Linux Audio

Check our new training course

Loading...
v6.13.7
   1/* SPDX-License-Identifier: GPL-2.0 OR MIT */
   2/**************************************************************************
   3 *
   4 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   5 * All Rights Reserved.
   6 *
   7 * Permission is hereby granted, free of charge, to any person obtaining a
   8 * copy of this software and associated documentation files (the
   9 * "Software"), to deal in the Software without restriction, including
  10 * without limitation the rights to use, copy, modify, merge, publish,
  11 * distribute, sub license, and/or sell copies of the Software, and to
  12 * permit persons to whom the Software is furnished to do so, subject to
  13 * the following conditions:
  14 *
  15 * The above copyright notice and this permission notice (including the
  16 * next paragraph) shall be included in all copies or substantial portions
  17 * of the Software.
  18 *
  19 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  20 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  21 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  22 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  23 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  24 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  25 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  26 *
  27 **************************************************************************/
  28/*
  29 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  30 */
  31
  32#define pr_fmt(fmt) "[TTM] " fmt
  33
  34#include <drm/ttm/ttm_bo.h>
 
  35#include <drm/ttm/ttm_placement.h>
  36#include <drm/ttm/ttm_tt.h>
  37
  38#include <linux/jiffies.h>
  39#include <linux/slab.h>
  40#include <linux/sched.h>
  41#include <linux/mm.h>
  42#include <linux/file.h>
  43#include <linux/module.h>
  44#include <linux/atomic.h>
  45#include <linux/dma-resv.h>
  46
  47#include "ttm_module.h"
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  48
  49static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  50					struct ttm_placement *placement)
  51{
  52	struct drm_printer p = drm_dbg_printer(NULL, DRM_UT_CORE, TTM_PFX);
  53	struct ttm_resource_manager *man;
  54	int i, mem_type;
  55
 
 
 
  56	for (i = 0; i < placement->num_placement; i++) {
  57		mem_type = placement->placement[i].mem_type;
  58		drm_printf(&p, "  placement[%d]=0x%08X (%d)\n",
  59			   i, placement->placement[i].flags, mem_type);
  60		man = ttm_manager_type(bo->bdev, mem_type);
  61		ttm_resource_manager_debug(man, &p);
 
 
  62	}
  63}
  64
  65/**
  66 * ttm_bo_move_to_lru_tail
  67 *
  68 * @bo: The buffer object.
  69 *
  70 * Move this BO to the tail of all lru lists used to lookup and reserve an
  71 * object. This function must be called with struct ttm_global::lru_lock
  72 * held, and is used to make a BO less likely to be considered for eviction.
  73 */
  74void ttm_bo_move_to_lru_tail(struct ttm_buffer_object *bo)
  75{
  76	dma_resv_assert_held(bo->base.resv);
 
  77
  78	if (bo->resource)
  79		ttm_resource_move_to_lru_tail(bo->resource);
  80}
  81EXPORT_SYMBOL(ttm_bo_move_to_lru_tail);
  82
  83/**
  84 * ttm_bo_set_bulk_move - update BOs bulk move object
  85 *
  86 * @bo: The buffer object.
  87 * @bulk: bulk move structure
  88 *
  89 * Update the BOs bulk move object, making sure that resources are added/removed
  90 * as well. A bulk move allows to move many resource on the LRU at once,
  91 * resulting in much less overhead of maintaining the LRU.
  92 * The only requirement is that the resources stay together on the LRU and are
  93 * never separated. This is enforces by setting the bulk_move structure on a BO.
  94 * ttm_lru_bulk_move_tail() should be used to move all resources to the tail of
  95 * their LRU list.
  96 */
  97void ttm_bo_set_bulk_move(struct ttm_buffer_object *bo,
  98			  struct ttm_lru_bulk_move *bulk)
 
  99{
 100	dma_resv_assert_held(bo->base.resv);
 
 101
 102	if (bo->bulk_move == bulk)
 103		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 104
 105	spin_lock(&bo->bdev->lru_lock);
 106	if (bo->resource)
 107		ttm_resource_del_bulk_move(bo->resource, bo);
 108	bo->bulk_move = bulk;
 109	if (bo->resource)
 110		ttm_resource_add_bulk_move(bo->resource, bo);
 111	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 112}
 113EXPORT_SYMBOL(ttm_bo_set_bulk_move);
 114
 115static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 116				  struct ttm_resource *mem, bool evict,
 117				  struct ttm_operation_ctx *ctx,
 118				  struct ttm_place *hop)
 119{
 120	struct ttm_device *bdev = bo->bdev;
 121	bool old_use_tt, new_use_tt;
 122	int ret;
 123
 124	old_use_tt = !bo->resource || ttm_manager_type(bdev, bo->resource->mem_type)->use_tt;
 125	new_use_tt = ttm_manager_type(bdev, mem->mem_type)->use_tt;
 
 
 
 
 126
 127	ttm_bo_unmap_virtual(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 128
 129	/*
 130	 * Create and bind a ttm if required.
 131	 */
 132
 133	if (new_use_tt) {
 134		/* Zero init the new TTM structure if the old location should
 135		 * have used one as well.
 136		 */
 137		ret = ttm_tt_create(bo, old_use_tt);
 
 
 
 
 138		if (ret)
 139			goto out_err;
 140
 141		if (mem->mem_type != TTM_PL_SYSTEM) {
 142			ret = ttm_bo_populate(bo, ctx);
 143			if (ret)
 144				goto out_err;
 145		}
 
 
 
 
 
 
 
 
 146	}
 147
 148	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 149	if (ret)
 150		goto out_err;
 
 
 
 
 
 
 
 
 151
 152	ret = bdev->funcs->move(bo, evict, ctx, mem, hop);
 153	if (ret) {
 154		if (ret == -EMULTIHOP)
 155			return ret;
 
 
 
 
 
 
 
 156		goto out_err;
 157	}
 158
 159	ctx->bytes_moved += bo->base.size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 160	return 0;
 161
 162out_err:
 163	if (!old_use_tt)
 164		ttm_bo_tt_destroy(bo);
 
 
 
 
 165
 166	return ret;
 167}
 168
 169/*
 170 * Call bo::reserved.
 171 * Will release GPU memory type usage on destruction.
 172 * This is the place to put in driver specific hooks to release
 173 * driver private resources.
 174 * Will release the bo::reserved lock.
 175 */
 176
 177static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 178{
 179	if (bo->bdev->funcs->delete_mem_notify)
 180		bo->bdev->funcs->delete_mem_notify(bo);
 181
 182	ttm_bo_tt_destroy(bo);
 183	ttm_resource_free(bo, &bo->resource);
 
 
 
 
 
 
 184}
 185
 186static int ttm_bo_individualize_resv(struct ttm_buffer_object *bo)
 187{
 188	int r;
 
 
 
 
 
 189
 190	if (bo->base.resv == &bo->base._resv)
 191		return 0;
 192
 193	BUG_ON(!dma_resv_trylock(&bo->base._resv));
 
 
 
 
 194
 195	r = dma_resv_copy_fences(&bo->base._resv, bo->base.resv);
 196	dma_resv_unlock(&bo->base._resv);
 197	if (r)
 198		return r;
 199
 200	if (bo->type != ttm_bo_type_sg) {
 201		/* This works because the BO is about to be destroyed and nobody
 202		 * reference it any more. The only tricky case is the trylock on
 203		 * the resv object while holding the lru_lock.
 204		 */
 205		spin_lock(&bo->bdev->lru_lock);
 206		bo->base.resv = &bo->base._resv;
 207		spin_unlock(&bo->bdev->lru_lock);
 208	}
 
 
 
 209
 210	return r;
 211}
 212
 213static void ttm_bo_flush_all_fences(struct ttm_buffer_object *bo)
 214{
 215	struct dma_resv *resv = &bo->base._resv;
 216	struct dma_resv_iter cursor;
 217	struct dma_fence *fence;
 
 
 
 
 218
 219	dma_resv_iter_begin(&cursor, resv, DMA_RESV_USAGE_BOOKKEEP);
 220	dma_resv_for_each_fence_unlocked(&cursor, fence) {
 221		if (!fence->ops->signaled)
 222			dma_fence_enable_sw_signaling(fence);
 223	}
 224	dma_resv_iter_end(&cursor);
 
 
 
 
 
 
 
 
 
 
 225}
 226
 227/*
 228 * Block for the dma_resv object to become idle, lock the buffer and clean up
 229 * the resource and tt object.
 
 
 
 
 
 
 
 230 */
 231static void ttm_bo_delayed_delete(struct work_struct *work)
 
 
 
 232{
 233	struct ttm_buffer_object *bo;
 
 
 
 
 234
 235	bo = container_of(work, typeof(*bo), delayed_delete);
 
 236
 237	dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP, false,
 238			      MAX_SCHEDULE_TIMEOUT);
 239	dma_resv_lock(bo->base.resv, NULL);
 240	ttm_bo_cleanup_memtype_use(bo);
 241	dma_resv_unlock(bo->base.resv);
 242	ttm_bo_put(bo);
 243}
 244
 245static void ttm_bo_release(struct kref *kref)
 246{
 247	struct ttm_buffer_object *bo =
 248	    container_of(kref, struct ttm_buffer_object, kref);
 249	struct ttm_device *bdev = bo->bdev;
 250	int ret;
 
 251
 252	WARN_ON_ONCE(bo->pin_count);
 253	WARN_ON_ONCE(bo->bulk_move);
 254
 255	if (!bo->deleted) {
 256		ret = ttm_bo_individualize_resv(bo);
 257		if (ret) {
 258			/* Last resort, if we fail to allocate memory for the
 259			 * fences block for the BO to become idle
 260			 */
 261			dma_resv_wait_timeout(bo->base.resv,
 262					      DMA_RESV_USAGE_BOOKKEEP, false,
 263					      30 * HZ);
 264		}
 265
 266		if (bo->bdev->funcs->release_notify)
 267			bo->bdev->funcs->release_notify(bo);
 268
 269		drm_vma_offset_remove(bdev->vma_manager, &bo->base.vma_node);
 270		ttm_mem_io_free(bdev, bo->resource);
 271
 272		if (!dma_resv_test_signaled(bo->base.resv,
 273					    DMA_RESV_USAGE_BOOKKEEP) ||
 274		    (want_init_on_free() && (bo->ttm != NULL)) ||
 275		    bo->type == ttm_bo_type_sg ||
 276		    !dma_resv_trylock(bo->base.resv)) {
 277			/* The BO is not idle, resurrect it for delayed destroy */
 278			ttm_bo_flush_all_fences(bo);
 279			bo->deleted = true;
 280
 281			spin_lock(&bo->bdev->lru_lock);
 282
 283			/*
 284			 * Make pinned bos immediately available to
 285			 * shrinkers, now that they are queued for
 286			 * destruction.
 287			 *
 288			 * FIXME: QXL is triggering this. Can be removed when the
 289			 * driver is fixed.
 290			 */
 291			if (bo->pin_count) {
 292				bo->pin_count = 0;
 293				ttm_resource_move_to_lru_tail(bo->resource);
 294			}
 295
 296			kref_init(&bo->kref);
 297			spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 298
 299			INIT_WORK(&bo->delayed_delete, ttm_bo_delayed_delete);
 
 300
 301			/* Schedule the worker on the closest NUMA node. This
 302			 * improves performance since system memory might be
 303			 * cleared on free and that is best done on a CPU core
 304			 * close to it.
 305			 */
 306			queue_work_node(bdev->pool.nid, bdev->wq, &bo->delayed_delete);
 307			return;
 
 
 
 
 308		}
 
 
 309
 310		ttm_bo_cleanup_memtype_use(bo);
 311		dma_resv_unlock(bo->base.resv);
 
 
 312	}
 313
 314	atomic_dec(&ttm_glob.bo_count);
 315	bo->destroy(bo);
 
 
 
 
 
 
 
 
 316}
 317
 318/**
 319 * ttm_bo_put
 320 *
 321 * @bo: The buffer object.
 322 *
 323 * Unreference a buffer object.
 324 */
 325void ttm_bo_put(struct ttm_buffer_object *bo)
 
 326{
 327	kref_put(&bo->kref, ttm_bo_release);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 328}
 329EXPORT_SYMBOL(ttm_bo_put);
 330
 331static int ttm_bo_bounce_temp_buffer(struct ttm_buffer_object *bo,
 332				     struct ttm_operation_ctx *ctx,
 333				     struct ttm_place *hop)
 334{
 335	struct ttm_placement hop_placement;
 336	struct ttm_resource *hop_mem;
 337	int ret;
 338
 339	hop_placement.num_placement = 1;
 340	hop_placement.placement = hop;
 341
 342	/* find space in the bounce domain */
 343	ret = ttm_bo_mem_space(bo, &hop_placement, &hop_mem, ctx);
 344	if (ret)
 345		return ret;
 346	/* move to the bounce domain */
 347	ret = ttm_bo_handle_move_mem(bo, hop_mem, false, ctx, NULL);
 348	if (ret) {
 349		ttm_resource_free(bo, &hop_mem);
 350		return ret;
 351	}
 352	return 0;
 353}
 354
 355static int ttm_bo_evict(struct ttm_buffer_object *bo,
 356			struct ttm_operation_ctx *ctx)
 357{
 358	struct ttm_device *bdev = bo->bdev;
 359	struct ttm_resource *evict_mem;
 360	struct ttm_placement placement;
 361	struct ttm_place hop;
 362	int ret = 0;
 363
 364	memset(&hop, 0, sizeof(hop));
 
 
 
 
 
 
 365
 366	dma_resv_assert_held(bo->base.resv);
 
 
 367
 368	placement.num_placement = 0;
 369	bdev->funcs->evict_flags(bo, &placement);
 
 
 370
 371	if (!placement.num_placement) {
 372		ret = ttm_bo_wait_ctx(bo, ctx);
 373		if (ret)
 374			return ret;
 
 375
 376		/*
 377		 * Since we've already synced, this frees backing store
 378		 * immediately.
 379		 */
 380		return ttm_bo_pipeline_gutting(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 381	}
 382
 383	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, ctx);
 
 
 
 
 
 
 
 
 
 
 
 
 
 384	if (ret) {
 385		if (ret != -ERESTARTSYS) {
 386			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 387			       bo);
 388			ttm_bo_mem_space_debug(bo, &placement);
 389		}
 390		goto out;
 391	}
 392
 393	do {
 394		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
 395		if (ret != -EMULTIHOP)
 396			break;
 397
 398		ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
 399	} while (!ret);
 400
 401	if (ret) {
 402		ttm_resource_free(bo, &evict_mem);
 403		if (ret != -ERESTARTSYS && ret != -EINTR)
 404			pr_err("Buffer eviction failed\n");
 
 
 405	}
 
 406out:
 407	return ret;
 408}
 409
 410/**
 411 * ttm_bo_eviction_valuable
 412 *
 413 * @bo: The buffer object to evict
 414 * @place: the placement we need to make room for
 415 *
 416 * Check if it is valuable to evict the BO to make room for the given placement.
 417 */
 418bool ttm_bo_eviction_valuable(struct ttm_buffer_object *bo,
 419			      const struct ttm_place *place)
 420{
 421	struct ttm_resource *res = bo->resource;
 422	struct ttm_device *bdev = bo->bdev;
 423
 424	dma_resv_assert_held(bo->base.resv);
 425	if (bo->resource->mem_type == TTM_PL_SYSTEM)
 426		return true;
 427
 428	/* Don't evict this BO if it's outside of the
 429	 * requested placement range
 430	 */
 431	return ttm_resource_intersects(bdev, res, place, bo->base.size);
 432}
 433EXPORT_SYMBOL(ttm_bo_eviction_valuable);
 434
 435/**
 436 * ttm_bo_evict_first() - Evict the first bo on the manager's LRU list.
 437 * @bdev: The ttm device.
 438 * @man: The manager whose bo to evict.
 439 * @ctx: The TTM operation ctx governing the eviction.
 440 *
 441 * Return: 0 if successful or the resource disappeared. Negative error code on error.
 442 */
 443int ttm_bo_evict_first(struct ttm_device *bdev, struct ttm_resource_manager *man,
 444		       struct ttm_operation_ctx *ctx)
 445{
 446	struct ttm_resource_cursor cursor;
 447	struct ttm_buffer_object *bo;
 448	struct ttm_resource *res;
 449	unsigned int mem_type;
 450	int ret = 0;
 451
 452	spin_lock(&bdev->lru_lock);
 453	res = ttm_resource_manager_first(man, &cursor);
 454	ttm_resource_cursor_fini(&cursor);
 455	if (!res) {
 456		ret = -ENOENT;
 457		goto out_no_ref;
 458	}
 459	bo = res->bo;
 460	if (!ttm_bo_get_unless_zero(bo))
 461		goto out_no_ref;
 462	mem_type = res->mem_type;
 463	spin_unlock(&bdev->lru_lock);
 464	ret = ttm_bo_reserve(bo, ctx->interruptible, ctx->no_wait_gpu, NULL);
 465	if (ret)
 466		goto out_no_lock;
 467	if (!bo->resource || bo->resource->mem_type != mem_type)
 468		goto out_bo_moved;
 469
 470	if (bo->deleted) {
 471		ret = ttm_bo_wait_ctx(bo, ctx);
 472		if (!ret)
 473			ttm_bo_cleanup_memtype_use(bo);
 474	} else {
 475		ret = ttm_bo_evict(bo, ctx);
 476	}
 477out_bo_moved:
 478	dma_resv_unlock(bo->base.resv);
 479out_no_lock:
 480	ttm_bo_put(bo);
 481	return ret;
 482
 483out_no_ref:
 484	spin_unlock(&bdev->lru_lock);
 485	return ret;
 486}
 487
 488/**
 489 * struct ttm_bo_evict_walk - Parameters for the evict walk.
 490 */
 491struct ttm_bo_evict_walk {
 492	/** @walk: The walk base parameters. */
 493	struct ttm_lru_walk walk;
 494	/** @place: The place passed to the resource allocation. */
 495	const struct ttm_place *place;
 496	/** @evictor: The buffer object we're trying to make room for. */
 497	struct ttm_buffer_object *evictor;
 498	/** @res: The allocated resource if any. */
 499	struct ttm_resource **res;
 500	/** @evicted: Number of successful evictions. */
 501	unsigned long evicted;
 502};
 503
 504static s64 ttm_bo_evict_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
 505{
 506	struct ttm_bo_evict_walk *evict_walk =
 507		container_of(walk, typeof(*evict_walk), walk);
 508	s64 lret;
 
 509
 510	if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, evict_walk->place))
 511		return 0;
 512
 513	if (bo->deleted) {
 514		lret = ttm_bo_wait_ctx(bo, walk->ctx);
 515		if (!lret)
 516			ttm_bo_cleanup_memtype_use(bo);
 517	} else {
 518		lret = ttm_bo_evict(bo, walk->ctx);
 519	}
 520
 521	if (lret)
 522		goto out;
 523
 524	evict_walk->evicted++;
 525	if (evict_walk->res)
 526		lret = ttm_resource_alloc(evict_walk->evictor, evict_walk->place,
 527					  evict_walk->res);
 528	if (lret == 0)
 529		return 1;
 530out:
 531	/* Errors that should terminate the walk. */
 532	if (lret == -ENOSPC)
 533		return -EBUSY;
 534
 535	return lret;
 
 536}
 537
 538static const struct ttm_lru_walk_ops ttm_evict_walk_ops = {
 539	.process_bo = ttm_bo_evict_cb,
 540};
 541
 542static int ttm_bo_evict_alloc(struct ttm_device *bdev,
 543			      struct ttm_resource_manager *man,
 544			      const struct ttm_place *place,
 545			      struct ttm_buffer_object *evictor,
 546			      struct ttm_operation_ctx *ctx,
 547			      struct ww_acquire_ctx *ticket,
 548			      struct ttm_resource **res)
 549{
 550	struct ttm_bo_evict_walk evict_walk = {
 551		.walk = {
 552			.ops = &ttm_evict_walk_ops,
 553			.ctx = ctx,
 554			.ticket = ticket,
 555		},
 556		.place = place,
 557		.evictor = evictor,
 558		.res = res,
 559	};
 560	s64 lret;
 561
 562	evict_walk.walk.trylock_only = true;
 563	lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
 564	if (lret || !ticket)
 565		goto out;
 566
 567	/* If ticket-locking, repeat while making progress. */
 568	evict_walk.walk.trylock_only = false;
 569	do {
 570		/* The walk may clear the evict_walk.walk.ticket field */
 571		evict_walk.walk.ticket = ticket;
 572		evict_walk.evicted = 0;
 573		lret = ttm_lru_walk_for_evict(&evict_walk.walk, bdev, man, 1);
 574	} while (!lret && evict_walk.evicted);
 575out:
 576	if (lret < 0)
 577		return lret;
 578	if (lret == 0)
 579		return -EBUSY;
 580	return 0;
 581}
 
 582
 583/**
 584 * ttm_bo_pin - Pin the buffer object.
 585 * @bo: The buffer object to pin
 586 *
 587 * Make sure the buffer is not evicted any more during memory pressure.
 588 * @bo must be unpinned again by calling ttm_bo_unpin().
 589 */
 590void ttm_bo_pin(struct ttm_buffer_object *bo)
 
 
 
 
 
 591{
 592	dma_resv_assert_held(bo->base.resv);
 593	WARN_ON_ONCE(!kref_read(&bo->kref));
 594	spin_lock(&bo->bdev->lru_lock);
 595	if (bo->resource)
 596		ttm_resource_del_bulk_move(bo->resource, bo);
 597	if (!bo->pin_count++ && bo->resource)
 598		ttm_resource_move_to_lru_tail(bo->resource);
 599	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 
 
 
 600}
 601EXPORT_SYMBOL(ttm_bo_pin);
 602
 603/**
 604 * ttm_bo_unpin - Unpin the buffer object.
 605 * @bo: The buffer object to unpin
 606 *
 607 * Allows the buffer object to be evicted again during memory pressure.
 608 */
 609void ttm_bo_unpin(struct ttm_buffer_object *bo)
 610{
 611	dma_resv_assert_held(bo->base.resv);
 612	WARN_ON_ONCE(!kref_read(&bo->kref));
 613	if (WARN_ON_ONCE(!bo->pin_count))
 614		return;
 615
 616	spin_lock(&bo->bdev->lru_lock);
 617	if (!--bo->pin_count && bo->resource) {
 618		ttm_resource_add_bulk_move(bo->resource, bo);
 619		ttm_resource_move_to_lru_tail(bo->resource);
 620	}
 621	spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
 
 
 
 
 
 
 622}
 623EXPORT_SYMBOL(ttm_bo_unpin);
 624
 625/*
 626 * Add the last move fence to the BO as kernel dependency and reserve a new
 627 * fence slot.
 628 */
 629static int ttm_bo_add_move_fence(struct ttm_buffer_object *bo,
 630				 struct ttm_resource_manager *man,
 631				 bool no_wait_gpu)
 632{
 633	struct dma_fence *fence;
 634	int ret;
 635
 636	spin_lock(&man->move_lock);
 637	fence = dma_fence_get(man->move);
 638	spin_unlock(&man->move_lock);
 639
 640	if (!fence)
 641		return 0;
 642
 643	if (no_wait_gpu) {
 644		ret = dma_fence_is_signaled(fence) ? 0 : -EBUSY;
 645		dma_fence_put(fence);
 646		return ret;
 647	}
 648
 649	dma_resv_add_fence(bo->base.resv, fence, DMA_RESV_USAGE_KERNEL);
 650
 651	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 652	dma_fence_put(fence);
 653	return ret;
 654}
 655
 656/**
 657 * ttm_bo_alloc_resource - Allocate backing store for a BO
 658 *
 659 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
 660 * @placement: Proposed new placement for the buffer object
 661 * @ctx: if and how to sleep, lock buffers and alloc memory
 662 * @force_space: If we should evict buffers to force space
 663 * @res: The resulting struct ttm_resource.
 664 *
 665 * Allocates a resource for the buffer object pointed to by @bo, using the
 666 * placement flags in @placement, potentially evicting other buffer objects when
 667 * @force_space is true.
 668 * This function may sleep while waiting for resources to become available.
 669 * Returns:
 670 * -EBUSY: No space available (only if no_wait == true).
 671 * -ENOSPC: Could not allocate space for the buffer object, either due to
 672 * fragmentation or concurrent allocators.
 673 * -ERESTARTSYS: An interruptible sleep was interrupted by a signal.
 674 */
 675static int ttm_bo_alloc_resource(struct ttm_buffer_object *bo,
 676				 struct ttm_placement *placement,
 677				 struct ttm_operation_ctx *ctx,
 678				 bool force_space,
 679				 struct ttm_resource **res)
 680{
 681	struct ttm_device *bdev = bo->bdev;
 682	struct ww_acquire_ctx *ticket;
 
 
 
 
 
 683	int i, ret;
 684
 685	ticket = dma_resv_locking_ctx(bo->base.resv);
 686	ret = dma_resv_reserve_fences(bo->base.resv, 1);
 687	if (unlikely(ret))
 688		return ret;
 689
 690	for (i = 0; i < placement->num_placement; ++i) {
 691		const struct ttm_place *place = &placement->placement[i];
 692		struct ttm_resource_manager *man;
 693		bool may_evict;
 
 
 694
 695		man = ttm_manager_type(bdev, place->mem_type);
 696		if (!man || !ttm_resource_manager_used(man))
 697			continue;
 
 698
 699		if (place->flags & (force_space ? TTM_PL_FLAG_DESIRED :
 700				    TTM_PL_FLAG_FALLBACK))
 701			continue;
 702
 703		may_evict = (force_space && place->mem_type != TTM_PL_SYSTEM);
 704		ret = ttm_resource_alloc(bo, place, res);
 705		if (ret) {
 706			if (ret != -ENOSPC)
 707				return ret;
 708			if (!may_evict)
 709				continue;
 
 710
 711			ret = ttm_bo_evict_alloc(bdev, man, place, bo, ctx,
 712						 ticket, res);
 713			if (ret == -EBUSY)
 714				continue;
 715			if (ret)
 
 
 716				return ret;
 717		}
 
 
 
 718
 719		ret = ttm_bo_add_move_fence(bo, man, ctx->no_wait_gpu);
 720		if (unlikely(ret)) {
 721			ttm_resource_free(bo, res);
 722			if (ret == -EBUSY)
 723				continue;
 724
 725			return ret;
 726		}
 727		return 0;
 728	}
 729
 730	return -ENOSPC;
 731}
 732
 733/*
 734 * ttm_bo_mem_space - Wrapper around ttm_bo_alloc_resource
 735 *
 736 * @bo: Pointer to a struct ttm_buffer_object of which we want a resource for
 737 * @placement: Proposed new placement for the buffer object
 738 * @res: The resulting struct ttm_resource.
 739 * @ctx: if and how to sleep, lock buffers and alloc memory
 740 *
 741 * Tries both idle allocation and forcefully eviction of buffers. See
 742 * ttm_bo_alloc_resource for details.
 743 */
 744int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 745		     struct ttm_placement *placement,
 746		     struct ttm_resource **res,
 747		     struct ttm_operation_ctx *ctx)
 748{
 749	bool force_space = false;
 750	int ret;
 
 
 
 
 751
 752	do {
 753		ret = ttm_bo_alloc_resource(bo, placement, ctx,
 754					    force_space, res);
 755		force_space = !force_space;
 756	} while (ret == -ENOSPC && force_space);
 757
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 758	return ret;
 759}
 760EXPORT_SYMBOL(ttm_bo_mem_space);
 761
 762/**
 763 * ttm_bo_validate
 764 *
 765 * @bo: The buffer object.
 766 * @placement: Proposed placement for the buffer object.
 767 * @ctx: validation parameters.
 768 *
 769 * Changes placement and caching policy of the buffer object
 770 * according proposed placement.
 771 * Returns
 772 * -EINVAL on invalid proposed placement.
 773 * -ENOMEM on out-of-memory condition.
 774 * -EBUSY if no_wait is true and buffer busy.
 775 * -ERESTARTSYS if interrupted by a signal.
 776 */
 777int ttm_bo_validate(struct ttm_buffer_object *bo,
 778		    struct ttm_placement *placement,
 779		    struct ttm_operation_ctx *ctx)
 780{
 781	struct ttm_resource *res;
 782	struct ttm_place hop;
 783	bool force_space;
 784	int ret;
 785
 786	dma_resv_assert_held(bo->base.resv);
 787
 788	/*
 789	 * Remove the backing store if no placement is given.
 
 
 790	 */
 791	if (!placement->num_placement)
 792		return ttm_bo_pipeline_gutting(bo);
 793
 794	force_space = false;
 795	do {
 796		/* Check whether we need to move buffer. */
 797		if (bo->resource &&
 798		    ttm_resource_compatible(bo->resource, placement,
 799					    force_space))
 800			return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 801
 802		/* Moving of pinned BOs is forbidden */
 803		if (bo->pin_count)
 804			return -EINVAL;
 
 
 
 
 
 
 
 805
 806		/*
 807		 * Determine where to move the buffer.
 808		 *
 809		 * If driver determines move is going to need
 810		 * an extra step then it will return -EMULTIHOP
 811		 * and the buffer will be moved to the temporary
 812		 * stop and the driver will be called to make
 813		 * the second hop.
 814		 */
 815		ret = ttm_bo_alloc_resource(bo, placement, ctx, force_space,
 816					    &res);
 817		force_space = !force_space;
 818		if (ret == -ENOSPC)
 819			continue;
 820		if (ret)
 821			return ret;
 822
 823bounce:
 824		ret = ttm_bo_handle_move_mem(bo, res, false, ctx, &hop);
 825		if (ret == -EMULTIHOP) {
 826			ret = ttm_bo_bounce_temp_buffer(bo, ctx, &hop);
 827			/* try and move to final place now. */
 828			if (!ret)
 829				goto bounce;
 830		}
 831		if (ret) {
 832			ttm_resource_free(bo, &res);
 833			return ret;
 834		}
 835
 836	} while (ret && force_space);
 
 837
 838	/* For backward compatibility with userspace */
 839	if (ret == -ENOSPC)
 840		return -ENOMEM;
 
 
 
 
 841
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 842	/*
 843	 * We might need to add a TTM.
 844	 */
 845	if (!bo->resource || bo->resource->mem_type == TTM_PL_SYSTEM) {
 846		ret = ttm_tt_create(bo, true);
 847		if (ret)
 848			return ret;
 849	}
 850	return 0;
 851}
 852EXPORT_SYMBOL(ttm_bo_validate);
 853
 854/**
 855 * ttm_bo_init_reserved
 856 *
 857 * @bdev: Pointer to a ttm_device struct.
 858 * @bo: Pointer to a ttm_buffer_object to be initialized.
 859 * @type: Requested type of buffer object.
 860 * @placement: Initial placement for buffer object.
 861 * @alignment: Data alignment in pages.
 862 * @ctx: TTM operation context for memory allocation.
 863 * @sg: Scatter-gather table.
 864 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 865 * @destroy: Destroy function. Use NULL for kfree().
 866 *
 867 * This function initializes a pre-allocated struct ttm_buffer_object.
 868 * As this object may be part of a larger structure, this function,
 869 * together with the @destroy function, enables driver-specific objects
 870 * derived from a ttm_buffer_object.
 871 *
 872 * On successful return, the caller owns an object kref to @bo. The kref and
 873 * list_kref are usually set to 1, but note that in some situations, other
 874 * tasks may already be holding references to @bo as well.
 875 * Furthermore, if resv == NULL, the buffer's reservation lock will be held,
 876 * and it is the caller's responsibility to call ttm_bo_unreserve.
 877 *
 878 * If a failure occurs, the function will call the @destroy function. Thus,
 879 * after a failure, dereferencing @bo is illegal and will likely cause memory
 880 * corruption.
 881 *
 882 * Returns
 883 * -ENOMEM: Out of memory.
 884 * -EINVAL: Invalid placement flags.
 885 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 886 */
 887int ttm_bo_init_reserved(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 888			 enum ttm_bo_type type, struct ttm_placement *placement,
 889			 uint32_t alignment, struct ttm_operation_ctx *ctx,
 890			 struct sg_table *sg, struct dma_resv *resv,
 891			 void (*destroy) (struct ttm_buffer_object *))
 892{
 893	int ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 894
 895	kref_init(&bo->kref);
 
 
 
 
 
 
 
 896	bo->bdev = bdev;
 
 897	bo->type = type;
 898	bo->page_alignment = alignment;
 899	bo->destroy = destroy;
 900	bo->pin_count = 0;
 
 
 
 
 
 
 
 
 
 901	bo->sg = sg;
 902	bo->bulk_move = NULL;
 903	if (resv)
 904		bo->base.resv = resv;
 905	else
 906		bo->base.resv = &bo->base._resv;
 907	atomic_inc(&ttm_glob.bo_count);
 908
 909	/*
 910	 * For ttm_bo_type_device buffers, allocate
 911	 * address space from the device.
 912	 */
 913	if (bo->type == ttm_bo_type_device || bo->type == ttm_bo_type_sg) {
 914		ret = drm_vma_offset_add(bdev->vma_manager, &bo->base.vma_node,
 915					 PFN_UP(bo->base.size));
 916		if (ret)
 917			goto err_put;
 918	}
 919
 920	/* passed reservation objects should already be locked,
 921	 * since otherwise lockdep will be angered in radeon.
 922	 */
 923	if (!resv)
 924		WARN_ON(!dma_resv_trylock(bo->base.resv));
 925	else
 926		dma_resv_assert_held(resv);
 927
 928	ret = ttm_bo_validate(bo, placement, ctx);
 929	if (unlikely(ret))
 930		goto err_unlock;
 931
 932	return 0;
 
 
 933
 934err_unlock:
 935	if (!resv)
 936		dma_resv_unlock(bo->base.resv);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 937
 938err_put:
 939	ttm_bo_put(bo);
 940	return ret;
 941}
 942EXPORT_SYMBOL(ttm_bo_init_reserved);
 943
 944/**
 945 * ttm_bo_init_validate
 946 *
 947 * @bdev: Pointer to a ttm_device struct.
 948 * @bo: Pointer to a ttm_buffer_object to be initialized.
 949 * @type: Requested type of buffer object.
 950 * @placement: Initial placement for buffer object.
 951 * @alignment: Data alignment in pages.
 952 * @interruptible: If needing to sleep to wait for GPU resources,
 953 * sleep interruptible.
 954 * pinned in physical memory. If this behaviour is not desired, this member
 955 * holds a pointer to a persistent shmem object. Typically, this would
 956 * point to the shmem object backing a GEM object if TTM is used to back a
 957 * GEM user interface.
 958 * @sg: Scatter-gather table.
 959 * @resv: Pointer to a dma_resv, or NULL to let ttm allocate one.
 960 * @destroy: Destroy function. Use NULL for kfree().
 961 *
 962 * This function initializes a pre-allocated struct ttm_buffer_object.
 963 * As this object may be part of a larger structure, this function,
 964 * together with the @destroy function,
 965 * enables driver-specific objects derived from a ttm_buffer_object.
 966 *
 967 * On successful return, the caller owns an object kref to @bo. The kref and
 968 * list_kref are usually set to 1, but note that in some situations, other
 969 * tasks may already be holding references to @bo as well.
 970 *
 971 * If a failure occurs, the function will call the @destroy function, Thus,
 972 * after a failure, dereferencing @bo is illegal and will likely cause memory
 973 * corruption.
 974 *
 975 * Returns
 976 * -ENOMEM: Out of memory.
 977 * -EINVAL: Invalid placement flags.
 978 * -ERESTARTSYS: Interrupted by signal while sleeping waiting for resources.
 979 */
 980int ttm_bo_init_validate(struct ttm_device *bdev, struct ttm_buffer_object *bo,
 981			 enum ttm_bo_type type, struct ttm_placement *placement,
 982			 uint32_t alignment, bool interruptible,
 983			 struct sg_table *sg, struct dma_resv *resv,
 984			 void (*destroy) (struct ttm_buffer_object *))
 985{
 986	struct ttm_operation_ctx ctx = { interruptible, false };
 
 987	int ret;
 988
 989	ret = ttm_bo_init_reserved(bdev, bo, type, placement, alignment, &ctx,
 990				   sg, resv, destroy);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991	if (ret)
 992		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 993
 994	if (!resv)
 995		ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 996
 997	return 0;
 
 
 998}
 999EXPORT_SYMBOL(ttm_bo_init_validate);
1000
1001/*
1002 * buffer object vm functions.
1003 */
1004
1005/**
1006 * ttm_bo_unmap_virtual
1007 *
1008 * @bo: tear down the virtual mappings for this BO
1009 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1011{
1012	struct ttm_device *bdev = bo->bdev;
 
1013
1014	drm_vma_node_unmap(&bo->base.vma_node, bdev->dev_mapping);
1015	ttm_mem_io_free(bdev, bo->resource);
 
1016}
 
 
1017EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1018
1019/**
1020 * ttm_bo_wait_ctx - wait for buffer idle.
1021 *
1022 * @bo:  The buffer object.
1023 * @ctx: defines how to wait
1024 *
1025 * Waits for the buffer to be idle. Used timeout depends on the context.
1026 * Returns -EBUSY if wait timed outt, -ERESTARTSYS if interrupted by a signal or
1027 * zero on success.
1028 */
1029int ttm_bo_wait_ctx(struct ttm_buffer_object *bo, struct ttm_operation_ctx *ctx)
1030{
1031	long ret;
 
 
 
1032
1033	if (ctx->no_wait_gpu) {
1034		if (dma_resv_test_signaled(bo->base.resv,
1035					   DMA_RESV_USAGE_BOOKKEEP))
1036			return 0;
1037		else
 
 
 
 
 
 
 
 
 
 
 
1038			return -EBUSY;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1039	}
 
 
 
 
 
 
 
 
 
 
 
 
1040
1041	ret = dma_resv_wait_timeout(bo->base.resv, DMA_RESV_USAGE_BOOKKEEP,
1042				    ctx->interruptible, 15 * HZ);
1043	if (unlikely(ret < 0))
1044		return ret;
1045	if (unlikely(ret == 0))
1046		return -EBUSY;
1047	return 0;
 
 
 
 
 
 
 
 
 
 
1048}
1049EXPORT_SYMBOL(ttm_bo_wait_ctx);
1050
1051/**
1052 * struct ttm_bo_swapout_walk - Parameters for the swapout walk
 
1053 */
1054struct ttm_bo_swapout_walk {
1055	/** @walk: The walk base parameters. */
1056	struct ttm_lru_walk walk;
1057	/** @gfp_flags: The gfp flags to use for ttm_tt_swapout() */
1058	gfp_t gfp_flags;
1059};
1060
1061static s64
1062ttm_bo_swapout_cb(struct ttm_lru_walk *walk, struct ttm_buffer_object *bo)
1063{
1064	struct ttm_place place = {.mem_type = bo->resource->mem_type};
1065	struct ttm_bo_swapout_walk *swapout_walk =
1066		container_of(walk, typeof(*swapout_walk), walk);
1067	struct ttm_operation_ctx *ctx = walk->ctx;
1068	s64 ret;
1069
1070	/*
1071	 * While the bo may already reside in SYSTEM placement, set
1072	 * SYSTEM as new placement to cover also the move further below.
1073	 * The driver may use the fact that we're moving from SYSTEM
1074	 * as an indication that we're about to swap out.
1075	 */
1076	if (bo->pin_count || !bo->bdev->funcs->eviction_valuable(bo, &place)) {
1077		ret = -EBUSY;
1078		goto out;
1079	}
1080
1081	if (!bo->ttm || !ttm_tt_is_populated(bo->ttm) ||
1082	    bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL ||
1083	    bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED) {
1084		ret = -EBUSY;
1085		goto out;
1086	}
1087
1088	if (bo->deleted) {
1089		pgoff_t num_pages = bo->ttm->num_pages;
1090
1091		ret = ttm_bo_wait_ctx(bo, ctx);
1092		if (ret)
1093			goto out;
1094
1095		ttm_bo_cleanup_memtype_use(bo);
1096		ret = num_pages;
1097		goto out;
 
1098	}
1099
1100	/*
1101	 * Move to system cached
1102	 */
1103	if (bo->resource->mem_type != TTM_PL_SYSTEM) {
1104		struct ttm_resource *evict_mem;
1105		struct ttm_place hop;
1106
1107		memset(&hop, 0, sizeof(hop));
1108		place.mem_type = TTM_PL_SYSTEM;
1109		ret = ttm_resource_alloc(bo, &place, &evict_mem);
1110		if (ret)
1111			goto out;
1112
1113		ret = ttm_bo_handle_move_mem(bo, evict_mem, true, ctx, &hop);
1114		if (ret) {
1115			WARN(ret == -EMULTIHOP,
1116			     "Unexpected multihop in swapout - likely driver bug.\n");
1117			ttm_resource_free(bo, &evict_mem);
1118			goto out;
1119		}
1120	}
1121
1122	/*
1123	 * Make sure BO is idle.
1124	 */
1125	ret = ttm_bo_wait_ctx(bo, ctx);
1126	if (ret)
1127		goto out;
1128
1129	ttm_bo_unmap_virtual(bo);
1130	if (bo->bdev->funcs->swap_notify)
1131		bo->bdev->funcs->swap_notify(bo);
1132
1133	if (ttm_tt_is_populated(bo->ttm)) {
1134		spin_lock(&bo->bdev->lru_lock);
1135		ttm_resource_del_bulk_move(bo->resource, bo);
1136		spin_unlock(&bo->bdev->lru_lock);
1137
1138		ret = ttm_tt_swapout(bo->bdev, bo->ttm, swapout_walk->gfp_flags);
 
1139
1140		spin_lock(&bo->bdev->lru_lock);
1141		if (ret)
1142			ttm_resource_add_bulk_move(bo->resource, bo);
1143		ttm_resource_move_to_lru_tail(bo->resource);
1144		spin_unlock(&bo->bdev->lru_lock);
 
 
 
 
1145	}
1146
1147out:
1148	/* Consider -ENOMEM and -ENOSPC non-fatal. */
1149	if (ret == -ENOMEM || ret == -ENOSPC)
1150		ret = -EBUSY;
1151
1152	return ret;
1153}
 
 
1154
1155const struct ttm_lru_walk_ops ttm_swap_ops = {
1156	.process_bo = ttm_bo_swapout_cb,
1157};
1158
1159/**
1160 * ttm_bo_swapout() - Swap out buffer objects on the LRU list to shmem.
1161 * @bdev: The ttm device.
1162 * @ctx: The ttm_operation_ctx governing the swapout operation.
1163 * @man: The resource manager whose resources / buffer objects are
1164 * goint to be swapped out.
1165 * @gfp_flags: The gfp flags used for shmem page allocations.
1166 * @target: The desired number of bytes to swap out.
1167 *
1168 * Return: The number of bytes actually swapped out, or negative error code
1169 * on error.
1170 */
1171s64 ttm_bo_swapout(struct ttm_device *bdev, struct ttm_operation_ctx *ctx,
1172		   struct ttm_resource_manager *man, gfp_t gfp_flags,
1173		   s64 target)
1174{
1175	struct ttm_bo_swapout_walk swapout_walk = {
1176		.walk = {
1177			.ops = &ttm_swap_ops,
1178			.ctx = ctx,
1179			.trylock_only = true,
1180		},
1181		.gfp_flags = gfp_flags,
1182	};
1183
1184	return ttm_lru_walk_for_evict(&swapout_walk.walk, bdev, man, target);
 
 
1185}
1186
1187void ttm_bo_tt_destroy(struct ttm_buffer_object *bo)
1188{
1189	if (bo->ttm == NULL)
1190		return;
1191
1192	ttm_tt_unpopulate(bo->bdev, bo->ttm);
1193	ttm_tt_destroy(bo->bdev, bo->ttm);
1194	bo->ttm = NULL;
1195}
 
1196
1197/**
1198 * ttm_bo_populate() - Ensure that a buffer object has backing pages
1199 * @bo: The buffer object
1200 * @ctx: The ttm_operation_ctx governing the operation.
1201 *
1202 * For buffer objects in a memory type whose manager uses
1203 * struct ttm_tt for backing pages, ensure those backing pages
1204 * are present and with valid content. The bo's resource is also
1205 * placed on the correct LRU list if it was previously swapped
1206 * out.
1207 *
1208 * Return: 0 if successful, negative error code on failure.
1209 * Note: May return -EINTR or -ERESTARTSYS if @ctx::interruptible
1210 * is set to true.
1211 */
1212int ttm_bo_populate(struct ttm_buffer_object *bo,
1213		    struct ttm_operation_ctx *ctx)
1214{
1215	struct ttm_tt *tt = bo->ttm;
1216	bool swapped;
1217	int ret;
1218
1219	dma_resv_assert_held(bo->base.resv);
1220
1221	if (!tt)
1222		return 0;
1223
1224	swapped = ttm_tt_is_swapped(tt);
1225	ret = ttm_tt_populate(bo->bdev, tt, ctx);
1226	if (ret)
1227		return ret;
1228
1229	if (swapped && !ttm_tt_is_swapped(tt) && !bo->pin_count &&
1230	    bo->resource) {
1231		spin_lock(&bo->bdev->lru_lock);
1232		ttm_resource_add_bulk_move(bo->resource, bo);
1233		ttm_resource_move_to_lru_tail(bo->resource);
1234		spin_unlock(&bo->bdev->lru_lock);
1235	}
1236
1237	return 0;
 
 
1238}
1239EXPORT_SYMBOL(ttm_bo_populate);
v3.15
 
   1/**************************************************************************
   2 *
   3 * Copyright (c) 2006-2009 VMware, Inc., Palo Alto, CA., USA
   4 * All Rights Reserved.
   5 *
   6 * Permission is hereby granted, free of charge, to any person obtaining a
   7 * copy of this software and associated documentation files (the
   8 * "Software"), to deal in the Software without restriction, including
   9 * without limitation the rights to use, copy, modify, merge, publish,
  10 * distribute, sub license, and/or sell copies of the Software, and to
  11 * permit persons to whom the Software is furnished to do so, subject to
  12 * the following conditions:
  13 *
  14 * The above copyright notice and this permission notice (including the
  15 * next paragraph) shall be included in all copies or substantial portions
  16 * of the Software.
  17 *
  18 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
  19 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  20 * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
  21 * THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
  22 * DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
  23 * OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
  24 * USE OR OTHER DEALINGS IN THE SOFTWARE.
  25 *
  26 **************************************************************************/
  27/*
  28 * Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
  29 */
  30
  31#define pr_fmt(fmt) "[TTM] " fmt
  32
  33#include <drm/ttm/ttm_module.h>
  34#include <drm/ttm/ttm_bo_driver.h>
  35#include <drm/ttm/ttm_placement.h>
 
 
  36#include <linux/jiffies.h>
  37#include <linux/slab.h>
  38#include <linux/sched.h>
  39#include <linux/mm.h>
  40#include <linux/file.h>
  41#include <linux/module.h>
  42#include <linux/atomic.h>
 
  43
  44#define TTM_ASSERT_LOCKED(param)
  45#define TTM_DEBUG(fmt, arg...)
  46#define TTM_BO_HASH_ORDER 13
  47
  48static int ttm_bo_swapout(struct ttm_mem_shrink *shrink);
  49static void ttm_bo_global_kobj_release(struct kobject *kobj);
  50
  51static struct attribute ttm_bo_count = {
  52	.name = "bo_count",
  53	.mode = S_IRUGO
  54};
  55
  56static inline int ttm_mem_type_from_flags(uint32_t flags, uint32_t *mem_type)
  57{
  58	int i;
  59
  60	for (i = 0; i <= TTM_PL_PRIV5; i++)
  61		if (flags & (1 << i)) {
  62			*mem_type = i;
  63			return 0;
  64		}
  65	return -EINVAL;
  66}
  67
  68static void ttm_mem_type_debug(struct ttm_bo_device *bdev, int mem_type)
  69{
  70	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
  71
  72	pr_err("    has_type: %d\n", man->has_type);
  73	pr_err("    use_type: %d\n", man->use_type);
  74	pr_err("    flags: 0x%08X\n", man->flags);
  75	pr_err("    gpu_offset: 0x%08lX\n", man->gpu_offset);
  76	pr_err("    size: %llu\n", man->size);
  77	pr_err("    available_caching: 0x%08X\n", man->available_caching);
  78	pr_err("    default_caching: 0x%08X\n", man->default_caching);
  79	if (mem_type != TTM_PL_SYSTEM)
  80		(*man->func->debug)(man, TTM_PFX);
  81}
  82
  83static void ttm_bo_mem_space_debug(struct ttm_buffer_object *bo,
  84					struct ttm_placement *placement)
  85{
  86	int i, ret, mem_type;
 
 
  87
  88	pr_err("No space for %p (%lu pages, %luK, %luM)\n",
  89	       bo, bo->mem.num_pages, bo->mem.size >> 10,
  90	       bo->mem.size >> 20);
  91	for (i = 0; i < placement->num_placement; i++) {
  92		ret = ttm_mem_type_from_flags(placement->placement[i],
  93						&mem_type);
  94		if (ret)
  95			return;
  96		pr_err("  placement[%d]=0x%08X (%d)\n",
  97		       i, placement->placement[i], mem_type);
  98		ttm_mem_type_debug(bo->bdev, mem_type);
  99	}
 100}
 101
 102static ssize_t ttm_bo_global_show(struct kobject *kobj,
 103				  struct attribute *attr,
 104				  char *buffer)
 
 
 
 
 
 
 
 105{
 106	struct ttm_bo_global *glob =
 107		container_of(kobj, struct ttm_bo_global, kobj);
 108
 109	return snprintf(buffer, PAGE_SIZE, "%lu\n",
 110			(unsigned long) atomic_read(&glob->bo_count));
 111}
 
 112
 113static struct attribute *ttm_bo_global_attrs[] = {
 114	&ttm_bo_count,
 115	NULL
 116};
 117
 118static const struct sysfs_ops ttm_bo_global_ops = {
 119	.show = &ttm_bo_global_show
 120};
 121
 122static struct kobj_type ttm_bo_glob_kobj_type  = {
 123	.release = &ttm_bo_global_kobj_release,
 124	.sysfs_ops = &ttm_bo_global_ops,
 125	.default_attrs = ttm_bo_global_attrs
 126};
 127
 128
 129static inline uint32_t ttm_bo_type_flags(unsigned type)
 130{
 131	return 1 << (type);
 132}
 133
 134static void ttm_bo_release_list(struct kref *list_kref)
 135{
 136	struct ttm_buffer_object *bo =
 137	    container_of(list_kref, struct ttm_buffer_object, list_kref);
 138	struct ttm_bo_device *bdev = bo->bdev;
 139	size_t acc_size = bo->acc_size;
 140
 141	BUG_ON(atomic_read(&bo->list_kref.refcount));
 142	BUG_ON(atomic_read(&bo->kref.refcount));
 143	BUG_ON(atomic_read(&bo->cpu_writers));
 144	BUG_ON(bo->sync_obj != NULL);
 145	BUG_ON(bo->mem.mm_node != NULL);
 146	BUG_ON(!list_empty(&bo->lru));
 147	BUG_ON(!list_empty(&bo->ddestroy));
 148
 149	if (bo->ttm)
 150		ttm_tt_destroy(bo->ttm);
 151	atomic_dec(&bo->glob->bo_count);
 152	if (bo->resv == &bo->ttm_resv)
 153		reservation_object_fini(&bo->ttm_resv);
 154	mutex_destroy(&bo->wu_mutex);
 155	if (bo->destroy)
 156		bo->destroy(bo);
 157	else {
 158		kfree(bo);
 159	}
 160	ttm_mem_global_free(bdev->glob->mem_glob, acc_size);
 161}
 162
 163void ttm_bo_add_to_lru(struct ttm_buffer_object *bo)
 164{
 165	struct ttm_bo_device *bdev = bo->bdev;
 166	struct ttm_mem_type_manager *man;
 167
 168	lockdep_assert_held(&bo->resv->lock.base);
 169
 170	if (!(bo->mem.placement & TTM_PL_FLAG_NO_EVICT)) {
 171
 172		BUG_ON(!list_empty(&bo->lru));
 173
 174		man = &bdev->man[bo->mem.mem_type];
 175		list_add_tail(&bo->lru, &man->lru);
 176		kref_get(&bo->list_kref);
 177
 178		if (bo->ttm != NULL) {
 179			list_add_tail(&bo->swap, &bo->glob->swap_lru);
 180			kref_get(&bo->list_kref);
 181		}
 182	}
 183}
 184EXPORT_SYMBOL(ttm_bo_add_to_lru);
 185
 186int ttm_bo_del_from_lru(struct ttm_buffer_object *bo)
 187{
 188	int put_count = 0;
 189
 190	if (!list_empty(&bo->swap)) {
 191		list_del_init(&bo->swap);
 192		++put_count;
 193	}
 194	if (!list_empty(&bo->lru)) {
 195		list_del_init(&bo->lru);
 196		++put_count;
 197	}
 198
 199	/*
 200	 * TODO: Add a driver hook to delete from
 201	 * driver-specific LRU's here.
 202	 */
 203
 204	return put_count;
 205}
 
 206
 207static void ttm_bo_ref_bug(struct kref *list_kref)
 
 
 
 208{
 209	BUG();
 210}
 
 211
 212void ttm_bo_list_ref_sub(struct ttm_buffer_object *bo, int count,
 213			 bool never_free)
 214{
 215	kref_sub(&bo->list_kref, count,
 216		 (never_free) ? ttm_bo_ref_bug : ttm_bo_release_list);
 217}
 218
 219void ttm_bo_del_sub_from_lru(struct ttm_buffer_object *bo)
 220{
 221	int put_count;
 222
 223	spin_lock(&bo->glob->lru_lock);
 224	put_count = ttm_bo_del_from_lru(bo);
 225	spin_unlock(&bo->glob->lru_lock);
 226	ttm_bo_list_ref_sub(bo, put_count, true);
 227}
 228EXPORT_SYMBOL(ttm_bo_del_sub_from_lru);
 229
 230/*
 231 * Call bo->mutex locked.
 232 */
 233static int ttm_bo_add_ttm(struct ttm_buffer_object *bo, bool zero_alloc)
 234{
 235	struct ttm_bo_device *bdev = bo->bdev;
 236	struct ttm_bo_global *glob = bo->glob;
 237	int ret = 0;
 238	uint32_t page_flags = 0;
 239
 240	TTM_ASSERT_LOCKED(&bo->mutex);
 241	bo->ttm = NULL;
 242
 243	if (bdev->need_dma32)
 244		page_flags |= TTM_PAGE_FLAG_DMA32;
 245
 246	switch (bo->type) {
 247	case ttm_bo_type_device:
 248		if (zero_alloc)
 249			page_flags |= TTM_PAGE_FLAG_ZERO_ALLOC;
 250	case ttm_bo_type_kernel:
 251		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 252						      page_flags, glob->dummy_read_page);
 253		if (unlikely(bo->ttm == NULL))
 254			ret = -ENOMEM;
 255		break;
 256	case ttm_bo_type_sg:
 257		bo->ttm = bdev->driver->ttm_tt_create(bdev, bo->num_pages << PAGE_SHIFT,
 258						      page_flags | TTM_PAGE_FLAG_SG,
 259						      glob->dummy_read_page);
 260		if (unlikely(bo->ttm == NULL)) {
 261			ret = -ENOMEM;
 262			break;
 263		}
 264		bo->ttm->sg = bo->sg;
 265		break;
 266	default:
 267		pr_err("Illegal buffer object type\n");
 268		ret = -EINVAL;
 269		break;
 270	}
 271
 272	return ret;
 273}
 274
 275static int ttm_bo_handle_move_mem(struct ttm_buffer_object *bo,
 276				  struct ttm_mem_reg *mem,
 277				  bool evict, bool interruptible,
 278				  bool no_wait_gpu)
 279{
 280	struct ttm_bo_device *bdev = bo->bdev;
 281	bool old_is_pci = ttm_mem_reg_is_pci(bdev, &bo->mem);
 282	bool new_is_pci = ttm_mem_reg_is_pci(bdev, mem);
 283	struct ttm_mem_type_manager *old_man = &bdev->man[bo->mem.mem_type];
 284	struct ttm_mem_type_manager *new_man = &bdev->man[mem->mem_type];
 285	int ret = 0;
 286
 287	if (old_is_pci || new_is_pci ||
 288	    ((mem->placement & bo->mem.placement & TTM_PL_MASK_CACHING) == 0)) {
 289		ret = ttm_mem_io_lock(old_man, true);
 290		if (unlikely(ret != 0))
 291			goto out_err;
 292		ttm_bo_unmap_virtual_locked(bo);
 293		ttm_mem_io_unlock(old_man);
 294	}
 295
 296	/*
 297	 * Create and bind a ttm if required.
 298	 */
 299
 300	if (!(new_man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
 301		if (bo->ttm == NULL) {
 302			bool zero = !(old_man->flags & TTM_MEMTYPE_FLAG_FIXED);
 303			ret = ttm_bo_add_ttm(bo, zero);
 304			if (ret)
 305				goto out_err;
 306		}
 307
 308		ret = ttm_tt_set_placement_caching(bo->ttm, mem->placement);
 309		if (ret)
 310			goto out_err;
 311
 312		if (mem->mem_type != TTM_PL_SYSTEM) {
 313			ret = ttm_tt_bind(bo->ttm, mem);
 314			if (ret)
 315				goto out_err;
 316		}
 317
 318		if (bo->mem.mem_type == TTM_PL_SYSTEM) {
 319			if (bdev->driver->move_notify)
 320				bdev->driver->move_notify(bo, mem);
 321			bo->mem = *mem;
 322			mem->mm_node = NULL;
 323			goto moved;
 324		}
 325	}
 326
 327	if (bdev->driver->move_notify)
 328		bdev->driver->move_notify(bo, mem);
 329
 330	if (!(old_man->flags & TTM_MEMTYPE_FLAG_FIXED) &&
 331	    !(new_man->flags & TTM_MEMTYPE_FLAG_FIXED))
 332		ret = ttm_bo_move_ttm(bo, evict, no_wait_gpu, mem);
 333	else if (bdev->driver->move)
 334		ret = bdev->driver->move(bo, evict, interruptible,
 335					 no_wait_gpu, mem);
 336	else
 337		ret = ttm_bo_move_memcpy(bo, evict, no_wait_gpu, mem);
 338
 
 339	if (ret) {
 340		if (bdev->driver->move_notify) {
 341			struct ttm_mem_reg tmp_mem = *mem;
 342			*mem = bo->mem;
 343			bo->mem = tmp_mem;
 344			bdev->driver->move_notify(bo, mem);
 345			bo->mem = *mem;
 346			*mem = tmp_mem;
 347		}
 348
 349		goto out_err;
 350	}
 351
 352moved:
 353	if (bo->evicted) {
 354		if (bdev->driver->invalidate_caches) {
 355			ret = bdev->driver->invalidate_caches(bdev, bo->mem.placement);
 356			if (ret)
 357				pr_err("Can not flush read caches\n");
 358		}
 359		bo->evicted = false;
 360	}
 361
 362	if (bo->mem.mm_node) {
 363		bo->offset = (bo->mem.start << PAGE_SHIFT) +
 364		    bdev->man[bo->mem.mem_type].gpu_offset;
 365		bo->cur_placement = bo->mem.placement;
 366	} else
 367		bo->offset = 0;
 368
 369	return 0;
 370
 371out_err:
 372	new_man = &bdev->man[bo->mem.mem_type];
 373	if ((new_man->flags & TTM_MEMTYPE_FLAG_FIXED) && bo->ttm) {
 374		ttm_tt_unbind(bo->ttm);
 375		ttm_tt_destroy(bo->ttm);
 376		bo->ttm = NULL;
 377	}
 378
 379	return ret;
 380}
 381
 382/**
 383 * Call bo::reserved.
 384 * Will release GPU memory type usage on destruction.
 385 * This is the place to put in driver specific hooks to release
 386 * driver private resources.
 387 * Will release the bo::reserved lock.
 388 */
 389
 390static void ttm_bo_cleanup_memtype_use(struct ttm_buffer_object *bo)
 391{
 392	if (bo->bdev->driver->move_notify)
 393		bo->bdev->driver->move_notify(bo, NULL);
 394
 395	if (bo->ttm) {
 396		ttm_tt_unbind(bo->ttm);
 397		ttm_tt_destroy(bo->ttm);
 398		bo->ttm = NULL;
 399	}
 400	ttm_bo_mem_put(bo, &bo->mem);
 401
 402	ww_mutex_unlock (&bo->resv->lock);
 403}
 404
 405static void ttm_bo_cleanup_refs_or_queue(struct ttm_buffer_object *bo)
 406{
 407	struct ttm_bo_device *bdev = bo->bdev;
 408	struct ttm_bo_global *glob = bo->glob;
 409	struct ttm_bo_driver *driver = bdev->driver;
 410	void *sync_obj = NULL;
 411	int put_count;
 412	int ret;
 413
 414	spin_lock(&glob->lru_lock);
 415	ret = __ttm_bo_reserve(bo, false, true, false, 0);
 416
 417	spin_lock(&bdev->fence_lock);
 418	(void) ttm_bo_wait(bo, false, false, true);
 419	if (!ret && !bo->sync_obj) {
 420		spin_unlock(&bdev->fence_lock);
 421		put_count = ttm_bo_del_from_lru(bo);
 422
 423		spin_unlock(&glob->lru_lock);
 424		ttm_bo_cleanup_memtype_use(bo);
 425
 426		ttm_bo_list_ref_sub(bo, put_count, true);
 427
 428		return;
 
 
 
 
 
 
 
 429	}
 430	if (bo->sync_obj)
 431		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 432	spin_unlock(&bdev->fence_lock);
 433
 434	if (!ret) {
 
 435
 436		/*
 437		 * Make NO_EVICT bos immediately available to
 438		 * shrinkers, now that they are queued for
 439		 * destruction.
 440		 */
 441		if (bo->mem.placement & TTM_PL_FLAG_NO_EVICT) {
 442			bo->mem.placement &= ~TTM_PL_FLAG_NO_EVICT;
 443			ttm_bo_add_to_lru(bo);
 444		}
 445
 446		__ttm_bo_unreserve(bo);
 
 
 
 447	}
 448
 449	kref_get(&bo->list_kref);
 450	list_add_tail(&bo->ddestroy, &bdev->ddestroy);
 451	spin_unlock(&glob->lru_lock);
 452
 453	if (sync_obj) {
 454		driver->sync_obj_flush(sync_obj);
 455		driver->sync_obj_unref(&sync_obj);
 456	}
 457	schedule_delayed_work(&bdev->wq,
 458			      ((HZ / 100) < 1) ? 1 : HZ / 100);
 459}
 460
 461/**
 462 * function ttm_bo_cleanup_refs_and_unlock
 463 * If bo idle, remove from delayed- and lru lists, and unref.
 464 * If not idle, do nothing.
 465 *
 466 * Must be called with lru_lock and reservation held, this function
 467 * will drop both before returning.
 468 *
 469 * @interruptible         Any sleeps should occur interruptibly.
 470 * @no_wait_gpu           Never wait for gpu. Return -EBUSY instead.
 471 */
 472
 473static int ttm_bo_cleanup_refs_and_unlock(struct ttm_buffer_object *bo,
 474					  bool interruptible,
 475					  bool no_wait_gpu)
 476{
 477	struct ttm_bo_device *bdev = bo->bdev;
 478	struct ttm_bo_driver *driver = bdev->driver;
 479	struct ttm_bo_global *glob = bo->glob;
 480	int put_count;
 481	int ret;
 482
 483	spin_lock(&bdev->fence_lock);
 484	ret = ttm_bo_wait(bo, false, false, true);
 485
 486	if (ret && !no_wait_gpu) {
 487		void *sync_obj;
 
 
 
 
 
 488
 489		/*
 490		 * Take a reference to the fence and unreserve,
 491		 * at this point the buffer should be dead, so
 492		 * no new sync objects can be attached.
 493		 */
 494		sync_obj = driver->sync_obj_ref(bo->sync_obj);
 495		spin_unlock(&bdev->fence_lock);
 496
 497		__ttm_bo_unreserve(bo);
 498		spin_unlock(&glob->lru_lock);
 499
 500		ret = driver->sync_obj_wait(sync_obj, false, interruptible);
 501		driver->sync_obj_unref(&sync_obj);
 502		if (ret)
 503			return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 504
 505		/*
 506		 * remove sync_obj with ttm_bo_wait, the wait should be
 507		 * finished, and no new wait object should have been added.
 508		 */
 509		spin_lock(&bdev->fence_lock);
 510		ret = ttm_bo_wait(bo, false, false, true);
 511		WARN_ON(ret);
 512		spin_unlock(&bdev->fence_lock);
 513		if (ret)
 514			return ret;
 515
 516		spin_lock(&glob->lru_lock);
 517		ret = __ttm_bo_reserve(bo, false, true, false, 0);
 518
 519		/*
 520		 * We raced, and lost, someone else holds the reservation now,
 521		 * and is probably busy in ttm_bo_cleanup_memtype_use.
 522		 *
 523		 * Even if it's not the case, because we finished waiting any
 524		 * delayed destruction would succeed, so just return success
 525		 * here.
 526		 */
 527		if (ret) {
 528			spin_unlock(&glob->lru_lock);
 529			return 0;
 530		}
 531	} else
 532		spin_unlock(&bdev->fence_lock);
 533
 534	if (ret || unlikely(list_empty(&bo->ddestroy))) {
 535		__ttm_bo_unreserve(bo);
 536		spin_unlock(&glob->lru_lock);
 537		return ret;
 538	}
 539
 540	put_count = ttm_bo_del_from_lru(bo);
 541	list_del_init(&bo->ddestroy);
 542	++put_count;
 543
 544	spin_unlock(&glob->lru_lock);
 545	ttm_bo_cleanup_memtype_use(bo);
 546
 547	ttm_bo_list_ref_sub(bo, put_count, true);
 548
 549	return 0;
 550}
 551
 552/**
 553 * Traverse the delayed list, and call ttm_bo_cleanup_refs on all
 554 * encountered buffers.
 
 
 
 555 */
 556
 557static int ttm_bo_delayed_delete(struct ttm_bo_device *bdev, bool remove_all)
 558{
 559	struct ttm_bo_global *glob = bdev->glob;
 560	struct ttm_buffer_object *entry = NULL;
 561	int ret = 0;
 562
 563	spin_lock(&glob->lru_lock);
 564	if (list_empty(&bdev->ddestroy))
 565		goto out_unlock;
 566
 567	entry = list_first_entry(&bdev->ddestroy,
 568		struct ttm_buffer_object, ddestroy);
 569	kref_get(&entry->list_kref);
 570
 571	for (;;) {
 572		struct ttm_buffer_object *nentry = NULL;
 573
 574		if (entry->ddestroy.next != &bdev->ddestroy) {
 575			nentry = list_first_entry(&entry->ddestroy,
 576				struct ttm_buffer_object, ddestroy);
 577			kref_get(&nentry->list_kref);
 578		}
 579
 580		ret = __ttm_bo_reserve(entry, false, true, false, 0);
 581		if (remove_all && ret) {
 582			spin_unlock(&glob->lru_lock);
 583			ret = __ttm_bo_reserve(entry, false, false,
 584					       false, 0);
 585			spin_lock(&glob->lru_lock);
 586		}
 587
 588		if (!ret)
 589			ret = ttm_bo_cleanup_refs_and_unlock(entry, false,
 590							     !remove_all);
 591		else
 592			spin_unlock(&glob->lru_lock);
 593
 594		kref_put(&entry->list_kref, ttm_bo_release_list);
 595		entry = nentry;
 596
 597		if (ret || !entry)
 598			goto out;
 599
 600		spin_lock(&glob->lru_lock);
 601		if (list_empty(&entry->ddestroy))
 602			break;
 603	}
 604
 605out_unlock:
 606	spin_unlock(&glob->lru_lock);
 607out:
 608	if (entry)
 609		kref_put(&entry->list_kref, ttm_bo_release_list);
 610	return ret;
 611}
 
 612
 613static void ttm_bo_delayed_workqueue(struct work_struct *work)
 
 
 614{
 615	struct ttm_bo_device *bdev =
 616	    container_of(work, struct ttm_bo_device, wq.work);
 
 617
 618	if (ttm_bo_delayed_delete(bdev, false)) {
 619		schedule_delayed_work(&bdev->wq,
 620				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 
 
 
 
 
 
 
 
 
 621	}
 
 622}
 623
 624static void ttm_bo_release(struct kref *kref)
 
 625{
 626	struct ttm_buffer_object *bo =
 627	    container_of(kref, struct ttm_buffer_object, kref);
 628	struct ttm_bo_device *bdev = bo->bdev;
 629	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
 
 630
 631	drm_vma_offset_remove(&bdev->vma_manager, &bo->vma_node);
 632	ttm_mem_io_lock(man, false);
 633	ttm_mem_io_free_vm(bo);
 634	ttm_mem_io_unlock(man);
 635	ttm_bo_cleanup_refs_or_queue(bo);
 636	kref_put(&bo->list_kref, ttm_bo_release_list);
 637}
 638
 639void ttm_bo_unref(struct ttm_buffer_object **p_bo)
 640{
 641	struct ttm_buffer_object *bo = *p_bo;
 642
 643	*p_bo = NULL;
 644	kref_put(&bo->kref, ttm_bo_release);
 645}
 646EXPORT_SYMBOL(ttm_bo_unref);
 647
 648int ttm_bo_lock_delayed_workqueue(struct ttm_bo_device *bdev)
 649{
 650	return cancel_delayed_work_sync(&bdev->wq);
 651}
 652EXPORT_SYMBOL(ttm_bo_lock_delayed_workqueue);
 653
 654void ttm_bo_unlock_delayed_workqueue(struct ttm_bo_device *bdev, int resched)
 655{
 656	if (resched)
 657		schedule_delayed_work(&bdev->wq,
 658				      ((HZ / 100) < 1) ? 1 : HZ / 100);
 659}
 660EXPORT_SYMBOL(ttm_bo_unlock_delayed_workqueue);
 661
 662static int ttm_bo_evict(struct ttm_buffer_object *bo, bool interruptible,
 663			bool no_wait_gpu)
 664{
 665	struct ttm_bo_device *bdev = bo->bdev;
 666	struct ttm_mem_reg evict_mem;
 667	struct ttm_placement placement;
 668	int ret = 0;
 669
 670	spin_lock(&bdev->fence_lock);
 671	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 672	spin_unlock(&bdev->fence_lock);
 673
 674	if (unlikely(ret != 0)) {
 675		if (ret != -ERESTARTSYS) {
 676			pr_err("Failed to expire sync object before buffer eviction\n");
 677		}
 678		goto out;
 679	}
 680
 681	lockdep_assert_held(&bo->resv->lock.base);
 682
 683	evict_mem = bo->mem;
 684	evict_mem.mm_node = NULL;
 685	evict_mem.bus.io_reserved_vm = false;
 686	evict_mem.bus.io_reserved_count = 0;
 687
 688	placement.fpfn = 0;
 689	placement.lpfn = 0;
 690	placement.num_placement = 0;
 691	placement.num_busy_placement = 0;
 692	bdev->driver->evict_flags(bo, &placement);
 693	ret = ttm_bo_mem_space(bo, &placement, &evict_mem, interruptible,
 694				no_wait_gpu);
 695	if (ret) {
 696		if (ret != -ERESTARTSYS) {
 697			pr_err("Failed to find memory space for buffer 0x%p eviction\n",
 698			       bo);
 699			ttm_bo_mem_space_debug(bo, &placement);
 700		}
 701		goto out;
 702	}
 703
 704	ret = ttm_bo_handle_move_mem(bo, &evict_mem, true, interruptible,
 705				     no_wait_gpu);
 
 
 
 
 
 
 706	if (ret) {
 707		if (ret != -ERESTARTSYS)
 
 708			pr_err("Buffer eviction failed\n");
 709		ttm_bo_mem_put(bo, &evict_mem);
 710		goto out;
 711	}
 712	bo->evicted = true;
 713out:
 714	return ret;
 715}
 716
 717static int ttm_mem_evict_first(struct ttm_bo_device *bdev,
 718				uint32_t mem_type,
 719				bool interruptible,
 720				bool no_wait_gpu)
 
 
 
 
 
 
 721{
 722	struct ttm_bo_global *glob = bdev->glob;
 723	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 724	struct ttm_buffer_object *bo;
 725	int ret = -EBUSY, put_count;
 
 
 726
 727	spin_lock(&glob->lru_lock);
 728	list_for_each_entry(bo, &man->lru, lru) {
 729		ret = __ttm_bo_reserve(bo, false, true, false, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 730		if (!ret)
 731			break;
 
 
 732	}
 
 
 
 
 
 733
 734	if (ret) {
 735		spin_unlock(&glob->lru_lock);
 736		return ret;
 737	}
 738
 739	kref_get(&bo->list_kref);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 740
 741	if (!list_empty(&bo->ddestroy)) {
 742		ret = ttm_bo_cleanup_refs_and_unlock(bo, interruptible,
 743						     no_wait_gpu);
 744		kref_put(&bo->list_kref, ttm_bo_release_list);
 745		return ret;
 746	}
 747
 748	put_count = ttm_bo_del_from_lru(bo);
 749	spin_unlock(&glob->lru_lock);
 750
 751	BUG_ON(ret != 0);
 
 
 
 
 
 
 752
 753	ttm_bo_list_ref_sub(bo, put_count, true);
 
 754
 755	ret = ttm_bo_evict(bo, interruptible, no_wait_gpu);
 756	ttm_bo_unreserve(bo);
 
 
 
 
 
 
 
 
 757
 758	kref_put(&bo->list_kref, ttm_bo_release_list);
 759	return ret;
 760}
 761
 762void ttm_bo_mem_put(struct ttm_buffer_object *bo, struct ttm_mem_reg *mem)
 763{
 764	struct ttm_mem_type_manager *man = &bo->bdev->man[mem->mem_type];
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 765
 766	if (mem->mm_node)
 767		(*man->func->put_node)(man, mem);
 
 
 
 
 
 
 
 
 
 
 
 
 768}
 769EXPORT_SYMBOL(ttm_bo_mem_put);
 770
 771/**
 772 * Repeatedly evict memory from the LRU for @mem_type until we create enough
 773 * space, or we've evicted everything and there isn't enough space.
 
 
 
 774 */
 775static int ttm_bo_mem_force_space(struct ttm_buffer_object *bo,
 776					uint32_t mem_type,
 777					struct ttm_placement *placement,
 778					struct ttm_mem_reg *mem,
 779					bool interruptible,
 780					bool no_wait_gpu)
 781{
 782	struct ttm_bo_device *bdev = bo->bdev;
 783	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
 784	int ret;
 785
 786	do {
 787		ret = (*man->func->get_node)(man, bo, placement, mem);
 788		if (unlikely(ret != 0))
 789			return ret;
 790		if (mem->mm_node)
 791			break;
 792		ret = ttm_mem_evict_first(bdev, mem_type,
 793					  interruptible, no_wait_gpu);
 794		if (unlikely(ret != 0))
 795			return ret;
 796	} while (1);
 797	if (mem->mm_node == NULL)
 798		return -ENOMEM;
 799	mem->mem_type = mem_type;
 800	return 0;
 801}
 
 802
 803static uint32_t ttm_bo_select_caching(struct ttm_mem_type_manager *man,
 804				      uint32_t cur_placement,
 805				      uint32_t proposed_placement)
 
 
 
 
 806{
 807	uint32_t caching = proposed_placement & TTM_PL_MASK_CACHING;
 808	uint32_t result = proposed_placement & ~TTM_PL_MASK_CACHING;
 
 
 809
 810	/**
 811	 * Keep current caching if possible.
 812	 */
 813
 814	if ((cur_placement & caching) != 0)
 815		result |= (cur_placement & caching);
 816	else if ((man->default_caching & caching) != 0)
 817		result |= man->default_caching;
 818	else if ((TTM_PL_FLAG_CACHED & caching) != 0)
 819		result |= TTM_PL_FLAG_CACHED;
 820	else if ((TTM_PL_FLAG_WC & caching) != 0)
 821		result |= TTM_PL_FLAG_WC;
 822	else if ((TTM_PL_FLAG_UNCACHED & caching) != 0)
 823		result |= TTM_PL_FLAG_UNCACHED;
 824
 825	return result;
 826}
 
 827
 828static bool ttm_bo_mt_compatible(struct ttm_mem_type_manager *man,
 829				 uint32_t mem_type,
 830				 uint32_t proposed_placement,
 831				 uint32_t *masked_placement)
 
 
 
 832{
 833	uint32_t cur_flags = ttm_bo_type_flags(mem_type);
 
 
 
 
 
 834
 835	if ((cur_flags & proposed_placement & TTM_PL_MASK_MEM) == 0)
 836		return false;
 837
 838	if ((proposed_placement & man->available_caching) == 0)
 839		return false;
 
 
 
 840
 841	cur_flags |= (proposed_placement & man->available_caching);
 842
 843	*masked_placement = cur_flags;
 844	return true;
 
 845}
 846
 847/**
 848 * Creates space for memory region @mem according to its type.
 
 
 
 
 
 
 849 *
 850 * This function first searches for free space in compatible memory types in
 851 * the priority order defined by the driver.  If free space isn't found, then
 852 * ttm_bo_mem_force_space is attempted in priority order to evict and find
 853 * space.
 
 
 
 
 
 854 */
 855int ttm_bo_mem_space(struct ttm_buffer_object *bo,
 856			struct ttm_placement *placement,
 857			struct ttm_mem_reg *mem,
 858			bool interruptible,
 859			bool no_wait_gpu)
 860{
 861	struct ttm_bo_device *bdev = bo->bdev;
 862	struct ttm_mem_type_manager *man;
 863	uint32_t mem_type = TTM_PL_SYSTEM;
 864	uint32_t cur_flags = 0;
 865	bool type_found = false;
 866	bool type_ok = false;
 867	bool has_erestartsys = false;
 868	int i, ret;
 869
 870	mem->mm_node = NULL;
 
 
 
 
 871	for (i = 0; i < placement->num_placement; ++i) {
 872		ret = ttm_mem_type_from_flags(placement->placement[i],
 873						&mem_type);
 874		if (ret)
 875			return ret;
 876		man = &bdev->man[mem_type];
 877
 878		type_ok = ttm_bo_mt_compatible(man,
 879						mem_type,
 880						placement->placement[i],
 881						&cur_flags);
 882
 883		if (!type_ok)
 
 884			continue;
 885
 886		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 887						  cur_flags);
 888		/*
 889		 * Use the access and other non-mapping-related flag bits from
 890		 * the memory placement flags to the current flags
 891		 */
 892		ttm_flag_masked(&cur_flags, placement->placement[i],
 893				~TTM_PL_MASK_MEMTYPE);
 894
 895		if (mem_type == TTM_PL_SYSTEM)
 896			break;
 897
 898		if (man->has_type && man->use_type) {
 899			type_found = true;
 900			ret = (*man->func->get_node)(man, bo, placement, mem);
 901			if (unlikely(ret))
 902				return ret;
 903		}
 904		if (mem->mm_node)
 905			break;
 906	}
 907
 908	if ((type_ok && (mem_type == TTM_PL_SYSTEM)) || mem->mm_node) {
 909		mem->mem_type = mem_type;
 910		mem->placement = cur_flags;
 
 
 
 
 
 911		return 0;
 912	}
 913
 914	if (!type_found)
 915		return -EINVAL;
 916
 917	for (i = 0; i < placement->num_busy_placement; ++i) {
 918		ret = ttm_mem_type_from_flags(placement->busy_placement[i],
 919						&mem_type);
 920		if (ret)
 921			return ret;
 922		man = &bdev->man[mem_type];
 923		if (!man->has_type)
 924			continue;
 925		if (!ttm_bo_mt_compatible(man,
 926						mem_type,
 927						placement->busy_placement[i],
 928						&cur_flags))
 929			continue;
 930
 931		cur_flags = ttm_bo_select_caching(man, bo->mem.placement,
 932						  cur_flags);
 933		/*
 934		 * Use the access and other non-mapping-related flag bits from
 935		 * the memory placement flags to the current flags
 936		 */
 937		ttm_flag_masked(&cur_flags, placement->busy_placement[i],
 938				~TTM_PL_MASK_MEMTYPE);
 939
 
 
 
 
 
 940
 941		if (mem_type == TTM_PL_SYSTEM) {
 942			mem->mem_type = mem_type;
 943			mem->placement = cur_flags;
 944			mem->mm_node = NULL;
 945			return 0;
 946		}
 947
 948		ret = ttm_bo_mem_force_space(bo, mem_type, placement, mem,
 949						interruptible, no_wait_gpu);
 950		if (ret == 0 && mem->mm_node) {
 951			mem->placement = cur_flags;
 952			return 0;
 953		}
 954		if (ret == -ERESTARTSYS)
 955			has_erestartsys = true;
 956	}
 957	ret = (has_erestartsys) ? -ERESTARTSYS : -ENOMEM;
 958	return ret;
 959}
 960EXPORT_SYMBOL(ttm_bo_mem_space);
 961
 962static int ttm_bo_move_buffer(struct ttm_buffer_object *bo,
 963			struct ttm_placement *placement,
 964			bool interruptible,
 965			bool no_wait_gpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 966{
 967	int ret = 0;
 968	struct ttm_mem_reg mem;
 969	struct ttm_bo_device *bdev = bo->bdev;
 
 970
 971	lockdep_assert_held(&bo->resv->lock.base);
 972
 973	/*
 974	 * FIXME: It's possible to pipeline buffer moves.
 975	 * Have the driver move function wait for idle when necessary,
 976	 * instead of doing it here.
 977	 */
 978	spin_lock(&bdev->fence_lock);
 979	ret = ttm_bo_wait(bo, false, interruptible, no_wait_gpu);
 980	spin_unlock(&bdev->fence_lock);
 981	if (ret)
 982		return ret;
 983	mem.num_pages = bo->num_pages;
 984	mem.size = mem.num_pages << PAGE_SHIFT;
 985	mem.page_alignment = bo->mem.page_alignment;
 986	mem.bus.io_reserved_vm = false;
 987	mem.bus.io_reserved_count = 0;
 988	/*
 989	 * Determine where to move the buffer.
 990	 */
 991	ret = ttm_bo_mem_space(bo, placement, &mem,
 992			       interruptible, no_wait_gpu);
 993	if (ret)
 994		goto out_unlock;
 995	ret = ttm_bo_handle_move_mem(bo, &mem, false,
 996				     interruptible, no_wait_gpu);
 997out_unlock:
 998	if (ret && mem.mm_node)
 999		ttm_bo_mem_put(bo, &mem);
1000	return ret;
1001}
1002
1003static bool ttm_bo_mem_compat(struct ttm_placement *placement,
1004			      struct ttm_mem_reg *mem,
1005			      uint32_t *new_flags)
1006{
1007	int i;
1008
1009	if (mem->mm_node && placement->lpfn != 0 &&
1010	    (mem->start < placement->fpfn ||
1011	     mem->start + mem->num_pages > placement->lpfn))
1012		return false;
1013
1014	for (i = 0; i < placement->num_placement; i++) {
1015		*new_flags = placement->placement[i];
1016		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1017		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1018			return true;
1019	}
 
 
 
 
 
 
 
 
 
 
1020
1021	for (i = 0; i < placement->num_busy_placement; i++) {
1022		*new_flags = placement->busy_placement[i];
1023		if ((*new_flags & mem->placement & TTM_PL_MASK_CACHING) &&
1024		    (*new_flags & mem->placement & TTM_PL_MASK_MEM))
1025			return true;
1026	}
 
 
 
 
 
 
1027
1028	return false;
1029}
1030
1031int ttm_bo_validate(struct ttm_buffer_object *bo,
1032			struct ttm_placement *placement,
1033			bool interruptible,
1034			bool no_wait_gpu)
1035{
1036	int ret;
1037	uint32_t new_flags;
1038
1039	lockdep_assert_held(&bo->resv->lock.base);
1040	/* Check that range is valid */
1041	if (placement->lpfn || placement->fpfn)
1042		if (placement->fpfn > placement->lpfn ||
1043			(placement->lpfn - placement->fpfn) < bo->num_pages)
1044			return -EINVAL;
1045	/*
1046	 * Check whether we need to move buffer.
1047	 */
1048	if (!ttm_bo_mem_compat(placement, &bo->mem, &new_flags)) {
1049		ret = ttm_bo_move_buffer(bo, placement, interruptible,
1050					 no_wait_gpu);
1051		if (ret)
1052			return ret;
1053	} else {
1054		/*
1055		 * Use the access and other non-mapping-related flag bits from
1056		 * the compatible memory placement flags to the active flags
1057		 */
1058		ttm_flag_masked(&bo->mem.placement, new_flags,
1059				~TTM_PL_MASK_MEMTYPE);
1060	}
1061	/*
1062	 * We might need to add a TTM.
1063	 */
1064	if (bo->mem.mem_type == TTM_PL_SYSTEM && bo->ttm == NULL) {
1065		ret = ttm_bo_add_ttm(bo, true);
1066		if (ret)
1067			return ret;
1068	}
1069	return 0;
1070}
1071EXPORT_SYMBOL(ttm_bo_validate);
1072
1073int ttm_bo_check_placement(struct ttm_buffer_object *bo,
1074				struct ttm_placement *placement)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1075{
1076	BUG_ON((placement->fpfn || placement->lpfn) &&
1077	       (bo->mem.num_pages > (placement->lpfn - placement->fpfn)));
1078
1079	return 0;
1080}
1081
1082int ttm_bo_init(struct ttm_bo_device *bdev,
1083		struct ttm_buffer_object *bo,
1084		unsigned long size,
1085		enum ttm_bo_type type,
1086		struct ttm_placement *placement,
1087		uint32_t page_alignment,
1088		bool interruptible,
1089		struct file *persistent_swap_storage,
1090		size_t acc_size,
1091		struct sg_table *sg,
1092		void (*destroy) (struct ttm_buffer_object *))
1093{
1094	int ret = 0;
1095	unsigned long num_pages;
1096	struct ttm_mem_global *mem_glob = bdev->glob->mem_glob;
1097	bool locked;
1098
1099	ret = ttm_mem_global_alloc(mem_glob, acc_size, false, false);
1100	if (ret) {
1101		pr_err("Out of kernel memory\n");
1102		if (destroy)
1103			(*destroy)(bo);
1104		else
1105			kfree(bo);
1106		return -ENOMEM;
1107	}
1108
1109	num_pages = (size + PAGE_SIZE - 1) >> PAGE_SHIFT;
1110	if (num_pages == 0) {
1111		pr_err("Illegal buffer object size\n");
1112		if (destroy)
1113			(*destroy)(bo);
1114		else
1115			kfree(bo);
1116		ttm_mem_global_free(mem_glob, acc_size);
1117		return -EINVAL;
1118	}
1119	bo->destroy = destroy;
1120
1121	kref_init(&bo->kref);
1122	kref_init(&bo->list_kref);
1123	atomic_set(&bo->cpu_writers, 0);
1124	INIT_LIST_HEAD(&bo->lru);
1125	INIT_LIST_HEAD(&bo->ddestroy);
1126	INIT_LIST_HEAD(&bo->swap);
1127	INIT_LIST_HEAD(&bo->io_reserve_lru);
1128	mutex_init(&bo->wu_mutex);
1129	bo->bdev = bdev;
1130	bo->glob = bdev->glob;
1131	bo->type = type;
1132	bo->num_pages = num_pages;
1133	bo->mem.size = num_pages << PAGE_SHIFT;
1134	bo->mem.mem_type = TTM_PL_SYSTEM;
1135	bo->mem.num_pages = bo->num_pages;
1136	bo->mem.mm_node = NULL;
1137	bo->mem.page_alignment = page_alignment;
1138	bo->mem.bus.io_reserved_vm = false;
1139	bo->mem.bus.io_reserved_count = 0;
1140	bo->priv_flags = 0;
1141	bo->mem.placement = (TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED);
1142	bo->persistent_swap_storage = persistent_swap_storage;
1143	bo->acc_size = acc_size;
1144	bo->sg = sg;
1145	bo->resv = &bo->ttm_resv;
1146	reservation_object_init(bo->resv);
1147	atomic_inc(&bo->glob->bo_count);
1148	drm_vma_node_reset(&bo->vma_node);
1149
1150	ret = ttm_bo_check_placement(bo, placement);
1151
1152	/*
1153	 * For ttm_bo_type_device buffers, allocate
1154	 * address space from the device.
1155	 */
1156	if (likely(!ret) &&
1157	    (bo->type == ttm_bo_type_device ||
1158	     bo->type == ttm_bo_type_sg))
1159		ret = drm_vma_offset_add(&bdev->vma_manager, &bo->vma_node,
1160					 bo->mem.num_pages);
 
1161
1162	locked = ww_mutex_trylock(&bo->resv->lock);
1163	WARN_ON(!locked);
1164
1165	if (likely(!ret))
1166		ret = ttm_bo_validate(bo, placement, interruptible, false);
1167
1168	ttm_bo_unreserve(bo);
1169
 
1170	if (unlikely(ret))
1171		ttm_bo_unref(&bo);
1172
1173	return ret;
1174}
1175EXPORT_SYMBOL(ttm_bo_init);
1176
1177size_t ttm_bo_acc_size(struct ttm_bo_device *bdev,
1178		       unsigned long bo_size,
1179		       unsigned struct_size)
1180{
1181	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1182	size_t size = 0;
1183
1184	size += ttm_round_pot(struct_size);
1185	size += PAGE_ALIGN(npages * sizeof(void *));
1186	size += ttm_round_pot(sizeof(struct ttm_tt));
1187	return size;
1188}
1189EXPORT_SYMBOL(ttm_bo_acc_size);
1190
1191size_t ttm_bo_dma_acc_size(struct ttm_bo_device *bdev,
1192			   unsigned long bo_size,
1193			   unsigned struct_size)
1194{
1195	unsigned npages = (PAGE_ALIGN(bo_size)) >> PAGE_SHIFT;
1196	size_t size = 0;
1197
1198	size += ttm_round_pot(struct_size);
1199	size += PAGE_ALIGN(npages * sizeof(void *));
1200	size += PAGE_ALIGN(npages * sizeof(dma_addr_t));
1201	size += ttm_round_pot(sizeof(struct ttm_dma_tt));
1202	return size;
1203}
1204EXPORT_SYMBOL(ttm_bo_dma_acc_size);
1205
1206int ttm_bo_create(struct ttm_bo_device *bdev,
1207			unsigned long size,
1208			enum ttm_bo_type type,
1209			struct ttm_placement *placement,
1210			uint32_t page_alignment,
1211			bool interruptible,
1212			struct file *persistent_swap_storage,
1213			struct ttm_buffer_object **p_bo)
1214{
1215	struct ttm_buffer_object *bo;
1216	size_t acc_size;
1217	int ret;
1218
1219	bo = kzalloc(sizeof(*bo), GFP_KERNEL);
1220	if (unlikely(bo == NULL))
1221		return -ENOMEM;
1222
1223	acc_size = ttm_bo_acc_size(bdev, size, sizeof(struct ttm_buffer_object));
1224	ret = ttm_bo_init(bdev, bo, size, type, placement, page_alignment,
1225			  interruptible, persistent_swap_storage, acc_size,
1226			  NULL, NULL);
1227	if (likely(ret == 0))
1228		*p_bo = bo;
1229
 
 
1230	return ret;
1231}
1232EXPORT_SYMBOL(ttm_bo_create);
1233
1234static int ttm_bo_force_list_clean(struct ttm_bo_device *bdev,
1235					unsigned mem_type, bool allow_errors)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236{
1237	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1238	struct ttm_bo_global *glob = bdev->glob;
1239	int ret;
1240
1241	/*
1242	 * Can't use standard list traversal since we're unlocking.
1243	 */
1244
1245	spin_lock(&glob->lru_lock);
1246	while (!list_empty(&man->lru)) {
1247		spin_unlock(&glob->lru_lock);
1248		ret = ttm_mem_evict_first(bdev, mem_type, false, false);
1249		if (ret) {
1250			if (allow_errors) {
1251				return ret;
1252			} else {
1253				pr_err("Cleanup eviction failed\n");
1254			}
1255		}
1256		spin_lock(&glob->lru_lock);
1257	}
1258	spin_unlock(&glob->lru_lock);
1259	return 0;
1260}
1261
1262int ttm_bo_clean_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1263{
1264	struct ttm_mem_type_manager *man;
1265	int ret = -EINVAL;
1266
1267	if (mem_type >= TTM_NUM_MEM_TYPES) {
1268		pr_err("Illegal memory type %d\n", mem_type);
1269		return ret;
1270	}
1271	man = &bdev->man[mem_type];
1272
1273	if (!man->has_type) {
1274		pr_err("Trying to take down uninitialized memory manager type %u\n",
1275		       mem_type);
1276		return ret;
1277	}
1278
1279	man->use_type = false;
1280	man->has_type = false;
1281
1282	ret = 0;
1283	if (mem_type > 0) {
1284		ttm_bo_force_list_clean(bdev, mem_type, false);
1285
1286		ret = (*man->func->takedown)(man);
1287	}
1288
1289	return ret;
1290}
1291EXPORT_SYMBOL(ttm_bo_clean_mm);
1292
1293int ttm_bo_evict_mm(struct ttm_bo_device *bdev, unsigned mem_type)
1294{
1295	struct ttm_mem_type_manager *man = &bdev->man[mem_type];
1296
1297	if (mem_type == 0 || mem_type >= TTM_NUM_MEM_TYPES) {
1298		pr_err("Illegal memory manager memory type %u\n", mem_type);
1299		return -EINVAL;
1300	}
1301
1302	if (!man->has_type) {
1303		pr_err("Memory type %u has not been initialized\n", mem_type);
1304		return 0;
1305	}
1306
1307	return ttm_bo_force_list_clean(bdev, mem_type, true);
1308}
1309EXPORT_SYMBOL(ttm_bo_evict_mm);
1310
1311int ttm_bo_init_mm(struct ttm_bo_device *bdev, unsigned type,
1312			unsigned long p_size)
1313{
1314	int ret = -EINVAL;
1315	struct ttm_mem_type_manager *man;
1316
1317	BUG_ON(type >= TTM_NUM_MEM_TYPES);
1318	man = &bdev->man[type];
1319	BUG_ON(man->has_type);
1320	man->io_reserve_fastpath = true;
1321	man->use_io_reserve_lru = false;
1322	mutex_init(&man->io_reserve_mutex);
1323	INIT_LIST_HEAD(&man->io_reserve_lru);
1324
1325	ret = bdev->driver->init_mem_type(bdev, type, man);
1326	if (ret)
1327		return ret;
1328	man->bdev = bdev;
1329
1330	ret = 0;
1331	if (type != TTM_PL_SYSTEM) {
1332		ret = (*man->func->init)(man, p_size);
1333		if (ret)
1334			return ret;
1335	}
1336	man->has_type = true;
1337	man->use_type = true;
1338	man->size = p_size;
1339
1340	INIT_LIST_HEAD(&man->lru);
1341
1342	return 0;
1343}
1344EXPORT_SYMBOL(ttm_bo_init_mm);
1345
1346static void ttm_bo_global_kobj_release(struct kobject *kobj)
1347{
1348	struct ttm_bo_global *glob =
1349		container_of(kobj, struct ttm_bo_global, kobj);
1350
1351	ttm_mem_unregister_shrink(glob->mem_glob, &glob->shrink);
1352	__free_page(glob->dummy_read_page);
1353	kfree(glob);
1354}
1355
1356void ttm_bo_global_release(struct drm_global_reference *ref)
1357{
1358	struct ttm_bo_global *glob = ref->object;
1359
1360	kobject_del(&glob->kobj);
1361	kobject_put(&glob->kobj);
1362}
1363EXPORT_SYMBOL(ttm_bo_global_release);
1364
1365int ttm_bo_global_init(struct drm_global_reference *ref)
1366{
1367	struct ttm_bo_global_ref *bo_ref =
1368		container_of(ref, struct ttm_bo_global_ref, ref);
1369	struct ttm_bo_global *glob = ref->object;
1370	int ret;
1371
1372	mutex_init(&glob->device_list_mutex);
1373	spin_lock_init(&glob->lru_lock);
1374	glob->mem_glob = bo_ref->mem_glob;
1375	glob->dummy_read_page = alloc_page(__GFP_ZERO | GFP_DMA32);
1376
1377	if (unlikely(glob->dummy_read_page == NULL)) {
1378		ret = -ENOMEM;
1379		goto out_no_drp;
1380	}
1381
1382	INIT_LIST_HEAD(&glob->swap_lru);
1383	INIT_LIST_HEAD(&glob->device_list);
1384
1385	ttm_mem_init_shrink(&glob->shrink, ttm_bo_swapout);
1386	ret = ttm_mem_register_shrink(glob->mem_glob, &glob->shrink);
1387	if (unlikely(ret != 0)) {
1388		pr_err("Could not register buffer object swapout\n");
1389		goto out_no_shrink;
1390	}
1391
1392	atomic_set(&glob->bo_count, 0);
1393
1394	ret = kobject_init_and_add(
1395		&glob->kobj, &ttm_bo_glob_kobj_type, ttm_get_kobj(), "buffer_objects");
1396	if (unlikely(ret != 0))
1397		kobject_put(&glob->kobj);
1398	return ret;
1399out_no_shrink:
1400	__free_page(glob->dummy_read_page);
1401out_no_drp:
1402	kfree(glob);
1403	return ret;
1404}
1405EXPORT_SYMBOL(ttm_bo_global_init);
1406
1407
1408int ttm_bo_device_release(struct ttm_bo_device *bdev)
1409{
1410	int ret = 0;
1411	unsigned i = TTM_NUM_MEM_TYPES;
1412	struct ttm_mem_type_manager *man;
1413	struct ttm_bo_global *glob = bdev->glob;
1414
1415	while (i--) {
1416		man = &bdev->man[i];
1417		if (man->has_type) {
1418			man->use_type = false;
1419			if ((i != TTM_PL_SYSTEM) && ttm_bo_clean_mm(bdev, i)) {
1420				ret = -EBUSY;
1421				pr_err("DRM memory manager type %d is not clean\n",
1422				       i);
1423			}
1424			man->has_type = false;
1425		}
1426	}
1427
1428	mutex_lock(&glob->device_list_mutex);
1429	list_del(&bdev->device_list);
1430	mutex_unlock(&glob->device_list_mutex);
1431
1432	cancel_delayed_work_sync(&bdev->wq);
1433
1434	while (ttm_bo_delayed_delete(bdev, true))
1435		;
1436
1437	spin_lock(&glob->lru_lock);
1438	if (list_empty(&bdev->ddestroy))
1439		TTM_DEBUG("Delayed destroy list was clean\n");
1440
1441	if (list_empty(&bdev->man[0].lru))
1442		TTM_DEBUG("Swap list was clean\n");
1443	spin_unlock(&glob->lru_lock);
1444
1445	drm_vma_offset_manager_destroy(&bdev->vma_manager);
1446
1447	return ret;
1448}
1449EXPORT_SYMBOL(ttm_bo_device_release);
1450
1451int ttm_bo_device_init(struct ttm_bo_device *bdev,
1452		       struct ttm_bo_global *glob,
1453		       struct ttm_bo_driver *driver,
1454		       struct address_space *mapping,
1455		       uint64_t file_page_offset,
1456		       bool need_dma32)
1457{
1458	int ret = -EINVAL;
1459
1460	bdev->driver = driver;
1461
1462	memset(bdev->man, 0, sizeof(bdev->man));
1463
1464	/*
1465	 * Initialize the system memory buffer type.
1466	 * Other types need to be driver / IOCTL initialized.
1467	 */
1468	ret = ttm_bo_init_mm(bdev, TTM_PL_SYSTEM, 0);
1469	if (unlikely(ret != 0))
1470		goto out_no_sys;
1471
1472	drm_vma_offset_manager_init(&bdev->vma_manager, file_page_offset,
1473				    0x10000000);
1474	INIT_DELAYED_WORK(&bdev->wq, ttm_bo_delayed_workqueue);
1475	INIT_LIST_HEAD(&bdev->ddestroy);
1476	bdev->dev_mapping = mapping;
1477	bdev->glob = glob;
1478	bdev->need_dma32 = need_dma32;
1479	bdev->val_seq = 0;
1480	spin_lock_init(&bdev->fence_lock);
1481	mutex_lock(&glob->device_list_mutex);
1482	list_add_tail(&bdev->device_list, &glob->device_list);
1483	mutex_unlock(&glob->device_list_mutex);
1484
1485	return 0;
1486out_no_sys:
1487	return ret;
1488}
1489EXPORT_SYMBOL(ttm_bo_device_init);
1490
1491/*
1492 * buffer object vm functions.
1493 */
1494
1495bool ttm_mem_reg_is_pci(struct ttm_bo_device *bdev, struct ttm_mem_reg *mem)
1496{
1497	struct ttm_mem_type_manager *man = &bdev->man[mem->mem_type];
1498
1499	if (!(man->flags & TTM_MEMTYPE_FLAG_FIXED)) {
1500		if (mem->mem_type == TTM_PL_SYSTEM)
1501			return false;
1502
1503		if (man->flags & TTM_MEMTYPE_FLAG_CMA)
1504			return false;
1505
1506		if (mem->placement & TTM_PL_FLAG_CACHED)
1507			return false;
1508	}
1509	return true;
1510}
1511
1512void ttm_bo_unmap_virtual_locked(struct ttm_buffer_object *bo)
1513{
1514	struct ttm_bo_device *bdev = bo->bdev;
1515
1516	drm_vma_node_unmap(&bo->vma_node, bdev->dev_mapping);
1517	ttm_mem_io_free_vm(bo);
1518}
1519
1520void ttm_bo_unmap_virtual(struct ttm_buffer_object *bo)
1521{
1522	struct ttm_bo_device *bdev = bo->bdev;
1523	struct ttm_mem_type_manager *man = &bdev->man[bo->mem.mem_type];
1524
1525	ttm_mem_io_lock(man, false);
1526	ttm_bo_unmap_virtual_locked(bo);
1527	ttm_mem_io_unlock(man);
1528}
1529
1530
1531EXPORT_SYMBOL(ttm_bo_unmap_virtual);
1532
1533
1534int ttm_bo_wait(struct ttm_buffer_object *bo,
1535		bool lazy, bool interruptible, bool no_wait)
 
 
 
 
 
 
 
 
1536{
1537	struct ttm_bo_driver *driver = bo->bdev->driver;
1538	struct ttm_bo_device *bdev = bo->bdev;
1539	void *sync_obj;
1540	int ret = 0;
1541
1542	if (likely(bo->sync_obj == NULL))
1543		return 0;
1544
1545	while (bo->sync_obj) {
1546
1547		if (driver->sync_obj_signaled(bo->sync_obj)) {
1548			void *tmp_obj = bo->sync_obj;
1549			bo->sync_obj = NULL;
1550			clear_bit(TTM_BO_PRIV_FLAG_MOVING, &bo->priv_flags);
1551			spin_unlock(&bdev->fence_lock);
1552			driver->sync_obj_unref(&tmp_obj);
1553			spin_lock(&bdev->fence_lock);
1554			continue;
1555		}
1556
1557		if (no_wait)
1558			return -EBUSY;
1559
1560		sync_obj = driver->sync_obj_ref(bo->sync_obj);
1561		spin_unlock(&bdev->fence_lock);
1562		ret = driver->sync_obj_wait(sync_obj,
1563					    lazy, interruptible);
1564		if (unlikely(ret != 0)) {
1565			driver->sync_obj_unref(&sync_obj);
1566			spin_lock(&bdev->fence_lock);
1567			return ret;
1568		}
1569		spin_lock(&bdev->fence_lock);
1570		if (likely(bo->sync_obj == sync_obj)) {
1571			void *tmp_obj = bo->sync_obj;
1572			bo->sync_obj = NULL;
1573			clear_bit(TTM_BO_PRIV_FLAG_MOVING,
1574				  &bo->priv_flags);
1575			spin_unlock(&bdev->fence_lock);
1576			driver->sync_obj_unref(&sync_obj);
1577			driver->sync_obj_unref(&tmp_obj);
1578			spin_lock(&bdev->fence_lock);
1579		} else {
1580			spin_unlock(&bdev->fence_lock);
1581			driver->sync_obj_unref(&sync_obj);
1582			spin_lock(&bdev->fence_lock);
1583		}
1584	}
1585	return 0;
1586}
1587EXPORT_SYMBOL(ttm_bo_wait);
1588
1589int ttm_bo_synccpu_write_grab(struct ttm_buffer_object *bo, bool no_wait)
1590{
1591	struct ttm_bo_device *bdev = bo->bdev;
1592	int ret = 0;
1593
1594	/*
1595	 * Using ttm_bo_reserve makes sure the lru lists are updated.
1596	 */
1597
1598	ret = ttm_bo_reserve(bo, true, no_wait, false, 0);
1599	if (unlikely(ret != 0))
 
1600		return ret;
1601	spin_lock(&bdev->fence_lock);
1602	ret = ttm_bo_wait(bo, false, true, no_wait);
1603	spin_unlock(&bdev->fence_lock);
1604	if (likely(ret == 0))
1605		atomic_inc(&bo->cpu_writers);
1606	ttm_bo_unreserve(bo);
1607	return ret;
1608}
1609EXPORT_SYMBOL(ttm_bo_synccpu_write_grab);
1610
1611void ttm_bo_synccpu_write_release(struct ttm_buffer_object *bo)
1612{
1613	atomic_dec(&bo->cpu_writers);
1614}
1615EXPORT_SYMBOL(ttm_bo_synccpu_write_release);
1616
1617/**
1618 * A buffer object shrink method that tries to swap out the first
1619 * buffer object on the bo_global::swap_lru list.
1620 */
 
 
 
 
 
 
1621
1622static int ttm_bo_swapout(struct ttm_mem_shrink *shrink)
 
1623{
1624	struct ttm_bo_global *glob =
1625	    container_of(shrink, struct ttm_bo_global, shrink);
1626	struct ttm_buffer_object *bo;
1627	int ret = -EBUSY;
1628	int put_count;
1629	uint32_t swap_placement = (TTM_PL_FLAG_CACHED | TTM_PL_FLAG_SYSTEM);
1630
1631	spin_lock(&glob->lru_lock);
1632	list_for_each_entry(bo, &glob->swap_lru, swap) {
1633		ret = __ttm_bo_reserve(bo, false, true, false, 0);
1634		if (!ret)
1635			break;
 
 
 
1636	}
1637
1638	if (ret) {
1639		spin_unlock(&glob->lru_lock);
1640		return ret;
 
 
1641	}
1642
1643	kref_get(&bo->list_kref);
 
 
 
 
 
1644
1645	if (!list_empty(&bo->ddestroy)) {
1646		ret = ttm_bo_cleanup_refs_and_unlock(bo, false, false);
1647		kref_put(&bo->list_kref, ttm_bo_release_list);
1648		return ret;
1649	}
1650
1651	put_count = ttm_bo_del_from_lru(bo);
1652	spin_unlock(&glob->lru_lock);
 
 
 
 
 
 
 
 
 
 
1653
1654	ttm_bo_list_ref_sub(bo, put_count, true);
 
 
 
 
 
 
 
1655
1656	/**
1657	 * Wait for GPU, then move to system cached.
1658	 */
 
 
 
1659
1660	spin_lock(&bo->bdev->fence_lock);
1661	ret = ttm_bo_wait(bo, false, false, false);
1662	spin_unlock(&bo->bdev->fence_lock);
1663
1664	if (unlikely(ret != 0))
1665		goto out;
 
 
1666
1667	if ((bo->mem.placement & swap_placement) != swap_placement) {
1668		struct ttm_mem_reg evict_mem;
1669
1670		evict_mem = bo->mem;
1671		evict_mem.mm_node = NULL;
1672		evict_mem.placement = TTM_PL_FLAG_SYSTEM | TTM_PL_FLAG_CACHED;
1673		evict_mem.mem_type = TTM_PL_SYSTEM;
1674
1675		ret = ttm_bo_handle_move_mem(bo, &evict_mem, true,
1676					     false, false);
1677		if (unlikely(ret != 0))
1678			goto out;
1679	}
1680
1681	ttm_bo_unmap_virtual(bo);
 
 
 
1682
1683	/**
1684	 * Swap out. Buffer will be swapped in again as soon as
1685	 * anyone tries to access a ttm page.
1686	 */
1687
1688	if (bo->bdev->driver->swap_notify)
1689		bo->bdev->driver->swap_notify(bo);
 
1690
1691	ret = ttm_tt_swapout(bo->ttm, bo->persistent_swap_storage);
1692out:
1693
1694	/**
1695	 *
1696	 * Unreserve without putting on LRU to avoid swapping out an
1697	 * already swapped buffer.
1698	 */
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1699
1700	__ttm_bo_unreserve(bo);
1701	kref_put(&bo->list_kref, ttm_bo_release_list);
1702	return ret;
1703}
1704
1705void ttm_bo_swapout_all(struct ttm_bo_device *bdev)
1706{
1707	while (ttm_bo_swapout(&bdev->glob->shrink) == 0)
1708		;
 
 
 
 
1709}
1710EXPORT_SYMBOL(ttm_bo_swapout_all);
1711
1712/**
1713 * ttm_bo_wait_unreserved - interruptible wait for a buffer object to become
1714 * unreserved
 
 
 
 
 
 
 
1715 *
1716 * @bo: Pointer to buffer
 
 
1717 */
1718int ttm_bo_wait_unreserved(struct ttm_buffer_object *bo)
 
1719{
 
 
1720	int ret;
1721
1722	/*
1723	 * In the absense of a wait_unlocked API,
1724	 * Use the bo::wu_mutex to avoid triggering livelocks due to
1725	 * concurrent use of this function. Note that this use of
1726	 * bo::wu_mutex can go away if we change locking order to
1727	 * mmap_sem -> bo::reserve.
1728	 */
1729	ret = mutex_lock_interruptible(&bo->wu_mutex);
1730	if (unlikely(ret != 0))
1731		return -ERESTARTSYS;
1732	if (!ww_mutex_is_locked(&bo->resv->lock))
1733		goto out_unlock;
1734	ret = __ttm_bo_reserve(bo, true, false, false, NULL);
1735	if (unlikely(ret != 0))
1736		goto out_unlock;
1737	__ttm_bo_unreserve(bo);
 
1738
1739out_unlock:
1740	mutex_unlock(&bo->wu_mutex);
1741	return ret;
1742}