Linux Audio

Check our new training course

Loading...
  1/* SPDX-License-Identifier: GPL-2.0 */
  2#ifndef __KVM_X86_MMU_H
  3#define __KVM_X86_MMU_H
  4
  5#include <linux/kvm_host.h>
  6#include "kvm_cache_regs.h"
  7#include "cpuid.h"
  8
  9#define PT64_PT_BITS 9
 10#define PT64_ENT_PER_PAGE (1 << PT64_PT_BITS)
 11#define PT32_PT_BITS 10
 12#define PT32_ENT_PER_PAGE (1 << PT32_PT_BITS)
 13
 14#define PT_WRITABLE_SHIFT 1
 15#define PT_USER_SHIFT 2
 16
 17#define PT_PRESENT_MASK (1ULL << 0)
 18#define PT_WRITABLE_MASK (1ULL << PT_WRITABLE_SHIFT)
 19#define PT_USER_MASK (1ULL << PT_USER_SHIFT)
 20#define PT_PWT_MASK (1ULL << 3)
 21#define PT_PCD_MASK (1ULL << 4)
 22#define PT_ACCESSED_SHIFT 5
 23#define PT_ACCESSED_MASK (1ULL << PT_ACCESSED_SHIFT)
 24#define PT_DIRTY_SHIFT 6
 25#define PT_DIRTY_MASK (1ULL << PT_DIRTY_SHIFT)
 26#define PT_PAGE_SIZE_SHIFT 7
 27#define PT_PAGE_SIZE_MASK (1ULL << PT_PAGE_SIZE_SHIFT)
 28#define PT_PAT_MASK (1ULL << 7)
 29#define PT_GLOBAL_MASK (1ULL << 8)
 30#define PT64_NX_SHIFT 63
 31#define PT64_NX_MASK (1ULL << PT64_NX_SHIFT)
 32
 33#define PT_PAT_SHIFT 7
 34#define PT_DIR_PAT_SHIFT 12
 35#define PT_DIR_PAT_MASK (1ULL << PT_DIR_PAT_SHIFT)
 36
 37#define PT32_DIR_PSE36_SIZE 4
 38#define PT32_DIR_PSE36_SHIFT 13
 39#define PT32_DIR_PSE36_MASK \
 40	(((1ULL << PT32_DIR_PSE36_SIZE) - 1) << PT32_DIR_PSE36_SHIFT)
 41
 42#define PT64_ROOT_5LEVEL 5
 43#define PT64_ROOT_4LEVEL 4
 44#define PT32_ROOT_LEVEL 2
 45#define PT32E_ROOT_LEVEL 3
 46
 47static inline u64 rsvd_bits(int s, int e)
 48{
 49	if (e < s)
 50		return 0;
 51
 52	return ((1ULL << (e - s + 1)) - 1) << s;
 53}
 54
 55void kvm_mmu_set_mmio_spte_mask(u64 mmio_value, u64 access_mask);
 56
 57void
 58reset_shadow_zero_bits_mask(struct kvm_vcpu *vcpu, struct kvm_mmu *context);
 59
 60void kvm_init_mmu(struct kvm_vcpu *vcpu, bool reset_roots);
 61void kvm_init_shadow_npt_mmu(struct kvm_vcpu *vcpu, u32 cr0, u32 cr4, u32 efer,
 62			     gpa_t nested_cr3);
 63void kvm_init_shadow_ept_mmu(struct kvm_vcpu *vcpu, bool execonly,
 64			     bool accessed_dirty, gpa_t new_eptp);
 65bool kvm_can_do_async_pf(struct kvm_vcpu *vcpu);
 66int kvm_handle_page_fault(struct kvm_vcpu *vcpu, u64 error_code,
 67				u64 fault_address, char *insn, int insn_len);
 68
 69static inline int kvm_mmu_reload(struct kvm_vcpu *vcpu)
 70{
 71	if (likely(vcpu->arch.mmu->root_hpa != INVALID_PAGE))
 72		return 0;
 73
 74	return kvm_mmu_load(vcpu);
 75}
 76
 77static inline unsigned long kvm_get_pcid(struct kvm_vcpu *vcpu, gpa_t cr3)
 78{
 79	BUILD_BUG_ON((X86_CR3_PCID_MASK & PAGE_MASK) != 0);
 80
 81	return kvm_read_cr4_bits(vcpu, X86_CR4_PCIDE)
 82	       ? cr3 & X86_CR3_PCID_MASK
 83	       : 0;
 84}
 85
 86static inline unsigned long kvm_get_active_pcid(struct kvm_vcpu *vcpu)
 87{
 88	return kvm_get_pcid(vcpu, kvm_read_cr3(vcpu));
 89}
 90
 91static inline void kvm_mmu_load_pgd(struct kvm_vcpu *vcpu)
 92{
 93	u64 root_hpa = vcpu->arch.mmu->root_hpa;
 94
 95	if (!VALID_PAGE(root_hpa))
 96		return;
 97
 98	kvm_x86_ops.load_mmu_pgd(vcpu, root_hpa | kvm_get_active_pcid(vcpu),
 99				 vcpu->arch.mmu->shadow_root_level);
100}
101
102int kvm_tdp_page_fault(struct kvm_vcpu *vcpu, gpa_t gpa, u32 error_code,
103		       bool prefault);
104
105static inline int kvm_mmu_do_page_fault(struct kvm_vcpu *vcpu, gpa_t cr2_or_gpa,
106					u32 err, bool prefault)
107{
108#ifdef CONFIG_RETPOLINE
109	if (likely(vcpu->arch.mmu->page_fault == kvm_tdp_page_fault))
110		return kvm_tdp_page_fault(vcpu, cr2_or_gpa, err, prefault);
111#endif
112	return vcpu->arch.mmu->page_fault(vcpu, cr2_or_gpa, err, prefault);
113}
114
115/*
116 * Currently, we have two sorts of write-protection, a) the first one
117 * write-protects guest page to sync the guest modification, b) another one is
118 * used to sync dirty bitmap when we do KVM_GET_DIRTY_LOG. The differences
119 * between these two sorts are:
120 * 1) the first case clears SPTE_MMU_WRITEABLE bit.
121 * 2) the first case requires flushing tlb immediately avoiding corrupting
122 *    shadow page table between all vcpus so it should be in the protection of
123 *    mmu-lock. And the another case does not need to flush tlb until returning
124 *    the dirty bitmap to userspace since it only write-protects the page
125 *    logged in the bitmap, that means the page in the dirty bitmap is not
126 *    missed, so it can flush tlb out of mmu-lock.
127 *
128 * So, there is the problem: the first case can meet the corrupted tlb caused
129 * by another case which write-protects pages but without flush tlb
130 * immediately. In order to making the first case be aware this problem we let
131 * it flush tlb if we try to write-protect a spte whose SPTE_MMU_WRITEABLE bit
132 * is set, it works since another case never touches SPTE_MMU_WRITEABLE bit.
133 *
134 * Anyway, whenever a spte is updated (only permission and status bits are
135 * changed) we need to check whether the spte with SPTE_MMU_WRITEABLE becomes
136 * readonly, if that happens, we need to flush tlb. Fortunately,
137 * mmu_spte_update() has already handled it perfectly.
138 *
139 * The rules to use SPTE_MMU_WRITEABLE and PT_WRITABLE_MASK:
140 * - if we want to see if it has writable tlb entry or if the spte can be
141 *   writable on the mmu mapping, check SPTE_MMU_WRITEABLE, this is the most
142 *   case, otherwise
143 * - if we fix page fault on the spte or do write-protection by dirty logging,
144 *   check PT_WRITABLE_MASK.
145 *
146 * TODO: introduce APIs to split these two cases.
147 */
148static inline int is_writable_pte(unsigned long pte)
149{
150	return pte & PT_WRITABLE_MASK;
151}
152
153static inline bool is_write_protection(struct kvm_vcpu *vcpu)
154{
155	return kvm_read_cr0_bits(vcpu, X86_CR0_WP);
156}
157
158static inline bool kvm_mmu_is_illegal_gpa(struct kvm_vcpu *vcpu, gpa_t gpa)
159{
160        return (gpa >= BIT_ULL(cpuid_maxphyaddr(vcpu)));
161}
162
163/*
164 * Check if a given access (described through the I/D, W/R and U/S bits of a
165 * page fault error code pfec) causes a permission fault with the given PTE
166 * access rights (in ACC_* format).
167 *
168 * Return zero if the access does not fault; return the page fault error code
169 * if the access faults.
170 */
171static inline u8 permission_fault(struct kvm_vcpu *vcpu, struct kvm_mmu *mmu,
172				  unsigned pte_access, unsigned pte_pkey,
173				  unsigned pfec)
174{
175	int cpl = kvm_x86_ops.get_cpl(vcpu);
176	unsigned long rflags = kvm_x86_ops.get_rflags(vcpu);
177
178	/*
179	 * If CPL < 3, SMAP prevention are disabled if EFLAGS.AC = 1.
180	 *
181	 * If CPL = 3, SMAP applies to all supervisor-mode data accesses
182	 * (these are implicit supervisor accesses) regardless of the value
183	 * of EFLAGS.AC.
184	 *
185	 * This computes (cpl < 3) && (rflags & X86_EFLAGS_AC), leaving
186	 * the result in X86_EFLAGS_AC. We then insert it in place of
187	 * the PFERR_RSVD_MASK bit; this bit will always be zero in pfec,
188	 * but it will be one in index if SMAP checks are being overridden.
189	 * It is important to keep this branchless.
190	 */
191	unsigned long smap = (cpl - 3) & (rflags & X86_EFLAGS_AC);
192	int index = (pfec >> 1) +
193		    (smap >> (X86_EFLAGS_AC_BIT - PFERR_RSVD_BIT + 1));
194	bool fault = (mmu->permissions[index] >> pte_access) & 1;
195	u32 errcode = PFERR_PRESENT_MASK;
196
197	WARN_ON(pfec & (PFERR_PK_MASK | PFERR_RSVD_MASK));
198	if (unlikely(mmu->pkru_mask)) {
199		u32 pkru_bits, offset;
200
201		/*
202		* PKRU defines 32 bits, there are 16 domains and 2
203		* attribute bits per domain in pkru.  pte_pkey is the
204		* index of the protection domain, so pte_pkey * 2 is
205		* is the index of the first bit for the domain.
206		*/
207		pkru_bits = (vcpu->arch.pkru >> (pte_pkey * 2)) & 3;
208
209		/* clear present bit, replace PFEC.RSVD with ACC_USER_MASK. */
210		offset = (pfec & ~1) +
211			((pte_access & PT_USER_MASK) << (PFERR_RSVD_BIT - PT_USER_SHIFT));
212
213		pkru_bits &= mmu->pkru_mask >> offset;
214		errcode |= -pkru_bits & PFERR_PK_MASK;
215		fault |= (pkru_bits != 0);
216	}
217
218	return -(u32)fault & errcode;
219}
220
221void kvm_zap_gfn_range(struct kvm *kvm, gfn_t gfn_start, gfn_t gfn_end);
222
223int kvm_arch_write_log_dirty(struct kvm_vcpu *vcpu);
224
225int kvm_mmu_post_init_vm(struct kvm *kvm);
226void kvm_mmu_pre_destroy_vm(struct kvm *kvm);
227
228#endif