Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28/*
  29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  30 */
  31
  32#define pr_fmt(fmt) "[TTM] " fmt
  33
  34#include <drm/ttm/ttm_bo.h>
 
  35#include <drm/ttm/ttm_placement.h>
  36#include <drm/ttm/ttm_tt.h>
  37
  38#include <linux/jiffies.h>
  39#include <linux/slab.h>
  40#include <linux/sched.h>
  41#include <linux/mm.h>
  42#include <linux/file.h>
  43#include <linux/module.h>
  44#include <linux/atomic.h>
  45#include <linux/dma-resv.h>
  46
  47#include "ttm_module.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  50					struct ttm_placement *placement)
  51{
  52	struct drm_printer p = drm_dbg_printer(NULL, DRM_UT_CORE, TTM_PFX);
  53	struct ttm_resource_manager *man;
  54	int i, mem_type;
  55
 
 
 
  56	for (i = 0; i < placement->num_placement; i++) {
  57		mem_type = placement->placement[i].mem_type;
 
 
 
  58		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
  59			   i, placement->placement[i].flags, mem_type);
  60		man = ttm_manager_type(bo->bdev, mem_type);
  61		ttm_resource_manager_debug(man, &p);
  62	}
  63}
  64
  65/**
  66 * ttm_bo_move_to_lru_tail
  67 *
  68 * @bo: The buffer object.
  69 *
  70 * Move this BO to the tail of all lru lists used to lookup and reserve an
  71 * object. This function must be called with struct ttm_global::lru_lock
  72 * held, and is used to make a BO less likely to be considered for eviction.
  73 */
  74void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  75{
  76	dma_resv_assert_held(bo->base.resv);
  77
  78	if (bo->resource)
  79		ttm_resource_move_to_lru_tail(bo->resource);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  80}
  81EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
  82
  83/**
  84 * ttm_bo_set_bulk_move - update BOs bulk move object
  85 *
  86 * @bo: The buffer object.
  87 * @bulk: bulk move structure
  88 *
  89 * Update the BOs bulk move object, making sure that resources are added/removed
  90 * as well. A bulk move allows to move many resource on the LRU at once,
  91 * resulting in much less overhead of maintaining the LRU.
  92 * The only requirement is that the resources stay together on the LRU and are
  93 * never separated. This is enforces by setting the bulk_move structure on a BO.
  94 * ttm_lru_bulk_move_tail() should be used to move all resources to the tail of
  95 * their LRU list.
  96 */
  97void ttm_bo_set_bulk_move(struct ttm_buffer_object *bo,
  98			  struct ttm_lru_bulk_move *bulk)
  99{
 100	dma_resv_assert_held(bo->base.resv);
 101
 102	if (bo->bulk_move == bulk)
 103		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105	spin_lock(&bo->bdev->lru_lock);
 106	if (bo->resource)
 107		ttm_resource_del_bulk_move(bo->resource, bo);
 108	bo->bulk_move = bulk;
 109	if (bo->resource)
 110		ttm_resource_add_bulk_move(bo->resource, bo);
 111	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 112}
 113EXPORT_SYMBOL(ttm_bo_set_bulk_move);
 114
 115static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 116				  struct ttm_resource *mem, bool evict,
 117				  struct ttm_operation_ctx *ctx,
 118				  struct ttm_place *hop)
 119{
 120	struct ttm_device *bdev = bo->bdev;
 121	bool old_use_tt, new_use_tt;
 
 122	int ret;
 123
 124	old_use_tt = !bo->resource || ttm_manager_type(bdev, bo->resource->mem_type)->use_tt;
 125	new_use_tt = ttm_manager_type(bdev, mem->mem_type)->use_tt;
 126
 127	ttm_bo_unmap_virtual(bo);
 
 128
 129	/*
 130	 * Create and bind a ttm if required.
 131	 */
 132
 133	if (new_use_tt) {
 134		/* Zero init the new TTM structure if the old location should
 135		 * have used one as well.
 136		 */
 137		ret = ttm_tt_create(bo, old_use_tt);
 
 
 
 
 138		if (ret)
 139			goto out_err;
 140
 141		if (mem->mem_type != TTM_PL_SYSTEM) {
 142			ret = ttm_bo_populate(bo, ctx);
 143			if (ret)
 144				goto out_err;
 145		}
 
 
 
 
 
 
 
 146	}
 147
 148	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 149	if (ret)
 150		goto out_err;
 
 
 
 
 
 
 
 151
 152	ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
 153	if (ret) {
 154		if (ret == -EMULTIHOP)
 155			return ret;
 
 
 
 
 156		goto out_err;
 157	}
 158
 159	ctx->bytes_moved += bo->base.size;
 
 
 
 160	return 0;
 161
 162out_err:
 163	if (!old_use_tt)
 164		ttm_bo_tt_destroy(bo);
 
 
 
 165
 166	return ret;
 167}
 168
 169/*
 170 * Call bo::reserved.
 171 * Will release GPU memory type usage on destruction.
 172 * This is the place to put in driver specific hooks to release
 173 * driver private resources.
 174 * Will release the bo::reserved lock.
 175 */
 176
 177static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 178{
 179	if (bo->bdev->funcs->delete_mem_notify)
 180		bo->bdev->funcs->delete_mem_notify(bo);
 181
 182	ttm_bo_tt_destroy(bo);
 183	ttm_resource_free(bo, &bo->resource);
 
 184}
 185
 186static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
 187{
 188	int r;
 189
 190	if (bo->base.resv == &bo->base._resv)
 191		return 0;
 192
 193	BUG_ON(!dma_resv_trylock(&bo->base._resv));
 194
 195	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
 196	dma_resv_unlock(&bo->base._resv);
 197	if (r)
 198		return r;
 199
 200	if (bo->type != ttm_bo_type_sg) {
 201		/* This works because the BO is about to be destroyed and nobody
 202		 * reference it any more. The only tricky case is the trylock on
 203		 * the resv object while holding the lru_lock.
 204		 */
 205		spin_lock(&bo->bdev->lru_lock);
 206		bo->base.resv = &bo->base._resv;
 207		spin_unlock(&bo->bdev->lru_lock);
 208	}
 209
 210	return r;
 211}
 212
 213static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 214{
 215	struct dma_resv *resv = &bo->base._resv;
 216	struct dma_resv_iter cursor;
 217	struct dma_fence *fence;
 
 
 
 
 
 
 
 
 
 
 218
 219	dma_resv_iter_begin(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP);
 220	dma_resv_for_each_fence_unlocked(&cursor, fence) {
 221		if (!fence->ops->signaled)
 222			dma_fence_enable_sw_signaling(fence);
 223	}
 224	dma_resv_iter_end(&cursor);
 225}
 226
 227/*
 228 * Block for the dma_resv object to become idle, lock the buffer and clean up
 229 * the resource and tt object.
 
 
 
 
 
 
 
 
 230 */
 231static void ttm_bo_delayed_delete(struct work_struct *work)
 
 
 
 232{
 233	struct ttm_buffer_object *bo;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234
 235	bo = container_of(work, typeof(*bo), delayed_delete);
 
 
 
 
 
 236
 237	dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false,
 238			      MAX_SCHEDULE_TIMEOUT);
 239	dma_resv_lock(bo->base.resv, NULL);
 240	ttm_bo_cleanup_memtype_use(bo);
 241	dma_resv_unlock(bo->base.resv);
 
 
 
 242	ttm_bo_put(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243}
 244
 245static void ttm_bo_release(struct kref *kref)
 246{
 247	struct ttm_buffer_object *bo =
 248	    container_of(kref, struct ttm_buffer_object, kref);
 249	struct ttm_device *bdev = bo->bdev;
 
 
 250	int ret;
 251
 252	WARN_ON_ONCE(bo->pin_count);
 253	WARN_ON_ONCE(bo->bulk_move);
 254
 255	if (!bo->deleted) {
 256		ret = ttm_bo_individualize_resv(bo);
 257		if (ret) {
 258			/* Last resort, if we fail to allocate memory for the
 259			 * fences block for the BO to become idle
 260			 */
 261			dma_resv_wait_timeout(bo->base.resv,
 262					      DMA_RESV_USAGE_BOOKKEEP, false,
 263					      30 * HZ);
 264		}
 265
 266		if (bo->bdev->funcs->release_notify)
 267			bo->bdev->funcs->release_notify(bo);
 268
 269		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
 270		ttm_mem_io_free(bdev, bo->resource);
 
 
 
 271
 272		if (!dma_resv_test_signaled(bo->base.resv,
 273					    DMA_RESV_USAGE_BOOKKEEP) ||
 274		    (want_init_on_free() && (bo->ttm != NULL)) ||
 275		    bo->type == ttm_bo_type_sg ||
 276		    !dma_resv_trylock(bo->base.resv)) {
 277			/* The BO is not idle, resurrect it for delayed destroy */
 278			ttm_bo_flush_all_fences(bo);
 279			bo->deleted = true;
 280
 281			spin_lock(&bo->bdev->lru_lock);
 282
 283			/*
 284			 * Make pinned bos immediately available to
 285			 * shrinkers, now that they are queued for
 286			 * destruction.
 287			 *
 288			 * FIXME: QXL is triggering this. Can be removed when the
 289			 * driver is fixed.
 290			 */
 291			if (bo->pin_count) {
 292				bo->pin_count = 0;
 293				ttm_resource_move_to_lru_tail(bo->resource);
 294			}
 295
 296			kref_init(&bo->kref);
 297			spin_unlock(&bo->bdev->lru_lock);
 
 298
 299			INIT_WORK(&bo->delayed_delete, ttm_bo_delayed_delete);
 
 
 
 300
 301			/* Schedule the worker on the closest NUMA node. This
 302			 * improves performance since system memory might be
 303			 * cleared on free and that is best done on a CPU core
 304			 * close to it.
 305			 */
 306			queue_work_node(bdev->pool.nid, bdev->wq, &bo->delayed_delete);
 307			return;
 308		}
 309
 310		ttm_bo_cleanup_memtype_use(bo);
 311		dma_resv_unlock(bo->base.resv);
 312	}
 313
 314	atomic_dec(&ttm_glob.bo_count);
 
 
 
 315	bo->destroy(bo);
 
 316}
 317
 318/**
 319 * ttm_bo_put
 320 *
 321 * @bo: The buffer object.
 322 *
 323 * Unreference a buffer object.
 324 */
 325void ttm_bo_put(struct ttm_buffer_object *bo)
 326{
 327	kref_put(&bo->kref, ttm_bo_release);
 328}
 329EXPORT_SYMBOL(ttm_bo_put);
 330
 331static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
 332				     struct ttm_operation_ctx *ctx,
 333				     struct ttm_place *hop)
 334{
 335	struct ttm_placement hop_placement;
 336	struct ttm_resource *hop_mem;
 337	int ret;
 338
 339	hop_placement.num_placement = 1;
 340	hop_placement.placement = hop;
 341
 342	/* find space in the bounce domain */
 343	ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
 344	if (ret)
 345		return ret;
 346	/* move to the bounce domain */
 347	ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
 348	if (ret) {
 349		ttm_resource_free(bo, &hop_mem);
 350		return ret;
 351	}
 352	return 0;
 353}
 
 354
 355static int ttm_bo_evict(struct ttm_buffer_object *bo,
 356			struct ttm_operation_ctx *ctx)
 357{
 358	struct ttm_device *bdev = bo->bdev;
 359	struct ttm_resource *evict_mem;
 360	struct ttm_placement placement;
 361	struct ttm_place hop;
 362	int ret = 0;
 363
 364	memset(&hop, 0, sizeof(hop));
 365
 366	dma_resv_assert_held(bo->base.resv);
 367
 368	placement.num_placement = 0;
 369	bdev->funcs->evict_flags(bo, &placement);
 
 370
 371	if (!placement.num_placement) {
 372		ret = ttm_bo_wait_ctx(bo, ctx);
 373		if (ret)
 374			return ret;
 375
 376		/*
 377		 * Since we've already synced, this frees backing store
 378		 * immediately.
 379		 */
 380		return ttm_bo_pipeline_gutting(bo);
 381	}
 382
 
 
 
 
 
 383	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
 384	if (ret) {
 385		if (ret != -ERESTARTSYS) {
 386			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 387			       bo);
 388			ttm_bo_mem_space_debug(bo, &placement);
 389		}
 390		goto out;
 391	}
 392
 393	do {
 394		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
 395		if (ret != -EMULTIHOP)
 396			break;
 397
 398		ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
 399	} while (!ret);
 400
 401	if (ret) {
 402		ttm_resource_free(bo, &evict_mem);
 403		if (ret != -ERESTARTSYS && ret != -EINTR)
 404			pr_err("Buffer eviction failed\n");
 
 
 405	}
 
 406out:
 407	return ret;
 408}
 409
 410/**
 411 * ttm_bo_eviction_valuable
 412 *
 413 * @bo: The buffer object to evict
 414 * @place: the placement we need to make room for
 415 *
 416 * Check if it is valuable to evict the BO to make room for the given placement.
 417 */
 418bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 419			      const struct ttm_place *place)
 420{
 421	struct ttm_resource *res = bo->resource;
 422	struct ttm_device *bdev = bo->bdev;
 423
 424	dma_resv_assert_held(bo->base.resv);
 425	if (bo->resource->mem_type == TTM_PL_SYSTEM)
 426		return true;
 427
 428	/* Don't evict this BO if it's outside of the
 429	 * requested placement range
 430	 */
 431	return ttm_resource_intersects(bdev, res, place, bo->base.size);
 
 
 
 
 432}
 433EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 434
 435/**
 436 * ttm_bo_evict_first() - Evict the first bo on the manager's LRU list.
 437 * @bdev: The ttm device.
 438 * @man: The manager whose bo to evict.
 439 * @ctx: The TTM operation ctx governing the eviction.
 440 *
 441 * Return: 0 if successful or the resource disappeared. Negative error code on error.
 442 */
 443int ttm_bo_evict_first(struct ttm_device *bdev, struct ttm_resource_manager *man,
 444		       struct ttm_operation_ctx *ctx)
 445{
 446	struct ttm_resource_cursor cursor;
 447	struct ttm_buffer_object *bo;
 448	struct ttm_resource *res;
 449	unsigned int mem_type;
 450	int ret = 0;
 451
 452	spin_lock(&bdev->lru_lock);
 453	res = ttm_resource_manager_first(man, &cursor);
 454	ttm_resource_cursor_fini(&cursor);
 455	if (!res) {
 456		ret = -ENOENT;
 457		goto out_no_ref;
 458	}
 459	bo = res->bo;
 460	if (!ttm_bo_get_unless_zero(bo))
 461		goto out_no_ref;
 462	mem_type = res->mem_type;
 463	spin_unlock(&bdev->lru_lock);
 464	ret = ttm_bo_reserve(bo, ctx->interruptible, ctx->no_wait_gpu, NULL);
 465	if (ret)
 466		goto out_no_lock;
 467	if (!bo->resource || bo->resource->mem_type != mem_type)
 468		goto out_bo_moved;
 469
 470	if (bo->deleted) {
 471		ret = ttm_bo_wait_ctx(bo, ctx);
 472		if (!ret)
 473			ttm_bo_cleanup_memtype_use(bo);
 474	} else {
 475		ret = ttm_bo_evict(bo, ctx);
 
 
 
 476	}
 477out_bo_moved:
 478	dma_resv_unlock(bo->base.resv);
 479out_no_lock:
 480	ttm_bo_put(bo);
 481	return ret;
 482
 483out_no_ref:
 484	spin_unlock(&bdev->lru_lock);
 485	return ret;
 486}
 487
 488/**
 489 * struct ttm_bo_evict_walk - Parameters for the evict walk.
 
 
 
 
 
 
 490 */
 491struct ttm_bo_evict_walk {
 492	/** @walk: The walk base parameters. */
 493	struct ttm_lru_walk walk;
 494	/** @place: The place passed to the resource allocation. */
 495	const struct ttm_place *place;
 496	/** @evictor: The buffer object we're trying to make room for. */
 497	struct ttm_buffer_object *evictor;
 498	/** @res: The allocated resource if any. */
 499	struct ttm_resource **res;
 500	/** @evicted: Number of successful evictions. */
 501	unsigned long evicted;
 502};
 503
 504static s64 ttm_bo_evict_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
 505{
 506	struct ttm_bo_evict_walk *evict_walk =
 507		container_of(walk, typeof(*evict_walk), walk);
 508	s64 lret;
 509
 510	if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, evict_walk->place))
 511		return 0;
 512
 513	if (bo->deleted) {
 514		lret = ttm_bo_wait_ctx(bo, walk->ctx);
 515		if (!lret)
 516			ttm_bo_cleanup_memtype_use(bo);
 517	} else {
 518		lret = ttm_bo_evict(bo, walk->ctx);
 519	}
 520
 521	if (lret)
 522		goto out;
 
 
 
 523
 524	evict_walk->evicted++;
 525	if (evict_walk->res)
 526		lret = ttm_resource_alloc(evict_walk->evictor, evict_walk->place,
 527					  evict_walk->res);
 528	if (lret == 0)
 529		return 1;
 530out:
 531	/* Errors that should terminate the walk. */
 532	if (lret == -ENOSPC)
 533		return -EBUSY;
 534
 535	return lret;
 536}
 537
 538static const struct ttm_lru_walk_ops ttm_evict_walk_ops = {
 539	.process_bo = ttm_bo_evict_cb,
 540};
 
 
 
 
 
 
 
 
 541
 542static int ttm_bo_evict_alloc(struct ttm_device *bdev,
 543			      struct ttm_resource_manager *man,
 544			      const struct ttm_place *place,
 545			      struct ttm_buffer_object *evictor,
 546			      struct ttm_operation_ctx *ctx,
 547			      struct ww_acquire_ctx *ticket,
 548			      struct ttm_resource **res)
 549{
 550	struct ttm_bo_evict_walk evict_walk = {
 551		.walk = {
 552			.ops = &ttm_evict_walk_ops,
 553			.ctx = ctx,
 554			.ticket = ticket,
 555		},
 556		.place = place,
 557		.evictor = evictor,
 558		.res = res,
 559	};
 560	s64 lret;
 561
 562	evict_walk.walk.trylock_only = true;
 563	lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
 564	if (lret || !ticket)
 565		goto out;
 
 
 
 
 
 
 
 
 
 566
 567	/* If ticket-locking, repeat while making progress. */
 568	evict_walk.walk.trylock_only = false;
 569	do {
 570		/* The walk may clear the evict_walk.walk.ticket field */
 571		evict_walk.walk.ticket = ticket;
 572		evict_walk.evicted = 0;
 573		lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
 574	} while (!lret && evict_walk.evicted);
 575out:
 576	if (lret < 0)
 577		return lret;
 578	if (lret == 0)
 579		return -EBUSY;
 580	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 581}
 582
 583/**
 584 * ttm_bo_pin - Pin the buffer object.
 585 * @bo: The buffer object to pin
 586 *
 587 * Make sure the buffer is not evicted any more during memory pressure.
 588 * @bo must be unpinned again by calling ttm_bo_unpin().
 589 */
 590void ttm_bo_pin(struct ttm_buffer_object *bo)
 591{
 592	dma_resv_assert_held(bo->base.resv);
 593	WARN_ON_ONCE(!kref_read(&bo->kref));
 594	spin_lock(&bo->bdev->lru_lock);
 595	if (bo->resource)
 596		ttm_resource_del_bulk_move(bo->resource, bo);
 597	if (!bo->pin_count++ && bo->resource)
 598		ttm_resource_move_to_lru_tail(bo->resource);
 599	spin_unlock(&bo->bdev->lru_lock);
 600}
 601EXPORT_SYMBOL(ttm_bo_pin);
 602
 603/**
 604 * ttm_bo_unpin - Unpin the buffer object.
 605 * @bo: The buffer object to unpin
 606 *
 607 * Allows the buffer object to be evicted again during memory pressure.
 608 */
 609void ttm_bo_unpin(struct ttm_buffer_object *bo)
 610{
 611	dma_resv_assert_held(bo->base.resv);
 612	WARN_ON_ONCE(!kref_read(&bo->kref));
 613	if (WARN_ON_ONCE(!bo->pin_count))
 614		return;
 615
 616	spin_lock(&bo->bdev->lru_lock);
 617	if (!--bo->pin_count && bo->resource) {
 618		ttm_resource_add_bulk_move(bo->resource, bo);
 619		ttm_resource_move_to_lru_tail(bo->resource);
 620	}
 621	spin_unlock(&bo->bdev->lru_lock);
 622}
 623EXPORT_SYMBOL(ttm_bo_unpin);
 624
 625/*
 626 * Add the last move fence to the BO as kernel dependency and reserve a new
 627 * fence slot.
 628 */
 629static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 630				 struct ttm_resource_manager *man,
 
 631				 bool no_wait_gpu)
 632{
 633	struct dma_fence *fence;
 634	int ret;
 635
 636	spin_lock(&man->move_lock);
 637	fence = dma_fence_get(man->move);
 638	spin_unlock(&man->move_lock);
 639
 640	if (!fence)
 641		return 0;
 642
 643	if (no_wait_gpu) {
 644		ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
 
 
 
 
 
 
 
 645		dma_fence_put(fence);
 646		return ret;
 647	}
 648
 649	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
 
 
 
 650
 651	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 652	dma_fence_put(fence);
 653	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 654}
 655
 656/**
 657 * ttm_bo_alloc_resource - Allocate backing store for a BO
 658 *
 659 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
 660 * @placement: Proposed new placement for the buffer object
 661 * @ctx: if and how to sleep, lock buffers and alloc memory
 662 * @force_space: If we should evict buffers to force space
 663 * @res: The resulting struct ttm_resource.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 664 *
 665 * Allocates a resource for the buffer object pointed to by @bo, using the
 666 * placement flags in @placement, potentially evicting other buffer objects when
 667 * @force_space is true.
 668 * This function may sleep while waiting for resources to become available.
 669 * Returns:
 670 * -EBUSY: No space available (only if no_wait == true).
 671 * -ENOSPC: Could not allocate space for the buffer object, either due to
 672 * fragmentation or concurrent allocators.
 673 * -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
 674 */
 675static int ttm_bo_alloc_resource(struct ttm_buffer_object *bo,
 676				 struct ttm_placement *placement,
 677				 struct ttm_operation_ctx *ctx,
 678				 bool force_space,
 679				 struct ttm_resource **res)
 680{
 681	struct ttm_device *bdev = bo->bdev;
 682	struct ww_acquire_ctx *ticket;
 683	int i, ret;
 684
 685	ticket = dma_resv_locking_ctx(bo->base.resv);
 686	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 687	if (unlikely(ret))
 688		return ret;
 689
 690	for (i = 0; i < placement->num_placement; ++i) {
 691		const struct ttm_place *place = &placement->placement[i];
 692		struct ttm_resource_manager *man;
 693		bool may_evict;
 694
 695		man = ttm_manager_type(bdev, place->mem_type);
 696		if (!man || !ttm_resource_manager_used(man))
 697			continue;
 
 
 698
 699		if (place->flags & (force_space ? TTM_PL_FLAG_DESIRED :
 700				    TTM_PL_FLAG_FALLBACK))
 
 701			continue;
 
 
 702
 703		may_evict = (force_space && place->mem_type != TTM_PL_SYSTEM);
 704		ret = ttm_resource_alloc(bo, place, res);
 705		if (ret) {
 706			if (ret != -ENOSPC)
 707				return ret;
 708			if (!may_evict)
 709				continue;
 710
 711			ret = ttm_bo_evict_alloc(bdev, man, place, bo, ctx,
 712						 ticket, res);
 713			if (ret == -EBUSY)
 714				continue;
 715			if (ret)
 716				return ret;
 717		}
 718
 719		ret = ttm_bo_add_move_fence(bo, man, ctx->no_wait_gpu);
 720		if (unlikely(ret)) {
 721			ttm_resource_free(bo, res);
 722			if (ret == -EBUSY)
 723				continue;
 724
 725			return ret;
 726		}
 727		return 0;
 728	}
 729
 730	return -ENOSPC;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 731}
 
 732
 733/*
 734 * ttm_bo_mem_space - Wrapper around ttm_bo_alloc_resource
 735 *
 736 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
 737 * @placement: Proposed new placement for the buffer object
 738 * @res: The resulting struct ttm_resource.
 739 * @ctx: if and how to sleep, lock buffers and alloc memory
 740 *
 741 * Tries both idle allocation and forcefully eviction of buffers. See
 742 * ttm_bo_alloc_resource for details.
 743 */
 744int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 745		     struct ttm_placement *placement,
 746		     struct ttm_resource **res,
 747		     struct ttm_operation_ctx *ctx)
 748{
 749	bool force_space = false;
 750	int ret;
 751
 752	do {
 753		ret = ttm_bo_alloc_resource(bo, placement, ctx,
 754					    force_space, res);
 755		force_space = !force_space;
 756	} while (ret == -ENOSPC && force_space);
 757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758	return ret;
 759}
 760EXPORT_SYMBOL(ttm_bo_mem_space);
 761
 762/**
 763 * ttm_bo_validate
 764 *
 765 * @bo: The buffer object.
 766 * @placement: Proposed placement for the buffer object.
 767 * @ctx: validation parameters.
 768 *
 769 * Changes placement and caching policy of the buffer object
 770 * according proposed placement.
 771 * Returns
 772 * -EINVAL on invalid proposed placement.
 773 * -ENOMEM on out-of-memory condition.
 774 * -EBUSY if no_wait is true and buffer busy.
 775 * -ERESTARTSYS if interrupted by a signal.
 776 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 777int ttm_bo_validate(struct ttm_buffer_object *bo,
 778		    struct ttm_placement *placement,
 779		    struct ttm_operation_ctx *ctx)
 780{
 781	struct ttm_resource *res;
 782	struct ttm_place hop;
 783	bool force_space;
 784	int ret;
 
 785
 786	dma_resv_assert_held(bo->base.resv);
 787
 788	/*
 789	 * Remove the backing store if no placement is given.
 790	 */
 791	if (!placement->num_placement)
 792		return ttm_bo_pipeline_gutting(bo);
 793
 794	force_space = false;
 795	do {
 796		/* Check whether we need to move buffer. */
 797		if (bo->resource &&
 798		    ttm_resource_compatible(bo->resource, placement,
 799					    force_space))
 800			return 0;
 801
 802		/* Moving of pinned BOs is forbidden */
 803		if (bo->pin_count)
 804			return -EINVAL;
 805
 806		/*
 807		 * Determine where to move the buffer.
 808		 *
 809		 * If driver determines move is going to need
 810		 * an extra step then it will return -EMULTIHOP
 811		 * and the buffer will be moved to the temporary
 812		 * stop and the driver will be called to make
 813		 * the second hop.
 814		 */
 815		ret = ttm_bo_alloc_resource(bo, placement, ctx, force_space,
 816					    &res);
 817		force_space = !force_space;
 818		if (ret == -ENOSPC)
 819			continue;
 820		if (ret)
 821			return ret;
 822
 823bounce:
 824		ret = ttm_bo_handle_move_mem(bo, res, false, ctx, &hop);
 825		if (ret == -EMULTIHOP) {
 826			ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
 827			/* try and move to final place now. */
 828			if (!ret)
 829				goto bounce;
 830		}
 831		if (ret) {
 832			ttm_resource_free(bo, &res);
 833			return ret;
 834		}
 835
 836	} while (ret && force_space);
 837
 838	/* For backward compatibility with userspace */
 839	if (ret == -ENOSPC)
 840		return -ENOMEM;
 841
 842	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 843	 * We might need to add a TTM.
 844	 */
 845	if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) {
 846		ret = ttm_tt_create(bo, true);
 847		if (ret)
 848			return ret;
 849	}
 850	return 0;
 851}
 852EXPORT_SYMBOL(ttm_bo_validate);
 853
 854/**
 855 * ttm_bo_init_reserved
 856 *
 857 * @bdev: Pointer to a ttm_device struct.
 858 * @bo: Pointer to a ttm_buffer_object to be initialized.
 859 * @type: Requested type of buffer object.
 860 * @placement: Initial placement for buffer object.
 861 * @alignment: Data alignment in pages.
 862 * @ctx: TTM operation context for memory allocation.
 863 * @sg: Scatter-gather table.
 864 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 865 * @destroy: Destroy function. Use NULL for kfree().
 866 *
 867 * This function initializes a pre-allocated struct ttm_buffer_object.
 868 * As this object may be part of a larger structure, this function,
 869 * together with the @destroy function, enables driver-specific objects
 870 * derived from a ttm_buffer_object.
 871 *
 872 * On successful return, the caller owns an object kref to @bo. The kref and
 873 * list_kref are usually set to 1, but note that in some situations, other
 874 * tasks may already be holding references to @bo as well.
 875 * Furthermore, if resv == NULL, the buffer's reservation lock will be held,
 876 * and it is the caller's responsibility to call ttm_bo_unreserve.
 877 *
 878 * If a failure occurs, the function will call the @destroy function. Thus,
 879 * after a failure, dereferencing @bo is illegal and will likely cause memory
 880 * corruption.
 881 *
 882 * Returns
 883 * -ENOMEM: Out of memory.
 884 * -EINVAL: Invalid placement flags.
 885 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 886 */
 887int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 888			 enum ttm_bo_type type, struct ttm_placement *placement,
 889			 uint32_t alignment, struct ttm_operation_ctx *ctx,
 890			 struct sg_table *sg, struct dma_resv *resv,
 891			 void (*destroy) (struct ttm_buffer_object *))
 892{
 893	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894
 895	kref_init(&bo->kref);
 
 
 
 
 896	bo->bdev = bdev;
 897	bo->type = type;
 898	bo->page_alignment = alignment;
 899	bo->destroy = destroy;
 900	bo->pin_count = 0;
 
 
 
 
 
 
 
 
 901	bo->sg = sg;
 902	bo->bulk_move = NULL;
 903	if (resv)
 904		bo->base.resv = resv;
 905	else
 
 906		bo->base.resv = &bo->base._resv;
 907	atomic_inc(&ttm_glob.bo_count);
 
 
 
 
 
 
 
 
 
 908
 909	/*
 910	 * For ttm_bo_type_device buffers, allocate
 911	 * address space from the device.
 912	 */
 913	if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) {
 
 914		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
 915					 PFN_UP(bo->base.size));
 916		if (ret)
 917			goto err_put;
 918	}
 919
 920	/* passed reservation objects should already be locked,
 921	 * since otherwise lockdep will be angered in radeon.
 922	 */
 923	if (!resv)
 924		WARN_ON(!dma_resv_trylock(bo->base.resv));
 925	else
 926		dma_resv_assert_held(resv);
 927
 928	ret = ttm_bo_validate(bo, placement, ctx);
 929	if (unlikely(ret))
 930		goto err_unlock;
 931
 932	return 0;
 
 
 933
 934err_unlock:
 935	if (!resv)
 936		dma_resv_unlock(bo->base.resv);
 
 
 
 
 937
 938err_put:
 939	ttm_bo_put(bo);
 940	return ret;
 941}
 942EXPORT_SYMBOL(ttm_bo_init_reserved);
 943
 944/**
 945 * ttm_bo_init_validate
 946 *
 947 * @bdev: Pointer to a ttm_device struct.
 948 * @bo: Pointer to a ttm_buffer_object to be initialized.
 949 * @type: Requested type of buffer object.
 950 * @placement: Initial placement for buffer object.
 951 * @alignment: Data alignment in pages.
 952 * @interruptible: If needing to sleep to wait for GPU resources,
 953 * sleep interruptible.
 954 * pinned in physical memory. If this behaviour is not desired, this member
 955 * holds a pointer to a persistent shmem object. Typically, this would
 956 * point to the shmem object backing a GEM object if TTM is used to back a
 957 * GEM user interface.
 958 * @sg: Scatter-gather table.
 959 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 960 * @destroy: Destroy function. Use NULL for kfree().
 961 *
 962 * This function initializes a pre-allocated struct ttm_buffer_object.
 963 * As this object may be part of a larger structure, this function,
 964 * together with the @destroy function,
 965 * enables driver-specific objects derived from a ttm_buffer_object.
 966 *
 967 * On successful return, the caller owns an object kref to @bo. The kref and
 968 * list_kref are usually set to 1, but note that in some situations, other
 969 * tasks may already be holding references to @bo as well.
 970 *
 971 * If a failure occurs, the function will call the @destroy function, Thus,
 972 * after a failure, dereferencing @bo is illegal and will likely cause memory
 973 * corruption.
 974 *
 975 * Returns
 976 * -ENOMEM: Out of memory.
 977 * -EINVAL: Invalid placement flags.
 978 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 979 */
 980int ttm_bo_init_validate(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 981			 enum ttm_bo_type type, struct ttm_placement *placement,
 982			 uint32_t alignment, bool interruptible,
 983			 struct sg_table *sg, struct dma_resv *resv,
 984			 void (*destroy) (struct ttm_buffer_object *))
 985{
 986	struct ttm_operation_ctx ctx = { interruptible, false };
 987	int ret;
 988
 989	ret = ttm_bo_init_reserved(bdev, bo, type, placement, alignment, &ctx,
 
 990				   sg, resv, destroy);
 991	if (ret)
 992		return ret;
 993
 994	if (!resv)
 995		ttm_bo_unreserve(bo);
 996
 997	return 0;
 998}
 999EXPORT_SYMBOL(ttm_bo_init_validate);
1000
1001/*
1002 * buffer object vm functions.
1003 */
1004
1005/**
1006 * ttm_bo_unmap_virtual
1007 *
1008 * @bo: tear down the virtual mappings for this BO
1009 */
1010void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1011{
1012	struct ttm_device *bdev = bo->bdev;
 
 
1013
1014	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1015	ttm_mem_io_free(bdev, bo->resource);
 
 
 
 
 
 
 
 
 
 
1016}
1017EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1018
1019/**
1020 * ttm_bo_wait_ctx - wait for buffer idle.
1021 *
1022 * @bo:  The buffer object.
1023 * @ctx: defines how to wait
1024 *
1025 * Waits for the buffer to be idle. Used timeout depends on the context.
1026 * Returns -EBUSY if wait timed outt, -ERESTARTSYS if interrupted by a signal or
1027 * zero on success.
1028 */
1029int ttm_bo_wait_ctx(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1030{
1031	long ret;
 
 
 
 
 
 
 
 
 
1032
1033	if (ctx->no_wait_gpu) {
1034		if (dma_resv_test_signaled(bo->base.resv,
1035					   DMA_RESV_USAGE_BOOKKEEP))
1036			return 0;
1037		else
1038			return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039	}
1040
1041	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
1042				    ctx->interruptible, 15 * HZ);
1043	if (unlikely(ret < 0))
1044		return ret;
1045	if (unlikely(ret == 0))
1046		return -EBUSY;
1047	return 0;
1048}
1049EXPORT_SYMBOL(ttm_bo_wait_ctx);
1050
1051/**
1052 * struct ttm_bo_swapout_walk - Parameters for the swapout walk
1053 */
1054struct ttm_bo_swapout_walk {
1055	/** @walk: The walk base parameters. */
1056	struct ttm_lru_walk walk;
1057	/** @gfp_flags: The gfp flags to use for ttm_tt_swapout() */
1058	gfp_t gfp_flags;
1059};
1060
1061static s64
1062ttm_bo_swapout_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
1063{
1064	struct ttm_place place = {.mem_type = bo->resource->mem_type};
1065	struct ttm_bo_swapout_walk *swapout_walk =
1066		container_of(walk, typeof(*swapout_walk), walk);
1067	struct ttm_operation_ctx *ctx = walk->ctx;
1068	s64 ret;
1069
1070	/*
1071	 * While the bo may already reside in SYSTEM placement, set
1072	 * SYSTEM as new placement to cover also the move further below.
1073	 * The driver may use the fact that we're moving from SYSTEM
1074	 * as an indication that we're about to swap out.
1075	 */
1076	if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, &place)) {
1077		ret = -EBUSY;
1078		goto out;
1079	}
 
1080
1081	if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
1082	    bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL ||
1083	    bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) {
1084		ret = -EBUSY;
1085		goto out;
1086	}
1087
1088	if (bo->deleted) {
1089		pgoff_t num_pages = bo->ttm->num_pages;
1090
1091		ret = ttm_bo_wait_ctx(bo, ctx);
1092		if (ret)
1093			goto out;
 
 
 
 
1094
1095		ttm_bo_cleanup_memtype_use(bo);
1096		ret = num_pages;
1097		goto out;
1098	}
1099
1100	/*
1101	 * Move to system cached
1102	 */
1103	if (bo->resource->mem_type != TTM_PL_SYSTEM) {
1104		struct ttm_resource *evict_mem;
1105		struct ttm_place hop;
1106
1107		memset(&hop, 0, sizeof(hop));
1108		place.mem_type = TTM_PL_SYSTEM;
1109		ret = ttm_resource_alloc(bo, &place, &evict_mem);
1110		if (ret)
1111			goto out;
1112
1113		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
1114		if (ret) {
1115			WARN(ret == -EMULTIHOP,
1116			     "Unexpected multihop in swapout - likely driver bug.\n");
1117			ttm_resource_free(bo, &evict_mem);
1118			goto out;
1119		}
 
 
 
 
1120	}
1121
1122	/*
1123	 * Make sure BO is idle.
1124	 */
1125	ret = ttm_bo_wait_ctx(bo, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1126	if (ret)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127		goto out;
1128
1129	ttm_bo_unmap_virtual(bo);
1130	if (bo->bdev->funcs->swap_notify)
1131		bo->bdev->funcs->swap_notify(bo);
 
 
 
 
1132
1133	if (ttm_tt_is_populated(bo->ttm)) {
1134		spin_lock(&bo->bdev->lru_lock);
1135		ttm_resource_del_bulk_move(bo->resource, bo);
1136		spin_unlock(&bo->bdev->lru_lock);
 
1137
1138		ret = ttm_tt_swapout(bo->bdev, bo->ttm, swapout_walk->gfp_flags);
 
 
1139
1140		spin_lock(&bo->bdev->lru_lock);
1141		if (ret)
1142			ttm_resource_add_bulk_move(bo->resource, bo);
1143		ttm_resource_move_to_lru_tail(bo->resource);
1144		spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
1145	}
1146
 
 
 
 
 
 
 
 
 
1147out:
1148	/* Consider -ENOMEM and -ENOSPC non-fatal. */
1149	if (ret == -ENOMEM || ret == -ENOSPC)
1150		ret = -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1151
1152	return ret;
1153}
 
1154
1155const struct ttm_lru_walk_ops ttm_swap_ops = {
1156	.process_bo = ttm_bo_swapout_cb,
1157};
 
 
 
 
 
1158
1159/**
1160 * ttm_bo_swapout() - Swap out buffer objects on the LRU list to shmem.
1161 * @bdev: The ttm device.
1162 * @ctx: The ttm_operation_ctx governing the swapout operation.
1163 * @man: The resource manager whose resources / buffer objects are
1164 * goint to be swapped out.
1165 * @gfp_flags: The gfp flags used for shmem page allocations.
1166 * @target: The desired number of bytes to swap out.
1167 *
1168 * Return: The number of bytes actually swapped out, or negative error code
1169 * on error.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170 */
1171s64 ttm_bo_swapout(struct ttm_device *bdev, struct ttm_operation_ctx *ctx,
1172		   struct ttm_resource_manager *man, gfp_t gfp_flags,
1173		   s64 target)
1174{
1175	struct ttm_bo_swapout_walk swapout_walk = {
1176		.walk = {
1177			.ops = &ttm_swap_ops,
1178			.ctx = ctx,
1179			.trylock_only = true,
1180		},
1181		.gfp_flags = gfp_flags,
1182	};
1183
1184	return ttm_lru_walk_for_evict(&swapout_walk.walk, bdev, man, target);
 
 
 
 
 
1185}
1186
1187void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1188{
1189	if (bo->ttm == NULL)
1190		return;
1191
1192	ttm_tt_unpopulate(bo->bdev, bo->ttm);
1193	ttm_tt_destroy(bo->bdev, bo->ttm);
1194	bo->ttm = NULL;
1195}
1196
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1197/**
1198 * ttm_bo_populate() - Ensure that a buffer object has backing pages
1199 * @bo: The buffer object
1200 * @ctx: The ttm_operation_ctx governing the operation.
1201 *
1202 * For buffer objects in a memory type whose manager uses
1203 * struct ttm_tt for backing pages, ensure those backing pages
1204 * are present and with valid content. The bo's resource is also
1205 * placed on the correct LRU list if it was previously swapped
1206 * out.
1207 *
1208 * Return: 0 if successful, negative error code on failure.
1209 * Note: May return -EINTR or -ERESTARTSYS if @ctx::interruptible
1210 * is set to true.
1211 */
1212int ttm_bo_populate(struct ttm_buffer_object *bo,
1213		    struct ttm_operation_ctx *ctx)
1214{
1215	struct ttm_tt *tt = bo->ttm;
1216	bool swapped;
1217	int ret;
 
 
 
 
 
 
 
 
1218
1219	dma_resv_assert_held(bo->base.resv);
 
 
 
 
1220
1221	if (!tt)
1222		return 0;
 
 
 
 
1223
1224	swapped = ttm_tt_is_swapped(tt);
1225	ret = ttm_tt_populate(bo->bdev, tt, ctx);
1226	if (ret)
1227		return ret;
 
1228
1229	if (swapped && !ttm_tt_is_swapped(tt) && !bo->pin_count &&
1230	    bo->resource) {
1231		spin_lock(&bo->bdev->lru_lock);
1232		ttm_resource_add_bulk_move(bo->resource, bo);
1233		ttm_resource_move_to_lru_tail(bo->resource);
1234		spin_unlock(&bo->bdev->lru_lock);
1235	}
1236
1237	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1238}
1239EXPORT_SYMBOL(ttm_bo_populate);
v5.9
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28/*
  29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  30 */
  31
  32#define pr_fmt(fmt) "[TTM] " fmt
  33
  34#include <drm/ttm/ttm_module.h>
  35#include <drm/ttm/ttm_bo_driver.h>
  36#include <drm/ttm/ttm_placement.h>
 
 
  37#include <linux/jiffies.h>
  38#include <linux/slab.h>
  39#include <linux/sched.h>
  40#include <linux/mm.h>
  41#include <linux/file.h>
  42#include <linux/module.h>
  43#include <linux/atomic.h>
  44#include <linux/dma-resv.h>
  45
  46static void ttm_bo_global_kobj_release(struct kobject *kobj);
  47
  48/**
  49 * ttm_global_mutex - protecting the global BO state
  50 */
  51DEFINE_MUTEX(ttm_global_mutex);
  52unsigned ttm_bo_glob_use_count;
  53struct ttm_bo_global ttm_bo_glob;
  54EXPORT_SYMBOL(ttm_bo_glob);
  55
  56static struct attribute ttm_bo_count = {
  57	.name = "bo_count",
  58	.mode = S_IRUGO
  59};
  60
  61/* default destructor */
  62static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
  63{
  64	kfree(bo);
  65}
  66
  67static inline int ttm_mem_type_from_place(const struct ttm_place *place,
  68					  uint32_t *mem_type)
  69{
  70	int pos;
  71
  72	pos = ffs(place->flags & TTM_PL_MASK_MEM);
  73	if (unlikely(!pos))
  74		return -EINVAL;
  75
  76	*mem_type = pos - 1;
  77	return 0;
  78}
  79
  80static void ttm_mem_type_debug(struct ttm_bo_device *bdev, struct drm_printer *p,
  81			       int mem_type)
  82{
  83	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  84
  85	drm_printf(p, "    has_type: %d\n", man->has_type);
  86	drm_printf(p, "    use_type: %d\n", man->use_type);
  87	drm_printf(p, "    flags: 0x%08X\n", man->flags);
  88	drm_printf(p, "    size: %llu\n", man->size);
  89	drm_printf(p, "    available_caching: 0x%08X\n", man->available_caching);
  90	drm_printf(p, "    default_caching: 0x%08X\n", man->default_caching);
  91	if (mem_type != TTM_PL_SYSTEM)
  92		(*man->func->debug)(man, p);
  93}
  94
  95static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  96					struct ttm_placement *placement)
  97{
  98	struct drm_printer p = drm_debug_printer(TTM_PFX);
  99	int i, ret, mem_type;
 
 100
 101	drm_printf(&p, "No space for %p (%lu pages, %luK, %luM)\n",
 102		   bo, bo->mem.num_pages, bo->mem.size >> 10,
 103		   bo->mem.size >> 20);
 104	for (i = 0; i < placement->num_placement; i++) {
 105		ret = ttm_mem_type_from_place(&placement->placement[i],
 106						&mem_type);
 107		if (ret)
 108			return;
 109		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
 110			   i, placement->placement[i].flags, mem_type);
 111		ttm_mem_type_debug(bo->bdev, &p, mem_type);
 
 112	}
 113}
 114
 115static ssize_t ttm_bo_global_show(struct kobject *kobj,
 116				  struct attribute *attr,
 117				  char *buffer)
 118{
 119	struct ttm_bo_global *glob =
 120		container_of(kobj, struct ttm_bo_global, kobj);
 121
 122	return snprintf(buffer, PAGE_SIZE, "%d\n",
 123				atomic_read(&glob->bo_count));
 124}
 125
 126static struct attribute *ttm_bo_global_attrs[] = {
 127	&ttm_bo_count,
 128	NULL
 129};
 130
 131static const struct sysfs_ops ttm_bo_global_ops = {
 132	.show = &ttm_bo_global_show
 133};
 134
 135static struct kobj_type ttm_bo_glob_kobj_type  = {
 136	.release = &ttm_bo_global_kobj_release,
 137	.sysfs_ops = &ttm_bo_global_ops,
 138	.default_attrs = ttm_bo_global_attrs
 139};
 140
 141
 142static inline uint32_t ttm_bo_type_flags(unsigned type)
 143{
 144	return 1 << (type);
 145}
 146
 147static void ttm_bo_add_mem_to_lru(struct ttm_buffer_object *bo,
 148				  struct ttm_mem_reg *mem)
 149{
 150	struct ttm_bo_device *bdev = bo->bdev;
 151	struct ttm_mem_type_manager *man;
 152
 153	if (!list_empty(&bo->lru))
 154		return;
 155
 156	if (mem->placement & TTM_PL_FLAG_NO_EVICT)
 157		return;
 158
 159	man = &bdev->man[mem->mem_type];
 160	list_add_tail(&bo->lru, &man->lru[bo->priority]);
 161
 162	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm &&
 163	    !(bo->ttm->page_flags & (TTM_PAGE_FLAG_SG |
 164				     TTM_PAGE_FLAG_SWAPPED))) {
 165		list_add_tail(&bo->swap, &ttm_bo_glob.swap_lru[bo->priority]);
 166	}
 167}
 168
 169static void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 170{
 171	struct ttm_bo_device *bdev = bo->bdev;
 172	bool notify = false;
 173
 174	if (!list_empty(&bo->swap)) {
 175		list_del_init(&bo->swap);
 176		notify = true;
 177	}
 178	if (!list_empty(&bo->lru)) {
 179		list_del_init(&bo->lru);
 180		notify = true;
 181	}
 182
 183	if (notify && bdev->driver->del_from_lru_notify)
 184		bdev->driver->del_from_lru_notify(bo);
 185}
 186
 187static void ttm_bo_bulk_move_set_pos(struct ttm_lru_bulk_move_pos *pos,
 188				     struct ttm_buffer_object *bo)
 189{
 190	if (!pos->first)
 191		pos->first = bo;
 192	pos->last = bo;
 193}
 194
 195void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo,
 196			     struct ttm_lru_bulk_move *bulk)
 197{
 198	dma_resv_assert_held(bo->base.resv);
 199
 200	ttm_bo_del_from_lru(bo);
 201	ttm_bo_add_mem_to_lru(bo, &bo->mem);
 202
 203	if (bulk && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 204		switch (bo->mem.mem_type) {
 205		case TTM_PL_TT:
 206			ttm_bo_bulk_move_set_pos(&bulk->tt[bo->priority], bo);
 207			break;
 208
 209		case TTM_PL_VRAM:
 210			ttm_bo_bulk_move_set_pos(&bulk->vram[bo->priority], bo);
 211			break;
 212		}
 213		if (bo->ttm && !(bo->ttm->page_flags &
 214				 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED)))
 215			ttm_bo_bulk_move_set_pos(&bulk->swap[bo->priority], bo);
 216	}
 217}
 218EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
 219
 220void ttm_bo_bulk_move_lru_tail(struct ttm_lru_bulk_move *bulk)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 221{
 222	unsigned i;
 223
 224	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 225		struct ttm_lru_bulk_move_pos *pos = &bulk->tt[i];
 226		struct ttm_mem_type_manager *man;
 227
 228		if (!pos->first)
 229			continue;
 230
 231		dma_resv_assert_held(pos->first->base.resv);
 232		dma_resv_assert_held(pos->last->base.resv);
 233
 234		man = &pos->first->bdev->man[TTM_PL_TT];
 235		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
 236				    &pos->last->lru);
 237	}
 238
 239	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 240		struct ttm_lru_bulk_move_pos *pos = &bulk->vram[i];
 241		struct ttm_mem_type_manager *man;
 242
 243		if (!pos->first)
 244			continue;
 245
 246		dma_resv_assert_held(pos->first->base.resv);
 247		dma_resv_assert_held(pos->last->base.resv);
 248
 249		man = &pos->first->bdev->man[TTM_PL_VRAM];
 250		list_bulk_move_tail(&man->lru[i], &pos->first->lru,
 251				    &pos->last->lru);
 252	}
 253
 254	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 255		struct ttm_lru_bulk_move_pos *pos = &bulk->swap[i];
 256		struct list_head *lru;
 257
 258		if (!pos->first)
 259			continue;
 260
 261		dma_resv_assert_held(pos->first->base.resv);
 262		dma_resv_assert_held(pos->last->base.resv);
 263
 264		lru = &ttm_bo_glob.swap_lru[i];
 265		list_bulk_move_tail(lru, &pos->first->swap, &pos->last->swap);
 266	}
 267}
 268EXPORT_SYMBOL(ttm_bo_bulk_move_lru_tail);
 269
 270static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 271				  struct ttm_mem_reg *mem, bool evict,
 272				  struct ttm_operation_ctx *ctx)
 
 273{
 274	struct ttm_bo_device *bdev = bo->bdev;
 275	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 276	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 277	int ret;
 278
 279	ret = ttm_mem_io_lock(old_man, true);
 280	if (unlikely(ret != 0))
 281		goto out_err;
 282	ttm_bo_unmap_virtual_locked(bo);
 283	ttm_mem_io_unlock(old_man);
 284
 285	/*
 286	 * Create and bind a ttm if required.
 287	 */
 288
 289	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 290		if (bo->ttm == NULL) {
 291			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 292			ret = ttm_tt_create(bo, zero);
 293			if (ret)
 294				goto out_err;
 295		}
 296
 297		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 298		if (ret)
 299			goto out_err;
 300
 301		if (mem->mem_type != TTM_PL_SYSTEM) {
 302			ret = ttm_tt_bind(bo->ttm, mem, ctx);
 303			if (ret)
 304				goto out_err;
 305		}
 306
 307		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 308			if (bdev->driver->move_notify)
 309				bdev->driver->move_notify(bo, evict, mem);
 310			bo->mem = *mem;
 311			goto moved;
 312		}
 313	}
 314
 315	if (bdev->driver->move_notify)
 316		bdev->driver->move_notify(bo, evict, mem);
 317
 318	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 319	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 320		ret = ttm_bo_move_ttm(bo, ctx, mem);
 321	else if (bdev->driver->move)
 322		ret = bdev->driver->move(bo, evict, ctx, mem);
 323	else
 324		ret = ttm_bo_move_memcpy(bo, ctx, mem);
 325
 
 326	if (ret) {
 327		if (bdev->driver->move_notify) {
 328			swap(*mem, bo->mem);
 329			bdev->driver->move_notify(bo, false, mem);
 330			swap(*mem, bo->mem);
 331		}
 332
 333		goto out_err;
 334	}
 335
 336moved:
 337	bo->evicted = false;
 338
 339	ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
 340	return 0;
 341
 342out_err:
 343	new_man = &bdev->man[bo->mem.mem_type];
 344	if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
 345		ttm_tt_destroy(bo->ttm);
 346		bo->ttm = NULL;
 347	}
 348
 349	return ret;
 350}
 351
 352/**
 353 * Call bo::reserved.
 354 * Will release GPU memory type usage on destruction.
 355 * This is the place to put in driver specific hooks to release
 356 * driver private resources.
 357 * Will release the bo::reserved lock.
 358 */
 359
 360static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 361{
 362	if (bo->bdev->driver->move_notify)
 363		bo->bdev->driver->move_notify(bo, false, NULL);
 364
 365	ttm_tt_destroy(bo->ttm);
 366	bo->ttm = NULL;
 367	ttm_bo_mem_put(bo, &bo->mem);
 368}
 369
 370static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
 371{
 372	int r;
 373
 374	if (bo->base.resv == &bo->base._resv)
 375		return 0;
 376
 377	BUG_ON(!dma_resv_trylock(&bo->base._resv));
 378
 379	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
 380	dma_resv_unlock(&bo->base._resv);
 381	if (r)
 382		return r;
 383
 384	if (bo->type != ttm_bo_type_sg) {
 385		/* This works because the BO is about to be destroyed and nobody
 386		 * reference it any more. The only tricky case is the trylock on
 387		 * the resv object while holding the lru_lock.
 388		 */
 389		spin_lock(&ttm_bo_glob.lru_lock);
 390		bo->base.resv = &bo->base._resv;
 391		spin_unlock(&ttm_bo_glob.lru_lock);
 392	}
 393
 394	return r;
 395}
 396
 397static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 398{
 399	struct dma_resv *resv = &bo->base._resv;
 400	struct dma_resv_list *fobj;
 401	struct dma_fence *fence;
 402	int i;
 403
 404	rcu_read_lock();
 405	fobj = rcu_dereference(resv->fence);
 406	fence = rcu_dereference(resv->fence_excl);
 407	if (fence && !fence->ops->signaled)
 408		dma_fence_enable_sw_signaling(fence);
 409
 410	for (i = 0; fobj && i < fobj->shared_count; ++i) {
 411		fence = rcu_dereference(fobj->shared[i]);
 412
 
 
 413		if (!fence->ops->signaled)
 414			dma_fence_enable_sw_signaling(fence);
 415	}
 416	rcu_read_unlock();
 417}
 418
 419/**
 420 * function ttm_bo_cleanup_refs
 421 * If bo idle, remove from lru lists, and unref.
 422 * If not idle, block if possible.
 423 *
 424 * Must be called with lru_lock and reservation held, this function
 425 * will drop the lru lock and optionally the reservation lock before returning.
 426 *
 427 * @interruptible         Any sleeps should occur interruptibly.
 428 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 429 * @unlock_resv           Unlock the reservation lock as well.
 430 */
 431
 432static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
 433			       bool interruptible, bool no_wait_gpu,
 434			       bool unlock_resv)
 435{
 436	struct dma_resv *resv = &bo->base._resv;
 437	int ret;
 438
 439	if (dma_resv_test_signaled_rcu(resv, true))
 440		ret = 0;
 441	else
 442		ret = -EBUSY;
 443
 444	if (ret && !no_wait_gpu) {
 445		long lret;
 446
 447		if (unlock_resv)
 448			dma_resv_unlock(bo->base.resv);
 449		spin_unlock(&ttm_bo_glob.lru_lock);
 450
 451		lret = dma_resv_wait_timeout_rcu(resv, true, interruptible,
 452						 30 * HZ);
 453
 454		if (lret < 0)
 455			return lret;
 456		else if (lret == 0)
 457			return -EBUSY;
 458
 459		spin_lock(&ttm_bo_glob.lru_lock);
 460		if (unlock_resv && !dma_resv_trylock(bo->base.resv)) {
 461			/*
 462			 * We raced, and lost, someone else holds the reservation now,
 463			 * and is probably busy in ttm_bo_cleanup_memtype_use.
 464			 *
 465			 * Even if it's not the case, because we finished waiting any
 466			 * delayed destruction would succeed, so just return success
 467			 * here.
 468			 */
 469			spin_unlock(&ttm_bo_glob.lru_lock);
 470			return 0;
 471		}
 472		ret = 0;
 473	}
 474
 475	if (ret || unlikely(list_empty(&bo->ddestroy))) {
 476		if (unlock_resv)
 477			dma_resv_unlock(bo->base.resv);
 478		spin_unlock(&ttm_bo_glob.lru_lock);
 479		return ret;
 480	}
 481
 482	ttm_bo_del_from_lru(bo);
 483	list_del_init(&bo->ddestroy);
 484	spin_unlock(&ttm_bo_glob.lru_lock);
 485	ttm_bo_cleanup_memtype_use(bo);
 486
 487	if (unlock_resv)
 488		dma_resv_unlock(bo->base.resv);
 489
 490	ttm_bo_put(bo);
 491
 492	return 0;
 493}
 494
 495/**
 496 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 497 * encountered buffers.
 498 */
 499static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 500{
 501	struct ttm_bo_global *glob = &ttm_bo_glob;
 502	struct list_head removed;
 503	bool empty;
 504
 505	INIT_LIST_HEAD(&removed);
 506
 507	spin_lock(&glob->lru_lock);
 508	while (!list_empty(&bdev->ddestroy)) {
 509		struct ttm_buffer_object *bo;
 510
 511		bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
 512				      ddestroy);
 513		list_move_tail(&bo->ddestroy, &removed);
 514		if (!ttm_bo_get_unless_zero(bo))
 515			continue;
 516
 517		if (remove_all || bo->base.resv != &bo->base._resv) {
 518			spin_unlock(&glob->lru_lock);
 519			dma_resv_lock(bo->base.resv, NULL);
 520
 521			spin_lock(&glob->lru_lock);
 522			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
 523
 524		} else if (dma_resv_trylock(bo->base.resv)) {
 525			ttm_bo_cleanup_refs(bo, false, !remove_all, true);
 526		} else {
 527			spin_unlock(&glob->lru_lock);
 528		}
 529
 530		ttm_bo_put(bo);
 531		spin_lock(&glob->lru_lock);
 532	}
 533	list_splice_tail(&removed, &bdev->ddestroy);
 534	empty = list_empty(&bdev->ddestroy);
 535	spin_unlock(&glob->lru_lock);
 536
 537	return empty;
 538}
 539
 540static void ttm_bo_delayed_workqueue(struct work_struct *work)
 541{
 542	struct ttm_bo_device *bdev =
 543	    container_of(work, struct ttm_bo_device, wq.work);
 544
 545	if (!ttm_bo_delayed_delete(bdev, false))
 546		schedule_delayed_work(&bdev->wq,
 547				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 548}
 549
 550static void ttm_bo_release(struct kref *kref)
 551{
 552	struct ttm_buffer_object *bo =
 553	    container_of(kref, struct ttm_buffer_object, kref);
 554	struct ttm_bo_device *bdev = bo->bdev;
 555	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 556	size_t acc_size = bo->acc_size;
 557	int ret;
 558
 
 
 
 559	if (!bo->deleted) {
 560		ret = ttm_bo_individualize_resv(bo);
 561		if (ret) {
 562			/* Last resort, if we fail to allocate memory for the
 563			 * fences block for the BO to become idle
 564			 */
 565			dma_resv_wait_timeout_rcu(bo->base.resv, true, false,
 566						  30 * HZ);
 
 567		}
 568
 569		if (bo->bdev->driver->release_notify)
 570			bo->bdev->driver->release_notify(bo);
 571
 572		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
 573		ttm_mem_io_lock(man, false);
 574		ttm_mem_io_free_vm(bo);
 575		ttm_mem_io_unlock(man);
 576	}
 577
 578	if (!dma_resv_test_signaled_rcu(bo->base.resv, true) ||
 579	    !dma_resv_trylock(bo->base.resv)) {
 580		/* The BO is not idle, resurrect it for delayed destroy */
 581		ttm_bo_flush_all_fences(bo);
 582		bo->deleted = true;
 
 
 
 583
 584		spin_lock(&ttm_bo_glob.lru_lock);
 585
 586		/*
 587		 * Make NO_EVICT bos immediately available to
 588		 * shrinkers, now that they are queued for
 589		 * destruction.
 590		 */
 591		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
 592			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
 593			ttm_bo_del_from_lru(bo);
 594			ttm_bo_add_mem_to_lru(bo, &bo->mem);
 595		}
 
 
 596
 597		kref_init(&bo->kref);
 598		list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 599		spin_unlock(&ttm_bo_glob.lru_lock);
 600
 601		schedule_delayed_work(&bdev->wq,
 602				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 603		return;
 604	}
 605
 606	spin_lock(&ttm_bo_glob.lru_lock);
 607	ttm_bo_del_from_lru(bo);
 608	list_del(&bo->ddestroy);
 609	spin_unlock(&ttm_bo_glob.lru_lock);
 
 
 
 
 610
 611	ttm_bo_cleanup_memtype_use(bo);
 612	dma_resv_unlock(bo->base.resv);
 
 613
 614	atomic_dec(&ttm_bo_glob.bo_count);
 615	dma_fence_put(bo->moving);
 616	if (!ttm_bo_uses_embedded_gem_object(bo))
 617		dma_resv_fini(&bo->base._resv);
 618	bo->destroy(bo);
 619	ttm_mem_global_free(&ttm_mem_glob, acc_size);
 620}
 621
 
 
 
 
 
 
 
 622void ttm_bo_put(struct ttm_buffer_object *bo)
 623{
 624	kref_put(&bo->kref, ttm_bo_release);
 625}
 626EXPORT_SYMBOL(ttm_bo_put);
 627
 628int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 
 
 629{
 630	return cancel_delayed_work_sync(&bdev->wq);
 631}
 632EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 
 
 
 633
 634void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 635{
 636	if (resched)
 637		schedule_delayed_work(&bdev->wq,
 638				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 
 
 
 
 
 
 639}
 640EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 641
 642static int ttm_bo_evict(struct ttm_buffer_object *bo,
 643			struct ttm_operation_ctx *ctx)
 644{
 645	struct ttm_bo_device *bdev = bo->bdev;
 646	struct ttm_mem_reg evict_mem;
 647	struct ttm_placement placement;
 
 648	int ret = 0;
 649
 
 
 650	dma_resv_assert_held(bo->base.resv);
 651
 652	placement.num_placement = 0;
 653	placement.num_busy_placement = 0;
 654	bdev->driver->evict_flags(bo, &placement);
 655
 656	if (!placement.num_placement && !placement.num_busy_placement) {
 657		ret = ttm_bo_pipeline_gutting(bo);
 658		if (ret)
 659			return ret;
 660
 661		return ttm_tt_create(bo, false);
 
 
 
 
 662	}
 663
 664	evict_mem = bo->mem;
 665	evict_mem.mm_node = NULL;
 666	evict_mem.bus.io_reserved_vm = false;
 667	evict_mem.bus.io_reserved_count = 0;
 668
 669	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
 670	if (ret) {
 671		if (ret != -ERESTARTSYS) {
 672			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 673			       bo);
 674			ttm_bo_mem_space_debug(bo, &placement);
 675		}
 676		goto out;
 677	}
 678
 679	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
 680	if (unlikely(ret)) {
 681		if (ret != -ERESTARTSYS)
 
 
 
 
 
 
 
 
 682			pr_err("Buffer eviction failed\n");
 683		ttm_bo_mem_put(bo, &evict_mem);
 684		goto out;
 685	}
 686	bo->evicted = true;
 687out:
 688	return ret;
 689}
 690
 
 
 
 
 
 
 
 
 691bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 692			      const struct ttm_place *place)
 693{
 
 
 
 
 
 
 
 694	/* Don't evict this BO if it's outside of the
 695	 * requested placement range
 696	 */
 697	if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
 698	    (place->lpfn && place->lpfn <= bo->mem.start))
 699		return false;
 700
 701	return true;
 702}
 703EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 704
 705/**
 706 * Check the target bo is allowable to be evicted or swapout, including cases:
 
 
 
 707 *
 708 * a. if share same reservation object with ctx->resv, have assumption
 709 * reservation objects should already be locked, so not lock again and
 710 * return true directly when either the opreation allow_reserved_eviction
 711 * or the target bo already is in delayed free list;
 712 *
 713 * b. Otherwise, trylock it.
 714 */
 715static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
 716			struct ttm_operation_ctx *ctx, bool *locked, bool *busy)
 717{
 718	bool ret = false;
 719
 720	if (bo->base.resv == ctx->resv) {
 721		dma_resv_assert_held(bo->base.resv);
 722		if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT)
 723			ret = true;
 724		*locked = false;
 725		if (busy)
 726			*busy = false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 727	} else {
 728		ret = dma_resv_trylock(bo->base.resv);
 729		*locked = ret;
 730		if (busy)
 731			*busy = !ret;
 732	}
 
 
 
 
 
 733
 
 
 734	return ret;
 735}
 736
 737/**
 738 * ttm_mem_evict_wait_busy - wait for a busy BO to become available
 739 *
 740 * @busy_bo: BO which couldn't be locked with trylock
 741 * @ctx: operation context
 742 * @ticket: acquire ticket
 743 *
 744 * Try to lock a busy buffer object to avoid failing eviction.
 745 */
 746static int ttm_mem_evict_wait_busy(struct ttm_buffer_object *busy_bo,
 747				   struct ttm_operation_ctx *ctx,
 748				   struct ww_acquire_ctx *ticket)
 
 
 
 
 
 
 
 
 
 
 
 749{
 750	int r;
 
 
 
 
 
 751
 752	if (!busy_bo || !ticket)
 753		return -EBUSY;
 
 
 
 
 
 754
 755	if (ctx->interruptible)
 756		r = dma_resv_lock_interruptible(busy_bo->base.resv,
 757							  ticket);
 758	else
 759		r = dma_resv_lock(busy_bo->base.resv, ticket);
 760
 761	/*
 762	 * TODO: It would be better to keep the BO locked until allocation is at
 763	 * least tried one more time, but that would mean a much larger rework
 764	 * of TTM.
 765	 */
 766	if (!r)
 767		dma_resv_unlock(busy_bo->base.resv);
 
 
 
 768
 769	return r == -EDEADLK ? -EBUSY : r;
 770}
 771
 772static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 773			       uint32_t mem_type,
 774			       const struct ttm_place *place,
 775			       struct ttm_operation_ctx *ctx,
 776			       struct ww_acquire_ctx *ticket)
 777{
 778	struct ttm_buffer_object *bo = NULL, *busy_bo = NULL;
 779	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 780	bool locked = false;
 781	unsigned i;
 782	int ret;
 783
 784	spin_lock(&ttm_bo_glob.lru_lock);
 785	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
 786		list_for_each_entry(bo, &man->lru[i], lru) {
 787			bool busy;
 788
 789			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
 790							    &busy)) {
 791				if (busy && !busy_bo && ticket !=
 792				    dma_resv_locking_ctx(bo->base.resv))
 793					busy_bo = bo;
 794				continue;
 795			}
 
 
 
 
 
 
 
 796
 797			if (place && !bdev->driver->eviction_valuable(bo,
 798								      place)) {
 799				if (locked)
 800					dma_resv_unlock(bo->base.resv);
 801				continue;
 802			}
 803			if (!ttm_bo_get_unless_zero(bo)) {
 804				if (locked)
 805					dma_resv_unlock(bo->base.resv);
 806				continue;
 807			}
 808			break;
 809		}
 810
 811		/* If the inner loop terminated early, we have our candidate */
 812		if (&bo->lru != &man->lru[i])
 813			break;
 814
 815		bo = NULL;
 816	}
 817
 818	if (!bo) {
 819		if (busy_bo && !ttm_bo_get_unless_zero(busy_bo))
 820			busy_bo = NULL;
 821		spin_unlock(&ttm_bo_glob.lru_lock);
 822		ret = ttm_mem_evict_wait_busy(busy_bo, ctx, ticket);
 823		if (busy_bo)
 824			ttm_bo_put(busy_bo);
 825		return ret;
 826	}
 827
 828	if (bo->deleted) {
 829		ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
 830					  ctx->no_wait_gpu, locked);
 831		ttm_bo_put(bo);
 832		return ret;
 833	}
 834
 835	spin_unlock(&ttm_bo_glob.lru_lock);
 836
 837	ret = ttm_bo_evict(bo, ctx);
 838	if (locked)
 839		ttm_bo_unreserve(bo);
 840
 841	ttm_bo_put(bo);
 842	return ret;
 843}
 844
 845static int ttm_bo_mem_get(struct ttm_buffer_object *bo,
 846			  const struct ttm_place *place,
 847			  struct ttm_mem_reg *mem)
 
 
 
 
 
 848{
 849	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 850
 851	mem->mm_node = NULL;
 852	if (!man->func || !man->func->get_node)
 853		return 0;
 854
 855	return man->func->get_node(man, bo, place, mem);
 
 856}
 
 857
 858void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 
 
 
 
 
 
 859{
 860	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 861
 862	if (!man->func || !man->func->put_node)
 863		return;
 864
 865	man->func->put_node(man, mem);
 866	mem->mm_node = NULL;
 867	mem->mem_type = TTM_PL_SYSTEM;
 
 
 
 868}
 869EXPORT_SYMBOL(ttm_bo_mem_put);
 870
 871/**
 872 * Add the last move fence to the BO and reserve a new shared slot.
 
 873 */
 874static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 875				 struct ttm_mem_type_manager *man,
 876				 struct ttm_mem_reg *mem,
 877				 bool no_wait_gpu)
 878{
 879	struct dma_fence *fence;
 880	int ret;
 881
 882	spin_lock(&man->move_lock);
 883	fence = dma_fence_get(man->move);
 884	spin_unlock(&man->move_lock);
 885
 886	if (!fence)
 887		return 0;
 888
 889	if (no_wait_gpu) {
 890		dma_fence_put(fence);
 891		return -EBUSY;
 892	}
 893
 894	dma_resv_add_shared_fence(bo->base.resv, fence);
 895
 896	ret = dma_resv_reserve_shared(bo->base.resv, 1);
 897	if (unlikely(ret)) {
 898		dma_fence_put(fence);
 899		return ret;
 900	}
 901
 902	dma_fence_put(bo->moving);
 903	bo->moving = fence;
 904	return 0;
 905}
 906
 907/**
 908 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 909 * space, or we've evicted everything and there isn't enough space.
 910 */
 911static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 912				  const struct ttm_place *place,
 913				  struct ttm_mem_reg *mem,
 914				  struct ttm_operation_ctx *ctx)
 915{
 916	struct ttm_bo_device *bdev = bo->bdev;
 917	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
 918	struct ww_acquire_ctx *ticket;
 919	int ret;
 920
 921	ticket = dma_resv_locking_ctx(bo->base.resv);
 922	do {
 923		ret = ttm_bo_mem_get(bo, place, mem);
 924		if (likely(!ret))
 925			break;
 926		if (unlikely(ret != -ENOSPC))
 927			return ret;
 928		ret = ttm_mem_evict_first(bdev, mem->mem_type, place, ctx,
 929					  ticket);
 930		if (unlikely(ret != 0))
 931			return ret;
 932	} while (1);
 933
 934	return ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
 935}
 936
 937static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 938				      uint32_t cur_placement,
 939				      uint32_t proposed_placement)
 940{
 941	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 942	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 943
 944	/**
 945	 * Keep current caching if possible.
 946	 */
 947
 948	if ((cur_placement & caching) != 0)
 949		result |= (cur_placement & caching);
 950	else if ((man->default_caching & caching) != 0)
 951		result |= man->default_caching;
 952	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 953		result |= TTM_PL_FLAG_CACHED;
 954	else if ((TTM_PL_FLAG_WC & caching) != 0)
 955		result |= TTM_PL_FLAG_WC;
 956	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 957		result |= TTM_PL_FLAG_UNCACHED;
 958
 959	return result;
 960}
 961
 962static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 963				 uint32_t mem_type,
 964				 const struct ttm_place *place,
 965				 uint32_t *masked_placement)
 966{
 967	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 968
 969	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
 970		return false;
 971
 972	if ((place->flags & man->available_caching) == 0)
 973		return false;
 974
 975	cur_flags |= (place->flags & man->available_caching);
 976
 977	*masked_placement = cur_flags;
 978	return true;
 979}
 980
 981/**
 982 * ttm_bo_mem_placement - check if placement is compatible
 983 * @bo: BO to find memory for
 984 * @place: where to search
 985 * @mem: the memory object to fill in
 986 * @ctx: operation context
 987 *
 988 * Check if placement is compatible and fill in mem structure.
 989 * Returns -EBUSY if placement won't work or negative error code.
 990 * 0 when placement can be used.
 991 */
 992static int ttm_bo_mem_placement(struct ttm_buffer_object *bo,
 993				const struct ttm_place *place,
 994				struct ttm_mem_reg *mem,
 995				struct ttm_operation_ctx *ctx)
 996{
 997	struct ttm_bo_device *bdev = bo->bdev;
 998	uint32_t mem_type = TTM_PL_SYSTEM;
 999	struct ttm_mem_type_manager *man;
1000	uint32_t cur_flags = 0;
1001	int ret;
1002
1003	ret = ttm_mem_type_from_place(place, &mem_type);
1004	if (ret)
1005		return ret;
1006
1007	man = &bdev->man[mem_type];
1008	if (!man->has_type || !man->use_type)
1009		return -EBUSY;
1010
1011	if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
1012		return -EBUSY;
1013
1014	cur_flags = ttm_bo_select_caching(man, bo->mem.placement, cur_flags);
1015	/*
1016	 * Use the access and other non-mapping-related flag bits from
1017	 * the memory placement flags to the current flags
1018	 */
1019	ttm_flag_masked(&cur_flags, place->flags, ~TTM_PL_MASK_MEMTYPE);
1020
1021	mem->mem_type = mem_type;
1022	mem->placement = cur_flags;
1023
1024	spin_lock(&ttm_bo_glob.lru_lock);
1025	ttm_bo_del_from_lru(bo);
1026	ttm_bo_add_mem_to_lru(bo, mem);
1027	spin_unlock(&ttm_bo_glob.lru_lock);
1028
1029	return 0;
1030}
1031
1032/**
1033 * Creates space for memory region @mem according to its type.
1034 *
1035 * This function first searches for free space in compatible memory types in
1036 * the priority order defined by the driver.  If free space isn't found, then
1037 * ttm_bo_mem_force_space is attempted in priority order to evict and find
1038 * space.
 
 
 
 
 
1039 */
1040int ttm_bo_mem_space(struct ttm_buffer_object *bo,
1041			struct ttm_placement *placement,
1042			struct ttm_mem_reg *mem,
1043			struct ttm_operation_ctx *ctx)
 
1044{
1045	struct ttm_bo_device *bdev = bo->bdev;
1046	bool type_found = false;
1047	int i, ret;
1048
1049	ret = dma_resv_reserve_shared(bo->base.resv, 1);
 
1050	if (unlikely(ret))
1051		return ret;
1052
1053	for (i = 0; i < placement->num_placement; ++i) {
1054		const struct ttm_place *place = &placement->placement[i];
1055		struct ttm_mem_type_manager *man;
 
1056
1057		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1058		if (ret == -EBUSY)
1059			continue;
1060		if (ret)
1061			goto error;
1062
1063		type_found = true;
1064		ret = ttm_bo_mem_get(bo, place, mem);
1065		if (ret == -ENOSPC)
1066			continue;
1067		if (unlikely(ret))
1068			goto error;
1069
1070		man = &bdev->man[mem->mem_type];
1071		ret = ttm_bo_add_move_fence(bo, man, mem, ctx->no_wait_gpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1072		if (unlikely(ret)) {
1073			ttm_bo_mem_put(bo, mem);
1074			if (ret == -EBUSY)
1075				continue;
1076
1077			goto error;
1078		}
1079		return 0;
1080	}
1081
1082	for (i = 0; i < placement->num_busy_placement; ++i) {
1083		const struct ttm_place *place = &placement->busy_placement[i];
1084
1085		ret = ttm_bo_mem_placement(bo, place, mem, ctx);
1086		if (ret == -EBUSY)
1087			continue;
1088		if (ret)
1089			goto error;
1090
1091		type_found = true;
1092		ret = ttm_bo_mem_force_space(bo, place, mem, ctx);
1093		if (likely(!ret))
1094			return 0;
1095
1096		if (ret && ret != -EBUSY)
1097			goto error;
1098	}
1099
1100	ret = -ENOMEM;
1101	if (!type_found) {
1102		pr_err(TTM_PFX "No compatible memory type found\n");
1103		ret = -EINVAL;
1104	}
1105
1106error:
1107	if (bo->mem.mem_type == TTM_PL_SYSTEM && !list_empty(&bo->lru)) {
1108		spin_lock(&ttm_bo_glob.lru_lock);
1109		ttm_bo_move_to_lru_tail(bo, NULL);
1110		spin_unlock(&ttm_bo_glob.lru_lock);
1111	}
1112
1113	return ret;
1114}
1115EXPORT_SYMBOL(ttm_bo_mem_space);
1116
1117static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1118			      struct ttm_placement *placement,
1119			      struct ttm_operation_ctx *ctx)
 
 
 
 
 
 
 
 
 
 
 
 
1120{
1121	int ret = 0;
1122	struct ttm_mem_reg mem;
1123
1124	dma_resv_assert_held(bo->base.resv);
 
 
 
 
1125
1126	mem.num_pages = bo->num_pages;
1127	mem.size = mem.num_pages << PAGE_SHIFT;
1128	mem.page_alignment = bo->mem.page_alignment;
1129	mem.bus.io_reserved_vm = false;
1130	mem.bus.io_reserved_count = 0;
1131	mem.mm_node = NULL;
1132
1133	/*
1134	 * Determine where to move the buffer.
1135	 */
1136	ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1137	if (ret)
1138		goto out_unlock;
1139	ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1140out_unlock:
1141	if (ret)
1142		ttm_bo_mem_put(bo, &mem);
1143	return ret;
1144}
 
1145
1146static bool ttm_bo_places_compat(const struct ttm_place *places,
1147				 unsigned num_placement,
1148				 struct ttm_mem_reg *mem,
1149				 uint32_t *new_flags)
1150{
1151	unsigned i;
1152
1153	for (i = 0; i < num_placement; i++) {
1154		const struct ttm_place *heap = &places[i];
1155
1156		if ((mem->start < heap->fpfn ||
1157		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1158			continue;
1159
1160		*new_flags = heap->flags;
1161		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1162		    (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1163		    (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1164		     (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1165			return true;
1166	}
1167	return false;
1168}
1169
1170bool ttm_bo_mem_compat(struct ttm_placement *placement,
1171		       struct ttm_mem_reg *mem,
1172		       uint32_t *new_flags)
1173{
1174	if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1175				 mem, new_flags))
1176		return true;
1177
1178	if ((placement->busy_placement != placement->placement ||
1179	     placement->num_busy_placement > placement->num_placement) &&
1180	    ttm_bo_places_compat(placement->busy_placement,
1181				 placement->num_busy_placement,
1182				 mem, new_flags))
1183		return true;
1184
1185	return false;
1186}
1187EXPORT_SYMBOL(ttm_bo_mem_compat);
1188
1189int ttm_bo_validate(struct ttm_buffer_object *bo,
1190		    struct ttm_placement *placement,
1191		    struct ttm_operation_ctx *ctx)
1192{
 
 
 
1193	int ret;
1194	uint32_t new_flags;
1195
1196	dma_resv_assert_held(bo->base.resv);
1197
1198	/*
1199	 * Remove the backing store if no placement is given.
1200	 */
1201	if (!placement->num_placement && !placement->num_busy_placement) {
1202		ret = ttm_bo_pipeline_gutting(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1203		if (ret)
1204			return ret;
1205
1206		return ttm_tt_create(bo, false);
1207	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1208
1209	/*
1210	 * Check whether we need to move buffer.
1211	 */
1212	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1213		ret = ttm_bo_move_buffer(bo, placement, ctx);
1214		if (ret)
1215			return ret;
1216	} else {
1217		/*
1218		 * Use the access and other non-mapping-related flag bits from
1219		 * the compatible memory placement flags to the active flags
1220		 */
1221		ttm_flag_masked(&bo->mem.placement, new_flags,
1222				~TTM_PL_MASK_MEMTYPE);
1223	}
1224	/*
1225	 * We might need to add a TTM.
1226	 */
1227	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1228		ret = ttm_tt_create(bo, true);
1229		if (ret)
1230			return ret;
1231	}
1232	return 0;
1233}
1234EXPORT_SYMBOL(ttm_bo_validate);
1235
1236int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1237			 struct ttm_buffer_object *bo,
1238			 unsigned long size,
1239			 enum ttm_bo_type type,
1240			 struct ttm_placement *placement,
1241			 uint32_t page_alignment,
1242			 struct ttm_operation_ctx *ctx,
1243			 size_t acc_size,
1244			 struct sg_table *sg,
1245			 struct dma_resv *resv,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1246			 void (*destroy) (struct ttm_buffer_object *))
1247{
1248	struct ttm_mem_global *mem_glob = &ttm_mem_glob;
1249	int ret = 0;
1250	unsigned long num_pages;
1251	bool locked;
1252
1253	ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1254	if (ret) {
1255		pr_err("Out of kernel memory\n");
1256		if (destroy)
1257			(*destroy)(bo);
1258		else
1259			kfree(bo);
1260		return -ENOMEM;
1261	}
1262
1263	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1264	if (num_pages == 0) {
1265		pr_err("Illegal buffer object size\n");
1266		if (destroy)
1267			(*destroy)(bo);
1268		else
1269			kfree(bo);
1270		ttm_mem_global_free(mem_glob, acc_size);
1271		return -EINVAL;
1272	}
1273	bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1274
1275	kref_init(&bo->kref);
1276	INIT_LIST_HEAD(&bo->lru);
1277	INIT_LIST_HEAD(&bo->ddestroy);
1278	INIT_LIST_HEAD(&bo->swap);
1279	INIT_LIST_HEAD(&bo->io_reserve_lru);
1280	bo->bdev = bdev;
1281	bo->type = type;
1282	bo->num_pages = num_pages;
1283	bo->mem.size = num_pages << PAGE_SHIFT;
1284	bo->mem.mem_type = TTM_PL_SYSTEM;
1285	bo->mem.num_pages = bo->num_pages;
1286	bo->mem.mm_node = NULL;
1287	bo->mem.page_alignment = page_alignment;
1288	bo->mem.bus.io_reserved_vm = false;
1289	bo->mem.bus.io_reserved_count = 0;
1290	bo->moving = NULL;
1291	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1292	bo->acc_size = acc_size;
1293	bo->sg = sg;
1294	if (resv) {
 
1295		bo->base.resv = resv;
1296		dma_resv_assert_held(bo->base.resv);
1297	} else {
1298		bo->base.resv = &bo->base._resv;
1299	}
1300	if (!ttm_bo_uses_embedded_gem_object(bo)) {
1301		/*
1302		 * bo.gem is not initialized, so we have to setup the
1303		 * struct elements we want use regardless.
1304		 */
1305		dma_resv_init(&bo->base._resv);
1306		drm_vma_node_reset(&bo->base.vma_node);
1307	}
1308	atomic_inc(&ttm_bo_glob.bo_count);
1309
1310	/*
1311	 * For ttm_bo_type_device buffers, allocate
1312	 * address space from the device.
1313	 */
1314	if (bo->type == ttm_bo_type_device ||
1315	    bo->type == ttm_bo_type_sg)
1316		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
1317					 bo->mem.num_pages);
 
 
 
1318
1319	/* passed reservation objects should already be locked,
1320	 * since otherwise lockdep will be angered in radeon.
1321	 */
1322	if (!resv) {
1323		locked = dma_resv_trylock(bo->base.resv);
1324		WARN_ON(!locked);
1325	}
1326
1327	if (likely(!ret))
1328		ret = ttm_bo_validate(bo, placement, ctx);
 
1329
1330	if (unlikely(ret)) {
1331		if (!resv)
1332			ttm_bo_unreserve(bo);
1333
1334		ttm_bo_put(bo);
1335		return ret;
1336	}
1337
1338	spin_lock(&ttm_bo_glob.lru_lock);
1339	ttm_bo_move_to_lru_tail(bo, NULL);
1340	spin_unlock(&ttm_bo_glob.lru_lock);
1341
 
 
1342	return ret;
1343}
1344EXPORT_SYMBOL(ttm_bo_init_reserved);
1345
1346int ttm_bo_init(struct ttm_bo_device *bdev,
1347		struct ttm_buffer_object *bo,
1348		unsigned long size,
1349		enum ttm_bo_type type,
1350		struct ttm_placement *placement,
1351		uint32_t page_alignment,
1352		bool interruptible,
1353		size_t acc_size,
1354		struct sg_table *sg,
1355		struct dma_resv *resv,
1356		void (*destroy) (struct ttm_buffer_object *))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1357{
1358	struct ttm_operation_ctx ctx = { interruptible, false };
1359	int ret;
1360
1361	ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1362				   page_alignment, &ctx, acc_size,
1363				   sg, resv, destroy);
1364	if (ret)
1365		return ret;
1366
1367	if (!resv)
1368		ttm_bo_unreserve(bo);
1369
1370	return 0;
1371}
1372EXPORT_SYMBOL(ttm_bo_init);
1373
1374size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1375		       unsigned long bo_size,
1376		       unsigned struct_size)
1377{
1378	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1379	size_t size = 0;
1380
1381	size += ttm_round_pot(struct_size);
1382	size += ttm_round_pot(npages * sizeof(void *));
1383	size += ttm_round_pot(sizeof(struct ttm_tt));
1384	return size;
1385}
1386EXPORT_SYMBOL(ttm_bo_acc_size);
1387
1388size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1389			   unsigned long bo_size,
1390			   unsigned struct_size)
1391{
1392	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1393	size_t size = 0;
1394
1395	size += ttm_round_pot(struct_size);
1396	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1397	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1398	return size;
1399}
1400EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1401
1402int ttm_bo_create(struct ttm_bo_device *bdev,
1403			unsigned long size,
1404			enum ttm_bo_type type,
1405			struct ttm_placement *placement,
1406			uint32_t page_alignment,
1407			bool interruptible,
1408			struct ttm_buffer_object **p_bo)
1409{
1410	struct ttm_buffer_object *bo;
1411	size_t acc_size;
1412	int ret;
1413
1414	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1415	if (unlikely(bo == NULL))
1416		return -ENOMEM;
1417
1418	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1419	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1420			  interruptible, acc_size,
1421			  NULL, NULL, NULL);
1422	if (likely(ret == 0))
1423		*p_bo = bo;
1424
1425	return ret;
1426}
1427EXPORT_SYMBOL(ttm_bo_create);
1428
1429static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1430				   unsigned mem_type)
 
 
 
 
 
 
 
 
 
1431{
1432	struct ttm_operation_ctx ctx = {
1433		.interruptible = false,
1434		.no_wait_gpu = false,
1435		.flags = TTM_OPT_FLAG_FORCE_ALLOC
1436	};
1437	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1438	struct ttm_bo_global *glob = &ttm_bo_glob;
1439	struct dma_fence *fence;
1440	int ret;
1441	unsigned i;
1442
1443	/*
1444	 * Can't use standard list traversal since we're unlocking.
1445	 */
1446
1447	spin_lock(&glob->lru_lock);
1448	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1449		while (!list_empty(&man->lru[i])) {
1450			spin_unlock(&glob->lru_lock);
1451			ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx,
1452						  NULL);
1453			if (ret)
1454				return ret;
1455			spin_lock(&glob->lru_lock);
1456		}
1457	}
1458	spin_unlock(&glob->lru_lock);
1459
1460	spin_lock(&man->move_lock);
1461	fence = dma_fence_get(man->move);
1462	spin_unlock(&man->move_lock);
1463
1464	if (fence) {
1465		ret = dma_fence_wait(fence, false);
1466		dma_fence_put(fence);
1467		if (ret)
1468			return ret;
1469	}
1470
 
 
 
 
 
 
1471	return 0;
1472}
 
1473
1474int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
 
 
 
 
 
 
 
 
 
 
 
1475{
1476	struct ttm_mem_type_manager *man;
1477	int ret = -EINVAL;
 
 
 
1478
1479	if (mem_type >= TTM_NUM_MEM_TYPES) {
1480		pr_err("Illegal memory type %d\n", mem_type);
1481		return ret;
 
 
 
 
 
 
1482	}
1483	man = &bdev->man[mem_type];
1484
1485	if (!man->has_type) {
1486		pr_err("Trying to take down uninitialized memory manager type %u\n",
1487		       mem_type);
1488		return ret;
 
1489	}
1490
1491	man->use_type = false;
1492	man->has_type = false;
1493
1494	ret = 0;
1495	if (mem_type > 0) {
1496		ret = ttm_bo_force_list_clean(bdev, mem_type);
1497		if (ret) {
1498			pr_err("Cleanup eviction failed\n");
1499			return ret;
1500		}
1501
1502		ret = (*man->func->takedown)(man);
 
 
1503	}
1504
1505	dma_fence_put(man->move);
1506	man->move = NULL;
 
 
 
 
 
 
 
 
 
 
1507
1508	return ret;
1509}
1510EXPORT_SYMBOL(ttm_bo_clean_mm);
1511
1512int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1513{
1514	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1515
1516	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1517		pr_err("Illegal memory manager memory type %u\n", mem_type);
1518		return -EINVAL;
1519	}
1520
1521	if (!man->has_type) {
1522		pr_err("Memory type %u has not been initialized\n", mem_type);
1523		return 0;
1524	}
1525
1526	return ttm_bo_force_list_clean(bdev, mem_type);
1527}
1528EXPORT_SYMBOL(ttm_bo_evict_mm);
1529
1530int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1531			unsigned long p_size)
1532{
1533	int ret;
1534	struct ttm_mem_type_manager *man;
1535	unsigned i;
1536
1537	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1538	man = &bdev->man[type];
1539	BUG_ON(man->has_type);
1540	man->use_io_reserve_lru = false;
1541	mutex_init(&man->io_reserve_mutex);
1542	spin_lock_init(&man->move_lock);
1543	INIT_LIST_HEAD(&man->io_reserve_lru);
1544
1545	ret = bdev->driver->init_mem_type(bdev, type, man);
1546	if (ret)
1547		return ret;
1548	man->bdev = bdev;
1549
1550	if (type != TTM_PL_SYSTEM) {
1551		ret = (*man->func->init)(man, p_size);
1552		if (ret)
1553			return ret;
1554	}
1555	man->has_type = true;
1556	man->use_type = true;
1557	man->size = p_size;
1558
1559	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1560		INIT_LIST_HEAD(&man->lru[i]);
1561	man->move = NULL;
1562
1563	return 0;
1564}
1565EXPORT_SYMBOL(ttm_bo_init_mm);
1566
1567static void ttm_bo_global_kobj_release(struct kobject *kobj)
1568{
1569	struct ttm_bo_global *glob =
1570		container_of(kobj, struct ttm_bo_global, kobj);
1571
1572	__free_page(glob->dummy_read_page);
1573}
1574
1575static void ttm_bo_global_release(void)
1576{
1577	struct ttm_bo_global *glob = &ttm_bo_glob;
1578
1579	mutex_lock(&ttm_global_mutex);
1580	if (--ttm_bo_glob_use_count > 0)
1581		goto out;
1582
1583	kobject_del(&glob->kobj);
1584	kobject_put(&glob->kobj);
1585	ttm_mem_global_release(&ttm_mem_glob);
1586	memset(glob, 0, sizeof(*glob));
1587out:
1588	mutex_unlock(&ttm_global_mutex);
1589}
1590
1591static int ttm_bo_global_init(void)
1592{
1593	struct ttm_bo_global *glob = &ttm_bo_glob;
1594	int ret = 0;
1595	unsigned i;
1596
1597	mutex_lock(&ttm_global_mutex);
1598	if (++ttm_bo_glob_use_count > 1)
1599		goto out;
1600
1601	ret = ttm_mem_global_init(&ttm_mem_glob);
1602	if (ret)
1603		goto out;
1604
1605	spin_lock_init(&glob->lru_lock);
1606	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1607
1608	if (unlikely(glob->dummy_read_page == NULL)) {
1609		ret = -ENOMEM;
1610		goto out;
1611	}
1612
1613	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1614		INIT_LIST_HEAD(&glob->swap_lru[i]);
1615	INIT_LIST_HEAD(&glob->device_list);
1616	atomic_set(&glob->bo_count, 0);
1617
1618	ret = kobject_init_and_add(
1619		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1620	if (unlikely(ret != 0))
1621		kobject_put(&glob->kobj);
1622out:
1623	mutex_unlock(&ttm_global_mutex);
1624	return ret;
1625}
1626
1627int ttm_bo_device_release(struct ttm_bo_device *bdev)
1628{
1629	struct ttm_bo_global *glob = &ttm_bo_glob;
1630	int ret = 0;
1631	unsigned i = TTM_NUM_MEM_TYPES;
1632	struct ttm_mem_type_manager *man;
1633
1634	while (i--) {
1635		man = &bdev->man[i];
1636		if (man->has_type) {
1637			man->use_type = false;
1638			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1639				ret = -EBUSY;
1640				pr_err("DRM memory manager type %d is not clean\n",
1641				       i);
1642			}
1643			man->has_type = false;
1644		}
1645	}
1646
1647	mutex_lock(&ttm_global_mutex);
1648	list_del(&bdev->device_list);
1649	mutex_unlock(&ttm_global_mutex);
1650
1651	cancel_delayed_work_sync(&bdev->wq);
1652
1653	if (ttm_bo_delayed_delete(bdev, true))
1654		pr_debug("Delayed destroy list was clean\n");
1655
1656	spin_lock(&glob->lru_lock);
1657	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1658		if (list_empty(&bdev->man[0].lru[0]))
1659			pr_debug("Swap list %d was clean\n", i);
1660	spin_unlock(&glob->lru_lock);
1661
1662	if (!ret)
1663		ttm_bo_global_release();
1664
1665	return ret;
1666}
1667EXPORT_SYMBOL(ttm_bo_device_release);
1668
1669int ttm_bo_device_init(struct ttm_bo_device *bdev,
1670		       struct ttm_bo_driver *driver,
1671		       struct address_space *mapping,
1672		       struct drm_vma_offset_manager *vma_manager,
1673		       bool need_dma32)
1674{
1675	struct ttm_bo_global *glob = &ttm_bo_glob;
1676	int ret;
1677
1678	if (WARN_ON(vma_manager == NULL))
1679		return -EINVAL;
1680
1681	ret = ttm_bo_global_init();
1682	if (ret)
1683		return ret;
1684
1685	bdev->driver = driver;
1686
1687	memset(bdev->man, 0, sizeof(bdev->man));
1688
1689	/*
1690	 * Initialize the system memory buffer type.
1691	 * Other types need to be driver / IOCTL initialized.
1692	 */
1693	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1694	if (unlikely(ret != 0))
1695		goto out_no_sys;
1696
1697	bdev->vma_manager = vma_manager;
1698	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1699	INIT_LIST_HEAD(&bdev->ddestroy);
1700	bdev->dev_mapping = mapping;
1701	bdev->need_dma32 = need_dma32;
1702	mutex_lock(&ttm_global_mutex);
1703	list_add_tail(&bdev->device_list, &glob->device_list);
1704	mutex_unlock(&ttm_global_mutex);
1705
1706	return 0;
1707out_no_sys:
1708	ttm_bo_global_release();
1709	return ret;
1710}
1711EXPORT_SYMBOL(ttm_bo_device_init);
1712
1713/*
1714 * buffer object vm functions.
1715 */
 
 
 
 
 
 
 
 
 
 
 
 
1716
1717void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1718{
1719	struct ttm_bo_device *bdev = bo->bdev;
1720
1721	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1722	ttm_mem_io_free_vm(bo);
1723}
1724
1725void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1726{
1727	struct ttm_bo_device *bdev = bo->bdev;
1728	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1729
1730	ttm_mem_io_lock(man, false);
1731	ttm_bo_unmap_virtual_locked(bo);
1732	ttm_mem_io_unlock(man);
1733}
1734
1735
1736EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1737
1738int ttm_bo_wait(struct ttm_buffer_object *bo,
1739		bool interruptible, bool no_wait)
1740{
1741	long timeout = 15 * HZ;
1742
1743	if (no_wait) {
1744		if (dma_resv_test_signaled_rcu(bo->base.resv, true))
1745			return 0;
1746		else
1747			return -EBUSY;
1748	}
1749
1750	timeout = dma_resv_wait_timeout_rcu(bo->base.resv, true,
1751						      interruptible, timeout);
1752	if (timeout < 0)
1753		return timeout;
1754
1755	if (timeout == 0)
1756		return -EBUSY;
1757
1758	dma_resv_add_excl_fence(bo->base.resv, NULL);
1759	return 0;
1760}
1761EXPORT_SYMBOL(ttm_bo_wait);
1762
1763/**
1764 * A buffer object shrink method that tries to swap out the first
1765 * buffer object on the bo_global::swap_lru list.
 
 
 
 
 
 
 
 
 
 
 
1766 */
1767int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
 
1768{
1769	struct ttm_buffer_object *bo;
1770	int ret = -EBUSY;
1771	bool locked;
1772	unsigned i;
1773
1774	spin_lock(&glob->lru_lock);
1775	for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1776		list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1777			if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked,
1778							    NULL))
1779				continue;
1780
1781			if (!ttm_bo_get_unless_zero(bo)) {
1782				if (locked)
1783					dma_resv_unlock(bo->base.resv);
1784				continue;
1785			}
1786
1787			ret = 0;
1788			break;
1789		}
1790		if (!ret)
1791			break;
1792	}
1793
1794	if (ret) {
1795		spin_unlock(&glob->lru_lock);
 
1796		return ret;
1797	}
1798
1799	if (bo->deleted) {
1800		ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1801		ttm_bo_put(bo);
1802		return ret;
 
 
1803	}
1804
1805	ttm_bo_del_from_lru(bo);
1806	spin_unlock(&glob->lru_lock);
1807
1808	/**
1809	 * Move to system cached
1810	 */
1811
1812	if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1813	    bo->ttm->caching_state != tt_cached) {
1814		struct ttm_operation_ctx ctx = { false, false };
1815		struct ttm_mem_reg evict_mem;
1816
1817		evict_mem = bo->mem;
1818		evict_mem.mm_node = NULL;
1819		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1820		evict_mem.mem_type = TTM_PL_SYSTEM;
1821
1822		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1823		if (unlikely(ret != 0))
1824			goto out;
1825	}
1826
1827	/**
1828	 * Make sure BO is idle.
1829	 */
1830
1831	ret = ttm_bo_wait(bo, false, false);
1832	if (unlikely(ret != 0))
1833		goto out;
1834
1835	ttm_bo_unmap_virtual(bo);
1836
1837	/**
1838	 * Swap out. Buffer will be swapped in again as soon as
1839	 * anyone tries to access a ttm page.
1840	 */
1841
1842	if (bo->bdev->driver->swap_notify)
1843		bo->bdev->driver->swap_notify(bo);
1844
1845	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1846out:
1847
1848	/**
1849	 *
1850	 * Unreserve without putting on LRU to avoid swapping out an
1851	 * already swapped buffer.
1852	 */
1853	if (locked)
1854		dma_resv_unlock(bo->base.resv);
1855	ttm_bo_put(bo);
1856	return ret;
1857}
1858EXPORT_SYMBOL(ttm_bo_swapout);
1859
1860void ttm_bo_swapout_all(void)
1861{
1862	struct ttm_operation_ctx ctx = {
1863		.interruptible = false,
1864		.no_wait_gpu = false
1865	};
1866
1867	while (ttm_bo_swapout(&ttm_bo_glob, &ctx) == 0);
1868}
1869EXPORT_SYMBOL(ttm_bo_swapout_all);