Linux Audio

Check our new training course

Loading...
v6.13.7
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __KVM_X86_MMU_H
  3#define __KVM_X86_MMU_H
  4
  5#include <linux/kvm_host.h>
  6#include "kvm_cache_regs.h"
  7#include "x86.h"
  8#include "cpuid.h"
  9
 10extern bool __read_mostly enable_mmio_caching;
 
 
 
 11
 12#define PT_WRITABLE_SHIFT 1
 13#define PT_USER_SHIFT 2
 14
 15#define PT_PRESENT_MASK (1ULL << 0)
 16#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 17#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
 18#define PT_PWT_MASK (1ULL << 3)
 19#define PT_PCD_MASK (1ULL << 4)
 20#define PT_ACCESSED_SHIFT 5
 21#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 22#define PT_DIRTY_SHIFT 6
 23#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 24#define PT_PAGE_SIZE_SHIFT 7
 25#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 26#define PT_PAT_MASK (1ULL << 7)
 27#define PT_GLOBAL_MASK (1ULL << 8)
 28#define PT64_NX_SHIFT 63
 29#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 30
 31#define PT_PAT_SHIFT 7
 32#define PT_DIR_PAT_SHIFT 12
 33#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 34
 35#define PT64_ROOT_5LEVEL 5
 36#define PT64_ROOT_4LEVEL 4
 
 
 
 
 37#define PT32_ROOT_LEVEL 2
 38#define PT32E_ROOT_LEVEL 3
 39
 40#define KVM_MMU_CR4_ROLE_BITS (X86_CR4_PSE | X86_CR4_PAE | X86_CR4_LA57 | \
 41			       X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE)
 42
 43#define KVM_MMU_CR0_ROLE_BITS (X86_CR0_PG | X86_CR0_WP)
 44#define KVM_MMU_EFER_ROLE_BITS (EFER_LME | EFER_NX)
 45
 46static __always_inline u64 rsvd_bits(int s, int e)
 47{
 48	BUILD_BUG_ON(__builtin_constant_p(e) && __builtin_constant_p(s) && e < s);
 49
 50	if (__builtin_constant_p(e))
 51		BUILD_BUG_ON(e > 63);
 52	else
 53		e &= 63;
 54
 55	if (e < s)
 56		return 0;
 57
 58	return ((2ULL << (e - s)) - 1) << s;
 59}
 60
 61static inline gfn_t kvm_mmu_max_gfn(void)
 62{
 63	/*
 64	 * Note that this uses the host MAXPHYADDR, not the guest's.
 65	 * EPT/NPT cannot support GPAs that would exceed host.MAXPHYADDR;
 66	 * assuming KVM is running on bare metal, guest accesses beyond
 67	 * host.MAXPHYADDR will hit a #PF(RSVD) and never cause a vmexit
 68	 * (either EPT Violation/Misconfig or #NPF), and so KVM will never
 69	 * install a SPTE for such addresses.  If KVM is running as a VM
 70	 * itself, on the other hand, it might see a MAXPHYADDR that is less
 71	 * than hardware's real MAXPHYADDR.  Using the host MAXPHYADDR
 72	 * disallows such SPTEs entirely and simplifies the TDP MMU.
 73	 */
 74	int max_gpa_bits = likely(tdp_enabled) ? kvm_host.maxphyaddr : 52;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 75
 76	return (1ULL << (max_gpa_bits - PAGE_SHIFT)) - 1;
 77}
 78
 79u8 kvm_mmu_get_max_tdp_level(void);
 80
 81void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 mmio_mask, u64 access_mask);
 82void kvm_mmu_set_me_spte_mask(u64 me_value, u64 me_mask);
 83void kvm_mmu_set_ept_masks(bool has_ad_bits, bool has_exec_only);
 84
 85void kvm_init_mmu(struct kvm_vcpu *vcpu);
 86void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, unsigned long cr0,
 87			     unsigned long cr4, u64 efer, gpa_t nested_cr3);
 88void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 89			     int huge_page_level, bool accessed_dirty,
 90			     gpa_t new_eptp);
 91bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
 92int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
 93				u64 fault_address, char *insn, int insn_len);
 94void __kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
 95					struct kvm_mmu *mmu);
 96
 97int kvm_mmu_load(struct kvm_vcpu *vcpu);
 98void kvm_mmu_unload(struct kvm_vcpu *vcpu);
 99void kvm_mmu_free_obsolete_roots(struct kvm_vcpu *vcpu);
100void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu);
101void kvm_mmu_sync_prev_roots(struct kvm_vcpu *vcpu);
102void kvm_mmu_track_write(struct kvm_vcpu *vcpu, gpa_t gpa, const u8 *new,
103			 int bytes);
104
105static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
106{
107	if (likely(vcpu->arch.mmu->root.hpa != INVALID_PAGE))
108		return 0;
109
110	return kvm_mmu_load(vcpu);
111}
112
113static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
114{
115	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
116
117	return kvm_is_cr4_bit_set(vcpu, X86_CR4_PCIDE)
118	       ? cr3 & X86_CR3_PCID_MASK
119	       : 0;
120}
121
122static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
123{
124	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
125}
126
127static inline unsigned long kvm_get_active_cr3_lam_bits(struct kvm_vcpu *vcpu)
128{
129	if (!guest_can_use(vcpu, X86_FEATURE_LAM))
130		return 0;
131
132	return kvm_read_cr3(vcpu) & (X86_CR3_LAM_U48 | X86_CR3_LAM_U57);
133}
134
135static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
136{
137	u64 root_hpa = vcpu->arch.mmu->root.hpa;
138
139	if (!VALID_PAGE(root_hpa))
140		return;
141
142	kvm_x86_call(load_mmu_pgd)(vcpu, root_hpa,
143				   vcpu->arch.mmu->root_role.level);
144}
145
146static inline void kvm_mmu_refresh_passthrough_bits(struct kvm_vcpu *vcpu,
147						    struct kvm_mmu *mmu)
148{
149	/*
150	 * When EPT is enabled, KVM may passthrough CR0.WP to the guest, i.e.
151	 * @mmu's snapshot of CR0.WP and thus all related paging metadata may
152	 * be stale.  Refresh CR0.WP and the metadata on-demand when checking
153	 * for permission faults.  Exempt nested MMUs, i.e. MMUs for shadowing
154	 * nEPT and nNPT, as CR0.WP is ignored in both cases.  Note, KVM does
155	 * need to refresh nested_mmu, a.k.a. the walker used to translate L2
156	 * GVAs to GPAs, as that "MMU" needs to honor L2's CR0.WP.
157	 */
158	if (!tdp_enabled || mmu == &vcpu->arch.guest_mmu)
159		return;
160
161	__kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
162}
163
164/*
165 * Check if a given access (described through the I/D, W/R and U/S bits of a
166 * page fault error code pfec) causes a permission fault with the given PTE
167 * access rights (in ACC_* format).
168 *
169 * Return zero if the access does not fault; return the page fault error code
170 * if the access faults.
171 */
172static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
173				  unsigned pte_access, unsigned pte_pkey,
174				  u64 access)
175{
176	/* strip nested paging fault error codes */
177	unsigned int pfec = access;
178	unsigned long rflags = kvm_x86_call(get_rflags)(vcpu);
179
180	/*
181	 * For explicit supervisor accesses, SMAP is disabled if EFLAGS.AC = 1.
182	 * For implicit supervisor accesses, SMAP cannot be overridden.
183	 *
184	 * SMAP works on supervisor accesses only, and not_smap can
185	 * be set or not set when user access with neither has any bearing
186	 * on the result.
187	 *
188	 * We put the SMAP checking bit in place of the PFERR_RSVD_MASK bit;
189	 * this bit will always be zero in pfec, but it will be one in index
190	 * if SMAP checks are being disabled.
191	 */
192	u64 implicit_access = access & PFERR_IMPLICIT_ACCESS;
193	bool not_smap = ((rflags & X86_EFLAGS_AC) | implicit_access) == X86_EFLAGS_AC;
194	int index = (pfec | (not_smap ? PFERR_RSVD_MASK : 0)) >> 1;
195	u32 errcode = PFERR_PRESENT_MASK;
196	bool fault;
197
198	kvm_mmu_refresh_passthrough_bits(vcpu, mmu);
199
200	fault = (mmu->permissions[index] >> pte_access) & 1;
201
202	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
203	if (unlikely(mmu->pkru_mask)) {
204		u32 pkru_bits, offset;
205
206		/*
207		* PKRU defines 32 bits, there are 16 domains and 2
208		* attribute bits per domain in pkru.  pte_pkey is the
209		* index of the protection domain, so pte_pkey * 2 is
210		* is the index of the first bit for the domain.
211		*/
212		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
213
214		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
215		offset = (pfec & ~1) | ((pte_access & PT_USER_MASK) ? PFERR_RSVD_MASK : 0);
216
217		pkru_bits &= mmu->pkru_mask >> offset;
218		errcode |= -pkru_bits & PFERR_PK_MASK;
219		fault |= (pkru_bits != 0);
220	}
221
222	return -(u32)fault & errcode;
223}
224
225bool kvm_mmu_may_ignore_guest_pat(void);
226
227int kvm_mmu_post_init_vm(struct kvm *kvm);
228void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
229
230static inline bool kvm_shadow_root_allocated(struct kvm *kvm)
231{
232	/*
233	 * Read shadow_root_allocated before related pointers. Hence, threads
234	 * reading shadow_root_allocated in any lock context are guaranteed to
235	 * see the pointers. Pairs with smp_store_release in
236	 * mmu_first_shadow_root_alloc.
237	 */
238	return smp_load_acquire(&kvm->arch.shadow_root_allocated);
239}
240
241#ifdef CONFIG_X86_64
242extern bool tdp_mmu_enabled;
243#else
244#define tdp_mmu_enabled false
245#endif
246
247static inline bool kvm_memslots_have_rmaps(struct kvm *kvm)
248{
249	return !tdp_mmu_enabled || kvm_shadow_root_allocated(kvm);
250}
251
252static inline gfn_t gfn_to_index(gfn_t gfn, gfn_t base_gfn, int level)
253{
254	/* KVM_HPAGE_GFN_SHIFT(PG_LEVEL_4K) must be 0. */
255	return (gfn >> KVM_HPAGE_GFN_SHIFT(level)) -
256		(base_gfn >> KVM_HPAGE_GFN_SHIFT(level));
257}
258
259static inline unsigned long
260__kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, unsigned long npages,
261		      int level)
262{
263	return gfn_to_index(slot->base_gfn + npages - 1,
264			    slot->base_gfn, level) + 1;
265}
266
267static inline unsigned long
268kvm_mmu_slot_lpages(struct kvm_memory_slot *slot, int level)
269{
270	return __kvm_mmu_slot_lpages(slot, slot->npages, level);
271}
272
273static inline void kvm_update_page_stats(struct kvm *kvm, int level, int count)
274{
275	atomic64_add(count, &kvm->stat.pages[level - 1]);
276}
277
278gpa_t translate_nested_gpa(struct kvm_vcpu *vcpu, gpa_t gpa, u64 access,
279			   struct x86_exception *exception);
280
281static inline gpa_t kvm_translate_gpa(struct kvm_vcpu *vcpu,
282				      struct kvm_mmu *mmu,
283				      gpa_t gpa, u64 access,
284				      struct x86_exception *exception)
285{
286	if (mmu != &vcpu->arch.nested_mmu)
287		return gpa;
288	return translate_nested_gpa(vcpu, gpa, access, exception);
289}
290#endif
v3.15
 
  1#ifndef __KVM_X86_MMU_H
  2#define __KVM_X86_MMU_H
  3
  4#include <linux/kvm_host.h>
  5#include "kvm_cache_regs.h"
 
 
  6
  7#define PT64_PT_BITS 9
  8#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  9#define PT32_PT_BITS 10
 10#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
 11
 12#define PT_WRITABLE_SHIFT 1
 
 13
 14#define PT_PRESENT_MASK (1ULL << 0)
 15#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 16#define PT_USER_MASK (1ULL << 2)
 17#define PT_PWT_MASK (1ULL << 3)
 18#define PT_PCD_MASK (1ULL << 4)
 19#define PT_ACCESSED_SHIFT 5
 20#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 21#define PT_DIRTY_SHIFT 6
 22#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 23#define PT_PAGE_SIZE_SHIFT 7
 24#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 25#define PT_PAT_MASK (1ULL << 7)
 26#define PT_GLOBAL_MASK (1ULL << 8)
 27#define PT64_NX_SHIFT 63
 28#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 29
 30#define PT_PAT_SHIFT 7
 31#define PT_DIR_PAT_SHIFT 12
 32#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 33
 34#define PT32_DIR_PSE36_SIZE 4
 35#define PT32_DIR_PSE36_SHIFT 13
 36#define PT32_DIR_PSE36_MASK \
 37	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 38
 39#define PT64_ROOT_LEVEL 4
 40#define PT32_ROOT_LEVEL 2
 41#define PT32E_ROOT_LEVEL 3
 42
 43#define PT_PDPE_LEVEL 3
 44#define PT_DIRECTORY_LEVEL 2
 45#define PT_PAGE_TABLE_LEVEL 1
 46
 47#define PFERR_PRESENT_BIT 0
 48#define PFERR_WRITE_BIT 1
 49#define PFERR_USER_BIT 2
 50#define PFERR_RSVD_BIT 3
 51#define PFERR_FETCH_BIT 4
 52
 53#define PFERR_PRESENT_MASK (1U << PFERR_PRESENT_BIT)
 54#define PFERR_WRITE_MASK (1U << PFERR_WRITE_BIT)
 55#define PFERR_USER_MASK (1U << PFERR_USER_BIT)
 56#define PFERR_RSVD_MASK (1U << PFERR_RSVD_BIT)
 57#define PFERR_FETCH_MASK (1U << PFERR_FETCH_BIT)
 
 
 58
 59int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4]);
 60void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
 61
 62/*
 63 * Return values of handle_mmio_page_fault_common:
 64 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
 65 *			directly.
 66 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
 67 *			fault path update the mmio spte.
 68 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
 69 * RET_MMIO_PF_BUG: bug is detected.
 70 */
 71enum {
 72	RET_MMIO_PF_EMULATE = 1,
 73	RET_MMIO_PF_INVALID = 2,
 74	RET_MMIO_PF_RETRY = 0,
 75	RET_MMIO_PF_BUG = -1
 76};
 77
 78int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct);
 79void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
 80void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context,
 81		bool execonly);
 82void update_permission_bitmask(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
 83		bool ept);
 84
 85static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
 86{
 87	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
 88		return kvm->arch.n_max_mmu_pages -
 89			kvm->arch.n_used_mmu_pages;
 90
 91	return 0;
 92}
 93
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 94static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 95{
 96	if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
 97		return 0;
 98
 99	return kvm_mmu_load(vcpu);
100}
101
102static inline int is_present_gpte(unsigned long pte)
103{
104	return pte & PT_PRESENT_MASK;
 
 
 
 
105}
106
107static inline int is_writable_pte(unsigned long pte)
108{
109	return pte & PT_WRITABLE_MASK;
 
 
 
 
 
 
 
 
110}
111
112static inline bool is_write_protection(struct kvm_vcpu *vcpu)
113{
114	return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
115}
116
117/*
118 * Will a fault with a given page-fault error code (pfec) cause a permission
119 * fault with the given access (in ACC_* format)?
 
 
 
 
120 */
121static inline bool permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
122				    unsigned pte_access, unsigned pfec)
 
123{
124	int cpl = kvm_x86_ops->get_cpl(vcpu);
125	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
 
126
127	/*
128	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
 
129	 *
130	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
131	 * (these are implicit supervisor accesses) regardless of the value
132	 * of EFLAGS.AC.
133	 *
134	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
135	 * the result in X86_EFLAGS_AC. We then insert it in place of
136	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
137	 * but it will be one in index if SMAP checks are being overridden.
138	 * It is important to keep this branchless.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
139	 */
140	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
141	int index = (pfec >> 1) +
142		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
 
 
 
 
 
143
144	return (mmu->permissions[index] >> pte_access) & 1;
 
 
145}
146
147void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
148#endif