Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28/*
  29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  30 */
  31
  32#define pr_fmt(fmt) "[TTM] " fmt
  33
  34#include <drm/ttm/ttm_bo.h>
 
  35#include <drm/ttm/ttm_placement.h>
  36#include <drm/ttm/ttm_tt.h>
  37
  38#include <linux/jiffies.h>
  39#include <linux/slab.h>
  40#include <linux/sched.h>
  41#include <linux/mm.h>
  42#include <linux/file.h>
  43#include <linux/module.h>
  44#include <linux/atomic.h>
  45#include <linux/dma-resv.h>
  46
  47#include "ttm_module.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  50					struct ttm_placement *placement)
  51{
  52	struct drm_printer p = drm_dbg_printer(NULL, DRM_UT_CORE, TTM_PFX);
  53	struct ttm_resource_manager *man;
  54	int i, mem_type;
  55
 
 
 
  56	for (i = 0; i < placement->num_placement; i++) {
  57		mem_type = placement->placement[i].mem_type;
 
 
 
  58		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
  59			   i, placement->placement[i].flags, mem_type);
  60		man = ttm_manager_type(bo->bdev, mem_type);
  61		ttm_resource_manager_debug(man, &p);
  62	}
  63}
  64
  65/**
  66 * ttm_bo_move_to_lru_tail
  67 *
  68 * @bo: The buffer object.
  69 *
  70 * Move this BO to the tail of all lru lists used to lookup and reserve an
  71 * object. This function must be called with struct ttm_global::lru_lock
  72 * held, and is used to make a BO less likely to be considered for eviction.
  73 */
  74void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
  75{
  76	dma_resv_assert_held(bo->base.resv);
 
  77
  78	if (bo->resource)
  79		ttm_resource_move_to_lru_tail(bo->resource);
  80}
  81EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
  82
  83/**
  84 * ttm_bo_set_bulk_move - update BOs bulk move object
  85 *
  86 * @bo: The buffer object.
  87 * @bulk: bulk move structure
  88 *
  89 * Update the BOs bulk move object, making sure that resources are added/removed
  90 * as well. A bulk move allows to move many resource on the LRU at once,
  91 * resulting in much less overhead of maintaining the LRU.
  92 * The only requirement is that the resources stay together on the LRU and are
  93 * never separated. This is enforces by setting the bulk_move structure on a BO.
  94 * ttm_lru_bulk_move_tail() should be used to move all resources to the tail of
  95 * their LRU list.
  96 */
  97void ttm_bo_set_bulk_move(struct ttm_buffer_object *bo,
  98			  struct ttm_lru_bulk_move *bulk)
 
 
 
 
 
 
  99{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 100	dma_resv_assert_held(bo->base.resv);
 101
 102	if (bo->bulk_move == bulk)
 103		return;
 104
 105	spin_lock(&bo->bdev->lru_lock);
 106	if (bo->resource)
 107		ttm_resource_del_bulk_move(bo->resource, bo);
 108	bo->bulk_move = bulk;
 109	if (bo->resource)
 110		ttm_resource_add_bulk_move(bo->resource, bo);
 111	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 112}
 113EXPORT_SYMBOL(ttm_bo_set_bulk_move);
 114
 115static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 116				  struct ttm_resource *mem, bool evict,
 117				  struct ttm_operation_ctx *ctx,
 118				  struct ttm_place *hop)
 119{
 120	struct ttm_device *bdev = bo->bdev;
 121	bool old_use_tt, new_use_tt;
 122	int ret;
 
 
 
 
 
 123
 124	old_use_tt = !bo->resource || ttm_manager_type(bdev, bo->resource->mem_type)->use_tt;
 125	new_use_tt = ttm_manager_type(bdev, mem->mem_type)->use_tt;
 
 
 126
 127	ttm_bo_unmap_virtual(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128
 129	/*
 130	 * Create and bind a ttm if required.
 131	 */
 132
 133	if (new_use_tt) {
 134		/* Zero init the new TTM structure if the old location should
 135		 * have used one as well.
 136		 */
 137		ret = ttm_tt_create(bo, old_use_tt);
 
 
 
 
 138		if (ret)
 139			goto out_err;
 140
 141		if (mem->mem_type != TTM_PL_SYSTEM) {
 142			ret = ttm_bo_populate(bo, ctx);
 143			if (ret)
 144				goto out_err;
 145		}
 
 
 
 
 
 
 
 
 146	}
 147
 148	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 149	if (ret)
 150		goto out_err;
 
 
 
 
 
 
 
 151
 152	ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
 153	if (ret) {
 154		if (ret == -EMULTIHOP)
 155			return ret;
 
 
 
 
 156		goto out_err;
 157	}
 158
 159	ctx->bytes_moved += bo->base.size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	return 0;
 161
 162out_err:
 163	if (!old_use_tt)
 164		ttm_bo_tt_destroy(bo);
 
 
 
 165
 166	return ret;
 167}
 168
 169/*
 170 * Call bo::reserved.
 171 * Will release GPU memory type usage on destruction.
 172 * This is the place to put in driver specific hooks to release
 173 * driver private resources.
 174 * Will release the bo::reserved lock.
 175 */
 176
 177static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 178{
 179	if (bo->bdev->funcs->delete_mem_notify)
 180		bo->bdev->funcs->delete_mem_notify(bo);
 181
 182	ttm_bo_tt_destroy(bo);
 183	ttm_resource_free(bo, &bo->resource);
 
 184}
 185
 186static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
 187{
 188	int r;
 189
 190	if (bo->base.resv == &bo->base._resv)
 191		return 0;
 192
 193	BUG_ON(!dma_resv_trylock(&bo->base._resv));
 194
 195	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
 196	dma_resv_unlock(&bo->base._resv);
 197	if (r)
 198		return r;
 199
 200	if (bo->type != ttm_bo_type_sg) {
 201		/* This works because the BO is about to be destroyed and nobody
 202		 * reference it any more. The only tricky case is the trylock on
 203		 * the resv object while holding the lru_lock.
 204		 */
 205		spin_lock(&bo->bdev->lru_lock);
 206		bo->base.resv = &bo->base._resv;
 207		spin_unlock(&bo->bdev->lru_lock);
 208	}
 209
 210	return r;
 211}
 212
 213static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 214{
 215	struct dma_resv *resv = &bo->base._resv;
 216	struct dma_resv_iter cursor;
 217	struct dma_fence *fence;
 
 
 
 
 
 
 
 
 
 
 218
 219	dma_resv_iter_begin(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP);
 220	dma_resv_for_each_fence_unlocked(&cursor, fence) {
 221		if (!fence->ops->signaled)
 222			dma_fence_enable_sw_signaling(fence);
 223	}
 224	dma_resv_iter_end(&cursor);
 225}
 226
 227/*
 228 * Block for the dma_resv object to become idle, lock the buffer and clean up
 229 * the resource and tt object.
 230 */
 231static void ttm_bo_delayed_delete(struct work_struct *work)
 232{
 233	struct ttm_buffer_object *bo;
 
 
 234
 235	bo = container_of(work, typeof(*bo), delayed_delete);
 
 
 
 
 
 
 
 
 
 236
 237	dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false,
 238			      MAX_SCHEDULE_TIMEOUT);
 239	dma_resv_lock(bo->base.resv, NULL);
 240	ttm_bo_cleanup_memtype_use(bo);
 241	dma_resv_unlock(bo->base.resv);
 242	ttm_bo_put(bo);
 243}
 
 244
 245static void ttm_bo_release(struct kref *kref)
 246{
 247	struct ttm_buffer_object *bo =
 248	    container_of(kref, struct ttm_buffer_object, kref);
 249	struct ttm_device *bdev = bo->bdev;
 250	int ret;
 251
 252	WARN_ON_ONCE(bo->pin_count);
 253	WARN_ON_ONCE(bo->bulk_move);
 254
 255	if (!bo->deleted) {
 256		ret = ttm_bo_individualize_resv(bo);
 257		if (ret) {
 258			/* Last resort, if we fail to allocate memory for the
 259			 * fences block for the BO to become idle
 260			 */
 261			dma_resv_wait_timeout(bo->base.resv,
 262					      DMA_RESV_USAGE_BOOKKEEP, false,
 263					      30 * HZ);
 264		}
 265
 266		if (bo->bdev->funcs->release_notify)
 267			bo->bdev->funcs->release_notify(bo);
 
 
 
 
 
 
 
 
 
 
 
 268
 269		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
 270		ttm_mem_io_free(bdev, bo->resource);
 
 
 
 
 
 
 
 
 
 
 271
 272		if (!dma_resv_test_signaled(bo->base.resv,
 273					    DMA_RESV_USAGE_BOOKKEEP) ||
 274		    (want_init_on_free() && (bo->ttm != NULL)) ||
 275		    bo->type == ttm_bo_type_sg ||
 276		    !dma_resv_trylock(bo->base.resv)) {
 277			/* The BO is not idle, resurrect it for delayed destroy */
 278			ttm_bo_flush_all_fences(bo);
 279			bo->deleted = true;
 280
 281			spin_lock(&bo->bdev->lru_lock);
 
 
 
 282
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283			/*
 284			 * Make pinned bos immediately available to
 285			 * shrinkers, now that they are queued for
 286			 * destruction.
 287			 *
 288			 * FIXME: QXL is triggering this. Can be removed when the
 289			 * driver is fixed.
 
 290			 */
 291			if (bo->pin_count) {
 292				bo->pin_count = 0;
 293				ttm_resource_move_to_lru_tail(bo->resource);
 294			}
 
 295
 296			kref_init(&bo->kref);
 297			spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 298
 299			INIT_WORK(&bo->delayed_delete, ttm_bo_delayed_delete);
 
 
 300
 301			/* Schedule the worker on the closest NUMA node. This
 302			 * improves performance since system memory might be
 303			 * cleared on free and that is best done on a CPU core
 304			 * close to it.
 305			 */
 306			queue_work_node(bdev->pool.nid, bdev->wq, &bo->delayed_delete);
 307			return;
 308		}
 309
 310		ttm_bo_cleanup_memtype_use(bo);
 311		dma_resv_unlock(bo->base.resv);
 312	}
 313
 314	atomic_dec(&ttm_glob.bo_count);
 315	bo->destroy(bo);
 316}
 317
 318/**
 319 * ttm_bo_put
 320 *
 321 * @bo: The buffer object.
 322 *
 323 * Unreference a buffer object.
 324 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 325void ttm_bo_put(struct ttm_buffer_object *bo)
 326{
 327	kref_put(&bo->kref, ttm_bo_release);
 328}
 329EXPORT_SYMBOL(ttm_bo_put);
 330
 331static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
 332				     struct ttm_operation_ctx *ctx,
 333				     struct ttm_place *hop)
 334{
 335	struct ttm_placement hop_placement;
 336	struct ttm_resource *hop_mem;
 337	int ret;
 338
 339	hop_placement.num_placement = 1;
 340	hop_placement.placement = hop;
 341
 342	/* find space in the bounce domain */
 343	ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
 344	if (ret)
 345		return ret;
 346	/* move to the bounce domain */
 347	ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
 348	if (ret) {
 349		ttm_resource_free(bo, &hop_mem);
 350		return ret;
 351	}
 352	return 0;
 353}
 
 354
 355static int ttm_bo_evict(struct ttm_buffer_object *bo,
 356			struct ttm_operation_ctx *ctx)
 357{
 358	struct ttm_device *bdev = bo->bdev;
 359	struct ttm_resource *evict_mem;
 360	struct ttm_placement placement;
 361	struct ttm_place hop;
 362	int ret = 0;
 363
 364	memset(&hop, 0, sizeof(hop));
 365
 366	dma_resv_assert_held(bo->base.resv);
 367
 368	placement.num_placement = 0;
 369	bdev->funcs->evict_flags(bo, &placement);
 
 370
 371	if (!placement.num_placement) {
 372		ret = ttm_bo_wait_ctx(bo, ctx);
 373		if (ret)
 374			return ret;
 375
 376		/*
 377		 * Since we've already synced, this frees backing store
 378		 * immediately.
 379		 */
 380		return ttm_bo_pipeline_gutting(bo);
 381	}
 382
 
 
 
 
 
 383	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
 384	if (ret) {
 385		if (ret != -ERESTARTSYS) {
 386			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 387			       bo);
 388			ttm_bo_mem_space_debug(bo, &placement);
 389		}
 390		goto out;
 391	}
 392
 393	do {
 394		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
 395		if (ret != -EMULTIHOP)
 396			break;
 397
 398		ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
 399	} while (!ret);
 400
 401	if (ret) {
 402		ttm_resource_free(bo, &evict_mem);
 403		if (ret != -ERESTARTSYS && ret != -EINTR)
 404			pr_err("Buffer eviction failed\n");
 
 
 405	}
 
 406out:
 407	return ret;
 408}
 409
 410/**
 411 * ttm_bo_eviction_valuable
 412 *
 413 * @bo: The buffer object to evict
 414 * @place: the placement we need to make room for
 415 *
 416 * Check if it is valuable to evict the BO to make room for the given placement.
 417 */
 418bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 419			      const struct ttm_place *place)
 420{
 421	struct ttm_resource *res = bo->resource;
 422	struct ttm_device *bdev = bo->bdev;
 423
 424	dma_resv_assert_held(bo->base.resv);
 425	if (bo->resource->mem_type == TTM_PL_SYSTEM)
 426		return true;
 427
 428	/* Don't evict this BO if it's outside of the
 429	 * requested placement range
 430	 */
 431	return ttm_resource_intersects(bdev, res, place, bo->base.size);
 
 
 
 
 432}
 433EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 434
 435/**
 436 * ttm_bo_evict_first() - Evict the first bo on the manager's LRU list.
 437 * @bdev: The ttm device.
 438 * @man: The manager whose bo to evict.
 439 * @ctx: The TTM operation ctx governing the eviction.
 440 *
 441 * Return: 0 if successful or the resource disappeared. Negative error code on error.
 442 */
 443int ttm_bo_evict_first(struct ttm_device *bdev, struct ttm_resource_manager *man,
 444		       struct ttm_operation_ctx *ctx)
 445{
 446	struct ttm_resource_cursor cursor;
 447	struct ttm_buffer_object *bo;
 448	struct ttm_resource *res;
 449	unsigned int mem_type;
 450	int ret = 0;
 451
 452	spin_lock(&bdev->lru_lock);
 453	res = ttm_resource_manager_first(man, &cursor);
 454	ttm_resource_cursor_fini(&cursor);
 455	if (!res) {
 456		ret = -ENOENT;
 457		goto out_no_ref;
 458	}
 459	bo = res->bo;
 460	if (!ttm_bo_get_unless_zero(bo))
 461		goto out_no_ref;
 462	mem_type = res->mem_type;
 463	spin_unlock(&bdev->lru_lock);
 464	ret = ttm_bo_reserve(bo, ctx->interruptible, ctx->no_wait_gpu, NULL);
 465	if (ret)
 466		goto out_no_lock;
 467	if (!bo->resource || bo->resource->mem_type != mem_type)
 468		goto out_bo_moved;
 469
 470	if (bo->deleted) {
 471		ret = ttm_bo_wait_ctx(bo, ctx);
 472		if (!ret)
 473			ttm_bo_cleanup_memtype_use(bo);
 474	} else {
 475		ret = ttm_bo_evict(bo, ctx);
 
 
 
 476	}
 477out_bo_moved:
 478	dma_resv_unlock(bo->base.resv);
 479out_no_lock:
 480	ttm_bo_put(bo);
 481	return ret;
 482
 483out_no_ref:
 484	spin_unlock(&bdev->lru_lock);
 485	return ret;
 486}
 487
 488/**
 489 * struct ttm_bo_evict_walk - Parameters for the evict walk.
 
 
 
 
 
 
 490 */
 491struct ttm_bo_evict_walk {
 492	/** @walk: The walk base parameters. */
 493	struct ttm_lru_walk walk;
 494	/** @place: The place passed to the resource allocation. */
 495	const struct ttm_place *place;
 496	/** @evictor: The buffer object we're trying to make room for. */
 497	struct ttm_buffer_object *evictor;
 498	/** @res: The allocated resource if any. */
 499	struct ttm_resource **res;
 500	/** @evicted: Number of successful evictions. */
 501	unsigned long evicted;
 502};
 503
 504static s64 ttm_bo_evict_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
 505{
 506	struct ttm_bo_evict_walk *evict_walk =
 507		container_of(walk, typeof(*evict_walk), walk);
 508	s64 lret;
 509
 510	if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, evict_walk->place))
 511		return 0;
 512
 513	if (bo->deleted) {
 514		lret = ttm_bo_wait_ctx(bo, walk->ctx);
 515		if (!lret)
 516			ttm_bo_cleanup_memtype_use(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 517	} else {
 518		lret = ttm_bo_evict(bo, walk->ctx);
 
 
 519	}
 520
 521	if (lret)
 522		goto out;
 
 523
 524	evict_walk->evicted++;
 525	if (evict_walk->res)
 526		lret = ttm_resource_alloc(evict_walk->evictor, evict_walk->place,
 527					  evict_walk->res);
 528	if (lret == 0)
 529		return 1;
 530out:
 531	/* Errors that should terminate the walk. */
 532	if (lret == -ENOSPC)
 533		return -EBUSY;
 534
 535	return lret;
 
 536}
 
 537
 538static const struct ttm_lru_walk_ops ttm_evict_walk_ops = {
 539	.process_bo = ttm_bo_evict_cb,
 540};
 
 
 
 
 
 
 541
 542static int ttm_bo_evict_alloc(struct ttm_device *bdev,
 543			      struct ttm_resource_manager *man,
 544			      const struct ttm_place *place,
 545			      struct ttm_buffer_object *evictor,
 546			      struct ttm_operation_ctx *ctx,
 547			      struct ww_acquire_ctx *ticket,
 548			      struct ttm_resource **res)
 549{
 550	struct ttm_bo_evict_walk evict_walk = {
 551		.walk = {
 552			.ops = &ttm_evict_walk_ops,
 553			.ctx = ctx,
 554			.ticket = ticket,
 555		},
 556		.place = place,
 557		.evictor = evictor,
 558		.res = res,
 559	};
 560	s64 lret;
 561
 562	evict_walk.walk.trylock_only = true;
 563	lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
 564	if (lret || !ticket)
 565		goto out;
 
 
 
 
 
 
 
 
 566
 567	/* If ticket-locking, repeat while making progress. */
 568	evict_walk.walk.trylock_only = false;
 569	do {
 570		/* The walk may clear the evict_walk.walk.ticket field */
 571		evict_walk.walk.ticket = ticket;
 572		evict_walk.evicted = 0;
 573		lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
 574	} while (!lret && evict_walk.evicted);
 575out:
 576	if (lret < 0)
 577		return lret;
 578	if (lret == 0)
 579		return -EBUSY;
 580	return 0;
 581}
 582
 583/**
 584 * ttm_bo_pin - Pin the buffer object.
 585 * @bo: The buffer object to pin
 586 *
 587 * Make sure the buffer is not evicted any more during memory pressure.
 588 * @bo must be unpinned again by calling ttm_bo_unpin().
 589 */
 590void ttm_bo_pin(struct ttm_buffer_object *bo)
 
 
 
 591{
 592	dma_resv_assert_held(bo->base.resv);
 593	WARN_ON_ONCE(!kref_read(&bo->kref));
 594	spin_lock(&bo->bdev->lru_lock);
 595	if (bo->resource)
 596		ttm_resource_del_bulk_move(bo->resource, bo);
 597	if (!bo->pin_count++ && bo->resource)
 598		ttm_resource_move_to_lru_tail(bo->resource);
 599	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 600}
 601EXPORT_SYMBOL(ttm_bo_pin);
 602
 603/**
 604 * ttm_bo_unpin - Unpin the buffer object.
 605 * @bo: The buffer object to unpin
 606 *
 607 * Allows the buffer object to be evicted again during memory pressure.
 608 */
 609void ttm_bo_unpin(struct ttm_buffer_object *bo)
 610{
 611	dma_resv_assert_held(bo->base.resv);
 612	WARN_ON_ONCE(!kref_read(&bo->kref));
 613	if (WARN_ON_ONCE(!bo->pin_count))
 614		return;
 615
 616	spin_lock(&bo->bdev->lru_lock);
 617	if (!--bo->pin_count && bo->resource) {
 618		ttm_resource_add_bulk_move(bo->resource, bo);
 619		ttm_resource_move_to_lru_tail(bo->resource);
 620	}
 621	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 
 
 622}
 623EXPORT_SYMBOL(ttm_bo_unpin);
 624
 625/*
 626 * Add the last move fence to the BO as kernel dependency and reserve a new
 627 * fence slot.
 628 */
 629static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 630				 struct ttm_resource_manager *man,
 631				 bool no_wait_gpu)
 632{
 633	struct dma_fence *fence;
 634	int ret;
 635
 636	spin_lock(&man->move_lock);
 637	fence = dma_fence_get(man->move);
 638	spin_unlock(&man->move_lock);
 639
 640	if (!fence)
 641		return 0;
 642
 643	if (no_wait_gpu) {
 644		ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
 645		dma_fence_put(fence);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 646		return ret;
 647	}
 648
 649	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
 
 
 650
 651	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 652	dma_fence_put(fence);
 653	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654}
 655
 656/**
 657 * ttm_bo_alloc_resource - Allocate backing store for a BO
 658 *
 659 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
 660 * @placement: Proposed new placement for the buffer object
 661 * @ctx: if and how to sleep, lock buffers and alloc memory
 662 * @force_space: If we should evict buffers to force space
 663 * @res: The resulting struct ttm_resource.
 664 *
 665 * Allocates a resource for the buffer object pointed to by @bo, using the
 666 * placement flags in @placement, potentially evicting other buffer objects when
 667 * @force_space is true.
 668 * This function may sleep while waiting for resources to become available.
 669 * Returns:
 670 * -EBUSY: No space available (only if no_wait == true).
 671 * -ENOSPC: Could not allocate space for the buffer object, either due to
 672 * fragmentation or concurrent allocators.
 673 * -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
 674 */
 675static int ttm_bo_alloc_resource(struct ttm_buffer_object *bo,
 676				 struct ttm_placement *placement,
 677				 struct ttm_operation_ctx *ctx,
 678				 bool force_space,
 679				 struct ttm_resource **res)
 680{
 681	struct ttm_device *bdev = bo->bdev;
 682	struct ww_acquire_ctx *ticket;
 683	int i, ret;
 684
 685	ticket = dma_resv_locking_ctx(bo->base.resv);
 686	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 687	if (unlikely(ret))
 688		return ret;
 689
 
 690	for (i = 0; i < placement->num_placement; ++i) {
 691		const struct ttm_place *place = &placement->placement[i];
 692		struct ttm_resource_manager *man;
 693		bool may_evict;
 694
 695		man = ttm_manager_type(bdev, place->mem_type);
 696		if (!man || !ttm_resource_manager_used(man))
 697			continue;
 698
 699		if (place->flags & (force_space ? TTM_PL_FLAG_DESIRED :
 700				    TTM_PL_FLAG_FALLBACK))
 701			continue;
 
 
 702
 703		may_evict = (force_space && place->mem_type != TTM_PL_SYSTEM);
 704		ret = ttm_resource_alloc(bo, place, res);
 705		if (ret) {
 706			if (ret != -ENOSPC)
 707				return ret;
 708			if (!may_evict)
 709				continue;
 710
 711			ret = ttm_bo_evict_alloc(bdev, man, place, bo, ctx,
 712						 ticket, res);
 713			if (ret == -EBUSY)
 714				continue;
 715			if (ret)
 716				return ret;
 
 
 
 
 
 
 717		}
 
 718
 719		ret = ttm_bo_add_move_fence(bo, man, ctx->no_wait_gpu);
 720		if (unlikely(ret)) {
 721			ttm_resource_free(bo, res);
 722			if (ret == -EBUSY)
 723				continue;
 724
 725			return ret;
 726		}
 727		return 0;
 728	}
 
 729
 730	return -ENOSPC;
 731}
 
 
 732
 733/*
 734 * ttm_bo_mem_space - Wrapper around ttm_bo_alloc_resource
 735 *
 736 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
 737 * @placement: Proposed new placement for the buffer object
 738 * @res: The resulting struct ttm_resource.
 739 * @ctx: if and how to sleep, lock buffers and alloc memory
 740 *
 741 * Tries both idle allocation and forcefully eviction of buffers. See
 742 * ttm_bo_alloc_resource for details.
 743 */
 744int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 745		     struct ttm_placement *placement,
 746		     struct ttm_resource **res,
 747		     struct ttm_operation_ctx *ctx)
 748{
 749	bool force_space = false;
 750	int ret;
 751
 752	do {
 753		ret = ttm_bo_alloc_resource(bo, placement, ctx,
 754					    force_space, res);
 755		force_space = !force_space;
 756	} while (ret == -ENOSPC && force_space);
 
 
 
 
 
 
 
 
 
 
 
 757
 758	return ret;
 759}
 760EXPORT_SYMBOL(ttm_bo_mem_space);
 761
 762/**
 763 * ttm_bo_validate
 764 *
 765 * @bo: The buffer object.
 766 * @placement: Proposed placement for the buffer object.
 767 * @ctx: validation parameters.
 768 *
 769 * Changes placement and caching policy of the buffer object
 770 * according proposed placement.
 771 * Returns
 772 * -EINVAL on invalid proposed placement.
 773 * -ENOMEM on out-of-memory condition.
 774 * -EBUSY if no_wait is true and buffer busy.
 775 * -ERESTARTSYS if interrupted by a signal.
 776 */
 777int ttm_bo_validate(struct ttm_buffer_object *bo,
 778		    struct ttm_placement *placement,
 779		    struct ttm_operation_ctx *ctx)
 780{
 781	struct ttm_resource *res;
 782	struct ttm_place hop;
 783	bool force_space;
 784	int ret;
 785
 786	dma_resv_assert_held(bo->base.resv);
 787
 
 
 
 
 
 788	/*
 789	 * Remove the backing store if no placement is given.
 790	 */
 791	if (!placement->num_placement)
 792		return ttm_bo_pipeline_gutting(bo);
 
 
 
 
 
 
 
 793
 794	force_space = false;
 795	do {
 796		/* Check whether we need to move buffer. */
 797		if (bo->resource &&
 798		    ttm_resource_compatible(bo->resource, placement,
 799					    force_space))
 800			return 0;
 801
 802		/* Moving of pinned BOs is forbidden */
 803		if (bo->pin_count)
 804			return -EINVAL;
 805
 806		/*
 807		 * Determine where to move the buffer.
 808		 *
 809		 * If driver determines move is going to need
 810		 * an extra step then it will return -EMULTIHOP
 811		 * and the buffer will be moved to the temporary
 812		 * stop and the driver will be called to make
 813		 * the second hop.
 814		 */
 815		ret = ttm_bo_alloc_resource(bo, placement, ctx, force_space,
 816					    &res);
 817		force_space = !force_space;
 818		if (ret == -ENOSPC)
 819			continue;
 820		if (ret)
 821			return ret;
 822
 823bounce:
 824		ret = ttm_bo_handle_move_mem(bo, res, false, ctx, &hop);
 825		if (ret == -EMULTIHOP) {
 826			ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
 827			/* try and move to final place now. */
 828			if (!ret)
 829				goto bounce;
 830		}
 831		if (ret) {
 832			ttm_resource_free(bo, &res);
 833			return ret;
 834		}
 
 
 
 
 
 
 
 
 
 
 
 
 835
 836	} while (ret && force_space);
 
 
 837
 838	/* For backward compatibility with userspace */
 839	if (ret == -ENOSPC)
 840		return -ENOMEM;
 
 
 
 841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842	/*
 843	 * We might need to add a TTM.
 844	 */
 845	if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) {
 846		ret = ttm_tt_create(bo, true);
 847		if (ret)
 848			return ret;
 849	}
 850	return 0;
 851}
 852EXPORT_SYMBOL(ttm_bo_validate);
 853
 854/**
 855 * ttm_bo_init_reserved
 856 *
 857 * @bdev: Pointer to a ttm_device struct.
 858 * @bo: Pointer to a ttm_buffer_object to be initialized.
 859 * @type: Requested type of buffer object.
 860 * @placement: Initial placement for buffer object.
 861 * @alignment: Data alignment in pages.
 862 * @ctx: TTM operation context for memory allocation.
 863 * @sg: Scatter-gather table.
 864 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 865 * @destroy: Destroy function. Use NULL for kfree().
 866 *
 867 * This function initializes a pre-allocated struct ttm_buffer_object.
 868 * As this object may be part of a larger structure, this function,
 869 * together with the @destroy function, enables driver-specific objects
 870 * derived from a ttm_buffer_object.
 871 *
 872 * On successful return, the caller owns an object kref to @bo. The kref and
 873 * list_kref are usually set to 1, but note that in some situations, other
 874 * tasks may already be holding references to @bo as well.
 875 * Furthermore, if resv == NULL, the buffer's reservation lock will be held,
 876 * and it is the caller's responsibility to call ttm_bo_unreserve.
 877 *
 878 * If a failure occurs, the function will call the @destroy function. Thus,
 879 * after a failure, dereferencing @bo is illegal and will likely cause memory
 880 * corruption.
 881 *
 882 * Returns
 883 * -ENOMEM: Out of memory.
 884 * -EINVAL: Invalid placement flags.
 885 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 886 */
 887int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 888			 enum ttm_bo_type type, struct ttm_placement *placement,
 889			 uint32_t alignment, struct ttm_operation_ctx *ctx,
 890			 struct sg_table *sg, struct dma_resv *resv,
 891			 void (*destroy) (struct ttm_buffer_object *))
 892{
 893	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894
 895	kref_init(&bo->kref);
 
 
 
 
 
 
 
 896	bo->bdev = bdev;
 897	bo->type = type;
 898	bo->page_alignment = alignment;
 899	bo->destroy = destroy;
 900	bo->pin_count = 0;
 
 
 
 
 
 
 
 
 901	bo->sg = sg;
 902	bo->bulk_move = NULL;
 903	if (resv)
 904		bo->base.resv = resv;
 905	else
 
 906		bo->base.resv = &bo->base._resv;
 907	atomic_inc(&ttm_glob.bo_count);
 
 
 
 
 
 
 
 
 
 908
 909	/*
 910	 * For ttm_bo_type_device buffers, allocate
 911	 * address space from the device.
 912	 */
 913	if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) {
 914		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
 915					 PFN_UP(bo->base.size));
 916		if (ret)
 917			goto err_put;
 918	}
 919
 920	/* passed reservation objects should already be locked,
 921	 * since otherwise lockdep will be angered in radeon.
 922	 */
 923	if (!resv)
 924		WARN_ON(!dma_resv_trylock(bo->base.resv));
 925	else
 926		dma_resv_assert_held(resv);
 927
 928	ret = ttm_bo_validate(bo, placement, ctx);
 929	if (unlikely(ret))
 930		goto err_unlock;
 931
 932	return 0;
 
 
 933
 934err_unlock:
 935	if (!resv)
 936		dma_resv_unlock(bo->base.resv);
 
 
 
 
 
 
 937
 938err_put:
 939	ttm_bo_put(bo);
 940	return ret;
 941}
 942EXPORT_SYMBOL(ttm_bo_init_reserved);
 943
 944/**
 945 * ttm_bo_init_validate
 946 *
 947 * @bdev: Pointer to a ttm_device struct.
 948 * @bo: Pointer to a ttm_buffer_object to be initialized.
 949 * @type: Requested type of buffer object.
 950 * @placement: Initial placement for buffer object.
 951 * @alignment: Data alignment in pages.
 952 * @interruptible: If needing to sleep to wait for GPU resources,
 953 * sleep interruptible.
 954 * pinned in physical memory. If this behaviour is not desired, this member
 955 * holds a pointer to a persistent shmem object. Typically, this would
 956 * point to the shmem object backing a GEM object if TTM is used to back a
 957 * GEM user interface.
 958 * @sg: Scatter-gather table.
 959 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 960 * @destroy: Destroy function. Use NULL for kfree().
 961 *
 962 * This function initializes a pre-allocated struct ttm_buffer_object.
 963 * As this object may be part of a larger structure, this function,
 964 * together with the @destroy function,
 965 * enables driver-specific objects derived from a ttm_buffer_object.
 966 *
 967 * On successful return, the caller owns an object kref to @bo. The kref and
 968 * list_kref are usually set to 1, but note that in some situations, other
 969 * tasks may already be holding references to @bo as well.
 970 *
 971 * If a failure occurs, the function will call the @destroy function, Thus,
 972 * after a failure, dereferencing @bo is illegal and will likely cause memory
 973 * corruption.
 974 *
 975 * Returns
 976 * -ENOMEM: Out of memory.
 977 * -EINVAL: Invalid placement flags.
 978 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 979 */
 980int ttm_bo_init_validate(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 981			 enum ttm_bo_type type, struct ttm_placement *placement,
 982			 uint32_t alignment, bool interruptible,
 983			 struct sg_table *sg, struct dma_resv *resv,
 984			 void (*destroy) (struct ttm_buffer_object *))
 985{
 986	struct ttm_operation_ctx ctx = { interruptible, false };
 987	int ret;
 988
 989	ret = ttm_bo_init_reserved(bdev, bo, type, placement, alignment, &ctx,
 
 990				   sg, resv, destroy);
 991	if (ret)
 992		return ret;
 993
 994	if (!resv)
 995		ttm_bo_unreserve(bo);
 996
 997	return 0;
 998}
 999EXPORT_SYMBOL(ttm_bo_init_validate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000
1001/*
1002 * buffer object vm functions.
1003 */
1004
1005/**
1006 * ttm_bo_unmap_virtual
1007 *
1008 * @bo: tear down the virtual mappings for this BO
1009 */
1010void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
 
 
 
 
 
 
 
 
 
 
 
 
1011{
1012	struct ttm_device *bdev = bo->bdev;
1013
1014	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1015	ttm_mem_io_free(bdev, bo->resource);
 
 
 
 
 
 
 
 
 
 
1016}
 
 
1017EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1018
1019/**
1020 * ttm_bo_wait_ctx - wait for buffer idle.
1021 *
1022 * @bo:  The buffer object.
1023 * @ctx: defines how to wait
1024 *
1025 * Waits for the buffer to be idle. Used timeout depends on the context.
1026 * Returns -EBUSY if wait timed outt, -ERESTARTSYS if interrupted by a signal or
1027 * zero on success.
1028 */
1029int ttm_bo_wait_ctx(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1030{
1031	long ret;
1032
1033	if (ctx->no_wait_gpu) {
1034		if (dma_resv_test_signaled(bo->base.resv,
1035					   DMA_RESV_USAGE_BOOKKEEP))
1036			return 0;
1037		else
1038			return -EBUSY;
1039	}
1040
1041	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
1042				    ctx->interruptible, 15 * HZ);
1043	if (unlikely(ret < 0))
1044		return ret;
1045	if (unlikely(ret == 0))
 
1046		return -EBUSY;
 
 
1047	return 0;
1048}
1049EXPORT_SYMBOL(ttm_bo_wait_ctx);
1050
1051/**
1052 * struct ttm_bo_swapout_walk - Parameters for the swapout walk
1053 */
1054struct ttm_bo_swapout_walk {
1055	/** @walk: The walk base parameters. */
1056	struct ttm_lru_walk walk;
1057	/** @gfp_flags: The gfp flags to use for ttm_tt_swapout() */
1058	gfp_t gfp_flags;
1059};
1060
1061static s64
1062ttm_bo_swapout_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
1063{
1064	struct ttm_place place = {.mem_type = bo->resource->mem_type};
1065	struct ttm_bo_swapout_walk *swapout_walk =
1066		container_of(walk, typeof(*swapout_walk), walk);
1067	struct ttm_operation_ctx *ctx = walk->ctx;
1068	s64 ret;
1069
1070	/*
1071	 * While the bo may already reside in SYSTEM placement, set
1072	 * SYSTEM as new placement to cover also the move further below.
1073	 * The driver may use the fact that we're moving from SYSTEM
1074	 * as an indication that we're about to swap out.
1075	 */
1076	if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, &place)) {
1077		ret = -EBUSY;
1078		goto out;
1079	}
1080
1081	if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
1082	    bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL ||
1083	    bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) {
1084		ret = -EBUSY;
1085		goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1086	}
1087
1088	if (bo->deleted) {
1089		pgoff_t num_pages = bo->ttm->num_pages;
 
 
1090
1091		ret = ttm_bo_wait_ctx(bo, ctx);
1092		if (ret)
1093			goto out;
1094
1095		ttm_bo_cleanup_memtype_use(bo);
1096		ret = num_pages;
1097		goto out;
 
1098	}
1099
1100	/*
 
 
 
1101	 * Move to system cached
1102	 */
1103	if (bo->resource->mem_type != TTM_PL_SYSTEM) {
1104		struct ttm_resource *evict_mem;
1105		struct ttm_place hop;
1106
1107		memset(&hop, 0, sizeof(hop));
1108		place.mem_type = TTM_PL_SYSTEM;
1109		ret = ttm_resource_alloc(bo, &place, &evict_mem);
1110		if (ret)
1111			goto out;
1112
1113		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
1114		if (ret) {
1115			WARN(ret == -EMULTIHOP,
1116			     "Unexpected multihop in swapout - likely driver bug.\n");
1117			ttm_resource_free(bo, &evict_mem);
 
 
 
 
 
 
 
1118			goto out;
1119		}
1120	}
1121
1122	/*
1123	 * Make sure BO is idle.
1124	 */
1125	ret = ttm_bo_wait_ctx(bo, ctx);
1126	if (ret)
 
1127		goto out;
1128
1129	ttm_bo_unmap_virtual(bo);
1130	if (bo->bdev->funcs->swap_notify)
1131		bo->bdev->funcs->swap_notify(bo);
1132
1133	if (ttm_tt_is_populated(bo->ttm)) {
1134		spin_lock(&bo->bdev->lru_lock);
1135		ttm_resource_del_bulk_move(bo->resource, bo);
1136		spin_unlock(&bo->bdev->lru_lock);
1137
1138		ret = ttm_tt_swapout(bo->bdev, bo->ttm, swapout_walk->gfp_flags);
1139
1140		spin_lock(&bo->bdev->lru_lock);
1141		if (ret)
1142			ttm_resource_add_bulk_move(bo->resource, bo);
1143		ttm_resource_move_to_lru_tail(bo->resource);
1144		spin_unlock(&bo->bdev->lru_lock);
1145	}
1146
 
1147out:
1148	/* Consider -ENOMEM and -ENOSPC non-fatal. */
1149	if (ret == -ENOMEM || ret == -ENOSPC)
1150		ret = -EBUSY;
1151
 
 
 
 
 
 
 
 
1152	return ret;
1153}
 
1154
1155const struct ttm_lru_walk_ops ttm_swap_ops = {
1156	.process_bo = ttm_bo_swapout_cb,
1157};
1158
1159/**
1160 * ttm_bo_swapout() - Swap out buffer objects on the LRU list to shmem.
1161 * @bdev: The ttm device.
1162 * @ctx: The ttm_operation_ctx governing the swapout operation.
1163 * @man: The resource manager whose resources / buffer objects are
1164 * goint to be swapped out.
1165 * @gfp_flags: The gfp flags used for shmem page allocations.
1166 * @target: The desired number of bytes to swap out.
1167 *
1168 * Return: The number of bytes actually swapped out, or negative error code
1169 * on error.
1170 */
1171s64 ttm_bo_swapout(struct ttm_device *bdev, struct ttm_operation_ctx *ctx,
1172		   struct ttm_resource_manager *man, gfp_t gfp_flags,
1173		   s64 target)
1174{
1175	struct ttm_bo_swapout_walk swapout_walk = {
1176		.walk = {
1177			.ops = &ttm_swap_ops,
1178			.ctx = ctx,
1179			.trylock_only = true,
1180		},
1181		.gfp_flags = gfp_flags,
1182	};
1183
1184	return ttm_lru_walk_for_evict(&swapout_walk.walk, bdev, man, target);
1185}
1186
1187void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1188{
1189	if (bo->ttm == NULL)
1190		return;
 
 
1191
1192	ttm_tt_unpopulate(bo->bdev, bo->ttm);
1193	ttm_tt_destroy(bo->bdev, bo->ttm);
1194	bo->ttm = NULL;
1195}
 
1196
1197/**
1198 * ttm_bo_populate() - Ensure that a buffer object has backing pages
1199 * @bo: The buffer object
1200 * @ctx: The ttm_operation_ctx governing the operation.
1201 *
1202 * For buffer objects in a memory type whose manager uses
1203 * struct ttm_tt for backing pages, ensure those backing pages
1204 * are present and with valid content. The bo's resource is also
1205 * placed on the correct LRU list if it was previously swapped
1206 * out.
1207 *
1208 * Return: 0 if successful, negative error code on failure.
1209 * Note: May return -EINTR or -ERESTARTSYS if @ctx::interruptible
1210 * is set to true.
1211 */
1212int ttm_bo_populate(struct ttm_buffer_object *bo,
1213		    struct ttm_operation_ctx *ctx)
1214{
1215	struct ttm_tt *tt = bo->ttm;
1216	bool swapped;
1217	int ret;
1218
1219	dma_resv_assert_held(bo->base.resv);
1220
1221	if (!tt)
1222		return 0;
1223
1224	swapped = ttm_tt_is_swapped(tt);
1225	ret = ttm_tt_populate(bo->bdev, tt, ctx);
1226	if (ret)
1227		return ret;
1228
1229	if (swapped && !ttm_tt_is_swapped(tt) && !bo->pin_count &&
1230	    bo->resource) {
1231		spin_lock(&bo->bdev->lru_lock);
1232		ttm_resource_add_bulk_move(bo->resource, bo);
1233		ttm_resource_move_to_lru_tail(bo->resource);
1234		spin_unlock(&bo->bdev->lru_lock);
1235	}
 
1236
1237	return 0;
 
 
1238}
1239EXPORT_SYMBOL(ttm_bo_populate);
v5.4
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28/*
  29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  30 */
  31
  32#define pr_fmt(fmt) "[TTM] " fmt
  33
  34#include <drm/ttm/ttm_module.h>
  35#include <drm/ttm/ttm_bo_driver.h>
  36#include <drm/ttm/ttm_placement.h>
 
 
  37#include <linux/jiffies.h>
  38#include <linux/slab.h>
  39#include <linux/sched.h>
  40#include <linux/mm.h>
  41#include <linux/file.h>
  42#include <linux/module.h>
  43#include <linux/atomic.h>
  44#include <linux/dma-resv.h>
  45
  46static void ttm_bo_global_kobj_release(struct kobject *kobj);
  47
  48/**
  49 * ttm_global_mutex - protecting the global BO state
  50 */
  51DEFINE_MUTEX(ttm_global_mutex);
  52unsigned ttm_bo_glob_use_count;
  53struct ttm_bo_global ttm_bo_glob;
  54
  55static struct attribute ttm_bo_count = {
  56	.name = "bo_count",
  57	.mode = S_IRUGO
  58};
  59
  60/* default destructor */
  61static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
  62{
  63	kfree(bo);
  64}
  65
  66static inline int ttm_mem_type_from_place(const struct ttm_place *place,
  67					  uint32_t *mem_type)
  68{
  69	int pos;
  70
  71	pos = ffs(place->flags & TTM_PL_MASK_MEM);
  72	if (unlikely(!pos))
  73		return -EINVAL;
  74
  75	*mem_type = pos - 1;
  76	return 0;
  77}
  78
  79static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
  80			       int mem_type)
  81{
  82	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  83
  84	drm_printf(p, "    has_type: %d\n", man->has_type);
  85	drm_printf(p, "    use_type: %d\n", man->use_type);
  86	drm_printf(p, "    flags: 0x%08X\n", man->flags);
  87	drm_printf(p, "    gpu_offset: 0x%08llX\n", man->gpu_offset);
  88	drm_printf(p, "    size: %llu\n", man->size);
  89	drm_printf(p, "    available_caching: 0x%08X\n", man->available_caching);
  90	drm_printf(p, "    default_caching: 0x%08X\n", man->default_caching);
  91	if (mem_type != TTM_PL_SYSTEM)
  92		(*man->func->debug)(man, p);
  93}
  94
  95static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  96					struct ttm_placement *placement)
  97{
  98	struct drm_printer p = drm_debug_printer(TTM_PFX);
  99	int i, ret, mem_type;
 
 100
 101	drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
 102		   bo, bo->mem.num_pages, bo->mem.size >> 10,
 103		   bo->mem.size >> 20);
 104	for (i = 0; i < placement->num_placement; i++) {
 105		ret = ttm_mem_type_from_place(&placement->placement[i],
 106						&mem_type);
 107		if (ret)
 108			return;
 109		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
 110			   i, placement->placement[i].flags, mem_type);
 111		ttm_mem_type_debug(bo->bdev, &p, mem_type);
 
 112	}
 113}
 114
 115static ssize_t ttm_bo_global_show(struct kobject *kobj,
 116				  struct attribute *attr,
 117				  char *buffer)
 
 
 
 
 
 
 
 118{
 119	struct ttm_bo_global *glob =
 120		container_of(kobj, struct ttm_bo_global, kobj);
 121
 122	return snprintf(buffer, PAGE_SIZE, "%d\n",
 123				atomic_read(&glob->bo_count));
 124}
 
 125
 126static struct attribute *ttm_bo_global_attrs[] = {
 127	&ttm_bo_count,
 128	NULL
 129};
 130
 131static const struct sysfs_ops ttm_bo_global_ops = {
 132	.show = &ttm_bo_global_show
 133};
 134
 135static struct kobj_type ttm_bo_glob_kobj_type  = {
 136	.release = &ttm_bo_global_kobj_release,
 137	.sysfs_ops = &ttm_bo_global_ops,
 138	.default_attrs = ttm_bo_global_attrs
 139};
 140
 141
 142static inline uint32_t ttm_bo_type_flags(unsigned type)
 143{
 144	return 1 << (type);
 145}
 146
 147static void ttm_bo_release_list(struct kref *list_kref)
 148{
 149	struct ttm_buffer_object *bo =
 150	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 151	struct ttm_bo_device *bdev = bo->bdev;
 152	size_t acc_size = bo->acc_size;
 153
 154	BUG_ON(kref_read(&bo->list_kref));
 155	BUG_ON(kref_read(&bo->kref));
 156	BUG_ON(atomic_read(&bo->cpu_writers));
 157	BUG_ON(bo->mem.mm_node != NULL);
 158	BUG_ON(!list_empty(&bo->lru));
 159	BUG_ON(!list_empty(&bo->ddestroy));
 160	ttm_tt_destroy(bo->ttm);
 161	atomic_dec(&bo->bdev->glob->bo_count);
 162	dma_fence_put(bo->moving);
 163	if (!ttm_bo_uses_embedded_gem_object(bo))
 164		dma_resv_fini(&bo->base._resv);
 165	mutex_destroy(&bo->wu_mutex);
 166	bo->destroy(bo);
 167	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
 168}
 169
 170static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
 171				  struct ttm_mem_reg *mem)
 172{
 173	struct ttm_bo_device *bdev = bo->bdev;
 174	struct ttm_mem_type_manager *man;
 175
 176	dma_resv_assert_held(bo->base.resv);
 177
 178	if (!list_empty(&bo->lru))
 179		return;
 180
 181	if (mem->placement & TTM_PL_FLAG_NO_EVICT)
 182		return;
 183
 184	man = &bdev->man[mem->mem_type];
 185	list_add_tail(&bo->lru, &man->lru[bo->priority]);
 186	kref_get(&bo->list_kref);
 187
 188	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm &&
 189	    !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
 190				     TTM_PAGE_FLAG_SWAPPED))) {
 191		list_add_tail(&bo->swap, &bdev->glob->swap_lru[bo->priority]);
 192		kref_get(&bo->list_kref);
 193	}
 194}
 
 195
 196void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 
 
 
 197{
 198	ttm_bo_add_mem_to_lru(bo, &bo->mem);
 199}
 200EXPORT_SYMBOL(ttm_bo_add_to_lru);
 201
 202static void ttm_bo_ref_bug(struct kref *list_kref)
 203{
 204	BUG();
 205}
 206
 207void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 208{
 209	struct ttm_bo_device *bdev = bo->bdev;
 210	bool notify = false;
 211
 212	if (!list_empty(&bo->swap)) {
 213		list_del_init(&bo->swap);
 214		kref_put(&bo->list_kref, ttm_bo_ref_bug);
 215		notify = true;
 216	}
 217	if (!list_empty(&bo->lru)) {
 218		list_del_init(&bo->lru);
 219		kref_put(&bo->list_kref, ttm_bo_ref_bug);
 220		notify = true;
 221	}
 222
 223	if (notify && bdev->driver->del_from_lru_notify)
 224		bdev->driver->del_from_lru_notify(bo);
 225}
 226
 227void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
 228{
 229	struct ttm_bo_global *glob = bo->bdev->glob;
 230
 231	spin_lock(&glob->lru_lock);
 232	ttm_bo_del_from_lru(bo);
 233	spin_unlock(&glob->lru_lock);
 234}
 235EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
 236
 237static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
 238				     struct ttm_buffer_object *bo)
 239{
 240	if (!pos->first)
 241		pos->first = bo;
 242	pos->last = bo;
 243}
 244
 245void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
 246			     struct ttm_lru_bulk_move *bulk)
 247{
 248	dma_resv_assert_held(bo->base.resv);
 249
 250	ttm_bo_del_from_lru(bo);
 251	ttm_bo_add_to_lru(bo);
 252
 253	if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 254		switch (bo->mem.mem_type) {
 255		case TTM_PL_TT:
 256			ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
 257			break;
 258
 259		case TTM_PL_VRAM:
 260			ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
 261			break;
 262		}
 263		if (bo->ttm && !(bo->ttm->page_flags &
 264				 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
 265			ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
 266	}
 267}
 268EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
 269
 270void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
 271{
 272	unsigned i;
 273
 274	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 275		struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
 276		struct ttm_mem_type_manager *man;
 277
 278		if (!pos->first)
 279			continue;
 280
 281		dma_resv_assert_held(pos->first->base.resv);
 282		dma_resv_assert_held(pos->last->base.resv);
 283
 284		man = &pos->first->bdev->man[TTM_PL_TT];
 285		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
 286				    &pos->last->lru);
 287	}
 288
 289	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 290		struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
 291		struct ttm_mem_type_manager *man;
 292
 293		if (!pos->first)
 294			continue;
 295
 296		dma_resv_assert_held(pos->first->base.resv);
 297		dma_resv_assert_held(pos->last->base.resv);
 298
 299		man = &pos->first->bdev->man[TTM_PL_VRAM];
 300		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
 301				    &pos->last->lru);
 302	}
 303
 304	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 305		struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
 306		struct list_head *lru;
 307
 308		if (!pos->first)
 309			continue;
 310
 311		dma_resv_assert_held(pos->first->base.resv);
 312		dma_resv_assert_held(pos->last->base.resv);
 313
 314		lru = &pos->first->bdev->glob->swap_lru[i];
 315		list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
 316	}
 317}
 318EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
 319
 320static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 321				  struct ttm_mem_reg *mem, bool evict,
 322				  struct ttm_operation_ctx *ctx)
 323{
 324	struct ttm_bo_device *bdev = bo->bdev;
 325	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 326	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 327	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 328	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 329	int ret = 0;
 330
 331	if (old_is_pci || new_is_pci ||
 332	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 333		ret = ttm_mem_io_lock(old_man, true);
 334		if (unlikely(ret != 0))
 335			goto out_err;
 336		ttm_bo_unmap_virtual_locked(bo);
 337		ttm_mem_io_unlock(old_man);
 338	}
 339
 340	/*
 341	 * Create and bind a ttm if required.
 342	 */
 343
 344	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 345		if (bo->ttm == NULL) {
 346			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 347			ret = ttm_tt_create(bo, zero);
 348			if (ret)
 349				goto out_err;
 350		}
 351
 352		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 353		if (ret)
 354			goto out_err;
 355
 356		if (mem->mem_type != TTM_PL_SYSTEM) {
 357			ret = ttm_tt_bind(bo->ttm, mem, ctx);
 358			if (ret)
 359				goto out_err;
 360		}
 361
 362		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 363			if (bdev->driver->move_notify)
 364				bdev->driver->move_notify(bo, evict, mem);
 365			bo->mem = *mem;
 366			mem->mm_node = NULL;
 367			goto moved;
 368		}
 369	}
 370
 371	if (bdev->driver->move_notify)
 372		bdev->driver->move_notify(bo, evict, mem);
 373
 374	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 375	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 376		ret = ttm_bo_move_ttm(bo, ctx, mem);
 377	else if (bdev->driver->move)
 378		ret = bdev->driver->move(bo, evict, ctx, mem);
 379	else
 380		ret = ttm_bo_move_memcpy(bo, ctx, mem);
 381
 
 382	if (ret) {
 383		if (bdev->driver->move_notify) {
 384			swap(*mem, bo->mem);
 385			bdev->driver->move_notify(bo, false, mem);
 386			swap(*mem, bo->mem);
 387		}
 388
 389		goto out_err;
 390	}
 391
 392moved:
 393	if (bo->evicted) {
 394		if (bdev->driver->invalidate_caches) {
 395			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 396			if (ret)
 397				pr_err("Can not flush read caches\n");
 398		}
 399		bo->evicted = false;
 400	}
 401
 402	if (bo->mem.mm_node)
 403		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 404		    bdev->man[bo->mem.mem_type].gpu_offset;
 405	else
 406		bo->offset = 0;
 407
 408	ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
 409	return 0;
 410
 411out_err:
 412	new_man = &bdev->man[bo->mem.mem_type];
 413	if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
 414		ttm_tt_destroy(bo->ttm);
 415		bo->ttm = NULL;
 416	}
 417
 418	return ret;
 419}
 420
 421/**
 422 * Call bo::reserved.
 423 * Will release GPU memory type usage on destruction.
 424 * This is the place to put in driver specific hooks to release
 425 * driver private resources.
 426 * Will release the bo::reserved lock.
 427 */
 428
 429static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 430{
 431	if (bo->bdev->driver->move_notify)
 432		bo->bdev->driver->move_notify(bo, false, NULL);
 433
 434	ttm_tt_destroy(bo->ttm);
 435	bo->ttm = NULL;
 436	ttm_bo_mem_put(bo, &bo->mem);
 437}
 438
 439static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
 440{
 441	int r;
 442
 443	if (bo->base.resv == &bo->base._resv)
 444		return 0;
 445
 446	BUG_ON(!dma_resv_trylock(&bo->base._resv));
 447
 448	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
 
 449	if (r)
 450		dma_resv_unlock(&bo->base._resv);
 
 
 
 
 
 
 
 
 
 
 451
 452	return r;
 453}
 454
 455static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 456{
 457	struct dma_resv_list *fobj;
 
 458	struct dma_fence *fence;
 459	int i;
 460
 461	fobj = dma_resv_get_list(&bo->base._resv);
 462	fence = dma_resv_get_excl(&bo->base._resv);
 463	if (fence && !fence->ops->signaled)
 464		dma_fence_enable_sw_signaling(fence);
 465
 466	for (i = 0; fobj && i < fobj->shared_count; ++i) {
 467		fence = rcu_dereference_protected(fobj->shared[i],
 468					dma_resv_held(bo->base.resv));
 469
 
 
 470		if (!fence->ops->signaled)
 471			dma_fence_enable_sw_signaling(fence);
 472	}
 
 473}
 474
 475static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 
 
 
 
 476{
 477	struct ttm_bo_device *bdev = bo->bdev;
 478	struct ttm_bo_global *glob = bdev->glob;
 479	int ret;
 480
 481	ret = ttm_bo_individualize_resv(bo);
 482	if (ret) {
 483		/* Last resort, if we fail to allocate memory for the
 484		 * fences block for the BO to become idle
 485		 */
 486		dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
 487						    30 * HZ);
 488		spin_lock(&glob->lru_lock);
 489		goto error;
 490	}
 491
 492	spin_lock(&glob->lru_lock);
 493	ret = dma_resv_trylock(bo->base.resv) ? 0 : -EBUSY;
 494	if (!ret) {
 495		if (dma_resv_test_signaled_rcu(&bo->base._resv, true)) {
 496			ttm_bo_del_from_lru(bo);
 497			spin_unlock(&glob->lru_lock);
 498			if (bo->base.resv != &bo->base._resv)
 499				dma_resv_unlock(&bo->base._resv);
 500
 501			ttm_bo_cleanup_memtype_use(bo);
 502			dma_resv_unlock(bo->base.resv);
 503			return;
 504		}
 
 
 505
 506		ttm_bo_flush_all_fences(bo);
 
 507
 508		/*
 509		 * Make NO_EVICT bos immediately available to
 510		 * shrinkers, now that they are queued for
 511		 * destruction.
 512		 */
 513		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
 514			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
 515			ttm_bo_add_to_lru(bo);
 
 516		}
 517
 518		dma_resv_unlock(bo->base.resv);
 519	}
 520	if (bo->base.resv != &bo->base._resv)
 521		dma_resv_unlock(&bo->base._resv);
 522
 523error:
 524	kref_get(&bo->list_kref);
 525	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 526	spin_unlock(&glob->lru_lock);
 527
 528	schedule_delayed_work(&bdev->wq,
 529			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 530}
 531
 532/**
 533 * function ttm_bo_cleanup_refs
 534 * If bo idle, remove from delayed- and lru lists, and unref.
 535 * If not idle, do nothing.
 536 *
 537 * Must be called with lru_lock and reservation held, this function
 538 * will drop the lru lock and optionally the reservation lock before returning.
 539 *
 540 * @interruptible         Any sleeps should occur interruptibly.
 541 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 542 * @unlock_resv           Unlock the reservation lock as well.
 543 */
 544
 545static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 546			       bool interruptible, bool no_wait_gpu,
 547			       bool unlock_resv)
 548{
 549	struct ttm_bo_global *glob = bo->bdev->glob;
 550	struct dma_resv *resv;
 551	int ret;
 
 552
 553	if (unlikely(list_empty(&bo->ddestroy)))
 554		resv = bo->base.resv;
 555	else
 556		resv = &bo->base._resv;
 557
 558	if (dma_resv_test_signaled_rcu(resv, true))
 559		ret = 0;
 560	else
 561		ret = -EBUSY;
 562
 563	if (ret && !no_wait_gpu) {
 564		long lret;
 565
 566		if (unlock_resv)
 567			dma_resv_unlock(bo->base.resv);
 568		spin_unlock(&glob->lru_lock);
 569
 570		lret = dma_resv_wait_timeout_rcu(resv, true,
 571							   interruptible,
 572							   30 * HZ);
 573
 574		if (lret < 0)
 575			return lret;
 576		else if (lret == 0)
 577			return -EBUSY;
 578
 579		spin_lock(&glob->lru_lock);
 580		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
 581			/*
 582			 * We raced, and lost, someone else holds the reservation now,
 583			 * and is probably busy in ttm_bo_cleanup_memtype_use.
 
 584			 *
 585			 * Even if it's not the case, because we finished waiting any
 586			 * delayed destruction would succeed, so just return success
 587			 * here.
 588			 */
 589			spin_unlock(&glob->lru_lock);
 590			return 0;
 591		}
 592		ret = 0;
 593	}
 594
 595	if (ret || unlikely(list_empty(&bo->ddestroy))) {
 596		if (unlock_resv)
 597			dma_resv_unlock(bo->base.resv);
 598		spin_unlock(&glob->lru_lock);
 599		return ret;
 600	}
 601
 602	ttm_bo_del_from_lru(bo);
 603	list_del_init(&bo->ddestroy);
 604	kref_put(&bo->list_kref, ttm_bo_ref_bug);
 605
 606	spin_unlock(&glob->lru_lock);
 607	ttm_bo_cleanup_memtype_use(bo);
 
 
 
 
 
 
 608
 609	if (unlock_resv)
 610		dma_resv_unlock(bo->base.resv);
 
 611
 612	return 0;
 
 613}
 614
 615/**
 616 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 617 * encountered buffers.
 
 
 
 618 */
 619static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 620{
 621	struct ttm_bo_global *glob = bdev->glob;
 622	struct list_head removed;
 623	bool empty;
 624
 625	INIT_LIST_HEAD(&removed);
 626
 627	spin_lock(&glob->lru_lock);
 628	while (!list_empty(&bdev->ddestroy)) {
 629		struct ttm_buffer_object *bo;
 630
 631		bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
 632				      ddestroy);
 633		kref_get(&bo->list_kref);
 634		list_move_tail(&bo->ddestroy, &removed);
 635
 636		if (remove_all || bo->base.resv != &bo->base._resv) {
 637			spin_unlock(&glob->lru_lock);
 638			dma_resv_lock(bo->base.resv, NULL);
 639
 640			spin_lock(&glob->lru_lock);
 641			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
 642
 643		} else if (dma_resv_trylock(bo->base.resv)) {
 644			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
 645		} else {
 646			spin_unlock(&glob->lru_lock);
 647		}
 648
 649		kref_put(&bo->list_kref, ttm_bo_release_list);
 650		spin_lock(&glob->lru_lock);
 651	}
 652	list_splice_tail(&removed, &bdev->ddestroy);
 653	empty = list_empty(&bdev->ddestroy);
 654	spin_unlock(&glob->lru_lock);
 655
 656	return empty;
 657}
 658
 659static void ttm_bo_delayed_workqueue(struct work_struct *work)
 660{
 661	struct ttm_bo_device *bdev =
 662	    container_of(work, struct ttm_bo_device, wq.work);
 663
 664	if (!ttm_bo_delayed_delete(bdev, false))
 665		schedule_delayed_work(&bdev->wq,
 666				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 667}
 668
 669static void ttm_bo_release(struct kref *kref)
 670{
 671	struct ttm_buffer_object *bo =
 672	    container_of(kref, struct ttm_buffer_object, kref);
 673	struct ttm_bo_device *bdev = bo->bdev;
 674	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 675
 676	if (bo->bdev->driver->release_notify)
 677		bo->bdev->driver->release_notify(bo);
 678
 679	drm_vma_offset_remove(&bdev->vma_manager, &bo->base.vma_node);
 680	ttm_mem_io_lock(man, false);
 681	ttm_mem_io_free_vm(bo);
 682	ttm_mem_io_unlock(man);
 683	ttm_bo_cleanup_refs_or_queue(bo);
 684	kref_put(&bo->list_kref, ttm_bo_release_list);
 685}
 686
 687void ttm_bo_put(struct ttm_buffer_object *bo)
 688{
 689	kref_put(&bo->kref, ttm_bo_release);
 690}
 691EXPORT_SYMBOL(ttm_bo_put);
 692
 693int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 
 
 694{
 695	return cancel_delayed_work_sync(&bdev->wq);
 696}
 697EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 
 
 
 698
 699void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 700{
 701	if (resched)
 702		schedule_delayed_work(&bdev->wq,
 703				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 
 
 
 
 
 
 704}
 705EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 706
 707static int ttm_bo_evict(struct ttm_buffer_object *bo,
 708			struct ttm_operation_ctx *ctx)
 709{
 710	struct ttm_bo_device *bdev = bo->bdev;
 711	struct ttm_mem_reg evict_mem;
 712	struct ttm_placement placement;
 
 713	int ret = 0;
 714
 
 
 715	dma_resv_assert_held(bo->base.resv);
 716
 717	placement.num_placement = 0;
 718	placement.num_busy_placement = 0;
 719	bdev->driver->evict_flags(bo, &placement);
 720
 721	if (!placement.num_placement && !placement.num_busy_placement) {
 722		ret = ttm_bo_pipeline_gutting(bo);
 723		if (ret)
 724			return ret;
 725
 726		return ttm_tt_create(bo, false);
 
 
 
 
 727	}
 728
 729	evict_mem = bo->mem;
 730	evict_mem.mm_node = NULL;
 731	evict_mem.bus.io_reserved_vm = false;
 732	evict_mem.bus.io_reserved_count = 0;
 733
 734	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
 735	if (ret) {
 736		if (ret != -ERESTARTSYS) {
 737			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 738			       bo);
 739			ttm_bo_mem_space_debug(bo, &placement);
 740		}
 741		goto out;
 742	}
 743
 744	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
 745	if (unlikely(ret)) {
 746		if (ret != -ERESTARTSYS)
 
 
 
 
 
 
 
 
 747			pr_err("Buffer eviction failed\n");
 748		ttm_bo_mem_put(bo, &evict_mem);
 749		goto out;
 750	}
 751	bo->evicted = true;
 752out:
 753	return ret;
 754}
 755
 
 
 
 
 
 
 
 
 756bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 757			      const struct ttm_place *place)
 758{
 
 
 
 
 
 
 
 759	/* Don't evict this BO if it's outside of the
 760	 * requested placement range
 761	 */
 762	if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
 763	    (place->lpfn && place->lpfn <= bo->mem.start))
 764		return false;
 765
 766	return true;
 767}
 768EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 769
 770/**
 771 * Check the target bo is allowable to be evicted or swapout, including cases:
 
 
 
 772 *
 773 * a. if share same reservation object with ctx->resv, have assumption
 774 * reservation objects should already be locked, so not lock again and
 775 * return true directly when either the opreation allow_reserved_eviction
 776 * or the target bo already is in delayed free list;
 777 *
 778 * b. Otherwise, trylock it.
 779 */
 780static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
 781			struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
 782{
 783	bool ret = false;
 784
 785	if (bo->base.resv == ctx->resv) {
 786		dma_resv_assert_held(bo->base.resv);
 787		if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
 788		    || !list_empty(&bo->ddestroy))
 789			ret = true;
 790		*locked = false;
 791		if (busy)
 792			*busy = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 793	} else {
 794		ret = dma_resv_trylock(bo->base.resv);
 795		*locked = ret;
 796		if (busy)
 797			*busy = !ret;
 798	}
 
 
 
 
 
 799
 
 
 800	return ret;
 801}
 802
 803/**
 804 * ttm_mem_evict_wait_busy - wait for a busy BO to become available
 805 *
 806 * @busy_bo: BO which couldn't be locked with trylock
 807 * @ctx: operation context
 808 * @ticket: acquire ticket
 809 *
 810 * Try to lock a busy buffer object to avoid failing eviction.
 811 */
 812static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
 813				   struct ttm_operation_ctx *ctx,
 814				   struct ww_acquire_ctx *ticket)
 
 
 
 
 
 
 
 
 
 
 
 815{
 816	int r;
 
 
 817
 818	if (!busy_bo || !ticket)
 819		return -EBUSY;
 820
 821	if (ctx->interruptible)
 822		r = dma_resv_lock_interruptible(busy_bo->base.resv,
 823							  ticket);
 824	else
 825		r = dma_resv_lock(busy_bo->base.resv, ticket);
 826
 827	/*
 828	 * TODO: It would be better to keep the BO locked until allocation is at
 829	 * least tried one more time, but that would mean a much larger rework
 830	 * of TTM.
 831	 */
 832	if (!r)
 833		dma_resv_unlock(busy_bo->base.resv);
 834
 835	return r == -EDEADLK ? -EBUSY : r;
 836}
 837
 838static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 839			       uint32_t mem_type,
 840			       const struct ttm_place *place,
 841			       struct ttm_operation_ctx *ctx,
 842			       struct ww_acquire_ctx *ticket)
 843{
 844	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
 845	struct ttm_bo_global *glob = bdev->glob;
 846	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 847	bool locked = false;
 848	unsigned i;
 849	int ret;
 850
 851	spin_lock(&glob->lru_lock);
 852	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 853		list_for_each_entry(bo, &man->lru[i], lru) {
 854			bool busy;
 855
 856			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
 857							    &busy)) {
 858				if (busy && !busy_bo && ticket !=
 859				    dma_resv_locking_ctx(bo->base.resv))
 860					busy_bo = bo;
 861				continue;
 862			}
 863
 864			if (place && !bdev->driver->eviction_valuable(bo,
 865								      place)) {
 866				if (locked)
 867					dma_resv_unlock(bo->base.resv);
 868				continue;
 869			}
 870			break;
 871		}
 872
 873		/* If the inner loop terminated early, we have our candidate */
 874		if (&bo->lru != &man->lru[i])
 875			break;
 876
 877		bo = NULL;
 878	}
 879
 880	if (!bo) {
 881		if (busy_bo)
 882			kref_get(&busy_bo->list_kref);
 883		spin_unlock(&glob->lru_lock);
 884		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
 885		if (busy_bo)
 886			kref_put(&busy_bo->list_kref, ttm_bo_release_list);
 887		return ret;
 888	}
 889
 890	kref_get(&bo->list_kref);
 891
 892	if (!list_empty(&bo->ddestroy)) {
 893		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
 894					  ctx->no_wait_gpu, locked);
 895		kref_put(&bo->list_kref, ttm_bo_release_list);
 896		return ret;
 897	}
 898
 899	ttm_bo_del_from_lru(bo);
 900	spin_unlock(&glob->lru_lock);
 901
 902	ret = ttm_bo_evict(bo, ctx);
 903	if (locked) {
 904		ttm_bo_unreserve(bo);
 905	} else {
 906		spin_lock(&glob->lru_lock);
 907		ttm_bo_add_to_lru(bo);
 908		spin_unlock(&glob->lru_lock);
 909	}
 910
 911	kref_put(&bo->list_kref, ttm_bo_release_list);
 912	return ret;
 913}
 914
 915void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 916{
 917	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 
 
 
 
 
 
 
 918
 919	if (mem->mm_node)
 920		(*man->func->put_node)(man, mem);
 921}
 922EXPORT_SYMBOL(ttm_bo_mem_put);
 923
 924/**
 925 * Add the last move fence to the BO and reserve a new shared slot.
 926 */
 927static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 928				 struct ttm_mem_type_manager *man,
 929				 struct ttm_mem_reg *mem)
 930{
 931	struct dma_fence *fence;
 932	int ret;
 933
 934	spin_lock(&man->move_lock);
 935	fence = dma_fence_get(man->move);
 936	spin_unlock(&man->move_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937
 938	if (fence) {
 939		dma_resv_add_shared_fence(bo->base.resv, fence);
 940
 941		ret = dma_resv_reserve_shared(bo->base.resv, 1);
 942		if (unlikely(ret)) {
 943			dma_fence_put(fence);
 944			return ret;
 945		}
 946
 947		dma_fence_put(bo->moving);
 948		bo->moving = fence;
 949	}
 950
 
 
 
 
 
 
 
 
 
 
 
 
 
 951	return 0;
 952}
 953
 954/**
 955 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 956 * space, or we've evicted everything and there isn't enough space.
 
 
 
 957 */
 958static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 959				  const struct ttm_place *place,
 960				  struct ttm_mem_reg *mem,
 961				  struct ttm_operation_ctx *ctx)
 962{
 963	struct ttm_bo_device *bdev = bo->bdev;
 964	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
 965	struct ww_acquire_ctx *ticket;
 966	int ret;
 967
 968	ticket = dma_resv_locking_ctx(bo->base.resv);
 969	do {
 970		ret = (*man->func->get_node)(man, bo, place, mem);
 971		if (unlikely(ret != 0))
 972			return ret;
 973		if (mem->mm_node)
 974			break;
 975		ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
 976					  ticket);
 977		if (unlikely(ret != 0))
 978			return ret;
 979	} while (1);
 980
 981	return ttm_bo_add_move_fence(bo, man, mem);
 982}
 
 983
 984static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 985				      uint32_t cur_placement,
 986				      uint32_t proposed_placement)
 
 
 
 
 987{
 988	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 989	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 
 
 990
 991	/**
 992	 * Keep current caching if possible.
 993	 */
 994
 995	if ((cur_placement & caching) != 0)
 996		result |= (cur_placement & caching);
 997	else if ((man->default_caching & caching) != 0)
 998		result |= man->default_caching;
 999	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
1000		result |= TTM_PL_FLAG_CACHED;
1001	else if ((TTM_PL_FLAG_WC & caching) != 0)
1002		result |= TTM_PL_FLAG_WC;
1003	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
1004		result |= TTM_PL_FLAG_UNCACHED;
1005
1006	return result;
1007}
 
1008
1009static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
1010				 uint32_t mem_type,
1011				 const struct ttm_place *place,
1012				 uint32_t *masked_placement)
 
 
 
1013{
1014	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 
1015
1016	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
1017		return false;
 
1018
1019	if ((place->flags & man->available_caching) == 0)
1020		return false;
1021
1022	cur_flags |= (place->flags & man->available_caching);
1023
1024	*masked_placement = cur_flags;
1025	return true;
1026}
1027
1028/**
1029 * ttm_bo_mem_placement - check if placement is compatible
1030 * @bo: BO to find memory for
1031 * @place: where to search
1032 * @mem: the memory object to fill in
1033 * @ctx: operation context
1034 *
1035 * Check if placement is compatible and fill in mem structure.
1036 * Returns -EBUSY if placement won't work or negative error code.
1037 * 0 when placement can be used.
1038 */
1039static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
1040				const struct ttm_place *place,
1041				struct ttm_mem_reg *mem,
1042				struct ttm_operation_ctx *ctx)
1043{
1044	struct ttm_bo_device *bdev = bo->bdev;
1045	uint32_t mem_type = TTM_PL_SYSTEM;
1046	struct ttm_mem_type_manager *man;
1047	uint32_t cur_flags = 0;
1048	int ret;
1049
1050	ret = ttm_mem_type_from_place(place, &mem_type);
1051	if (ret)
1052		return ret;
 
1053
1054	man = &bdev->man[mem_type];
1055	if (!man->has_type || !man->use_type)
1056		return -EBUSY;
1057
1058	if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1059		return -EBUSY;
1060
1061	cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
1062	/*
1063	 * Use the access and other non-mapping-related flag bits from
1064	 * the memory placement flags to the current flags
1065	 */
1066	ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
1067
1068	mem->mem_type = mem_type;
1069	mem->placement = cur_flags;
1070
1071	if (bo->mem.mem_type < mem_type && !list_empty(&bo->lru)) {
1072		spin_lock(&bo->bdev->glob->lru_lock);
1073		ttm_bo_del_from_lru(bo);
1074		ttm_bo_add_mem_to_lru(bo, mem);
1075		spin_unlock(&bo->bdev->glob->lru_lock);
1076	}
1077
1078	return 0;
1079}
1080
1081/**
1082 * Creates space for memory region @mem according to its type.
 
 
 
 
 
 
1083 *
1084 * This function first searches for free space in compatible memory types in
1085 * the priority order defined by the driver.  If free space isn't found, then
1086 * ttm_bo_mem_force_space is attempted in priority order to evict and find
1087 * space.
 
 
 
 
 
1088 */
1089int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1090			struct ttm_placement *placement,
1091			struct ttm_mem_reg *mem,
1092			struct ttm_operation_ctx *ctx)
 
1093{
1094	struct ttm_bo_device *bdev = bo->bdev;
1095	bool type_found = false;
1096	int i, ret;
1097
1098	ret = dma_resv_reserve_shared(bo->base.resv, 1);
 
1099	if (unlikely(ret))
1100		return ret;
1101
1102	mem->mm_node = NULL;
1103	for (i = 0; i < placement->num_placement; ++i) {
1104		const struct ttm_place *place = &placement->placement[i];
1105		struct ttm_mem_type_manager *man;
 
1106
1107		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1108		if (ret == -EBUSY)
 
 
 
 
1109			continue;
1110		if (ret)
1111			goto error;
1112
1113		type_found = true;
1114		mem->mm_node = NULL;
1115		if (mem->mem_type == TTM_PL_SYSTEM)
1116			return 0;
 
 
 
1117
1118		man = &bdev->man[mem->mem_type];
1119		ret = (*man->func->get_node)(man, bo, place, mem);
1120		if (unlikely(ret))
1121			goto error;
1122
1123		if (mem->mm_node) {
1124			ret = ttm_bo_add_move_fence(bo, man, mem);
1125			if (unlikely(ret)) {
1126				(*man->func->put_node)(man, mem);
1127				goto error;
1128			}
1129			return 0;
1130		}
1131	}
1132
1133	for (i = 0; i < placement->num_busy_placement; ++i) {
1134		const struct ttm_place *place = &placement->busy_placement[i];
 
 
 
1135
1136		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1137		if (ret == -EBUSY)
1138			continue;
1139		if (ret)
1140			goto error;
1141
1142		type_found = true;
1143		mem->mm_node = NULL;
1144		if (mem->mem_type == TTM_PL_SYSTEM)
1145			return 0;
1146
1147		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1148		if (ret == 0 && mem->mm_node)
1149			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1150
1151		if (ret && ret != -EBUSY)
1152			goto error;
1153	}
1154
1155	ret = -ENOMEM;
1156	if (!type_found) {
1157		pr_err(TTM_PFX "No compatible memory type found\n");
1158		ret = -EINVAL;
1159	}
1160
1161error:
1162	if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1163		spin_lock(&bo->bdev->glob->lru_lock);
1164		ttm_bo_move_to_lru_tail(bo, NULL);
1165		spin_unlock(&bo->bdev->glob->lru_lock);
1166	}
1167
1168	return ret;
1169}
1170EXPORT_SYMBOL(ttm_bo_mem_space);
1171
1172static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1173			      struct ttm_placement *placement,
1174			      struct ttm_operation_ctx *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1175{
1176	int ret = 0;
1177	struct ttm_mem_reg mem;
 
 
1178
1179	dma_resv_assert_held(bo->base.resv);
1180
1181	mem.num_pages = bo->num_pages;
1182	mem.size = mem.num_pages << PAGE_SHIFT;
1183	mem.page_alignment = bo->mem.page_alignment;
1184	mem.bus.io_reserved_vm = false;
1185	mem.bus.io_reserved_count = 0;
1186	/*
1187	 * Determine where to move the buffer.
1188	 */
1189	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1190	if (ret)
1191		goto out_unlock;
1192	ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1193out_unlock:
1194	if (ret && mem.mm_node)
1195		ttm_bo_mem_put(bo, &mem);
1196	return ret;
1197}
1198
1199static bool ttm_bo_places_compat(const struct ttm_place *places,
1200				 unsigned num_placement,
1201				 struct ttm_mem_reg *mem,
1202				 uint32_t *new_flags)
1203{
1204	unsigned i;
 
1205
1206	for (i = 0; i < num_placement; i++) {
1207		const struct ttm_place *heap = &places[i];
 
1208
1209		if (mem->mm_node && (mem->start < heap->fpfn ||
1210		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
 
 
 
 
 
 
 
 
 
 
 
1211			continue;
 
 
1212
1213		*new_flags = heap->flags;
1214		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1215		    (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1216		    (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1217		     (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1218			return true;
1219	}
1220	return false;
1221}
1222
1223bool ttm_bo_mem_compat(struct ttm_placement *placement,
1224		       struct ttm_mem_reg *mem,
1225		       uint32_t *new_flags)
1226{
1227	if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1228				 mem, new_flags))
1229		return true;
1230
1231	if ((placement->busy_placement != placement->placement ||
1232	     placement->num_busy_placement > placement->num_placement) &&
1233	    ttm_bo_places_compat(placement->busy_placement,
1234				 placement->num_busy_placement,
1235				 mem, new_flags))
1236		return true;
1237
1238	return false;
1239}
1240EXPORT_SYMBOL(ttm_bo_mem_compat);
1241
1242int ttm_bo_validate(struct ttm_buffer_object *bo,
1243		    struct ttm_placement *placement,
1244		    struct ttm_operation_ctx *ctx)
1245{
1246	int ret;
1247	uint32_t new_flags;
1248
1249	dma_resv_assert_held(bo->base.resv);
1250	/*
1251	 * Check whether we need to move buffer.
1252	 */
1253	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1254		ret = ttm_bo_move_buffer(bo, placement, ctx);
1255		if (ret)
1256			return ret;
1257	} else {
1258		/*
1259		 * Use the access and other non-mapping-related flag bits from
1260		 * the compatible memory placement flags to the active flags
1261		 */
1262		ttm_flag_masked(&bo->mem.placement, new_flags,
1263				~TTM_PL_MASK_MEMTYPE);
1264	}
1265	/*
1266	 * We might need to add a TTM.
1267	 */
1268	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1269		ret = ttm_tt_create(bo, true);
1270		if (ret)
1271			return ret;
1272	}
1273	return 0;
1274}
1275EXPORT_SYMBOL(ttm_bo_validate);
1276
1277int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1278			 struct ttm_buffer_object *bo,
1279			 unsigned long size,
1280			 enum ttm_bo_type type,
1281			 struct ttm_placement *placement,
1282			 uint32_t page_alignment,
1283			 struct ttm_operation_ctx *ctx,
1284			 size_t acc_size,
1285			 struct sg_table *sg,
1286			 struct dma_resv *resv,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1287			 void (*destroy) (struct ttm_buffer_object *))
1288{
1289	int ret = 0;
1290	unsigned long num_pages;
1291	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1292	bool locked;
1293
1294	ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1295	if (ret) {
1296		pr_err("Out of kernel memory\n");
1297		if (destroy)
1298			(*destroy)(bo);
1299		else
1300			kfree(bo);
1301		return -ENOMEM;
1302	}
1303
1304	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1305	if (num_pages == 0) {
1306		pr_err("Illegal buffer object size\n");
1307		if (destroy)
1308			(*destroy)(bo);
1309		else
1310			kfree(bo);
1311		ttm_mem_global_free(mem_glob, acc_size);
1312		return -EINVAL;
1313	}
1314	bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1315
1316	kref_init(&bo->kref);
1317	kref_init(&bo->list_kref);
1318	atomic_set(&bo->cpu_writers, 0);
1319	INIT_LIST_HEAD(&bo->lru);
1320	INIT_LIST_HEAD(&bo->ddestroy);
1321	INIT_LIST_HEAD(&bo->swap);
1322	INIT_LIST_HEAD(&bo->io_reserve_lru);
1323	mutex_init(&bo->wu_mutex);
1324	bo->bdev = bdev;
1325	bo->type = type;
1326	bo->num_pages = num_pages;
1327	bo->mem.size = num_pages << PAGE_SHIFT;
1328	bo->mem.mem_type = TTM_PL_SYSTEM;
1329	bo->mem.num_pages = bo->num_pages;
1330	bo->mem.mm_node = NULL;
1331	bo->mem.page_alignment = page_alignment;
1332	bo->mem.bus.io_reserved_vm = false;
1333	bo->mem.bus.io_reserved_count = 0;
1334	bo->moving = NULL;
1335	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1336	bo->acc_size = acc_size;
1337	bo->sg = sg;
1338	if (resv) {
 
1339		bo->base.resv = resv;
1340		dma_resv_assert_held(bo->base.resv);
1341	} else {
1342		bo->base.resv = &bo->base._resv;
1343	}
1344	if (!ttm_bo_uses_embedded_gem_object(bo)) {
1345		/*
1346		 * bo.gem is not initialized, so we have to setup the
1347		 * struct elements we want use regardless.
1348		 */
1349		dma_resv_init(&bo->base._resv);
1350		drm_vma_node_reset(&bo->base.vma_node);
1351	}
1352	atomic_inc(&bo->bdev->glob->bo_count);
1353
1354	/*
1355	 * For ttm_bo_type_device buffers, allocate
1356	 * address space from the device.
1357	 */
1358	if (bo->type == ttm_bo_type_device ||
1359	    bo->type == ttm_bo_type_sg)
1360		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->base.vma_node,
1361					 bo->mem.num_pages);
 
 
1362
1363	/* passed reservation objects should already be locked,
1364	 * since otherwise lockdep will be angered in radeon.
1365	 */
1366	if (!resv) {
1367		locked = dma_resv_trylock(bo->base.resv);
1368		WARN_ON(!locked);
1369	}
1370
1371	if (likely(!ret))
1372		ret = ttm_bo_validate(bo, placement, ctx);
 
1373
1374	if (unlikely(ret)) {
1375		if (!resv)
1376			ttm_bo_unreserve(bo);
1377
1378		ttm_bo_put(bo);
1379		return ret;
1380	}
1381
1382	if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1383		spin_lock(&bdev->glob->lru_lock);
1384		ttm_bo_add_to_lru(bo);
1385		spin_unlock(&bdev->glob->lru_lock);
1386	}
1387
 
 
1388	return ret;
1389}
1390EXPORT_SYMBOL(ttm_bo_init_reserved);
1391
1392int ttm_bo_init(struct ttm_bo_device *bdev,
1393		struct ttm_buffer_object *bo,
1394		unsigned long size,
1395		enum ttm_bo_type type,
1396		struct ttm_placement *placement,
1397		uint32_t page_alignment,
1398		bool interruptible,
1399		size_t acc_size,
1400		struct sg_table *sg,
1401		struct dma_resv *resv,
1402		void (*destroy) (struct ttm_buffer_object *))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1403{
1404	struct ttm_operation_ctx ctx = { interruptible, false };
1405	int ret;
1406
1407	ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1408				   page_alignment, &ctx, acc_size,
1409				   sg, resv, destroy);
1410	if (ret)
1411		return ret;
1412
1413	if (!resv)
1414		ttm_bo_unreserve(bo);
1415
1416	return 0;
1417}
1418EXPORT_SYMBOL(ttm_bo_init);
1419
1420size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1421		       unsigned long bo_size,
1422		       unsigned struct_size)
1423{
1424	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1425	size_t size = 0;
1426
1427	size += ttm_round_pot(struct_size);
1428	size += ttm_round_pot(npages * sizeof(void *));
1429	size += ttm_round_pot(sizeof(struct ttm_tt));
1430	return size;
1431}
1432EXPORT_SYMBOL(ttm_bo_acc_size);
1433
1434size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1435			   unsigned long bo_size,
1436			   unsigned struct_size)
1437{
1438	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1439	size_t size = 0;
1440
1441	size += ttm_round_pot(struct_size);
1442	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1443	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1444	return size;
1445}
1446EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1447
1448int ttm_bo_create(struct ttm_bo_device *bdev,
1449			unsigned long size,
1450			enum ttm_bo_type type,
1451			struct ttm_placement *placement,
1452			uint32_t page_alignment,
1453			bool interruptible,
1454			struct ttm_buffer_object **p_bo)
1455{
1456	struct ttm_buffer_object *bo;
1457	size_t acc_size;
1458	int ret;
1459
1460	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1461	if (unlikely(bo == NULL))
1462		return -ENOMEM;
1463
1464	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1465	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1466			  interruptible, acc_size,
1467			  NULL, NULL, NULL);
1468	if (likely(ret == 0))
1469		*p_bo = bo;
1470
1471	return ret;
1472}
1473EXPORT_SYMBOL(ttm_bo_create);
1474
1475static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1476				   unsigned mem_type)
1477{
1478	struct ttm_operation_ctx ctx = {
1479		.interruptible = false,
1480		.no_wait_gpu = false,
1481		.flags = TTM_OPT_FLAG_FORCE_ALLOC
1482	};
1483	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1484	struct ttm_bo_global *glob = bdev->glob;
1485	struct dma_fence *fence;
1486	int ret;
1487	unsigned i;
1488
1489	/*
1490	 * Can't use standard list traversal since we're unlocking.
1491	 */
1492
1493	spin_lock(&glob->lru_lock);
1494	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1495		while (!list_empty(&man->lru[i])) {
1496			spin_unlock(&glob->lru_lock);
1497			ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
1498						  NULL);
1499			if (ret)
1500				return ret;
1501			spin_lock(&glob->lru_lock);
1502		}
1503	}
1504	spin_unlock(&glob->lru_lock);
1505
1506	spin_lock(&man->move_lock);
1507	fence = dma_fence_get(man->move);
1508	spin_unlock(&man->move_lock);
1509
1510	if (fence) {
1511		ret = dma_fence_wait(fence, false);
1512		dma_fence_put(fence);
1513		if (ret)
1514			return ret;
1515	}
1516
1517	return 0;
1518}
1519
1520int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1521{
1522	struct ttm_mem_type_manager *man;
1523	int ret = -EINVAL;
1524
1525	if (mem_type >= TTM_NUM_MEM_TYPES) {
1526		pr_err("Illegal memory type %d\n", mem_type);
1527		return ret;
1528	}
1529	man = &bdev->man[mem_type];
1530
1531	if (!man->has_type) {
1532		pr_err("Trying to take down uninitialized memory manager type %u\n",
1533		       mem_type);
1534		return ret;
1535	}
1536
1537	man->use_type = false;
1538	man->has_type = false;
1539
1540	ret = 0;
1541	if (mem_type > 0) {
1542		ret = ttm_bo_force_list_clean(bdev, mem_type);
1543		if (ret) {
1544			pr_err("Cleanup eviction failed\n");
1545			return ret;
1546		}
1547
1548		ret = (*man->func->takedown)(man);
1549	}
1550
1551	dma_fence_put(man->move);
1552	man->move = NULL;
1553
1554	return ret;
1555}
1556EXPORT_SYMBOL(ttm_bo_clean_mm);
1557
1558int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1559{
1560	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1561
1562	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1563		pr_err("Illegal memory manager memory type %u\n", mem_type);
1564		return -EINVAL;
1565	}
1566
1567	if (!man->has_type) {
1568		pr_err("Memory type %u has not been initialized\n", mem_type);
1569		return 0;
1570	}
1571
1572	return ttm_bo_force_list_clean(bdev, mem_type);
1573}
1574EXPORT_SYMBOL(ttm_bo_evict_mm);
1575
1576int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1577			unsigned long p_size)
1578{
1579	int ret;
1580	struct ttm_mem_type_manager *man;
1581	unsigned i;
1582
1583	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1584	man = &bdev->man[type];
1585	BUG_ON(man->has_type);
1586	man->io_reserve_fastpath = true;
1587	man->use_io_reserve_lru = false;
1588	mutex_init(&man->io_reserve_mutex);
1589	spin_lock_init(&man->move_lock);
1590	INIT_LIST_HEAD(&man->io_reserve_lru);
1591
1592	ret = bdev->driver->init_mem_type(bdev, type, man);
1593	if (ret)
1594		return ret;
1595	man->bdev = bdev;
1596
1597	if (type != TTM_PL_SYSTEM) {
1598		ret = (*man->func->init)(man, p_size);
1599		if (ret)
1600			return ret;
1601	}
1602	man->has_type = true;
1603	man->use_type = true;
1604	man->size = p_size;
1605
1606	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1607		INIT_LIST_HEAD(&man->lru[i]);
1608	man->move = NULL;
1609
1610	return 0;
1611}
1612EXPORT_SYMBOL(ttm_bo_init_mm);
1613
1614static void ttm_bo_global_kobj_release(struct kobject *kobj)
1615{
1616	struct ttm_bo_global *glob =
1617		container_of(kobj, struct ttm_bo_global, kobj);
1618
1619	__free_page(glob->dummy_read_page);
1620}
1621
1622static void ttm_bo_global_release(void)
1623{
1624	struct ttm_bo_global *glob = &ttm_bo_glob;
1625
1626	mutex_lock(&ttm_global_mutex);
1627	if (--ttm_bo_glob_use_count > 0)
1628		goto out;
1629
1630	kobject_del(&glob->kobj);
1631	kobject_put(&glob->kobj);
1632	ttm_mem_global_release(&ttm_mem_glob);
1633	memset(glob, 0, sizeof(*glob));
1634out:
1635	mutex_unlock(&ttm_global_mutex);
1636}
1637
1638static int ttm_bo_global_init(void)
1639{
1640	struct ttm_bo_global *glob = &ttm_bo_glob;
1641	int ret = 0;
1642	unsigned i;
1643
1644	mutex_lock(&ttm_global_mutex);
1645	if (++ttm_bo_glob_use_count > 1)
1646		goto out;
1647
1648	ret = ttm_mem_global_init(&ttm_mem_glob);
1649	if (ret)
1650		goto out;
1651
1652	spin_lock_init(&glob->lru_lock);
1653	glob->mem_glob = &ttm_mem_glob;
1654	glob->mem_glob->bo_glob = glob;
1655	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1656
1657	if (unlikely(glob->dummy_read_page == NULL)) {
1658		ret = -ENOMEM;
1659		goto out;
1660	}
1661
1662	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1663		INIT_LIST_HEAD(&glob->swap_lru[i]);
1664	INIT_LIST_HEAD(&glob->device_list);
1665	atomic_set(&glob->bo_count, 0);
1666
1667	ret = kobject_init_and_add(
1668		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1669	if (unlikely(ret != 0))
1670		kobject_put(&glob->kobj);
1671out:
1672	mutex_unlock(&ttm_global_mutex);
1673	return ret;
1674}
1675
1676int ttm_bo_device_release(struct ttm_bo_device *bdev)
1677{
1678	int ret = 0;
1679	unsigned i = TTM_NUM_MEM_TYPES;
1680	struct ttm_mem_type_manager *man;
1681	struct ttm_bo_global *glob = bdev->glob;
1682
1683	while (i--) {
1684		man = &bdev->man[i];
1685		if (man->has_type) {
1686			man->use_type = false;
1687			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1688				ret = -EBUSY;
1689				pr_err("DRM memory manager type %d is not clean\n",
1690				       i);
1691			}
1692			man->has_type = false;
1693		}
1694	}
1695
1696	mutex_lock(&ttm_global_mutex);
1697	list_del(&bdev->device_list);
1698	mutex_unlock(&ttm_global_mutex);
1699
1700	cancel_delayed_work_sync(&bdev->wq);
1701
1702	if (ttm_bo_delayed_delete(bdev, true))
1703		pr_debug("Delayed destroy list was clean\n");
1704
1705	spin_lock(&glob->lru_lock);
1706	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1707		if (list_empty(&bdev->man[0].lru[0]))
1708			pr_debug("Swap list %d was clean\n", i);
1709	spin_unlock(&glob->lru_lock);
1710
1711	drm_vma_offset_manager_destroy(&bdev->vma_manager);
1712
1713	if (!ret)
1714		ttm_bo_global_release();
1715
1716	return ret;
1717}
1718EXPORT_SYMBOL(ttm_bo_device_release);
1719
1720int ttm_bo_device_init(struct ttm_bo_device *bdev,
1721		       struct ttm_bo_driver *driver,
1722		       struct address_space *mapping,
1723		       bool need_dma32)
1724{
1725	struct ttm_bo_global *glob = &ttm_bo_glob;
1726	int ret;
1727
1728	ret = ttm_bo_global_init();
1729	if (ret)
1730		return ret;
1731
1732	bdev->driver = driver;
1733
1734	memset(bdev->man, 0, sizeof(bdev->man));
1735
1736	/*
1737	 * Initialize the system memory buffer type.
1738	 * Other types need to be driver / IOCTL initialized.
1739	 */
1740	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1741	if (unlikely(ret != 0))
1742		goto out_no_sys;
1743
1744	drm_vma_offset_manager_init(&bdev->vma_manager,
1745				    DRM_FILE_PAGE_OFFSET_START,
1746				    DRM_FILE_PAGE_OFFSET_SIZE);
1747	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1748	INIT_LIST_HEAD(&bdev->ddestroy);
1749	bdev->dev_mapping = mapping;
1750	bdev->glob = glob;
1751	bdev->need_dma32 = need_dma32;
1752	mutex_lock(&ttm_global_mutex);
1753	list_add_tail(&bdev->device_list, &glob->device_list);
1754	mutex_unlock(&ttm_global_mutex);
1755
1756	return 0;
1757out_no_sys:
1758	ttm_bo_global_release();
1759	return ret;
1760}
1761EXPORT_SYMBOL(ttm_bo_device_init);
1762
1763/*
1764 * buffer object vm functions.
1765 */
1766
1767bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1768{
1769	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1770
1771	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1772		if (mem->mem_type == TTM_PL_SYSTEM)
1773			return false;
1774
1775		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1776			return false;
1777
1778		if (mem->placement & TTM_PL_FLAG_CACHED)
1779			return false;
1780	}
1781	return true;
1782}
1783
1784void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1785{
1786	struct ttm_bo_device *bdev = bo->bdev;
1787
1788	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1789	ttm_mem_io_free_vm(bo);
1790}
1791
1792void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1793{
1794	struct ttm_bo_device *bdev = bo->bdev;
1795	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1796
1797	ttm_mem_io_lock(man, false);
1798	ttm_bo_unmap_virtual_locked(bo);
1799	ttm_mem_io_unlock(man);
1800}
1801
1802
1803EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1804
1805int ttm_bo_wait(struct ttm_buffer_object *bo,
1806		bool interruptible, bool no_wait)
 
 
 
 
 
 
 
 
 
1807{
1808	long timeout = 15 * HZ;
1809
1810	if (no_wait) {
1811		if (dma_resv_test_signaled_rcu(bo->base.resv, true))
 
1812			return 0;
1813		else
1814			return -EBUSY;
1815	}
1816
1817	timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1818						      interruptible, timeout);
1819	if (timeout < 0)
1820		return timeout;
1821
1822	if (timeout == 0)
1823		return -EBUSY;
1824
1825	dma_resv_add_excl_fence(bo->base.resv, NULL);
1826	return 0;
1827}
1828EXPORT_SYMBOL(ttm_bo_wait);
1829
1830int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
 
 
 
 
 
 
 
 
 
 
 
1831{
1832	int ret = 0;
 
 
 
 
1833
1834	/*
1835	 * Using ttm_bo_reserve makes sure the lru lists are updated.
 
 
 
1836	 */
 
 
 
 
1837
1838	ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1839	if (unlikely(ret != 0))
1840		return ret;
1841	ret = ttm_bo_wait(bo, true, no_wait);
1842	if (likely(ret == 0))
1843		atomic_inc(&bo->cpu_writers);
1844	ttm_bo_unreserve(bo);
1845	return ret;
1846}
1847EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1848
1849void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1850{
1851	atomic_dec(&bo->cpu_writers);
1852}
1853EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1854
1855/**
1856 * A buffer object shrink method that tries to swap out the first
1857 * buffer object on the bo_global::swap_lru list.
1858 */
1859int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1860{
1861	struct ttm_buffer_object *bo;
1862	int ret = -EBUSY;
1863	bool locked;
1864	unsigned i;
1865
1866	spin_lock(&glob->lru_lock);
1867	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1868		list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1869			if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1870							   NULL)) {
1871				ret = 0;
1872				break;
1873			}
1874		}
1875		if (!ret)
1876			break;
1877	}
1878
1879	if (ret) {
1880		spin_unlock(&glob->lru_lock);
1881		return ret;
1882	}
1883
1884	kref_get(&bo->list_kref);
 
 
1885
1886	if (!list_empty(&bo->ddestroy)) {
1887		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1888		kref_put(&bo->list_kref, ttm_bo_release_list);
1889		return ret;
1890	}
1891
1892	ttm_bo_del_from_lru(bo);
1893	spin_unlock(&glob->lru_lock);
1894
1895	/**
1896	 * Move to system cached
1897	 */
 
 
 
 
 
 
 
 
 
1898
1899	if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1900	    bo->ttm->caching_state != tt_cached) {
1901		struct ttm_operation_ctx ctx = { false, false };
1902		struct ttm_mem_reg evict_mem;
1903
1904		evict_mem = bo->mem;
1905		evict_mem.mm_node = NULL;
1906		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1907		evict_mem.mem_type = TTM_PL_SYSTEM;
1908
1909		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1910		if (unlikely(ret != 0))
1911			goto out;
 
1912	}
1913
1914	/**
1915	 * Make sure BO is idle.
1916	 */
1917
1918	ret = ttm_bo_wait(bo, false, false);
1919	if (unlikely(ret != 0))
1920		goto out;
1921
1922	ttm_bo_unmap_virtual(bo);
 
 
1923
1924	/**
1925	 * Swap out. Buffer will be swapped in again as soon as
1926	 * anyone tries to access a ttm page.
1927	 */
 
 
1928
1929	if (bo->bdev->driver->swap_notify)
1930		bo->bdev->driver->swap_notify(bo);
 
 
 
 
1931
1932	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1933out:
 
 
 
1934
1935	/**
1936	 *
1937	 * Unreserve without putting on LRU to avoid swapping out an
1938	 * already swapped buffer.
1939	 */
1940	if (locked)
1941		dma_resv_unlock(bo->base.resv);
1942	kref_put(&bo->list_kref, ttm_bo_release_list);
1943	return ret;
1944}
1945EXPORT_SYMBOL(ttm_bo_swapout);
1946
1947void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1948{
1949	struct ttm_operation_ctx ctx = {
1950		.interruptible = false,
1951		.no_wait_gpu = false
1952	};
1953
1954	while (ttm_bo_swapout(bdev->glob, &ctx) == 0)
1955		;
 
1956}
1957EXPORT_SYMBOL(ttm_bo_swapout_all);
1958
1959/**
1960 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1961 * unreserved
 
 
 
 
 
 
 
1962 *
1963 * @bo: Pointer to buffer
 
 
1964 */
1965int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
 
1966{
 
 
1967	int ret;
1968
1969	/*
1970	 * In the absense of a wait_unlocked API,
1971	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1972	 * concurrent use of this function. Note that this use of
1973	 * bo::wu_mutex can go away if we change locking order to
1974	 * mmap_sem -> bo::reserve.
1975	 */
1976	ret = mutex_lock_interruptible(&bo->wu_mutex);
1977	if (unlikely(ret != 0))
1978		return -ERESTARTSYS;
1979	if (!dma_resv_is_locked(bo->base.resv))
1980		goto out_unlock;
1981	ret = dma_resv_lock_interruptible(bo->base.resv, NULL);
1982	if (ret == -EINTR)
1983		ret = -ERESTARTSYS;
1984	if (unlikely(ret != 0))
1985		goto out_unlock;
1986	dma_resv_unlock(bo->base.resv);
1987
1988out_unlock:
1989	mutex_unlock(&bo->wu_mutex);
1990	return ret;
1991}