Loading...
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/**************************************************************************
3 *
4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28/*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32#define pr_fmt(fmt) "[TTM] " fmt
33
34#include <drm/ttm/ttm_bo.h>
35#include <drm/ttm/ttm_placement.h>
36#include <drm/ttm/ttm_tt.h>
37
38#include <linux/jiffies.h>
39#include <linux/slab.h>
40#include <linux/sched.h>
41#include <linux/mm.h>
42#include <linux/file.h>
43#include <linux/module.h>
44#include <linux/atomic.h>
45#include <linux/dma-resv.h>
46
47#include "ttm_module.h"
48
49static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
50 struct ttm_placement *placement)
51{
52 struct drm_printer p = drm_dbg_printer(NULL, DRM_UT_CORE, TTM_PFX);
53 struct ttm_resource_manager *man;
54 int i, mem_type;
55
56 for (i = 0; i < placement->num_placement; i++) {
57 mem_type = placement->placement[i].mem_type;
58 drm_printf(&p, " placement[%d]=0x%08X (%d)\n",
59 i, placement->placement[i].flags, mem_type);
60 man = ttm_manager_type(bo->bdev, mem_type);
61 ttm_resource_manager_debug(man, &p);
62 }
63}
64
65/**
66 * ttm_bo_move_to_lru_tail
67 *
68 * @bo: The buffer object.
69 *
70 * Move this BO to the tail of all lru lists used to lookup and reserve an
71 * object. This function must be called with struct ttm_global::lru_lock
72 * held, and is used to make a BO less likely to be considered for eviction.
73 */
74void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
75{
76 dma_resv_assert_held(bo->base.resv);
77
78 if (bo->resource)
79 ttm_resource_move_to_lru_tail(bo->resource);
80}
81EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
82
83/**
84 * ttm_bo_set_bulk_move - update BOs bulk move object
85 *
86 * @bo: The buffer object.
87 * @bulk: bulk move structure
88 *
89 * Update the BOs bulk move object, making sure that resources are added/removed
90 * as well. A bulk move allows to move many resource on the LRU at once,
91 * resulting in much less overhead of maintaining the LRU.
92 * The only requirement is that the resources stay together on the LRU and are
93 * never separated. This is enforces by setting the bulk_move structure on a BO.
94 * ttm_lru_bulk_move_tail() should be used to move all resources to the tail of
95 * their LRU list.
96 */
97void ttm_bo_set_bulk_move(struct ttm_buffer_object *bo,
98 struct ttm_lru_bulk_move *bulk)
99{
100 dma_resv_assert_held(bo->base.resv);
101
102 if (bo->bulk_move == bulk)
103 return;
104
105 spin_lock(&bo->bdev->lru_lock);
106 if (bo->resource)
107 ttm_resource_del_bulk_move(bo->resource, bo);
108 bo->bulk_move = bulk;
109 if (bo->resource)
110 ttm_resource_add_bulk_move(bo->resource, bo);
111 spin_unlock(&bo->bdev->lru_lock);
112}
113EXPORT_SYMBOL(ttm_bo_set_bulk_move);
114
115static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
116 struct ttm_resource *mem, bool evict,
117 struct ttm_operation_ctx *ctx,
118 struct ttm_place *hop)
119{
120 struct ttm_device *bdev = bo->bdev;
121 bool old_use_tt, new_use_tt;
122 int ret;
123
124 old_use_tt = !bo->resource || ttm_manager_type(bdev, bo->resource->mem_type)->use_tt;
125 new_use_tt = ttm_manager_type(bdev, mem->mem_type)->use_tt;
126
127 ttm_bo_unmap_virtual(bo);
128
129 /*
130 * Create and bind a ttm if required.
131 */
132
133 if (new_use_tt) {
134 /* Zero init the new TTM structure if the old location should
135 * have used one as well.
136 */
137 ret = ttm_tt_create(bo, old_use_tt);
138 if (ret)
139 goto out_err;
140
141 if (mem->mem_type != TTM_PL_SYSTEM) {
142 ret = ttm_bo_populate(bo, ctx);
143 if (ret)
144 goto out_err;
145 }
146 }
147
148 ret = dma_resv_reserve_fences(bo->base.resv, 1);
149 if (ret)
150 goto out_err;
151
152 ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
153 if (ret) {
154 if (ret == -EMULTIHOP)
155 return ret;
156 goto out_err;
157 }
158
159 ctx->bytes_moved += bo->base.size;
160 return 0;
161
162out_err:
163 if (!old_use_tt)
164 ttm_bo_tt_destroy(bo);
165
166 return ret;
167}
168
169/*
170 * Call bo::reserved.
171 * Will release GPU memory type usage on destruction.
172 * This is the place to put in driver specific hooks to release
173 * driver private resources.
174 * Will release the bo::reserved lock.
175 */
176
177static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
178{
179 if (bo->bdev->funcs->delete_mem_notify)
180 bo->bdev->funcs->delete_mem_notify(bo);
181
182 ttm_bo_tt_destroy(bo);
183 ttm_resource_free(bo, &bo->resource);
184}
185
186static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
187{
188 int r;
189
190 if (bo->base.resv == &bo->base._resv)
191 return 0;
192
193 BUG_ON(!dma_resv_trylock(&bo->base._resv));
194
195 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
196 dma_resv_unlock(&bo->base._resv);
197 if (r)
198 return r;
199
200 if (bo->type != ttm_bo_type_sg) {
201 /* This works because the BO is about to be destroyed and nobody
202 * reference it any more. The only tricky case is the trylock on
203 * the resv object while holding the lru_lock.
204 */
205 spin_lock(&bo->bdev->lru_lock);
206 bo->base.resv = &bo->base._resv;
207 spin_unlock(&bo->bdev->lru_lock);
208 }
209
210 return r;
211}
212
213static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
214{
215 struct dma_resv *resv = &bo->base._resv;
216 struct dma_resv_iter cursor;
217 struct dma_fence *fence;
218
219 dma_resv_iter_begin(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP);
220 dma_resv_for_each_fence_unlocked(&cursor, fence) {
221 if (!fence->ops->signaled)
222 dma_fence_enable_sw_signaling(fence);
223 }
224 dma_resv_iter_end(&cursor);
225}
226
227/*
228 * Block for the dma_resv object to become idle, lock the buffer and clean up
229 * the resource and tt object.
230 */
231static void ttm_bo_delayed_delete(struct work_struct *work)
232{
233 struct ttm_buffer_object *bo;
234
235 bo = container_of(work, typeof(*bo), delayed_delete);
236
237 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false,
238 MAX_SCHEDULE_TIMEOUT);
239 dma_resv_lock(bo->base.resv, NULL);
240 ttm_bo_cleanup_memtype_use(bo);
241 dma_resv_unlock(bo->base.resv);
242 ttm_bo_put(bo);
243}
244
245static void ttm_bo_release(struct kref *kref)
246{
247 struct ttm_buffer_object *bo =
248 container_of(kref, struct ttm_buffer_object, kref);
249 struct ttm_device *bdev = bo->bdev;
250 int ret;
251
252 WARN_ON_ONCE(bo->pin_count);
253 WARN_ON_ONCE(bo->bulk_move);
254
255 if (!bo->deleted) {
256 ret = ttm_bo_individualize_resv(bo);
257 if (ret) {
258 /* Last resort, if we fail to allocate memory for the
259 * fences block for the BO to become idle
260 */
261 dma_resv_wait_timeout(bo->base.resv,
262 DMA_RESV_USAGE_BOOKKEEP, false,
263 30 * HZ);
264 }
265
266 if (bo->bdev->funcs->release_notify)
267 bo->bdev->funcs->release_notify(bo);
268
269 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
270 ttm_mem_io_free(bdev, bo->resource);
271
272 if (!dma_resv_test_signaled(bo->base.resv,
273 DMA_RESV_USAGE_BOOKKEEP) ||
274 (want_init_on_free() && (bo->ttm != NULL)) ||
275 bo->type == ttm_bo_type_sg ||
276 !dma_resv_trylock(bo->base.resv)) {
277 /* The BO is not idle, resurrect it for delayed destroy */
278 ttm_bo_flush_all_fences(bo);
279 bo->deleted = true;
280
281 spin_lock(&bo->bdev->lru_lock);
282
283 /*
284 * Make pinned bos immediately available to
285 * shrinkers, now that they are queued for
286 * destruction.
287 *
288 * FIXME: QXL is triggering this. Can be removed when the
289 * driver is fixed.
290 */
291 if (bo->pin_count) {
292 bo->pin_count = 0;
293 ttm_resource_move_to_lru_tail(bo->resource);
294 }
295
296 kref_init(&bo->kref);
297 spin_unlock(&bo->bdev->lru_lock);
298
299 INIT_WORK(&bo->delayed_delete, ttm_bo_delayed_delete);
300
301 /* Schedule the worker on the closest NUMA node. This
302 * improves performance since system memory might be
303 * cleared on free and that is best done on a CPU core
304 * close to it.
305 */
306 queue_work_node(bdev->pool.nid, bdev->wq, &bo->delayed_delete);
307 return;
308 }
309
310 ttm_bo_cleanup_memtype_use(bo);
311 dma_resv_unlock(bo->base.resv);
312 }
313
314 atomic_dec(&ttm_glob.bo_count);
315 bo->destroy(bo);
316}
317
318/**
319 * ttm_bo_put
320 *
321 * @bo: The buffer object.
322 *
323 * Unreference a buffer object.
324 */
325void ttm_bo_put(struct ttm_buffer_object *bo)
326{
327 kref_put(&bo->kref, ttm_bo_release);
328}
329EXPORT_SYMBOL(ttm_bo_put);
330
331static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
332 struct ttm_operation_ctx *ctx,
333 struct ttm_place *hop)
334{
335 struct ttm_placement hop_placement;
336 struct ttm_resource *hop_mem;
337 int ret;
338
339 hop_placement.num_placement = 1;
340 hop_placement.placement = hop;
341
342 /* find space in the bounce domain */
343 ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
344 if (ret)
345 return ret;
346 /* move to the bounce domain */
347 ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
348 if (ret) {
349 ttm_resource_free(bo, &hop_mem);
350 return ret;
351 }
352 return 0;
353}
354
355static int ttm_bo_evict(struct ttm_buffer_object *bo,
356 struct ttm_operation_ctx *ctx)
357{
358 struct ttm_device *bdev = bo->bdev;
359 struct ttm_resource *evict_mem;
360 struct ttm_placement placement;
361 struct ttm_place hop;
362 int ret = 0;
363
364 memset(&hop, 0, sizeof(hop));
365
366 dma_resv_assert_held(bo->base.resv);
367
368 placement.num_placement = 0;
369 bdev->funcs->evict_flags(bo, &placement);
370
371 if (!placement.num_placement) {
372 ret = ttm_bo_wait_ctx(bo, ctx);
373 if (ret)
374 return ret;
375
376 /*
377 * Since we've already synced, this frees backing store
378 * immediately.
379 */
380 return ttm_bo_pipeline_gutting(bo);
381 }
382
383 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
384 if (ret) {
385 if (ret != -ERESTARTSYS) {
386 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
387 bo);
388 ttm_bo_mem_space_debug(bo, &placement);
389 }
390 goto out;
391 }
392
393 do {
394 ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
395 if (ret != -EMULTIHOP)
396 break;
397
398 ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
399 } while (!ret);
400
401 if (ret) {
402 ttm_resource_free(bo, &evict_mem);
403 if (ret != -ERESTARTSYS && ret != -EINTR)
404 pr_err("Buffer eviction failed\n");
405 }
406out:
407 return ret;
408}
409
410/**
411 * ttm_bo_eviction_valuable
412 *
413 * @bo: The buffer object to evict
414 * @place: the placement we need to make room for
415 *
416 * Check if it is valuable to evict the BO to make room for the given placement.
417 */
418bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
419 const struct ttm_place *place)
420{
421 struct ttm_resource *res = bo->resource;
422 struct ttm_device *bdev = bo->bdev;
423
424 dma_resv_assert_held(bo->base.resv);
425 if (bo->resource->mem_type == TTM_PL_SYSTEM)
426 return true;
427
428 /* Don't evict this BO if it's outside of the
429 * requested placement range
430 */
431 return ttm_resource_intersects(bdev, res, place, bo->base.size);
432}
433EXPORT_SYMBOL(ttm_bo_eviction_valuable);
434
435/**
436 * ttm_bo_evict_first() - Evict the first bo on the manager's LRU list.
437 * @bdev: The ttm device.
438 * @man: The manager whose bo to evict.
439 * @ctx: The TTM operation ctx governing the eviction.
440 *
441 * Return: 0 if successful or the resource disappeared. Negative error code on error.
442 */
443int ttm_bo_evict_first(struct ttm_device *bdev, struct ttm_resource_manager *man,
444 struct ttm_operation_ctx *ctx)
445{
446 struct ttm_resource_cursor cursor;
447 struct ttm_buffer_object *bo;
448 struct ttm_resource *res;
449 unsigned int mem_type;
450 int ret = 0;
451
452 spin_lock(&bdev->lru_lock);
453 res = ttm_resource_manager_first(man, &cursor);
454 ttm_resource_cursor_fini(&cursor);
455 if (!res) {
456 ret = -ENOENT;
457 goto out_no_ref;
458 }
459 bo = res->bo;
460 if (!ttm_bo_get_unless_zero(bo))
461 goto out_no_ref;
462 mem_type = res->mem_type;
463 spin_unlock(&bdev->lru_lock);
464 ret = ttm_bo_reserve(bo, ctx->interruptible, ctx->no_wait_gpu, NULL);
465 if (ret)
466 goto out_no_lock;
467 if (!bo->resource || bo->resource->mem_type != mem_type)
468 goto out_bo_moved;
469
470 if (bo->deleted) {
471 ret = ttm_bo_wait_ctx(bo, ctx);
472 if (!ret)
473 ttm_bo_cleanup_memtype_use(bo);
474 } else {
475 ret = ttm_bo_evict(bo, ctx);
476 }
477out_bo_moved:
478 dma_resv_unlock(bo->base.resv);
479out_no_lock:
480 ttm_bo_put(bo);
481 return ret;
482
483out_no_ref:
484 spin_unlock(&bdev->lru_lock);
485 return ret;
486}
487
488/**
489 * struct ttm_bo_evict_walk - Parameters for the evict walk.
490 */
491struct ttm_bo_evict_walk {
492 /** @walk: The walk base parameters. */
493 struct ttm_lru_walk walk;
494 /** @place: The place passed to the resource allocation. */
495 const struct ttm_place *place;
496 /** @evictor: The buffer object we're trying to make room for. */
497 struct ttm_buffer_object *evictor;
498 /** @res: The allocated resource if any. */
499 struct ttm_resource **res;
500 /** @evicted: Number of successful evictions. */
501 unsigned long evicted;
502};
503
504static s64 ttm_bo_evict_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
505{
506 struct ttm_bo_evict_walk *evict_walk =
507 container_of(walk, typeof(*evict_walk), walk);
508 s64 lret;
509
510 if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, evict_walk->place))
511 return 0;
512
513 if (bo->deleted) {
514 lret = ttm_bo_wait_ctx(bo, walk->ctx);
515 if (!lret)
516 ttm_bo_cleanup_memtype_use(bo);
517 } else {
518 lret = ttm_bo_evict(bo, walk->ctx);
519 }
520
521 if (lret)
522 goto out;
523
524 evict_walk->evicted++;
525 if (evict_walk->res)
526 lret = ttm_resource_alloc(evict_walk->evictor, evict_walk->place,
527 evict_walk->res);
528 if (lret == 0)
529 return 1;
530out:
531 /* Errors that should terminate the walk. */
532 if (lret == -ENOSPC)
533 return -EBUSY;
534
535 return lret;
536}
537
538static const struct ttm_lru_walk_ops ttm_evict_walk_ops = {
539 .process_bo = ttm_bo_evict_cb,
540};
541
542static int ttm_bo_evict_alloc(struct ttm_device *bdev,
543 struct ttm_resource_manager *man,
544 const struct ttm_place *place,
545 struct ttm_buffer_object *evictor,
546 struct ttm_operation_ctx *ctx,
547 struct ww_acquire_ctx *ticket,
548 struct ttm_resource **res)
549{
550 struct ttm_bo_evict_walk evict_walk = {
551 .walk = {
552 .ops = &ttm_evict_walk_ops,
553 .ctx = ctx,
554 .ticket = ticket,
555 },
556 .place = place,
557 .evictor = evictor,
558 .res = res,
559 };
560 s64 lret;
561
562 evict_walk.walk.trylock_only = true;
563 lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
564 if (lret || !ticket)
565 goto out;
566
567 /* If ticket-locking, repeat while making progress. */
568 evict_walk.walk.trylock_only = false;
569 do {
570 /* The walk may clear the evict_walk.walk.ticket field */
571 evict_walk.walk.ticket = ticket;
572 evict_walk.evicted = 0;
573 lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
574 } while (!lret && evict_walk.evicted);
575out:
576 if (lret < 0)
577 return lret;
578 if (lret == 0)
579 return -EBUSY;
580 return 0;
581}
582
583/**
584 * ttm_bo_pin - Pin the buffer object.
585 * @bo: The buffer object to pin
586 *
587 * Make sure the buffer is not evicted any more during memory pressure.
588 * @bo must be unpinned again by calling ttm_bo_unpin().
589 */
590void ttm_bo_pin(struct ttm_buffer_object *bo)
591{
592 dma_resv_assert_held(bo->base.resv);
593 WARN_ON_ONCE(!kref_read(&bo->kref));
594 spin_lock(&bo->bdev->lru_lock);
595 if (bo->resource)
596 ttm_resource_del_bulk_move(bo->resource, bo);
597 if (!bo->pin_count++ && bo->resource)
598 ttm_resource_move_to_lru_tail(bo->resource);
599 spin_unlock(&bo->bdev->lru_lock);
600}
601EXPORT_SYMBOL(ttm_bo_pin);
602
603/**
604 * ttm_bo_unpin - Unpin the buffer object.
605 * @bo: The buffer object to unpin
606 *
607 * Allows the buffer object to be evicted again during memory pressure.
608 */
609void ttm_bo_unpin(struct ttm_buffer_object *bo)
610{
611 dma_resv_assert_held(bo->base.resv);
612 WARN_ON_ONCE(!kref_read(&bo->kref));
613 if (WARN_ON_ONCE(!bo->pin_count))
614 return;
615
616 spin_lock(&bo->bdev->lru_lock);
617 if (!--bo->pin_count && bo->resource) {
618 ttm_resource_add_bulk_move(bo->resource, bo);
619 ttm_resource_move_to_lru_tail(bo->resource);
620 }
621 spin_unlock(&bo->bdev->lru_lock);
622}
623EXPORT_SYMBOL(ttm_bo_unpin);
624
625/*
626 * Add the last move fence to the BO as kernel dependency and reserve a new
627 * fence slot.
628 */
629static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
630 struct ttm_resource_manager *man,
631 bool no_wait_gpu)
632{
633 struct dma_fence *fence;
634 int ret;
635
636 spin_lock(&man->move_lock);
637 fence = dma_fence_get(man->move);
638 spin_unlock(&man->move_lock);
639
640 if (!fence)
641 return 0;
642
643 if (no_wait_gpu) {
644 ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
645 dma_fence_put(fence);
646 return ret;
647 }
648
649 dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
650
651 ret = dma_resv_reserve_fences(bo->base.resv, 1);
652 dma_fence_put(fence);
653 return ret;
654}
655
656/**
657 * ttm_bo_alloc_resource - Allocate backing store for a BO
658 *
659 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
660 * @placement: Proposed new placement for the buffer object
661 * @ctx: if and how to sleep, lock buffers and alloc memory
662 * @force_space: If we should evict buffers to force space
663 * @res: The resulting struct ttm_resource.
664 *
665 * Allocates a resource for the buffer object pointed to by @bo, using the
666 * placement flags in @placement, potentially evicting other buffer objects when
667 * @force_space is true.
668 * This function may sleep while waiting for resources to become available.
669 * Returns:
670 * -EBUSY: No space available (only if no_wait == true).
671 * -ENOSPC: Could not allocate space for the buffer object, either due to
672 * fragmentation or concurrent allocators.
673 * -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
674 */
675static int ttm_bo_alloc_resource(struct ttm_buffer_object *bo,
676 struct ttm_placement *placement,
677 struct ttm_operation_ctx *ctx,
678 bool force_space,
679 struct ttm_resource **res)
680{
681 struct ttm_device *bdev = bo->bdev;
682 struct ww_acquire_ctx *ticket;
683 int i, ret;
684
685 ticket = dma_resv_locking_ctx(bo->base.resv);
686 ret = dma_resv_reserve_fences(bo->base.resv, 1);
687 if (unlikely(ret))
688 return ret;
689
690 for (i = 0; i < placement->num_placement; ++i) {
691 const struct ttm_place *place = &placement->placement[i];
692 struct ttm_resource_manager *man;
693 bool may_evict;
694
695 man = ttm_manager_type(bdev, place->mem_type);
696 if (!man || !ttm_resource_manager_used(man))
697 continue;
698
699 if (place->flags & (force_space ? TTM_PL_FLAG_DESIRED :
700 TTM_PL_FLAG_FALLBACK))
701 continue;
702
703 may_evict = (force_space && place->mem_type != TTM_PL_SYSTEM);
704 ret = ttm_resource_alloc(bo, place, res);
705 if (ret) {
706 if (ret != -ENOSPC)
707 return ret;
708 if (!may_evict)
709 continue;
710
711 ret = ttm_bo_evict_alloc(bdev, man, place, bo, ctx,
712 ticket, res);
713 if (ret == -EBUSY)
714 continue;
715 if (ret)
716 return ret;
717 }
718
719 ret = ttm_bo_add_move_fence(bo, man, ctx->no_wait_gpu);
720 if (unlikely(ret)) {
721 ttm_resource_free(bo, res);
722 if (ret == -EBUSY)
723 continue;
724
725 return ret;
726 }
727 return 0;
728 }
729
730 return -ENOSPC;
731}
732
733/*
734 * ttm_bo_mem_space - Wrapper around ttm_bo_alloc_resource
735 *
736 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
737 * @placement: Proposed new placement for the buffer object
738 * @res: The resulting struct ttm_resource.
739 * @ctx: if and how to sleep, lock buffers and alloc memory
740 *
741 * Tries both idle allocation and forcefully eviction of buffers. See
742 * ttm_bo_alloc_resource for details.
743 */
744int ttm_bo_mem_space(struct ttm_buffer_object *bo,
745 struct ttm_placement *placement,
746 struct ttm_resource **res,
747 struct ttm_operation_ctx *ctx)
748{
749 bool force_space = false;
750 int ret;
751
752 do {
753 ret = ttm_bo_alloc_resource(bo, placement, ctx,
754 force_space, res);
755 force_space = !force_space;
756 } while (ret == -ENOSPC && force_space);
757
758 return ret;
759}
760EXPORT_SYMBOL(ttm_bo_mem_space);
761
762/**
763 * ttm_bo_validate
764 *
765 * @bo: The buffer object.
766 * @placement: Proposed placement for the buffer object.
767 * @ctx: validation parameters.
768 *
769 * Changes placement and caching policy of the buffer object
770 * according proposed placement.
771 * Returns
772 * -EINVAL on invalid proposed placement.
773 * -ENOMEM on out-of-memory condition.
774 * -EBUSY if no_wait is true and buffer busy.
775 * -ERESTARTSYS if interrupted by a signal.
776 */
777int ttm_bo_validate(struct ttm_buffer_object *bo,
778 struct ttm_placement *placement,
779 struct ttm_operation_ctx *ctx)
780{
781 struct ttm_resource *res;
782 struct ttm_place hop;
783 bool force_space;
784 int ret;
785
786 dma_resv_assert_held(bo->base.resv);
787
788 /*
789 * Remove the backing store if no placement is given.
790 */
791 if (!placement->num_placement)
792 return ttm_bo_pipeline_gutting(bo);
793
794 force_space = false;
795 do {
796 /* Check whether we need to move buffer. */
797 if (bo->resource &&
798 ttm_resource_compatible(bo->resource, placement,
799 force_space))
800 return 0;
801
802 /* Moving of pinned BOs is forbidden */
803 if (bo->pin_count)
804 return -EINVAL;
805
806 /*
807 * Determine where to move the buffer.
808 *
809 * If driver determines move is going to need
810 * an extra step then it will return -EMULTIHOP
811 * and the buffer will be moved to the temporary
812 * stop and the driver will be called to make
813 * the second hop.
814 */
815 ret = ttm_bo_alloc_resource(bo, placement, ctx, force_space,
816 &res);
817 force_space = !force_space;
818 if (ret == -ENOSPC)
819 continue;
820 if (ret)
821 return ret;
822
823bounce:
824 ret = ttm_bo_handle_move_mem(bo, res, false, ctx, &hop);
825 if (ret == -EMULTIHOP) {
826 ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
827 /* try and move to final place now. */
828 if (!ret)
829 goto bounce;
830 }
831 if (ret) {
832 ttm_resource_free(bo, &res);
833 return ret;
834 }
835
836 } while (ret && force_space);
837
838 /* For backward compatibility with userspace */
839 if (ret == -ENOSPC)
840 return -ENOMEM;
841
842 /*
843 * We might need to add a TTM.
844 */
845 if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) {
846 ret = ttm_tt_create(bo, true);
847 if (ret)
848 return ret;
849 }
850 return 0;
851}
852EXPORT_SYMBOL(ttm_bo_validate);
853
854/**
855 * ttm_bo_init_reserved
856 *
857 * @bdev: Pointer to a ttm_device struct.
858 * @bo: Pointer to a ttm_buffer_object to be initialized.
859 * @type: Requested type of buffer object.
860 * @placement: Initial placement for buffer object.
861 * @alignment: Data alignment in pages.
862 * @ctx: TTM operation context for memory allocation.
863 * @sg: Scatter-gather table.
864 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
865 * @destroy: Destroy function. Use NULL for kfree().
866 *
867 * This function initializes a pre-allocated struct ttm_buffer_object.
868 * As this object may be part of a larger structure, this function,
869 * together with the @destroy function, enables driver-specific objects
870 * derived from a ttm_buffer_object.
871 *
872 * On successful return, the caller owns an object kref to @bo. The kref and
873 * list_kref are usually set to 1, but note that in some situations, other
874 * tasks may already be holding references to @bo as well.
875 * Furthermore, if resv == NULL, the buffer's reservation lock will be held,
876 * and it is the caller's responsibility to call ttm_bo_unreserve.
877 *
878 * If a failure occurs, the function will call the @destroy function. Thus,
879 * after a failure, dereferencing @bo is illegal and will likely cause memory
880 * corruption.
881 *
882 * Returns
883 * -ENOMEM: Out of memory.
884 * -EINVAL: Invalid placement flags.
885 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
886 */
887int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo,
888 enum ttm_bo_type type, struct ttm_placement *placement,
889 uint32_t alignment, struct ttm_operation_ctx *ctx,
890 struct sg_table *sg, struct dma_resv *resv,
891 void (*destroy) (struct ttm_buffer_object *))
892{
893 int ret;
894
895 kref_init(&bo->kref);
896 bo->bdev = bdev;
897 bo->type = type;
898 bo->page_alignment = alignment;
899 bo->destroy = destroy;
900 bo->pin_count = 0;
901 bo->sg = sg;
902 bo->bulk_move = NULL;
903 if (resv)
904 bo->base.resv = resv;
905 else
906 bo->base.resv = &bo->base._resv;
907 atomic_inc(&ttm_glob.bo_count);
908
909 /*
910 * For ttm_bo_type_device buffers, allocate
911 * address space from the device.
912 */
913 if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) {
914 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
915 PFN_UP(bo->base.size));
916 if (ret)
917 goto err_put;
918 }
919
920 /* passed reservation objects should already be locked,
921 * since otherwise lockdep will be angered in radeon.
922 */
923 if (!resv)
924 WARN_ON(!dma_resv_trylock(bo->base.resv));
925 else
926 dma_resv_assert_held(resv);
927
928 ret = ttm_bo_validate(bo, placement, ctx);
929 if (unlikely(ret))
930 goto err_unlock;
931
932 return 0;
933
934err_unlock:
935 if (!resv)
936 dma_resv_unlock(bo->base.resv);
937
938err_put:
939 ttm_bo_put(bo);
940 return ret;
941}
942EXPORT_SYMBOL(ttm_bo_init_reserved);
943
944/**
945 * ttm_bo_init_validate
946 *
947 * @bdev: Pointer to a ttm_device struct.
948 * @bo: Pointer to a ttm_buffer_object to be initialized.
949 * @type: Requested type of buffer object.
950 * @placement: Initial placement for buffer object.
951 * @alignment: Data alignment in pages.
952 * @interruptible: If needing to sleep to wait for GPU resources,
953 * sleep interruptible.
954 * pinned in physical memory. If this behaviour is not desired, this member
955 * holds a pointer to a persistent shmem object. Typically, this would
956 * point to the shmem object backing a GEM object if TTM is used to back a
957 * GEM user interface.
958 * @sg: Scatter-gather table.
959 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
960 * @destroy: Destroy function. Use NULL for kfree().
961 *
962 * This function initializes a pre-allocated struct ttm_buffer_object.
963 * As this object may be part of a larger structure, this function,
964 * together with the @destroy function,
965 * enables driver-specific objects derived from a ttm_buffer_object.
966 *
967 * On successful return, the caller owns an object kref to @bo. The kref and
968 * list_kref are usually set to 1, but note that in some situations, other
969 * tasks may already be holding references to @bo as well.
970 *
971 * If a failure occurs, the function will call the @destroy function, Thus,
972 * after a failure, dereferencing @bo is illegal and will likely cause memory
973 * corruption.
974 *
975 * Returns
976 * -ENOMEM: Out of memory.
977 * -EINVAL: Invalid placement flags.
978 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
979 */
980int ttm_bo_init_validate(struct ttm_device *bdev, struct ttm_buffer_object *bo,
981 enum ttm_bo_type type, struct ttm_placement *placement,
982 uint32_t alignment, bool interruptible,
983 struct sg_table *sg, struct dma_resv *resv,
984 void (*destroy) (struct ttm_buffer_object *))
985{
986 struct ttm_operation_ctx ctx = { interruptible, false };
987 int ret;
988
989 ret = ttm_bo_init_reserved(bdev, bo, type, placement, alignment, &ctx,
990 sg, resv, destroy);
991 if (ret)
992 return ret;
993
994 if (!resv)
995 ttm_bo_unreserve(bo);
996
997 return 0;
998}
999EXPORT_SYMBOL(ttm_bo_init_validate);
1000
1001/*
1002 * buffer object vm functions.
1003 */
1004
1005/**
1006 * ttm_bo_unmap_virtual
1007 *
1008 * @bo: tear down the virtual mappings for this BO
1009 */
1010void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1011{
1012 struct ttm_device *bdev = bo->bdev;
1013
1014 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1015 ttm_mem_io_free(bdev, bo->resource);
1016}
1017EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1018
1019/**
1020 * ttm_bo_wait_ctx - wait for buffer idle.
1021 *
1022 * @bo: The buffer object.
1023 * @ctx: defines how to wait
1024 *
1025 * Waits for the buffer to be idle. Used timeout depends on the context.
1026 * Returns -EBUSY if wait timed outt, -ERESTARTSYS if interrupted by a signal or
1027 * zero on success.
1028 */
1029int ttm_bo_wait_ctx(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1030{
1031 long ret;
1032
1033 if (ctx->no_wait_gpu) {
1034 if (dma_resv_test_signaled(bo->base.resv,
1035 DMA_RESV_USAGE_BOOKKEEP))
1036 return 0;
1037 else
1038 return -EBUSY;
1039 }
1040
1041 ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
1042 ctx->interruptible, 15 * HZ);
1043 if (unlikely(ret < 0))
1044 return ret;
1045 if (unlikely(ret == 0))
1046 return -EBUSY;
1047 return 0;
1048}
1049EXPORT_SYMBOL(ttm_bo_wait_ctx);
1050
1051/**
1052 * struct ttm_bo_swapout_walk - Parameters for the swapout walk
1053 */
1054struct ttm_bo_swapout_walk {
1055 /** @walk: The walk base parameters. */
1056 struct ttm_lru_walk walk;
1057 /** @gfp_flags: The gfp flags to use for ttm_tt_swapout() */
1058 gfp_t gfp_flags;
1059};
1060
1061static s64
1062ttm_bo_swapout_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
1063{
1064 struct ttm_place place = {.mem_type = bo->resource->mem_type};
1065 struct ttm_bo_swapout_walk *swapout_walk =
1066 container_of(walk, typeof(*swapout_walk), walk);
1067 struct ttm_operation_ctx *ctx = walk->ctx;
1068 s64 ret;
1069
1070 /*
1071 * While the bo may already reside in SYSTEM placement, set
1072 * SYSTEM as new placement to cover also the move further below.
1073 * The driver may use the fact that we're moving from SYSTEM
1074 * as an indication that we're about to swap out.
1075 */
1076 if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, &place)) {
1077 ret = -EBUSY;
1078 goto out;
1079 }
1080
1081 if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
1082 bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL ||
1083 bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) {
1084 ret = -EBUSY;
1085 goto out;
1086 }
1087
1088 if (bo->deleted) {
1089 pgoff_t num_pages = bo->ttm->num_pages;
1090
1091 ret = ttm_bo_wait_ctx(bo, ctx);
1092 if (ret)
1093 goto out;
1094
1095 ttm_bo_cleanup_memtype_use(bo);
1096 ret = num_pages;
1097 goto out;
1098 }
1099
1100 /*
1101 * Move to system cached
1102 */
1103 if (bo->resource->mem_type != TTM_PL_SYSTEM) {
1104 struct ttm_resource *evict_mem;
1105 struct ttm_place hop;
1106
1107 memset(&hop, 0, sizeof(hop));
1108 place.mem_type = TTM_PL_SYSTEM;
1109 ret = ttm_resource_alloc(bo, &place, &evict_mem);
1110 if (ret)
1111 goto out;
1112
1113 ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
1114 if (ret) {
1115 WARN(ret == -EMULTIHOP,
1116 "Unexpected multihop in swapout - likely driver bug.\n");
1117 ttm_resource_free(bo, &evict_mem);
1118 goto out;
1119 }
1120 }
1121
1122 /*
1123 * Make sure BO is idle.
1124 */
1125 ret = ttm_bo_wait_ctx(bo, ctx);
1126 if (ret)
1127 goto out;
1128
1129 ttm_bo_unmap_virtual(bo);
1130 if (bo->bdev->funcs->swap_notify)
1131 bo->bdev->funcs->swap_notify(bo);
1132
1133 if (ttm_tt_is_populated(bo->ttm)) {
1134 spin_lock(&bo->bdev->lru_lock);
1135 ttm_resource_del_bulk_move(bo->resource, bo);
1136 spin_unlock(&bo->bdev->lru_lock);
1137
1138 ret = ttm_tt_swapout(bo->bdev, bo->ttm, swapout_walk->gfp_flags);
1139
1140 spin_lock(&bo->bdev->lru_lock);
1141 if (ret)
1142 ttm_resource_add_bulk_move(bo->resource, bo);
1143 ttm_resource_move_to_lru_tail(bo->resource);
1144 spin_unlock(&bo->bdev->lru_lock);
1145 }
1146
1147out:
1148 /* Consider -ENOMEM and -ENOSPC non-fatal. */
1149 if (ret == -ENOMEM || ret == -ENOSPC)
1150 ret = -EBUSY;
1151
1152 return ret;
1153}
1154
1155const struct ttm_lru_walk_ops ttm_swap_ops = {
1156 .process_bo = ttm_bo_swapout_cb,
1157};
1158
1159/**
1160 * ttm_bo_swapout() - Swap out buffer objects on the LRU list to shmem.
1161 * @bdev: The ttm device.
1162 * @ctx: The ttm_operation_ctx governing the swapout operation.
1163 * @man: The resource manager whose resources / buffer objects are
1164 * goint to be swapped out.
1165 * @gfp_flags: The gfp flags used for shmem page allocations.
1166 * @target: The desired number of bytes to swap out.
1167 *
1168 * Return: The number of bytes actually swapped out, or negative error code
1169 * on error.
1170 */
1171s64 ttm_bo_swapout(struct ttm_device *bdev, struct ttm_operation_ctx *ctx,
1172 struct ttm_resource_manager *man, gfp_t gfp_flags,
1173 s64 target)
1174{
1175 struct ttm_bo_swapout_walk swapout_walk = {
1176 .walk = {
1177 .ops = &ttm_swap_ops,
1178 .ctx = ctx,
1179 .trylock_only = true,
1180 },
1181 .gfp_flags = gfp_flags,
1182 };
1183
1184 return ttm_lru_walk_for_evict(&swapout_walk.walk, bdev, man, target);
1185}
1186
1187void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1188{
1189 if (bo->ttm == NULL)
1190 return;
1191
1192 ttm_tt_unpopulate(bo->bdev, bo->ttm);
1193 ttm_tt_destroy(bo->bdev, bo->ttm);
1194 bo->ttm = NULL;
1195}
1196
1197/**
1198 * ttm_bo_populate() - Ensure that a buffer object has backing pages
1199 * @bo: The buffer object
1200 * @ctx: The ttm_operation_ctx governing the operation.
1201 *
1202 * For buffer objects in a memory type whose manager uses
1203 * struct ttm_tt for backing pages, ensure those backing pages
1204 * are present and with valid content. The bo's resource is also
1205 * placed on the correct LRU list if it was previously swapped
1206 * out.
1207 *
1208 * Return: 0 if successful, negative error code on failure.
1209 * Note: May return -EINTR or -ERESTARTSYS if @ctx::interruptible
1210 * is set to true.
1211 */
1212int ttm_bo_populate(struct ttm_buffer_object *bo,
1213 struct ttm_operation_ctx *ctx)
1214{
1215 struct ttm_tt *tt = bo->ttm;
1216 bool swapped;
1217 int ret;
1218
1219 dma_resv_assert_held(bo->base.resv);
1220
1221 if (!tt)
1222 return 0;
1223
1224 swapped = ttm_tt_is_swapped(tt);
1225 ret = ttm_tt_populate(bo->bdev, tt, ctx);
1226 if (ret)
1227 return ret;
1228
1229 if (swapped && !ttm_tt_is_swapped(tt) && !bo->pin_count &&
1230 bo->resource) {
1231 spin_lock(&bo->bdev->lru_lock);
1232 ttm_resource_add_bulk_move(bo->resource, bo);
1233 ttm_resource_move_to_lru_tail(bo->resource);
1234 spin_unlock(&bo->bdev->lru_lock);
1235 }
1236
1237 return 0;
1238}
1239EXPORT_SYMBOL(ttm_bo_populate);
1/**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27/*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31#define pr_fmt(fmt) "[TTM] " fmt
32
33#include <drm/ttm/ttm_module.h>
34#include <drm/ttm/ttm_bo_driver.h>
35#include <drm/ttm/ttm_placement.h>
36#include <linux/jiffies.h>
37#include <linux/slab.h>
38#include <linux/sched.h>
39#include <linux/mm.h>
40#include <linux/file.h>
41#include <linux/module.h>
42#include <linux/atomic.h>
43#include <linux/reservation.h>
44
45static void ttm_bo_global_kobj_release(struct kobject *kobj);
46
47static struct attribute ttm_bo_count = {
48 .name = "bo_count",
49 .mode = S_IRUGO
50};
51
52/* default destructor */
53static void ttm_bo_default_destroy(struct ttm_buffer_object *bo)
54{
55 kfree(bo);
56}
57
58static inline int ttm_mem_type_from_place(const struct ttm_place *place,
59 uint32_t *mem_type)
60{
61 int pos;
62
63 pos = ffs(place->flags & TTM_PL_MASK_MEM);
64 if (unlikely(!pos))
65 return -EINVAL;
66
67 *mem_type = pos - 1;
68 return 0;
69}
70
71static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
72{
73 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
74 struct drm_printer p = drm_debug_printer(TTM_PFX);
75
76 pr_err(" has_type: %d\n", man->has_type);
77 pr_err(" use_type: %d\n", man->use_type);
78 pr_err(" flags: 0x%08X\n", man->flags);
79 pr_err(" gpu_offset: 0x%08llX\n", man->gpu_offset);
80 pr_err(" size: %llu\n", man->size);
81 pr_err(" available_caching: 0x%08X\n", man->available_caching);
82 pr_err(" default_caching: 0x%08X\n", man->default_caching);
83 if (mem_type != TTM_PL_SYSTEM)
84 (*man->func->debug)(man, &p);
85}
86
87static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
88 struct ttm_placement *placement)
89{
90 int i, ret, mem_type;
91
92 pr_err("No space for %p (%lu pages, %luK, %luM)\n",
93 bo, bo->mem.num_pages, bo->mem.size >> 10,
94 bo->mem.size >> 20);
95 for (i = 0; i < placement->num_placement; i++) {
96 ret = ttm_mem_type_from_place(&placement->placement[i],
97 &mem_type);
98 if (ret)
99 return;
100 pr_err(" placement[%d]=0x%08X (%d)\n",
101 i, placement->placement[i].flags, mem_type);
102 ttm_mem_type_debug(bo->bdev, mem_type);
103 }
104}
105
106static ssize_t ttm_bo_global_show(struct kobject *kobj,
107 struct attribute *attr,
108 char *buffer)
109{
110 struct ttm_bo_global *glob =
111 container_of(kobj, struct ttm_bo_global, kobj);
112
113 return snprintf(buffer, PAGE_SIZE, "%d\n",
114 atomic_read(&glob->bo_count));
115}
116
117static struct attribute *ttm_bo_global_attrs[] = {
118 &ttm_bo_count,
119 NULL
120};
121
122static const struct sysfs_ops ttm_bo_global_ops = {
123 .show = &ttm_bo_global_show
124};
125
126static struct kobj_type ttm_bo_glob_kobj_type = {
127 .release = &ttm_bo_global_kobj_release,
128 .sysfs_ops = &ttm_bo_global_ops,
129 .default_attrs = ttm_bo_global_attrs
130};
131
132
133static inline uint32_t ttm_bo_type_flags(unsigned type)
134{
135 return 1 << (type);
136}
137
138static void ttm_bo_release_list(struct kref *list_kref)
139{
140 struct ttm_buffer_object *bo =
141 container_of(list_kref, struct ttm_buffer_object, list_kref);
142 struct ttm_bo_device *bdev = bo->bdev;
143 size_t acc_size = bo->acc_size;
144
145 BUG_ON(kref_read(&bo->list_kref));
146 BUG_ON(kref_read(&bo->kref));
147 BUG_ON(atomic_read(&bo->cpu_writers));
148 BUG_ON(bo->mem.mm_node != NULL);
149 BUG_ON(!list_empty(&bo->lru));
150 BUG_ON(!list_empty(&bo->ddestroy));
151 ttm_tt_destroy(bo->ttm);
152 atomic_dec(&bo->bdev->glob->bo_count);
153 dma_fence_put(bo->moving);
154 reservation_object_fini(&bo->ttm_resv);
155 mutex_destroy(&bo->wu_mutex);
156 bo->destroy(bo);
157 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
158}
159
160void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
161{
162 struct ttm_bo_device *bdev = bo->bdev;
163 struct ttm_mem_type_manager *man;
164
165 reservation_object_assert_held(bo->resv);
166
167 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
168 BUG_ON(!list_empty(&bo->lru));
169
170 man = &bdev->man[bo->mem.mem_type];
171 list_add_tail(&bo->lru, &man->lru[bo->priority]);
172 kref_get(&bo->list_kref);
173
174 if (bo->ttm && !(bo->ttm->page_flags &
175 (TTM_PAGE_FLAG_SG | TTM_PAGE_FLAG_SWAPPED))) {
176 list_add_tail(&bo->swap,
177 &bdev->glob->swap_lru[bo->priority]);
178 kref_get(&bo->list_kref);
179 }
180 }
181}
182EXPORT_SYMBOL(ttm_bo_add_to_lru);
183
184static void ttm_bo_ref_bug(struct kref *list_kref)
185{
186 BUG();
187}
188
189void ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
190{
191 if (!list_empty(&bo->swap)) {
192 list_del_init(&bo->swap);
193 kref_put(&bo->list_kref, ttm_bo_ref_bug);
194 }
195 if (!list_empty(&bo->lru)) {
196 list_del_init(&bo->lru);
197 kref_put(&bo->list_kref, ttm_bo_ref_bug);
198 }
199
200 /*
201 * TODO: Add a driver hook to delete from
202 * driver-specific LRU's here.
203 */
204}
205
206void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
207{
208 struct ttm_bo_global *glob = bo->bdev->glob;
209
210 spin_lock(&glob->lru_lock);
211 ttm_bo_del_from_lru(bo);
212 spin_unlock(&glob->lru_lock);
213}
214EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
215
216void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
217{
218 reservation_object_assert_held(bo->resv);
219
220 ttm_bo_del_from_lru(bo);
221 ttm_bo_add_to_lru(bo);
222}
223EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
224
225static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
226 struct ttm_mem_reg *mem, bool evict,
227 struct ttm_operation_ctx *ctx)
228{
229 struct ttm_bo_device *bdev = bo->bdev;
230 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
231 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
232 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
233 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
234 int ret = 0;
235
236 if (old_is_pci || new_is_pci ||
237 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
238 ret = ttm_mem_io_lock(old_man, true);
239 if (unlikely(ret != 0))
240 goto out_err;
241 ttm_bo_unmap_virtual_locked(bo);
242 ttm_mem_io_unlock(old_man);
243 }
244
245 /*
246 * Create and bind a ttm if required.
247 */
248
249 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
250 if (bo->ttm == NULL) {
251 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
252 ret = ttm_tt_create(bo, zero);
253 if (ret)
254 goto out_err;
255 }
256
257 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
258 if (ret)
259 goto out_err;
260
261 if (mem->mem_type != TTM_PL_SYSTEM) {
262 ret = ttm_tt_bind(bo->ttm, mem, ctx);
263 if (ret)
264 goto out_err;
265 }
266
267 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
268 if (bdev->driver->move_notify)
269 bdev->driver->move_notify(bo, evict, mem);
270 bo->mem = *mem;
271 mem->mm_node = NULL;
272 goto moved;
273 }
274 }
275
276 if (bdev->driver->move_notify)
277 bdev->driver->move_notify(bo, evict, mem);
278
279 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
280 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
281 ret = ttm_bo_move_ttm(bo, ctx, mem);
282 else if (bdev->driver->move)
283 ret = bdev->driver->move(bo, evict, ctx, mem);
284 else
285 ret = ttm_bo_move_memcpy(bo, ctx, mem);
286
287 if (ret) {
288 if (bdev->driver->move_notify) {
289 struct ttm_mem_reg tmp_mem = *mem;
290 *mem = bo->mem;
291 bo->mem = tmp_mem;
292 bdev->driver->move_notify(bo, false, mem);
293 bo->mem = *mem;
294 *mem = tmp_mem;
295 }
296
297 goto out_err;
298 }
299
300moved:
301 if (bo->evicted) {
302 if (bdev->driver->invalidate_caches) {
303 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
304 if (ret)
305 pr_err("Can not flush read caches\n");
306 }
307 bo->evicted = false;
308 }
309
310 if (bo->mem.mm_node)
311 bo->offset = (bo->mem.start << PAGE_SHIFT) +
312 bdev->man[bo->mem.mem_type].gpu_offset;
313 else
314 bo->offset = 0;
315
316 ctx->bytes_moved += bo->num_pages << PAGE_SHIFT;
317 return 0;
318
319out_err:
320 new_man = &bdev->man[bo->mem.mem_type];
321 if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
322 ttm_tt_destroy(bo->ttm);
323 bo->ttm = NULL;
324 }
325
326 return ret;
327}
328
329/**
330 * Call bo::reserved.
331 * Will release GPU memory type usage on destruction.
332 * This is the place to put in driver specific hooks to release
333 * driver private resources.
334 * Will release the bo::reserved lock.
335 */
336
337static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
338{
339 if (bo->bdev->driver->move_notify)
340 bo->bdev->driver->move_notify(bo, false, NULL);
341
342 ttm_tt_destroy(bo->ttm);
343 bo->ttm = NULL;
344 ttm_bo_mem_put(bo, &bo->mem);
345}
346
347static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
348{
349 int r;
350
351 if (bo->resv == &bo->ttm_resv)
352 return 0;
353
354 BUG_ON(!reservation_object_trylock(&bo->ttm_resv));
355
356 r = reservation_object_copy_fences(&bo->ttm_resv, bo->resv);
357 if (r)
358 reservation_object_unlock(&bo->ttm_resv);
359
360 return r;
361}
362
363static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
364{
365 struct reservation_object_list *fobj;
366 struct dma_fence *fence;
367 int i;
368
369 fobj = reservation_object_get_list(&bo->ttm_resv);
370 fence = reservation_object_get_excl(&bo->ttm_resv);
371 if (fence && !fence->ops->signaled)
372 dma_fence_enable_sw_signaling(fence);
373
374 for (i = 0; fobj && i < fobj->shared_count; ++i) {
375 fence = rcu_dereference_protected(fobj->shared[i],
376 reservation_object_held(bo->resv));
377
378 if (!fence->ops->signaled)
379 dma_fence_enable_sw_signaling(fence);
380 }
381}
382
383static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
384{
385 struct ttm_bo_device *bdev = bo->bdev;
386 struct ttm_bo_global *glob = bdev->glob;
387 int ret;
388
389 ret = ttm_bo_individualize_resv(bo);
390 if (ret) {
391 /* Last resort, if we fail to allocate memory for the
392 * fences block for the BO to become idle
393 */
394 reservation_object_wait_timeout_rcu(bo->resv, true, false,
395 30 * HZ);
396 spin_lock(&glob->lru_lock);
397 goto error;
398 }
399
400 spin_lock(&glob->lru_lock);
401 ret = reservation_object_trylock(bo->resv) ? 0 : -EBUSY;
402 if (!ret) {
403 if (reservation_object_test_signaled_rcu(&bo->ttm_resv, true)) {
404 ttm_bo_del_from_lru(bo);
405 spin_unlock(&glob->lru_lock);
406 if (bo->resv != &bo->ttm_resv)
407 reservation_object_unlock(&bo->ttm_resv);
408
409 ttm_bo_cleanup_memtype_use(bo);
410 reservation_object_unlock(bo->resv);
411 return;
412 }
413
414 ttm_bo_flush_all_fences(bo);
415
416 /*
417 * Make NO_EVICT bos immediately available to
418 * shrinkers, now that they are queued for
419 * destruction.
420 */
421 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
422 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
423 ttm_bo_add_to_lru(bo);
424 }
425
426 reservation_object_unlock(bo->resv);
427 }
428 if (bo->resv != &bo->ttm_resv)
429 reservation_object_unlock(&bo->ttm_resv);
430
431error:
432 kref_get(&bo->list_kref);
433 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
434 spin_unlock(&glob->lru_lock);
435
436 schedule_delayed_work(&bdev->wq,
437 ((HZ / 100) < 1) ? 1 : HZ / 100);
438}
439
440/**
441 * function ttm_bo_cleanup_refs
442 * If bo idle, remove from delayed- and lru lists, and unref.
443 * If not idle, do nothing.
444 *
445 * Must be called with lru_lock and reservation held, this function
446 * will drop the lru lock and optionally the reservation lock before returning.
447 *
448 * @interruptible Any sleeps should occur interruptibly.
449 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
450 * @unlock_resv Unlock the reservation lock as well.
451 */
452
453static int ttm_bo_cleanup_refs(struct ttm_buffer_object *bo,
454 bool interruptible, bool no_wait_gpu,
455 bool unlock_resv)
456{
457 struct ttm_bo_global *glob = bo->bdev->glob;
458 struct reservation_object *resv;
459 int ret;
460
461 if (unlikely(list_empty(&bo->ddestroy)))
462 resv = bo->resv;
463 else
464 resv = &bo->ttm_resv;
465
466 if (reservation_object_test_signaled_rcu(resv, true))
467 ret = 0;
468 else
469 ret = -EBUSY;
470
471 if (ret && !no_wait_gpu) {
472 long lret;
473
474 if (unlock_resv)
475 reservation_object_unlock(bo->resv);
476 spin_unlock(&glob->lru_lock);
477
478 lret = reservation_object_wait_timeout_rcu(resv, true,
479 interruptible,
480 30 * HZ);
481
482 if (lret < 0)
483 return lret;
484 else if (lret == 0)
485 return -EBUSY;
486
487 spin_lock(&glob->lru_lock);
488 if (unlock_resv && !reservation_object_trylock(bo->resv)) {
489 /*
490 * We raced, and lost, someone else holds the reservation now,
491 * and is probably busy in ttm_bo_cleanup_memtype_use.
492 *
493 * Even if it's not the case, because we finished waiting any
494 * delayed destruction would succeed, so just return success
495 * here.
496 */
497 spin_unlock(&glob->lru_lock);
498 return 0;
499 }
500 ret = 0;
501 }
502
503 if (ret || unlikely(list_empty(&bo->ddestroy))) {
504 if (unlock_resv)
505 reservation_object_unlock(bo->resv);
506 spin_unlock(&glob->lru_lock);
507 return ret;
508 }
509
510 ttm_bo_del_from_lru(bo);
511 list_del_init(&bo->ddestroy);
512 kref_put(&bo->list_kref, ttm_bo_ref_bug);
513
514 spin_unlock(&glob->lru_lock);
515 ttm_bo_cleanup_memtype_use(bo);
516
517 if (unlock_resv)
518 reservation_object_unlock(bo->resv);
519
520 return 0;
521}
522
523/**
524 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
525 * encountered buffers.
526 */
527static bool ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
528{
529 struct ttm_bo_global *glob = bdev->glob;
530 struct list_head removed;
531 bool empty;
532
533 INIT_LIST_HEAD(&removed);
534
535 spin_lock(&glob->lru_lock);
536 while (!list_empty(&bdev->ddestroy)) {
537 struct ttm_buffer_object *bo;
538
539 bo = list_first_entry(&bdev->ddestroy, struct ttm_buffer_object,
540 ddestroy);
541 kref_get(&bo->list_kref);
542 list_move_tail(&bo->ddestroy, &removed);
543
544 if (remove_all || bo->resv != &bo->ttm_resv) {
545 spin_unlock(&glob->lru_lock);
546 reservation_object_lock(bo->resv, NULL);
547
548 spin_lock(&glob->lru_lock);
549 ttm_bo_cleanup_refs(bo, false, !remove_all, true);
550
551 } else if (reservation_object_trylock(bo->resv)) {
552 ttm_bo_cleanup_refs(bo, false, !remove_all, true);
553 } else {
554 spin_unlock(&glob->lru_lock);
555 }
556
557 kref_put(&bo->list_kref, ttm_bo_release_list);
558 spin_lock(&glob->lru_lock);
559 }
560 list_splice_tail(&removed, &bdev->ddestroy);
561 empty = list_empty(&bdev->ddestroy);
562 spin_unlock(&glob->lru_lock);
563
564 return empty;
565}
566
567static void ttm_bo_delayed_workqueue(struct work_struct *work)
568{
569 struct ttm_bo_device *bdev =
570 container_of(work, struct ttm_bo_device, wq.work);
571
572 if (!ttm_bo_delayed_delete(bdev, false))
573 schedule_delayed_work(&bdev->wq,
574 ((HZ / 100) < 1) ? 1 : HZ / 100);
575}
576
577static void ttm_bo_release(struct kref *kref)
578{
579 struct ttm_buffer_object *bo =
580 container_of(kref, struct ttm_buffer_object, kref);
581 struct ttm_bo_device *bdev = bo->bdev;
582 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
583
584 drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
585 ttm_mem_io_lock(man, false);
586 ttm_mem_io_free_vm(bo);
587 ttm_mem_io_unlock(man);
588 ttm_bo_cleanup_refs_or_queue(bo);
589 kref_put(&bo->list_kref, ttm_bo_release_list);
590}
591
592void ttm_bo_unref(struct ttm_buffer_object **p_bo)
593{
594 struct ttm_buffer_object *bo = *p_bo;
595
596 *p_bo = NULL;
597 kref_put(&bo->kref, ttm_bo_release);
598}
599EXPORT_SYMBOL(ttm_bo_unref);
600
601int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
602{
603 return cancel_delayed_work_sync(&bdev->wq);
604}
605EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
606
607void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
608{
609 if (resched)
610 schedule_delayed_work(&bdev->wq,
611 ((HZ / 100) < 1) ? 1 : HZ / 100);
612}
613EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
614
615static int ttm_bo_evict(struct ttm_buffer_object *bo,
616 struct ttm_operation_ctx *ctx)
617{
618 struct ttm_bo_device *bdev = bo->bdev;
619 struct ttm_mem_reg evict_mem;
620 struct ttm_placement placement;
621 int ret = 0;
622
623 reservation_object_assert_held(bo->resv);
624
625 placement.num_placement = 0;
626 placement.num_busy_placement = 0;
627 bdev->driver->evict_flags(bo, &placement);
628
629 if (!placement.num_placement && !placement.num_busy_placement) {
630 ret = ttm_bo_pipeline_gutting(bo);
631 if (ret)
632 return ret;
633
634 return ttm_tt_create(bo, false);
635 }
636
637 evict_mem = bo->mem;
638 evict_mem.mm_node = NULL;
639 evict_mem.bus.io_reserved_vm = false;
640 evict_mem.bus.io_reserved_count = 0;
641
642 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
643 if (ret) {
644 if (ret != -ERESTARTSYS) {
645 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
646 bo);
647 ttm_bo_mem_space_debug(bo, &placement);
648 }
649 goto out;
650 }
651
652 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, ctx);
653 if (unlikely(ret)) {
654 if (ret != -ERESTARTSYS)
655 pr_err("Buffer eviction failed\n");
656 ttm_bo_mem_put(bo, &evict_mem);
657 goto out;
658 }
659 bo->evicted = true;
660out:
661 return ret;
662}
663
664bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
665 const struct ttm_place *place)
666{
667 /* Don't evict this BO if it's outside of the
668 * requested placement range
669 */
670 if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
671 (place->lpfn && place->lpfn <= bo->mem.start))
672 return false;
673
674 return true;
675}
676EXPORT_SYMBOL(ttm_bo_eviction_valuable);
677
678/**
679 * Check the target bo is allowable to be evicted or swapout, including cases:
680 *
681 * a. if share same reservation object with ctx->resv, have assumption
682 * reservation objects should already be locked, so not lock again and
683 * return true directly when either the opreation allow_reserved_eviction
684 * or the target bo already is in delayed free list;
685 *
686 * b. Otherwise, trylock it.
687 */
688static bool ttm_bo_evict_swapout_allowable(struct ttm_buffer_object *bo,
689 struct ttm_operation_ctx *ctx, bool *locked)
690{
691 bool ret = false;
692
693 *locked = false;
694 if (bo->resv == ctx->resv) {
695 reservation_object_assert_held(bo->resv);
696 if (ctx->flags & TTM_OPT_FLAG_ALLOW_RES_EVICT
697 || !list_empty(&bo->ddestroy))
698 ret = true;
699 } else {
700 *locked = reservation_object_trylock(bo->resv);
701 ret = *locked;
702 }
703
704 return ret;
705}
706
707static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
708 uint32_t mem_type,
709 const struct ttm_place *place,
710 struct ttm_operation_ctx *ctx)
711{
712 struct ttm_bo_global *glob = bdev->glob;
713 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
714 struct ttm_buffer_object *bo = NULL;
715 bool locked = false;
716 unsigned i;
717 int ret;
718
719 spin_lock(&glob->lru_lock);
720 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
721 list_for_each_entry(bo, &man->lru[i], lru) {
722 if (!ttm_bo_evict_swapout_allowable(bo, ctx, &locked))
723 continue;
724
725 if (place && !bdev->driver->eviction_valuable(bo,
726 place)) {
727 if (locked)
728 reservation_object_unlock(bo->resv);
729 continue;
730 }
731 break;
732 }
733
734 /* If the inner loop terminated early, we have our candidate */
735 if (&bo->lru != &man->lru[i])
736 break;
737
738 bo = NULL;
739 }
740
741 if (!bo) {
742 spin_unlock(&glob->lru_lock);
743 return -EBUSY;
744 }
745
746 kref_get(&bo->list_kref);
747
748 if (!list_empty(&bo->ddestroy)) {
749 ret = ttm_bo_cleanup_refs(bo, ctx->interruptible,
750 ctx->no_wait_gpu, locked);
751 kref_put(&bo->list_kref, ttm_bo_release_list);
752 return ret;
753 }
754
755 ttm_bo_del_from_lru(bo);
756 spin_unlock(&glob->lru_lock);
757
758 ret = ttm_bo_evict(bo, ctx);
759 if (locked) {
760 ttm_bo_unreserve(bo);
761 } else {
762 spin_lock(&glob->lru_lock);
763 ttm_bo_add_to_lru(bo);
764 spin_unlock(&glob->lru_lock);
765 }
766
767 kref_put(&bo->list_kref, ttm_bo_release_list);
768 return ret;
769}
770
771void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
772{
773 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
774
775 if (mem->mm_node)
776 (*man->func->put_node)(man, mem);
777}
778EXPORT_SYMBOL(ttm_bo_mem_put);
779
780/**
781 * Add the last move fence to the BO and reserve a new shared slot.
782 */
783static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
784 struct ttm_mem_type_manager *man,
785 struct ttm_mem_reg *mem)
786{
787 struct dma_fence *fence;
788 int ret;
789
790 spin_lock(&man->move_lock);
791 fence = dma_fence_get(man->move);
792 spin_unlock(&man->move_lock);
793
794 if (fence) {
795 reservation_object_add_shared_fence(bo->resv, fence);
796
797 ret = reservation_object_reserve_shared(bo->resv);
798 if (unlikely(ret))
799 return ret;
800
801 dma_fence_put(bo->moving);
802 bo->moving = fence;
803 }
804
805 return 0;
806}
807
808/**
809 * Repeatedly evict memory from the LRU for @mem_type until we create enough
810 * space, or we've evicted everything and there isn't enough space.
811 */
812static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
813 uint32_t mem_type,
814 const struct ttm_place *place,
815 struct ttm_mem_reg *mem,
816 struct ttm_operation_ctx *ctx)
817{
818 struct ttm_bo_device *bdev = bo->bdev;
819 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
820 int ret;
821
822 do {
823 ret = (*man->func->get_node)(man, bo, place, mem);
824 if (unlikely(ret != 0))
825 return ret;
826 if (mem->mm_node)
827 break;
828 ret = ttm_mem_evict_first(bdev, mem_type, place, ctx);
829 if (unlikely(ret != 0))
830 return ret;
831 } while (1);
832 mem->mem_type = mem_type;
833 return ttm_bo_add_move_fence(bo, man, mem);
834}
835
836static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
837 uint32_t cur_placement,
838 uint32_t proposed_placement)
839{
840 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
841 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
842
843 /**
844 * Keep current caching if possible.
845 */
846
847 if ((cur_placement & caching) != 0)
848 result |= (cur_placement & caching);
849 else if ((man->default_caching & caching) != 0)
850 result |= man->default_caching;
851 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
852 result |= TTM_PL_FLAG_CACHED;
853 else if ((TTM_PL_FLAG_WC & caching) != 0)
854 result |= TTM_PL_FLAG_WC;
855 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
856 result |= TTM_PL_FLAG_UNCACHED;
857
858 return result;
859}
860
861static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
862 uint32_t mem_type,
863 const struct ttm_place *place,
864 uint32_t *masked_placement)
865{
866 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
867
868 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
869 return false;
870
871 if ((place->flags & man->available_caching) == 0)
872 return false;
873
874 cur_flags |= (place->flags & man->available_caching);
875
876 *masked_placement = cur_flags;
877 return true;
878}
879
880/**
881 * Creates space for memory region @mem according to its type.
882 *
883 * This function first searches for free space in compatible memory types in
884 * the priority order defined by the driver. If free space isn't found, then
885 * ttm_bo_mem_force_space is attempted in priority order to evict and find
886 * space.
887 */
888int ttm_bo_mem_space(struct ttm_buffer_object *bo,
889 struct ttm_placement *placement,
890 struct ttm_mem_reg *mem,
891 struct ttm_operation_ctx *ctx)
892{
893 struct ttm_bo_device *bdev = bo->bdev;
894 struct ttm_mem_type_manager *man;
895 uint32_t mem_type = TTM_PL_SYSTEM;
896 uint32_t cur_flags = 0;
897 bool type_found = false;
898 bool type_ok = false;
899 bool has_erestartsys = false;
900 int i, ret;
901
902 ret = reservation_object_reserve_shared(bo->resv);
903 if (unlikely(ret))
904 return ret;
905
906 mem->mm_node = NULL;
907 for (i = 0; i < placement->num_placement; ++i) {
908 const struct ttm_place *place = &placement->placement[i];
909
910 ret = ttm_mem_type_from_place(place, &mem_type);
911 if (ret)
912 return ret;
913 man = &bdev->man[mem_type];
914 if (!man->has_type || !man->use_type)
915 continue;
916
917 type_ok = ttm_bo_mt_compatible(man, mem_type, place,
918 &cur_flags);
919
920 if (!type_ok)
921 continue;
922
923 type_found = true;
924 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
925 cur_flags);
926 /*
927 * Use the access and other non-mapping-related flag bits from
928 * the memory placement flags to the current flags
929 */
930 ttm_flag_masked(&cur_flags, place->flags,
931 ~TTM_PL_MASK_MEMTYPE);
932
933 if (mem_type == TTM_PL_SYSTEM)
934 break;
935
936 ret = (*man->func->get_node)(man, bo, place, mem);
937 if (unlikely(ret))
938 return ret;
939
940 if (mem->mm_node) {
941 ret = ttm_bo_add_move_fence(bo, man, mem);
942 if (unlikely(ret)) {
943 (*man->func->put_node)(man, mem);
944 return ret;
945 }
946 break;
947 }
948 }
949
950 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
951 mem->mem_type = mem_type;
952 mem->placement = cur_flags;
953 return 0;
954 }
955
956 for (i = 0; i < placement->num_busy_placement; ++i) {
957 const struct ttm_place *place = &placement->busy_placement[i];
958
959 ret = ttm_mem_type_from_place(place, &mem_type);
960 if (ret)
961 return ret;
962 man = &bdev->man[mem_type];
963 if (!man->has_type || !man->use_type)
964 continue;
965 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
966 continue;
967
968 type_found = true;
969 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
970 cur_flags);
971 /*
972 * Use the access and other non-mapping-related flag bits from
973 * the memory placement flags to the current flags
974 */
975 ttm_flag_masked(&cur_flags, place->flags,
976 ~TTM_PL_MASK_MEMTYPE);
977
978 if (mem_type == TTM_PL_SYSTEM) {
979 mem->mem_type = mem_type;
980 mem->placement = cur_flags;
981 mem->mm_node = NULL;
982 return 0;
983 }
984
985 ret = ttm_bo_mem_force_space(bo, mem_type, place, mem, ctx);
986 if (ret == 0 && mem->mm_node) {
987 mem->placement = cur_flags;
988 return 0;
989 }
990 if (ret == -ERESTARTSYS)
991 has_erestartsys = true;
992 }
993
994 if (!type_found) {
995 pr_err(TTM_PFX "No compatible memory type found\n");
996 return -EINVAL;
997 }
998
999 return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1000}
1001EXPORT_SYMBOL(ttm_bo_mem_space);
1002
1003static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1004 struct ttm_placement *placement,
1005 struct ttm_operation_ctx *ctx)
1006{
1007 int ret = 0;
1008 struct ttm_mem_reg mem;
1009
1010 reservation_object_assert_held(bo->resv);
1011
1012 mem.num_pages = bo->num_pages;
1013 mem.size = mem.num_pages << PAGE_SHIFT;
1014 mem.page_alignment = bo->mem.page_alignment;
1015 mem.bus.io_reserved_vm = false;
1016 mem.bus.io_reserved_count = 0;
1017 /*
1018 * Determine where to move the buffer.
1019 */
1020 ret = ttm_bo_mem_space(bo, placement, &mem, ctx);
1021 if (ret)
1022 goto out_unlock;
1023 ret = ttm_bo_handle_move_mem(bo, &mem, false, ctx);
1024out_unlock:
1025 if (ret && mem.mm_node)
1026 ttm_bo_mem_put(bo, &mem);
1027 return ret;
1028}
1029
1030static bool ttm_bo_places_compat(const struct ttm_place *places,
1031 unsigned num_placement,
1032 struct ttm_mem_reg *mem,
1033 uint32_t *new_flags)
1034{
1035 unsigned i;
1036
1037 for (i = 0; i < num_placement; i++) {
1038 const struct ttm_place *heap = &places[i];
1039
1040 if (mem->mm_node && (mem->start < heap->fpfn ||
1041 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1042 continue;
1043
1044 *new_flags = heap->flags;
1045 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1046 (*new_flags & mem->placement & TTM_PL_MASK_MEM) &&
1047 (!(*new_flags & TTM_PL_FLAG_CONTIGUOUS) ||
1048 (mem->placement & TTM_PL_FLAG_CONTIGUOUS)))
1049 return true;
1050 }
1051 return false;
1052}
1053
1054bool ttm_bo_mem_compat(struct ttm_placement *placement,
1055 struct ttm_mem_reg *mem,
1056 uint32_t *new_flags)
1057{
1058 if (ttm_bo_places_compat(placement->placement, placement->num_placement,
1059 mem, new_flags))
1060 return true;
1061
1062 if ((placement->busy_placement != placement->placement ||
1063 placement->num_busy_placement > placement->num_placement) &&
1064 ttm_bo_places_compat(placement->busy_placement,
1065 placement->num_busy_placement,
1066 mem, new_flags))
1067 return true;
1068
1069 return false;
1070}
1071EXPORT_SYMBOL(ttm_bo_mem_compat);
1072
1073int ttm_bo_validate(struct ttm_buffer_object *bo,
1074 struct ttm_placement *placement,
1075 struct ttm_operation_ctx *ctx)
1076{
1077 int ret;
1078 uint32_t new_flags;
1079
1080 reservation_object_assert_held(bo->resv);
1081 /*
1082 * Check whether we need to move buffer.
1083 */
1084 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1085 ret = ttm_bo_move_buffer(bo, placement, ctx);
1086 if (ret)
1087 return ret;
1088 } else {
1089 /*
1090 * Use the access and other non-mapping-related flag bits from
1091 * the compatible memory placement flags to the active flags
1092 */
1093 ttm_flag_masked(&bo->mem.placement, new_flags,
1094 ~TTM_PL_MASK_MEMTYPE);
1095 }
1096 /*
1097 * We might need to add a TTM.
1098 */
1099 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1100 ret = ttm_tt_create(bo, true);
1101 if (ret)
1102 return ret;
1103 }
1104 return 0;
1105}
1106EXPORT_SYMBOL(ttm_bo_validate);
1107
1108int ttm_bo_init_reserved(struct ttm_bo_device *bdev,
1109 struct ttm_buffer_object *bo,
1110 unsigned long size,
1111 enum ttm_bo_type type,
1112 struct ttm_placement *placement,
1113 uint32_t page_alignment,
1114 struct ttm_operation_ctx *ctx,
1115 size_t acc_size,
1116 struct sg_table *sg,
1117 struct reservation_object *resv,
1118 void (*destroy) (struct ttm_buffer_object *))
1119{
1120 int ret = 0;
1121 unsigned long num_pages;
1122 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1123 bool locked;
1124
1125 ret = ttm_mem_global_alloc(mem_glob, acc_size, ctx);
1126 if (ret) {
1127 pr_err("Out of kernel memory\n");
1128 if (destroy)
1129 (*destroy)(bo);
1130 else
1131 kfree(bo);
1132 return -ENOMEM;
1133 }
1134
1135 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1136 if (num_pages == 0) {
1137 pr_err("Illegal buffer object size\n");
1138 if (destroy)
1139 (*destroy)(bo);
1140 else
1141 kfree(bo);
1142 ttm_mem_global_free(mem_glob, acc_size);
1143 return -EINVAL;
1144 }
1145 bo->destroy = destroy ? destroy : ttm_bo_default_destroy;
1146
1147 kref_init(&bo->kref);
1148 kref_init(&bo->list_kref);
1149 atomic_set(&bo->cpu_writers, 0);
1150 INIT_LIST_HEAD(&bo->lru);
1151 INIT_LIST_HEAD(&bo->ddestroy);
1152 INIT_LIST_HEAD(&bo->swap);
1153 INIT_LIST_HEAD(&bo->io_reserve_lru);
1154 mutex_init(&bo->wu_mutex);
1155 bo->bdev = bdev;
1156 bo->type = type;
1157 bo->num_pages = num_pages;
1158 bo->mem.size = num_pages << PAGE_SHIFT;
1159 bo->mem.mem_type = TTM_PL_SYSTEM;
1160 bo->mem.num_pages = bo->num_pages;
1161 bo->mem.mm_node = NULL;
1162 bo->mem.page_alignment = page_alignment;
1163 bo->mem.bus.io_reserved_vm = false;
1164 bo->mem.bus.io_reserved_count = 0;
1165 bo->moving = NULL;
1166 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1167 bo->acc_size = acc_size;
1168 bo->sg = sg;
1169 if (resv) {
1170 bo->resv = resv;
1171 reservation_object_assert_held(bo->resv);
1172 } else {
1173 bo->resv = &bo->ttm_resv;
1174 }
1175 reservation_object_init(&bo->ttm_resv);
1176 atomic_inc(&bo->bdev->glob->bo_count);
1177 drm_vma_node_reset(&bo->vma_node);
1178 bo->priority = 0;
1179
1180 /*
1181 * For ttm_bo_type_device buffers, allocate
1182 * address space from the device.
1183 */
1184 if (bo->type == ttm_bo_type_device ||
1185 bo->type == ttm_bo_type_sg)
1186 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1187 bo->mem.num_pages);
1188
1189 /* passed reservation objects should already be locked,
1190 * since otherwise lockdep will be angered in radeon.
1191 */
1192 if (!resv) {
1193 locked = reservation_object_trylock(bo->resv);
1194 WARN_ON(!locked);
1195 }
1196
1197 if (likely(!ret))
1198 ret = ttm_bo_validate(bo, placement, ctx);
1199
1200 if (unlikely(ret)) {
1201 if (!resv)
1202 ttm_bo_unreserve(bo);
1203
1204 ttm_bo_unref(&bo);
1205 return ret;
1206 }
1207
1208 if (resv && !(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1209 spin_lock(&bdev->glob->lru_lock);
1210 ttm_bo_add_to_lru(bo);
1211 spin_unlock(&bdev->glob->lru_lock);
1212 }
1213
1214 return ret;
1215}
1216EXPORT_SYMBOL(ttm_bo_init_reserved);
1217
1218int ttm_bo_init(struct ttm_bo_device *bdev,
1219 struct ttm_buffer_object *bo,
1220 unsigned long size,
1221 enum ttm_bo_type type,
1222 struct ttm_placement *placement,
1223 uint32_t page_alignment,
1224 bool interruptible,
1225 size_t acc_size,
1226 struct sg_table *sg,
1227 struct reservation_object *resv,
1228 void (*destroy) (struct ttm_buffer_object *))
1229{
1230 struct ttm_operation_ctx ctx = { interruptible, false };
1231 int ret;
1232
1233 ret = ttm_bo_init_reserved(bdev, bo, size, type, placement,
1234 page_alignment, &ctx, acc_size,
1235 sg, resv, destroy);
1236 if (ret)
1237 return ret;
1238
1239 if (!resv)
1240 ttm_bo_unreserve(bo);
1241
1242 return 0;
1243}
1244EXPORT_SYMBOL(ttm_bo_init);
1245
1246size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1247 unsigned long bo_size,
1248 unsigned struct_size)
1249{
1250 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1251 size_t size = 0;
1252
1253 size += ttm_round_pot(struct_size);
1254 size += ttm_round_pot(npages * sizeof(void *));
1255 size += ttm_round_pot(sizeof(struct ttm_tt));
1256 return size;
1257}
1258EXPORT_SYMBOL(ttm_bo_acc_size);
1259
1260size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1261 unsigned long bo_size,
1262 unsigned struct_size)
1263{
1264 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1265 size_t size = 0;
1266
1267 size += ttm_round_pot(struct_size);
1268 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1269 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1270 return size;
1271}
1272EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1273
1274int ttm_bo_create(struct ttm_bo_device *bdev,
1275 unsigned long size,
1276 enum ttm_bo_type type,
1277 struct ttm_placement *placement,
1278 uint32_t page_alignment,
1279 bool interruptible,
1280 struct ttm_buffer_object **p_bo)
1281{
1282 struct ttm_buffer_object *bo;
1283 size_t acc_size;
1284 int ret;
1285
1286 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1287 if (unlikely(bo == NULL))
1288 return -ENOMEM;
1289
1290 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1291 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1292 interruptible, acc_size,
1293 NULL, NULL, NULL);
1294 if (likely(ret == 0))
1295 *p_bo = bo;
1296
1297 return ret;
1298}
1299EXPORT_SYMBOL(ttm_bo_create);
1300
1301static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1302 unsigned mem_type)
1303{
1304 struct ttm_operation_ctx ctx = {
1305 .interruptible = false,
1306 .no_wait_gpu = false,
1307 .flags = TTM_OPT_FLAG_FORCE_ALLOC
1308 };
1309 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1310 struct ttm_bo_global *glob = bdev->glob;
1311 struct dma_fence *fence;
1312 int ret;
1313 unsigned i;
1314
1315 /*
1316 * Can't use standard list traversal since we're unlocking.
1317 */
1318
1319 spin_lock(&glob->lru_lock);
1320 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1321 while (!list_empty(&man->lru[i])) {
1322 spin_unlock(&glob->lru_lock);
1323 ret = ttm_mem_evict_first(bdev, mem_type, NULL, &ctx);
1324 if (ret)
1325 return ret;
1326 spin_lock(&glob->lru_lock);
1327 }
1328 }
1329 spin_unlock(&glob->lru_lock);
1330
1331 spin_lock(&man->move_lock);
1332 fence = dma_fence_get(man->move);
1333 spin_unlock(&man->move_lock);
1334
1335 if (fence) {
1336 ret = dma_fence_wait(fence, false);
1337 dma_fence_put(fence);
1338 if (ret)
1339 return ret;
1340 }
1341
1342 return 0;
1343}
1344
1345int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1346{
1347 struct ttm_mem_type_manager *man;
1348 int ret = -EINVAL;
1349
1350 if (mem_type >= TTM_NUM_MEM_TYPES) {
1351 pr_err("Illegal memory type %d\n", mem_type);
1352 return ret;
1353 }
1354 man = &bdev->man[mem_type];
1355
1356 if (!man->has_type) {
1357 pr_err("Trying to take down uninitialized memory manager type %u\n",
1358 mem_type);
1359 return ret;
1360 }
1361
1362 man->use_type = false;
1363 man->has_type = false;
1364
1365 ret = 0;
1366 if (mem_type > 0) {
1367 ret = ttm_bo_force_list_clean(bdev, mem_type);
1368 if (ret) {
1369 pr_err("Cleanup eviction failed\n");
1370 return ret;
1371 }
1372
1373 ret = (*man->func->takedown)(man);
1374 }
1375
1376 dma_fence_put(man->move);
1377 man->move = NULL;
1378
1379 return ret;
1380}
1381EXPORT_SYMBOL(ttm_bo_clean_mm);
1382
1383int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1384{
1385 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1386
1387 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1388 pr_err("Illegal memory manager memory type %u\n", mem_type);
1389 return -EINVAL;
1390 }
1391
1392 if (!man->has_type) {
1393 pr_err("Memory type %u has not been initialized\n", mem_type);
1394 return 0;
1395 }
1396
1397 return ttm_bo_force_list_clean(bdev, mem_type);
1398}
1399EXPORT_SYMBOL(ttm_bo_evict_mm);
1400
1401int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1402 unsigned long p_size)
1403{
1404 int ret;
1405 struct ttm_mem_type_manager *man;
1406 unsigned i;
1407
1408 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1409 man = &bdev->man[type];
1410 BUG_ON(man->has_type);
1411 man->io_reserve_fastpath = true;
1412 man->use_io_reserve_lru = false;
1413 mutex_init(&man->io_reserve_mutex);
1414 spin_lock_init(&man->move_lock);
1415 INIT_LIST_HEAD(&man->io_reserve_lru);
1416
1417 ret = bdev->driver->init_mem_type(bdev, type, man);
1418 if (ret)
1419 return ret;
1420 man->bdev = bdev;
1421
1422 if (type != TTM_PL_SYSTEM) {
1423 ret = (*man->func->init)(man, p_size);
1424 if (ret)
1425 return ret;
1426 }
1427 man->has_type = true;
1428 man->use_type = true;
1429 man->size = p_size;
1430
1431 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1432 INIT_LIST_HEAD(&man->lru[i]);
1433 man->move = NULL;
1434
1435 return 0;
1436}
1437EXPORT_SYMBOL(ttm_bo_init_mm);
1438
1439static void ttm_bo_global_kobj_release(struct kobject *kobj)
1440{
1441 struct ttm_bo_global *glob =
1442 container_of(kobj, struct ttm_bo_global, kobj);
1443
1444 __free_page(glob->dummy_read_page);
1445 kfree(glob);
1446}
1447
1448void ttm_bo_global_release(struct drm_global_reference *ref)
1449{
1450 struct ttm_bo_global *glob = ref->object;
1451
1452 kobject_del(&glob->kobj);
1453 kobject_put(&glob->kobj);
1454}
1455EXPORT_SYMBOL(ttm_bo_global_release);
1456
1457int ttm_bo_global_init(struct drm_global_reference *ref)
1458{
1459 struct ttm_bo_global_ref *bo_ref =
1460 container_of(ref, struct ttm_bo_global_ref, ref);
1461 struct ttm_bo_global *glob = ref->object;
1462 int ret;
1463 unsigned i;
1464
1465 mutex_init(&glob->device_list_mutex);
1466 spin_lock_init(&glob->lru_lock);
1467 glob->mem_glob = bo_ref->mem_glob;
1468 glob->mem_glob->bo_glob = glob;
1469 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1470
1471 if (unlikely(glob->dummy_read_page == NULL)) {
1472 ret = -ENOMEM;
1473 goto out_no_drp;
1474 }
1475
1476 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1477 INIT_LIST_HEAD(&glob->swap_lru[i]);
1478 INIT_LIST_HEAD(&glob->device_list);
1479 atomic_set(&glob->bo_count, 0);
1480
1481 ret = kobject_init_and_add(
1482 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1483 if (unlikely(ret != 0))
1484 kobject_put(&glob->kobj);
1485 return ret;
1486out_no_drp:
1487 kfree(glob);
1488 return ret;
1489}
1490EXPORT_SYMBOL(ttm_bo_global_init);
1491
1492
1493int ttm_bo_device_release(struct ttm_bo_device *bdev)
1494{
1495 int ret = 0;
1496 unsigned i = TTM_NUM_MEM_TYPES;
1497 struct ttm_mem_type_manager *man;
1498 struct ttm_bo_global *glob = bdev->glob;
1499
1500 while (i--) {
1501 man = &bdev->man[i];
1502 if (man->has_type) {
1503 man->use_type = false;
1504 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1505 ret = -EBUSY;
1506 pr_err("DRM memory manager type %d is not clean\n",
1507 i);
1508 }
1509 man->has_type = false;
1510 }
1511 }
1512
1513 mutex_lock(&glob->device_list_mutex);
1514 list_del(&bdev->device_list);
1515 mutex_unlock(&glob->device_list_mutex);
1516
1517 cancel_delayed_work_sync(&bdev->wq);
1518
1519 if (ttm_bo_delayed_delete(bdev, true))
1520 pr_debug("Delayed destroy list was clean\n");
1521
1522 spin_lock(&glob->lru_lock);
1523 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i)
1524 if (list_empty(&bdev->man[0].lru[0]))
1525 pr_debug("Swap list %d was clean\n", i);
1526 spin_unlock(&glob->lru_lock);
1527
1528 drm_vma_offset_manager_destroy(&bdev->vma_manager);
1529
1530 return ret;
1531}
1532EXPORT_SYMBOL(ttm_bo_device_release);
1533
1534int ttm_bo_device_init(struct ttm_bo_device *bdev,
1535 struct ttm_bo_global *glob,
1536 struct ttm_bo_driver *driver,
1537 struct address_space *mapping,
1538 uint64_t file_page_offset,
1539 bool need_dma32)
1540{
1541 int ret = -EINVAL;
1542
1543 bdev->driver = driver;
1544
1545 memset(bdev->man, 0, sizeof(bdev->man));
1546
1547 /*
1548 * Initialize the system memory buffer type.
1549 * Other types need to be driver / IOCTL initialized.
1550 */
1551 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1552 if (unlikely(ret != 0))
1553 goto out_no_sys;
1554
1555 drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1556 0x10000000);
1557 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1558 INIT_LIST_HEAD(&bdev->ddestroy);
1559 bdev->dev_mapping = mapping;
1560 bdev->glob = glob;
1561 bdev->need_dma32 = need_dma32;
1562 mutex_lock(&glob->device_list_mutex);
1563 list_add_tail(&bdev->device_list, &glob->device_list);
1564 mutex_unlock(&glob->device_list_mutex);
1565
1566 return 0;
1567out_no_sys:
1568 return ret;
1569}
1570EXPORT_SYMBOL(ttm_bo_device_init);
1571
1572/*
1573 * buffer object vm functions.
1574 */
1575
1576bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1577{
1578 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1579
1580 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1581 if (mem->mem_type == TTM_PL_SYSTEM)
1582 return false;
1583
1584 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1585 return false;
1586
1587 if (mem->placement & TTM_PL_FLAG_CACHED)
1588 return false;
1589 }
1590 return true;
1591}
1592
1593void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1594{
1595 struct ttm_bo_device *bdev = bo->bdev;
1596
1597 drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1598 ttm_mem_io_free_vm(bo);
1599}
1600
1601void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1602{
1603 struct ttm_bo_device *bdev = bo->bdev;
1604 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1605
1606 ttm_mem_io_lock(man, false);
1607 ttm_bo_unmap_virtual_locked(bo);
1608 ttm_mem_io_unlock(man);
1609}
1610
1611
1612EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1613
1614int ttm_bo_wait(struct ttm_buffer_object *bo,
1615 bool interruptible, bool no_wait)
1616{
1617 long timeout = 15 * HZ;
1618
1619 if (no_wait) {
1620 if (reservation_object_test_signaled_rcu(bo->resv, true))
1621 return 0;
1622 else
1623 return -EBUSY;
1624 }
1625
1626 timeout = reservation_object_wait_timeout_rcu(bo->resv, true,
1627 interruptible, timeout);
1628 if (timeout < 0)
1629 return timeout;
1630
1631 if (timeout == 0)
1632 return -EBUSY;
1633
1634 reservation_object_add_excl_fence(bo->resv, NULL);
1635 return 0;
1636}
1637EXPORT_SYMBOL(ttm_bo_wait);
1638
1639int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1640{
1641 int ret = 0;
1642
1643 /*
1644 * Using ttm_bo_reserve makes sure the lru lists are updated.
1645 */
1646
1647 ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1648 if (unlikely(ret != 0))
1649 return ret;
1650 ret = ttm_bo_wait(bo, true, no_wait);
1651 if (likely(ret == 0))
1652 atomic_inc(&bo->cpu_writers);
1653 ttm_bo_unreserve(bo);
1654 return ret;
1655}
1656EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1657
1658void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1659{
1660 atomic_dec(&bo->cpu_writers);
1661}
1662EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1663
1664/**
1665 * A buffer object shrink method that tries to swap out the first
1666 * buffer object on the bo_global::swap_lru list.
1667 */
1668int ttm_bo_swapout(struct ttm_bo_global *glob, struct ttm_operation_ctx *ctx)
1669{
1670 struct ttm_buffer_object *bo;
1671 int ret = -EBUSY;
1672 bool locked;
1673 unsigned i;
1674
1675 spin_lock(&glob->lru_lock);
1676 for (i = 0; i < TTM_MAX_BO_PRIORITY; ++i) {
1677 list_for_each_entry(bo, &glob->swap_lru[i], swap) {
1678 if (ttm_bo_evict_swapout_allowable(bo, ctx, &locked)) {
1679 ret = 0;
1680 break;
1681 }
1682 }
1683 if (!ret)
1684 break;
1685 }
1686
1687 if (ret) {
1688 spin_unlock(&glob->lru_lock);
1689 return ret;
1690 }
1691
1692 kref_get(&bo->list_kref);
1693
1694 if (!list_empty(&bo->ddestroy)) {
1695 ret = ttm_bo_cleanup_refs(bo, false, false, locked);
1696 kref_put(&bo->list_kref, ttm_bo_release_list);
1697 return ret;
1698 }
1699
1700 ttm_bo_del_from_lru(bo);
1701 spin_unlock(&glob->lru_lock);
1702
1703 /**
1704 * Move to system cached
1705 */
1706
1707 if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1708 bo->ttm->caching_state != tt_cached) {
1709 struct ttm_operation_ctx ctx = { false, false };
1710 struct ttm_mem_reg evict_mem;
1711
1712 evict_mem = bo->mem;
1713 evict_mem.mm_node = NULL;
1714 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1715 evict_mem.mem_type = TTM_PL_SYSTEM;
1716
1717 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, &ctx);
1718 if (unlikely(ret != 0))
1719 goto out;
1720 }
1721
1722 /**
1723 * Make sure BO is idle.
1724 */
1725
1726 ret = ttm_bo_wait(bo, false, false);
1727 if (unlikely(ret != 0))
1728 goto out;
1729
1730 ttm_bo_unmap_virtual(bo);
1731
1732 /**
1733 * Swap out. Buffer will be swapped in again as soon as
1734 * anyone tries to access a ttm page.
1735 */
1736
1737 if (bo->bdev->driver->swap_notify)
1738 bo->bdev->driver->swap_notify(bo);
1739
1740 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1741out:
1742
1743 /**
1744 *
1745 * Unreserve without putting on LRU to avoid swapping out an
1746 * already swapped buffer.
1747 */
1748 if (locked)
1749 reservation_object_unlock(bo->resv);
1750 kref_put(&bo->list_kref, ttm_bo_release_list);
1751 return ret;
1752}
1753EXPORT_SYMBOL(ttm_bo_swapout);
1754
1755void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1756{
1757 struct ttm_operation_ctx ctx = {
1758 .interruptible = false,
1759 .no_wait_gpu = false
1760 };
1761
1762 while (ttm_bo_swapout(bdev->glob, &ctx) == 0)
1763 ;
1764}
1765EXPORT_SYMBOL(ttm_bo_swapout_all);
1766
1767/**
1768 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1769 * unreserved
1770 *
1771 * @bo: Pointer to buffer
1772 */
1773int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1774{
1775 int ret;
1776
1777 /*
1778 * In the absense of a wait_unlocked API,
1779 * Use the bo::wu_mutex to avoid triggering livelocks due to
1780 * concurrent use of this function. Note that this use of
1781 * bo::wu_mutex can go away if we change locking order to
1782 * mmap_sem -> bo::reserve.
1783 */
1784 ret = mutex_lock_interruptible(&bo->wu_mutex);
1785 if (unlikely(ret != 0))
1786 return -ERESTARTSYS;
1787 if (!ww_mutex_is_locked(&bo->resv->lock))
1788 goto out_unlock;
1789 ret = reservation_object_lock_interruptible(bo->resv, NULL);
1790 if (ret == -EINTR)
1791 ret = -ERESTARTSYS;
1792 if (unlikely(ret != 0))
1793 goto out_unlock;
1794 reservation_object_unlock(bo->resv);
1795
1796out_unlock:
1797 mutex_unlock(&bo->wu_mutex);
1798 return ret;
1799}