Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * inode.c
   4 *
   5 * PURPOSE
   6 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   7 *
   8 * COPYRIGHT
 
 
 
 
 
   9 *  (C) 1998 Dave Boynton
  10 *  (C) 1998-2004 Ben Fennema
  11 *  (C) 1999-2000 Stelias Computing Inc
  12 *
  13 * HISTORY
  14 *
  15 *  10/04/98 dgb  Added rudimentary directory functions
  16 *  10/07/98      Fully working udf_block_map! It works!
  17 *  11/25/98      bmap altered to better support extents
  18 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  19 *                and udf_read_inode
  20 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  21 *                block boundaries (which is not actually allowed)
  22 *  12/20/98      added support for strategy 4096
  23 *  03/07/99      rewrote udf_block_map (again)
  24 *                New funcs, inode_bmap, udf_next_aext
  25 *  04/19/99      Support for writing device EA's for major/minor #
  26 */
  27
  28#include "udfdecl.h"
  29#include <linux/mm.h>
  30#include <linux/module.h>
  31#include <linux/pagemap.h>
  32#include <linux/writeback.h>
  33#include <linux/slab.h>
  34#include <linux/crc-itu-t.h>
  35#include <linux/mpage.h>
  36#include <linux/uio.h>
  37#include <linux/bio.h>
  38
  39#include "udf_i.h"
  40#include "udf_sb.h"
  41
  42#define EXTENT_MERGE_SIZE 5
  43
  44#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
  45			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
  46			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
  47
  48#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
  49			 FE_PERM_O_DELETE)
  50
  51struct udf_map_rq;
  52
  53static umode_t udf_convert_permissions(struct fileEntry *);
  54static int udf_update_inode(struct inode *, int);
  55static int udf_sync_inode(struct inode *inode);
  56static int udf_alloc_i_data(struct inode *inode, size_t size);
  57static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
  58static int udf_insert_aext(struct inode *, struct extent_position,
  59			   struct kernel_lb_addr, uint32_t);
  60static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  61			      struct kernel_long_ad *, int *);
  62static void udf_prealloc_extents(struct inode *, int, int,
  63				 struct kernel_long_ad *, int *);
  64static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  65static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  66			      int, struct extent_position *);
  67static int udf_get_block_wb(struct inode *inode, sector_t block,
  68			    struct buffer_head *bh_result, int create);
  69
  70static void __udf_clear_extent_cache(struct inode *inode)
  71{
  72	struct udf_inode_info *iinfo = UDF_I(inode);
  73
  74	if (iinfo->cached_extent.lstart != -1) {
  75		brelse(iinfo->cached_extent.epos.bh);
  76		iinfo->cached_extent.lstart = -1;
  77	}
  78}
  79
  80/* Invalidate extent cache */
  81static void udf_clear_extent_cache(struct inode *inode)
  82{
  83	struct udf_inode_info *iinfo = UDF_I(inode);
  84
  85	spin_lock(&iinfo->i_extent_cache_lock);
  86	__udf_clear_extent_cache(inode);
  87	spin_unlock(&iinfo->i_extent_cache_lock);
  88}
  89
  90/* Return contents of extent cache */
  91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  92				 loff_t *lbcount, struct extent_position *pos)
  93{
  94	struct udf_inode_info *iinfo = UDF_I(inode);
  95	int ret = 0;
  96
  97	spin_lock(&iinfo->i_extent_cache_lock);
  98	if ((iinfo->cached_extent.lstart <= bcount) &&
  99	    (iinfo->cached_extent.lstart != -1)) {
 100		/* Cache hit */
 101		*lbcount = iinfo->cached_extent.lstart;
 102		memcpy(pos, &iinfo->cached_extent.epos,
 103		       sizeof(struct extent_position));
 104		if (pos->bh)
 105			get_bh(pos->bh);
 106		ret = 1;
 107	}
 108	spin_unlock(&iinfo->i_extent_cache_lock);
 109	return ret;
 110}
 111
 112/* Add extent to extent cache */
 113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 114				    struct extent_position *pos)
 115{
 116	struct udf_inode_info *iinfo = UDF_I(inode);
 117
 118	spin_lock(&iinfo->i_extent_cache_lock);
 119	/* Invalidate previously cached extent */
 120	__udf_clear_extent_cache(inode);
 121	if (pos->bh)
 122		get_bh(pos->bh);
 123	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 124	iinfo->cached_extent.lstart = estart;
 125	switch (iinfo->i_alloc_type) {
 126	case ICBTAG_FLAG_AD_SHORT:
 127		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 128		break;
 129	case ICBTAG_FLAG_AD_LONG:
 130		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 131		break;
 132	}
 133	spin_unlock(&iinfo->i_extent_cache_lock);
 134}
 135
 136void udf_evict_inode(struct inode *inode)
 137{
 138	struct udf_inode_info *iinfo = UDF_I(inode);
 139	int want_delete = 0;
 140
 141	if (!is_bad_inode(inode)) {
 142		if (!inode->i_nlink) {
 143			want_delete = 1;
 144			udf_setsize(inode, 0);
 145			udf_update_inode(inode, IS_SYNC(inode));
 146		}
 147		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 148		    inode->i_size != iinfo->i_lenExtents) {
 149			udf_warn(inode->i_sb,
 150				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 151				 inode->i_ino, inode->i_mode,
 152				 (unsigned long long)inode->i_size,
 153				 (unsigned long long)iinfo->i_lenExtents);
 154		}
 155	}
 156	truncate_inode_pages_final(&inode->i_data);
 157	invalidate_inode_buffers(inode);
 158	clear_inode(inode);
 159	kfree(iinfo->i_data);
 160	iinfo->i_data = NULL;
 
 
 
 
 
 
 
 161	udf_clear_extent_cache(inode);
 162	if (want_delete) {
 163		udf_free_inode(inode);
 164	}
 165}
 166
 167static void udf_write_failed(struct address_space *mapping, loff_t to)
 168{
 169	struct inode *inode = mapping->host;
 170	struct udf_inode_info *iinfo = UDF_I(inode);
 171	loff_t isize = inode->i_size;
 172
 173	if (to > isize) {
 174		truncate_pagecache(inode, isize);
 175		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 176			down_write(&iinfo->i_data_sem);
 177			udf_clear_extent_cache(inode);
 178			udf_truncate_extents(inode);
 179			up_write(&iinfo->i_data_sem);
 180		}
 181	}
 182}
 183
 184static int udf_adinicb_writepage(struct folio *folio,
 185				 struct writeback_control *wbc, void *data)
 186{
 187	struct inode *inode = folio->mapping->host;
 188	struct udf_inode_info *iinfo = UDF_I(inode);
 189
 190	BUG_ON(!folio_test_locked(folio));
 191	BUG_ON(folio->index != 0);
 192	memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
 193		       i_size_read(inode));
 194	folio_unlock(folio);
 195	mark_inode_dirty(inode);
 196
 197	return 0;
 198}
 199
 200static int udf_writepages(struct address_space *mapping,
 201			  struct writeback_control *wbc)
 202{
 203	struct inode *inode = mapping->host;
 204	struct udf_inode_info *iinfo = UDF_I(inode);
 205
 206	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
 207		return mpage_writepages(mapping, wbc, udf_get_block_wb);
 208	return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
 209}
 210
 211static void udf_adinicb_read_folio(struct folio *folio)
 212{
 213	struct inode *inode = folio->mapping->host;
 214	struct udf_inode_info *iinfo = UDF_I(inode);
 215	loff_t isize = i_size_read(inode);
 216
 217	folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize);
 218	folio_mark_uptodate(folio);
 219}
 220
 221static int udf_read_folio(struct file *file, struct folio *folio)
 222{
 223	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
 224
 225	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
 226		udf_adinicb_read_folio(folio);
 227		folio_unlock(folio);
 228		return 0;
 229	}
 230	return mpage_read_folio(folio, udf_get_block);
 231}
 232
 233static void udf_readahead(struct readahead_control *rac)
 
 234{
 235	struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
 236
 237	/*
 238	 * No readahead needed for in-ICB files and udf_get_block() would get
 239	 * confused for such file anyway.
 240	 */
 241	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
 242		return;
 243
 244	mpage_readahead(rac, udf_get_block);
 245}
 246
 247static int udf_write_begin(struct file *file, struct address_space *mapping,
 248			   loff_t pos, unsigned len,
 249			   struct folio **foliop, void **fsdata)
 250{
 251	struct udf_inode_info *iinfo = UDF_I(file_inode(file));
 252	struct folio *folio;
 253	int ret;
 254
 255	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 256		ret = block_write_begin(mapping, pos, len, foliop,
 257					udf_get_block);
 258		if (unlikely(ret))
 259			udf_write_failed(mapping, pos + len);
 260		return ret;
 261	}
 262	if (WARN_ON_ONCE(pos >= PAGE_SIZE))
 263		return -EIO;
 264	folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN,
 265			mapping_gfp_mask(mapping));
 266	if (IS_ERR(folio))
 267		return PTR_ERR(folio);
 268	*foliop = folio;
 269	if (!folio_test_uptodate(folio))
 270		udf_adinicb_read_folio(folio);
 271	return 0;
 272}
 273
 274static int udf_write_end(struct file *file, struct address_space *mapping,
 275			 loff_t pos, unsigned len, unsigned copied,
 276			 struct folio *folio, void *fsdata)
 277{
 278	struct inode *inode = file_inode(file);
 279	loff_t last_pos;
 280
 281	if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
 282		return generic_write_end(file, mapping, pos, len, copied, folio,
 283					 fsdata);
 284	last_pos = pos + copied;
 285	if (last_pos > inode->i_size)
 286		i_size_write(inode, last_pos);
 287	folio_mark_dirty(folio);
 288	folio_unlock(folio);
 289	folio_put(folio);
 290
 291	return copied;
 292}
 293
 294static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 295{
 296	struct file *file = iocb->ki_filp;
 297	struct address_space *mapping = file->f_mapping;
 298	struct inode *inode = mapping->host;
 299	size_t count = iov_iter_count(iter);
 300	ssize_t ret;
 301
 302	/* Fallback to buffered IO for in-ICB files */
 303	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
 304		return 0;
 305	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 306	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 307		udf_write_failed(mapping, iocb->ki_pos + count);
 308	return ret;
 309}
 310
 311static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 312{
 313	struct udf_inode_info *iinfo = UDF_I(mapping->host);
 314
 315	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
 316		return -EINVAL;
 317	return generic_block_bmap(mapping, block, udf_get_block);
 318}
 319
 320const struct address_space_operations udf_aops = {
 321	.dirty_folio	= block_dirty_folio,
 322	.invalidate_folio = block_invalidate_folio,
 323	.read_folio	= udf_read_folio,
 324	.readahead	= udf_readahead,
 325	.writepages	= udf_writepages,
 326	.write_begin	= udf_write_begin,
 327	.write_end	= udf_write_end,
 328	.direct_IO	= udf_direct_IO,
 329	.bmap		= udf_bmap,
 330	.migrate_folio	= buffer_migrate_folio,
 331};
 332
 333/*
 334 * Expand file stored in ICB to a normal one-block-file
 335 *
 
 336 * This function requires i_mutex held
 337 */
 338int udf_expand_file_adinicb(struct inode *inode)
 339{
 340	struct folio *folio;
 
 341	struct udf_inode_info *iinfo = UDF_I(inode);
 342	int err;
 
 
 
 
 343
 344	WARN_ON_ONCE(!inode_is_locked(inode));
 345	if (!iinfo->i_lenAlloc) {
 346		down_write(&iinfo->i_data_sem);
 347		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 348			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 349		else
 350			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 
 
 351		up_write(&iinfo->i_data_sem);
 352		mark_inode_dirty(inode);
 353		return 0;
 354	}
 
 
 
 
 
 355
 356	folio = __filemap_get_folio(inode->i_mapping, 0,
 357			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
 358	if (IS_ERR(folio))
 359		return PTR_ERR(folio);
 360
 361	if (!folio_test_uptodate(folio))
 362		udf_adinicb_read_folio(folio);
 
 
 
 
 
 
 
 
 363	down_write(&iinfo->i_data_sem);
 364	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
 365	       iinfo->i_lenAlloc);
 366	iinfo->i_lenAlloc = 0;
 367	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 368		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 369	else
 370		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 371	folio_mark_dirty(folio);
 372	folio_unlock(folio);
 373	up_write(&iinfo->i_data_sem);
 374	err = filemap_fdatawrite(inode->i_mapping);
 375	if (err) {
 376		/* Restore everything back so that we don't lose data... */
 377		folio_lock(folio);
 378		down_write(&iinfo->i_data_sem);
 379		memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
 380				folio, 0, inode->i_size);
 381		folio_unlock(folio);
 
 
 382		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 383		iinfo->i_lenAlloc = inode->i_size;
 384		up_write(&iinfo->i_data_sem);
 385	}
 386	folio_put(folio);
 387	mark_inode_dirty(inode);
 388
 389	return err;
 390}
 391
 392#define UDF_MAP_CREATE		0x01	/* Mapping can allocate new blocks */
 393#define UDF_MAP_NOPREALLOC	0x02	/* Do not preallocate blocks */
 394
 395#define UDF_BLK_MAPPED	0x01	/* Block was successfully mapped */
 396#define UDF_BLK_NEW	0x02	/* Block was freshly allocated */
 397
 398struct udf_map_rq {
 399	sector_t lblk;
 400	udf_pblk_t pblk;
 401	int iflags;		/* UDF_MAP_ flags determining behavior */
 402	int oflags;		/* UDF_BLK_ flags reporting results */
 403};
 404
 405static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
 406{
 407	int ret;
 
 
 
 
 
 
 
 
 
 408	struct udf_inode_info *iinfo = UDF_I(inode);
 409
 410	if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
 411		return -EFSCORRUPTED;
 
 
 412
 413	map->oflags = 0;
 414	if (!(map->iflags & UDF_MAP_CREATE)) {
 415		struct kernel_lb_addr eloc;
 416		uint32_t elen;
 417		sector_t offset;
 418		struct extent_position epos = {};
 419		int8_t etype;
 420
 421		down_read(&iinfo->i_data_sem);
 422		ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset,
 423				 &etype);
 424		if (ret < 0)
 425			goto out_read;
 426		if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 427			map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
 428							offset);
 429			map->oflags |= UDF_BLK_MAPPED;
 430			ret = 0;
 431		}
 432out_read:
 433		up_read(&iinfo->i_data_sem);
 434		brelse(epos.bh);
 435
 436		return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437	}
 
 438
 439	down_write(&iinfo->i_data_sem);
 440	/*
 441	 * Block beyond EOF and prealloc extents? Just discard preallocation
 442	 * as it is not useful and complicates things.
 443	 */
 444	if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
 445		udf_discard_prealloc(inode);
 446	udf_clear_extent_cache(inode);
 447	ret = inode_getblk(inode, map);
 448	up_write(&iinfo->i_data_sem);
 449	return ret;
 
 
 
 
 
 450}
 451
 452static int __udf_get_block(struct inode *inode, sector_t block,
 453			   struct buffer_head *bh_result, int flags)
 454{
 455	int err;
 456	struct udf_map_rq map = {
 457		.lblk = block,
 458		.iflags = flags,
 459	};
 460
 461	err = udf_map_block(inode, &map);
 462	if (err < 0)
 463		return err;
 464	if (map.oflags & UDF_BLK_MAPPED) {
 465		map_bh(bh_result, inode->i_sb, map.pblk);
 466		if (map.oflags & UDF_BLK_NEW)
 467			set_buffer_new(bh_result);
 468	}
 469	return 0;
 470}
 471
 472int udf_get_block(struct inode *inode, sector_t block,
 473		  struct buffer_head *bh_result, int create)
 474{
 475	int flags = create ? UDF_MAP_CREATE : 0;
 476
 477	/*
 478	 * We preallocate blocks only for regular files. It also makes sense
 479	 * for directories but there's a problem when to drop the
 480	 * preallocation. We might use some delayed work for that but I feel
 481	 * it's overengineering for a filesystem like UDF.
 482	 */
 483	if (!S_ISREG(inode->i_mode))
 484		flags |= UDF_MAP_NOPREALLOC;
 485	return __udf_get_block(inode, block, bh_result, flags);
 
 
 
 
 
 
 
 
 
 486}
 487
 488/*
 489 * We shouldn't be allocating blocks on page writeback since we allocate them
 490 * on page fault. We can spot dirty buffers without allocated blocks though
 491 * when truncate expands file. These however don't have valid data so we can
 492 * safely ignore them. So never allocate blocks from page writeback.
 493 */
 494static int udf_get_block_wb(struct inode *inode, sector_t block,
 495			    struct buffer_head *bh_result, int create)
 496{
 497	return __udf_get_block(inode, block, bh_result, 0);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 498}
 499
 500/* Extend the file with new blocks totaling 'new_block_bytes',
 501 * return the number of extents added
 502 */
 503static int udf_do_extend_file(struct inode *inode,
 504			      struct extent_position *last_pos,
 505			      struct kernel_long_ad *last_ext,
 506			      loff_t new_block_bytes)
 507{
 508	uint32_t add;
 509	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 510	struct super_block *sb = inode->i_sb;
 
 
 511	struct udf_inode_info *iinfo;
 512	int err;
 513
 514	/* The previous extent is fake and we should not extend by anything
 515	 * - there's nothing to do... */
 516	if (!new_block_bytes && fake)
 517		return 0;
 518
 519	iinfo = UDF_I(inode);
 520	/* Round the last extent up to a multiple of block size */
 521	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 522		last_ext->extLength =
 523			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 524			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 525			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 526		iinfo->i_lenExtents =
 527			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 528			~(sb->s_blocksize - 1);
 529	}
 530
 531	add = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 532	/* Can we merge with the previous extent? */
 533	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 534					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 535		add = (1 << 30) - sb->s_blocksize -
 536			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 537		if (add > new_block_bytes)
 538			add = new_block_bytes;
 539		new_block_bytes -= add;
 540		last_ext->extLength += add;
 
 541	}
 542
 543	if (fake) {
 544		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 545				   last_ext->extLength, 1);
 546		if (err < 0)
 547			goto out_err;
 548		count++;
 549	} else {
 550		struct kernel_lb_addr tmploc;
 551		uint32_t tmplen;
 552		int8_t tmptype;
 553
 554		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 555				last_ext->extLength, 1);
 556
 557		/*
 558		 * We've rewritten the last extent. If we are going to add
 559		 * more extents, we may need to enter possible following
 560		 * empty indirect extent.
 561		 */
 562		if (new_block_bytes) {
 563			err = udf_next_aext(inode, last_pos, &tmploc, &tmplen,
 564					    &tmptype, 0);
 565			if (err < 0)
 566				goto out_err;
 567		}
 568	}
 569	iinfo->i_lenExtents += add;
 570
 571	/* Managed to do everything necessary? */
 572	if (!new_block_bytes)
 573		goto out;
 574
 575	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 576	last_ext->extLocation.logicalBlockNum = 0;
 577	last_ext->extLocation.partitionReferenceNum = 0;
 578	add = (1 << 30) - sb->s_blocksize;
 579	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
 
 580
 581	/* Create enough extents to cover the whole hole */
 582	while (new_block_bytes > add) {
 583		new_block_bytes -= add;
 584		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 585				   last_ext->extLength, 1);
 586		if (err)
 587			goto out_err;
 588		iinfo->i_lenExtents += add;
 589		count++;
 590	}
 591	if (new_block_bytes) {
 592		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 593			new_block_bytes;
 594		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 595				   last_ext->extLength, 1);
 596		if (err)
 597			goto out_err;
 598		iinfo->i_lenExtents += new_block_bytes;
 599		count++;
 600	}
 601
 602out:
 
 
 
 
 
 
 
 
 
 
 
 603	/* last_pos should point to the last written extent... */
 604	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 605		last_pos->offset -= sizeof(struct short_ad);
 606	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 607		last_pos->offset -= sizeof(struct long_ad);
 608	else
 609		return -EIO;
 610
 611	return count;
 612out_err:
 613	/* Remove extents we've created so far */
 614	udf_clear_extent_cache(inode);
 615	udf_truncate_extents(inode);
 616	return err;
 617}
 618
 619/* Extend the final block of the file to final_block_len bytes */
 620static void udf_do_extend_final_block(struct inode *inode,
 621				      struct extent_position *last_pos,
 622				      struct kernel_long_ad *last_ext,
 623				      uint32_t new_elen)
 624{
 625	uint32_t added_bytes;
 626
 627	/*
 628	 * Extent already large enough? It may be already rounded up to block
 629	 * size...
 630	 */
 631	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
 632		return;
 633	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 634	last_ext->extLength += added_bytes;
 635	UDF_I(inode)->i_lenExtents += added_bytes;
 636
 637	udf_write_aext(inode, last_pos, &last_ext->extLocation,
 638			last_ext->extLength, 1);
 639}
 640
 641static int udf_extend_file(struct inode *inode, loff_t newsize)
 642{
 643
 644	struct extent_position epos;
 645	struct kernel_lb_addr eloc;
 646	uint32_t elen;
 647	int8_t etype;
 648	struct super_block *sb = inode->i_sb;
 649	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 650	loff_t new_elen;
 651	int adsize;
 652	struct udf_inode_info *iinfo = UDF_I(inode);
 653	struct kernel_long_ad extent;
 654	int err = 0;
 655	bool within_last_ext;
 656
 657	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 658		adsize = sizeof(struct short_ad);
 659	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 660		adsize = sizeof(struct long_ad);
 661	else
 662		BUG();
 663
 664	down_write(&iinfo->i_data_sem);
 665	/*
 666	 * When creating hole in file, just don't bother with preserving
 667	 * preallocation. It likely won't be very useful anyway.
 668	 */
 669	udf_discard_prealloc(inode);
 670
 671	err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype);
 672	if (err < 0)
 673		goto out;
 674	within_last_ext = (err == 1);
 675	/* We don't expect extents past EOF... */
 676	WARN_ON_ONCE(within_last_ext &&
 677		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
 
 
 678
 
 679	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 680	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 681		/* File has no extents at all or has empty last
 682		 * indirect extent! Create a fake extent... */
 683		extent.extLocation.logicalBlockNum = 0;
 684		extent.extLocation.partitionReferenceNum = 0;
 685		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 686	} else {
 687		epos.offset -= adsize;
 688		err = udf_next_aext(inode, &epos, &extent.extLocation,
 689				    &extent.extLength, &etype, 0);
 690		if (err <= 0)
 691			goto out;
 692		extent.extLength |= etype << 30;
 693	}
 694
 695	new_elen = ((loff_t)offset << inode->i_blkbits) |
 696					(newsize & (sb->s_blocksize - 1));
 697
 698	/* File has extent covering the new size (could happen when extending
 699	 * inside a block)?
 700	 */
 701	if (within_last_ext) {
 702		/* Extending file within the last file block */
 703		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
 704	} else {
 705		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
 706	}
 707
 708	if (err < 0)
 709		goto out;
 710	err = 0;
 
 711out:
 712	brelse(epos.bh);
 713	up_write(&iinfo->i_data_sem);
 714	return err;
 715}
 716
 717static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
 
 718{
 719	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 720	struct extent_position prev_epos, cur_epos, next_epos;
 721	int count = 0, startnum = 0, endnum = 0;
 722	uint32_t elen = 0, tmpelen;
 723	struct kernel_lb_addr eloc, tmpeloc;
 724	int c = 1;
 725	loff_t lbcount = 0, b_off = 0;
 726	udf_pblk_t newblocknum;
 727	sector_t offset = 0;
 728	int8_t etype, tmpetype;
 729	struct udf_inode_info *iinfo = UDF_I(inode);
 730	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 731	int lastblock = 0;
 732	bool isBeyondEOF = false;
 733	int ret = 0;
 734
 
 
 735	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 736	prev_epos.block = iinfo->i_location;
 737	prev_epos.bh = NULL;
 738	cur_epos = next_epos = prev_epos;
 739	b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
 740
 741	/* find the extent which contains the block we are looking for.
 742	   alternate between laarr[0] and laarr[1] for locations of the
 743	   current extent, and the previous extent */
 744	do {
 745		if (prev_epos.bh != cur_epos.bh) {
 746			brelse(prev_epos.bh);
 747			get_bh(cur_epos.bh);
 748			prev_epos.bh = cur_epos.bh;
 749		}
 750		if (cur_epos.bh != next_epos.bh) {
 751			brelse(cur_epos.bh);
 752			get_bh(next_epos.bh);
 753			cur_epos.bh = next_epos.bh;
 754		}
 755
 756		lbcount += elen;
 757
 758		prev_epos.block = cur_epos.block;
 759		cur_epos.block = next_epos.block;
 760
 761		prev_epos.offset = cur_epos.offset;
 762		cur_epos.offset = next_epos.offset;
 763
 764		ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1);
 765		if (ret < 0) {
 766			goto out_free;
 767		} else if (ret == 0) {
 768			isBeyondEOF = true;
 769			break;
 770		}
 771
 772		c = !c;
 773
 774		laarr[c].extLength = (etype << 30) | elen;
 775		laarr[c].extLocation = eloc;
 776
 777		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 778			pgoal = eloc.logicalBlockNum +
 779				((elen + inode->i_sb->s_blocksize - 1) >>
 780				 inode->i_sb->s_blocksize_bits);
 781
 782		count++;
 783	} while (lbcount + elen <= b_off);
 784
 785	b_off -= lbcount;
 786	offset = b_off >> inode->i_sb->s_blocksize_bits;
 787	/*
 788	 * Move prev_epos and cur_epos into indirect extent if we are at
 789	 * the pointer to it
 790	 */
 791	ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
 792	if (ret < 0)
 793		goto out_free;
 794	ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
 795	if (ret < 0)
 796		goto out_free;
 797
 798	/* if the extent is allocated and recorded, return the block
 799	   if the extent is not a multiple of the blocksize, round up */
 800
 801	if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 802		if (elen & (inode->i_sb->s_blocksize - 1)) {
 803			elen = EXT_RECORDED_ALLOCATED |
 804				((elen + inode->i_sb->s_blocksize - 1) &
 805				 ~(inode->i_sb->s_blocksize - 1));
 806			iinfo->i_lenExtents =
 807				ALIGN(iinfo->i_lenExtents,
 808				      inode->i_sb->s_blocksize);
 809			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 810		}
 811		map->oflags = UDF_BLK_MAPPED;
 812		map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 813		goto out_free;
 814	}
 815
 816	/* Are we beyond EOF and preallocated extent? */
 817	if (isBeyondEOF) {
 818		loff_t hole_len;
 819
 820		if (count) {
 821			if (c)
 822				laarr[0] = laarr[1];
 823			startnum = 1;
 824		} else {
 825			/* Create a fake extent when there's not one */
 826			memset(&laarr[0].extLocation, 0x00,
 827				sizeof(struct kernel_lb_addr));
 828			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 829			/* Will udf_do_extend_file() create real extent from
 830			   a fake one? */
 831			startnum = (offset > 0);
 832		}
 833		/* Create extents for the hole between EOF and offset */
 834		hole_len = (loff_t)offset << inode->i_blkbits;
 835		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
 836		if (ret < 0)
 
 837			goto out_free;
 
 838		c = 0;
 839		offset = 0;
 840		count += ret;
 841		/*
 842		 * Is there any real extent? - otherwise we overwrite the fake
 843		 * one...
 844		 */
 845		if (count)
 846			c = !c;
 847		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 848			inode->i_sb->s_blocksize;
 849		memset(&laarr[c].extLocation, 0x00,
 850			sizeof(struct kernel_lb_addr));
 851		count++;
 
 
 852		endnum = c + 1;
 853		lastblock = 1;
 854	} else {
 
 855		endnum = startnum = ((count > 2) ? 2 : count);
 856
 857		/* if the current extent is in position 0,
 858		   swap it with the previous */
 859		if (!c && count != 1) {
 860			laarr[2] = laarr[0];
 861			laarr[0] = laarr[1];
 862			laarr[1] = laarr[2];
 863			c = 1;
 864		}
 865
 866		/* if the current block is located in an extent,
 867		   read the next extent */
 868		ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0);
 869		if (ret > 0) {
 870			laarr[c + 1].extLength = (etype << 30) | elen;
 871			laarr[c + 1].extLocation = eloc;
 872			count++;
 873			startnum++;
 874			endnum++;
 875		} else if (ret == 0)
 876			lastblock = 1;
 877		else
 878			goto out_free;
 879	}
 880
 881	/* if the current extent is not recorded but allocated, get the
 882	 * block in the extent corresponding to the requested block */
 883	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 884		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 885	else { /* otherwise, allocate a new block */
 886		if (iinfo->i_next_alloc_block == map->lblk)
 887			goal = iinfo->i_next_alloc_goal;
 888
 889		if (!goal) {
 890			if (!(goal = pgoal)) /* XXX: what was intended here? */
 891				goal = iinfo->i_location.logicalBlockNum + 1;
 892		}
 893
 894		newblocknum = udf_new_block(inode->i_sb, inode,
 895				iinfo->i_location.partitionReferenceNum,
 896				goal, &ret);
 897		if (!newblocknum)
 
 
 898			goto out_free;
 
 899		if (isBeyondEOF)
 900			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 901	}
 902
 903	/* if the extent the requsted block is located in contains multiple
 904	 * blocks, split the extent into at most three extents. blocks prior
 905	 * to requested block, requested block, and blocks after requested
 906	 * block */
 907	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 908
 909	if (!(map->iflags & UDF_MAP_NOPREALLOC))
 
 
 
 
 910		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 911
 912	/* merge any continuous blocks in laarr */
 913	udf_merge_extents(inode, laarr, &endnum);
 914
 915	/* write back the new extents, inserting new extents if the new number
 916	 * of extents is greater than the old number, and deleting extents if
 917	 * the new number of extents is less than the old number */
 918	ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 919	if (ret < 0)
 920		goto out_free;
 921
 922	map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
 923				iinfo->i_location.partitionReferenceNum, 0);
 924	if (!map->pblk) {
 925		ret = -EFSCORRUPTED;
 926		goto out_free;
 927	}
 928	map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
 929	iinfo->i_next_alloc_block = map->lblk + 1;
 930	iinfo->i_next_alloc_goal = newblocknum + 1;
 931	inode_set_ctime_current(inode);
 932
 933	if (IS_SYNC(inode))
 934		udf_sync_inode(inode);
 935	else
 936		mark_inode_dirty(inode);
 937	ret = 0;
 938out_free:
 939	brelse(prev_epos.bh);
 940	brelse(cur_epos.bh);
 941	brelse(next_epos.bh);
 942	return ret;
 943}
 944
 945static void udf_split_extents(struct inode *inode, int *c, int offset,
 946			       udf_pblk_t newblocknum,
 947			       struct kernel_long_ad *laarr, int *endnum)
 948{
 949	unsigned long blocksize = inode->i_sb->s_blocksize;
 950	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 951
 952	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 953	    (laarr[*c].extLength >> 30) ==
 954				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 955		int curr = *c;
 956		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 957			    blocksize - 1) >> blocksize_bits;
 958		int8_t etype = (laarr[curr].extLength >> 30);
 959
 960		if (blen == 1)
 961			;
 962		else if (!offset || blen == offset + 1) {
 963			laarr[curr + 2] = laarr[curr + 1];
 964			laarr[curr + 1] = laarr[curr];
 965		} else {
 966			laarr[curr + 3] = laarr[curr + 1];
 967			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 968		}
 969
 970		if (offset) {
 971			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 972				udf_free_blocks(inode->i_sb, inode,
 973						&laarr[curr].extLocation,
 974						0, offset);
 975				laarr[curr].extLength =
 976					EXT_NOT_RECORDED_NOT_ALLOCATED |
 977					(offset << blocksize_bits);
 978				laarr[curr].extLocation.logicalBlockNum = 0;
 979				laarr[curr].extLocation.
 980						partitionReferenceNum = 0;
 981			} else
 982				laarr[curr].extLength = (etype << 30) |
 983					(offset << blocksize_bits);
 984			curr++;
 985			(*c)++;
 986			(*endnum)++;
 987		}
 988
 989		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 990		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 991			laarr[curr].extLocation.partitionReferenceNum =
 992				UDF_I(inode)->i_location.partitionReferenceNum;
 993		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 994			blocksize;
 995		curr++;
 996
 997		if (blen != offset + 1) {
 998			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 999				laarr[curr].extLocation.logicalBlockNum +=
1000								offset + 1;
1001			laarr[curr].extLength = (etype << 30) |
1002				((blen - (offset + 1)) << blocksize_bits);
1003			curr++;
1004			(*endnum)++;
1005		}
1006	}
1007}
1008
1009static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
1010				 struct kernel_long_ad *laarr,
1011				 int *endnum)
1012{
1013	int start, length = 0, currlength = 0, i;
1014
1015	if (*endnum >= (c + 1)) {
1016		if (!lastblock)
1017			return;
1018		else
1019			start = c;
1020	} else {
1021		if ((laarr[c + 1].extLength >> 30) ==
1022					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1023			start = c + 1;
1024			length = currlength =
1025				(((laarr[c + 1].extLength &
1026					UDF_EXTENT_LENGTH_MASK) +
1027				inode->i_sb->s_blocksize - 1) >>
1028				inode->i_sb->s_blocksize_bits);
1029		} else
1030			start = c;
1031	}
1032
1033	for (i = start + 1; i <= *endnum; i++) {
1034		if (i == *endnum) {
1035			if (lastblock)
1036				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1037		} else if ((laarr[i].extLength >> 30) ==
1038				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1039			length += (((laarr[i].extLength &
1040						UDF_EXTENT_LENGTH_MASK) +
1041				    inode->i_sb->s_blocksize - 1) >>
1042				    inode->i_sb->s_blocksize_bits);
1043		} else
1044			break;
1045	}
1046
1047	if (length) {
1048		int next = laarr[start].extLocation.logicalBlockNum +
1049			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1050			  inode->i_sb->s_blocksize - 1) >>
1051			  inode->i_sb->s_blocksize_bits);
1052		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1053				laarr[start].extLocation.partitionReferenceNum,
1054				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1055				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1056				currlength);
1057		if (numalloc) 	{
1058			if (start == (c + 1))
1059				laarr[start].extLength +=
1060					(numalloc <<
1061					 inode->i_sb->s_blocksize_bits);
1062			else {
1063				memmove(&laarr[c + 2], &laarr[c + 1],
1064					sizeof(struct long_ad) * (*endnum - (c + 1)));
1065				(*endnum)++;
1066				laarr[c + 1].extLocation.logicalBlockNum = next;
1067				laarr[c + 1].extLocation.partitionReferenceNum =
1068					laarr[c].extLocation.
1069							partitionReferenceNum;
1070				laarr[c + 1].extLength =
1071					EXT_NOT_RECORDED_ALLOCATED |
1072					(numalloc <<
1073					 inode->i_sb->s_blocksize_bits);
1074				start = c + 1;
1075			}
1076
1077			for (i = start + 1; numalloc && i < *endnum; i++) {
1078				int elen = ((laarr[i].extLength &
1079						UDF_EXTENT_LENGTH_MASK) +
1080					    inode->i_sb->s_blocksize - 1) >>
1081					    inode->i_sb->s_blocksize_bits;
1082
1083				if (elen > numalloc) {
1084					laarr[i].extLength -=
1085						(numalloc <<
1086						 inode->i_sb->s_blocksize_bits);
1087					numalloc = 0;
1088				} else {
1089					numalloc -= elen;
1090					if (*endnum > (i + 1))
1091						memmove(&laarr[i],
1092							&laarr[i + 1],
1093							sizeof(struct long_ad) *
1094							(*endnum - (i + 1)));
1095					i--;
1096					(*endnum)--;
1097				}
1098			}
1099			UDF_I(inode)->i_lenExtents +=
1100				numalloc << inode->i_sb->s_blocksize_bits;
1101		}
1102	}
1103}
1104
1105static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1106			      int *endnum)
1107{
1108	int i;
1109	unsigned long blocksize = inode->i_sb->s_blocksize;
1110	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1111
1112	for (i = 0; i < (*endnum - 1); i++) {
1113		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1114		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1115
1116		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1117			(((li->extLength >> 30) ==
1118				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1119			((lip1->extLocation.logicalBlockNum -
1120			  li->extLocation.logicalBlockNum) ==
1121			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1122			blocksize - 1) >> blocksize_bits)))) {
1123
1124			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1125			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1126			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127				li->extLength = lip1->extLength +
1128					(((li->extLength &
1129						UDF_EXTENT_LENGTH_MASK) +
1130					 blocksize - 1) & ~(blocksize - 1));
1131				if (*endnum > (i + 2))
1132					memmove(&laarr[i + 1], &laarr[i + 2],
1133						sizeof(struct long_ad) *
1134						(*endnum - (i + 2)));
1135				i--;
1136				(*endnum)--;
1137			}
1138		} else if (((li->extLength >> 30) ==
1139				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1140			   ((lip1->extLength >> 30) ==
1141				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1142			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1143					((li->extLength &
1144					  UDF_EXTENT_LENGTH_MASK) +
1145					 blocksize - 1) >> blocksize_bits);
1146			li->extLocation.logicalBlockNum = 0;
1147			li->extLocation.partitionReferenceNum = 0;
1148
1149			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1150			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1151			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1152				lip1->extLength = (lip1->extLength -
1153						   (li->extLength &
1154						   UDF_EXTENT_LENGTH_MASK) +
1155						   UDF_EXTENT_LENGTH_MASK) &
1156						   ~(blocksize - 1);
1157				li->extLength = (li->extLength &
1158						 UDF_EXTENT_FLAG_MASK) +
1159						(UDF_EXTENT_LENGTH_MASK + 1) -
1160						blocksize;
1161			} else {
1162				li->extLength = lip1->extLength +
1163					(((li->extLength &
1164						UDF_EXTENT_LENGTH_MASK) +
1165					  blocksize - 1) & ~(blocksize - 1));
1166				if (*endnum > (i + 2))
1167					memmove(&laarr[i + 1], &laarr[i + 2],
1168						sizeof(struct long_ad) *
1169						(*endnum - (i + 2)));
1170				i--;
1171				(*endnum)--;
1172			}
1173		} else if ((li->extLength >> 30) ==
1174					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1175			udf_free_blocks(inode->i_sb, inode,
1176					&li->extLocation, 0,
1177					((li->extLength &
1178						UDF_EXTENT_LENGTH_MASK) +
1179					 blocksize - 1) >> blocksize_bits);
1180			li->extLocation.logicalBlockNum = 0;
1181			li->extLocation.partitionReferenceNum = 0;
1182			li->extLength = (li->extLength &
1183						UDF_EXTENT_LENGTH_MASK) |
1184						EXT_NOT_RECORDED_NOT_ALLOCATED;
1185		}
1186	}
1187}
1188
1189static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1190			      int startnum, int endnum,
1191			      struct extent_position *epos)
1192{
1193	int start = 0, i;
1194	struct kernel_lb_addr tmploc;
1195	uint32_t tmplen;
1196	int8_t tmpetype;
1197	int err;
1198
1199	if (startnum > endnum) {
1200		for (i = 0; i < (startnum - endnum); i++)
1201			udf_delete_aext(inode, *epos);
 
1202	} else if (startnum < endnum) {
1203		for (i = 0; i < (endnum - startnum); i++) {
1204			err = udf_insert_aext(inode, *epos,
1205					      laarr[i].extLocation,
1206					      laarr[i].extLength);
1207			/*
1208			 * If we fail here, we are likely corrupting the extent
1209			 * list and leaking blocks. At least stop early to
1210			 * limit the damage.
1211			 */
1212			if (err < 0)
1213				return err;
1214			err = udf_next_aext(inode, epos, &laarr[i].extLocation,
1215				      &laarr[i].extLength, &tmpetype, 1);
1216			if (err < 0)
1217				return err;
1218			start++;
1219		}
1220	}
1221
1222	for (i = start; i < endnum; i++) {
1223		err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0);
1224		if (err < 0)
1225			return err;
1226
1227		udf_write_aext(inode, epos, &laarr[i].extLocation,
1228			       laarr[i].extLength, 1);
1229	}
1230	return 0;
1231}
1232
1233struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1234			      int create, int *err)
1235{
1236	struct buffer_head *bh = NULL;
1237	struct udf_map_rq map = {
1238		.lblk = block,
1239		.iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1240	};
1241
1242	*err = udf_map_block(inode, &map);
1243	if (*err || !(map.oflags & UDF_BLK_MAPPED))
1244		return NULL;
1245
1246	bh = sb_getblk(inode->i_sb, map.pblk);
1247	if (!bh) {
1248		*err = -ENOMEM;
1249		return NULL;
1250	}
1251	if (map.oflags & UDF_BLK_NEW) {
1252		lock_buffer(bh);
1253		memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1254		set_buffer_uptodate(bh);
1255		unlock_buffer(bh);
1256		mark_buffer_dirty_inode(bh, inode);
1257		return bh;
1258	}
1259
1260	if (bh_read(bh, 0) >= 0)
 
 
 
1261		return bh;
1262
1263	brelse(bh);
1264	*err = -EIO;
1265	return NULL;
1266}
1267
1268int udf_setsize(struct inode *inode, loff_t newsize)
1269{
1270	int err = 0;
1271	struct udf_inode_info *iinfo;
1272	unsigned int bsize = i_blocksize(inode);
1273
1274	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1275	      S_ISLNK(inode->i_mode)))
1276		return -EINVAL;
 
 
1277
1278	iinfo = UDF_I(inode);
1279	if (newsize > inode->i_size) {
 
1280		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1281			if (bsize >=
1282			    (udf_file_entry_alloc_offset(inode) + newsize)) {
 
 
 
1283				down_write(&iinfo->i_data_sem);
 
1284				iinfo->i_lenAlloc = newsize;
1285				up_write(&iinfo->i_data_sem);
1286				goto set_size;
1287			}
1288			err = udf_expand_file_adinicb(inode);
1289			if (err)
1290				return err;
1291		}
1292		err = udf_extend_file(inode, newsize);
1293		if (err)
 
1294			return err;
 
1295set_size:
 
1296		truncate_setsize(inode, newsize);
1297	} else {
1298		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1299			down_write(&iinfo->i_data_sem);
1300			udf_clear_extent_cache(inode);
1301			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1302			       0x00, bsize - newsize -
1303			       udf_file_entry_alloc_offset(inode));
1304			iinfo->i_lenAlloc = newsize;
1305			truncate_setsize(inode, newsize);
1306			up_write(&iinfo->i_data_sem);
1307			goto update_time;
1308		}
1309		err = block_truncate_page(inode->i_mapping, newsize,
1310					  udf_get_block);
1311		if (err)
1312			return err;
1313		truncate_setsize(inode, newsize);
1314		down_write(&iinfo->i_data_sem);
1315		udf_clear_extent_cache(inode);
1316		err = udf_truncate_extents(inode);
1317		up_write(&iinfo->i_data_sem);
1318		if (err)
1319			return err;
1320	}
1321update_time:
1322	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1323	if (IS_SYNC(inode))
1324		udf_sync_inode(inode);
1325	else
1326		mark_inode_dirty(inode);
1327	return err;
1328}
1329
1330/*
1331 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1332 * arbitrary - just that we hopefully don't limit any real use of rewritten
1333 * inode on write-once media but avoid looping for too long on corrupted media.
1334 */
1335#define UDF_MAX_ICB_NESTING 1024
1336
1337static int udf_read_inode(struct inode *inode, bool hidden_inode)
1338{
1339	struct buffer_head *bh = NULL;
1340	struct fileEntry *fe;
1341	struct extendedFileEntry *efe;
1342	uint16_t ident;
1343	struct udf_inode_info *iinfo = UDF_I(inode);
1344	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1345	struct kernel_lb_addr *iloc = &iinfo->i_location;
1346	unsigned int link_count;
1347	unsigned int indirections = 0;
1348	int bs = inode->i_sb->s_blocksize;
1349	int ret = -EIO;
1350	uint32_t uid, gid;
1351	struct timespec64 ts;
1352
1353reread:
1354	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1355		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1356			  iloc->partitionReferenceNum, sbi->s_partitions);
1357		return -EIO;
1358	}
1359
1360	if (iloc->logicalBlockNum >=
1361	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1362		udf_debug("block=%u, partition=%u out of range\n",
1363			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1364		return -EIO;
1365	}
1366
1367	/*
1368	 * Set defaults, but the inode is still incomplete!
1369	 * Note: get_new_inode() sets the following on a new inode:
1370	 *      i_sb = sb
1371	 *      i_no = ino
1372	 *      i_flags = sb->s_flags
1373	 *      i_state = 0
1374	 * clean_inode(): zero fills and sets
1375	 *      i_count = 1
1376	 *      i_nlink = 1
1377	 *      i_op = NULL;
1378	 */
1379	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1380	if (!bh) {
1381		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1382		return -EIO;
1383	}
1384
1385	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1386	    ident != TAG_IDENT_USE) {
1387		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1388			inode->i_ino, ident);
1389		goto out;
1390	}
1391
1392	fe = (struct fileEntry *)bh->b_data;
1393	efe = (struct extendedFileEntry *)bh->b_data;
1394
1395	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1396		struct buffer_head *ibh;
1397
1398		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1399		if (ident == TAG_IDENT_IE && ibh) {
1400			struct kernel_lb_addr loc;
1401			struct indirectEntry *ie;
1402
1403			ie = (struct indirectEntry *)ibh->b_data;
1404			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1405
1406			if (ie->indirectICB.extLength) {
1407				brelse(ibh);
1408				memcpy(&iinfo->i_location, &loc,
1409				       sizeof(struct kernel_lb_addr));
1410				if (++indirections > UDF_MAX_ICB_NESTING) {
1411					udf_err(inode->i_sb,
1412						"too many ICBs in ICB hierarchy"
1413						" (max %d supported)\n",
1414						UDF_MAX_ICB_NESTING);
1415					goto out;
1416				}
1417				brelse(bh);
1418				goto reread;
1419			}
1420		}
1421		brelse(ibh);
1422	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1423		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1424			le16_to_cpu(fe->icbTag.strategyType));
1425		goto out;
1426	}
1427	if (fe->icbTag.strategyType == cpu_to_le16(4))
1428		iinfo->i_strat4096 = 0;
1429	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1430		iinfo->i_strat4096 = 1;
1431
1432	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1433							ICBTAG_FLAG_AD_MASK;
1434	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1435	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1436	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1437		ret = -EIO;
1438		goto out;
1439	}
1440	iinfo->i_hidden = hidden_inode;
1441	iinfo->i_unique = 0;
1442	iinfo->i_lenEAttr = 0;
1443	iinfo->i_lenExtents = 0;
1444	iinfo->i_lenAlloc = 0;
1445	iinfo->i_next_alloc_block = 0;
1446	iinfo->i_next_alloc_goal = 0;
1447	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1448		iinfo->i_efe = 1;
1449		iinfo->i_use = 0;
1450		ret = udf_alloc_i_data(inode, bs -
1451					sizeof(struct extendedFileEntry));
1452		if (ret)
1453			goto out;
1454		memcpy(iinfo->i_data,
1455		       bh->b_data + sizeof(struct extendedFileEntry),
1456		       bs - sizeof(struct extendedFileEntry));
1457	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1458		iinfo->i_efe = 0;
1459		iinfo->i_use = 0;
1460		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1461		if (ret)
1462			goto out;
1463		memcpy(iinfo->i_data,
1464		       bh->b_data + sizeof(struct fileEntry),
1465		       bs - sizeof(struct fileEntry));
1466	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1467		iinfo->i_efe = 0;
1468		iinfo->i_use = 1;
1469		iinfo->i_lenAlloc = le32_to_cpu(
1470				((struct unallocSpaceEntry *)bh->b_data)->
1471				 lengthAllocDescs);
1472		ret = udf_alloc_i_data(inode, bs -
1473					sizeof(struct unallocSpaceEntry));
1474		if (ret)
1475			goto out;
1476		memcpy(iinfo->i_data,
1477		       bh->b_data + sizeof(struct unallocSpaceEntry),
1478		       bs - sizeof(struct unallocSpaceEntry));
1479		return 0;
1480	}
1481
1482	ret = -EIO;
1483	read_lock(&sbi->s_cred_lock);
1484	uid = le32_to_cpu(fe->uid);
1485	if (uid == UDF_INVALID_ID ||
1486	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1487		inode->i_uid = sbi->s_uid;
1488	else
1489		i_uid_write(inode, uid);
1490
1491	gid = le32_to_cpu(fe->gid);
1492	if (gid == UDF_INVALID_ID ||
1493	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1494		inode->i_gid = sbi->s_gid;
1495	else
1496		i_gid_write(inode, gid);
1497
1498	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1499			sbi->s_fmode != UDF_INVALID_MODE)
1500		inode->i_mode = sbi->s_fmode;
1501	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1502			sbi->s_dmode != UDF_INVALID_MODE)
1503		inode->i_mode = sbi->s_dmode;
1504	else
1505		inode->i_mode = udf_convert_permissions(fe);
1506	inode->i_mode &= ~sbi->s_umask;
1507	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1508
1509	read_unlock(&sbi->s_cred_lock);
1510
1511	link_count = le16_to_cpu(fe->fileLinkCount);
1512	if (!link_count) {
1513		if (!hidden_inode) {
1514			ret = -ESTALE;
1515			goto out;
1516		}
1517		link_count = 1;
1518	}
1519	set_nlink(inode, link_count);
1520
1521	inode->i_size = le64_to_cpu(fe->informationLength);
1522	iinfo->i_lenExtents = inode->i_size;
1523
1524	if (iinfo->i_efe == 0) {
1525		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1526			(inode->i_sb->s_blocksize_bits - 9);
1527
1528		udf_disk_stamp_to_time(&ts, fe->accessTime);
1529		inode_set_atime_to_ts(inode, ts);
1530		udf_disk_stamp_to_time(&ts, fe->modificationTime);
1531		inode_set_mtime_to_ts(inode, ts);
1532		udf_disk_stamp_to_time(&ts, fe->attrTime);
1533		inode_set_ctime_to_ts(inode, ts);
 
 
 
1534
1535		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1536		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1537		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1538		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1539		iinfo->i_streamdir = 0;
1540		iinfo->i_lenStreams = 0;
1541	} else {
1542		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1543		    (inode->i_sb->s_blocksize_bits - 9);
1544
1545		udf_disk_stamp_to_time(&ts, efe->accessTime);
1546		inode_set_atime_to_ts(inode, ts);
1547		udf_disk_stamp_to_time(&ts, efe->modificationTime);
1548		inode_set_mtime_to_ts(inode, ts);
1549		udf_disk_stamp_to_time(&ts, efe->attrTime);
1550		inode_set_ctime_to_ts(inode, ts);
1551		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
 
 
 
 
 
1552
1553		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1554		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1555		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1556		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1557
1558		/* Named streams */
1559		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1560		iinfo->i_locStreamdir =
1561			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1562		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1563		if (iinfo->i_lenStreams >= inode->i_size)
1564			iinfo->i_lenStreams -= inode->i_size;
1565		else
1566			iinfo->i_lenStreams = 0;
1567	}
1568	inode->i_generation = iinfo->i_unique;
1569
1570	/*
1571	 * Sanity check length of allocation descriptors and extended attrs to
1572	 * avoid integer overflows
1573	 */
1574	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1575		goto out;
1576	/* Now do exact checks */
1577	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1578		goto out;
1579	/* Sanity checks for files in ICB so that we don't get confused later */
1580	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1581		/*
1582		 * For file in ICB data is stored in allocation descriptor
1583		 * so sizes should match
1584		 */
1585		if (iinfo->i_lenAlloc != inode->i_size)
1586			goto out;
1587		/* File in ICB has to fit in there... */
1588		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1589			goto out;
1590	}
1591
1592	switch (fe->icbTag.fileType) {
1593	case ICBTAG_FILE_TYPE_DIRECTORY:
1594		inode->i_op = &udf_dir_inode_operations;
1595		inode->i_fop = &udf_dir_operations;
1596		inode->i_mode |= S_IFDIR;
1597		inc_nlink(inode);
1598		break;
1599	case ICBTAG_FILE_TYPE_REALTIME:
1600	case ICBTAG_FILE_TYPE_REGULAR:
1601	case ICBTAG_FILE_TYPE_UNDEF:
1602	case ICBTAG_FILE_TYPE_VAT20:
1603		inode->i_data.a_ops = &udf_aops;
 
 
 
1604		inode->i_op = &udf_file_inode_operations;
1605		inode->i_fop = &udf_file_operations;
1606		inode->i_mode |= S_IFREG;
1607		break;
1608	case ICBTAG_FILE_TYPE_BLOCK:
1609		inode->i_mode |= S_IFBLK;
1610		break;
1611	case ICBTAG_FILE_TYPE_CHAR:
1612		inode->i_mode |= S_IFCHR;
1613		break;
1614	case ICBTAG_FILE_TYPE_FIFO:
1615		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1616		break;
1617	case ICBTAG_FILE_TYPE_SOCKET:
1618		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1619		break;
1620	case ICBTAG_FILE_TYPE_SYMLINK:
1621		inode->i_data.a_ops = &udf_symlink_aops;
1622		inode->i_op = &udf_symlink_inode_operations;
1623		inode_nohighmem(inode);
1624		inode->i_mode = S_IFLNK | 0777;
1625		break;
1626	case ICBTAG_FILE_TYPE_MAIN:
1627		udf_debug("METADATA FILE-----\n");
1628		break;
1629	case ICBTAG_FILE_TYPE_MIRROR:
1630		udf_debug("METADATA MIRROR FILE-----\n");
1631		break;
1632	case ICBTAG_FILE_TYPE_BITMAP:
1633		udf_debug("METADATA BITMAP FILE-----\n");
1634		break;
1635	default:
1636		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1637			inode->i_ino, fe->icbTag.fileType);
1638		goto out;
1639	}
1640	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1641		struct deviceSpec *dsea =
1642			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1643		if (dsea) {
1644			init_special_inode(inode, inode->i_mode,
1645				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1646				      le32_to_cpu(dsea->minorDeviceIdent)));
1647			/* Developer ID ??? */
1648		} else
1649			goto out;
1650	}
1651	ret = 0;
1652out:
1653	brelse(bh);
1654	return ret;
1655}
1656
1657static int udf_alloc_i_data(struct inode *inode, size_t size)
1658{
1659	struct udf_inode_info *iinfo = UDF_I(inode);
1660	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1661	if (!iinfo->i_data)
1662		return -ENOMEM;
1663	return 0;
1664}
1665
1666static umode_t udf_convert_permissions(struct fileEntry *fe)
1667{
1668	umode_t mode;
1669	uint32_t permissions;
1670	uint32_t flags;
1671
1672	permissions = le32_to_cpu(fe->permissions);
1673	flags = le16_to_cpu(fe->icbTag.flags);
1674
1675	mode =	((permissions) & 0007) |
1676		((permissions >> 2) & 0070) |
1677		((permissions >> 4) & 0700) |
1678		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1679		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1680		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1681
1682	return mode;
1683}
1684
1685void udf_update_extra_perms(struct inode *inode, umode_t mode)
1686{
1687	struct udf_inode_info *iinfo = UDF_I(inode);
1688
1689	/*
1690	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1691	 * In Unix, delete permission tracks write
1692	 */
1693	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1694	if (mode & 0200)
1695		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1696	if (mode & 0020)
1697		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1698	if (mode & 0002)
1699		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1700}
1701
1702int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1703{
1704	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1705}
1706
1707static int udf_sync_inode(struct inode *inode)
1708{
1709	return udf_update_inode(inode, 1);
1710}
1711
1712static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1713{
1714	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1715	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1716	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1717		iinfo->i_crtime = time;
1718}
1719
1720static int udf_update_inode(struct inode *inode, int do_sync)
1721{
1722	struct buffer_head *bh = NULL;
1723	struct fileEntry *fe;
1724	struct extendedFileEntry *efe;
1725	uint64_t lb_recorded;
1726	uint32_t udfperms;
1727	uint16_t icbflags;
1728	uint16_t crclen;
1729	int err = 0;
1730	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1731	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1732	struct udf_inode_info *iinfo = UDF_I(inode);
1733
1734	bh = sb_getblk(inode->i_sb,
1735			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1736	if (!bh) {
1737		udf_debug("getblk failure\n");
1738		return -EIO;
1739	}
1740
1741	lock_buffer(bh);
1742	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1743	fe = (struct fileEntry *)bh->b_data;
1744	efe = (struct extendedFileEntry *)bh->b_data;
1745
1746	if (iinfo->i_use) {
1747		struct unallocSpaceEntry *use =
1748			(struct unallocSpaceEntry *)bh->b_data;
1749
1750		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1751		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1752		       iinfo->i_data, inode->i_sb->s_blocksize -
1753					sizeof(struct unallocSpaceEntry));
1754		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1755		crclen = sizeof(struct unallocSpaceEntry);
1756
1757		goto finish;
1758	}
1759
1760	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1761		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1762	else
1763		fe->uid = cpu_to_le32(i_uid_read(inode));
1764
1765	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1766		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1767	else
1768		fe->gid = cpu_to_le32(i_gid_read(inode));
1769
1770	udfperms = ((inode->i_mode & 0007)) |
1771		   ((inode->i_mode & 0070) << 2) |
1772		   ((inode->i_mode & 0700) << 4);
1773
1774	udfperms |= iinfo->i_extraPerms;
 
 
 
1775	fe->permissions = cpu_to_le32(udfperms);
1776
1777	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1778		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1779	else {
1780		if (iinfo->i_hidden)
1781			fe->fileLinkCount = cpu_to_le16(0);
1782		else
1783			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1784	}
1785
1786	fe->informationLength = cpu_to_le64(inode->i_size);
1787
1788	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1789		struct regid *eid;
1790		struct deviceSpec *dsea =
1791			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1792		if (!dsea) {
1793			dsea = (struct deviceSpec *)
1794				udf_add_extendedattr(inode,
1795						     sizeof(struct deviceSpec) +
1796						     sizeof(struct regid), 12, 0x3);
1797			dsea->attrType = cpu_to_le32(12);
1798			dsea->attrSubtype = 1;
1799			dsea->attrLength = cpu_to_le32(
1800						sizeof(struct deviceSpec) +
1801						sizeof(struct regid));
1802			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1803		}
1804		eid = (struct regid *)dsea->impUse;
1805		memset(eid, 0, sizeof(*eid));
1806		strcpy(eid->ident, UDF_ID_DEVELOPER);
1807		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1808		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1809		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1810		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1811	}
1812
1813	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1814		lb_recorded = 0; /* No extents => no blocks! */
1815	else
1816		lb_recorded =
1817			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1818			(blocksize_bits - 9);
1819
1820	if (iinfo->i_efe == 0) {
1821		memcpy(bh->b_data + sizeof(struct fileEntry),
1822		       iinfo->i_data,
1823		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1824		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1825
1826		udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1827		udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1828		udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1829		memset(&(fe->impIdent), 0, sizeof(struct regid));
1830		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1831		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1832		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1833		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1834		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1835		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1836		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1837		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1838		crclen = sizeof(struct fileEntry);
1839	} else {
1840		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1841		       iinfo->i_data,
1842		       inode->i_sb->s_blocksize -
1843					sizeof(struct extendedFileEntry));
1844		efe->objectSize =
1845			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1846		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1847
1848		if (iinfo->i_streamdir) {
1849			struct long_ad *icb_lad = &efe->streamDirectoryICB;
 
1850
1851			icb_lad->extLocation =
1852				cpu_to_lelb(iinfo->i_locStreamdir);
1853			icb_lad->extLength =
1854				cpu_to_le32(inode->i_sb->s_blocksize);
1855		}
1856
1857		udf_adjust_time(iinfo, inode_get_atime(inode));
1858		udf_adjust_time(iinfo, inode_get_mtime(inode));
1859		udf_adjust_time(iinfo, inode_get_ctime(inode));
1860
1861		udf_time_to_disk_stamp(&efe->accessTime,
1862				       inode_get_atime(inode));
1863		udf_time_to_disk_stamp(&efe->modificationTime,
1864				       inode_get_mtime(inode));
1865		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1866		udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1867
1868		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1869		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1870		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1871		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1872		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1873		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1874		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1875		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1876		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1877		crclen = sizeof(struct extendedFileEntry);
1878	}
1879
1880finish:
1881	if (iinfo->i_strat4096) {
1882		fe->icbTag.strategyType = cpu_to_le16(4096);
1883		fe->icbTag.strategyParameter = cpu_to_le16(1);
1884		fe->icbTag.numEntries = cpu_to_le16(2);
1885	} else {
1886		fe->icbTag.strategyType = cpu_to_le16(4);
1887		fe->icbTag.numEntries = cpu_to_le16(1);
1888	}
1889
1890	if (iinfo->i_use)
1891		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1892	else if (S_ISDIR(inode->i_mode))
1893		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1894	else if (S_ISREG(inode->i_mode))
1895		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1896	else if (S_ISLNK(inode->i_mode))
1897		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1898	else if (S_ISBLK(inode->i_mode))
1899		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1900	else if (S_ISCHR(inode->i_mode))
1901		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1902	else if (S_ISFIFO(inode->i_mode))
1903		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1904	else if (S_ISSOCK(inode->i_mode))
1905		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1906
1907	icbflags =	iinfo->i_alloc_type |
1908			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1909			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1910			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1911			(le16_to_cpu(fe->icbTag.flags) &
1912				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1913				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1914
1915	fe->icbTag.flags = cpu_to_le16(icbflags);
1916	if (sbi->s_udfrev >= 0x0200)
1917		fe->descTag.descVersion = cpu_to_le16(3);
1918	else
1919		fe->descTag.descVersion = cpu_to_le16(2);
1920	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1921	fe->descTag.tagLocation = cpu_to_le32(
1922					iinfo->i_location.logicalBlockNum);
1923	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1924	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1925	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1926						  crclen));
1927	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1928
1929	set_buffer_uptodate(bh);
1930	unlock_buffer(bh);
1931
1932	/* write the data blocks */
1933	mark_buffer_dirty(bh);
1934	if (do_sync) {
1935		sync_dirty_buffer(bh);
1936		if (buffer_write_io_error(bh)) {
1937			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1938				 inode->i_ino);
1939			err = -EIO;
1940		}
1941	}
1942	brelse(bh);
1943
1944	return err;
1945}
1946
1947struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1948			 bool hidden_inode)
1949{
1950	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1951	struct inode *inode = iget_locked(sb, block);
1952	int err;
1953
1954	if (!inode)
1955		return ERR_PTR(-ENOMEM);
1956
1957	if (!(inode->i_state & I_NEW)) {
1958		if (UDF_I(inode)->i_hidden != hidden_inode) {
1959			iput(inode);
1960			return ERR_PTR(-EFSCORRUPTED);
1961		}
1962		return inode;
1963	}
1964
1965	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1966	err = udf_read_inode(inode, hidden_inode);
1967	if (err < 0) {
1968		iget_failed(inode);
1969		return ERR_PTR(err);
1970	}
1971	unlock_new_inode(inode);
1972
1973	return inode;
1974}
1975
1976int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1977			    struct extent_position *epos)
1978{
1979	struct super_block *sb = inode->i_sb;
1980	struct buffer_head *bh;
1981	struct allocExtDesc *aed;
1982	struct extent_position nepos;
1983	struct kernel_lb_addr neloc;
1984	int ver, adsize;
1985	int err = 0;
1986
1987	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1988		adsize = sizeof(struct short_ad);
1989	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1990		adsize = sizeof(struct long_ad);
1991	else
1992		return -EIO;
1993
1994	neloc.logicalBlockNum = block;
1995	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1996
1997	bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1998	if (!bh)
1999		return -EIO;
2000	lock_buffer(bh);
2001	memset(bh->b_data, 0x00, sb->s_blocksize);
2002	set_buffer_uptodate(bh);
2003	unlock_buffer(bh);
2004	mark_buffer_dirty_inode(bh, inode);
2005
2006	aed = (struct allocExtDesc *)(bh->b_data);
2007	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
2008		aed->previousAllocExtLocation =
2009				cpu_to_le32(epos->block.logicalBlockNum);
2010	}
2011	aed->lengthAllocDescs = cpu_to_le32(0);
2012	if (UDF_SB(sb)->s_udfrev >= 0x0200)
2013		ver = 3;
2014	else
2015		ver = 2;
2016	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
2017		    sizeof(struct tag));
2018
2019	nepos.block = neloc;
2020	nepos.offset = sizeof(struct allocExtDesc);
2021	nepos.bh = bh;
2022
2023	/*
2024	 * Do we have to copy current last extent to make space for indirect
2025	 * one?
2026	 */
2027	if (epos->offset + adsize > sb->s_blocksize) {
2028		struct kernel_lb_addr cp_loc;
2029		uint32_t cp_len;
2030		int8_t cp_type;
2031
2032		epos->offset -= adsize;
2033		err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0);
2034		if (err <= 0)
2035			goto err_out;
2036		cp_len |= ((uint32_t)cp_type) << 30;
2037
2038		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2039		udf_write_aext(inode, epos, &nepos.block,
2040			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2041	} else {
2042		__udf_add_aext(inode, epos, &nepos.block,
2043			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2044	}
2045
2046	brelse(epos->bh);
2047	*epos = nepos;
2048
2049	return 0;
2050err_out:
2051	brelse(bh);
2052	return err;
2053}
2054
2055/*
2056 * Append extent at the given position - should be the first free one in inode
2057 * / indirect extent. This function assumes there is enough space in the inode
2058 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2059 */
2060int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2061		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2062{
2063	struct udf_inode_info *iinfo = UDF_I(inode);
2064	struct allocExtDesc *aed;
2065	int adsize;
2066
2067	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2068		adsize = sizeof(struct short_ad);
2069	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2070		adsize = sizeof(struct long_ad);
2071	else
2072		return -EIO;
2073
2074	if (!epos->bh) {
2075		WARN_ON(iinfo->i_lenAlloc !=
2076			epos->offset - udf_file_entry_alloc_offset(inode));
2077	} else {
2078		aed = (struct allocExtDesc *)epos->bh->b_data;
2079		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2080			epos->offset - sizeof(struct allocExtDesc));
2081		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2082	}
2083
2084	udf_write_aext(inode, epos, eloc, elen, inc);
2085
2086	if (!epos->bh) {
2087		iinfo->i_lenAlloc += adsize;
2088		mark_inode_dirty(inode);
2089	} else {
2090		aed = (struct allocExtDesc *)epos->bh->b_data;
2091		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2092		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2093				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2094			udf_update_tag(epos->bh->b_data,
2095					epos->offset + (inc ? 0 : adsize));
2096		else
2097			udf_update_tag(epos->bh->b_data,
2098					sizeof(struct allocExtDesc));
2099		mark_buffer_dirty_inode(epos->bh, inode);
2100	}
2101
2102	return 0;
2103}
2104
2105/*
2106 * Append extent at given position - should be the first free one in inode
2107 * / indirect extent. Takes care of allocating and linking indirect blocks.
2108 */
2109int udf_add_aext(struct inode *inode, struct extent_position *epos,
2110		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2111{
2112	int adsize;
2113	struct super_block *sb = inode->i_sb;
2114
2115	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2116		adsize = sizeof(struct short_ad);
2117	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2118		adsize = sizeof(struct long_ad);
2119	else
2120		return -EIO;
2121
2122	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2123		int err;
2124		udf_pblk_t new_block;
2125
2126		new_block = udf_new_block(sb, NULL,
2127					  epos->block.partitionReferenceNum,
2128					  epos->block.logicalBlockNum, &err);
2129		if (!new_block)
2130			return -ENOSPC;
2131
2132		err = udf_setup_indirect_aext(inode, new_block, epos);
2133		if (err)
2134			return err;
2135	}
2136
2137	return __udf_add_aext(inode, epos, eloc, elen, inc);
2138}
2139
2140void udf_write_aext(struct inode *inode, struct extent_position *epos,
2141		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2142{
2143	int adsize;
2144	uint8_t *ptr;
2145	struct short_ad *sad;
2146	struct long_ad *lad;
2147	struct udf_inode_info *iinfo = UDF_I(inode);
2148
2149	if (!epos->bh)
2150		ptr = iinfo->i_data + epos->offset -
2151			udf_file_entry_alloc_offset(inode) +
2152			iinfo->i_lenEAttr;
2153	else
2154		ptr = epos->bh->b_data + epos->offset;
2155
2156	switch (iinfo->i_alloc_type) {
2157	case ICBTAG_FLAG_AD_SHORT:
2158		sad = (struct short_ad *)ptr;
2159		sad->extLength = cpu_to_le32(elen);
2160		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2161		adsize = sizeof(struct short_ad);
2162		break;
2163	case ICBTAG_FLAG_AD_LONG:
2164		lad = (struct long_ad *)ptr;
2165		lad->extLength = cpu_to_le32(elen);
2166		lad->extLocation = cpu_to_lelb(*eloc);
2167		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2168		adsize = sizeof(struct long_ad);
2169		break;
2170	default:
2171		return;
2172	}
2173
2174	if (epos->bh) {
2175		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2176		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2177			struct allocExtDesc *aed =
2178				(struct allocExtDesc *)epos->bh->b_data;
2179			udf_update_tag(epos->bh->b_data,
2180				       le32_to_cpu(aed->lengthAllocDescs) +
2181				       sizeof(struct allocExtDesc));
2182		}
2183		mark_buffer_dirty_inode(epos->bh, inode);
2184	} else {
2185		mark_inode_dirty(inode);
2186	}
2187
2188	if (inc)
2189		epos->offset += adsize;
2190}
2191
2192/*
2193 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2194 * someone does some weird stuff.
2195 */
2196#define UDF_MAX_INDIR_EXTS 16
2197
2198/*
2199 * Returns 1 on success, -errno on error, 0 on hit EOF.
2200 */
2201int udf_next_aext(struct inode *inode, struct extent_position *epos,
2202		  struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2203		  int inc)
2204{
 
2205	unsigned int indirections = 0;
2206	int ret = 0;
2207	udf_pblk_t block;
2208
2209	while (1) {
2210		ret = udf_current_aext(inode, epos, eloc, elen,
2211				       etype, inc);
2212		if (ret <= 0)
2213			return ret;
2214		if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30))
2215			return ret;
2216
2217		if (++indirections > UDF_MAX_INDIR_EXTS) {
2218			udf_err(inode->i_sb,
2219				"too many indirect extents in inode %lu\n",
2220				inode->i_ino);
2221			return -EFSCORRUPTED;
2222		}
2223
2224		epos->block = *eloc;
2225		epos->offset = sizeof(struct allocExtDesc);
2226		brelse(epos->bh);
2227		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2228		epos->bh = sb_bread(inode->i_sb, block);
2229		if (!epos->bh) {
2230			udf_debug("reading block %u failed!\n", block);
2231			return -EIO;
2232		}
2233	}
 
 
2234}
2235
2236/*
2237 * Returns 1 on success, -errno on error, 0 on hit EOF.
2238 */
2239int udf_current_aext(struct inode *inode, struct extent_position *epos,
2240		     struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2241		     int inc)
2242{
2243	int alen;
 
2244	uint8_t *ptr;
2245	struct short_ad *sad;
2246	struct long_ad *lad;
2247	struct udf_inode_info *iinfo = UDF_I(inode);
2248
2249	if (!epos->bh) {
2250		if (!epos->offset)
2251			epos->offset = udf_file_entry_alloc_offset(inode);
2252		ptr = iinfo->i_data + epos->offset -
2253			udf_file_entry_alloc_offset(inode) +
2254			iinfo->i_lenEAttr;
2255		alen = udf_file_entry_alloc_offset(inode) +
2256							iinfo->i_lenAlloc;
2257	} else {
2258		struct allocExtDesc *header =
2259			(struct allocExtDesc *)epos->bh->b_data;
2260
2261		if (!epos->offset)
2262			epos->offset = sizeof(struct allocExtDesc);
2263		ptr = epos->bh->b_data + epos->offset;
2264		if (check_add_overflow(sizeof(struct allocExtDesc),
2265				le32_to_cpu(header->lengthAllocDescs), &alen))
2266			return -1;
2267	}
2268
2269	switch (iinfo->i_alloc_type) {
2270	case ICBTAG_FLAG_AD_SHORT:
2271		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2272		if (!sad)
2273			return 0;
2274		*etype = le32_to_cpu(sad->extLength) >> 30;
2275		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2276		eloc->partitionReferenceNum =
2277				iinfo->i_location.partitionReferenceNum;
2278		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2279		break;
2280	case ICBTAG_FLAG_AD_LONG:
2281		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2282		if (!lad)
2283			return 0;
2284		*etype = le32_to_cpu(lad->extLength) >> 30;
2285		*eloc = lelb_to_cpu(lad->extLocation);
2286		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2287		break;
2288	default:
2289		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2290		return -EINVAL;
2291	}
2292
2293	return 1;
2294}
2295
2296static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2297			   struct kernel_lb_addr neloc, uint32_t nelen)
2298{
2299	struct kernel_lb_addr oeloc;
2300	uint32_t oelen;
2301	int8_t etype;
2302	int ret;
2303
2304	if (epos.bh)
2305		get_bh(epos.bh);
2306
2307	while (1) {
2308		ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0);
2309		if (ret <= 0)
2310			break;
2311		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2312		neloc = oeloc;
2313		nelen = (etype << 30) | oelen;
2314	}
2315	if (ret == 0)
2316		ret = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2317	brelse(epos.bh);
2318
2319	return ret;
2320}
2321
2322int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
 
2323{
2324	struct extent_position oepos;
2325	int adsize;
2326	int8_t etype;
2327	struct allocExtDesc *aed;
2328	struct udf_inode_info *iinfo;
2329	struct kernel_lb_addr eloc;
2330	uint32_t elen;
2331	int ret;
2332
2333	if (epos.bh) {
2334		get_bh(epos.bh);
2335		get_bh(epos.bh);
2336	}
2337
2338	iinfo = UDF_I(inode);
2339	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2340		adsize = sizeof(struct short_ad);
2341	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2342		adsize = sizeof(struct long_ad);
2343	else
2344		adsize = 0;
2345
2346	oepos = epos;
2347	if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0)
2348		return -1;
2349
2350	while (1) {
2351		ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1);
2352		if (ret < 0) {
2353			brelse(epos.bh);
2354			brelse(oepos.bh);
2355			return -1;
2356		}
2357		if (ret == 0)
2358			break;
2359		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2360		if (oepos.bh != epos.bh) {
2361			oepos.block = epos.block;
2362			brelse(oepos.bh);
2363			get_bh(epos.bh);
2364			oepos.bh = epos.bh;
2365			oepos.offset = epos.offset - adsize;
2366		}
2367	}
2368	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2369	elen = 0;
2370
2371	if (epos.bh != oepos.bh) {
2372		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2373		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2374		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2375		if (!oepos.bh) {
2376			iinfo->i_lenAlloc -= (adsize * 2);
2377			mark_inode_dirty(inode);
2378		} else {
2379			aed = (struct allocExtDesc *)oepos.bh->b_data;
2380			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2381			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2382			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2383				udf_update_tag(oepos.bh->b_data,
2384						oepos.offset - (2 * adsize));
2385			else
2386				udf_update_tag(oepos.bh->b_data,
2387						sizeof(struct allocExtDesc));
2388			mark_buffer_dirty_inode(oepos.bh, inode);
2389		}
2390	} else {
2391		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2392		if (!oepos.bh) {
2393			iinfo->i_lenAlloc -= adsize;
2394			mark_inode_dirty(inode);
2395		} else {
2396			aed = (struct allocExtDesc *)oepos.bh->b_data;
2397			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2398			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2399			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2400				udf_update_tag(oepos.bh->b_data,
2401						epos.offset - adsize);
2402			else
2403				udf_update_tag(oepos.bh->b_data,
2404						sizeof(struct allocExtDesc));
2405			mark_buffer_dirty_inode(oepos.bh, inode);
2406		}
2407	}
2408
2409	brelse(epos.bh);
2410	brelse(oepos.bh);
2411
2412	return (elen >> 30);
2413}
2414
2415/*
2416 * Returns 1 on success, -errno on error, 0 on hit EOF.
2417 */
2418int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos,
2419	       struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset,
2420	       int8_t *etype)
2421{
2422	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2423	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
 
2424	struct udf_inode_info *iinfo;
2425	int err = 0;
2426
2427	iinfo = UDF_I(inode);
2428	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2429		pos->offset = 0;
2430		pos->block = iinfo->i_location;
2431		pos->bh = NULL;
2432	}
2433	*elen = 0;
2434	do {
2435		err = udf_next_aext(inode, pos, eloc, elen, etype, 1);
2436		if (err <= 0) {
2437			if (err == 0) {
2438				*offset = (bcount - lbcount) >> blocksize_bits;
2439				iinfo->i_lenExtents = lbcount;
2440			}
2441			return err;
2442		}
2443		lbcount += *elen;
2444	} while (lbcount <= bcount);
2445	/* update extent cache */
2446	udf_update_extent_cache(inode, lbcount - *elen, pos);
2447	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2448
2449	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2450}
v4.17
 
   1/*
   2 * inode.c
   3 *
   4 * PURPOSE
   5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
   6 *
   7 * COPYRIGHT
   8 *  This file is distributed under the terms of the GNU General Public
   9 *  License (GPL). Copies of the GPL can be obtained from:
  10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
  11 *  Each contributing author retains all rights to their own work.
  12 *
  13 *  (C) 1998 Dave Boynton
  14 *  (C) 1998-2004 Ben Fennema
  15 *  (C) 1999-2000 Stelias Computing Inc
  16 *
  17 * HISTORY
  18 *
  19 *  10/04/98 dgb  Added rudimentary directory functions
  20 *  10/07/98      Fully working udf_block_map! It works!
  21 *  11/25/98      bmap altered to better support extents
  22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
  23 *                and udf_read_inode
  24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
  25 *                block boundaries (which is not actually allowed)
  26 *  12/20/98      added support for strategy 4096
  27 *  03/07/99      rewrote udf_block_map (again)
  28 *                New funcs, inode_bmap, udf_next_aext
  29 *  04/19/99      Support for writing device EA's for major/minor #
  30 */
  31
  32#include "udfdecl.h"
  33#include <linux/mm.h>
  34#include <linux/module.h>
  35#include <linux/pagemap.h>
  36#include <linux/writeback.h>
  37#include <linux/slab.h>
  38#include <linux/crc-itu-t.h>
  39#include <linux/mpage.h>
  40#include <linux/uio.h>
  41#include <linux/bio.h>
  42
  43#include "udf_i.h"
  44#include "udf_sb.h"
  45
  46#define EXTENT_MERGE_SIZE 5
  47
 
 
 
 
 
 
 
 
 
  48static umode_t udf_convert_permissions(struct fileEntry *);
  49static int udf_update_inode(struct inode *, int);
  50static int udf_sync_inode(struct inode *inode);
  51static int udf_alloc_i_data(struct inode *inode, size_t size);
  52static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
  53static int8_t udf_insert_aext(struct inode *, struct extent_position,
  54			      struct kernel_lb_addr, uint32_t);
  55static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
  56			      struct kernel_long_ad *, int *);
  57static void udf_prealloc_extents(struct inode *, int, int,
  58				 struct kernel_long_ad *, int *);
  59static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
  60static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
  61			       int, struct extent_position *);
  62static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
 
  63
  64static void __udf_clear_extent_cache(struct inode *inode)
  65{
  66	struct udf_inode_info *iinfo = UDF_I(inode);
  67
  68	if (iinfo->cached_extent.lstart != -1) {
  69		brelse(iinfo->cached_extent.epos.bh);
  70		iinfo->cached_extent.lstart = -1;
  71	}
  72}
  73
  74/* Invalidate extent cache */
  75static void udf_clear_extent_cache(struct inode *inode)
  76{
  77	struct udf_inode_info *iinfo = UDF_I(inode);
  78
  79	spin_lock(&iinfo->i_extent_cache_lock);
  80	__udf_clear_extent_cache(inode);
  81	spin_unlock(&iinfo->i_extent_cache_lock);
  82}
  83
  84/* Return contents of extent cache */
  85static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
  86				 loff_t *lbcount, struct extent_position *pos)
  87{
  88	struct udf_inode_info *iinfo = UDF_I(inode);
  89	int ret = 0;
  90
  91	spin_lock(&iinfo->i_extent_cache_lock);
  92	if ((iinfo->cached_extent.lstart <= bcount) &&
  93	    (iinfo->cached_extent.lstart != -1)) {
  94		/* Cache hit */
  95		*lbcount = iinfo->cached_extent.lstart;
  96		memcpy(pos, &iinfo->cached_extent.epos,
  97		       sizeof(struct extent_position));
  98		if (pos->bh)
  99			get_bh(pos->bh);
 100		ret = 1;
 101	}
 102	spin_unlock(&iinfo->i_extent_cache_lock);
 103	return ret;
 104}
 105
 106/* Add extent to extent cache */
 107static void udf_update_extent_cache(struct inode *inode, loff_t estart,
 108				    struct extent_position *pos)
 109{
 110	struct udf_inode_info *iinfo = UDF_I(inode);
 111
 112	spin_lock(&iinfo->i_extent_cache_lock);
 113	/* Invalidate previously cached extent */
 114	__udf_clear_extent_cache(inode);
 115	if (pos->bh)
 116		get_bh(pos->bh);
 117	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
 118	iinfo->cached_extent.lstart = estart;
 119	switch (iinfo->i_alloc_type) {
 120	case ICBTAG_FLAG_AD_SHORT:
 121		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
 122		break;
 123	case ICBTAG_FLAG_AD_LONG:
 124		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
 125		break;
 126	}
 127	spin_unlock(&iinfo->i_extent_cache_lock);
 128}
 129
 130void udf_evict_inode(struct inode *inode)
 131{
 132	struct udf_inode_info *iinfo = UDF_I(inode);
 133	int want_delete = 0;
 134
 135	if (!inode->i_nlink && !is_bad_inode(inode)) {
 136		want_delete = 1;
 137		udf_setsize(inode, 0);
 138		udf_update_inode(inode, IS_SYNC(inode));
 
 
 
 
 
 
 
 
 
 
 139	}
 140	truncate_inode_pages_final(&inode->i_data);
 141	invalidate_inode_buffers(inode);
 142	clear_inode(inode);
 143	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
 144	    inode->i_size != iinfo->i_lenExtents) {
 145		udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
 146			 inode->i_ino, inode->i_mode,
 147			 (unsigned long long)inode->i_size,
 148			 (unsigned long long)iinfo->i_lenExtents);
 149	}
 150	kfree(iinfo->i_ext.i_data);
 151	iinfo->i_ext.i_data = NULL;
 152	udf_clear_extent_cache(inode);
 153	if (want_delete) {
 154		udf_free_inode(inode);
 155	}
 156}
 157
 158static void udf_write_failed(struct address_space *mapping, loff_t to)
 159{
 160	struct inode *inode = mapping->host;
 161	struct udf_inode_info *iinfo = UDF_I(inode);
 162	loff_t isize = inode->i_size;
 163
 164	if (to > isize) {
 165		truncate_pagecache(inode, isize);
 166		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
 167			down_write(&iinfo->i_data_sem);
 168			udf_clear_extent_cache(inode);
 169			udf_truncate_extents(inode);
 170			up_write(&iinfo->i_data_sem);
 171		}
 172	}
 173}
 174
 175static int udf_writepage(struct page *page, struct writeback_control *wbc)
 
 176{
 177	return block_write_full_page(page, udf_get_block, wbc);
 
 
 
 
 
 
 
 
 
 
 178}
 179
 180static int udf_writepages(struct address_space *mapping,
 181			struct writeback_control *wbc)
 182{
 183	return mpage_writepages(mapping, wbc, udf_get_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 184}
 185
 186static int udf_readpage(struct file *file, struct page *page)
 187{
 188	return mpage_readpage(page, udf_get_block);
 
 
 
 
 
 
 
 189}
 190
 191static int udf_readpages(struct file *file, struct address_space *mapping,
 192			struct list_head *pages, unsigned nr_pages)
 193{
 194	return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
 
 
 
 
 
 
 
 
 
 195}
 196
 197static int udf_write_begin(struct file *file, struct address_space *mapping,
 198			loff_t pos, unsigned len, unsigned flags,
 199			struct page **pagep, void **fsdata)
 200{
 
 
 201	int ret;
 202
 203	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
 204	if (unlikely(ret))
 205		udf_write_failed(mapping, pos + len);
 206	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 207}
 208
 209static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
 210{
 211	struct file *file = iocb->ki_filp;
 212	struct address_space *mapping = file->f_mapping;
 213	struct inode *inode = mapping->host;
 214	size_t count = iov_iter_count(iter);
 215	ssize_t ret;
 216
 
 
 
 217	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
 218	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
 219		udf_write_failed(mapping, iocb->ki_pos + count);
 220	return ret;
 221}
 222
 223static sector_t udf_bmap(struct address_space *mapping, sector_t block)
 224{
 
 
 
 
 225	return generic_block_bmap(mapping, block, udf_get_block);
 226}
 227
 228const struct address_space_operations udf_aops = {
 229	.readpage	= udf_readpage,
 230	.readpages	= udf_readpages,
 231	.writepage	= udf_writepage,
 
 232	.writepages	= udf_writepages,
 233	.write_begin	= udf_write_begin,
 234	.write_end	= generic_write_end,
 235	.direct_IO	= udf_direct_IO,
 236	.bmap		= udf_bmap,
 
 237};
 238
 239/*
 240 * Expand file stored in ICB to a normal one-block-file
 241 *
 242 * This function requires i_data_sem for writing and releases it.
 243 * This function requires i_mutex held
 244 */
 245int udf_expand_file_adinicb(struct inode *inode)
 246{
 247	struct page *page;
 248	char *kaddr;
 249	struct udf_inode_info *iinfo = UDF_I(inode);
 250	int err;
 251	struct writeback_control udf_wbc = {
 252		.sync_mode = WB_SYNC_NONE,
 253		.nr_to_write = 1,
 254	};
 255
 256	WARN_ON_ONCE(!inode_is_locked(inode));
 257	if (!iinfo->i_lenAlloc) {
 
 258		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 259			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 260		else
 261			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 262		/* from now on we have normal address_space methods */
 263		inode->i_data.a_ops = &udf_aops;
 264		up_write(&iinfo->i_data_sem);
 265		mark_inode_dirty(inode);
 266		return 0;
 267	}
 268	/*
 269	 * Release i_data_sem so that we can lock a page - page lock ranks
 270	 * above i_data_sem. i_mutex still protects us against file changes.
 271	 */
 272	up_write(&iinfo->i_data_sem);
 273
 274	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
 275	if (!page)
 276		return -ENOMEM;
 
 277
 278	if (!PageUptodate(page)) {
 279		kaddr = kmap_atomic(page);
 280		memset(kaddr + iinfo->i_lenAlloc, 0x00,
 281		       PAGE_SIZE - iinfo->i_lenAlloc);
 282		memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
 283			iinfo->i_lenAlloc);
 284		flush_dcache_page(page);
 285		SetPageUptodate(page);
 286		kunmap_atomic(kaddr);
 287	}
 288	down_write(&iinfo->i_data_sem);
 289	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
 290	       iinfo->i_lenAlloc);
 291	iinfo->i_lenAlloc = 0;
 292	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 293		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
 294	else
 295		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
 296	/* from now on we have normal address_space methods */
 297	inode->i_data.a_ops = &udf_aops;
 298	up_write(&iinfo->i_data_sem);
 299	err = inode->i_data.a_ops->writepage(page, &udf_wbc);
 300	if (err) {
 301		/* Restore everything back so that we don't lose data... */
 302		lock_page(page);
 303		down_write(&iinfo->i_data_sem);
 304		kaddr = kmap_atomic(page);
 305		memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
 306		       inode->i_size);
 307		kunmap_atomic(kaddr);
 308		unlock_page(page);
 309		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 310		inode->i_data.a_ops = &udf_adinicb_aops;
 311		up_write(&iinfo->i_data_sem);
 312	}
 313	put_page(page);
 314	mark_inode_dirty(inode);
 315
 316	return err;
 317}
 318
 319struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
 320					    udf_pblk_t *block, int *err)
 
 
 
 
 
 
 
 
 
 
 
 
 321{
 322	udf_pblk_t newblock;
 323	struct buffer_head *dbh = NULL;
 324	struct kernel_lb_addr eloc;
 325	uint8_t alloctype;
 326	struct extent_position epos;
 327
 328	struct udf_fileident_bh sfibh, dfibh;
 329	loff_t f_pos = udf_ext0_offset(inode);
 330	int size = udf_ext0_offset(inode) + inode->i_size;
 331	struct fileIdentDesc cfi, *sfi, *dfi;
 332	struct udf_inode_info *iinfo = UDF_I(inode);
 333
 334	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
 335		alloctype = ICBTAG_FLAG_AD_SHORT;
 336	else
 337		alloctype = ICBTAG_FLAG_AD_LONG;
 338
 339	if (!inode->i_size) {
 340		iinfo->i_alloc_type = alloctype;
 341		mark_inode_dirty(inode);
 342		return NULL;
 343	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344
 345	/* alloc block, and copy data to it */
 346	*block = udf_new_block(inode->i_sb, inode,
 347			       iinfo->i_location.partitionReferenceNum,
 348			       iinfo->i_location.logicalBlockNum, err);
 349	if (!(*block))
 350		return NULL;
 351	newblock = udf_get_pblock(inode->i_sb, *block,
 352				  iinfo->i_location.partitionReferenceNum,
 353				0);
 354	if (!newblock)
 355		return NULL;
 356	dbh = udf_tgetblk(inode->i_sb, newblock);
 357	if (!dbh)
 358		return NULL;
 359	lock_buffer(dbh);
 360	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
 361	set_buffer_uptodate(dbh);
 362	unlock_buffer(dbh);
 363	mark_buffer_dirty_inode(dbh, inode);
 364
 365	sfibh.soffset = sfibh.eoffset =
 366			f_pos & (inode->i_sb->s_blocksize - 1);
 367	sfibh.sbh = sfibh.ebh = NULL;
 368	dfibh.soffset = dfibh.eoffset = 0;
 369	dfibh.sbh = dfibh.ebh = dbh;
 370	while (f_pos < size) {
 371		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 372		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
 373					 NULL, NULL, NULL);
 374		if (!sfi) {
 375			brelse(dbh);
 376			return NULL;
 377		}
 378		iinfo->i_alloc_type = alloctype;
 379		sfi->descTag.tagLocation = cpu_to_le32(*block);
 380		dfibh.soffset = dfibh.eoffset;
 381		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
 382		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
 383		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
 384				 sfi->fileIdent +
 385					le16_to_cpu(sfi->lengthOfImpUse))) {
 386			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
 387			brelse(dbh);
 388			return NULL;
 389		}
 390	}
 391	mark_buffer_dirty_inode(dbh, inode);
 392
 393	memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
 394		iinfo->i_lenAlloc);
 395	iinfo->i_lenAlloc = 0;
 396	eloc.logicalBlockNum = *block;
 397	eloc.partitionReferenceNum =
 398				iinfo->i_location.partitionReferenceNum;
 399	iinfo->i_lenExtents = inode->i_size;
 400	epos.bh = NULL;
 401	epos.block = iinfo->i_location;
 402	epos.offset = udf_file_entry_alloc_offset(inode);
 403	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
 404	/* UniqueID stuff */
 405
 406	brelse(epos.bh);
 407	mark_inode_dirty(inode);
 408	return dbh;
 409}
 410
 411static int udf_get_block(struct inode *inode, sector_t block,
 412			 struct buffer_head *bh_result, int create)
 413{
 414	int err, new;
 415	sector_t phys = 0;
 416	struct udf_inode_info *iinfo;
 
 
 417
 418	if (!create) {
 419		phys = udf_block_map(inode, block);
 420		if (phys)
 421			map_bh(bh_result, inode->i_sb, phys);
 422		return 0;
 
 
 423	}
 
 
 424
 425	err = -EIO;
 426	new = 0;
 427	iinfo = UDF_I(inode);
 
 428
 429	down_write(&iinfo->i_data_sem);
 430	if (block == iinfo->i_next_alloc_block + 1) {
 431		iinfo->i_next_alloc_block++;
 432		iinfo->i_next_alloc_goal++;
 433	}
 434
 435	udf_clear_extent_cache(inode);
 436	phys = inode_getblk(inode, block, &err, &new);
 437	if (!phys)
 438		goto abort;
 439
 440	if (new)
 441		set_buffer_new(bh_result);
 442	map_bh(bh_result, inode->i_sb, phys);
 443
 444abort:
 445	up_write(&iinfo->i_data_sem);
 446	return err;
 447}
 448
 449static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
 450				      int create, int *err)
 
 
 
 
 
 
 451{
 452	struct buffer_head *bh;
 453	struct buffer_head dummy;
 454
 455	dummy.b_state = 0;
 456	dummy.b_blocknr = -1000;
 457	*err = udf_get_block(inode, block, &dummy, create);
 458	if (!*err && buffer_mapped(&dummy)) {
 459		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
 460		if (buffer_new(&dummy)) {
 461			lock_buffer(bh);
 462			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
 463			set_buffer_uptodate(bh);
 464			unlock_buffer(bh);
 465			mark_buffer_dirty_inode(bh, inode);
 466		}
 467		return bh;
 468	}
 469
 470	return NULL;
 471}
 472
 473/* Extend the file by 'blocks' blocks, return the number of extents added */
 
 
 474static int udf_do_extend_file(struct inode *inode,
 475			      struct extent_position *last_pos,
 476			      struct kernel_long_ad *last_ext,
 477			      sector_t blocks)
 478{
 479	sector_t add;
 480	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 481	struct super_block *sb = inode->i_sb;
 482	struct kernel_lb_addr prealloc_loc = {};
 483	uint32_t prealloc_len = 0;
 484	struct udf_inode_info *iinfo;
 485	int err;
 486
 487	/* The previous extent is fake and we should not extend by anything
 488	 * - there's nothing to do... */
 489	if (!blocks && fake)
 490		return 0;
 491
 492	iinfo = UDF_I(inode);
 493	/* Round the last extent up to a multiple of block size */
 494	if (last_ext->extLength & (sb->s_blocksize - 1)) {
 495		last_ext->extLength =
 496			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
 497			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
 498			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
 499		iinfo->i_lenExtents =
 500			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
 501			~(sb->s_blocksize - 1);
 502	}
 503
 504	/* Last extent are just preallocated blocks? */
 505	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 506						EXT_NOT_RECORDED_ALLOCATED) {
 507		/* Save the extent so that we can reattach it to the end */
 508		prealloc_loc = last_ext->extLocation;
 509		prealloc_len = last_ext->extLength;
 510		/* Mark the extent as a hole */
 511		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 512			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
 513		last_ext->extLocation.logicalBlockNum = 0;
 514		last_ext->extLocation.partitionReferenceNum = 0;
 515	}
 516
 517	/* Can we merge with the previous extent? */
 518	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
 519					EXT_NOT_RECORDED_NOT_ALLOCATED) {
 520		add = ((1 << 30) - sb->s_blocksize -
 521			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
 522			sb->s_blocksize_bits;
 523		if (add > blocks)
 524			add = blocks;
 525		blocks -= add;
 526		last_ext->extLength += add << sb->s_blocksize_bits;
 527	}
 528
 529	if (fake) {
 530		udf_add_aext(inode, last_pos, &last_ext->extLocation,
 531			     last_ext->extLength, 1);
 
 
 532		count++;
 533	} else {
 534		struct kernel_lb_addr tmploc;
 535		uint32_t tmplen;
 
 536
 537		udf_write_aext(inode, last_pos, &last_ext->extLocation,
 538				last_ext->extLength, 1);
 
 539		/*
 540		 * We've rewritten the last extent but there may be empty
 541		 * indirect extent after it - enter it.
 
 542		 */
 543		udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
 
 
 
 
 
 544	}
 
 545
 546	/* Managed to do everything necessary? */
 547	if (!blocks)
 548		goto out;
 549
 550	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
 551	last_ext->extLocation.logicalBlockNum = 0;
 552	last_ext->extLocation.partitionReferenceNum = 0;
 553	add = (1 << (30-sb->s_blocksize_bits)) - 1;
 554	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 555				(add << sb->s_blocksize_bits);
 556
 557	/* Create enough extents to cover the whole hole */
 558	while (blocks > add) {
 559		blocks -= add;
 560		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 561				   last_ext->extLength, 1);
 562		if (err)
 563			return err;
 
 564		count++;
 565	}
 566	if (blocks) {
 567		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 568			(blocks << sb->s_blocksize_bits);
 569		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
 570				   last_ext->extLength, 1);
 571		if (err)
 572			return err;
 
 573		count++;
 574	}
 575
 576out:
 577	/* Do we have some preallocated blocks saved? */
 578	if (prealloc_len) {
 579		err = udf_add_aext(inode, last_pos, &prealloc_loc,
 580				   prealloc_len, 1);
 581		if (err)
 582			return err;
 583		last_ext->extLocation = prealloc_loc;
 584		last_ext->extLength = prealloc_len;
 585		count++;
 586	}
 587
 588	/* last_pos should point to the last written extent... */
 589	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 590		last_pos->offset -= sizeof(struct short_ad);
 591	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 592		last_pos->offset -= sizeof(struct long_ad);
 593	else
 594		return -EIO;
 595
 596	return count;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 597}
 598
 599static int udf_extend_file(struct inode *inode, loff_t newsize)
 600{
 601
 602	struct extent_position epos;
 603	struct kernel_lb_addr eloc;
 604	uint32_t elen;
 605	int8_t etype;
 606	struct super_block *sb = inode->i_sb;
 607	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
 
 608	int adsize;
 609	struct udf_inode_info *iinfo = UDF_I(inode);
 610	struct kernel_long_ad extent;
 611	int err;
 
 612
 613	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
 614		adsize = sizeof(struct short_ad);
 615	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
 616		adsize = sizeof(struct long_ad);
 617	else
 618		BUG();
 619
 620	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
 
 
 
 
 
 621
 622	/* File has extent covering the new size (could happen when extending
 623	 * inside a block)? */
 624	if (etype != -1)
 625		return 0;
 626	if (newsize & (sb->s_blocksize - 1))
 627		offset++;
 628	/* Extended file just to the boundary of the last file block? */
 629	if (offset == 0)
 630		return 0;
 631
 632	/* Truncate is extending the file by 'offset' blocks */
 633	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
 634	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
 635		/* File has no extents at all or has empty last
 636		 * indirect extent! Create a fake extent... */
 637		extent.extLocation.logicalBlockNum = 0;
 638		extent.extLocation.partitionReferenceNum = 0;
 639		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 640	} else {
 641		epos.offset -= adsize;
 642		etype = udf_next_aext(inode, &epos, &extent.extLocation,
 643				      &extent.extLength, 0);
 
 
 644		extent.extLength |= etype << 30;
 645	}
 646	err = udf_do_extend_file(inode, &epos, &extent, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 647	if (err < 0)
 648		goto out;
 649	err = 0;
 650	iinfo->i_lenExtents = newsize;
 651out:
 652	brelse(epos.bh);
 
 653	return err;
 654}
 655
 656static sector_t inode_getblk(struct inode *inode, sector_t block,
 657			     int *err, int *new)
 658{
 659	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
 660	struct extent_position prev_epos, cur_epos, next_epos;
 661	int count = 0, startnum = 0, endnum = 0;
 662	uint32_t elen = 0, tmpelen;
 663	struct kernel_lb_addr eloc, tmpeloc;
 664	int c = 1;
 665	loff_t lbcount = 0, b_off = 0;
 666	udf_pblk_t newblocknum, newblock;
 667	sector_t offset = 0;
 668	int8_t etype;
 669	struct udf_inode_info *iinfo = UDF_I(inode);
 670	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
 671	int lastblock = 0;
 672	bool isBeyondEOF;
 
 673
 674	*err = 0;
 675	*new = 0;
 676	prev_epos.offset = udf_file_entry_alloc_offset(inode);
 677	prev_epos.block = iinfo->i_location;
 678	prev_epos.bh = NULL;
 679	cur_epos = next_epos = prev_epos;
 680	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
 681
 682	/* find the extent which contains the block we are looking for.
 683	   alternate between laarr[0] and laarr[1] for locations of the
 684	   current extent, and the previous extent */
 685	do {
 686		if (prev_epos.bh != cur_epos.bh) {
 687			brelse(prev_epos.bh);
 688			get_bh(cur_epos.bh);
 689			prev_epos.bh = cur_epos.bh;
 690		}
 691		if (cur_epos.bh != next_epos.bh) {
 692			brelse(cur_epos.bh);
 693			get_bh(next_epos.bh);
 694			cur_epos.bh = next_epos.bh;
 695		}
 696
 697		lbcount += elen;
 698
 699		prev_epos.block = cur_epos.block;
 700		cur_epos.block = next_epos.block;
 701
 702		prev_epos.offset = cur_epos.offset;
 703		cur_epos.offset = next_epos.offset;
 704
 705		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
 706		if (etype == -1)
 
 
 
 707			break;
 
 708
 709		c = !c;
 710
 711		laarr[c].extLength = (etype << 30) | elen;
 712		laarr[c].extLocation = eloc;
 713
 714		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 715			pgoal = eloc.logicalBlockNum +
 716				((elen + inode->i_sb->s_blocksize - 1) >>
 717				 inode->i_sb->s_blocksize_bits);
 718
 719		count++;
 720	} while (lbcount + elen <= b_off);
 721
 722	b_off -= lbcount;
 723	offset = b_off >> inode->i_sb->s_blocksize_bits;
 724	/*
 725	 * Move prev_epos and cur_epos into indirect extent if we are at
 726	 * the pointer to it
 727	 */
 728	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
 729	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
 
 
 
 
 730
 731	/* if the extent is allocated and recorded, return the block
 732	   if the extent is not a multiple of the blocksize, round up */
 733
 734	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
 735		if (elen & (inode->i_sb->s_blocksize - 1)) {
 736			elen = EXT_RECORDED_ALLOCATED |
 737				((elen + inode->i_sb->s_blocksize - 1) &
 738				 ~(inode->i_sb->s_blocksize - 1));
 
 
 
 739			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
 740		}
 741		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
 
 742		goto out_free;
 743	}
 744
 745	/* Are we beyond EOF? */
 746	if (etype == -1) {
 747		int ret;
 748		isBeyondEOF = true;
 749		if (count) {
 750			if (c)
 751				laarr[0] = laarr[1];
 752			startnum = 1;
 753		} else {
 754			/* Create a fake extent when there's not one */
 755			memset(&laarr[0].extLocation, 0x00,
 756				sizeof(struct kernel_lb_addr));
 757			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
 758			/* Will udf_do_extend_file() create real extent from
 759			   a fake one? */
 760			startnum = (offset > 0);
 761		}
 762		/* Create extents for the hole between EOF and offset */
 763		ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
 764		if (ret < 0) {
 765			*err = ret;
 766			newblock = 0;
 767			goto out_free;
 768		}
 769		c = 0;
 770		offset = 0;
 771		count += ret;
 772		/* We are not covered by a preallocated extent? */
 773		if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
 774						EXT_NOT_RECORDED_ALLOCATED) {
 775			/* Is there any real extent? - otherwise we overwrite
 776			 * the fake one... */
 777			if (count)
 778				c = !c;
 779			laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
 780				inode->i_sb->s_blocksize;
 781			memset(&laarr[c].extLocation, 0x00,
 782				sizeof(struct kernel_lb_addr));
 783			count++;
 784		}
 785		endnum = c + 1;
 786		lastblock = 1;
 787	} else {
 788		isBeyondEOF = false;
 789		endnum = startnum = ((count > 2) ? 2 : count);
 790
 791		/* if the current extent is in position 0,
 792		   swap it with the previous */
 793		if (!c && count != 1) {
 794			laarr[2] = laarr[0];
 795			laarr[0] = laarr[1];
 796			laarr[1] = laarr[2];
 797			c = 1;
 798		}
 799
 800		/* if the current block is located in an extent,
 801		   read the next extent */
 802		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
 803		if (etype != -1) {
 804			laarr[c + 1].extLength = (etype << 30) | elen;
 805			laarr[c + 1].extLocation = eloc;
 806			count++;
 807			startnum++;
 808			endnum++;
 809		} else
 810			lastblock = 1;
 
 
 811	}
 812
 813	/* if the current extent is not recorded but allocated, get the
 814	 * block in the extent corresponding to the requested block */
 815	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 816		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
 817	else { /* otherwise, allocate a new block */
 818		if (iinfo->i_next_alloc_block == block)
 819			goal = iinfo->i_next_alloc_goal;
 820
 821		if (!goal) {
 822			if (!(goal = pgoal)) /* XXX: what was intended here? */
 823				goal = iinfo->i_location.logicalBlockNum + 1;
 824		}
 825
 826		newblocknum = udf_new_block(inode->i_sb, inode,
 827				iinfo->i_location.partitionReferenceNum,
 828				goal, err);
 829		if (!newblocknum) {
 830			*err = -ENOSPC;
 831			newblock = 0;
 832			goto out_free;
 833		}
 834		if (isBeyondEOF)
 835			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
 836	}
 837
 838	/* if the extent the requsted block is located in contains multiple
 839	 * blocks, split the extent into at most three extents. blocks prior
 840	 * to requested block, requested block, and blocks after requested
 841	 * block */
 842	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
 843
 844	/* We preallocate blocks only for regular files. It also makes sense
 845	 * for directories but there's a problem when to drop the
 846	 * preallocation. We might use some delayed work for that but I feel
 847	 * it's overengineering for a filesystem like UDF. */
 848	if (S_ISREG(inode->i_mode))
 849		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
 850
 851	/* merge any continuous blocks in laarr */
 852	udf_merge_extents(inode, laarr, &endnum);
 853
 854	/* write back the new extents, inserting new extents if the new number
 855	 * of extents is greater than the old number, and deleting extents if
 856	 * the new number of extents is less than the old number */
 857	udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
 
 
 858
 859	newblock = udf_get_pblock(inode->i_sb, newblocknum,
 860				iinfo->i_location.partitionReferenceNum, 0);
 861	if (!newblock) {
 862		*err = -EIO;
 863		goto out_free;
 864	}
 865	*new = 1;
 866	iinfo->i_next_alloc_block = block;
 867	iinfo->i_next_alloc_goal = newblocknum;
 868	inode->i_ctime = current_time(inode);
 869
 870	if (IS_SYNC(inode))
 871		udf_sync_inode(inode);
 872	else
 873		mark_inode_dirty(inode);
 
 874out_free:
 875	brelse(prev_epos.bh);
 876	brelse(cur_epos.bh);
 877	brelse(next_epos.bh);
 878	return newblock;
 879}
 880
 881static void udf_split_extents(struct inode *inode, int *c, int offset,
 882			       udf_pblk_t newblocknum,
 883			       struct kernel_long_ad *laarr, int *endnum)
 884{
 885	unsigned long blocksize = inode->i_sb->s_blocksize;
 886	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
 887
 888	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
 889	    (laarr[*c].extLength >> 30) ==
 890				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 891		int curr = *c;
 892		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
 893			    blocksize - 1) >> blocksize_bits;
 894		int8_t etype = (laarr[curr].extLength >> 30);
 895
 896		if (blen == 1)
 897			;
 898		else if (!offset || blen == offset + 1) {
 899			laarr[curr + 2] = laarr[curr + 1];
 900			laarr[curr + 1] = laarr[curr];
 901		} else {
 902			laarr[curr + 3] = laarr[curr + 1];
 903			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
 904		}
 905
 906		if (offset) {
 907			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 908				udf_free_blocks(inode->i_sb, inode,
 909						&laarr[curr].extLocation,
 910						0, offset);
 911				laarr[curr].extLength =
 912					EXT_NOT_RECORDED_NOT_ALLOCATED |
 913					(offset << blocksize_bits);
 914				laarr[curr].extLocation.logicalBlockNum = 0;
 915				laarr[curr].extLocation.
 916						partitionReferenceNum = 0;
 917			} else
 918				laarr[curr].extLength = (etype << 30) |
 919					(offset << blocksize_bits);
 920			curr++;
 921			(*c)++;
 922			(*endnum)++;
 923		}
 924
 925		laarr[curr].extLocation.logicalBlockNum = newblocknum;
 926		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
 927			laarr[curr].extLocation.partitionReferenceNum =
 928				UDF_I(inode)->i_location.partitionReferenceNum;
 929		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
 930			blocksize;
 931		curr++;
 932
 933		if (blen != offset + 1) {
 934			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
 935				laarr[curr].extLocation.logicalBlockNum +=
 936								offset + 1;
 937			laarr[curr].extLength = (etype << 30) |
 938				((blen - (offset + 1)) << blocksize_bits);
 939			curr++;
 940			(*endnum)++;
 941		}
 942	}
 943}
 944
 945static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
 946				 struct kernel_long_ad *laarr,
 947				 int *endnum)
 948{
 949	int start, length = 0, currlength = 0, i;
 950
 951	if (*endnum >= (c + 1)) {
 952		if (!lastblock)
 953			return;
 954		else
 955			start = c;
 956	} else {
 957		if ((laarr[c + 1].extLength >> 30) ==
 958					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
 959			start = c + 1;
 960			length = currlength =
 961				(((laarr[c + 1].extLength &
 962					UDF_EXTENT_LENGTH_MASK) +
 963				inode->i_sb->s_blocksize - 1) >>
 964				inode->i_sb->s_blocksize_bits);
 965		} else
 966			start = c;
 967	}
 968
 969	for (i = start + 1; i <= *endnum; i++) {
 970		if (i == *endnum) {
 971			if (lastblock)
 972				length += UDF_DEFAULT_PREALLOC_BLOCKS;
 973		} else if ((laarr[i].extLength >> 30) ==
 974				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
 975			length += (((laarr[i].extLength &
 976						UDF_EXTENT_LENGTH_MASK) +
 977				    inode->i_sb->s_blocksize - 1) >>
 978				    inode->i_sb->s_blocksize_bits);
 979		} else
 980			break;
 981	}
 982
 983	if (length) {
 984		int next = laarr[start].extLocation.logicalBlockNum +
 985			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
 986			  inode->i_sb->s_blocksize - 1) >>
 987			  inode->i_sb->s_blocksize_bits);
 988		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
 989				laarr[start].extLocation.partitionReferenceNum,
 990				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
 991				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
 992				currlength);
 993		if (numalloc) 	{
 994			if (start == (c + 1))
 995				laarr[start].extLength +=
 996					(numalloc <<
 997					 inode->i_sb->s_blocksize_bits);
 998			else {
 999				memmove(&laarr[c + 2], &laarr[c + 1],
1000					sizeof(struct long_ad) * (*endnum - (c + 1)));
1001				(*endnum)++;
1002				laarr[c + 1].extLocation.logicalBlockNum = next;
1003				laarr[c + 1].extLocation.partitionReferenceNum =
1004					laarr[c].extLocation.
1005							partitionReferenceNum;
1006				laarr[c + 1].extLength =
1007					EXT_NOT_RECORDED_ALLOCATED |
1008					(numalloc <<
1009					 inode->i_sb->s_blocksize_bits);
1010				start = c + 1;
1011			}
1012
1013			for (i = start + 1; numalloc && i < *endnum; i++) {
1014				int elen = ((laarr[i].extLength &
1015						UDF_EXTENT_LENGTH_MASK) +
1016					    inode->i_sb->s_blocksize - 1) >>
1017					    inode->i_sb->s_blocksize_bits;
1018
1019				if (elen > numalloc) {
1020					laarr[i].extLength -=
1021						(numalloc <<
1022						 inode->i_sb->s_blocksize_bits);
1023					numalloc = 0;
1024				} else {
1025					numalloc -= elen;
1026					if (*endnum > (i + 1))
1027						memmove(&laarr[i],
1028							&laarr[i + 1],
1029							sizeof(struct long_ad) *
1030							(*endnum - (i + 1)));
1031					i--;
1032					(*endnum)--;
1033				}
1034			}
1035			UDF_I(inode)->i_lenExtents +=
1036				numalloc << inode->i_sb->s_blocksize_bits;
1037		}
1038	}
1039}
1040
1041static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1042			      int *endnum)
1043{
1044	int i;
1045	unsigned long blocksize = inode->i_sb->s_blocksize;
1046	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1047
1048	for (i = 0; i < (*endnum - 1); i++) {
1049		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1050		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1051
1052		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1053			(((li->extLength >> 30) ==
1054				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1055			((lip1->extLocation.logicalBlockNum -
1056			  li->extLocation.logicalBlockNum) ==
1057			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1058			blocksize - 1) >> blocksize_bits)))) {
1059
1060			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1061				(lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1062				blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1063				lip1->extLength = (lip1->extLength -
1064						  (li->extLength &
1065						   UDF_EXTENT_LENGTH_MASK) +
1066						   UDF_EXTENT_LENGTH_MASK) &
1067							~(blocksize - 1);
1068				li->extLength = (li->extLength &
1069						 UDF_EXTENT_FLAG_MASK) +
1070						(UDF_EXTENT_LENGTH_MASK + 1) -
1071						blocksize;
1072				lip1->extLocation.logicalBlockNum =
1073					li->extLocation.logicalBlockNum +
1074					((li->extLength &
1075						UDF_EXTENT_LENGTH_MASK) >>
1076						blocksize_bits);
1077			} else {
1078				li->extLength = lip1->extLength +
1079					(((li->extLength &
1080						UDF_EXTENT_LENGTH_MASK) +
1081					 blocksize - 1) & ~(blocksize - 1));
1082				if (*endnum > (i + 2))
1083					memmove(&laarr[i + 1], &laarr[i + 2],
1084						sizeof(struct long_ad) *
1085						(*endnum - (i + 2)));
1086				i--;
1087				(*endnum)--;
1088			}
1089		} else if (((li->extLength >> 30) ==
1090				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1091			   ((lip1->extLength >> 30) ==
1092				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1093			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1094					((li->extLength &
1095					  UDF_EXTENT_LENGTH_MASK) +
1096					 blocksize - 1) >> blocksize_bits);
1097			li->extLocation.logicalBlockNum = 0;
1098			li->extLocation.partitionReferenceNum = 0;
1099
1100			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1101			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1102			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1103				lip1->extLength = (lip1->extLength -
1104						   (li->extLength &
1105						   UDF_EXTENT_LENGTH_MASK) +
1106						   UDF_EXTENT_LENGTH_MASK) &
1107						   ~(blocksize - 1);
1108				li->extLength = (li->extLength &
1109						 UDF_EXTENT_FLAG_MASK) +
1110						(UDF_EXTENT_LENGTH_MASK + 1) -
1111						blocksize;
1112			} else {
1113				li->extLength = lip1->extLength +
1114					(((li->extLength &
1115						UDF_EXTENT_LENGTH_MASK) +
1116					  blocksize - 1) & ~(blocksize - 1));
1117				if (*endnum > (i + 2))
1118					memmove(&laarr[i + 1], &laarr[i + 2],
1119						sizeof(struct long_ad) *
1120						(*endnum - (i + 2)));
1121				i--;
1122				(*endnum)--;
1123			}
1124		} else if ((li->extLength >> 30) ==
1125					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1126			udf_free_blocks(inode->i_sb, inode,
1127					&li->extLocation, 0,
1128					((li->extLength &
1129						UDF_EXTENT_LENGTH_MASK) +
1130					 blocksize - 1) >> blocksize_bits);
1131			li->extLocation.logicalBlockNum = 0;
1132			li->extLocation.partitionReferenceNum = 0;
1133			li->extLength = (li->extLength &
1134						UDF_EXTENT_LENGTH_MASK) |
1135						EXT_NOT_RECORDED_NOT_ALLOCATED;
1136		}
1137	}
1138}
1139
1140static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1141			       int startnum, int endnum,
1142			       struct extent_position *epos)
1143{
1144	int start = 0, i;
1145	struct kernel_lb_addr tmploc;
1146	uint32_t tmplen;
 
 
1147
1148	if (startnum > endnum) {
1149		for (i = 0; i < (startnum - endnum); i++)
1150			udf_delete_aext(inode, *epos, laarr[i].extLocation,
1151					laarr[i].extLength);
1152	} else if (startnum < endnum) {
1153		for (i = 0; i < (endnum - startnum); i++) {
1154			udf_insert_aext(inode, *epos, laarr[i].extLocation,
1155					laarr[i].extLength);
1156			udf_next_aext(inode, epos, &laarr[i].extLocation,
1157				      &laarr[i].extLength, 1);
 
 
 
 
 
 
 
 
 
 
1158			start++;
1159		}
1160	}
1161
1162	for (i = start; i < endnum; i++) {
1163		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
 
 
 
1164		udf_write_aext(inode, epos, &laarr[i].extLocation,
1165			       laarr[i].extLength, 1);
1166	}
 
1167}
1168
1169struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1170			      int create, int *err)
1171{
1172	struct buffer_head *bh = NULL;
 
 
 
 
1173
1174	bh = udf_getblk(inode, block, create, err);
1175	if (!bh)
1176		return NULL;
1177
1178	if (buffer_uptodate(bh))
 
 
 
 
 
 
 
 
 
 
1179		return bh;
 
1180
1181	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1182
1183	wait_on_buffer(bh);
1184	if (buffer_uptodate(bh))
1185		return bh;
1186
1187	brelse(bh);
1188	*err = -EIO;
1189	return NULL;
1190}
1191
1192int udf_setsize(struct inode *inode, loff_t newsize)
1193{
1194	int err;
1195	struct udf_inode_info *iinfo;
1196	unsigned int bsize = i_blocksize(inode);
1197
1198	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1199	      S_ISLNK(inode->i_mode)))
1200		return -EINVAL;
1201	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1202		return -EPERM;
1203
1204	iinfo = UDF_I(inode);
1205	if (newsize > inode->i_size) {
1206		down_write(&iinfo->i_data_sem);
1207		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1208			if (bsize <
1209			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1210				err = udf_expand_file_adinicb(inode);
1211				if (err)
1212					return err;
1213				down_write(&iinfo->i_data_sem);
1214			} else {
1215				iinfo->i_lenAlloc = newsize;
 
1216				goto set_size;
1217			}
 
 
 
1218		}
1219		err = udf_extend_file(inode, newsize);
1220		if (err) {
1221			up_write(&iinfo->i_data_sem);
1222			return err;
1223		}
1224set_size:
1225		up_write(&iinfo->i_data_sem);
1226		truncate_setsize(inode, newsize);
1227	} else {
1228		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1229			down_write(&iinfo->i_data_sem);
1230			udf_clear_extent_cache(inode);
1231			memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1232			       0x00, bsize - newsize -
1233			       udf_file_entry_alloc_offset(inode));
1234			iinfo->i_lenAlloc = newsize;
1235			truncate_setsize(inode, newsize);
1236			up_write(&iinfo->i_data_sem);
1237			goto update_time;
1238		}
1239		err = block_truncate_page(inode->i_mapping, newsize,
1240					  udf_get_block);
1241		if (err)
1242			return err;
1243		truncate_setsize(inode, newsize);
1244		down_write(&iinfo->i_data_sem);
1245		udf_clear_extent_cache(inode);
1246		udf_truncate_extents(inode);
1247		up_write(&iinfo->i_data_sem);
 
 
1248	}
1249update_time:
1250	inode->i_mtime = inode->i_ctime = current_time(inode);
1251	if (IS_SYNC(inode))
1252		udf_sync_inode(inode);
1253	else
1254		mark_inode_dirty(inode);
1255	return 0;
1256}
1257
1258/*
1259 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1260 * arbitrary - just that we hopefully don't limit any real use of rewritten
1261 * inode on write-once media but avoid looping for too long on corrupted media.
1262 */
1263#define UDF_MAX_ICB_NESTING 1024
1264
1265static int udf_read_inode(struct inode *inode, bool hidden_inode)
1266{
1267	struct buffer_head *bh = NULL;
1268	struct fileEntry *fe;
1269	struct extendedFileEntry *efe;
1270	uint16_t ident;
1271	struct udf_inode_info *iinfo = UDF_I(inode);
1272	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1273	struct kernel_lb_addr *iloc = &iinfo->i_location;
1274	unsigned int link_count;
1275	unsigned int indirections = 0;
1276	int bs = inode->i_sb->s_blocksize;
1277	int ret = -EIO;
1278	uint32_t uid, gid;
 
1279
1280reread:
1281	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1282		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1283			  iloc->partitionReferenceNum, sbi->s_partitions);
1284		return -EIO;
1285	}
1286
1287	if (iloc->logicalBlockNum >=
1288	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1289		udf_debug("block=%u, partition=%u out of range\n",
1290			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1291		return -EIO;
1292	}
1293
1294	/*
1295	 * Set defaults, but the inode is still incomplete!
1296	 * Note: get_new_inode() sets the following on a new inode:
1297	 *      i_sb = sb
1298	 *      i_no = ino
1299	 *      i_flags = sb->s_flags
1300	 *      i_state = 0
1301	 * clean_inode(): zero fills and sets
1302	 *      i_count = 1
1303	 *      i_nlink = 1
1304	 *      i_op = NULL;
1305	 */
1306	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1307	if (!bh) {
1308		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1309		return -EIO;
1310	}
1311
1312	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1313	    ident != TAG_IDENT_USE) {
1314		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1315			inode->i_ino, ident);
1316		goto out;
1317	}
1318
1319	fe = (struct fileEntry *)bh->b_data;
1320	efe = (struct extendedFileEntry *)bh->b_data;
1321
1322	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1323		struct buffer_head *ibh;
1324
1325		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1326		if (ident == TAG_IDENT_IE && ibh) {
1327			struct kernel_lb_addr loc;
1328			struct indirectEntry *ie;
1329
1330			ie = (struct indirectEntry *)ibh->b_data;
1331			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1332
1333			if (ie->indirectICB.extLength) {
1334				brelse(ibh);
1335				memcpy(&iinfo->i_location, &loc,
1336				       sizeof(struct kernel_lb_addr));
1337				if (++indirections > UDF_MAX_ICB_NESTING) {
1338					udf_err(inode->i_sb,
1339						"too many ICBs in ICB hierarchy"
1340						" (max %d supported)\n",
1341						UDF_MAX_ICB_NESTING);
1342					goto out;
1343				}
1344				brelse(bh);
1345				goto reread;
1346			}
1347		}
1348		brelse(ibh);
1349	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1350		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1351			le16_to_cpu(fe->icbTag.strategyType));
1352		goto out;
1353	}
1354	if (fe->icbTag.strategyType == cpu_to_le16(4))
1355		iinfo->i_strat4096 = 0;
1356	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1357		iinfo->i_strat4096 = 1;
1358
1359	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1360							ICBTAG_FLAG_AD_MASK;
 
 
 
 
 
 
 
1361	iinfo->i_unique = 0;
1362	iinfo->i_lenEAttr = 0;
1363	iinfo->i_lenExtents = 0;
1364	iinfo->i_lenAlloc = 0;
1365	iinfo->i_next_alloc_block = 0;
1366	iinfo->i_next_alloc_goal = 0;
1367	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1368		iinfo->i_efe = 1;
1369		iinfo->i_use = 0;
1370		ret = udf_alloc_i_data(inode, bs -
1371					sizeof(struct extendedFileEntry));
1372		if (ret)
1373			goto out;
1374		memcpy(iinfo->i_ext.i_data,
1375		       bh->b_data + sizeof(struct extendedFileEntry),
1376		       bs - sizeof(struct extendedFileEntry));
1377	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1378		iinfo->i_efe = 0;
1379		iinfo->i_use = 0;
1380		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1381		if (ret)
1382			goto out;
1383		memcpy(iinfo->i_ext.i_data,
1384		       bh->b_data + sizeof(struct fileEntry),
1385		       bs - sizeof(struct fileEntry));
1386	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1387		iinfo->i_efe = 0;
1388		iinfo->i_use = 1;
1389		iinfo->i_lenAlloc = le32_to_cpu(
1390				((struct unallocSpaceEntry *)bh->b_data)->
1391				 lengthAllocDescs);
1392		ret = udf_alloc_i_data(inode, bs -
1393					sizeof(struct unallocSpaceEntry));
1394		if (ret)
1395			goto out;
1396		memcpy(iinfo->i_ext.i_data,
1397		       bh->b_data + sizeof(struct unallocSpaceEntry),
1398		       bs - sizeof(struct unallocSpaceEntry));
1399		return 0;
1400	}
1401
1402	ret = -EIO;
1403	read_lock(&sbi->s_cred_lock);
1404	uid = le32_to_cpu(fe->uid);
1405	if (uid == UDF_INVALID_ID ||
1406	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1407		inode->i_uid = sbi->s_uid;
1408	else
1409		i_uid_write(inode, uid);
1410
1411	gid = le32_to_cpu(fe->gid);
1412	if (gid == UDF_INVALID_ID ||
1413	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1414		inode->i_gid = sbi->s_gid;
1415	else
1416		i_gid_write(inode, gid);
1417
1418	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1419			sbi->s_fmode != UDF_INVALID_MODE)
1420		inode->i_mode = sbi->s_fmode;
1421	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1422			sbi->s_dmode != UDF_INVALID_MODE)
1423		inode->i_mode = sbi->s_dmode;
1424	else
1425		inode->i_mode = udf_convert_permissions(fe);
1426	inode->i_mode &= ~sbi->s_umask;
 
 
1427	read_unlock(&sbi->s_cred_lock);
1428
1429	link_count = le16_to_cpu(fe->fileLinkCount);
1430	if (!link_count) {
1431		if (!hidden_inode) {
1432			ret = -ESTALE;
1433			goto out;
1434		}
1435		link_count = 1;
1436	}
1437	set_nlink(inode, link_count);
1438
1439	inode->i_size = le64_to_cpu(fe->informationLength);
1440	iinfo->i_lenExtents = inode->i_size;
1441
1442	if (iinfo->i_efe == 0) {
1443		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1444			(inode->i_sb->s_blocksize_bits - 9);
1445
1446		if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1447			inode->i_atime = sbi->s_record_time;
1448
1449		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1450					    fe->modificationTime))
1451			inode->i_mtime = sbi->s_record_time;
1452
1453		if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1454			inode->i_ctime = sbi->s_record_time;
1455
1456		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1457		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1458		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1459		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
 
 
1460	} else {
1461		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1462		    (inode->i_sb->s_blocksize_bits - 9);
1463
1464		if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1465			inode->i_atime = sbi->s_record_time;
1466
1467		if (!udf_disk_stamp_to_time(&inode->i_mtime,
1468					    efe->modificationTime))
1469			inode->i_mtime = sbi->s_record_time;
1470
1471		if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1472			iinfo->i_crtime = sbi->s_record_time;
1473
1474		if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1475			inode->i_ctime = sbi->s_record_time;
1476
1477		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1478		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1479		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1480		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
 
 
 
 
 
 
 
 
 
 
1481	}
1482	inode->i_generation = iinfo->i_unique;
1483
1484	/*
1485	 * Sanity check length of allocation descriptors and extended attrs to
1486	 * avoid integer overflows
1487	 */
1488	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1489		goto out;
1490	/* Now do exact checks */
1491	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1492		goto out;
1493	/* Sanity checks for files in ICB so that we don't get confused later */
1494	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1495		/*
1496		 * For file in ICB data is stored in allocation descriptor
1497		 * so sizes should match
1498		 */
1499		if (iinfo->i_lenAlloc != inode->i_size)
1500			goto out;
1501		/* File in ICB has to fit in there... */
1502		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1503			goto out;
1504	}
1505
1506	switch (fe->icbTag.fileType) {
1507	case ICBTAG_FILE_TYPE_DIRECTORY:
1508		inode->i_op = &udf_dir_inode_operations;
1509		inode->i_fop = &udf_dir_operations;
1510		inode->i_mode |= S_IFDIR;
1511		inc_nlink(inode);
1512		break;
1513	case ICBTAG_FILE_TYPE_REALTIME:
1514	case ICBTAG_FILE_TYPE_REGULAR:
1515	case ICBTAG_FILE_TYPE_UNDEF:
1516	case ICBTAG_FILE_TYPE_VAT20:
1517		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1518			inode->i_data.a_ops = &udf_adinicb_aops;
1519		else
1520			inode->i_data.a_ops = &udf_aops;
1521		inode->i_op = &udf_file_inode_operations;
1522		inode->i_fop = &udf_file_operations;
1523		inode->i_mode |= S_IFREG;
1524		break;
1525	case ICBTAG_FILE_TYPE_BLOCK:
1526		inode->i_mode |= S_IFBLK;
1527		break;
1528	case ICBTAG_FILE_TYPE_CHAR:
1529		inode->i_mode |= S_IFCHR;
1530		break;
1531	case ICBTAG_FILE_TYPE_FIFO:
1532		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1533		break;
1534	case ICBTAG_FILE_TYPE_SOCKET:
1535		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1536		break;
1537	case ICBTAG_FILE_TYPE_SYMLINK:
1538		inode->i_data.a_ops = &udf_symlink_aops;
1539		inode->i_op = &udf_symlink_inode_operations;
1540		inode_nohighmem(inode);
1541		inode->i_mode = S_IFLNK | 0777;
1542		break;
1543	case ICBTAG_FILE_TYPE_MAIN:
1544		udf_debug("METADATA FILE-----\n");
1545		break;
1546	case ICBTAG_FILE_TYPE_MIRROR:
1547		udf_debug("METADATA MIRROR FILE-----\n");
1548		break;
1549	case ICBTAG_FILE_TYPE_BITMAP:
1550		udf_debug("METADATA BITMAP FILE-----\n");
1551		break;
1552	default:
1553		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1554			inode->i_ino, fe->icbTag.fileType);
1555		goto out;
1556	}
1557	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1558		struct deviceSpec *dsea =
1559			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1560		if (dsea) {
1561			init_special_inode(inode, inode->i_mode,
1562				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1563				      le32_to_cpu(dsea->minorDeviceIdent)));
1564			/* Developer ID ??? */
1565		} else
1566			goto out;
1567	}
1568	ret = 0;
1569out:
1570	brelse(bh);
1571	return ret;
1572}
1573
1574static int udf_alloc_i_data(struct inode *inode, size_t size)
1575{
1576	struct udf_inode_info *iinfo = UDF_I(inode);
1577	iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1578	if (!iinfo->i_ext.i_data)
1579		return -ENOMEM;
1580	return 0;
1581}
1582
1583static umode_t udf_convert_permissions(struct fileEntry *fe)
1584{
1585	umode_t mode;
1586	uint32_t permissions;
1587	uint32_t flags;
1588
1589	permissions = le32_to_cpu(fe->permissions);
1590	flags = le16_to_cpu(fe->icbTag.flags);
1591
1592	mode =	((permissions) & 0007) |
1593		((permissions >> 2) & 0070) |
1594		((permissions >> 4) & 0700) |
1595		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1596		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1597		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1598
1599	return mode;
1600}
1601
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1602int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1603{
1604	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1605}
1606
1607static int udf_sync_inode(struct inode *inode)
1608{
1609	return udf_update_inode(inode, 1);
1610}
1611
1612static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec time)
1613{
1614	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1615	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1616	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1617		iinfo->i_crtime = time;
1618}
1619
1620static int udf_update_inode(struct inode *inode, int do_sync)
1621{
1622	struct buffer_head *bh = NULL;
1623	struct fileEntry *fe;
1624	struct extendedFileEntry *efe;
1625	uint64_t lb_recorded;
1626	uint32_t udfperms;
1627	uint16_t icbflags;
1628	uint16_t crclen;
1629	int err = 0;
1630	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1631	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1632	struct udf_inode_info *iinfo = UDF_I(inode);
1633
1634	bh = udf_tgetblk(inode->i_sb,
1635			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1636	if (!bh) {
1637		udf_debug("getblk failure\n");
1638		return -EIO;
1639	}
1640
1641	lock_buffer(bh);
1642	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1643	fe = (struct fileEntry *)bh->b_data;
1644	efe = (struct extendedFileEntry *)bh->b_data;
1645
1646	if (iinfo->i_use) {
1647		struct unallocSpaceEntry *use =
1648			(struct unallocSpaceEntry *)bh->b_data;
1649
1650		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1651		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1652		       iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1653					sizeof(struct unallocSpaceEntry));
1654		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1655		crclen = sizeof(struct unallocSpaceEntry);
1656
1657		goto finish;
1658	}
1659
1660	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1661		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1662	else
1663		fe->uid = cpu_to_le32(i_uid_read(inode));
1664
1665	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1666		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1667	else
1668		fe->gid = cpu_to_le32(i_gid_read(inode));
1669
1670	udfperms = ((inode->i_mode & 0007)) |
1671		   ((inode->i_mode & 0070) << 2) |
1672		   ((inode->i_mode & 0700) << 4);
1673
1674	udfperms |= (le32_to_cpu(fe->permissions) &
1675		    (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1676		     FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1677		     FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1678	fe->permissions = cpu_to_le32(udfperms);
1679
1680	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1681		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1682	else
1683		fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
 
 
 
 
1684
1685	fe->informationLength = cpu_to_le64(inode->i_size);
1686
1687	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1688		struct regid *eid;
1689		struct deviceSpec *dsea =
1690			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1691		if (!dsea) {
1692			dsea = (struct deviceSpec *)
1693				udf_add_extendedattr(inode,
1694						     sizeof(struct deviceSpec) +
1695						     sizeof(struct regid), 12, 0x3);
1696			dsea->attrType = cpu_to_le32(12);
1697			dsea->attrSubtype = 1;
1698			dsea->attrLength = cpu_to_le32(
1699						sizeof(struct deviceSpec) +
1700						sizeof(struct regid));
1701			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1702		}
1703		eid = (struct regid *)dsea->impUse;
1704		memset(eid, 0, sizeof(*eid));
1705		strcpy(eid->ident, UDF_ID_DEVELOPER);
1706		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1707		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1708		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1709		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1710	}
1711
1712	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1713		lb_recorded = 0; /* No extents => no blocks! */
1714	else
1715		lb_recorded =
1716			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1717			(blocksize_bits - 9);
1718
1719	if (iinfo->i_efe == 0) {
1720		memcpy(bh->b_data + sizeof(struct fileEntry),
1721		       iinfo->i_ext.i_data,
1722		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1723		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1724
1725		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1726		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1727		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1728		memset(&(fe->impIdent), 0, sizeof(struct regid));
1729		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1730		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1731		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1732		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1733		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1734		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1735		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1736		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1737		crclen = sizeof(struct fileEntry);
1738	} else {
1739		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1740		       iinfo->i_ext.i_data,
1741		       inode->i_sb->s_blocksize -
1742					sizeof(struct extendedFileEntry));
1743		efe->objectSize = cpu_to_le64(inode->i_size);
 
1744		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1745
1746		udf_adjust_time(iinfo, inode->i_atime);
1747		udf_adjust_time(iinfo, inode->i_mtime);
1748		udf_adjust_time(iinfo, inode->i_ctime);
1749
1750		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1751		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
 
 
 
 
 
 
 
 
 
 
 
 
1752		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1753		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1754
1755		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1756		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1757		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1758		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1759		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1760		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1761		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1762		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1763		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1764		crclen = sizeof(struct extendedFileEntry);
1765	}
1766
1767finish:
1768	if (iinfo->i_strat4096) {
1769		fe->icbTag.strategyType = cpu_to_le16(4096);
1770		fe->icbTag.strategyParameter = cpu_to_le16(1);
1771		fe->icbTag.numEntries = cpu_to_le16(2);
1772	} else {
1773		fe->icbTag.strategyType = cpu_to_le16(4);
1774		fe->icbTag.numEntries = cpu_to_le16(1);
1775	}
1776
1777	if (iinfo->i_use)
1778		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1779	else if (S_ISDIR(inode->i_mode))
1780		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1781	else if (S_ISREG(inode->i_mode))
1782		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1783	else if (S_ISLNK(inode->i_mode))
1784		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1785	else if (S_ISBLK(inode->i_mode))
1786		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1787	else if (S_ISCHR(inode->i_mode))
1788		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1789	else if (S_ISFIFO(inode->i_mode))
1790		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1791	else if (S_ISSOCK(inode->i_mode))
1792		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1793
1794	icbflags =	iinfo->i_alloc_type |
1795			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1796			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1797			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1798			(le16_to_cpu(fe->icbTag.flags) &
1799				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1800				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1801
1802	fe->icbTag.flags = cpu_to_le16(icbflags);
1803	if (sbi->s_udfrev >= 0x0200)
1804		fe->descTag.descVersion = cpu_to_le16(3);
1805	else
1806		fe->descTag.descVersion = cpu_to_le16(2);
1807	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1808	fe->descTag.tagLocation = cpu_to_le32(
1809					iinfo->i_location.logicalBlockNum);
1810	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1811	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1812	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1813						  crclen));
1814	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1815
1816	set_buffer_uptodate(bh);
1817	unlock_buffer(bh);
1818
1819	/* write the data blocks */
1820	mark_buffer_dirty(bh);
1821	if (do_sync) {
1822		sync_dirty_buffer(bh);
1823		if (buffer_write_io_error(bh)) {
1824			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1825				 inode->i_ino);
1826			err = -EIO;
1827		}
1828	}
1829	brelse(bh);
1830
1831	return err;
1832}
1833
1834struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1835			 bool hidden_inode)
1836{
1837	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1838	struct inode *inode = iget_locked(sb, block);
1839	int err;
1840
1841	if (!inode)
1842		return ERR_PTR(-ENOMEM);
1843
1844	if (!(inode->i_state & I_NEW))
 
 
 
 
1845		return inode;
 
1846
1847	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1848	err = udf_read_inode(inode, hidden_inode);
1849	if (err < 0) {
1850		iget_failed(inode);
1851		return ERR_PTR(err);
1852	}
1853	unlock_new_inode(inode);
1854
1855	return inode;
1856}
1857
1858int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1859			    struct extent_position *epos)
1860{
1861	struct super_block *sb = inode->i_sb;
1862	struct buffer_head *bh;
1863	struct allocExtDesc *aed;
1864	struct extent_position nepos;
1865	struct kernel_lb_addr neloc;
1866	int ver, adsize;
 
1867
1868	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1869		adsize = sizeof(struct short_ad);
1870	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1871		adsize = sizeof(struct long_ad);
1872	else
1873		return -EIO;
1874
1875	neloc.logicalBlockNum = block;
1876	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1877
1878	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1879	if (!bh)
1880		return -EIO;
1881	lock_buffer(bh);
1882	memset(bh->b_data, 0x00, sb->s_blocksize);
1883	set_buffer_uptodate(bh);
1884	unlock_buffer(bh);
1885	mark_buffer_dirty_inode(bh, inode);
1886
1887	aed = (struct allocExtDesc *)(bh->b_data);
1888	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1889		aed->previousAllocExtLocation =
1890				cpu_to_le32(epos->block.logicalBlockNum);
1891	}
1892	aed->lengthAllocDescs = cpu_to_le32(0);
1893	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1894		ver = 3;
1895	else
1896		ver = 2;
1897	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1898		    sizeof(struct tag));
1899
1900	nepos.block = neloc;
1901	nepos.offset = sizeof(struct allocExtDesc);
1902	nepos.bh = bh;
1903
1904	/*
1905	 * Do we have to copy current last extent to make space for indirect
1906	 * one?
1907	 */
1908	if (epos->offset + adsize > sb->s_blocksize) {
1909		struct kernel_lb_addr cp_loc;
1910		uint32_t cp_len;
1911		int cp_type;
1912
1913		epos->offset -= adsize;
1914		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
 
 
1915		cp_len |= ((uint32_t)cp_type) << 30;
1916
1917		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1918		udf_write_aext(inode, epos, &nepos.block,
1919			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1920	} else {
1921		__udf_add_aext(inode, epos, &nepos.block,
1922			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1923	}
1924
1925	brelse(epos->bh);
1926	*epos = nepos;
1927
1928	return 0;
 
 
 
1929}
1930
1931/*
1932 * Append extent at the given position - should be the first free one in inode
1933 * / indirect extent. This function assumes there is enough space in the inode
1934 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1935 */
1936int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1937		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1938{
1939	struct udf_inode_info *iinfo = UDF_I(inode);
1940	struct allocExtDesc *aed;
1941	int adsize;
1942
1943	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1944		adsize = sizeof(struct short_ad);
1945	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1946		adsize = sizeof(struct long_ad);
1947	else
1948		return -EIO;
1949
1950	if (!epos->bh) {
1951		WARN_ON(iinfo->i_lenAlloc !=
1952			epos->offset - udf_file_entry_alloc_offset(inode));
1953	} else {
1954		aed = (struct allocExtDesc *)epos->bh->b_data;
1955		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1956			epos->offset - sizeof(struct allocExtDesc));
1957		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1958	}
1959
1960	udf_write_aext(inode, epos, eloc, elen, inc);
1961
1962	if (!epos->bh) {
1963		iinfo->i_lenAlloc += adsize;
1964		mark_inode_dirty(inode);
1965	} else {
1966		aed = (struct allocExtDesc *)epos->bh->b_data;
1967		le32_add_cpu(&aed->lengthAllocDescs, adsize);
1968		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1969				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1970			udf_update_tag(epos->bh->b_data,
1971					epos->offset + (inc ? 0 : adsize));
1972		else
1973			udf_update_tag(epos->bh->b_data,
1974					sizeof(struct allocExtDesc));
1975		mark_buffer_dirty_inode(epos->bh, inode);
1976	}
1977
1978	return 0;
1979}
1980
1981/*
1982 * Append extent at given position - should be the first free one in inode
1983 * / indirect extent. Takes care of allocating and linking indirect blocks.
1984 */
1985int udf_add_aext(struct inode *inode, struct extent_position *epos,
1986		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1987{
1988	int adsize;
1989	struct super_block *sb = inode->i_sb;
1990
1991	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1992		adsize = sizeof(struct short_ad);
1993	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1994		adsize = sizeof(struct long_ad);
1995	else
1996		return -EIO;
1997
1998	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
1999		int err;
2000		udf_pblk_t new_block;
2001
2002		new_block = udf_new_block(sb, NULL,
2003					  epos->block.partitionReferenceNum,
2004					  epos->block.logicalBlockNum, &err);
2005		if (!new_block)
2006			return -ENOSPC;
2007
2008		err = udf_setup_indirect_aext(inode, new_block, epos);
2009		if (err)
2010			return err;
2011	}
2012
2013	return __udf_add_aext(inode, epos, eloc, elen, inc);
2014}
2015
2016void udf_write_aext(struct inode *inode, struct extent_position *epos,
2017		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2018{
2019	int adsize;
2020	uint8_t *ptr;
2021	struct short_ad *sad;
2022	struct long_ad *lad;
2023	struct udf_inode_info *iinfo = UDF_I(inode);
2024
2025	if (!epos->bh)
2026		ptr = iinfo->i_ext.i_data + epos->offset -
2027			udf_file_entry_alloc_offset(inode) +
2028			iinfo->i_lenEAttr;
2029	else
2030		ptr = epos->bh->b_data + epos->offset;
2031
2032	switch (iinfo->i_alloc_type) {
2033	case ICBTAG_FLAG_AD_SHORT:
2034		sad = (struct short_ad *)ptr;
2035		sad->extLength = cpu_to_le32(elen);
2036		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2037		adsize = sizeof(struct short_ad);
2038		break;
2039	case ICBTAG_FLAG_AD_LONG:
2040		lad = (struct long_ad *)ptr;
2041		lad->extLength = cpu_to_le32(elen);
2042		lad->extLocation = cpu_to_lelb(*eloc);
2043		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2044		adsize = sizeof(struct long_ad);
2045		break;
2046	default:
2047		return;
2048	}
2049
2050	if (epos->bh) {
2051		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2052		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2053			struct allocExtDesc *aed =
2054				(struct allocExtDesc *)epos->bh->b_data;
2055			udf_update_tag(epos->bh->b_data,
2056				       le32_to_cpu(aed->lengthAllocDescs) +
2057				       sizeof(struct allocExtDesc));
2058		}
2059		mark_buffer_dirty_inode(epos->bh, inode);
2060	} else {
2061		mark_inode_dirty(inode);
2062	}
2063
2064	if (inc)
2065		epos->offset += adsize;
2066}
2067
2068/*
2069 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2070 * someone does some weird stuff.
2071 */
2072#define UDF_MAX_INDIR_EXTS 16
2073
2074int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2075		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
 
 
 
 
2076{
2077	int8_t etype;
2078	unsigned int indirections = 0;
 
 
2079
2080	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2081	       (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2082		udf_pblk_t block;
 
 
 
 
2083
2084		if (++indirections > UDF_MAX_INDIR_EXTS) {
2085			udf_err(inode->i_sb,
2086				"too many indirect extents in inode %lu\n",
2087				inode->i_ino);
2088			return -1;
2089		}
2090
2091		epos->block = *eloc;
2092		epos->offset = sizeof(struct allocExtDesc);
2093		brelse(epos->bh);
2094		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2095		epos->bh = udf_tread(inode->i_sb, block);
2096		if (!epos->bh) {
2097			udf_debug("reading block %u failed!\n", block);
2098			return -1;
2099		}
2100	}
2101
2102	return etype;
2103}
2104
2105int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2106			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
 
 
 
 
2107{
2108	int alen;
2109	int8_t etype;
2110	uint8_t *ptr;
2111	struct short_ad *sad;
2112	struct long_ad *lad;
2113	struct udf_inode_info *iinfo = UDF_I(inode);
2114
2115	if (!epos->bh) {
2116		if (!epos->offset)
2117			epos->offset = udf_file_entry_alloc_offset(inode);
2118		ptr = iinfo->i_ext.i_data + epos->offset -
2119			udf_file_entry_alloc_offset(inode) +
2120			iinfo->i_lenEAttr;
2121		alen = udf_file_entry_alloc_offset(inode) +
2122							iinfo->i_lenAlloc;
2123	} else {
 
 
 
2124		if (!epos->offset)
2125			epos->offset = sizeof(struct allocExtDesc);
2126		ptr = epos->bh->b_data + epos->offset;
2127		alen = sizeof(struct allocExtDesc) +
2128			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2129							lengthAllocDescs);
2130	}
2131
2132	switch (iinfo->i_alloc_type) {
2133	case ICBTAG_FLAG_AD_SHORT:
2134		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2135		if (!sad)
2136			return -1;
2137		etype = le32_to_cpu(sad->extLength) >> 30;
2138		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2139		eloc->partitionReferenceNum =
2140				iinfo->i_location.partitionReferenceNum;
2141		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2142		break;
2143	case ICBTAG_FLAG_AD_LONG:
2144		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2145		if (!lad)
2146			return -1;
2147		etype = le32_to_cpu(lad->extLength) >> 30;
2148		*eloc = lelb_to_cpu(lad->extLocation);
2149		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2150		break;
2151	default:
2152		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2153		return -1;
2154	}
2155
2156	return etype;
2157}
2158
2159static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2160			      struct kernel_lb_addr neloc, uint32_t nelen)
2161{
2162	struct kernel_lb_addr oeloc;
2163	uint32_t oelen;
2164	int8_t etype;
 
2165
2166	if (epos.bh)
2167		get_bh(epos.bh);
2168
2169	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
 
 
 
2170		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2171		neloc = oeloc;
2172		nelen = (etype << 30) | oelen;
2173	}
2174	udf_add_aext(inode, &epos, &neloc, nelen, 1);
 
2175	brelse(epos.bh);
2176
2177	return (nelen >> 30);
2178}
2179
2180int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2181		       struct kernel_lb_addr eloc, uint32_t elen)
2182{
2183	struct extent_position oepos;
2184	int adsize;
2185	int8_t etype;
2186	struct allocExtDesc *aed;
2187	struct udf_inode_info *iinfo;
 
 
 
2188
2189	if (epos.bh) {
2190		get_bh(epos.bh);
2191		get_bh(epos.bh);
2192	}
2193
2194	iinfo = UDF_I(inode);
2195	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2196		adsize = sizeof(struct short_ad);
2197	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2198		adsize = sizeof(struct long_ad);
2199	else
2200		adsize = 0;
2201
2202	oepos = epos;
2203	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2204		return -1;
2205
2206	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
 
 
 
 
 
 
 
 
2207		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2208		if (oepos.bh != epos.bh) {
2209			oepos.block = epos.block;
2210			brelse(oepos.bh);
2211			get_bh(epos.bh);
2212			oepos.bh = epos.bh;
2213			oepos.offset = epos.offset - adsize;
2214		}
2215	}
2216	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2217	elen = 0;
2218
2219	if (epos.bh != oepos.bh) {
2220		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2221		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2222		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2223		if (!oepos.bh) {
2224			iinfo->i_lenAlloc -= (adsize * 2);
2225			mark_inode_dirty(inode);
2226		} else {
2227			aed = (struct allocExtDesc *)oepos.bh->b_data;
2228			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2229			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2230			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2231				udf_update_tag(oepos.bh->b_data,
2232						oepos.offset - (2 * adsize));
2233			else
2234				udf_update_tag(oepos.bh->b_data,
2235						sizeof(struct allocExtDesc));
2236			mark_buffer_dirty_inode(oepos.bh, inode);
2237		}
2238	} else {
2239		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2240		if (!oepos.bh) {
2241			iinfo->i_lenAlloc -= adsize;
2242			mark_inode_dirty(inode);
2243		} else {
2244			aed = (struct allocExtDesc *)oepos.bh->b_data;
2245			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2246			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2247			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2248				udf_update_tag(oepos.bh->b_data,
2249						epos.offset - adsize);
2250			else
2251				udf_update_tag(oepos.bh->b_data,
2252						sizeof(struct allocExtDesc));
2253			mark_buffer_dirty_inode(oepos.bh, inode);
2254		}
2255	}
2256
2257	brelse(epos.bh);
2258	brelse(oepos.bh);
2259
2260	return (elen >> 30);
2261}
2262
2263int8_t inode_bmap(struct inode *inode, sector_t block,
2264		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2265		  uint32_t *elen, sector_t *offset)
 
 
 
2266{
2267	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2268	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2269	int8_t etype;
2270	struct udf_inode_info *iinfo;
 
2271
2272	iinfo = UDF_I(inode);
2273	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2274		pos->offset = 0;
2275		pos->block = iinfo->i_location;
2276		pos->bh = NULL;
2277	}
2278	*elen = 0;
2279	do {
2280		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2281		if (etype == -1) {
2282			*offset = (bcount - lbcount) >> blocksize_bits;
2283			iinfo->i_lenExtents = lbcount;
2284			return -1;
 
 
2285		}
2286		lbcount += *elen;
2287	} while (lbcount <= bcount);
2288	/* update extent cache */
2289	udf_update_extent_cache(inode, lbcount - *elen, pos);
2290	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2291
2292	return etype;
2293}
2294
2295udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2296{
2297	struct kernel_lb_addr eloc;
2298	uint32_t elen;
2299	sector_t offset;
2300	struct extent_position epos = {};
2301	udf_pblk_t ret;
2302
2303	down_read(&UDF_I(inode)->i_data_sem);
2304
2305	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2306						(EXT_RECORDED_ALLOCATED >> 30))
2307		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2308	else
2309		ret = 0;
2310
2311	up_read(&UDF_I(inode)->i_data_sem);
2312	brelse(epos.bh);
2313
2314	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2315		return udf_fixed_to_variable(ret);
2316	else
2317		return ret;
2318}