Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * inode.c
4 *
5 * PURPOSE
6 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1998 Dave Boynton
10 * (C) 1998-2004 Ben Fennema
11 * (C) 1999-2000 Stelias Computing Inc
12 *
13 * HISTORY
14 *
15 * 10/04/98 dgb Added rudimentary directory functions
16 * 10/07/98 Fully working udf_block_map! It works!
17 * 11/25/98 bmap altered to better support extents
18 * 12/06/98 blf partition support in udf_iget, udf_block_map
19 * and udf_read_inode
20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
21 * block boundaries (which is not actually allowed)
22 * 12/20/98 added support for strategy 4096
23 * 03/07/99 rewrote udf_block_map (again)
24 * New funcs, inode_bmap, udf_next_aext
25 * 04/19/99 Support for writing device EA's for major/minor #
26 */
27
28#include "udfdecl.h"
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/pagemap.h>
32#include <linux/writeback.h>
33#include <linux/slab.h>
34#include <linux/crc-itu-t.h>
35#include <linux/mpage.h>
36#include <linux/uio.h>
37#include <linux/bio.h>
38
39#include "udf_i.h"
40#include "udf_sb.h"
41
42#define EXTENT_MERGE_SIZE 5
43
44#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47
48#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 FE_PERM_O_DELETE)
50
51struct udf_map_rq;
52
53static umode_t udf_convert_permissions(struct fileEntry *);
54static int udf_update_inode(struct inode *, int);
55static int udf_sync_inode(struct inode *inode);
56static int udf_alloc_i_data(struct inode *inode, size_t size);
57static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58static int udf_insert_aext(struct inode *, struct extent_position,
59 struct kernel_lb_addr, uint32_t);
60static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 struct kernel_long_ad *, int *);
62static void udf_prealloc_extents(struct inode *, int, int,
63 struct kernel_long_ad *, int *);
64static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 int, struct extent_position *);
67static int udf_get_block_wb(struct inode *inode, sector_t block,
68 struct buffer_head *bh_result, int create);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93{
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos)
115{
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 iinfo->cached_extent.lstart = estart;
125 switch (iinfo->i_alloc_type) {
126 case ICBTAG_FLAG_AD_SHORT:
127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 break;
129 case ICBTAG_FLAG_AD_LONG:
130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 break;
132 }
133 spin_unlock(&iinfo->i_extent_cache_lock);
134}
135
136void udf_evict_inode(struct inode *inode)
137{
138 struct udf_inode_info *iinfo = UDF_I(inode);
139 int want_delete = 0;
140
141 if (!is_bad_inode(inode)) {
142 if (!inode->i_nlink) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 inode->i_size != iinfo->i_lenExtents) {
149 udf_warn(inode->i_sb,
150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 inode->i_ino, inode->i_mode,
152 (unsigned long long)inode->i_size,
153 (unsigned long long)iinfo->i_lenExtents);
154 }
155 }
156 truncate_inode_pages_final(&inode->i_data);
157 invalidate_inode_buffers(inode);
158 clear_inode(inode);
159 kfree(iinfo->i_data);
160 iinfo->i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182}
183
184static int udf_adinicb_writepage(struct folio *folio,
185 struct writeback_control *wbc, void *data)
186{
187 struct inode *inode = folio->mapping->host;
188 struct udf_inode_info *iinfo = UDF_I(inode);
189
190 BUG_ON(!folio_test_locked(folio));
191 BUG_ON(folio->index != 0);
192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 i_size_read(inode));
194 folio_unlock(folio);
195 mark_inode_dirty(inode);
196
197 return 0;
198}
199
200static int udf_writepages(struct address_space *mapping,
201 struct writeback_control *wbc)
202{
203 struct inode *inode = mapping->host;
204 struct udf_inode_info *iinfo = UDF_I(inode);
205
206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209}
210
211static void udf_adinicb_read_folio(struct folio *folio)
212{
213 struct inode *inode = folio->mapping->host;
214 struct udf_inode_info *iinfo = UDF_I(inode);
215 loff_t isize = i_size_read(inode);
216
217 folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize);
218 folio_mark_uptodate(folio);
219}
220
221static int udf_read_folio(struct file *file, struct folio *folio)
222{
223 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
224
225 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
226 udf_adinicb_read_folio(folio);
227 folio_unlock(folio);
228 return 0;
229 }
230 return mpage_read_folio(folio, udf_get_block);
231}
232
233static void udf_readahead(struct readahead_control *rac)
234{
235 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
236
237 /*
238 * No readahead needed for in-ICB files and udf_get_block() would get
239 * confused for such file anyway.
240 */
241 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
242 return;
243
244 mpage_readahead(rac, udf_get_block);
245}
246
247static int udf_write_begin(struct file *file, struct address_space *mapping,
248 loff_t pos, unsigned len,
249 struct folio **foliop, void **fsdata)
250{
251 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
252 struct folio *folio;
253 int ret;
254
255 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
256 ret = block_write_begin(mapping, pos, len, foliop,
257 udf_get_block);
258 if (unlikely(ret))
259 udf_write_failed(mapping, pos + len);
260 return ret;
261 }
262 if (WARN_ON_ONCE(pos >= PAGE_SIZE))
263 return -EIO;
264 folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN,
265 mapping_gfp_mask(mapping));
266 if (IS_ERR(folio))
267 return PTR_ERR(folio);
268 *foliop = folio;
269 if (!folio_test_uptodate(folio))
270 udf_adinicb_read_folio(folio);
271 return 0;
272}
273
274static int udf_write_end(struct file *file, struct address_space *mapping,
275 loff_t pos, unsigned len, unsigned copied,
276 struct folio *folio, void *fsdata)
277{
278 struct inode *inode = file_inode(file);
279 loff_t last_pos;
280
281 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
282 return generic_write_end(file, mapping, pos, len, copied, folio,
283 fsdata);
284 last_pos = pos + copied;
285 if (last_pos > inode->i_size)
286 i_size_write(inode, last_pos);
287 folio_mark_dirty(folio);
288 folio_unlock(folio);
289 folio_put(folio);
290
291 return copied;
292}
293
294static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
295{
296 struct file *file = iocb->ki_filp;
297 struct address_space *mapping = file->f_mapping;
298 struct inode *inode = mapping->host;
299 size_t count = iov_iter_count(iter);
300 ssize_t ret;
301
302 /* Fallback to buffered IO for in-ICB files */
303 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
304 return 0;
305 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
306 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
307 udf_write_failed(mapping, iocb->ki_pos + count);
308 return ret;
309}
310
311static sector_t udf_bmap(struct address_space *mapping, sector_t block)
312{
313 struct udf_inode_info *iinfo = UDF_I(mapping->host);
314
315 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
316 return -EINVAL;
317 return generic_block_bmap(mapping, block, udf_get_block);
318}
319
320const struct address_space_operations udf_aops = {
321 .dirty_folio = block_dirty_folio,
322 .invalidate_folio = block_invalidate_folio,
323 .read_folio = udf_read_folio,
324 .readahead = udf_readahead,
325 .writepages = udf_writepages,
326 .write_begin = udf_write_begin,
327 .write_end = udf_write_end,
328 .direct_IO = udf_direct_IO,
329 .bmap = udf_bmap,
330 .migrate_folio = buffer_migrate_folio,
331};
332
333/*
334 * Expand file stored in ICB to a normal one-block-file
335 *
336 * This function requires i_mutex held
337 */
338int udf_expand_file_adinicb(struct inode *inode)
339{
340 struct folio *folio;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342 int err;
343
344 WARN_ON_ONCE(!inode_is_locked(inode));
345 if (!iinfo->i_lenAlloc) {
346 down_write(&iinfo->i_data_sem);
347 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
348 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
349 else
350 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
351 up_write(&iinfo->i_data_sem);
352 mark_inode_dirty(inode);
353 return 0;
354 }
355
356 folio = __filemap_get_folio(inode->i_mapping, 0,
357 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
358 if (IS_ERR(folio))
359 return PTR_ERR(folio);
360
361 if (!folio_test_uptodate(folio))
362 udf_adinicb_read_folio(folio);
363 down_write(&iinfo->i_data_sem);
364 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
365 iinfo->i_lenAlloc);
366 iinfo->i_lenAlloc = 0;
367 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
368 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
369 else
370 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
371 folio_mark_dirty(folio);
372 folio_unlock(folio);
373 up_write(&iinfo->i_data_sem);
374 err = filemap_fdatawrite(inode->i_mapping);
375 if (err) {
376 /* Restore everything back so that we don't lose data... */
377 folio_lock(folio);
378 down_write(&iinfo->i_data_sem);
379 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
380 folio, 0, inode->i_size);
381 folio_unlock(folio);
382 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
383 iinfo->i_lenAlloc = inode->i_size;
384 up_write(&iinfo->i_data_sem);
385 }
386 folio_put(folio);
387 mark_inode_dirty(inode);
388
389 return err;
390}
391
392#define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */
393#define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */
394
395#define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */
396#define UDF_BLK_NEW 0x02 /* Block was freshly allocated */
397
398struct udf_map_rq {
399 sector_t lblk;
400 udf_pblk_t pblk;
401 int iflags; /* UDF_MAP_ flags determining behavior */
402 int oflags; /* UDF_BLK_ flags reporting results */
403};
404
405static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
406{
407 int ret;
408 struct udf_inode_info *iinfo = UDF_I(inode);
409
410 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
411 return -EFSCORRUPTED;
412
413 map->oflags = 0;
414 if (!(map->iflags & UDF_MAP_CREATE)) {
415 struct kernel_lb_addr eloc;
416 uint32_t elen;
417 sector_t offset;
418 struct extent_position epos = {};
419 int8_t etype;
420
421 down_read(&iinfo->i_data_sem);
422 ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset,
423 &etype);
424 if (ret < 0)
425 goto out_read;
426 if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
427 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
428 offset);
429 map->oflags |= UDF_BLK_MAPPED;
430 ret = 0;
431 }
432out_read:
433 up_read(&iinfo->i_data_sem);
434 brelse(epos.bh);
435
436 return ret;
437 }
438
439 down_write(&iinfo->i_data_sem);
440 /*
441 * Block beyond EOF and prealloc extents? Just discard preallocation
442 * as it is not useful and complicates things.
443 */
444 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
445 udf_discard_prealloc(inode);
446 udf_clear_extent_cache(inode);
447 ret = inode_getblk(inode, map);
448 up_write(&iinfo->i_data_sem);
449 return ret;
450}
451
452static int __udf_get_block(struct inode *inode, sector_t block,
453 struct buffer_head *bh_result, int flags)
454{
455 int err;
456 struct udf_map_rq map = {
457 .lblk = block,
458 .iflags = flags,
459 };
460
461 err = udf_map_block(inode, &map);
462 if (err < 0)
463 return err;
464 if (map.oflags & UDF_BLK_MAPPED) {
465 map_bh(bh_result, inode->i_sb, map.pblk);
466 if (map.oflags & UDF_BLK_NEW)
467 set_buffer_new(bh_result);
468 }
469 return 0;
470}
471
472int udf_get_block(struct inode *inode, sector_t block,
473 struct buffer_head *bh_result, int create)
474{
475 int flags = create ? UDF_MAP_CREATE : 0;
476
477 /*
478 * We preallocate blocks only for regular files. It also makes sense
479 * for directories but there's a problem when to drop the
480 * preallocation. We might use some delayed work for that but I feel
481 * it's overengineering for a filesystem like UDF.
482 */
483 if (!S_ISREG(inode->i_mode))
484 flags |= UDF_MAP_NOPREALLOC;
485 return __udf_get_block(inode, block, bh_result, flags);
486}
487
488/*
489 * We shouldn't be allocating blocks on page writeback since we allocate them
490 * on page fault. We can spot dirty buffers without allocated blocks though
491 * when truncate expands file. These however don't have valid data so we can
492 * safely ignore them. So never allocate blocks from page writeback.
493 */
494static int udf_get_block_wb(struct inode *inode, sector_t block,
495 struct buffer_head *bh_result, int create)
496{
497 return __udf_get_block(inode, block, bh_result, 0);
498}
499
500/* Extend the file with new blocks totaling 'new_block_bytes',
501 * return the number of extents added
502 */
503static int udf_do_extend_file(struct inode *inode,
504 struct extent_position *last_pos,
505 struct kernel_long_ad *last_ext,
506 loff_t new_block_bytes)
507{
508 uint32_t add;
509 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
510 struct super_block *sb = inode->i_sb;
511 struct udf_inode_info *iinfo;
512 int err;
513
514 /* The previous extent is fake and we should not extend by anything
515 * - there's nothing to do... */
516 if (!new_block_bytes && fake)
517 return 0;
518
519 iinfo = UDF_I(inode);
520 /* Round the last extent up to a multiple of block size */
521 if (last_ext->extLength & (sb->s_blocksize - 1)) {
522 last_ext->extLength =
523 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
524 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
525 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
526 iinfo->i_lenExtents =
527 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
528 ~(sb->s_blocksize - 1);
529 }
530
531 add = 0;
532 /* Can we merge with the previous extent? */
533 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
534 EXT_NOT_RECORDED_NOT_ALLOCATED) {
535 add = (1 << 30) - sb->s_blocksize -
536 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
537 if (add > new_block_bytes)
538 add = new_block_bytes;
539 new_block_bytes -= add;
540 last_ext->extLength += add;
541 }
542
543 if (fake) {
544 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
545 last_ext->extLength, 1);
546 if (err < 0)
547 goto out_err;
548 count++;
549 } else {
550 struct kernel_lb_addr tmploc;
551 uint32_t tmplen;
552 int8_t tmptype;
553
554 udf_write_aext(inode, last_pos, &last_ext->extLocation,
555 last_ext->extLength, 1);
556
557 /*
558 * We've rewritten the last extent. If we are going to add
559 * more extents, we may need to enter possible following
560 * empty indirect extent.
561 */
562 if (new_block_bytes) {
563 err = udf_next_aext(inode, last_pos, &tmploc, &tmplen,
564 &tmptype, 0);
565 if (err < 0)
566 goto out_err;
567 }
568 }
569 iinfo->i_lenExtents += add;
570
571 /* Managed to do everything necessary? */
572 if (!new_block_bytes)
573 goto out;
574
575 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
576 last_ext->extLocation.logicalBlockNum = 0;
577 last_ext->extLocation.partitionReferenceNum = 0;
578 add = (1 << 30) - sb->s_blocksize;
579 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
580
581 /* Create enough extents to cover the whole hole */
582 while (new_block_bytes > add) {
583 new_block_bytes -= add;
584 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
585 last_ext->extLength, 1);
586 if (err)
587 goto out_err;
588 iinfo->i_lenExtents += add;
589 count++;
590 }
591 if (new_block_bytes) {
592 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
593 new_block_bytes;
594 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
595 last_ext->extLength, 1);
596 if (err)
597 goto out_err;
598 iinfo->i_lenExtents += new_block_bytes;
599 count++;
600 }
601
602out:
603 /* last_pos should point to the last written extent... */
604 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
605 last_pos->offset -= sizeof(struct short_ad);
606 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
607 last_pos->offset -= sizeof(struct long_ad);
608 else
609 return -EIO;
610
611 return count;
612out_err:
613 /* Remove extents we've created so far */
614 udf_clear_extent_cache(inode);
615 udf_truncate_extents(inode);
616 return err;
617}
618
619/* Extend the final block of the file to final_block_len bytes */
620static void udf_do_extend_final_block(struct inode *inode,
621 struct extent_position *last_pos,
622 struct kernel_long_ad *last_ext,
623 uint32_t new_elen)
624{
625 uint32_t added_bytes;
626
627 /*
628 * Extent already large enough? It may be already rounded up to block
629 * size...
630 */
631 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
632 return;
633 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
634 last_ext->extLength += added_bytes;
635 UDF_I(inode)->i_lenExtents += added_bytes;
636
637 udf_write_aext(inode, last_pos, &last_ext->extLocation,
638 last_ext->extLength, 1);
639}
640
641static int udf_extend_file(struct inode *inode, loff_t newsize)
642{
643
644 struct extent_position epos;
645 struct kernel_lb_addr eloc;
646 uint32_t elen;
647 int8_t etype;
648 struct super_block *sb = inode->i_sb;
649 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
650 loff_t new_elen;
651 int adsize;
652 struct udf_inode_info *iinfo = UDF_I(inode);
653 struct kernel_long_ad extent;
654 int err = 0;
655 bool within_last_ext;
656
657 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
658 adsize = sizeof(struct short_ad);
659 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
660 adsize = sizeof(struct long_ad);
661 else
662 BUG();
663
664 down_write(&iinfo->i_data_sem);
665 /*
666 * When creating hole in file, just don't bother with preserving
667 * preallocation. It likely won't be very useful anyway.
668 */
669 udf_discard_prealloc(inode);
670
671 err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype);
672 if (err < 0)
673 goto out;
674 within_last_ext = (err == 1);
675 /* We don't expect extents past EOF... */
676 WARN_ON_ONCE(within_last_ext &&
677 elen > ((loff_t)offset + 1) << inode->i_blkbits);
678
679 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
680 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
681 /* File has no extents at all or has empty last
682 * indirect extent! Create a fake extent... */
683 extent.extLocation.logicalBlockNum = 0;
684 extent.extLocation.partitionReferenceNum = 0;
685 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
686 } else {
687 epos.offset -= adsize;
688 err = udf_next_aext(inode, &epos, &extent.extLocation,
689 &extent.extLength, &etype, 0);
690 if (err <= 0)
691 goto out;
692 extent.extLength |= etype << 30;
693 }
694
695 new_elen = ((loff_t)offset << inode->i_blkbits) |
696 (newsize & (sb->s_blocksize - 1));
697
698 /* File has extent covering the new size (could happen when extending
699 * inside a block)?
700 */
701 if (within_last_ext) {
702 /* Extending file within the last file block */
703 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
704 } else {
705 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
706 }
707
708 if (err < 0)
709 goto out;
710 err = 0;
711out:
712 brelse(epos.bh);
713 up_write(&iinfo->i_data_sem);
714 return err;
715}
716
717static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
718{
719 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
720 struct extent_position prev_epos, cur_epos, next_epos;
721 int count = 0, startnum = 0, endnum = 0;
722 uint32_t elen = 0, tmpelen;
723 struct kernel_lb_addr eloc, tmpeloc;
724 int c = 1;
725 loff_t lbcount = 0, b_off = 0;
726 udf_pblk_t newblocknum;
727 sector_t offset = 0;
728 int8_t etype, tmpetype;
729 struct udf_inode_info *iinfo = UDF_I(inode);
730 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
731 int lastblock = 0;
732 bool isBeyondEOF = false;
733 int ret = 0;
734
735 prev_epos.offset = udf_file_entry_alloc_offset(inode);
736 prev_epos.block = iinfo->i_location;
737 prev_epos.bh = NULL;
738 cur_epos = next_epos = prev_epos;
739 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
740
741 /* find the extent which contains the block we are looking for.
742 alternate between laarr[0] and laarr[1] for locations of the
743 current extent, and the previous extent */
744 do {
745 if (prev_epos.bh != cur_epos.bh) {
746 brelse(prev_epos.bh);
747 get_bh(cur_epos.bh);
748 prev_epos.bh = cur_epos.bh;
749 }
750 if (cur_epos.bh != next_epos.bh) {
751 brelse(cur_epos.bh);
752 get_bh(next_epos.bh);
753 cur_epos.bh = next_epos.bh;
754 }
755
756 lbcount += elen;
757
758 prev_epos.block = cur_epos.block;
759 cur_epos.block = next_epos.block;
760
761 prev_epos.offset = cur_epos.offset;
762 cur_epos.offset = next_epos.offset;
763
764 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1);
765 if (ret < 0) {
766 goto out_free;
767 } else if (ret == 0) {
768 isBeyondEOF = true;
769 break;
770 }
771
772 c = !c;
773
774 laarr[c].extLength = (etype << 30) | elen;
775 laarr[c].extLocation = eloc;
776
777 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
778 pgoal = eloc.logicalBlockNum +
779 ((elen + inode->i_sb->s_blocksize - 1) >>
780 inode->i_sb->s_blocksize_bits);
781
782 count++;
783 } while (lbcount + elen <= b_off);
784
785 b_off -= lbcount;
786 offset = b_off >> inode->i_sb->s_blocksize_bits;
787 /*
788 * Move prev_epos and cur_epos into indirect extent if we are at
789 * the pointer to it
790 */
791 ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
792 if (ret < 0)
793 goto out_free;
794 ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
795 if (ret < 0)
796 goto out_free;
797
798 /* if the extent is allocated and recorded, return the block
799 if the extent is not a multiple of the blocksize, round up */
800
801 if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
802 if (elen & (inode->i_sb->s_blocksize - 1)) {
803 elen = EXT_RECORDED_ALLOCATED |
804 ((elen + inode->i_sb->s_blocksize - 1) &
805 ~(inode->i_sb->s_blocksize - 1));
806 iinfo->i_lenExtents =
807 ALIGN(iinfo->i_lenExtents,
808 inode->i_sb->s_blocksize);
809 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
810 }
811 map->oflags = UDF_BLK_MAPPED;
812 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
813 goto out_free;
814 }
815
816 /* Are we beyond EOF and preallocated extent? */
817 if (isBeyondEOF) {
818 loff_t hole_len;
819
820 if (count) {
821 if (c)
822 laarr[0] = laarr[1];
823 startnum = 1;
824 } else {
825 /* Create a fake extent when there's not one */
826 memset(&laarr[0].extLocation, 0x00,
827 sizeof(struct kernel_lb_addr));
828 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
829 /* Will udf_do_extend_file() create real extent from
830 a fake one? */
831 startnum = (offset > 0);
832 }
833 /* Create extents for the hole between EOF and offset */
834 hole_len = (loff_t)offset << inode->i_blkbits;
835 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
836 if (ret < 0)
837 goto out_free;
838 c = 0;
839 offset = 0;
840 count += ret;
841 /*
842 * Is there any real extent? - otherwise we overwrite the fake
843 * one...
844 */
845 if (count)
846 c = !c;
847 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
848 inode->i_sb->s_blocksize;
849 memset(&laarr[c].extLocation, 0x00,
850 sizeof(struct kernel_lb_addr));
851 count++;
852 endnum = c + 1;
853 lastblock = 1;
854 } else {
855 endnum = startnum = ((count > 2) ? 2 : count);
856
857 /* if the current extent is in position 0,
858 swap it with the previous */
859 if (!c && count != 1) {
860 laarr[2] = laarr[0];
861 laarr[0] = laarr[1];
862 laarr[1] = laarr[2];
863 c = 1;
864 }
865
866 /* if the current block is located in an extent,
867 read the next extent */
868 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0);
869 if (ret > 0) {
870 laarr[c + 1].extLength = (etype << 30) | elen;
871 laarr[c + 1].extLocation = eloc;
872 count++;
873 startnum++;
874 endnum++;
875 } else if (ret == 0)
876 lastblock = 1;
877 else
878 goto out_free;
879 }
880
881 /* if the current extent is not recorded but allocated, get the
882 * block in the extent corresponding to the requested block */
883 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
884 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
885 else { /* otherwise, allocate a new block */
886 if (iinfo->i_next_alloc_block == map->lblk)
887 goal = iinfo->i_next_alloc_goal;
888
889 if (!goal) {
890 if (!(goal = pgoal)) /* XXX: what was intended here? */
891 goal = iinfo->i_location.logicalBlockNum + 1;
892 }
893
894 newblocknum = udf_new_block(inode->i_sb, inode,
895 iinfo->i_location.partitionReferenceNum,
896 goal, &ret);
897 if (!newblocknum)
898 goto out_free;
899 if (isBeyondEOF)
900 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
901 }
902
903 /* if the extent the requsted block is located in contains multiple
904 * blocks, split the extent into at most three extents. blocks prior
905 * to requested block, requested block, and blocks after requested
906 * block */
907 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
908
909 if (!(map->iflags & UDF_MAP_NOPREALLOC))
910 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
911
912 /* merge any continuous blocks in laarr */
913 udf_merge_extents(inode, laarr, &endnum);
914
915 /* write back the new extents, inserting new extents if the new number
916 * of extents is greater than the old number, and deleting extents if
917 * the new number of extents is less than the old number */
918 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
919 if (ret < 0)
920 goto out_free;
921
922 map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
923 iinfo->i_location.partitionReferenceNum, 0);
924 if (!map->pblk) {
925 ret = -EFSCORRUPTED;
926 goto out_free;
927 }
928 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
929 iinfo->i_next_alloc_block = map->lblk + 1;
930 iinfo->i_next_alloc_goal = newblocknum + 1;
931 inode_set_ctime_current(inode);
932
933 if (IS_SYNC(inode))
934 udf_sync_inode(inode);
935 else
936 mark_inode_dirty(inode);
937 ret = 0;
938out_free:
939 brelse(prev_epos.bh);
940 brelse(cur_epos.bh);
941 brelse(next_epos.bh);
942 return ret;
943}
944
945static void udf_split_extents(struct inode *inode, int *c, int offset,
946 udf_pblk_t newblocknum,
947 struct kernel_long_ad *laarr, int *endnum)
948{
949 unsigned long blocksize = inode->i_sb->s_blocksize;
950 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
951
952 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
953 (laarr[*c].extLength >> 30) ==
954 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
955 int curr = *c;
956 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
957 blocksize - 1) >> blocksize_bits;
958 int8_t etype = (laarr[curr].extLength >> 30);
959
960 if (blen == 1)
961 ;
962 else if (!offset || blen == offset + 1) {
963 laarr[curr + 2] = laarr[curr + 1];
964 laarr[curr + 1] = laarr[curr];
965 } else {
966 laarr[curr + 3] = laarr[curr + 1];
967 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
968 }
969
970 if (offset) {
971 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
972 udf_free_blocks(inode->i_sb, inode,
973 &laarr[curr].extLocation,
974 0, offset);
975 laarr[curr].extLength =
976 EXT_NOT_RECORDED_NOT_ALLOCATED |
977 (offset << blocksize_bits);
978 laarr[curr].extLocation.logicalBlockNum = 0;
979 laarr[curr].extLocation.
980 partitionReferenceNum = 0;
981 } else
982 laarr[curr].extLength = (etype << 30) |
983 (offset << blocksize_bits);
984 curr++;
985 (*c)++;
986 (*endnum)++;
987 }
988
989 laarr[curr].extLocation.logicalBlockNum = newblocknum;
990 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
991 laarr[curr].extLocation.partitionReferenceNum =
992 UDF_I(inode)->i_location.partitionReferenceNum;
993 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
994 blocksize;
995 curr++;
996
997 if (blen != offset + 1) {
998 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
999 laarr[curr].extLocation.logicalBlockNum +=
1000 offset + 1;
1001 laarr[curr].extLength = (etype << 30) |
1002 ((blen - (offset + 1)) << blocksize_bits);
1003 curr++;
1004 (*endnum)++;
1005 }
1006 }
1007}
1008
1009static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
1010 struct kernel_long_ad *laarr,
1011 int *endnum)
1012{
1013 int start, length = 0, currlength = 0, i;
1014
1015 if (*endnum >= (c + 1)) {
1016 if (!lastblock)
1017 return;
1018 else
1019 start = c;
1020 } else {
1021 if ((laarr[c + 1].extLength >> 30) ==
1022 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1023 start = c + 1;
1024 length = currlength =
1025 (((laarr[c + 1].extLength &
1026 UDF_EXTENT_LENGTH_MASK) +
1027 inode->i_sb->s_blocksize - 1) >>
1028 inode->i_sb->s_blocksize_bits);
1029 } else
1030 start = c;
1031 }
1032
1033 for (i = start + 1; i <= *endnum; i++) {
1034 if (i == *endnum) {
1035 if (lastblock)
1036 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1037 } else if ((laarr[i].extLength >> 30) ==
1038 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1039 length += (((laarr[i].extLength &
1040 UDF_EXTENT_LENGTH_MASK) +
1041 inode->i_sb->s_blocksize - 1) >>
1042 inode->i_sb->s_blocksize_bits);
1043 } else
1044 break;
1045 }
1046
1047 if (length) {
1048 int next = laarr[start].extLocation.logicalBlockNum +
1049 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1050 inode->i_sb->s_blocksize - 1) >>
1051 inode->i_sb->s_blocksize_bits);
1052 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1053 laarr[start].extLocation.partitionReferenceNum,
1054 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1055 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1056 currlength);
1057 if (numalloc) {
1058 if (start == (c + 1))
1059 laarr[start].extLength +=
1060 (numalloc <<
1061 inode->i_sb->s_blocksize_bits);
1062 else {
1063 memmove(&laarr[c + 2], &laarr[c + 1],
1064 sizeof(struct long_ad) * (*endnum - (c + 1)));
1065 (*endnum)++;
1066 laarr[c + 1].extLocation.logicalBlockNum = next;
1067 laarr[c + 1].extLocation.partitionReferenceNum =
1068 laarr[c].extLocation.
1069 partitionReferenceNum;
1070 laarr[c + 1].extLength =
1071 EXT_NOT_RECORDED_ALLOCATED |
1072 (numalloc <<
1073 inode->i_sb->s_blocksize_bits);
1074 start = c + 1;
1075 }
1076
1077 for (i = start + 1; numalloc && i < *endnum; i++) {
1078 int elen = ((laarr[i].extLength &
1079 UDF_EXTENT_LENGTH_MASK) +
1080 inode->i_sb->s_blocksize - 1) >>
1081 inode->i_sb->s_blocksize_bits;
1082
1083 if (elen > numalloc) {
1084 laarr[i].extLength -=
1085 (numalloc <<
1086 inode->i_sb->s_blocksize_bits);
1087 numalloc = 0;
1088 } else {
1089 numalloc -= elen;
1090 if (*endnum > (i + 1))
1091 memmove(&laarr[i],
1092 &laarr[i + 1],
1093 sizeof(struct long_ad) *
1094 (*endnum - (i + 1)));
1095 i--;
1096 (*endnum)--;
1097 }
1098 }
1099 UDF_I(inode)->i_lenExtents +=
1100 numalloc << inode->i_sb->s_blocksize_bits;
1101 }
1102 }
1103}
1104
1105static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1106 int *endnum)
1107{
1108 int i;
1109 unsigned long blocksize = inode->i_sb->s_blocksize;
1110 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1111
1112 for (i = 0; i < (*endnum - 1); i++) {
1113 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1114 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1115
1116 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1117 (((li->extLength >> 30) ==
1118 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1119 ((lip1->extLocation.logicalBlockNum -
1120 li->extLocation.logicalBlockNum) ==
1121 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1122 blocksize - 1) >> blocksize_bits)))) {
1123
1124 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1125 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1126 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1127 li->extLength = lip1->extLength +
1128 (((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) & ~(blocksize - 1));
1131 if (*endnum > (i + 2))
1132 memmove(&laarr[i + 1], &laarr[i + 2],
1133 sizeof(struct long_ad) *
1134 (*endnum - (i + 2)));
1135 i--;
1136 (*endnum)--;
1137 }
1138 } else if (((li->extLength >> 30) ==
1139 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1140 ((lip1->extLength >> 30) ==
1141 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1142 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1143 ((li->extLength &
1144 UDF_EXTENT_LENGTH_MASK) +
1145 blocksize - 1) >> blocksize_bits);
1146 li->extLocation.logicalBlockNum = 0;
1147 li->extLocation.partitionReferenceNum = 0;
1148
1149 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1150 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1151 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1152 lip1->extLength = (lip1->extLength -
1153 (li->extLength &
1154 UDF_EXTENT_LENGTH_MASK) +
1155 UDF_EXTENT_LENGTH_MASK) &
1156 ~(blocksize - 1);
1157 li->extLength = (li->extLength &
1158 UDF_EXTENT_FLAG_MASK) +
1159 (UDF_EXTENT_LENGTH_MASK + 1) -
1160 blocksize;
1161 } else {
1162 li->extLength = lip1->extLength +
1163 (((li->extLength &
1164 UDF_EXTENT_LENGTH_MASK) +
1165 blocksize - 1) & ~(blocksize - 1));
1166 if (*endnum > (i + 2))
1167 memmove(&laarr[i + 1], &laarr[i + 2],
1168 sizeof(struct long_ad) *
1169 (*endnum - (i + 2)));
1170 i--;
1171 (*endnum)--;
1172 }
1173 } else if ((li->extLength >> 30) ==
1174 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1175 udf_free_blocks(inode->i_sb, inode,
1176 &li->extLocation, 0,
1177 ((li->extLength &
1178 UDF_EXTENT_LENGTH_MASK) +
1179 blocksize - 1) >> blocksize_bits);
1180 li->extLocation.logicalBlockNum = 0;
1181 li->extLocation.partitionReferenceNum = 0;
1182 li->extLength = (li->extLength &
1183 UDF_EXTENT_LENGTH_MASK) |
1184 EXT_NOT_RECORDED_NOT_ALLOCATED;
1185 }
1186 }
1187}
1188
1189static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1190 int startnum, int endnum,
1191 struct extent_position *epos)
1192{
1193 int start = 0, i;
1194 struct kernel_lb_addr tmploc;
1195 uint32_t tmplen;
1196 int8_t tmpetype;
1197 int err;
1198
1199 if (startnum > endnum) {
1200 for (i = 0; i < (startnum - endnum); i++)
1201 udf_delete_aext(inode, *epos);
1202 } else if (startnum < endnum) {
1203 for (i = 0; i < (endnum - startnum); i++) {
1204 err = udf_insert_aext(inode, *epos,
1205 laarr[i].extLocation,
1206 laarr[i].extLength);
1207 /*
1208 * If we fail here, we are likely corrupting the extent
1209 * list and leaking blocks. At least stop early to
1210 * limit the damage.
1211 */
1212 if (err < 0)
1213 return err;
1214 err = udf_next_aext(inode, epos, &laarr[i].extLocation,
1215 &laarr[i].extLength, &tmpetype, 1);
1216 if (err < 0)
1217 return err;
1218 start++;
1219 }
1220 }
1221
1222 for (i = start; i < endnum; i++) {
1223 err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0);
1224 if (err < 0)
1225 return err;
1226
1227 udf_write_aext(inode, epos, &laarr[i].extLocation,
1228 laarr[i].extLength, 1);
1229 }
1230 return 0;
1231}
1232
1233struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1234 int create, int *err)
1235{
1236 struct buffer_head *bh = NULL;
1237 struct udf_map_rq map = {
1238 .lblk = block,
1239 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1240 };
1241
1242 *err = udf_map_block(inode, &map);
1243 if (*err || !(map.oflags & UDF_BLK_MAPPED))
1244 return NULL;
1245
1246 bh = sb_getblk(inode->i_sb, map.pblk);
1247 if (!bh) {
1248 *err = -ENOMEM;
1249 return NULL;
1250 }
1251 if (map.oflags & UDF_BLK_NEW) {
1252 lock_buffer(bh);
1253 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1254 set_buffer_uptodate(bh);
1255 unlock_buffer(bh);
1256 mark_buffer_dirty_inode(bh, inode);
1257 return bh;
1258 }
1259
1260 if (bh_read(bh, 0) >= 0)
1261 return bh;
1262
1263 brelse(bh);
1264 *err = -EIO;
1265 return NULL;
1266}
1267
1268int udf_setsize(struct inode *inode, loff_t newsize)
1269{
1270 int err = 0;
1271 struct udf_inode_info *iinfo;
1272 unsigned int bsize = i_blocksize(inode);
1273
1274 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1275 S_ISLNK(inode->i_mode)))
1276 return -EINVAL;
1277
1278 iinfo = UDF_I(inode);
1279 if (newsize > inode->i_size) {
1280 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1281 if (bsize >=
1282 (udf_file_entry_alloc_offset(inode) + newsize)) {
1283 down_write(&iinfo->i_data_sem);
1284 iinfo->i_lenAlloc = newsize;
1285 up_write(&iinfo->i_data_sem);
1286 goto set_size;
1287 }
1288 err = udf_expand_file_adinicb(inode);
1289 if (err)
1290 return err;
1291 }
1292 err = udf_extend_file(inode, newsize);
1293 if (err)
1294 return err;
1295set_size:
1296 truncate_setsize(inode, newsize);
1297 } else {
1298 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1299 down_write(&iinfo->i_data_sem);
1300 udf_clear_extent_cache(inode);
1301 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1302 0x00, bsize - newsize -
1303 udf_file_entry_alloc_offset(inode));
1304 iinfo->i_lenAlloc = newsize;
1305 truncate_setsize(inode, newsize);
1306 up_write(&iinfo->i_data_sem);
1307 goto update_time;
1308 }
1309 err = block_truncate_page(inode->i_mapping, newsize,
1310 udf_get_block);
1311 if (err)
1312 return err;
1313 truncate_setsize(inode, newsize);
1314 down_write(&iinfo->i_data_sem);
1315 udf_clear_extent_cache(inode);
1316 err = udf_truncate_extents(inode);
1317 up_write(&iinfo->i_data_sem);
1318 if (err)
1319 return err;
1320 }
1321update_time:
1322 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1323 if (IS_SYNC(inode))
1324 udf_sync_inode(inode);
1325 else
1326 mark_inode_dirty(inode);
1327 return err;
1328}
1329
1330/*
1331 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1332 * arbitrary - just that we hopefully don't limit any real use of rewritten
1333 * inode on write-once media but avoid looping for too long on corrupted media.
1334 */
1335#define UDF_MAX_ICB_NESTING 1024
1336
1337static int udf_read_inode(struct inode *inode, bool hidden_inode)
1338{
1339 struct buffer_head *bh = NULL;
1340 struct fileEntry *fe;
1341 struct extendedFileEntry *efe;
1342 uint16_t ident;
1343 struct udf_inode_info *iinfo = UDF_I(inode);
1344 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1345 struct kernel_lb_addr *iloc = &iinfo->i_location;
1346 unsigned int link_count;
1347 unsigned int indirections = 0;
1348 int bs = inode->i_sb->s_blocksize;
1349 int ret = -EIO;
1350 uint32_t uid, gid;
1351 struct timespec64 ts;
1352
1353reread:
1354 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1355 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1356 iloc->partitionReferenceNum, sbi->s_partitions);
1357 return -EIO;
1358 }
1359
1360 if (iloc->logicalBlockNum >=
1361 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1362 udf_debug("block=%u, partition=%u out of range\n",
1363 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1364 return -EIO;
1365 }
1366
1367 /*
1368 * Set defaults, but the inode is still incomplete!
1369 * Note: get_new_inode() sets the following on a new inode:
1370 * i_sb = sb
1371 * i_no = ino
1372 * i_flags = sb->s_flags
1373 * i_state = 0
1374 * clean_inode(): zero fills and sets
1375 * i_count = 1
1376 * i_nlink = 1
1377 * i_op = NULL;
1378 */
1379 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1380 if (!bh) {
1381 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1382 return -EIO;
1383 }
1384
1385 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1386 ident != TAG_IDENT_USE) {
1387 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1388 inode->i_ino, ident);
1389 goto out;
1390 }
1391
1392 fe = (struct fileEntry *)bh->b_data;
1393 efe = (struct extendedFileEntry *)bh->b_data;
1394
1395 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1396 struct buffer_head *ibh;
1397
1398 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1399 if (ident == TAG_IDENT_IE && ibh) {
1400 struct kernel_lb_addr loc;
1401 struct indirectEntry *ie;
1402
1403 ie = (struct indirectEntry *)ibh->b_data;
1404 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1405
1406 if (ie->indirectICB.extLength) {
1407 brelse(ibh);
1408 memcpy(&iinfo->i_location, &loc,
1409 sizeof(struct kernel_lb_addr));
1410 if (++indirections > UDF_MAX_ICB_NESTING) {
1411 udf_err(inode->i_sb,
1412 "too many ICBs in ICB hierarchy"
1413 " (max %d supported)\n",
1414 UDF_MAX_ICB_NESTING);
1415 goto out;
1416 }
1417 brelse(bh);
1418 goto reread;
1419 }
1420 }
1421 brelse(ibh);
1422 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1423 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1424 le16_to_cpu(fe->icbTag.strategyType));
1425 goto out;
1426 }
1427 if (fe->icbTag.strategyType == cpu_to_le16(4))
1428 iinfo->i_strat4096 = 0;
1429 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1430 iinfo->i_strat4096 = 1;
1431
1432 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1433 ICBTAG_FLAG_AD_MASK;
1434 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1435 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1436 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1437 ret = -EIO;
1438 goto out;
1439 }
1440 iinfo->i_hidden = hidden_inode;
1441 iinfo->i_unique = 0;
1442 iinfo->i_lenEAttr = 0;
1443 iinfo->i_lenExtents = 0;
1444 iinfo->i_lenAlloc = 0;
1445 iinfo->i_next_alloc_block = 0;
1446 iinfo->i_next_alloc_goal = 0;
1447 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1448 iinfo->i_efe = 1;
1449 iinfo->i_use = 0;
1450 ret = udf_alloc_i_data(inode, bs -
1451 sizeof(struct extendedFileEntry));
1452 if (ret)
1453 goto out;
1454 memcpy(iinfo->i_data,
1455 bh->b_data + sizeof(struct extendedFileEntry),
1456 bs - sizeof(struct extendedFileEntry));
1457 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1458 iinfo->i_efe = 0;
1459 iinfo->i_use = 0;
1460 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1461 if (ret)
1462 goto out;
1463 memcpy(iinfo->i_data,
1464 bh->b_data + sizeof(struct fileEntry),
1465 bs - sizeof(struct fileEntry));
1466 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1467 iinfo->i_efe = 0;
1468 iinfo->i_use = 1;
1469 iinfo->i_lenAlloc = le32_to_cpu(
1470 ((struct unallocSpaceEntry *)bh->b_data)->
1471 lengthAllocDescs);
1472 ret = udf_alloc_i_data(inode, bs -
1473 sizeof(struct unallocSpaceEntry));
1474 if (ret)
1475 goto out;
1476 memcpy(iinfo->i_data,
1477 bh->b_data + sizeof(struct unallocSpaceEntry),
1478 bs - sizeof(struct unallocSpaceEntry));
1479 return 0;
1480 }
1481
1482 ret = -EIO;
1483 read_lock(&sbi->s_cred_lock);
1484 uid = le32_to_cpu(fe->uid);
1485 if (uid == UDF_INVALID_ID ||
1486 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1487 inode->i_uid = sbi->s_uid;
1488 else
1489 i_uid_write(inode, uid);
1490
1491 gid = le32_to_cpu(fe->gid);
1492 if (gid == UDF_INVALID_ID ||
1493 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1494 inode->i_gid = sbi->s_gid;
1495 else
1496 i_gid_write(inode, gid);
1497
1498 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1499 sbi->s_fmode != UDF_INVALID_MODE)
1500 inode->i_mode = sbi->s_fmode;
1501 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1502 sbi->s_dmode != UDF_INVALID_MODE)
1503 inode->i_mode = sbi->s_dmode;
1504 else
1505 inode->i_mode = udf_convert_permissions(fe);
1506 inode->i_mode &= ~sbi->s_umask;
1507 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1508
1509 read_unlock(&sbi->s_cred_lock);
1510
1511 link_count = le16_to_cpu(fe->fileLinkCount);
1512 if (!link_count) {
1513 if (!hidden_inode) {
1514 ret = -ESTALE;
1515 goto out;
1516 }
1517 link_count = 1;
1518 }
1519 set_nlink(inode, link_count);
1520
1521 inode->i_size = le64_to_cpu(fe->informationLength);
1522 iinfo->i_lenExtents = inode->i_size;
1523
1524 if (iinfo->i_efe == 0) {
1525 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1526 (inode->i_sb->s_blocksize_bits - 9);
1527
1528 udf_disk_stamp_to_time(&ts, fe->accessTime);
1529 inode_set_atime_to_ts(inode, ts);
1530 udf_disk_stamp_to_time(&ts, fe->modificationTime);
1531 inode_set_mtime_to_ts(inode, ts);
1532 udf_disk_stamp_to_time(&ts, fe->attrTime);
1533 inode_set_ctime_to_ts(inode, ts);
1534
1535 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1536 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1537 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1538 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1539 iinfo->i_streamdir = 0;
1540 iinfo->i_lenStreams = 0;
1541 } else {
1542 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1543 (inode->i_sb->s_blocksize_bits - 9);
1544
1545 udf_disk_stamp_to_time(&ts, efe->accessTime);
1546 inode_set_atime_to_ts(inode, ts);
1547 udf_disk_stamp_to_time(&ts, efe->modificationTime);
1548 inode_set_mtime_to_ts(inode, ts);
1549 udf_disk_stamp_to_time(&ts, efe->attrTime);
1550 inode_set_ctime_to_ts(inode, ts);
1551 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1552
1553 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1554 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1555 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1556 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1557
1558 /* Named streams */
1559 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1560 iinfo->i_locStreamdir =
1561 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1562 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1563 if (iinfo->i_lenStreams >= inode->i_size)
1564 iinfo->i_lenStreams -= inode->i_size;
1565 else
1566 iinfo->i_lenStreams = 0;
1567 }
1568 inode->i_generation = iinfo->i_unique;
1569
1570 /*
1571 * Sanity check length of allocation descriptors and extended attrs to
1572 * avoid integer overflows
1573 */
1574 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1575 goto out;
1576 /* Now do exact checks */
1577 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1578 goto out;
1579 /* Sanity checks for files in ICB so that we don't get confused later */
1580 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1581 /*
1582 * For file in ICB data is stored in allocation descriptor
1583 * so sizes should match
1584 */
1585 if (iinfo->i_lenAlloc != inode->i_size)
1586 goto out;
1587 /* File in ICB has to fit in there... */
1588 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1589 goto out;
1590 }
1591
1592 switch (fe->icbTag.fileType) {
1593 case ICBTAG_FILE_TYPE_DIRECTORY:
1594 inode->i_op = &udf_dir_inode_operations;
1595 inode->i_fop = &udf_dir_operations;
1596 inode->i_mode |= S_IFDIR;
1597 inc_nlink(inode);
1598 break;
1599 case ICBTAG_FILE_TYPE_REALTIME:
1600 case ICBTAG_FILE_TYPE_REGULAR:
1601 case ICBTAG_FILE_TYPE_UNDEF:
1602 case ICBTAG_FILE_TYPE_VAT20:
1603 inode->i_data.a_ops = &udf_aops;
1604 inode->i_op = &udf_file_inode_operations;
1605 inode->i_fop = &udf_file_operations;
1606 inode->i_mode |= S_IFREG;
1607 break;
1608 case ICBTAG_FILE_TYPE_BLOCK:
1609 inode->i_mode |= S_IFBLK;
1610 break;
1611 case ICBTAG_FILE_TYPE_CHAR:
1612 inode->i_mode |= S_IFCHR;
1613 break;
1614 case ICBTAG_FILE_TYPE_FIFO:
1615 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1616 break;
1617 case ICBTAG_FILE_TYPE_SOCKET:
1618 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1619 break;
1620 case ICBTAG_FILE_TYPE_SYMLINK:
1621 inode->i_data.a_ops = &udf_symlink_aops;
1622 inode->i_op = &udf_symlink_inode_operations;
1623 inode_nohighmem(inode);
1624 inode->i_mode = S_IFLNK | 0777;
1625 break;
1626 case ICBTAG_FILE_TYPE_MAIN:
1627 udf_debug("METADATA FILE-----\n");
1628 break;
1629 case ICBTAG_FILE_TYPE_MIRROR:
1630 udf_debug("METADATA MIRROR FILE-----\n");
1631 break;
1632 case ICBTAG_FILE_TYPE_BITMAP:
1633 udf_debug("METADATA BITMAP FILE-----\n");
1634 break;
1635 default:
1636 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1637 inode->i_ino, fe->icbTag.fileType);
1638 goto out;
1639 }
1640 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1641 struct deviceSpec *dsea =
1642 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1643 if (dsea) {
1644 init_special_inode(inode, inode->i_mode,
1645 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1646 le32_to_cpu(dsea->minorDeviceIdent)));
1647 /* Developer ID ??? */
1648 } else
1649 goto out;
1650 }
1651 ret = 0;
1652out:
1653 brelse(bh);
1654 return ret;
1655}
1656
1657static int udf_alloc_i_data(struct inode *inode, size_t size)
1658{
1659 struct udf_inode_info *iinfo = UDF_I(inode);
1660 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1661 if (!iinfo->i_data)
1662 return -ENOMEM;
1663 return 0;
1664}
1665
1666static umode_t udf_convert_permissions(struct fileEntry *fe)
1667{
1668 umode_t mode;
1669 uint32_t permissions;
1670 uint32_t flags;
1671
1672 permissions = le32_to_cpu(fe->permissions);
1673 flags = le16_to_cpu(fe->icbTag.flags);
1674
1675 mode = ((permissions) & 0007) |
1676 ((permissions >> 2) & 0070) |
1677 ((permissions >> 4) & 0700) |
1678 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1679 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1680 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1681
1682 return mode;
1683}
1684
1685void udf_update_extra_perms(struct inode *inode, umode_t mode)
1686{
1687 struct udf_inode_info *iinfo = UDF_I(inode);
1688
1689 /*
1690 * UDF 2.01 sec. 3.3.3.3 Note 2:
1691 * In Unix, delete permission tracks write
1692 */
1693 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1694 if (mode & 0200)
1695 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1696 if (mode & 0020)
1697 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1698 if (mode & 0002)
1699 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1700}
1701
1702int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1703{
1704 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1705}
1706
1707static int udf_sync_inode(struct inode *inode)
1708{
1709 return udf_update_inode(inode, 1);
1710}
1711
1712static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1713{
1714 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1715 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1716 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1717 iinfo->i_crtime = time;
1718}
1719
1720static int udf_update_inode(struct inode *inode, int do_sync)
1721{
1722 struct buffer_head *bh = NULL;
1723 struct fileEntry *fe;
1724 struct extendedFileEntry *efe;
1725 uint64_t lb_recorded;
1726 uint32_t udfperms;
1727 uint16_t icbflags;
1728 uint16_t crclen;
1729 int err = 0;
1730 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1731 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1732 struct udf_inode_info *iinfo = UDF_I(inode);
1733
1734 bh = sb_getblk(inode->i_sb,
1735 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1736 if (!bh) {
1737 udf_debug("getblk failure\n");
1738 return -EIO;
1739 }
1740
1741 lock_buffer(bh);
1742 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1743 fe = (struct fileEntry *)bh->b_data;
1744 efe = (struct extendedFileEntry *)bh->b_data;
1745
1746 if (iinfo->i_use) {
1747 struct unallocSpaceEntry *use =
1748 (struct unallocSpaceEntry *)bh->b_data;
1749
1750 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1751 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1752 iinfo->i_data, inode->i_sb->s_blocksize -
1753 sizeof(struct unallocSpaceEntry));
1754 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1755 crclen = sizeof(struct unallocSpaceEntry);
1756
1757 goto finish;
1758 }
1759
1760 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1761 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1762 else
1763 fe->uid = cpu_to_le32(i_uid_read(inode));
1764
1765 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1766 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1767 else
1768 fe->gid = cpu_to_le32(i_gid_read(inode));
1769
1770 udfperms = ((inode->i_mode & 0007)) |
1771 ((inode->i_mode & 0070) << 2) |
1772 ((inode->i_mode & 0700) << 4);
1773
1774 udfperms |= iinfo->i_extraPerms;
1775 fe->permissions = cpu_to_le32(udfperms);
1776
1777 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1778 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1779 else {
1780 if (iinfo->i_hidden)
1781 fe->fileLinkCount = cpu_to_le16(0);
1782 else
1783 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1784 }
1785
1786 fe->informationLength = cpu_to_le64(inode->i_size);
1787
1788 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1789 struct regid *eid;
1790 struct deviceSpec *dsea =
1791 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1792 if (!dsea) {
1793 dsea = (struct deviceSpec *)
1794 udf_add_extendedattr(inode,
1795 sizeof(struct deviceSpec) +
1796 sizeof(struct regid), 12, 0x3);
1797 dsea->attrType = cpu_to_le32(12);
1798 dsea->attrSubtype = 1;
1799 dsea->attrLength = cpu_to_le32(
1800 sizeof(struct deviceSpec) +
1801 sizeof(struct regid));
1802 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1803 }
1804 eid = (struct regid *)dsea->impUse;
1805 memset(eid, 0, sizeof(*eid));
1806 strcpy(eid->ident, UDF_ID_DEVELOPER);
1807 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1808 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1809 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1810 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1811 }
1812
1813 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1814 lb_recorded = 0; /* No extents => no blocks! */
1815 else
1816 lb_recorded =
1817 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1818 (blocksize_bits - 9);
1819
1820 if (iinfo->i_efe == 0) {
1821 memcpy(bh->b_data + sizeof(struct fileEntry),
1822 iinfo->i_data,
1823 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1824 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1825
1826 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1827 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1828 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1829 memset(&(fe->impIdent), 0, sizeof(struct regid));
1830 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1831 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1832 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1833 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1834 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1835 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1836 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1837 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1838 crclen = sizeof(struct fileEntry);
1839 } else {
1840 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1841 iinfo->i_data,
1842 inode->i_sb->s_blocksize -
1843 sizeof(struct extendedFileEntry));
1844 efe->objectSize =
1845 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1846 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1847
1848 if (iinfo->i_streamdir) {
1849 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1850
1851 icb_lad->extLocation =
1852 cpu_to_lelb(iinfo->i_locStreamdir);
1853 icb_lad->extLength =
1854 cpu_to_le32(inode->i_sb->s_blocksize);
1855 }
1856
1857 udf_adjust_time(iinfo, inode_get_atime(inode));
1858 udf_adjust_time(iinfo, inode_get_mtime(inode));
1859 udf_adjust_time(iinfo, inode_get_ctime(inode));
1860
1861 udf_time_to_disk_stamp(&efe->accessTime,
1862 inode_get_atime(inode));
1863 udf_time_to_disk_stamp(&efe->modificationTime,
1864 inode_get_mtime(inode));
1865 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1866 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1867
1868 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1869 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1870 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1871 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1872 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1873 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1874 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1875 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1876 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1877 crclen = sizeof(struct extendedFileEntry);
1878 }
1879
1880finish:
1881 if (iinfo->i_strat4096) {
1882 fe->icbTag.strategyType = cpu_to_le16(4096);
1883 fe->icbTag.strategyParameter = cpu_to_le16(1);
1884 fe->icbTag.numEntries = cpu_to_le16(2);
1885 } else {
1886 fe->icbTag.strategyType = cpu_to_le16(4);
1887 fe->icbTag.numEntries = cpu_to_le16(1);
1888 }
1889
1890 if (iinfo->i_use)
1891 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1892 else if (S_ISDIR(inode->i_mode))
1893 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1894 else if (S_ISREG(inode->i_mode))
1895 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1896 else if (S_ISLNK(inode->i_mode))
1897 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1898 else if (S_ISBLK(inode->i_mode))
1899 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1900 else if (S_ISCHR(inode->i_mode))
1901 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1902 else if (S_ISFIFO(inode->i_mode))
1903 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1904 else if (S_ISSOCK(inode->i_mode))
1905 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1906
1907 icbflags = iinfo->i_alloc_type |
1908 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1909 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1910 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1911 (le16_to_cpu(fe->icbTag.flags) &
1912 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1913 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1914
1915 fe->icbTag.flags = cpu_to_le16(icbflags);
1916 if (sbi->s_udfrev >= 0x0200)
1917 fe->descTag.descVersion = cpu_to_le16(3);
1918 else
1919 fe->descTag.descVersion = cpu_to_le16(2);
1920 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1921 fe->descTag.tagLocation = cpu_to_le32(
1922 iinfo->i_location.logicalBlockNum);
1923 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1924 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1925 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1926 crclen));
1927 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1928
1929 set_buffer_uptodate(bh);
1930 unlock_buffer(bh);
1931
1932 /* write the data blocks */
1933 mark_buffer_dirty(bh);
1934 if (do_sync) {
1935 sync_dirty_buffer(bh);
1936 if (buffer_write_io_error(bh)) {
1937 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1938 inode->i_ino);
1939 err = -EIO;
1940 }
1941 }
1942 brelse(bh);
1943
1944 return err;
1945}
1946
1947struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1948 bool hidden_inode)
1949{
1950 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1951 struct inode *inode = iget_locked(sb, block);
1952 int err;
1953
1954 if (!inode)
1955 return ERR_PTR(-ENOMEM);
1956
1957 if (!(inode->i_state & I_NEW)) {
1958 if (UDF_I(inode)->i_hidden != hidden_inode) {
1959 iput(inode);
1960 return ERR_PTR(-EFSCORRUPTED);
1961 }
1962 return inode;
1963 }
1964
1965 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1966 err = udf_read_inode(inode, hidden_inode);
1967 if (err < 0) {
1968 iget_failed(inode);
1969 return ERR_PTR(err);
1970 }
1971 unlock_new_inode(inode);
1972
1973 return inode;
1974}
1975
1976int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1977 struct extent_position *epos)
1978{
1979 struct super_block *sb = inode->i_sb;
1980 struct buffer_head *bh;
1981 struct allocExtDesc *aed;
1982 struct extent_position nepos;
1983 struct kernel_lb_addr neloc;
1984 int ver, adsize;
1985 int err = 0;
1986
1987 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1988 adsize = sizeof(struct short_ad);
1989 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1990 adsize = sizeof(struct long_ad);
1991 else
1992 return -EIO;
1993
1994 neloc.logicalBlockNum = block;
1995 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1996
1997 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1998 if (!bh)
1999 return -EIO;
2000 lock_buffer(bh);
2001 memset(bh->b_data, 0x00, sb->s_blocksize);
2002 set_buffer_uptodate(bh);
2003 unlock_buffer(bh);
2004 mark_buffer_dirty_inode(bh, inode);
2005
2006 aed = (struct allocExtDesc *)(bh->b_data);
2007 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
2008 aed->previousAllocExtLocation =
2009 cpu_to_le32(epos->block.logicalBlockNum);
2010 }
2011 aed->lengthAllocDescs = cpu_to_le32(0);
2012 if (UDF_SB(sb)->s_udfrev >= 0x0200)
2013 ver = 3;
2014 else
2015 ver = 2;
2016 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
2017 sizeof(struct tag));
2018
2019 nepos.block = neloc;
2020 nepos.offset = sizeof(struct allocExtDesc);
2021 nepos.bh = bh;
2022
2023 /*
2024 * Do we have to copy current last extent to make space for indirect
2025 * one?
2026 */
2027 if (epos->offset + adsize > sb->s_blocksize) {
2028 struct kernel_lb_addr cp_loc;
2029 uint32_t cp_len;
2030 int8_t cp_type;
2031
2032 epos->offset -= adsize;
2033 err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0);
2034 if (err <= 0)
2035 goto err_out;
2036 cp_len |= ((uint32_t)cp_type) << 30;
2037
2038 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2039 udf_write_aext(inode, epos, &nepos.block,
2040 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2041 } else {
2042 __udf_add_aext(inode, epos, &nepos.block,
2043 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2044 }
2045
2046 brelse(epos->bh);
2047 *epos = nepos;
2048
2049 return 0;
2050err_out:
2051 brelse(bh);
2052 return err;
2053}
2054
2055/*
2056 * Append extent at the given position - should be the first free one in inode
2057 * / indirect extent. This function assumes there is enough space in the inode
2058 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2059 */
2060int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2061 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2062{
2063 struct udf_inode_info *iinfo = UDF_I(inode);
2064 struct allocExtDesc *aed;
2065 int adsize;
2066
2067 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2068 adsize = sizeof(struct short_ad);
2069 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2070 adsize = sizeof(struct long_ad);
2071 else
2072 return -EIO;
2073
2074 if (!epos->bh) {
2075 WARN_ON(iinfo->i_lenAlloc !=
2076 epos->offset - udf_file_entry_alloc_offset(inode));
2077 } else {
2078 aed = (struct allocExtDesc *)epos->bh->b_data;
2079 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2080 epos->offset - sizeof(struct allocExtDesc));
2081 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2082 }
2083
2084 udf_write_aext(inode, epos, eloc, elen, inc);
2085
2086 if (!epos->bh) {
2087 iinfo->i_lenAlloc += adsize;
2088 mark_inode_dirty(inode);
2089 } else {
2090 aed = (struct allocExtDesc *)epos->bh->b_data;
2091 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2092 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2093 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2094 udf_update_tag(epos->bh->b_data,
2095 epos->offset + (inc ? 0 : adsize));
2096 else
2097 udf_update_tag(epos->bh->b_data,
2098 sizeof(struct allocExtDesc));
2099 mark_buffer_dirty_inode(epos->bh, inode);
2100 }
2101
2102 return 0;
2103}
2104
2105/*
2106 * Append extent at given position - should be the first free one in inode
2107 * / indirect extent. Takes care of allocating and linking indirect blocks.
2108 */
2109int udf_add_aext(struct inode *inode, struct extent_position *epos,
2110 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2111{
2112 int adsize;
2113 struct super_block *sb = inode->i_sb;
2114
2115 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2116 adsize = sizeof(struct short_ad);
2117 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2118 adsize = sizeof(struct long_ad);
2119 else
2120 return -EIO;
2121
2122 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2123 int err;
2124 udf_pblk_t new_block;
2125
2126 new_block = udf_new_block(sb, NULL,
2127 epos->block.partitionReferenceNum,
2128 epos->block.logicalBlockNum, &err);
2129 if (!new_block)
2130 return -ENOSPC;
2131
2132 err = udf_setup_indirect_aext(inode, new_block, epos);
2133 if (err)
2134 return err;
2135 }
2136
2137 return __udf_add_aext(inode, epos, eloc, elen, inc);
2138}
2139
2140void udf_write_aext(struct inode *inode, struct extent_position *epos,
2141 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2142{
2143 int adsize;
2144 uint8_t *ptr;
2145 struct short_ad *sad;
2146 struct long_ad *lad;
2147 struct udf_inode_info *iinfo = UDF_I(inode);
2148
2149 if (!epos->bh)
2150 ptr = iinfo->i_data + epos->offset -
2151 udf_file_entry_alloc_offset(inode) +
2152 iinfo->i_lenEAttr;
2153 else
2154 ptr = epos->bh->b_data + epos->offset;
2155
2156 switch (iinfo->i_alloc_type) {
2157 case ICBTAG_FLAG_AD_SHORT:
2158 sad = (struct short_ad *)ptr;
2159 sad->extLength = cpu_to_le32(elen);
2160 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2161 adsize = sizeof(struct short_ad);
2162 break;
2163 case ICBTAG_FLAG_AD_LONG:
2164 lad = (struct long_ad *)ptr;
2165 lad->extLength = cpu_to_le32(elen);
2166 lad->extLocation = cpu_to_lelb(*eloc);
2167 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2168 adsize = sizeof(struct long_ad);
2169 break;
2170 default:
2171 return;
2172 }
2173
2174 if (epos->bh) {
2175 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2176 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2177 struct allocExtDesc *aed =
2178 (struct allocExtDesc *)epos->bh->b_data;
2179 udf_update_tag(epos->bh->b_data,
2180 le32_to_cpu(aed->lengthAllocDescs) +
2181 sizeof(struct allocExtDesc));
2182 }
2183 mark_buffer_dirty_inode(epos->bh, inode);
2184 } else {
2185 mark_inode_dirty(inode);
2186 }
2187
2188 if (inc)
2189 epos->offset += adsize;
2190}
2191
2192/*
2193 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2194 * someone does some weird stuff.
2195 */
2196#define UDF_MAX_INDIR_EXTS 16
2197
2198/*
2199 * Returns 1 on success, -errno on error, 0 on hit EOF.
2200 */
2201int udf_next_aext(struct inode *inode, struct extent_position *epos,
2202 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2203 int inc)
2204{
2205 unsigned int indirections = 0;
2206 int ret = 0;
2207 udf_pblk_t block;
2208
2209 while (1) {
2210 ret = udf_current_aext(inode, epos, eloc, elen,
2211 etype, inc);
2212 if (ret <= 0)
2213 return ret;
2214 if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30))
2215 return ret;
2216
2217 if (++indirections > UDF_MAX_INDIR_EXTS) {
2218 udf_err(inode->i_sb,
2219 "too many indirect extents in inode %lu\n",
2220 inode->i_ino);
2221 return -EFSCORRUPTED;
2222 }
2223
2224 epos->block = *eloc;
2225 epos->offset = sizeof(struct allocExtDesc);
2226 brelse(epos->bh);
2227 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2228 epos->bh = sb_bread(inode->i_sb, block);
2229 if (!epos->bh) {
2230 udf_debug("reading block %u failed!\n", block);
2231 return -EIO;
2232 }
2233 }
2234}
2235
2236/*
2237 * Returns 1 on success, -errno on error, 0 on hit EOF.
2238 */
2239int udf_current_aext(struct inode *inode, struct extent_position *epos,
2240 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2241 int inc)
2242{
2243 int alen;
2244 uint8_t *ptr;
2245 struct short_ad *sad;
2246 struct long_ad *lad;
2247 struct udf_inode_info *iinfo = UDF_I(inode);
2248
2249 if (!epos->bh) {
2250 if (!epos->offset)
2251 epos->offset = udf_file_entry_alloc_offset(inode);
2252 ptr = iinfo->i_data + epos->offset -
2253 udf_file_entry_alloc_offset(inode) +
2254 iinfo->i_lenEAttr;
2255 alen = udf_file_entry_alloc_offset(inode) +
2256 iinfo->i_lenAlloc;
2257 } else {
2258 struct allocExtDesc *header =
2259 (struct allocExtDesc *)epos->bh->b_data;
2260
2261 if (!epos->offset)
2262 epos->offset = sizeof(struct allocExtDesc);
2263 ptr = epos->bh->b_data + epos->offset;
2264 if (check_add_overflow(sizeof(struct allocExtDesc),
2265 le32_to_cpu(header->lengthAllocDescs), &alen))
2266 return -1;
2267 }
2268
2269 switch (iinfo->i_alloc_type) {
2270 case ICBTAG_FLAG_AD_SHORT:
2271 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2272 if (!sad)
2273 return 0;
2274 *etype = le32_to_cpu(sad->extLength) >> 30;
2275 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2276 eloc->partitionReferenceNum =
2277 iinfo->i_location.partitionReferenceNum;
2278 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2279 break;
2280 case ICBTAG_FLAG_AD_LONG:
2281 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2282 if (!lad)
2283 return 0;
2284 *etype = le32_to_cpu(lad->extLength) >> 30;
2285 *eloc = lelb_to_cpu(lad->extLocation);
2286 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2287 break;
2288 default:
2289 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2290 return -EINVAL;
2291 }
2292
2293 return 1;
2294}
2295
2296static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2297 struct kernel_lb_addr neloc, uint32_t nelen)
2298{
2299 struct kernel_lb_addr oeloc;
2300 uint32_t oelen;
2301 int8_t etype;
2302 int ret;
2303
2304 if (epos.bh)
2305 get_bh(epos.bh);
2306
2307 while (1) {
2308 ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0);
2309 if (ret <= 0)
2310 break;
2311 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2312 neloc = oeloc;
2313 nelen = (etype << 30) | oelen;
2314 }
2315 if (ret == 0)
2316 ret = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2317 brelse(epos.bh);
2318
2319 return ret;
2320}
2321
2322int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2323{
2324 struct extent_position oepos;
2325 int adsize;
2326 int8_t etype;
2327 struct allocExtDesc *aed;
2328 struct udf_inode_info *iinfo;
2329 struct kernel_lb_addr eloc;
2330 uint32_t elen;
2331 int ret;
2332
2333 if (epos.bh) {
2334 get_bh(epos.bh);
2335 get_bh(epos.bh);
2336 }
2337
2338 iinfo = UDF_I(inode);
2339 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2340 adsize = sizeof(struct short_ad);
2341 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2342 adsize = sizeof(struct long_ad);
2343 else
2344 adsize = 0;
2345
2346 oepos = epos;
2347 if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0)
2348 return -1;
2349
2350 while (1) {
2351 ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1);
2352 if (ret < 0) {
2353 brelse(epos.bh);
2354 brelse(oepos.bh);
2355 return -1;
2356 }
2357 if (ret == 0)
2358 break;
2359 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2360 if (oepos.bh != epos.bh) {
2361 oepos.block = epos.block;
2362 brelse(oepos.bh);
2363 get_bh(epos.bh);
2364 oepos.bh = epos.bh;
2365 oepos.offset = epos.offset - adsize;
2366 }
2367 }
2368 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2369 elen = 0;
2370
2371 if (epos.bh != oepos.bh) {
2372 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2373 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2374 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2375 if (!oepos.bh) {
2376 iinfo->i_lenAlloc -= (adsize * 2);
2377 mark_inode_dirty(inode);
2378 } else {
2379 aed = (struct allocExtDesc *)oepos.bh->b_data;
2380 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2381 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2382 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2383 udf_update_tag(oepos.bh->b_data,
2384 oepos.offset - (2 * adsize));
2385 else
2386 udf_update_tag(oepos.bh->b_data,
2387 sizeof(struct allocExtDesc));
2388 mark_buffer_dirty_inode(oepos.bh, inode);
2389 }
2390 } else {
2391 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2392 if (!oepos.bh) {
2393 iinfo->i_lenAlloc -= adsize;
2394 mark_inode_dirty(inode);
2395 } else {
2396 aed = (struct allocExtDesc *)oepos.bh->b_data;
2397 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2398 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2399 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2400 udf_update_tag(oepos.bh->b_data,
2401 epos.offset - adsize);
2402 else
2403 udf_update_tag(oepos.bh->b_data,
2404 sizeof(struct allocExtDesc));
2405 mark_buffer_dirty_inode(oepos.bh, inode);
2406 }
2407 }
2408
2409 brelse(epos.bh);
2410 brelse(oepos.bh);
2411
2412 return (elen >> 30);
2413}
2414
2415/*
2416 * Returns 1 on success, -errno on error, 0 on hit EOF.
2417 */
2418int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos,
2419 struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset,
2420 int8_t *etype)
2421{
2422 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2423 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2424 struct udf_inode_info *iinfo;
2425 int err = 0;
2426
2427 iinfo = UDF_I(inode);
2428 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2429 pos->offset = 0;
2430 pos->block = iinfo->i_location;
2431 pos->bh = NULL;
2432 }
2433 *elen = 0;
2434 do {
2435 err = udf_next_aext(inode, pos, eloc, elen, etype, 1);
2436 if (err <= 0) {
2437 if (err == 0) {
2438 *offset = (bcount - lbcount) >> blocksize_bits;
2439 iinfo->i_lenExtents = lbcount;
2440 }
2441 return err;
2442 }
2443 lbcount += *elen;
2444 } while (lbcount <= bcount);
2445 /* update extent cache */
2446 udf_update_extent_cache(inode, lbcount - *elen, pos);
2447 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2448
2449 return 1;
2450}
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41
42#include "udf_i.h"
43#include "udf_sb.h"
44
45MODULE_AUTHOR("Ben Fennema");
46MODULE_DESCRIPTION("Universal Disk Format Filesystem");
47MODULE_LICENSE("GPL");
48
49#define EXTENT_MERGE_SIZE 5
50
51static umode_t udf_convert_permissions(struct fileEntry *);
52static int udf_update_inode(struct inode *, int);
53static int udf_sync_inode(struct inode *inode);
54static int udf_alloc_i_data(struct inode *inode, size_t size);
55static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
56static int8_t udf_insert_aext(struct inode *, struct extent_position,
57 struct kernel_lb_addr, uint32_t);
58static void udf_split_extents(struct inode *, int *, int, int,
59 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
60static void udf_prealloc_extents(struct inode *, int, int,
61 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
62static void udf_merge_extents(struct inode *,
63 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
64static void udf_update_extents(struct inode *,
65 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
66 struct extent_position *);
67static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
68
69static void __udf_clear_extent_cache(struct inode *inode)
70{
71 struct udf_inode_info *iinfo = UDF_I(inode);
72
73 if (iinfo->cached_extent.lstart != -1) {
74 brelse(iinfo->cached_extent.epos.bh);
75 iinfo->cached_extent.lstart = -1;
76 }
77}
78
79/* Invalidate extent cache */
80static void udf_clear_extent_cache(struct inode *inode)
81{
82 struct udf_inode_info *iinfo = UDF_I(inode);
83
84 spin_lock(&iinfo->i_extent_cache_lock);
85 __udf_clear_extent_cache(inode);
86 spin_unlock(&iinfo->i_extent_cache_lock);
87}
88
89/* Return contents of extent cache */
90static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
91 loff_t *lbcount, struct extent_position *pos)
92{
93 struct udf_inode_info *iinfo = UDF_I(inode);
94 int ret = 0;
95
96 spin_lock(&iinfo->i_extent_cache_lock);
97 if ((iinfo->cached_extent.lstart <= bcount) &&
98 (iinfo->cached_extent.lstart != -1)) {
99 /* Cache hit */
100 *lbcount = iinfo->cached_extent.lstart;
101 memcpy(pos, &iinfo->cached_extent.epos,
102 sizeof(struct extent_position));
103 if (pos->bh)
104 get_bh(pos->bh);
105 ret = 1;
106 }
107 spin_unlock(&iinfo->i_extent_cache_lock);
108 return ret;
109}
110
111/* Add extent to extent cache */
112static void udf_update_extent_cache(struct inode *inode, loff_t estart,
113 struct extent_position *pos, int next_epos)
114{
115 struct udf_inode_info *iinfo = UDF_I(inode);
116
117 spin_lock(&iinfo->i_extent_cache_lock);
118 /* Invalidate previously cached extent */
119 __udf_clear_extent_cache(inode);
120 if (pos->bh)
121 get_bh(pos->bh);
122 memcpy(&iinfo->cached_extent.epos, pos,
123 sizeof(struct extent_position));
124 iinfo->cached_extent.lstart = estart;
125 if (next_epos)
126 switch (iinfo->i_alloc_type) {
127 case ICBTAG_FLAG_AD_SHORT:
128 iinfo->cached_extent.epos.offset -=
129 sizeof(struct short_ad);
130 break;
131 case ICBTAG_FLAG_AD_LONG:
132 iinfo->cached_extent.epos.offset -=
133 sizeof(struct long_ad);
134 }
135 spin_unlock(&iinfo->i_extent_cache_lock);
136}
137
138void udf_evict_inode(struct inode *inode)
139{
140 struct udf_inode_info *iinfo = UDF_I(inode);
141 int want_delete = 0;
142
143 if (!inode->i_nlink && !is_bad_inode(inode)) {
144 want_delete = 1;
145 udf_setsize(inode, 0);
146 udf_update_inode(inode, IS_SYNC(inode));
147 }
148 truncate_inode_pages_final(&inode->i_data);
149 invalidate_inode_buffers(inode);
150 clear_inode(inode);
151 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
152 inode->i_size != iinfo->i_lenExtents) {
153 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
154 inode->i_ino, inode->i_mode,
155 (unsigned long long)inode->i_size,
156 (unsigned long long)iinfo->i_lenExtents);
157 }
158 kfree(iinfo->i_ext.i_data);
159 iinfo->i_ext.i_data = NULL;
160 udf_clear_extent_cache(inode);
161 if (want_delete) {
162 udf_free_inode(inode);
163 }
164}
165
166static void udf_write_failed(struct address_space *mapping, loff_t to)
167{
168 struct inode *inode = mapping->host;
169 struct udf_inode_info *iinfo = UDF_I(inode);
170 loff_t isize = inode->i_size;
171
172 if (to > isize) {
173 truncate_pagecache(inode, isize);
174 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
175 down_write(&iinfo->i_data_sem);
176 udf_clear_extent_cache(inode);
177 udf_truncate_extents(inode);
178 up_write(&iinfo->i_data_sem);
179 }
180 }
181}
182
183static int udf_writepage(struct page *page, struct writeback_control *wbc)
184{
185 return block_write_full_page(page, udf_get_block, wbc);
186}
187
188static int udf_writepages(struct address_space *mapping,
189 struct writeback_control *wbc)
190{
191 return mpage_writepages(mapping, wbc, udf_get_block);
192}
193
194static int udf_readpage(struct file *file, struct page *page)
195{
196 return mpage_readpage(page, udf_get_block);
197}
198
199static int udf_readpages(struct file *file, struct address_space *mapping,
200 struct list_head *pages, unsigned nr_pages)
201{
202 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
203}
204
205static int udf_write_begin(struct file *file, struct address_space *mapping,
206 loff_t pos, unsigned len, unsigned flags,
207 struct page **pagep, void **fsdata)
208{
209 int ret;
210
211 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
212 if (unlikely(ret))
213 udf_write_failed(mapping, pos + len);
214 return ret;
215}
216
217static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter,
218 loff_t offset)
219{
220 struct file *file = iocb->ki_filp;
221 struct address_space *mapping = file->f_mapping;
222 struct inode *inode = mapping->host;
223 size_t count = iov_iter_count(iter);
224 ssize_t ret;
225
226 ret = blockdev_direct_IO(iocb, inode, iter, offset, udf_get_block);
227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228 udf_write_failed(mapping, offset + count);
229 return ret;
230}
231
232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233{
234 return generic_block_bmap(mapping, block, udf_get_block);
235}
236
237const struct address_space_operations udf_aops = {
238 .readpage = udf_readpage,
239 .readpages = udf_readpages,
240 .writepage = udf_writepage,
241 .writepages = udf_writepages,
242 .write_begin = udf_write_begin,
243 .write_end = generic_write_end,
244 .direct_IO = udf_direct_IO,
245 .bmap = udf_bmap,
246};
247
248/*
249 * Expand file stored in ICB to a normal one-block-file
250 *
251 * This function requires i_data_sem for writing and releases it.
252 * This function requires i_mutex held
253 */
254int udf_expand_file_adinicb(struct inode *inode)
255{
256 struct page *page;
257 char *kaddr;
258 struct udf_inode_info *iinfo = UDF_I(inode);
259 int err;
260 struct writeback_control udf_wbc = {
261 .sync_mode = WB_SYNC_NONE,
262 .nr_to_write = 1,
263 };
264
265 WARN_ON_ONCE(!inode_is_locked(inode));
266 if (!iinfo->i_lenAlloc) {
267 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
268 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
269 else
270 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
271 /* from now on we have normal address_space methods */
272 inode->i_data.a_ops = &udf_aops;
273 up_write(&iinfo->i_data_sem);
274 mark_inode_dirty(inode);
275 return 0;
276 }
277 /*
278 * Release i_data_sem so that we can lock a page - page lock ranks
279 * above i_data_sem. i_mutex still protects us against file changes.
280 */
281 up_write(&iinfo->i_data_sem);
282
283 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
284 if (!page)
285 return -ENOMEM;
286
287 if (!PageUptodate(page)) {
288 kaddr = kmap(page);
289 memset(kaddr + iinfo->i_lenAlloc, 0x00,
290 PAGE_SIZE - iinfo->i_lenAlloc);
291 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
292 iinfo->i_lenAlloc);
293 flush_dcache_page(page);
294 SetPageUptodate(page);
295 kunmap(page);
296 }
297 down_write(&iinfo->i_data_sem);
298 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
299 iinfo->i_lenAlloc);
300 iinfo->i_lenAlloc = 0;
301 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
302 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
303 else
304 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
305 /* from now on we have normal address_space methods */
306 inode->i_data.a_ops = &udf_aops;
307 up_write(&iinfo->i_data_sem);
308 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
309 if (err) {
310 /* Restore everything back so that we don't lose data... */
311 lock_page(page);
312 kaddr = kmap(page);
313 down_write(&iinfo->i_data_sem);
314 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
315 inode->i_size);
316 kunmap(page);
317 unlock_page(page);
318 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
319 inode->i_data.a_ops = &udf_adinicb_aops;
320 up_write(&iinfo->i_data_sem);
321 }
322 put_page(page);
323 mark_inode_dirty(inode);
324
325 return err;
326}
327
328struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
329 int *err)
330{
331 int newblock;
332 struct buffer_head *dbh = NULL;
333 struct kernel_lb_addr eloc;
334 uint8_t alloctype;
335 struct extent_position epos;
336
337 struct udf_fileident_bh sfibh, dfibh;
338 loff_t f_pos = udf_ext0_offset(inode);
339 int size = udf_ext0_offset(inode) + inode->i_size;
340 struct fileIdentDesc cfi, *sfi, *dfi;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342
343 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
344 alloctype = ICBTAG_FLAG_AD_SHORT;
345 else
346 alloctype = ICBTAG_FLAG_AD_LONG;
347
348 if (!inode->i_size) {
349 iinfo->i_alloc_type = alloctype;
350 mark_inode_dirty(inode);
351 return NULL;
352 }
353
354 /* alloc block, and copy data to it */
355 *block = udf_new_block(inode->i_sb, inode,
356 iinfo->i_location.partitionReferenceNum,
357 iinfo->i_location.logicalBlockNum, err);
358 if (!(*block))
359 return NULL;
360 newblock = udf_get_pblock(inode->i_sb, *block,
361 iinfo->i_location.partitionReferenceNum,
362 0);
363 if (!newblock)
364 return NULL;
365 dbh = udf_tgetblk(inode->i_sb, newblock);
366 if (!dbh)
367 return NULL;
368 lock_buffer(dbh);
369 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
370 set_buffer_uptodate(dbh);
371 unlock_buffer(dbh);
372 mark_buffer_dirty_inode(dbh, inode);
373
374 sfibh.soffset = sfibh.eoffset =
375 f_pos & (inode->i_sb->s_blocksize - 1);
376 sfibh.sbh = sfibh.ebh = NULL;
377 dfibh.soffset = dfibh.eoffset = 0;
378 dfibh.sbh = dfibh.ebh = dbh;
379 while (f_pos < size) {
380 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
381 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
382 NULL, NULL, NULL);
383 if (!sfi) {
384 brelse(dbh);
385 return NULL;
386 }
387 iinfo->i_alloc_type = alloctype;
388 sfi->descTag.tagLocation = cpu_to_le32(*block);
389 dfibh.soffset = dfibh.eoffset;
390 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
391 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
392 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
393 sfi->fileIdent +
394 le16_to_cpu(sfi->lengthOfImpUse))) {
395 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
396 brelse(dbh);
397 return NULL;
398 }
399 }
400 mark_buffer_dirty_inode(dbh, inode);
401
402 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
403 iinfo->i_lenAlloc);
404 iinfo->i_lenAlloc = 0;
405 eloc.logicalBlockNum = *block;
406 eloc.partitionReferenceNum =
407 iinfo->i_location.partitionReferenceNum;
408 iinfo->i_lenExtents = inode->i_size;
409 epos.bh = NULL;
410 epos.block = iinfo->i_location;
411 epos.offset = udf_file_entry_alloc_offset(inode);
412 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
413 /* UniqueID stuff */
414
415 brelse(epos.bh);
416 mark_inode_dirty(inode);
417 return dbh;
418}
419
420static int udf_get_block(struct inode *inode, sector_t block,
421 struct buffer_head *bh_result, int create)
422{
423 int err, new;
424 sector_t phys = 0;
425 struct udf_inode_info *iinfo;
426
427 if (!create) {
428 phys = udf_block_map(inode, block);
429 if (phys)
430 map_bh(bh_result, inode->i_sb, phys);
431 return 0;
432 }
433
434 err = -EIO;
435 new = 0;
436 iinfo = UDF_I(inode);
437
438 down_write(&iinfo->i_data_sem);
439 if (block == iinfo->i_next_alloc_block + 1) {
440 iinfo->i_next_alloc_block++;
441 iinfo->i_next_alloc_goal++;
442 }
443
444 udf_clear_extent_cache(inode);
445 phys = inode_getblk(inode, block, &err, &new);
446 if (!phys)
447 goto abort;
448
449 if (new)
450 set_buffer_new(bh_result);
451 map_bh(bh_result, inode->i_sb, phys);
452
453abort:
454 up_write(&iinfo->i_data_sem);
455 return err;
456}
457
458static struct buffer_head *udf_getblk(struct inode *inode, long block,
459 int create, int *err)
460{
461 struct buffer_head *bh;
462 struct buffer_head dummy;
463
464 dummy.b_state = 0;
465 dummy.b_blocknr = -1000;
466 *err = udf_get_block(inode, block, &dummy, create);
467 if (!*err && buffer_mapped(&dummy)) {
468 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
469 if (buffer_new(&dummy)) {
470 lock_buffer(bh);
471 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
472 set_buffer_uptodate(bh);
473 unlock_buffer(bh);
474 mark_buffer_dirty_inode(bh, inode);
475 }
476 return bh;
477 }
478
479 return NULL;
480}
481
482/* Extend the file by 'blocks' blocks, return the number of extents added */
483static int udf_do_extend_file(struct inode *inode,
484 struct extent_position *last_pos,
485 struct kernel_long_ad *last_ext,
486 sector_t blocks)
487{
488 sector_t add;
489 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
490 struct super_block *sb = inode->i_sb;
491 struct kernel_lb_addr prealloc_loc = {};
492 int prealloc_len = 0;
493 struct udf_inode_info *iinfo;
494 int err;
495
496 /* The previous extent is fake and we should not extend by anything
497 * - there's nothing to do... */
498 if (!blocks && fake)
499 return 0;
500
501 iinfo = UDF_I(inode);
502 /* Round the last extent up to a multiple of block size */
503 if (last_ext->extLength & (sb->s_blocksize - 1)) {
504 last_ext->extLength =
505 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
506 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
507 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
508 iinfo->i_lenExtents =
509 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
510 ~(sb->s_blocksize - 1);
511 }
512
513 /* Last extent are just preallocated blocks? */
514 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
515 EXT_NOT_RECORDED_ALLOCATED) {
516 /* Save the extent so that we can reattach it to the end */
517 prealloc_loc = last_ext->extLocation;
518 prealloc_len = last_ext->extLength;
519 /* Mark the extent as a hole */
520 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
522 last_ext->extLocation.logicalBlockNum = 0;
523 last_ext->extLocation.partitionReferenceNum = 0;
524 }
525
526 /* Can we merge with the previous extent? */
527 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
528 EXT_NOT_RECORDED_NOT_ALLOCATED) {
529 add = ((1 << 30) - sb->s_blocksize -
530 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
531 sb->s_blocksize_bits;
532 if (add > blocks)
533 add = blocks;
534 blocks -= add;
535 last_ext->extLength += add << sb->s_blocksize_bits;
536 }
537
538 if (fake) {
539 udf_add_aext(inode, last_pos, &last_ext->extLocation,
540 last_ext->extLength, 1);
541 count++;
542 } else {
543 struct kernel_lb_addr tmploc;
544 uint32_t tmplen;
545
546 udf_write_aext(inode, last_pos, &last_ext->extLocation,
547 last_ext->extLength, 1);
548 /*
549 * We've rewritten the last extent but there may be empty
550 * indirect extent after it - enter it.
551 */
552 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
553 }
554
555 /* Managed to do everything necessary? */
556 if (!blocks)
557 goto out;
558
559 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
560 last_ext->extLocation.logicalBlockNum = 0;
561 last_ext->extLocation.partitionReferenceNum = 0;
562 add = (1 << (30-sb->s_blocksize_bits)) - 1;
563 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
564 (add << sb->s_blocksize_bits);
565
566 /* Create enough extents to cover the whole hole */
567 while (blocks > add) {
568 blocks -= add;
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
571 if (err)
572 return err;
573 count++;
574 }
575 if (blocks) {
576 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
577 (blocks << sb->s_blocksize_bits);
578 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
579 last_ext->extLength, 1);
580 if (err)
581 return err;
582 count++;
583 }
584
585out:
586 /* Do we have some preallocated blocks saved? */
587 if (prealloc_len) {
588 err = udf_add_aext(inode, last_pos, &prealloc_loc,
589 prealloc_len, 1);
590 if (err)
591 return err;
592 last_ext->extLocation = prealloc_loc;
593 last_ext->extLength = prealloc_len;
594 count++;
595 }
596
597 /* last_pos should point to the last written extent... */
598 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
599 last_pos->offset -= sizeof(struct short_ad);
600 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
601 last_pos->offset -= sizeof(struct long_ad);
602 else
603 return -EIO;
604
605 return count;
606}
607
608static int udf_extend_file(struct inode *inode, loff_t newsize)
609{
610
611 struct extent_position epos;
612 struct kernel_lb_addr eloc;
613 uint32_t elen;
614 int8_t etype;
615 struct super_block *sb = inode->i_sb;
616 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
617 int adsize;
618 struct udf_inode_info *iinfo = UDF_I(inode);
619 struct kernel_long_ad extent;
620 int err;
621
622 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
623 adsize = sizeof(struct short_ad);
624 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
625 adsize = sizeof(struct long_ad);
626 else
627 BUG();
628
629 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
630
631 /* File has extent covering the new size (could happen when extending
632 * inside a block)? */
633 if (etype != -1)
634 return 0;
635 if (newsize & (sb->s_blocksize - 1))
636 offset++;
637 /* Extended file just to the boundary of the last file block? */
638 if (offset == 0)
639 return 0;
640
641 /* Truncate is extending the file by 'offset' blocks */
642 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
643 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
644 /* File has no extents at all or has empty last
645 * indirect extent! Create a fake extent... */
646 extent.extLocation.logicalBlockNum = 0;
647 extent.extLocation.partitionReferenceNum = 0;
648 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
649 } else {
650 epos.offset -= adsize;
651 etype = udf_next_aext(inode, &epos, &extent.extLocation,
652 &extent.extLength, 0);
653 extent.extLength |= etype << 30;
654 }
655 err = udf_do_extend_file(inode, &epos, &extent, offset);
656 if (err < 0)
657 goto out;
658 err = 0;
659 iinfo->i_lenExtents = newsize;
660out:
661 brelse(epos.bh);
662 return err;
663}
664
665static sector_t inode_getblk(struct inode *inode, sector_t block,
666 int *err, int *new)
667{
668 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
669 struct extent_position prev_epos, cur_epos, next_epos;
670 int count = 0, startnum = 0, endnum = 0;
671 uint32_t elen = 0, tmpelen;
672 struct kernel_lb_addr eloc, tmpeloc;
673 int c = 1;
674 loff_t lbcount = 0, b_off = 0;
675 uint32_t newblocknum, newblock;
676 sector_t offset = 0;
677 int8_t etype;
678 struct udf_inode_info *iinfo = UDF_I(inode);
679 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
680 int lastblock = 0;
681 bool isBeyondEOF;
682
683 *err = 0;
684 *new = 0;
685 prev_epos.offset = udf_file_entry_alloc_offset(inode);
686 prev_epos.block = iinfo->i_location;
687 prev_epos.bh = NULL;
688 cur_epos = next_epos = prev_epos;
689 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
690
691 /* find the extent which contains the block we are looking for.
692 alternate between laarr[0] and laarr[1] for locations of the
693 current extent, and the previous extent */
694 do {
695 if (prev_epos.bh != cur_epos.bh) {
696 brelse(prev_epos.bh);
697 get_bh(cur_epos.bh);
698 prev_epos.bh = cur_epos.bh;
699 }
700 if (cur_epos.bh != next_epos.bh) {
701 brelse(cur_epos.bh);
702 get_bh(next_epos.bh);
703 cur_epos.bh = next_epos.bh;
704 }
705
706 lbcount += elen;
707
708 prev_epos.block = cur_epos.block;
709 cur_epos.block = next_epos.block;
710
711 prev_epos.offset = cur_epos.offset;
712 cur_epos.offset = next_epos.offset;
713
714 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
715 if (etype == -1)
716 break;
717
718 c = !c;
719
720 laarr[c].extLength = (etype << 30) | elen;
721 laarr[c].extLocation = eloc;
722
723 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
724 pgoal = eloc.logicalBlockNum +
725 ((elen + inode->i_sb->s_blocksize - 1) >>
726 inode->i_sb->s_blocksize_bits);
727
728 count++;
729 } while (lbcount + elen <= b_off);
730
731 b_off -= lbcount;
732 offset = b_off >> inode->i_sb->s_blocksize_bits;
733 /*
734 * Move prev_epos and cur_epos into indirect extent if we are at
735 * the pointer to it
736 */
737 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
738 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
739
740 /* if the extent is allocated and recorded, return the block
741 if the extent is not a multiple of the blocksize, round up */
742
743 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
744 if (elen & (inode->i_sb->s_blocksize - 1)) {
745 elen = EXT_RECORDED_ALLOCATED |
746 ((elen + inode->i_sb->s_blocksize - 1) &
747 ~(inode->i_sb->s_blocksize - 1));
748 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
749 }
750 brelse(prev_epos.bh);
751 brelse(cur_epos.bh);
752 brelse(next_epos.bh);
753 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
754 return newblock;
755 }
756
757 /* Are we beyond EOF? */
758 if (etype == -1) {
759 int ret;
760 isBeyondEOF = true;
761 if (count) {
762 if (c)
763 laarr[0] = laarr[1];
764 startnum = 1;
765 } else {
766 /* Create a fake extent when there's not one */
767 memset(&laarr[0].extLocation, 0x00,
768 sizeof(struct kernel_lb_addr));
769 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
770 /* Will udf_do_extend_file() create real extent from
771 a fake one? */
772 startnum = (offset > 0);
773 }
774 /* Create extents for the hole between EOF and offset */
775 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
776 if (ret < 0) {
777 brelse(prev_epos.bh);
778 brelse(cur_epos.bh);
779 brelse(next_epos.bh);
780 *err = ret;
781 return 0;
782 }
783 c = 0;
784 offset = 0;
785 count += ret;
786 /* We are not covered by a preallocated extent? */
787 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
788 EXT_NOT_RECORDED_ALLOCATED) {
789 /* Is there any real extent? - otherwise we overwrite
790 * the fake one... */
791 if (count)
792 c = !c;
793 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
794 inode->i_sb->s_blocksize;
795 memset(&laarr[c].extLocation, 0x00,
796 sizeof(struct kernel_lb_addr));
797 count++;
798 }
799 endnum = c + 1;
800 lastblock = 1;
801 } else {
802 isBeyondEOF = false;
803 endnum = startnum = ((count > 2) ? 2 : count);
804
805 /* if the current extent is in position 0,
806 swap it with the previous */
807 if (!c && count != 1) {
808 laarr[2] = laarr[0];
809 laarr[0] = laarr[1];
810 laarr[1] = laarr[2];
811 c = 1;
812 }
813
814 /* if the current block is located in an extent,
815 read the next extent */
816 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
817 if (etype != -1) {
818 laarr[c + 1].extLength = (etype << 30) | elen;
819 laarr[c + 1].extLocation = eloc;
820 count++;
821 startnum++;
822 endnum++;
823 } else
824 lastblock = 1;
825 }
826
827 /* if the current extent is not recorded but allocated, get the
828 * block in the extent corresponding to the requested block */
829 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
830 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
831 else { /* otherwise, allocate a new block */
832 if (iinfo->i_next_alloc_block == block)
833 goal = iinfo->i_next_alloc_goal;
834
835 if (!goal) {
836 if (!(goal = pgoal)) /* XXX: what was intended here? */
837 goal = iinfo->i_location.logicalBlockNum + 1;
838 }
839
840 newblocknum = udf_new_block(inode->i_sb, inode,
841 iinfo->i_location.partitionReferenceNum,
842 goal, err);
843 if (!newblocknum) {
844 brelse(prev_epos.bh);
845 brelse(cur_epos.bh);
846 brelse(next_epos.bh);
847 *err = -ENOSPC;
848 return 0;
849 }
850 if (isBeyondEOF)
851 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
852 }
853
854 /* if the extent the requsted block is located in contains multiple
855 * blocks, split the extent into at most three extents. blocks prior
856 * to requested block, requested block, and blocks after requested
857 * block */
858 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
859
860#ifdef UDF_PREALLOCATE
861 /* We preallocate blocks only for regular files. It also makes sense
862 * for directories but there's a problem when to drop the
863 * preallocation. We might use some delayed work for that but I feel
864 * it's overengineering for a filesystem like UDF. */
865 if (S_ISREG(inode->i_mode))
866 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
867#endif
868
869 /* merge any continuous blocks in laarr */
870 udf_merge_extents(inode, laarr, &endnum);
871
872 /* write back the new extents, inserting new extents if the new number
873 * of extents is greater than the old number, and deleting extents if
874 * the new number of extents is less than the old number */
875 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
876
877 brelse(prev_epos.bh);
878 brelse(cur_epos.bh);
879 brelse(next_epos.bh);
880
881 newblock = udf_get_pblock(inode->i_sb, newblocknum,
882 iinfo->i_location.partitionReferenceNum, 0);
883 if (!newblock) {
884 *err = -EIO;
885 return 0;
886 }
887 *new = 1;
888 iinfo->i_next_alloc_block = block;
889 iinfo->i_next_alloc_goal = newblocknum;
890 inode->i_ctime = current_fs_time(inode->i_sb);
891
892 if (IS_SYNC(inode))
893 udf_sync_inode(inode);
894 else
895 mark_inode_dirty(inode);
896
897 return newblock;
898}
899
900static void udf_split_extents(struct inode *inode, int *c, int offset,
901 int newblocknum,
902 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
903 int *endnum)
904{
905 unsigned long blocksize = inode->i_sb->s_blocksize;
906 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
907
908 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
909 (laarr[*c].extLength >> 30) ==
910 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
911 int curr = *c;
912 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
913 blocksize - 1) >> blocksize_bits;
914 int8_t etype = (laarr[curr].extLength >> 30);
915
916 if (blen == 1)
917 ;
918 else if (!offset || blen == offset + 1) {
919 laarr[curr + 2] = laarr[curr + 1];
920 laarr[curr + 1] = laarr[curr];
921 } else {
922 laarr[curr + 3] = laarr[curr + 1];
923 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
924 }
925
926 if (offset) {
927 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
928 udf_free_blocks(inode->i_sb, inode,
929 &laarr[curr].extLocation,
930 0, offset);
931 laarr[curr].extLength =
932 EXT_NOT_RECORDED_NOT_ALLOCATED |
933 (offset << blocksize_bits);
934 laarr[curr].extLocation.logicalBlockNum = 0;
935 laarr[curr].extLocation.
936 partitionReferenceNum = 0;
937 } else
938 laarr[curr].extLength = (etype << 30) |
939 (offset << blocksize_bits);
940 curr++;
941 (*c)++;
942 (*endnum)++;
943 }
944
945 laarr[curr].extLocation.logicalBlockNum = newblocknum;
946 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
947 laarr[curr].extLocation.partitionReferenceNum =
948 UDF_I(inode)->i_location.partitionReferenceNum;
949 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
950 blocksize;
951 curr++;
952
953 if (blen != offset + 1) {
954 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
955 laarr[curr].extLocation.logicalBlockNum +=
956 offset + 1;
957 laarr[curr].extLength = (etype << 30) |
958 ((blen - (offset + 1)) << blocksize_bits);
959 curr++;
960 (*endnum)++;
961 }
962 }
963}
964
965static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
966 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
967 int *endnum)
968{
969 int start, length = 0, currlength = 0, i;
970
971 if (*endnum >= (c + 1)) {
972 if (!lastblock)
973 return;
974 else
975 start = c;
976 } else {
977 if ((laarr[c + 1].extLength >> 30) ==
978 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
979 start = c + 1;
980 length = currlength =
981 (((laarr[c + 1].extLength &
982 UDF_EXTENT_LENGTH_MASK) +
983 inode->i_sb->s_blocksize - 1) >>
984 inode->i_sb->s_blocksize_bits);
985 } else
986 start = c;
987 }
988
989 for (i = start + 1; i <= *endnum; i++) {
990 if (i == *endnum) {
991 if (lastblock)
992 length += UDF_DEFAULT_PREALLOC_BLOCKS;
993 } else if ((laarr[i].extLength >> 30) ==
994 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
995 length += (((laarr[i].extLength &
996 UDF_EXTENT_LENGTH_MASK) +
997 inode->i_sb->s_blocksize - 1) >>
998 inode->i_sb->s_blocksize_bits);
999 } else
1000 break;
1001 }
1002
1003 if (length) {
1004 int next = laarr[start].extLocation.logicalBlockNum +
1005 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1006 inode->i_sb->s_blocksize - 1) >>
1007 inode->i_sb->s_blocksize_bits);
1008 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1009 laarr[start].extLocation.partitionReferenceNum,
1010 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1011 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1012 currlength);
1013 if (numalloc) {
1014 if (start == (c + 1))
1015 laarr[start].extLength +=
1016 (numalloc <<
1017 inode->i_sb->s_blocksize_bits);
1018 else {
1019 memmove(&laarr[c + 2], &laarr[c + 1],
1020 sizeof(struct long_ad) * (*endnum - (c + 1)));
1021 (*endnum)++;
1022 laarr[c + 1].extLocation.logicalBlockNum = next;
1023 laarr[c + 1].extLocation.partitionReferenceNum =
1024 laarr[c].extLocation.
1025 partitionReferenceNum;
1026 laarr[c + 1].extLength =
1027 EXT_NOT_RECORDED_ALLOCATED |
1028 (numalloc <<
1029 inode->i_sb->s_blocksize_bits);
1030 start = c + 1;
1031 }
1032
1033 for (i = start + 1; numalloc && i < *endnum; i++) {
1034 int elen = ((laarr[i].extLength &
1035 UDF_EXTENT_LENGTH_MASK) +
1036 inode->i_sb->s_blocksize - 1) >>
1037 inode->i_sb->s_blocksize_bits;
1038
1039 if (elen > numalloc) {
1040 laarr[i].extLength -=
1041 (numalloc <<
1042 inode->i_sb->s_blocksize_bits);
1043 numalloc = 0;
1044 } else {
1045 numalloc -= elen;
1046 if (*endnum > (i + 1))
1047 memmove(&laarr[i],
1048 &laarr[i + 1],
1049 sizeof(struct long_ad) *
1050 (*endnum - (i + 1)));
1051 i--;
1052 (*endnum)--;
1053 }
1054 }
1055 UDF_I(inode)->i_lenExtents +=
1056 numalloc << inode->i_sb->s_blocksize_bits;
1057 }
1058 }
1059}
1060
1061static void udf_merge_extents(struct inode *inode,
1062 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1063 int *endnum)
1064{
1065 int i;
1066 unsigned long blocksize = inode->i_sb->s_blocksize;
1067 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1068
1069 for (i = 0; i < (*endnum - 1); i++) {
1070 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1071 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1072
1073 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1074 (((li->extLength >> 30) ==
1075 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1076 ((lip1->extLocation.logicalBlockNum -
1077 li->extLocation.logicalBlockNum) ==
1078 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1079 blocksize - 1) >> blocksize_bits)))) {
1080
1081 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1082 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1083 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1084 lip1->extLength = (lip1->extLength -
1085 (li->extLength &
1086 UDF_EXTENT_LENGTH_MASK) +
1087 UDF_EXTENT_LENGTH_MASK) &
1088 ~(blocksize - 1);
1089 li->extLength = (li->extLength &
1090 UDF_EXTENT_FLAG_MASK) +
1091 (UDF_EXTENT_LENGTH_MASK + 1) -
1092 blocksize;
1093 lip1->extLocation.logicalBlockNum =
1094 li->extLocation.logicalBlockNum +
1095 ((li->extLength &
1096 UDF_EXTENT_LENGTH_MASK) >>
1097 blocksize_bits);
1098 } else {
1099 li->extLength = lip1->extLength +
1100 (((li->extLength &
1101 UDF_EXTENT_LENGTH_MASK) +
1102 blocksize - 1) & ~(blocksize - 1));
1103 if (*endnum > (i + 2))
1104 memmove(&laarr[i + 1], &laarr[i + 2],
1105 sizeof(struct long_ad) *
1106 (*endnum - (i + 2)));
1107 i--;
1108 (*endnum)--;
1109 }
1110 } else if (((li->extLength >> 30) ==
1111 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1112 ((lip1->extLength >> 30) ==
1113 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1114 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1115 ((li->extLength &
1116 UDF_EXTENT_LENGTH_MASK) +
1117 blocksize - 1) >> blocksize_bits);
1118 li->extLocation.logicalBlockNum = 0;
1119 li->extLocation.partitionReferenceNum = 0;
1120
1121 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1122 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1123 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1124 lip1->extLength = (lip1->extLength -
1125 (li->extLength &
1126 UDF_EXTENT_LENGTH_MASK) +
1127 UDF_EXTENT_LENGTH_MASK) &
1128 ~(blocksize - 1);
1129 li->extLength = (li->extLength &
1130 UDF_EXTENT_FLAG_MASK) +
1131 (UDF_EXTENT_LENGTH_MASK + 1) -
1132 blocksize;
1133 } else {
1134 li->extLength = lip1->extLength +
1135 (((li->extLength &
1136 UDF_EXTENT_LENGTH_MASK) +
1137 blocksize - 1) & ~(blocksize - 1));
1138 if (*endnum > (i + 2))
1139 memmove(&laarr[i + 1], &laarr[i + 2],
1140 sizeof(struct long_ad) *
1141 (*endnum - (i + 2)));
1142 i--;
1143 (*endnum)--;
1144 }
1145 } else if ((li->extLength >> 30) ==
1146 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1147 udf_free_blocks(inode->i_sb, inode,
1148 &li->extLocation, 0,
1149 ((li->extLength &
1150 UDF_EXTENT_LENGTH_MASK) +
1151 blocksize - 1) >> blocksize_bits);
1152 li->extLocation.logicalBlockNum = 0;
1153 li->extLocation.partitionReferenceNum = 0;
1154 li->extLength = (li->extLength &
1155 UDF_EXTENT_LENGTH_MASK) |
1156 EXT_NOT_RECORDED_NOT_ALLOCATED;
1157 }
1158 }
1159}
1160
1161static void udf_update_extents(struct inode *inode,
1162 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1163 int startnum, int endnum,
1164 struct extent_position *epos)
1165{
1166 int start = 0, i;
1167 struct kernel_lb_addr tmploc;
1168 uint32_t tmplen;
1169
1170 if (startnum > endnum) {
1171 for (i = 0; i < (startnum - endnum); i++)
1172 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1173 laarr[i].extLength);
1174 } else if (startnum < endnum) {
1175 for (i = 0; i < (endnum - startnum); i++) {
1176 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1177 laarr[i].extLength);
1178 udf_next_aext(inode, epos, &laarr[i].extLocation,
1179 &laarr[i].extLength, 1);
1180 start++;
1181 }
1182 }
1183
1184 for (i = start; i < endnum; i++) {
1185 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1186 udf_write_aext(inode, epos, &laarr[i].extLocation,
1187 laarr[i].extLength, 1);
1188 }
1189}
1190
1191struct buffer_head *udf_bread(struct inode *inode, int block,
1192 int create, int *err)
1193{
1194 struct buffer_head *bh = NULL;
1195
1196 bh = udf_getblk(inode, block, create, err);
1197 if (!bh)
1198 return NULL;
1199
1200 if (buffer_uptodate(bh))
1201 return bh;
1202
1203 ll_rw_block(READ, 1, &bh);
1204
1205 wait_on_buffer(bh);
1206 if (buffer_uptodate(bh))
1207 return bh;
1208
1209 brelse(bh);
1210 *err = -EIO;
1211 return NULL;
1212}
1213
1214int udf_setsize(struct inode *inode, loff_t newsize)
1215{
1216 int err;
1217 struct udf_inode_info *iinfo;
1218 int bsize = 1 << inode->i_blkbits;
1219
1220 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1221 S_ISLNK(inode->i_mode)))
1222 return -EINVAL;
1223 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1224 return -EPERM;
1225
1226 iinfo = UDF_I(inode);
1227 if (newsize > inode->i_size) {
1228 down_write(&iinfo->i_data_sem);
1229 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1230 if (bsize <
1231 (udf_file_entry_alloc_offset(inode) + newsize)) {
1232 err = udf_expand_file_adinicb(inode);
1233 if (err)
1234 return err;
1235 down_write(&iinfo->i_data_sem);
1236 } else {
1237 iinfo->i_lenAlloc = newsize;
1238 goto set_size;
1239 }
1240 }
1241 err = udf_extend_file(inode, newsize);
1242 if (err) {
1243 up_write(&iinfo->i_data_sem);
1244 return err;
1245 }
1246set_size:
1247 truncate_setsize(inode, newsize);
1248 up_write(&iinfo->i_data_sem);
1249 } else {
1250 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1251 down_write(&iinfo->i_data_sem);
1252 udf_clear_extent_cache(inode);
1253 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1254 0x00, bsize - newsize -
1255 udf_file_entry_alloc_offset(inode));
1256 iinfo->i_lenAlloc = newsize;
1257 truncate_setsize(inode, newsize);
1258 up_write(&iinfo->i_data_sem);
1259 goto update_time;
1260 }
1261 err = block_truncate_page(inode->i_mapping, newsize,
1262 udf_get_block);
1263 if (err)
1264 return err;
1265 down_write(&iinfo->i_data_sem);
1266 udf_clear_extent_cache(inode);
1267 truncate_setsize(inode, newsize);
1268 udf_truncate_extents(inode);
1269 up_write(&iinfo->i_data_sem);
1270 }
1271update_time:
1272 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1273 if (IS_SYNC(inode))
1274 udf_sync_inode(inode);
1275 else
1276 mark_inode_dirty(inode);
1277 return 0;
1278}
1279
1280/*
1281 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1282 * arbitrary - just that we hopefully don't limit any real use of rewritten
1283 * inode on write-once media but avoid looping for too long on corrupted media.
1284 */
1285#define UDF_MAX_ICB_NESTING 1024
1286
1287static int udf_read_inode(struct inode *inode, bool hidden_inode)
1288{
1289 struct buffer_head *bh = NULL;
1290 struct fileEntry *fe;
1291 struct extendedFileEntry *efe;
1292 uint16_t ident;
1293 struct udf_inode_info *iinfo = UDF_I(inode);
1294 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1295 struct kernel_lb_addr *iloc = &iinfo->i_location;
1296 unsigned int link_count;
1297 unsigned int indirections = 0;
1298 int bs = inode->i_sb->s_blocksize;
1299 int ret = -EIO;
1300
1301reread:
1302 if (iloc->logicalBlockNum >=
1303 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1304 udf_debug("block=%d, partition=%d out of range\n",
1305 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1306 return -EIO;
1307 }
1308
1309 /*
1310 * Set defaults, but the inode is still incomplete!
1311 * Note: get_new_inode() sets the following on a new inode:
1312 * i_sb = sb
1313 * i_no = ino
1314 * i_flags = sb->s_flags
1315 * i_state = 0
1316 * clean_inode(): zero fills and sets
1317 * i_count = 1
1318 * i_nlink = 1
1319 * i_op = NULL;
1320 */
1321 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1322 if (!bh) {
1323 udf_err(inode->i_sb, "(ino %ld) failed !bh\n", inode->i_ino);
1324 return -EIO;
1325 }
1326
1327 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1328 ident != TAG_IDENT_USE) {
1329 udf_err(inode->i_sb, "(ino %ld) failed ident=%d\n",
1330 inode->i_ino, ident);
1331 goto out;
1332 }
1333
1334 fe = (struct fileEntry *)bh->b_data;
1335 efe = (struct extendedFileEntry *)bh->b_data;
1336
1337 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1338 struct buffer_head *ibh;
1339
1340 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1341 if (ident == TAG_IDENT_IE && ibh) {
1342 struct kernel_lb_addr loc;
1343 struct indirectEntry *ie;
1344
1345 ie = (struct indirectEntry *)ibh->b_data;
1346 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1347
1348 if (ie->indirectICB.extLength) {
1349 brelse(ibh);
1350 memcpy(&iinfo->i_location, &loc,
1351 sizeof(struct kernel_lb_addr));
1352 if (++indirections > UDF_MAX_ICB_NESTING) {
1353 udf_err(inode->i_sb,
1354 "too many ICBs in ICB hierarchy"
1355 " (max %d supported)\n",
1356 UDF_MAX_ICB_NESTING);
1357 goto out;
1358 }
1359 brelse(bh);
1360 goto reread;
1361 }
1362 }
1363 brelse(ibh);
1364 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1365 udf_err(inode->i_sb, "unsupported strategy type: %d\n",
1366 le16_to_cpu(fe->icbTag.strategyType));
1367 goto out;
1368 }
1369 if (fe->icbTag.strategyType == cpu_to_le16(4))
1370 iinfo->i_strat4096 = 0;
1371 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1372 iinfo->i_strat4096 = 1;
1373
1374 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1375 ICBTAG_FLAG_AD_MASK;
1376 iinfo->i_unique = 0;
1377 iinfo->i_lenEAttr = 0;
1378 iinfo->i_lenExtents = 0;
1379 iinfo->i_lenAlloc = 0;
1380 iinfo->i_next_alloc_block = 0;
1381 iinfo->i_next_alloc_goal = 0;
1382 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1383 iinfo->i_efe = 1;
1384 iinfo->i_use = 0;
1385 ret = udf_alloc_i_data(inode, bs -
1386 sizeof(struct extendedFileEntry));
1387 if (ret)
1388 goto out;
1389 memcpy(iinfo->i_ext.i_data,
1390 bh->b_data + sizeof(struct extendedFileEntry),
1391 bs - sizeof(struct extendedFileEntry));
1392 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1393 iinfo->i_efe = 0;
1394 iinfo->i_use = 0;
1395 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1396 if (ret)
1397 goto out;
1398 memcpy(iinfo->i_ext.i_data,
1399 bh->b_data + sizeof(struct fileEntry),
1400 bs - sizeof(struct fileEntry));
1401 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1402 iinfo->i_efe = 0;
1403 iinfo->i_use = 1;
1404 iinfo->i_lenAlloc = le32_to_cpu(
1405 ((struct unallocSpaceEntry *)bh->b_data)->
1406 lengthAllocDescs);
1407 ret = udf_alloc_i_data(inode, bs -
1408 sizeof(struct unallocSpaceEntry));
1409 if (ret)
1410 goto out;
1411 memcpy(iinfo->i_ext.i_data,
1412 bh->b_data + sizeof(struct unallocSpaceEntry),
1413 bs - sizeof(struct unallocSpaceEntry));
1414 return 0;
1415 }
1416
1417 ret = -EIO;
1418 read_lock(&sbi->s_cred_lock);
1419 i_uid_write(inode, le32_to_cpu(fe->uid));
1420 if (!uid_valid(inode->i_uid) ||
1421 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1422 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1423 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1424
1425 i_gid_write(inode, le32_to_cpu(fe->gid));
1426 if (!gid_valid(inode->i_gid) ||
1427 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1428 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1429 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1430
1431 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1432 sbi->s_fmode != UDF_INVALID_MODE)
1433 inode->i_mode = sbi->s_fmode;
1434 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1435 sbi->s_dmode != UDF_INVALID_MODE)
1436 inode->i_mode = sbi->s_dmode;
1437 else
1438 inode->i_mode = udf_convert_permissions(fe);
1439 inode->i_mode &= ~sbi->s_umask;
1440 read_unlock(&sbi->s_cred_lock);
1441
1442 link_count = le16_to_cpu(fe->fileLinkCount);
1443 if (!link_count) {
1444 if (!hidden_inode) {
1445 ret = -ESTALE;
1446 goto out;
1447 }
1448 link_count = 1;
1449 }
1450 set_nlink(inode, link_count);
1451
1452 inode->i_size = le64_to_cpu(fe->informationLength);
1453 iinfo->i_lenExtents = inode->i_size;
1454
1455 if (iinfo->i_efe == 0) {
1456 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1457 (inode->i_sb->s_blocksize_bits - 9);
1458
1459 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1460 inode->i_atime = sbi->s_record_time;
1461
1462 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1463 fe->modificationTime))
1464 inode->i_mtime = sbi->s_record_time;
1465
1466 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1467 inode->i_ctime = sbi->s_record_time;
1468
1469 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1470 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1471 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1472 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1473 } else {
1474 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1475 (inode->i_sb->s_blocksize_bits - 9);
1476
1477 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1478 inode->i_atime = sbi->s_record_time;
1479
1480 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1481 efe->modificationTime))
1482 inode->i_mtime = sbi->s_record_time;
1483
1484 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1485 iinfo->i_crtime = sbi->s_record_time;
1486
1487 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1488 inode->i_ctime = sbi->s_record_time;
1489
1490 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1491 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1492 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1493 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1494 }
1495 inode->i_generation = iinfo->i_unique;
1496
1497 /*
1498 * Sanity check length of allocation descriptors and extended attrs to
1499 * avoid integer overflows
1500 */
1501 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1502 goto out;
1503 /* Now do exact checks */
1504 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1505 goto out;
1506 /* Sanity checks for files in ICB so that we don't get confused later */
1507 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1508 /*
1509 * For file in ICB data is stored in allocation descriptor
1510 * so sizes should match
1511 */
1512 if (iinfo->i_lenAlloc != inode->i_size)
1513 goto out;
1514 /* File in ICB has to fit in there... */
1515 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1516 goto out;
1517 }
1518
1519 switch (fe->icbTag.fileType) {
1520 case ICBTAG_FILE_TYPE_DIRECTORY:
1521 inode->i_op = &udf_dir_inode_operations;
1522 inode->i_fop = &udf_dir_operations;
1523 inode->i_mode |= S_IFDIR;
1524 inc_nlink(inode);
1525 break;
1526 case ICBTAG_FILE_TYPE_REALTIME:
1527 case ICBTAG_FILE_TYPE_REGULAR:
1528 case ICBTAG_FILE_TYPE_UNDEF:
1529 case ICBTAG_FILE_TYPE_VAT20:
1530 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1531 inode->i_data.a_ops = &udf_adinicb_aops;
1532 else
1533 inode->i_data.a_ops = &udf_aops;
1534 inode->i_op = &udf_file_inode_operations;
1535 inode->i_fop = &udf_file_operations;
1536 inode->i_mode |= S_IFREG;
1537 break;
1538 case ICBTAG_FILE_TYPE_BLOCK:
1539 inode->i_mode |= S_IFBLK;
1540 break;
1541 case ICBTAG_FILE_TYPE_CHAR:
1542 inode->i_mode |= S_IFCHR;
1543 break;
1544 case ICBTAG_FILE_TYPE_FIFO:
1545 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1546 break;
1547 case ICBTAG_FILE_TYPE_SOCKET:
1548 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1549 break;
1550 case ICBTAG_FILE_TYPE_SYMLINK:
1551 inode->i_data.a_ops = &udf_symlink_aops;
1552 inode->i_op = &page_symlink_inode_operations;
1553 inode_nohighmem(inode);
1554 inode->i_mode = S_IFLNK | S_IRWXUGO;
1555 break;
1556 case ICBTAG_FILE_TYPE_MAIN:
1557 udf_debug("METADATA FILE-----\n");
1558 break;
1559 case ICBTAG_FILE_TYPE_MIRROR:
1560 udf_debug("METADATA MIRROR FILE-----\n");
1561 break;
1562 case ICBTAG_FILE_TYPE_BITMAP:
1563 udf_debug("METADATA BITMAP FILE-----\n");
1564 break;
1565 default:
1566 udf_err(inode->i_sb, "(ino %ld) failed unknown file type=%d\n",
1567 inode->i_ino, fe->icbTag.fileType);
1568 goto out;
1569 }
1570 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1571 struct deviceSpec *dsea =
1572 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1573 if (dsea) {
1574 init_special_inode(inode, inode->i_mode,
1575 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1576 le32_to_cpu(dsea->minorDeviceIdent)));
1577 /* Developer ID ??? */
1578 } else
1579 goto out;
1580 }
1581 ret = 0;
1582out:
1583 brelse(bh);
1584 return ret;
1585}
1586
1587static int udf_alloc_i_data(struct inode *inode, size_t size)
1588{
1589 struct udf_inode_info *iinfo = UDF_I(inode);
1590 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1591
1592 if (!iinfo->i_ext.i_data) {
1593 udf_err(inode->i_sb, "(ino %ld) no free memory\n",
1594 inode->i_ino);
1595 return -ENOMEM;
1596 }
1597
1598 return 0;
1599}
1600
1601static umode_t udf_convert_permissions(struct fileEntry *fe)
1602{
1603 umode_t mode;
1604 uint32_t permissions;
1605 uint32_t flags;
1606
1607 permissions = le32_to_cpu(fe->permissions);
1608 flags = le16_to_cpu(fe->icbTag.flags);
1609
1610 mode = ((permissions) & S_IRWXO) |
1611 ((permissions >> 2) & S_IRWXG) |
1612 ((permissions >> 4) & S_IRWXU) |
1613 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1614 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1615 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1616
1617 return mode;
1618}
1619
1620int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1621{
1622 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1623}
1624
1625static int udf_sync_inode(struct inode *inode)
1626{
1627 return udf_update_inode(inode, 1);
1628}
1629
1630static int udf_update_inode(struct inode *inode, int do_sync)
1631{
1632 struct buffer_head *bh = NULL;
1633 struct fileEntry *fe;
1634 struct extendedFileEntry *efe;
1635 uint64_t lb_recorded;
1636 uint32_t udfperms;
1637 uint16_t icbflags;
1638 uint16_t crclen;
1639 int err = 0;
1640 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1641 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1642 struct udf_inode_info *iinfo = UDF_I(inode);
1643
1644 bh = udf_tgetblk(inode->i_sb,
1645 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1646 if (!bh) {
1647 udf_debug("getblk failure\n");
1648 return -EIO;
1649 }
1650
1651 lock_buffer(bh);
1652 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1653 fe = (struct fileEntry *)bh->b_data;
1654 efe = (struct extendedFileEntry *)bh->b_data;
1655
1656 if (iinfo->i_use) {
1657 struct unallocSpaceEntry *use =
1658 (struct unallocSpaceEntry *)bh->b_data;
1659
1660 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1661 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1662 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1663 sizeof(struct unallocSpaceEntry));
1664 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1665 crclen = sizeof(struct unallocSpaceEntry);
1666
1667 goto finish;
1668 }
1669
1670 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1671 fe->uid = cpu_to_le32(-1);
1672 else
1673 fe->uid = cpu_to_le32(i_uid_read(inode));
1674
1675 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1676 fe->gid = cpu_to_le32(-1);
1677 else
1678 fe->gid = cpu_to_le32(i_gid_read(inode));
1679
1680 udfperms = ((inode->i_mode & S_IRWXO)) |
1681 ((inode->i_mode & S_IRWXG) << 2) |
1682 ((inode->i_mode & S_IRWXU) << 4);
1683
1684 udfperms |= (le32_to_cpu(fe->permissions) &
1685 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1686 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1687 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1688 fe->permissions = cpu_to_le32(udfperms);
1689
1690 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1691 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1692 else
1693 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1694
1695 fe->informationLength = cpu_to_le64(inode->i_size);
1696
1697 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1698 struct regid *eid;
1699 struct deviceSpec *dsea =
1700 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1701 if (!dsea) {
1702 dsea = (struct deviceSpec *)
1703 udf_add_extendedattr(inode,
1704 sizeof(struct deviceSpec) +
1705 sizeof(struct regid), 12, 0x3);
1706 dsea->attrType = cpu_to_le32(12);
1707 dsea->attrSubtype = 1;
1708 dsea->attrLength = cpu_to_le32(
1709 sizeof(struct deviceSpec) +
1710 sizeof(struct regid));
1711 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1712 }
1713 eid = (struct regid *)dsea->impUse;
1714 memset(eid, 0, sizeof(struct regid));
1715 strcpy(eid->ident, UDF_ID_DEVELOPER);
1716 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1717 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1718 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1719 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1720 }
1721
1722 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1723 lb_recorded = 0; /* No extents => no blocks! */
1724 else
1725 lb_recorded =
1726 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1727 (blocksize_bits - 9);
1728
1729 if (iinfo->i_efe == 0) {
1730 memcpy(bh->b_data + sizeof(struct fileEntry),
1731 iinfo->i_ext.i_data,
1732 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1733 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1734
1735 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1736 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1737 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1738 memset(&(fe->impIdent), 0, sizeof(struct regid));
1739 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1740 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1741 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1742 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1743 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1744 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1745 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1746 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1747 crclen = sizeof(struct fileEntry);
1748 } else {
1749 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1750 iinfo->i_ext.i_data,
1751 inode->i_sb->s_blocksize -
1752 sizeof(struct extendedFileEntry));
1753 efe->objectSize = cpu_to_le64(inode->i_size);
1754 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1755
1756 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1757 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1758 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1759 iinfo->i_crtime = inode->i_atime;
1760
1761 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1762 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1763 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1764 iinfo->i_crtime = inode->i_mtime;
1765
1766 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1767 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1768 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1769 iinfo->i_crtime = inode->i_ctime;
1770
1771 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1772 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1773 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1774 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1775
1776 memset(&(efe->impIdent), 0, sizeof(struct regid));
1777 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1778 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1779 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1780 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1781 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1782 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1783 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1784 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1785 crclen = sizeof(struct extendedFileEntry);
1786 }
1787
1788finish:
1789 if (iinfo->i_strat4096) {
1790 fe->icbTag.strategyType = cpu_to_le16(4096);
1791 fe->icbTag.strategyParameter = cpu_to_le16(1);
1792 fe->icbTag.numEntries = cpu_to_le16(2);
1793 } else {
1794 fe->icbTag.strategyType = cpu_to_le16(4);
1795 fe->icbTag.numEntries = cpu_to_le16(1);
1796 }
1797
1798 if (iinfo->i_use)
1799 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1800 else if (S_ISDIR(inode->i_mode))
1801 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1802 else if (S_ISREG(inode->i_mode))
1803 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1804 else if (S_ISLNK(inode->i_mode))
1805 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1806 else if (S_ISBLK(inode->i_mode))
1807 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1808 else if (S_ISCHR(inode->i_mode))
1809 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1810 else if (S_ISFIFO(inode->i_mode))
1811 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1812 else if (S_ISSOCK(inode->i_mode))
1813 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1814
1815 icbflags = iinfo->i_alloc_type |
1816 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1817 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1818 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1819 (le16_to_cpu(fe->icbTag.flags) &
1820 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1821 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1822
1823 fe->icbTag.flags = cpu_to_le16(icbflags);
1824 if (sbi->s_udfrev >= 0x0200)
1825 fe->descTag.descVersion = cpu_to_le16(3);
1826 else
1827 fe->descTag.descVersion = cpu_to_le16(2);
1828 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1829 fe->descTag.tagLocation = cpu_to_le32(
1830 iinfo->i_location.logicalBlockNum);
1831 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1832 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1833 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1834 crclen));
1835 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1836
1837 set_buffer_uptodate(bh);
1838 unlock_buffer(bh);
1839
1840 /* write the data blocks */
1841 mark_buffer_dirty(bh);
1842 if (do_sync) {
1843 sync_dirty_buffer(bh);
1844 if (buffer_write_io_error(bh)) {
1845 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1846 inode->i_ino);
1847 err = -EIO;
1848 }
1849 }
1850 brelse(bh);
1851
1852 return err;
1853}
1854
1855struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1856 bool hidden_inode)
1857{
1858 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1859 struct inode *inode = iget_locked(sb, block);
1860 int err;
1861
1862 if (!inode)
1863 return ERR_PTR(-ENOMEM);
1864
1865 if (!(inode->i_state & I_NEW))
1866 return inode;
1867
1868 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1869 err = udf_read_inode(inode, hidden_inode);
1870 if (err < 0) {
1871 iget_failed(inode);
1872 return ERR_PTR(err);
1873 }
1874 unlock_new_inode(inode);
1875
1876 return inode;
1877}
1878
1879int udf_setup_indirect_aext(struct inode *inode, int block,
1880 struct extent_position *epos)
1881{
1882 struct super_block *sb = inode->i_sb;
1883 struct buffer_head *bh;
1884 struct allocExtDesc *aed;
1885 struct extent_position nepos;
1886 struct kernel_lb_addr neloc;
1887 int ver, adsize;
1888
1889 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1890 adsize = sizeof(struct short_ad);
1891 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1892 adsize = sizeof(struct long_ad);
1893 else
1894 return -EIO;
1895
1896 neloc.logicalBlockNum = block;
1897 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1898
1899 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1900 if (!bh)
1901 return -EIO;
1902 lock_buffer(bh);
1903 memset(bh->b_data, 0x00, sb->s_blocksize);
1904 set_buffer_uptodate(bh);
1905 unlock_buffer(bh);
1906 mark_buffer_dirty_inode(bh, inode);
1907
1908 aed = (struct allocExtDesc *)(bh->b_data);
1909 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1910 aed->previousAllocExtLocation =
1911 cpu_to_le32(epos->block.logicalBlockNum);
1912 }
1913 aed->lengthAllocDescs = cpu_to_le32(0);
1914 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1915 ver = 3;
1916 else
1917 ver = 2;
1918 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1919 sizeof(struct tag));
1920
1921 nepos.block = neloc;
1922 nepos.offset = sizeof(struct allocExtDesc);
1923 nepos.bh = bh;
1924
1925 /*
1926 * Do we have to copy current last extent to make space for indirect
1927 * one?
1928 */
1929 if (epos->offset + adsize > sb->s_blocksize) {
1930 struct kernel_lb_addr cp_loc;
1931 uint32_t cp_len;
1932 int cp_type;
1933
1934 epos->offset -= adsize;
1935 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1936 cp_len |= ((uint32_t)cp_type) << 30;
1937
1938 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1939 udf_write_aext(inode, epos, &nepos.block,
1940 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1941 } else {
1942 __udf_add_aext(inode, epos, &nepos.block,
1943 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1944 }
1945
1946 brelse(epos->bh);
1947 *epos = nepos;
1948
1949 return 0;
1950}
1951
1952/*
1953 * Append extent at the given position - should be the first free one in inode
1954 * / indirect extent. This function assumes there is enough space in the inode
1955 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1956 */
1957int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1958 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1959{
1960 struct udf_inode_info *iinfo = UDF_I(inode);
1961 struct allocExtDesc *aed;
1962 int adsize;
1963
1964 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1965 adsize = sizeof(struct short_ad);
1966 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1967 adsize = sizeof(struct long_ad);
1968 else
1969 return -EIO;
1970
1971 if (!epos->bh) {
1972 WARN_ON(iinfo->i_lenAlloc !=
1973 epos->offset - udf_file_entry_alloc_offset(inode));
1974 } else {
1975 aed = (struct allocExtDesc *)epos->bh->b_data;
1976 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1977 epos->offset - sizeof(struct allocExtDesc));
1978 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1979 }
1980
1981 udf_write_aext(inode, epos, eloc, elen, inc);
1982
1983 if (!epos->bh) {
1984 iinfo->i_lenAlloc += adsize;
1985 mark_inode_dirty(inode);
1986 } else {
1987 aed = (struct allocExtDesc *)epos->bh->b_data;
1988 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1989 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1990 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1991 udf_update_tag(epos->bh->b_data,
1992 epos->offset + (inc ? 0 : adsize));
1993 else
1994 udf_update_tag(epos->bh->b_data,
1995 sizeof(struct allocExtDesc));
1996 mark_buffer_dirty_inode(epos->bh, inode);
1997 }
1998
1999 return 0;
2000}
2001
2002/*
2003 * Append extent at given position - should be the first free one in inode
2004 * / indirect extent. Takes care of allocating and linking indirect blocks.
2005 */
2006int udf_add_aext(struct inode *inode, struct extent_position *epos,
2007 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2008{
2009 int adsize;
2010 struct super_block *sb = inode->i_sb;
2011
2012 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013 adsize = sizeof(struct short_ad);
2014 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015 adsize = sizeof(struct long_ad);
2016 else
2017 return -EIO;
2018
2019 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2020 int err;
2021 int new_block;
2022
2023 new_block = udf_new_block(sb, NULL,
2024 epos->block.partitionReferenceNum,
2025 epos->block.logicalBlockNum, &err);
2026 if (!new_block)
2027 return -ENOSPC;
2028
2029 err = udf_setup_indirect_aext(inode, new_block, epos);
2030 if (err)
2031 return err;
2032 }
2033
2034 return __udf_add_aext(inode, epos, eloc, elen, inc);
2035}
2036
2037void udf_write_aext(struct inode *inode, struct extent_position *epos,
2038 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2039{
2040 int adsize;
2041 uint8_t *ptr;
2042 struct short_ad *sad;
2043 struct long_ad *lad;
2044 struct udf_inode_info *iinfo = UDF_I(inode);
2045
2046 if (!epos->bh)
2047 ptr = iinfo->i_ext.i_data + epos->offset -
2048 udf_file_entry_alloc_offset(inode) +
2049 iinfo->i_lenEAttr;
2050 else
2051 ptr = epos->bh->b_data + epos->offset;
2052
2053 switch (iinfo->i_alloc_type) {
2054 case ICBTAG_FLAG_AD_SHORT:
2055 sad = (struct short_ad *)ptr;
2056 sad->extLength = cpu_to_le32(elen);
2057 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2058 adsize = sizeof(struct short_ad);
2059 break;
2060 case ICBTAG_FLAG_AD_LONG:
2061 lad = (struct long_ad *)ptr;
2062 lad->extLength = cpu_to_le32(elen);
2063 lad->extLocation = cpu_to_lelb(*eloc);
2064 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2065 adsize = sizeof(struct long_ad);
2066 break;
2067 default:
2068 return;
2069 }
2070
2071 if (epos->bh) {
2072 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2073 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2074 struct allocExtDesc *aed =
2075 (struct allocExtDesc *)epos->bh->b_data;
2076 udf_update_tag(epos->bh->b_data,
2077 le32_to_cpu(aed->lengthAllocDescs) +
2078 sizeof(struct allocExtDesc));
2079 }
2080 mark_buffer_dirty_inode(epos->bh, inode);
2081 } else {
2082 mark_inode_dirty(inode);
2083 }
2084
2085 if (inc)
2086 epos->offset += adsize;
2087}
2088
2089/*
2090 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2091 * someone does some weird stuff.
2092 */
2093#define UDF_MAX_INDIR_EXTS 16
2094
2095int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2096 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2097{
2098 int8_t etype;
2099 unsigned int indirections = 0;
2100
2101 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2102 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2103 int block;
2104
2105 if (++indirections > UDF_MAX_INDIR_EXTS) {
2106 udf_err(inode->i_sb,
2107 "too many indirect extents in inode %lu\n",
2108 inode->i_ino);
2109 return -1;
2110 }
2111
2112 epos->block = *eloc;
2113 epos->offset = sizeof(struct allocExtDesc);
2114 brelse(epos->bh);
2115 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2116 epos->bh = udf_tread(inode->i_sb, block);
2117 if (!epos->bh) {
2118 udf_debug("reading block %d failed!\n", block);
2119 return -1;
2120 }
2121 }
2122
2123 return etype;
2124}
2125
2126int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2127 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2128{
2129 int alen;
2130 int8_t etype;
2131 uint8_t *ptr;
2132 struct short_ad *sad;
2133 struct long_ad *lad;
2134 struct udf_inode_info *iinfo = UDF_I(inode);
2135
2136 if (!epos->bh) {
2137 if (!epos->offset)
2138 epos->offset = udf_file_entry_alloc_offset(inode);
2139 ptr = iinfo->i_ext.i_data + epos->offset -
2140 udf_file_entry_alloc_offset(inode) +
2141 iinfo->i_lenEAttr;
2142 alen = udf_file_entry_alloc_offset(inode) +
2143 iinfo->i_lenAlloc;
2144 } else {
2145 if (!epos->offset)
2146 epos->offset = sizeof(struct allocExtDesc);
2147 ptr = epos->bh->b_data + epos->offset;
2148 alen = sizeof(struct allocExtDesc) +
2149 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2150 lengthAllocDescs);
2151 }
2152
2153 switch (iinfo->i_alloc_type) {
2154 case ICBTAG_FLAG_AD_SHORT:
2155 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2156 if (!sad)
2157 return -1;
2158 etype = le32_to_cpu(sad->extLength) >> 30;
2159 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2160 eloc->partitionReferenceNum =
2161 iinfo->i_location.partitionReferenceNum;
2162 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2163 break;
2164 case ICBTAG_FLAG_AD_LONG:
2165 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2166 if (!lad)
2167 return -1;
2168 etype = le32_to_cpu(lad->extLength) >> 30;
2169 *eloc = lelb_to_cpu(lad->extLocation);
2170 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2171 break;
2172 default:
2173 udf_debug("alloc_type = %d unsupported\n", iinfo->i_alloc_type);
2174 return -1;
2175 }
2176
2177 return etype;
2178}
2179
2180static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2181 struct kernel_lb_addr neloc, uint32_t nelen)
2182{
2183 struct kernel_lb_addr oeloc;
2184 uint32_t oelen;
2185 int8_t etype;
2186
2187 if (epos.bh)
2188 get_bh(epos.bh);
2189
2190 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2191 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2192 neloc = oeloc;
2193 nelen = (etype << 30) | oelen;
2194 }
2195 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2196 brelse(epos.bh);
2197
2198 return (nelen >> 30);
2199}
2200
2201int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2202 struct kernel_lb_addr eloc, uint32_t elen)
2203{
2204 struct extent_position oepos;
2205 int adsize;
2206 int8_t etype;
2207 struct allocExtDesc *aed;
2208 struct udf_inode_info *iinfo;
2209
2210 if (epos.bh) {
2211 get_bh(epos.bh);
2212 get_bh(epos.bh);
2213 }
2214
2215 iinfo = UDF_I(inode);
2216 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2217 adsize = sizeof(struct short_ad);
2218 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2219 adsize = sizeof(struct long_ad);
2220 else
2221 adsize = 0;
2222
2223 oepos = epos;
2224 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2225 return -1;
2226
2227 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2228 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2229 if (oepos.bh != epos.bh) {
2230 oepos.block = epos.block;
2231 brelse(oepos.bh);
2232 get_bh(epos.bh);
2233 oepos.bh = epos.bh;
2234 oepos.offset = epos.offset - adsize;
2235 }
2236 }
2237 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2238 elen = 0;
2239
2240 if (epos.bh != oepos.bh) {
2241 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2242 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2243 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2244 if (!oepos.bh) {
2245 iinfo->i_lenAlloc -= (adsize * 2);
2246 mark_inode_dirty(inode);
2247 } else {
2248 aed = (struct allocExtDesc *)oepos.bh->b_data;
2249 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2250 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2251 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2252 udf_update_tag(oepos.bh->b_data,
2253 oepos.offset - (2 * adsize));
2254 else
2255 udf_update_tag(oepos.bh->b_data,
2256 sizeof(struct allocExtDesc));
2257 mark_buffer_dirty_inode(oepos.bh, inode);
2258 }
2259 } else {
2260 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2261 if (!oepos.bh) {
2262 iinfo->i_lenAlloc -= adsize;
2263 mark_inode_dirty(inode);
2264 } else {
2265 aed = (struct allocExtDesc *)oepos.bh->b_data;
2266 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2267 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2268 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2269 udf_update_tag(oepos.bh->b_data,
2270 epos.offset - adsize);
2271 else
2272 udf_update_tag(oepos.bh->b_data,
2273 sizeof(struct allocExtDesc));
2274 mark_buffer_dirty_inode(oepos.bh, inode);
2275 }
2276 }
2277
2278 brelse(epos.bh);
2279 brelse(oepos.bh);
2280
2281 return (elen >> 30);
2282}
2283
2284int8_t inode_bmap(struct inode *inode, sector_t block,
2285 struct extent_position *pos, struct kernel_lb_addr *eloc,
2286 uint32_t *elen, sector_t *offset)
2287{
2288 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2289 loff_t lbcount = 0, bcount =
2290 (loff_t) block << blocksize_bits;
2291 int8_t etype;
2292 struct udf_inode_info *iinfo;
2293
2294 iinfo = UDF_I(inode);
2295 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2296 pos->offset = 0;
2297 pos->block = iinfo->i_location;
2298 pos->bh = NULL;
2299 }
2300 *elen = 0;
2301 do {
2302 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2303 if (etype == -1) {
2304 *offset = (bcount - lbcount) >> blocksize_bits;
2305 iinfo->i_lenExtents = lbcount;
2306 return -1;
2307 }
2308 lbcount += *elen;
2309 } while (lbcount <= bcount);
2310 /* update extent cache */
2311 udf_update_extent_cache(inode, lbcount - *elen, pos, 1);
2312 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2313
2314 return etype;
2315}
2316
2317long udf_block_map(struct inode *inode, sector_t block)
2318{
2319 struct kernel_lb_addr eloc;
2320 uint32_t elen;
2321 sector_t offset;
2322 struct extent_position epos = {};
2323 int ret;
2324
2325 down_read(&UDF_I(inode)->i_data_sem);
2326
2327 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2328 (EXT_RECORDED_ALLOCATED >> 30))
2329 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2330 else
2331 ret = 0;
2332
2333 up_read(&UDF_I(inode)->i_data_sem);
2334 brelse(epos.bh);
2335
2336 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2337 return udf_fixed_to_variable(ret);
2338 else
2339 return ret;
2340}