Linux Audio

Check our new training course

Loading...
  1#ifndef __KVM_X86_MMU_H
  2#define __KVM_X86_MMU_H
  3
  4#include <linux/kvm_host.h>
  5#include "kvm_cache_regs.h"
  6
  7#define PT64_PT_BITS 9
  8#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
  9#define PT32_PT_BITS 10
 10#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
 11
 12#define PT_WRITABLE_SHIFT 1
 13#define PT_USER_SHIFT 2
 14
 15#define PT_PRESENT_MASK (1ULL << 0)
 16#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 17#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
 18#define PT_PWT_MASK (1ULL << 3)
 19#define PT_PCD_MASK (1ULL << 4)
 20#define PT_ACCESSED_SHIFT 5
 21#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 22#define PT_DIRTY_SHIFT 6
 23#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 24#define PT_PAGE_SIZE_SHIFT 7
 25#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 26#define PT_PAT_MASK (1ULL << 7)
 27#define PT_GLOBAL_MASK (1ULL << 8)
 28#define PT64_NX_SHIFT 63
 29#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 30
 31#define PT_PAT_SHIFT 7
 32#define PT_DIR_PAT_SHIFT 12
 33#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 34
 35#define PT32_DIR_PSE36_SIZE 4
 36#define PT32_DIR_PSE36_SHIFT 13
 37#define PT32_DIR_PSE36_MASK \
 38	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 39
 40#define PT64_ROOT_LEVEL 4
 41#define PT32_ROOT_LEVEL 2
 42#define PT32E_ROOT_LEVEL 3
 43
 44#define PT_PDPE_LEVEL 3
 45#define PT_DIRECTORY_LEVEL 2
 46#define PT_PAGE_TABLE_LEVEL 1
 47#define PT_MAX_HUGEPAGE_LEVEL (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES - 1)
 48
 49static inline u64 rsvd_bits(int s, int e)
 50{
 51	return ((1ULL << (e - s + 1)) - 1) << s;
 52}
 53
 54void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask);
 55
 56void
 57reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
 58
 59/*
 60 * Return values of handle_mmio_page_fault:
 61 * RET_MMIO_PF_EMULATE: it is a real mmio page fault, emulate the instruction
 62 *			directly.
 63 * RET_MMIO_PF_INVALID: invalid spte is detected then let the real page
 64 *			fault path update the mmio spte.
 65 * RET_MMIO_PF_RETRY: let CPU fault again on the address.
 66 * RET_MMIO_PF_BUG: a bug was detected (and a WARN was printed).
 67 */
 68enum {
 69	RET_MMIO_PF_EMULATE = 1,
 70	RET_MMIO_PF_INVALID = 2,
 71	RET_MMIO_PF_RETRY = 0,
 72	RET_MMIO_PF_BUG = -1
 73};
 74
 75int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr, bool direct);
 76void kvm_init_shadow_mmu(struct kvm_vcpu *vcpu);
 77void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly);
 78
 79static inline unsigned int kvm_mmu_available_pages(struct kvm *kvm)
 80{
 81	if (kvm->arch.n_max_mmu_pages > kvm->arch.n_used_mmu_pages)
 82		return kvm->arch.n_max_mmu_pages -
 83			kvm->arch.n_used_mmu_pages;
 84
 85	return 0;
 86}
 87
 88static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 89{
 90	if (likely(vcpu->arch.mmu.root_hpa != INVALID_PAGE))
 91		return 0;
 92
 93	return kvm_mmu_load(vcpu);
 94}
 95
 96/*
 97 * Currently, we have two sorts of write-protection, a) the first one
 98 * write-protects guest page to sync the guest modification, b) another one is
 99 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
100 * between these two sorts are:
101 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
102 * 2) the first case requires flushing tlb immediately avoiding corrupting
103 *    shadow page table between all vcpus so it should be in the protection of
104 *    mmu-lock. And the another case does not need to flush tlb until returning
105 *    the dirty bitmap to userspace since it only write-protects the page
106 *    logged in the bitmap, that means the page in the dirty bitmap is not
107 *    missed, so it can flush tlb out of mmu-lock.
108 *
109 * So, there is the problem: the first case can meet the corrupted tlb caused
110 * by another case which write-protects pages but without flush tlb
111 * immediately. In order to making the first case be aware this problem we let
112 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
113 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
114 *
115 * Anyway, whenever a spte is updated (only permission and status bits are
116 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
117 * readonly, if that happens, we need to flush tlb. Fortunately,
118 * mmu_spte_update() has already handled it perfectly.
119 *
120 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
121 * - if we want to see if it has writable tlb entry or if the spte can be
122 *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
123 *   case, otherwise
124 * - if we fix page fault on the spte or do write-protection by dirty logging,
125 *   check PT_WRITABLE_MASK.
126 *
127 * TODO: introduce APIs to split these two cases.
128 */
129static inline int is_writable_pte(unsigned long pte)
130{
131	return pte & PT_WRITABLE_MASK;
132}
133
134static inline bool is_write_protection(struct kvm_vcpu *vcpu)
135{
136	return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
137}
138
139/*
140 * Check if a given access (described through the I/D, W/R and U/S bits of a
141 * page fault error code pfec) causes a permission fault with the given PTE
142 * access rights (in ACC_* format).
143 *
144 * Return zero if the access does not fault; return the page fault error code
145 * if the access faults.
146 */
147static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
148				  unsigned pte_access, unsigned pte_pkey,
149				  unsigned pfec)
150{
151	int cpl = kvm_x86_ops->get_cpl(vcpu);
152	unsigned long rflags = kvm_x86_ops->get_rflags(vcpu);
153
154	/*
155	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
156	 *
157	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
158	 * (these are implicit supervisor accesses) regardless of the value
159	 * of EFLAGS.AC.
160	 *
161	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
162	 * the result in X86_EFLAGS_AC. We then insert it in place of
163	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
164	 * but it will be one in index if SMAP checks are being overridden.
165	 * It is important to keep this branchless.
166	 */
167	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
168	int index = (pfec >> 1) +
169		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
170	bool fault = (mmu->permissions[index] >> pte_access) & 1;
171	u32 errcode = PFERR_PRESENT_MASK;
172
173	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
174	if (unlikely(mmu->pkru_mask)) {
175		u32 pkru_bits, offset;
176
177		/*
178		* PKRU defines 32 bits, there are 16 domains and 2
179		* attribute bits per domain in pkru.  pte_pkey is the
180		* index of the protection domain, so pte_pkey * 2 is
181		* is the index of the first bit for the domain.
182		*/
183		pkru_bits = (kvm_read_pkru(vcpu) >> (pte_pkey * 2)) & 3;
184
185		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
186		offset = (pfec & ~1) +
187			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
188
189		pkru_bits &= mmu->pkru_mask >> offset;
190		errcode |= -pkru_bits & PFERR_PK_MASK;
191		fault |= (pkru_bits != 0);
192	}
193
194	return -(u32)fault & errcode;
195}
196
197void kvm_mmu_invalidate_zap_all_pages(struct kvm *kvm);
198void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
199
200void kvm_mmu_gfn_disallow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
201void kvm_mmu_gfn_allow_lpage(struct kvm_memory_slot *slot, gfn_t gfn);
202bool kvm_mmu_slot_gfn_write_protect(struct kvm *kvm,
203				    struct kvm_memory_slot *slot, u64 gfn);
204#endif