Linux Audio

Check our new training course

Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __KVM_X86_MMU_H
  3#define __KVM_X86_MMU_H
  4
  5#include <linux/kvm_host.h>
  6#include "kvm_cache_regs.h"
  7#include "x86.h"
  8#include "cpuid.h"
  9
 10extern bool __read_mostly enable_mmio_caching;
 
 
 
 11
 12#define PT_WRITABLE_SHIFT 1
 13#define PT_USER_SHIFT 2
 14
 15#define PT_PRESENT_MASK (1ULL << 0)
 16#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 17#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
 18#define PT_PWT_MASK (1ULL << 3)
 19#define PT_PCD_MASK (1ULL << 4)
 20#define PT_ACCESSED_SHIFT 5
 21#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 22#define PT_DIRTY_SHIFT 6
 23#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 24#define PT_PAGE_SIZE_SHIFT 7
 25#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 26#define PT_PAT_MASK (1ULL << 7)
 27#define PT_GLOBAL_MASK (1ULL << 8)
 28#define PT64_NX_SHIFT 63
 29#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 30
 31#define PT_PAT_SHIFT 7
 32#define PT_DIR_PAT_SHIFT 12
 33#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 34
 
 
 
 
 
 35#define PT64_ROOT_5LEVEL 5
 36#define PT64_ROOT_4LEVEL 4
 37#define PT32_ROOT_LEVEL 2
 38#define PT32E_ROOT_LEVEL 3
 39
 40#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
 41			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
 42
 43#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
 44#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
 45
 46static __always_inline u64 rsvd_bits(int s, int e)
 47{
 48	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
 49
 50	if (__builtin_constant_p(e))
 51		BUILD_BUG_ON(e > 63);
 52	else
 53		e &= 63;
 54
 55	if (e < s)
 56		return 0;
 57
 58	return ((2ULL << (e - s)) - 1) << s;
 59}
 60
 61static inline gfn_t kvm_mmu_max_gfn(void)
 62{
 63	/*
 64	 * Note that this uses the host MAXPHYADDR, not the guest's.
 65	 * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
 66	 * assuming KVM is running on bare metal, guest accesses beyond
 67	 * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
 68	 * (either EPT Violation/Misconfig or #NPF), and so KVM will never
 69	 * install a SPTE for such addresses.  If KVM is running as a VM
 70	 * itself, on the other hand, it might see a MAXPHYADDR that is less
 71	 * than hardware's real MAXPHYADDR.  Using the host MAXPHYADDR
 72	 * disallows such SPTEs entirely and simplifies the TDP MMU.
 73	 */
 74	int max_gpa_bits = likely(tdp_enabled) ? kvm_host.maxphyaddr : 52;
 75
 76	return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
 77}
 78
 79u8 kvm_mmu_get_max_tdp_level(void);
 
 80
 81void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
 82void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
 83void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
 84
 85void kvm_init_mmu(struct kvm_vcpu *vcpu);
 86void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
 87			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
 88void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 89			     int huge_page_level, bool accessed_dirty,
 90			     gpa_t new_eptp);
 91bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
 92int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
 93				u64 fault_address, char *insn, int insn_len);
 94void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
 95					struct kvm_mmu *mmu);
 96
 97int kvm_mmu_load(struct kvm_vcpu *vcpu);
 98void kvm_mmu_unload(struct kvm_vcpu *vcpu);
 99void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
100void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
101void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
102void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
103			 int bytes);
 
104
105static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
106{
107	if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
108		return 0;
109
110	return kvm_mmu_load(vcpu);
111}
112
113static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
114{
115	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
116
117	return kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)
118	       ? cr3 & X86_CR3_PCID_MASK
119	       : 0;
120}
121
122static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
123{
124	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
125}
126
127static inline unsigned long kvm_get_active_cr3_lam_bits(struct kvm_vcpu *vcpu)
128{
129	if (!guest_can_use(vcpu, X86_FEATURE_LAM))
130		return 0;
131
132	return kvm_read_cr3(vcpu) & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57);
133}
134
135static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
136{
137	u64 root_hpa = vcpu->arch.mmu->root.hpa;
138
139	if (!VALID_PAGE(root_hpa))
140		return;
141
142	kvm_x86_call(load_mmu_pgd)(vcpu, root_hpa,
143				   vcpu->arch.mmu->root_role.level);
144}
145
146static inline void kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
147						    struct kvm_mmu *mmu)
148{
149	/*
150	 * When EPT is enabled, KVM may passthrough CR0.WP to the guest, i.e.
151	 * @mmu's snapshot of CR0.WP and thus all related paging metadata may
152	 * be stale.  Refresh CR0.WP and the metadata on-demand when checking
153	 * for permission faults.  Exempt nested MMUs, i.e. MMUs for shadowing
154	 * nEPT and nNPT, as CR0.WP is ignored in both cases.  Note, KVM does
155	 * need to refresh nested_mmu, a.k.a. the walker used to translate L2
156	 * GVAs to GPAs, as that "MMU" needs to honor L2's CR0.WP.
157	 */
158	if (!tdp_enabled || mmu == &vcpu->arch.guest_mmu)
159		return;
160
161	__kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
162}
163
164/*
165 * Check if a given access (described through the I/D, W/R and U/S bits of a
166 * page fault error code pfec) causes a permission fault with the given PTE
167 * access rights (in ACC_* format).
168 *
169 * Return zero if the access does not fault; return the page fault error code
170 * if the access faults.
171 */
172static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
173				  unsigned pte_access, unsigned pte_pkey,
174				  u64 access)
175{
176	/* strip nested paging fault error codes */
177	unsigned int pfec = access;
178	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
179
180	/*
181	 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
182	 * For implicit supervisor accesses, SMAP cannot be overridden.
183	 *
184	 * SMAP works on supervisor accesses only, and not_smap can
185	 * be set or not set when user access with neither has any bearing
186	 * on the result.
187	 *
188	 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
189	 * this bit will always be zero in pfec, but it will be one in index
190	 * if SMAP checks are being disabled.
 
 
191	 */
192	u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
193	bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
194	int index = (pfec | (not_smap ? PFERR_RSVD_MASK : 0)) >> 1;
 
195	u32 errcode = PFERR_PRESENT_MASK;
196	bool fault;
197
198	kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
199
200	fault = (mmu->permissions[index] >> pte_access) & 1;
201
202	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
203	if (unlikely(mmu->pkru_mask)) {
204		u32 pkru_bits, offset;
205
206		/*
207		* PKRU defines 32 bits, there are 16 domains and 2
208		* attribute bits per domain in pkru.  pte_pkey is the
209		* index of the protection domain, so pte_pkey * 2 is
210		* is the index of the first bit for the domain.
211		*/
212		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
213
214		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
215		offset = (pfec & ~1) | ((pte_access & PT_USER_MASK) ? PFERR_RSVD_MASK : 0);
 
216
217		pkru_bits &= mmu->pkru_mask >> offset;
218		errcode |= -pkru_bits & PFERR_PK_MASK;
219		fault |= (pkru_bits != 0);
220	}
221
222	return -(u32)fault & errcode;
223}
224
225bool kvm_mmu_may_ignore_guest_pat(void);
 
 
 
 
 
 
226
227int kvm_mmu_post_init_vm(struct kvm *kvm);
228void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
229
230static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
231{
232	/*
233	 * Read shadow_root_allocated before related pointers. Hence, threads
234	 * reading shadow_root_allocated in any lock context are guaranteed to
235	 * see the pointers. Pairs with smp_store_release in
236	 * mmu_first_shadow_root_alloc.
237	 */
238	return smp_load_acquire(&kvm->arch.shadow_root_allocated);
239}
240
241#ifdef CONFIG_X86_64
242extern bool tdp_mmu_enabled;
243#else
244#define tdp_mmu_enabled false
245#endif
246
247static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
248{
249	return !tdp_mmu_enabled || kvm_shadow_root_allocated(kvm);
250}
251
252static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
253{
254	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
255	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
256		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
257}
258
259static inline unsigned long
260__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
261		      int level)
262{
263	return gfn_to_index(slot->base_gfn + npages - 1,
264			    slot->base_gfn, level) + 1;
265}
266
267static inline unsigned long
268kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
269{
270	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
271}
272
273static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
274{
275	atomic64_add(count, &kvm->stat.pages[level - 1]);
276}
277
278gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
279			   struct x86_exception *exception);
280
281static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
282				      struct kvm_mmu *mmu,
283				      gpa_t gpa, u64 access,
284				      struct x86_exception *exception)
285{
286	if (mmu != &vcpu->arch.nested_mmu)
287		return gpa;
288	return translate_nested_gpa(vcpu, gpa, access, exception);
289}
290#endif
v5.4
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __KVM_X86_MMU_H
  3#define __KVM_X86_MMU_H
  4
  5#include <linux/kvm_host.h>
  6#include "kvm_cache_regs.h"
 
 
  7
  8#define PT64_PT_BITS 9
  9#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
 10#define PT32_PT_BITS 10
 11#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
 12
 13#define PT_WRITABLE_SHIFT 1
 14#define PT_USER_SHIFT 2
 15
 16#define PT_PRESENT_MASK (1ULL << 0)
 17#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 18#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
 19#define PT_PWT_MASK (1ULL << 3)
 20#define PT_PCD_MASK (1ULL << 4)
 21#define PT_ACCESSED_SHIFT 5
 22#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 23#define PT_DIRTY_SHIFT 6
 24#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 25#define PT_PAGE_SIZE_SHIFT 7
 26#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 27#define PT_PAT_MASK (1ULL << 7)
 28#define PT_GLOBAL_MASK (1ULL << 8)
 29#define PT64_NX_SHIFT 63
 30#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 31
 32#define PT_PAT_SHIFT 7
 33#define PT_DIR_PAT_SHIFT 12
 34#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 35
 36#define PT32_DIR_PSE36_SIZE 4
 37#define PT32_DIR_PSE36_SHIFT 13
 38#define PT32_DIR_PSE36_MASK \
 39	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 40
 41#define PT64_ROOT_5LEVEL 5
 42#define PT64_ROOT_4LEVEL 4
 43#define PT32_ROOT_LEVEL 2
 44#define PT32E_ROOT_LEVEL 3
 45
 46static inline u64 rsvd_bits(int s, int e)
 
 
 
 
 
 
 47{
 
 
 
 
 
 
 
 48	if (e < s)
 49		return 0;
 50
 51	return ((1ULL << (e - s + 1)) - 1) << s;
 52}
 53
 54void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask, u64 mmio_value, u64 access_mask);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 55
 56void
 57reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
 58
 59void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots);
 60void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
 
 
 
 
 
 61void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 62			     bool accessed_dirty, gpa_t new_eptp);
 
 63bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
 64int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
 65				u64 fault_address, char *insn, int insn_len);
 
 
 66
 67static inline unsigned long kvm_mmu_available_pages(struct kvm *kvm)
 68{
 69	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
 70		return kvm->arch.n_max_mmu_pages -
 71			kvm->arch.n_used_mmu_pages;
 72
 73	return 0;
 74}
 75
 76static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 77{
 78	if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
 79		return 0;
 80
 81	return kvm_mmu_load(vcpu);
 82}
 83
 84static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
 85{
 86	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
 87
 88	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
 89	       ? cr3 & X86_CR3_PCID_MASK
 90	       : 0;
 91}
 92
 93static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
 94{
 95	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
 96}
 97
 98static inline void kvm_mmu_load_cr3(struct kvm_vcpu *vcpu)
 99{
100	if (VALID_PAGE(vcpu->arch.mmu->root_hpa))
101		vcpu->arch.mmu->set_cr3(vcpu, vcpu->arch.mmu->root_hpa |
102					      kvm_get_active_pcid(vcpu));
 
103}
104
105/*
106 * Currently, we have two sorts of write-protection, a) the first one
107 * write-protects guest page to sync the guest modification, b) another one is
108 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
109 * between these two sorts are:
110 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
111 * 2) the first case requires flushing tlb immediately avoiding corrupting
112 *    shadow page table between all vcpus so it should be in the protection of
113 *    mmu-lock. And the another case does not need to flush tlb until returning
114 *    the dirty bitmap to userspace since it only write-protects the page
115 *    logged in the bitmap, that means the page in the dirty bitmap is not
116 *    missed, so it can flush tlb out of mmu-lock.
117 *
118 * So, there is the problem: the first case can meet the corrupted tlb caused
119 * by another case which write-protects pages but without flush tlb
120 * immediately. In order to making the first case be aware this problem we let
121 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
122 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
123 *
124 * Anyway, whenever a spte is updated (only permission and status bits are
125 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
126 * readonly, if that happens, we need to flush tlb. Fortunately,
127 * mmu_spte_update() has already handled it perfectly.
128 *
129 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
130 * - if we want to see if it has writable tlb entry or if the spte can be
131 *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
132 *   case, otherwise
133 * - if we fix page fault on the spte or do write-protection by dirty logging,
134 *   check PT_WRITABLE_MASK.
135 *
136 * TODO: introduce APIs to split these two cases.
137 */
138static inline int is_writable_pte(unsigned long pte)
139{
140	return pte & PT_WRITABLE_MASK;
 
 
 
 
 
 
141}
142
143static inline bool is_write_protection(struct kvm_vcpu *vcpu)
 
144{
145	return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
 
 
 
 
 
 
 
 
 
 
 
 
146}
147
148/*
149 * Check if a given access (described through the I/D, W/R and U/S bits of a
150 * page fault error code pfec) causes a permission fault with the given PTE
151 * access rights (in ACC_* format).
152 *
153 * Return zero if the access does not fault; return the page fault error code
154 * if the access faults.
155 */
156static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
157				  unsigned pte_access, unsigned pte_pkey,
158				  unsigned pfec)
159{
160	int cpl = kvm_x86_ops->get_cpl(vcpu);
161	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
 
162
163	/*
164	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
 
165	 *
166	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
167	 * (these are implicit supervisor accesses) regardless of the value
168	 * of EFLAGS.AC.
169	 *
170	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
171	 * the result in X86_EFLAGS_AC. We then insert it in place of
172	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
173	 * but it will be one in index if SMAP checks are being overridden.
174	 * It is important to keep this branchless.
175	 */
176	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
177	int index = (pfec >> 1) +
178		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
179	bool fault = (mmu->permissions[index] >> pte_access) & 1;
180	u32 errcode = PFERR_PRESENT_MASK;
 
 
 
 
 
181
182	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
183	if (unlikely(mmu->pkru_mask)) {
184		u32 pkru_bits, offset;
185
186		/*
187		* PKRU defines 32 bits, there are 16 domains and 2
188		* attribute bits per domain in pkru.  pte_pkey is the
189		* index of the protection domain, so pte_pkey * 2 is
190		* is the index of the first bit for the domain.
191		*/
192		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
193
194		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
195		offset = (pfec & ~1) +
196			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
197
198		pkru_bits &= mmu->pkru_mask >> offset;
199		errcode |= -pkru_bits & PFERR_PK_MASK;
200		fault |= (pkru_bits != 0);
201	}
202
203	return -(u32)fault & errcode;
204}
205
206void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
207
208void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
209void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
210bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
211				    struct kvm_memory_slot *slot, u64 gfn);
212int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
213
214int kvm_mmu_post_init_vm(struct kvm *kvm);
215void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
216
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217#endif