Loading...
1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
2/**************************************************************************
3 *
4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
5 * All Rights Reserved.
6 *
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the
9 * "Software"), to deal in the Software without restriction, including
10 * without limitation the rights to use, copy, modify, merge, publish,
11 * distribute, sub license, and/or sell copies of the Software, and to
12 * permit persons to whom the Software is furnished to do so, subject to
13 * the following conditions:
14 *
15 * The above copyright notice and this permission notice (including the
16 * next paragraph) shall be included in all copies or substantial portions
17 * of the Software.
18 *
19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
26 *
27 **************************************************************************/
28/*
29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
30 */
31
32#define pr_fmt(fmt) "[TTM] " fmt
33
34#include <drm/ttm/ttm_bo.h>
35#include <drm/ttm/ttm_placement.h>
36#include <drm/ttm/ttm_tt.h>
37
38#include <linux/jiffies.h>
39#include <linux/slab.h>
40#include <linux/sched.h>
41#include <linux/mm.h>
42#include <linux/file.h>
43#include <linux/module.h>
44#include <linux/atomic.h>
45#include <linux/dma-resv.h>
46
47#include "ttm_module.h"
48
49static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
50 struct ttm_placement *placement)
51{
52 struct drm_printer p = drm_dbg_printer(NULL, DRM_UT_CORE, TTM_PFX);
53 struct ttm_resource_manager *man;
54 int i, mem_type;
55
56 for (i = 0; i < placement->num_placement; i++) {
57 mem_type = placement->placement[i].mem_type;
58 drm_printf(&p, " placement[%d]=0x%08X (%d)\n",
59 i, placement->placement[i].flags, mem_type);
60 man = ttm_manager_type(bo->bdev, mem_type);
61 ttm_resource_manager_debug(man, &p);
62 }
63}
64
65/**
66 * ttm_bo_move_to_lru_tail
67 *
68 * @bo: The buffer object.
69 *
70 * Move this BO to the tail of all lru lists used to lookup and reserve an
71 * object. This function must be called with struct ttm_global::lru_lock
72 * held, and is used to make a BO less likely to be considered for eviction.
73 */
74void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
75{
76 dma_resv_assert_held(bo->base.resv);
77
78 if (bo->resource)
79 ttm_resource_move_to_lru_tail(bo->resource);
80}
81EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
82
83/**
84 * ttm_bo_set_bulk_move - update BOs bulk move object
85 *
86 * @bo: The buffer object.
87 * @bulk: bulk move structure
88 *
89 * Update the BOs bulk move object, making sure that resources are added/removed
90 * as well. A bulk move allows to move many resource on the LRU at once,
91 * resulting in much less overhead of maintaining the LRU.
92 * The only requirement is that the resources stay together on the LRU and are
93 * never separated. This is enforces by setting the bulk_move structure on a BO.
94 * ttm_lru_bulk_move_tail() should be used to move all resources to the tail of
95 * their LRU list.
96 */
97void ttm_bo_set_bulk_move(struct ttm_buffer_object *bo,
98 struct ttm_lru_bulk_move *bulk)
99{
100 dma_resv_assert_held(bo->base.resv);
101
102 if (bo->bulk_move == bulk)
103 return;
104
105 spin_lock(&bo->bdev->lru_lock);
106 if (bo->resource)
107 ttm_resource_del_bulk_move(bo->resource, bo);
108 bo->bulk_move = bulk;
109 if (bo->resource)
110 ttm_resource_add_bulk_move(bo->resource, bo);
111 spin_unlock(&bo->bdev->lru_lock);
112}
113EXPORT_SYMBOL(ttm_bo_set_bulk_move);
114
115static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
116 struct ttm_resource *mem, bool evict,
117 struct ttm_operation_ctx *ctx,
118 struct ttm_place *hop)
119{
120 struct ttm_device *bdev = bo->bdev;
121 bool old_use_tt, new_use_tt;
122 int ret;
123
124 old_use_tt = !bo->resource || ttm_manager_type(bdev, bo->resource->mem_type)->use_tt;
125 new_use_tt = ttm_manager_type(bdev, mem->mem_type)->use_tt;
126
127 ttm_bo_unmap_virtual(bo);
128
129 /*
130 * Create and bind a ttm if required.
131 */
132
133 if (new_use_tt) {
134 /* Zero init the new TTM structure if the old location should
135 * have used one as well.
136 */
137 ret = ttm_tt_create(bo, old_use_tt);
138 if (ret)
139 goto out_err;
140
141 if (mem->mem_type != TTM_PL_SYSTEM) {
142 ret = ttm_bo_populate(bo, ctx);
143 if (ret)
144 goto out_err;
145 }
146 }
147
148 ret = dma_resv_reserve_fences(bo->base.resv, 1);
149 if (ret)
150 goto out_err;
151
152 ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
153 if (ret) {
154 if (ret == -EMULTIHOP)
155 return ret;
156 goto out_err;
157 }
158
159 ctx->bytes_moved += bo->base.size;
160 return 0;
161
162out_err:
163 if (!old_use_tt)
164 ttm_bo_tt_destroy(bo);
165
166 return ret;
167}
168
169/*
170 * Call bo::reserved.
171 * Will release GPU memory type usage on destruction.
172 * This is the place to put in driver specific hooks to release
173 * driver private resources.
174 * Will release the bo::reserved lock.
175 */
176
177static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
178{
179 if (bo->bdev->funcs->delete_mem_notify)
180 bo->bdev->funcs->delete_mem_notify(bo);
181
182 ttm_bo_tt_destroy(bo);
183 ttm_resource_free(bo, &bo->resource);
184}
185
186static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
187{
188 int r;
189
190 if (bo->base.resv == &bo->base._resv)
191 return 0;
192
193 BUG_ON(!dma_resv_trylock(&bo->base._resv));
194
195 r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
196 dma_resv_unlock(&bo->base._resv);
197 if (r)
198 return r;
199
200 if (bo->type != ttm_bo_type_sg) {
201 /* This works because the BO is about to be destroyed and nobody
202 * reference it any more. The only tricky case is the trylock on
203 * the resv object while holding the lru_lock.
204 */
205 spin_lock(&bo->bdev->lru_lock);
206 bo->base.resv = &bo->base._resv;
207 spin_unlock(&bo->bdev->lru_lock);
208 }
209
210 return r;
211}
212
213static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
214{
215 struct dma_resv *resv = &bo->base._resv;
216 struct dma_resv_iter cursor;
217 struct dma_fence *fence;
218
219 dma_resv_iter_begin(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP);
220 dma_resv_for_each_fence_unlocked(&cursor, fence) {
221 if (!fence->ops->signaled)
222 dma_fence_enable_sw_signaling(fence);
223 }
224 dma_resv_iter_end(&cursor);
225}
226
227/*
228 * Block for the dma_resv object to become idle, lock the buffer and clean up
229 * the resource and tt object.
230 */
231static void ttm_bo_delayed_delete(struct work_struct *work)
232{
233 struct ttm_buffer_object *bo;
234
235 bo = container_of(work, typeof(*bo), delayed_delete);
236
237 dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false,
238 MAX_SCHEDULE_TIMEOUT);
239 dma_resv_lock(bo->base.resv, NULL);
240 ttm_bo_cleanup_memtype_use(bo);
241 dma_resv_unlock(bo->base.resv);
242 ttm_bo_put(bo);
243}
244
245static void ttm_bo_release(struct kref *kref)
246{
247 struct ttm_buffer_object *bo =
248 container_of(kref, struct ttm_buffer_object, kref);
249 struct ttm_device *bdev = bo->bdev;
250 int ret;
251
252 WARN_ON_ONCE(bo->pin_count);
253 WARN_ON_ONCE(bo->bulk_move);
254
255 if (!bo->deleted) {
256 ret = ttm_bo_individualize_resv(bo);
257 if (ret) {
258 /* Last resort, if we fail to allocate memory for the
259 * fences block for the BO to become idle
260 */
261 dma_resv_wait_timeout(bo->base.resv,
262 DMA_RESV_USAGE_BOOKKEEP, false,
263 30 * HZ);
264 }
265
266 if (bo->bdev->funcs->release_notify)
267 bo->bdev->funcs->release_notify(bo);
268
269 drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
270 ttm_mem_io_free(bdev, bo->resource);
271
272 if (!dma_resv_test_signaled(bo->base.resv,
273 DMA_RESV_USAGE_BOOKKEEP) ||
274 (want_init_on_free() && (bo->ttm != NULL)) ||
275 bo->type == ttm_bo_type_sg ||
276 !dma_resv_trylock(bo->base.resv)) {
277 /* The BO is not idle, resurrect it for delayed destroy */
278 ttm_bo_flush_all_fences(bo);
279 bo->deleted = true;
280
281 spin_lock(&bo->bdev->lru_lock);
282
283 /*
284 * Make pinned bos immediately available to
285 * shrinkers, now that they are queued for
286 * destruction.
287 *
288 * FIXME: QXL is triggering this. Can be removed when the
289 * driver is fixed.
290 */
291 if (bo->pin_count) {
292 bo->pin_count = 0;
293 ttm_resource_move_to_lru_tail(bo->resource);
294 }
295
296 kref_init(&bo->kref);
297 spin_unlock(&bo->bdev->lru_lock);
298
299 INIT_WORK(&bo->delayed_delete, ttm_bo_delayed_delete);
300
301 /* Schedule the worker on the closest NUMA node. This
302 * improves performance since system memory might be
303 * cleared on free and that is best done on a CPU core
304 * close to it.
305 */
306 queue_work_node(bdev->pool.nid, bdev->wq, &bo->delayed_delete);
307 return;
308 }
309
310 ttm_bo_cleanup_memtype_use(bo);
311 dma_resv_unlock(bo->base.resv);
312 }
313
314 atomic_dec(&ttm_glob.bo_count);
315 bo->destroy(bo);
316}
317
318/**
319 * ttm_bo_put
320 *
321 * @bo: The buffer object.
322 *
323 * Unreference a buffer object.
324 */
325void ttm_bo_put(struct ttm_buffer_object *bo)
326{
327 kref_put(&bo->kref, ttm_bo_release);
328}
329EXPORT_SYMBOL(ttm_bo_put);
330
331static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
332 struct ttm_operation_ctx *ctx,
333 struct ttm_place *hop)
334{
335 struct ttm_placement hop_placement;
336 struct ttm_resource *hop_mem;
337 int ret;
338
339 hop_placement.num_placement = 1;
340 hop_placement.placement = hop;
341
342 /* find space in the bounce domain */
343 ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
344 if (ret)
345 return ret;
346 /* move to the bounce domain */
347 ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
348 if (ret) {
349 ttm_resource_free(bo, &hop_mem);
350 return ret;
351 }
352 return 0;
353}
354
355static int ttm_bo_evict(struct ttm_buffer_object *bo,
356 struct ttm_operation_ctx *ctx)
357{
358 struct ttm_device *bdev = bo->bdev;
359 struct ttm_resource *evict_mem;
360 struct ttm_placement placement;
361 struct ttm_place hop;
362 int ret = 0;
363
364 memset(&hop, 0, sizeof(hop));
365
366 dma_resv_assert_held(bo->base.resv);
367
368 placement.num_placement = 0;
369 bdev->funcs->evict_flags(bo, &placement);
370
371 if (!placement.num_placement) {
372 ret = ttm_bo_wait_ctx(bo, ctx);
373 if (ret)
374 return ret;
375
376 /*
377 * Since we've already synced, this frees backing store
378 * immediately.
379 */
380 return ttm_bo_pipeline_gutting(bo);
381 }
382
383 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
384 if (ret) {
385 if (ret != -ERESTARTSYS) {
386 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
387 bo);
388 ttm_bo_mem_space_debug(bo, &placement);
389 }
390 goto out;
391 }
392
393 do {
394 ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
395 if (ret != -EMULTIHOP)
396 break;
397
398 ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
399 } while (!ret);
400
401 if (ret) {
402 ttm_resource_free(bo, &evict_mem);
403 if (ret != -ERESTARTSYS && ret != -EINTR)
404 pr_err("Buffer eviction failed\n");
405 }
406out:
407 return ret;
408}
409
410/**
411 * ttm_bo_eviction_valuable
412 *
413 * @bo: The buffer object to evict
414 * @place: the placement we need to make room for
415 *
416 * Check if it is valuable to evict the BO to make room for the given placement.
417 */
418bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
419 const struct ttm_place *place)
420{
421 struct ttm_resource *res = bo->resource;
422 struct ttm_device *bdev = bo->bdev;
423
424 dma_resv_assert_held(bo->base.resv);
425 if (bo->resource->mem_type == TTM_PL_SYSTEM)
426 return true;
427
428 /* Don't evict this BO if it's outside of the
429 * requested placement range
430 */
431 return ttm_resource_intersects(bdev, res, place, bo->base.size);
432}
433EXPORT_SYMBOL(ttm_bo_eviction_valuable);
434
435/**
436 * ttm_bo_evict_first() - Evict the first bo on the manager's LRU list.
437 * @bdev: The ttm device.
438 * @man: The manager whose bo to evict.
439 * @ctx: The TTM operation ctx governing the eviction.
440 *
441 * Return: 0 if successful or the resource disappeared. Negative error code on error.
442 */
443int ttm_bo_evict_first(struct ttm_device *bdev, struct ttm_resource_manager *man,
444 struct ttm_operation_ctx *ctx)
445{
446 struct ttm_resource_cursor cursor;
447 struct ttm_buffer_object *bo;
448 struct ttm_resource *res;
449 unsigned int mem_type;
450 int ret = 0;
451
452 spin_lock(&bdev->lru_lock);
453 res = ttm_resource_manager_first(man, &cursor);
454 ttm_resource_cursor_fini(&cursor);
455 if (!res) {
456 ret = -ENOENT;
457 goto out_no_ref;
458 }
459 bo = res->bo;
460 if (!ttm_bo_get_unless_zero(bo))
461 goto out_no_ref;
462 mem_type = res->mem_type;
463 spin_unlock(&bdev->lru_lock);
464 ret = ttm_bo_reserve(bo, ctx->interruptible, ctx->no_wait_gpu, NULL);
465 if (ret)
466 goto out_no_lock;
467 if (!bo->resource || bo->resource->mem_type != mem_type)
468 goto out_bo_moved;
469
470 if (bo->deleted) {
471 ret = ttm_bo_wait_ctx(bo, ctx);
472 if (!ret)
473 ttm_bo_cleanup_memtype_use(bo);
474 } else {
475 ret = ttm_bo_evict(bo, ctx);
476 }
477out_bo_moved:
478 dma_resv_unlock(bo->base.resv);
479out_no_lock:
480 ttm_bo_put(bo);
481 return ret;
482
483out_no_ref:
484 spin_unlock(&bdev->lru_lock);
485 return ret;
486}
487
488/**
489 * struct ttm_bo_evict_walk - Parameters for the evict walk.
490 */
491struct ttm_bo_evict_walk {
492 /** @walk: The walk base parameters. */
493 struct ttm_lru_walk walk;
494 /** @place: The place passed to the resource allocation. */
495 const struct ttm_place *place;
496 /** @evictor: The buffer object we're trying to make room for. */
497 struct ttm_buffer_object *evictor;
498 /** @res: The allocated resource if any. */
499 struct ttm_resource **res;
500 /** @evicted: Number of successful evictions. */
501 unsigned long evicted;
502};
503
504static s64 ttm_bo_evict_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
505{
506 struct ttm_bo_evict_walk *evict_walk =
507 container_of(walk, typeof(*evict_walk), walk);
508 s64 lret;
509
510 if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, evict_walk->place))
511 return 0;
512
513 if (bo->deleted) {
514 lret = ttm_bo_wait_ctx(bo, walk->ctx);
515 if (!lret)
516 ttm_bo_cleanup_memtype_use(bo);
517 } else {
518 lret = ttm_bo_evict(bo, walk->ctx);
519 }
520
521 if (lret)
522 goto out;
523
524 evict_walk->evicted++;
525 if (evict_walk->res)
526 lret = ttm_resource_alloc(evict_walk->evictor, evict_walk->place,
527 evict_walk->res);
528 if (lret == 0)
529 return 1;
530out:
531 /* Errors that should terminate the walk. */
532 if (lret == -ENOSPC)
533 return -EBUSY;
534
535 return lret;
536}
537
538static const struct ttm_lru_walk_ops ttm_evict_walk_ops = {
539 .process_bo = ttm_bo_evict_cb,
540};
541
542static int ttm_bo_evict_alloc(struct ttm_device *bdev,
543 struct ttm_resource_manager *man,
544 const struct ttm_place *place,
545 struct ttm_buffer_object *evictor,
546 struct ttm_operation_ctx *ctx,
547 struct ww_acquire_ctx *ticket,
548 struct ttm_resource **res)
549{
550 struct ttm_bo_evict_walk evict_walk = {
551 .walk = {
552 .ops = &ttm_evict_walk_ops,
553 .ctx = ctx,
554 .ticket = ticket,
555 },
556 .place = place,
557 .evictor = evictor,
558 .res = res,
559 };
560 s64 lret;
561
562 evict_walk.walk.trylock_only = true;
563 lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
564 if (lret || !ticket)
565 goto out;
566
567 /* If ticket-locking, repeat while making progress. */
568 evict_walk.walk.trylock_only = false;
569 do {
570 /* The walk may clear the evict_walk.walk.ticket field */
571 evict_walk.walk.ticket = ticket;
572 evict_walk.evicted = 0;
573 lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
574 } while (!lret && evict_walk.evicted);
575out:
576 if (lret < 0)
577 return lret;
578 if (lret == 0)
579 return -EBUSY;
580 return 0;
581}
582
583/**
584 * ttm_bo_pin - Pin the buffer object.
585 * @bo: The buffer object to pin
586 *
587 * Make sure the buffer is not evicted any more during memory pressure.
588 * @bo must be unpinned again by calling ttm_bo_unpin().
589 */
590void ttm_bo_pin(struct ttm_buffer_object *bo)
591{
592 dma_resv_assert_held(bo->base.resv);
593 WARN_ON_ONCE(!kref_read(&bo->kref));
594 spin_lock(&bo->bdev->lru_lock);
595 if (bo->resource)
596 ttm_resource_del_bulk_move(bo->resource, bo);
597 if (!bo->pin_count++ && bo->resource)
598 ttm_resource_move_to_lru_tail(bo->resource);
599 spin_unlock(&bo->bdev->lru_lock);
600}
601EXPORT_SYMBOL(ttm_bo_pin);
602
603/**
604 * ttm_bo_unpin - Unpin the buffer object.
605 * @bo: The buffer object to unpin
606 *
607 * Allows the buffer object to be evicted again during memory pressure.
608 */
609void ttm_bo_unpin(struct ttm_buffer_object *bo)
610{
611 dma_resv_assert_held(bo->base.resv);
612 WARN_ON_ONCE(!kref_read(&bo->kref));
613 if (WARN_ON_ONCE(!bo->pin_count))
614 return;
615
616 spin_lock(&bo->bdev->lru_lock);
617 if (!--bo->pin_count && bo->resource) {
618 ttm_resource_add_bulk_move(bo->resource, bo);
619 ttm_resource_move_to_lru_tail(bo->resource);
620 }
621 spin_unlock(&bo->bdev->lru_lock);
622}
623EXPORT_SYMBOL(ttm_bo_unpin);
624
625/*
626 * Add the last move fence to the BO as kernel dependency and reserve a new
627 * fence slot.
628 */
629static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
630 struct ttm_resource_manager *man,
631 bool no_wait_gpu)
632{
633 struct dma_fence *fence;
634 int ret;
635
636 spin_lock(&man->move_lock);
637 fence = dma_fence_get(man->move);
638 spin_unlock(&man->move_lock);
639
640 if (!fence)
641 return 0;
642
643 if (no_wait_gpu) {
644 ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
645 dma_fence_put(fence);
646 return ret;
647 }
648
649 dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
650
651 ret = dma_resv_reserve_fences(bo->base.resv, 1);
652 dma_fence_put(fence);
653 return ret;
654}
655
656/**
657 * ttm_bo_alloc_resource - Allocate backing store for a BO
658 *
659 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
660 * @placement: Proposed new placement for the buffer object
661 * @ctx: if and how to sleep, lock buffers and alloc memory
662 * @force_space: If we should evict buffers to force space
663 * @res: The resulting struct ttm_resource.
664 *
665 * Allocates a resource for the buffer object pointed to by @bo, using the
666 * placement flags in @placement, potentially evicting other buffer objects when
667 * @force_space is true.
668 * This function may sleep while waiting for resources to become available.
669 * Returns:
670 * -EBUSY: No space available (only if no_wait == true).
671 * -ENOSPC: Could not allocate space for the buffer object, either due to
672 * fragmentation or concurrent allocators.
673 * -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
674 */
675static int ttm_bo_alloc_resource(struct ttm_buffer_object *bo,
676 struct ttm_placement *placement,
677 struct ttm_operation_ctx *ctx,
678 bool force_space,
679 struct ttm_resource **res)
680{
681 struct ttm_device *bdev = bo->bdev;
682 struct ww_acquire_ctx *ticket;
683 int i, ret;
684
685 ticket = dma_resv_locking_ctx(bo->base.resv);
686 ret = dma_resv_reserve_fences(bo->base.resv, 1);
687 if (unlikely(ret))
688 return ret;
689
690 for (i = 0; i < placement->num_placement; ++i) {
691 const struct ttm_place *place = &placement->placement[i];
692 struct ttm_resource_manager *man;
693 bool may_evict;
694
695 man = ttm_manager_type(bdev, place->mem_type);
696 if (!man || !ttm_resource_manager_used(man))
697 continue;
698
699 if (place->flags & (force_space ? TTM_PL_FLAG_DESIRED :
700 TTM_PL_FLAG_FALLBACK))
701 continue;
702
703 may_evict = (force_space && place->mem_type != TTM_PL_SYSTEM);
704 ret = ttm_resource_alloc(bo, place, res);
705 if (ret) {
706 if (ret != -ENOSPC)
707 return ret;
708 if (!may_evict)
709 continue;
710
711 ret = ttm_bo_evict_alloc(bdev, man, place, bo, ctx,
712 ticket, res);
713 if (ret == -EBUSY)
714 continue;
715 if (ret)
716 return ret;
717 }
718
719 ret = ttm_bo_add_move_fence(bo, man, ctx->no_wait_gpu);
720 if (unlikely(ret)) {
721 ttm_resource_free(bo, res);
722 if (ret == -EBUSY)
723 continue;
724
725 return ret;
726 }
727 return 0;
728 }
729
730 return -ENOSPC;
731}
732
733/*
734 * ttm_bo_mem_space - Wrapper around ttm_bo_alloc_resource
735 *
736 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
737 * @placement: Proposed new placement for the buffer object
738 * @res: The resulting struct ttm_resource.
739 * @ctx: if and how to sleep, lock buffers and alloc memory
740 *
741 * Tries both idle allocation and forcefully eviction of buffers. See
742 * ttm_bo_alloc_resource for details.
743 */
744int ttm_bo_mem_space(struct ttm_buffer_object *bo,
745 struct ttm_placement *placement,
746 struct ttm_resource **res,
747 struct ttm_operation_ctx *ctx)
748{
749 bool force_space = false;
750 int ret;
751
752 do {
753 ret = ttm_bo_alloc_resource(bo, placement, ctx,
754 force_space, res);
755 force_space = !force_space;
756 } while (ret == -ENOSPC && force_space);
757
758 return ret;
759}
760EXPORT_SYMBOL(ttm_bo_mem_space);
761
762/**
763 * ttm_bo_validate
764 *
765 * @bo: The buffer object.
766 * @placement: Proposed placement for the buffer object.
767 * @ctx: validation parameters.
768 *
769 * Changes placement and caching policy of the buffer object
770 * according proposed placement.
771 * Returns
772 * -EINVAL on invalid proposed placement.
773 * -ENOMEM on out-of-memory condition.
774 * -EBUSY if no_wait is true and buffer busy.
775 * -ERESTARTSYS if interrupted by a signal.
776 */
777int ttm_bo_validate(struct ttm_buffer_object *bo,
778 struct ttm_placement *placement,
779 struct ttm_operation_ctx *ctx)
780{
781 struct ttm_resource *res;
782 struct ttm_place hop;
783 bool force_space;
784 int ret;
785
786 dma_resv_assert_held(bo->base.resv);
787
788 /*
789 * Remove the backing store if no placement is given.
790 */
791 if (!placement->num_placement)
792 return ttm_bo_pipeline_gutting(bo);
793
794 force_space = false;
795 do {
796 /* Check whether we need to move buffer. */
797 if (bo->resource &&
798 ttm_resource_compatible(bo->resource, placement,
799 force_space))
800 return 0;
801
802 /* Moving of pinned BOs is forbidden */
803 if (bo->pin_count)
804 return -EINVAL;
805
806 /*
807 * Determine where to move the buffer.
808 *
809 * If driver determines move is going to need
810 * an extra step then it will return -EMULTIHOP
811 * and the buffer will be moved to the temporary
812 * stop and the driver will be called to make
813 * the second hop.
814 */
815 ret = ttm_bo_alloc_resource(bo, placement, ctx, force_space,
816 &res);
817 force_space = !force_space;
818 if (ret == -ENOSPC)
819 continue;
820 if (ret)
821 return ret;
822
823bounce:
824 ret = ttm_bo_handle_move_mem(bo, res, false, ctx, &hop);
825 if (ret == -EMULTIHOP) {
826 ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
827 /* try and move to final place now. */
828 if (!ret)
829 goto bounce;
830 }
831 if (ret) {
832 ttm_resource_free(bo, &res);
833 return ret;
834 }
835
836 } while (ret && force_space);
837
838 /* For backward compatibility with userspace */
839 if (ret == -ENOSPC)
840 return -ENOMEM;
841
842 /*
843 * We might need to add a TTM.
844 */
845 if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) {
846 ret = ttm_tt_create(bo, true);
847 if (ret)
848 return ret;
849 }
850 return 0;
851}
852EXPORT_SYMBOL(ttm_bo_validate);
853
854/**
855 * ttm_bo_init_reserved
856 *
857 * @bdev: Pointer to a ttm_device struct.
858 * @bo: Pointer to a ttm_buffer_object to be initialized.
859 * @type: Requested type of buffer object.
860 * @placement: Initial placement for buffer object.
861 * @alignment: Data alignment in pages.
862 * @ctx: TTM operation context for memory allocation.
863 * @sg: Scatter-gather table.
864 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
865 * @destroy: Destroy function. Use NULL for kfree().
866 *
867 * This function initializes a pre-allocated struct ttm_buffer_object.
868 * As this object may be part of a larger structure, this function,
869 * together with the @destroy function, enables driver-specific objects
870 * derived from a ttm_buffer_object.
871 *
872 * On successful return, the caller owns an object kref to @bo. The kref and
873 * list_kref are usually set to 1, but note that in some situations, other
874 * tasks may already be holding references to @bo as well.
875 * Furthermore, if resv == NULL, the buffer's reservation lock will be held,
876 * and it is the caller's responsibility to call ttm_bo_unreserve.
877 *
878 * If a failure occurs, the function will call the @destroy function. Thus,
879 * after a failure, dereferencing @bo is illegal and will likely cause memory
880 * corruption.
881 *
882 * Returns
883 * -ENOMEM: Out of memory.
884 * -EINVAL: Invalid placement flags.
885 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
886 */
887int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo,
888 enum ttm_bo_type type, struct ttm_placement *placement,
889 uint32_t alignment, struct ttm_operation_ctx *ctx,
890 struct sg_table *sg, struct dma_resv *resv,
891 void (*destroy) (struct ttm_buffer_object *))
892{
893 int ret;
894
895 kref_init(&bo->kref);
896 bo->bdev = bdev;
897 bo->type = type;
898 bo->page_alignment = alignment;
899 bo->destroy = destroy;
900 bo->pin_count = 0;
901 bo->sg = sg;
902 bo->bulk_move = NULL;
903 if (resv)
904 bo->base.resv = resv;
905 else
906 bo->base.resv = &bo->base._resv;
907 atomic_inc(&ttm_glob.bo_count);
908
909 /*
910 * For ttm_bo_type_device buffers, allocate
911 * address space from the device.
912 */
913 if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) {
914 ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
915 PFN_UP(bo->base.size));
916 if (ret)
917 goto err_put;
918 }
919
920 /* passed reservation objects should already be locked,
921 * since otherwise lockdep will be angered in radeon.
922 */
923 if (!resv)
924 WARN_ON(!dma_resv_trylock(bo->base.resv));
925 else
926 dma_resv_assert_held(resv);
927
928 ret = ttm_bo_validate(bo, placement, ctx);
929 if (unlikely(ret))
930 goto err_unlock;
931
932 return 0;
933
934err_unlock:
935 if (!resv)
936 dma_resv_unlock(bo->base.resv);
937
938err_put:
939 ttm_bo_put(bo);
940 return ret;
941}
942EXPORT_SYMBOL(ttm_bo_init_reserved);
943
944/**
945 * ttm_bo_init_validate
946 *
947 * @bdev: Pointer to a ttm_device struct.
948 * @bo: Pointer to a ttm_buffer_object to be initialized.
949 * @type: Requested type of buffer object.
950 * @placement: Initial placement for buffer object.
951 * @alignment: Data alignment in pages.
952 * @interruptible: If needing to sleep to wait for GPU resources,
953 * sleep interruptible.
954 * pinned in physical memory. If this behaviour is not desired, this member
955 * holds a pointer to a persistent shmem object. Typically, this would
956 * point to the shmem object backing a GEM object if TTM is used to back a
957 * GEM user interface.
958 * @sg: Scatter-gather table.
959 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
960 * @destroy: Destroy function. Use NULL for kfree().
961 *
962 * This function initializes a pre-allocated struct ttm_buffer_object.
963 * As this object may be part of a larger structure, this function,
964 * together with the @destroy function,
965 * enables driver-specific objects derived from a ttm_buffer_object.
966 *
967 * On successful return, the caller owns an object kref to @bo. The kref and
968 * list_kref are usually set to 1, but note that in some situations, other
969 * tasks may already be holding references to @bo as well.
970 *
971 * If a failure occurs, the function will call the @destroy function, Thus,
972 * after a failure, dereferencing @bo is illegal and will likely cause memory
973 * corruption.
974 *
975 * Returns
976 * -ENOMEM: Out of memory.
977 * -EINVAL: Invalid placement flags.
978 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
979 */
980int ttm_bo_init_validate(struct ttm_device *bdev, struct ttm_buffer_object *bo,
981 enum ttm_bo_type type, struct ttm_placement *placement,
982 uint32_t alignment, bool interruptible,
983 struct sg_table *sg, struct dma_resv *resv,
984 void (*destroy) (struct ttm_buffer_object *))
985{
986 struct ttm_operation_ctx ctx = { interruptible, false };
987 int ret;
988
989 ret = ttm_bo_init_reserved(bdev, bo, type, placement, alignment, &ctx,
990 sg, resv, destroy);
991 if (ret)
992 return ret;
993
994 if (!resv)
995 ttm_bo_unreserve(bo);
996
997 return 0;
998}
999EXPORT_SYMBOL(ttm_bo_init_validate);
1000
1001/*
1002 * buffer object vm functions.
1003 */
1004
1005/**
1006 * ttm_bo_unmap_virtual
1007 *
1008 * @bo: tear down the virtual mappings for this BO
1009 */
1010void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1011{
1012 struct ttm_device *bdev = bo->bdev;
1013
1014 drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1015 ttm_mem_io_free(bdev, bo->resource);
1016}
1017EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1018
1019/**
1020 * ttm_bo_wait_ctx - wait for buffer idle.
1021 *
1022 * @bo: The buffer object.
1023 * @ctx: defines how to wait
1024 *
1025 * Waits for the buffer to be idle. Used timeout depends on the context.
1026 * Returns -EBUSY if wait timed outt, -ERESTARTSYS if interrupted by a signal or
1027 * zero on success.
1028 */
1029int ttm_bo_wait_ctx(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1030{
1031 long ret;
1032
1033 if (ctx->no_wait_gpu) {
1034 if (dma_resv_test_signaled(bo->base.resv,
1035 DMA_RESV_USAGE_BOOKKEEP))
1036 return 0;
1037 else
1038 return -EBUSY;
1039 }
1040
1041 ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
1042 ctx->interruptible, 15 * HZ);
1043 if (unlikely(ret < 0))
1044 return ret;
1045 if (unlikely(ret == 0))
1046 return -EBUSY;
1047 return 0;
1048}
1049EXPORT_SYMBOL(ttm_bo_wait_ctx);
1050
1051/**
1052 * struct ttm_bo_swapout_walk - Parameters for the swapout walk
1053 */
1054struct ttm_bo_swapout_walk {
1055 /** @walk: The walk base parameters. */
1056 struct ttm_lru_walk walk;
1057 /** @gfp_flags: The gfp flags to use for ttm_tt_swapout() */
1058 gfp_t gfp_flags;
1059};
1060
1061static s64
1062ttm_bo_swapout_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
1063{
1064 struct ttm_place place = {.mem_type = bo->resource->mem_type};
1065 struct ttm_bo_swapout_walk *swapout_walk =
1066 container_of(walk, typeof(*swapout_walk), walk);
1067 struct ttm_operation_ctx *ctx = walk->ctx;
1068 s64 ret;
1069
1070 /*
1071 * While the bo may already reside in SYSTEM placement, set
1072 * SYSTEM as new placement to cover also the move further below.
1073 * The driver may use the fact that we're moving from SYSTEM
1074 * as an indication that we're about to swap out.
1075 */
1076 if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, &place)) {
1077 ret = -EBUSY;
1078 goto out;
1079 }
1080
1081 if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
1082 bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL ||
1083 bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) {
1084 ret = -EBUSY;
1085 goto out;
1086 }
1087
1088 if (bo->deleted) {
1089 pgoff_t num_pages = bo->ttm->num_pages;
1090
1091 ret = ttm_bo_wait_ctx(bo, ctx);
1092 if (ret)
1093 goto out;
1094
1095 ttm_bo_cleanup_memtype_use(bo);
1096 ret = num_pages;
1097 goto out;
1098 }
1099
1100 /*
1101 * Move to system cached
1102 */
1103 if (bo->resource->mem_type != TTM_PL_SYSTEM) {
1104 struct ttm_resource *evict_mem;
1105 struct ttm_place hop;
1106
1107 memset(&hop, 0, sizeof(hop));
1108 place.mem_type = TTM_PL_SYSTEM;
1109 ret = ttm_resource_alloc(bo, &place, &evict_mem);
1110 if (ret)
1111 goto out;
1112
1113 ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
1114 if (ret) {
1115 WARN(ret == -EMULTIHOP,
1116 "Unexpected multihop in swapout - likely driver bug.\n");
1117 ttm_resource_free(bo, &evict_mem);
1118 goto out;
1119 }
1120 }
1121
1122 /*
1123 * Make sure BO is idle.
1124 */
1125 ret = ttm_bo_wait_ctx(bo, ctx);
1126 if (ret)
1127 goto out;
1128
1129 ttm_bo_unmap_virtual(bo);
1130 if (bo->bdev->funcs->swap_notify)
1131 bo->bdev->funcs->swap_notify(bo);
1132
1133 if (ttm_tt_is_populated(bo->ttm)) {
1134 spin_lock(&bo->bdev->lru_lock);
1135 ttm_resource_del_bulk_move(bo->resource, bo);
1136 spin_unlock(&bo->bdev->lru_lock);
1137
1138 ret = ttm_tt_swapout(bo->bdev, bo->ttm, swapout_walk->gfp_flags);
1139
1140 spin_lock(&bo->bdev->lru_lock);
1141 if (ret)
1142 ttm_resource_add_bulk_move(bo->resource, bo);
1143 ttm_resource_move_to_lru_tail(bo->resource);
1144 spin_unlock(&bo->bdev->lru_lock);
1145 }
1146
1147out:
1148 /* Consider -ENOMEM and -ENOSPC non-fatal. */
1149 if (ret == -ENOMEM || ret == -ENOSPC)
1150 ret = -EBUSY;
1151
1152 return ret;
1153}
1154
1155const struct ttm_lru_walk_ops ttm_swap_ops = {
1156 .process_bo = ttm_bo_swapout_cb,
1157};
1158
1159/**
1160 * ttm_bo_swapout() - Swap out buffer objects on the LRU list to shmem.
1161 * @bdev: The ttm device.
1162 * @ctx: The ttm_operation_ctx governing the swapout operation.
1163 * @man: The resource manager whose resources / buffer objects are
1164 * goint to be swapped out.
1165 * @gfp_flags: The gfp flags used for shmem page allocations.
1166 * @target: The desired number of bytes to swap out.
1167 *
1168 * Return: The number of bytes actually swapped out, or negative error code
1169 * on error.
1170 */
1171s64 ttm_bo_swapout(struct ttm_device *bdev, struct ttm_operation_ctx *ctx,
1172 struct ttm_resource_manager *man, gfp_t gfp_flags,
1173 s64 target)
1174{
1175 struct ttm_bo_swapout_walk swapout_walk = {
1176 .walk = {
1177 .ops = &ttm_swap_ops,
1178 .ctx = ctx,
1179 .trylock_only = true,
1180 },
1181 .gfp_flags = gfp_flags,
1182 };
1183
1184 return ttm_lru_walk_for_evict(&swapout_walk.walk, bdev, man, target);
1185}
1186
1187void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1188{
1189 if (bo->ttm == NULL)
1190 return;
1191
1192 ttm_tt_unpopulate(bo->bdev, bo->ttm);
1193 ttm_tt_destroy(bo->bdev, bo->ttm);
1194 bo->ttm = NULL;
1195}
1196
1197/**
1198 * ttm_bo_populate() - Ensure that a buffer object has backing pages
1199 * @bo: The buffer object
1200 * @ctx: The ttm_operation_ctx governing the operation.
1201 *
1202 * For buffer objects in a memory type whose manager uses
1203 * struct ttm_tt for backing pages, ensure those backing pages
1204 * are present and with valid content. The bo's resource is also
1205 * placed on the correct LRU list if it was previously swapped
1206 * out.
1207 *
1208 * Return: 0 if successful, negative error code on failure.
1209 * Note: May return -EINTR or -ERESTARTSYS if @ctx::interruptible
1210 * is set to true.
1211 */
1212int ttm_bo_populate(struct ttm_buffer_object *bo,
1213 struct ttm_operation_ctx *ctx)
1214{
1215 struct ttm_tt *tt = bo->ttm;
1216 bool swapped;
1217 int ret;
1218
1219 dma_resv_assert_held(bo->base.resv);
1220
1221 if (!tt)
1222 return 0;
1223
1224 swapped = ttm_tt_is_swapped(tt);
1225 ret = ttm_tt_populate(bo->bdev, tt, ctx);
1226 if (ret)
1227 return ret;
1228
1229 if (swapped && !ttm_tt_is_swapped(tt) && !bo->pin_count &&
1230 bo->resource) {
1231 spin_lock(&bo->bdev->lru_lock);
1232 ttm_resource_add_bulk_move(bo->resource, bo);
1233 ttm_resource_move_to_lru_tail(bo->resource);
1234 spin_unlock(&bo->bdev->lru_lock);
1235 }
1236
1237 return 0;
1238}
1239EXPORT_SYMBOL(ttm_bo_populate);
1/**************************************************************************
2 *
3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
4 * All Rights Reserved.
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a
7 * copy of this software and associated documentation files (the
8 * "Software"), to deal in the Software without restriction, including
9 * without limitation the rights to use, copy, modify, merge, publish,
10 * distribute, sub license, and/or sell copies of the Software, and to
11 * permit persons to whom the Software is furnished to do so, subject to
12 * the following conditions:
13 *
14 * The above copyright notice and this permission notice (including the
15 * next paragraph) shall be included in all copies or substantial portions
16 * of the Software.
17 *
18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
25 *
26 **************************************************************************/
27/*
28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
29 */
30
31#define pr_fmt(fmt) "[TTM] " fmt
32
33#include <drm/ttm/ttm_module.h>
34#include <drm/ttm/ttm_bo_driver.h>
35#include <drm/ttm/ttm_placement.h>
36#include <linux/jiffies.h>
37#include <linux/slab.h>
38#include <linux/sched.h>
39#include <linux/mm.h>
40#include <linux/file.h>
41#include <linux/module.h>
42#include <linux/atomic.h>
43#include <linux/reservation.h>
44
45#define TTM_ASSERT_LOCKED(param)
46#define TTM_DEBUG(fmt, arg...)
47#define TTM_BO_HASH_ORDER 13
48
49static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
50static void ttm_bo_global_kobj_release(struct kobject *kobj);
51
52static struct attribute ttm_bo_count = {
53 .name = "bo_count",
54 .mode = S_IRUGO
55};
56
57static inline int ttm_mem_type_from_place(const struct ttm_place *place,
58 uint32_t *mem_type)
59{
60 int pos;
61
62 pos = ffs(place->flags & TTM_PL_MASK_MEM);
63 if (unlikely(!pos))
64 return -EINVAL;
65
66 *mem_type = pos - 1;
67 return 0;
68}
69
70static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
71{
72 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
73
74 pr_err(" has_type: %d\n", man->has_type);
75 pr_err(" use_type: %d\n", man->use_type);
76 pr_err(" flags: 0x%08X\n", man->flags);
77 pr_err(" gpu_offset: 0x%08llX\n", man->gpu_offset);
78 pr_err(" size: %llu\n", man->size);
79 pr_err(" available_caching: 0x%08X\n", man->available_caching);
80 pr_err(" default_caching: 0x%08X\n", man->default_caching);
81 if (mem_type != TTM_PL_SYSTEM)
82 (*man->func->debug)(man, TTM_PFX);
83}
84
85static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
86 struct ttm_placement *placement)
87{
88 int i, ret, mem_type;
89
90 pr_err("No space for %p (%lu pages, %luK, %luM)\n",
91 bo, bo->mem.num_pages, bo->mem.size >> 10,
92 bo->mem.size >> 20);
93 for (i = 0; i < placement->num_placement; i++) {
94 ret = ttm_mem_type_from_place(&placement->placement[i],
95 &mem_type);
96 if (ret)
97 return;
98 pr_err(" placement[%d]=0x%08X (%d)\n",
99 i, placement->placement[i].flags, mem_type);
100 ttm_mem_type_debug(bo->bdev, mem_type);
101 }
102}
103
104static ssize_t ttm_bo_global_show(struct kobject *kobj,
105 struct attribute *attr,
106 char *buffer)
107{
108 struct ttm_bo_global *glob =
109 container_of(kobj, struct ttm_bo_global, kobj);
110
111 return snprintf(buffer, PAGE_SIZE, "%lu\n",
112 (unsigned long) atomic_read(&glob->bo_count));
113}
114
115static struct attribute *ttm_bo_global_attrs[] = {
116 &ttm_bo_count,
117 NULL
118};
119
120static const struct sysfs_ops ttm_bo_global_ops = {
121 .show = &ttm_bo_global_show
122};
123
124static struct kobj_type ttm_bo_glob_kobj_type = {
125 .release = &ttm_bo_global_kobj_release,
126 .sysfs_ops = &ttm_bo_global_ops,
127 .default_attrs = ttm_bo_global_attrs
128};
129
130
131static inline uint32_t ttm_bo_type_flags(unsigned type)
132{
133 return 1 << (type);
134}
135
136static void ttm_bo_release_list(struct kref *list_kref)
137{
138 struct ttm_buffer_object *bo =
139 container_of(list_kref, struct ttm_buffer_object, list_kref);
140 struct ttm_bo_device *bdev = bo->bdev;
141 size_t acc_size = bo->acc_size;
142
143 BUG_ON(atomic_read(&bo->list_kref.refcount));
144 BUG_ON(atomic_read(&bo->kref.refcount));
145 BUG_ON(atomic_read(&bo->cpu_writers));
146 BUG_ON(bo->mem.mm_node != NULL);
147 BUG_ON(!list_empty(&bo->lru));
148 BUG_ON(!list_empty(&bo->ddestroy));
149 ttm_tt_destroy(bo->ttm);
150 atomic_dec(&bo->glob->bo_count);
151 dma_fence_put(bo->moving);
152 if (bo->resv == &bo->ttm_resv)
153 reservation_object_fini(&bo->ttm_resv);
154 mutex_destroy(&bo->wu_mutex);
155 if (bo->destroy)
156 bo->destroy(bo);
157 else {
158 kfree(bo);
159 }
160 ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
161}
162
163void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
164{
165 struct ttm_bo_device *bdev = bo->bdev;
166
167 lockdep_assert_held(&bo->resv->lock.base);
168
169 if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
170
171 BUG_ON(!list_empty(&bo->lru));
172
173 list_add(&bo->lru, bdev->driver->lru_tail(bo));
174 kref_get(&bo->list_kref);
175
176 if (bo->ttm && !(bo->ttm->page_flags & TTM_PAGE_FLAG_SG)) {
177 list_add(&bo->swap, bdev->driver->swap_lru_tail(bo));
178 kref_get(&bo->list_kref);
179 }
180 }
181}
182EXPORT_SYMBOL(ttm_bo_add_to_lru);
183
184int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
185{
186 struct ttm_bo_device *bdev = bo->bdev;
187 int put_count = 0;
188
189 if (bdev->driver->lru_removal)
190 bdev->driver->lru_removal(bo);
191
192 if (!list_empty(&bo->swap)) {
193 list_del_init(&bo->swap);
194 ++put_count;
195 }
196 if (!list_empty(&bo->lru)) {
197 list_del_init(&bo->lru);
198 ++put_count;
199 }
200
201 return put_count;
202}
203
204static void ttm_bo_ref_bug(struct kref *list_kref)
205{
206 BUG();
207}
208
209void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
210 bool never_free)
211{
212 kref_sub(&bo->list_kref, count,
213 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
214}
215
216void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
217{
218 int put_count;
219
220 spin_lock(&bo->glob->lru_lock);
221 put_count = ttm_bo_del_from_lru(bo);
222 spin_unlock(&bo->glob->lru_lock);
223 ttm_bo_list_ref_sub(bo, put_count, true);
224}
225EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
226
227void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
228{
229 struct ttm_bo_device *bdev = bo->bdev;
230 int put_count = 0;
231
232 lockdep_assert_held(&bo->resv->lock.base);
233
234 if (bdev->driver->lru_removal)
235 bdev->driver->lru_removal(bo);
236
237 put_count = ttm_bo_del_from_lru(bo);
238 ttm_bo_list_ref_sub(bo, put_count, true);
239 ttm_bo_add_to_lru(bo);
240}
241EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
242
243struct list_head *ttm_bo_default_lru_tail(struct ttm_buffer_object *bo)
244{
245 return bo->bdev->man[bo->mem.mem_type].lru.prev;
246}
247EXPORT_SYMBOL(ttm_bo_default_lru_tail);
248
249struct list_head *ttm_bo_default_swap_lru_tail(struct ttm_buffer_object *bo)
250{
251 return bo->glob->swap_lru.prev;
252}
253EXPORT_SYMBOL(ttm_bo_default_swap_lru_tail);
254
255/*
256 * Call bo->mutex locked.
257 */
258static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
259{
260 struct ttm_bo_device *bdev = bo->bdev;
261 struct ttm_bo_global *glob = bo->glob;
262 int ret = 0;
263 uint32_t page_flags = 0;
264
265 TTM_ASSERT_LOCKED(&bo->mutex);
266 bo->ttm = NULL;
267
268 if (bdev->need_dma32)
269 page_flags |= TTM_PAGE_FLAG_DMA32;
270
271 switch (bo->type) {
272 case ttm_bo_type_device:
273 if (zero_alloc)
274 page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
275 case ttm_bo_type_kernel:
276 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
277 page_flags, glob->dummy_read_page);
278 if (unlikely(bo->ttm == NULL))
279 ret = -ENOMEM;
280 break;
281 case ttm_bo_type_sg:
282 bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
283 page_flags | TTM_PAGE_FLAG_SG,
284 glob->dummy_read_page);
285 if (unlikely(bo->ttm == NULL)) {
286 ret = -ENOMEM;
287 break;
288 }
289 bo->ttm->sg = bo->sg;
290 break;
291 default:
292 pr_err("Illegal buffer object type\n");
293 ret = -EINVAL;
294 break;
295 }
296
297 return ret;
298}
299
300static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
301 struct ttm_mem_reg *mem,
302 bool evict, bool interruptible,
303 bool no_wait_gpu)
304{
305 struct ttm_bo_device *bdev = bo->bdev;
306 bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
307 bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
308 struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
309 struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
310 int ret = 0;
311
312 if (old_is_pci || new_is_pci ||
313 ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
314 ret = ttm_mem_io_lock(old_man, true);
315 if (unlikely(ret != 0))
316 goto out_err;
317 ttm_bo_unmap_virtual_locked(bo);
318 ttm_mem_io_unlock(old_man);
319 }
320
321 /*
322 * Create and bind a ttm if required.
323 */
324
325 if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
326 if (bo->ttm == NULL) {
327 bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
328 ret = ttm_bo_add_ttm(bo, zero);
329 if (ret)
330 goto out_err;
331 }
332
333 ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
334 if (ret)
335 goto out_err;
336
337 if (mem->mem_type != TTM_PL_SYSTEM) {
338 ret = ttm_tt_bind(bo->ttm, mem);
339 if (ret)
340 goto out_err;
341 }
342
343 if (bo->mem.mem_type == TTM_PL_SYSTEM) {
344 if (bdev->driver->move_notify)
345 bdev->driver->move_notify(bo, mem);
346 bo->mem = *mem;
347 mem->mm_node = NULL;
348 goto moved;
349 }
350 }
351
352 if (bdev->driver->move_notify)
353 bdev->driver->move_notify(bo, mem);
354
355 if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
356 !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
357 ret = ttm_bo_move_ttm(bo, interruptible, no_wait_gpu, mem);
358 else if (bdev->driver->move)
359 ret = bdev->driver->move(bo, evict, interruptible,
360 no_wait_gpu, mem);
361 else
362 ret = ttm_bo_move_memcpy(bo, interruptible, no_wait_gpu, mem);
363
364 if (ret) {
365 if (bdev->driver->move_notify) {
366 struct ttm_mem_reg tmp_mem = *mem;
367 *mem = bo->mem;
368 bo->mem = tmp_mem;
369 bdev->driver->move_notify(bo, mem);
370 bo->mem = *mem;
371 *mem = tmp_mem;
372 }
373
374 goto out_err;
375 }
376
377moved:
378 if (bo->evicted) {
379 if (bdev->driver->invalidate_caches) {
380 ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
381 if (ret)
382 pr_err("Can not flush read caches\n");
383 }
384 bo->evicted = false;
385 }
386
387 if (bo->mem.mm_node) {
388 bo->offset = (bo->mem.start << PAGE_SHIFT) +
389 bdev->man[bo->mem.mem_type].gpu_offset;
390 bo->cur_placement = bo->mem.placement;
391 } else
392 bo->offset = 0;
393
394 return 0;
395
396out_err:
397 new_man = &bdev->man[bo->mem.mem_type];
398 if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
399 ttm_tt_destroy(bo->ttm);
400 bo->ttm = NULL;
401 }
402
403 return ret;
404}
405
406/**
407 * Call bo::reserved.
408 * Will release GPU memory type usage on destruction.
409 * This is the place to put in driver specific hooks to release
410 * driver private resources.
411 * Will release the bo::reserved lock.
412 */
413
414static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
415{
416 if (bo->bdev->driver->move_notify)
417 bo->bdev->driver->move_notify(bo, NULL);
418
419 ttm_tt_destroy(bo->ttm);
420 bo->ttm = NULL;
421 ttm_bo_mem_put(bo, &bo->mem);
422
423 ww_mutex_unlock (&bo->resv->lock);
424}
425
426static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
427{
428 struct reservation_object_list *fobj;
429 struct dma_fence *fence;
430 int i;
431
432 fobj = reservation_object_get_list(bo->resv);
433 fence = reservation_object_get_excl(bo->resv);
434 if (fence && !fence->ops->signaled)
435 dma_fence_enable_sw_signaling(fence);
436
437 for (i = 0; fobj && i < fobj->shared_count; ++i) {
438 fence = rcu_dereference_protected(fobj->shared[i],
439 reservation_object_held(bo->resv));
440
441 if (!fence->ops->signaled)
442 dma_fence_enable_sw_signaling(fence);
443 }
444}
445
446static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
447{
448 struct ttm_bo_device *bdev = bo->bdev;
449 struct ttm_bo_global *glob = bo->glob;
450 int put_count;
451 int ret;
452
453 spin_lock(&glob->lru_lock);
454 ret = __ttm_bo_reserve(bo, false, true, NULL);
455
456 if (!ret) {
457 if (!ttm_bo_wait(bo, false, true)) {
458 put_count = ttm_bo_del_from_lru(bo);
459
460 spin_unlock(&glob->lru_lock);
461 ttm_bo_cleanup_memtype_use(bo);
462
463 ttm_bo_list_ref_sub(bo, put_count, true);
464
465 return;
466 } else
467 ttm_bo_flush_all_fences(bo);
468
469 /*
470 * Make NO_EVICT bos immediately available to
471 * shrinkers, now that they are queued for
472 * destruction.
473 */
474 if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
475 bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
476 ttm_bo_add_to_lru(bo);
477 }
478
479 __ttm_bo_unreserve(bo);
480 }
481
482 kref_get(&bo->list_kref);
483 list_add_tail(&bo->ddestroy, &bdev->ddestroy);
484 spin_unlock(&glob->lru_lock);
485
486 schedule_delayed_work(&bdev->wq,
487 ((HZ / 100) < 1) ? 1 : HZ / 100);
488}
489
490/**
491 * function ttm_bo_cleanup_refs_and_unlock
492 * If bo idle, remove from delayed- and lru lists, and unref.
493 * If not idle, do nothing.
494 *
495 * Must be called with lru_lock and reservation held, this function
496 * will drop both before returning.
497 *
498 * @interruptible Any sleeps should occur interruptibly.
499 * @no_wait_gpu Never wait for gpu. Return -EBUSY instead.
500 */
501
502static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
503 bool interruptible,
504 bool no_wait_gpu)
505{
506 struct ttm_bo_global *glob = bo->glob;
507 int put_count;
508 int ret;
509
510 ret = ttm_bo_wait(bo, false, true);
511
512 if (ret && !no_wait_gpu) {
513 long lret;
514 ww_mutex_unlock(&bo->resv->lock);
515 spin_unlock(&glob->lru_lock);
516
517 lret = reservation_object_wait_timeout_rcu(bo->resv,
518 true,
519 interruptible,
520 30 * HZ);
521
522 if (lret < 0)
523 return lret;
524 else if (lret == 0)
525 return -EBUSY;
526
527 spin_lock(&glob->lru_lock);
528 ret = __ttm_bo_reserve(bo, false, true, NULL);
529
530 /*
531 * We raced, and lost, someone else holds the reservation now,
532 * and is probably busy in ttm_bo_cleanup_memtype_use.
533 *
534 * Even if it's not the case, because we finished waiting any
535 * delayed destruction would succeed, so just return success
536 * here.
537 */
538 if (ret) {
539 spin_unlock(&glob->lru_lock);
540 return 0;
541 }
542
543 /*
544 * remove sync_obj with ttm_bo_wait, the wait should be
545 * finished, and no new wait object should have been added.
546 */
547 ret = ttm_bo_wait(bo, false, true);
548 WARN_ON(ret);
549 }
550
551 if (ret || unlikely(list_empty(&bo->ddestroy))) {
552 __ttm_bo_unreserve(bo);
553 spin_unlock(&glob->lru_lock);
554 return ret;
555 }
556
557 put_count = ttm_bo_del_from_lru(bo);
558 list_del_init(&bo->ddestroy);
559 ++put_count;
560
561 spin_unlock(&glob->lru_lock);
562 ttm_bo_cleanup_memtype_use(bo);
563
564 ttm_bo_list_ref_sub(bo, put_count, true);
565
566 return 0;
567}
568
569/**
570 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
571 * encountered buffers.
572 */
573
574static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
575{
576 struct ttm_bo_global *glob = bdev->glob;
577 struct ttm_buffer_object *entry = NULL;
578 int ret = 0;
579
580 spin_lock(&glob->lru_lock);
581 if (list_empty(&bdev->ddestroy))
582 goto out_unlock;
583
584 entry = list_first_entry(&bdev->ddestroy,
585 struct ttm_buffer_object, ddestroy);
586 kref_get(&entry->list_kref);
587
588 for (;;) {
589 struct ttm_buffer_object *nentry = NULL;
590
591 if (entry->ddestroy.next != &bdev->ddestroy) {
592 nentry = list_first_entry(&entry->ddestroy,
593 struct ttm_buffer_object, ddestroy);
594 kref_get(&nentry->list_kref);
595 }
596
597 ret = __ttm_bo_reserve(entry, false, true, NULL);
598 if (remove_all && ret) {
599 spin_unlock(&glob->lru_lock);
600 ret = __ttm_bo_reserve(entry, false, false, NULL);
601 spin_lock(&glob->lru_lock);
602 }
603
604 if (!ret)
605 ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
606 !remove_all);
607 else
608 spin_unlock(&glob->lru_lock);
609
610 kref_put(&entry->list_kref, ttm_bo_release_list);
611 entry = nentry;
612
613 if (ret || !entry)
614 goto out;
615
616 spin_lock(&glob->lru_lock);
617 if (list_empty(&entry->ddestroy))
618 break;
619 }
620
621out_unlock:
622 spin_unlock(&glob->lru_lock);
623out:
624 if (entry)
625 kref_put(&entry->list_kref, ttm_bo_release_list);
626 return ret;
627}
628
629static void ttm_bo_delayed_workqueue(struct work_struct *work)
630{
631 struct ttm_bo_device *bdev =
632 container_of(work, struct ttm_bo_device, wq.work);
633
634 if (ttm_bo_delayed_delete(bdev, false)) {
635 schedule_delayed_work(&bdev->wq,
636 ((HZ / 100) < 1) ? 1 : HZ / 100);
637 }
638}
639
640static void ttm_bo_release(struct kref *kref)
641{
642 struct ttm_buffer_object *bo =
643 container_of(kref, struct ttm_buffer_object, kref);
644 struct ttm_bo_device *bdev = bo->bdev;
645 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
646
647 drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
648 ttm_mem_io_lock(man, false);
649 ttm_mem_io_free_vm(bo);
650 ttm_mem_io_unlock(man);
651 ttm_bo_cleanup_refs_or_queue(bo);
652 kref_put(&bo->list_kref, ttm_bo_release_list);
653}
654
655void ttm_bo_unref(struct ttm_buffer_object **p_bo)
656{
657 struct ttm_buffer_object *bo = *p_bo;
658
659 *p_bo = NULL;
660 kref_put(&bo->kref, ttm_bo_release);
661}
662EXPORT_SYMBOL(ttm_bo_unref);
663
664int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
665{
666 return cancel_delayed_work_sync(&bdev->wq);
667}
668EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
669
670void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
671{
672 if (resched)
673 schedule_delayed_work(&bdev->wq,
674 ((HZ / 100) < 1) ? 1 : HZ / 100);
675}
676EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
677
678static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
679 bool no_wait_gpu)
680{
681 struct ttm_bo_device *bdev = bo->bdev;
682 struct ttm_mem_reg evict_mem;
683 struct ttm_placement placement;
684 int ret = 0;
685
686 lockdep_assert_held(&bo->resv->lock.base);
687
688 evict_mem = bo->mem;
689 evict_mem.mm_node = NULL;
690 evict_mem.bus.io_reserved_vm = false;
691 evict_mem.bus.io_reserved_count = 0;
692
693 placement.num_placement = 0;
694 placement.num_busy_placement = 0;
695 bdev->driver->evict_flags(bo, &placement);
696 ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
697 no_wait_gpu);
698 if (ret) {
699 if (ret != -ERESTARTSYS) {
700 pr_err("Failed to find memory space for buffer 0x%p eviction\n",
701 bo);
702 ttm_bo_mem_space_debug(bo, &placement);
703 }
704 goto out;
705 }
706
707 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
708 no_wait_gpu);
709 if (unlikely(ret)) {
710 if (ret != -ERESTARTSYS)
711 pr_err("Buffer eviction failed\n");
712 ttm_bo_mem_put(bo, &evict_mem);
713 goto out;
714 }
715 bo->evicted = true;
716out:
717 return ret;
718}
719
720bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
721 const struct ttm_place *place)
722{
723 /* Don't evict this BO if it's outside of the
724 * requested placement range
725 */
726 if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
727 (place->lpfn && place->lpfn <= bo->mem.start))
728 return false;
729
730 return true;
731}
732EXPORT_SYMBOL(ttm_bo_eviction_valuable);
733
734static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
735 uint32_t mem_type,
736 const struct ttm_place *place,
737 bool interruptible,
738 bool no_wait_gpu)
739{
740 struct ttm_bo_global *glob = bdev->glob;
741 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
742 struct ttm_buffer_object *bo;
743 int ret = -EBUSY, put_count;
744
745 spin_lock(&glob->lru_lock);
746 list_for_each_entry(bo, &man->lru, lru) {
747 ret = __ttm_bo_reserve(bo, false, true, NULL);
748 if (ret)
749 continue;
750
751 if (place && !bdev->driver->eviction_valuable(bo, place)) {
752 __ttm_bo_unreserve(bo);
753 ret = -EBUSY;
754 continue;
755 }
756
757 break;
758 }
759
760 if (ret) {
761 spin_unlock(&glob->lru_lock);
762 return ret;
763 }
764
765 kref_get(&bo->list_kref);
766
767 if (!list_empty(&bo->ddestroy)) {
768 ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
769 no_wait_gpu);
770 kref_put(&bo->list_kref, ttm_bo_release_list);
771 return ret;
772 }
773
774 put_count = ttm_bo_del_from_lru(bo);
775 spin_unlock(&glob->lru_lock);
776
777 BUG_ON(ret != 0);
778
779 ttm_bo_list_ref_sub(bo, put_count, true);
780
781 ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
782 ttm_bo_unreserve(bo);
783
784 kref_put(&bo->list_kref, ttm_bo_release_list);
785 return ret;
786}
787
788void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
789{
790 struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
791
792 if (mem->mm_node)
793 (*man->func->put_node)(man, mem);
794}
795EXPORT_SYMBOL(ttm_bo_mem_put);
796
797/**
798 * Add the last move fence to the BO and reserve a new shared slot.
799 */
800static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
801 struct ttm_mem_type_manager *man,
802 struct ttm_mem_reg *mem)
803{
804 struct dma_fence *fence;
805 int ret;
806
807 spin_lock(&man->move_lock);
808 fence = dma_fence_get(man->move);
809 spin_unlock(&man->move_lock);
810
811 if (fence) {
812 reservation_object_add_shared_fence(bo->resv, fence);
813
814 ret = reservation_object_reserve_shared(bo->resv);
815 if (unlikely(ret))
816 return ret;
817
818 dma_fence_put(bo->moving);
819 bo->moving = fence;
820 }
821
822 return 0;
823}
824
825/**
826 * Repeatedly evict memory from the LRU for @mem_type until we create enough
827 * space, or we've evicted everything and there isn't enough space.
828 */
829static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
830 uint32_t mem_type,
831 const struct ttm_place *place,
832 struct ttm_mem_reg *mem,
833 bool interruptible,
834 bool no_wait_gpu)
835{
836 struct ttm_bo_device *bdev = bo->bdev;
837 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
838 int ret;
839
840 do {
841 ret = (*man->func->get_node)(man, bo, place, mem);
842 if (unlikely(ret != 0))
843 return ret;
844 if (mem->mm_node)
845 break;
846 ret = ttm_mem_evict_first(bdev, mem_type, place,
847 interruptible, no_wait_gpu);
848 if (unlikely(ret != 0))
849 return ret;
850 } while (1);
851 mem->mem_type = mem_type;
852 return ttm_bo_add_move_fence(bo, man, mem);
853}
854
855static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
856 uint32_t cur_placement,
857 uint32_t proposed_placement)
858{
859 uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
860 uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
861
862 /**
863 * Keep current caching if possible.
864 */
865
866 if ((cur_placement & caching) != 0)
867 result |= (cur_placement & caching);
868 else if ((man->default_caching & caching) != 0)
869 result |= man->default_caching;
870 else if ((TTM_PL_FLAG_CACHED & caching) != 0)
871 result |= TTM_PL_FLAG_CACHED;
872 else if ((TTM_PL_FLAG_WC & caching) != 0)
873 result |= TTM_PL_FLAG_WC;
874 else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
875 result |= TTM_PL_FLAG_UNCACHED;
876
877 return result;
878}
879
880static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
881 uint32_t mem_type,
882 const struct ttm_place *place,
883 uint32_t *masked_placement)
884{
885 uint32_t cur_flags = ttm_bo_type_flags(mem_type);
886
887 if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
888 return false;
889
890 if ((place->flags & man->available_caching) == 0)
891 return false;
892
893 cur_flags |= (place->flags & man->available_caching);
894
895 *masked_placement = cur_flags;
896 return true;
897}
898
899/**
900 * Creates space for memory region @mem according to its type.
901 *
902 * This function first searches for free space in compatible memory types in
903 * the priority order defined by the driver. If free space isn't found, then
904 * ttm_bo_mem_force_space is attempted in priority order to evict and find
905 * space.
906 */
907int ttm_bo_mem_space(struct ttm_buffer_object *bo,
908 struct ttm_placement *placement,
909 struct ttm_mem_reg *mem,
910 bool interruptible,
911 bool no_wait_gpu)
912{
913 struct ttm_bo_device *bdev = bo->bdev;
914 struct ttm_mem_type_manager *man;
915 uint32_t mem_type = TTM_PL_SYSTEM;
916 uint32_t cur_flags = 0;
917 bool type_found = false;
918 bool type_ok = false;
919 bool has_erestartsys = false;
920 int i, ret;
921
922 ret = reservation_object_reserve_shared(bo->resv);
923 if (unlikely(ret))
924 return ret;
925
926 mem->mm_node = NULL;
927 for (i = 0; i < placement->num_placement; ++i) {
928 const struct ttm_place *place = &placement->placement[i];
929
930 ret = ttm_mem_type_from_place(place, &mem_type);
931 if (ret)
932 return ret;
933 man = &bdev->man[mem_type];
934 if (!man->has_type || !man->use_type)
935 continue;
936
937 type_ok = ttm_bo_mt_compatible(man, mem_type, place,
938 &cur_flags);
939
940 if (!type_ok)
941 continue;
942
943 type_found = true;
944 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
945 cur_flags);
946 /*
947 * Use the access and other non-mapping-related flag bits from
948 * the memory placement flags to the current flags
949 */
950 ttm_flag_masked(&cur_flags, place->flags,
951 ~TTM_PL_MASK_MEMTYPE);
952
953 if (mem_type == TTM_PL_SYSTEM)
954 break;
955
956 ret = (*man->func->get_node)(man, bo, place, mem);
957 if (unlikely(ret))
958 return ret;
959
960 if (mem->mm_node) {
961 ret = ttm_bo_add_move_fence(bo, man, mem);
962 if (unlikely(ret)) {
963 (*man->func->put_node)(man, mem);
964 return ret;
965 }
966 break;
967 }
968 }
969
970 if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
971 mem->mem_type = mem_type;
972 mem->placement = cur_flags;
973 return 0;
974 }
975
976 for (i = 0; i < placement->num_busy_placement; ++i) {
977 const struct ttm_place *place = &placement->busy_placement[i];
978
979 ret = ttm_mem_type_from_place(place, &mem_type);
980 if (ret)
981 return ret;
982 man = &bdev->man[mem_type];
983 if (!man->has_type || !man->use_type)
984 continue;
985 if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
986 continue;
987
988 type_found = true;
989 cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
990 cur_flags);
991 /*
992 * Use the access and other non-mapping-related flag bits from
993 * the memory placement flags to the current flags
994 */
995 ttm_flag_masked(&cur_flags, place->flags,
996 ~TTM_PL_MASK_MEMTYPE);
997
998 if (mem_type == TTM_PL_SYSTEM) {
999 mem->mem_type = mem_type;
1000 mem->placement = cur_flags;
1001 mem->mm_node = NULL;
1002 return 0;
1003 }
1004
1005 ret = ttm_bo_mem_force_space(bo, mem_type, place, mem,
1006 interruptible, no_wait_gpu);
1007 if (ret == 0 && mem->mm_node) {
1008 mem->placement = cur_flags;
1009 return 0;
1010 }
1011 if (ret == -ERESTARTSYS)
1012 has_erestartsys = true;
1013 }
1014
1015 if (!type_found) {
1016 printk(KERN_ERR TTM_PFX "No compatible memory type found.\n");
1017 return -EINVAL;
1018 }
1019
1020 return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1021}
1022EXPORT_SYMBOL(ttm_bo_mem_space);
1023
1024static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1025 struct ttm_placement *placement,
1026 bool interruptible,
1027 bool no_wait_gpu)
1028{
1029 int ret = 0;
1030 struct ttm_mem_reg mem;
1031
1032 lockdep_assert_held(&bo->resv->lock.base);
1033
1034 mem.num_pages = bo->num_pages;
1035 mem.size = mem.num_pages << PAGE_SHIFT;
1036 mem.page_alignment = bo->mem.page_alignment;
1037 mem.bus.io_reserved_vm = false;
1038 mem.bus.io_reserved_count = 0;
1039 /*
1040 * Determine where to move the buffer.
1041 */
1042 ret = ttm_bo_mem_space(bo, placement, &mem,
1043 interruptible, no_wait_gpu);
1044 if (ret)
1045 goto out_unlock;
1046 ret = ttm_bo_handle_move_mem(bo, &mem, false,
1047 interruptible, no_wait_gpu);
1048out_unlock:
1049 if (ret && mem.mm_node)
1050 ttm_bo_mem_put(bo, &mem);
1051 return ret;
1052}
1053
1054bool ttm_bo_mem_compat(struct ttm_placement *placement,
1055 struct ttm_mem_reg *mem,
1056 uint32_t *new_flags)
1057{
1058 int i;
1059
1060 for (i = 0; i < placement->num_placement; i++) {
1061 const struct ttm_place *heap = &placement->placement[i];
1062 if (mem->mm_node &&
1063 (mem->start < heap->fpfn ||
1064 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1065 continue;
1066
1067 *new_flags = heap->flags;
1068 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1069 (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1070 return true;
1071 }
1072
1073 for (i = 0; i < placement->num_busy_placement; i++) {
1074 const struct ttm_place *heap = &placement->busy_placement[i];
1075 if (mem->mm_node &&
1076 (mem->start < heap->fpfn ||
1077 (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1078 continue;
1079
1080 *new_flags = heap->flags;
1081 if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1082 (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1083 return true;
1084 }
1085
1086 return false;
1087}
1088EXPORT_SYMBOL(ttm_bo_mem_compat);
1089
1090int ttm_bo_validate(struct ttm_buffer_object *bo,
1091 struct ttm_placement *placement,
1092 bool interruptible,
1093 bool no_wait_gpu)
1094{
1095 int ret;
1096 uint32_t new_flags;
1097
1098 lockdep_assert_held(&bo->resv->lock.base);
1099 /*
1100 * Check whether we need to move buffer.
1101 */
1102 if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1103 ret = ttm_bo_move_buffer(bo, placement, interruptible,
1104 no_wait_gpu);
1105 if (ret)
1106 return ret;
1107 } else {
1108 /*
1109 * Use the access and other non-mapping-related flag bits from
1110 * the compatible memory placement flags to the active flags
1111 */
1112 ttm_flag_masked(&bo->mem.placement, new_flags,
1113 ~TTM_PL_MASK_MEMTYPE);
1114 }
1115 /*
1116 * We might need to add a TTM.
1117 */
1118 if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1119 ret = ttm_bo_add_ttm(bo, true);
1120 if (ret)
1121 return ret;
1122 }
1123 return 0;
1124}
1125EXPORT_SYMBOL(ttm_bo_validate);
1126
1127int ttm_bo_init(struct ttm_bo_device *bdev,
1128 struct ttm_buffer_object *bo,
1129 unsigned long size,
1130 enum ttm_bo_type type,
1131 struct ttm_placement *placement,
1132 uint32_t page_alignment,
1133 bool interruptible,
1134 struct file *persistent_swap_storage,
1135 size_t acc_size,
1136 struct sg_table *sg,
1137 struct reservation_object *resv,
1138 void (*destroy) (struct ttm_buffer_object *))
1139{
1140 int ret = 0;
1141 unsigned long num_pages;
1142 struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1143 bool locked;
1144
1145 ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1146 if (ret) {
1147 pr_err("Out of kernel memory\n");
1148 if (destroy)
1149 (*destroy)(bo);
1150 else
1151 kfree(bo);
1152 return -ENOMEM;
1153 }
1154
1155 num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1156 if (num_pages == 0) {
1157 pr_err("Illegal buffer object size\n");
1158 if (destroy)
1159 (*destroy)(bo);
1160 else
1161 kfree(bo);
1162 ttm_mem_global_free(mem_glob, acc_size);
1163 return -EINVAL;
1164 }
1165 bo->destroy = destroy;
1166
1167 kref_init(&bo->kref);
1168 kref_init(&bo->list_kref);
1169 atomic_set(&bo->cpu_writers, 0);
1170 INIT_LIST_HEAD(&bo->lru);
1171 INIT_LIST_HEAD(&bo->ddestroy);
1172 INIT_LIST_HEAD(&bo->swap);
1173 INIT_LIST_HEAD(&bo->io_reserve_lru);
1174 mutex_init(&bo->wu_mutex);
1175 bo->bdev = bdev;
1176 bo->glob = bdev->glob;
1177 bo->type = type;
1178 bo->num_pages = num_pages;
1179 bo->mem.size = num_pages << PAGE_SHIFT;
1180 bo->mem.mem_type = TTM_PL_SYSTEM;
1181 bo->mem.num_pages = bo->num_pages;
1182 bo->mem.mm_node = NULL;
1183 bo->mem.page_alignment = page_alignment;
1184 bo->mem.bus.io_reserved_vm = false;
1185 bo->mem.bus.io_reserved_count = 0;
1186 bo->moving = NULL;
1187 bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1188 bo->persistent_swap_storage = persistent_swap_storage;
1189 bo->acc_size = acc_size;
1190 bo->sg = sg;
1191 if (resv) {
1192 bo->resv = resv;
1193 lockdep_assert_held(&bo->resv->lock.base);
1194 } else {
1195 bo->resv = &bo->ttm_resv;
1196 reservation_object_init(&bo->ttm_resv);
1197 }
1198 atomic_inc(&bo->glob->bo_count);
1199 drm_vma_node_reset(&bo->vma_node);
1200
1201 /*
1202 * For ttm_bo_type_device buffers, allocate
1203 * address space from the device.
1204 */
1205 if (bo->type == ttm_bo_type_device ||
1206 bo->type == ttm_bo_type_sg)
1207 ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1208 bo->mem.num_pages);
1209
1210 /* passed reservation objects should already be locked,
1211 * since otherwise lockdep will be angered in radeon.
1212 */
1213 if (!resv) {
1214 locked = ww_mutex_trylock(&bo->resv->lock);
1215 WARN_ON(!locked);
1216 }
1217
1218 if (likely(!ret))
1219 ret = ttm_bo_validate(bo, placement, interruptible, false);
1220
1221 if (!resv) {
1222 ttm_bo_unreserve(bo);
1223
1224 } else if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1225 spin_lock(&bo->glob->lru_lock);
1226 ttm_bo_add_to_lru(bo);
1227 spin_unlock(&bo->glob->lru_lock);
1228 }
1229
1230 if (unlikely(ret))
1231 ttm_bo_unref(&bo);
1232
1233 return ret;
1234}
1235EXPORT_SYMBOL(ttm_bo_init);
1236
1237size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1238 unsigned long bo_size,
1239 unsigned struct_size)
1240{
1241 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1242 size_t size = 0;
1243
1244 size += ttm_round_pot(struct_size);
1245 size += ttm_round_pot(npages * sizeof(void *));
1246 size += ttm_round_pot(sizeof(struct ttm_tt));
1247 return size;
1248}
1249EXPORT_SYMBOL(ttm_bo_acc_size);
1250
1251size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1252 unsigned long bo_size,
1253 unsigned struct_size)
1254{
1255 unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1256 size_t size = 0;
1257
1258 size += ttm_round_pot(struct_size);
1259 size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1260 size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1261 return size;
1262}
1263EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1264
1265int ttm_bo_create(struct ttm_bo_device *bdev,
1266 unsigned long size,
1267 enum ttm_bo_type type,
1268 struct ttm_placement *placement,
1269 uint32_t page_alignment,
1270 bool interruptible,
1271 struct file *persistent_swap_storage,
1272 struct ttm_buffer_object **p_bo)
1273{
1274 struct ttm_buffer_object *bo;
1275 size_t acc_size;
1276 int ret;
1277
1278 bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1279 if (unlikely(bo == NULL))
1280 return -ENOMEM;
1281
1282 acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1283 ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1284 interruptible, persistent_swap_storage, acc_size,
1285 NULL, NULL, NULL);
1286 if (likely(ret == 0))
1287 *p_bo = bo;
1288
1289 return ret;
1290}
1291EXPORT_SYMBOL(ttm_bo_create);
1292
1293static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1294 unsigned mem_type, bool allow_errors)
1295{
1296 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1297 struct ttm_bo_global *glob = bdev->glob;
1298 struct dma_fence *fence;
1299 int ret;
1300
1301 /*
1302 * Can't use standard list traversal since we're unlocking.
1303 */
1304
1305 spin_lock(&glob->lru_lock);
1306 while (!list_empty(&man->lru)) {
1307 spin_unlock(&glob->lru_lock);
1308 ret = ttm_mem_evict_first(bdev, mem_type, NULL, false, false);
1309 if (ret) {
1310 if (allow_errors) {
1311 return ret;
1312 } else {
1313 pr_err("Cleanup eviction failed\n");
1314 }
1315 }
1316 spin_lock(&glob->lru_lock);
1317 }
1318 spin_unlock(&glob->lru_lock);
1319
1320 spin_lock(&man->move_lock);
1321 fence = dma_fence_get(man->move);
1322 spin_unlock(&man->move_lock);
1323
1324 if (fence) {
1325 ret = dma_fence_wait(fence, false);
1326 dma_fence_put(fence);
1327 if (ret) {
1328 if (allow_errors) {
1329 return ret;
1330 } else {
1331 pr_err("Cleanup eviction failed\n");
1332 }
1333 }
1334 }
1335
1336 return 0;
1337}
1338
1339int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1340{
1341 struct ttm_mem_type_manager *man;
1342 int ret = -EINVAL;
1343
1344 if (mem_type >= TTM_NUM_MEM_TYPES) {
1345 pr_err("Illegal memory type %d\n", mem_type);
1346 return ret;
1347 }
1348 man = &bdev->man[mem_type];
1349
1350 if (!man->has_type) {
1351 pr_err("Trying to take down uninitialized memory manager type %u\n",
1352 mem_type);
1353 return ret;
1354 }
1355 dma_fence_put(man->move);
1356
1357 man->use_type = false;
1358 man->has_type = false;
1359
1360 ret = 0;
1361 if (mem_type > 0) {
1362 ttm_bo_force_list_clean(bdev, mem_type, false);
1363
1364 ret = (*man->func->takedown)(man);
1365 }
1366
1367 return ret;
1368}
1369EXPORT_SYMBOL(ttm_bo_clean_mm);
1370
1371int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1372{
1373 struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1374
1375 if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1376 pr_err("Illegal memory manager memory type %u\n", mem_type);
1377 return -EINVAL;
1378 }
1379
1380 if (!man->has_type) {
1381 pr_err("Memory type %u has not been initialized\n", mem_type);
1382 return 0;
1383 }
1384
1385 return ttm_bo_force_list_clean(bdev, mem_type, true);
1386}
1387EXPORT_SYMBOL(ttm_bo_evict_mm);
1388
1389int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1390 unsigned long p_size)
1391{
1392 int ret = -EINVAL;
1393 struct ttm_mem_type_manager *man;
1394
1395 BUG_ON(type >= TTM_NUM_MEM_TYPES);
1396 man = &bdev->man[type];
1397 BUG_ON(man->has_type);
1398 man->io_reserve_fastpath = true;
1399 man->use_io_reserve_lru = false;
1400 mutex_init(&man->io_reserve_mutex);
1401 spin_lock_init(&man->move_lock);
1402 INIT_LIST_HEAD(&man->io_reserve_lru);
1403
1404 ret = bdev->driver->init_mem_type(bdev, type, man);
1405 if (ret)
1406 return ret;
1407 man->bdev = bdev;
1408
1409 ret = 0;
1410 if (type != TTM_PL_SYSTEM) {
1411 ret = (*man->func->init)(man, p_size);
1412 if (ret)
1413 return ret;
1414 }
1415 man->has_type = true;
1416 man->use_type = true;
1417 man->size = p_size;
1418
1419 INIT_LIST_HEAD(&man->lru);
1420 man->move = NULL;
1421
1422 return 0;
1423}
1424EXPORT_SYMBOL(ttm_bo_init_mm);
1425
1426static void ttm_bo_global_kobj_release(struct kobject *kobj)
1427{
1428 struct ttm_bo_global *glob =
1429 container_of(kobj, struct ttm_bo_global, kobj);
1430
1431 ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1432 __free_page(glob->dummy_read_page);
1433 kfree(glob);
1434}
1435
1436void ttm_bo_global_release(struct drm_global_reference *ref)
1437{
1438 struct ttm_bo_global *glob = ref->object;
1439
1440 kobject_del(&glob->kobj);
1441 kobject_put(&glob->kobj);
1442}
1443EXPORT_SYMBOL(ttm_bo_global_release);
1444
1445int ttm_bo_global_init(struct drm_global_reference *ref)
1446{
1447 struct ttm_bo_global_ref *bo_ref =
1448 container_of(ref, struct ttm_bo_global_ref, ref);
1449 struct ttm_bo_global *glob = ref->object;
1450 int ret;
1451
1452 mutex_init(&glob->device_list_mutex);
1453 spin_lock_init(&glob->lru_lock);
1454 glob->mem_glob = bo_ref->mem_glob;
1455 glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1456
1457 if (unlikely(glob->dummy_read_page == NULL)) {
1458 ret = -ENOMEM;
1459 goto out_no_drp;
1460 }
1461
1462 INIT_LIST_HEAD(&glob->swap_lru);
1463 INIT_LIST_HEAD(&glob->device_list);
1464
1465 ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1466 ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1467 if (unlikely(ret != 0)) {
1468 pr_err("Could not register buffer object swapout\n");
1469 goto out_no_shrink;
1470 }
1471
1472 atomic_set(&glob->bo_count, 0);
1473
1474 ret = kobject_init_and_add(
1475 &glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1476 if (unlikely(ret != 0))
1477 kobject_put(&glob->kobj);
1478 return ret;
1479out_no_shrink:
1480 __free_page(glob->dummy_read_page);
1481out_no_drp:
1482 kfree(glob);
1483 return ret;
1484}
1485EXPORT_SYMBOL(ttm_bo_global_init);
1486
1487
1488int ttm_bo_device_release(struct ttm_bo_device *bdev)
1489{
1490 int ret = 0;
1491 unsigned i = TTM_NUM_MEM_TYPES;
1492 struct ttm_mem_type_manager *man;
1493 struct ttm_bo_global *glob = bdev->glob;
1494
1495 while (i--) {
1496 man = &bdev->man[i];
1497 if (man->has_type) {
1498 man->use_type = false;
1499 if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1500 ret = -EBUSY;
1501 pr_err("DRM memory manager type %d is not clean\n",
1502 i);
1503 }
1504 man->has_type = false;
1505 }
1506 }
1507
1508 mutex_lock(&glob->device_list_mutex);
1509 list_del(&bdev->device_list);
1510 mutex_unlock(&glob->device_list_mutex);
1511
1512 cancel_delayed_work_sync(&bdev->wq);
1513
1514 while (ttm_bo_delayed_delete(bdev, true))
1515 ;
1516
1517 spin_lock(&glob->lru_lock);
1518 if (list_empty(&bdev->ddestroy))
1519 TTM_DEBUG("Delayed destroy list was clean\n");
1520
1521 if (list_empty(&bdev->man[0].lru))
1522 TTM_DEBUG("Swap list was clean\n");
1523 spin_unlock(&glob->lru_lock);
1524
1525 drm_vma_offset_manager_destroy(&bdev->vma_manager);
1526
1527 return ret;
1528}
1529EXPORT_SYMBOL(ttm_bo_device_release);
1530
1531int ttm_bo_device_init(struct ttm_bo_device *bdev,
1532 struct ttm_bo_global *glob,
1533 struct ttm_bo_driver *driver,
1534 struct address_space *mapping,
1535 uint64_t file_page_offset,
1536 bool need_dma32)
1537{
1538 int ret = -EINVAL;
1539
1540 bdev->driver = driver;
1541
1542 memset(bdev->man, 0, sizeof(bdev->man));
1543
1544 /*
1545 * Initialize the system memory buffer type.
1546 * Other types need to be driver / IOCTL initialized.
1547 */
1548 ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1549 if (unlikely(ret != 0))
1550 goto out_no_sys;
1551
1552 drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1553 0x10000000);
1554 INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1555 INIT_LIST_HEAD(&bdev->ddestroy);
1556 bdev->dev_mapping = mapping;
1557 bdev->glob = glob;
1558 bdev->need_dma32 = need_dma32;
1559 mutex_lock(&glob->device_list_mutex);
1560 list_add_tail(&bdev->device_list, &glob->device_list);
1561 mutex_unlock(&glob->device_list_mutex);
1562
1563 return 0;
1564out_no_sys:
1565 return ret;
1566}
1567EXPORT_SYMBOL(ttm_bo_device_init);
1568
1569/*
1570 * buffer object vm functions.
1571 */
1572
1573bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1574{
1575 struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1576
1577 if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1578 if (mem->mem_type == TTM_PL_SYSTEM)
1579 return false;
1580
1581 if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1582 return false;
1583
1584 if (mem->placement & TTM_PL_FLAG_CACHED)
1585 return false;
1586 }
1587 return true;
1588}
1589
1590void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1591{
1592 struct ttm_bo_device *bdev = bo->bdev;
1593
1594 drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1595 ttm_mem_io_free_vm(bo);
1596}
1597
1598void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1599{
1600 struct ttm_bo_device *bdev = bo->bdev;
1601 struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1602
1603 ttm_mem_io_lock(man, false);
1604 ttm_bo_unmap_virtual_locked(bo);
1605 ttm_mem_io_unlock(man);
1606}
1607
1608
1609EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1610
1611int ttm_bo_wait(struct ttm_buffer_object *bo,
1612 bool interruptible, bool no_wait)
1613{
1614 long timeout = 15 * HZ;
1615
1616 if (no_wait) {
1617 if (reservation_object_test_signaled_rcu(bo->resv, true))
1618 return 0;
1619 else
1620 return -EBUSY;
1621 }
1622
1623 timeout = reservation_object_wait_timeout_rcu(bo->resv, true,
1624 interruptible, timeout);
1625 if (timeout < 0)
1626 return timeout;
1627
1628 if (timeout == 0)
1629 return -EBUSY;
1630
1631 reservation_object_add_excl_fence(bo->resv, NULL);
1632 return 0;
1633}
1634EXPORT_SYMBOL(ttm_bo_wait);
1635
1636int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1637{
1638 int ret = 0;
1639
1640 /*
1641 * Using ttm_bo_reserve makes sure the lru lists are updated.
1642 */
1643
1644 ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1645 if (unlikely(ret != 0))
1646 return ret;
1647 ret = ttm_bo_wait(bo, true, no_wait);
1648 if (likely(ret == 0))
1649 atomic_inc(&bo->cpu_writers);
1650 ttm_bo_unreserve(bo);
1651 return ret;
1652}
1653EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1654
1655void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1656{
1657 atomic_dec(&bo->cpu_writers);
1658}
1659EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1660
1661/**
1662 * A buffer object shrink method that tries to swap out the first
1663 * buffer object on the bo_global::swap_lru list.
1664 */
1665
1666static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
1667{
1668 struct ttm_bo_global *glob =
1669 container_of(shrink, struct ttm_bo_global, shrink);
1670 struct ttm_buffer_object *bo;
1671 int ret = -EBUSY;
1672 int put_count;
1673
1674 spin_lock(&glob->lru_lock);
1675 list_for_each_entry(bo, &glob->swap_lru, swap) {
1676 ret = __ttm_bo_reserve(bo, false, true, NULL);
1677 if (!ret)
1678 break;
1679 }
1680
1681 if (ret) {
1682 spin_unlock(&glob->lru_lock);
1683 return ret;
1684 }
1685
1686 kref_get(&bo->list_kref);
1687
1688 if (!list_empty(&bo->ddestroy)) {
1689 ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1690 kref_put(&bo->list_kref, ttm_bo_release_list);
1691 return ret;
1692 }
1693
1694 put_count = ttm_bo_del_from_lru(bo);
1695 spin_unlock(&glob->lru_lock);
1696
1697 ttm_bo_list_ref_sub(bo, put_count, true);
1698
1699 /**
1700 * Move to system cached
1701 */
1702
1703 if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1704 bo->ttm->caching_state != tt_cached) {
1705 struct ttm_mem_reg evict_mem;
1706
1707 evict_mem = bo->mem;
1708 evict_mem.mm_node = NULL;
1709 evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1710 evict_mem.mem_type = TTM_PL_SYSTEM;
1711
1712 ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1713 false, false);
1714 if (unlikely(ret != 0))
1715 goto out;
1716 }
1717
1718 /**
1719 * Make sure BO is idle.
1720 */
1721
1722 ret = ttm_bo_wait(bo, false, false);
1723 if (unlikely(ret != 0))
1724 goto out;
1725
1726 ttm_bo_unmap_virtual(bo);
1727
1728 /**
1729 * Swap out. Buffer will be swapped in again as soon as
1730 * anyone tries to access a ttm page.
1731 */
1732
1733 if (bo->bdev->driver->swap_notify)
1734 bo->bdev->driver->swap_notify(bo);
1735
1736 ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1737out:
1738
1739 /**
1740 *
1741 * Unreserve without putting on LRU to avoid swapping out an
1742 * already swapped buffer.
1743 */
1744
1745 __ttm_bo_unreserve(bo);
1746 kref_put(&bo->list_kref, ttm_bo_release_list);
1747 return ret;
1748}
1749
1750void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1751{
1752 while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1753 ;
1754}
1755EXPORT_SYMBOL(ttm_bo_swapout_all);
1756
1757/**
1758 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1759 * unreserved
1760 *
1761 * @bo: Pointer to buffer
1762 */
1763int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
1764{
1765 int ret;
1766
1767 /*
1768 * In the absense of a wait_unlocked API,
1769 * Use the bo::wu_mutex to avoid triggering livelocks due to
1770 * concurrent use of this function. Note that this use of
1771 * bo::wu_mutex can go away if we change locking order to
1772 * mmap_sem -> bo::reserve.
1773 */
1774 ret = mutex_lock_interruptible(&bo->wu_mutex);
1775 if (unlikely(ret != 0))
1776 return -ERESTARTSYS;
1777 if (!ww_mutex_is_locked(&bo->resv->lock))
1778 goto out_unlock;
1779 ret = __ttm_bo_reserve(bo, true, false, NULL);
1780 if (unlikely(ret != 0))
1781 goto out_unlock;
1782 __ttm_bo_unreserve(bo);
1783
1784out_unlock:
1785 mutex_unlock(&bo->wu_mutex);
1786 return ret;
1787}