Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * inode.c
   4 *
   5 * PURPOSE
   6 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   7 *
   8 * COPYRIGHT
 
 
 
 
 
   9 *  (C) 1998 Dave Boynton
  10 *  (C) 1998-2004 Ben Fennema
  11 *  (C) 1999-2000 Stelias Computing Inc
  12 *
  13 * HISTORY
  14 *
  15 *  10/04/98 dgb  Added rudimentary directory functions
  16 *  10/07/98      Fully working udf_block_map! It works!
  17 *  11/25/98      bmap altered to better support extents
  18 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  19 *                and udf_read_inode
  20 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  21 *                block boundaries (which is not actually allowed)
  22 *  12/20/98      added support for strategy 4096
  23 *  03/07/99      rewrote udf_block_map (again)
  24 *                New funcs, inode_bmap, udf_next_aext
  25 *  04/19/99      Support for writing device EA's for major/minor #
  26 */
  27
  28#include "udfdecl.h"
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/pagemap.h>
  32#include <linux/writeback.h>
  33#include <linux/slab.h>
  34#include <linux/crc-itu-t.h>
  35#include <linux/mpage.h>
  36#include <linux/uio.h>
  37#include <linux/bio.h>
  38
  39#include "udf_i.h"
  40#include "udf_sb.h"
  41
  42#define EXTENT_MERGE_SIZE 5
  43
  44#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  45			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  46			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  47
  48#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  49			 FE_PERM_O_DELETE)
  50
  51struct udf_map_rq;
  52
  53static umode_t udf_convert_permissions(struct fileEntry *);
  54static int udf_update_inode(struct inode *, int);
  55static int udf_sync_inode(struct inode *inode);
  56static int udf_alloc_i_data(struct inode *inode, size_t size);
  57static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
  58static int udf_insert_aext(struct inode *, struct extent_position,
  59			   struct kernel_lb_addr, uint32_t);
  60static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  61			      struct kernel_long_ad *, int *);
  62static void udf_prealloc_extents(struct inode *, int, int,
  63				 struct kernel_long_ad *, int *);
  64static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  65static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  66			      int, struct extent_position *);
  67static int udf_get_block_wb(struct inode *inode, sector_t block,
  68			    struct buffer_head *bh_result, int create);
  69
  70static void __udf_clear_extent_cache(struct inode *inode)
  71{
  72	struct udf_inode_info *iinfo = UDF_I(inode);
  73
  74	if (iinfo->cached_extent.lstart != -1) {
  75		brelse(iinfo->cached_extent.epos.bh);
  76		iinfo->cached_extent.lstart = -1;
  77	}
  78}
  79
  80/* Invalidate extent cache */
  81static void udf_clear_extent_cache(struct inode *inode)
  82{
  83	struct udf_inode_info *iinfo = UDF_I(inode);
  84
  85	spin_lock(&iinfo->i_extent_cache_lock);
  86	__udf_clear_extent_cache(inode);
  87	spin_unlock(&iinfo->i_extent_cache_lock);
  88}
  89
  90/* Return contents of extent cache */
  91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  92				 loff_t *lbcount, struct extent_position *pos)
  93{
  94	struct udf_inode_info *iinfo = UDF_I(inode);
  95	int ret = 0;
  96
  97	spin_lock(&iinfo->i_extent_cache_lock);
  98	if ((iinfo->cached_extent.lstart <= bcount) &&
  99	    (iinfo->cached_extent.lstart != -1)) {
 100		/* Cache hit */
 101		*lbcount = iinfo->cached_extent.lstart;
 102		memcpy(pos, &iinfo->cached_extent.epos,
 103		       sizeof(struct extent_position));
 104		if (pos->bh)
 105			get_bh(pos->bh);
 106		ret = 1;
 107	}
 108	spin_unlock(&iinfo->i_extent_cache_lock);
 109	return ret;
 110}
 111
 112/* Add extent to extent cache */
 113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 114				    struct extent_position *pos)
 115{
 116	struct udf_inode_info *iinfo = UDF_I(inode);
 117
 118	spin_lock(&iinfo->i_extent_cache_lock);
 119	/* Invalidate previously cached extent */
 120	__udf_clear_extent_cache(inode);
 121	if (pos->bh)
 122		get_bh(pos->bh);
 123	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 124	iinfo->cached_extent.lstart = estart;
 125	switch (iinfo->i_alloc_type) {
 126	case ICBTAG_FLAG_AD_SHORT:
 127		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 128		break;
 129	case ICBTAG_FLAG_AD_LONG:
 130		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 131		break;
 132	}
 133	spin_unlock(&iinfo->i_extent_cache_lock);
 134}
 135
 136void udf_evict_inode(struct inode *inode)
 137{
 138	struct udf_inode_info *iinfo = UDF_I(inode);
 139	int want_delete = 0;
 140
 141	if (!is_bad_inode(inode)) {
 142		if (!inode->i_nlink) {
 143			want_delete = 1;
 144			udf_setsize(inode, 0);
 145			udf_update_inode(inode, IS_SYNC(inode));
 146		}
 147		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 148		    inode->i_size != iinfo->i_lenExtents) {
 149			udf_warn(inode->i_sb,
 150				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 151				 inode->i_ino, inode->i_mode,
 152				 (unsigned long long)inode->i_size,
 153				 (unsigned long long)iinfo->i_lenExtents);
 154		}
 155	}
 156	truncate_inode_pages_final(&inode->i_data);
 157	invalidate_inode_buffers(inode);
 158	clear_inode(inode);
 159	kfree(iinfo->i_data);
 160	iinfo->i_data = NULL;
 
 
 
 
 
 
 
 161	udf_clear_extent_cache(inode);
 162	if (want_delete) {
 163		udf_free_inode(inode);
 164	}
 165}
 166
 167static void udf_write_failed(struct address_space *mapping, loff_t to)
 168{
 169	struct inode *inode = mapping->host;
 170	struct udf_inode_info *iinfo = UDF_I(inode);
 171	loff_t isize = inode->i_size;
 172
 173	if (to > isize) {
 174		truncate_pagecache(inode, isize);
 175		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 176			down_write(&iinfo->i_data_sem);
 177			udf_clear_extent_cache(inode);
 178			udf_truncate_extents(inode);
 179			up_write(&iinfo->i_data_sem);
 180		}
 181	}
 182}
 183
 184static int udf_adinicb_writepage(struct folio *folio,
 185				 struct writeback_control *wbc, void *data)
 186{
 187	struct inode *inode = folio->mapping->host;
 188	struct udf_inode_info *iinfo = UDF_I(inode);
 189
 190	BUG_ON(!folio_test_locked(folio));
 191	BUG_ON(folio->index != 0);
 192	memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
 193		       i_size_read(inode));
 194	folio_unlock(folio);
 195	mark_inode_dirty(inode);
 196
 197	return 0;
 198}
 199
 200static int udf_writepages(struct address_space *mapping,
 201			  struct writeback_control *wbc)
 202{
 203	struct inode *inode = mapping->host;
 204	struct udf_inode_info *iinfo = UDF_I(inode);
 205
 206	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
 207		return mpage_writepages(mapping, wbc, udf_get_block_wb);
 208	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
 209}
 210
 211static void udf_adinicb_read_folio(struct folio *folio)
 212{
 213	struct inode *inode = folio->mapping->host;
 214	struct udf_inode_info *iinfo = UDF_I(inode);
 215	loff_t isize = i_size_read(inode);
 216
 217	folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize);
 218	folio_mark_uptodate(folio);
 219}
 220
 221static int udf_read_folio(struct file *file, struct folio *folio)
 222{
 223	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
 224
 225	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
 226		udf_adinicb_read_folio(folio);
 227		folio_unlock(folio);
 228		return 0;
 229	}
 230	return mpage_read_folio(folio, udf_get_block);
 231}
 232
 233static void udf_readahead(struct readahead_control *rac)
 234{
 235	struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
 236
 237	/*
 238	 * No readahead needed for in-ICB files and udf_get_block() would get
 239	 * confused for such file anyway.
 240	 */
 241	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
 242		return;
 243
 244	mpage_readahead(rac, udf_get_block);
 245}
 246
 247static int udf_write_begin(struct file *file, struct address_space *mapping,
 248			   loff_t pos, unsigned len,
 249			   struct folio **foliop, void **fsdata)
 250{
 251	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
 252	struct folio *folio;
 253	int ret;
 254
 255	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 256		ret = block_write_begin(mapping, pos, len, foliop,
 257					udf_get_block);
 258		if (unlikely(ret))
 259			udf_write_failed(mapping, pos + len);
 260		return ret;
 261	}
 262	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
 263		return -EIO;
 264	folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN,
 265			mapping_gfp_mask(mapping));
 266	if (IS_ERR(folio))
 267		return PTR_ERR(folio);
 268	*foliop = folio;
 269	if (!folio_test_uptodate(folio))
 270		udf_adinicb_read_folio(folio);
 271	return 0;
 272}
 273
 274static int udf_write_end(struct file *file, struct address_space *mapping,
 275			 loff_t pos, unsigned len, unsigned copied,
 276			 struct folio *folio, void *fsdata)
 277{
 278	struct inode *inode = file_inode(file);
 279	loff_t last_pos;
 280
 281	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
 282		return generic_write_end(file, mapping, pos, len, copied, folio,
 283					 fsdata);
 284	last_pos = pos + copied;
 285	if (last_pos > inode->i_size)
 286		i_size_write(inode, last_pos);
 287	folio_mark_dirty(folio);
 288	folio_unlock(folio);
 289	folio_put(folio);
 290
 291	return copied;
 292}
 293
 294static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 295{
 296	struct file *file = iocb->ki_filp;
 297	struct address_space *mapping = file->f_mapping;
 298	struct inode *inode = mapping->host;
 299	size_t count = iov_iter_count(iter);
 300	ssize_t ret;
 301
 302	/* Fallback to buffered IO for in-ICB files */
 303	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
 304		return 0;
 305	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 306	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 307		udf_write_failed(mapping, iocb->ki_pos + count);
 308	return ret;
 309}
 310
 311static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 312{
 313	struct udf_inode_info *iinfo = UDF_I(mapping->host);
 314
 315	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
 316		return -EINVAL;
 317	return generic_block_bmap(mapping, block, udf_get_block);
 318}
 319
 320const struct address_space_operations udf_aops = {
 321	.dirty_folio	= block_dirty_folio,
 322	.invalidate_folio = block_invalidate_folio,
 323	.read_folio	= udf_read_folio,
 324	.readahead	= udf_readahead,
 
 325	.writepages	= udf_writepages,
 326	.write_begin	= udf_write_begin,
 327	.write_end	= udf_write_end,
 328	.direct_IO	= udf_direct_IO,
 329	.bmap		= udf_bmap,
 330	.migrate_folio	= buffer_migrate_folio,
 331};
 332
 333/*
 334 * Expand file stored in ICB to a normal one-block-file
 335 *
 
 336 * This function requires i_mutex held
 337 */
 338int udf_expand_file_adinicb(struct inode *inode)
 339{
 340	struct folio *folio;
 
 341	struct udf_inode_info *iinfo = UDF_I(inode);
 342	int err;
 
 
 
 
 343
 344	WARN_ON_ONCE(!inode_is_locked(inode));
 345	if (!iinfo->i_lenAlloc) {
 346		down_write(&iinfo->i_data_sem);
 347		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 348			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 349		else
 350			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 
 
 351		up_write(&iinfo->i_data_sem);
 352		mark_inode_dirty(inode);
 353		return 0;
 354	}
 
 
 
 
 
 355
 356	folio = __filemap_get_folio(inode->i_mapping, 0,
 357			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
 358	if (IS_ERR(folio))
 359		return PTR_ERR(folio);
 360
 361	if (!folio_test_uptodate(folio))
 362		udf_adinicb_read_folio(folio);
 
 
 
 
 
 
 
 
 363	down_write(&iinfo->i_data_sem);
 364	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
 365	       iinfo->i_lenAlloc);
 366	iinfo->i_lenAlloc = 0;
 367	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 368		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 369	else
 370		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 371	folio_mark_dirty(folio);
 372	folio_unlock(folio);
 373	up_write(&iinfo->i_data_sem);
 374	err = filemap_fdatawrite(inode->i_mapping);
 375	if (err) {
 376		/* Restore everything back so that we don't lose data... */
 377		folio_lock(folio);
 378		down_write(&iinfo->i_data_sem);
 379		memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
 380				folio, 0, inode->i_size);
 381		folio_unlock(folio);
 
 
 382		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 383		iinfo->i_lenAlloc = inode->i_size;
 384		up_write(&iinfo->i_data_sem);
 385	}
 386	folio_put(folio);
 387	mark_inode_dirty(inode);
 388
 389	return err;
 390}
 391
 392#define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
 393#define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
 394
 395#define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
 396#define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
 397
 398struct udf_map_rq {
 399	sector_t lblk;
 400	udf_pblk_t pblk;
 401	int iflags;		/* UDF_MAP_ flags determining behavior */
 402	int oflags;		/* UDF_BLK_ flags reporting results */
 403};
 404
 405static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
 406{
 407	int ret;
 
 
 
 
 
 
 
 
 
 408	struct udf_inode_info *iinfo = UDF_I(inode);
 409
 410	if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
 411		return -EFSCORRUPTED;
 
 
 412
 413	map->oflags = 0;
 414	if (!(map->iflags & UDF_MAP_CREATE)) {
 415		struct kernel_lb_addr eloc;
 416		uint32_t elen;
 417		sector_t offset;
 418		struct extent_position epos = {};
 419		int8_t etype;
 420
 421		down_read(&iinfo->i_data_sem);
 422		ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset,
 423				 &etype);
 424		if (ret < 0)
 425			goto out_read;
 426		if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 427			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
 428							offset);
 429			map->oflags |= UDF_BLK_MAPPED;
 430			ret = 0;
 431		}
 432out_read:
 433		up_read(&iinfo->i_data_sem);
 434		brelse(epos.bh);
 435
 436		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437	}
 
 438
 439	down_write(&iinfo->i_data_sem);
 440	/*
 441	 * Block beyond EOF and prealloc extents? Just discard preallocation
 442	 * as it is not useful and complicates things.
 443	 */
 444	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
 445		udf_discard_prealloc(inode);
 446	udf_clear_extent_cache(inode);
 447	ret = inode_getblk(inode, map);
 448	up_write(&iinfo->i_data_sem);
 449	return ret;
 
 
 
 
 
 450}
 451
 452static int __udf_get_block(struct inode *inode, sector_t block,
 453			   struct buffer_head *bh_result, int flags)
 454{
 455	int err;
 456	struct udf_map_rq map = {
 457		.lblk = block,
 458		.iflags = flags,
 459	};
 460
 461	err = udf_map_block(inode, &map);
 462	if (err < 0)
 463		return err;
 464	if (map.oflags & UDF_BLK_MAPPED) {
 465		map_bh(bh_result, inode->i_sb, map.pblk);
 466		if (map.oflags & UDF_BLK_NEW)
 467			set_buffer_new(bh_result);
 468	}
 469	return 0;
 470}
 471
 472int udf_get_block(struct inode *inode, sector_t block,
 473		  struct buffer_head *bh_result, int create)
 474{
 475	int flags = create ? UDF_MAP_CREATE : 0;
 476
 477	/*
 478	 * We preallocate blocks only for regular files. It also makes sense
 479	 * for directories but there's a problem when to drop the
 480	 * preallocation. We might use some delayed work for that but I feel
 481	 * it's overengineering for a filesystem like UDF.
 482	 */
 483	if (!S_ISREG(inode->i_mode))
 484		flags |= UDF_MAP_NOPREALLOC;
 485	return __udf_get_block(inode, block, bh_result, flags);
 
 
 
 
 
 
 
 
 
 486}
 487
 488/*
 489 * We shouldn't be allocating blocks on page writeback since we allocate them
 490 * on page fault. We can spot dirty buffers without allocated blocks though
 491 * when truncate expands file. These however don't have valid data so we can
 492 * safely ignore them. So never allocate blocks from page writeback.
 493 */
 494static int udf_get_block_wb(struct inode *inode, sector_t block,
 495			    struct buffer_head *bh_result, int create)
 496{
 497	return __udf_get_block(inode, block, bh_result, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498}
 499
 500/* Extend the file with new blocks totaling 'new_block_bytes',
 501 * return the number of extents added
 502 */
 503static int udf_do_extend_file(struct inode *inode,
 504			      struct extent_position *last_pos,
 505			      struct kernel_long_ad *last_ext,
 506			      loff_t new_block_bytes)
 507{
 508	uint32_t add;
 509	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 510	struct super_block *sb = inode->i_sb;
 
 
 511	struct udf_inode_info *iinfo;
 512	int err;
 513
 514	/* The previous extent is fake and we should not extend by anything
 515	 * - there's nothing to do... */
 516	if (!new_block_bytes && fake)
 517		return 0;
 518
 519	iinfo = UDF_I(inode);
 520	/* Round the last extent up to a multiple of block size */
 521	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 522		last_ext->extLength =
 523			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 524			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 525			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 526		iinfo->i_lenExtents =
 527			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 528			~(sb->s_blocksize - 1);
 529	}
 530
 531	add = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 532	/* Can we merge with the previous extent? */
 533	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 534					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 535		add = (1 << 30) - sb->s_blocksize -
 536			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 537		if (add > new_block_bytes)
 538			add = new_block_bytes;
 539		new_block_bytes -= add;
 540		last_ext->extLength += add;
 541	}
 542
 543	if (fake) {
 544		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 545				   last_ext->extLength, 1);
 546		if (err < 0)
 547			goto out_err;
 548		count++;
 549	} else {
 550		struct kernel_lb_addr tmploc;
 551		uint32_t tmplen;
 552		int8_t tmptype;
 553
 554		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 555				last_ext->extLength, 1);
 556
 557		/*
 558		 * We've rewritten the last extent. If we are going to add
 559		 * more extents, we may need to enter possible following
 560		 * empty indirect extent.
 561		 */
 562		if (new_block_bytes) {
 563			err = udf_next_aext(inode, last_pos, &tmploc, &tmplen,
 564					    &tmptype, 0);
 565			if (err < 0)
 566				goto out_err;
 567		}
 568	}
 569	iinfo->i_lenExtents += add;
 570
 571	/* Managed to do everything necessary? */
 572	if (!new_block_bytes)
 573		goto out;
 574
 575	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 576	last_ext->extLocation.logicalBlockNum = 0;
 577	last_ext->extLocation.partitionReferenceNum = 0;
 578	add = (1 << 30) - sb->s_blocksize;
 579	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 580
 581	/* Create enough extents to cover the whole hole */
 582	while (new_block_bytes > add) {
 583		new_block_bytes -= add;
 584		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 585				   last_ext->extLength, 1);
 586		if (err)
 587			goto out_err;
 588		iinfo->i_lenExtents += add;
 589		count++;
 590	}
 591	if (new_block_bytes) {
 592		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 593			new_block_bytes;
 594		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 595				   last_ext->extLength, 1);
 596		if (err)
 597			goto out_err;
 598		iinfo->i_lenExtents += new_block_bytes;
 599		count++;
 600	}
 601
 602out:
 
 
 
 
 
 
 
 
 
 
 
 603	/* last_pos should point to the last written extent... */
 604	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 605		last_pos->offset -= sizeof(struct short_ad);
 606	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 607		last_pos->offset -= sizeof(struct long_ad);
 608	else
 609		return -EIO;
 610
 611	return count;
 612out_err:
 613	/* Remove extents we've created so far */
 614	udf_clear_extent_cache(inode);
 615	udf_truncate_extents(inode);
 616	return err;
 617}
 618
 619/* Extend the final block of the file to final_block_len bytes */
 620static void udf_do_extend_final_block(struct inode *inode,
 621				      struct extent_position *last_pos,
 622				      struct kernel_long_ad *last_ext,
 623				      uint32_t new_elen)
 624{
 
 625	uint32_t added_bytes;
 626
 627	/*
 628	 * Extent already large enough? It may be already rounded up to block
 629	 * size...
 630	 */
 631	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
 632		return;
 633	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 634	last_ext->extLength += added_bytes;
 635	UDF_I(inode)->i_lenExtents += added_bytes;
 636
 637	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 638			last_ext->extLength, 1);
 639}
 640
 641static int udf_extend_file(struct inode *inode, loff_t newsize)
 642{
 643
 644	struct extent_position epos;
 645	struct kernel_lb_addr eloc;
 646	uint32_t elen;
 647	int8_t etype;
 648	struct super_block *sb = inode->i_sb;
 649	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 650	loff_t new_elen;
 651	int adsize;
 652	struct udf_inode_info *iinfo = UDF_I(inode);
 653	struct kernel_long_ad extent;
 654	int err = 0;
 655	bool within_last_ext;
 656
 657	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 658		adsize = sizeof(struct short_ad);
 659	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 660		adsize = sizeof(struct long_ad);
 661	else
 662		BUG();
 663
 664	down_write(&iinfo->i_data_sem);
 665	/*
 666	 * When creating hole in file, just don't bother with preserving
 667	 * preallocation. It likely won't be very useful anyway.
 668	 */
 669	udf_discard_prealloc(inode);
 670
 671	err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype);
 672	if (err < 0)
 673		goto out;
 674	within_last_ext = (err == 1);
 675	/* We don't expect extents past EOF... */
 676	WARN_ON_ONCE(within_last_ext &&
 677		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
 678
 679	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 680	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 681		/* File has no extents at all or has empty last
 682		 * indirect extent! Create a fake extent... */
 683		extent.extLocation.logicalBlockNum = 0;
 684		extent.extLocation.partitionReferenceNum = 0;
 685		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 686	} else {
 687		epos.offset -= adsize;
 688		err = udf_next_aext(inode, &epos, &extent.extLocation,
 689				    &extent.extLength, &etype, 0);
 690		if (err <= 0)
 691			goto out;
 692		extent.extLength |= etype << 30;
 693	}
 694
 695	new_elen = ((loff_t)offset << inode->i_blkbits) |
 696					(newsize & (sb->s_blocksize - 1));
 697
 698	/* File has extent covering the new size (could happen when extending
 699	 * inside a block)?
 700	 */
 701	if (within_last_ext) {
 702		/* Extending file within the last file block */
 703		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
 
 704	} else {
 705		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
 
 
 706	}
 707
 708	if (err < 0)
 709		goto out;
 710	err = 0;
 
 711out:
 712	brelse(epos.bh);
 713	up_write(&iinfo->i_data_sem);
 714	return err;
 715}
 716
 717static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
 
 718{
 719	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 720	struct extent_position prev_epos, cur_epos, next_epos;
 721	int count = 0, startnum = 0, endnum = 0;
 722	uint32_t elen = 0, tmpelen;
 723	struct kernel_lb_addr eloc, tmpeloc;
 724	int c = 1;
 725	loff_t lbcount = 0, b_off = 0;
 726	udf_pblk_t newblocknum;
 727	sector_t offset = 0;
 728	int8_t etype, tmpetype;
 729	struct udf_inode_info *iinfo = UDF_I(inode);
 730	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 731	int lastblock = 0;
 732	bool isBeyondEOF = false;
 733	int ret = 0;
 734
 
 
 735	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 736	prev_epos.block = iinfo->i_location;
 737	prev_epos.bh = NULL;
 738	cur_epos = next_epos = prev_epos;
 739	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
 740
 741	/* find the extent which contains the block we are looking for.
 742	   alternate between laarr[0] and laarr[1] for locations of the
 743	   current extent, and the previous extent */
 744	do {
 745		if (prev_epos.bh != cur_epos.bh) {
 746			brelse(prev_epos.bh);
 747			get_bh(cur_epos.bh);
 748			prev_epos.bh = cur_epos.bh;
 749		}
 750		if (cur_epos.bh != next_epos.bh) {
 751			brelse(cur_epos.bh);
 752			get_bh(next_epos.bh);
 753			cur_epos.bh = next_epos.bh;
 754		}
 755
 756		lbcount += elen;
 757
 758		prev_epos.block = cur_epos.block;
 759		cur_epos.block = next_epos.block;
 760
 761		prev_epos.offset = cur_epos.offset;
 762		cur_epos.offset = next_epos.offset;
 763
 764		ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1);
 765		if (ret < 0) {
 766			goto out_free;
 767		} else if (ret == 0) {
 768			isBeyondEOF = true;
 769			break;
 770		}
 771
 772		c = !c;
 773
 774		laarr[c].extLength = (etype << 30) | elen;
 775		laarr[c].extLocation = eloc;
 776
 777		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 778			pgoal = eloc.logicalBlockNum +
 779				((elen + inode->i_sb->s_blocksize - 1) >>
 780				 inode->i_sb->s_blocksize_bits);
 781
 782		count++;
 783	} while (lbcount + elen <= b_off);
 784
 785	b_off -= lbcount;
 786	offset = b_off >> inode->i_sb->s_blocksize_bits;
 787	/*
 788	 * Move prev_epos and cur_epos into indirect extent if we are at
 789	 * the pointer to it
 790	 */
 791	ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
 792	if (ret < 0)
 793		goto out_free;
 794	ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
 795	if (ret < 0)
 796		goto out_free;
 797
 798	/* if the extent is allocated and recorded, return the block
 799	   if the extent is not a multiple of the blocksize, round up */
 800
 801	if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 802		if (elen & (inode->i_sb->s_blocksize - 1)) {
 803			elen = EXT_RECORDED_ALLOCATED |
 804				((elen + inode->i_sb->s_blocksize - 1) &
 805				 ~(inode->i_sb->s_blocksize - 1));
 806			iinfo->i_lenExtents =
 807				ALIGN(iinfo->i_lenExtents,
 808				      inode->i_sb->s_blocksize);
 809			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 810		}
 811		map->oflags = UDF_BLK_MAPPED;
 812		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 813		goto out_free;
 814	}
 815
 816	/* Are we beyond EOF and preallocated extent? */
 817	if (isBeyondEOF) {
 
 818		loff_t hole_len;
 819
 820		if (count) {
 821			if (c)
 822				laarr[0] = laarr[1];
 823			startnum = 1;
 824		} else {
 825			/* Create a fake extent when there's not one */
 826			memset(&laarr[0].extLocation, 0x00,
 827				sizeof(struct kernel_lb_addr));
 828			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 829			/* Will udf_do_extend_file() create real extent from
 830			   a fake one? */
 831			startnum = (offset > 0);
 832		}
 833		/* Create extents for the hole between EOF and offset */
 834		hole_len = (loff_t)offset << inode->i_blkbits;
 835		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 836		if (ret < 0)
 
 
 837			goto out_free;
 
 838		c = 0;
 839		offset = 0;
 840		count += ret;
 841		/*
 842		 * Is there any real extent? - otherwise we overwrite the fake
 843		 * one...
 844		 */
 845		if (count)
 846			c = !c;
 847		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 848			inode->i_sb->s_blocksize;
 849		memset(&laarr[c].extLocation, 0x00,
 850			sizeof(struct kernel_lb_addr));
 851		count++;
 
 
 852		endnum = c + 1;
 853		lastblock = 1;
 854	} else {
 
 855		endnum = startnum = ((count > 2) ? 2 : count);
 856
 857		/* if the current extent is in position 0,
 858		   swap it with the previous */
 859		if (!c && count != 1) {
 860			laarr[2] = laarr[0];
 861			laarr[0] = laarr[1];
 862			laarr[1] = laarr[2];
 863			c = 1;
 864		}
 865
 866		/* if the current block is located in an extent,
 867		   read the next extent */
 868		ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0);
 869		if (ret > 0) {
 870			laarr[c + 1].extLength = (etype << 30) | elen;
 871			laarr[c + 1].extLocation = eloc;
 872			count++;
 873			startnum++;
 874			endnum++;
 875		} else if (ret == 0)
 876			lastblock = 1;
 877		else
 878			goto out_free;
 879	}
 880
 881	/* if the current extent is not recorded but allocated, get the
 882	 * block in the extent corresponding to the requested block */
 883	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 884		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 885	else { /* otherwise, allocate a new block */
 886		if (iinfo->i_next_alloc_block == map->lblk)
 887			goal = iinfo->i_next_alloc_goal;
 888
 889		if (!goal) {
 890			if (!(goal = pgoal)) /* XXX: what was intended here? */
 891				goal = iinfo->i_location.logicalBlockNum + 1;
 892		}
 893
 894		newblocknum = udf_new_block(inode->i_sb, inode,
 895				iinfo->i_location.partitionReferenceNum,
 896				goal, &ret);
 897		if (!newblocknum)
 
 
 898			goto out_free;
 
 899		if (isBeyondEOF)
 900			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 901	}
 902
 903	/* if the extent the requsted block is located in contains multiple
 904	 * blocks, split the extent into at most three extents. blocks prior
 905	 * to requested block, requested block, and blocks after requested
 906	 * block */
 907	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 908
 909	if (!(map->iflags & UDF_MAP_NOPREALLOC))
 
 
 
 
 910		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 911
 912	/* merge any continuous blocks in laarr */
 913	udf_merge_extents(inode, laarr, &endnum);
 914
 915	/* write back the new extents, inserting new extents if the new number
 916	 * of extents is greater than the old number, and deleting extents if
 917	 * the new number of extents is less than the old number */
 918	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 919	if (ret < 0)
 920		goto out_free;
 921
 922	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
 923				iinfo->i_location.partitionReferenceNum, 0);
 924	if (!map->pblk) {
 925		ret = -EFSCORRUPTED;
 926		goto out_free;
 927	}
 928	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
 929	iinfo->i_next_alloc_block = map->lblk + 1;
 930	iinfo->i_next_alloc_goal = newblocknum + 1;
 931	inode_set_ctime_current(inode);
 932
 933	if (IS_SYNC(inode))
 934		udf_sync_inode(inode);
 935	else
 936		mark_inode_dirty(inode);
 937	ret = 0;
 938out_free:
 939	brelse(prev_epos.bh);
 940	brelse(cur_epos.bh);
 941	brelse(next_epos.bh);
 942	return ret;
 943}
 944
 945static void udf_split_extents(struct inode *inode, int *c, int offset,
 946			       udf_pblk_t newblocknum,
 947			       struct kernel_long_ad *laarr, int *endnum)
 948{
 949	unsigned long blocksize = inode->i_sb->s_blocksize;
 950	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 951
 952	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 953	    (laarr[*c].extLength >> 30) ==
 954				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 955		int curr = *c;
 956		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 957			    blocksize - 1) >> blocksize_bits;
 958		int8_t etype = (laarr[curr].extLength >> 30);
 959
 960		if (blen == 1)
 961			;
 962		else if (!offset || blen == offset + 1) {
 963			laarr[curr + 2] = laarr[curr + 1];
 964			laarr[curr + 1] = laarr[curr];
 965		} else {
 966			laarr[curr + 3] = laarr[curr + 1];
 967			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 968		}
 969
 970		if (offset) {
 971			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 972				udf_free_blocks(inode->i_sb, inode,
 973						&laarr[curr].extLocation,
 974						0, offset);
 975				laarr[curr].extLength =
 976					EXT_NOT_RECORDED_NOT_ALLOCATED |
 977					(offset << blocksize_bits);
 978				laarr[curr].extLocation.logicalBlockNum = 0;
 979				laarr[curr].extLocation.
 980						partitionReferenceNum = 0;
 981			} else
 982				laarr[curr].extLength = (etype << 30) |
 983					(offset << blocksize_bits);
 984			curr++;
 985			(*c)++;
 986			(*endnum)++;
 987		}
 988
 989		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 990		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 991			laarr[curr].extLocation.partitionReferenceNum =
 992				UDF_I(inode)->i_location.partitionReferenceNum;
 993		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 994			blocksize;
 995		curr++;
 996
 997		if (blen != offset + 1) {
 998			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 999				laarr[curr].extLocation.logicalBlockNum +=
1000								offset + 1;
1001			laarr[curr].extLength = (etype << 30) |
1002				((blen - (offset + 1)) << blocksize_bits);
1003			curr++;
1004			(*endnum)++;
1005		}
1006	}
1007}
1008
1009static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
1010				 struct kernel_long_ad *laarr,
1011				 int *endnum)
1012{
1013	int start, length = 0, currlength = 0, i;
1014
1015	if (*endnum >= (c + 1)) {
1016		if (!lastblock)
1017			return;
1018		else
1019			start = c;
1020	} else {
1021		if ((laarr[c + 1].extLength >> 30) ==
1022					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1023			start = c + 1;
1024			length = currlength =
1025				(((laarr[c + 1].extLength &
1026					UDF_EXTENT_LENGTH_MASK) +
1027				inode->i_sb->s_blocksize - 1) >>
1028				inode->i_sb->s_blocksize_bits);
1029		} else
1030			start = c;
1031	}
1032
1033	for (i = start + 1; i <= *endnum; i++) {
1034		if (i == *endnum) {
1035			if (lastblock)
1036				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1037		} else if ((laarr[i].extLength >> 30) ==
1038				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1039			length += (((laarr[i].extLength &
1040						UDF_EXTENT_LENGTH_MASK) +
1041				    inode->i_sb->s_blocksize - 1) >>
1042				    inode->i_sb->s_blocksize_bits);
1043		} else
1044			break;
1045	}
1046
1047	if (length) {
1048		int next = laarr[start].extLocation.logicalBlockNum +
1049			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1050			  inode->i_sb->s_blocksize - 1) >>
1051			  inode->i_sb->s_blocksize_bits);
1052		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1053				laarr[start].extLocation.partitionReferenceNum,
1054				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1055				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1056				currlength);
1057		if (numalloc) 	{
1058			if (start == (c + 1))
1059				laarr[start].extLength +=
1060					(numalloc <<
1061					 inode->i_sb->s_blocksize_bits);
1062			else {
1063				memmove(&laarr[c + 2], &laarr[c + 1],
1064					sizeof(struct long_ad) * (*endnum - (c + 1)));
1065				(*endnum)++;
1066				laarr[c + 1].extLocation.logicalBlockNum = next;
1067				laarr[c + 1].extLocation.partitionReferenceNum =
1068					laarr[c].extLocation.
1069							partitionReferenceNum;
1070				laarr[c + 1].extLength =
1071					EXT_NOT_RECORDED_ALLOCATED |
1072					(numalloc <<
1073					 inode->i_sb->s_blocksize_bits);
1074				start = c + 1;
1075			}
1076
1077			for (i = start + 1; numalloc && i < *endnum; i++) {
1078				int elen = ((laarr[i].extLength &
1079						UDF_EXTENT_LENGTH_MASK) +
1080					    inode->i_sb->s_blocksize - 1) >>
1081					    inode->i_sb->s_blocksize_bits;
1082
1083				if (elen > numalloc) {
1084					laarr[i].extLength -=
1085						(numalloc <<
1086						 inode->i_sb->s_blocksize_bits);
1087					numalloc = 0;
1088				} else {
1089					numalloc -= elen;
1090					if (*endnum > (i + 1))
1091						memmove(&laarr[i],
1092							&laarr[i + 1],
1093							sizeof(struct long_ad) *
1094							(*endnum - (i + 1)));
1095					i--;
1096					(*endnum)--;
1097				}
1098			}
1099			UDF_I(inode)->i_lenExtents +=
1100				numalloc << inode->i_sb->s_blocksize_bits;
1101		}
1102	}
1103}
1104
1105static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1106			      int *endnum)
1107{
1108	int i;
1109	unsigned long blocksize = inode->i_sb->s_blocksize;
1110	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1111
1112	for (i = 0; i < (*endnum - 1); i++) {
1113		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1114		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1115
1116		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1117			(((li->extLength >> 30) ==
1118				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1119			((lip1->extLocation.logicalBlockNum -
1120			  li->extLocation.logicalBlockNum) ==
1121			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1122			blocksize - 1) >> blocksize_bits)))) {
1123
1124			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1125			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1126			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127				li->extLength = lip1->extLength +
1128					(((li->extLength &
1129						UDF_EXTENT_LENGTH_MASK) +
1130					 blocksize - 1) & ~(blocksize - 1));
1131				if (*endnum > (i + 2))
1132					memmove(&laarr[i + 1], &laarr[i + 2],
1133						sizeof(struct long_ad) *
1134						(*endnum - (i + 2)));
1135				i--;
1136				(*endnum)--;
1137			}
1138		} else if (((li->extLength >> 30) ==
1139				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1140			   ((lip1->extLength >> 30) ==
1141				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1142			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1143					((li->extLength &
1144					  UDF_EXTENT_LENGTH_MASK) +
1145					 blocksize - 1) >> blocksize_bits);
1146			li->extLocation.logicalBlockNum = 0;
1147			li->extLocation.partitionReferenceNum = 0;
1148
1149			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1150			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1151			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1152				lip1->extLength = (lip1->extLength -
1153						   (li->extLength &
1154						   UDF_EXTENT_LENGTH_MASK) +
1155						   UDF_EXTENT_LENGTH_MASK) &
1156						   ~(blocksize - 1);
1157				li->extLength = (li->extLength &
1158						 UDF_EXTENT_FLAG_MASK) +
1159						(UDF_EXTENT_LENGTH_MASK + 1) -
1160						blocksize;
1161			} else {
1162				li->extLength = lip1->extLength +
1163					(((li->extLength &
1164						UDF_EXTENT_LENGTH_MASK) +
1165					  blocksize - 1) & ~(blocksize - 1));
1166				if (*endnum > (i + 2))
1167					memmove(&laarr[i + 1], &laarr[i + 2],
1168						sizeof(struct long_ad) *
1169						(*endnum - (i + 2)));
1170				i--;
1171				(*endnum)--;
1172			}
1173		} else if ((li->extLength >> 30) ==
1174					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1175			udf_free_blocks(inode->i_sb, inode,
1176					&li->extLocation, 0,
1177					((li->extLength &
1178						UDF_EXTENT_LENGTH_MASK) +
1179					 blocksize - 1) >> blocksize_bits);
1180			li->extLocation.logicalBlockNum = 0;
1181			li->extLocation.partitionReferenceNum = 0;
1182			li->extLength = (li->extLength &
1183						UDF_EXTENT_LENGTH_MASK) |
1184						EXT_NOT_RECORDED_NOT_ALLOCATED;
1185		}
1186	}
1187}
1188
1189static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1190			      int startnum, int endnum,
1191			      struct extent_position *epos)
1192{
1193	int start = 0, i;
1194	struct kernel_lb_addr tmploc;
1195	uint32_t tmplen;
1196	int8_t tmpetype;
1197	int err;
1198
1199	if (startnum > endnum) {
1200		for (i = 0; i < (startnum - endnum); i++)
1201			udf_delete_aext(inode, *epos);
1202	} else if (startnum < endnum) {
1203		for (i = 0; i < (endnum - startnum); i++) {
1204			err = udf_insert_aext(inode, *epos,
1205					      laarr[i].extLocation,
1206					      laarr[i].extLength);
1207			/*
1208			 * If we fail here, we are likely corrupting the extent
1209			 * list and leaking blocks. At least stop early to
1210			 * limit the damage.
1211			 */
1212			if (err < 0)
1213				return err;
1214			err = udf_next_aext(inode, epos, &laarr[i].extLocation,
1215				      &laarr[i].extLength, &tmpetype, 1);
1216			if (err < 0)
1217				return err;
1218			start++;
1219		}
1220	}
1221
1222	for (i = start; i < endnum; i++) {
1223		err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0);
1224		if (err < 0)
1225			return err;
1226
1227		udf_write_aext(inode, epos, &laarr[i].extLocation,
1228			       laarr[i].extLength, 1);
1229	}
1230	return 0;
1231}
1232
1233struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1234			      int create, int *err)
1235{
1236	struct buffer_head *bh = NULL;
1237	struct udf_map_rq map = {
1238		.lblk = block,
1239		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1240	};
1241
1242	*err = udf_map_block(inode, &map);
1243	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1244		return NULL;
1245
1246	bh = sb_getblk(inode->i_sb, map.pblk);
1247	if (!bh) {
1248		*err = -ENOMEM;
1249		return NULL;
1250	}
1251	if (map.oflags & UDF_BLK_NEW) {
1252		lock_buffer(bh);
1253		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1254		set_buffer_uptodate(bh);
1255		unlock_buffer(bh);
1256		mark_buffer_dirty_inode(bh, inode);
1257		return bh;
1258	}
1259
1260	if (bh_read(bh, 0) >= 0)
 
 
 
1261		return bh;
1262
1263	brelse(bh);
1264	*err = -EIO;
1265	return NULL;
1266}
1267
1268int udf_setsize(struct inode *inode, loff_t newsize)
1269{
1270	int err = 0;
1271	struct udf_inode_info *iinfo;
1272	unsigned int bsize = i_blocksize(inode);
1273
1274	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1275	      S_ISLNK(inode->i_mode)))
1276		return -EINVAL;
 
 
1277
1278	iinfo = UDF_I(inode);
1279	if (newsize > inode->i_size) {
 
1280		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1281			if (bsize >=
1282			    (udf_file_entry_alloc_offset(inode) + newsize)) {
 
 
 
1283				down_write(&iinfo->i_data_sem);
 
1284				iinfo->i_lenAlloc = newsize;
1285				up_write(&iinfo->i_data_sem);
1286				goto set_size;
1287			}
1288			err = udf_expand_file_adinicb(inode);
1289			if (err)
1290				return err;
1291		}
1292		err = udf_extend_file(inode, newsize);
1293		if (err)
 
1294			return err;
 
1295set_size:
 
1296		truncate_setsize(inode, newsize);
1297	} else {
1298		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1299			down_write(&iinfo->i_data_sem);
1300			udf_clear_extent_cache(inode);
1301			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1302			       0x00, bsize - newsize -
1303			       udf_file_entry_alloc_offset(inode));
1304			iinfo->i_lenAlloc = newsize;
1305			truncate_setsize(inode, newsize);
1306			up_write(&iinfo->i_data_sem);
1307			goto update_time;
1308		}
1309		err = block_truncate_page(inode->i_mapping, newsize,
1310					  udf_get_block);
1311		if (err)
1312			return err;
1313		truncate_setsize(inode, newsize);
1314		down_write(&iinfo->i_data_sem);
1315		udf_clear_extent_cache(inode);
1316		err = udf_truncate_extents(inode);
1317		up_write(&iinfo->i_data_sem);
1318		if (err)
1319			return err;
1320	}
1321update_time:
1322	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1323	if (IS_SYNC(inode))
1324		udf_sync_inode(inode);
1325	else
1326		mark_inode_dirty(inode);
1327	return err;
1328}
1329
1330/*
1331 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1332 * arbitrary - just that we hopefully don't limit any real use of rewritten
1333 * inode on write-once media but avoid looping for too long on corrupted media.
1334 */
1335#define UDF_MAX_ICB_NESTING 1024
1336
1337static int udf_read_inode(struct inode *inode, bool hidden_inode)
1338{
1339	struct buffer_head *bh = NULL;
1340	struct fileEntry *fe;
1341	struct extendedFileEntry *efe;
1342	uint16_t ident;
1343	struct udf_inode_info *iinfo = UDF_I(inode);
1344	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1345	struct kernel_lb_addr *iloc = &iinfo->i_location;
1346	unsigned int link_count;
1347	unsigned int indirections = 0;
1348	int bs = inode->i_sb->s_blocksize;
1349	int ret = -EIO;
1350	uint32_t uid, gid;
1351	struct timespec64 ts;
1352
1353reread:
1354	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1355		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1356			  iloc->partitionReferenceNum, sbi->s_partitions);
1357		return -EIO;
1358	}
1359
1360	if (iloc->logicalBlockNum >=
1361	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1362		udf_debug("block=%u, partition=%u out of range\n",
1363			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1364		return -EIO;
1365	}
1366
1367	/*
1368	 * Set defaults, but the inode is still incomplete!
1369	 * Note: get_new_inode() sets the following on a new inode:
1370	 *      i_sb = sb
1371	 *      i_no = ino
1372	 *      i_flags = sb->s_flags
1373	 *      i_state = 0
1374	 * clean_inode(): zero fills and sets
1375	 *      i_count = 1
1376	 *      i_nlink = 1
1377	 *      i_op = NULL;
1378	 */
1379	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1380	if (!bh) {
1381		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1382		return -EIO;
1383	}
1384
1385	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1386	    ident != TAG_IDENT_USE) {
1387		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1388			inode->i_ino, ident);
1389		goto out;
1390	}
1391
1392	fe = (struct fileEntry *)bh->b_data;
1393	efe = (struct extendedFileEntry *)bh->b_data;
1394
1395	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1396		struct buffer_head *ibh;
1397
1398		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1399		if (ident == TAG_IDENT_IE && ibh) {
1400			struct kernel_lb_addr loc;
1401			struct indirectEntry *ie;
1402
1403			ie = (struct indirectEntry *)ibh->b_data;
1404			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1405
1406			if (ie->indirectICB.extLength) {
1407				brelse(ibh);
1408				memcpy(&iinfo->i_location, &loc,
1409				       sizeof(struct kernel_lb_addr));
1410				if (++indirections > UDF_MAX_ICB_NESTING) {
1411					udf_err(inode->i_sb,
1412						"too many ICBs in ICB hierarchy"
1413						" (max %d supported)\n",
1414						UDF_MAX_ICB_NESTING);
1415					goto out;
1416				}
1417				brelse(bh);
1418				goto reread;
1419			}
1420		}
1421		brelse(ibh);
1422	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1423		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1424			le16_to_cpu(fe->icbTag.strategyType));
1425		goto out;
1426	}
1427	if (fe->icbTag.strategyType == cpu_to_le16(4))
1428		iinfo->i_strat4096 = 0;
1429	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1430		iinfo->i_strat4096 = 1;
1431
1432	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1433							ICBTAG_FLAG_AD_MASK;
1434	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1435	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1436	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1437		ret = -EIO;
1438		goto out;
1439	}
1440	iinfo->i_hidden = hidden_inode;
1441	iinfo->i_unique = 0;
1442	iinfo->i_lenEAttr = 0;
1443	iinfo->i_lenExtents = 0;
1444	iinfo->i_lenAlloc = 0;
1445	iinfo->i_next_alloc_block = 0;
1446	iinfo->i_next_alloc_goal = 0;
1447	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1448		iinfo->i_efe = 1;
1449		iinfo->i_use = 0;
1450		ret = udf_alloc_i_data(inode, bs -
1451					sizeof(struct extendedFileEntry));
1452		if (ret)
1453			goto out;
1454		memcpy(iinfo->i_data,
1455		       bh->b_data + sizeof(struct extendedFileEntry),
1456		       bs - sizeof(struct extendedFileEntry));
1457	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1458		iinfo->i_efe = 0;
1459		iinfo->i_use = 0;
1460		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1461		if (ret)
1462			goto out;
1463		memcpy(iinfo->i_data,
1464		       bh->b_data + sizeof(struct fileEntry),
1465		       bs - sizeof(struct fileEntry));
1466	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1467		iinfo->i_efe = 0;
1468		iinfo->i_use = 1;
1469		iinfo->i_lenAlloc = le32_to_cpu(
1470				((struct unallocSpaceEntry *)bh->b_data)->
1471				 lengthAllocDescs);
1472		ret = udf_alloc_i_data(inode, bs -
1473					sizeof(struct unallocSpaceEntry));
1474		if (ret)
1475			goto out;
1476		memcpy(iinfo->i_data,
1477		       bh->b_data + sizeof(struct unallocSpaceEntry),
1478		       bs - sizeof(struct unallocSpaceEntry));
1479		return 0;
1480	}
1481
1482	ret = -EIO;
1483	read_lock(&sbi->s_cred_lock);
1484	uid = le32_to_cpu(fe->uid);
1485	if (uid == UDF_INVALID_ID ||
1486	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1487		inode->i_uid = sbi->s_uid;
1488	else
1489		i_uid_write(inode, uid);
1490
1491	gid = le32_to_cpu(fe->gid);
1492	if (gid == UDF_INVALID_ID ||
1493	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1494		inode->i_gid = sbi->s_gid;
1495	else
1496		i_gid_write(inode, gid);
1497
1498	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1499			sbi->s_fmode != UDF_INVALID_MODE)
1500		inode->i_mode = sbi->s_fmode;
1501	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1502			sbi->s_dmode != UDF_INVALID_MODE)
1503		inode->i_mode = sbi->s_dmode;
1504	else
1505		inode->i_mode = udf_convert_permissions(fe);
1506	inode->i_mode &= ~sbi->s_umask;
1507	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1508
1509	read_unlock(&sbi->s_cred_lock);
1510
1511	link_count = le16_to_cpu(fe->fileLinkCount);
1512	if (!link_count) {
1513		if (!hidden_inode) {
1514			ret = -ESTALE;
1515			goto out;
1516		}
1517		link_count = 1;
1518	}
1519	set_nlink(inode, link_count);
1520
1521	inode->i_size = le64_to_cpu(fe->informationLength);
1522	iinfo->i_lenExtents = inode->i_size;
1523
1524	if (iinfo->i_efe == 0) {
1525		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1526			(inode->i_sb->s_blocksize_bits - 9);
1527
1528		udf_disk_stamp_to_time(&ts, fe->accessTime);
1529		inode_set_atime_to_ts(inode, ts);
1530		udf_disk_stamp_to_time(&ts, fe->modificationTime);
1531		inode_set_mtime_to_ts(inode, ts);
1532		udf_disk_stamp_to_time(&ts, fe->attrTime);
1533		inode_set_ctime_to_ts(inode, ts);
1534
1535		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1536		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1537		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1538		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1539		iinfo->i_streamdir = 0;
1540		iinfo->i_lenStreams = 0;
1541	} else {
1542		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1543		    (inode->i_sb->s_blocksize_bits - 9);
1544
1545		udf_disk_stamp_to_time(&ts, efe->accessTime);
1546		inode_set_atime_to_ts(inode, ts);
1547		udf_disk_stamp_to_time(&ts, efe->modificationTime);
1548		inode_set_mtime_to_ts(inode, ts);
1549		udf_disk_stamp_to_time(&ts, efe->attrTime);
1550		inode_set_ctime_to_ts(inode, ts);
1551		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
 
1552
1553		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1554		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1555		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1556		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1557
1558		/* Named streams */
1559		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1560		iinfo->i_locStreamdir =
1561			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1562		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1563		if (iinfo->i_lenStreams >= inode->i_size)
1564			iinfo->i_lenStreams -= inode->i_size;
1565		else
1566			iinfo->i_lenStreams = 0;
1567	}
1568	inode->i_generation = iinfo->i_unique;
1569
1570	/*
1571	 * Sanity check length of allocation descriptors and extended attrs to
1572	 * avoid integer overflows
1573	 */
1574	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1575		goto out;
1576	/* Now do exact checks */
1577	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1578		goto out;
1579	/* Sanity checks for files in ICB so that we don't get confused later */
1580	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1581		/*
1582		 * For file in ICB data is stored in allocation descriptor
1583		 * so sizes should match
1584		 */
1585		if (iinfo->i_lenAlloc != inode->i_size)
1586			goto out;
1587		/* File in ICB has to fit in there... */
1588		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1589			goto out;
1590	}
1591
1592	switch (fe->icbTag.fileType) {
1593	case ICBTAG_FILE_TYPE_DIRECTORY:
1594		inode->i_op = &udf_dir_inode_operations;
1595		inode->i_fop = &udf_dir_operations;
1596		inode->i_mode |= S_IFDIR;
1597		inc_nlink(inode);
1598		break;
1599	case ICBTAG_FILE_TYPE_REALTIME:
1600	case ICBTAG_FILE_TYPE_REGULAR:
1601	case ICBTAG_FILE_TYPE_UNDEF:
1602	case ICBTAG_FILE_TYPE_VAT20:
1603		inode->i_data.a_ops = &udf_aops;
 
 
 
1604		inode->i_op = &udf_file_inode_operations;
1605		inode->i_fop = &udf_file_operations;
1606		inode->i_mode |= S_IFREG;
1607		break;
1608	case ICBTAG_FILE_TYPE_BLOCK:
1609		inode->i_mode |= S_IFBLK;
1610		break;
1611	case ICBTAG_FILE_TYPE_CHAR:
1612		inode->i_mode |= S_IFCHR;
1613		break;
1614	case ICBTAG_FILE_TYPE_FIFO:
1615		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1616		break;
1617	case ICBTAG_FILE_TYPE_SOCKET:
1618		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1619		break;
1620	case ICBTAG_FILE_TYPE_SYMLINK:
1621		inode->i_data.a_ops = &udf_symlink_aops;
1622		inode->i_op = &udf_symlink_inode_operations;
1623		inode_nohighmem(inode);
1624		inode->i_mode = S_IFLNK | 0777;
1625		break;
1626	case ICBTAG_FILE_TYPE_MAIN:
1627		udf_debug("METADATA FILE-----\n");
1628		break;
1629	case ICBTAG_FILE_TYPE_MIRROR:
1630		udf_debug("METADATA MIRROR FILE-----\n");
1631		break;
1632	case ICBTAG_FILE_TYPE_BITMAP:
1633		udf_debug("METADATA BITMAP FILE-----\n");
1634		break;
1635	default:
1636		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1637			inode->i_ino, fe->icbTag.fileType);
1638		goto out;
1639	}
1640	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1641		struct deviceSpec *dsea =
1642			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1643		if (dsea) {
1644			init_special_inode(inode, inode->i_mode,
1645				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1646				      le32_to_cpu(dsea->minorDeviceIdent)));
1647			/* Developer ID ??? */
1648		} else
1649			goto out;
1650	}
1651	ret = 0;
1652out:
1653	brelse(bh);
1654	return ret;
1655}
1656
1657static int udf_alloc_i_data(struct inode *inode, size_t size)
1658{
1659	struct udf_inode_info *iinfo = UDF_I(inode);
1660	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1661	if (!iinfo->i_data)
1662		return -ENOMEM;
1663	return 0;
1664}
1665
1666static umode_t udf_convert_permissions(struct fileEntry *fe)
1667{
1668	umode_t mode;
1669	uint32_t permissions;
1670	uint32_t flags;
1671
1672	permissions = le32_to_cpu(fe->permissions);
1673	flags = le16_to_cpu(fe->icbTag.flags);
1674
1675	mode =	((permissions) & 0007) |
1676		((permissions >> 2) & 0070) |
1677		((permissions >> 4) & 0700) |
1678		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1679		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1680		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1681
1682	return mode;
1683}
1684
1685void udf_update_extra_perms(struct inode *inode, umode_t mode)
1686{
1687	struct udf_inode_info *iinfo = UDF_I(inode);
1688
1689	/*
1690	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1691	 * In Unix, delete permission tracks write
1692	 */
1693	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1694	if (mode & 0200)
1695		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1696	if (mode & 0020)
1697		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1698	if (mode & 0002)
1699		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1700}
1701
1702int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1703{
1704	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1705}
1706
1707static int udf_sync_inode(struct inode *inode)
1708{
1709	return udf_update_inode(inode, 1);
1710}
1711
1712static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1713{
1714	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1715	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1716	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1717		iinfo->i_crtime = time;
1718}
1719
1720static int udf_update_inode(struct inode *inode, int do_sync)
1721{
1722	struct buffer_head *bh = NULL;
1723	struct fileEntry *fe;
1724	struct extendedFileEntry *efe;
1725	uint64_t lb_recorded;
1726	uint32_t udfperms;
1727	uint16_t icbflags;
1728	uint16_t crclen;
1729	int err = 0;
1730	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1731	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1732	struct udf_inode_info *iinfo = UDF_I(inode);
1733
1734	bh = sb_getblk(inode->i_sb,
1735			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1736	if (!bh) {
1737		udf_debug("getblk failure\n");
1738		return -EIO;
1739	}
1740
1741	lock_buffer(bh);
1742	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1743	fe = (struct fileEntry *)bh->b_data;
1744	efe = (struct extendedFileEntry *)bh->b_data;
1745
1746	if (iinfo->i_use) {
1747		struct unallocSpaceEntry *use =
1748			(struct unallocSpaceEntry *)bh->b_data;
1749
1750		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1751		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1752		       iinfo->i_data, inode->i_sb->s_blocksize -
1753					sizeof(struct unallocSpaceEntry));
1754		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1755		crclen = sizeof(struct unallocSpaceEntry);
1756
1757		goto finish;
1758	}
1759
1760	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1761		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1762	else
1763		fe->uid = cpu_to_le32(i_uid_read(inode));
1764
1765	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1766		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1767	else
1768		fe->gid = cpu_to_le32(i_gid_read(inode));
1769
1770	udfperms = ((inode->i_mode & 0007)) |
1771		   ((inode->i_mode & 0070) << 2) |
1772		   ((inode->i_mode & 0700) << 4);
1773
1774	udfperms |= iinfo->i_extraPerms;
1775	fe->permissions = cpu_to_le32(udfperms);
1776
1777	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1778		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1779	else {
1780		if (iinfo->i_hidden)
1781			fe->fileLinkCount = cpu_to_le16(0);
1782		else
1783			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1784	}
1785
1786	fe->informationLength = cpu_to_le64(inode->i_size);
1787
1788	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1789		struct regid *eid;
1790		struct deviceSpec *dsea =
1791			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1792		if (!dsea) {
1793			dsea = (struct deviceSpec *)
1794				udf_add_extendedattr(inode,
1795						     sizeof(struct deviceSpec) +
1796						     sizeof(struct regid), 12, 0x3);
1797			dsea->attrType = cpu_to_le32(12);
1798			dsea->attrSubtype = 1;
1799			dsea->attrLength = cpu_to_le32(
1800						sizeof(struct deviceSpec) +
1801						sizeof(struct regid));
1802			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1803		}
1804		eid = (struct regid *)dsea->impUse;
1805		memset(eid, 0, sizeof(*eid));
1806		strcpy(eid->ident, UDF_ID_DEVELOPER);
1807		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1808		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1809		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1810		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1811	}
1812
1813	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1814		lb_recorded = 0; /* No extents => no blocks! */
1815	else
1816		lb_recorded =
1817			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1818			(blocksize_bits - 9);
1819
1820	if (iinfo->i_efe == 0) {
1821		memcpy(bh->b_data + sizeof(struct fileEntry),
1822		       iinfo->i_data,
1823		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1824		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1825
1826		udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1827		udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1828		udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1829		memset(&(fe->impIdent), 0, sizeof(struct regid));
1830		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1831		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1832		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1833		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1834		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1835		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1836		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1837		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1838		crclen = sizeof(struct fileEntry);
1839	} else {
1840		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1841		       iinfo->i_data,
1842		       inode->i_sb->s_blocksize -
1843					sizeof(struct extendedFileEntry));
1844		efe->objectSize =
1845			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1846		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1847
1848		if (iinfo->i_streamdir) {
1849			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1850
1851			icb_lad->extLocation =
1852				cpu_to_lelb(iinfo->i_locStreamdir);
1853			icb_lad->extLength =
1854				cpu_to_le32(inode->i_sb->s_blocksize);
1855		}
1856
1857		udf_adjust_time(iinfo, inode_get_atime(inode));
1858		udf_adjust_time(iinfo, inode_get_mtime(inode));
1859		udf_adjust_time(iinfo, inode_get_ctime(inode));
1860
1861		udf_time_to_disk_stamp(&efe->accessTime,
1862				       inode_get_atime(inode));
1863		udf_time_to_disk_stamp(&efe->modificationTime,
1864				       inode_get_mtime(inode));
1865		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1866		udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1867
1868		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1869		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1870		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1871		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1872		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1873		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1874		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1875		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1876		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1877		crclen = sizeof(struct extendedFileEntry);
1878	}
1879
1880finish:
1881	if (iinfo->i_strat4096) {
1882		fe->icbTag.strategyType = cpu_to_le16(4096);
1883		fe->icbTag.strategyParameter = cpu_to_le16(1);
1884		fe->icbTag.numEntries = cpu_to_le16(2);
1885	} else {
1886		fe->icbTag.strategyType = cpu_to_le16(4);
1887		fe->icbTag.numEntries = cpu_to_le16(1);
1888	}
1889
1890	if (iinfo->i_use)
1891		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1892	else if (S_ISDIR(inode->i_mode))
1893		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1894	else if (S_ISREG(inode->i_mode))
1895		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1896	else if (S_ISLNK(inode->i_mode))
1897		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1898	else if (S_ISBLK(inode->i_mode))
1899		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1900	else if (S_ISCHR(inode->i_mode))
1901		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1902	else if (S_ISFIFO(inode->i_mode))
1903		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1904	else if (S_ISSOCK(inode->i_mode))
1905		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1906
1907	icbflags =	iinfo->i_alloc_type |
1908			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1909			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1910			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1911			(le16_to_cpu(fe->icbTag.flags) &
1912				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1913				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1914
1915	fe->icbTag.flags = cpu_to_le16(icbflags);
1916	if (sbi->s_udfrev >= 0x0200)
1917		fe->descTag.descVersion = cpu_to_le16(3);
1918	else
1919		fe->descTag.descVersion = cpu_to_le16(2);
1920	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1921	fe->descTag.tagLocation = cpu_to_le32(
1922					iinfo->i_location.logicalBlockNum);
1923	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1924	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1925	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1926						  crclen));
1927	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1928
1929	set_buffer_uptodate(bh);
1930	unlock_buffer(bh);
1931
1932	/* write the data blocks */
1933	mark_buffer_dirty(bh);
1934	if (do_sync) {
1935		sync_dirty_buffer(bh);
1936		if (buffer_write_io_error(bh)) {
1937			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1938				 inode->i_ino);
1939			err = -EIO;
1940		}
1941	}
1942	brelse(bh);
1943
1944	return err;
1945}
1946
1947struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1948			 bool hidden_inode)
1949{
1950	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1951	struct inode *inode = iget_locked(sb, block);
1952	int err;
1953
1954	if (!inode)
1955		return ERR_PTR(-ENOMEM);
1956
1957	if (!(inode->i_state & I_NEW)) {
1958		if (UDF_I(inode)->i_hidden != hidden_inode) {
1959			iput(inode);
1960			return ERR_PTR(-EFSCORRUPTED);
1961		}
1962		return inode;
1963	}
1964
1965	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1966	err = udf_read_inode(inode, hidden_inode);
1967	if (err < 0) {
1968		iget_failed(inode);
1969		return ERR_PTR(err);
1970	}
1971	unlock_new_inode(inode);
1972
1973	return inode;
1974}
1975
1976int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1977			    struct extent_position *epos)
1978{
1979	struct super_block *sb = inode->i_sb;
1980	struct buffer_head *bh;
1981	struct allocExtDesc *aed;
1982	struct extent_position nepos;
1983	struct kernel_lb_addr neloc;
1984	int ver, adsize;
1985	int err = 0;
1986
1987	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1988		adsize = sizeof(struct short_ad);
1989	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1990		adsize = sizeof(struct long_ad);
1991	else
1992		return -EIO;
1993
1994	neloc.logicalBlockNum = block;
1995	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1996
1997	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1998	if (!bh)
1999		return -EIO;
2000	lock_buffer(bh);
2001	memset(bh->b_data, 0x00, sb->s_blocksize);
2002	set_buffer_uptodate(bh);
2003	unlock_buffer(bh);
2004	mark_buffer_dirty_inode(bh, inode);
2005
2006	aed = (struct allocExtDesc *)(bh->b_data);
2007	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
2008		aed->previousAllocExtLocation =
2009				cpu_to_le32(epos->block.logicalBlockNum);
2010	}
2011	aed->lengthAllocDescs = cpu_to_le32(0);
2012	if (UDF_SB(sb)->s_udfrev >= 0x0200)
2013		ver = 3;
2014	else
2015		ver = 2;
2016	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
2017		    sizeof(struct tag));
2018
2019	nepos.block = neloc;
2020	nepos.offset = sizeof(struct allocExtDesc);
2021	nepos.bh = bh;
2022
2023	/*
2024	 * Do we have to copy current last extent to make space for indirect
2025	 * one?
2026	 */
2027	if (epos->offset + adsize > sb->s_blocksize) {
2028		struct kernel_lb_addr cp_loc;
2029		uint32_t cp_len;
2030		int8_t cp_type;
2031
2032		epos->offset -= adsize;
2033		err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0);
2034		if (err <= 0)
2035			goto err_out;
2036		cp_len |= ((uint32_t)cp_type) << 30;
2037
2038		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2039		udf_write_aext(inode, epos, &nepos.block,
2040			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2041	} else {
2042		__udf_add_aext(inode, epos, &nepos.block,
2043			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2044	}
2045
2046	brelse(epos->bh);
2047	*epos = nepos;
2048
2049	return 0;
2050err_out:
2051	brelse(bh);
2052	return err;
2053}
2054
2055/*
2056 * Append extent at the given position - should be the first free one in inode
2057 * / indirect extent. This function assumes there is enough space in the inode
2058 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2059 */
2060int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2061		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2062{
2063	struct udf_inode_info *iinfo = UDF_I(inode);
2064	struct allocExtDesc *aed;
2065	int adsize;
2066
2067	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2068		adsize = sizeof(struct short_ad);
2069	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2070		adsize = sizeof(struct long_ad);
2071	else
2072		return -EIO;
2073
2074	if (!epos->bh) {
2075		WARN_ON(iinfo->i_lenAlloc !=
2076			epos->offset - udf_file_entry_alloc_offset(inode));
2077	} else {
2078		aed = (struct allocExtDesc *)epos->bh->b_data;
2079		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2080			epos->offset - sizeof(struct allocExtDesc));
2081		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2082	}
2083
2084	udf_write_aext(inode, epos, eloc, elen, inc);
2085
2086	if (!epos->bh) {
2087		iinfo->i_lenAlloc += adsize;
2088		mark_inode_dirty(inode);
2089	} else {
2090		aed = (struct allocExtDesc *)epos->bh->b_data;
2091		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2092		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2093				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2094			udf_update_tag(epos->bh->b_data,
2095					epos->offset + (inc ? 0 : adsize));
2096		else
2097			udf_update_tag(epos->bh->b_data,
2098					sizeof(struct allocExtDesc));
2099		mark_buffer_dirty_inode(epos->bh, inode);
2100	}
2101
2102	return 0;
2103}
2104
2105/*
2106 * Append extent at given position - should be the first free one in inode
2107 * / indirect extent. Takes care of allocating and linking indirect blocks.
2108 */
2109int udf_add_aext(struct inode *inode, struct extent_position *epos,
2110		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2111{
2112	int adsize;
2113	struct super_block *sb = inode->i_sb;
2114
2115	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2116		adsize = sizeof(struct short_ad);
2117	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2118		adsize = sizeof(struct long_ad);
2119	else
2120		return -EIO;
2121
2122	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2123		int err;
2124		udf_pblk_t new_block;
2125
2126		new_block = udf_new_block(sb, NULL,
2127					  epos->block.partitionReferenceNum,
2128					  epos->block.logicalBlockNum, &err);
2129		if (!new_block)
2130			return -ENOSPC;
2131
2132		err = udf_setup_indirect_aext(inode, new_block, epos);
2133		if (err)
2134			return err;
2135	}
2136
2137	return __udf_add_aext(inode, epos, eloc, elen, inc);
2138}
2139
2140void udf_write_aext(struct inode *inode, struct extent_position *epos,
2141		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2142{
2143	int adsize;
2144	uint8_t *ptr;
2145	struct short_ad *sad;
2146	struct long_ad *lad;
2147	struct udf_inode_info *iinfo = UDF_I(inode);
2148
2149	if (!epos->bh)
2150		ptr = iinfo->i_data + epos->offset -
2151			udf_file_entry_alloc_offset(inode) +
2152			iinfo->i_lenEAttr;
2153	else
2154		ptr = epos->bh->b_data + epos->offset;
2155
2156	switch (iinfo->i_alloc_type) {
2157	case ICBTAG_FLAG_AD_SHORT:
2158		sad = (struct short_ad *)ptr;
2159		sad->extLength = cpu_to_le32(elen);
2160		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2161		adsize = sizeof(struct short_ad);
2162		break;
2163	case ICBTAG_FLAG_AD_LONG:
2164		lad = (struct long_ad *)ptr;
2165		lad->extLength = cpu_to_le32(elen);
2166		lad->extLocation = cpu_to_lelb(*eloc);
2167		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2168		adsize = sizeof(struct long_ad);
2169		break;
2170	default:
2171		return;
2172	}
2173
2174	if (epos->bh) {
2175		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2176		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2177			struct allocExtDesc *aed =
2178				(struct allocExtDesc *)epos->bh->b_data;
2179			udf_update_tag(epos->bh->b_data,
2180				       le32_to_cpu(aed->lengthAllocDescs) +
2181				       sizeof(struct allocExtDesc));
2182		}
2183		mark_buffer_dirty_inode(epos->bh, inode);
2184	} else {
2185		mark_inode_dirty(inode);
2186	}
2187
2188	if (inc)
2189		epos->offset += adsize;
2190}
2191
2192/*
2193 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2194 * someone does some weird stuff.
2195 */
2196#define UDF_MAX_INDIR_EXTS 16
2197
2198/*
2199 * Returns 1 on success, -errno on error, 0 on hit EOF.
2200 */
2201int udf_next_aext(struct inode *inode, struct extent_position *epos,
2202		  struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2203		  int inc)
2204{
 
2205	unsigned int indirections = 0;
2206	int ret = 0;
2207	udf_pblk_t block;
2208
2209	while (1) {
2210		ret = udf_current_aext(inode, epos, eloc, elen,
2211				       etype, inc);
2212		if (ret <= 0)
2213			return ret;
2214		if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30))
2215			return ret;
2216
2217		if (++indirections > UDF_MAX_INDIR_EXTS) {
2218			udf_err(inode->i_sb,
2219				"too many indirect extents in inode %lu\n",
2220				inode->i_ino);
2221			return -EFSCORRUPTED;
2222		}
2223
2224		epos->block = *eloc;
2225		epos->offset = sizeof(struct allocExtDesc);
2226		brelse(epos->bh);
2227		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2228		epos->bh = sb_bread(inode->i_sb, block);
2229		if (!epos->bh) {
2230			udf_debug("reading block %u failed!\n", block);
2231			return -EIO;
2232		}
2233	}
 
 
2234}
2235
2236/*
2237 * Returns 1 on success, -errno on error, 0 on hit EOF.
2238 */
2239int udf_current_aext(struct inode *inode, struct extent_position *epos,
2240		     struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2241		     int inc)
2242{
2243	int alen;
 
2244	uint8_t *ptr;
2245	struct short_ad *sad;
2246	struct long_ad *lad;
2247	struct udf_inode_info *iinfo = UDF_I(inode);
2248
2249	if (!epos->bh) {
2250		if (!epos->offset)
2251			epos->offset = udf_file_entry_alloc_offset(inode);
2252		ptr = iinfo->i_data + epos->offset -
2253			udf_file_entry_alloc_offset(inode) +
2254			iinfo->i_lenEAttr;
2255		alen = udf_file_entry_alloc_offset(inode) +
2256							iinfo->i_lenAlloc;
2257	} else {
2258		struct allocExtDesc *header =
2259			(struct allocExtDesc *)epos->bh->b_data;
2260
2261		if (!epos->offset)
2262			epos->offset = sizeof(struct allocExtDesc);
2263		ptr = epos->bh->b_data + epos->offset;
2264		if (check_add_overflow(sizeof(struct allocExtDesc),
2265				le32_to_cpu(header->lengthAllocDescs), &alen))
2266			return -1;
2267	}
2268
2269	switch (iinfo->i_alloc_type) {
2270	case ICBTAG_FLAG_AD_SHORT:
2271		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2272		if (!sad)
2273			return 0;
2274		*etype = le32_to_cpu(sad->extLength) >> 30;
2275		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2276		eloc->partitionReferenceNum =
2277				iinfo->i_location.partitionReferenceNum;
2278		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2279		break;
2280	case ICBTAG_FLAG_AD_LONG:
2281		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2282		if (!lad)
2283			return 0;
2284		*etype = le32_to_cpu(lad->extLength) >> 30;
2285		*eloc = lelb_to_cpu(lad->extLocation);
2286		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2287		break;
2288	default:
2289		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2290		return -EINVAL;
2291	}
2292
2293	return 1;
2294}
2295
2296static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2297			   struct kernel_lb_addr neloc, uint32_t nelen)
2298{
2299	struct kernel_lb_addr oeloc;
2300	uint32_t oelen;
2301	int8_t etype;
2302	int ret;
2303
2304	if (epos.bh)
2305		get_bh(epos.bh);
2306
2307	while (1) {
2308		ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0);
2309		if (ret <= 0)
2310			break;
2311		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2312		neloc = oeloc;
2313		nelen = (etype << 30) | oelen;
2314	}
2315	if (ret == 0)
2316		ret = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2317	brelse(epos.bh);
2318
2319	return ret;
2320}
2321
2322int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2323{
2324	struct extent_position oepos;
2325	int adsize;
2326	int8_t etype;
2327	struct allocExtDesc *aed;
2328	struct udf_inode_info *iinfo;
2329	struct kernel_lb_addr eloc;
2330	uint32_t elen;
2331	int ret;
2332
2333	if (epos.bh) {
2334		get_bh(epos.bh);
2335		get_bh(epos.bh);
2336	}
2337
2338	iinfo = UDF_I(inode);
2339	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2340		adsize = sizeof(struct short_ad);
2341	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2342		adsize = sizeof(struct long_ad);
2343	else
2344		adsize = 0;
2345
2346	oepos = epos;
2347	if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0)
2348		return -1;
2349
2350	while (1) {
2351		ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1);
2352		if (ret < 0) {
2353			brelse(epos.bh);
2354			brelse(oepos.bh);
2355			return -1;
2356		}
2357		if (ret == 0)
2358			break;
2359		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2360		if (oepos.bh != epos.bh) {
2361			oepos.block = epos.block;
2362			brelse(oepos.bh);
2363			get_bh(epos.bh);
2364			oepos.bh = epos.bh;
2365			oepos.offset = epos.offset - adsize;
2366		}
2367	}
2368	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2369	elen = 0;
2370
2371	if (epos.bh != oepos.bh) {
2372		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2373		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2374		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2375		if (!oepos.bh) {
2376			iinfo->i_lenAlloc -= (adsize * 2);
2377			mark_inode_dirty(inode);
2378		} else {
2379			aed = (struct allocExtDesc *)oepos.bh->b_data;
2380			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2381			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2382			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2383				udf_update_tag(oepos.bh->b_data,
2384						oepos.offset - (2 * adsize));
2385			else
2386				udf_update_tag(oepos.bh->b_data,
2387						sizeof(struct allocExtDesc));
2388			mark_buffer_dirty_inode(oepos.bh, inode);
2389		}
2390	} else {
2391		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2392		if (!oepos.bh) {
2393			iinfo->i_lenAlloc -= adsize;
2394			mark_inode_dirty(inode);
2395		} else {
2396			aed = (struct allocExtDesc *)oepos.bh->b_data;
2397			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2398			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2399			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2400				udf_update_tag(oepos.bh->b_data,
2401						epos.offset - adsize);
2402			else
2403				udf_update_tag(oepos.bh->b_data,
2404						sizeof(struct allocExtDesc));
2405			mark_buffer_dirty_inode(oepos.bh, inode);
2406		}
2407	}
2408
2409	brelse(epos.bh);
2410	brelse(oepos.bh);
2411
2412	return (elen >> 30);
2413}
2414
2415/*
2416 * Returns 1 on success, -errno on error, 0 on hit EOF.
2417 */
2418int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos,
2419	       struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset,
2420	       int8_t *etype)
2421{
2422	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2423	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
 
2424	struct udf_inode_info *iinfo;
2425	int err = 0;
2426
2427	iinfo = UDF_I(inode);
2428	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2429		pos->offset = 0;
2430		pos->block = iinfo->i_location;
2431		pos->bh = NULL;
2432	}
2433	*elen = 0;
2434	do {
2435		err = udf_next_aext(inode, pos, eloc, elen, etype, 1);
2436		if (err <= 0) {
2437			if (err == 0) {
2438				*offset = (bcount - lbcount) >> blocksize_bits;
2439				iinfo->i_lenExtents = lbcount;
2440			}
2441			return err;
2442		}
2443		lbcount += *elen;
2444	} while (lbcount <= bcount);
2445	/* update extent cache */
2446	udf_update_extent_cache(inode, lbcount - *elen, pos);
2447	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2448
2449	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450}
v5.9
 
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46#define EXTENT_MERGE_SIZE 5
  47
  48#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  49			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  50			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  51
  52#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  53			 FE_PERM_O_DELETE)
  54
 
 
  55static umode_t udf_convert_permissions(struct fileEntry *);
  56static int udf_update_inode(struct inode *, int);
  57static int udf_sync_inode(struct inode *inode);
  58static int udf_alloc_i_data(struct inode *inode, size_t size);
  59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  60static int8_t udf_insert_aext(struct inode *, struct extent_position,
  61			      struct kernel_lb_addr, uint32_t);
  62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  63			      struct kernel_long_ad *, int *);
  64static void udf_prealloc_extents(struct inode *, int, int,
  65				 struct kernel_long_ad *, int *);
  66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  67static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  68			       int, struct extent_position *);
  69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
 
  70
  71static void __udf_clear_extent_cache(struct inode *inode)
  72{
  73	struct udf_inode_info *iinfo = UDF_I(inode);
  74
  75	if (iinfo->cached_extent.lstart != -1) {
  76		brelse(iinfo->cached_extent.epos.bh);
  77		iinfo->cached_extent.lstart = -1;
  78	}
  79}
  80
  81/* Invalidate extent cache */
  82static void udf_clear_extent_cache(struct inode *inode)
  83{
  84	struct udf_inode_info *iinfo = UDF_I(inode);
  85
  86	spin_lock(&iinfo->i_extent_cache_lock);
  87	__udf_clear_extent_cache(inode);
  88	spin_unlock(&iinfo->i_extent_cache_lock);
  89}
  90
  91/* Return contents of extent cache */
  92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  93				 loff_t *lbcount, struct extent_position *pos)
  94{
  95	struct udf_inode_info *iinfo = UDF_I(inode);
  96	int ret = 0;
  97
  98	spin_lock(&iinfo->i_extent_cache_lock);
  99	if ((iinfo->cached_extent.lstart <= bcount) &&
 100	    (iinfo->cached_extent.lstart != -1)) {
 101		/* Cache hit */
 102		*lbcount = iinfo->cached_extent.lstart;
 103		memcpy(pos, &iinfo->cached_extent.epos,
 104		       sizeof(struct extent_position));
 105		if (pos->bh)
 106			get_bh(pos->bh);
 107		ret = 1;
 108	}
 109	spin_unlock(&iinfo->i_extent_cache_lock);
 110	return ret;
 111}
 112
 113/* Add extent to extent cache */
 114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 115				    struct extent_position *pos)
 116{
 117	struct udf_inode_info *iinfo = UDF_I(inode);
 118
 119	spin_lock(&iinfo->i_extent_cache_lock);
 120	/* Invalidate previously cached extent */
 121	__udf_clear_extent_cache(inode);
 122	if (pos->bh)
 123		get_bh(pos->bh);
 124	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 125	iinfo->cached_extent.lstart = estart;
 126	switch (iinfo->i_alloc_type) {
 127	case ICBTAG_FLAG_AD_SHORT:
 128		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 129		break;
 130	case ICBTAG_FLAG_AD_LONG:
 131		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 132		break;
 133	}
 134	spin_unlock(&iinfo->i_extent_cache_lock);
 135}
 136
 137void udf_evict_inode(struct inode *inode)
 138{
 139	struct udf_inode_info *iinfo = UDF_I(inode);
 140	int want_delete = 0;
 141
 142	if (!inode->i_nlink && !is_bad_inode(inode)) {
 143		want_delete = 1;
 144		udf_setsize(inode, 0);
 145		udf_update_inode(inode, IS_SYNC(inode));
 
 
 
 
 
 
 
 
 
 
 146	}
 147	truncate_inode_pages_final(&inode->i_data);
 148	invalidate_inode_buffers(inode);
 149	clear_inode(inode);
 150	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 151	    inode->i_size != iinfo->i_lenExtents) {
 152		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 153			 inode->i_ino, inode->i_mode,
 154			 (unsigned long long)inode->i_size,
 155			 (unsigned long long)iinfo->i_lenExtents);
 156	}
 157	kfree(iinfo->i_ext.i_data);
 158	iinfo->i_ext.i_data = NULL;
 159	udf_clear_extent_cache(inode);
 160	if (want_delete) {
 161		udf_free_inode(inode);
 162	}
 163}
 164
 165static void udf_write_failed(struct address_space *mapping, loff_t to)
 166{
 167	struct inode *inode = mapping->host;
 168	struct udf_inode_info *iinfo = UDF_I(inode);
 169	loff_t isize = inode->i_size;
 170
 171	if (to > isize) {
 172		truncate_pagecache(inode, isize);
 173		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 174			down_write(&iinfo->i_data_sem);
 175			udf_clear_extent_cache(inode);
 176			udf_truncate_extents(inode);
 177			up_write(&iinfo->i_data_sem);
 178		}
 179	}
 180}
 181
 182static int udf_writepage(struct page *page, struct writeback_control *wbc)
 
 183{
 184	return block_write_full_page(page, udf_get_block, wbc);
 
 
 
 
 
 
 
 
 
 
 185}
 186
 187static int udf_writepages(struct address_space *mapping,
 188			struct writeback_control *wbc)
 189{
 190	return mpage_writepages(mapping, wbc, udf_get_block);
 
 
 
 
 
 191}
 192
 193static int udf_readpage(struct file *file, struct page *page)
 194{
 195	return mpage_readpage(page, udf_get_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 196}
 197
 198static void udf_readahead(struct readahead_control *rac)
 199{
 
 
 
 
 
 
 
 
 
 200	mpage_readahead(rac, udf_get_block);
 201}
 202
 203static int udf_write_begin(struct file *file, struct address_space *mapping,
 204			loff_t pos, unsigned len, unsigned flags,
 205			struct page **pagep, void **fsdata)
 206{
 
 
 207	int ret;
 208
 209	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 210	if (unlikely(ret))
 211		udf_write_failed(mapping, pos + len);
 212	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 213}
 214
 215static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 216{
 217	struct file *file = iocb->ki_filp;
 218	struct address_space *mapping = file->f_mapping;
 219	struct inode *inode = mapping->host;
 220	size_t count = iov_iter_count(iter);
 221	ssize_t ret;
 222
 
 
 
 223	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 224	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 225		udf_write_failed(mapping, iocb->ki_pos + count);
 226	return ret;
 227}
 228
 229static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 230{
 
 
 
 
 231	return generic_block_bmap(mapping, block, udf_get_block);
 232}
 233
 234const struct address_space_operations udf_aops = {
 235	.readpage	= udf_readpage,
 
 
 236	.readahead	= udf_readahead,
 237	.writepage	= udf_writepage,
 238	.writepages	= udf_writepages,
 239	.write_begin	= udf_write_begin,
 240	.write_end	= generic_write_end,
 241	.direct_IO	= udf_direct_IO,
 242	.bmap		= udf_bmap,
 
 243};
 244
 245/*
 246 * Expand file stored in ICB to a normal one-block-file
 247 *
 248 * This function requires i_data_sem for writing and releases it.
 249 * This function requires i_mutex held
 250 */
 251int udf_expand_file_adinicb(struct inode *inode)
 252{
 253	struct page *page;
 254	char *kaddr;
 255	struct udf_inode_info *iinfo = UDF_I(inode);
 256	int err;
 257	struct writeback_control udf_wbc = {
 258		.sync_mode = WB_SYNC_NONE,
 259		.nr_to_write = 1,
 260	};
 261
 262	WARN_ON_ONCE(!inode_is_locked(inode));
 263	if (!iinfo->i_lenAlloc) {
 
 264		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 265			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 266		else
 267			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 268		/* from now on we have normal address_space methods */
 269		inode->i_data.a_ops = &udf_aops;
 270		up_write(&iinfo->i_data_sem);
 271		mark_inode_dirty(inode);
 272		return 0;
 273	}
 274	/*
 275	 * Release i_data_sem so that we can lock a page - page lock ranks
 276	 * above i_data_sem. i_mutex still protects us against file changes.
 277	 */
 278	up_write(&iinfo->i_data_sem);
 279
 280	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 281	if (!page)
 282		return -ENOMEM;
 
 283
 284	if (!PageUptodate(page)) {
 285		kaddr = kmap_atomic(page);
 286		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 287		       PAGE_SIZE - iinfo->i_lenAlloc);
 288		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
 289			iinfo->i_lenAlloc);
 290		flush_dcache_page(page);
 291		SetPageUptodate(page);
 292		kunmap_atomic(kaddr);
 293	}
 294	down_write(&iinfo->i_data_sem);
 295	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
 296	       iinfo->i_lenAlloc);
 297	iinfo->i_lenAlloc = 0;
 298	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 299		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 300	else
 301		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 302	/* from now on we have normal address_space methods */
 303	inode->i_data.a_ops = &udf_aops;
 304	up_write(&iinfo->i_data_sem);
 305	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 306	if (err) {
 307		/* Restore everything back so that we don't lose data... */
 308		lock_page(page);
 309		down_write(&iinfo->i_data_sem);
 310		kaddr = kmap_atomic(page);
 311		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
 312		       inode->i_size);
 313		kunmap_atomic(kaddr);
 314		unlock_page(page);
 315		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 316		inode->i_data.a_ops = &udf_adinicb_aops;
 317		up_write(&iinfo->i_data_sem);
 318	}
 319	put_page(page);
 320	mark_inode_dirty(inode);
 321
 322	return err;
 323}
 324
 325struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
 326					    udf_pblk_t *block, int *err)
 
 
 
 
 
 
 
 
 
 
 
 
 327{
 328	udf_pblk_t newblock;
 329	struct buffer_head *dbh = NULL;
 330	struct kernel_lb_addr eloc;
 331	uint8_t alloctype;
 332	struct extent_position epos;
 333
 334	struct udf_fileident_bh sfibh, dfibh;
 335	loff_t f_pos = udf_ext0_offset(inode);
 336	int size = udf_ext0_offset(inode) + inode->i_size;
 337	struct fileIdentDesc cfi, *sfi, *dfi;
 338	struct udf_inode_info *iinfo = UDF_I(inode);
 339
 340	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 341		alloctype = ICBTAG_FLAG_AD_SHORT;
 342	else
 343		alloctype = ICBTAG_FLAG_AD_LONG;
 344
 345	if (!inode->i_size) {
 346		iinfo->i_alloc_type = alloctype;
 347		mark_inode_dirty(inode);
 348		return NULL;
 349	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350
 351	/* alloc block, and copy data to it */
 352	*block = udf_new_block(inode->i_sb, inode,
 353			       iinfo->i_location.partitionReferenceNum,
 354			       iinfo->i_location.logicalBlockNum, err);
 355	if (!(*block))
 356		return NULL;
 357	newblock = udf_get_pblock(inode->i_sb, *block,
 358				  iinfo->i_location.partitionReferenceNum,
 359				0);
 360	if (!newblock)
 361		return NULL;
 362	dbh = udf_tgetblk(inode->i_sb, newblock);
 363	if (!dbh)
 364		return NULL;
 365	lock_buffer(dbh);
 366	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 367	set_buffer_uptodate(dbh);
 368	unlock_buffer(dbh);
 369	mark_buffer_dirty_inode(dbh, inode);
 370
 371	sfibh.soffset = sfibh.eoffset =
 372			f_pos & (inode->i_sb->s_blocksize - 1);
 373	sfibh.sbh = sfibh.ebh = NULL;
 374	dfibh.soffset = dfibh.eoffset = 0;
 375	dfibh.sbh = dfibh.ebh = dbh;
 376	while (f_pos < size) {
 377		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 378		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 379					 NULL, NULL, NULL);
 380		if (!sfi) {
 381			brelse(dbh);
 382			return NULL;
 383		}
 384		iinfo->i_alloc_type = alloctype;
 385		sfi->descTag.tagLocation = cpu_to_le32(*block);
 386		dfibh.soffset = dfibh.eoffset;
 387		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 388		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 389		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 390				 sfi->fileIdent +
 391					le16_to_cpu(sfi->lengthOfImpUse))) {
 392			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 393			brelse(dbh);
 394			return NULL;
 395		}
 396	}
 397	mark_buffer_dirty_inode(dbh, inode);
 398
 399	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
 400		iinfo->i_lenAlloc);
 401	iinfo->i_lenAlloc = 0;
 402	eloc.logicalBlockNum = *block;
 403	eloc.partitionReferenceNum =
 404				iinfo->i_location.partitionReferenceNum;
 405	iinfo->i_lenExtents = inode->i_size;
 406	epos.bh = NULL;
 407	epos.block = iinfo->i_location;
 408	epos.offset = udf_file_entry_alloc_offset(inode);
 409	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 410	/* UniqueID stuff */
 411
 412	brelse(epos.bh);
 413	mark_inode_dirty(inode);
 414	return dbh;
 415}
 416
 417static int udf_get_block(struct inode *inode, sector_t block,
 418			 struct buffer_head *bh_result, int create)
 419{
 420	int err, new;
 421	sector_t phys = 0;
 422	struct udf_inode_info *iinfo;
 
 
 423
 424	if (!create) {
 425		phys = udf_block_map(inode, block);
 426		if (phys)
 427			map_bh(bh_result, inode->i_sb, phys);
 428		return 0;
 
 
 429	}
 
 
 430
 431	err = -EIO;
 432	new = 0;
 433	iinfo = UDF_I(inode);
 
 434
 435	down_write(&iinfo->i_data_sem);
 436	if (block == iinfo->i_next_alloc_block + 1) {
 437		iinfo->i_next_alloc_block++;
 438		iinfo->i_next_alloc_goal++;
 439	}
 440
 441	udf_clear_extent_cache(inode);
 442	phys = inode_getblk(inode, block, &err, &new);
 443	if (!phys)
 444		goto abort;
 445
 446	if (new)
 447		set_buffer_new(bh_result);
 448	map_bh(bh_result, inode->i_sb, phys);
 449
 450abort:
 451	up_write(&iinfo->i_data_sem);
 452	return err;
 453}
 454
 455static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
 456				      int create, int *err)
 
 
 
 
 
 
 457{
 458	struct buffer_head *bh;
 459	struct buffer_head dummy;
 460
 461	dummy.b_state = 0;
 462	dummy.b_blocknr = -1000;
 463	*err = udf_get_block(inode, block, &dummy, create);
 464	if (!*err && buffer_mapped(&dummy)) {
 465		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 466		if (buffer_new(&dummy)) {
 467			lock_buffer(bh);
 468			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 469			set_buffer_uptodate(bh);
 470			unlock_buffer(bh);
 471			mark_buffer_dirty_inode(bh, inode);
 472		}
 473		return bh;
 474	}
 475
 476	return NULL;
 477}
 478
 479/* Extend the file with new blocks totaling 'new_block_bytes',
 480 * return the number of extents added
 481 */
 482static int udf_do_extend_file(struct inode *inode,
 483			      struct extent_position *last_pos,
 484			      struct kernel_long_ad *last_ext,
 485			      loff_t new_block_bytes)
 486{
 487	uint32_t add;
 488	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 489	struct super_block *sb = inode->i_sb;
 490	struct kernel_lb_addr prealloc_loc = {};
 491	uint32_t prealloc_len = 0;
 492	struct udf_inode_info *iinfo;
 493	int err;
 494
 495	/* The previous extent is fake and we should not extend by anything
 496	 * - there's nothing to do... */
 497	if (!new_block_bytes && fake)
 498		return 0;
 499
 500	iinfo = UDF_I(inode);
 501	/* Round the last extent up to a multiple of block size */
 502	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 503		last_ext->extLength =
 504			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 505			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 506			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 507		iinfo->i_lenExtents =
 508			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 509			~(sb->s_blocksize - 1);
 510	}
 511
 512	/* Last extent are just preallocated blocks? */
 513	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 514						EXT_NOT_RECORDED_ALLOCATED) {
 515		/* Save the extent so that we can reattach it to the end */
 516		prealloc_loc = last_ext->extLocation;
 517		prealloc_len = last_ext->extLength;
 518		/* Mark the extent as a hole */
 519		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 520			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 521		last_ext->extLocation.logicalBlockNum = 0;
 522		last_ext->extLocation.partitionReferenceNum = 0;
 523	}
 524
 525	/* Can we merge with the previous extent? */
 526	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 527					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 528		add = (1 << 30) - sb->s_blocksize -
 529			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 530		if (add > new_block_bytes)
 531			add = new_block_bytes;
 532		new_block_bytes -= add;
 533		last_ext->extLength += add;
 534	}
 535
 536	if (fake) {
 537		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 538			     last_ext->extLength, 1);
 
 
 539		count++;
 540	} else {
 541		struct kernel_lb_addr tmploc;
 542		uint32_t tmplen;
 
 543
 544		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 545				last_ext->extLength, 1);
 
 546		/*
 547		 * We've rewritten the last extent but there may be empty
 548		 * indirect extent after it - enter it.
 
 549		 */
 550		udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 
 
 
 
 
 551	}
 
 552
 553	/* Managed to do everything necessary? */
 554	if (!new_block_bytes)
 555		goto out;
 556
 557	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 558	last_ext->extLocation.logicalBlockNum = 0;
 559	last_ext->extLocation.partitionReferenceNum = 0;
 560	add = (1 << 30) - sb->s_blocksize;
 561	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 562
 563	/* Create enough extents to cover the whole hole */
 564	while (new_block_bytes > add) {
 565		new_block_bytes -= add;
 566		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 567				   last_ext->extLength, 1);
 568		if (err)
 569			return err;
 
 570		count++;
 571	}
 572	if (new_block_bytes) {
 573		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 574			new_block_bytes;
 575		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 576				   last_ext->extLength, 1);
 577		if (err)
 578			return err;
 
 579		count++;
 580	}
 581
 582out:
 583	/* Do we have some preallocated blocks saved? */
 584	if (prealloc_len) {
 585		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 586				   prealloc_len, 1);
 587		if (err)
 588			return err;
 589		last_ext->extLocation = prealloc_loc;
 590		last_ext->extLength = prealloc_len;
 591		count++;
 592	}
 593
 594	/* last_pos should point to the last written extent... */
 595	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 596		last_pos->offset -= sizeof(struct short_ad);
 597	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 598		last_pos->offset -= sizeof(struct long_ad);
 599	else
 600		return -EIO;
 601
 602	return count;
 
 
 
 
 
 603}
 604
 605/* Extend the final block of the file to final_block_len bytes */
 606static void udf_do_extend_final_block(struct inode *inode,
 607				      struct extent_position *last_pos,
 608				      struct kernel_long_ad *last_ext,
 609				      uint32_t final_block_len)
 610{
 611	struct super_block *sb = inode->i_sb;
 612	uint32_t added_bytes;
 613
 614	added_bytes = final_block_len -
 615		      (last_ext->extLength & (sb->s_blocksize - 1));
 
 
 
 
 
 616	last_ext->extLength += added_bytes;
 617	UDF_I(inode)->i_lenExtents += added_bytes;
 618
 619	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 620			last_ext->extLength, 1);
 621}
 622
 623static int udf_extend_file(struct inode *inode, loff_t newsize)
 624{
 625
 626	struct extent_position epos;
 627	struct kernel_lb_addr eloc;
 628	uint32_t elen;
 629	int8_t etype;
 630	struct super_block *sb = inode->i_sb;
 631	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 632	unsigned long partial_final_block;
 633	int adsize;
 634	struct udf_inode_info *iinfo = UDF_I(inode);
 635	struct kernel_long_ad extent;
 636	int err = 0;
 637	int within_final_block;
 638
 639	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 640		adsize = sizeof(struct short_ad);
 641	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 642		adsize = sizeof(struct long_ad);
 643	else
 644		BUG();
 645
 646	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 647	within_final_block = (etype != -1);
 
 
 
 
 
 
 
 
 
 
 
 
 648
 649	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 650	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 651		/* File has no extents at all or has empty last
 652		 * indirect extent! Create a fake extent... */
 653		extent.extLocation.logicalBlockNum = 0;
 654		extent.extLocation.partitionReferenceNum = 0;
 655		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 656	} else {
 657		epos.offset -= adsize;
 658		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 659				      &extent.extLength, 0);
 
 
 660		extent.extLength |= etype << 30;
 661	}
 662
 663	partial_final_block = newsize & (sb->s_blocksize - 1);
 
 664
 665	/* File has extent covering the new size (could happen when extending
 666	 * inside a block)?
 667	 */
 668	if (within_final_block) {
 669		/* Extending file within the last file block */
 670		udf_do_extend_final_block(inode, &epos, &extent,
 671					  partial_final_block);
 672	} else {
 673		loff_t add = ((loff_t)offset << sb->s_blocksize_bits) |
 674			     partial_final_block;
 675		err = udf_do_extend_file(inode, &epos, &extent, add);
 676	}
 677
 678	if (err < 0)
 679		goto out;
 680	err = 0;
 681	iinfo->i_lenExtents = newsize;
 682out:
 683	brelse(epos.bh);
 
 684	return err;
 685}
 686
 687static sector_t inode_getblk(struct inode *inode, sector_t block,
 688			     int *err, int *new)
 689{
 690	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 691	struct extent_position prev_epos, cur_epos, next_epos;
 692	int count = 0, startnum = 0, endnum = 0;
 693	uint32_t elen = 0, tmpelen;
 694	struct kernel_lb_addr eloc, tmpeloc;
 695	int c = 1;
 696	loff_t lbcount = 0, b_off = 0;
 697	udf_pblk_t newblocknum, newblock;
 698	sector_t offset = 0;
 699	int8_t etype;
 700	struct udf_inode_info *iinfo = UDF_I(inode);
 701	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 702	int lastblock = 0;
 703	bool isBeyondEOF;
 
 704
 705	*err = 0;
 706	*new = 0;
 707	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 708	prev_epos.block = iinfo->i_location;
 709	prev_epos.bh = NULL;
 710	cur_epos = next_epos = prev_epos;
 711	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 712
 713	/* find the extent which contains the block we are looking for.
 714	   alternate between laarr[0] and laarr[1] for locations of the
 715	   current extent, and the previous extent */
 716	do {
 717		if (prev_epos.bh != cur_epos.bh) {
 718			brelse(prev_epos.bh);
 719			get_bh(cur_epos.bh);
 720			prev_epos.bh = cur_epos.bh;
 721		}
 722		if (cur_epos.bh != next_epos.bh) {
 723			brelse(cur_epos.bh);
 724			get_bh(next_epos.bh);
 725			cur_epos.bh = next_epos.bh;
 726		}
 727
 728		lbcount += elen;
 729
 730		prev_epos.block = cur_epos.block;
 731		cur_epos.block = next_epos.block;
 732
 733		prev_epos.offset = cur_epos.offset;
 734		cur_epos.offset = next_epos.offset;
 735
 736		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 737		if (etype == -1)
 
 
 
 738			break;
 
 739
 740		c = !c;
 741
 742		laarr[c].extLength = (etype << 30) | elen;
 743		laarr[c].extLocation = eloc;
 744
 745		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 746			pgoal = eloc.logicalBlockNum +
 747				((elen + inode->i_sb->s_blocksize - 1) >>
 748				 inode->i_sb->s_blocksize_bits);
 749
 750		count++;
 751	} while (lbcount + elen <= b_off);
 752
 753	b_off -= lbcount;
 754	offset = b_off >> inode->i_sb->s_blocksize_bits;
 755	/*
 756	 * Move prev_epos and cur_epos into indirect extent if we are at
 757	 * the pointer to it
 758	 */
 759	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 760	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 
 
 
 
 761
 762	/* if the extent is allocated and recorded, return the block
 763	   if the extent is not a multiple of the blocksize, round up */
 764
 765	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 766		if (elen & (inode->i_sb->s_blocksize - 1)) {
 767			elen = EXT_RECORDED_ALLOCATED |
 768				((elen + inode->i_sb->s_blocksize - 1) &
 769				 ~(inode->i_sb->s_blocksize - 1));
 
 
 
 770			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 771		}
 772		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 
 773		goto out_free;
 774	}
 775
 776	/* Are we beyond EOF? */
 777	if (etype == -1) {
 778		int ret;
 779		loff_t hole_len;
 780		isBeyondEOF = true;
 781		if (count) {
 782			if (c)
 783				laarr[0] = laarr[1];
 784			startnum = 1;
 785		} else {
 786			/* Create a fake extent when there's not one */
 787			memset(&laarr[0].extLocation, 0x00,
 788				sizeof(struct kernel_lb_addr));
 789			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 790			/* Will udf_do_extend_file() create real extent from
 791			   a fake one? */
 792			startnum = (offset > 0);
 793		}
 794		/* Create extents for the hole between EOF and offset */
 795		hole_len = (loff_t)offset << inode->i_blkbits;
 796		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 797		if (ret < 0) {
 798			*err = ret;
 799			newblock = 0;
 800			goto out_free;
 801		}
 802		c = 0;
 803		offset = 0;
 804		count += ret;
 805		/* We are not covered by a preallocated extent? */
 806		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 807						EXT_NOT_RECORDED_ALLOCATED) {
 808			/* Is there any real extent? - otherwise we overwrite
 809			 * the fake one... */
 810			if (count)
 811				c = !c;
 812			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 813				inode->i_sb->s_blocksize;
 814			memset(&laarr[c].extLocation, 0x00,
 815				sizeof(struct kernel_lb_addr));
 816			count++;
 817		}
 818		endnum = c + 1;
 819		lastblock = 1;
 820	} else {
 821		isBeyondEOF = false;
 822		endnum = startnum = ((count > 2) ? 2 : count);
 823
 824		/* if the current extent is in position 0,
 825		   swap it with the previous */
 826		if (!c && count != 1) {
 827			laarr[2] = laarr[0];
 828			laarr[0] = laarr[1];
 829			laarr[1] = laarr[2];
 830			c = 1;
 831		}
 832
 833		/* if the current block is located in an extent,
 834		   read the next extent */
 835		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 836		if (etype != -1) {
 837			laarr[c + 1].extLength = (etype << 30) | elen;
 838			laarr[c + 1].extLocation = eloc;
 839			count++;
 840			startnum++;
 841			endnum++;
 842		} else
 843			lastblock = 1;
 
 
 844	}
 845
 846	/* if the current extent is not recorded but allocated, get the
 847	 * block in the extent corresponding to the requested block */
 848	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 849		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 850	else { /* otherwise, allocate a new block */
 851		if (iinfo->i_next_alloc_block == block)
 852			goal = iinfo->i_next_alloc_goal;
 853
 854		if (!goal) {
 855			if (!(goal = pgoal)) /* XXX: what was intended here? */
 856				goal = iinfo->i_location.logicalBlockNum + 1;
 857		}
 858
 859		newblocknum = udf_new_block(inode->i_sb, inode,
 860				iinfo->i_location.partitionReferenceNum,
 861				goal, err);
 862		if (!newblocknum) {
 863			*err = -ENOSPC;
 864			newblock = 0;
 865			goto out_free;
 866		}
 867		if (isBeyondEOF)
 868			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 869	}
 870
 871	/* if the extent the requsted block is located in contains multiple
 872	 * blocks, split the extent into at most three extents. blocks prior
 873	 * to requested block, requested block, and blocks after requested
 874	 * block */
 875	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 876
 877	/* We preallocate blocks only for regular files. It also makes sense
 878	 * for directories but there's a problem when to drop the
 879	 * preallocation. We might use some delayed work for that but I feel
 880	 * it's overengineering for a filesystem like UDF. */
 881	if (S_ISREG(inode->i_mode))
 882		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 883
 884	/* merge any continuous blocks in laarr */
 885	udf_merge_extents(inode, laarr, &endnum);
 886
 887	/* write back the new extents, inserting new extents if the new number
 888	 * of extents is greater than the old number, and deleting extents if
 889	 * the new number of extents is less than the old number */
 890	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 
 
 891
 892	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 893				iinfo->i_location.partitionReferenceNum, 0);
 894	if (!newblock) {
 895		*err = -EIO;
 896		goto out_free;
 897	}
 898	*new = 1;
 899	iinfo->i_next_alloc_block = block;
 900	iinfo->i_next_alloc_goal = newblocknum;
 901	inode->i_ctime = current_time(inode);
 902
 903	if (IS_SYNC(inode))
 904		udf_sync_inode(inode);
 905	else
 906		mark_inode_dirty(inode);
 
 907out_free:
 908	brelse(prev_epos.bh);
 909	brelse(cur_epos.bh);
 910	brelse(next_epos.bh);
 911	return newblock;
 912}
 913
 914static void udf_split_extents(struct inode *inode, int *c, int offset,
 915			       udf_pblk_t newblocknum,
 916			       struct kernel_long_ad *laarr, int *endnum)
 917{
 918	unsigned long blocksize = inode->i_sb->s_blocksize;
 919	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 920
 921	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 922	    (laarr[*c].extLength >> 30) ==
 923				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 924		int curr = *c;
 925		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 926			    blocksize - 1) >> blocksize_bits;
 927		int8_t etype = (laarr[curr].extLength >> 30);
 928
 929		if (blen == 1)
 930			;
 931		else if (!offset || blen == offset + 1) {
 932			laarr[curr + 2] = laarr[curr + 1];
 933			laarr[curr + 1] = laarr[curr];
 934		} else {
 935			laarr[curr + 3] = laarr[curr + 1];
 936			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 937		}
 938
 939		if (offset) {
 940			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 941				udf_free_blocks(inode->i_sb, inode,
 942						&laarr[curr].extLocation,
 943						0, offset);
 944				laarr[curr].extLength =
 945					EXT_NOT_RECORDED_NOT_ALLOCATED |
 946					(offset << blocksize_bits);
 947				laarr[curr].extLocation.logicalBlockNum = 0;
 948				laarr[curr].extLocation.
 949						partitionReferenceNum = 0;
 950			} else
 951				laarr[curr].extLength = (etype << 30) |
 952					(offset << blocksize_bits);
 953			curr++;
 954			(*c)++;
 955			(*endnum)++;
 956		}
 957
 958		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 959		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 960			laarr[curr].extLocation.partitionReferenceNum =
 961				UDF_I(inode)->i_location.partitionReferenceNum;
 962		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 963			blocksize;
 964		curr++;
 965
 966		if (blen != offset + 1) {
 967			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 968				laarr[curr].extLocation.logicalBlockNum +=
 969								offset + 1;
 970			laarr[curr].extLength = (etype << 30) |
 971				((blen - (offset + 1)) << blocksize_bits);
 972			curr++;
 973			(*endnum)++;
 974		}
 975	}
 976}
 977
 978static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 979				 struct kernel_long_ad *laarr,
 980				 int *endnum)
 981{
 982	int start, length = 0, currlength = 0, i;
 983
 984	if (*endnum >= (c + 1)) {
 985		if (!lastblock)
 986			return;
 987		else
 988			start = c;
 989	} else {
 990		if ((laarr[c + 1].extLength >> 30) ==
 991					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 992			start = c + 1;
 993			length = currlength =
 994				(((laarr[c + 1].extLength &
 995					UDF_EXTENT_LENGTH_MASK) +
 996				inode->i_sb->s_blocksize - 1) >>
 997				inode->i_sb->s_blocksize_bits);
 998		} else
 999			start = c;
1000	}
1001
1002	for (i = start + 1; i <= *endnum; i++) {
1003		if (i == *endnum) {
1004			if (lastblock)
1005				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1006		} else if ((laarr[i].extLength >> 30) ==
1007				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1008			length += (((laarr[i].extLength &
1009						UDF_EXTENT_LENGTH_MASK) +
1010				    inode->i_sb->s_blocksize - 1) >>
1011				    inode->i_sb->s_blocksize_bits);
1012		} else
1013			break;
1014	}
1015
1016	if (length) {
1017		int next = laarr[start].extLocation.logicalBlockNum +
1018			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1019			  inode->i_sb->s_blocksize - 1) >>
1020			  inode->i_sb->s_blocksize_bits);
1021		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1022				laarr[start].extLocation.partitionReferenceNum,
1023				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1024				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1025				currlength);
1026		if (numalloc) 	{
1027			if (start == (c + 1))
1028				laarr[start].extLength +=
1029					(numalloc <<
1030					 inode->i_sb->s_blocksize_bits);
1031			else {
1032				memmove(&laarr[c + 2], &laarr[c + 1],
1033					sizeof(struct long_ad) * (*endnum - (c + 1)));
1034				(*endnum)++;
1035				laarr[c + 1].extLocation.logicalBlockNum = next;
1036				laarr[c + 1].extLocation.partitionReferenceNum =
1037					laarr[c].extLocation.
1038							partitionReferenceNum;
1039				laarr[c + 1].extLength =
1040					EXT_NOT_RECORDED_ALLOCATED |
1041					(numalloc <<
1042					 inode->i_sb->s_blocksize_bits);
1043				start = c + 1;
1044			}
1045
1046			for (i = start + 1; numalloc && i < *endnum; i++) {
1047				int elen = ((laarr[i].extLength &
1048						UDF_EXTENT_LENGTH_MASK) +
1049					    inode->i_sb->s_blocksize - 1) >>
1050					    inode->i_sb->s_blocksize_bits;
1051
1052				if (elen > numalloc) {
1053					laarr[i].extLength -=
1054						(numalloc <<
1055						 inode->i_sb->s_blocksize_bits);
1056					numalloc = 0;
1057				} else {
1058					numalloc -= elen;
1059					if (*endnum > (i + 1))
1060						memmove(&laarr[i],
1061							&laarr[i + 1],
1062							sizeof(struct long_ad) *
1063							(*endnum - (i + 1)));
1064					i--;
1065					(*endnum)--;
1066				}
1067			}
1068			UDF_I(inode)->i_lenExtents +=
1069				numalloc << inode->i_sb->s_blocksize_bits;
1070		}
1071	}
1072}
1073
1074static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1075			      int *endnum)
1076{
1077	int i;
1078	unsigned long blocksize = inode->i_sb->s_blocksize;
1079	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1080
1081	for (i = 0; i < (*endnum - 1); i++) {
1082		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1083		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1084
1085		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1086			(((li->extLength >> 30) ==
1087				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1088			((lip1->extLocation.logicalBlockNum -
1089			  li->extLocation.logicalBlockNum) ==
1090			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1091			blocksize - 1) >> blocksize_bits)))) {
1092
1093			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1094				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1095				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1096				lip1->extLength = (lip1->extLength -
1097						  (li->extLength &
1098						   UDF_EXTENT_LENGTH_MASK) +
1099						   UDF_EXTENT_LENGTH_MASK) &
1100							~(blocksize - 1);
1101				li->extLength = (li->extLength &
1102						 UDF_EXTENT_FLAG_MASK) +
1103						(UDF_EXTENT_LENGTH_MASK + 1) -
1104						blocksize;
1105				lip1->extLocation.logicalBlockNum =
1106					li->extLocation.logicalBlockNum +
1107					((li->extLength &
1108						UDF_EXTENT_LENGTH_MASK) >>
1109						blocksize_bits);
1110			} else {
1111				li->extLength = lip1->extLength +
1112					(((li->extLength &
1113						UDF_EXTENT_LENGTH_MASK) +
1114					 blocksize - 1) & ~(blocksize - 1));
1115				if (*endnum > (i + 2))
1116					memmove(&laarr[i + 1], &laarr[i + 2],
1117						sizeof(struct long_ad) *
1118						(*endnum - (i + 2)));
1119				i--;
1120				(*endnum)--;
1121			}
1122		} else if (((li->extLength >> 30) ==
1123				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1124			   ((lip1->extLength >> 30) ==
1125				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1126			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1127					((li->extLength &
1128					  UDF_EXTENT_LENGTH_MASK) +
1129					 blocksize - 1) >> blocksize_bits);
1130			li->extLocation.logicalBlockNum = 0;
1131			li->extLocation.partitionReferenceNum = 0;
1132
1133			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1134			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1135			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1136				lip1->extLength = (lip1->extLength -
1137						   (li->extLength &
1138						   UDF_EXTENT_LENGTH_MASK) +
1139						   UDF_EXTENT_LENGTH_MASK) &
1140						   ~(blocksize - 1);
1141				li->extLength = (li->extLength &
1142						 UDF_EXTENT_FLAG_MASK) +
1143						(UDF_EXTENT_LENGTH_MASK + 1) -
1144						blocksize;
1145			} else {
1146				li->extLength = lip1->extLength +
1147					(((li->extLength &
1148						UDF_EXTENT_LENGTH_MASK) +
1149					  blocksize - 1) & ~(blocksize - 1));
1150				if (*endnum > (i + 2))
1151					memmove(&laarr[i + 1], &laarr[i + 2],
1152						sizeof(struct long_ad) *
1153						(*endnum - (i + 2)));
1154				i--;
1155				(*endnum)--;
1156			}
1157		} else if ((li->extLength >> 30) ==
1158					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1159			udf_free_blocks(inode->i_sb, inode,
1160					&li->extLocation, 0,
1161					((li->extLength &
1162						UDF_EXTENT_LENGTH_MASK) +
1163					 blocksize - 1) >> blocksize_bits);
1164			li->extLocation.logicalBlockNum = 0;
1165			li->extLocation.partitionReferenceNum = 0;
1166			li->extLength = (li->extLength &
1167						UDF_EXTENT_LENGTH_MASK) |
1168						EXT_NOT_RECORDED_NOT_ALLOCATED;
1169		}
1170	}
1171}
1172
1173static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1174			       int startnum, int endnum,
1175			       struct extent_position *epos)
1176{
1177	int start = 0, i;
1178	struct kernel_lb_addr tmploc;
1179	uint32_t tmplen;
 
 
1180
1181	if (startnum > endnum) {
1182		for (i = 0; i < (startnum - endnum); i++)
1183			udf_delete_aext(inode, *epos);
1184	} else if (startnum < endnum) {
1185		for (i = 0; i < (endnum - startnum); i++) {
1186			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1187					laarr[i].extLength);
1188			udf_next_aext(inode, epos, &laarr[i].extLocation,
1189				      &laarr[i].extLength, 1);
 
 
 
 
 
 
 
 
 
 
1190			start++;
1191		}
1192	}
1193
1194	for (i = start; i < endnum; i++) {
1195		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
 
 
 
1196		udf_write_aext(inode, epos, &laarr[i].extLocation,
1197			       laarr[i].extLength, 1);
1198	}
 
1199}
1200
1201struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1202			      int create, int *err)
1203{
1204	struct buffer_head *bh = NULL;
 
 
 
 
1205
1206	bh = udf_getblk(inode, block, create, err);
1207	if (!bh)
1208		return NULL;
1209
1210	if (buffer_uptodate(bh))
 
 
 
 
 
 
 
 
 
 
1211		return bh;
 
1212
1213	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1214
1215	wait_on_buffer(bh);
1216	if (buffer_uptodate(bh))
1217		return bh;
1218
1219	brelse(bh);
1220	*err = -EIO;
1221	return NULL;
1222}
1223
1224int udf_setsize(struct inode *inode, loff_t newsize)
1225{
1226	int err;
1227	struct udf_inode_info *iinfo;
1228	unsigned int bsize = i_blocksize(inode);
1229
1230	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1231	      S_ISLNK(inode->i_mode)))
1232		return -EINVAL;
1233	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1234		return -EPERM;
1235
1236	iinfo = UDF_I(inode);
1237	if (newsize > inode->i_size) {
1238		down_write(&iinfo->i_data_sem);
1239		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1240			if (bsize <
1241			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1242				err = udf_expand_file_adinicb(inode);
1243				if (err)
1244					return err;
1245				down_write(&iinfo->i_data_sem);
1246			} else {
1247				iinfo->i_lenAlloc = newsize;
 
1248				goto set_size;
1249			}
 
 
 
1250		}
1251		err = udf_extend_file(inode, newsize);
1252		if (err) {
1253			up_write(&iinfo->i_data_sem);
1254			return err;
1255		}
1256set_size:
1257		up_write(&iinfo->i_data_sem);
1258		truncate_setsize(inode, newsize);
1259	} else {
1260		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1261			down_write(&iinfo->i_data_sem);
1262			udf_clear_extent_cache(inode);
1263			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1264			       0x00, bsize - newsize -
1265			       udf_file_entry_alloc_offset(inode));
1266			iinfo->i_lenAlloc = newsize;
1267			truncate_setsize(inode, newsize);
1268			up_write(&iinfo->i_data_sem);
1269			goto update_time;
1270		}
1271		err = block_truncate_page(inode->i_mapping, newsize,
1272					  udf_get_block);
1273		if (err)
1274			return err;
1275		truncate_setsize(inode, newsize);
1276		down_write(&iinfo->i_data_sem);
1277		udf_clear_extent_cache(inode);
1278		err = udf_truncate_extents(inode);
1279		up_write(&iinfo->i_data_sem);
1280		if (err)
1281			return err;
1282	}
1283update_time:
1284	inode->i_mtime = inode->i_ctime = current_time(inode);
1285	if (IS_SYNC(inode))
1286		udf_sync_inode(inode);
1287	else
1288		mark_inode_dirty(inode);
1289	return 0;
1290}
1291
1292/*
1293 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1294 * arbitrary - just that we hopefully don't limit any real use of rewritten
1295 * inode on write-once media but avoid looping for too long on corrupted media.
1296 */
1297#define UDF_MAX_ICB_NESTING 1024
1298
1299static int udf_read_inode(struct inode *inode, bool hidden_inode)
1300{
1301	struct buffer_head *bh = NULL;
1302	struct fileEntry *fe;
1303	struct extendedFileEntry *efe;
1304	uint16_t ident;
1305	struct udf_inode_info *iinfo = UDF_I(inode);
1306	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1307	struct kernel_lb_addr *iloc = &iinfo->i_location;
1308	unsigned int link_count;
1309	unsigned int indirections = 0;
1310	int bs = inode->i_sb->s_blocksize;
1311	int ret = -EIO;
1312	uint32_t uid, gid;
 
1313
1314reread:
1315	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1316		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1317			  iloc->partitionReferenceNum, sbi->s_partitions);
1318		return -EIO;
1319	}
1320
1321	if (iloc->logicalBlockNum >=
1322	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1323		udf_debug("block=%u, partition=%u out of range\n",
1324			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1325		return -EIO;
1326	}
1327
1328	/*
1329	 * Set defaults, but the inode is still incomplete!
1330	 * Note: get_new_inode() sets the following on a new inode:
1331	 *      i_sb = sb
1332	 *      i_no = ino
1333	 *      i_flags = sb->s_flags
1334	 *      i_state = 0
1335	 * clean_inode(): zero fills and sets
1336	 *      i_count = 1
1337	 *      i_nlink = 1
1338	 *      i_op = NULL;
1339	 */
1340	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1341	if (!bh) {
1342		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1343		return -EIO;
1344	}
1345
1346	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1347	    ident != TAG_IDENT_USE) {
1348		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1349			inode->i_ino, ident);
1350		goto out;
1351	}
1352
1353	fe = (struct fileEntry *)bh->b_data;
1354	efe = (struct extendedFileEntry *)bh->b_data;
1355
1356	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1357		struct buffer_head *ibh;
1358
1359		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1360		if (ident == TAG_IDENT_IE && ibh) {
1361			struct kernel_lb_addr loc;
1362			struct indirectEntry *ie;
1363
1364			ie = (struct indirectEntry *)ibh->b_data;
1365			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1366
1367			if (ie->indirectICB.extLength) {
1368				brelse(ibh);
1369				memcpy(&iinfo->i_location, &loc,
1370				       sizeof(struct kernel_lb_addr));
1371				if (++indirections > UDF_MAX_ICB_NESTING) {
1372					udf_err(inode->i_sb,
1373						"too many ICBs in ICB hierarchy"
1374						" (max %d supported)\n",
1375						UDF_MAX_ICB_NESTING);
1376					goto out;
1377				}
1378				brelse(bh);
1379				goto reread;
1380			}
1381		}
1382		brelse(ibh);
1383	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1384		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1385			le16_to_cpu(fe->icbTag.strategyType));
1386		goto out;
1387	}
1388	if (fe->icbTag.strategyType == cpu_to_le16(4))
1389		iinfo->i_strat4096 = 0;
1390	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1391		iinfo->i_strat4096 = 1;
1392
1393	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1394							ICBTAG_FLAG_AD_MASK;
1395	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1396	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1397	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1398		ret = -EIO;
1399		goto out;
1400	}
 
1401	iinfo->i_unique = 0;
1402	iinfo->i_lenEAttr = 0;
1403	iinfo->i_lenExtents = 0;
1404	iinfo->i_lenAlloc = 0;
1405	iinfo->i_next_alloc_block = 0;
1406	iinfo->i_next_alloc_goal = 0;
1407	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1408		iinfo->i_efe = 1;
1409		iinfo->i_use = 0;
1410		ret = udf_alloc_i_data(inode, bs -
1411					sizeof(struct extendedFileEntry));
1412		if (ret)
1413			goto out;
1414		memcpy(iinfo->i_ext.i_data,
1415		       bh->b_data + sizeof(struct extendedFileEntry),
1416		       bs - sizeof(struct extendedFileEntry));
1417	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1418		iinfo->i_efe = 0;
1419		iinfo->i_use = 0;
1420		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1421		if (ret)
1422			goto out;
1423		memcpy(iinfo->i_ext.i_data,
1424		       bh->b_data + sizeof(struct fileEntry),
1425		       bs - sizeof(struct fileEntry));
1426	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1427		iinfo->i_efe = 0;
1428		iinfo->i_use = 1;
1429		iinfo->i_lenAlloc = le32_to_cpu(
1430				((struct unallocSpaceEntry *)bh->b_data)->
1431				 lengthAllocDescs);
1432		ret = udf_alloc_i_data(inode, bs -
1433					sizeof(struct unallocSpaceEntry));
1434		if (ret)
1435			goto out;
1436		memcpy(iinfo->i_ext.i_data,
1437		       bh->b_data + sizeof(struct unallocSpaceEntry),
1438		       bs - sizeof(struct unallocSpaceEntry));
1439		return 0;
1440	}
1441
1442	ret = -EIO;
1443	read_lock(&sbi->s_cred_lock);
1444	uid = le32_to_cpu(fe->uid);
1445	if (uid == UDF_INVALID_ID ||
1446	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1447		inode->i_uid = sbi->s_uid;
1448	else
1449		i_uid_write(inode, uid);
1450
1451	gid = le32_to_cpu(fe->gid);
1452	if (gid == UDF_INVALID_ID ||
1453	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1454		inode->i_gid = sbi->s_gid;
1455	else
1456		i_gid_write(inode, gid);
1457
1458	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1459			sbi->s_fmode != UDF_INVALID_MODE)
1460		inode->i_mode = sbi->s_fmode;
1461	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1462			sbi->s_dmode != UDF_INVALID_MODE)
1463		inode->i_mode = sbi->s_dmode;
1464	else
1465		inode->i_mode = udf_convert_permissions(fe);
1466	inode->i_mode &= ~sbi->s_umask;
1467	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1468
1469	read_unlock(&sbi->s_cred_lock);
1470
1471	link_count = le16_to_cpu(fe->fileLinkCount);
1472	if (!link_count) {
1473		if (!hidden_inode) {
1474			ret = -ESTALE;
1475			goto out;
1476		}
1477		link_count = 1;
1478	}
1479	set_nlink(inode, link_count);
1480
1481	inode->i_size = le64_to_cpu(fe->informationLength);
1482	iinfo->i_lenExtents = inode->i_size;
1483
1484	if (iinfo->i_efe == 0) {
1485		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1486			(inode->i_sb->s_blocksize_bits - 9);
1487
1488		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1489		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1490		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
 
 
 
1491
1492		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1493		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1494		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1495		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1496		iinfo->i_streamdir = 0;
1497		iinfo->i_lenStreams = 0;
1498	} else {
1499		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1500		    (inode->i_sb->s_blocksize_bits - 9);
1501
1502		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1503		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
 
 
 
 
1504		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1505		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1506
1507		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1508		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1509		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1510		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1511
1512		/* Named streams */
1513		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1514		iinfo->i_locStreamdir =
1515			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1516		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1517		if (iinfo->i_lenStreams >= inode->i_size)
1518			iinfo->i_lenStreams -= inode->i_size;
1519		else
1520			iinfo->i_lenStreams = 0;
1521	}
1522	inode->i_generation = iinfo->i_unique;
1523
1524	/*
1525	 * Sanity check length of allocation descriptors and extended attrs to
1526	 * avoid integer overflows
1527	 */
1528	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1529		goto out;
1530	/* Now do exact checks */
1531	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1532		goto out;
1533	/* Sanity checks for files in ICB so that we don't get confused later */
1534	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1535		/*
1536		 * For file in ICB data is stored in allocation descriptor
1537		 * so sizes should match
1538		 */
1539		if (iinfo->i_lenAlloc != inode->i_size)
1540			goto out;
1541		/* File in ICB has to fit in there... */
1542		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1543			goto out;
1544	}
1545
1546	switch (fe->icbTag.fileType) {
1547	case ICBTAG_FILE_TYPE_DIRECTORY:
1548		inode->i_op = &udf_dir_inode_operations;
1549		inode->i_fop = &udf_dir_operations;
1550		inode->i_mode |= S_IFDIR;
1551		inc_nlink(inode);
1552		break;
1553	case ICBTAG_FILE_TYPE_REALTIME:
1554	case ICBTAG_FILE_TYPE_REGULAR:
1555	case ICBTAG_FILE_TYPE_UNDEF:
1556	case ICBTAG_FILE_TYPE_VAT20:
1557		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1558			inode->i_data.a_ops = &udf_adinicb_aops;
1559		else
1560			inode->i_data.a_ops = &udf_aops;
1561		inode->i_op = &udf_file_inode_operations;
1562		inode->i_fop = &udf_file_operations;
1563		inode->i_mode |= S_IFREG;
1564		break;
1565	case ICBTAG_FILE_TYPE_BLOCK:
1566		inode->i_mode |= S_IFBLK;
1567		break;
1568	case ICBTAG_FILE_TYPE_CHAR:
1569		inode->i_mode |= S_IFCHR;
1570		break;
1571	case ICBTAG_FILE_TYPE_FIFO:
1572		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1573		break;
1574	case ICBTAG_FILE_TYPE_SOCKET:
1575		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1576		break;
1577	case ICBTAG_FILE_TYPE_SYMLINK:
1578		inode->i_data.a_ops = &udf_symlink_aops;
1579		inode->i_op = &udf_symlink_inode_operations;
1580		inode_nohighmem(inode);
1581		inode->i_mode = S_IFLNK | 0777;
1582		break;
1583	case ICBTAG_FILE_TYPE_MAIN:
1584		udf_debug("METADATA FILE-----\n");
1585		break;
1586	case ICBTAG_FILE_TYPE_MIRROR:
1587		udf_debug("METADATA MIRROR FILE-----\n");
1588		break;
1589	case ICBTAG_FILE_TYPE_BITMAP:
1590		udf_debug("METADATA BITMAP FILE-----\n");
1591		break;
1592	default:
1593		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1594			inode->i_ino, fe->icbTag.fileType);
1595		goto out;
1596	}
1597	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1598		struct deviceSpec *dsea =
1599			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1600		if (dsea) {
1601			init_special_inode(inode, inode->i_mode,
1602				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1603				      le32_to_cpu(dsea->minorDeviceIdent)));
1604			/* Developer ID ??? */
1605		} else
1606			goto out;
1607	}
1608	ret = 0;
1609out:
1610	brelse(bh);
1611	return ret;
1612}
1613
1614static int udf_alloc_i_data(struct inode *inode, size_t size)
1615{
1616	struct udf_inode_info *iinfo = UDF_I(inode);
1617	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1618	if (!iinfo->i_ext.i_data)
1619		return -ENOMEM;
1620	return 0;
1621}
1622
1623static umode_t udf_convert_permissions(struct fileEntry *fe)
1624{
1625	umode_t mode;
1626	uint32_t permissions;
1627	uint32_t flags;
1628
1629	permissions = le32_to_cpu(fe->permissions);
1630	flags = le16_to_cpu(fe->icbTag.flags);
1631
1632	mode =	((permissions) & 0007) |
1633		((permissions >> 2) & 0070) |
1634		((permissions >> 4) & 0700) |
1635		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1636		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1637		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1638
1639	return mode;
1640}
1641
1642void udf_update_extra_perms(struct inode *inode, umode_t mode)
1643{
1644	struct udf_inode_info *iinfo = UDF_I(inode);
1645
1646	/*
1647	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1648	 * In Unix, delete permission tracks write
1649	 */
1650	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1651	if (mode & 0200)
1652		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1653	if (mode & 0020)
1654		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1655	if (mode & 0002)
1656		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1657}
1658
1659int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1660{
1661	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1662}
1663
1664static int udf_sync_inode(struct inode *inode)
1665{
1666	return udf_update_inode(inode, 1);
1667}
1668
1669static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1670{
1671	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1672	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1673	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1674		iinfo->i_crtime = time;
1675}
1676
1677static int udf_update_inode(struct inode *inode, int do_sync)
1678{
1679	struct buffer_head *bh = NULL;
1680	struct fileEntry *fe;
1681	struct extendedFileEntry *efe;
1682	uint64_t lb_recorded;
1683	uint32_t udfperms;
1684	uint16_t icbflags;
1685	uint16_t crclen;
1686	int err = 0;
1687	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1688	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1689	struct udf_inode_info *iinfo = UDF_I(inode);
1690
1691	bh = udf_tgetblk(inode->i_sb,
1692			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1693	if (!bh) {
1694		udf_debug("getblk failure\n");
1695		return -EIO;
1696	}
1697
1698	lock_buffer(bh);
1699	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1700	fe = (struct fileEntry *)bh->b_data;
1701	efe = (struct extendedFileEntry *)bh->b_data;
1702
1703	if (iinfo->i_use) {
1704		struct unallocSpaceEntry *use =
1705			(struct unallocSpaceEntry *)bh->b_data;
1706
1707		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1708		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1709		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1710					sizeof(struct unallocSpaceEntry));
1711		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1712		crclen = sizeof(struct unallocSpaceEntry);
1713
1714		goto finish;
1715	}
1716
1717	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1718		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1719	else
1720		fe->uid = cpu_to_le32(i_uid_read(inode));
1721
1722	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1723		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1724	else
1725		fe->gid = cpu_to_le32(i_gid_read(inode));
1726
1727	udfperms = ((inode->i_mode & 0007)) |
1728		   ((inode->i_mode & 0070) << 2) |
1729		   ((inode->i_mode & 0700) << 4);
1730
1731	udfperms |= iinfo->i_extraPerms;
1732	fe->permissions = cpu_to_le32(udfperms);
1733
1734	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1735		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1736	else
1737		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
 
 
 
 
1738
1739	fe->informationLength = cpu_to_le64(inode->i_size);
1740
1741	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1742		struct regid *eid;
1743		struct deviceSpec *dsea =
1744			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1745		if (!dsea) {
1746			dsea = (struct deviceSpec *)
1747				udf_add_extendedattr(inode,
1748						     sizeof(struct deviceSpec) +
1749						     sizeof(struct regid), 12, 0x3);
1750			dsea->attrType = cpu_to_le32(12);
1751			dsea->attrSubtype = 1;
1752			dsea->attrLength = cpu_to_le32(
1753						sizeof(struct deviceSpec) +
1754						sizeof(struct regid));
1755			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1756		}
1757		eid = (struct regid *)dsea->impUse;
1758		memset(eid, 0, sizeof(*eid));
1759		strcpy(eid->ident, UDF_ID_DEVELOPER);
1760		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1761		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1762		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1763		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1764	}
1765
1766	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1767		lb_recorded = 0; /* No extents => no blocks! */
1768	else
1769		lb_recorded =
1770			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1771			(blocksize_bits - 9);
1772
1773	if (iinfo->i_efe == 0) {
1774		memcpy(bh->b_data + sizeof(struct fileEntry),
1775		       iinfo->i_ext.i_data,
1776		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1777		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1778
1779		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1780		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1781		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1782		memset(&(fe->impIdent), 0, sizeof(struct regid));
1783		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1784		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1787		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1788		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1789		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1790		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1791		crclen = sizeof(struct fileEntry);
1792	} else {
1793		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1794		       iinfo->i_ext.i_data,
1795		       inode->i_sb->s_blocksize -
1796					sizeof(struct extendedFileEntry));
1797		efe->objectSize =
1798			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1799		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1800
1801		if (iinfo->i_streamdir) {
1802			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1803
1804			icb_lad->extLocation =
1805				cpu_to_lelb(iinfo->i_locStreamdir);
1806			icb_lad->extLength =
1807				cpu_to_le32(inode->i_sb->s_blocksize);
1808		}
1809
1810		udf_adjust_time(iinfo, inode->i_atime);
1811		udf_adjust_time(iinfo, inode->i_mtime);
1812		udf_adjust_time(iinfo, inode->i_ctime);
1813
1814		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1815		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
 
 
1816		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1817		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1818
1819		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1820		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1821		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1822		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1823		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1824		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1825		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1826		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1827		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1828		crclen = sizeof(struct extendedFileEntry);
1829	}
1830
1831finish:
1832	if (iinfo->i_strat4096) {
1833		fe->icbTag.strategyType = cpu_to_le16(4096);
1834		fe->icbTag.strategyParameter = cpu_to_le16(1);
1835		fe->icbTag.numEntries = cpu_to_le16(2);
1836	} else {
1837		fe->icbTag.strategyType = cpu_to_le16(4);
1838		fe->icbTag.numEntries = cpu_to_le16(1);
1839	}
1840
1841	if (iinfo->i_use)
1842		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1843	else if (S_ISDIR(inode->i_mode))
1844		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1845	else if (S_ISREG(inode->i_mode))
1846		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1847	else if (S_ISLNK(inode->i_mode))
1848		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1849	else if (S_ISBLK(inode->i_mode))
1850		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1851	else if (S_ISCHR(inode->i_mode))
1852		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1853	else if (S_ISFIFO(inode->i_mode))
1854		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1855	else if (S_ISSOCK(inode->i_mode))
1856		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1857
1858	icbflags =	iinfo->i_alloc_type |
1859			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1860			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1861			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1862			(le16_to_cpu(fe->icbTag.flags) &
1863				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1864				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1865
1866	fe->icbTag.flags = cpu_to_le16(icbflags);
1867	if (sbi->s_udfrev >= 0x0200)
1868		fe->descTag.descVersion = cpu_to_le16(3);
1869	else
1870		fe->descTag.descVersion = cpu_to_le16(2);
1871	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1872	fe->descTag.tagLocation = cpu_to_le32(
1873					iinfo->i_location.logicalBlockNum);
1874	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1875	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1876	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1877						  crclen));
1878	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1879
1880	set_buffer_uptodate(bh);
1881	unlock_buffer(bh);
1882
1883	/* write the data blocks */
1884	mark_buffer_dirty(bh);
1885	if (do_sync) {
1886		sync_dirty_buffer(bh);
1887		if (buffer_write_io_error(bh)) {
1888			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1889				 inode->i_ino);
1890			err = -EIO;
1891		}
1892	}
1893	brelse(bh);
1894
1895	return err;
1896}
1897
1898struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1899			 bool hidden_inode)
1900{
1901	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1902	struct inode *inode = iget_locked(sb, block);
1903	int err;
1904
1905	if (!inode)
1906		return ERR_PTR(-ENOMEM);
1907
1908	if (!(inode->i_state & I_NEW))
 
 
 
 
1909		return inode;
 
1910
1911	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1912	err = udf_read_inode(inode, hidden_inode);
1913	if (err < 0) {
1914		iget_failed(inode);
1915		return ERR_PTR(err);
1916	}
1917	unlock_new_inode(inode);
1918
1919	return inode;
1920}
1921
1922int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1923			    struct extent_position *epos)
1924{
1925	struct super_block *sb = inode->i_sb;
1926	struct buffer_head *bh;
1927	struct allocExtDesc *aed;
1928	struct extent_position nepos;
1929	struct kernel_lb_addr neloc;
1930	int ver, adsize;
 
1931
1932	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1933		adsize = sizeof(struct short_ad);
1934	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1935		adsize = sizeof(struct long_ad);
1936	else
1937		return -EIO;
1938
1939	neloc.logicalBlockNum = block;
1940	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1941
1942	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1943	if (!bh)
1944		return -EIO;
1945	lock_buffer(bh);
1946	memset(bh->b_data, 0x00, sb->s_blocksize);
1947	set_buffer_uptodate(bh);
1948	unlock_buffer(bh);
1949	mark_buffer_dirty_inode(bh, inode);
1950
1951	aed = (struct allocExtDesc *)(bh->b_data);
1952	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1953		aed->previousAllocExtLocation =
1954				cpu_to_le32(epos->block.logicalBlockNum);
1955	}
1956	aed->lengthAllocDescs = cpu_to_le32(0);
1957	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1958		ver = 3;
1959	else
1960		ver = 2;
1961	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1962		    sizeof(struct tag));
1963
1964	nepos.block = neloc;
1965	nepos.offset = sizeof(struct allocExtDesc);
1966	nepos.bh = bh;
1967
1968	/*
1969	 * Do we have to copy current last extent to make space for indirect
1970	 * one?
1971	 */
1972	if (epos->offset + adsize > sb->s_blocksize) {
1973		struct kernel_lb_addr cp_loc;
1974		uint32_t cp_len;
1975		int cp_type;
1976
1977		epos->offset -= adsize;
1978		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
 
 
1979		cp_len |= ((uint32_t)cp_type) << 30;
1980
1981		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1982		udf_write_aext(inode, epos, &nepos.block,
1983			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1984	} else {
1985		__udf_add_aext(inode, epos, &nepos.block,
1986			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1987	}
1988
1989	brelse(epos->bh);
1990	*epos = nepos;
1991
1992	return 0;
 
 
 
1993}
1994
1995/*
1996 * Append extent at the given position - should be the first free one in inode
1997 * / indirect extent. This function assumes there is enough space in the inode
1998 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1999 */
2000int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2001		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2002{
2003	struct udf_inode_info *iinfo = UDF_I(inode);
2004	struct allocExtDesc *aed;
2005	int adsize;
2006
2007	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2008		adsize = sizeof(struct short_ad);
2009	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2010		adsize = sizeof(struct long_ad);
2011	else
2012		return -EIO;
2013
2014	if (!epos->bh) {
2015		WARN_ON(iinfo->i_lenAlloc !=
2016			epos->offset - udf_file_entry_alloc_offset(inode));
2017	} else {
2018		aed = (struct allocExtDesc *)epos->bh->b_data;
2019		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2020			epos->offset - sizeof(struct allocExtDesc));
2021		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2022	}
2023
2024	udf_write_aext(inode, epos, eloc, elen, inc);
2025
2026	if (!epos->bh) {
2027		iinfo->i_lenAlloc += adsize;
2028		mark_inode_dirty(inode);
2029	} else {
2030		aed = (struct allocExtDesc *)epos->bh->b_data;
2031		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2032		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2033				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2034			udf_update_tag(epos->bh->b_data,
2035					epos->offset + (inc ? 0 : adsize));
2036		else
2037			udf_update_tag(epos->bh->b_data,
2038					sizeof(struct allocExtDesc));
2039		mark_buffer_dirty_inode(epos->bh, inode);
2040	}
2041
2042	return 0;
2043}
2044
2045/*
2046 * Append extent at given position - should be the first free one in inode
2047 * / indirect extent. Takes care of allocating and linking indirect blocks.
2048 */
2049int udf_add_aext(struct inode *inode, struct extent_position *epos,
2050		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2051{
2052	int adsize;
2053	struct super_block *sb = inode->i_sb;
2054
2055	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2056		adsize = sizeof(struct short_ad);
2057	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2058		adsize = sizeof(struct long_ad);
2059	else
2060		return -EIO;
2061
2062	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2063		int err;
2064		udf_pblk_t new_block;
2065
2066		new_block = udf_new_block(sb, NULL,
2067					  epos->block.partitionReferenceNum,
2068					  epos->block.logicalBlockNum, &err);
2069		if (!new_block)
2070			return -ENOSPC;
2071
2072		err = udf_setup_indirect_aext(inode, new_block, epos);
2073		if (err)
2074			return err;
2075	}
2076
2077	return __udf_add_aext(inode, epos, eloc, elen, inc);
2078}
2079
2080void udf_write_aext(struct inode *inode, struct extent_position *epos,
2081		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2082{
2083	int adsize;
2084	uint8_t *ptr;
2085	struct short_ad *sad;
2086	struct long_ad *lad;
2087	struct udf_inode_info *iinfo = UDF_I(inode);
2088
2089	if (!epos->bh)
2090		ptr = iinfo->i_ext.i_data + epos->offset -
2091			udf_file_entry_alloc_offset(inode) +
2092			iinfo->i_lenEAttr;
2093	else
2094		ptr = epos->bh->b_data + epos->offset;
2095
2096	switch (iinfo->i_alloc_type) {
2097	case ICBTAG_FLAG_AD_SHORT:
2098		sad = (struct short_ad *)ptr;
2099		sad->extLength = cpu_to_le32(elen);
2100		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2101		adsize = sizeof(struct short_ad);
2102		break;
2103	case ICBTAG_FLAG_AD_LONG:
2104		lad = (struct long_ad *)ptr;
2105		lad->extLength = cpu_to_le32(elen);
2106		lad->extLocation = cpu_to_lelb(*eloc);
2107		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2108		adsize = sizeof(struct long_ad);
2109		break;
2110	default:
2111		return;
2112	}
2113
2114	if (epos->bh) {
2115		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2116		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2117			struct allocExtDesc *aed =
2118				(struct allocExtDesc *)epos->bh->b_data;
2119			udf_update_tag(epos->bh->b_data,
2120				       le32_to_cpu(aed->lengthAllocDescs) +
2121				       sizeof(struct allocExtDesc));
2122		}
2123		mark_buffer_dirty_inode(epos->bh, inode);
2124	} else {
2125		mark_inode_dirty(inode);
2126	}
2127
2128	if (inc)
2129		epos->offset += adsize;
2130}
2131
2132/*
2133 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2134 * someone does some weird stuff.
2135 */
2136#define UDF_MAX_INDIR_EXTS 16
2137
2138int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2139		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
 
 
 
 
2140{
2141	int8_t etype;
2142	unsigned int indirections = 0;
 
 
2143
2144	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2145	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2146		udf_pblk_t block;
 
 
 
 
2147
2148		if (++indirections > UDF_MAX_INDIR_EXTS) {
2149			udf_err(inode->i_sb,
2150				"too many indirect extents in inode %lu\n",
2151				inode->i_ino);
2152			return -1;
2153		}
2154
2155		epos->block = *eloc;
2156		epos->offset = sizeof(struct allocExtDesc);
2157		brelse(epos->bh);
2158		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2159		epos->bh = udf_tread(inode->i_sb, block);
2160		if (!epos->bh) {
2161			udf_debug("reading block %u failed!\n", block);
2162			return -1;
2163		}
2164	}
2165
2166	return etype;
2167}
2168
2169int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2170			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
 
 
 
 
2171{
2172	int alen;
2173	int8_t etype;
2174	uint8_t *ptr;
2175	struct short_ad *sad;
2176	struct long_ad *lad;
2177	struct udf_inode_info *iinfo = UDF_I(inode);
2178
2179	if (!epos->bh) {
2180		if (!epos->offset)
2181			epos->offset = udf_file_entry_alloc_offset(inode);
2182		ptr = iinfo->i_ext.i_data + epos->offset -
2183			udf_file_entry_alloc_offset(inode) +
2184			iinfo->i_lenEAttr;
2185		alen = udf_file_entry_alloc_offset(inode) +
2186							iinfo->i_lenAlloc;
2187	} else {
 
 
 
2188		if (!epos->offset)
2189			epos->offset = sizeof(struct allocExtDesc);
2190		ptr = epos->bh->b_data + epos->offset;
2191		alen = sizeof(struct allocExtDesc) +
2192			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2193							lengthAllocDescs);
2194	}
2195
2196	switch (iinfo->i_alloc_type) {
2197	case ICBTAG_FLAG_AD_SHORT:
2198		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2199		if (!sad)
2200			return -1;
2201		etype = le32_to_cpu(sad->extLength) >> 30;
2202		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2203		eloc->partitionReferenceNum =
2204				iinfo->i_location.partitionReferenceNum;
2205		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2206		break;
2207	case ICBTAG_FLAG_AD_LONG:
2208		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2209		if (!lad)
2210			return -1;
2211		etype = le32_to_cpu(lad->extLength) >> 30;
2212		*eloc = lelb_to_cpu(lad->extLocation);
2213		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2214		break;
2215	default:
2216		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2217		return -1;
2218	}
2219
2220	return etype;
2221}
2222
2223static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2224			      struct kernel_lb_addr neloc, uint32_t nelen)
2225{
2226	struct kernel_lb_addr oeloc;
2227	uint32_t oelen;
2228	int8_t etype;
 
2229
2230	if (epos.bh)
2231		get_bh(epos.bh);
2232
2233	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
 
 
 
2234		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2235		neloc = oeloc;
2236		nelen = (etype << 30) | oelen;
2237	}
2238	udf_add_aext(inode, &epos, &neloc, nelen, 1);
 
2239	brelse(epos.bh);
2240
2241	return (nelen >> 30);
2242}
2243
2244int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2245{
2246	struct extent_position oepos;
2247	int adsize;
2248	int8_t etype;
2249	struct allocExtDesc *aed;
2250	struct udf_inode_info *iinfo;
2251	struct kernel_lb_addr eloc;
2252	uint32_t elen;
 
2253
2254	if (epos.bh) {
2255		get_bh(epos.bh);
2256		get_bh(epos.bh);
2257	}
2258
2259	iinfo = UDF_I(inode);
2260	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2261		adsize = sizeof(struct short_ad);
2262	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2263		adsize = sizeof(struct long_ad);
2264	else
2265		adsize = 0;
2266
2267	oepos = epos;
2268	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2269		return -1;
2270
2271	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
 
 
 
 
 
 
 
 
2272		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2273		if (oepos.bh != epos.bh) {
2274			oepos.block = epos.block;
2275			brelse(oepos.bh);
2276			get_bh(epos.bh);
2277			oepos.bh = epos.bh;
2278			oepos.offset = epos.offset - adsize;
2279		}
2280	}
2281	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2282	elen = 0;
2283
2284	if (epos.bh != oepos.bh) {
2285		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2286		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2287		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2288		if (!oepos.bh) {
2289			iinfo->i_lenAlloc -= (adsize * 2);
2290			mark_inode_dirty(inode);
2291		} else {
2292			aed = (struct allocExtDesc *)oepos.bh->b_data;
2293			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2294			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2295			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2296				udf_update_tag(oepos.bh->b_data,
2297						oepos.offset - (2 * adsize));
2298			else
2299				udf_update_tag(oepos.bh->b_data,
2300						sizeof(struct allocExtDesc));
2301			mark_buffer_dirty_inode(oepos.bh, inode);
2302		}
2303	} else {
2304		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2305		if (!oepos.bh) {
2306			iinfo->i_lenAlloc -= adsize;
2307			mark_inode_dirty(inode);
2308		} else {
2309			aed = (struct allocExtDesc *)oepos.bh->b_data;
2310			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2311			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2312			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2313				udf_update_tag(oepos.bh->b_data,
2314						epos.offset - adsize);
2315			else
2316				udf_update_tag(oepos.bh->b_data,
2317						sizeof(struct allocExtDesc));
2318			mark_buffer_dirty_inode(oepos.bh, inode);
2319		}
2320	}
2321
2322	brelse(epos.bh);
2323	brelse(oepos.bh);
2324
2325	return (elen >> 30);
2326}
2327
2328int8_t inode_bmap(struct inode *inode, sector_t block,
2329		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2330		  uint32_t *elen, sector_t *offset)
 
 
 
2331{
2332	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2333	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2334	int8_t etype;
2335	struct udf_inode_info *iinfo;
 
2336
2337	iinfo = UDF_I(inode);
2338	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2339		pos->offset = 0;
2340		pos->block = iinfo->i_location;
2341		pos->bh = NULL;
2342	}
2343	*elen = 0;
2344	do {
2345		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2346		if (etype == -1) {
2347			*offset = (bcount - lbcount) >> blocksize_bits;
2348			iinfo->i_lenExtents = lbcount;
2349			return -1;
 
 
2350		}
2351		lbcount += *elen;
2352	} while (lbcount <= bcount);
2353	/* update extent cache */
2354	udf_update_extent_cache(inode, lbcount - *elen, pos);
2355	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2356
2357	return etype;
2358}
2359
2360udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2361{
2362	struct kernel_lb_addr eloc;
2363	uint32_t elen;
2364	sector_t offset;
2365	struct extent_position epos = {};
2366	udf_pblk_t ret;
2367
2368	down_read(&UDF_I(inode)->i_data_sem);
2369
2370	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2371						(EXT_RECORDED_ALLOCATED >> 30))
2372		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2373	else
2374		ret = 0;
2375
2376	up_read(&UDF_I(inode)->i_data_sem);
2377	brelse(epos.bh);
2378
2379	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2380		return udf_fixed_to_variable(ret);
2381	else
2382		return ret;
2383}