Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * inode.c
4 *
5 * PURPOSE
6 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1998 Dave Boynton
10 * (C) 1998-2004 Ben Fennema
11 * (C) 1999-2000 Stelias Computing Inc
12 *
13 * HISTORY
14 *
15 * 10/04/98 dgb Added rudimentary directory functions
16 * 10/07/98 Fully working udf_block_map! It works!
17 * 11/25/98 bmap altered to better support extents
18 * 12/06/98 blf partition support in udf_iget, udf_block_map
19 * and udf_read_inode
20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
21 * block boundaries (which is not actually allowed)
22 * 12/20/98 added support for strategy 4096
23 * 03/07/99 rewrote udf_block_map (again)
24 * New funcs, inode_bmap, udf_next_aext
25 * 04/19/99 Support for writing device EA's for major/minor #
26 */
27
28#include "udfdecl.h"
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/pagemap.h>
32#include <linux/writeback.h>
33#include <linux/slab.h>
34#include <linux/crc-itu-t.h>
35#include <linux/mpage.h>
36#include <linux/uio.h>
37#include <linux/bio.h>
38
39#include "udf_i.h"
40#include "udf_sb.h"
41
42#define EXTENT_MERGE_SIZE 5
43
44#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47
48#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 FE_PERM_O_DELETE)
50
51struct udf_map_rq;
52
53static umode_t udf_convert_permissions(struct fileEntry *);
54static int udf_update_inode(struct inode *, int);
55static int udf_sync_inode(struct inode *inode);
56static int udf_alloc_i_data(struct inode *inode, size_t size);
57static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58static int udf_insert_aext(struct inode *, struct extent_position,
59 struct kernel_lb_addr, uint32_t);
60static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 struct kernel_long_ad *, int *);
62static void udf_prealloc_extents(struct inode *, int, int,
63 struct kernel_long_ad *, int *);
64static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 int, struct extent_position *);
67static int udf_get_block_wb(struct inode *inode, sector_t block,
68 struct buffer_head *bh_result, int create);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93{
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos)
115{
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 iinfo->cached_extent.lstart = estart;
125 switch (iinfo->i_alloc_type) {
126 case ICBTAG_FLAG_AD_SHORT:
127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 break;
129 case ICBTAG_FLAG_AD_LONG:
130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 break;
132 }
133 spin_unlock(&iinfo->i_extent_cache_lock);
134}
135
136void udf_evict_inode(struct inode *inode)
137{
138 struct udf_inode_info *iinfo = UDF_I(inode);
139 int want_delete = 0;
140
141 if (!is_bad_inode(inode)) {
142 if (!inode->i_nlink) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 inode->i_size != iinfo->i_lenExtents) {
149 udf_warn(inode->i_sb,
150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 inode->i_ino, inode->i_mode,
152 (unsigned long long)inode->i_size,
153 (unsigned long long)iinfo->i_lenExtents);
154 }
155 }
156 truncate_inode_pages_final(&inode->i_data);
157 invalidate_inode_buffers(inode);
158 clear_inode(inode);
159 kfree(iinfo->i_data);
160 iinfo->i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182}
183
184static int udf_adinicb_writepage(struct folio *folio,
185 struct writeback_control *wbc, void *data)
186{
187 struct inode *inode = folio->mapping->host;
188 struct udf_inode_info *iinfo = UDF_I(inode);
189
190 BUG_ON(!folio_test_locked(folio));
191 BUG_ON(folio->index != 0);
192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 i_size_read(inode));
194 folio_unlock(folio);
195 mark_inode_dirty(inode);
196
197 return 0;
198}
199
200static int udf_writepages(struct address_space *mapping,
201 struct writeback_control *wbc)
202{
203 struct inode *inode = mapping->host;
204 struct udf_inode_info *iinfo = UDF_I(inode);
205
206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209}
210
211static void udf_adinicb_read_folio(struct folio *folio)
212{
213 struct inode *inode = folio->mapping->host;
214 struct udf_inode_info *iinfo = UDF_I(inode);
215 loff_t isize = i_size_read(inode);
216
217 folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize);
218 folio_mark_uptodate(folio);
219}
220
221static int udf_read_folio(struct file *file, struct folio *folio)
222{
223 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
224
225 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
226 udf_adinicb_read_folio(folio);
227 folio_unlock(folio);
228 return 0;
229 }
230 return mpage_read_folio(folio, udf_get_block);
231}
232
233static void udf_readahead(struct readahead_control *rac)
234{
235 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
236
237 /*
238 * No readahead needed for in-ICB files and udf_get_block() would get
239 * confused for such file anyway.
240 */
241 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
242 return;
243
244 mpage_readahead(rac, udf_get_block);
245}
246
247static int udf_write_begin(struct file *file, struct address_space *mapping,
248 loff_t pos, unsigned len,
249 struct folio **foliop, void **fsdata)
250{
251 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
252 struct folio *folio;
253 int ret;
254
255 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
256 ret = block_write_begin(mapping, pos, len, foliop,
257 udf_get_block);
258 if (unlikely(ret))
259 udf_write_failed(mapping, pos + len);
260 return ret;
261 }
262 if (WARN_ON_ONCE(pos >= PAGE_SIZE))
263 return -EIO;
264 folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN,
265 mapping_gfp_mask(mapping));
266 if (IS_ERR(folio))
267 return PTR_ERR(folio);
268 *foliop = folio;
269 if (!folio_test_uptodate(folio))
270 udf_adinicb_read_folio(folio);
271 return 0;
272}
273
274static int udf_write_end(struct file *file, struct address_space *mapping,
275 loff_t pos, unsigned len, unsigned copied,
276 struct folio *folio, void *fsdata)
277{
278 struct inode *inode = file_inode(file);
279 loff_t last_pos;
280
281 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
282 return generic_write_end(file, mapping, pos, len, copied, folio,
283 fsdata);
284 last_pos = pos + copied;
285 if (last_pos > inode->i_size)
286 i_size_write(inode, last_pos);
287 folio_mark_dirty(folio);
288 folio_unlock(folio);
289 folio_put(folio);
290
291 return copied;
292}
293
294static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
295{
296 struct file *file = iocb->ki_filp;
297 struct address_space *mapping = file->f_mapping;
298 struct inode *inode = mapping->host;
299 size_t count = iov_iter_count(iter);
300 ssize_t ret;
301
302 /* Fallback to buffered IO for in-ICB files */
303 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
304 return 0;
305 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
306 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
307 udf_write_failed(mapping, iocb->ki_pos + count);
308 return ret;
309}
310
311static sector_t udf_bmap(struct address_space *mapping, sector_t block)
312{
313 struct udf_inode_info *iinfo = UDF_I(mapping->host);
314
315 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
316 return -EINVAL;
317 return generic_block_bmap(mapping, block, udf_get_block);
318}
319
320const struct address_space_operations udf_aops = {
321 .dirty_folio = block_dirty_folio,
322 .invalidate_folio = block_invalidate_folio,
323 .read_folio = udf_read_folio,
324 .readahead = udf_readahead,
325 .writepages = udf_writepages,
326 .write_begin = udf_write_begin,
327 .write_end = udf_write_end,
328 .direct_IO = udf_direct_IO,
329 .bmap = udf_bmap,
330 .migrate_folio = buffer_migrate_folio,
331};
332
333/*
334 * Expand file stored in ICB to a normal one-block-file
335 *
336 * This function requires i_mutex held
337 */
338int udf_expand_file_adinicb(struct inode *inode)
339{
340 struct folio *folio;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342 int err;
343
344 WARN_ON_ONCE(!inode_is_locked(inode));
345 if (!iinfo->i_lenAlloc) {
346 down_write(&iinfo->i_data_sem);
347 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
348 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
349 else
350 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
351 up_write(&iinfo->i_data_sem);
352 mark_inode_dirty(inode);
353 return 0;
354 }
355
356 folio = __filemap_get_folio(inode->i_mapping, 0,
357 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
358 if (IS_ERR(folio))
359 return PTR_ERR(folio);
360
361 if (!folio_test_uptodate(folio))
362 udf_adinicb_read_folio(folio);
363 down_write(&iinfo->i_data_sem);
364 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
365 iinfo->i_lenAlloc);
366 iinfo->i_lenAlloc = 0;
367 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
368 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
369 else
370 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
371 folio_mark_dirty(folio);
372 folio_unlock(folio);
373 up_write(&iinfo->i_data_sem);
374 err = filemap_fdatawrite(inode->i_mapping);
375 if (err) {
376 /* Restore everything back so that we don't lose data... */
377 folio_lock(folio);
378 down_write(&iinfo->i_data_sem);
379 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
380 folio, 0, inode->i_size);
381 folio_unlock(folio);
382 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
383 iinfo->i_lenAlloc = inode->i_size;
384 up_write(&iinfo->i_data_sem);
385 }
386 folio_put(folio);
387 mark_inode_dirty(inode);
388
389 return err;
390}
391
392#define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */
393#define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */
394
395#define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */
396#define UDF_BLK_NEW 0x02 /* Block was freshly allocated */
397
398struct udf_map_rq {
399 sector_t lblk;
400 udf_pblk_t pblk;
401 int iflags; /* UDF_MAP_ flags determining behavior */
402 int oflags; /* UDF_BLK_ flags reporting results */
403};
404
405static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
406{
407 int ret;
408 struct udf_inode_info *iinfo = UDF_I(inode);
409
410 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
411 return -EFSCORRUPTED;
412
413 map->oflags = 0;
414 if (!(map->iflags & UDF_MAP_CREATE)) {
415 struct kernel_lb_addr eloc;
416 uint32_t elen;
417 sector_t offset;
418 struct extent_position epos = {};
419 int8_t etype;
420
421 down_read(&iinfo->i_data_sem);
422 ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset,
423 &etype);
424 if (ret < 0)
425 goto out_read;
426 if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
427 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
428 offset);
429 map->oflags |= UDF_BLK_MAPPED;
430 ret = 0;
431 }
432out_read:
433 up_read(&iinfo->i_data_sem);
434 brelse(epos.bh);
435
436 return ret;
437 }
438
439 down_write(&iinfo->i_data_sem);
440 /*
441 * Block beyond EOF and prealloc extents? Just discard preallocation
442 * as it is not useful and complicates things.
443 */
444 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
445 udf_discard_prealloc(inode);
446 udf_clear_extent_cache(inode);
447 ret = inode_getblk(inode, map);
448 up_write(&iinfo->i_data_sem);
449 return ret;
450}
451
452static int __udf_get_block(struct inode *inode, sector_t block,
453 struct buffer_head *bh_result, int flags)
454{
455 int err;
456 struct udf_map_rq map = {
457 .lblk = block,
458 .iflags = flags,
459 };
460
461 err = udf_map_block(inode, &map);
462 if (err < 0)
463 return err;
464 if (map.oflags & UDF_BLK_MAPPED) {
465 map_bh(bh_result, inode->i_sb, map.pblk);
466 if (map.oflags & UDF_BLK_NEW)
467 set_buffer_new(bh_result);
468 }
469 return 0;
470}
471
472int udf_get_block(struct inode *inode, sector_t block,
473 struct buffer_head *bh_result, int create)
474{
475 int flags = create ? UDF_MAP_CREATE : 0;
476
477 /*
478 * We preallocate blocks only for regular files. It also makes sense
479 * for directories but there's a problem when to drop the
480 * preallocation. We might use some delayed work for that but I feel
481 * it's overengineering for a filesystem like UDF.
482 */
483 if (!S_ISREG(inode->i_mode))
484 flags |= UDF_MAP_NOPREALLOC;
485 return __udf_get_block(inode, block, bh_result, flags);
486}
487
488/*
489 * We shouldn't be allocating blocks on page writeback since we allocate them
490 * on page fault. We can spot dirty buffers without allocated blocks though
491 * when truncate expands file. These however don't have valid data so we can
492 * safely ignore them. So never allocate blocks from page writeback.
493 */
494static int udf_get_block_wb(struct inode *inode, sector_t block,
495 struct buffer_head *bh_result, int create)
496{
497 return __udf_get_block(inode, block, bh_result, 0);
498}
499
500/* Extend the file with new blocks totaling 'new_block_bytes',
501 * return the number of extents added
502 */
503static int udf_do_extend_file(struct inode *inode,
504 struct extent_position *last_pos,
505 struct kernel_long_ad *last_ext,
506 loff_t new_block_bytes)
507{
508 uint32_t add;
509 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
510 struct super_block *sb = inode->i_sb;
511 struct udf_inode_info *iinfo;
512 int err;
513
514 /* The previous extent is fake and we should not extend by anything
515 * - there's nothing to do... */
516 if (!new_block_bytes && fake)
517 return 0;
518
519 iinfo = UDF_I(inode);
520 /* Round the last extent up to a multiple of block size */
521 if (last_ext->extLength & (sb->s_blocksize - 1)) {
522 last_ext->extLength =
523 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
524 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
525 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
526 iinfo->i_lenExtents =
527 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
528 ~(sb->s_blocksize - 1);
529 }
530
531 add = 0;
532 /* Can we merge with the previous extent? */
533 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
534 EXT_NOT_RECORDED_NOT_ALLOCATED) {
535 add = (1 << 30) - sb->s_blocksize -
536 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
537 if (add > new_block_bytes)
538 add = new_block_bytes;
539 new_block_bytes -= add;
540 last_ext->extLength += add;
541 }
542
543 if (fake) {
544 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
545 last_ext->extLength, 1);
546 if (err < 0)
547 goto out_err;
548 count++;
549 } else {
550 struct kernel_lb_addr tmploc;
551 uint32_t tmplen;
552 int8_t tmptype;
553
554 udf_write_aext(inode, last_pos, &last_ext->extLocation,
555 last_ext->extLength, 1);
556
557 /*
558 * We've rewritten the last extent. If we are going to add
559 * more extents, we may need to enter possible following
560 * empty indirect extent.
561 */
562 if (new_block_bytes) {
563 err = udf_next_aext(inode, last_pos, &tmploc, &tmplen,
564 &tmptype, 0);
565 if (err < 0)
566 goto out_err;
567 }
568 }
569 iinfo->i_lenExtents += add;
570
571 /* Managed to do everything necessary? */
572 if (!new_block_bytes)
573 goto out;
574
575 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
576 last_ext->extLocation.logicalBlockNum = 0;
577 last_ext->extLocation.partitionReferenceNum = 0;
578 add = (1 << 30) - sb->s_blocksize;
579 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
580
581 /* Create enough extents to cover the whole hole */
582 while (new_block_bytes > add) {
583 new_block_bytes -= add;
584 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
585 last_ext->extLength, 1);
586 if (err)
587 goto out_err;
588 iinfo->i_lenExtents += add;
589 count++;
590 }
591 if (new_block_bytes) {
592 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
593 new_block_bytes;
594 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
595 last_ext->extLength, 1);
596 if (err)
597 goto out_err;
598 iinfo->i_lenExtents += new_block_bytes;
599 count++;
600 }
601
602out:
603 /* last_pos should point to the last written extent... */
604 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
605 last_pos->offset -= sizeof(struct short_ad);
606 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
607 last_pos->offset -= sizeof(struct long_ad);
608 else
609 return -EIO;
610
611 return count;
612out_err:
613 /* Remove extents we've created so far */
614 udf_clear_extent_cache(inode);
615 udf_truncate_extents(inode);
616 return err;
617}
618
619/* Extend the final block of the file to final_block_len bytes */
620static void udf_do_extend_final_block(struct inode *inode,
621 struct extent_position *last_pos,
622 struct kernel_long_ad *last_ext,
623 uint32_t new_elen)
624{
625 uint32_t added_bytes;
626
627 /*
628 * Extent already large enough? It may be already rounded up to block
629 * size...
630 */
631 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
632 return;
633 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
634 last_ext->extLength += added_bytes;
635 UDF_I(inode)->i_lenExtents += added_bytes;
636
637 udf_write_aext(inode, last_pos, &last_ext->extLocation,
638 last_ext->extLength, 1);
639}
640
641static int udf_extend_file(struct inode *inode, loff_t newsize)
642{
643
644 struct extent_position epos;
645 struct kernel_lb_addr eloc;
646 uint32_t elen;
647 int8_t etype;
648 struct super_block *sb = inode->i_sb;
649 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
650 loff_t new_elen;
651 int adsize;
652 struct udf_inode_info *iinfo = UDF_I(inode);
653 struct kernel_long_ad extent;
654 int err = 0;
655 bool within_last_ext;
656
657 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
658 adsize = sizeof(struct short_ad);
659 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
660 adsize = sizeof(struct long_ad);
661 else
662 BUG();
663
664 down_write(&iinfo->i_data_sem);
665 /*
666 * When creating hole in file, just don't bother with preserving
667 * preallocation. It likely won't be very useful anyway.
668 */
669 udf_discard_prealloc(inode);
670
671 err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype);
672 if (err < 0)
673 goto out;
674 within_last_ext = (err == 1);
675 /* We don't expect extents past EOF... */
676 WARN_ON_ONCE(within_last_ext &&
677 elen > ((loff_t)offset + 1) << inode->i_blkbits);
678
679 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
680 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
681 /* File has no extents at all or has empty last
682 * indirect extent! Create a fake extent... */
683 extent.extLocation.logicalBlockNum = 0;
684 extent.extLocation.partitionReferenceNum = 0;
685 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
686 } else {
687 epos.offset -= adsize;
688 err = udf_next_aext(inode, &epos, &extent.extLocation,
689 &extent.extLength, &etype, 0);
690 if (err <= 0)
691 goto out;
692 extent.extLength |= etype << 30;
693 }
694
695 new_elen = ((loff_t)offset << inode->i_blkbits) |
696 (newsize & (sb->s_blocksize - 1));
697
698 /* File has extent covering the new size (could happen when extending
699 * inside a block)?
700 */
701 if (within_last_ext) {
702 /* Extending file within the last file block */
703 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
704 } else {
705 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
706 }
707
708 if (err < 0)
709 goto out;
710 err = 0;
711out:
712 brelse(epos.bh);
713 up_write(&iinfo->i_data_sem);
714 return err;
715}
716
717static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
718{
719 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
720 struct extent_position prev_epos, cur_epos, next_epos;
721 int count = 0, startnum = 0, endnum = 0;
722 uint32_t elen = 0, tmpelen;
723 struct kernel_lb_addr eloc, tmpeloc;
724 int c = 1;
725 loff_t lbcount = 0, b_off = 0;
726 udf_pblk_t newblocknum;
727 sector_t offset = 0;
728 int8_t etype, tmpetype;
729 struct udf_inode_info *iinfo = UDF_I(inode);
730 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
731 int lastblock = 0;
732 bool isBeyondEOF = false;
733 int ret = 0;
734
735 prev_epos.offset = udf_file_entry_alloc_offset(inode);
736 prev_epos.block = iinfo->i_location;
737 prev_epos.bh = NULL;
738 cur_epos = next_epos = prev_epos;
739 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
740
741 /* find the extent which contains the block we are looking for.
742 alternate between laarr[0] and laarr[1] for locations of the
743 current extent, and the previous extent */
744 do {
745 if (prev_epos.bh != cur_epos.bh) {
746 brelse(prev_epos.bh);
747 get_bh(cur_epos.bh);
748 prev_epos.bh = cur_epos.bh;
749 }
750 if (cur_epos.bh != next_epos.bh) {
751 brelse(cur_epos.bh);
752 get_bh(next_epos.bh);
753 cur_epos.bh = next_epos.bh;
754 }
755
756 lbcount += elen;
757
758 prev_epos.block = cur_epos.block;
759 cur_epos.block = next_epos.block;
760
761 prev_epos.offset = cur_epos.offset;
762 cur_epos.offset = next_epos.offset;
763
764 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1);
765 if (ret < 0) {
766 goto out_free;
767 } else if (ret == 0) {
768 isBeyondEOF = true;
769 break;
770 }
771
772 c = !c;
773
774 laarr[c].extLength = (etype << 30) | elen;
775 laarr[c].extLocation = eloc;
776
777 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
778 pgoal = eloc.logicalBlockNum +
779 ((elen + inode->i_sb->s_blocksize - 1) >>
780 inode->i_sb->s_blocksize_bits);
781
782 count++;
783 } while (lbcount + elen <= b_off);
784
785 b_off -= lbcount;
786 offset = b_off >> inode->i_sb->s_blocksize_bits;
787 /*
788 * Move prev_epos and cur_epos into indirect extent if we are at
789 * the pointer to it
790 */
791 ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
792 if (ret < 0)
793 goto out_free;
794 ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
795 if (ret < 0)
796 goto out_free;
797
798 /* if the extent is allocated and recorded, return the block
799 if the extent is not a multiple of the blocksize, round up */
800
801 if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
802 if (elen & (inode->i_sb->s_blocksize - 1)) {
803 elen = EXT_RECORDED_ALLOCATED |
804 ((elen + inode->i_sb->s_blocksize - 1) &
805 ~(inode->i_sb->s_blocksize - 1));
806 iinfo->i_lenExtents =
807 ALIGN(iinfo->i_lenExtents,
808 inode->i_sb->s_blocksize);
809 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
810 }
811 map->oflags = UDF_BLK_MAPPED;
812 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
813 goto out_free;
814 }
815
816 /* Are we beyond EOF and preallocated extent? */
817 if (isBeyondEOF) {
818 loff_t hole_len;
819
820 if (count) {
821 if (c)
822 laarr[0] = laarr[1];
823 startnum = 1;
824 } else {
825 /* Create a fake extent when there's not one */
826 memset(&laarr[0].extLocation, 0x00,
827 sizeof(struct kernel_lb_addr));
828 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
829 /* Will udf_do_extend_file() create real extent from
830 a fake one? */
831 startnum = (offset > 0);
832 }
833 /* Create extents for the hole between EOF and offset */
834 hole_len = (loff_t)offset << inode->i_blkbits;
835 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
836 if (ret < 0)
837 goto out_free;
838 c = 0;
839 offset = 0;
840 count += ret;
841 /*
842 * Is there any real extent? - otherwise we overwrite the fake
843 * one...
844 */
845 if (count)
846 c = !c;
847 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
848 inode->i_sb->s_blocksize;
849 memset(&laarr[c].extLocation, 0x00,
850 sizeof(struct kernel_lb_addr));
851 count++;
852 endnum = c + 1;
853 lastblock = 1;
854 } else {
855 endnum = startnum = ((count > 2) ? 2 : count);
856
857 /* if the current extent is in position 0,
858 swap it with the previous */
859 if (!c && count != 1) {
860 laarr[2] = laarr[0];
861 laarr[0] = laarr[1];
862 laarr[1] = laarr[2];
863 c = 1;
864 }
865
866 /* if the current block is located in an extent,
867 read the next extent */
868 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0);
869 if (ret > 0) {
870 laarr[c + 1].extLength = (etype << 30) | elen;
871 laarr[c + 1].extLocation = eloc;
872 count++;
873 startnum++;
874 endnum++;
875 } else if (ret == 0)
876 lastblock = 1;
877 else
878 goto out_free;
879 }
880
881 /* if the current extent is not recorded but allocated, get the
882 * block in the extent corresponding to the requested block */
883 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
884 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
885 else { /* otherwise, allocate a new block */
886 if (iinfo->i_next_alloc_block == map->lblk)
887 goal = iinfo->i_next_alloc_goal;
888
889 if (!goal) {
890 if (!(goal = pgoal)) /* XXX: what was intended here? */
891 goal = iinfo->i_location.logicalBlockNum + 1;
892 }
893
894 newblocknum = udf_new_block(inode->i_sb, inode,
895 iinfo->i_location.partitionReferenceNum,
896 goal, &ret);
897 if (!newblocknum)
898 goto out_free;
899 if (isBeyondEOF)
900 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
901 }
902
903 /* if the extent the requsted block is located in contains multiple
904 * blocks, split the extent into at most three extents. blocks prior
905 * to requested block, requested block, and blocks after requested
906 * block */
907 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
908
909 if (!(map->iflags & UDF_MAP_NOPREALLOC))
910 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
911
912 /* merge any continuous blocks in laarr */
913 udf_merge_extents(inode, laarr, &endnum);
914
915 /* write back the new extents, inserting new extents if the new number
916 * of extents is greater than the old number, and deleting extents if
917 * the new number of extents is less than the old number */
918 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
919 if (ret < 0)
920 goto out_free;
921
922 map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
923 iinfo->i_location.partitionReferenceNum, 0);
924 if (!map->pblk) {
925 ret = -EFSCORRUPTED;
926 goto out_free;
927 }
928 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
929 iinfo->i_next_alloc_block = map->lblk + 1;
930 iinfo->i_next_alloc_goal = newblocknum + 1;
931 inode_set_ctime_current(inode);
932
933 if (IS_SYNC(inode))
934 udf_sync_inode(inode);
935 else
936 mark_inode_dirty(inode);
937 ret = 0;
938out_free:
939 brelse(prev_epos.bh);
940 brelse(cur_epos.bh);
941 brelse(next_epos.bh);
942 return ret;
943}
944
945static void udf_split_extents(struct inode *inode, int *c, int offset,
946 udf_pblk_t newblocknum,
947 struct kernel_long_ad *laarr, int *endnum)
948{
949 unsigned long blocksize = inode->i_sb->s_blocksize;
950 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
951
952 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
953 (laarr[*c].extLength >> 30) ==
954 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
955 int curr = *c;
956 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
957 blocksize - 1) >> blocksize_bits;
958 int8_t etype = (laarr[curr].extLength >> 30);
959
960 if (blen == 1)
961 ;
962 else if (!offset || blen == offset + 1) {
963 laarr[curr + 2] = laarr[curr + 1];
964 laarr[curr + 1] = laarr[curr];
965 } else {
966 laarr[curr + 3] = laarr[curr + 1];
967 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
968 }
969
970 if (offset) {
971 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
972 udf_free_blocks(inode->i_sb, inode,
973 &laarr[curr].extLocation,
974 0, offset);
975 laarr[curr].extLength =
976 EXT_NOT_RECORDED_NOT_ALLOCATED |
977 (offset << blocksize_bits);
978 laarr[curr].extLocation.logicalBlockNum = 0;
979 laarr[curr].extLocation.
980 partitionReferenceNum = 0;
981 } else
982 laarr[curr].extLength = (etype << 30) |
983 (offset << blocksize_bits);
984 curr++;
985 (*c)++;
986 (*endnum)++;
987 }
988
989 laarr[curr].extLocation.logicalBlockNum = newblocknum;
990 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
991 laarr[curr].extLocation.partitionReferenceNum =
992 UDF_I(inode)->i_location.partitionReferenceNum;
993 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
994 blocksize;
995 curr++;
996
997 if (blen != offset + 1) {
998 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
999 laarr[curr].extLocation.logicalBlockNum +=
1000 offset + 1;
1001 laarr[curr].extLength = (etype << 30) |
1002 ((blen - (offset + 1)) << blocksize_bits);
1003 curr++;
1004 (*endnum)++;
1005 }
1006 }
1007}
1008
1009static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
1010 struct kernel_long_ad *laarr,
1011 int *endnum)
1012{
1013 int start, length = 0, currlength = 0, i;
1014
1015 if (*endnum >= (c + 1)) {
1016 if (!lastblock)
1017 return;
1018 else
1019 start = c;
1020 } else {
1021 if ((laarr[c + 1].extLength >> 30) ==
1022 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1023 start = c + 1;
1024 length = currlength =
1025 (((laarr[c + 1].extLength &
1026 UDF_EXTENT_LENGTH_MASK) +
1027 inode->i_sb->s_blocksize - 1) >>
1028 inode->i_sb->s_blocksize_bits);
1029 } else
1030 start = c;
1031 }
1032
1033 for (i = start + 1; i <= *endnum; i++) {
1034 if (i == *endnum) {
1035 if (lastblock)
1036 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1037 } else if ((laarr[i].extLength >> 30) ==
1038 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1039 length += (((laarr[i].extLength &
1040 UDF_EXTENT_LENGTH_MASK) +
1041 inode->i_sb->s_blocksize - 1) >>
1042 inode->i_sb->s_blocksize_bits);
1043 } else
1044 break;
1045 }
1046
1047 if (length) {
1048 int next = laarr[start].extLocation.logicalBlockNum +
1049 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1050 inode->i_sb->s_blocksize - 1) >>
1051 inode->i_sb->s_blocksize_bits);
1052 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1053 laarr[start].extLocation.partitionReferenceNum,
1054 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1055 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1056 currlength);
1057 if (numalloc) {
1058 if (start == (c + 1))
1059 laarr[start].extLength +=
1060 (numalloc <<
1061 inode->i_sb->s_blocksize_bits);
1062 else {
1063 memmove(&laarr[c + 2], &laarr[c + 1],
1064 sizeof(struct long_ad) * (*endnum - (c + 1)));
1065 (*endnum)++;
1066 laarr[c + 1].extLocation.logicalBlockNum = next;
1067 laarr[c + 1].extLocation.partitionReferenceNum =
1068 laarr[c].extLocation.
1069 partitionReferenceNum;
1070 laarr[c + 1].extLength =
1071 EXT_NOT_RECORDED_ALLOCATED |
1072 (numalloc <<
1073 inode->i_sb->s_blocksize_bits);
1074 start = c + 1;
1075 }
1076
1077 for (i = start + 1; numalloc && i < *endnum; i++) {
1078 int elen = ((laarr[i].extLength &
1079 UDF_EXTENT_LENGTH_MASK) +
1080 inode->i_sb->s_blocksize - 1) >>
1081 inode->i_sb->s_blocksize_bits;
1082
1083 if (elen > numalloc) {
1084 laarr[i].extLength -=
1085 (numalloc <<
1086 inode->i_sb->s_blocksize_bits);
1087 numalloc = 0;
1088 } else {
1089 numalloc -= elen;
1090 if (*endnum > (i + 1))
1091 memmove(&laarr[i],
1092 &laarr[i + 1],
1093 sizeof(struct long_ad) *
1094 (*endnum - (i + 1)));
1095 i--;
1096 (*endnum)--;
1097 }
1098 }
1099 UDF_I(inode)->i_lenExtents +=
1100 numalloc << inode->i_sb->s_blocksize_bits;
1101 }
1102 }
1103}
1104
1105static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1106 int *endnum)
1107{
1108 int i;
1109 unsigned long blocksize = inode->i_sb->s_blocksize;
1110 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1111
1112 for (i = 0; i < (*endnum - 1); i++) {
1113 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1114 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1115
1116 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1117 (((li->extLength >> 30) ==
1118 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1119 ((lip1->extLocation.logicalBlockNum -
1120 li->extLocation.logicalBlockNum) ==
1121 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1122 blocksize - 1) >> blocksize_bits)))) {
1123
1124 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1125 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1126 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1127 li->extLength = lip1->extLength +
1128 (((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) & ~(blocksize - 1));
1131 if (*endnum > (i + 2))
1132 memmove(&laarr[i + 1], &laarr[i + 2],
1133 sizeof(struct long_ad) *
1134 (*endnum - (i + 2)));
1135 i--;
1136 (*endnum)--;
1137 }
1138 } else if (((li->extLength >> 30) ==
1139 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1140 ((lip1->extLength >> 30) ==
1141 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1142 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1143 ((li->extLength &
1144 UDF_EXTENT_LENGTH_MASK) +
1145 blocksize - 1) >> blocksize_bits);
1146 li->extLocation.logicalBlockNum = 0;
1147 li->extLocation.partitionReferenceNum = 0;
1148
1149 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1150 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1151 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1152 lip1->extLength = (lip1->extLength -
1153 (li->extLength &
1154 UDF_EXTENT_LENGTH_MASK) +
1155 UDF_EXTENT_LENGTH_MASK) &
1156 ~(blocksize - 1);
1157 li->extLength = (li->extLength &
1158 UDF_EXTENT_FLAG_MASK) +
1159 (UDF_EXTENT_LENGTH_MASK + 1) -
1160 blocksize;
1161 } else {
1162 li->extLength = lip1->extLength +
1163 (((li->extLength &
1164 UDF_EXTENT_LENGTH_MASK) +
1165 blocksize - 1) & ~(blocksize - 1));
1166 if (*endnum > (i + 2))
1167 memmove(&laarr[i + 1], &laarr[i + 2],
1168 sizeof(struct long_ad) *
1169 (*endnum - (i + 2)));
1170 i--;
1171 (*endnum)--;
1172 }
1173 } else if ((li->extLength >> 30) ==
1174 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1175 udf_free_blocks(inode->i_sb, inode,
1176 &li->extLocation, 0,
1177 ((li->extLength &
1178 UDF_EXTENT_LENGTH_MASK) +
1179 blocksize - 1) >> blocksize_bits);
1180 li->extLocation.logicalBlockNum = 0;
1181 li->extLocation.partitionReferenceNum = 0;
1182 li->extLength = (li->extLength &
1183 UDF_EXTENT_LENGTH_MASK) |
1184 EXT_NOT_RECORDED_NOT_ALLOCATED;
1185 }
1186 }
1187}
1188
1189static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1190 int startnum, int endnum,
1191 struct extent_position *epos)
1192{
1193 int start = 0, i;
1194 struct kernel_lb_addr tmploc;
1195 uint32_t tmplen;
1196 int8_t tmpetype;
1197 int err;
1198
1199 if (startnum > endnum) {
1200 for (i = 0; i < (startnum - endnum); i++)
1201 udf_delete_aext(inode, *epos);
1202 } else if (startnum < endnum) {
1203 for (i = 0; i < (endnum - startnum); i++) {
1204 err = udf_insert_aext(inode, *epos,
1205 laarr[i].extLocation,
1206 laarr[i].extLength);
1207 /*
1208 * If we fail here, we are likely corrupting the extent
1209 * list and leaking blocks. At least stop early to
1210 * limit the damage.
1211 */
1212 if (err < 0)
1213 return err;
1214 err = udf_next_aext(inode, epos, &laarr[i].extLocation,
1215 &laarr[i].extLength, &tmpetype, 1);
1216 if (err < 0)
1217 return err;
1218 start++;
1219 }
1220 }
1221
1222 for (i = start; i < endnum; i++) {
1223 err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0);
1224 if (err < 0)
1225 return err;
1226
1227 udf_write_aext(inode, epos, &laarr[i].extLocation,
1228 laarr[i].extLength, 1);
1229 }
1230 return 0;
1231}
1232
1233struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1234 int create, int *err)
1235{
1236 struct buffer_head *bh = NULL;
1237 struct udf_map_rq map = {
1238 .lblk = block,
1239 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1240 };
1241
1242 *err = udf_map_block(inode, &map);
1243 if (*err || !(map.oflags & UDF_BLK_MAPPED))
1244 return NULL;
1245
1246 bh = sb_getblk(inode->i_sb, map.pblk);
1247 if (!bh) {
1248 *err = -ENOMEM;
1249 return NULL;
1250 }
1251 if (map.oflags & UDF_BLK_NEW) {
1252 lock_buffer(bh);
1253 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1254 set_buffer_uptodate(bh);
1255 unlock_buffer(bh);
1256 mark_buffer_dirty_inode(bh, inode);
1257 return bh;
1258 }
1259
1260 if (bh_read(bh, 0) >= 0)
1261 return bh;
1262
1263 brelse(bh);
1264 *err = -EIO;
1265 return NULL;
1266}
1267
1268int udf_setsize(struct inode *inode, loff_t newsize)
1269{
1270 int err = 0;
1271 struct udf_inode_info *iinfo;
1272 unsigned int bsize = i_blocksize(inode);
1273
1274 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1275 S_ISLNK(inode->i_mode)))
1276 return -EINVAL;
1277
1278 iinfo = UDF_I(inode);
1279 if (newsize > inode->i_size) {
1280 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1281 if (bsize >=
1282 (udf_file_entry_alloc_offset(inode) + newsize)) {
1283 down_write(&iinfo->i_data_sem);
1284 iinfo->i_lenAlloc = newsize;
1285 up_write(&iinfo->i_data_sem);
1286 goto set_size;
1287 }
1288 err = udf_expand_file_adinicb(inode);
1289 if (err)
1290 return err;
1291 }
1292 err = udf_extend_file(inode, newsize);
1293 if (err)
1294 return err;
1295set_size:
1296 truncate_setsize(inode, newsize);
1297 } else {
1298 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1299 down_write(&iinfo->i_data_sem);
1300 udf_clear_extent_cache(inode);
1301 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1302 0x00, bsize - newsize -
1303 udf_file_entry_alloc_offset(inode));
1304 iinfo->i_lenAlloc = newsize;
1305 truncate_setsize(inode, newsize);
1306 up_write(&iinfo->i_data_sem);
1307 goto update_time;
1308 }
1309 err = block_truncate_page(inode->i_mapping, newsize,
1310 udf_get_block);
1311 if (err)
1312 return err;
1313 truncate_setsize(inode, newsize);
1314 down_write(&iinfo->i_data_sem);
1315 udf_clear_extent_cache(inode);
1316 err = udf_truncate_extents(inode);
1317 up_write(&iinfo->i_data_sem);
1318 if (err)
1319 return err;
1320 }
1321update_time:
1322 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1323 if (IS_SYNC(inode))
1324 udf_sync_inode(inode);
1325 else
1326 mark_inode_dirty(inode);
1327 return err;
1328}
1329
1330/*
1331 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1332 * arbitrary - just that we hopefully don't limit any real use of rewritten
1333 * inode on write-once media but avoid looping for too long on corrupted media.
1334 */
1335#define UDF_MAX_ICB_NESTING 1024
1336
1337static int udf_read_inode(struct inode *inode, bool hidden_inode)
1338{
1339 struct buffer_head *bh = NULL;
1340 struct fileEntry *fe;
1341 struct extendedFileEntry *efe;
1342 uint16_t ident;
1343 struct udf_inode_info *iinfo = UDF_I(inode);
1344 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1345 struct kernel_lb_addr *iloc = &iinfo->i_location;
1346 unsigned int link_count;
1347 unsigned int indirections = 0;
1348 int bs = inode->i_sb->s_blocksize;
1349 int ret = -EIO;
1350 uint32_t uid, gid;
1351 struct timespec64 ts;
1352
1353reread:
1354 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1355 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1356 iloc->partitionReferenceNum, sbi->s_partitions);
1357 return -EIO;
1358 }
1359
1360 if (iloc->logicalBlockNum >=
1361 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1362 udf_debug("block=%u, partition=%u out of range\n",
1363 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1364 return -EIO;
1365 }
1366
1367 /*
1368 * Set defaults, but the inode is still incomplete!
1369 * Note: get_new_inode() sets the following on a new inode:
1370 * i_sb = sb
1371 * i_no = ino
1372 * i_flags = sb->s_flags
1373 * i_state = 0
1374 * clean_inode(): zero fills and sets
1375 * i_count = 1
1376 * i_nlink = 1
1377 * i_op = NULL;
1378 */
1379 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1380 if (!bh) {
1381 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1382 return -EIO;
1383 }
1384
1385 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1386 ident != TAG_IDENT_USE) {
1387 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1388 inode->i_ino, ident);
1389 goto out;
1390 }
1391
1392 fe = (struct fileEntry *)bh->b_data;
1393 efe = (struct extendedFileEntry *)bh->b_data;
1394
1395 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1396 struct buffer_head *ibh;
1397
1398 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1399 if (ident == TAG_IDENT_IE && ibh) {
1400 struct kernel_lb_addr loc;
1401 struct indirectEntry *ie;
1402
1403 ie = (struct indirectEntry *)ibh->b_data;
1404 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1405
1406 if (ie->indirectICB.extLength) {
1407 brelse(ibh);
1408 memcpy(&iinfo->i_location, &loc,
1409 sizeof(struct kernel_lb_addr));
1410 if (++indirections > UDF_MAX_ICB_NESTING) {
1411 udf_err(inode->i_sb,
1412 "too many ICBs in ICB hierarchy"
1413 " (max %d supported)\n",
1414 UDF_MAX_ICB_NESTING);
1415 goto out;
1416 }
1417 brelse(bh);
1418 goto reread;
1419 }
1420 }
1421 brelse(ibh);
1422 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1423 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1424 le16_to_cpu(fe->icbTag.strategyType));
1425 goto out;
1426 }
1427 if (fe->icbTag.strategyType == cpu_to_le16(4))
1428 iinfo->i_strat4096 = 0;
1429 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1430 iinfo->i_strat4096 = 1;
1431
1432 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1433 ICBTAG_FLAG_AD_MASK;
1434 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1435 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1436 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1437 ret = -EIO;
1438 goto out;
1439 }
1440 iinfo->i_hidden = hidden_inode;
1441 iinfo->i_unique = 0;
1442 iinfo->i_lenEAttr = 0;
1443 iinfo->i_lenExtents = 0;
1444 iinfo->i_lenAlloc = 0;
1445 iinfo->i_next_alloc_block = 0;
1446 iinfo->i_next_alloc_goal = 0;
1447 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1448 iinfo->i_efe = 1;
1449 iinfo->i_use = 0;
1450 ret = udf_alloc_i_data(inode, bs -
1451 sizeof(struct extendedFileEntry));
1452 if (ret)
1453 goto out;
1454 memcpy(iinfo->i_data,
1455 bh->b_data + sizeof(struct extendedFileEntry),
1456 bs - sizeof(struct extendedFileEntry));
1457 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1458 iinfo->i_efe = 0;
1459 iinfo->i_use = 0;
1460 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1461 if (ret)
1462 goto out;
1463 memcpy(iinfo->i_data,
1464 bh->b_data + sizeof(struct fileEntry),
1465 bs - sizeof(struct fileEntry));
1466 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1467 iinfo->i_efe = 0;
1468 iinfo->i_use = 1;
1469 iinfo->i_lenAlloc = le32_to_cpu(
1470 ((struct unallocSpaceEntry *)bh->b_data)->
1471 lengthAllocDescs);
1472 ret = udf_alloc_i_data(inode, bs -
1473 sizeof(struct unallocSpaceEntry));
1474 if (ret)
1475 goto out;
1476 memcpy(iinfo->i_data,
1477 bh->b_data + sizeof(struct unallocSpaceEntry),
1478 bs - sizeof(struct unallocSpaceEntry));
1479 return 0;
1480 }
1481
1482 ret = -EIO;
1483 read_lock(&sbi->s_cred_lock);
1484 uid = le32_to_cpu(fe->uid);
1485 if (uid == UDF_INVALID_ID ||
1486 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1487 inode->i_uid = sbi->s_uid;
1488 else
1489 i_uid_write(inode, uid);
1490
1491 gid = le32_to_cpu(fe->gid);
1492 if (gid == UDF_INVALID_ID ||
1493 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1494 inode->i_gid = sbi->s_gid;
1495 else
1496 i_gid_write(inode, gid);
1497
1498 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1499 sbi->s_fmode != UDF_INVALID_MODE)
1500 inode->i_mode = sbi->s_fmode;
1501 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1502 sbi->s_dmode != UDF_INVALID_MODE)
1503 inode->i_mode = sbi->s_dmode;
1504 else
1505 inode->i_mode = udf_convert_permissions(fe);
1506 inode->i_mode &= ~sbi->s_umask;
1507 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1508
1509 read_unlock(&sbi->s_cred_lock);
1510
1511 link_count = le16_to_cpu(fe->fileLinkCount);
1512 if (!link_count) {
1513 if (!hidden_inode) {
1514 ret = -ESTALE;
1515 goto out;
1516 }
1517 link_count = 1;
1518 }
1519 set_nlink(inode, link_count);
1520
1521 inode->i_size = le64_to_cpu(fe->informationLength);
1522 iinfo->i_lenExtents = inode->i_size;
1523
1524 if (iinfo->i_efe == 0) {
1525 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1526 (inode->i_sb->s_blocksize_bits - 9);
1527
1528 udf_disk_stamp_to_time(&ts, fe->accessTime);
1529 inode_set_atime_to_ts(inode, ts);
1530 udf_disk_stamp_to_time(&ts, fe->modificationTime);
1531 inode_set_mtime_to_ts(inode, ts);
1532 udf_disk_stamp_to_time(&ts, fe->attrTime);
1533 inode_set_ctime_to_ts(inode, ts);
1534
1535 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1536 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1537 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1538 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1539 iinfo->i_streamdir = 0;
1540 iinfo->i_lenStreams = 0;
1541 } else {
1542 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1543 (inode->i_sb->s_blocksize_bits - 9);
1544
1545 udf_disk_stamp_to_time(&ts, efe->accessTime);
1546 inode_set_atime_to_ts(inode, ts);
1547 udf_disk_stamp_to_time(&ts, efe->modificationTime);
1548 inode_set_mtime_to_ts(inode, ts);
1549 udf_disk_stamp_to_time(&ts, efe->attrTime);
1550 inode_set_ctime_to_ts(inode, ts);
1551 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1552
1553 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1554 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1555 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1556 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1557
1558 /* Named streams */
1559 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1560 iinfo->i_locStreamdir =
1561 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1562 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1563 if (iinfo->i_lenStreams >= inode->i_size)
1564 iinfo->i_lenStreams -= inode->i_size;
1565 else
1566 iinfo->i_lenStreams = 0;
1567 }
1568 inode->i_generation = iinfo->i_unique;
1569
1570 /*
1571 * Sanity check length of allocation descriptors and extended attrs to
1572 * avoid integer overflows
1573 */
1574 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1575 goto out;
1576 /* Now do exact checks */
1577 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1578 goto out;
1579 /* Sanity checks for files in ICB so that we don't get confused later */
1580 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1581 /*
1582 * For file in ICB data is stored in allocation descriptor
1583 * so sizes should match
1584 */
1585 if (iinfo->i_lenAlloc != inode->i_size)
1586 goto out;
1587 /* File in ICB has to fit in there... */
1588 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1589 goto out;
1590 }
1591
1592 switch (fe->icbTag.fileType) {
1593 case ICBTAG_FILE_TYPE_DIRECTORY:
1594 inode->i_op = &udf_dir_inode_operations;
1595 inode->i_fop = &udf_dir_operations;
1596 inode->i_mode |= S_IFDIR;
1597 inc_nlink(inode);
1598 break;
1599 case ICBTAG_FILE_TYPE_REALTIME:
1600 case ICBTAG_FILE_TYPE_REGULAR:
1601 case ICBTAG_FILE_TYPE_UNDEF:
1602 case ICBTAG_FILE_TYPE_VAT20:
1603 inode->i_data.a_ops = &udf_aops;
1604 inode->i_op = &udf_file_inode_operations;
1605 inode->i_fop = &udf_file_operations;
1606 inode->i_mode |= S_IFREG;
1607 break;
1608 case ICBTAG_FILE_TYPE_BLOCK:
1609 inode->i_mode |= S_IFBLK;
1610 break;
1611 case ICBTAG_FILE_TYPE_CHAR:
1612 inode->i_mode |= S_IFCHR;
1613 break;
1614 case ICBTAG_FILE_TYPE_FIFO:
1615 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1616 break;
1617 case ICBTAG_FILE_TYPE_SOCKET:
1618 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1619 break;
1620 case ICBTAG_FILE_TYPE_SYMLINK:
1621 inode->i_data.a_ops = &udf_symlink_aops;
1622 inode->i_op = &udf_symlink_inode_operations;
1623 inode_nohighmem(inode);
1624 inode->i_mode = S_IFLNK | 0777;
1625 break;
1626 case ICBTAG_FILE_TYPE_MAIN:
1627 udf_debug("METADATA FILE-----\n");
1628 break;
1629 case ICBTAG_FILE_TYPE_MIRROR:
1630 udf_debug("METADATA MIRROR FILE-----\n");
1631 break;
1632 case ICBTAG_FILE_TYPE_BITMAP:
1633 udf_debug("METADATA BITMAP FILE-----\n");
1634 break;
1635 default:
1636 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1637 inode->i_ino, fe->icbTag.fileType);
1638 goto out;
1639 }
1640 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1641 struct deviceSpec *dsea =
1642 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1643 if (dsea) {
1644 init_special_inode(inode, inode->i_mode,
1645 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1646 le32_to_cpu(dsea->minorDeviceIdent)));
1647 /* Developer ID ??? */
1648 } else
1649 goto out;
1650 }
1651 ret = 0;
1652out:
1653 brelse(bh);
1654 return ret;
1655}
1656
1657static int udf_alloc_i_data(struct inode *inode, size_t size)
1658{
1659 struct udf_inode_info *iinfo = UDF_I(inode);
1660 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1661 if (!iinfo->i_data)
1662 return -ENOMEM;
1663 return 0;
1664}
1665
1666static umode_t udf_convert_permissions(struct fileEntry *fe)
1667{
1668 umode_t mode;
1669 uint32_t permissions;
1670 uint32_t flags;
1671
1672 permissions = le32_to_cpu(fe->permissions);
1673 flags = le16_to_cpu(fe->icbTag.flags);
1674
1675 mode = ((permissions) & 0007) |
1676 ((permissions >> 2) & 0070) |
1677 ((permissions >> 4) & 0700) |
1678 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1679 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1680 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1681
1682 return mode;
1683}
1684
1685void udf_update_extra_perms(struct inode *inode, umode_t mode)
1686{
1687 struct udf_inode_info *iinfo = UDF_I(inode);
1688
1689 /*
1690 * UDF 2.01 sec. 3.3.3.3 Note 2:
1691 * In Unix, delete permission tracks write
1692 */
1693 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1694 if (mode & 0200)
1695 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1696 if (mode & 0020)
1697 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1698 if (mode & 0002)
1699 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1700}
1701
1702int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1703{
1704 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1705}
1706
1707static int udf_sync_inode(struct inode *inode)
1708{
1709 return udf_update_inode(inode, 1);
1710}
1711
1712static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1713{
1714 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1715 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1716 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1717 iinfo->i_crtime = time;
1718}
1719
1720static int udf_update_inode(struct inode *inode, int do_sync)
1721{
1722 struct buffer_head *bh = NULL;
1723 struct fileEntry *fe;
1724 struct extendedFileEntry *efe;
1725 uint64_t lb_recorded;
1726 uint32_t udfperms;
1727 uint16_t icbflags;
1728 uint16_t crclen;
1729 int err = 0;
1730 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1731 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1732 struct udf_inode_info *iinfo = UDF_I(inode);
1733
1734 bh = sb_getblk(inode->i_sb,
1735 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1736 if (!bh) {
1737 udf_debug("getblk failure\n");
1738 return -EIO;
1739 }
1740
1741 lock_buffer(bh);
1742 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1743 fe = (struct fileEntry *)bh->b_data;
1744 efe = (struct extendedFileEntry *)bh->b_data;
1745
1746 if (iinfo->i_use) {
1747 struct unallocSpaceEntry *use =
1748 (struct unallocSpaceEntry *)bh->b_data;
1749
1750 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1751 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1752 iinfo->i_data, inode->i_sb->s_blocksize -
1753 sizeof(struct unallocSpaceEntry));
1754 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1755 crclen = sizeof(struct unallocSpaceEntry);
1756
1757 goto finish;
1758 }
1759
1760 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1761 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1762 else
1763 fe->uid = cpu_to_le32(i_uid_read(inode));
1764
1765 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1766 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1767 else
1768 fe->gid = cpu_to_le32(i_gid_read(inode));
1769
1770 udfperms = ((inode->i_mode & 0007)) |
1771 ((inode->i_mode & 0070) << 2) |
1772 ((inode->i_mode & 0700) << 4);
1773
1774 udfperms |= iinfo->i_extraPerms;
1775 fe->permissions = cpu_to_le32(udfperms);
1776
1777 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1778 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1779 else {
1780 if (iinfo->i_hidden)
1781 fe->fileLinkCount = cpu_to_le16(0);
1782 else
1783 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1784 }
1785
1786 fe->informationLength = cpu_to_le64(inode->i_size);
1787
1788 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1789 struct regid *eid;
1790 struct deviceSpec *dsea =
1791 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1792 if (!dsea) {
1793 dsea = (struct deviceSpec *)
1794 udf_add_extendedattr(inode,
1795 sizeof(struct deviceSpec) +
1796 sizeof(struct regid), 12, 0x3);
1797 dsea->attrType = cpu_to_le32(12);
1798 dsea->attrSubtype = 1;
1799 dsea->attrLength = cpu_to_le32(
1800 sizeof(struct deviceSpec) +
1801 sizeof(struct regid));
1802 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1803 }
1804 eid = (struct regid *)dsea->impUse;
1805 memset(eid, 0, sizeof(*eid));
1806 strcpy(eid->ident, UDF_ID_DEVELOPER);
1807 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1808 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1809 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1810 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1811 }
1812
1813 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1814 lb_recorded = 0; /* No extents => no blocks! */
1815 else
1816 lb_recorded =
1817 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1818 (blocksize_bits - 9);
1819
1820 if (iinfo->i_efe == 0) {
1821 memcpy(bh->b_data + sizeof(struct fileEntry),
1822 iinfo->i_data,
1823 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1824 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1825
1826 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1827 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1828 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1829 memset(&(fe->impIdent), 0, sizeof(struct regid));
1830 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1831 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1832 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1833 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1834 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1835 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1836 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1837 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1838 crclen = sizeof(struct fileEntry);
1839 } else {
1840 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1841 iinfo->i_data,
1842 inode->i_sb->s_blocksize -
1843 sizeof(struct extendedFileEntry));
1844 efe->objectSize =
1845 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1846 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1847
1848 if (iinfo->i_streamdir) {
1849 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1850
1851 icb_lad->extLocation =
1852 cpu_to_lelb(iinfo->i_locStreamdir);
1853 icb_lad->extLength =
1854 cpu_to_le32(inode->i_sb->s_blocksize);
1855 }
1856
1857 udf_adjust_time(iinfo, inode_get_atime(inode));
1858 udf_adjust_time(iinfo, inode_get_mtime(inode));
1859 udf_adjust_time(iinfo, inode_get_ctime(inode));
1860
1861 udf_time_to_disk_stamp(&efe->accessTime,
1862 inode_get_atime(inode));
1863 udf_time_to_disk_stamp(&efe->modificationTime,
1864 inode_get_mtime(inode));
1865 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1866 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1867
1868 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1869 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1870 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1871 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1872 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1873 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1874 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1875 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1876 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1877 crclen = sizeof(struct extendedFileEntry);
1878 }
1879
1880finish:
1881 if (iinfo->i_strat4096) {
1882 fe->icbTag.strategyType = cpu_to_le16(4096);
1883 fe->icbTag.strategyParameter = cpu_to_le16(1);
1884 fe->icbTag.numEntries = cpu_to_le16(2);
1885 } else {
1886 fe->icbTag.strategyType = cpu_to_le16(4);
1887 fe->icbTag.numEntries = cpu_to_le16(1);
1888 }
1889
1890 if (iinfo->i_use)
1891 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1892 else if (S_ISDIR(inode->i_mode))
1893 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1894 else if (S_ISREG(inode->i_mode))
1895 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1896 else if (S_ISLNK(inode->i_mode))
1897 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1898 else if (S_ISBLK(inode->i_mode))
1899 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1900 else if (S_ISCHR(inode->i_mode))
1901 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1902 else if (S_ISFIFO(inode->i_mode))
1903 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1904 else if (S_ISSOCK(inode->i_mode))
1905 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1906
1907 icbflags = iinfo->i_alloc_type |
1908 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1909 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1910 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1911 (le16_to_cpu(fe->icbTag.flags) &
1912 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1913 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1914
1915 fe->icbTag.flags = cpu_to_le16(icbflags);
1916 if (sbi->s_udfrev >= 0x0200)
1917 fe->descTag.descVersion = cpu_to_le16(3);
1918 else
1919 fe->descTag.descVersion = cpu_to_le16(2);
1920 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1921 fe->descTag.tagLocation = cpu_to_le32(
1922 iinfo->i_location.logicalBlockNum);
1923 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1924 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1925 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1926 crclen));
1927 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1928
1929 set_buffer_uptodate(bh);
1930 unlock_buffer(bh);
1931
1932 /* write the data blocks */
1933 mark_buffer_dirty(bh);
1934 if (do_sync) {
1935 sync_dirty_buffer(bh);
1936 if (buffer_write_io_error(bh)) {
1937 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1938 inode->i_ino);
1939 err = -EIO;
1940 }
1941 }
1942 brelse(bh);
1943
1944 return err;
1945}
1946
1947struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1948 bool hidden_inode)
1949{
1950 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1951 struct inode *inode = iget_locked(sb, block);
1952 int err;
1953
1954 if (!inode)
1955 return ERR_PTR(-ENOMEM);
1956
1957 if (!(inode->i_state & I_NEW)) {
1958 if (UDF_I(inode)->i_hidden != hidden_inode) {
1959 iput(inode);
1960 return ERR_PTR(-EFSCORRUPTED);
1961 }
1962 return inode;
1963 }
1964
1965 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1966 err = udf_read_inode(inode, hidden_inode);
1967 if (err < 0) {
1968 iget_failed(inode);
1969 return ERR_PTR(err);
1970 }
1971 unlock_new_inode(inode);
1972
1973 return inode;
1974}
1975
1976int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1977 struct extent_position *epos)
1978{
1979 struct super_block *sb = inode->i_sb;
1980 struct buffer_head *bh;
1981 struct allocExtDesc *aed;
1982 struct extent_position nepos;
1983 struct kernel_lb_addr neloc;
1984 int ver, adsize;
1985 int err = 0;
1986
1987 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1988 adsize = sizeof(struct short_ad);
1989 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1990 adsize = sizeof(struct long_ad);
1991 else
1992 return -EIO;
1993
1994 neloc.logicalBlockNum = block;
1995 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1996
1997 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1998 if (!bh)
1999 return -EIO;
2000 lock_buffer(bh);
2001 memset(bh->b_data, 0x00, sb->s_blocksize);
2002 set_buffer_uptodate(bh);
2003 unlock_buffer(bh);
2004 mark_buffer_dirty_inode(bh, inode);
2005
2006 aed = (struct allocExtDesc *)(bh->b_data);
2007 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
2008 aed->previousAllocExtLocation =
2009 cpu_to_le32(epos->block.logicalBlockNum);
2010 }
2011 aed->lengthAllocDescs = cpu_to_le32(0);
2012 if (UDF_SB(sb)->s_udfrev >= 0x0200)
2013 ver = 3;
2014 else
2015 ver = 2;
2016 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
2017 sizeof(struct tag));
2018
2019 nepos.block = neloc;
2020 nepos.offset = sizeof(struct allocExtDesc);
2021 nepos.bh = bh;
2022
2023 /*
2024 * Do we have to copy current last extent to make space for indirect
2025 * one?
2026 */
2027 if (epos->offset + adsize > sb->s_blocksize) {
2028 struct kernel_lb_addr cp_loc;
2029 uint32_t cp_len;
2030 int8_t cp_type;
2031
2032 epos->offset -= adsize;
2033 err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0);
2034 if (err <= 0)
2035 goto err_out;
2036 cp_len |= ((uint32_t)cp_type) << 30;
2037
2038 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2039 udf_write_aext(inode, epos, &nepos.block,
2040 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2041 } else {
2042 __udf_add_aext(inode, epos, &nepos.block,
2043 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2044 }
2045
2046 brelse(epos->bh);
2047 *epos = nepos;
2048
2049 return 0;
2050err_out:
2051 brelse(bh);
2052 return err;
2053}
2054
2055/*
2056 * Append extent at the given position - should be the first free one in inode
2057 * / indirect extent. This function assumes there is enough space in the inode
2058 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2059 */
2060int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2061 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2062{
2063 struct udf_inode_info *iinfo = UDF_I(inode);
2064 struct allocExtDesc *aed;
2065 int adsize;
2066
2067 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2068 adsize = sizeof(struct short_ad);
2069 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2070 adsize = sizeof(struct long_ad);
2071 else
2072 return -EIO;
2073
2074 if (!epos->bh) {
2075 WARN_ON(iinfo->i_lenAlloc !=
2076 epos->offset - udf_file_entry_alloc_offset(inode));
2077 } else {
2078 aed = (struct allocExtDesc *)epos->bh->b_data;
2079 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2080 epos->offset - sizeof(struct allocExtDesc));
2081 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2082 }
2083
2084 udf_write_aext(inode, epos, eloc, elen, inc);
2085
2086 if (!epos->bh) {
2087 iinfo->i_lenAlloc += adsize;
2088 mark_inode_dirty(inode);
2089 } else {
2090 aed = (struct allocExtDesc *)epos->bh->b_data;
2091 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2092 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2093 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2094 udf_update_tag(epos->bh->b_data,
2095 epos->offset + (inc ? 0 : adsize));
2096 else
2097 udf_update_tag(epos->bh->b_data,
2098 sizeof(struct allocExtDesc));
2099 mark_buffer_dirty_inode(epos->bh, inode);
2100 }
2101
2102 return 0;
2103}
2104
2105/*
2106 * Append extent at given position - should be the first free one in inode
2107 * / indirect extent. Takes care of allocating and linking indirect blocks.
2108 */
2109int udf_add_aext(struct inode *inode, struct extent_position *epos,
2110 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2111{
2112 int adsize;
2113 struct super_block *sb = inode->i_sb;
2114
2115 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2116 adsize = sizeof(struct short_ad);
2117 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2118 adsize = sizeof(struct long_ad);
2119 else
2120 return -EIO;
2121
2122 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2123 int err;
2124 udf_pblk_t new_block;
2125
2126 new_block = udf_new_block(sb, NULL,
2127 epos->block.partitionReferenceNum,
2128 epos->block.logicalBlockNum, &err);
2129 if (!new_block)
2130 return -ENOSPC;
2131
2132 err = udf_setup_indirect_aext(inode, new_block, epos);
2133 if (err)
2134 return err;
2135 }
2136
2137 return __udf_add_aext(inode, epos, eloc, elen, inc);
2138}
2139
2140void udf_write_aext(struct inode *inode, struct extent_position *epos,
2141 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2142{
2143 int adsize;
2144 uint8_t *ptr;
2145 struct short_ad *sad;
2146 struct long_ad *lad;
2147 struct udf_inode_info *iinfo = UDF_I(inode);
2148
2149 if (!epos->bh)
2150 ptr = iinfo->i_data + epos->offset -
2151 udf_file_entry_alloc_offset(inode) +
2152 iinfo->i_lenEAttr;
2153 else
2154 ptr = epos->bh->b_data + epos->offset;
2155
2156 switch (iinfo->i_alloc_type) {
2157 case ICBTAG_FLAG_AD_SHORT:
2158 sad = (struct short_ad *)ptr;
2159 sad->extLength = cpu_to_le32(elen);
2160 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2161 adsize = sizeof(struct short_ad);
2162 break;
2163 case ICBTAG_FLAG_AD_LONG:
2164 lad = (struct long_ad *)ptr;
2165 lad->extLength = cpu_to_le32(elen);
2166 lad->extLocation = cpu_to_lelb(*eloc);
2167 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2168 adsize = sizeof(struct long_ad);
2169 break;
2170 default:
2171 return;
2172 }
2173
2174 if (epos->bh) {
2175 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2176 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2177 struct allocExtDesc *aed =
2178 (struct allocExtDesc *)epos->bh->b_data;
2179 udf_update_tag(epos->bh->b_data,
2180 le32_to_cpu(aed->lengthAllocDescs) +
2181 sizeof(struct allocExtDesc));
2182 }
2183 mark_buffer_dirty_inode(epos->bh, inode);
2184 } else {
2185 mark_inode_dirty(inode);
2186 }
2187
2188 if (inc)
2189 epos->offset += adsize;
2190}
2191
2192/*
2193 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2194 * someone does some weird stuff.
2195 */
2196#define UDF_MAX_INDIR_EXTS 16
2197
2198/*
2199 * Returns 1 on success, -errno on error, 0 on hit EOF.
2200 */
2201int udf_next_aext(struct inode *inode, struct extent_position *epos,
2202 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2203 int inc)
2204{
2205 unsigned int indirections = 0;
2206 int ret = 0;
2207 udf_pblk_t block;
2208
2209 while (1) {
2210 ret = udf_current_aext(inode, epos, eloc, elen,
2211 etype, inc);
2212 if (ret <= 0)
2213 return ret;
2214 if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30))
2215 return ret;
2216
2217 if (++indirections > UDF_MAX_INDIR_EXTS) {
2218 udf_err(inode->i_sb,
2219 "too many indirect extents in inode %lu\n",
2220 inode->i_ino);
2221 return -EFSCORRUPTED;
2222 }
2223
2224 epos->block = *eloc;
2225 epos->offset = sizeof(struct allocExtDesc);
2226 brelse(epos->bh);
2227 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2228 epos->bh = sb_bread(inode->i_sb, block);
2229 if (!epos->bh) {
2230 udf_debug("reading block %u failed!\n", block);
2231 return -EIO;
2232 }
2233 }
2234}
2235
2236/*
2237 * Returns 1 on success, -errno on error, 0 on hit EOF.
2238 */
2239int udf_current_aext(struct inode *inode, struct extent_position *epos,
2240 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2241 int inc)
2242{
2243 int alen;
2244 uint8_t *ptr;
2245 struct short_ad *sad;
2246 struct long_ad *lad;
2247 struct udf_inode_info *iinfo = UDF_I(inode);
2248
2249 if (!epos->bh) {
2250 if (!epos->offset)
2251 epos->offset = udf_file_entry_alloc_offset(inode);
2252 ptr = iinfo->i_data + epos->offset -
2253 udf_file_entry_alloc_offset(inode) +
2254 iinfo->i_lenEAttr;
2255 alen = udf_file_entry_alloc_offset(inode) +
2256 iinfo->i_lenAlloc;
2257 } else {
2258 struct allocExtDesc *header =
2259 (struct allocExtDesc *)epos->bh->b_data;
2260
2261 if (!epos->offset)
2262 epos->offset = sizeof(struct allocExtDesc);
2263 ptr = epos->bh->b_data + epos->offset;
2264 if (check_add_overflow(sizeof(struct allocExtDesc),
2265 le32_to_cpu(header->lengthAllocDescs), &alen))
2266 return -1;
2267 }
2268
2269 switch (iinfo->i_alloc_type) {
2270 case ICBTAG_FLAG_AD_SHORT:
2271 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2272 if (!sad)
2273 return 0;
2274 *etype = le32_to_cpu(sad->extLength) >> 30;
2275 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2276 eloc->partitionReferenceNum =
2277 iinfo->i_location.partitionReferenceNum;
2278 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2279 break;
2280 case ICBTAG_FLAG_AD_LONG:
2281 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2282 if (!lad)
2283 return 0;
2284 *etype = le32_to_cpu(lad->extLength) >> 30;
2285 *eloc = lelb_to_cpu(lad->extLocation);
2286 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2287 break;
2288 default:
2289 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2290 return -EINVAL;
2291 }
2292
2293 return 1;
2294}
2295
2296static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2297 struct kernel_lb_addr neloc, uint32_t nelen)
2298{
2299 struct kernel_lb_addr oeloc;
2300 uint32_t oelen;
2301 int8_t etype;
2302 int ret;
2303
2304 if (epos.bh)
2305 get_bh(epos.bh);
2306
2307 while (1) {
2308 ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0);
2309 if (ret <= 0)
2310 break;
2311 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2312 neloc = oeloc;
2313 nelen = (etype << 30) | oelen;
2314 }
2315 if (ret == 0)
2316 ret = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2317 brelse(epos.bh);
2318
2319 return ret;
2320}
2321
2322int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2323{
2324 struct extent_position oepos;
2325 int adsize;
2326 int8_t etype;
2327 struct allocExtDesc *aed;
2328 struct udf_inode_info *iinfo;
2329 struct kernel_lb_addr eloc;
2330 uint32_t elen;
2331 int ret;
2332
2333 if (epos.bh) {
2334 get_bh(epos.bh);
2335 get_bh(epos.bh);
2336 }
2337
2338 iinfo = UDF_I(inode);
2339 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2340 adsize = sizeof(struct short_ad);
2341 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2342 adsize = sizeof(struct long_ad);
2343 else
2344 adsize = 0;
2345
2346 oepos = epos;
2347 if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0)
2348 return -1;
2349
2350 while (1) {
2351 ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1);
2352 if (ret < 0) {
2353 brelse(epos.bh);
2354 brelse(oepos.bh);
2355 return -1;
2356 }
2357 if (ret == 0)
2358 break;
2359 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2360 if (oepos.bh != epos.bh) {
2361 oepos.block = epos.block;
2362 brelse(oepos.bh);
2363 get_bh(epos.bh);
2364 oepos.bh = epos.bh;
2365 oepos.offset = epos.offset - adsize;
2366 }
2367 }
2368 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2369 elen = 0;
2370
2371 if (epos.bh != oepos.bh) {
2372 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2373 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2374 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2375 if (!oepos.bh) {
2376 iinfo->i_lenAlloc -= (adsize * 2);
2377 mark_inode_dirty(inode);
2378 } else {
2379 aed = (struct allocExtDesc *)oepos.bh->b_data;
2380 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2381 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2382 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2383 udf_update_tag(oepos.bh->b_data,
2384 oepos.offset - (2 * adsize));
2385 else
2386 udf_update_tag(oepos.bh->b_data,
2387 sizeof(struct allocExtDesc));
2388 mark_buffer_dirty_inode(oepos.bh, inode);
2389 }
2390 } else {
2391 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2392 if (!oepos.bh) {
2393 iinfo->i_lenAlloc -= adsize;
2394 mark_inode_dirty(inode);
2395 } else {
2396 aed = (struct allocExtDesc *)oepos.bh->b_data;
2397 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2398 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2399 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2400 udf_update_tag(oepos.bh->b_data,
2401 epos.offset - adsize);
2402 else
2403 udf_update_tag(oepos.bh->b_data,
2404 sizeof(struct allocExtDesc));
2405 mark_buffer_dirty_inode(oepos.bh, inode);
2406 }
2407 }
2408
2409 brelse(epos.bh);
2410 brelse(oepos.bh);
2411
2412 return (elen >> 30);
2413}
2414
2415/*
2416 * Returns 1 on success, -errno on error, 0 on hit EOF.
2417 */
2418int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos,
2419 struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset,
2420 int8_t *etype)
2421{
2422 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2423 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2424 struct udf_inode_info *iinfo;
2425 int err = 0;
2426
2427 iinfo = UDF_I(inode);
2428 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2429 pos->offset = 0;
2430 pos->block = iinfo->i_location;
2431 pos->bh = NULL;
2432 }
2433 *elen = 0;
2434 do {
2435 err = udf_next_aext(inode, pos, eloc, elen, etype, 1);
2436 if (err <= 0) {
2437 if (err == 0) {
2438 *offset = (bcount - lbcount) >> blocksize_bits;
2439 iinfo->i_lenExtents = lbcount;
2440 }
2441 return err;
2442 }
2443 lbcount += *elen;
2444 } while (lbcount <= bcount);
2445 /* update extent cache */
2446 udf_update_extent_cache(inode, lbcount - *elen, pos);
2447 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2448
2449 return 1;
2450}
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/buffer_head.h>
37#include <linux/writeback.h>
38#include <linux/slab.h>
39#include <linux/crc-itu-t.h>
40
41#include "udf_i.h"
42#include "udf_sb.h"
43
44MODULE_AUTHOR("Ben Fennema");
45MODULE_DESCRIPTION("Universal Disk Format Filesystem");
46MODULE_LICENSE("GPL");
47
48#define EXTENT_MERGE_SIZE 5
49
50static mode_t udf_convert_permissions(struct fileEntry *);
51static int udf_update_inode(struct inode *, int);
52static void udf_fill_inode(struct inode *, struct buffer_head *);
53static int udf_sync_inode(struct inode *inode);
54static int udf_alloc_i_data(struct inode *inode, size_t size);
55static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
56 sector_t *, int *);
57static int8_t udf_insert_aext(struct inode *, struct extent_position,
58 struct kernel_lb_addr, uint32_t);
59static void udf_split_extents(struct inode *, int *, int, int,
60 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61static void udf_prealloc_extents(struct inode *, int, int,
62 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63static void udf_merge_extents(struct inode *,
64 struct kernel_long_ad[EXTENT_MERGE_SIZE], int *);
65static void udf_update_extents(struct inode *,
66 struct kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
67 struct extent_position *);
68static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69
70
71void udf_evict_inode(struct inode *inode)
72{
73 struct udf_inode_info *iinfo = UDF_I(inode);
74 int want_delete = 0;
75
76 if (!inode->i_nlink && !is_bad_inode(inode)) {
77 want_delete = 1;
78 udf_setsize(inode, 0);
79 udf_update_inode(inode, IS_SYNC(inode));
80 } else
81 truncate_inode_pages(&inode->i_data, 0);
82 invalidate_inode_buffers(inode);
83 end_writeback(inode);
84 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
85 inode->i_size != iinfo->i_lenExtents) {
86 printk(KERN_WARNING "UDF-fs (%s): Inode %lu (mode %o) has "
87 "inode size %llu different from extent length %llu. "
88 "Filesystem need not be standards compliant.\n",
89 inode->i_sb->s_id, inode->i_ino, inode->i_mode,
90 (unsigned long long)inode->i_size,
91 (unsigned long long)iinfo->i_lenExtents);
92 }
93 kfree(iinfo->i_ext.i_data);
94 iinfo->i_ext.i_data = NULL;
95 if (want_delete) {
96 udf_free_inode(inode);
97 }
98}
99
100static int udf_writepage(struct page *page, struct writeback_control *wbc)
101{
102 return block_write_full_page(page, udf_get_block, wbc);
103}
104
105static int udf_readpage(struct file *file, struct page *page)
106{
107 return block_read_full_page(page, udf_get_block);
108}
109
110static int udf_write_begin(struct file *file, struct address_space *mapping,
111 loff_t pos, unsigned len, unsigned flags,
112 struct page **pagep, void **fsdata)
113{
114 int ret;
115
116 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
117 if (unlikely(ret)) {
118 struct inode *inode = mapping->host;
119 struct udf_inode_info *iinfo = UDF_I(inode);
120 loff_t isize = inode->i_size;
121
122 if (pos + len > isize) {
123 truncate_pagecache(inode, pos + len, isize);
124 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
125 down_write(&iinfo->i_data_sem);
126 udf_truncate_extents(inode);
127 up_write(&iinfo->i_data_sem);
128 }
129 }
130 }
131
132 return ret;
133}
134
135static sector_t udf_bmap(struct address_space *mapping, sector_t block)
136{
137 return generic_block_bmap(mapping, block, udf_get_block);
138}
139
140const struct address_space_operations udf_aops = {
141 .readpage = udf_readpage,
142 .writepage = udf_writepage,
143 .write_begin = udf_write_begin,
144 .write_end = generic_write_end,
145 .bmap = udf_bmap,
146};
147
148int udf_expand_file_adinicb(struct inode *inode)
149{
150 struct page *page;
151 char *kaddr;
152 struct udf_inode_info *iinfo = UDF_I(inode);
153 int err;
154 struct writeback_control udf_wbc = {
155 .sync_mode = WB_SYNC_NONE,
156 .nr_to_write = 1,
157 };
158
159 if (!iinfo->i_lenAlloc) {
160 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
161 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
162 else
163 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
164 /* from now on we have normal address_space methods */
165 inode->i_data.a_ops = &udf_aops;
166 mark_inode_dirty(inode);
167 return 0;
168 }
169
170 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
171 if (!page)
172 return -ENOMEM;
173
174 if (!PageUptodate(page)) {
175 kaddr = kmap(page);
176 memset(kaddr + iinfo->i_lenAlloc, 0x00,
177 PAGE_CACHE_SIZE - iinfo->i_lenAlloc);
178 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
179 iinfo->i_lenAlloc);
180 flush_dcache_page(page);
181 SetPageUptodate(page);
182 kunmap(page);
183 }
184 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
185 iinfo->i_lenAlloc);
186 iinfo->i_lenAlloc = 0;
187 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
188 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
189 else
190 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
191 /* from now on we have normal address_space methods */
192 inode->i_data.a_ops = &udf_aops;
193 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
194 if (err) {
195 /* Restore everything back so that we don't lose data... */
196 lock_page(page);
197 kaddr = kmap(page);
198 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
199 inode->i_size);
200 kunmap(page);
201 unlock_page(page);
202 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
203 inode->i_data.a_ops = &udf_adinicb_aops;
204 }
205 page_cache_release(page);
206 mark_inode_dirty(inode);
207
208 return err;
209}
210
211struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
212 int *err)
213{
214 int newblock;
215 struct buffer_head *dbh = NULL;
216 struct kernel_lb_addr eloc;
217 uint8_t alloctype;
218 struct extent_position epos;
219
220 struct udf_fileident_bh sfibh, dfibh;
221 loff_t f_pos = udf_ext0_offset(inode);
222 int size = udf_ext0_offset(inode) + inode->i_size;
223 struct fileIdentDesc cfi, *sfi, *dfi;
224 struct udf_inode_info *iinfo = UDF_I(inode);
225
226 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
227 alloctype = ICBTAG_FLAG_AD_SHORT;
228 else
229 alloctype = ICBTAG_FLAG_AD_LONG;
230
231 if (!inode->i_size) {
232 iinfo->i_alloc_type = alloctype;
233 mark_inode_dirty(inode);
234 return NULL;
235 }
236
237 /* alloc block, and copy data to it */
238 *block = udf_new_block(inode->i_sb, inode,
239 iinfo->i_location.partitionReferenceNum,
240 iinfo->i_location.logicalBlockNum, err);
241 if (!(*block))
242 return NULL;
243 newblock = udf_get_pblock(inode->i_sb, *block,
244 iinfo->i_location.partitionReferenceNum,
245 0);
246 if (!newblock)
247 return NULL;
248 dbh = udf_tgetblk(inode->i_sb, newblock);
249 if (!dbh)
250 return NULL;
251 lock_buffer(dbh);
252 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
253 set_buffer_uptodate(dbh);
254 unlock_buffer(dbh);
255 mark_buffer_dirty_inode(dbh, inode);
256
257 sfibh.soffset = sfibh.eoffset =
258 f_pos & (inode->i_sb->s_blocksize - 1);
259 sfibh.sbh = sfibh.ebh = NULL;
260 dfibh.soffset = dfibh.eoffset = 0;
261 dfibh.sbh = dfibh.ebh = dbh;
262 while (f_pos < size) {
263 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
264 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
265 NULL, NULL, NULL);
266 if (!sfi) {
267 brelse(dbh);
268 return NULL;
269 }
270 iinfo->i_alloc_type = alloctype;
271 sfi->descTag.tagLocation = cpu_to_le32(*block);
272 dfibh.soffset = dfibh.eoffset;
273 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
274 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
275 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
276 sfi->fileIdent +
277 le16_to_cpu(sfi->lengthOfImpUse))) {
278 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
279 brelse(dbh);
280 return NULL;
281 }
282 }
283 mark_buffer_dirty_inode(dbh, inode);
284
285 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
286 iinfo->i_lenAlloc);
287 iinfo->i_lenAlloc = 0;
288 eloc.logicalBlockNum = *block;
289 eloc.partitionReferenceNum =
290 iinfo->i_location.partitionReferenceNum;
291 iinfo->i_lenExtents = inode->i_size;
292 epos.bh = NULL;
293 epos.block = iinfo->i_location;
294 epos.offset = udf_file_entry_alloc_offset(inode);
295 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
296 /* UniqueID stuff */
297
298 brelse(epos.bh);
299 mark_inode_dirty(inode);
300 return dbh;
301}
302
303static int udf_get_block(struct inode *inode, sector_t block,
304 struct buffer_head *bh_result, int create)
305{
306 int err, new;
307 struct buffer_head *bh;
308 sector_t phys = 0;
309 struct udf_inode_info *iinfo;
310
311 if (!create) {
312 phys = udf_block_map(inode, block);
313 if (phys)
314 map_bh(bh_result, inode->i_sb, phys);
315 return 0;
316 }
317
318 err = -EIO;
319 new = 0;
320 bh = NULL;
321 iinfo = UDF_I(inode);
322
323 down_write(&iinfo->i_data_sem);
324 if (block == iinfo->i_next_alloc_block + 1) {
325 iinfo->i_next_alloc_block++;
326 iinfo->i_next_alloc_goal++;
327 }
328
329 err = 0;
330
331 bh = inode_getblk(inode, block, &err, &phys, &new);
332 BUG_ON(bh);
333 if (err)
334 goto abort;
335 BUG_ON(!phys);
336
337 if (new)
338 set_buffer_new(bh_result);
339 map_bh(bh_result, inode->i_sb, phys);
340
341abort:
342 up_write(&iinfo->i_data_sem);
343 return err;
344}
345
346static struct buffer_head *udf_getblk(struct inode *inode, long block,
347 int create, int *err)
348{
349 struct buffer_head *bh;
350 struct buffer_head dummy;
351
352 dummy.b_state = 0;
353 dummy.b_blocknr = -1000;
354 *err = udf_get_block(inode, block, &dummy, create);
355 if (!*err && buffer_mapped(&dummy)) {
356 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
357 if (buffer_new(&dummy)) {
358 lock_buffer(bh);
359 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
360 set_buffer_uptodate(bh);
361 unlock_buffer(bh);
362 mark_buffer_dirty_inode(bh, inode);
363 }
364 return bh;
365 }
366
367 return NULL;
368}
369
370/* Extend the file by 'blocks' blocks, return the number of extents added */
371static int udf_do_extend_file(struct inode *inode,
372 struct extent_position *last_pos,
373 struct kernel_long_ad *last_ext,
374 sector_t blocks)
375{
376 sector_t add;
377 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
378 struct super_block *sb = inode->i_sb;
379 struct kernel_lb_addr prealloc_loc = {};
380 int prealloc_len = 0;
381 struct udf_inode_info *iinfo;
382 int err;
383
384 /* The previous extent is fake and we should not extend by anything
385 * - there's nothing to do... */
386 if (!blocks && fake)
387 return 0;
388
389 iinfo = UDF_I(inode);
390 /* Round the last extent up to a multiple of block size */
391 if (last_ext->extLength & (sb->s_blocksize - 1)) {
392 last_ext->extLength =
393 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
394 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
395 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
396 iinfo->i_lenExtents =
397 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
398 ~(sb->s_blocksize - 1);
399 }
400
401 /* Last extent are just preallocated blocks? */
402 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
403 EXT_NOT_RECORDED_ALLOCATED) {
404 /* Save the extent so that we can reattach it to the end */
405 prealloc_loc = last_ext->extLocation;
406 prealloc_len = last_ext->extLength;
407 /* Mark the extent as a hole */
408 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
409 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
410 last_ext->extLocation.logicalBlockNum = 0;
411 last_ext->extLocation.partitionReferenceNum = 0;
412 }
413
414 /* Can we merge with the previous extent? */
415 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
416 EXT_NOT_RECORDED_NOT_ALLOCATED) {
417 add = ((1 << 30) - sb->s_blocksize -
418 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
419 sb->s_blocksize_bits;
420 if (add > blocks)
421 add = blocks;
422 blocks -= add;
423 last_ext->extLength += add << sb->s_blocksize_bits;
424 }
425
426 if (fake) {
427 udf_add_aext(inode, last_pos, &last_ext->extLocation,
428 last_ext->extLength, 1);
429 count++;
430 } else
431 udf_write_aext(inode, last_pos, &last_ext->extLocation,
432 last_ext->extLength, 1);
433
434 /* Managed to do everything necessary? */
435 if (!blocks)
436 goto out;
437
438 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
439 last_ext->extLocation.logicalBlockNum = 0;
440 last_ext->extLocation.partitionReferenceNum = 0;
441 add = (1 << (30-sb->s_blocksize_bits)) - 1;
442 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
443 (add << sb->s_blocksize_bits);
444
445 /* Create enough extents to cover the whole hole */
446 while (blocks > add) {
447 blocks -= add;
448 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
449 last_ext->extLength, 1);
450 if (err)
451 return err;
452 count++;
453 }
454 if (blocks) {
455 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
456 (blocks << sb->s_blocksize_bits);
457 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
458 last_ext->extLength, 1);
459 if (err)
460 return err;
461 count++;
462 }
463
464out:
465 /* Do we have some preallocated blocks saved? */
466 if (prealloc_len) {
467 err = udf_add_aext(inode, last_pos, &prealloc_loc,
468 prealloc_len, 1);
469 if (err)
470 return err;
471 last_ext->extLocation = prealloc_loc;
472 last_ext->extLength = prealloc_len;
473 count++;
474 }
475
476 /* last_pos should point to the last written extent... */
477 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
478 last_pos->offset -= sizeof(struct short_ad);
479 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
480 last_pos->offset -= sizeof(struct long_ad);
481 else
482 return -EIO;
483
484 return count;
485}
486
487static int udf_extend_file(struct inode *inode, loff_t newsize)
488{
489
490 struct extent_position epos;
491 struct kernel_lb_addr eloc;
492 uint32_t elen;
493 int8_t etype;
494 struct super_block *sb = inode->i_sb;
495 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
496 int adsize;
497 struct udf_inode_info *iinfo = UDF_I(inode);
498 struct kernel_long_ad extent;
499 int err;
500
501 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
502 adsize = sizeof(struct short_ad);
503 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
504 adsize = sizeof(struct long_ad);
505 else
506 BUG();
507
508 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
509
510 /* File has extent covering the new size (could happen when extending
511 * inside a block)? */
512 if (etype != -1)
513 return 0;
514 if (newsize & (sb->s_blocksize - 1))
515 offset++;
516 /* Extended file just to the boundary of the last file block? */
517 if (offset == 0)
518 return 0;
519
520 /* Truncate is extending the file by 'offset' blocks */
521 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
522 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
523 /* File has no extents at all or has empty last
524 * indirect extent! Create a fake extent... */
525 extent.extLocation.logicalBlockNum = 0;
526 extent.extLocation.partitionReferenceNum = 0;
527 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
528 } else {
529 epos.offset -= adsize;
530 etype = udf_next_aext(inode, &epos, &extent.extLocation,
531 &extent.extLength, 0);
532 extent.extLength |= etype << 30;
533 }
534 err = udf_do_extend_file(inode, &epos, &extent, offset);
535 if (err < 0)
536 goto out;
537 err = 0;
538 iinfo->i_lenExtents = newsize;
539out:
540 brelse(epos.bh);
541 return err;
542}
543
544static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
545 int *err, sector_t *phys, int *new)
546{
547 static sector_t last_block;
548 struct buffer_head *result = NULL;
549 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
550 struct extent_position prev_epos, cur_epos, next_epos;
551 int count = 0, startnum = 0, endnum = 0;
552 uint32_t elen = 0, tmpelen;
553 struct kernel_lb_addr eloc, tmpeloc;
554 int c = 1;
555 loff_t lbcount = 0, b_off = 0;
556 uint32_t newblocknum, newblock;
557 sector_t offset = 0;
558 int8_t etype;
559 struct udf_inode_info *iinfo = UDF_I(inode);
560 int goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
561 int lastblock = 0;
562
563 prev_epos.offset = udf_file_entry_alloc_offset(inode);
564 prev_epos.block = iinfo->i_location;
565 prev_epos.bh = NULL;
566 cur_epos = next_epos = prev_epos;
567 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
568
569 /* find the extent which contains the block we are looking for.
570 alternate between laarr[0] and laarr[1] for locations of the
571 current extent, and the previous extent */
572 do {
573 if (prev_epos.bh != cur_epos.bh) {
574 brelse(prev_epos.bh);
575 get_bh(cur_epos.bh);
576 prev_epos.bh = cur_epos.bh;
577 }
578 if (cur_epos.bh != next_epos.bh) {
579 brelse(cur_epos.bh);
580 get_bh(next_epos.bh);
581 cur_epos.bh = next_epos.bh;
582 }
583
584 lbcount += elen;
585
586 prev_epos.block = cur_epos.block;
587 cur_epos.block = next_epos.block;
588
589 prev_epos.offset = cur_epos.offset;
590 cur_epos.offset = next_epos.offset;
591
592 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
593 if (etype == -1)
594 break;
595
596 c = !c;
597
598 laarr[c].extLength = (etype << 30) | elen;
599 laarr[c].extLocation = eloc;
600
601 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
602 pgoal = eloc.logicalBlockNum +
603 ((elen + inode->i_sb->s_blocksize - 1) >>
604 inode->i_sb->s_blocksize_bits);
605
606 count++;
607 } while (lbcount + elen <= b_off);
608
609 b_off -= lbcount;
610 offset = b_off >> inode->i_sb->s_blocksize_bits;
611 /*
612 * Move prev_epos and cur_epos into indirect extent if we are at
613 * the pointer to it
614 */
615 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
616 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
617
618 /* if the extent is allocated and recorded, return the block
619 if the extent is not a multiple of the blocksize, round up */
620
621 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
622 if (elen & (inode->i_sb->s_blocksize - 1)) {
623 elen = EXT_RECORDED_ALLOCATED |
624 ((elen + inode->i_sb->s_blocksize - 1) &
625 ~(inode->i_sb->s_blocksize - 1));
626 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
627 }
628 brelse(prev_epos.bh);
629 brelse(cur_epos.bh);
630 brelse(next_epos.bh);
631 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
632 *phys = newblock;
633 return NULL;
634 }
635
636 last_block = block;
637 /* Are we beyond EOF? */
638 if (etype == -1) {
639 int ret;
640
641 if (count) {
642 if (c)
643 laarr[0] = laarr[1];
644 startnum = 1;
645 } else {
646 /* Create a fake extent when there's not one */
647 memset(&laarr[0].extLocation, 0x00,
648 sizeof(struct kernel_lb_addr));
649 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
650 /* Will udf_do_extend_file() create real extent from
651 a fake one? */
652 startnum = (offset > 0);
653 }
654 /* Create extents for the hole between EOF and offset */
655 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
656 if (ret < 0) {
657 brelse(prev_epos.bh);
658 brelse(cur_epos.bh);
659 brelse(next_epos.bh);
660 *err = ret;
661 return NULL;
662 }
663 c = 0;
664 offset = 0;
665 count += ret;
666 /* We are not covered by a preallocated extent? */
667 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
668 EXT_NOT_RECORDED_ALLOCATED) {
669 /* Is there any real extent? - otherwise we overwrite
670 * the fake one... */
671 if (count)
672 c = !c;
673 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
674 inode->i_sb->s_blocksize;
675 memset(&laarr[c].extLocation, 0x00,
676 sizeof(struct kernel_lb_addr));
677 count++;
678 endnum++;
679 }
680 endnum = c + 1;
681 lastblock = 1;
682 } else {
683 endnum = startnum = ((count > 2) ? 2 : count);
684
685 /* if the current extent is in position 0,
686 swap it with the previous */
687 if (!c && count != 1) {
688 laarr[2] = laarr[0];
689 laarr[0] = laarr[1];
690 laarr[1] = laarr[2];
691 c = 1;
692 }
693
694 /* if the current block is located in an extent,
695 read the next extent */
696 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
697 if (etype != -1) {
698 laarr[c + 1].extLength = (etype << 30) | elen;
699 laarr[c + 1].extLocation = eloc;
700 count++;
701 startnum++;
702 endnum++;
703 } else
704 lastblock = 1;
705 }
706
707 /* if the current extent is not recorded but allocated, get the
708 * block in the extent corresponding to the requested block */
709 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
710 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
711 else { /* otherwise, allocate a new block */
712 if (iinfo->i_next_alloc_block == block)
713 goal = iinfo->i_next_alloc_goal;
714
715 if (!goal) {
716 if (!(goal = pgoal)) /* XXX: what was intended here? */
717 goal = iinfo->i_location.logicalBlockNum + 1;
718 }
719
720 newblocknum = udf_new_block(inode->i_sb, inode,
721 iinfo->i_location.partitionReferenceNum,
722 goal, err);
723 if (!newblocknum) {
724 brelse(prev_epos.bh);
725 *err = -ENOSPC;
726 return NULL;
727 }
728 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
729 }
730
731 /* if the extent the requsted block is located in contains multiple
732 * blocks, split the extent into at most three extents. blocks prior
733 * to requested block, requested block, and blocks after requested
734 * block */
735 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
736
737#ifdef UDF_PREALLOCATE
738 /* We preallocate blocks only for regular files. It also makes sense
739 * for directories but there's a problem when to drop the
740 * preallocation. We might use some delayed work for that but I feel
741 * it's overengineering for a filesystem like UDF. */
742 if (S_ISREG(inode->i_mode))
743 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
744#endif
745
746 /* merge any continuous blocks in laarr */
747 udf_merge_extents(inode, laarr, &endnum);
748
749 /* write back the new extents, inserting new extents if the new number
750 * of extents is greater than the old number, and deleting extents if
751 * the new number of extents is less than the old number */
752 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
753
754 brelse(prev_epos.bh);
755
756 newblock = udf_get_pblock(inode->i_sb, newblocknum,
757 iinfo->i_location.partitionReferenceNum, 0);
758 if (!newblock)
759 return NULL;
760 *phys = newblock;
761 *err = 0;
762 *new = 1;
763 iinfo->i_next_alloc_block = block;
764 iinfo->i_next_alloc_goal = newblocknum;
765 inode->i_ctime = current_fs_time(inode->i_sb);
766
767 if (IS_SYNC(inode))
768 udf_sync_inode(inode);
769 else
770 mark_inode_dirty(inode);
771
772 return result;
773}
774
775static void udf_split_extents(struct inode *inode, int *c, int offset,
776 int newblocknum,
777 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
778 int *endnum)
779{
780 unsigned long blocksize = inode->i_sb->s_blocksize;
781 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
782
783 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
784 (laarr[*c].extLength >> 30) ==
785 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
786 int curr = *c;
787 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
788 blocksize - 1) >> blocksize_bits;
789 int8_t etype = (laarr[curr].extLength >> 30);
790
791 if (blen == 1)
792 ;
793 else if (!offset || blen == offset + 1) {
794 laarr[curr + 2] = laarr[curr + 1];
795 laarr[curr + 1] = laarr[curr];
796 } else {
797 laarr[curr + 3] = laarr[curr + 1];
798 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
799 }
800
801 if (offset) {
802 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
803 udf_free_blocks(inode->i_sb, inode,
804 &laarr[curr].extLocation,
805 0, offset);
806 laarr[curr].extLength =
807 EXT_NOT_RECORDED_NOT_ALLOCATED |
808 (offset << blocksize_bits);
809 laarr[curr].extLocation.logicalBlockNum = 0;
810 laarr[curr].extLocation.
811 partitionReferenceNum = 0;
812 } else
813 laarr[curr].extLength = (etype << 30) |
814 (offset << blocksize_bits);
815 curr++;
816 (*c)++;
817 (*endnum)++;
818 }
819
820 laarr[curr].extLocation.logicalBlockNum = newblocknum;
821 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
822 laarr[curr].extLocation.partitionReferenceNum =
823 UDF_I(inode)->i_location.partitionReferenceNum;
824 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
825 blocksize;
826 curr++;
827
828 if (blen != offset + 1) {
829 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
830 laarr[curr].extLocation.logicalBlockNum +=
831 offset + 1;
832 laarr[curr].extLength = (etype << 30) |
833 ((blen - (offset + 1)) << blocksize_bits);
834 curr++;
835 (*endnum)++;
836 }
837 }
838}
839
840static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
841 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
842 int *endnum)
843{
844 int start, length = 0, currlength = 0, i;
845
846 if (*endnum >= (c + 1)) {
847 if (!lastblock)
848 return;
849 else
850 start = c;
851 } else {
852 if ((laarr[c + 1].extLength >> 30) ==
853 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
854 start = c + 1;
855 length = currlength =
856 (((laarr[c + 1].extLength &
857 UDF_EXTENT_LENGTH_MASK) +
858 inode->i_sb->s_blocksize - 1) >>
859 inode->i_sb->s_blocksize_bits);
860 } else
861 start = c;
862 }
863
864 for (i = start + 1; i <= *endnum; i++) {
865 if (i == *endnum) {
866 if (lastblock)
867 length += UDF_DEFAULT_PREALLOC_BLOCKS;
868 } else if ((laarr[i].extLength >> 30) ==
869 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
870 length += (((laarr[i].extLength &
871 UDF_EXTENT_LENGTH_MASK) +
872 inode->i_sb->s_blocksize - 1) >>
873 inode->i_sb->s_blocksize_bits);
874 } else
875 break;
876 }
877
878 if (length) {
879 int next = laarr[start].extLocation.logicalBlockNum +
880 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
881 inode->i_sb->s_blocksize - 1) >>
882 inode->i_sb->s_blocksize_bits);
883 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
884 laarr[start].extLocation.partitionReferenceNum,
885 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
886 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
887 currlength);
888 if (numalloc) {
889 if (start == (c + 1))
890 laarr[start].extLength +=
891 (numalloc <<
892 inode->i_sb->s_blocksize_bits);
893 else {
894 memmove(&laarr[c + 2], &laarr[c + 1],
895 sizeof(struct long_ad) * (*endnum - (c + 1)));
896 (*endnum)++;
897 laarr[c + 1].extLocation.logicalBlockNum = next;
898 laarr[c + 1].extLocation.partitionReferenceNum =
899 laarr[c].extLocation.
900 partitionReferenceNum;
901 laarr[c + 1].extLength =
902 EXT_NOT_RECORDED_ALLOCATED |
903 (numalloc <<
904 inode->i_sb->s_blocksize_bits);
905 start = c + 1;
906 }
907
908 for (i = start + 1; numalloc && i < *endnum; i++) {
909 int elen = ((laarr[i].extLength &
910 UDF_EXTENT_LENGTH_MASK) +
911 inode->i_sb->s_blocksize - 1) >>
912 inode->i_sb->s_blocksize_bits;
913
914 if (elen > numalloc) {
915 laarr[i].extLength -=
916 (numalloc <<
917 inode->i_sb->s_blocksize_bits);
918 numalloc = 0;
919 } else {
920 numalloc -= elen;
921 if (*endnum > (i + 1))
922 memmove(&laarr[i],
923 &laarr[i + 1],
924 sizeof(struct long_ad) *
925 (*endnum - (i + 1)));
926 i--;
927 (*endnum)--;
928 }
929 }
930 UDF_I(inode)->i_lenExtents +=
931 numalloc << inode->i_sb->s_blocksize_bits;
932 }
933 }
934}
935
936static void udf_merge_extents(struct inode *inode,
937 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
938 int *endnum)
939{
940 int i;
941 unsigned long blocksize = inode->i_sb->s_blocksize;
942 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
943
944 for (i = 0; i < (*endnum - 1); i++) {
945 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
946 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
947
948 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
949 (((li->extLength >> 30) ==
950 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
951 ((lip1->extLocation.logicalBlockNum -
952 li->extLocation.logicalBlockNum) ==
953 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
954 blocksize - 1) >> blocksize_bits)))) {
955
956 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
957 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
958 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
959 lip1->extLength = (lip1->extLength -
960 (li->extLength &
961 UDF_EXTENT_LENGTH_MASK) +
962 UDF_EXTENT_LENGTH_MASK) &
963 ~(blocksize - 1);
964 li->extLength = (li->extLength &
965 UDF_EXTENT_FLAG_MASK) +
966 (UDF_EXTENT_LENGTH_MASK + 1) -
967 blocksize;
968 lip1->extLocation.logicalBlockNum =
969 li->extLocation.logicalBlockNum +
970 ((li->extLength &
971 UDF_EXTENT_LENGTH_MASK) >>
972 blocksize_bits);
973 } else {
974 li->extLength = lip1->extLength +
975 (((li->extLength &
976 UDF_EXTENT_LENGTH_MASK) +
977 blocksize - 1) & ~(blocksize - 1));
978 if (*endnum > (i + 2))
979 memmove(&laarr[i + 1], &laarr[i + 2],
980 sizeof(struct long_ad) *
981 (*endnum - (i + 2)));
982 i--;
983 (*endnum)--;
984 }
985 } else if (((li->extLength >> 30) ==
986 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
987 ((lip1->extLength >> 30) ==
988 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
989 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
990 ((li->extLength &
991 UDF_EXTENT_LENGTH_MASK) +
992 blocksize - 1) >> blocksize_bits);
993 li->extLocation.logicalBlockNum = 0;
994 li->extLocation.partitionReferenceNum = 0;
995
996 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
997 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
998 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
999 lip1->extLength = (lip1->extLength -
1000 (li->extLength &
1001 UDF_EXTENT_LENGTH_MASK) +
1002 UDF_EXTENT_LENGTH_MASK) &
1003 ~(blocksize - 1);
1004 li->extLength = (li->extLength &
1005 UDF_EXTENT_FLAG_MASK) +
1006 (UDF_EXTENT_LENGTH_MASK + 1) -
1007 blocksize;
1008 } else {
1009 li->extLength = lip1->extLength +
1010 (((li->extLength &
1011 UDF_EXTENT_LENGTH_MASK) +
1012 blocksize - 1) & ~(blocksize - 1));
1013 if (*endnum > (i + 2))
1014 memmove(&laarr[i + 1], &laarr[i + 2],
1015 sizeof(struct long_ad) *
1016 (*endnum - (i + 2)));
1017 i--;
1018 (*endnum)--;
1019 }
1020 } else if ((li->extLength >> 30) ==
1021 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1022 udf_free_blocks(inode->i_sb, inode,
1023 &li->extLocation, 0,
1024 ((li->extLength &
1025 UDF_EXTENT_LENGTH_MASK) +
1026 blocksize - 1) >> blocksize_bits);
1027 li->extLocation.logicalBlockNum = 0;
1028 li->extLocation.partitionReferenceNum = 0;
1029 li->extLength = (li->extLength &
1030 UDF_EXTENT_LENGTH_MASK) |
1031 EXT_NOT_RECORDED_NOT_ALLOCATED;
1032 }
1033 }
1034}
1035
1036static void udf_update_extents(struct inode *inode,
1037 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE],
1038 int startnum, int endnum,
1039 struct extent_position *epos)
1040{
1041 int start = 0, i;
1042 struct kernel_lb_addr tmploc;
1043 uint32_t tmplen;
1044
1045 if (startnum > endnum) {
1046 for (i = 0; i < (startnum - endnum); i++)
1047 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1048 laarr[i].extLength);
1049 } else if (startnum < endnum) {
1050 for (i = 0; i < (endnum - startnum); i++) {
1051 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1052 laarr[i].extLength);
1053 udf_next_aext(inode, epos, &laarr[i].extLocation,
1054 &laarr[i].extLength, 1);
1055 start++;
1056 }
1057 }
1058
1059 for (i = start; i < endnum; i++) {
1060 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1061 udf_write_aext(inode, epos, &laarr[i].extLocation,
1062 laarr[i].extLength, 1);
1063 }
1064}
1065
1066struct buffer_head *udf_bread(struct inode *inode, int block,
1067 int create, int *err)
1068{
1069 struct buffer_head *bh = NULL;
1070
1071 bh = udf_getblk(inode, block, create, err);
1072 if (!bh)
1073 return NULL;
1074
1075 if (buffer_uptodate(bh))
1076 return bh;
1077
1078 ll_rw_block(READ, 1, &bh);
1079
1080 wait_on_buffer(bh);
1081 if (buffer_uptodate(bh))
1082 return bh;
1083
1084 brelse(bh);
1085 *err = -EIO;
1086 return NULL;
1087}
1088
1089int udf_setsize(struct inode *inode, loff_t newsize)
1090{
1091 int err;
1092 struct udf_inode_info *iinfo;
1093 int bsize = 1 << inode->i_blkbits;
1094
1095 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1096 S_ISLNK(inode->i_mode)))
1097 return -EINVAL;
1098 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1099 return -EPERM;
1100
1101 iinfo = UDF_I(inode);
1102 if (newsize > inode->i_size) {
1103 down_write(&iinfo->i_data_sem);
1104 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1105 if (bsize <
1106 (udf_file_entry_alloc_offset(inode) + newsize)) {
1107 err = udf_expand_file_adinicb(inode);
1108 if (err) {
1109 up_write(&iinfo->i_data_sem);
1110 return err;
1111 }
1112 } else
1113 iinfo->i_lenAlloc = newsize;
1114 }
1115 err = udf_extend_file(inode, newsize);
1116 if (err) {
1117 up_write(&iinfo->i_data_sem);
1118 return err;
1119 }
1120 truncate_setsize(inode, newsize);
1121 up_write(&iinfo->i_data_sem);
1122 } else {
1123 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1124 down_write(&iinfo->i_data_sem);
1125 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1126 0x00, bsize - newsize -
1127 udf_file_entry_alloc_offset(inode));
1128 iinfo->i_lenAlloc = newsize;
1129 truncate_setsize(inode, newsize);
1130 up_write(&iinfo->i_data_sem);
1131 goto update_time;
1132 }
1133 err = block_truncate_page(inode->i_mapping, newsize,
1134 udf_get_block);
1135 if (err)
1136 return err;
1137 down_write(&iinfo->i_data_sem);
1138 truncate_setsize(inode, newsize);
1139 udf_truncate_extents(inode);
1140 up_write(&iinfo->i_data_sem);
1141 }
1142update_time:
1143 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
1144 if (IS_SYNC(inode))
1145 udf_sync_inode(inode);
1146 else
1147 mark_inode_dirty(inode);
1148 return 0;
1149}
1150
1151static void __udf_read_inode(struct inode *inode)
1152{
1153 struct buffer_head *bh = NULL;
1154 struct fileEntry *fe;
1155 uint16_t ident;
1156 struct udf_inode_info *iinfo = UDF_I(inode);
1157
1158 /*
1159 * Set defaults, but the inode is still incomplete!
1160 * Note: get_new_inode() sets the following on a new inode:
1161 * i_sb = sb
1162 * i_no = ino
1163 * i_flags = sb->s_flags
1164 * i_state = 0
1165 * clean_inode(): zero fills and sets
1166 * i_count = 1
1167 * i_nlink = 1
1168 * i_op = NULL;
1169 */
1170 bh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 0, &ident);
1171 if (!bh) {
1172 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1173 inode->i_ino);
1174 make_bad_inode(inode);
1175 return;
1176 }
1177
1178 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1179 ident != TAG_IDENT_USE) {
1180 printk(KERN_ERR "udf: udf_read_inode(ino %ld) "
1181 "failed ident=%d\n", inode->i_ino, ident);
1182 brelse(bh);
1183 make_bad_inode(inode);
1184 return;
1185 }
1186
1187 fe = (struct fileEntry *)bh->b_data;
1188
1189 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1190 struct buffer_head *ibh;
1191
1192 ibh = udf_read_ptagged(inode->i_sb, &iinfo->i_location, 1,
1193 &ident);
1194 if (ident == TAG_IDENT_IE && ibh) {
1195 struct buffer_head *nbh = NULL;
1196 struct kernel_lb_addr loc;
1197 struct indirectEntry *ie;
1198
1199 ie = (struct indirectEntry *)ibh->b_data;
1200 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1201
1202 if (ie->indirectICB.extLength &&
1203 (nbh = udf_read_ptagged(inode->i_sb, &loc, 0,
1204 &ident))) {
1205 if (ident == TAG_IDENT_FE ||
1206 ident == TAG_IDENT_EFE) {
1207 memcpy(&iinfo->i_location,
1208 &loc,
1209 sizeof(struct kernel_lb_addr));
1210 brelse(bh);
1211 brelse(ibh);
1212 brelse(nbh);
1213 __udf_read_inode(inode);
1214 return;
1215 }
1216 brelse(nbh);
1217 }
1218 }
1219 brelse(ibh);
1220 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1221 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1222 le16_to_cpu(fe->icbTag.strategyType));
1223 brelse(bh);
1224 make_bad_inode(inode);
1225 return;
1226 }
1227 udf_fill_inode(inode, bh);
1228
1229 brelse(bh);
1230}
1231
1232static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1233{
1234 struct fileEntry *fe;
1235 struct extendedFileEntry *efe;
1236 int offset;
1237 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1238 struct udf_inode_info *iinfo = UDF_I(inode);
1239
1240 fe = (struct fileEntry *)bh->b_data;
1241 efe = (struct extendedFileEntry *)bh->b_data;
1242
1243 if (fe->icbTag.strategyType == cpu_to_le16(4))
1244 iinfo->i_strat4096 = 0;
1245 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1246 iinfo->i_strat4096 = 1;
1247
1248 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1249 ICBTAG_FLAG_AD_MASK;
1250 iinfo->i_unique = 0;
1251 iinfo->i_lenEAttr = 0;
1252 iinfo->i_lenExtents = 0;
1253 iinfo->i_lenAlloc = 0;
1254 iinfo->i_next_alloc_block = 0;
1255 iinfo->i_next_alloc_goal = 0;
1256 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1257 iinfo->i_efe = 1;
1258 iinfo->i_use = 0;
1259 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1260 sizeof(struct extendedFileEntry))) {
1261 make_bad_inode(inode);
1262 return;
1263 }
1264 memcpy(iinfo->i_ext.i_data,
1265 bh->b_data + sizeof(struct extendedFileEntry),
1266 inode->i_sb->s_blocksize -
1267 sizeof(struct extendedFileEntry));
1268 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1269 iinfo->i_efe = 0;
1270 iinfo->i_use = 0;
1271 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1272 sizeof(struct fileEntry))) {
1273 make_bad_inode(inode);
1274 return;
1275 }
1276 memcpy(iinfo->i_ext.i_data,
1277 bh->b_data + sizeof(struct fileEntry),
1278 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1279 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1280 iinfo->i_efe = 0;
1281 iinfo->i_use = 1;
1282 iinfo->i_lenAlloc = le32_to_cpu(
1283 ((struct unallocSpaceEntry *)bh->b_data)->
1284 lengthAllocDescs);
1285 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize -
1286 sizeof(struct unallocSpaceEntry))) {
1287 make_bad_inode(inode);
1288 return;
1289 }
1290 memcpy(iinfo->i_ext.i_data,
1291 bh->b_data + sizeof(struct unallocSpaceEntry),
1292 inode->i_sb->s_blocksize -
1293 sizeof(struct unallocSpaceEntry));
1294 return;
1295 }
1296
1297 read_lock(&sbi->s_cred_lock);
1298 inode->i_uid = le32_to_cpu(fe->uid);
1299 if (inode->i_uid == -1 ||
1300 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_IGNORE) ||
1301 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1302 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1303
1304 inode->i_gid = le32_to_cpu(fe->gid);
1305 if (inode->i_gid == -1 ||
1306 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_IGNORE) ||
1307 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1308 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1309
1310 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1311 sbi->s_fmode != UDF_INVALID_MODE)
1312 inode->i_mode = sbi->s_fmode;
1313 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1314 sbi->s_dmode != UDF_INVALID_MODE)
1315 inode->i_mode = sbi->s_dmode;
1316 else
1317 inode->i_mode = udf_convert_permissions(fe);
1318 inode->i_mode &= ~sbi->s_umask;
1319 read_unlock(&sbi->s_cred_lock);
1320
1321 inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1322 if (!inode->i_nlink)
1323 inode->i_nlink = 1;
1324
1325 inode->i_size = le64_to_cpu(fe->informationLength);
1326 iinfo->i_lenExtents = inode->i_size;
1327
1328 if (iinfo->i_efe == 0) {
1329 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1330 (inode->i_sb->s_blocksize_bits - 9);
1331
1332 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1333 inode->i_atime = sbi->s_record_time;
1334
1335 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1336 fe->modificationTime))
1337 inode->i_mtime = sbi->s_record_time;
1338
1339 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1340 inode->i_ctime = sbi->s_record_time;
1341
1342 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1343 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1344 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1345 offset = sizeof(struct fileEntry) + iinfo->i_lenEAttr;
1346 } else {
1347 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1348 (inode->i_sb->s_blocksize_bits - 9);
1349
1350 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1351 inode->i_atime = sbi->s_record_time;
1352
1353 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1354 efe->modificationTime))
1355 inode->i_mtime = sbi->s_record_time;
1356
1357 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1358 iinfo->i_crtime = sbi->s_record_time;
1359
1360 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1361 inode->i_ctime = sbi->s_record_time;
1362
1363 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1364 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1365 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1366 offset = sizeof(struct extendedFileEntry) +
1367 iinfo->i_lenEAttr;
1368 }
1369
1370 switch (fe->icbTag.fileType) {
1371 case ICBTAG_FILE_TYPE_DIRECTORY:
1372 inode->i_op = &udf_dir_inode_operations;
1373 inode->i_fop = &udf_dir_operations;
1374 inode->i_mode |= S_IFDIR;
1375 inc_nlink(inode);
1376 break;
1377 case ICBTAG_FILE_TYPE_REALTIME:
1378 case ICBTAG_FILE_TYPE_REGULAR:
1379 case ICBTAG_FILE_TYPE_UNDEF:
1380 case ICBTAG_FILE_TYPE_VAT20:
1381 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1382 inode->i_data.a_ops = &udf_adinicb_aops;
1383 else
1384 inode->i_data.a_ops = &udf_aops;
1385 inode->i_op = &udf_file_inode_operations;
1386 inode->i_fop = &udf_file_operations;
1387 inode->i_mode |= S_IFREG;
1388 break;
1389 case ICBTAG_FILE_TYPE_BLOCK:
1390 inode->i_mode |= S_IFBLK;
1391 break;
1392 case ICBTAG_FILE_TYPE_CHAR:
1393 inode->i_mode |= S_IFCHR;
1394 break;
1395 case ICBTAG_FILE_TYPE_FIFO:
1396 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1397 break;
1398 case ICBTAG_FILE_TYPE_SOCKET:
1399 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1400 break;
1401 case ICBTAG_FILE_TYPE_SYMLINK:
1402 inode->i_data.a_ops = &udf_symlink_aops;
1403 inode->i_op = &udf_symlink_inode_operations;
1404 inode->i_mode = S_IFLNK | S_IRWXUGO;
1405 break;
1406 case ICBTAG_FILE_TYPE_MAIN:
1407 udf_debug("METADATA FILE-----\n");
1408 break;
1409 case ICBTAG_FILE_TYPE_MIRROR:
1410 udf_debug("METADATA MIRROR FILE-----\n");
1411 break;
1412 case ICBTAG_FILE_TYPE_BITMAP:
1413 udf_debug("METADATA BITMAP FILE-----\n");
1414 break;
1415 default:
1416 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown "
1417 "file type=%d\n", inode->i_ino,
1418 fe->icbTag.fileType);
1419 make_bad_inode(inode);
1420 return;
1421 }
1422 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1423 struct deviceSpec *dsea =
1424 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1425 if (dsea) {
1426 init_special_inode(inode, inode->i_mode,
1427 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1428 le32_to_cpu(dsea->minorDeviceIdent)));
1429 /* Developer ID ??? */
1430 } else
1431 make_bad_inode(inode);
1432 }
1433}
1434
1435static int udf_alloc_i_data(struct inode *inode, size_t size)
1436{
1437 struct udf_inode_info *iinfo = UDF_I(inode);
1438 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1439
1440 if (!iinfo->i_ext.i_data) {
1441 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) "
1442 "no free memory\n", inode->i_ino);
1443 return -ENOMEM;
1444 }
1445
1446 return 0;
1447}
1448
1449static mode_t udf_convert_permissions(struct fileEntry *fe)
1450{
1451 mode_t mode;
1452 uint32_t permissions;
1453 uint32_t flags;
1454
1455 permissions = le32_to_cpu(fe->permissions);
1456 flags = le16_to_cpu(fe->icbTag.flags);
1457
1458 mode = ((permissions) & S_IRWXO) |
1459 ((permissions >> 2) & S_IRWXG) |
1460 ((permissions >> 4) & S_IRWXU) |
1461 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1462 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1463 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1464
1465 return mode;
1466}
1467
1468int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1469{
1470 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1471}
1472
1473static int udf_sync_inode(struct inode *inode)
1474{
1475 return udf_update_inode(inode, 1);
1476}
1477
1478static int udf_update_inode(struct inode *inode, int do_sync)
1479{
1480 struct buffer_head *bh = NULL;
1481 struct fileEntry *fe;
1482 struct extendedFileEntry *efe;
1483 uint32_t udfperms;
1484 uint16_t icbflags;
1485 uint16_t crclen;
1486 int err = 0;
1487 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1488 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1489 struct udf_inode_info *iinfo = UDF_I(inode);
1490
1491 bh = udf_tgetblk(inode->i_sb,
1492 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1493 if (!bh) {
1494 udf_debug("getblk failure\n");
1495 return -ENOMEM;
1496 }
1497
1498 lock_buffer(bh);
1499 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1500 fe = (struct fileEntry *)bh->b_data;
1501 efe = (struct extendedFileEntry *)bh->b_data;
1502
1503 if (iinfo->i_use) {
1504 struct unallocSpaceEntry *use =
1505 (struct unallocSpaceEntry *)bh->b_data;
1506
1507 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1508 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1509 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1510 sizeof(struct unallocSpaceEntry));
1511 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1512 use->descTag.tagLocation =
1513 cpu_to_le32(iinfo->i_location.logicalBlockNum);
1514 crclen = sizeof(struct unallocSpaceEntry) +
1515 iinfo->i_lenAlloc - sizeof(struct tag);
1516 use->descTag.descCRCLength = cpu_to_le16(crclen);
1517 use->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)use +
1518 sizeof(struct tag),
1519 crclen));
1520 use->descTag.tagChecksum = udf_tag_checksum(&use->descTag);
1521
1522 goto out;
1523 }
1524
1525 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1526 fe->uid = cpu_to_le32(-1);
1527 else
1528 fe->uid = cpu_to_le32(inode->i_uid);
1529
1530 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1531 fe->gid = cpu_to_le32(-1);
1532 else
1533 fe->gid = cpu_to_le32(inode->i_gid);
1534
1535 udfperms = ((inode->i_mode & S_IRWXO)) |
1536 ((inode->i_mode & S_IRWXG) << 2) |
1537 ((inode->i_mode & S_IRWXU) << 4);
1538
1539 udfperms |= (le32_to_cpu(fe->permissions) &
1540 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1541 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1542 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1543 fe->permissions = cpu_to_le32(udfperms);
1544
1545 if (S_ISDIR(inode->i_mode))
1546 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1547 else
1548 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1549
1550 fe->informationLength = cpu_to_le64(inode->i_size);
1551
1552 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1553 struct regid *eid;
1554 struct deviceSpec *dsea =
1555 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1556 if (!dsea) {
1557 dsea = (struct deviceSpec *)
1558 udf_add_extendedattr(inode,
1559 sizeof(struct deviceSpec) +
1560 sizeof(struct regid), 12, 0x3);
1561 dsea->attrType = cpu_to_le32(12);
1562 dsea->attrSubtype = 1;
1563 dsea->attrLength = cpu_to_le32(
1564 sizeof(struct deviceSpec) +
1565 sizeof(struct regid));
1566 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1567 }
1568 eid = (struct regid *)dsea->impUse;
1569 memset(eid, 0, sizeof(struct regid));
1570 strcpy(eid->ident, UDF_ID_DEVELOPER);
1571 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1572 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1573 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1574 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1575 }
1576
1577 if (iinfo->i_efe == 0) {
1578 memcpy(bh->b_data + sizeof(struct fileEntry),
1579 iinfo->i_ext.i_data,
1580 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1581 fe->logicalBlocksRecorded = cpu_to_le64(
1582 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1583 (blocksize_bits - 9));
1584
1585 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1586 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1587 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1588 memset(&(fe->impIdent), 0, sizeof(struct regid));
1589 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1590 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1591 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1592 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1593 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1594 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1595 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1596 crclen = sizeof(struct fileEntry);
1597 } else {
1598 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1599 iinfo->i_ext.i_data,
1600 inode->i_sb->s_blocksize -
1601 sizeof(struct extendedFileEntry));
1602 efe->objectSize = cpu_to_le64(inode->i_size);
1603 efe->logicalBlocksRecorded = cpu_to_le64(
1604 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1605 (blocksize_bits - 9));
1606
1607 if (iinfo->i_crtime.tv_sec > inode->i_atime.tv_sec ||
1608 (iinfo->i_crtime.tv_sec == inode->i_atime.tv_sec &&
1609 iinfo->i_crtime.tv_nsec > inode->i_atime.tv_nsec))
1610 iinfo->i_crtime = inode->i_atime;
1611
1612 if (iinfo->i_crtime.tv_sec > inode->i_mtime.tv_sec ||
1613 (iinfo->i_crtime.tv_sec == inode->i_mtime.tv_sec &&
1614 iinfo->i_crtime.tv_nsec > inode->i_mtime.tv_nsec))
1615 iinfo->i_crtime = inode->i_mtime;
1616
1617 if (iinfo->i_crtime.tv_sec > inode->i_ctime.tv_sec ||
1618 (iinfo->i_crtime.tv_sec == inode->i_ctime.tv_sec &&
1619 iinfo->i_crtime.tv_nsec > inode->i_ctime.tv_nsec))
1620 iinfo->i_crtime = inode->i_ctime;
1621
1622 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1623 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1624 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1625 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1626
1627 memset(&(efe->impIdent), 0, sizeof(struct regid));
1628 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1629 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1630 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1631 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1632 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1633 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1634 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1635 crclen = sizeof(struct extendedFileEntry);
1636 }
1637 if (iinfo->i_strat4096) {
1638 fe->icbTag.strategyType = cpu_to_le16(4096);
1639 fe->icbTag.strategyParameter = cpu_to_le16(1);
1640 fe->icbTag.numEntries = cpu_to_le16(2);
1641 } else {
1642 fe->icbTag.strategyType = cpu_to_le16(4);
1643 fe->icbTag.numEntries = cpu_to_le16(1);
1644 }
1645
1646 if (S_ISDIR(inode->i_mode))
1647 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1648 else if (S_ISREG(inode->i_mode))
1649 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1650 else if (S_ISLNK(inode->i_mode))
1651 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1652 else if (S_ISBLK(inode->i_mode))
1653 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1654 else if (S_ISCHR(inode->i_mode))
1655 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1656 else if (S_ISFIFO(inode->i_mode))
1657 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1658 else if (S_ISSOCK(inode->i_mode))
1659 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1660
1661 icbflags = iinfo->i_alloc_type |
1662 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1663 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1664 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1665 (le16_to_cpu(fe->icbTag.flags) &
1666 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1667 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1668
1669 fe->icbTag.flags = cpu_to_le16(icbflags);
1670 if (sbi->s_udfrev >= 0x0200)
1671 fe->descTag.descVersion = cpu_to_le16(3);
1672 else
1673 fe->descTag.descVersion = cpu_to_le16(2);
1674 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1675 fe->descTag.tagLocation = cpu_to_le32(
1676 iinfo->i_location.logicalBlockNum);
1677 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1678 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1679 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1680 crclen));
1681 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1682
1683out:
1684 set_buffer_uptodate(bh);
1685 unlock_buffer(bh);
1686
1687 /* write the data blocks */
1688 mark_buffer_dirty(bh);
1689 if (do_sync) {
1690 sync_dirty_buffer(bh);
1691 if (buffer_write_io_error(bh)) {
1692 printk(KERN_WARNING "IO error syncing udf inode "
1693 "[%s:%08lx]\n", inode->i_sb->s_id,
1694 inode->i_ino);
1695 err = -EIO;
1696 }
1697 }
1698 brelse(bh);
1699
1700 return err;
1701}
1702
1703struct inode *udf_iget(struct super_block *sb, struct kernel_lb_addr *ino)
1704{
1705 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1706 struct inode *inode = iget_locked(sb, block);
1707
1708 if (!inode)
1709 return NULL;
1710
1711 if (inode->i_state & I_NEW) {
1712 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1713 __udf_read_inode(inode);
1714 unlock_new_inode(inode);
1715 }
1716
1717 if (is_bad_inode(inode))
1718 goto out_iput;
1719
1720 if (ino->logicalBlockNum >= UDF_SB(sb)->
1721 s_partmaps[ino->partitionReferenceNum].s_partition_len) {
1722 udf_debug("block=%d, partition=%d out of range\n",
1723 ino->logicalBlockNum, ino->partitionReferenceNum);
1724 make_bad_inode(inode);
1725 goto out_iput;
1726 }
1727
1728 return inode;
1729
1730 out_iput:
1731 iput(inode);
1732 return NULL;
1733}
1734
1735int udf_add_aext(struct inode *inode, struct extent_position *epos,
1736 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1737{
1738 int adsize;
1739 struct short_ad *sad = NULL;
1740 struct long_ad *lad = NULL;
1741 struct allocExtDesc *aed;
1742 uint8_t *ptr;
1743 struct udf_inode_info *iinfo = UDF_I(inode);
1744
1745 if (!epos->bh)
1746 ptr = iinfo->i_ext.i_data + epos->offset -
1747 udf_file_entry_alloc_offset(inode) +
1748 iinfo->i_lenEAttr;
1749 else
1750 ptr = epos->bh->b_data + epos->offset;
1751
1752 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1753 adsize = sizeof(struct short_ad);
1754 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1755 adsize = sizeof(struct long_ad);
1756 else
1757 return -EIO;
1758
1759 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1760 unsigned char *sptr, *dptr;
1761 struct buffer_head *nbh;
1762 int err, loffset;
1763 struct kernel_lb_addr obloc = epos->block;
1764
1765 epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1766 obloc.partitionReferenceNum,
1767 obloc.logicalBlockNum, &err);
1768 if (!epos->block.logicalBlockNum)
1769 return -ENOSPC;
1770 nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1771 &epos->block,
1772 0));
1773 if (!nbh)
1774 return -EIO;
1775 lock_buffer(nbh);
1776 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1777 set_buffer_uptodate(nbh);
1778 unlock_buffer(nbh);
1779 mark_buffer_dirty_inode(nbh, inode);
1780
1781 aed = (struct allocExtDesc *)(nbh->b_data);
1782 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1783 aed->previousAllocExtLocation =
1784 cpu_to_le32(obloc.logicalBlockNum);
1785 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1786 loffset = epos->offset;
1787 aed->lengthAllocDescs = cpu_to_le32(adsize);
1788 sptr = ptr - adsize;
1789 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1790 memcpy(dptr, sptr, adsize);
1791 epos->offset = sizeof(struct allocExtDesc) + adsize;
1792 } else {
1793 loffset = epos->offset + adsize;
1794 aed->lengthAllocDescs = cpu_to_le32(0);
1795 sptr = ptr;
1796 epos->offset = sizeof(struct allocExtDesc);
1797
1798 if (epos->bh) {
1799 aed = (struct allocExtDesc *)epos->bh->b_data;
1800 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1801 } else {
1802 iinfo->i_lenAlloc += adsize;
1803 mark_inode_dirty(inode);
1804 }
1805 }
1806 if (UDF_SB(inode->i_sb)->s_udfrev >= 0x0200)
1807 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1808 epos->block.logicalBlockNum, sizeof(struct tag));
1809 else
1810 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1811 epos->block.logicalBlockNum, sizeof(struct tag));
1812 switch (iinfo->i_alloc_type) {
1813 case ICBTAG_FLAG_AD_SHORT:
1814 sad = (struct short_ad *)sptr;
1815 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1816 inode->i_sb->s_blocksize);
1817 sad->extPosition =
1818 cpu_to_le32(epos->block.logicalBlockNum);
1819 break;
1820 case ICBTAG_FLAG_AD_LONG:
1821 lad = (struct long_ad *)sptr;
1822 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1823 inode->i_sb->s_blocksize);
1824 lad->extLocation = cpu_to_lelb(epos->block);
1825 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1826 break;
1827 }
1828 if (epos->bh) {
1829 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1830 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1831 udf_update_tag(epos->bh->b_data, loffset);
1832 else
1833 udf_update_tag(epos->bh->b_data,
1834 sizeof(struct allocExtDesc));
1835 mark_buffer_dirty_inode(epos->bh, inode);
1836 brelse(epos->bh);
1837 } else {
1838 mark_inode_dirty(inode);
1839 }
1840 epos->bh = nbh;
1841 }
1842
1843 udf_write_aext(inode, epos, eloc, elen, inc);
1844
1845 if (!epos->bh) {
1846 iinfo->i_lenAlloc += adsize;
1847 mark_inode_dirty(inode);
1848 } else {
1849 aed = (struct allocExtDesc *)epos->bh->b_data;
1850 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1851 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1852 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1853 udf_update_tag(epos->bh->b_data,
1854 epos->offset + (inc ? 0 : adsize));
1855 else
1856 udf_update_tag(epos->bh->b_data,
1857 sizeof(struct allocExtDesc));
1858 mark_buffer_dirty_inode(epos->bh, inode);
1859 }
1860
1861 return 0;
1862}
1863
1864void udf_write_aext(struct inode *inode, struct extent_position *epos,
1865 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1866{
1867 int adsize;
1868 uint8_t *ptr;
1869 struct short_ad *sad;
1870 struct long_ad *lad;
1871 struct udf_inode_info *iinfo = UDF_I(inode);
1872
1873 if (!epos->bh)
1874 ptr = iinfo->i_ext.i_data + epos->offset -
1875 udf_file_entry_alloc_offset(inode) +
1876 iinfo->i_lenEAttr;
1877 else
1878 ptr = epos->bh->b_data + epos->offset;
1879
1880 switch (iinfo->i_alloc_type) {
1881 case ICBTAG_FLAG_AD_SHORT:
1882 sad = (struct short_ad *)ptr;
1883 sad->extLength = cpu_to_le32(elen);
1884 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
1885 adsize = sizeof(struct short_ad);
1886 break;
1887 case ICBTAG_FLAG_AD_LONG:
1888 lad = (struct long_ad *)ptr;
1889 lad->extLength = cpu_to_le32(elen);
1890 lad->extLocation = cpu_to_lelb(*eloc);
1891 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1892 adsize = sizeof(struct long_ad);
1893 break;
1894 default:
1895 return;
1896 }
1897
1898 if (epos->bh) {
1899 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1900 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
1901 struct allocExtDesc *aed =
1902 (struct allocExtDesc *)epos->bh->b_data;
1903 udf_update_tag(epos->bh->b_data,
1904 le32_to_cpu(aed->lengthAllocDescs) +
1905 sizeof(struct allocExtDesc));
1906 }
1907 mark_buffer_dirty_inode(epos->bh, inode);
1908 } else {
1909 mark_inode_dirty(inode);
1910 }
1911
1912 if (inc)
1913 epos->offset += adsize;
1914}
1915
1916int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
1917 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1918{
1919 int8_t etype;
1920
1921 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1922 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1923 int block;
1924 epos->block = *eloc;
1925 epos->offset = sizeof(struct allocExtDesc);
1926 brelse(epos->bh);
1927 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
1928 epos->bh = udf_tread(inode->i_sb, block);
1929 if (!epos->bh) {
1930 udf_debug("reading block %d failed!\n", block);
1931 return -1;
1932 }
1933 }
1934
1935 return etype;
1936}
1937
1938int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
1939 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
1940{
1941 int alen;
1942 int8_t etype;
1943 uint8_t *ptr;
1944 struct short_ad *sad;
1945 struct long_ad *lad;
1946 struct udf_inode_info *iinfo = UDF_I(inode);
1947
1948 if (!epos->bh) {
1949 if (!epos->offset)
1950 epos->offset = udf_file_entry_alloc_offset(inode);
1951 ptr = iinfo->i_ext.i_data + epos->offset -
1952 udf_file_entry_alloc_offset(inode) +
1953 iinfo->i_lenEAttr;
1954 alen = udf_file_entry_alloc_offset(inode) +
1955 iinfo->i_lenAlloc;
1956 } else {
1957 if (!epos->offset)
1958 epos->offset = sizeof(struct allocExtDesc);
1959 ptr = epos->bh->b_data + epos->offset;
1960 alen = sizeof(struct allocExtDesc) +
1961 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
1962 lengthAllocDescs);
1963 }
1964
1965 switch (iinfo->i_alloc_type) {
1966 case ICBTAG_FLAG_AD_SHORT:
1967 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
1968 if (!sad)
1969 return -1;
1970 etype = le32_to_cpu(sad->extLength) >> 30;
1971 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1972 eloc->partitionReferenceNum =
1973 iinfo->i_location.partitionReferenceNum;
1974 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1975 break;
1976 case ICBTAG_FLAG_AD_LONG:
1977 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
1978 if (!lad)
1979 return -1;
1980 etype = le32_to_cpu(lad->extLength) >> 30;
1981 *eloc = lelb_to_cpu(lad->extLocation);
1982 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1983 break;
1984 default:
1985 udf_debug("alloc_type = %d unsupported\n",
1986 iinfo->i_alloc_type);
1987 return -1;
1988 }
1989
1990 return etype;
1991}
1992
1993static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1994 struct kernel_lb_addr neloc, uint32_t nelen)
1995{
1996 struct kernel_lb_addr oeloc;
1997 uint32_t oelen;
1998 int8_t etype;
1999
2000 if (epos.bh)
2001 get_bh(epos.bh);
2002
2003 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2004 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2005 neloc = oeloc;
2006 nelen = (etype << 30) | oelen;
2007 }
2008 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2009 brelse(epos.bh);
2010
2011 return (nelen >> 30);
2012}
2013
2014int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2015 struct kernel_lb_addr eloc, uint32_t elen)
2016{
2017 struct extent_position oepos;
2018 int adsize;
2019 int8_t etype;
2020 struct allocExtDesc *aed;
2021 struct udf_inode_info *iinfo;
2022
2023 if (epos.bh) {
2024 get_bh(epos.bh);
2025 get_bh(epos.bh);
2026 }
2027
2028 iinfo = UDF_I(inode);
2029 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2030 adsize = sizeof(struct short_ad);
2031 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2032 adsize = sizeof(struct long_ad);
2033 else
2034 adsize = 0;
2035
2036 oepos = epos;
2037 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2038 return -1;
2039
2040 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2041 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2042 if (oepos.bh != epos.bh) {
2043 oepos.block = epos.block;
2044 brelse(oepos.bh);
2045 get_bh(epos.bh);
2046 oepos.bh = epos.bh;
2047 oepos.offset = epos.offset - adsize;
2048 }
2049 }
2050 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2051 elen = 0;
2052
2053 if (epos.bh != oepos.bh) {
2054 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2055 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2056 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2057 if (!oepos.bh) {
2058 iinfo->i_lenAlloc -= (adsize * 2);
2059 mark_inode_dirty(inode);
2060 } else {
2061 aed = (struct allocExtDesc *)oepos.bh->b_data;
2062 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2063 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2064 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2065 udf_update_tag(oepos.bh->b_data,
2066 oepos.offset - (2 * adsize));
2067 else
2068 udf_update_tag(oepos.bh->b_data,
2069 sizeof(struct allocExtDesc));
2070 mark_buffer_dirty_inode(oepos.bh, inode);
2071 }
2072 } else {
2073 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2074 if (!oepos.bh) {
2075 iinfo->i_lenAlloc -= adsize;
2076 mark_inode_dirty(inode);
2077 } else {
2078 aed = (struct allocExtDesc *)oepos.bh->b_data;
2079 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2080 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2081 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2082 udf_update_tag(oepos.bh->b_data,
2083 epos.offset - adsize);
2084 else
2085 udf_update_tag(oepos.bh->b_data,
2086 sizeof(struct allocExtDesc));
2087 mark_buffer_dirty_inode(oepos.bh, inode);
2088 }
2089 }
2090
2091 brelse(epos.bh);
2092 brelse(oepos.bh);
2093
2094 return (elen >> 30);
2095}
2096
2097int8_t inode_bmap(struct inode *inode, sector_t block,
2098 struct extent_position *pos, struct kernel_lb_addr *eloc,
2099 uint32_t *elen, sector_t *offset)
2100{
2101 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2102 loff_t lbcount = 0, bcount =
2103 (loff_t) block << blocksize_bits;
2104 int8_t etype;
2105 struct udf_inode_info *iinfo;
2106
2107 iinfo = UDF_I(inode);
2108 pos->offset = 0;
2109 pos->block = iinfo->i_location;
2110 pos->bh = NULL;
2111 *elen = 0;
2112
2113 do {
2114 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2115 if (etype == -1) {
2116 *offset = (bcount - lbcount) >> blocksize_bits;
2117 iinfo->i_lenExtents = lbcount;
2118 return -1;
2119 }
2120 lbcount += *elen;
2121 } while (lbcount <= bcount);
2122
2123 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2124
2125 return etype;
2126}
2127
2128long udf_block_map(struct inode *inode, sector_t block)
2129{
2130 struct kernel_lb_addr eloc;
2131 uint32_t elen;
2132 sector_t offset;
2133 struct extent_position epos = {};
2134 int ret;
2135
2136 down_read(&UDF_I(inode)->i_data_sem);
2137
2138 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2139 (EXT_RECORDED_ALLOCATED >> 30))
2140 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2141 else
2142 ret = 0;
2143
2144 up_read(&UDF_I(inode)->i_data_sem);
2145 brelse(epos.bh);
2146
2147 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2148 return udf_fixed_to_variable(ret);
2149 else
2150 return ret;
2151}