_pm_opp *old_opp;
1189 int scaling_down, ret;
1190
1191 if (unlikely(!opp))
1192 return _disable_opp_table(dev, opp_table);
1193
1194 /* Find the currently set OPP if we don't know already */
1195 if (unlikely(!opp_table->current_opp))
1196 _find_current_opp(dev, opp_table);
1197
1198 old_opp = opp_table->current_opp;
1199
1200 /* Return early if nothing to do */
1201 if (!forced && old_opp == opp && opp_table->enabled) {
1202 dev_dbg_ratelimited(dev, "%s: OPPs are same, nothing to do\n", __func__);
1203 return 0;
1204 }
1205
1206 dev_dbg(dev, "%s: switching OPP: Freq %lu -> %lu Hz, Level %u -> %u, Bw %u -> %u\n",
1207 __func__, old_opp->rates[0], opp->rates[0], old_opp->level,
1208 opp->level, old_opp->bandwidth ? old_opp->bandwidth[0].peak : 0,
1209 opp->bandwidth ? opp->bandwidth[0].peak : 0);
1210
1211 scaling_down = _opp_compare_key(opp_table, old_opp, opp);
1212 if (scaling_down == -1)
1213 scaling_down = 0;
1214
1215 /* Scaling up? Configure required OPPs before frequency */
1216 if (!scaling_down) {
1217 ret = _set_required_opps(dev, opp_table, opp, true);
1218 if (ret) {
1219 dev_err(dev, "Failed to set required opps: %d\n", ret);
1220 return ret;
1221 }
1222
1223 ret = _set_opp_level(dev, opp_table, opp);
1224 if (ret)
1225 return ret;
1226
1227 ret = _set_opp_bw(opp_table, opp, dev);
1228 if (ret) {
1229 dev_err(dev, "Failed to set bw: %d\n", ret);
1230 return ret;
1231 }
1232
1233 if (opp_table->config_regulators) {
1234 ret = opp_table->config_regulators(dev, old_opp, opp,
1235 opp_table->regulators,
1236 opp_table->regulator_count);
1237 if (ret) {
1238 dev_err(dev, "Failed to set regulator voltages: %d\n",
1239 ret);
1240 return ret;
1241 }
1242 }
1243 }
1244
1245 if (opp_table->config_clks) {
1246 ret = opp_table->config_clks(dev, opp_table, opp, clk_data, scaling_down);
1247 if (ret)
1248 return ret;
1249 }
1250
1251 /* Scaling down? Configure required OPPs after frequency */
1252 if (scaling_down) {
1253 if (opp_table->config_regulators) {
1254 ret = opp_table->config_regulators(dev, old_opp, opp,
1255 opp_table->regulators,
1256 opp_table->regulator_count);
1257 if (ret) {
1258 dev_err(dev, "Failed to set regulator voltages: %d\n",
1259 ret);
1260 return ret;
1261 }
1262 }
1263
1264 ret = _set_opp_bw(opp_table, opp, dev);
1265 if (ret) {
1266 dev_err(dev, "Failed to set bw: %d\n", ret);
1267 return ret;
1268 }
1269
1270 ret = _set_opp_level(dev, opp_table, opp);
1271 if (ret)
1272 return ret;
1273
1274 ret = _set_required_opps(dev, opp_table, opp, false);
1275 if (ret) {
1276 dev_err(dev, "Failed to set required opps: %d\n", ret);
1277 return ret;
1278 }
1279 }
1280
1281 opp_table->enabled = true;
1282 dev_pm_opp_put(old_opp);
1283
1284 /* Make sure current_opp doesn't get freed */
1285 dev_pm_opp_get(opp);
1286 opp_table->current_opp = opp;
1287
1288 return ret;
1289}
1290
1291/**
1292 * dev_pm_opp_set_rate() - Configure new OPP based on frequency
1293 * @dev: device for which we do this operation
1294 * @target_freq: frequency to achieve
1295 *
1296 * This configures the power-supplies to the levels specified by the OPP
1297 * corresponding to the target_freq, and programs the clock to a value <=
1298 * target_freq, as rounded by clk_round_rate(). Device wanting to run at fmax
1299 * provided by the opp, should have already rounded to the target OPP's
1300 * frequency.
1301 */
1302int dev_pm_opp_set_rate(struct device *dev, unsigned long target_freq)
1303{
1304 struct opp_table *opp_table;
1305 unsigned long freq = 0, temp_freq;
1306 struct dev_pm_opp *opp = NULL;
1307 bool forced = false;
1308 int ret;
1309
1310 opp_table = _find_opp_table(dev);
1311 if (IS_ERR(opp_table)) {
1312 dev_err(dev, "%s: device's opp table doesn't exist\n", __func__);
1313 return PTR_ERR(opp_table);
1314 }
1315
1316 if (target_freq) {
1317 /*
1318 * For IO devices which require an OPP on some platforms/SoCs
1319 * while just needing to scale the clock on some others
1320 * we look for empty OPP tables with just a clock handle and
1321 * scale only the clk. This makes dev_pm_opp_set_rate()
1322 * equivalent to a clk_set_rate()
1323 */
1324 if (!_get_opp_count(opp_table)) {
1325 ret = opp_table->config_clks(dev, opp_table, NULL,
1326 &target_freq, false);
1327 goto put_opp_table;
1328 }
1329
1330 freq = clk_round_rate(opp_table->clk, target_freq);
1331 if ((long)freq <= 0)
1332 freq = target_freq;
1333
1334 /*
1335 * The clock driver may support finer resolution of the
1336 * frequencies than the OPP table, don't update the frequency we
1337 * pass to clk_set_rate() here.
1338 */
1339 temp_freq = freq;
1340 opp = _find_freq_ceil(opp_table, &temp_freq);
1341 if (IS_ERR(opp)) {
1342 ret = PTR_ERR(opp);
1343 dev_err(dev, "%s: failed to find OPP for freq %lu (%d)\n",
1344 __func__, freq, ret);
1345 goto put_opp_table;
1346 }
1347
1348 /*
1349 * An OPP entry specifies the highest frequency at which other
1350 * properties of the OPP entry apply. Even if the new OPP is
1351 * same as the old one, we may still reach here for a different
1352 * value of the frequency. In such a case, do not abort but
1353 * configure the hardware to the desired frequency forcefully.
1354 */
1355 forced = opp_table->current_rate_single_clk != freq;
1356 }
1357
1358 ret = _set_opp(dev, opp_table, opp, &freq, forced);
1359
1360 if (freq)
1361 dev_pm_opp_put(opp);
1362
1363put_opp_table:
1364 dev_pm_opp_put_opp_table(opp_table);
1365 return ret;
1366}
1367EXPORT_SYMBOL_GPL(dev_pm_opp_set_rate);
1368
1369/**
1370 * dev_pm_opp_set_opp() - Configure device for OPP
1371 * @dev: device for which we do this operation
1372 * @opp: OPP to set to
1373 *
1374 * This configures the device based on the properties of the OPP passed to this
1375 * routine.
1376 *
1377 * Return: 0 on success, a negative error number otherwise.
1378 */
1379int dev_pm_opp_set_opp(struct device *dev, struct dev_pm_opp *opp)
1380{
1381 struct opp_table *opp_table;
1382 int ret;
1383
1384 opp_table = _find_opp_table(dev);
1385 if (IS_ERR(opp_table)) {
1386 dev_err(dev, "%s: device opp doesn't exist\n", __func__);
1387 return PTR_ERR(opp_table);
1388 }
1389
1390 ret = _set_opp(dev, opp_table, opp, NULL, false);
1391 dev_pm_opp_put_opp_table(opp_table);
1392
1393 return ret;
1394}
1395EXPORT_SYMBOL_GPL(dev_pm_opp_set_opp);
1396
1397/* OPP-dev Helpers */
1398static void _remove_opp_dev(struct opp_device *opp_dev,
1399 struct opp_table *opp_table)
1400{
1401 opp_debug_unregister(opp_dev, opp_table);
1402 list_del(&opp_dev->node);
1403 kfree(opp_dev);
1404}
1405
1406struct opp_device *_add_opp_dev(const struct device *dev,
1407 struct opp_table *opp_table)
1408{
1409 struct opp_device *opp_dev;
1410
1411 opp_dev = kzalloc(sizeof(*opp_dev), GFP_KERNEL);
1412 if (!opp_dev)
1413 return NULL;
1414
1415 /* Initialize opp-dev */
1416 opp_dev->dev = dev;
1417
1418 mutex_lock(&opp_table->lock);
1419 list_add(&opp_dev->node, &opp_table->dev_list);
1420 mutex_unlock(&opp_table->lock);
1421
1422 /* Create debugfs entries for the opp_table */
1423 opp_debug_register(opp_dev, opp_table);
1424
1425 return opp_dev;
1426}
1427
1428static struct opp_table *_allocate_opp_table(struct device *dev, int index)
1429{
1430 struct opp_table *opp_table;
1431 struct opp_device *opp_dev;
1432 int ret;
1433
1434 /*
1435 * Allocate a new OPP table. In the infrequent case where a new
1436 * device is needed to be added, we pay this penalty.
1437 */
1438 opp_table = kzalloc(sizeof(*opp_table), GFP_KERNEL);
1439 if (!opp_table)
1440 return ERR_PTR(-ENOMEM);
1441
1442 mutex_init(&opp_table->lock);
1443 INIT_LIST_HEAD(&opp_table->dev_list);
1444 INIT_LIST_HEAD(&opp_table->lazy);
1445
1446 opp_table->clk = ERR_PTR(-ENODEV);
1447
1448 /* Mark regulator count uninitialized */
1449 opp_table->regulator_count = -1;
1450
1451 opp_dev = _add_opp_dev(dev, opp_table);
1452 if (!opp_dev) {
1453 ret = -ENOMEM;
1454 goto err;
1455 }
1456
1457 _of_init_opp_table(opp_table, dev, index);
1458
1459 /* Find interconnect path(s) for the device */
1460 ret = dev_pm_opp_of_find_icc_paths(dev, opp_table);
1461 if (ret) {
1462 if (ret == -EPROBE_DEFER)
1463 goto remove_opp_dev;
1464
1465 dev_warn(dev, "%s: Error finding interconnect paths: %d\n",
1466 __func__, ret);
1467 }
1468
1469 BLOCKING_INIT_NOTIFIER_HEAD(&opp_table->head);
1470 INIT_LIST_HEAD(&opp_table->opp_list);
1471 kref_init(&opp_table->kref);
1472
1473 return opp_table;
1474
1475remove_opp_dev:
1476 _of_clear_opp_table(opp_table);
1477 _remove_opp_dev(opp_dev, opp_table);
1478 mutex_destroy(&opp_table->lock);
1479err:
1480 kfree(opp_table);
1481 return ERR_PTR(ret);
1482}
1483
1484void _get_opp_table_kref(struct opp_table *opp_table)
1485{
1486 kref_get(&opp_table->kref);
1487}
1488
1489static struct opp_table *_update_opp_table_clk(struct device *dev,
1490 struct opp_table *opp_table,
1491 bool getclk)
1492{
1493 int ret;
1494
1495 /*
1496 * Return early if we don't need to get clk or we have already done it
1497 * earlier.
1498 */
1499 if (!getclk || IS_ERR(opp_table) || !IS_ERR(opp_table->clk) ||
1500 opp_table->clks)
1501 return opp_table;
1502
1503 /* Find clk for the device */
1504 opp_table->clk = clk_get(dev, NULL);
1505
1506 ret = PTR_ERR_OR_ZERO(opp_table->clk);
1507 if (!ret) {
1508 opp_table->config_clks = _opp_config_clk_single;
1509 opp_table->clk_count = 1;
1510 return opp_table;
1511 }
1512
1513 if (ret == -ENOENT) {
1514 /*
1515 * There are few platforms which don't want the OPP core to
1516 * manage device's clock settings. In such cases neither the
1517 * platform provides the clks explicitly to us, nor the DT
1518 * contains a valid clk entry. The OPP nodes in DT may still
1519 * contain "opp-hz" property though, which we need to parse and
1520 * allow the platform to find an OPP based on freq later on.
1521 *
1522 * This is a simple solution to take care of such corner cases,
1523 * i.e. make the clk_count 1, which lets us allocate space for
1524 * frequency in opp->rates and also parse the entries in DT.
1525 */
1526 opp_table->clk_count = 1;
1527
1528 dev_dbg(dev, "%s: Couldn't find clock: %d\n", __func__, ret);
1529 return opp_table;
1530 }
1531
1532 dev_pm_opp_put_opp_table(opp_table);
1533 dev_err_probe(dev, ret, "Couldn't find clock\n");
1534
1535 return ERR_PTR(ret);
1536}
1537
1538/*
1539 * We need to make sure that the OPP table for a device doesn't get added twice,
1540 * if this routine gets called in parallel with the same device pointer.
1541 *
1542 * The simplest way to enforce that is to perform everything (find existing
1543 * table and if not found, create a new one) under the opp_table_lock, so only
1544 * one creator gets access to the same. But that expands the critical section
1545 * under the lock and may end up causing circular dependencies with frameworks
1546 * like debugfs, interconnect or clock framework as they may be direct or
1547 * indirect users of OPP core.
1548 *
1549 * And for that reason we have to go for a bit tricky implementation here, which
1550 * uses the opp_tables_busy flag to indicate if another creator is in the middle
1551 * of adding an OPP table and others should wait for it to finish.
1552 */
1553struct opp_table *_add_opp_table_indexed(struct device *dev, int index,
1554 bool getclk)
1555{
1556 struct opp_table *opp_table;
1557
1558again:
1559 mutex_lock(&opp_table_lock);
1560
1561 opp_table = _find_opp_table_unlocked(dev);
1562 if (!IS_ERR(opp_table))
1563 goto unlock;
1564
1565 /*
1566 * The opp_tables list or an OPP table's dev_list is getting updated by
1567 * another user, wait for it to finish.
1568 */
1569 if (unlikely(opp_tables_busy)) {
1570 mutex_unlock(&opp_table_lock);
1571 cpu_relax();
1572 goto again;
1573 }
1574
1575 opp_tables_busy = true;
1576 opp_table = _managed_opp(dev, index);
1577
1578 /* Drop the lock to reduce the size of critical section */
1579 mutex_unlock(&opp_table_lock);
1580
1581 if (opp_table) {
1582 if (!_add_opp_dev(dev, opp_table)) {
1583 dev_pm_opp_put_opp_table(opp_table);
1584 opp_table = ERR_PTR(-ENOMEM);
1585 }
1586
1587 mutex_lock(&opp_table_lock);
1588 } else {
1589 opp_table = _allocate_opp_table(dev, index);
1590
1591 mutex_lock(&opp_table_lock);
1592 if (!IS_ERR(opp_table))
1593 list_add(&opp_table->node, &opp_tables);
1594 }
1595
1596 opp_tables_busy = false;
1597
1598unlock:
1599 mutex_unlock(&opp_table_lock);
1600
1601 return _update_opp_table_clk(dev, opp_table, getclk);
1602}
1603
1604static struct opp_table *_add_opp_table(struct device *dev, bool getclk)
1605{
1606 return _add_opp_table_indexed(dev, 0, getclk);
1607}
1608
1609struct opp_table *dev_pm_opp_get_opp_table(struct device *dev)
1610{
1611 return _find_opp_table(dev);
1612}
1613EXPORT_SYMBOL_GPL(dev_pm_opp_get_opp_table);
1614
1615static void _opp_table_kref_release(struct kref *kref)
1616{
1617 struct opp_table *opp_table = container_of(kref, struct opp_table, kref);
1618 struct opp_device *opp_dev, *temp;
1619 int i;
1620
1621 /* Drop the lock as soon as we can */
1622 list_del(&opp_table->node);
1623 mutex_unlock(&opp_table_lock);
1624
1625 if (opp_table->current_opp)
1626 dev_pm_opp_put(opp_table->current_opp);
1627
1628 _of_clear_opp_table(opp_table);
1629
1630 /* Release automatically acquired single clk */
1631 if (!IS_ERR(opp_table->clk))
1632 clk_put(opp_table->clk);
1633
1634 if (opp_table->paths) {
1635 for (i = 0; i < opp_table->path_count; i++)
1636 icc_put(opp_table->paths[i]);
1637 kfree(opp_table->paths);
1638 }
1639
1640 WARN_ON(!list_empty(&opp_table->opp_list));
1641
1642 list_for_each_entry_safe(opp_dev, temp, &opp_table->dev_list, node)
1643 _remove_opp_dev(opp_dev, opp_table);
1644
1645 mutex_destroy(&opp_table->lock);
1646 kfree(opp_table);
1647}
1648
1649void dev_pm_opp_put_opp_table(struct opp_table *opp_table)
1650{
1651 kref_put_mutex(&opp_table->kref, _opp_table_kref_release,
1652 &opp_table_lock);
1653}
1654EXPORT_SYMBOL_GPL(dev_pm_opp_put_opp_table);
1655
1656void _opp_free(struct dev_pm_opp *opp)
1657{
1658 kfree(opp);
1659}
1660
1661static void _opp_kref_release(struct kref *kref)
1662{
1663 struct dev_pm_opp *opp = container_of(kref, struct dev_pm_opp, kref);
1664 struct opp_table *opp_table = opp->opp_table;
1665
1666 list_del(&opp->node);
1667 mutex_unlock(&opp_table->lock);
1668
1669 /*
1670 * Notify the changes in the availability of the operable
1671 * frequency/voltage list.
1672 */
1673 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_REMOVE, opp);
1674 _of_clear_opp(opp_table, opp);
1675 opp_debug_remove_one(opp);
1676 kfree(opp);
1677}
1678
1679void dev_pm_opp_get(struct dev_pm_opp *opp)
1680{
1681 kref_get(&opp->kref);
1682}
1683
1684void dev_pm_opp_put(struct dev_pm_opp *opp)
1685{
1686 kref_put_mutex(&opp->kref, _opp_kref_release, &opp->opp_table->lock);
1687}
1688EXPORT_SYMBOL_GPL(dev_pm_opp_put);
1689
1690/**
1691 * dev_pm_opp_remove() - Remove an OPP from OPP table
1692 * @dev: device for which we do this operation
1693 * @freq: OPP to remove with matching 'freq'
1694 *
1695 * This function removes an opp from the opp table.
1696 */
1697void dev_pm_opp_remove(struct device *dev, unsigned long freq)
1698{
1699 struct dev_pm_opp *opp = NULL, *iter;
1700 struct opp_table *opp_table;
1701
1702 opp_table = _find_opp_table(dev);
1703 if (IS_ERR(opp_table))
1704 return;
1705
1706 if (!assert_single_clk(opp_table))
1707 goto put_table;
1708
1709 mutex_lock(&opp_table->lock);
1710
1711 list_for_each_entry(iter, &opp_table->opp_list, node) {
1712 if (iter->rates[0] == freq) {
1713 opp = iter;
1714 break;
1715 }
1716 }
1717
1718 mutex_unlock(&opp_table->lock);
1719
1720 if (opp) {
1721 dev_pm_opp_put(opp);
1722
1723 /* Drop the reference taken by dev_pm_opp_add() */
1724 dev_pm_opp_put_opp_table(opp_table);
1725 } else {
1726 dev_warn(dev, "%s: Couldn't find OPP with freq: %lu\n",
1727 __func__, freq);
1728 }
1729
1730put_table:
1731 /* Drop the reference taken by _find_opp_table() */
1732 dev_pm_opp_put_opp_table(opp_table);
1733}
1734EXPORT_SYMBOL_GPL(dev_pm_opp_remove);
1735
1736static struct dev_pm_opp *_opp_get_next(struct opp_table *opp_table,
1737 bool dynamic)
1738{
1739 struct dev_pm_opp *opp = NULL, *temp;
1740
1741 mutex_lock(&opp_table->lock);
1742 list_for_each_entry(temp, &opp_table->opp_list, node) {
1743 /*
1744 * Refcount must be dropped only once for each OPP by OPP core,
1745 * do that with help of "removed" flag.
1746 */
1747 if (!temp->removed && dynamic == temp->dynamic) {
1748 opp = temp;
1749 break;
1750 }
1751 }
1752
1753 mutex_unlock(&opp_table->lock);
1754 return opp;
1755}
1756
1757/*
1758 * Can't call dev_pm_opp_put() from under the lock as debugfs removal needs to
1759 * happen lock less to avoid circular dependency issues. This routine must be
1760 * called without the opp_table->lock held.
1761 */
1762static void _opp_remove_all(struct opp_table *opp_table, bool dynamic)
1763{
1764 struct dev_pm_opp *opp;
1765
1766 while ((opp = _opp_get_next(opp_table, dynamic))) {
1767 opp->removed = true;
1768 dev_pm_opp_put(opp);
1769
1770 /* Drop the references taken by dev_pm_opp_add() */
1771 if (dynamic)
1772 dev_pm_opp_put_opp_table(opp_table);
1773 }
1774}
1775
1776bool _opp_remove_all_static(struct opp_table *opp_table)
1777{
1778 mutex_lock(&opp_table->lock);
1779
1780 if (!opp_table->parsed_static_opps) {
1781 mutex_unlock(&opp_table->lock);
1782 return false;
1783 }
1784
1785 if (--opp_table->parsed_static_opps) {
1786 mutex_unlock(&opp_table->lock);
1787 return true;
1788 }
1789
1790 mutex_unlock(&opp_table->lock);
1791
1792 _opp_remove_all(opp_table, false);
1793 return true;
1794}
1795
1796/**
1797 * dev_pm_opp_remove_all_dynamic() - Remove all dynamically created OPPs
1798 * @dev: device for which we do this operation
1799 *
1800 * This function removes all dynamically created OPPs from the opp table.
1801 */
1802void dev_pm_opp_remove_all_dynamic(struct device *dev)
1803{
1804 struct opp_table *opp_table;
1805
1806 opp_table = _find_opp_table(dev);
1807 if (IS_ERR(opp_table))
1808 return;
1809
1810 _opp_remove_all(opp_table, true);
1811
1812 /* Drop the reference taken by _find_opp_table() */
1813 dev_pm_opp_put_opp_table(opp_table);
1814}
1815EXPORT_SYMBOL_GPL(dev_pm_opp_remove_all_dynamic);
1816
1817struct dev_pm_opp *_opp_allocate(struct opp_table *opp_table)
1818{
1819 struct dev_pm_opp *opp;
1820 int supply_count, supply_size, icc_size, clk_size;
1821
1822 /* Allocate space for at least one supply */
1823 supply_count = opp_table->regulator_count > 0 ?
1824 opp_table->regulator_count : 1;
1825 supply_size = sizeof(*opp->supplies) * supply_count;
1826 clk_size = sizeof(*opp->rates) * opp_table->clk_count;
1827 icc_size = sizeof(*opp->bandwidth) * opp_table->path_count;
1828
1829 /* allocate new OPP node and supplies structures */
1830 opp = kzalloc(sizeof(*opp) + supply_size + clk_size + icc_size, GFP_KERNEL);
1831 if (!opp)
1832 return NULL;
1833
1834 /* Put the supplies, bw and clock at the end of the OPP structure */
1835 opp->supplies = (struct dev_pm_opp_supply *)(opp + 1);
1836
1837 opp->rates = (unsigned long *)(opp->supplies + supply_count);
1838
1839 if (icc_size)
1840 opp->bandwidth = (struct dev_pm_opp_icc_bw *)(opp->rates + opp_table->clk_count);
1841
1842 INIT_LIST_HEAD(&opp->node);
1843
1844 opp->level = OPP_LEVEL_UNSET;
1845
1846 return opp;
1847}
1848
1849static bool _opp_supported_by_regulators(struct dev_pm_opp *opp,
1850 struct opp_table *opp_table)
1851{
1852 struct regulator *reg;
1853 int i;
1854
1855 if (!opp_table->regulators)
1856 return true;
1857
1858 for (i = 0; i < opp_table->regulator_count; i++) {
1859 reg = opp_table->regulators[i];
1860
1861 if (!regulator_is_supported_voltage(reg,
1862 opp->supplies[i].u_volt_min,
1863 opp->supplies[i].u_volt_max)) {
1864 pr_warn("%s: OPP minuV: %lu maxuV: %lu, not supported by regulator\n",
1865 __func__, opp->supplies[i].u_volt_min,
1866 opp->supplies[i].u_volt_max);
1867 return false;
1868 }
1869 }
1870
1871 return true;
1872}
1873
1874static int _opp_compare_rate(struct opp_table *opp_table,
1875 struct dev_pm_opp *opp1, struct dev_pm_opp *opp2)
1876{
1877 int i;
1878
1879 for (i = 0; i < opp_table->clk_count; i++) {
1880 if (opp1->rates[i] != opp2->rates[i])
1881 return opp1->rates[i] < opp2->rates[i] ? -1 : 1;
1882 }
1883
1884 /* Same rates for both OPPs */
1885 return 0;
1886}
1887
1888static int _opp_compare_bw(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1889 struct dev_pm_opp *opp2)
1890{
1891 int i;
1892
1893 for (i = 0; i < opp_table->path_count; i++) {
1894 if (opp1->bandwidth[i].peak != opp2->bandwidth[i].peak)
1895 return opp1->bandwidth[i].peak < opp2->bandwidth[i].peak ? -1 : 1;
1896 }
1897
1898 /* Same bw for both OPPs */
1899 return 0;
1900}
1901
1902/*
1903 * Returns
1904 * 0: opp1 == opp2
1905 * 1: opp1 > opp2
1906 * -1: opp1 < opp2
1907 */
1908int _opp_compare_key(struct opp_table *opp_table, struct dev_pm_opp *opp1,
1909 struct dev_pm_opp *opp2)
1910{
1911 int ret;
1912
1913 ret = _opp_compare_rate(opp_table, opp1, opp2);
1914 if (ret)
1915 return ret;
1916
1917 ret = _opp_compare_bw(opp_table, opp1, opp2);
1918 if (ret)
1919 return ret;
1920
1921 if (opp1->level != opp2->level)
1922 return opp1->level < opp2->level ? -1 : 1;
1923
1924 /* Duplicate OPPs */
1925 return 0;
1926}
1927
1928static int _opp_is_duplicate(struct device *dev, struct dev_pm_opp *new_opp,
1929 struct opp_table *opp_table,
1930 struct list_head **head)
1931{
1932 struct dev_pm_opp *opp;
1933 int opp_cmp;
1934
1935 /*
1936 * Insert new OPP in order of increasing frequency and discard if
1937 * already present.
1938 *
1939 * Need to use &opp_table->opp_list in the condition part of the 'for'
1940 * loop, don't replace it with head otherwise it will become an infinite
1941 * loop.
1942 */
1943 list_for_each_entry(opp, &opp_table->opp_list, node) {
1944 opp_cmp = _opp_compare_key(opp_table, new_opp, opp);
1945 if (opp_cmp > 0) {
1946 *head = &opp->node;
1947 continue;
1948 }
1949
1950 if (opp_cmp < 0)
1951 return 0;
1952
1953 /* Duplicate OPPs */
1954 dev_warn(dev, "%s: duplicate OPPs detected. Existing: freq: %lu, volt: %lu, enabled: %d. New: freq: %lu, volt: %lu, enabled: %d\n",
1955 __func__, opp->rates[0], opp->supplies[0].u_volt,
1956 opp->available, new_opp->rates[0],
1957 new_opp->supplies[0].u_volt, new_opp->available);
1958
1959 /* Should we compare voltages for all regulators here ? */
1960 return opp->available &&
1961 new_opp->supplies[0].u_volt == opp->supplies[0].u_volt ? -EBUSY : -EEXIST;
1962 }
1963
1964 return 0;
1965}
1966
1967void _required_opps_available(struct dev_pm_opp *opp, int count)
1968{
1969 int i;
1970
1971 for (i = 0; i < count; i++) {
1972 if (opp->required_opps[i]->available)
1973 continue;
1974
1975 opp->available = false;
1976 pr_warn("%s: OPP not supported by required OPP %pOF (%lu)\n",
1977 __func__, opp->required_opps[i]->np, opp->rates[0]);
1978 return;
1979 }
1980}
1981
1982/*
1983 * Returns:
1984 * 0: On success. And appropriate error message for duplicate OPPs.
1985 * -EBUSY: For OPP with same freq/volt and is available. The callers of
1986 * _opp_add() must return 0 if they receive -EBUSY from it. This is to make
1987 * sure we don't print error messages unnecessarily if different parts of
1988 * kernel try to initialize the OPP table.
1989 * -EEXIST: For OPP with same freq but different volt or is unavailable. This
1990 * should be considered an error by the callers of _opp_add().
1991 */
1992int _opp_add(struct device *dev, struct dev_pm_opp *new_opp,
1993 struct opp_table *opp_table)
1994{
1995 struct list_head *head;
1996 int ret;
1997
1998 mutex_lock(&opp_table->lock);
1999 head = &opp_table->opp_list;
2000
2001 ret = _opp_is_duplicate(dev, new_opp, opp_table, &head);
2002 if (ret) {
2003 mutex_unlock(&opp_table->lock);
2004 return ret;
2005 }
2006
2007 list_add(&new_opp->node, head);
2008 mutex_unlock(&opp_table->lock);
2009
2010 new_opp->opp_table = opp_table;
2011 kref_init(&new_opp->kref);
2012
2013 opp_debug_create_one(new_opp, opp_table);
2014
2015 if (!_opp_supported_by_regulators(new_opp, opp_table)) {
2016 new_opp->available = false;
2017 dev_warn(dev, "%s: OPP not supported by regulators (%lu)\n",
2018 __func__, new_opp->rates[0]);
2019 }
2020
2021 /* required-opps not fully initialized yet */
2022 if (lazy_linking_pending(opp_table))
2023 return 0;
2024
2025 _required_opps_available(new_opp, opp_table->required_opp_count);
2026
2027 return 0;
2028}
2029
2030/**
2031 * _opp_add_v1() - Allocate a OPP based on v1 bindings.
2032 * @opp_table: OPP table
2033 * @dev: device for which we do this operation
2034 * @data: The OPP data for the OPP to add
2035 * @dynamic: Dynamically added OPPs.
2036 *
2037 * This function adds an opp definition to the opp table and returns status.
2038 * The opp is made available by default and it can be controlled using
2039 * dev_pm_opp_enable/disable functions and may be removed by dev_pm_opp_remove.
2040 *
2041 * NOTE: "dynamic" parameter impacts OPPs added by the dev_pm_opp_of_add_table
2042 * and freed by dev_pm_opp_of_remove_table.
2043 *
2044 * Return:
2045 * 0 On success OR
2046 * Duplicate OPPs (both freq and volt are same) and opp->available
2047 * -EEXIST Freq are same and volt are different OR
2048 * Duplicate OPPs (both freq and volt are same) and !opp->available
2049 * -ENOMEM Memory allocation failure
2050 */
2051int _opp_add_v1(struct opp_table *opp_table, struct device *dev,
2052 struct dev_pm_opp_data *data, bool dynamic)
2053{
2054 struct dev_pm_opp *new_opp;
2055 unsigned long tol, u_volt = data->u_volt;
2056 int ret;
2057
2058 if (!assert_single_clk(opp_table))
2059 return -EINVAL;
2060
2061 new_opp = _opp_allocate(opp_table);
2062 if (!new_opp)
2063 return -ENOMEM;
2064
2065 /* populate the opp table */
2066 new_opp->rates[0] = data->freq;
2067 new_opp->level = data->level;
2068 tol = u_volt * opp_table->voltage_tolerance_v1 / 100;
2069 new_opp->supplies[0].u_volt = u_volt;
2070 new_opp->supplies[0].u_volt_min = u_volt - tol;
2071 new_opp->supplies[0].u_volt_max = u_volt + tol;
2072 new_opp->available = true;
2073 new_opp->dynamic = dynamic;
2074
2075 ret = _opp_add(dev, new_opp, opp_table);
2076 if (ret) {
2077 /* Don't return error for duplicate OPPs */
2078 if (ret == -EBUSY)
2079 ret = 0;
2080 goto free_opp;
2081 }
2082
2083 /*
2084 * Notify the changes in the availability of the operable
2085 * frequency/voltage list.
2086 */
2087 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADD, new_opp);
2088 return 0;
2089
2090free_opp:
2091 _opp_free(new_opp);
2092
2093 return ret;
2094}
2095
2096/*
2097 * This is required only for the V2 bindings, and it enables a platform to
2098 * specify the hierarchy of versions it supports. OPP layer will then enable
2099 * OPPs, which are available for those versions, based on its 'opp-supported-hw'
2100 * property.
2101 */
2102static int _opp_set_supported_hw(struct opp_table *opp_table,
2103 const u32 *versions, unsigned int count)
2104{
2105 /* Another CPU that shares the OPP table has set the property ? */
2106 if (opp_table->supported_hw)
2107 return 0;
2108
2109 opp_table->supported_hw = kmemdup(versions, count * sizeof(*versions),
2110 GFP_KERNEL);
2111 if (!opp_table->supported_hw)
2112 return -ENOMEM;
2113
2114 opp_table->supported_hw_count = count;
2115
2116 return 0;
2117}
2118
2119static void _opp_put_supported_hw(struct opp_table *opp_table)
2120{
2121 if (opp_table->supported_hw) {
2122 kfree(opp_table->supported_hw);
2123 opp_table->supported_hw = NULL;
2124 opp_table->supported_hw_count = 0;
2125 }
2126}
2127
2128/*
2129 * This is required only for the V2 bindings, and it enables a platform to
2130 * specify the extn to be used for certain property names. The properties to
2131 * which the extension will apply are opp-microvolt and opp-microamp. OPP core
2132 * should postfix the property name with -<name> while looking for them.
2133 */
2134static int _opp_set_prop_name(struct opp_table *opp_table, const char *name)
2135{
2136 /* Another CPU that shares the OPP table has set the property ? */
2137 if (!opp_table->prop_name) {
2138 opp_table->prop_name = kstrdup(name, GFP_KERNEL);
2139 if (!opp_table->prop_name)
2140 return -ENOMEM;
2141 }
2142
2143 return 0;
2144}
2145
2146static void _opp_put_prop_name(struct opp_table *opp_table)
2147{
2148 if (opp_table->prop_name) {
2149 kfree(opp_table->prop_name);
2150 opp_table->prop_name = NULL;
2151 }
2152}
2153
2154/*
2155 * In order to support OPP switching, OPP layer needs to know the name of the
2156 * device's regulators, as the core would be required to switch voltages as
2157 * well.
2158 *
2159 * This must be called before any OPPs are initialized for the device.
2160 */
2161static int _opp_set_regulators(struct opp_table *opp_table, struct device *dev,
2162 const char * const names[])
2163{
2164 const char * const *temp = names;
2165 struct regulator *reg;
2166 int count = 0, ret, i;
2167
2168 /* Count number of regulators */
2169 while (*temp++)
2170 count++;
2171
2172 if (!count)
2173 return -EINVAL;
2174
2175 /* Another CPU that shares the OPP table has set the regulators ? */
2176 if (opp_table->regulators)
2177 return 0;
2178
2179 opp_table->regulators = kmalloc_array(count,
2180 sizeof(*opp_table->regulators),
2181 GFP_KERNEL);
2182 if (!opp_table->regulators)
2183 return -ENOMEM;
2184
2185 for (i = 0; i < count; i++) {
2186 reg = regulator_get_optional(dev, names[i]);
2187 if (IS_ERR(reg)) {
2188 ret = dev_err_probe(dev, PTR_ERR(reg),
2189 "%s: no regulator (%s) found\n",
2190 __func__, names[i]);
2191 goto free_regulators;
2192 }
2193
2194 opp_table->regulators[i] = reg;
2195 }
2196
2197 opp_table->regulator_count = count;
2198
2199 /* Set generic config_regulators() for single regulators here */
2200 if (count == 1)
2201 opp_table->config_regulators = _opp_config_regulator_single;
2202
2203 return 0;
2204
2205free_regulators:
2206 while (i != 0)
2207 regulator_put(opp_table->regulators[--i]);
2208
2209 kfree(opp_table->regulators);
2210 opp_table->regulators = NULL;
2211 opp_table->regulator_count = -1;
2212
2213 return ret;
2214}
2215
2216static void _opp_put_regulators(struct opp_table *opp_table)
2217{
2218 int i;
2219
2220 if (!opp_table->regulators)
2221 return;
2222
2223 if (opp_table->enabled) {
2224 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2225 regulator_disable(opp_table->regulators[i]);
2226 }
2227
2228 for (i = opp_table->regulator_count - 1; i >= 0; i--)
2229 regulator_put(opp_table->regulators[i]);
2230
2231 kfree(opp_table->regulators);
2232 opp_table->regulators = NULL;
2233 opp_table->regulator_count = -1;
2234}
2235
2236static void _put_clks(struct opp_table *opp_table, int count)
2237{
2238 int i;
2239
2240 for (i = count - 1; i >= 0; i--)
2241 clk_put(opp_table->clks[i]);
2242
2243 kfree(opp_table->clks);
2244 opp_table->clks = NULL;
2245}
2246
2247/*
2248 * In order to support OPP switching, OPP layer needs to get pointers to the
2249 * clocks for the device. Simple cases work fine without using this routine
2250 * (i.e. by passing connection-id as NULL), but for a device with multiple
2251 * clocks available, the OPP core needs to know the exact names of the clks to
2252 * use.
2253 *
2254 * This must be called before any OPPs are initialized for the device.
2255 */
2256static int _opp_set_clknames(struct opp_table *opp_table, struct device *dev,
2257 const char * const names[],
2258 config_clks_t config_clks)
2259{
2260 const char * const *temp = names;
2261 int count = 0, ret, i;
2262 struct clk *clk;
2263
2264 /* Count number of clks */
2265 while (*temp++)
2266 count++;
2267
2268 /*
2269 * This is a special case where we have a single clock, whose connection
2270 * id name is NULL, i.e. first two entries are NULL in the array.
2271 */
2272 if (!count && !names[1])
2273 count = 1;
2274
2275 /* Fail early for invalid configurations */
2276 if (!count || (!config_clks && count > 1))
2277 return -EINVAL;
2278
2279 /* Another CPU that shares the OPP table has set the clkname ? */
2280 if (opp_table->clks)
2281 return 0;
2282
2283 opp_table->clks = kmalloc_array(count, sizeof(*opp_table->clks),
2284 GFP_KERNEL);
2285 if (!opp_table->clks)
2286 return -ENOMEM;
2287
2288 /* Find clks for the device */
2289 for (i = 0; i < count; i++) {
2290 clk = clk_get(dev, names[i]);
2291 if (IS_ERR(clk)) {
2292 ret = dev_err_probe(dev, PTR_ERR(clk),
2293 "%s: Couldn't find clock with name: %s\n",
2294 __func__, names[i]);
2295 goto free_clks;
2296 }
2297
2298 opp_table->clks[i] = clk;
2299 }
2300
2301 opp_table->clk_count = count;
2302 opp_table->config_clks = config_clks;
2303
2304 /* Set generic single clk set here */
2305 if (count == 1) {
2306 if (!opp_table->config_clks)
2307 opp_table->config_clks = _opp_config_clk_single;
2308
2309 /*
2310 * We could have just dropped the "clk" field and used "clks"
2311 * everywhere. Instead we kept the "clk" field around for
2312 * following reasons:
2313 *
2314 * - avoiding clks[0] everywhere else.
2315 * - not running single clk helpers for multiple clk usecase by
2316 * mistake.
2317 *
2318 * Since this is single-clk case, just update the clk pointer
2319 * too.
2320 */
2321 opp_table->clk = opp_table->clks[0];
2322 }
2323
2324 return 0;
2325
2326free_clks:
2327 _put_clks(opp_table, i);
2328 return ret;
2329}
2330
2331static void _opp_put_clknames(struct opp_table *opp_table)
2332{
2333 if (!opp_table->clks)
2334 return;
2335
2336 opp_table->config_clks = NULL;
2337 opp_table->clk = ERR_PTR(-ENODEV);
2338
2339 _put_clks(opp_table, opp_table->clk_count);
2340}
2341
2342/*
2343 * This is useful to support platforms with multiple regulators per device.
2344 *
2345 * This must be called before any OPPs are initialized for the device.
2346 */
2347static int _opp_set_config_regulators_helper(struct opp_table *opp_table,
2348 struct device *dev, config_regulators_t config_regulators)
2349{
2350 /* Another CPU that shares the OPP table has set the helper ? */
2351 if (!opp_table->config_regulators)
2352 opp_table->config_regulators = config_regulators;
2353
2354 return 0;
2355}
2356
2357static void _opp_put_config_regulators_helper(struct opp_table *opp_table)
2358{
2359 if (opp_table->config_regulators)
2360 opp_table->config_regulators = NULL;
2361}
2362
2363static void _opp_detach_genpd(struct opp_table *opp_table)
2364{
2365 int index;
2366
2367 for (index = 0; index < opp_table->required_opp_count; index++) {
2368 if (!opp_table->required_devs[index])
2369 continue;
2370
2371 dev_pm_domain_detach(opp_table->required_devs[index], false);
2372 opp_table->required_devs[index] = NULL;
2373 }
2374}
2375
2376/*
2377 * Multiple generic power domains for a device are supported with the help of
2378 * virtual genpd devices, which are created for each consumer device - genpd
2379 * pair. These are the device structures which are attached to the power domain
2380 * and are required by the OPP core to set the performance state of the genpd.
2381 * The same API also works for the case where single genpd is available and so
2382 * we don't need to support that separately.
2383 *
2384 * This helper will normally be called by the consumer driver of the device
2385 * "dev", as only that has details of the genpd names.
2386 *
2387 * This helper needs to be called once with a list of all genpd to attach.
2388 * Otherwise the original device structure will be used instead by the OPP core.
2389 *
2390 * The order of entries in the names array must match the order in which
2391 * "required-opps" are added in DT.
2392 */
2393static int _opp_attach_genpd(struct opp_table *opp_table, struct device *dev,
2394 const char * const *names, struct device ***virt_devs)
2395{
2396 struct device *virt_dev;
2397 int index = 0, ret = -EINVAL;
2398 const char * const *name = names;
2399
2400 if (!opp_table->required_devs) {
2401 dev_err(dev, "Required OPPs not available, can't attach genpd\n");
2402 return -EINVAL;
2403 }
2404
2405 /* Genpd core takes care of propagation to parent genpd */
2406 if (opp_table->is_genpd) {
2407 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2408 return -EOPNOTSUPP;
2409 }
2410
2411 /* Checking only the first one is enough ? */
2412 if (opp_table->required_devs[0])
2413 return 0;
2414
2415 while (*name) {
2416 if (index >= opp_table->required_opp_count) {
2417 dev_err(dev, "Index can't be greater than required-opp-count - 1, %s (%d : %d)\n",
2418 *name, opp_table->required_opp_count, index);
2419 goto err;
2420 }
2421
2422 virt_dev = dev_pm_domain_attach_by_name(dev, *name);
2423 if (IS_ERR_OR_NULL(virt_dev)) {
2424 ret = virt_dev ? PTR_ERR(virt_dev) : -ENODEV;
2425 dev_err(dev, "Couldn't attach to pm_domain: %d\n", ret);
2426 goto err;
2427 }
2428
2429 /*
2430 * Add the virtual genpd device as a user of the OPP table, so
2431 * we can call dev_pm_opp_set_opp() on it directly.
2432 *
2433 * This will be automatically removed when the OPP table is
2434 * removed, don't need to handle that here.
2435 */
2436 if (!_add_opp_dev(virt_dev, opp_table->required_opp_tables[index])) {
2437 ret = -ENOMEM;
2438 goto err;
2439 }
2440
2441 opp_table->required_devs[index] = virt_dev;
2442 index++;
2443 name++;
2444 }
2445
2446 if (virt_devs)
2447 *virt_devs = opp_table->required_devs;
2448
2449 return 0;
2450
2451err:
2452 _opp_detach_genpd(opp_table);
2453 return ret;
2454
2455}
2456
2457static int _opp_set_required_devs(struct opp_table *opp_table,
2458 struct device *dev,
2459 struct device **required_devs)
2460{
2461 int i;
2462
2463 if (!opp_table->required_devs) {
2464 dev_err(dev, "Required OPPs not available, can't set required devs\n");
2465 return -EINVAL;
2466 }
2467
2468 /* Another device that shares the OPP table has set the required devs ? */
2469 if (opp_table->required_devs[0])
2470 return 0;
2471
2472 for (i = 0; i < opp_table->required_opp_count; i++) {
2473 /* Genpd core takes care of propagation to parent genpd */
2474 if (required_devs[i] && opp_table->is_genpd &&
2475 opp_table->required_opp_tables[i]->is_genpd) {
2476 dev_err(dev, "%s: Operation not supported for genpds\n", __func__);
2477 return -EOPNOTSUPP;
2478 }
2479
2480 opp_table->required_devs[i] = required_devs[i];
2481 }
2482
2483 return 0;
2484}
2485
2486static void _opp_put_required_devs(struct opp_table *opp_table)
2487{
2488 int i;
2489
2490 for (i = 0; i < opp_table->required_opp_count; i++)
2491 opp_table->required_devs[i] = NULL;
2492}
2493
2494static void _opp_clear_config(struct opp_config_data *data)
2495{
2496 if (data->flags & OPP_CONFIG_REQUIRED_DEVS)
2497 _opp_put_required_devs(data->opp_table);
2498 else if (data->flags & OPP_CONFIG_GENPD)
2499 _opp_detach_genpd(data->opp_table);
2500
2501 if (data->flags & OPP_CONFIG_REGULATOR)
2502 _opp_put_regulators(data->opp_table);
2503 if (data->flags & OPP_CONFIG_SUPPORTED_HW)
2504 _opp_put_supported_hw(data->opp_table);
2505 if (data->flags & OPP_CONFIG_REGULATOR_HELPER)
2506 _opp_put_config_regulators_helper(data->opp_table);
2507 if (data->flags & OPP_CONFIG_PROP_NAME)
2508 _opp_put_prop_name(data->opp_table);
2509 if (data->flags & OPP_CONFIG_CLK)
2510 _opp_put_clknames(data->opp_table);
2511
2512 dev_pm_opp_put_opp_table(data->opp_table);
2513 kfree(data);
2514}
2515
2516/**
2517 * dev_pm_opp_set_config() - Set OPP configuration for the device.
2518 * @dev: Device for which configuration is being set.
2519 * @config: OPP configuration.
2520 *
2521 * This allows all device OPP configurations to be performed at once.
2522 *
2523 * This must be called before any OPPs are initialized for the device. This may
2524 * be called multiple times for the same OPP table, for example once for each
2525 * CPU that share the same table. This must be balanced by the same number of
2526 * calls to dev_pm_opp_clear_config() in order to free the OPP table properly.
2527 *
2528 * This returns a token to the caller, which must be passed to
2529 * dev_pm_opp_clear_config() to free the resources later. The value of the
2530 * returned token will be >= 1 for success and negative for errors. The minimum
2531 * value of 1 is chosen here to make it easy for callers to manage the resource.
2532 */
2533int dev_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2534{
2535 struct opp_table *opp_table;
2536 struct opp_config_data *data;
2537 unsigned int id;
2538 int ret;
2539
2540 data = kmalloc(sizeof(*data), GFP_KERNEL);
2541 if (!data)
2542 return -ENOMEM;
2543
2544 opp_table = _add_opp_table(dev, false);
2545 if (IS_ERR(opp_table)) {
2546 kfree(data);
2547 return PTR_ERR(opp_table);
2548 }
2549
2550 data->opp_table = opp_table;
2551 data->flags = 0;
2552
2553 /* This should be called before OPPs are initialized */
2554 if (WARN_ON(!list_empty(&opp_table->opp_list))) {
2555 ret = -EBUSY;
2556 goto err;
2557 }
2558
2559 /* Configure clocks */
2560 if (config->clk_names) {
2561 ret = _opp_set_clknames(opp_table, dev, config->clk_names,
2562 config->config_clks);
2563 if (ret)
2564 goto err;
2565
2566 data->flags |= OPP_CONFIG_CLK;
2567 } else if (config->config_clks) {
2568 /* Don't allow config callback without clocks */
2569 ret = -EINVAL;
2570 goto err;
2571 }
2572
2573 /* Configure property names */
2574 if (config->prop_name) {
2575 ret = _opp_set_prop_name(opp_table, config->prop_name);
2576 if (ret)
2577 goto err;
2578
2579 data->flags |= OPP_CONFIG_PROP_NAME;
2580 }
2581
2582 /* Configure config_regulators helper */
2583 if (config->config_regulators) {
2584 ret = _opp_set_config_regulators_helper(opp_table, dev,
2585 config->config_regulators);
2586 if (ret)
2587 goto err;
2588
2589 data->flags |= OPP_CONFIG_REGULATOR_HELPER;
2590 }
2591
2592 /* Configure supported hardware */
2593 if (config->supported_hw) {
2594 ret = _opp_set_supported_hw(opp_table, config->supported_hw,
2595 config->supported_hw_count);
2596 if (ret)
2597 goto err;
2598
2599 data->flags |= OPP_CONFIG_SUPPORTED_HW;
2600 }
2601
2602 /* Configure supplies */
2603 if (config->regulator_names) {
2604 ret = _opp_set_regulators(opp_table, dev,
2605 config->regulator_names);
2606 if (ret)
2607 goto err;
2608
2609 data->flags |= OPP_CONFIG_REGULATOR;
2610 }
2611
2612 /* Attach genpds */
2613 if (config->genpd_names) {
2614 if (config->required_devs)
2615 goto err;
2616
2617 ret = _opp_attach_genpd(opp_table, dev, config->genpd_names,
2618 config->virt_devs);
2619 if (ret)
2620 goto err;
2621
2622 data->flags |= OPP_CONFIG_GENPD;
2623 } else if (config->required_devs) {
2624 ret = _opp_set_required_devs(opp_table, dev,
2625 config->required_devs);
2626 if (ret)
2627 goto err;
2628
2629 data->flags |= OPP_CONFIG_REQUIRED_DEVS;
2630 }
2631
2632 ret = xa_alloc(&opp_configs, &id, data, XA_LIMIT(1, INT_MAX),
2633 GFP_KERNEL);
2634 if (ret)
2635 goto err;
2636
2637 return id;
2638
2639err:
2640 _opp_clear_config(data);
2641 return ret;
2642}
2643EXPORT_SYMBOL_GPL(dev_pm_opp_set_config);
2644
2645/**
2646 * dev_pm_opp_clear_config() - Releases resources blocked for OPP configuration.
2647 * @token: The token returned by dev_pm_opp_set_config() previously.
2648 *
2649 * This allows all device OPP configurations to be cleared at once. This must be
2650 * called once for each call made to dev_pm_opp_set_config(), in order to free
2651 * the OPPs properly.
2652 *
2653 * Currently the first call itself ends up freeing all the OPP configurations,
2654 * while the later ones only drop the OPP table reference. This works well for
2655 * now as we would never want to use an half initialized OPP table and want to
2656 * remove the configurations together.
2657 */
2658void dev_pm_opp_clear_config(int token)
2659{
2660 struct opp_config_data *data;
2661
2662 /*
2663 * This lets the callers call this unconditionally and keep their code
2664 * simple.
2665 */
2666 if (unlikely(token <= 0))
2667 return;
2668
2669 data = xa_erase(&opp_configs, token);
2670 if (WARN_ON(!data))
2671 return;
2672
2673 _opp_clear_config(data);
2674}
2675EXPORT_SYMBOL_GPL(dev_pm_opp_clear_config);
2676
2677static void devm_pm_opp_config_release(void *token)
2678{
2679 dev_pm_opp_clear_config((unsigned long)token);
2680}
2681
2682/**
2683 * devm_pm_opp_set_config() - Set OPP configuration for the device.
2684 * @dev: Device for which configuration is being set.
2685 * @config: OPP configuration.
2686 *
2687 * This allows all device OPP configurations to be performed at once.
2688 * This is a resource-managed variant of dev_pm_opp_set_config().
2689 *
2690 * Return: 0 on success and errorno otherwise.
2691 */
2692int devm_pm_opp_set_config(struct device *dev, struct dev_pm_opp_config *config)
2693{
2694 int token = dev_pm_opp_set_config(dev, config);
2695
2696 if (token < 0)
2697 return token;
2698
2699 return devm_add_action_or_reset(dev, devm_pm_opp_config_release,
2700 (void *) ((unsigned long) token));
2701}
2702EXPORT_SYMBOL_GPL(devm_pm_opp_set_config);
2703
2704/**
2705 * dev_pm_opp_xlate_required_opp() - Find required OPP for @src_table OPP.
2706 * @src_table: OPP table which has @dst_table as one of its required OPP table.
2707 * @dst_table: Required OPP table of the @src_table.
2708 * @src_opp: OPP from the @src_table.
2709 *
2710 * This function returns the OPP (present in @dst_table) pointed out by the
2711 * "required-opps" property of the @src_opp (present in @src_table).
2712 *
2713 * The callers are required to call dev_pm_opp_put() for the returned OPP after
2714 * use.
2715 *
2716 * Return: pointer to 'struct dev_pm_opp' on success and errorno otherwise.
2717 */
2718struct dev_pm_opp *dev_pm_opp_xlate_required_opp(struct opp_table *src_table,
2719 struct opp_table *dst_table,
2720 struct dev_pm_opp *src_opp)
2721{
2722 struct dev_pm_opp *opp, *dest_opp = ERR_PTR(-ENODEV);
2723 int i;
2724
2725 if (!src_table || !dst_table || !src_opp ||
2726 !src_table->required_opp_tables)
2727 return ERR_PTR(-EINVAL);
2728
2729 /* required-opps not fully initialized yet */
2730 if (lazy_linking_pending(src_table))
2731 return ERR_PTR(-EBUSY);
2732
2733 for (i = 0; i < src_table->required_opp_count; i++) {
2734 if (src_table->required_opp_tables[i] == dst_table) {
2735 mutex_lock(&src_table->lock);
2736
2737 list_for_each_entry(opp, &src_table->opp_list, node) {
2738 if (opp == src_opp) {
2739 dest_opp = opp->required_opps[i];
2740 dev_pm_opp_get(dest_opp);
2741 break;
2742 }
2743 }
2744
2745 mutex_unlock(&src_table->lock);
2746 break;
2747 }
2748 }
2749
2750 if (IS_ERR(dest_opp)) {
2751 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__,
2752 src_table, dst_table);
2753 }
2754
2755 return dest_opp;
2756}
2757EXPORT_SYMBOL_GPL(dev_pm_opp_xlate_required_opp);
2758
2759/**
2760 * dev_pm_opp_xlate_performance_state() - Find required OPP's pstate for src_table.
2761 * @src_table: OPP table which has dst_table as one of its required OPP table.
2762 * @dst_table: Required OPP table of the src_table.
2763 * @pstate: Current performance state of the src_table.
2764 *
2765 * This Returns pstate of the OPP (present in @dst_table) pointed out by the
2766 * "required-opps" property of the OPP (present in @src_table) which has
2767 * performance state set to @pstate.
2768 *
2769 * Return: Zero or positive performance state on success, otherwise negative
2770 * value on errors.
2771 */
2772int dev_pm_opp_xlate_performance_state(struct opp_table *src_table,
2773 struct opp_table *dst_table,
2774 unsigned int pstate)
2775{
2776 struct dev_pm_opp *opp;
2777 int dest_pstate = -EINVAL;
2778 int i;
2779
2780 /*
2781 * Normally the src_table will have the "required_opps" property set to
2782 * point to one of the OPPs in the dst_table, but in some cases the
2783 * genpd and its master have one to one mapping of performance states
2784 * and so none of them have the "required-opps" property set. Return the
2785 * pstate of the src_table as it is in such cases.
2786 */
2787 if (!src_table || !src_table->required_opp_count)
2788 return pstate;
2789
2790 /* Both OPP tables must belong to genpds */
2791 if (unlikely(!src_table->is_genpd || !dst_table->is_genpd)) {
2792 pr_err("%s: Performance state is only valid for genpds.\n", __func__);
2793 return -EINVAL;
2794 }
2795
2796 /* required-opps not fully initialized yet */
2797 if (lazy_linking_pending(src_table))
2798 return -EBUSY;
2799
2800 for (i = 0; i < src_table->required_opp_count; i++) {
2801 if (src_table->required_opp_tables[i]->np == dst_table->np)
2802 break;
2803 }
2804
2805 if (unlikely(i == src_table->required_opp_count)) {
2806 pr_err("%s: Couldn't find matching OPP table (%p: %p)\n",
2807 __func__, src_table, dst_table);
2808 return -EINVAL;
2809 }
2810
2811 mutex_lock(&src_table->lock);
2812
2813 list_for_each_entry(opp, &src_table->opp_list, node) {
2814 if (opp->level == pstate) {
2815 dest_pstate = opp->required_opps[i]->level;
2816 goto unlock;
2817 }
2818 }
2819
2820 pr_err("%s: Couldn't find matching OPP (%p: %p)\n", __func__, src_table,
2821 dst_table);
2822
2823unlock:
2824 mutex_unlock(&src_table->lock);
2825
2826 return dest_pstate;
2827}
2828
2829/**
2830 * dev_pm_opp_add_dynamic() - Add an OPP table from a table definitions
2831 * @dev: The device for which we do this operation
2832 * @data: The OPP data for the OPP to add
2833 *
2834 * This function adds an opp definition to the opp table and returns status.
2835 * The opp is made available by default and it can be controlled using
2836 * dev_pm_opp_enable/disable functions.
2837 *
2838 * Return:
2839 * 0 On success OR
2840 * Duplicate OPPs (both freq and volt are same) and opp->available
2841 * -EEXIST Freq are same and volt are different OR
2842 * Duplicate OPPs (both freq and volt are same) and !opp->available
2843 * -ENOMEM Memory allocation failure
2844 */
2845int dev_pm_opp_add_dynamic(struct device *dev, struct dev_pm_opp_data *data)
2846{
2847 struct opp_table *opp_table;
2848 int ret;
2849
2850 opp_table = _add_opp_table(dev, true);
2851 if (IS_ERR(opp_table))
2852 return PTR_ERR(opp_table);
2853
2854 /* Fix regulator count for dynamic OPPs */
2855 opp_table->regulator_count = 1;
2856
2857 ret = _opp_add_v1(opp_table, dev, data, true);
2858 if (ret)
2859 dev_pm_opp_put_opp_table(opp_table);
2860
2861 return ret;
2862}
2863EXPORT_SYMBOL_GPL(dev_pm_opp_add_dynamic);
2864
2865/**
2866 * _opp_set_availability() - helper to set the availability of an opp
2867 * @dev: device for which we do this operation
2868 * @freq: OPP frequency to modify availability
2869 * @availability_req: availability status requested for this opp
2870 *
2871 * Set the availability of an OPP, opp_{enable,disable} share a common logic
2872 * which is isolated here.
2873 *
2874 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2875 * copy operation, returns 0 if no modification was done OR modification was
2876 * successful.
2877 */
2878static int _opp_set_availability(struct device *dev, unsigned long freq,
2879 bool availability_req)
2880{
2881 struct opp_table *opp_table;
2882 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2883 int r = 0;
2884
2885 /* Find the opp_table */
2886 opp_table = _find_opp_table(dev);
2887 if (IS_ERR(opp_table)) {
2888 r = PTR_ERR(opp_table);
2889 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2890 return r;
2891 }
2892
2893 if (!assert_single_clk(opp_table)) {
2894 r = -EINVAL;
2895 goto put_table;
2896 }
2897
2898 mutex_lock(&opp_table->lock);
2899
2900 /* Do we have the frequency? */
2901 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2902 if (tmp_opp->rates[0] == freq) {
2903 opp = tmp_opp;
2904 break;
2905 }
2906 }
2907
2908 if (IS_ERR(opp)) {
2909 r = PTR_ERR(opp);
2910 goto unlock;
2911 }
2912
2913 /* Is update really needed? */
2914 if (opp->available == availability_req)
2915 goto unlock;
2916
2917 opp->available = availability_req;
2918
2919 dev_pm_opp_get(opp);
2920 mutex_unlock(&opp_table->lock);
2921
2922 /* Notify the change of the OPP availability */
2923 if (availability_req)
2924 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ENABLE,
2925 opp);
2926 else
2927 blocking_notifier_call_chain(&opp_table->head,
2928 OPP_EVENT_DISABLE, opp);
2929
2930 dev_pm_opp_put(opp);
2931 goto put_table;
2932
2933unlock:
2934 mutex_unlock(&opp_table->lock);
2935put_table:
2936 dev_pm_opp_put_opp_table(opp_table);
2937 return r;
2938}
2939
2940/**
2941 * dev_pm_opp_adjust_voltage() - helper to change the voltage of an OPP
2942 * @dev: device for which we do this operation
2943 * @freq: OPP frequency to adjust voltage of
2944 * @u_volt: new OPP target voltage
2945 * @u_volt_min: new OPP min voltage
2946 * @u_volt_max: new OPP max voltage
2947 *
2948 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
2949 * copy operation, returns 0 if no modifcation was done OR modification was
2950 * successful.
2951 */
2952int dev_pm_opp_adjust_voltage(struct device *dev, unsigned long freq,
2953 unsigned long u_volt, unsigned long u_volt_min,
2954 unsigned long u_volt_max)
2955
2956{
2957 struct opp_table *opp_table;
2958 struct dev_pm_opp *tmp_opp, *opp = ERR_PTR(-ENODEV);
2959 int r = 0;
2960
2961 /* Find the opp_table */
2962 opp_table = _find_opp_table(dev);
2963 if (IS_ERR(opp_table)) {
2964 r = PTR_ERR(opp_table);
2965 dev_warn(dev, "%s: Device OPP not found (%d)\n", __func__, r);
2966 return r;
2967 }
2968
2969 if (!assert_single_clk(opp_table)) {
2970 r = -EINVAL;
2971 goto put_table;
2972 }
2973
2974 mutex_lock(&opp_table->lock);
2975
2976 /* Do we have the frequency? */
2977 list_for_each_entry(tmp_opp, &opp_table->opp_list, node) {
2978 if (tmp_opp->rates[0] == freq) {
2979 opp = tmp_opp;
2980 break;
2981 }
2982 }
2983
2984 if (IS_ERR(opp)) {
2985 r = PTR_ERR(opp);
2986 goto adjust_unlock;
2987 }
2988
2989 /* Is update really needed? */
2990 if (opp->supplies->u_volt == u_volt)
2991 goto adjust_unlock;
2992
2993 opp->supplies->u_volt = u_volt;
2994 opp->supplies->u_volt_min = u_volt_min;
2995 opp->supplies->u_volt_max = u_volt_max;
2996
2997 dev_pm_opp_get(opp);
2998 mutex_unlock(&opp_table->lock);
2999
3000 /* Notify the voltage change of the OPP */
3001 blocking_notifier_call_chain(&opp_table->head, OPP_EVENT_ADJUST_VOLTAGE,
3002 opp);
3003
3004 dev_pm_opp_put(opp);
3005 goto put_table;
3006
3007adjust_unlock:
3008 mutex_unlock(&opp_table->lock);
3009put_table:
3010 dev_pm_opp_put_opp_table(opp_table);
3011 return r;
3012}
3013EXPORT_SYMBOL_GPL(dev_pm_opp_adjust_voltage);
3014
3015/**
3016 * dev_pm_opp_sync_regulators() - Sync state of voltage regulators
3017 * @dev: device for which we do this operation
3018 *
3019 * Sync voltage state of the OPP table regulators.
3020 *
3021 * Return: 0 on success or a negative error value.
3022 */
3023int dev_pm_opp_sync_regulators(struct device *dev)
3024{
3025 struct opp_table *opp_table;
3026 struct regulator *reg;
3027 int i, ret = 0;
3028
3029 /* Device may not have OPP table */
3030 opp_table = _find_opp_table(dev);
3031 if (IS_ERR(opp_table))
3032 return 0;
3033
3034 /* Regulator may not be required for the device */
3035 if (unlikely(!opp_table->regulators))
3036 goto put_table;
3037
3038 /* Nothing to sync if voltage wasn't changed */
3039 if (!opp_table->enabled)
3040 goto put_table;
3041
3042 for (i = 0; i < opp_table->regulator_count; i++) {
3043 reg = opp_table->regulators[i];
3044 ret = regulator_sync_voltage(reg);
3045 if (ret)
3046 break;
3047 }
3048put_table:
3049 /* Drop reference taken by _find_opp_table() */
3050 dev_pm_opp_put_opp_table(opp_table);
3051
3052 return ret;
3053}
3054EXPORT_SYMBOL_GPL(dev_pm_opp_sync_regulators);
3055
3056/**
3057 * dev_pm_opp_enable() - Enable a specific OPP
3058 * @dev: device for which we do this operation
3059 * @freq: OPP frequency to enable
3060 *
3061 * Enables a provided opp. If the operation is valid, this returns 0, else the
3062 * corresponding error value. It is meant to be used for users an OPP available
3063 * after being temporarily made unavailable with dev_pm_opp_disable.
3064 *
3065 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3066 * copy operation, returns 0 if no modification was done OR modification was
3067 * successful.
3068 */
3069int dev_pm_opp_enable(struct device *dev, unsigned long freq)
3070{
3071 return _opp_set_availability(dev, freq, true);
3072}
3073EXPORT_SYMBOL_GPL(dev_pm_opp_enable);
3074
3075/**
3076 * dev_pm_opp_disable() - Disable a specific OPP
3077 * @dev: device for which we do this operation
3078 * @freq: OPP frequency to disable
3079 *
3080 * Disables a provided opp. If the operation is valid, this returns
3081 * 0, else the corresponding error value. It is meant to be a temporary
3082 * control by users to make this OPP not available until the circumstances are
3083 * right to make it available again (with a call to dev_pm_opp_enable).
3084 *
3085 * Return: -EINVAL for bad pointers, -ENOMEM if no memory available for the
3086 * copy operation, returns 0 if no modification was done OR modification was
3087 * successful.
3088 */
3089int dev_pm_opp_disable(struct device *dev, unsigned long freq)
3090{
3091 return _opp_set_availability(dev, freq, false);
3092}
3093EXPORT_SYMBOL_GPL(dev_pm_opp_disable);
3094
3095/**
3096 * dev_pm_opp_register_notifier() - Register OPP notifier for the device
3097 * @dev: Device for which notifier needs to be registered
3098 * @nb: Notifier block to be registered
3099 *
3100 * Return: 0 on success or a negative error value.
3101 */
3102int dev_pm_opp_register_notifier(struct device *dev, struct notifier_block *nb)
3103{
3104 struct opp_table *opp_table;
3105 int ret;
3106
3107 opp_table = _find_opp_table(dev);
3108 if (IS_ERR(opp_table))
3109 return PTR_ERR(opp_table);
3110
3111 ret = blocking_notifier_chain_register(&opp_table->head, nb);
3112
3113 dev_pm_opp_put_opp_table(opp_table);
3114
3115 return ret;
3116}
3117EXPORT_SYMBOL(dev_pm_opp_register_notifier);
3118
3119/**
3120 * dev_pm_opp_unregister_notifier() - Unregister OPP notifier for the device
3121 * @dev: Device for which notifier needs to be unregistered
3122 * @nb: Notifier block to be unregistered
3123 *
3124 * Return: 0 on success or a negative error value.
3125 */
3126int dev_pm_opp_unregister_notifier(struct device *dev,
3127 struct notifier_block *nb)
3128{
3129 struct opp_table *opp_table;
3130 int ret;
3131
3132 opp_table = _find_opp_table(dev);
3133 if (IS_ERR(opp_table))
3134 return PTR_ERR(opp_table);
3135
3136 ret = blocking_notifier_chain_unregister(&opp_table->head, nb);
3137
3138 dev_pm_opp_put_opp_table(opp_table);
3139
3140 return ret;
3141}
3142EXPORT_SYMBOL(dev_pm_opp_unregister_notifier);
3143
3144/**
3145 * dev_pm_opp_remove_table() - Free all OPPs associated with the device
3146 * @dev: device pointer used to lookup OPP table.
3147 *
3148 * Free both OPPs created using static entries present in DT and the
3149 * dynamically added entries.
3150 */
3151void dev_pm_opp_remove_table(struct device *dev)
3152{
3153 struct opp_table *opp_table;
3154
3155 /* Check for existing table for 'dev' */
3156 opp_table = _find_opp_table(dev);
3157 if (IS_ERR(opp_table)) {
3158 int error = PTR_ERR(opp_table);
3159
3160 if (error != -ENODEV)
3161 WARN(1, "%s: opp_table: %d\n",
3162 IS_ERR_OR_NULL(dev) ?
3163 "Invalid device" : dev_name(dev),
3164 error);
3165 return;
3166 }
3167
3168 /*
3169 * Drop the extra reference only if the OPP table was successfully added
3170 * with dev_pm_opp_of_add_table() earlier.
3171 **/
3172 if (_opp_remove_all_static(opp_table))
3173 dev_pm_opp_put_opp_table(opp_table);
3174
3175 /* Drop reference taken by _find_opp_table() */
3176 dev_pm_opp_put_opp_table(opp_table);
3177}
3178EXPORT_SYMBOL_GPL(dev_pm_opp_remove_table);