Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28/*
  29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  30 */
  31
  32#define pr_fmt(fmt) "[TTM] " fmt
  33
  34#include <drm/ttm/ttm_bo.h>
 
  35#include <drm/ttm/ttm_placement.h>
  36#include <drm/ttm/ttm_tt.h>
  37
  38#include <linux/jiffies.h>
  39#include <linux/slab.h>
  40#include <linux/sched.h>
  41#include <linux/mm.h>
  42#include <linux/file.h>
  43#include <linux/module.h>
  44#include <linux/atomic.h>
  45#include <linux/dma-resv.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  46
  47#include "ttm_module.h"
 
 
 
 
 
 
 
 
 
  48
  49static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  50					struct ttm_placement *placement)
  51{
  52	struct drm_printer p = drm_dbg_printer(NULL, DRM_UT_CORE, TTM_PFX);
  53	struct ttm_resource_manager *man;
  54	int i, mem_type;
  55
 
 
 
  56	for (i = 0; i < placement->num_placement; i++) {
  57		mem_type = placement->placement[i].mem_type;
  58		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
  59			   i, placement->placement[i].flags, mem_type);
  60		man = ttm_manager_type(bo->bdev, mem_type);
  61		ttm_resource_manager_debug(man, &p);
 
 
  62	}
  63}
  64
  65/**
  66 * ttm_bo_move_to_lru_tail
  67 *
  68 * @bo: The buffer object.
  69 *
  70 * Move this BO to the tail of all lru lists used to lookup and reserve an
  71 * object. This function must be called with struct ttm_global::lru_lock
  72 * held, and is used to make a BO less likely to be considered for eviction.
  73 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
  75{
  76	dma_resv_assert_held(bo->base.resv);
 
 
 
 
 
 
  77
  78	if (bo->resource)
  79		ttm_resource_move_to_lru_tail(bo->resource);
 
  80}
  81EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
  82
  83/**
  84 * ttm_bo_set_bulk_move - update BOs bulk move object
  85 *
  86 * @bo: The buffer object.
  87 * @bulk: bulk move structure
  88 *
  89 * Update the BOs bulk move object, making sure that resources are added/removed
  90 * as well. A bulk move allows to move many resource on the LRU at once,
  91 * resulting in much less overhead of maintaining the LRU.
  92 * The only requirement is that the resources stay together on the LRU and are
  93 * never separated. This is enforces by setting the bulk_move structure on a BO.
  94 * ttm_lru_bulk_move_tail() should be used to move all resources to the tail of
  95 * their LRU list.
 
  96 */
  97void ttm_bo_set_bulk_move(struct ttm_buffer_object *bo,
  98			  struct ttm_lru_bulk_move *bulk)
  99{
 100	dma_resv_assert_held(bo->base.resv);
 
 
 
 
 
 
 
 
 
 101
 102	if (bo->bulk_move == bulk)
 103		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105	spin_lock(&bo->bdev->lru_lock);
 106	if (bo->resource)
 107		ttm_resource_del_bulk_move(bo->resource, bo);
 108	bo->bulk_move = bulk;
 109	if (bo->resource)
 110		ttm_resource_add_bulk_move(bo->resource, bo);
 111	spin_unlock(&bo->bdev->lru_lock);
 112}
 113EXPORT_SYMBOL(ttm_bo_set_bulk_move);
 114
 115static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 116				  struct ttm_resource *mem, bool evict,
 117				  struct ttm_operation_ctx *ctx,
 118				  struct ttm_place *hop)
 119{
 120	struct ttm_device *bdev = bo->bdev;
 121	bool old_use_tt, new_use_tt;
 122	int ret;
 123
 124	old_use_tt = !bo->resource || ttm_manager_type(bdev, bo->resource->mem_type)->use_tt;
 125	new_use_tt = ttm_manager_type(bdev, mem->mem_type)->use_tt;
 126
 127	ttm_bo_unmap_virtual(bo);
 
 
 
 
 
 
 
 128
 129	/*
 130	 * Create and bind a ttm if required.
 131	 */
 132
 133	if (new_use_tt) {
 134		/* Zero init the new TTM structure if the old location should
 135		 * have used one as well.
 136		 */
 137		ret = ttm_tt_create(bo, old_use_tt);
 
 
 
 
 138		if (ret)
 139			goto out_err;
 140
 141		if (mem->mem_type != TTM_PL_SYSTEM) {
 142			ret = ttm_bo_populate(bo, ctx);
 143			if (ret)
 144				goto out_err;
 145		}
 
 
 
 
 
 
 
 
 146	}
 147
 148	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 149	if (ret)
 150		goto out_err;
 
 
 
 
 
 
 
 
 151
 152	ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
 153	if (ret) {
 154		if (ret == -EMULTIHOP)
 155			return ret;
 
 
 
 
 
 
 
 156		goto out_err;
 157	}
 158
 159	ctx->bytes_moved += bo->base.size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	return 0;
 161
 162out_err:
 163	if (!old_use_tt)
 164		ttm_bo_tt_destroy(bo);
 
 
 
 165
 166	return ret;
 167}
 168
 169/*
 170 * Call bo::reserved.
 171 * Will release GPU memory type usage on destruction.
 172 * This is the place to put in driver specific hooks to release
 173 * driver private resources.
 174 * Will release the bo::reserved lock.
 175 */
 176
 177static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 178{
 179	if (bo->bdev->funcs->delete_mem_notify)
 180		bo->bdev->funcs->delete_mem_notify(bo);
 181
 182	ttm_bo_tt_destroy(bo);
 183	ttm_resource_free(bo, &bo->resource);
 184}
 185
 186static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
 187{
 188	int r;
 189
 190	if (bo->base.resv == &bo->base._resv)
 191		return 0;
 192
 193	BUG_ON(!dma_resv_trylock(&bo->base._resv));
 194
 195	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
 196	dma_resv_unlock(&bo->base._resv);
 197	if (r)
 198		return r;
 199
 200	if (bo->type != ttm_bo_type_sg) {
 201		/* This works because the BO is about to be destroyed and nobody
 202		 * reference it any more. The only tricky case is the trylock on
 203		 * the resv object while holding the lru_lock.
 204		 */
 205		spin_lock(&bo->bdev->lru_lock);
 206		bo->base.resv = &bo->base._resv;
 207		spin_unlock(&bo->bdev->lru_lock);
 208	}
 209
 210	return r;
 211}
 212
 213static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 214{
 215	struct dma_resv *resv = &bo->base._resv;
 216	struct dma_resv_iter cursor;
 217	struct dma_fence *fence;
 
 
 
 
 
 
 
 
 
 
 218
 219	dma_resv_iter_begin(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP);
 220	dma_resv_for_each_fence_unlocked(&cursor, fence) {
 221		if (!fence->ops->signaled)
 222			dma_fence_enable_sw_signaling(fence);
 223	}
 224	dma_resv_iter_end(&cursor);
 225}
 226
 227/*
 228 * Block for the dma_resv object to become idle, lock the buffer and clean up
 229 * the resource and tt object.
 230 */
 231static void ttm_bo_delayed_delete(struct work_struct *work)
 232{
 233	struct ttm_buffer_object *bo;
 
 
 
 234
 235	bo = container_of(work, typeof(*bo), delayed_delete);
 
 236
 237	dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false,
 238			      MAX_SCHEDULE_TIMEOUT);
 239	dma_resv_lock(bo->base.resv, NULL);
 240	ttm_bo_cleanup_memtype_use(bo);
 241	dma_resv_unlock(bo->base.resv);
 242	ttm_bo_put(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 243}
 244
 245static void ttm_bo_release(struct kref *kref)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 246{
 247	struct ttm_buffer_object *bo =
 248	    container_of(kref, struct ttm_buffer_object, kref);
 249	struct ttm_device *bdev = bo->bdev;
 250	int ret;
 251
 252	WARN_ON_ONCE(bo->pin_count);
 253	WARN_ON_ONCE(bo->bulk_move);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 254
 255	if (!bo->deleted) {
 256		ret = ttm_bo_individualize_resv(bo);
 
 
 
 
 
 
 257		if (ret) {
 258			/* Last resort, if we fail to allocate memory for the
 259			 * fences block for the BO to become idle
 260			 */
 261			dma_resv_wait_timeout(bo->base.resv,
 262					      DMA_RESV_USAGE_BOOKKEEP, false,
 263					      30 * HZ);
 264		}
 265
 266		if (bo->bdev->funcs->release_notify)
 267			bo->bdev->funcs->release_notify(bo);
 
 
 
 
 
 268
 269		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
 270		ttm_mem_io_free(bdev, bo->resource);
 
 
 
 271
 272		if (!dma_resv_test_signaled(bo->base.resv,
 273					    DMA_RESV_USAGE_BOOKKEEP) ||
 274		    (want_init_on_free() && (bo->ttm != NULL)) ||
 275		    bo->type == ttm_bo_type_sg ||
 276		    !dma_resv_trylock(bo->base.resv)) {
 277			/* The BO is not idle, resurrect it for delayed destroy */
 278			ttm_bo_flush_all_fences(bo);
 279			bo->deleted = true;
 280
 281			spin_lock(&bo->bdev->lru_lock);
 
 282
 283			/*
 284			 * Make pinned bos immediately available to
 285			 * shrinkers, now that they are queued for
 286			 * destruction.
 287			 *
 288			 * FIXME: QXL is triggering this. Can be removed when the
 289			 * driver is fixed.
 290			 */
 291			if (bo->pin_count) {
 292				bo->pin_count = 0;
 293				ttm_resource_move_to_lru_tail(bo->resource);
 294			}
 295
 296			kref_init(&bo->kref);
 297			spin_unlock(&bo->bdev->lru_lock);
 298
 299			INIT_WORK(&bo->delayed_delete, ttm_bo_delayed_delete);
 
 
 
 300
 301			/* Schedule the worker on the closest NUMA node. This
 302			 * improves performance since system memory might be
 303			 * cleared on free and that is best done on a CPU core
 304			 * close to it.
 305			 */
 306			queue_work_node(bdev->pool.nid, bdev->wq, &bo->delayed_delete);
 307			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308		}
 309
 310		ttm_bo_cleanup_memtype_use(bo);
 311		dma_resv_unlock(bo->base.resv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 312	}
 313
 314	atomic_dec(&ttm_glob.bo_count);
 315	bo->destroy(bo);
 
 
 
 
 316}
 317
 318/**
 319 * ttm_bo_put
 320 *
 321 * @bo: The buffer object.
 322 *
 323 * Unreference a buffer object.
 324 */
 325void ttm_bo_put(struct ttm_buffer_object *bo)
 326{
 327	kref_put(&bo->kref, ttm_bo_release);
 
 
 
 
 
 
 328}
 329EXPORT_SYMBOL(ttm_bo_put);
 330
 331static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
 332				     struct ttm_operation_ctx *ctx,
 333				     struct ttm_place *hop)
 334{
 335	struct ttm_placement hop_placement;
 336	struct ttm_resource *hop_mem;
 337	int ret;
 
 
 
 
 
 
 
 
 
 338
 339	hop_placement.num_placement = 1;
 340	hop_placement.placement = hop;
 
 341
 342	/* find space in the bounce domain */
 343	ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
 344	if (ret)
 345		return ret;
 346	/* move to the bounce domain */
 347	ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
 348	if (ret) {
 349		ttm_resource_free(bo, &hop_mem);
 350		return ret;
 351	}
 352	return 0;
 353}
 
 354
 355static int ttm_bo_evict(struct ttm_buffer_object *bo,
 356			struct ttm_operation_ctx *ctx)
 357{
 358	struct ttm_device *bdev = bo->bdev;
 359	struct ttm_resource *evict_mem;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 360	struct ttm_placement placement;
 361	struct ttm_place hop;
 362	int ret = 0;
 363
 364	memset(&hop, 0, sizeof(hop));
 365
 366	dma_resv_assert_held(bo->base.resv);
 
 
 
 367
 368	placement.num_placement = 0;
 369	bdev->funcs->evict_flags(bo, &placement);
 370
 371	if (!placement.num_placement) {
 372		ret = ttm_bo_wait_ctx(bo, ctx);
 373		if (ret)
 374			return ret;
 375
 376		/*
 377		 * Since we've already synced, this frees backing store
 378		 * immediately.
 379		 */
 380		return ttm_bo_pipeline_gutting(bo);
 381	}
 382
 383	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
 384	if (ret) {
 385		if (ret != -ERESTARTSYS) {
 386			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 387			       bo);
 388			ttm_bo_mem_space_debug(bo, &placement);
 389		}
 390		goto out;
 391	}
 392
 393	do {
 394		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
 395		if (ret != -EMULTIHOP)
 396			break;
 397
 398		ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
 399	} while (!ret);
 400
 401	if (ret) {
 402		ttm_resource_free(bo, &evict_mem);
 403		if (ret != -ERESTARTSYS && ret != -EINTR)
 404			pr_err("Buffer eviction failed\n");
 
 
 405	}
 
 406out:
 407	return ret;
 408}
 409
 410/**
 411 * ttm_bo_eviction_valuable
 412 *
 413 * @bo: The buffer object to evict
 414 * @place: the placement we need to make room for
 415 *
 416 * Check if it is valuable to evict the BO to make room for the given placement.
 417 */
 418bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 419			      const struct ttm_place *place)
 420{
 421	struct ttm_resource *res = bo->resource;
 422	struct ttm_device *bdev = bo->bdev;
 423
 424	dma_resv_assert_held(bo->base.resv);
 425	if (bo->resource->mem_type == TTM_PL_SYSTEM)
 426		return true;
 427
 428	/* Don't evict this BO if it's outside of the
 429	 * requested placement range
 430	 */
 431	return ttm_resource_intersects(bdev, res, place, bo->base.size);
 
 
 
 
 432}
 433EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 434
 435/**
 436 * ttm_bo_evict_first() - Evict the first bo on the manager's LRU list.
 437 * @bdev: The ttm device.
 438 * @man: The manager whose bo to evict.
 439 * @ctx: The TTM operation ctx governing the eviction.
 440 *
 441 * Return: 0 if successful or the resource disappeared. Negative error code on error.
 442 */
 443int ttm_bo_evict_first(struct ttm_device *bdev, struct ttm_resource_manager *man,
 444		       struct ttm_operation_ctx *ctx)
 445{
 446	struct ttm_resource_cursor cursor;
 
 447	struct ttm_buffer_object *bo;
 448	struct ttm_resource *res;
 449	unsigned int mem_type;
 450	int ret = 0;
 451
 452	spin_lock(&bdev->lru_lock);
 453	res = ttm_resource_manager_first(man, &cursor);
 454	ttm_resource_cursor_fini(&cursor);
 455	if (!res) {
 456		ret = -ENOENT;
 457		goto out_no_ref;
 458	}
 459	bo = res->bo;
 460	if (!ttm_bo_get_unless_zero(bo))
 461		goto out_no_ref;
 462	mem_type = res->mem_type;
 463	spin_unlock(&bdev->lru_lock);
 464	ret = ttm_bo_reserve(bo, ctx->interruptible, ctx->no_wait_gpu, NULL);
 465	if (ret)
 466		goto out_no_lock;
 467	if (!bo->resource || bo->resource->mem_type != mem_type)
 468		goto out_bo_moved;
 469
 470	if (bo->deleted) {
 471		ret = ttm_bo_wait_ctx(bo, ctx);
 472		if (!ret)
 473			ttm_bo_cleanup_memtype_use(bo);
 474	} else {
 475		ret = ttm_bo_evict(bo, ctx);
 
 476	}
 477out_bo_moved:
 478	dma_resv_unlock(bo->base.resv);
 479out_no_lock:
 480	ttm_bo_put(bo);
 481	return ret;
 482
 483out_no_ref:
 484	spin_unlock(&bdev->lru_lock);
 485	return ret;
 486}
 487
 488/**
 489 * struct ttm_bo_evict_walk - Parameters for the evict walk.
 490 */
 491struct ttm_bo_evict_walk {
 492	/** @walk: The walk base parameters. */
 493	struct ttm_lru_walk walk;
 494	/** @place: The place passed to the resource allocation. */
 495	const struct ttm_place *place;
 496	/** @evictor: The buffer object we're trying to make room for. */
 497	struct ttm_buffer_object *evictor;
 498	/** @res: The allocated resource if any. */
 499	struct ttm_resource **res;
 500	/** @evicted: Number of successful evictions. */
 501	unsigned long evicted;
 502};
 503
 504static s64 ttm_bo_evict_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
 505{
 506	struct ttm_bo_evict_walk *evict_walk =
 507		container_of(walk, typeof(*evict_walk), walk);
 508	s64 lret;
 
 509
 510	if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, evict_walk->place))
 511		return 0;
 512
 513	if (bo->deleted) {
 514		lret = ttm_bo_wait_ctx(bo, walk->ctx);
 515		if (!lret)
 516			ttm_bo_cleanup_memtype_use(bo);
 517	} else {
 518		lret = ttm_bo_evict(bo, walk->ctx);
 519	}
 520
 521	if (lret)
 522		goto out;
 523
 524	evict_walk->evicted++;
 525	if (evict_walk->res)
 526		lret = ttm_resource_alloc(evict_walk->evictor, evict_walk->place,
 527					  evict_walk->res);
 528	if (lret == 0)
 529		return 1;
 530out:
 531	/* Errors that should terminate the walk. */
 532	if (lret == -ENOSPC)
 533		return -EBUSY;
 534
 535	return lret;
 
 536}
 537
 538static const struct ttm_lru_walk_ops ttm_evict_walk_ops = {
 539	.process_bo = ttm_bo_evict_cb,
 540};
 541
 542static int ttm_bo_evict_alloc(struct ttm_device *bdev,
 543			      struct ttm_resource_manager *man,
 544			      const struct ttm_place *place,
 545			      struct ttm_buffer_object *evictor,
 546			      struct ttm_operation_ctx *ctx,
 547			      struct ww_acquire_ctx *ticket,
 548			      struct ttm_resource **res)
 549{
 550	struct ttm_bo_evict_walk evict_walk = {
 551		.walk = {
 552			.ops = &ttm_evict_walk_ops,
 553			.ctx = ctx,
 554			.ticket = ticket,
 555		},
 556		.place = place,
 557		.evictor = evictor,
 558		.res = res,
 559	};
 560	s64 lret;
 561
 562	evict_walk.walk.trylock_only = true;
 563	lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
 564	if (lret || !ticket)
 565		goto out;
 566
 567	/* If ticket-locking, repeat while making progress. */
 568	evict_walk.walk.trylock_only = false;
 569	do {
 570		/* The walk may clear the evict_walk.walk.ticket field */
 571		evict_walk.walk.ticket = ticket;
 572		evict_walk.evicted = 0;
 573		lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
 574	} while (!lret && evict_walk.evicted);
 575out:
 576	if (lret < 0)
 577		return lret;
 578	if (lret == 0)
 579		return -EBUSY;
 580	return 0;
 581}
 
 582
 583/**
 584 * ttm_bo_pin - Pin the buffer object.
 585 * @bo: The buffer object to pin
 586 *
 587 * Make sure the buffer is not evicted any more during memory pressure.
 588 * @bo must be unpinned again by calling ttm_bo_unpin().
 589 */
 590void ttm_bo_pin(struct ttm_buffer_object *bo)
 
 
 591{
 592	dma_resv_assert_held(bo->base.resv);
 593	WARN_ON_ONCE(!kref_read(&bo->kref));
 594	spin_lock(&bo->bdev->lru_lock);
 595	if (bo->resource)
 596		ttm_resource_del_bulk_move(bo->resource, bo);
 597	if (!bo->pin_count++ && bo->resource)
 598		ttm_resource_move_to_lru_tail(bo->resource);
 599	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 600}
 601EXPORT_SYMBOL(ttm_bo_pin);
 602
 603/**
 604 * ttm_bo_unpin - Unpin the buffer object.
 605 * @bo: The buffer object to unpin
 606 *
 607 * Allows the buffer object to be evicted again during memory pressure.
 608 */
 609void ttm_bo_unpin(struct ttm_buffer_object *bo)
 
 
 
 
 
 610{
 611	dma_resv_assert_held(bo->base.resv);
 612	WARN_ON_ONCE(!kref_read(&bo->kref));
 613	if (WARN_ON_ONCE(!bo->pin_count))
 614		return;
 615
 616	spin_lock(&bo->bdev->lru_lock);
 617	if (!--bo->pin_count && bo->resource) {
 618		ttm_resource_add_bulk_move(bo->resource, bo);
 619		ttm_resource_move_to_lru_tail(bo->resource);
 620	}
 621	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 622}
 623EXPORT_SYMBOL(ttm_bo_unpin);
 624
 625/*
 626 * Add the last move fence to the BO as kernel dependency and reserve a new
 627 * fence slot.
 628 */
 629static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 630				 struct ttm_resource_manager *man,
 631				 bool no_wait_gpu)
 632{
 633	struct dma_fence *fence;
 634	int ret;
 635
 636	spin_lock(&man->move_lock);
 637	fence = dma_fence_get(man->move);
 638	spin_unlock(&man->move_lock);
 639
 640	if (!fence)
 641		return 0;
 
 
 
 
 
 
 
 
 642
 643	if (no_wait_gpu) {
 644		ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
 645		dma_fence_put(fence);
 646		return ret;
 647	}
 
 
 
 
 648
 649	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
 
 650
 651	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 652	dma_fence_put(fence);
 653	return ret;
 
 
 
 
 654}
 655
 656/**
 657 * ttm_bo_alloc_resource - Allocate backing store for a BO
 658 *
 659 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
 660 * @placement: Proposed new placement for the buffer object
 661 * @ctx: if and how to sleep, lock buffers and alloc memory
 662 * @force_space: If we should evict buffers to force space
 663 * @res: The resulting struct ttm_resource.
 664 *
 665 * Allocates a resource for the buffer object pointed to by @bo, using the
 666 * placement flags in @placement, potentially evicting other buffer objects when
 667 * @force_space is true.
 668 * This function may sleep while waiting for resources to become available.
 669 * Returns:
 670 * -EBUSY: No space available (only if no_wait == true).
 671 * -ENOSPC: Could not allocate space for the buffer object, either due to
 672 * fragmentation or concurrent allocators.
 673 * -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
 674 */
 675static int ttm_bo_alloc_resource(struct ttm_buffer_object *bo,
 676				 struct ttm_placement *placement,
 677				 struct ttm_operation_ctx *ctx,
 678				 bool force_space,
 679				 struct ttm_resource **res)
 680{
 681	struct ttm_device *bdev = bo->bdev;
 682	struct ww_acquire_ctx *ticket;
 
 
 
 
 
 683	int i, ret;
 684
 685	ticket = dma_resv_locking_ctx(bo->base.resv);
 686	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 687	if (unlikely(ret))
 688		return ret;
 689
 
 690	for (i = 0; i < placement->num_placement; ++i) {
 691		const struct ttm_place *place = &placement->placement[i];
 692		struct ttm_resource_manager *man;
 693		bool may_evict;
 694
 695		man = ttm_manager_type(bdev, place->mem_type);
 696		if (!man || !ttm_resource_manager_used(man))
 
 
 
 697			continue;
 698
 699		if (place->flags & (force_space ? TTM_PL_FLAG_DESIRED :
 700				    TTM_PL_FLAG_FALLBACK))
 701			continue;
 702
 703		may_evict = (force_space && place->mem_type != TTM_PL_SYSTEM);
 704		ret = ttm_resource_alloc(bo, place, res);
 705		if (ret) {
 706			if (ret != -ENOSPC)
 707				return ret;
 708			if (!may_evict)
 709				continue;
 710
 711			ret = ttm_bo_evict_alloc(bdev, man, place, bo, ctx,
 712						 ticket, res);
 713			if (ret == -EBUSY)
 714				continue;
 715			if (ret)
 716				return ret;
 717		}
 
 
 718
 719		ret = ttm_bo_add_move_fence(bo, man, ctx->no_wait_gpu);
 720		if (unlikely(ret)) {
 721			ttm_resource_free(bo, res);
 722			if (ret == -EBUSY)
 723				continue;
 724
 
 
 725			return ret;
 
 
 
 
 
 
 
 
 726		}
 
 
 
 
 
 727		return 0;
 728	}
 729
 730	return -ENOSPC;
 731}
 732
 733/*
 734 * ttm_bo_mem_space - Wrapper around ttm_bo_alloc_resource
 735 *
 736 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
 737 * @placement: Proposed new placement for the buffer object
 738 * @res: The resulting struct ttm_resource.
 739 * @ctx: if and how to sleep, lock buffers and alloc memory
 740 *
 741 * Tries both idle allocation and forcefully eviction of buffers. See
 742 * ttm_bo_alloc_resource for details.
 743 */
 744int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 745		     struct ttm_placement *placement,
 746		     struct ttm_resource **res,
 747		     struct ttm_operation_ctx *ctx)
 748{
 749	bool force_space = false;
 750	int ret;
 751
 752	do {
 753		ret = ttm_bo_alloc_resource(bo, placement, ctx,
 754					    force_space, res);
 755		force_space = !force_space;
 756	} while (ret == -ENOSPC && force_space);
 
 
 
 
 757
 758	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 759}
 760EXPORT_SYMBOL(ttm_bo_mem_space);
 761
 762/**
 763 * ttm_bo_validate
 764 *
 765 * @bo: The buffer object.
 766 * @placement: Proposed placement for the buffer object.
 767 * @ctx: validation parameters.
 768 *
 769 * Changes placement and caching policy of the buffer object
 770 * according proposed placement.
 771 * Returns
 772 * -EINVAL on invalid proposed placement.
 773 * -ENOMEM on out-of-memory condition.
 774 * -EBUSY if no_wait is true and buffer busy.
 775 * -ERESTARTSYS if interrupted by a signal.
 776 */
 777int ttm_bo_validate(struct ttm_buffer_object *bo,
 778		    struct ttm_placement *placement,
 779		    struct ttm_operation_ctx *ctx)
 780{
 781	struct ttm_resource *res;
 782	struct ttm_place hop;
 783	bool force_space;
 784	int ret;
 785
 786	dma_resv_assert_held(bo->base.resv);
 787
 
 
 
 
 
 788	/*
 789	 * Remove the backing store if no placement is given.
 790	 */
 791	if (!placement->num_placement)
 792		return ttm_bo_pipeline_gutting(bo);
 
 
 
 
 
 
 
 
 
 793
 794	force_space = false;
 795	do {
 796		/* Check whether we need to move buffer. */
 797		if (bo->resource &&
 798		    ttm_resource_compatible(bo->resource, placement,
 799					    force_space))
 800			return 0;
 
 
 
 
 
 801
 802		/* Moving of pinned BOs is forbidden */
 803		if (bo->pin_count)
 804			return -EINVAL;
 
 
 805
 806		/*
 807		 * Determine where to move the buffer.
 808		 *
 809		 * If driver determines move is going to need
 810		 * an extra step then it will return -EMULTIHOP
 811		 * and the buffer will be moved to the temporary
 812		 * stop and the driver will be called to make
 813		 * the second hop.
 814		 */
 815		ret = ttm_bo_alloc_resource(bo, placement, ctx, force_space,
 816					    &res);
 817		force_space = !force_space;
 818		if (ret == -ENOSPC)
 819			continue;
 820		if (ret)
 821			return ret;
 822
 823bounce:
 824		ret = ttm_bo_handle_move_mem(bo, res, false, ctx, &hop);
 825		if (ret == -EMULTIHOP) {
 826			ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
 827			/* try and move to final place now. */
 828			if (!ret)
 829				goto bounce;
 830		}
 831		if (ret) {
 832			ttm_resource_free(bo, &res);
 833			return ret;
 834		}
 835
 836	} while (ret && force_space);
 
 
 837
 838	/* For backward compatibility with userspace */
 839	if (ret == -ENOSPC)
 840		return -ENOMEM;
 
 
 
 
 841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842	/*
 843	 * We might need to add a TTM.
 844	 */
 845	if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) {
 846		ret = ttm_tt_create(bo, true);
 847		if (ret)
 848			return ret;
 849	}
 850	return 0;
 851}
 852EXPORT_SYMBOL(ttm_bo_validate);
 853
 854/**
 855 * ttm_bo_init_reserved
 856 *
 857 * @bdev: Pointer to a ttm_device struct.
 858 * @bo: Pointer to a ttm_buffer_object to be initialized.
 859 * @type: Requested type of buffer object.
 860 * @placement: Initial placement for buffer object.
 861 * @alignment: Data alignment in pages.
 862 * @ctx: TTM operation context for memory allocation.
 863 * @sg: Scatter-gather table.
 864 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 865 * @destroy: Destroy function. Use NULL for kfree().
 866 *
 867 * This function initializes a pre-allocated struct ttm_buffer_object.
 868 * As this object may be part of a larger structure, this function,
 869 * together with the @destroy function, enables driver-specific objects
 870 * derived from a ttm_buffer_object.
 871 *
 872 * On successful return, the caller owns an object kref to @bo. The kref and
 873 * list_kref are usually set to 1, but note that in some situations, other
 874 * tasks may already be holding references to @bo as well.
 875 * Furthermore, if resv == NULL, the buffer's reservation lock will be held,
 876 * and it is the caller's responsibility to call ttm_bo_unreserve.
 877 *
 878 * If a failure occurs, the function will call the @destroy function. Thus,
 879 * after a failure, dereferencing @bo is illegal and will likely cause memory
 880 * corruption.
 881 *
 882 * Returns
 883 * -ENOMEM: Out of memory.
 884 * -EINVAL: Invalid placement flags.
 885 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 886 */
 887int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 888			 enum ttm_bo_type type, struct ttm_placement *placement,
 889			 uint32_t alignment, struct ttm_operation_ctx *ctx,
 890			 struct sg_table *sg, struct dma_resv *resv,
 891			 void (*destroy) (struct ttm_buffer_object *))
 892{
 893	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894
 895	kref_init(&bo->kref);
 
 
 
 
 
 
 
 896	bo->bdev = bdev;
 
 897	bo->type = type;
 898	bo->page_alignment = alignment;
 899	bo->destroy = destroy;
 900	bo->pin_count = 0;
 
 
 
 
 
 
 
 
 
 901	bo->sg = sg;
 902	bo->bulk_move = NULL;
 903	if (resv)
 904		bo->base.resv = resv;
 905	else
 906		bo->base.resv = &bo->base._resv;
 907	atomic_inc(&ttm_glob.bo_count);
 
 
 
 908
 909	/*
 910	 * For ttm_bo_type_device buffers, allocate
 911	 * address space from the device.
 912	 */
 913	if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) {
 914		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
 915					 PFN_UP(bo->base.size));
 916		if (ret)
 917			goto err_put;
 918	}
 919
 920	/* passed reservation objects should already be locked,
 921	 * since otherwise lockdep will be angered in radeon.
 922	 */
 923	if (!resv)
 924		WARN_ON(!dma_resv_trylock(bo->base.resv));
 925	else
 926		dma_resv_assert_held(resv);
 
 
 
 
 
 
 
 
 
 
 
 
 927
 928	ret = ttm_bo_validate(bo, placement, ctx);
 929	if (unlikely(ret))
 930		goto err_unlock;
 931
 932	return 0;
 
 
 933
 934err_unlock:
 935	if (!resv)
 936		dma_resv_unlock(bo->base.resv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937
 938err_put:
 939	ttm_bo_put(bo);
 940	return ret;
 941}
 942EXPORT_SYMBOL(ttm_bo_init_reserved);
 943
 944/**
 945 * ttm_bo_init_validate
 946 *
 947 * @bdev: Pointer to a ttm_device struct.
 948 * @bo: Pointer to a ttm_buffer_object to be initialized.
 949 * @type: Requested type of buffer object.
 950 * @placement: Initial placement for buffer object.
 951 * @alignment: Data alignment in pages.
 952 * @interruptible: If needing to sleep to wait for GPU resources,
 953 * sleep interruptible.
 954 * pinned in physical memory. If this behaviour is not desired, this member
 955 * holds a pointer to a persistent shmem object. Typically, this would
 956 * point to the shmem object backing a GEM object if TTM is used to back a
 957 * GEM user interface.
 958 * @sg: Scatter-gather table.
 959 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 960 * @destroy: Destroy function. Use NULL for kfree().
 961 *
 962 * This function initializes a pre-allocated struct ttm_buffer_object.
 963 * As this object may be part of a larger structure, this function,
 964 * together with the @destroy function,
 965 * enables driver-specific objects derived from a ttm_buffer_object.
 966 *
 967 * On successful return, the caller owns an object kref to @bo. The kref and
 968 * list_kref are usually set to 1, but note that in some situations, other
 969 * tasks may already be holding references to @bo as well.
 970 *
 971 * If a failure occurs, the function will call the @destroy function, Thus,
 972 * after a failure, dereferencing @bo is illegal and will likely cause memory
 973 * corruption.
 974 *
 975 * Returns
 976 * -ENOMEM: Out of memory.
 977 * -EINVAL: Invalid placement flags.
 978 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 979 */
 980int ttm_bo_init_validate(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 981			 enum ttm_bo_type type, struct ttm_placement *placement,
 982			 uint32_t alignment, bool interruptible,
 983			 struct sg_table *sg, struct dma_resv *resv,
 984			 void (*destroy) (struct ttm_buffer_object *))
 985{
 986	struct ttm_operation_ctx ctx = { interruptible, false };
 
 
 987	int ret;
 988
 989	ret = ttm_bo_init_reserved(bdev, bo, type, placement, alignment, &ctx,
 990				   sg, resv, destroy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991	if (ret)
 992		return ret;
 
 993
 994	if (!resv)
 995		ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 
 
 
 996
 997	return 0;
 998}
 999EXPORT_SYMBOL(ttm_bo_init_validate);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1000
1001/*
1002 * buffer object vm functions.
1003 */
1004
1005/**
1006 * ttm_bo_unmap_virtual
1007 *
1008 * @bo: tear down the virtual mappings for this BO
1009 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1011{
1012	struct ttm_device *bdev = bo->bdev;
 
1013
1014	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1015	ttm_mem_io_free(bdev, bo->resource);
 
1016}
 
 
1017EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1018
1019/**
1020 * ttm_bo_wait_ctx - wait for buffer idle.
1021 *
1022 * @bo:  The buffer object.
1023 * @ctx: defines how to wait
1024 *
1025 * Waits for the buffer to be idle. Used timeout depends on the context.
1026 * Returns -EBUSY if wait timed outt, -ERESTARTSYS if interrupted by a signal or
1027 * zero on success.
1028 */
1029int ttm_bo_wait_ctx(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1030{
1031	long ret;
1032
1033	if (ctx->no_wait_gpu) {
1034		if (dma_resv_test_signaled(bo->base.resv,
1035					   DMA_RESV_USAGE_BOOKKEEP))
1036			return 0;
1037		else
1038			return -EBUSY;
1039	}
1040
1041	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
1042				    ctx->interruptible, 15 * HZ);
1043	if (unlikely(ret < 0))
1044		return ret;
1045	if (unlikely(ret == 0))
 
1046		return -EBUSY;
 
 
1047	return 0;
1048}
1049EXPORT_SYMBOL(ttm_bo_wait_ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1050
1051/**
1052 * struct ttm_bo_swapout_walk - Parameters for the swapout walk
 
1053 */
1054struct ttm_bo_swapout_walk {
1055	/** @walk: The walk base parameters. */
1056	struct ttm_lru_walk walk;
1057	/** @gfp_flags: The gfp flags to use for ttm_tt_swapout() */
1058	gfp_t gfp_flags;
1059};
1060
1061static s64
1062ttm_bo_swapout_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
1063{
1064	struct ttm_place place = {.mem_type = bo->resource->mem_type};
1065	struct ttm_bo_swapout_walk *swapout_walk =
1066		container_of(walk, typeof(*swapout_walk), walk);
1067	struct ttm_operation_ctx *ctx = walk->ctx;
1068	s64 ret;
1069
1070	/*
1071	 * While the bo may already reside in SYSTEM placement, set
1072	 * SYSTEM as new placement to cover also the move further below.
1073	 * The driver may use the fact that we're moving from SYSTEM
1074	 * as an indication that we're about to swap out.
1075	 */
1076	if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, &place)) {
1077		ret = -EBUSY;
1078		goto out;
1079	}
1080
1081	if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
1082	    bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL ||
1083	    bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) {
1084		ret = -EBUSY;
1085		goto out;
1086	}
1087
1088	if (bo->deleted) {
1089		pgoff_t num_pages = bo->ttm->num_pages;
1090
1091		ret = ttm_bo_wait_ctx(bo, ctx);
1092		if (ret)
1093			goto out;
1094
1095		ttm_bo_cleanup_memtype_use(bo);
1096		ret = num_pages;
1097		goto out;
1098	}
1099
1100	/*
 
 
 
 
 
1101	 * Move to system cached
1102	 */
1103	if (bo->resource->mem_type != TTM_PL_SYSTEM) {
1104		struct ttm_resource *evict_mem;
1105		struct ttm_place hop;
1106
1107		memset(&hop, 0, sizeof(hop));
1108		place.mem_type = TTM_PL_SYSTEM;
1109		ret = ttm_resource_alloc(bo, &place, &evict_mem);
1110		if (ret)
1111			goto out;
1112
1113		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
1114		if (ret) {
1115			WARN(ret == -EMULTIHOP,
1116			     "Unexpected multihop in swapout - likely driver bug.\n");
1117			ttm_resource_free(bo, &evict_mem);
 
 
 
 
 
 
 
1118			goto out;
1119		}
1120	}
1121
1122	/*
1123	 * Make sure BO is idle.
1124	 */
1125	ret = ttm_bo_wait_ctx(bo, ctx);
1126	if (ret)
 
1127		goto out;
1128
1129	ttm_bo_unmap_virtual(bo);
1130	if (bo->bdev->funcs->swap_notify)
1131		bo->bdev->funcs->swap_notify(bo);
1132
1133	if (ttm_tt_is_populated(bo->ttm)) {
1134		spin_lock(&bo->bdev->lru_lock);
1135		ttm_resource_del_bulk_move(bo->resource, bo);
1136		spin_unlock(&bo->bdev->lru_lock);
1137
1138		ret = ttm_tt_swapout(bo->bdev, bo->ttm, swapout_walk->gfp_flags);
1139
1140		spin_lock(&bo->bdev->lru_lock);
1141		if (ret)
1142			ttm_resource_add_bulk_move(bo->resource, bo);
1143		ttm_resource_move_to_lru_tail(bo->resource);
1144		spin_unlock(&bo->bdev->lru_lock);
1145	}
1146
 
1147out:
1148	/* Consider -ENOMEM and -ENOSPC non-fatal. */
1149	if (ret == -ENOMEM || ret == -ENOSPC)
1150		ret = -EBUSY;
1151
1152	return ret;
1153}
1154
1155const struct ttm_lru_walk_ops ttm_swap_ops = {
1156	.process_bo = ttm_bo_swapout_cb,
1157};
1158
1159/**
1160 * ttm_bo_swapout() - Swap out buffer objects on the LRU list to shmem.
1161 * @bdev: The ttm device.
1162 * @ctx: The ttm_operation_ctx governing the swapout operation.
1163 * @man: The resource manager whose resources / buffer objects are
1164 * goint to be swapped out.
1165 * @gfp_flags: The gfp flags used for shmem page allocations.
1166 * @target: The desired number of bytes to swap out.
1167 *
1168 * Return: The number of bytes actually swapped out, or negative error code
1169 * on error.
1170 */
1171s64 ttm_bo_swapout(struct ttm_device *bdev, struct ttm_operation_ctx *ctx,
1172		   struct ttm_resource_manager *man, gfp_t gfp_flags,
1173		   s64 target)
1174{
1175	struct ttm_bo_swapout_walk swapout_walk = {
1176		.walk = {
1177			.ops = &ttm_swap_ops,
1178			.ctx = ctx,
1179			.trylock_only = true,
1180		},
1181		.gfp_flags = gfp_flags,
1182	};
1183
1184	return ttm_lru_walk_for_evict(&swapout_walk.walk, bdev, man, target);
 
 
1185}
1186
1187void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1188{
1189	if (bo->ttm == NULL)
1190		return;
1191
1192	ttm_tt_unpopulate(bo->bdev, bo->ttm);
1193	ttm_tt_destroy(bo->bdev, bo->ttm);
1194	bo->ttm = NULL;
1195}
 
1196
1197/**
1198 * ttm_bo_populate() - Ensure that a buffer object has backing pages
1199 * @bo: The buffer object
1200 * @ctx: The ttm_operation_ctx governing the operation.
1201 *
1202 * For buffer objects in a memory type whose manager uses
1203 * struct ttm_tt for backing pages, ensure those backing pages
1204 * are present and with valid content. The bo's resource is also
1205 * placed on the correct LRU list if it was previously swapped
1206 * out.
1207 *
1208 * Return: 0 if successful, negative error code on failure.
1209 * Note: May return -EINTR or -ERESTARTSYS if @ctx::interruptible
1210 * is set to true.
1211 */
1212int ttm_bo_populate(struct ttm_buffer_object *bo,
1213		    struct ttm_operation_ctx *ctx)
1214{
1215	struct ttm_tt *tt = bo->ttm;
1216	bool swapped;
1217	int ret;
1218
1219	dma_resv_assert_held(bo->base.resv);
1220
1221	if (!tt)
1222		return 0;
1223
1224	swapped = ttm_tt_is_swapped(tt);
1225	ret = ttm_tt_populate(bo->bdev, tt, ctx);
1226	if (ret)
1227		return ret;
1228
1229	if (swapped && !ttm_tt_is_swapped(tt) && !bo->pin_count &&
1230	    bo->resource) {
1231		spin_lock(&bo->bdev->lru_lock);
1232		ttm_resource_add_bulk_move(bo->resource, bo);
1233		ttm_resource_move_to_lru_tail(bo->resource);
1234		spin_unlock(&bo->bdev->lru_lock);
1235	}
1236
1237	return 0;
 
 
1238}
1239EXPORT_SYMBOL(ttm_bo_populate);
v4.10.11
 
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#define pr_fmt(fmt) "[TTM] " fmt
  32
  33#include <drm/ttm/ttm_module.h>
  34#include <drm/ttm/ttm_bo_driver.h>
  35#include <drm/ttm/ttm_placement.h>
 
 
  36#include <linux/jiffies.h>
  37#include <linux/slab.h>
  38#include <linux/sched.h>
  39#include <linux/mm.h>
  40#include <linux/file.h>
  41#include <linux/module.h>
  42#include <linux/atomic.h>
  43#include <linux/reservation.h>
  44
  45#define TTM_ASSERT_LOCKED(param)
  46#define TTM_DEBUG(fmt, arg...)
  47#define TTM_BO_HASH_ORDER 13
  48
  49static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  50static void ttm_bo_global_kobj_release(struct kobject *kobj);
  51
  52static struct attribute ttm_bo_count = {
  53	.name = "bo_count",
  54	.mode = S_IRUGO
  55};
  56
  57static inline int ttm_mem_type_from_place(const struct ttm_place *place,
  58					  uint32_t *mem_type)
  59{
  60	int pos;
  61
  62	pos = ffs(place->flags & TTM_PL_MASK_MEM);
  63	if (unlikely(!pos))
  64		return -EINVAL;
  65
  66	*mem_type = pos - 1;
  67	return 0;
  68}
  69
  70static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
  71{
  72	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  73
  74	pr_err("    has_type: %d\n", man->has_type);
  75	pr_err("    use_type: %d\n", man->use_type);
  76	pr_err("    flags: 0x%08X\n", man->flags);
  77	pr_err("    gpu_offset: 0x%08llX\n", man->gpu_offset);
  78	pr_err("    size: %llu\n", man->size);
  79	pr_err("    available_caching: 0x%08X\n", man->available_caching);
  80	pr_err("    default_caching: 0x%08X\n", man->default_caching);
  81	if (mem_type != TTM_PL_SYSTEM)
  82		(*man->func->debug)(man, TTM_PFX);
  83}
  84
  85static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  86					struct ttm_placement *placement)
  87{
  88	int i, ret, mem_type;
 
 
  89
  90	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
  91	       bo, bo->mem.num_pages, bo->mem.size >> 10,
  92	       bo->mem.size >> 20);
  93	for (i = 0; i < placement->num_placement; i++) {
  94		ret = ttm_mem_type_from_place(&placement->placement[i],
  95						&mem_type);
  96		if (ret)
  97			return;
  98		pr_err("  placement[%d]=0x%08X (%d)\n",
  99		       i, placement->placement[i].flags, mem_type);
 100		ttm_mem_type_debug(bo->bdev, mem_type);
 101	}
 102}
 103
 104static ssize_t ttm_bo_global_show(struct kobject *kobj,
 105				  struct attribute *attr,
 106				  char *buffer)
 107{
 108	struct ttm_bo_global *glob =
 109		container_of(kobj, struct ttm_bo_global, kobj);
 110
 111	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 112			(unsigned long) atomic_read(&glob->bo_count));
 113}
 114
 115static struct attribute *ttm_bo_global_attrs[] = {
 116	&ttm_bo_count,
 117	NULL
 118};
 119
 120static const struct sysfs_ops ttm_bo_global_ops = {
 121	.show = &ttm_bo_global_show
 122};
 123
 124static struct kobj_type ttm_bo_glob_kobj_type  = {
 125	.release = &ttm_bo_global_kobj_release,
 126	.sysfs_ops = &ttm_bo_global_ops,
 127	.default_attrs = ttm_bo_global_attrs
 128};
 129
 130
 131static inline uint32_t ttm_bo_type_flags(unsigned type)
 132{
 133	return 1 << (type);
 134}
 135
 136static void ttm_bo_release_list(struct kref *list_kref)
 137{
 138	struct ttm_buffer_object *bo =
 139	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 140	struct ttm_bo_device *bdev = bo->bdev;
 141	size_t acc_size = bo->acc_size;
 142
 143	BUG_ON(atomic_read(&bo->list_kref.refcount));
 144	BUG_ON(atomic_read(&bo->kref.refcount));
 145	BUG_ON(atomic_read(&bo->cpu_writers));
 146	BUG_ON(bo->mem.mm_node != NULL);
 147	BUG_ON(!list_empty(&bo->lru));
 148	BUG_ON(!list_empty(&bo->ddestroy));
 149	ttm_tt_destroy(bo->ttm);
 150	atomic_dec(&bo->glob->bo_count);
 151	dma_fence_put(bo->moving);
 152	if (bo->resv == &bo->ttm_resv)
 153		reservation_object_fini(&bo->ttm_resv);
 154	mutex_destroy(&bo->wu_mutex);
 155	if (bo->destroy)
 156		bo->destroy(bo);
 157	else {
 158		kfree(bo);
 159	}
 160	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
 161}
 162
 163void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 164{
 165	struct ttm_bo_device *bdev = bo->bdev;
 166
 167	lockdep_assert_held(&bo->resv->lock.base);
 168
 169	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 170
 171		BUG_ON(!list_empty(&bo->lru));
 172
 173		list_add(&bo->lru, bdev->driver->lru_tail(bo));
 174		kref_get(&bo->list_kref);
 175
 176		if (bo->ttm && !(bo->ttm->page_flags & TTM_PAGE_FLAG_SG)) {
 177			list_add(&bo->swap, bdev->driver->swap_lru_tail(bo));
 178			kref_get(&bo->list_kref);
 179		}
 180	}
 181}
 182EXPORT_SYMBOL(ttm_bo_add_to_lru);
 183
 184int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 185{
 186	struct ttm_bo_device *bdev = bo->bdev;
 187	int put_count = 0;
 188
 189	if (bdev->driver->lru_removal)
 190		bdev->driver->lru_removal(bo);
 191
 192	if (!list_empty(&bo->swap)) {
 193		list_del_init(&bo->swap);
 194		++put_count;
 195	}
 196	if (!list_empty(&bo->lru)) {
 197		list_del_init(&bo->lru);
 198		++put_count;
 199	}
 200
 201	return put_count;
 202}
 203
 204static void ttm_bo_ref_bug(struct kref *list_kref)
 205{
 206	BUG();
 207}
 208
 209void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 210			 bool never_free)
 211{
 212	kref_sub(&bo->list_kref, count,
 213		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 214}
 215
 216void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
 217{
 218	int put_count;
 219
 220	spin_lock(&bo->glob->lru_lock);
 221	put_count = ttm_bo_del_from_lru(bo);
 222	spin_unlock(&bo->glob->lru_lock);
 223	ttm_bo_list_ref_sub(bo, put_count, true);
 224}
 225EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
 226
 227void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
 228{
 229	struct ttm_bo_device *bdev = bo->bdev;
 230	int put_count = 0;
 231
 232	lockdep_assert_held(&bo->resv->lock.base);
 233
 234	if (bdev->driver->lru_removal)
 235		bdev->driver->lru_removal(bo);
 236
 237	put_count = ttm_bo_del_from_lru(bo);
 238	ttm_bo_list_ref_sub(bo, put_count, true);
 239	ttm_bo_add_to_lru(bo);
 240}
 241EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
 242
 243struct list_head *ttm_bo_default_lru_tail(struct ttm_buffer_object *bo)
 244{
 245	return bo->bdev->man[bo->mem.mem_type].lru.prev;
 246}
 247EXPORT_SYMBOL(ttm_bo_default_lru_tail);
 248
 249struct list_head *ttm_bo_default_swap_lru_tail(struct ttm_buffer_object *bo)
 250{
 251	return bo->glob->swap_lru.prev;
 252}
 253EXPORT_SYMBOL(ttm_bo_default_swap_lru_tail);
 254
 255/*
 256 * Call bo->mutex locked.
 257 */
 258static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 
 259{
 260	struct ttm_bo_device *bdev = bo->bdev;
 261	struct ttm_bo_global *glob = bo->glob;
 262	int ret = 0;
 263	uint32_t page_flags = 0;
 264
 265	TTM_ASSERT_LOCKED(&bo->mutex);
 266	bo->ttm = NULL;
 267
 268	if (bdev->need_dma32)
 269		page_flags |= TTM_PAGE_FLAG_DMA32;
 270
 271	switch (bo->type) {
 272	case ttm_bo_type_device:
 273		if (zero_alloc)
 274			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 275	case ttm_bo_type_kernel:
 276		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 277						      page_flags, glob->dummy_read_page);
 278		if (unlikely(bo->ttm == NULL))
 279			ret = -ENOMEM;
 280		break;
 281	case ttm_bo_type_sg:
 282		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 283						      page_flags | TTM_PAGE_FLAG_SG,
 284						      glob->dummy_read_page);
 285		if (unlikely(bo->ttm == NULL)) {
 286			ret = -ENOMEM;
 287			break;
 288		}
 289		bo->ttm->sg = bo->sg;
 290		break;
 291	default:
 292		pr_err("Illegal buffer object type\n");
 293		ret = -EINVAL;
 294		break;
 295	}
 296
 297	return ret;
 
 
 
 
 
 
 298}
 
 299
 300static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 301				  struct ttm_mem_reg *mem,
 302				  bool evict, bool interruptible,
 303				  bool no_wait_gpu)
 304{
 305	struct ttm_bo_device *bdev = bo->bdev;
 306	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 307	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 308	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 309	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 310	int ret = 0;
 311
 312	if (old_is_pci || new_is_pci ||
 313	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 314		ret = ttm_mem_io_lock(old_man, true);
 315		if (unlikely(ret != 0))
 316			goto out_err;
 317		ttm_bo_unmap_virtual_locked(bo);
 318		ttm_mem_io_unlock(old_man);
 319	}
 320
 321	/*
 322	 * Create and bind a ttm if required.
 323	 */
 324
 325	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 326		if (bo->ttm == NULL) {
 327			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 328			ret = ttm_bo_add_ttm(bo, zero);
 329			if (ret)
 330				goto out_err;
 331		}
 332
 333		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 334		if (ret)
 335			goto out_err;
 336
 337		if (mem->mem_type != TTM_PL_SYSTEM) {
 338			ret = ttm_tt_bind(bo->ttm, mem);
 339			if (ret)
 340				goto out_err;
 341		}
 342
 343		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 344			if (bdev->driver->move_notify)
 345				bdev->driver->move_notify(bo, mem);
 346			bo->mem = *mem;
 347			mem->mm_node = NULL;
 348			goto moved;
 349		}
 350	}
 351
 352	if (bdev->driver->move_notify)
 353		bdev->driver->move_notify(bo, mem);
 354
 355	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 356	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 357		ret = ttm_bo_move_ttm(bo, interruptible, no_wait_gpu, mem);
 358	else if (bdev->driver->move)
 359		ret = bdev->driver->move(bo, evict, interruptible,
 360					 no_wait_gpu, mem);
 361	else
 362		ret = ttm_bo_move_memcpy(bo, interruptible, no_wait_gpu, mem);
 363
 
 364	if (ret) {
 365		if (bdev->driver->move_notify) {
 366			struct ttm_mem_reg tmp_mem = *mem;
 367			*mem = bo->mem;
 368			bo->mem = tmp_mem;
 369			bdev->driver->move_notify(bo, mem);
 370			bo->mem = *mem;
 371			*mem = tmp_mem;
 372		}
 373
 374		goto out_err;
 375	}
 376
 377moved:
 378	if (bo->evicted) {
 379		if (bdev->driver->invalidate_caches) {
 380			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 381			if (ret)
 382				pr_err("Can not flush read caches\n");
 383		}
 384		bo->evicted = false;
 385	}
 386
 387	if (bo->mem.mm_node) {
 388		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 389		    bdev->man[bo->mem.mem_type].gpu_offset;
 390		bo->cur_placement = bo->mem.placement;
 391	} else
 392		bo->offset = 0;
 393
 394	return 0;
 395
 396out_err:
 397	new_man = &bdev->man[bo->mem.mem_type];
 398	if (new_man->flags & TTM_MEMTYPE_FLAG_FIXED) {
 399		ttm_tt_destroy(bo->ttm);
 400		bo->ttm = NULL;
 401	}
 402
 403	return ret;
 404}
 405
 406/**
 407 * Call bo::reserved.
 408 * Will release GPU memory type usage on destruction.
 409 * This is the place to put in driver specific hooks to release
 410 * driver private resources.
 411 * Will release the bo::reserved lock.
 412 */
 413
 414static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 415{
 416	if (bo->bdev->driver->move_notify)
 417		bo->bdev->driver->move_notify(bo, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 418
 419	ttm_tt_destroy(bo->ttm);
 420	bo->ttm = NULL;
 421	ttm_bo_mem_put(bo, &bo->mem);
 
 
 
 
 
 
 
 
 
 
 
 422
 423	ww_mutex_unlock (&bo->resv->lock);
 424}
 425
 426static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 427{
 428	struct reservation_object_list *fobj;
 
 429	struct dma_fence *fence;
 430	int i;
 431
 432	fobj = reservation_object_get_list(bo->resv);
 433	fence = reservation_object_get_excl(bo->resv);
 434	if (fence && !fence->ops->signaled)
 435		dma_fence_enable_sw_signaling(fence);
 436
 437	for (i = 0; fobj && i < fobj->shared_count; ++i) {
 438		fence = rcu_dereference_protected(fobj->shared[i],
 439					reservation_object_held(bo->resv));
 440
 
 
 441		if (!fence->ops->signaled)
 442			dma_fence_enable_sw_signaling(fence);
 443	}
 
 444}
 445
 446static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 
 
 
 
 447{
 448	struct ttm_bo_device *bdev = bo->bdev;
 449	struct ttm_bo_global *glob = bo->glob;
 450	int put_count;
 451	int ret;
 452
 453	spin_lock(&glob->lru_lock);
 454	ret = __ttm_bo_reserve(bo, false, true, NULL);
 455
 456	if (!ret) {
 457		if (!ttm_bo_wait(bo, false, true)) {
 458			put_count = ttm_bo_del_from_lru(bo);
 459
 460			spin_unlock(&glob->lru_lock);
 461			ttm_bo_cleanup_memtype_use(bo);
 462
 463			ttm_bo_list_ref_sub(bo, put_count, true);
 464
 465			return;
 466		} else
 467			ttm_bo_flush_all_fences(bo);
 468
 469		/*
 470		 * Make NO_EVICT bos immediately available to
 471		 * shrinkers, now that they are queued for
 472		 * destruction.
 473		 */
 474		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
 475			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
 476			ttm_bo_add_to_lru(bo);
 477		}
 478
 479		__ttm_bo_unreserve(bo);
 480	}
 481
 482	kref_get(&bo->list_kref);
 483	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 484	spin_unlock(&glob->lru_lock);
 485
 486	schedule_delayed_work(&bdev->wq,
 487			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 488}
 489
 490/**
 491 * function ttm_bo_cleanup_refs_and_unlock
 492 * If bo idle, remove from delayed- and lru lists, and unref.
 493 * If not idle, do nothing.
 494 *
 495 * Must be called with lru_lock and reservation held, this function
 496 * will drop both before returning.
 497 *
 498 * @interruptible         Any sleeps should occur interruptibly.
 499 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 500 */
 501
 502static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
 503					  bool interruptible,
 504					  bool no_wait_gpu)
 505{
 506	struct ttm_bo_global *glob = bo->glob;
 507	int put_count;
 
 508	int ret;
 509
 510	ret = ttm_bo_wait(bo, false, true);
 511
 512	if (ret && !no_wait_gpu) {
 513		long lret;
 514		ww_mutex_unlock(&bo->resv->lock);
 515		spin_unlock(&glob->lru_lock);
 516
 517		lret = reservation_object_wait_timeout_rcu(bo->resv,
 518							   true,
 519							   interruptible,
 520							   30 * HZ);
 521
 522		if (lret < 0)
 523			return lret;
 524		else if (lret == 0)
 525			return -EBUSY;
 526
 527		spin_lock(&glob->lru_lock);
 528		ret = __ttm_bo_reserve(bo, false, true, NULL);
 529
 530		/*
 531		 * We raced, and lost, someone else holds the reservation now,
 532		 * and is probably busy in ttm_bo_cleanup_memtype_use.
 533		 *
 534		 * Even if it's not the case, because we finished waiting any
 535		 * delayed destruction would succeed, so just return success
 536		 * here.
 537		 */
 538		if (ret) {
 539			spin_unlock(&glob->lru_lock);
 540			return 0;
 
 
 
 
 541		}
 542
 543		/*
 544		 * remove sync_obj with ttm_bo_wait, the wait should be
 545		 * finished, and no new wait object should have been added.
 546		 */
 547		ret = ttm_bo_wait(bo, false, true);
 548		WARN_ON(ret);
 549	}
 550
 551	if (ret || unlikely(list_empty(&bo->ddestroy))) {
 552		__ttm_bo_unreserve(bo);
 553		spin_unlock(&glob->lru_lock);
 554		return ret;
 555	}
 556
 557	put_count = ttm_bo_del_from_lru(bo);
 558	list_del_init(&bo->ddestroy);
 559	++put_count;
 
 
 
 
 
 560
 561	spin_unlock(&glob->lru_lock);
 562	ttm_bo_cleanup_memtype_use(bo);
 563
 564	ttm_bo_list_ref_sub(bo, put_count, true);
 
 
 
 
 
 
 
 
 
 
 
 565
 566	return 0;
 567}
 568
 569/**
 570 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 571 * encountered buffers.
 572 */
 573
 574static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 575{
 576	struct ttm_bo_global *glob = bdev->glob;
 577	struct ttm_buffer_object *entry = NULL;
 578	int ret = 0;
 579
 580	spin_lock(&glob->lru_lock);
 581	if (list_empty(&bdev->ddestroy))
 582		goto out_unlock;
 583
 584	entry = list_first_entry(&bdev->ddestroy,
 585		struct ttm_buffer_object, ddestroy);
 586	kref_get(&entry->list_kref);
 587
 588	for (;;) {
 589		struct ttm_buffer_object *nentry = NULL;
 590
 591		if (entry->ddestroy.next != &bdev->ddestroy) {
 592			nentry = list_first_entry(&entry->ddestroy,
 593				struct ttm_buffer_object, ddestroy);
 594			kref_get(&nentry->list_kref);
 595		}
 596
 597		ret = __ttm_bo_reserve(entry, false, true, NULL);
 598		if (remove_all && ret) {
 599			spin_unlock(&glob->lru_lock);
 600			ret = __ttm_bo_reserve(entry, false, false, NULL);
 601			spin_lock(&glob->lru_lock);
 602		}
 603
 604		if (!ret)
 605			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
 606							     !remove_all);
 607		else
 608			spin_unlock(&glob->lru_lock);
 609
 610		kref_put(&entry->list_kref, ttm_bo_release_list);
 611		entry = nentry;
 612
 613		if (ret || !entry)
 614			goto out;
 615
 616		spin_lock(&glob->lru_lock);
 617		if (list_empty(&entry->ddestroy))
 618			break;
 619	}
 620
 621out_unlock:
 622	spin_unlock(&glob->lru_lock);
 623out:
 624	if (entry)
 625		kref_put(&entry->list_kref, ttm_bo_release_list);
 626	return ret;
 627}
 628
 629static void ttm_bo_delayed_workqueue(struct work_struct *work)
 
 
 
 
 
 
 
 630{
 631	struct ttm_bo_device *bdev =
 632	    container_of(work, struct ttm_bo_device, wq.work);
 633
 634	if (ttm_bo_delayed_delete(bdev, false)) {
 635		schedule_delayed_work(&bdev->wq,
 636				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 637	}
 638}
 
 639
 640static void ttm_bo_release(struct kref *kref)
 
 
 641{
 642	struct ttm_buffer_object *bo =
 643	    container_of(kref, struct ttm_buffer_object, kref);
 644	struct ttm_bo_device *bdev = bo->bdev;
 645	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 646
 647	drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
 648	ttm_mem_io_lock(man, false);
 649	ttm_mem_io_free_vm(bo);
 650	ttm_mem_io_unlock(man);
 651	ttm_bo_cleanup_refs_or_queue(bo);
 652	kref_put(&bo->list_kref, ttm_bo_release_list);
 653}
 654
 655void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 656{
 657	struct ttm_buffer_object *bo = *p_bo;
 658
 659	*p_bo = NULL;
 660	kref_put(&bo->kref, ttm_bo_release);
 
 
 
 
 
 
 
 
 
 661}
 662EXPORT_SYMBOL(ttm_bo_unref);
 663
 664int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 
 665{
 666	return cancel_delayed_work_sync(&bdev->wq);
 667}
 668EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 669
 670void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 671{
 672	if (resched)
 673		schedule_delayed_work(&bdev->wq,
 674				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 675}
 676EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 677
 678static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 679			bool no_wait_gpu)
 680{
 681	struct ttm_bo_device *bdev = bo->bdev;
 682	struct ttm_mem_reg evict_mem;
 683	struct ttm_placement placement;
 
 684	int ret = 0;
 685
 686	lockdep_assert_held(&bo->resv->lock.base);
 687
 688	evict_mem = bo->mem;
 689	evict_mem.mm_node = NULL;
 690	evict_mem.bus.io_reserved_vm = false;
 691	evict_mem.bus.io_reserved_count = 0;
 692
 693	placement.num_placement = 0;
 694	placement.num_busy_placement = 0;
 695	bdev->driver->evict_flags(bo, &placement);
 696	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 697				no_wait_gpu);
 
 
 
 
 
 
 
 
 
 
 
 698	if (ret) {
 699		if (ret != -ERESTARTSYS) {
 700			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 701			       bo);
 702			ttm_bo_mem_space_debug(bo, &placement);
 703		}
 704		goto out;
 705	}
 706
 707	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 708				     no_wait_gpu);
 709	if (unlikely(ret)) {
 710		if (ret != -ERESTARTSYS)
 
 
 
 
 
 
 
 711			pr_err("Buffer eviction failed\n");
 712		ttm_bo_mem_put(bo, &evict_mem);
 713		goto out;
 714	}
 715	bo->evicted = true;
 716out:
 717	return ret;
 718}
 719
 
 
 
 
 
 
 
 
 720bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 721			      const struct ttm_place *place)
 722{
 
 
 
 
 
 
 
 723	/* Don't evict this BO if it's outside of the
 724	 * requested placement range
 725	 */
 726	if (place->fpfn >= (bo->mem.start + bo->mem.size) ||
 727	    (place->lpfn && place->lpfn <= bo->mem.start))
 728		return false;
 729
 730	return true;
 731}
 732EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 733
 734static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 735				uint32_t mem_type,
 736				const struct ttm_place *place,
 737				bool interruptible,
 738				bool no_wait_gpu)
 
 
 
 
 
 739{
 740	struct ttm_bo_global *glob = bdev->glob;
 741	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 742	struct ttm_buffer_object *bo;
 743	int ret = -EBUSY, put_count;
 
 
 744
 745	spin_lock(&glob->lru_lock);
 746	list_for_each_entry(bo, &man->lru, lru) {
 747		ret = __ttm_bo_reserve(bo, false, true, NULL);
 748		if (ret)
 749			continue;
 
 
 
 
 
 
 
 
 
 
 
 
 750
 751		if (place && !bdev->driver->eviction_valuable(bo, place)) {
 752			__ttm_bo_unreserve(bo);
 753			ret = -EBUSY;
 754			continue;
 755		}
 756
 757		break;
 758	}
 
 
 
 
 
 759
 760	if (ret) {
 761		spin_unlock(&glob->lru_lock);
 762		return ret;
 763	}
 764
 765	kref_get(&bo->list_kref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766
 767	if (!list_empty(&bo->ddestroy)) {
 768		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
 769						     no_wait_gpu);
 770		kref_put(&bo->list_kref, ttm_bo_release_list);
 771		return ret;
 772	}
 773
 774	put_count = ttm_bo_del_from_lru(bo);
 775	spin_unlock(&glob->lru_lock);
 776
 777	BUG_ON(ret != 0);
 
 
 
 
 
 
 778
 779	ttm_bo_list_ref_sub(bo, put_count, true);
 
 780
 781	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
 782	ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 
 783
 784	kref_put(&bo->list_kref, ttm_bo_release_list);
 785	return ret;
 786}
 787
 788void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 789{
 790	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 791
 792	if (mem->mm_node)
 793		(*man->func->put_node)(man, mem);
 
 
 
 
 
 
 
 
 
 
 
 
 794}
 795EXPORT_SYMBOL(ttm_bo_mem_put);
 796
 797/**
 798 * Add the last move fence to the BO and reserve a new shared slot.
 
 
 
 
 799 */
 800static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 801				 struct ttm_mem_type_manager *man,
 802				 struct ttm_mem_reg *mem)
 803{
 804	struct dma_fence *fence;
 805	int ret;
 806
 807	spin_lock(&man->move_lock);
 808	fence = dma_fence_get(man->move);
 809	spin_unlock(&man->move_lock);
 810
 811	if (fence) {
 812		reservation_object_add_shared_fence(bo->resv, fence);
 813
 814		ret = reservation_object_reserve_shared(bo->resv);
 815		if (unlikely(ret))
 816			return ret;
 817
 818		dma_fence_put(bo->moving);
 819		bo->moving = fence;
 820	}
 821
 822	return 0;
 823}
 
 824
 825/**
 826 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 827 * space, or we've evicted everything and there isn't enough space.
 
 
 828 */
 829static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 830					uint32_t mem_type,
 831					const struct ttm_place *place,
 832					struct ttm_mem_reg *mem,
 833					bool interruptible,
 834					bool no_wait_gpu)
 835{
 836	struct ttm_bo_device *bdev = bo->bdev;
 837	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 838	int ret;
 
 839
 840	do {
 841		ret = (*man->func->get_node)(man, bo, place, mem);
 842		if (unlikely(ret != 0))
 843			return ret;
 844		if (mem->mm_node)
 845			break;
 846		ret = ttm_mem_evict_first(bdev, mem_type, place,
 847					  interruptible, no_wait_gpu);
 848		if (unlikely(ret != 0))
 849			return ret;
 850	} while (1);
 851	mem->mem_type = mem_type;
 852	return ttm_bo_add_move_fence(bo, man, mem);
 853}
 
 854
 855static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 856				      uint32_t cur_placement,
 857				      uint32_t proposed_placement)
 
 
 
 
 858{
 859	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 860	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 861
 862	/**
 863	 * Keep current caching if possible.
 864	 */
 865
 866	if ((cur_placement & caching) != 0)
 867		result |= (cur_placement & caching);
 868	else if ((man->default_caching & caching) != 0)
 869		result |= man->default_caching;
 870	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 871		result |= TTM_PL_FLAG_CACHED;
 872	else if ((TTM_PL_FLAG_WC & caching) != 0)
 873		result |= TTM_PL_FLAG_WC;
 874	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 875		result |= TTM_PL_FLAG_UNCACHED;
 876
 877	return result;
 878}
 879
 880static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 881				 uint32_t mem_type,
 882				 const struct ttm_place *place,
 883				 uint32_t *masked_placement)
 884{
 885	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 886
 887	if ((cur_flags & place->flags & TTM_PL_MASK_MEM) == 0)
 888		return false;
 889
 890	if ((place->flags & man->available_caching) == 0)
 891		return false;
 892
 893	cur_flags |= (place->flags & man->available_caching);
 894
 895	*masked_placement = cur_flags;
 896	return true;
 897}
 898
 899/**
 900 * Creates space for memory region @mem according to its type.
 
 
 
 
 
 
 901 *
 902 * This function first searches for free space in compatible memory types in
 903 * the priority order defined by the driver.  If free space isn't found, then
 904 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 905 * space.
 
 
 
 
 
 906 */
 907int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 908			struct ttm_placement *placement,
 909			struct ttm_mem_reg *mem,
 910			bool interruptible,
 911			bool no_wait_gpu)
 912{
 913	struct ttm_bo_device *bdev = bo->bdev;
 914	struct ttm_mem_type_manager *man;
 915	uint32_t mem_type = TTM_PL_SYSTEM;
 916	uint32_t cur_flags = 0;
 917	bool type_found = false;
 918	bool type_ok = false;
 919	bool has_erestartsys = false;
 920	int i, ret;
 921
 922	ret = reservation_object_reserve_shared(bo->resv);
 
 923	if (unlikely(ret))
 924		return ret;
 925
 926	mem->mm_node = NULL;
 927	for (i = 0; i < placement->num_placement; ++i) {
 928		const struct ttm_place *place = &placement->placement[i];
 
 
 929
 930		ret = ttm_mem_type_from_place(place, &mem_type);
 931		if (ret)
 932			return ret;
 933		man = &bdev->man[mem_type];
 934		if (!man->has_type || !man->use_type)
 935			continue;
 936
 937		type_ok = ttm_bo_mt_compatible(man, mem_type, place,
 938						&cur_flags);
 
 939
 940		if (!type_ok)
 941			continue;
 
 
 
 
 
 942
 943		type_found = true;
 944		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 945						  cur_flags);
 946		/*
 947		 * Use the access and other non-mapping-related flag bits from
 948		 * the memory placement flags to the current flags
 949		 */
 950		ttm_flag_masked(&cur_flags, place->flags,
 951				~TTM_PL_MASK_MEMTYPE);
 952
 953		if (mem_type == TTM_PL_SYSTEM)
 954			break;
 
 
 
 955
 956		ret = (*man->func->get_node)(man, bo, place, mem);
 957		if (unlikely(ret))
 958			return ret;
 959
 960		if (mem->mm_node) {
 961			ret = ttm_bo_add_move_fence(bo, man, mem);
 962			if (unlikely(ret)) {
 963				(*man->func->put_node)(man, mem);
 964				return ret;
 965			}
 966			break;
 967		}
 968	}
 969
 970	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
 971		mem->mem_type = mem_type;
 972		mem->placement = cur_flags;
 973		return 0;
 974	}
 975
 976	for (i = 0; i < placement->num_busy_placement; ++i) {
 977		const struct ttm_place *place = &placement->busy_placement[i];
 978
 979		ret = ttm_mem_type_from_place(place, &mem_type);
 980		if (ret)
 981			return ret;
 982		man = &bdev->man[mem_type];
 983		if (!man->has_type || !man->use_type)
 984			continue;
 985		if (!ttm_bo_mt_compatible(man, mem_type, place, &cur_flags))
 986			continue;
 
 
 
 
 
 
 
 
 
 
 987
 988		type_found = true;
 989		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 990						  cur_flags);
 991		/*
 992		 * Use the access and other non-mapping-related flag bits from
 993		 * the memory placement flags to the current flags
 994		 */
 995		ttm_flag_masked(&cur_flags, place->flags,
 996				~TTM_PL_MASK_MEMTYPE);
 997
 998		if (mem_type == TTM_PL_SYSTEM) {
 999			mem->mem_type = mem_type;
1000			mem->placement = cur_flags;
1001			mem->mm_node = NULL;
1002			return 0;
1003		}
1004
1005		ret = ttm_bo_mem_force_space(bo, mem_type, place, mem,
1006						interruptible, no_wait_gpu);
1007		if (ret == 0 && mem->mm_node) {
1008			mem->placement = cur_flags;
1009			return 0;
1010		}
1011		if (ret == -ERESTARTSYS)
1012			has_erestartsys = true;
1013	}
1014
1015	if (!type_found) {
1016		printk(KERN_ERR TTM_PFX "No compatible memory type found.\n");
1017		return -EINVAL;
1018	}
1019
1020	return (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
1021}
1022EXPORT_SYMBOL(ttm_bo_mem_space);
1023
1024static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
1025			struct ttm_placement *placement,
1026			bool interruptible,
1027			bool no_wait_gpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1028{
1029	int ret = 0;
1030	struct ttm_mem_reg mem;
 
 
1031
1032	lockdep_assert_held(&bo->resv->lock.base);
1033
1034	mem.num_pages = bo->num_pages;
1035	mem.size = mem.num_pages << PAGE_SHIFT;
1036	mem.page_alignment = bo->mem.page_alignment;
1037	mem.bus.io_reserved_vm = false;
1038	mem.bus.io_reserved_count = 0;
1039	/*
1040	 * Determine where to move the buffer.
1041	 */
1042	ret = ttm_bo_mem_space(bo, placement, &mem,
1043			       interruptible, no_wait_gpu);
1044	if (ret)
1045		goto out_unlock;
1046	ret = ttm_bo_handle_move_mem(bo, &mem, false,
1047				     interruptible, no_wait_gpu);
1048out_unlock:
1049	if (ret && mem.mm_node)
1050		ttm_bo_mem_put(bo, &mem);
1051	return ret;
1052}
1053
1054bool ttm_bo_mem_compat(struct ttm_placement *placement,
1055		       struct ttm_mem_reg *mem,
1056		       uint32_t *new_flags)
1057{
1058	int i;
1059
1060	for (i = 0; i < placement->num_placement; i++) {
1061		const struct ttm_place *heap = &placement->placement[i];
1062		if (mem->mm_node &&
1063		    (mem->start < heap->fpfn ||
1064		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
1065			continue;
1066
1067		*new_flags = heap->flags;
1068		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1069		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1070			return true;
1071	}
1072
1073	for (i = 0; i < placement->num_busy_placement; i++) {
1074		const struct ttm_place *heap = &placement->busy_placement[i];
1075		if (mem->mm_node &&
1076		    (mem->start < heap->fpfn ||
1077		     (heap->lpfn != 0 && (mem->start + mem->num_pages) > heap->lpfn)))
 
 
 
 
 
 
 
 
1078			continue;
 
 
1079
1080		*new_flags = heap->flags;
1081		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1082		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1083			return true;
1084	}
 
 
 
 
 
 
 
1085
1086	return false;
1087}
1088EXPORT_SYMBOL(ttm_bo_mem_compat);
1089
1090int ttm_bo_validate(struct ttm_buffer_object *bo,
1091			struct ttm_placement *placement,
1092			bool interruptible,
1093			bool no_wait_gpu)
1094{
1095	int ret;
1096	uint32_t new_flags;
1097
1098	lockdep_assert_held(&bo->resv->lock.base);
1099	/*
1100	 * Check whether we need to move buffer.
1101	 */
1102	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1103		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1104					 no_wait_gpu);
1105		if (ret)
1106			return ret;
1107	} else {
1108		/*
1109		 * Use the access and other non-mapping-related flag bits from
1110		 * the compatible memory placement flags to the active flags
1111		 */
1112		ttm_flag_masked(&bo->mem.placement, new_flags,
1113				~TTM_PL_MASK_MEMTYPE);
1114	}
1115	/*
1116	 * We might need to add a TTM.
1117	 */
1118	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1119		ret = ttm_bo_add_ttm(bo, true);
1120		if (ret)
1121			return ret;
1122	}
1123	return 0;
1124}
1125EXPORT_SYMBOL(ttm_bo_validate);
1126
1127int ttm_bo_init(struct ttm_bo_device *bdev,
1128		struct ttm_buffer_object *bo,
1129		unsigned long size,
1130		enum ttm_bo_type type,
1131		struct ttm_placement *placement,
1132		uint32_t page_alignment,
1133		bool interruptible,
1134		struct file *persistent_swap_storage,
1135		size_t acc_size,
1136		struct sg_table *sg,
1137		struct reservation_object *resv,
1138		void (*destroy) (struct ttm_buffer_object *))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1139{
1140	int ret = 0;
1141	unsigned long num_pages;
1142	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1143	bool locked;
1144
1145	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1146	if (ret) {
1147		pr_err("Out of kernel memory\n");
1148		if (destroy)
1149			(*destroy)(bo);
1150		else
1151			kfree(bo);
1152		return -ENOMEM;
1153	}
1154
1155	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1156	if (num_pages == 0) {
1157		pr_err("Illegal buffer object size\n");
1158		if (destroy)
1159			(*destroy)(bo);
1160		else
1161			kfree(bo);
1162		ttm_mem_global_free(mem_glob, acc_size);
1163		return -EINVAL;
1164	}
1165	bo->destroy = destroy;
1166
1167	kref_init(&bo->kref);
1168	kref_init(&bo->list_kref);
1169	atomic_set(&bo->cpu_writers, 0);
1170	INIT_LIST_HEAD(&bo->lru);
1171	INIT_LIST_HEAD(&bo->ddestroy);
1172	INIT_LIST_HEAD(&bo->swap);
1173	INIT_LIST_HEAD(&bo->io_reserve_lru);
1174	mutex_init(&bo->wu_mutex);
1175	bo->bdev = bdev;
1176	bo->glob = bdev->glob;
1177	bo->type = type;
1178	bo->num_pages = num_pages;
1179	bo->mem.size = num_pages << PAGE_SHIFT;
1180	bo->mem.mem_type = TTM_PL_SYSTEM;
1181	bo->mem.num_pages = bo->num_pages;
1182	bo->mem.mm_node = NULL;
1183	bo->mem.page_alignment = page_alignment;
1184	bo->mem.bus.io_reserved_vm = false;
1185	bo->mem.bus.io_reserved_count = 0;
1186	bo->moving = NULL;
1187	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1188	bo->persistent_swap_storage = persistent_swap_storage;
1189	bo->acc_size = acc_size;
1190	bo->sg = sg;
1191	if (resv) {
1192		bo->resv = resv;
1193		lockdep_assert_held(&bo->resv->lock.base);
1194	} else {
1195		bo->resv = &bo->ttm_resv;
1196		reservation_object_init(&bo->ttm_resv);
1197	}
1198	atomic_inc(&bo->glob->bo_count);
1199	drm_vma_node_reset(&bo->vma_node);
1200
1201	/*
1202	 * For ttm_bo_type_device buffers, allocate
1203	 * address space from the device.
1204	 */
1205	if (bo->type == ttm_bo_type_device ||
1206	    bo->type == ttm_bo_type_sg)
1207		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1208					 bo->mem.num_pages);
 
 
1209
1210	/* passed reservation objects should already be locked,
1211	 * since otherwise lockdep will be angered in radeon.
1212	 */
1213	if (!resv) {
1214		locked = ww_mutex_trylock(&bo->resv->lock);
1215		WARN_ON(!locked);
1216	}
1217
1218	if (likely(!ret))
1219		ret = ttm_bo_validate(bo, placement, interruptible, false);
1220
1221	if (!resv) {
1222		ttm_bo_unreserve(bo);
1223
1224	} else if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
1225		spin_lock(&bo->glob->lru_lock);
1226		ttm_bo_add_to_lru(bo);
1227		spin_unlock(&bo->glob->lru_lock);
1228	}
1229
 
1230	if (unlikely(ret))
1231		ttm_bo_unref(&bo);
1232
1233	return ret;
1234}
1235EXPORT_SYMBOL(ttm_bo_init);
1236
1237size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1238		       unsigned long bo_size,
1239		       unsigned struct_size)
1240{
1241	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1242	size_t size = 0;
1243
1244	size += ttm_round_pot(struct_size);
1245	size += ttm_round_pot(npages * sizeof(void *));
1246	size += ttm_round_pot(sizeof(struct ttm_tt));
1247	return size;
1248}
1249EXPORT_SYMBOL(ttm_bo_acc_size);
1250
1251size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1252			   unsigned long bo_size,
1253			   unsigned struct_size)
1254{
1255	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1256	size_t size = 0;
1257
1258	size += ttm_round_pot(struct_size);
1259	size += ttm_round_pot(npages * (2*sizeof(void *) + sizeof(dma_addr_t)));
1260	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1261	return size;
1262}
1263EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1264
1265int ttm_bo_create(struct ttm_bo_device *bdev,
1266			unsigned long size,
1267			enum ttm_bo_type type,
1268			struct ttm_placement *placement,
1269			uint32_t page_alignment,
1270			bool interruptible,
1271			struct file *persistent_swap_storage,
1272			struct ttm_buffer_object **p_bo)
1273{
1274	struct ttm_buffer_object *bo;
1275	size_t acc_size;
1276	int ret;
1277
1278	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1279	if (unlikely(bo == NULL))
1280		return -ENOMEM;
1281
1282	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1283	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1284			  interruptible, persistent_swap_storage, acc_size,
1285			  NULL, NULL, NULL);
1286	if (likely(ret == 0))
1287		*p_bo = bo;
1288
 
 
1289	return ret;
1290}
1291EXPORT_SYMBOL(ttm_bo_create);
1292
1293static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1294					unsigned mem_type, bool allow_errors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1295{
1296	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1297	struct ttm_bo_global *glob = bdev->glob;
1298	struct dma_fence *fence;
1299	int ret;
1300
1301	/*
1302	 * Can't use standard list traversal since we're unlocking.
1303	 */
1304
1305	spin_lock(&glob->lru_lock);
1306	while (!list_empty(&man->lru)) {
1307		spin_unlock(&glob->lru_lock);
1308		ret = ttm_mem_evict_first(bdev, mem_type, NULL, false, false);
1309		if (ret) {
1310			if (allow_errors) {
1311				return ret;
1312			} else {
1313				pr_err("Cleanup eviction failed\n");
1314			}
1315		}
1316		spin_lock(&glob->lru_lock);
1317	}
1318	spin_unlock(&glob->lru_lock);
1319
1320	spin_lock(&man->move_lock);
1321	fence = dma_fence_get(man->move);
1322	spin_unlock(&man->move_lock);
1323
1324	if (fence) {
1325		ret = dma_fence_wait(fence, false);
1326		dma_fence_put(fence);
1327		if (ret) {
1328			if (allow_errors) {
1329				return ret;
1330			} else {
1331				pr_err("Cleanup eviction failed\n");
1332			}
1333		}
1334	}
1335
1336	return 0;
1337}
1338
1339int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1340{
1341	struct ttm_mem_type_manager *man;
1342	int ret = -EINVAL;
1343
1344	if (mem_type >= TTM_NUM_MEM_TYPES) {
1345		pr_err("Illegal memory type %d\n", mem_type);
1346		return ret;
1347	}
1348	man = &bdev->man[mem_type];
1349
1350	if (!man->has_type) {
1351		pr_err("Trying to take down uninitialized memory manager type %u\n",
1352		       mem_type);
1353		return ret;
1354	}
1355	dma_fence_put(man->move);
1356
1357	man->use_type = false;
1358	man->has_type = false;
1359
1360	ret = 0;
1361	if (mem_type > 0) {
1362		ttm_bo_force_list_clean(bdev, mem_type, false);
1363
1364		ret = (*man->func->takedown)(man);
1365	}
1366
1367	return ret;
1368}
1369EXPORT_SYMBOL(ttm_bo_clean_mm);
1370
1371int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1372{
1373	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1374
1375	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1376		pr_err("Illegal memory manager memory type %u\n", mem_type);
1377		return -EINVAL;
1378	}
1379
1380	if (!man->has_type) {
1381		pr_err("Memory type %u has not been initialized\n", mem_type);
1382		return 0;
1383	}
1384
1385	return ttm_bo_force_list_clean(bdev, mem_type, true);
1386}
1387EXPORT_SYMBOL(ttm_bo_evict_mm);
1388
1389int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1390			unsigned long p_size)
1391{
1392	int ret = -EINVAL;
1393	struct ttm_mem_type_manager *man;
1394
1395	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1396	man = &bdev->man[type];
1397	BUG_ON(man->has_type);
1398	man->io_reserve_fastpath = true;
1399	man->use_io_reserve_lru = false;
1400	mutex_init(&man->io_reserve_mutex);
1401	spin_lock_init(&man->move_lock);
1402	INIT_LIST_HEAD(&man->io_reserve_lru);
1403
1404	ret = bdev->driver->init_mem_type(bdev, type, man);
1405	if (ret)
1406		return ret;
1407	man->bdev = bdev;
1408
1409	ret = 0;
1410	if (type != TTM_PL_SYSTEM) {
1411		ret = (*man->func->init)(man, p_size);
1412		if (ret)
1413			return ret;
1414	}
1415	man->has_type = true;
1416	man->use_type = true;
1417	man->size = p_size;
1418
1419	INIT_LIST_HEAD(&man->lru);
1420	man->move = NULL;
1421
1422	return 0;
1423}
1424EXPORT_SYMBOL(ttm_bo_init_mm);
1425
1426static void ttm_bo_global_kobj_release(struct kobject *kobj)
1427{
1428	struct ttm_bo_global *glob =
1429		container_of(kobj, struct ttm_bo_global, kobj);
1430
1431	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1432	__free_page(glob->dummy_read_page);
1433	kfree(glob);
1434}
1435
1436void ttm_bo_global_release(struct drm_global_reference *ref)
1437{
1438	struct ttm_bo_global *glob = ref->object;
1439
1440	kobject_del(&glob->kobj);
1441	kobject_put(&glob->kobj);
1442}
1443EXPORT_SYMBOL(ttm_bo_global_release);
1444
1445int ttm_bo_global_init(struct drm_global_reference *ref)
1446{
1447	struct ttm_bo_global_ref *bo_ref =
1448		container_of(ref, struct ttm_bo_global_ref, ref);
1449	struct ttm_bo_global *glob = ref->object;
1450	int ret;
1451
1452	mutex_init(&glob->device_list_mutex);
1453	spin_lock_init(&glob->lru_lock);
1454	glob->mem_glob = bo_ref->mem_glob;
1455	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1456
1457	if (unlikely(glob->dummy_read_page == NULL)) {
1458		ret = -ENOMEM;
1459		goto out_no_drp;
1460	}
1461
1462	INIT_LIST_HEAD(&glob->swap_lru);
1463	INIT_LIST_HEAD(&glob->device_list);
1464
1465	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1466	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1467	if (unlikely(ret != 0)) {
1468		pr_err("Could not register buffer object swapout\n");
1469		goto out_no_shrink;
1470	}
1471
1472	atomic_set(&glob->bo_count, 0);
1473
1474	ret = kobject_init_and_add(
1475		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1476	if (unlikely(ret != 0))
1477		kobject_put(&glob->kobj);
1478	return ret;
1479out_no_shrink:
1480	__free_page(glob->dummy_read_page);
1481out_no_drp:
1482	kfree(glob);
1483	return ret;
1484}
1485EXPORT_SYMBOL(ttm_bo_global_init);
1486
1487
1488int ttm_bo_device_release(struct ttm_bo_device *bdev)
1489{
1490	int ret = 0;
1491	unsigned i = TTM_NUM_MEM_TYPES;
1492	struct ttm_mem_type_manager *man;
1493	struct ttm_bo_global *glob = bdev->glob;
1494
1495	while (i--) {
1496		man = &bdev->man[i];
1497		if (man->has_type) {
1498			man->use_type = false;
1499			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1500				ret = -EBUSY;
1501				pr_err("DRM memory manager type %d is not clean\n",
1502				       i);
1503			}
1504			man->has_type = false;
1505		}
1506	}
1507
1508	mutex_lock(&glob->device_list_mutex);
1509	list_del(&bdev->device_list);
1510	mutex_unlock(&glob->device_list_mutex);
1511
1512	cancel_delayed_work_sync(&bdev->wq);
1513
1514	while (ttm_bo_delayed_delete(bdev, true))
1515		;
1516
1517	spin_lock(&glob->lru_lock);
1518	if (list_empty(&bdev->ddestroy))
1519		TTM_DEBUG("Delayed destroy list was clean\n");
1520
1521	if (list_empty(&bdev->man[0].lru))
1522		TTM_DEBUG("Swap list was clean\n");
1523	spin_unlock(&glob->lru_lock);
1524
1525	drm_vma_offset_manager_destroy(&bdev->vma_manager);
1526
1527	return ret;
1528}
1529EXPORT_SYMBOL(ttm_bo_device_release);
1530
1531int ttm_bo_device_init(struct ttm_bo_device *bdev,
1532		       struct ttm_bo_global *glob,
1533		       struct ttm_bo_driver *driver,
1534		       struct address_space *mapping,
1535		       uint64_t file_page_offset,
1536		       bool need_dma32)
1537{
1538	int ret = -EINVAL;
1539
1540	bdev->driver = driver;
1541
1542	memset(bdev->man, 0, sizeof(bdev->man));
1543
1544	/*
1545	 * Initialize the system memory buffer type.
1546	 * Other types need to be driver / IOCTL initialized.
1547	 */
1548	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1549	if (unlikely(ret != 0))
1550		goto out_no_sys;
1551
1552	drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1553				    0x10000000);
1554	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1555	INIT_LIST_HEAD(&bdev->ddestroy);
1556	bdev->dev_mapping = mapping;
1557	bdev->glob = glob;
1558	bdev->need_dma32 = need_dma32;
1559	mutex_lock(&glob->device_list_mutex);
1560	list_add_tail(&bdev->device_list, &glob->device_list);
1561	mutex_unlock(&glob->device_list_mutex);
1562
1563	return 0;
1564out_no_sys:
1565	return ret;
1566}
1567EXPORT_SYMBOL(ttm_bo_device_init);
1568
1569/*
1570 * buffer object vm functions.
1571 */
1572
1573bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1574{
1575	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1576
1577	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1578		if (mem->mem_type == TTM_PL_SYSTEM)
1579			return false;
1580
1581		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1582			return false;
1583
1584		if (mem->placement & TTM_PL_FLAG_CACHED)
1585			return false;
1586	}
1587	return true;
1588}
1589
1590void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1591{
1592	struct ttm_bo_device *bdev = bo->bdev;
1593
1594	drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1595	ttm_mem_io_free_vm(bo);
1596}
1597
1598void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1599{
1600	struct ttm_bo_device *bdev = bo->bdev;
1601	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1602
1603	ttm_mem_io_lock(man, false);
1604	ttm_bo_unmap_virtual_locked(bo);
1605	ttm_mem_io_unlock(man);
1606}
1607
1608
1609EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1610
1611int ttm_bo_wait(struct ttm_buffer_object *bo,
1612		bool interruptible, bool no_wait)
 
 
 
 
 
 
 
 
 
1613{
1614	long timeout = 15 * HZ;
1615
1616	if (no_wait) {
1617		if (reservation_object_test_signaled_rcu(bo->resv, true))
 
1618			return 0;
1619		else
1620			return -EBUSY;
1621	}
1622
1623	timeout = reservation_object_wait_timeout_rcu(bo->resv, true,
1624						      interruptible, timeout);
1625	if (timeout < 0)
1626		return timeout;
1627
1628	if (timeout == 0)
1629		return -EBUSY;
1630
1631	reservation_object_add_excl_fence(bo->resv, NULL);
1632	return 0;
1633}
1634EXPORT_SYMBOL(ttm_bo_wait);
1635
1636int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1637{
1638	int ret = 0;
1639
1640	/*
1641	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1642	 */
1643
1644	ret = ttm_bo_reserve(bo, true, no_wait, NULL);
1645	if (unlikely(ret != 0))
1646		return ret;
1647	ret = ttm_bo_wait(bo, true, no_wait);
1648	if (likely(ret == 0))
1649		atomic_inc(&bo->cpu_writers);
1650	ttm_bo_unreserve(bo);
1651	return ret;
1652}
1653EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1654
1655void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1656{
1657	atomic_dec(&bo->cpu_writers);
1658}
1659EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1660
1661/**
1662 * A buffer object shrink method that tries to swap out the first
1663 * buffer object on the bo_global::swap_lru list.
1664 */
 
 
 
 
 
 
1665
1666static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
 
1667{
1668	struct ttm_bo_global *glob =
1669	    container_of(shrink, struct ttm_bo_global, shrink);
1670	struct ttm_buffer_object *bo;
1671	int ret = -EBUSY;
1672	int put_count;
1673
1674	spin_lock(&glob->lru_lock);
1675	list_for_each_entry(bo, &glob->swap_lru, swap) {
1676		ret = __ttm_bo_reserve(bo, false, true, NULL);
1677		if (!ret)
1678			break;
 
 
 
 
1679	}
1680
1681	if (ret) {
1682		spin_unlock(&glob->lru_lock);
1683		return ret;
 
 
1684	}
1685
1686	kref_get(&bo->list_kref);
 
1687
1688	if (!list_empty(&bo->ddestroy)) {
1689		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1690		kref_put(&bo->list_kref, ttm_bo_release_list);
1691		return ret;
 
 
 
1692	}
1693
1694	put_count = ttm_bo_del_from_lru(bo);
1695	spin_unlock(&glob->lru_lock);
1696
1697	ttm_bo_list_ref_sub(bo, put_count, true);
1698
1699	/**
1700	 * Move to system cached
1701	 */
 
 
 
 
 
 
 
 
 
1702
1703	if (bo->mem.mem_type != TTM_PL_SYSTEM ||
1704	    bo->ttm->caching_state != tt_cached) {
1705		struct ttm_mem_reg evict_mem;
1706
1707		evict_mem = bo->mem;
1708		evict_mem.mm_node = NULL;
1709		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1710		evict_mem.mem_type = TTM_PL_SYSTEM;
1711
1712		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1713					     false, false);
1714		if (unlikely(ret != 0))
1715			goto out;
 
1716	}
1717
1718	/**
1719	 * Make sure BO is idle.
1720	 */
1721
1722	ret = ttm_bo_wait(bo, false, false);
1723	if (unlikely(ret != 0))
1724		goto out;
1725
1726	ttm_bo_unmap_virtual(bo);
 
 
1727
1728	/**
1729	 * Swap out. Buffer will be swapped in again as soon as
1730	 * anyone tries to access a ttm page.
1731	 */
1732
1733	if (bo->bdev->driver->swap_notify)
1734		bo->bdev->driver->swap_notify(bo);
 
 
 
 
 
 
1735
1736	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1737out:
 
 
 
 
 
 
1738
1739	/**
1740	 *
1741	 * Unreserve without putting on LRU to avoid swapping out an
1742	 * already swapped buffer.
1743	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1744
1745	__ttm_bo_unreserve(bo);
1746	kref_put(&bo->list_kref, ttm_bo_release_list);
1747	return ret;
1748}
1749
1750void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1751{
1752	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1753		;
 
 
 
 
1754}
1755EXPORT_SYMBOL(ttm_bo_swapout_all);
1756
1757/**
1758 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1759 * unreserved
 
 
 
 
 
 
 
1760 *
1761 * @bo: Pointer to buffer
 
 
1762 */
1763int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
 
1764{
 
 
1765	int ret;
1766
1767	/*
1768	 * In the absense of a wait_unlocked API,
1769	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1770	 * concurrent use of this function. Note that this use of
1771	 * bo::wu_mutex can go away if we change locking order to
1772	 * mmap_sem -> bo::reserve.
1773	 */
1774	ret = mutex_lock_interruptible(&bo->wu_mutex);
1775	if (unlikely(ret != 0))
1776		return -ERESTARTSYS;
1777	if (!ww_mutex_is_locked(&bo->resv->lock))
1778		goto out_unlock;
1779	ret = __ttm_bo_reserve(bo, true, false, NULL);
1780	if (unlikely(ret != 0))
1781		goto out_unlock;
1782	__ttm_bo_unreserve(bo);
 
1783
1784out_unlock:
1785	mutex_unlock(&bo->wu_mutex);
1786	return ret;
1787}