Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * inode.c
4 *
5 * PURPOSE
6 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 *
8 * COPYRIGHT
9 * (C) 1998 Dave Boynton
10 * (C) 1998-2004 Ben Fennema
11 * (C) 1999-2000 Stelias Computing Inc
12 *
13 * HISTORY
14 *
15 * 10/04/98 dgb Added rudimentary directory functions
16 * 10/07/98 Fully working udf_block_map! It works!
17 * 11/25/98 bmap altered to better support extents
18 * 12/06/98 blf partition support in udf_iget, udf_block_map
19 * and udf_read_inode
20 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
21 * block boundaries (which is not actually allowed)
22 * 12/20/98 added support for strategy 4096
23 * 03/07/99 rewrote udf_block_map (again)
24 * New funcs, inode_bmap, udf_next_aext
25 * 04/19/99 Support for writing device EA's for major/minor #
26 */
27
28#include "udfdecl.h"
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/pagemap.h>
32#include <linux/writeback.h>
33#include <linux/slab.h>
34#include <linux/crc-itu-t.h>
35#include <linux/mpage.h>
36#include <linux/uio.h>
37#include <linux/bio.h>
38
39#include "udf_i.h"
40#include "udf_sb.h"
41
42#define EXTENT_MERGE_SIZE 5
43
44#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
45 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
46 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
47
48#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
49 FE_PERM_O_DELETE)
50
51struct udf_map_rq;
52
53static umode_t udf_convert_permissions(struct fileEntry *);
54static int udf_update_inode(struct inode *, int);
55static int udf_sync_inode(struct inode *inode);
56static int udf_alloc_i_data(struct inode *inode, size_t size);
57static int inode_getblk(struct inode *inode, struct udf_map_rq *map);
58static int udf_insert_aext(struct inode *, struct extent_position,
59 struct kernel_lb_addr, uint32_t);
60static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
61 struct kernel_long_ad *, int *);
62static void udf_prealloc_extents(struct inode *, int, int,
63 struct kernel_long_ad *, int *);
64static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
65static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
66 int, struct extent_position *);
67static int udf_get_block_wb(struct inode *inode, sector_t block,
68 struct buffer_head *bh_result, int create);
69
70static void __udf_clear_extent_cache(struct inode *inode)
71{
72 struct udf_inode_info *iinfo = UDF_I(inode);
73
74 if (iinfo->cached_extent.lstart != -1) {
75 brelse(iinfo->cached_extent.epos.bh);
76 iinfo->cached_extent.lstart = -1;
77 }
78}
79
80/* Invalidate extent cache */
81static void udf_clear_extent_cache(struct inode *inode)
82{
83 struct udf_inode_info *iinfo = UDF_I(inode);
84
85 spin_lock(&iinfo->i_extent_cache_lock);
86 __udf_clear_extent_cache(inode);
87 spin_unlock(&iinfo->i_extent_cache_lock);
88}
89
90/* Return contents of extent cache */
91static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
92 loff_t *lbcount, struct extent_position *pos)
93{
94 struct udf_inode_info *iinfo = UDF_I(inode);
95 int ret = 0;
96
97 spin_lock(&iinfo->i_extent_cache_lock);
98 if ((iinfo->cached_extent.lstart <= bcount) &&
99 (iinfo->cached_extent.lstart != -1)) {
100 /* Cache hit */
101 *lbcount = iinfo->cached_extent.lstart;
102 memcpy(pos, &iinfo->cached_extent.epos,
103 sizeof(struct extent_position));
104 if (pos->bh)
105 get_bh(pos->bh);
106 ret = 1;
107 }
108 spin_unlock(&iinfo->i_extent_cache_lock);
109 return ret;
110}
111
112/* Add extent to extent cache */
113static void udf_update_extent_cache(struct inode *inode, loff_t estart,
114 struct extent_position *pos)
115{
116 struct udf_inode_info *iinfo = UDF_I(inode);
117
118 spin_lock(&iinfo->i_extent_cache_lock);
119 /* Invalidate previously cached extent */
120 __udf_clear_extent_cache(inode);
121 if (pos->bh)
122 get_bh(pos->bh);
123 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
124 iinfo->cached_extent.lstart = estart;
125 switch (iinfo->i_alloc_type) {
126 case ICBTAG_FLAG_AD_SHORT:
127 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
128 break;
129 case ICBTAG_FLAG_AD_LONG:
130 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
131 break;
132 }
133 spin_unlock(&iinfo->i_extent_cache_lock);
134}
135
136void udf_evict_inode(struct inode *inode)
137{
138 struct udf_inode_info *iinfo = UDF_I(inode);
139 int want_delete = 0;
140
141 if (!is_bad_inode(inode)) {
142 if (!inode->i_nlink) {
143 want_delete = 1;
144 udf_setsize(inode, 0);
145 udf_update_inode(inode, IS_SYNC(inode));
146 }
147 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
148 inode->i_size != iinfo->i_lenExtents) {
149 udf_warn(inode->i_sb,
150 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
151 inode->i_ino, inode->i_mode,
152 (unsigned long long)inode->i_size,
153 (unsigned long long)iinfo->i_lenExtents);
154 }
155 }
156 truncate_inode_pages_final(&inode->i_data);
157 invalidate_inode_buffers(inode);
158 clear_inode(inode);
159 kfree(iinfo->i_data);
160 iinfo->i_data = NULL;
161 udf_clear_extent_cache(inode);
162 if (want_delete) {
163 udf_free_inode(inode);
164 }
165}
166
167static void udf_write_failed(struct address_space *mapping, loff_t to)
168{
169 struct inode *inode = mapping->host;
170 struct udf_inode_info *iinfo = UDF_I(inode);
171 loff_t isize = inode->i_size;
172
173 if (to > isize) {
174 truncate_pagecache(inode, isize);
175 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
176 down_write(&iinfo->i_data_sem);
177 udf_clear_extent_cache(inode);
178 udf_truncate_extents(inode);
179 up_write(&iinfo->i_data_sem);
180 }
181 }
182}
183
184static int udf_adinicb_writepage(struct folio *folio,
185 struct writeback_control *wbc, void *data)
186{
187 struct inode *inode = folio->mapping->host;
188 struct udf_inode_info *iinfo = UDF_I(inode);
189
190 BUG_ON(!folio_test_locked(folio));
191 BUG_ON(folio->index != 0);
192 memcpy_from_file_folio(iinfo->i_data + iinfo->i_lenEAttr, folio, 0,
193 i_size_read(inode));
194 folio_unlock(folio);
195 mark_inode_dirty(inode);
196
197 return 0;
198}
199
200static int udf_writepages(struct address_space *mapping,
201 struct writeback_control *wbc)
202{
203 struct inode *inode = mapping->host;
204 struct udf_inode_info *iinfo = UDF_I(inode);
205
206 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
207 return mpage_writepages(mapping, wbc, udf_get_block_wb);
208 return write_cache_pages(mapping, wbc, udf_adinicb_writepage, NULL);
209}
210
211static void udf_adinicb_read_folio(struct folio *folio)
212{
213 struct inode *inode = folio->mapping->host;
214 struct udf_inode_info *iinfo = UDF_I(inode);
215 loff_t isize = i_size_read(inode);
216
217 folio_fill_tail(folio, 0, iinfo->i_data + iinfo->i_lenEAttr, isize);
218 folio_mark_uptodate(folio);
219}
220
221static int udf_read_folio(struct file *file, struct folio *folio)
222{
223 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
224
225 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
226 udf_adinicb_read_folio(folio);
227 folio_unlock(folio);
228 return 0;
229 }
230 return mpage_read_folio(folio, udf_get_block);
231}
232
233static void udf_readahead(struct readahead_control *rac)
234{
235 struct udf_inode_info *iinfo = UDF_I(rac->mapping->host);
236
237 /*
238 * No readahead needed for in-ICB files and udf_get_block() would get
239 * confused for such file anyway.
240 */
241 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
242 return;
243
244 mpage_readahead(rac, udf_get_block);
245}
246
247static int udf_write_begin(struct file *file, struct address_space *mapping,
248 loff_t pos, unsigned len,
249 struct folio **foliop, void **fsdata)
250{
251 struct udf_inode_info *iinfo = UDF_I(file_inode(file));
252 struct folio *folio;
253 int ret;
254
255 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
256 ret = block_write_begin(mapping, pos, len, foliop,
257 udf_get_block);
258 if (unlikely(ret))
259 udf_write_failed(mapping, pos + len);
260 return ret;
261 }
262 if (WARN_ON_ONCE(pos >= PAGE_SIZE))
263 return -EIO;
264 folio = __filemap_get_folio(mapping, 0, FGP_WRITEBEGIN,
265 mapping_gfp_mask(mapping));
266 if (IS_ERR(folio))
267 return PTR_ERR(folio);
268 *foliop = folio;
269 if (!folio_test_uptodate(folio))
270 udf_adinicb_read_folio(folio);
271 return 0;
272}
273
274static int udf_write_end(struct file *file, struct address_space *mapping,
275 loff_t pos, unsigned len, unsigned copied,
276 struct folio *folio, void *fsdata)
277{
278 struct inode *inode = file_inode(file);
279 loff_t last_pos;
280
281 if (UDF_I(inode)->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB)
282 return generic_write_end(file, mapping, pos, len, copied, folio,
283 fsdata);
284 last_pos = pos + copied;
285 if (last_pos > inode->i_size)
286 i_size_write(inode, last_pos);
287 folio_mark_dirty(folio);
288 folio_unlock(folio);
289 folio_put(folio);
290
291 return copied;
292}
293
294static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
295{
296 struct file *file = iocb->ki_filp;
297 struct address_space *mapping = file->f_mapping;
298 struct inode *inode = mapping->host;
299 size_t count = iov_iter_count(iter);
300 ssize_t ret;
301
302 /* Fallback to buffered IO for in-ICB files */
303 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
304 return 0;
305 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
306 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
307 udf_write_failed(mapping, iocb->ki_pos + count);
308 return ret;
309}
310
311static sector_t udf_bmap(struct address_space *mapping, sector_t block)
312{
313 struct udf_inode_info *iinfo = UDF_I(mapping->host);
314
315 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
316 return -EINVAL;
317 return generic_block_bmap(mapping, block, udf_get_block);
318}
319
320const struct address_space_operations udf_aops = {
321 .dirty_folio = block_dirty_folio,
322 .invalidate_folio = block_invalidate_folio,
323 .read_folio = udf_read_folio,
324 .readahead = udf_readahead,
325 .writepages = udf_writepages,
326 .write_begin = udf_write_begin,
327 .write_end = udf_write_end,
328 .direct_IO = udf_direct_IO,
329 .bmap = udf_bmap,
330 .migrate_folio = buffer_migrate_folio,
331};
332
333/*
334 * Expand file stored in ICB to a normal one-block-file
335 *
336 * This function requires i_mutex held
337 */
338int udf_expand_file_adinicb(struct inode *inode)
339{
340 struct folio *folio;
341 struct udf_inode_info *iinfo = UDF_I(inode);
342 int err;
343
344 WARN_ON_ONCE(!inode_is_locked(inode));
345 if (!iinfo->i_lenAlloc) {
346 down_write(&iinfo->i_data_sem);
347 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
348 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
349 else
350 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
351 up_write(&iinfo->i_data_sem);
352 mark_inode_dirty(inode);
353 return 0;
354 }
355
356 folio = __filemap_get_folio(inode->i_mapping, 0,
357 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, GFP_KERNEL);
358 if (IS_ERR(folio))
359 return PTR_ERR(folio);
360
361 if (!folio_test_uptodate(folio))
362 udf_adinicb_read_folio(folio);
363 down_write(&iinfo->i_data_sem);
364 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
365 iinfo->i_lenAlloc);
366 iinfo->i_lenAlloc = 0;
367 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
368 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
369 else
370 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
371 folio_mark_dirty(folio);
372 folio_unlock(folio);
373 up_write(&iinfo->i_data_sem);
374 err = filemap_fdatawrite(inode->i_mapping);
375 if (err) {
376 /* Restore everything back so that we don't lose data... */
377 folio_lock(folio);
378 down_write(&iinfo->i_data_sem);
379 memcpy_from_folio(iinfo->i_data + iinfo->i_lenEAttr,
380 folio, 0, inode->i_size);
381 folio_unlock(folio);
382 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
383 iinfo->i_lenAlloc = inode->i_size;
384 up_write(&iinfo->i_data_sem);
385 }
386 folio_put(folio);
387 mark_inode_dirty(inode);
388
389 return err;
390}
391
392#define UDF_MAP_CREATE 0x01 /* Mapping can allocate new blocks */
393#define UDF_MAP_NOPREALLOC 0x02 /* Do not preallocate blocks */
394
395#define UDF_BLK_MAPPED 0x01 /* Block was successfully mapped */
396#define UDF_BLK_NEW 0x02 /* Block was freshly allocated */
397
398struct udf_map_rq {
399 sector_t lblk;
400 udf_pblk_t pblk;
401 int iflags; /* UDF_MAP_ flags determining behavior */
402 int oflags; /* UDF_BLK_ flags reporting results */
403};
404
405static int udf_map_block(struct inode *inode, struct udf_map_rq *map)
406{
407 int ret;
408 struct udf_inode_info *iinfo = UDF_I(inode);
409
410 if (WARN_ON_ONCE(iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB))
411 return -EFSCORRUPTED;
412
413 map->oflags = 0;
414 if (!(map->iflags & UDF_MAP_CREATE)) {
415 struct kernel_lb_addr eloc;
416 uint32_t elen;
417 sector_t offset;
418 struct extent_position epos = {};
419 int8_t etype;
420
421 down_read(&iinfo->i_data_sem);
422 ret = inode_bmap(inode, map->lblk, &epos, &eloc, &elen, &offset,
423 &etype);
424 if (ret < 0)
425 goto out_read;
426 if (ret > 0 && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
427 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc,
428 offset);
429 map->oflags |= UDF_BLK_MAPPED;
430 ret = 0;
431 }
432out_read:
433 up_read(&iinfo->i_data_sem);
434 brelse(epos.bh);
435
436 return ret;
437 }
438
439 down_write(&iinfo->i_data_sem);
440 /*
441 * Block beyond EOF and prealloc extents? Just discard preallocation
442 * as it is not useful and complicates things.
443 */
444 if (((loff_t)map->lblk) << inode->i_blkbits >= iinfo->i_lenExtents)
445 udf_discard_prealloc(inode);
446 udf_clear_extent_cache(inode);
447 ret = inode_getblk(inode, map);
448 up_write(&iinfo->i_data_sem);
449 return ret;
450}
451
452static int __udf_get_block(struct inode *inode, sector_t block,
453 struct buffer_head *bh_result, int flags)
454{
455 int err;
456 struct udf_map_rq map = {
457 .lblk = block,
458 .iflags = flags,
459 };
460
461 err = udf_map_block(inode, &map);
462 if (err < 0)
463 return err;
464 if (map.oflags & UDF_BLK_MAPPED) {
465 map_bh(bh_result, inode->i_sb, map.pblk);
466 if (map.oflags & UDF_BLK_NEW)
467 set_buffer_new(bh_result);
468 }
469 return 0;
470}
471
472int udf_get_block(struct inode *inode, sector_t block,
473 struct buffer_head *bh_result, int create)
474{
475 int flags = create ? UDF_MAP_CREATE : 0;
476
477 /*
478 * We preallocate blocks only for regular files. It also makes sense
479 * for directories but there's a problem when to drop the
480 * preallocation. We might use some delayed work for that but I feel
481 * it's overengineering for a filesystem like UDF.
482 */
483 if (!S_ISREG(inode->i_mode))
484 flags |= UDF_MAP_NOPREALLOC;
485 return __udf_get_block(inode, block, bh_result, flags);
486}
487
488/*
489 * We shouldn't be allocating blocks on page writeback since we allocate them
490 * on page fault. We can spot dirty buffers without allocated blocks though
491 * when truncate expands file. These however don't have valid data so we can
492 * safely ignore them. So never allocate blocks from page writeback.
493 */
494static int udf_get_block_wb(struct inode *inode, sector_t block,
495 struct buffer_head *bh_result, int create)
496{
497 return __udf_get_block(inode, block, bh_result, 0);
498}
499
500/* Extend the file with new blocks totaling 'new_block_bytes',
501 * return the number of extents added
502 */
503static int udf_do_extend_file(struct inode *inode,
504 struct extent_position *last_pos,
505 struct kernel_long_ad *last_ext,
506 loff_t new_block_bytes)
507{
508 uint32_t add;
509 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
510 struct super_block *sb = inode->i_sb;
511 struct udf_inode_info *iinfo;
512 int err;
513
514 /* The previous extent is fake and we should not extend by anything
515 * - there's nothing to do... */
516 if (!new_block_bytes && fake)
517 return 0;
518
519 iinfo = UDF_I(inode);
520 /* Round the last extent up to a multiple of block size */
521 if (last_ext->extLength & (sb->s_blocksize - 1)) {
522 last_ext->extLength =
523 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
524 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
525 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
526 iinfo->i_lenExtents =
527 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
528 ~(sb->s_blocksize - 1);
529 }
530
531 add = 0;
532 /* Can we merge with the previous extent? */
533 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
534 EXT_NOT_RECORDED_NOT_ALLOCATED) {
535 add = (1 << 30) - sb->s_blocksize -
536 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
537 if (add > new_block_bytes)
538 add = new_block_bytes;
539 new_block_bytes -= add;
540 last_ext->extLength += add;
541 }
542
543 if (fake) {
544 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
545 last_ext->extLength, 1);
546 if (err < 0)
547 goto out_err;
548 count++;
549 } else {
550 struct kernel_lb_addr tmploc;
551 uint32_t tmplen;
552 int8_t tmptype;
553
554 udf_write_aext(inode, last_pos, &last_ext->extLocation,
555 last_ext->extLength, 1);
556
557 /*
558 * We've rewritten the last extent. If we are going to add
559 * more extents, we may need to enter possible following
560 * empty indirect extent.
561 */
562 if (new_block_bytes) {
563 err = udf_next_aext(inode, last_pos, &tmploc, &tmplen,
564 &tmptype, 0);
565 if (err < 0)
566 goto out_err;
567 }
568 }
569 iinfo->i_lenExtents += add;
570
571 /* Managed to do everything necessary? */
572 if (!new_block_bytes)
573 goto out;
574
575 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
576 last_ext->extLocation.logicalBlockNum = 0;
577 last_ext->extLocation.partitionReferenceNum = 0;
578 add = (1 << 30) - sb->s_blocksize;
579 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
580
581 /* Create enough extents to cover the whole hole */
582 while (new_block_bytes > add) {
583 new_block_bytes -= add;
584 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
585 last_ext->extLength, 1);
586 if (err)
587 goto out_err;
588 iinfo->i_lenExtents += add;
589 count++;
590 }
591 if (new_block_bytes) {
592 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
593 new_block_bytes;
594 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
595 last_ext->extLength, 1);
596 if (err)
597 goto out_err;
598 iinfo->i_lenExtents += new_block_bytes;
599 count++;
600 }
601
602out:
603 /* last_pos should point to the last written extent... */
604 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
605 last_pos->offset -= sizeof(struct short_ad);
606 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
607 last_pos->offset -= sizeof(struct long_ad);
608 else
609 return -EIO;
610
611 return count;
612out_err:
613 /* Remove extents we've created so far */
614 udf_clear_extent_cache(inode);
615 udf_truncate_extents(inode);
616 return err;
617}
618
619/* Extend the final block of the file to final_block_len bytes */
620static void udf_do_extend_final_block(struct inode *inode,
621 struct extent_position *last_pos,
622 struct kernel_long_ad *last_ext,
623 uint32_t new_elen)
624{
625 uint32_t added_bytes;
626
627 /*
628 * Extent already large enough? It may be already rounded up to block
629 * size...
630 */
631 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
632 return;
633 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
634 last_ext->extLength += added_bytes;
635 UDF_I(inode)->i_lenExtents += added_bytes;
636
637 udf_write_aext(inode, last_pos, &last_ext->extLocation,
638 last_ext->extLength, 1);
639}
640
641static int udf_extend_file(struct inode *inode, loff_t newsize)
642{
643
644 struct extent_position epos;
645 struct kernel_lb_addr eloc;
646 uint32_t elen;
647 int8_t etype;
648 struct super_block *sb = inode->i_sb;
649 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
650 loff_t new_elen;
651 int adsize;
652 struct udf_inode_info *iinfo = UDF_I(inode);
653 struct kernel_long_ad extent;
654 int err = 0;
655 bool within_last_ext;
656
657 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
658 adsize = sizeof(struct short_ad);
659 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
660 adsize = sizeof(struct long_ad);
661 else
662 BUG();
663
664 down_write(&iinfo->i_data_sem);
665 /*
666 * When creating hole in file, just don't bother with preserving
667 * preallocation. It likely won't be very useful anyway.
668 */
669 udf_discard_prealloc(inode);
670
671 err = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset, &etype);
672 if (err < 0)
673 goto out;
674 within_last_ext = (err == 1);
675 /* We don't expect extents past EOF... */
676 WARN_ON_ONCE(within_last_ext &&
677 elen > ((loff_t)offset + 1) << inode->i_blkbits);
678
679 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
680 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
681 /* File has no extents at all or has empty last
682 * indirect extent! Create a fake extent... */
683 extent.extLocation.logicalBlockNum = 0;
684 extent.extLocation.partitionReferenceNum = 0;
685 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
686 } else {
687 epos.offset -= adsize;
688 err = udf_next_aext(inode, &epos, &extent.extLocation,
689 &extent.extLength, &etype, 0);
690 if (err <= 0)
691 goto out;
692 extent.extLength |= etype << 30;
693 }
694
695 new_elen = ((loff_t)offset << inode->i_blkbits) |
696 (newsize & (sb->s_blocksize - 1));
697
698 /* File has extent covering the new size (could happen when extending
699 * inside a block)?
700 */
701 if (within_last_ext) {
702 /* Extending file within the last file block */
703 udf_do_extend_final_block(inode, &epos, &extent, new_elen);
704 } else {
705 err = udf_do_extend_file(inode, &epos, &extent, new_elen);
706 }
707
708 if (err < 0)
709 goto out;
710 err = 0;
711out:
712 brelse(epos.bh);
713 up_write(&iinfo->i_data_sem);
714 return err;
715}
716
717static int inode_getblk(struct inode *inode, struct udf_map_rq *map)
718{
719 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
720 struct extent_position prev_epos, cur_epos, next_epos;
721 int count = 0, startnum = 0, endnum = 0;
722 uint32_t elen = 0, tmpelen;
723 struct kernel_lb_addr eloc, tmpeloc;
724 int c = 1;
725 loff_t lbcount = 0, b_off = 0;
726 udf_pblk_t newblocknum;
727 sector_t offset = 0;
728 int8_t etype, tmpetype;
729 struct udf_inode_info *iinfo = UDF_I(inode);
730 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
731 int lastblock = 0;
732 bool isBeyondEOF = false;
733 int ret = 0;
734
735 prev_epos.offset = udf_file_entry_alloc_offset(inode);
736 prev_epos.block = iinfo->i_location;
737 prev_epos.bh = NULL;
738 cur_epos = next_epos = prev_epos;
739 b_off = (loff_t)map->lblk << inode->i_sb->s_blocksize_bits;
740
741 /* find the extent which contains the block we are looking for.
742 alternate between laarr[0] and laarr[1] for locations of the
743 current extent, and the previous extent */
744 do {
745 if (prev_epos.bh != cur_epos.bh) {
746 brelse(prev_epos.bh);
747 get_bh(cur_epos.bh);
748 prev_epos.bh = cur_epos.bh;
749 }
750 if (cur_epos.bh != next_epos.bh) {
751 brelse(cur_epos.bh);
752 get_bh(next_epos.bh);
753 cur_epos.bh = next_epos.bh;
754 }
755
756 lbcount += elen;
757
758 prev_epos.block = cur_epos.block;
759 cur_epos.block = next_epos.block;
760
761 prev_epos.offset = cur_epos.offset;
762 cur_epos.offset = next_epos.offset;
763
764 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 1);
765 if (ret < 0) {
766 goto out_free;
767 } else if (ret == 0) {
768 isBeyondEOF = true;
769 break;
770 }
771
772 c = !c;
773
774 laarr[c].extLength = (etype << 30) | elen;
775 laarr[c].extLocation = eloc;
776
777 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
778 pgoal = eloc.logicalBlockNum +
779 ((elen + inode->i_sb->s_blocksize - 1) >>
780 inode->i_sb->s_blocksize_bits);
781
782 count++;
783 } while (lbcount + elen <= b_off);
784
785 b_off -= lbcount;
786 offset = b_off >> inode->i_sb->s_blocksize_bits;
787 /*
788 * Move prev_epos and cur_epos into indirect extent if we are at
789 * the pointer to it
790 */
791 ret = udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
792 if (ret < 0)
793 goto out_free;
794 ret = udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, &tmpetype, 0);
795 if (ret < 0)
796 goto out_free;
797
798 /* if the extent is allocated and recorded, return the block
799 if the extent is not a multiple of the blocksize, round up */
800
801 if (!isBeyondEOF && etype == (EXT_RECORDED_ALLOCATED >> 30)) {
802 if (elen & (inode->i_sb->s_blocksize - 1)) {
803 elen = EXT_RECORDED_ALLOCATED |
804 ((elen + inode->i_sb->s_blocksize - 1) &
805 ~(inode->i_sb->s_blocksize - 1));
806 iinfo->i_lenExtents =
807 ALIGN(iinfo->i_lenExtents,
808 inode->i_sb->s_blocksize);
809 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
810 }
811 map->oflags = UDF_BLK_MAPPED;
812 map->pblk = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
813 goto out_free;
814 }
815
816 /* Are we beyond EOF and preallocated extent? */
817 if (isBeyondEOF) {
818 loff_t hole_len;
819
820 if (count) {
821 if (c)
822 laarr[0] = laarr[1];
823 startnum = 1;
824 } else {
825 /* Create a fake extent when there's not one */
826 memset(&laarr[0].extLocation, 0x00,
827 sizeof(struct kernel_lb_addr));
828 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
829 /* Will udf_do_extend_file() create real extent from
830 a fake one? */
831 startnum = (offset > 0);
832 }
833 /* Create extents for the hole between EOF and offset */
834 hole_len = (loff_t)offset << inode->i_blkbits;
835 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
836 if (ret < 0)
837 goto out_free;
838 c = 0;
839 offset = 0;
840 count += ret;
841 /*
842 * Is there any real extent? - otherwise we overwrite the fake
843 * one...
844 */
845 if (count)
846 c = !c;
847 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
848 inode->i_sb->s_blocksize;
849 memset(&laarr[c].extLocation, 0x00,
850 sizeof(struct kernel_lb_addr));
851 count++;
852 endnum = c + 1;
853 lastblock = 1;
854 } else {
855 endnum = startnum = ((count > 2) ? 2 : count);
856
857 /* if the current extent is in position 0,
858 swap it with the previous */
859 if (!c && count != 1) {
860 laarr[2] = laarr[0];
861 laarr[0] = laarr[1];
862 laarr[1] = laarr[2];
863 c = 1;
864 }
865
866 /* if the current block is located in an extent,
867 read the next extent */
868 ret = udf_next_aext(inode, &next_epos, &eloc, &elen, &etype, 0);
869 if (ret > 0) {
870 laarr[c + 1].extLength = (etype << 30) | elen;
871 laarr[c + 1].extLocation = eloc;
872 count++;
873 startnum++;
874 endnum++;
875 } else if (ret == 0)
876 lastblock = 1;
877 else
878 goto out_free;
879 }
880
881 /* if the current extent is not recorded but allocated, get the
882 * block in the extent corresponding to the requested block */
883 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
884 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
885 else { /* otherwise, allocate a new block */
886 if (iinfo->i_next_alloc_block == map->lblk)
887 goal = iinfo->i_next_alloc_goal;
888
889 if (!goal) {
890 if (!(goal = pgoal)) /* XXX: what was intended here? */
891 goal = iinfo->i_location.logicalBlockNum + 1;
892 }
893
894 newblocknum = udf_new_block(inode->i_sb, inode,
895 iinfo->i_location.partitionReferenceNum,
896 goal, &ret);
897 if (!newblocknum)
898 goto out_free;
899 if (isBeyondEOF)
900 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
901 }
902
903 /* if the extent the requsted block is located in contains multiple
904 * blocks, split the extent into at most three extents. blocks prior
905 * to requested block, requested block, and blocks after requested
906 * block */
907 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
908
909 if (!(map->iflags & UDF_MAP_NOPREALLOC))
910 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
911
912 /* merge any continuous blocks in laarr */
913 udf_merge_extents(inode, laarr, &endnum);
914
915 /* write back the new extents, inserting new extents if the new number
916 * of extents is greater than the old number, and deleting extents if
917 * the new number of extents is less than the old number */
918 ret = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
919 if (ret < 0)
920 goto out_free;
921
922 map->pblk = udf_get_pblock(inode->i_sb, newblocknum,
923 iinfo->i_location.partitionReferenceNum, 0);
924 if (!map->pblk) {
925 ret = -EFSCORRUPTED;
926 goto out_free;
927 }
928 map->oflags = UDF_BLK_NEW | UDF_BLK_MAPPED;
929 iinfo->i_next_alloc_block = map->lblk + 1;
930 iinfo->i_next_alloc_goal = newblocknum + 1;
931 inode_set_ctime_current(inode);
932
933 if (IS_SYNC(inode))
934 udf_sync_inode(inode);
935 else
936 mark_inode_dirty(inode);
937 ret = 0;
938out_free:
939 brelse(prev_epos.bh);
940 brelse(cur_epos.bh);
941 brelse(next_epos.bh);
942 return ret;
943}
944
945static void udf_split_extents(struct inode *inode, int *c, int offset,
946 udf_pblk_t newblocknum,
947 struct kernel_long_ad *laarr, int *endnum)
948{
949 unsigned long blocksize = inode->i_sb->s_blocksize;
950 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
951
952 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
953 (laarr[*c].extLength >> 30) ==
954 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
955 int curr = *c;
956 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
957 blocksize - 1) >> blocksize_bits;
958 int8_t etype = (laarr[curr].extLength >> 30);
959
960 if (blen == 1)
961 ;
962 else if (!offset || blen == offset + 1) {
963 laarr[curr + 2] = laarr[curr + 1];
964 laarr[curr + 1] = laarr[curr];
965 } else {
966 laarr[curr + 3] = laarr[curr + 1];
967 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
968 }
969
970 if (offset) {
971 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
972 udf_free_blocks(inode->i_sb, inode,
973 &laarr[curr].extLocation,
974 0, offset);
975 laarr[curr].extLength =
976 EXT_NOT_RECORDED_NOT_ALLOCATED |
977 (offset << blocksize_bits);
978 laarr[curr].extLocation.logicalBlockNum = 0;
979 laarr[curr].extLocation.
980 partitionReferenceNum = 0;
981 } else
982 laarr[curr].extLength = (etype << 30) |
983 (offset << blocksize_bits);
984 curr++;
985 (*c)++;
986 (*endnum)++;
987 }
988
989 laarr[curr].extLocation.logicalBlockNum = newblocknum;
990 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
991 laarr[curr].extLocation.partitionReferenceNum =
992 UDF_I(inode)->i_location.partitionReferenceNum;
993 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
994 blocksize;
995 curr++;
996
997 if (blen != offset + 1) {
998 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
999 laarr[curr].extLocation.logicalBlockNum +=
1000 offset + 1;
1001 laarr[curr].extLength = (etype << 30) |
1002 ((blen - (offset + 1)) << blocksize_bits);
1003 curr++;
1004 (*endnum)++;
1005 }
1006 }
1007}
1008
1009static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
1010 struct kernel_long_ad *laarr,
1011 int *endnum)
1012{
1013 int start, length = 0, currlength = 0, i;
1014
1015 if (*endnum >= (c + 1)) {
1016 if (!lastblock)
1017 return;
1018 else
1019 start = c;
1020 } else {
1021 if ((laarr[c + 1].extLength >> 30) ==
1022 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1023 start = c + 1;
1024 length = currlength =
1025 (((laarr[c + 1].extLength &
1026 UDF_EXTENT_LENGTH_MASK) +
1027 inode->i_sb->s_blocksize - 1) >>
1028 inode->i_sb->s_blocksize_bits);
1029 } else
1030 start = c;
1031 }
1032
1033 for (i = start + 1; i <= *endnum; i++) {
1034 if (i == *endnum) {
1035 if (lastblock)
1036 length += UDF_DEFAULT_PREALLOC_BLOCKS;
1037 } else if ((laarr[i].extLength >> 30) ==
1038 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1039 length += (((laarr[i].extLength &
1040 UDF_EXTENT_LENGTH_MASK) +
1041 inode->i_sb->s_blocksize - 1) >>
1042 inode->i_sb->s_blocksize_bits);
1043 } else
1044 break;
1045 }
1046
1047 if (length) {
1048 int next = laarr[start].extLocation.logicalBlockNum +
1049 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1050 inode->i_sb->s_blocksize - 1) >>
1051 inode->i_sb->s_blocksize_bits);
1052 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1053 laarr[start].extLocation.partitionReferenceNum,
1054 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1055 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1056 currlength);
1057 if (numalloc) {
1058 if (start == (c + 1))
1059 laarr[start].extLength +=
1060 (numalloc <<
1061 inode->i_sb->s_blocksize_bits);
1062 else {
1063 memmove(&laarr[c + 2], &laarr[c + 1],
1064 sizeof(struct long_ad) * (*endnum - (c + 1)));
1065 (*endnum)++;
1066 laarr[c + 1].extLocation.logicalBlockNum = next;
1067 laarr[c + 1].extLocation.partitionReferenceNum =
1068 laarr[c].extLocation.
1069 partitionReferenceNum;
1070 laarr[c + 1].extLength =
1071 EXT_NOT_RECORDED_ALLOCATED |
1072 (numalloc <<
1073 inode->i_sb->s_blocksize_bits);
1074 start = c + 1;
1075 }
1076
1077 for (i = start + 1; numalloc && i < *endnum; i++) {
1078 int elen = ((laarr[i].extLength &
1079 UDF_EXTENT_LENGTH_MASK) +
1080 inode->i_sb->s_blocksize - 1) >>
1081 inode->i_sb->s_blocksize_bits;
1082
1083 if (elen > numalloc) {
1084 laarr[i].extLength -=
1085 (numalloc <<
1086 inode->i_sb->s_blocksize_bits);
1087 numalloc = 0;
1088 } else {
1089 numalloc -= elen;
1090 if (*endnum > (i + 1))
1091 memmove(&laarr[i],
1092 &laarr[i + 1],
1093 sizeof(struct long_ad) *
1094 (*endnum - (i + 1)));
1095 i--;
1096 (*endnum)--;
1097 }
1098 }
1099 UDF_I(inode)->i_lenExtents +=
1100 numalloc << inode->i_sb->s_blocksize_bits;
1101 }
1102 }
1103}
1104
1105static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1106 int *endnum)
1107{
1108 int i;
1109 unsigned long blocksize = inode->i_sb->s_blocksize;
1110 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1111
1112 for (i = 0; i < (*endnum - 1); i++) {
1113 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1114 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1115
1116 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1117 (((li->extLength >> 30) ==
1118 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1119 ((lip1->extLocation.logicalBlockNum -
1120 li->extLocation.logicalBlockNum) ==
1121 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1122 blocksize - 1) >> blocksize_bits)))) {
1123
1124 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1125 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1126 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1127 li->extLength = lip1->extLength +
1128 (((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) & ~(blocksize - 1));
1131 if (*endnum > (i + 2))
1132 memmove(&laarr[i + 1], &laarr[i + 2],
1133 sizeof(struct long_ad) *
1134 (*endnum - (i + 2)));
1135 i--;
1136 (*endnum)--;
1137 }
1138 } else if (((li->extLength >> 30) ==
1139 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1140 ((lip1->extLength >> 30) ==
1141 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1142 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1143 ((li->extLength &
1144 UDF_EXTENT_LENGTH_MASK) +
1145 blocksize - 1) >> blocksize_bits);
1146 li->extLocation.logicalBlockNum = 0;
1147 li->extLocation.partitionReferenceNum = 0;
1148
1149 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1150 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1151 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1152 lip1->extLength = (lip1->extLength -
1153 (li->extLength &
1154 UDF_EXTENT_LENGTH_MASK) +
1155 UDF_EXTENT_LENGTH_MASK) &
1156 ~(blocksize - 1);
1157 li->extLength = (li->extLength &
1158 UDF_EXTENT_FLAG_MASK) +
1159 (UDF_EXTENT_LENGTH_MASK + 1) -
1160 blocksize;
1161 } else {
1162 li->extLength = lip1->extLength +
1163 (((li->extLength &
1164 UDF_EXTENT_LENGTH_MASK) +
1165 blocksize - 1) & ~(blocksize - 1));
1166 if (*endnum > (i + 2))
1167 memmove(&laarr[i + 1], &laarr[i + 2],
1168 sizeof(struct long_ad) *
1169 (*endnum - (i + 2)));
1170 i--;
1171 (*endnum)--;
1172 }
1173 } else if ((li->extLength >> 30) ==
1174 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1175 udf_free_blocks(inode->i_sb, inode,
1176 &li->extLocation, 0,
1177 ((li->extLength &
1178 UDF_EXTENT_LENGTH_MASK) +
1179 blocksize - 1) >> blocksize_bits);
1180 li->extLocation.logicalBlockNum = 0;
1181 li->extLocation.partitionReferenceNum = 0;
1182 li->extLength = (li->extLength &
1183 UDF_EXTENT_LENGTH_MASK) |
1184 EXT_NOT_RECORDED_NOT_ALLOCATED;
1185 }
1186 }
1187}
1188
1189static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1190 int startnum, int endnum,
1191 struct extent_position *epos)
1192{
1193 int start = 0, i;
1194 struct kernel_lb_addr tmploc;
1195 uint32_t tmplen;
1196 int8_t tmpetype;
1197 int err;
1198
1199 if (startnum > endnum) {
1200 for (i = 0; i < (startnum - endnum); i++)
1201 udf_delete_aext(inode, *epos);
1202 } else if (startnum < endnum) {
1203 for (i = 0; i < (endnum - startnum); i++) {
1204 err = udf_insert_aext(inode, *epos,
1205 laarr[i].extLocation,
1206 laarr[i].extLength);
1207 /*
1208 * If we fail here, we are likely corrupting the extent
1209 * list and leaking blocks. At least stop early to
1210 * limit the damage.
1211 */
1212 if (err < 0)
1213 return err;
1214 err = udf_next_aext(inode, epos, &laarr[i].extLocation,
1215 &laarr[i].extLength, &tmpetype, 1);
1216 if (err < 0)
1217 return err;
1218 start++;
1219 }
1220 }
1221
1222 for (i = start; i < endnum; i++) {
1223 err = udf_next_aext(inode, epos, &tmploc, &tmplen, &tmpetype, 0);
1224 if (err < 0)
1225 return err;
1226
1227 udf_write_aext(inode, epos, &laarr[i].extLocation,
1228 laarr[i].extLength, 1);
1229 }
1230 return 0;
1231}
1232
1233struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1234 int create, int *err)
1235{
1236 struct buffer_head *bh = NULL;
1237 struct udf_map_rq map = {
1238 .lblk = block,
1239 .iflags = UDF_MAP_NOPREALLOC | (create ? UDF_MAP_CREATE : 0),
1240 };
1241
1242 *err = udf_map_block(inode, &map);
1243 if (*err || !(map.oflags & UDF_BLK_MAPPED))
1244 return NULL;
1245
1246 bh = sb_getblk(inode->i_sb, map.pblk);
1247 if (!bh) {
1248 *err = -ENOMEM;
1249 return NULL;
1250 }
1251 if (map.oflags & UDF_BLK_NEW) {
1252 lock_buffer(bh);
1253 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1254 set_buffer_uptodate(bh);
1255 unlock_buffer(bh);
1256 mark_buffer_dirty_inode(bh, inode);
1257 return bh;
1258 }
1259
1260 if (bh_read(bh, 0) >= 0)
1261 return bh;
1262
1263 brelse(bh);
1264 *err = -EIO;
1265 return NULL;
1266}
1267
1268int udf_setsize(struct inode *inode, loff_t newsize)
1269{
1270 int err = 0;
1271 struct udf_inode_info *iinfo;
1272 unsigned int bsize = i_blocksize(inode);
1273
1274 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1275 S_ISLNK(inode->i_mode)))
1276 return -EINVAL;
1277
1278 iinfo = UDF_I(inode);
1279 if (newsize > inode->i_size) {
1280 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1281 if (bsize >=
1282 (udf_file_entry_alloc_offset(inode) + newsize)) {
1283 down_write(&iinfo->i_data_sem);
1284 iinfo->i_lenAlloc = newsize;
1285 up_write(&iinfo->i_data_sem);
1286 goto set_size;
1287 }
1288 err = udf_expand_file_adinicb(inode);
1289 if (err)
1290 return err;
1291 }
1292 err = udf_extend_file(inode, newsize);
1293 if (err)
1294 return err;
1295set_size:
1296 truncate_setsize(inode, newsize);
1297 } else {
1298 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1299 down_write(&iinfo->i_data_sem);
1300 udf_clear_extent_cache(inode);
1301 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1302 0x00, bsize - newsize -
1303 udf_file_entry_alloc_offset(inode));
1304 iinfo->i_lenAlloc = newsize;
1305 truncate_setsize(inode, newsize);
1306 up_write(&iinfo->i_data_sem);
1307 goto update_time;
1308 }
1309 err = block_truncate_page(inode->i_mapping, newsize,
1310 udf_get_block);
1311 if (err)
1312 return err;
1313 truncate_setsize(inode, newsize);
1314 down_write(&iinfo->i_data_sem);
1315 udf_clear_extent_cache(inode);
1316 err = udf_truncate_extents(inode);
1317 up_write(&iinfo->i_data_sem);
1318 if (err)
1319 return err;
1320 }
1321update_time:
1322 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1323 if (IS_SYNC(inode))
1324 udf_sync_inode(inode);
1325 else
1326 mark_inode_dirty(inode);
1327 return err;
1328}
1329
1330/*
1331 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1332 * arbitrary - just that we hopefully don't limit any real use of rewritten
1333 * inode on write-once media but avoid looping for too long on corrupted media.
1334 */
1335#define UDF_MAX_ICB_NESTING 1024
1336
1337static int udf_read_inode(struct inode *inode, bool hidden_inode)
1338{
1339 struct buffer_head *bh = NULL;
1340 struct fileEntry *fe;
1341 struct extendedFileEntry *efe;
1342 uint16_t ident;
1343 struct udf_inode_info *iinfo = UDF_I(inode);
1344 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1345 struct kernel_lb_addr *iloc = &iinfo->i_location;
1346 unsigned int link_count;
1347 unsigned int indirections = 0;
1348 int bs = inode->i_sb->s_blocksize;
1349 int ret = -EIO;
1350 uint32_t uid, gid;
1351 struct timespec64 ts;
1352
1353reread:
1354 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1355 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1356 iloc->partitionReferenceNum, sbi->s_partitions);
1357 return -EIO;
1358 }
1359
1360 if (iloc->logicalBlockNum >=
1361 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1362 udf_debug("block=%u, partition=%u out of range\n",
1363 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1364 return -EIO;
1365 }
1366
1367 /*
1368 * Set defaults, but the inode is still incomplete!
1369 * Note: get_new_inode() sets the following on a new inode:
1370 * i_sb = sb
1371 * i_no = ino
1372 * i_flags = sb->s_flags
1373 * i_state = 0
1374 * clean_inode(): zero fills and sets
1375 * i_count = 1
1376 * i_nlink = 1
1377 * i_op = NULL;
1378 */
1379 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1380 if (!bh) {
1381 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1382 return -EIO;
1383 }
1384
1385 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1386 ident != TAG_IDENT_USE) {
1387 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1388 inode->i_ino, ident);
1389 goto out;
1390 }
1391
1392 fe = (struct fileEntry *)bh->b_data;
1393 efe = (struct extendedFileEntry *)bh->b_data;
1394
1395 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1396 struct buffer_head *ibh;
1397
1398 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1399 if (ident == TAG_IDENT_IE && ibh) {
1400 struct kernel_lb_addr loc;
1401 struct indirectEntry *ie;
1402
1403 ie = (struct indirectEntry *)ibh->b_data;
1404 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1405
1406 if (ie->indirectICB.extLength) {
1407 brelse(ibh);
1408 memcpy(&iinfo->i_location, &loc,
1409 sizeof(struct kernel_lb_addr));
1410 if (++indirections > UDF_MAX_ICB_NESTING) {
1411 udf_err(inode->i_sb,
1412 "too many ICBs in ICB hierarchy"
1413 " (max %d supported)\n",
1414 UDF_MAX_ICB_NESTING);
1415 goto out;
1416 }
1417 brelse(bh);
1418 goto reread;
1419 }
1420 }
1421 brelse(ibh);
1422 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1423 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1424 le16_to_cpu(fe->icbTag.strategyType));
1425 goto out;
1426 }
1427 if (fe->icbTag.strategyType == cpu_to_le16(4))
1428 iinfo->i_strat4096 = 0;
1429 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1430 iinfo->i_strat4096 = 1;
1431
1432 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1433 ICBTAG_FLAG_AD_MASK;
1434 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1435 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1436 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1437 ret = -EIO;
1438 goto out;
1439 }
1440 iinfo->i_hidden = hidden_inode;
1441 iinfo->i_unique = 0;
1442 iinfo->i_lenEAttr = 0;
1443 iinfo->i_lenExtents = 0;
1444 iinfo->i_lenAlloc = 0;
1445 iinfo->i_next_alloc_block = 0;
1446 iinfo->i_next_alloc_goal = 0;
1447 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1448 iinfo->i_efe = 1;
1449 iinfo->i_use = 0;
1450 ret = udf_alloc_i_data(inode, bs -
1451 sizeof(struct extendedFileEntry));
1452 if (ret)
1453 goto out;
1454 memcpy(iinfo->i_data,
1455 bh->b_data + sizeof(struct extendedFileEntry),
1456 bs - sizeof(struct extendedFileEntry));
1457 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1458 iinfo->i_efe = 0;
1459 iinfo->i_use = 0;
1460 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1461 if (ret)
1462 goto out;
1463 memcpy(iinfo->i_data,
1464 bh->b_data + sizeof(struct fileEntry),
1465 bs - sizeof(struct fileEntry));
1466 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1467 iinfo->i_efe = 0;
1468 iinfo->i_use = 1;
1469 iinfo->i_lenAlloc = le32_to_cpu(
1470 ((struct unallocSpaceEntry *)bh->b_data)->
1471 lengthAllocDescs);
1472 ret = udf_alloc_i_data(inode, bs -
1473 sizeof(struct unallocSpaceEntry));
1474 if (ret)
1475 goto out;
1476 memcpy(iinfo->i_data,
1477 bh->b_data + sizeof(struct unallocSpaceEntry),
1478 bs - sizeof(struct unallocSpaceEntry));
1479 return 0;
1480 }
1481
1482 ret = -EIO;
1483 read_lock(&sbi->s_cred_lock);
1484 uid = le32_to_cpu(fe->uid);
1485 if (uid == UDF_INVALID_ID ||
1486 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1487 inode->i_uid = sbi->s_uid;
1488 else
1489 i_uid_write(inode, uid);
1490
1491 gid = le32_to_cpu(fe->gid);
1492 if (gid == UDF_INVALID_ID ||
1493 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1494 inode->i_gid = sbi->s_gid;
1495 else
1496 i_gid_write(inode, gid);
1497
1498 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1499 sbi->s_fmode != UDF_INVALID_MODE)
1500 inode->i_mode = sbi->s_fmode;
1501 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1502 sbi->s_dmode != UDF_INVALID_MODE)
1503 inode->i_mode = sbi->s_dmode;
1504 else
1505 inode->i_mode = udf_convert_permissions(fe);
1506 inode->i_mode &= ~sbi->s_umask;
1507 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1508
1509 read_unlock(&sbi->s_cred_lock);
1510
1511 link_count = le16_to_cpu(fe->fileLinkCount);
1512 if (!link_count) {
1513 if (!hidden_inode) {
1514 ret = -ESTALE;
1515 goto out;
1516 }
1517 link_count = 1;
1518 }
1519 set_nlink(inode, link_count);
1520
1521 inode->i_size = le64_to_cpu(fe->informationLength);
1522 iinfo->i_lenExtents = inode->i_size;
1523
1524 if (iinfo->i_efe == 0) {
1525 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1526 (inode->i_sb->s_blocksize_bits - 9);
1527
1528 udf_disk_stamp_to_time(&ts, fe->accessTime);
1529 inode_set_atime_to_ts(inode, ts);
1530 udf_disk_stamp_to_time(&ts, fe->modificationTime);
1531 inode_set_mtime_to_ts(inode, ts);
1532 udf_disk_stamp_to_time(&ts, fe->attrTime);
1533 inode_set_ctime_to_ts(inode, ts);
1534
1535 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1536 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1537 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1538 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1539 iinfo->i_streamdir = 0;
1540 iinfo->i_lenStreams = 0;
1541 } else {
1542 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1543 (inode->i_sb->s_blocksize_bits - 9);
1544
1545 udf_disk_stamp_to_time(&ts, efe->accessTime);
1546 inode_set_atime_to_ts(inode, ts);
1547 udf_disk_stamp_to_time(&ts, efe->modificationTime);
1548 inode_set_mtime_to_ts(inode, ts);
1549 udf_disk_stamp_to_time(&ts, efe->attrTime);
1550 inode_set_ctime_to_ts(inode, ts);
1551 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1552
1553 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1554 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1555 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1556 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1557
1558 /* Named streams */
1559 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1560 iinfo->i_locStreamdir =
1561 lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1562 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1563 if (iinfo->i_lenStreams >= inode->i_size)
1564 iinfo->i_lenStreams -= inode->i_size;
1565 else
1566 iinfo->i_lenStreams = 0;
1567 }
1568 inode->i_generation = iinfo->i_unique;
1569
1570 /*
1571 * Sanity check length of allocation descriptors and extended attrs to
1572 * avoid integer overflows
1573 */
1574 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1575 goto out;
1576 /* Now do exact checks */
1577 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1578 goto out;
1579 /* Sanity checks for files in ICB so that we don't get confused later */
1580 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1581 /*
1582 * For file in ICB data is stored in allocation descriptor
1583 * so sizes should match
1584 */
1585 if (iinfo->i_lenAlloc != inode->i_size)
1586 goto out;
1587 /* File in ICB has to fit in there... */
1588 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1589 goto out;
1590 }
1591
1592 switch (fe->icbTag.fileType) {
1593 case ICBTAG_FILE_TYPE_DIRECTORY:
1594 inode->i_op = &udf_dir_inode_operations;
1595 inode->i_fop = &udf_dir_operations;
1596 inode->i_mode |= S_IFDIR;
1597 inc_nlink(inode);
1598 break;
1599 case ICBTAG_FILE_TYPE_REALTIME:
1600 case ICBTAG_FILE_TYPE_REGULAR:
1601 case ICBTAG_FILE_TYPE_UNDEF:
1602 case ICBTAG_FILE_TYPE_VAT20:
1603 inode->i_data.a_ops = &udf_aops;
1604 inode->i_op = &udf_file_inode_operations;
1605 inode->i_fop = &udf_file_operations;
1606 inode->i_mode |= S_IFREG;
1607 break;
1608 case ICBTAG_FILE_TYPE_BLOCK:
1609 inode->i_mode |= S_IFBLK;
1610 break;
1611 case ICBTAG_FILE_TYPE_CHAR:
1612 inode->i_mode |= S_IFCHR;
1613 break;
1614 case ICBTAG_FILE_TYPE_FIFO:
1615 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1616 break;
1617 case ICBTAG_FILE_TYPE_SOCKET:
1618 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1619 break;
1620 case ICBTAG_FILE_TYPE_SYMLINK:
1621 inode->i_data.a_ops = &udf_symlink_aops;
1622 inode->i_op = &udf_symlink_inode_operations;
1623 inode_nohighmem(inode);
1624 inode->i_mode = S_IFLNK | 0777;
1625 break;
1626 case ICBTAG_FILE_TYPE_MAIN:
1627 udf_debug("METADATA FILE-----\n");
1628 break;
1629 case ICBTAG_FILE_TYPE_MIRROR:
1630 udf_debug("METADATA MIRROR FILE-----\n");
1631 break;
1632 case ICBTAG_FILE_TYPE_BITMAP:
1633 udf_debug("METADATA BITMAP FILE-----\n");
1634 break;
1635 default:
1636 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1637 inode->i_ino, fe->icbTag.fileType);
1638 goto out;
1639 }
1640 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1641 struct deviceSpec *dsea =
1642 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1643 if (dsea) {
1644 init_special_inode(inode, inode->i_mode,
1645 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1646 le32_to_cpu(dsea->minorDeviceIdent)));
1647 /* Developer ID ??? */
1648 } else
1649 goto out;
1650 }
1651 ret = 0;
1652out:
1653 brelse(bh);
1654 return ret;
1655}
1656
1657static int udf_alloc_i_data(struct inode *inode, size_t size)
1658{
1659 struct udf_inode_info *iinfo = UDF_I(inode);
1660 iinfo->i_data = kmalloc(size, GFP_KERNEL);
1661 if (!iinfo->i_data)
1662 return -ENOMEM;
1663 return 0;
1664}
1665
1666static umode_t udf_convert_permissions(struct fileEntry *fe)
1667{
1668 umode_t mode;
1669 uint32_t permissions;
1670 uint32_t flags;
1671
1672 permissions = le32_to_cpu(fe->permissions);
1673 flags = le16_to_cpu(fe->icbTag.flags);
1674
1675 mode = ((permissions) & 0007) |
1676 ((permissions >> 2) & 0070) |
1677 ((permissions >> 4) & 0700) |
1678 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1679 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1680 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1681
1682 return mode;
1683}
1684
1685void udf_update_extra_perms(struct inode *inode, umode_t mode)
1686{
1687 struct udf_inode_info *iinfo = UDF_I(inode);
1688
1689 /*
1690 * UDF 2.01 sec. 3.3.3.3 Note 2:
1691 * In Unix, delete permission tracks write
1692 */
1693 iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1694 if (mode & 0200)
1695 iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1696 if (mode & 0020)
1697 iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1698 if (mode & 0002)
1699 iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1700}
1701
1702int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1703{
1704 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1705}
1706
1707static int udf_sync_inode(struct inode *inode)
1708{
1709 return udf_update_inode(inode, 1);
1710}
1711
1712static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1713{
1714 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1715 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1716 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1717 iinfo->i_crtime = time;
1718}
1719
1720static int udf_update_inode(struct inode *inode, int do_sync)
1721{
1722 struct buffer_head *bh = NULL;
1723 struct fileEntry *fe;
1724 struct extendedFileEntry *efe;
1725 uint64_t lb_recorded;
1726 uint32_t udfperms;
1727 uint16_t icbflags;
1728 uint16_t crclen;
1729 int err = 0;
1730 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1731 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1732 struct udf_inode_info *iinfo = UDF_I(inode);
1733
1734 bh = sb_getblk(inode->i_sb,
1735 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1736 if (!bh) {
1737 udf_debug("getblk failure\n");
1738 return -EIO;
1739 }
1740
1741 lock_buffer(bh);
1742 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1743 fe = (struct fileEntry *)bh->b_data;
1744 efe = (struct extendedFileEntry *)bh->b_data;
1745
1746 if (iinfo->i_use) {
1747 struct unallocSpaceEntry *use =
1748 (struct unallocSpaceEntry *)bh->b_data;
1749
1750 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1751 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1752 iinfo->i_data, inode->i_sb->s_blocksize -
1753 sizeof(struct unallocSpaceEntry));
1754 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1755 crclen = sizeof(struct unallocSpaceEntry);
1756
1757 goto finish;
1758 }
1759
1760 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1761 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1762 else
1763 fe->uid = cpu_to_le32(i_uid_read(inode));
1764
1765 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1766 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1767 else
1768 fe->gid = cpu_to_le32(i_gid_read(inode));
1769
1770 udfperms = ((inode->i_mode & 0007)) |
1771 ((inode->i_mode & 0070) << 2) |
1772 ((inode->i_mode & 0700) << 4);
1773
1774 udfperms |= iinfo->i_extraPerms;
1775 fe->permissions = cpu_to_le32(udfperms);
1776
1777 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1778 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1779 else {
1780 if (iinfo->i_hidden)
1781 fe->fileLinkCount = cpu_to_le16(0);
1782 else
1783 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1784 }
1785
1786 fe->informationLength = cpu_to_le64(inode->i_size);
1787
1788 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1789 struct regid *eid;
1790 struct deviceSpec *dsea =
1791 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1792 if (!dsea) {
1793 dsea = (struct deviceSpec *)
1794 udf_add_extendedattr(inode,
1795 sizeof(struct deviceSpec) +
1796 sizeof(struct regid), 12, 0x3);
1797 dsea->attrType = cpu_to_le32(12);
1798 dsea->attrSubtype = 1;
1799 dsea->attrLength = cpu_to_le32(
1800 sizeof(struct deviceSpec) +
1801 sizeof(struct regid));
1802 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1803 }
1804 eid = (struct regid *)dsea->impUse;
1805 memset(eid, 0, sizeof(*eid));
1806 strcpy(eid->ident, UDF_ID_DEVELOPER);
1807 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1808 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1809 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1810 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1811 }
1812
1813 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1814 lb_recorded = 0; /* No extents => no blocks! */
1815 else
1816 lb_recorded =
1817 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1818 (blocksize_bits - 9);
1819
1820 if (iinfo->i_efe == 0) {
1821 memcpy(bh->b_data + sizeof(struct fileEntry),
1822 iinfo->i_data,
1823 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1824 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1825
1826 udf_time_to_disk_stamp(&fe->accessTime, inode_get_atime(inode));
1827 udf_time_to_disk_stamp(&fe->modificationTime, inode_get_mtime(inode));
1828 udf_time_to_disk_stamp(&fe->attrTime, inode_get_ctime(inode));
1829 memset(&(fe->impIdent), 0, sizeof(struct regid));
1830 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1831 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1832 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1833 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1834 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1835 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1836 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1837 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1838 crclen = sizeof(struct fileEntry);
1839 } else {
1840 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1841 iinfo->i_data,
1842 inode->i_sb->s_blocksize -
1843 sizeof(struct extendedFileEntry));
1844 efe->objectSize =
1845 cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1846 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1847
1848 if (iinfo->i_streamdir) {
1849 struct long_ad *icb_lad = &efe->streamDirectoryICB;
1850
1851 icb_lad->extLocation =
1852 cpu_to_lelb(iinfo->i_locStreamdir);
1853 icb_lad->extLength =
1854 cpu_to_le32(inode->i_sb->s_blocksize);
1855 }
1856
1857 udf_adjust_time(iinfo, inode_get_atime(inode));
1858 udf_adjust_time(iinfo, inode_get_mtime(inode));
1859 udf_adjust_time(iinfo, inode_get_ctime(inode));
1860
1861 udf_time_to_disk_stamp(&efe->accessTime,
1862 inode_get_atime(inode));
1863 udf_time_to_disk_stamp(&efe->modificationTime,
1864 inode_get_mtime(inode));
1865 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1866 udf_time_to_disk_stamp(&efe->attrTime, inode_get_ctime(inode));
1867
1868 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1869 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1870 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1871 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1872 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1873 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1874 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1875 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1876 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1877 crclen = sizeof(struct extendedFileEntry);
1878 }
1879
1880finish:
1881 if (iinfo->i_strat4096) {
1882 fe->icbTag.strategyType = cpu_to_le16(4096);
1883 fe->icbTag.strategyParameter = cpu_to_le16(1);
1884 fe->icbTag.numEntries = cpu_to_le16(2);
1885 } else {
1886 fe->icbTag.strategyType = cpu_to_le16(4);
1887 fe->icbTag.numEntries = cpu_to_le16(1);
1888 }
1889
1890 if (iinfo->i_use)
1891 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1892 else if (S_ISDIR(inode->i_mode))
1893 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1894 else if (S_ISREG(inode->i_mode))
1895 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1896 else if (S_ISLNK(inode->i_mode))
1897 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1898 else if (S_ISBLK(inode->i_mode))
1899 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1900 else if (S_ISCHR(inode->i_mode))
1901 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1902 else if (S_ISFIFO(inode->i_mode))
1903 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1904 else if (S_ISSOCK(inode->i_mode))
1905 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1906
1907 icbflags = iinfo->i_alloc_type |
1908 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1909 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1910 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1911 (le16_to_cpu(fe->icbTag.flags) &
1912 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1913 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1914
1915 fe->icbTag.flags = cpu_to_le16(icbflags);
1916 if (sbi->s_udfrev >= 0x0200)
1917 fe->descTag.descVersion = cpu_to_le16(3);
1918 else
1919 fe->descTag.descVersion = cpu_to_le16(2);
1920 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1921 fe->descTag.tagLocation = cpu_to_le32(
1922 iinfo->i_location.logicalBlockNum);
1923 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1924 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1925 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1926 crclen));
1927 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1928
1929 set_buffer_uptodate(bh);
1930 unlock_buffer(bh);
1931
1932 /* write the data blocks */
1933 mark_buffer_dirty(bh);
1934 if (do_sync) {
1935 sync_dirty_buffer(bh);
1936 if (buffer_write_io_error(bh)) {
1937 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1938 inode->i_ino);
1939 err = -EIO;
1940 }
1941 }
1942 brelse(bh);
1943
1944 return err;
1945}
1946
1947struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1948 bool hidden_inode)
1949{
1950 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1951 struct inode *inode = iget_locked(sb, block);
1952 int err;
1953
1954 if (!inode)
1955 return ERR_PTR(-ENOMEM);
1956
1957 if (!(inode->i_state & I_NEW)) {
1958 if (UDF_I(inode)->i_hidden != hidden_inode) {
1959 iput(inode);
1960 return ERR_PTR(-EFSCORRUPTED);
1961 }
1962 return inode;
1963 }
1964
1965 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1966 err = udf_read_inode(inode, hidden_inode);
1967 if (err < 0) {
1968 iget_failed(inode);
1969 return ERR_PTR(err);
1970 }
1971 unlock_new_inode(inode);
1972
1973 return inode;
1974}
1975
1976int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1977 struct extent_position *epos)
1978{
1979 struct super_block *sb = inode->i_sb;
1980 struct buffer_head *bh;
1981 struct allocExtDesc *aed;
1982 struct extent_position nepos;
1983 struct kernel_lb_addr neloc;
1984 int ver, adsize;
1985 int err = 0;
1986
1987 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1988 adsize = sizeof(struct short_ad);
1989 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1990 adsize = sizeof(struct long_ad);
1991 else
1992 return -EIO;
1993
1994 neloc.logicalBlockNum = block;
1995 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1996
1997 bh = sb_getblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1998 if (!bh)
1999 return -EIO;
2000 lock_buffer(bh);
2001 memset(bh->b_data, 0x00, sb->s_blocksize);
2002 set_buffer_uptodate(bh);
2003 unlock_buffer(bh);
2004 mark_buffer_dirty_inode(bh, inode);
2005
2006 aed = (struct allocExtDesc *)(bh->b_data);
2007 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
2008 aed->previousAllocExtLocation =
2009 cpu_to_le32(epos->block.logicalBlockNum);
2010 }
2011 aed->lengthAllocDescs = cpu_to_le32(0);
2012 if (UDF_SB(sb)->s_udfrev >= 0x0200)
2013 ver = 3;
2014 else
2015 ver = 2;
2016 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
2017 sizeof(struct tag));
2018
2019 nepos.block = neloc;
2020 nepos.offset = sizeof(struct allocExtDesc);
2021 nepos.bh = bh;
2022
2023 /*
2024 * Do we have to copy current last extent to make space for indirect
2025 * one?
2026 */
2027 if (epos->offset + adsize > sb->s_blocksize) {
2028 struct kernel_lb_addr cp_loc;
2029 uint32_t cp_len;
2030 int8_t cp_type;
2031
2032 epos->offset -= adsize;
2033 err = udf_current_aext(inode, epos, &cp_loc, &cp_len, &cp_type, 0);
2034 if (err <= 0)
2035 goto err_out;
2036 cp_len |= ((uint32_t)cp_type) << 30;
2037
2038 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
2039 udf_write_aext(inode, epos, &nepos.block,
2040 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2041 } else {
2042 __udf_add_aext(inode, epos, &nepos.block,
2043 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
2044 }
2045
2046 brelse(epos->bh);
2047 *epos = nepos;
2048
2049 return 0;
2050err_out:
2051 brelse(bh);
2052 return err;
2053}
2054
2055/*
2056 * Append extent at the given position - should be the first free one in inode
2057 * / indirect extent. This function assumes there is enough space in the inode
2058 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2059 */
2060int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2061 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2062{
2063 struct udf_inode_info *iinfo = UDF_I(inode);
2064 struct allocExtDesc *aed;
2065 int adsize;
2066
2067 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2068 adsize = sizeof(struct short_ad);
2069 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2070 adsize = sizeof(struct long_ad);
2071 else
2072 return -EIO;
2073
2074 if (!epos->bh) {
2075 WARN_ON(iinfo->i_lenAlloc !=
2076 epos->offset - udf_file_entry_alloc_offset(inode));
2077 } else {
2078 aed = (struct allocExtDesc *)epos->bh->b_data;
2079 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2080 epos->offset - sizeof(struct allocExtDesc));
2081 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2082 }
2083
2084 udf_write_aext(inode, epos, eloc, elen, inc);
2085
2086 if (!epos->bh) {
2087 iinfo->i_lenAlloc += adsize;
2088 mark_inode_dirty(inode);
2089 } else {
2090 aed = (struct allocExtDesc *)epos->bh->b_data;
2091 le32_add_cpu(&aed->lengthAllocDescs, adsize);
2092 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2093 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2094 udf_update_tag(epos->bh->b_data,
2095 epos->offset + (inc ? 0 : adsize));
2096 else
2097 udf_update_tag(epos->bh->b_data,
2098 sizeof(struct allocExtDesc));
2099 mark_buffer_dirty_inode(epos->bh, inode);
2100 }
2101
2102 return 0;
2103}
2104
2105/*
2106 * Append extent at given position - should be the first free one in inode
2107 * / indirect extent. Takes care of allocating and linking indirect blocks.
2108 */
2109int udf_add_aext(struct inode *inode, struct extent_position *epos,
2110 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2111{
2112 int adsize;
2113 struct super_block *sb = inode->i_sb;
2114
2115 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2116 adsize = sizeof(struct short_ad);
2117 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2118 adsize = sizeof(struct long_ad);
2119 else
2120 return -EIO;
2121
2122 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2123 int err;
2124 udf_pblk_t new_block;
2125
2126 new_block = udf_new_block(sb, NULL,
2127 epos->block.partitionReferenceNum,
2128 epos->block.logicalBlockNum, &err);
2129 if (!new_block)
2130 return -ENOSPC;
2131
2132 err = udf_setup_indirect_aext(inode, new_block, epos);
2133 if (err)
2134 return err;
2135 }
2136
2137 return __udf_add_aext(inode, epos, eloc, elen, inc);
2138}
2139
2140void udf_write_aext(struct inode *inode, struct extent_position *epos,
2141 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2142{
2143 int adsize;
2144 uint8_t *ptr;
2145 struct short_ad *sad;
2146 struct long_ad *lad;
2147 struct udf_inode_info *iinfo = UDF_I(inode);
2148
2149 if (!epos->bh)
2150 ptr = iinfo->i_data + epos->offset -
2151 udf_file_entry_alloc_offset(inode) +
2152 iinfo->i_lenEAttr;
2153 else
2154 ptr = epos->bh->b_data + epos->offset;
2155
2156 switch (iinfo->i_alloc_type) {
2157 case ICBTAG_FLAG_AD_SHORT:
2158 sad = (struct short_ad *)ptr;
2159 sad->extLength = cpu_to_le32(elen);
2160 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2161 adsize = sizeof(struct short_ad);
2162 break;
2163 case ICBTAG_FLAG_AD_LONG:
2164 lad = (struct long_ad *)ptr;
2165 lad->extLength = cpu_to_le32(elen);
2166 lad->extLocation = cpu_to_lelb(*eloc);
2167 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2168 adsize = sizeof(struct long_ad);
2169 break;
2170 default:
2171 return;
2172 }
2173
2174 if (epos->bh) {
2175 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2176 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2177 struct allocExtDesc *aed =
2178 (struct allocExtDesc *)epos->bh->b_data;
2179 udf_update_tag(epos->bh->b_data,
2180 le32_to_cpu(aed->lengthAllocDescs) +
2181 sizeof(struct allocExtDesc));
2182 }
2183 mark_buffer_dirty_inode(epos->bh, inode);
2184 } else {
2185 mark_inode_dirty(inode);
2186 }
2187
2188 if (inc)
2189 epos->offset += adsize;
2190}
2191
2192/*
2193 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2194 * someone does some weird stuff.
2195 */
2196#define UDF_MAX_INDIR_EXTS 16
2197
2198/*
2199 * Returns 1 on success, -errno on error, 0 on hit EOF.
2200 */
2201int udf_next_aext(struct inode *inode, struct extent_position *epos,
2202 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2203 int inc)
2204{
2205 unsigned int indirections = 0;
2206 int ret = 0;
2207 udf_pblk_t block;
2208
2209 while (1) {
2210 ret = udf_current_aext(inode, epos, eloc, elen,
2211 etype, inc);
2212 if (ret <= 0)
2213 return ret;
2214 if (*etype != (EXT_NEXT_EXTENT_ALLOCDESCS >> 30))
2215 return ret;
2216
2217 if (++indirections > UDF_MAX_INDIR_EXTS) {
2218 udf_err(inode->i_sb,
2219 "too many indirect extents in inode %lu\n",
2220 inode->i_ino);
2221 return -EFSCORRUPTED;
2222 }
2223
2224 epos->block = *eloc;
2225 epos->offset = sizeof(struct allocExtDesc);
2226 brelse(epos->bh);
2227 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2228 epos->bh = sb_bread(inode->i_sb, block);
2229 if (!epos->bh) {
2230 udf_debug("reading block %u failed!\n", block);
2231 return -EIO;
2232 }
2233 }
2234}
2235
2236/*
2237 * Returns 1 on success, -errno on error, 0 on hit EOF.
2238 */
2239int udf_current_aext(struct inode *inode, struct extent_position *epos,
2240 struct kernel_lb_addr *eloc, uint32_t *elen, int8_t *etype,
2241 int inc)
2242{
2243 int alen;
2244 uint8_t *ptr;
2245 struct short_ad *sad;
2246 struct long_ad *lad;
2247 struct udf_inode_info *iinfo = UDF_I(inode);
2248
2249 if (!epos->bh) {
2250 if (!epos->offset)
2251 epos->offset = udf_file_entry_alloc_offset(inode);
2252 ptr = iinfo->i_data + epos->offset -
2253 udf_file_entry_alloc_offset(inode) +
2254 iinfo->i_lenEAttr;
2255 alen = udf_file_entry_alloc_offset(inode) +
2256 iinfo->i_lenAlloc;
2257 } else {
2258 struct allocExtDesc *header =
2259 (struct allocExtDesc *)epos->bh->b_data;
2260
2261 if (!epos->offset)
2262 epos->offset = sizeof(struct allocExtDesc);
2263 ptr = epos->bh->b_data + epos->offset;
2264 if (check_add_overflow(sizeof(struct allocExtDesc),
2265 le32_to_cpu(header->lengthAllocDescs), &alen))
2266 return -1;
2267 }
2268
2269 switch (iinfo->i_alloc_type) {
2270 case ICBTAG_FLAG_AD_SHORT:
2271 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2272 if (!sad)
2273 return 0;
2274 *etype = le32_to_cpu(sad->extLength) >> 30;
2275 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2276 eloc->partitionReferenceNum =
2277 iinfo->i_location.partitionReferenceNum;
2278 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2279 break;
2280 case ICBTAG_FLAG_AD_LONG:
2281 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2282 if (!lad)
2283 return 0;
2284 *etype = le32_to_cpu(lad->extLength) >> 30;
2285 *eloc = lelb_to_cpu(lad->extLocation);
2286 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2287 break;
2288 default:
2289 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2290 return -EINVAL;
2291 }
2292
2293 return 1;
2294}
2295
2296static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2297 struct kernel_lb_addr neloc, uint32_t nelen)
2298{
2299 struct kernel_lb_addr oeloc;
2300 uint32_t oelen;
2301 int8_t etype;
2302 int ret;
2303
2304 if (epos.bh)
2305 get_bh(epos.bh);
2306
2307 while (1) {
2308 ret = udf_next_aext(inode, &epos, &oeloc, &oelen, &etype, 0);
2309 if (ret <= 0)
2310 break;
2311 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2312 neloc = oeloc;
2313 nelen = (etype << 30) | oelen;
2314 }
2315 if (ret == 0)
2316 ret = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2317 brelse(epos.bh);
2318
2319 return ret;
2320}
2321
2322int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2323{
2324 struct extent_position oepos;
2325 int adsize;
2326 int8_t etype;
2327 struct allocExtDesc *aed;
2328 struct udf_inode_info *iinfo;
2329 struct kernel_lb_addr eloc;
2330 uint32_t elen;
2331 int ret;
2332
2333 if (epos.bh) {
2334 get_bh(epos.bh);
2335 get_bh(epos.bh);
2336 }
2337
2338 iinfo = UDF_I(inode);
2339 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2340 adsize = sizeof(struct short_ad);
2341 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2342 adsize = sizeof(struct long_ad);
2343 else
2344 adsize = 0;
2345
2346 oepos = epos;
2347 if (udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1) <= 0)
2348 return -1;
2349
2350 while (1) {
2351 ret = udf_next_aext(inode, &epos, &eloc, &elen, &etype, 1);
2352 if (ret < 0) {
2353 brelse(epos.bh);
2354 brelse(oepos.bh);
2355 return -1;
2356 }
2357 if (ret == 0)
2358 break;
2359 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2360 if (oepos.bh != epos.bh) {
2361 oepos.block = epos.block;
2362 brelse(oepos.bh);
2363 get_bh(epos.bh);
2364 oepos.bh = epos.bh;
2365 oepos.offset = epos.offset - adsize;
2366 }
2367 }
2368 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2369 elen = 0;
2370
2371 if (epos.bh != oepos.bh) {
2372 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2373 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2374 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2375 if (!oepos.bh) {
2376 iinfo->i_lenAlloc -= (adsize * 2);
2377 mark_inode_dirty(inode);
2378 } else {
2379 aed = (struct allocExtDesc *)oepos.bh->b_data;
2380 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2381 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2382 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2383 udf_update_tag(oepos.bh->b_data,
2384 oepos.offset - (2 * adsize));
2385 else
2386 udf_update_tag(oepos.bh->b_data,
2387 sizeof(struct allocExtDesc));
2388 mark_buffer_dirty_inode(oepos.bh, inode);
2389 }
2390 } else {
2391 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2392 if (!oepos.bh) {
2393 iinfo->i_lenAlloc -= adsize;
2394 mark_inode_dirty(inode);
2395 } else {
2396 aed = (struct allocExtDesc *)oepos.bh->b_data;
2397 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2398 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2399 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2400 udf_update_tag(oepos.bh->b_data,
2401 epos.offset - adsize);
2402 else
2403 udf_update_tag(oepos.bh->b_data,
2404 sizeof(struct allocExtDesc));
2405 mark_buffer_dirty_inode(oepos.bh, inode);
2406 }
2407 }
2408
2409 brelse(epos.bh);
2410 brelse(oepos.bh);
2411
2412 return (elen >> 30);
2413}
2414
2415/*
2416 * Returns 1 on success, -errno on error, 0 on hit EOF.
2417 */
2418int inode_bmap(struct inode *inode, sector_t block, struct extent_position *pos,
2419 struct kernel_lb_addr *eloc, uint32_t *elen, sector_t *offset,
2420 int8_t *etype)
2421{
2422 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2423 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2424 struct udf_inode_info *iinfo;
2425 int err = 0;
2426
2427 iinfo = UDF_I(inode);
2428 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2429 pos->offset = 0;
2430 pos->block = iinfo->i_location;
2431 pos->bh = NULL;
2432 }
2433 *elen = 0;
2434 do {
2435 err = udf_next_aext(inode, pos, eloc, elen, etype, 1);
2436 if (err <= 0) {
2437 if (err == 0) {
2438 *offset = (bcount - lbcount) >> blocksize_bits;
2439 iinfo->i_lenExtents = lbcount;
2440 }
2441 return err;
2442 }
2443 lbcount += *elen;
2444 } while (lbcount <= bcount);
2445 /* update extent cache */
2446 udf_update_extent_cache(inode, lbcount - *elen, pos);
2447 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2448
2449 return 1;
2450}
1/*
2 * inode.c
3 *
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
12 *
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map
23 * and udf_read_inode
24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
25 * block boundaries (which is not actually allowed)
26 * 12/20/98 added support for strategy 4096
27 * 03/07/99 rewrote udf_block_map (again)
28 * New funcs, inode_bmap, udf_next_aext
29 * 04/19/99 Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48static umode_t udf_convert_permissions(struct fileEntry *);
49static int udf_update_inode(struct inode *, int);
50static int udf_sync_inode(struct inode *inode);
51static int udf_alloc_i_data(struct inode *inode, size_t size);
52static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
53static int8_t udf_insert_aext(struct inode *, struct extent_position,
54 struct kernel_lb_addr, uint32_t);
55static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
56 struct kernel_long_ad *, int *);
57static void udf_prealloc_extents(struct inode *, int, int,
58 struct kernel_long_ad *, int *);
59static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
60static void udf_update_extents(struct inode *, struct kernel_long_ad *, int,
61 int, struct extent_position *);
62static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
63
64static void __udf_clear_extent_cache(struct inode *inode)
65{
66 struct udf_inode_info *iinfo = UDF_I(inode);
67
68 if (iinfo->cached_extent.lstart != -1) {
69 brelse(iinfo->cached_extent.epos.bh);
70 iinfo->cached_extent.lstart = -1;
71 }
72}
73
74/* Invalidate extent cache */
75static void udf_clear_extent_cache(struct inode *inode)
76{
77 struct udf_inode_info *iinfo = UDF_I(inode);
78
79 spin_lock(&iinfo->i_extent_cache_lock);
80 __udf_clear_extent_cache(inode);
81 spin_unlock(&iinfo->i_extent_cache_lock);
82}
83
84/* Return contents of extent cache */
85static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
86 loff_t *lbcount, struct extent_position *pos)
87{
88 struct udf_inode_info *iinfo = UDF_I(inode);
89 int ret = 0;
90
91 spin_lock(&iinfo->i_extent_cache_lock);
92 if ((iinfo->cached_extent.lstart <= bcount) &&
93 (iinfo->cached_extent.lstart != -1)) {
94 /* Cache hit */
95 *lbcount = iinfo->cached_extent.lstart;
96 memcpy(pos, &iinfo->cached_extent.epos,
97 sizeof(struct extent_position));
98 if (pos->bh)
99 get_bh(pos->bh);
100 ret = 1;
101 }
102 spin_unlock(&iinfo->i_extent_cache_lock);
103 return ret;
104}
105
106/* Add extent to extent cache */
107static void udf_update_extent_cache(struct inode *inode, loff_t estart,
108 struct extent_position *pos)
109{
110 struct udf_inode_info *iinfo = UDF_I(inode);
111
112 spin_lock(&iinfo->i_extent_cache_lock);
113 /* Invalidate previously cached extent */
114 __udf_clear_extent_cache(inode);
115 if (pos->bh)
116 get_bh(pos->bh);
117 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
118 iinfo->cached_extent.lstart = estart;
119 switch (iinfo->i_alloc_type) {
120 case ICBTAG_FLAG_AD_SHORT:
121 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
122 break;
123 case ICBTAG_FLAG_AD_LONG:
124 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
125 break;
126 }
127 spin_unlock(&iinfo->i_extent_cache_lock);
128}
129
130void udf_evict_inode(struct inode *inode)
131{
132 struct udf_inode_info *iinfo = UDF_I(inode);
133 int want_delete = 0;
134
135 if (!inode->i_nlink && !is_bad_inode(inode)) {
136 want_delete = 1;
137 udf_setsize(inode, 0);
138 udf_update_inode(inode, IS_SYNC(inode));
139 }
140 truncate_inode_pages_final(&inode->i_data);
141 invalidate_inode_buffers(inode);
142 clear_inode(inode);
143 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
144 inode->i_size != iinfo->i_lenExtents) {
145 udf_warn(inode->i_sb, "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
146 inode->i_ino, inode->i_mode,
147 (unsigned long long)inode->i_size,
148 (unsigned long long)iinfo->i_lenExtents);
149 }
150 kfree(iinfo->i_ext.i_data);
151 iinfo->i_ext.i_data = NULL;
152 udf_clear_extent_cache(inode);
153 if (want_delete) {
154 udf_free_inode(inode);
155 }
156}
157
158static void udf_write_failed(struct address_space *mapping, loff_t to)
159{
160 struct inode *inode = mapping->host;
161 struct udf_inode_info *iinfo = UDF_I(inode);
162 loff_t isize = inode->i_size;
163
164 if (to > isize) {
165 truncate_pagecache(inode, isize);
166 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
167 down_write(&iinfo->i_data_sem);
168 udf_clear_extent_cache(inode);
169 udf_truncate_extents(inode);
170 up_write(&iinfo->i_data_sem);
171 }
172 }
173}
174
175static int udf_writepage(struct page *page, struct writeback_control *wbc)
176{
177 return block_write_full_page(page, udf_get_block, wbc);
178}
179
180static int udf_writepages(struct address_space *mapping,
181 struct writeback_control *wbc)
182{
183 return mpage_writepages(mapping, wbc, udf_get_block);
184}
185
186static int udf_readpage(struct file *file, struct page *page)
187{
188 return mpage_readpage(page, udf_get_block);
189}
190
191static int udf_readpages(struct file *file, struct address_space *mapping,
192 struct list_head *pages, unsigned nr_pages)
193{
194 return mpage_readpages(mapping, pages, nr_pages, udf_get_block);
195}
196
197static int udf_write_begin(struct file *file, struct address_space *mapping,
198 loff_t pos, unsigned len, unsigned flags,
199 struct page **pagep, void **fsdata)
200{
201 int ret;
202
203 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
204 if (unlikely(ret))
205 udf_write_failed(mapping, pos + len);
206 return ret;
207}
208
209static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
210{
211 struct file *file = iocb->ki_filp;
212 struct address_space *mapping = file->f_mapping;
213 struct inode *inode = mapping->host;
214 size_t count = iov_iter_count(iter);
215 ssize_t ret;
216
217 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
218 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
219 udf_write_failed(mapping, iocb->ki_pos + count);
220 return ret;
221}
222
223static sector_t udf_bmap(struct address_space *mapping, sector_t block)
224{
225 return generic_block_bmap(mapping, block, udf_get_block);
226}
227
228const struct address_space_operations udf_aops = {
229 .readpage = udf_readpage,
230 .readpages = udf_readpages,
231 .writepage = udf_writepage,
232 .writepages = udf_writepages,
233 .write_begin = udf_write_begin,
234 .write_end = generic_write_end,
235 .direct_IO = udf_direct_IO,
236 .bmap = udf_bmap,
237};
238
239/*
240 * Expand file stored in ICB to a normal one-block-file
241 *
242 * This function requires i_data_sem for writing and releases it.
243 * This function requires i_mutex held
244 */
245int udf_expand_file_adinicb(struct inode *inode)
246{
247 struct page *page;
248 char *kaddr;
249 struct udf_inode_info *iinfo = UDF_I(inode);
250 int err;
251 struct writeback_control udf_wbc = {
252 .sync_mode = WB_SYNC_NONE,
253 .nr_to_write = 1,
254 };
255
256 WARN_ON_ONCE(!inode_is_locked(inode));
257 if (!iinfo->i_lenAlloc) {
258 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
259 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
260 else
261 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
262 /* from now on we have normal address_space methods */
263 inode->i_data.a_ops = &udf_aops;
264 up_write(&iinfo->i_data_sem);
265 mark_inode_dirty(inode);
266 return 0;
267 }
268 /*
269 * Release i_data_sem so that we can lock a page - page lock ranks
270 * above i_data_sem. i_mutex still protects us against file changes.
271 */
272 up_write(&iinfo->i_data_sem);
273
274 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
275 if (!page)
276 return -ENOMEM;
277
278 if (!PageUptodate(page)) {
279 kaddr = kmap_atomic(page);
280 memset(kaddr + iinfo->i_lenAlloc, 0x00,
281 PAGE_SIZE - iinfo->i_lenAlloc);
282 memcpy(kaddr, iinfo->i_ext.i_data + iinfo->i_lenEAttr,
283 iinfo->i_lenAlloc);
284 flush_dcache_page(page);
285 SetPageUptodate(page);
286 kunmap_atomic(kaddr);
287 }
288 down_write(&iinfo->i_data_sem);
289 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0x00,
290 iinfo->i_lenAlloc);
291 iinfo->i_lenAlloc = 0;
292 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
293 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
294 else
295 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
296 /* from now on we have normal address_space methods */
297 inode->i_data.a_ops = &udf_aops;
298 up_write(&iinfo->i_data_sem);
299 err = inode->i_data.a_ops->writepage(page, &udf_wbc);
300 if (err) {
301 /* Restore everything back so that we don't lose data... */
302 lock_page(page);
303 down_write(&iinfo->i_data_sem);
304 kaddr = kmap_atomic(page);
305 memcpy(iinfo->i_ext.i_data + iinfo->i_lenEAttr, kaddr,
306 inode->i_size);
307 kunmap_atomic(kaddr);
308 unlock_page(page);
309 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
310 inode->i_data.a_ops = &udf_adinicb_aops;
311 up_write(&iinfo->i_data_sem);
312 }
313 put_page(page);
314 mark_inode_dirty(inode);
315
316 return err;
317}
318
319struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
320 udf_pblk_t *block, int *err)
321{
322 udf_pblk_t newblock;
323 struct buffer_head *dbh = NULL;
324 struct kernel_lb_addr eloc;
325 uint8_t alloctype;
326 struct extent_position epos;
327
328 struct udf_fileident_bh sfibh, dfibh;
329 loff_t f_pos = udf_ext0_offset(inode);
330 int size = udf_ext0_offset(inode) + inode->i_size;
331 struct fileIdentDesc cfi, *sfi, *dfi;
332 struct udf_inode_info *iinfo = UDF_I(inode);
333
334 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
335 alloctype = ICBTAG_FLAG_AD_SHORT;
336 else
337 alloctype = ICBTAG_FLAG_AD_LONG;
338
339 if (!inode->i_size) {
340 iinfo->i_alloc_type = alloctype;
341 mark_inode_dirty(inode);
342 return NULL;
343 }
344
345 /* alloc block, and copy data to it */
346 *block = udf_new_block(inode->i_sb, inode,
347 iinfo->i_location.partitionReferenceNum,
348 iinfo->i_location.logicalBlockNum, err);
349 if (!(*block))
350 return NULL;
351 newblock = udf_get_pblock(inode->i_sb, *block,
352 iinfo->i_location.partitionReferenceNum,
353 0);
354 if (!newblock)
355 return NULL;
356 dbh = udf_tgetblk(inode->i_sb, newblock);
357 if (!dbh)
358 return NULL;
359 lock_buffer(dbh);
360 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
361 set_buffer_uptodate(dbh);
362 unlock_buffer(dbh);
363 mark_buffer_dirty_inode(dbh, inode);
364
365 sfibh.soffset = sfibh.eoffset =
366 f_pos & (inode->i_sb->s_blocksize - 1);
367 sfibh.sbh = sfibh.ebh = NULL;
368 dfibh.soffset = dfibh.eoffset = 0;
369 dfibh.sbh = dfibh.ebh = dbh;
370 while (f_pos < size) {
371 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
372 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
373 NULL, NULL, NULL);
374 if (!sfi) {
375 brelse(dbh);
376 return NULL;
377 }
378 iinfo->i_alloc_type = alloctype;
379 sfi->descTag.tagLocation = cpu_to_le32(*block);
380 dfibh.soffset = dfibh.eoffset;
381 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
382 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
383 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
384 sfi->fileIdent +
385 le16_to_cpu(sfi->lengthOfImpUse))) {
386 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
387 brelse(dbh);
388 return NULL;
389 }
390 }
391 mark_buffer_dirty_inode(dbh, inode);
392
393 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr, 0,
394 iinfo->i_lenAlloc);
395 iinfo->i_lenAlloc = 0;
396 eloc.logicalBlockNum = *block;
397 eloc.partitionReferenceNum =
398 iinfo->i_location.partitionReferenceNum;
399 iinfo->i_lenExtents = inode->i_size;
400 epos.bh = NULL;
401 epos.block = iinfo->i_location;
402 epos.offset = udf_file_entry_alloc_offset(inode);
403 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
404 /* UniqueID stuff */
405
406 brelse(epos.bh);
407 mark_inode_dirty(inode);
408 return dbh;
409}
410
411static int udf_get_block(struct inode *inode, sector_t block,
412 struct buffer_head *bh_result, int create)
413{
414 int err, new;
415 sector_t phys = 0;
416 struct udf_inode_info *iinfo;
417
418 if (!create) {
419 phys = udf_block_map(inode, block);
420 if (phys)
421 map_bh(bh_result, inode->i_sb, phys);
422 return 0;
423 }
424
425 err = -EIO;
426 new = 0;
427 iinfo = UDF_I(inode);
428
429 down_write(&iinfo->i_data_sem);
430 if (block == iinfo->i_next_alloc_block + 1) {
431 iinfo->i_next_alloc_block++;
432 iinfo->i_next_alloc_goal++;
433 }
434
435 udf_clear_extent_cache(inode);
436 phys = inode_getblk(inode, block, &err, &new);
437 if (!phys)
438 goto abort;
439
440 if (new)
441 set_buffer_new(bh_result);
442 map_bh(bh_result, inode->i_sb, phys);
443
444abort:
445 up_write(&iinfo->i_data_sem);
446 return err;
447}
448
449static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
450 int create, int *err)
451{
452 struct buffer_head *bh;
453 struct buffer_head dummy;
454
455 dummy.b_state = 0;
456 dummy.b_blocknr = -1000;
457 *err = udf_get_block(inode, block, &dummy, create);
458 if (!*err && buffer_mapped(&dummy)) {
459 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
460 if (buffer_new(&dummy)) {
461 lock_buffer(bh);
462 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
463 set_buffer_uptodate(bh);
464 unlock_buffer(bh);
465 mark_buffer_dirty_inode(bh, inode);
466 }
467 return bh;
468 }
469
470 return NULL;
471}
472
473/* Extend the file by 'blocks' blocks, return the number of extents added */
474static int udf_do_extend_file(struct inode *inode,
475 struct extent_position *last_pos,
476 struct kernel_long_ad *last_ext,
477 sector_t blocks)
478{
479 sector_t add;
480 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
481 struct super_block *sb = inode->i_sb;
482 struct kernel_lb_addr prealloc_loc = {};
483 uint32_t prealloc_len = 0;
484 struct udf_inode_info *iinfo;
485 int err;
486
487 /* The previous extent is fake and we should not extend by anything
488 * - there's nothing to do... */
489 if (!blocks && fake)
490 return 0;
491
492 iinfo = UDF_I(inode);
493 /* Round the last extent up to a multiple of block size */
494 if (last_ext->extLength & (sb->s_blocksize - 1)) {
495 last_ext->extLength =
496 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
497 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
498 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
499 iinfo->i_lenExtents =
500 (iinfo->i_lenExtents + sb->s_blocksize - 1) &
501 ~(sb->s_blocksize - 1);
502 }
503
504 /* Last extent are just preallocated blocks? */
505 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
506 EXT_NOT_RECORDED_ALLOCATED) {
507 /* Save the extent so that we can reattach it to the end */
508 prealloc_loc = last_ext->extLocation;
509 prealloc_len = last_ext->extLength;
510 /* Mark the extent as a hole */
511 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
512 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
513 last_ext->extLocation.logicalBlockNum = 0;
514 last_ext->extLocation.partitionReferenceNum = 0;
515 }
516
517 /* Can we merge with the previous extent? */
518 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
519 EXT_NOT_RECORDED_NOT_ALLOCATED) {
520 add = ((1 << 30) - sb->s_blocksize -
521 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) >>
522 sb->s_blocksize_bits;
523 if (add > blocks)
524 add = blocks;
525 blocks -= add;
526 last_ext->extLength += add << sb->s_blocksize_bits;
527 }
528
529 if (fake) {
530 udf_add_aext(inode, last_pos, &last_ext->extLocation,
531 last_ext->extLength, 1);
532 count++;
533 } else {
534 struct kernel_lb_addr tmploc;
535 uint32_t tmplen;
536
537 udf_write_aext(inode, last_pos, &last_ext->extLocation,
538 last_ext->extLength, 1);
539 /*
540 * We've rewritten the last extent but there may be empty
541 * indirect extent after it - enter it.
542 */
543 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
544 }
545
546 /* Managed to do everything necessary? */
547 if (!blocks)
548 goto out;
549
550 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
551 last_ext->extLocation.logicalBlockNum = 0;
552 last_ext->extLocation.partitionReferenceNum = 0;
553 add = (1 << (30-sb->s_blocksize_bits)) - 1;
554 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
555 (add << sb->s_blocksize_bits);
556
557 /* Create enough extents to cover the whole hole */
558 while (blocks > add) {
559 blocks -= add;
560 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
561 last_ext->extLength, 1);
562 if (err)
563 return err;
564 count++;
565 }
566 if (blocks) {
567 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
568 (blocks << sb->s_blocksize_bits);
569 err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
570 last_ext->extLength, 1);
571 if (err)
572 return err;
573 count++;
574 }
575
576out:
577 /* Do we have some preallocated blocks saved? */
578 if (prealloc_len) {
579 err = udf_add_aext(inode, last_pos, &prealloc_loc,
580 prealloc_len, 1);
581 if (err)
582 return err;
583 last_ext->extLocation = prealloc_loc;
584 last_ext->extLength = prealloc_len;
585 count++;
586 }
587
588 /* last_pos should point to the last written extent... */
589 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
590 last_pos->offset -= sizeof(struct short_ad);
591 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
592 last_pos->offset -= sizeof(struct long_ad);
593 else
594 return -EIO;
595
596 return count;
597}
598
599static int udf_extend_file(struct inode *inode, loff_t newsize)
600{
601
602 struct extent_position epos;
603 struct kernel_lb_addr eloc;
604 uint32_t elen;
605 int8_t etype;
606 struct super_block *sb = inode->i_sb;
607 sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
608 int adsize;
609 struct udf_inode_info *iinfo = UDF_I(inode);
610 struct kernel_long_ad extent;
611 int err;
612
613 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
614 adsize = sizeof(struct short_ad);
615 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
616 adsize = sizeof(struct long_ad);
617 else
618 BUG();
619
620 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
621
622 /* File has extent covering the new size (could happen when extending
623 * inside a block)? */
624 if (etype != -1)
625 return 0;
626 if (newsize & (sb->s_blocksize - 1))
627 offset++;
628 /* Extended file just to the boundary of the last file block? */
629 if (offset == 0)
630 return 0;
631
632 /* Truncate is extending the file by 'offset' blocks */
633 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
634 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
635 /* File has no extents at all or has empty last
636 * indirect extent! Create a fake extent... */
637 extent.extLocation.logicalBlockNum = 0;
638 extent.extLocation.partitionReferenceNum = 0;
639 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
640 } else {
641 epos.offset -= adsize;
642 etype = udf_next_aext(inode, &epos, &extent.extLocation,
643 &extent.extLength, 0);
644 extent.extLength |= etype << 30;
645 }
646 err = udf_do_extend_file(inode, &epos, &extent, offset);
647 if (err < 0)
648 goto out;
649 err = 0;
650 iinfo->i_lenExtents = newsize;
651out:
652 brelse(epos.bh);
653 return err;
654}
655
656static sector_t inode_getblk(struct inode *inode, sector_t block,
657 int *err, int *new)
658{
659 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
660 struct extent_position prev_epos, cur_epos, next_epos;
661 int count = 0, startnum = 0, endnum = 0;
662 uint32_t elen = 0, tmpelen;
663 struct kernel_lb_addr eloc, tmpeloc;
664 int c = 1;
665 loff_t lbcount = 0, b_off = 0;
666 udf_pblk_t newblocknum, newblock;
667 sector_t offset = 0;
668 int8_t etype;
669 struct udf_inode_info *iinfo = UDF_I(inode);
670 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
671 int lastblock = 0;
672 bool isBeyondEOF;
673
674 *err = 0;
675 *new = 0;
676 prev_epos.offset = udf_file_entry_alloc_offset(inode);
677 prev_epos.block = iinfo->i_location;
678 prev_epos.bh = NULL;
679 cur_epos = next_epos = prev_epos;
680 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
681
682 /* find the extent which contains the block we are looking for.
683 alternate between laarr[0] and laarr[1] for locations of the
684 current extent, and the previous extent */
685 do {
686 if (prev_epos.bh != cur_epos.bh) {
687 brelse(prev_epos.bh);
688 get_bh(cur_epos.bh);
689 prev_epos.bh = cur_epos.bh;
690 }
691 if (cur_epos.bh != next_epos.bh) {
692 brelse(cur_epos.bh);
693 get_bh(next_epos.bh);
694 cur_epos.bh = next_epos.bh;
695 }
696
697 lbcount += elen;
698
699 prev_epos.block = cur_epos.block;
700 cur_epos.block = next_epos.block;
701
702 prev_epos.offset = cur_epos.offset;
703 cur_epos.offset = next_epos.offset;
704
705 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
706 if (etype == -1)
707 break;
708
709 c = !c;
710
711 laarr[c].extLength = (etype << 30) | elen;
712 laarr[c].extLocation = eloc;
713
714 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
715 pgoal = eloc.logicalBlockNum +
716 ((elen + inode->i_sb->s_blocksize - 1) >>
717 inode->i_sb->s_blocksize_bits);
718
719 count++;
720 } while (lbcount + elen <= b_off);
721
722 b_off -= lbcount;
723 offset = b_off >> inode->i_sb->s_blocksize_bits;
724 /*
725 * Move prev_epos and cur_epos into indirect extent if we are at
726 * the pointer to it
727 */
728 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
729 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
730
731 /* if the extent is allocated and recorded, return the block
732 if the extent is not a multiple of the blocksize, round up */
733
734 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
735 if (elen & (inode->i_sb->s_blocksize - 1)) {
736 elen = EXT_RECORDED_ALLOCATED |
737 ((elen + inode->i_sb->s_blocksize - 1) &
738 ~(inode->i_sb->s_blocksize - 1));
739 udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
740 }
741 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
742 goto out_free;
743 }
744
745 /* Are we beyond EOF? */
746 if (etype == -1) {
747 int ret;
748 isBeyondEOF = true;
749 if (count) {
750 if (c)
751 laarr[0] = laarr[1];
752 startnum = 1;
753 } else {
754 /* Create a fake extent when there's not one */
755 memset(&laarr[0].extLocation, 0x00,
756 sizeof(struct kernel_lb_addr));
757 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
758 /* Will udf_do_extend_file() create real extent from
759 a fake one? */
760 startnum = (offset > 0);
761 }
762 /* Create extents for the hole between EOF and offset */
763 ret = udf_do_extend_file(inode, &prev_epos, laarr, offset);
764 if (ret < 0) {
765 *err = ret;
766 newblock = 0;
767 goto out_free;
768 }
769 c = 0;
770 offset = 0;
771 count += ret;
772 /* We are not covered by a preallocated extent? */
773 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) !=
774 EXT_NOT_RECORDED_ALLOCATED) {
775 /* Is there any real extent? - otherwise we overwrite
776 * the fake one... */
777 if (count)
778 c = !c;
779 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
780 inode->i_sb->s_blocksize;
781 memset(&laarr[c].extLocation, 0x00,
782 sizeof(struct kernel_lb_addr));
783 count++;
784 }
785 endnum = c + 1;
786 lastblock = 1;
787 } else {
788 isBeyondEOF = false;
789 endnum = startnum = ((count > 2) ? 2 : count);
790
791 /* if the current extent is in position 0,
792 swap it with the previous */
793 if (!c && count != 1) {
794 laarr[2] = laarr[0];
795 laarr[0] = laarr[1];
796 laarr[1] = laarr[2];
797 c = 1;
798 }
799
800 /* if the current block is located in an extent,
801 read the next extent */
802 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
803 if (etype != -1) {
804 laarr[c + 1].extLength = (etype << 30) | elen;
805 laarr[c + 1].extLocation = eloc;
806 count++;
807 startnum++;
808 endnum++;
809 } else
810 lastblock = 1;
811 }
812
813 /* if the current extent is not recorded but allocated, get the
814 * block in the extent corresponding to the requested block */
815 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
816 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
817 else { /* otherwise, allocate a new block */
818 if (iinfo->i_next_alloc_block == block)
819 goal = iinfo->i_next_alloc_goal;
820
821 if (!goal) {
822 if (!(goal = pgoal)) /* XXX: what was intended here? */
823 goal = iinfo->i_location.logicalBlockNum + 1;
824 }
825
826 newblocknum = udf_new_block(inode->i_sb, inode,
827 iinfo->i_location.partitionReferenceNum,
828 goal, err);
829 if (!newblocknum) {
830 *err = -ENOSPC;
831 newblock = 0;
832 goto out_free;
833 }
834 if (isBeyondEOF)
835 iinfo->i_lenExtents += inode->i_sb->s_blocksize;
836 }
837
838 /* if the extent the requsted block is located in contains multiple
839 * blocks, split the extent into at most three extents. blocks prior
840 * to requested block, requested block, and blocks after requested
841 * block */
842 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
843
844 /* We preallocate blocks only for regular files. It also makes sense
845 * for directories but there's a problem when to drop the
846 * preallocation. We might use some delayed work for that but I feel
847 * it's overengineering for a filesystem like UDF. */
848 if (S_ISREG(inode->i_mode))
849 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
850
851 /* merge any continuous blocks in laarr */
852 udf_merge_extents(inode, laarr, &endnum);
853
854 /* write back the new extents, inserting new extents if the new number
855 * of extents is greater than the old number, and deleting extents if
856 * the new number of extents is less than the old number */
857 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
858
859 newblock = udf_get_pblock(inode->i_sb, newblocknum,
860 iinfo->i_location.partitionReferenceNum, 0);
861 if (!newblock) {
862 *err = -EIO;
863 goto out_free;
864 }
865 *new = 1;
866 iinfo->i_next_alloc_block = block;
867 iinfo->i_next_alloc_goal = newblocknum;
868 inode->i_ctime = current_time(inode);
869
870 if (IS_SYNC(inode))
871 udf_sync_inode(inode);
872 else
873 mark_inode_dirty(inode);
874out_free:
875 brelse(prev_epos.bh);
876 brelse(cur_epos.bh);
877 brelse(next_epos.bh);
878 return newblock;
879}
880
881static void udf_split_extents(struct inode *inode, int *c, int offset,
882 udf_pblk_t newblocknum,
883 struct kernel_long_ad *laarr, int *endnum)
884{
885 unsigned long blocksize = inode->i_sb->s_blocksize;
886 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
887
888 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
889 (laarr[*c].extLength >> 30) ==
890 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
891 int curr = *c;
892 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
893 blocksize - 1) >> blocksize_bits;
894 int8_t etype = (laarr[curr].extLength >> 30);
895
896 if (blen == 1)
897 ;
898 else if (!offset || blen == offset + 1) {
899 laarr[curr + 2] = laarr[curr + 1];
900 laarr[curr + 1] = laarr[curr];
901 } else {
902 laarr[curr + 3] = laarr[curr + 1];
903 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
904 }
905
906 if (offset) {
907 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
908 udf_free_blocks(inode->i_sb, inode,
909 &laarr[curr].extLocation,
910 0, offset);
911 laarr[curr].extLength =
912 EXT_NOT_RECORDED_NOT_ALLOCATED |
913 (offset << blocksize_bits);
914 laarr[curr].extLocation.logicalBlockNum = 0;
915 laarr[curr].extLocation.
916 partitionReferenceNum = 0;
917 } else
918 laarr[curr].extLength = (etype << 30) |
919 (offset << blocksize_bits);
920 curr++;
921 (*c)++;
922 (*endnum)++;
923 }
924
925 laarr[curr].extLocation.logicalBlockNum = newblocknum;
926 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
927 laarr[curr].extLocation.partitionReferenceNum =
928 UDF_I(inode)->i_location.partitionReferenceNum;
929 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
930 blocksize;
931 curr++;
932
933 if (blen != offset + 1) {
934 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
935 laarr[curr].extLocation.logicalBlockNum +=
936 offset + 1;
937 laarr[curr].extLength = (etype << 30) |
938 ((blen - (offset + 1)) << blocksize_bits);
939 curr++;
940 (*endnum)++;
941 }
942 }
943}
944
945static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
946 struct kernel_long_ad *laarr,
947 int *endnum)
948{
949 int start, length = 0, currlength = 0, i;
950
951 if (*endnum >= (c + 1)) {
952 if (!lastblock)
953 return;
954 else
955 start = c;
956 } else {
957 if ((laarr[c + 1].extLength >> 30) ==
958 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
959 start = c + 1;
960 length = currlength =
961 (((laarr[c + 1].extLength &
962 UDF_EXTENT_LENGTH_MASK) +
963 inode->i_sb->s_blocksize - 1) >>
964 inode->i_sb->s_blocksize_bits);
965 } else
966 start = c;
967 }
968
969 for (i = start + 1; i <= *endnum; i++) {
970 if (i == *endnum) {
971 if (lastblock)
972 length += UDF_DEFAULT_PREALLOC_BLOCKS;
973 } else if ((laarr[i].extLength >> 30) ==
974 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
975 length += (((laarr[i].extLength &
976 UDF_EXTENT_LENGTH_MASK) +
977 inode->i_sb->s_blocksize - 1) >>
978 inode->i_sb->s_blocksize_bits);
979 } else
980 break;
981 }
982
983 if (length) {
984 int next = laarr[start].extLocation.logicalBlockNum +
985 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
986 inode->i_sb->s_blocksize - 1) >>
987 inode->i_sb->s_blocksize_bits);
988 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
989 laarr[start].extLocation.partitionReferenceNum,
990 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
991 length : UDF_DEFAULT_PREALLOC_BLOCKS) -
992 currlength);
993 if (numalloc) {
994 if (start == (c + 1))
995 laarr[start].extLength +=
996 (numalloc <<
997 inode->i_sb->s_blocksize_bits);
998 else {
999 memmove(&laarr[c + 2], &laarr[c + 1],
1000 sizeof(struct long_ad) * (*endnum - (c + 1)));
1001 (*endnum)++;
1002 laarr[c + 1].extLocation.logicalBlockNum = next;
1003 laarr[c + 1].extLocation.partitionReferenceNum =
1004 laarr[c].extLocation.
1005 partitionReferenceNum;
1006 laarr[c + 1].extLength =
1007 EXT_NOT_RECORDED_ALLOCATED |
1008 (numalloc <<
1009 inode->i_sb->s_blocksize_bits);
1010 start = c + 1;
1011 }
1012
1013 for (i = start + 1; numalloc && i < *endnum; i++) {
1014 int elen = ((laarr[i].extLength &
1015 UDF_EXTENT_LENGTH_MASK) +
1016 inode->i_sb->s_blocksize - 1) >>
1017 inode->i_sb->s_blocksize_bits;
1018
1019 if (elen > numalloc) {
1020 laarr[i].extLength -=
1021 (numalloc <<
1022 inode->i_sb->s_blocksize_bits);
1023 numalloc = 0;
1024 } else {
1025 numalloc -= elen;
1026 if (*endnum > (i + 1))
1027 memmove(&laarr[i],
1028 &laarr[i + 1],
1029 sizeof(struct long_ad) *
1030 (*endnum - (i + 1)));
1031 i--;
1032 (*endnum)--;
1033 }
1034 }
1035 UDF_I(inode)->i_lenExtents +=
1036 numalloc << inode->i_sb->s_blocksize_bits;
1037 }
1038 }
1039}
1040
1041static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1042 int *endnum)
1043{
1044 int i;
1045 unsigned long blocksize = inode->i_sb->s_blocksize;
1046 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1047
1048 for (i = 0; i < (*endnum - 1); i++) {
1049 struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1050 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1051
1052 if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1053 (((li->extLength >> 30) ==
1054 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1055 ((lip1->extLocation.logicalBlockNum -
1056 li->extLocation.logicalBlockNum) ==
1057 (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1058 blocksize - 1) >> blocksize_bits)))) {
1059
1060 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1061 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1062 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1063 lip1->extLength = (lip1->extLength -
1064 (li->extLength &
1065 UDF_EXTENT_LENGTH_MASK) +
1066 UDF_EXTENT_LENGTH_MASK) &
1067 ~(blocksize - 1);
1068 li->extLength = (li->extLength &
1069 UDF_EXTENT_FLAG_MASK) +
1070 (UDF_EXTENT_LENGTH_MASK + 1) -
1071 blocksize;
1072 lip1->extLocation.logicalBlockNum =
1073 li->extLocation.logicalBlockNum +
1074 ((li->extLength &
1075 UDF_EXTENT_LENGTH_MASK) >>
1076 blocksize_bits);
1077 } else {
1078 li->extLength = lip1->extLength +
1079 (((li->extLength &
1080 UDF_EXTENT_LENGTH_MASK) +
1081 blocksize - 1) & ~(blocksize - 1));
1082 if (*endnum > (i + 2))
1083 memmove(&laarr[i + 1], &laarr[i + 2],
1084 sizeof(struct long_ad) *
1085 (*endnum - (i + 2)));
1086 i--;
1087 (*endnum)--;
1088 }
1089 } else if (((li->extLength >> 30) ==
1090 (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1091 ((lip1->extLength >> 30) ==
1092 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1093 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1094 ((li->extLength &
1095 UDF_EXTENT_LENGTH_MASK) +
1096 blocksize - 1) >> blocksize_bits);
1097 li->extLocation.logicalBlockNum = 0;
1098 li->extLocation.partitionReferenceNum = 0;
1099
1100 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1101 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1102 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1103 lip1->extLength = (lip1->extLength -
1104 (li->extLength &
1105 UDF_EXTENT_LENGTH_MASK) +
1106 UDF_EXTENT_LENGTH_MASK) &
1107 ~(blocksize - 1);
1108 li->extLength = (li->extLength &
1109 UDF_EXTENT_FLAG_MASK) +
1110 (UDF_EXTENT_LENGTH_MASK + 1) -
1111 blocksize;
1112 } else {
1113 li->extLength = lip1->extLength +
1114 (((li->extLength &
1115 UDF_EXTENT_LENGTH_MASK) +
1116 blocksize - 1) & ~(blocksize - 1));
1117 if (*endnum > (i + 2))
1118 memmove(&laarr[i + 1], &laarr[i + 2],
1119 sizeof(struct long_ad) *
1120 (*endnum - (i + 2)));
1121 i--;
1122 (*endnum)--;
1123 }
1124 } else if ((li->extLength >> 30) ==
1125 (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1126 udf_free_blocks(inode->i_sb, inode,
1127 &li->extLocation, 0,
1128 ((li->extLength &
1129 UDF_EXTENT_LENGTH_MASK) +
1130 blocksize - 1) >> blocksize_bits);
1131 li->extLocation.logicalBlockNum = 0;
1132 li->extLocation.partitionReferenceNum = 0;
1133 li->extLength = (li->extLength &
1134 UDF_EXTENT_LENGTH_MASK) |
1135 EXT_NOT_RECORDED_NOT_ALLOCATED;
1136 }
1137 }
1138}
1139
1140static void udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1141 int startnum, int endnum,
1142 struct extent_position *epos)
1143{
1144 int start = 0, i;
1145 struct kernel_lb_addr tmploc;
1146 uint32_t tmplen;
1147
1148 if (startnum > endnum) {
1149 for (i = 0; i < (startnum - endnum); i++)
1150 udf_delete_aext(inode, *epos, laarr[i].extLocation,
1151 laarr[i].extLength);
1152 } else if (startnum < endnum) {
1153 for (i = 0; i < (endnum - startnum); i++) {
1154 udf_insert_aext(inode, *epos, laarr[i].extLocation,
1155 laarr[i].extLength);
1156 udf_next_aext(inode, epos, &laarr[i].extLocation,
1157 &laarr[i].extLength, 1);
1158 start++;
1159 }
1160 }
1161
1162 for (i = start; i < endnum; i++) {
1163 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1164 udf_write_aext(inode, epos, &laarr[i].extLocation,
1165 laarr[i].extLength, 1);
1166 }
1167}
1168
1169struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1170 int create, int *err)
1171{
1172 struct buffer_head *bh = NULL;
1173
1174 bh = udf_getblk(inode, block, create, err);
1175 if (!bh)
1176 return NULL;
1177
1178 if (buffer_uptodate(bh))
1179 return bh;
1180
1181 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1182
1183 wait_on_buffer(bh);
1184 if (buffer_uptodate(bh))
1185 return bh;
1186
1187 brelse(bh);
1188 *err = -EIO;
1189 return NULL;
1190}
1191
1192int udf_setsize(struct inode *inode, loff_t newsize)
1193{
1194 int err;
1195 struct udf_inode_info *iinfo;
1196 unsigned int bsize = i_blocksize(inode);
1197
1198 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1199 S_ISLNK(inode->i_mode)))
1200 return -EINVAL;
1201 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1202 return -EPERM;
1203
1204 iinfo = UDF_I(inode);
1205 if (newsize > inode->i_size) {
1206 down_write(&iinfo->i_data_sem);
1207 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1208 if (bsize <
1209 (udf_file_entry_alloc_offset(inode) + newsize)) {
1210 err = udf_expand_file_adinicb(inode);
1211 if (err)
1212 return err;
1213 down_write(&iinfo->i_data_sem);
1214 } else {
1215 iinfo->i_lenAlloc = newsize;
1216 goto set_size;
1217 }
1218 }
1219 err = udf_extend_file(inode, newsize);
1220 if (err) {
1221 up_write(&iinfo->i_data_sem);
1222 return err;
1223 }
1224set_size:
1225 up_write(&iinfo->i_data_sem);
1226 truncate_setsize(inode, newsize);
1227 } else {
1228 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1229 down_write(&iinfo->i_data_sem);
1230 udf_clear_extent_cache(inode);
1231 memset(iinfo->i_ext.i_data + iinfo->i_lenEAttr + newsize,
1232 0x00, bsize - newsize -
1233 udf_file_entry_alloc_offset(inode));
1234 iinfo->i_lenAlloc = newsize;
1235 truncate_setsize(inode, newsize);
1236 up_write(&iinfo->i_data_sem);
1237 goto update_time;
1238 }
1239 err = block_truncate_page(inode->i_mapping, newsize,
1240 udf_get_block);
1241 if (err)
1242 return err;
1243 truncate_setsize(inode, newsize);
1244 down_write(&iinfo->i_data_sem);
1245 udf_clear_extent_cache(inode);
1246 udf_truncate_extents(inode);
1247 up_write(&iinfo->i_data_sem);
1248 }
1249update_time:
1250 inode->i_mtime = inode->i_ctime = current_time(inode);
1251 if (IS_SYNC(inode))
1252 udf_sync_inode(inode);
1253 else
1254 mark_inode_dirty(inode);
1255 return 0;
1256}
1257
1258/*
1259 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1260 * arbitrary - just that we hopefully don't limit any real use of rewritten
1261 * inode on write-once media but avoid looping for too long on corrupted media.
1262 */
1263#define UDF_MAX_ICB_NESTING 1024
1264
1265static int udf_read_inode(struct inode *inode, bool hidden_inode)
1266{
1267 struct buffer_head *bh = NULL;
1268 struct fileEntry *fe;
1269 struct extendedFileEntry *efe;
1270 uint16_t ident;
1271 struct udf_inode_info *iinfo = UDF_I(inode);
1272 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1273 struct kernel_lb_addr *iloc = &iinfo->i_location;
1274 unsigned int link_count;
1275 unsigned int indirections = 0;
1276 int bs = inode->i_sb->s_blocksize;
1277 int ret = -EIO;
1278 uint32_t uid, gid;
1279
1280reread:
1281 if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1282 udf_debug("partition reference: %u > logical volume partitions: %u\n",
1283 iloc->partitionReferenceNum, sbi->s_partitions);
1284 return -EIO;
1285 }
1286
1287 if (iloc->logicalBlockNum >=
1288 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1289 udf_debug("block=%u, partition=%u out of range\n",
1290 iloc->logicalBlockNum, iloc->partitionReferenceNum);
1291 return -EIO;
1292 }
1293
1294 /*
1295 * Set defaults, but the inode is still incomplete!
1296 * Note: get_new_inode() sets the following on a new inode:
1297 * i_sb = sb
1298 * i_no = ino
1299 * i_flags = sb->s_flags
1300 * i_state = 0
1301 * clean_inode(): zero fills and sets
1302 * i_count = 1
1303 * i_nlink = 1
1304 * i_op = NULL;
1305 */
1306 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1307 if (!bh) {
1308 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1309 return -EIO;
1310 }
1311
1312 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1313 ident != TAG_IDENT_USE) {
1314 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1315 inode->i_ino, ident);
1316 goto out;
1317 }
1318
1319 fe = (struct fileEntry *)bh->b_data;
1320 efe = (struct extendedFileEntry *)bh->b_data;
1321
1322 if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1323 struct buffer_head *ibh;
1324
1325 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1326 if (ident == TAG_IDENT_IE && ibh) {
1327 struct kernel_lb_addr loc;
1328 struct indirectEntry *ie;
1329
1330 ie = (struct indirectEntry *)ibh->b_data;
1331 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1332
1333 if (ie->indirectICB.extLength) {
1334 brelse(ibh);
1335 memcpy(&iinfo->i_location, &loc,
1336 sizeof(struct kernel_lb_addr));
1337 if (++indirections > UDF_MAX_ICB_NESTING) {
1338 udf_err(inode->i_sb,
1339 "too many ICBs in ICB hierarchy"
1340 " (max %d supported)\n",
1341 UDF_MAX_ICB_NESTING);
1342 goto out;
1343 }
1344 brelse(bh);
1345 goto reread;
1346 }
1347 }
1348 brelse(ibh);
1349 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1350 udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1351 le16_to_cpu(fe->icbTag.strategyType));
1352 goto out;
1353 }
1354 if (fe->icbTag.strategyType == cpu_to_le16(4))
1355 iinfo->i_strat4096 = 0;
1356 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1357 iinfo->i_strat4096 = 1;
1358
1359 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1360 ICBTAG_FLAG_AD_MASK;
1361 iinfo->i_unique = 0;
1362 iinfo->i_lenEAttr = 0;
1363 iinfo->i_lenExtents = 0;
1364 iinfo->i_lenAlloc = 0;
1365 iinfo->i_next_alloc_block = 0;
1366 iinfo->i_next_alloc_goal = 0;
1367 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1368 iinfo->i_efe = 1;
1369 iinfo->i_use = 0;
1370 ret = udf_alloc_i_data(inode, bs -
1371 sizeof(struct extendedFileEntry));
1372 if (ret)
1373 goto out;
1374 memcpy(iinfo->i_ext.i_data,
1375 bh->b_data + sizeof(struct extendedFileEntry),
1376 bs - sizeof(struct extendedFileEntry));
1377 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1378 iinfo->i_efe = 0;
1379 iinfo->i_use = 0;
1380 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1381 if (ret)
1382 goto out;
1383 memcpy(iinfo->i_ext.i_data,
1384 bh->b_data + sizeof(struct fileEntry),
1385 bs - sizeof(struct fileEntry));
1386 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1387 iinfo->i_efe = 0;
1388 iinfo->i_use = 1;
1389 iinfo->i_lenAlloc = le32_to_cpu(
1390 ((struct unallocSpaceEntry *)bh->b_data)->
1391 lengthAllocDescs);
1392 ret = udf_alloc_i_data(inode, bs -
1393 sizeof(struct unallocSpaceEntry));
1394 if (ret)
1395 goto out;
1396 memcpy(iinfo->i_ext.i_data,
1397 bh->b_data + sizeof(struct unallocSpaceEntry),
1398 bs - sizeof(struct unallocSpaceEntry));
1399 return 0;
1400 }
1401
1402 ret = -EIO;
1403 read_lock(&sbi->s_cred_lock);
1404 uid = le32_to_cpu(fe->uid);
1405 if (uid == UDF_INVALID_ID ||
1406 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1407 inode->i_uid = sbi->s_uid;
1408 else
1409 i_uid_write(inode, uid);
1410
1411 gid = le32_to_cpu(fe->gid);
1412 if (gid == UDF_INVALID_ID ||
1413 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1414 inode->i_gid = sbi->s_gid;
1415 else
1416 i_gid_write(inode, gid);
1417
1418 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1419 sbi->s_fmode != UDF_INVALID_MODE)
1420 inode->i_mode = sbi->s_fmode;
1421 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1422 sbi->s_dmode != UDF_INVALID_MODE)
1423 inode->i_mode = sbi->s_dmode;
1424 else
1425 inode->i_mode = udf_convert_permissions(fe);
1426 inode->i_mode &= ~sbi->s_umask;
1427 read_unlock(&sbi->s_cred_lock);
1428
1429 link_count = le16_to_cpu(fe->fileLinkCount);
1430 if (!link_count) {
1431 if (!hidden_inode) {
1432 ret = -ESTALE;
1433 goto out;
1434 }
1435 link_count = 1;
1436 }
1437 set_nlink(inode, link_count);
1438
1439 inode->i_size = le64_to_cpu(fe->informationLength);
1440 iinfo->i_lenExtents = inode->i_size;
1441
1442 if (iinfo->i_efe == 0) {
1443 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1444 (inode->i_sb->s_blocksize_bits - 9);
1445
1446 if (!udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime))
1447 inode->i_atime = sbi->s_record_time;
1448
1449 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1450 fe->modificationTime))
1451 inode->i_mtime = sbi->s_record_time;
1452
1453 if (!udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime))
1454 inode->i_ctime = sbi->s_record_time;
1455
1456 iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1457 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1458 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1459 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1460 } else {
1461 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1462 (inode->i_sb->s_blocksize_bits - 9);
1463
1464 if (!udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime))
1465 inode->i_atime = sbi->s_record_time;
1466
1467 if (!udf_disk_stamp_to_time(&inode->i_mtime,
1468 efe->modificationTime))
1469 inode->i_mtime = sbi->s_record_time;
1470
1471 if (!udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime))
1472 iinfo->i_crtime = sbi->s_record_time;
1473
1474 if (!udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime))
1475 inode->i_ctime = sbi->s_record_time;
1476
1477 iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1478 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1479 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1480 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1481 }
1482 inode->i_generation = iinfo->i_unique;
1483
1484 /*
1485 * Sanity check length of allocation descriptors and extended attrs to
1486 * avoid integer overflows
1487 */
1488 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1489 goto out;
1490 /* Now do exact checks */
1491 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1492 goto out;
1493 /* Sanity checks for files in ICB so that we don't get confused later */
1494 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1495 /*
1496 * For file in ICB data is stored in allocation descriptor
1497 * so sizes should match
1498 */
1499 if (iinfo->i_lenAlloc != inode->i_size)
1500 goto out;
1501 /* File in ICB has to fit in there... */
1502 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1503 goto out;
1504 }
1505
1506 switch (fe->icbTag.fileType) {
1507 case ICBTAG_FILE_TYPE_DIRECTORY:
1508 inode->i_op = &udf_dir_inode_operations;
1509 inode->i_fop = &udf_dir_operations;
1510 inode->i_mode |= S_IFDIR;
1511 inc_nlink(inode);
1512 break;
1513 case ICBTAG_FILE_TYPE_REALTIME:
1514 case ICBTAG_FILE_TYPE_REGULAR:
1515 case ICBTAG_FILE_TYPE_UNDEF:
1516 case ICBTAG_FILE_TYPE_VAT20:
1517 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1518 inode->i_data.a_ops = &udf_adinicb_aops;
1519 else
1520 inode->i_data.a_ops = &udf_aops;
1521 inode->i_op = &udf_file_inode_operations;
1522 inode->i_fop = &udf_file_operations;
1523 inode->i_mode |= S_IFREG;
1524 break;
1525 case ICBTAG_FILE_TYPE_BLOCK:
1526 inode->i_mode |= S_IFBLK;
1527 break;
1528 case ICBTAG_FILE_TYPE_CHAR:
1529 inode->i_mode |= S_IFCHR;
1530 break;
1531 case ICBTAG_FILE_TYPE_FIFO:
1532 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1533 break;
1534 case ICBTAG_FILE_TYPE_SOCKET:
1535 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1536 break;
1537 case ICBTAG_FILE_TYPE_SYMLINK:
1538 inode->i_data.a_ops = &udf_symlink_aops;
1539 inode->i_op = &udf_symlink_inode_operations;
1540 inode_nohighmem(inode);
1541 inode->i_mode = S_IFLNK | 0777;
1542 break;
1543 case ICBTAG_FILE_TYPE_MAIN:
1544 udf_debug("METADATA FILE-----\n");
1545 break;
1546 case ICBTAG_FILE_TYPE_MIRROR:
1547 udf_debug("METADATA MIRROR FILE-----\n");
1548 break;
1549 case ICBTAG_FILE_TYPE_BITMAP:
1550 udf_debug("METADATA BITMAP FILE-----\n");
1551 break;
1552 default:
1553 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1554 inode->i_ino, fe->icbTag.fileType);
1555 goto out;
1556 }
1557 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1558 struct deviceSpec *dsea =
1559 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1560 if (dsea) {
1561 init_special_inode(inode, inode->i_mode,
1562 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1563 le32_to_cpu(dsea->minorDeviceIdent)));
1564 /* Developer ID ??? */
1565 } else
1566 goto out;
1567 }
1568 ret = 0;
1569out:
1570 brelse(bh);
1571 return ret;
1572}
1573
1574static int udf_alloc_i_data(struct inode *inode, size_t size)
1575{
1576 struct udf_inode_info *iinfo = UDF_I(inode);
1577 iinfo->i_ext.i_data = kmalloc(size, GFP_KERNEL);
1578 if (!iinfo->i_ext.i_data)
1579 return -ENOMEM;
1580 return 0;
1581}
1582
1583static umode_t udf_convert_permissions(struct fileEntry *fe)
1584{
1585 umode_t mode;
1586 uint32_t permissions;
1587 uint32_t flags;
1588
1589 permissions = le32_to_cpu(fe->permissions);
1590 flags = le16_to_cpu(fe->icbTag.flags);
1591
1592 mode = ((permissions) & 0007) |
1593 ((permissions >> 2) & 0070) |
1594 ((permissions >> 4) & 0700) |
1595 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1596 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1597 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1598
1599 return mode;
1600}
1601
1602int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1603{
1604 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1605}
1606
1607static int udf_sync_inode(struct inode *inode)
1608{
1609 return udf_update_inode(inode, 1);
1610}
1611
1612static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec time)
1613{
1614 if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1615 (iinfo->i_crtime.tv_sec == time.tv_sec &&
1616 iinfo->i_crtime.tv_nsec > time.tv_nsec))
1617 iinfo->i_crtime = time;
1618}
1619
1620static int udf_update_inode(struct inode *inode, int do_sync)
1621{
1622 struct buffer_head *bh = NULL;
1623 struct fileEntry *fe;
1624 struct extendedFileEntry *efe;
1625 uint64_t lb_recorded;
1626 uint32_t udfperms;
1627 uint16_t icbflags;
1628 uint16_t crclen;
1629 int err = 0;
1630 struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1631 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1632 struct udf_inode_info *iinfo = UDF_I(inode);
1633
1634 bh = udf_tgetblk(inode->i_sb,
1635 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1636 if (!bh) {
1637 udf_debug("getblk failure\n");
1638 return -EIO;
1639 }
1640
1641 lock_buffer(bh);
1642 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1643 fe = (struct fileEntry *)bh->b_data;
1644 efe = (struct extendedFileEntry *)bh->b_data;
1645
1646 if (iinfo->i_use) {
1647 struct unallocSpaceEntry *use =
1648 (struct unallocSpaceEntry *)bh->b_data;
1649
1650 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1651 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1652 iinfo->i_ext.i_data, inode->i_sb->s_blocksize -
1653 sizeof(struct unallocSpaceEntry));
1654 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1655 crclen = sizeof(struct unallocSpaceEntry);
1656
1657 goto finish;
1658 }
1659
1660 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1661 fe->uid = cpu_to_le32(UDF_INVALID_ID);
1662 else
1663 fe->uid = cpu_to_le32(i_uid_read(inode));
1664
1665 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1666 fe->gid = cpu_to_le32(UDF_INVALID_ID);
1667 else
1668 fe->gid = cpu_to_le32(i_gid_read(inode));
1669
1670 udfperms = ((inode->i_mode & 0007)) |
1671 ((inode->i_mode & 0070) << 2) |
1672 ((inode->i_mode & 0700) << 4);
1673
1674 udfperms |= (le32_to_cpu(fe->permissions) &
1675 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1676 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1677 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1678 fe->permissions = cpu_to_le32(udfperms);
1679
1680 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1681 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1682 else
1683 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1684
1685 fe->informationLength = cpu_to_le64(inode->i_size);
1686
1687 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1688 struct regid *eid;
1689 struct deviceSpec *dsea =
1690 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1691 if (!dsea) {
1692 dsea = (struct deviceSpec *)
1693 udf_add_extendedattr(inode,
1694 sizeof(struct deviceSpec) +
1695 sizeof(struct regid), 12, 0x3);
1696 dsea->attrType = cpu_to_le32(12);
1697 dsea->attrSubtype = 1;
1698 dsea->attrLength = cpu_to_le32(
1699 sizeof(struct deviceSpec) +
1700 sizeof(struct regid));
1701 dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1702 }
1703 eid = (struct regid *)dsea->impUse;
1704 memset(eid, 0, sizeof(*eid));
1705 strcpy(eid->ident, UDF_ID_DEVELOPER);
1706 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1707 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1708 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1709 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1710 }
1711
1712 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1713 lb_recorded = 0; /* No extents => no blocks! */
1714 else
1715 lb_recorded =
1716 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1717 (blocksize_bits - 9);
1718
1719 if (iinfo->i_efe == 0) {
1720 memcpy(bh->b_data + sizeof(struct fileEntry),
1721 iinfo->i_ext.i_data,
1722 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1723 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1724
1725 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1726 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1727 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1728 memset(&(fe->impIdent), 0, sizeof(struct regid));
1729 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1730 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1731 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1732 fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1733 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1734 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1735 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1736 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1737 crclen = sizeof(struct fileEntry);
1738 } else {
1739 memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1740 iinfo->i_ext.i_data,
1741 inode->i_sb->s_blocksize -
1742 sizeof(struct extendedFileEntry));
1743 efe->objectSize = cpu_to_le64(inode->i_size);
1744 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1745
1746 udf_adjust_time(iinfo, inode->i_atime);
1747 udf_adjust_time(iinfo, inode->i_mtime);
1748 udf_adjust_time(iinfo, inode->i_ctime);
1749
1750 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1751 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1752 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1753 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1754
1755 memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1756 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1757 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1758 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1759 efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1760 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1761 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1762 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1763 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1764 crclen = sizeof(struct extendedFileEntry);
1765 }
1766
1767finish:
1768 if (iinfo->i_strat4096) {
1769 fe->icbTag.strategyType = cpu_to_le16(4096);
1770 fe->icbTag.strategyParameter = cpu_to_le16(1);
1771 fe->icbTag.numEntries = cpu_to_le16(2);
1772 } else {
1773 fe->icbTag.strategyType = cpu_to_le16(4);
1774 fe->icbTag.numEntries = cpu_to_le16(1);
1775 }
1776
1777 if (iinfo->i_use)
1778 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1779 else if (S_ISDIR(inode->i_mode))
1780 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1781 else if (S_ISREG(inode->i_mode))
1782 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1783 else if (S_ISLNK(inode->i_mode))
1784 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1785 else if (S_ISBLK(inode->i_mode))
1786 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1787 else if (S_ISCHR(inode->i_mode))
1788 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1789 else if (S_ISFIFO(inode->i_mode))
1790 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1791 else if (S_ISSOCK(inode->i_mode))
1792 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1793
1794 icbflags = iinfo->i_alloc_type |
1795 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1796 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1797 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1798 (le16_to_cpu(fe->icbTag.flags) &
1799 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1800 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1801
1802 fe->icbTag.flags = cpu_to_le16(icbflags);
1803 if (sbi->s_udfrev >= 0x0200)
1804 fe->descTag.descVersion = cpu_to_le16(3);
1805 else
1806 fe->descTag.descVersion = cpu_to_le16(2);
1807 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1808 fe->descTag.tagLocation = cpu_to_le32(
1809 iinfo->i_location.logicalBlockNum);
1810 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1811 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1812 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1813 crclen));
1814 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1815
1816 set_buffer_uptodate(bh);
1817 unlock_buffer(bh);
1818
1819 /* write the data blocks */
1820 mark_buffer_dirty(bh);
1821 if (do_sync) {
1822 sync_dirty_buffer(bh);
1823 if (buffer_write_io_error(bh)) {
1824 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1825 inode->i_ino);
1826 err = -EIO;
1827 }
1828 }
1829 brelse(bh);
1830
1831 return err;
1832}
1833
1834struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1835 bool hidden_inode)
1836{
1837 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1838 struct inode *inode = iget_locked(sb, block);
1839 int err;
1840
1841 if (!inode)
1842 return ERR_PTR(-ENOMEM);
1843
1844 if (!(inode->i_state & I_NEW))
1845 return inode;
1846
1847 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1848 err = udf_read_inode(inode, hidden_inode);
1849 if (err < 0) {
1850 iget_failed(inode);
1851 return ERR_PTR(err);
1852 }
1853 unlock_new_inode(inode);
1854
1855 return inode;
1856}
1857
1858int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1859 struct extent_position *epos)
1860{
1861 struct super_block *sb = inode->i_sb;
1862 struct buffer_head *bh;
1863 struct allocExtDesc *aed;
1864 struct extent_position nepos;
1865 struct kernel_lb_addr neloc;
1866 int ver, adsize;
1867
1868 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1869 adsize = sizeof(struct short_ad);
1870 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1871 adsize = sizeof(struct long_ad);
1872 else
1873 return -EIO;
1874
1875 neloc.logicalBlockNum = block;
1876 neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1877
1878 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1879 if (!bh)
1880 return -EIO;
1881 lock_buffer(bh);
1882 memset(bh->b_data, 0x00, sb->s_blocksize);
1883 set_buffer_uptodate(bh);
1884 unlock_buffer(bh);
1885 mark_buffer_dirty_inode(bh, inode);
1886
1887 aed = (struct allocExtDesc *)(bh->b_data);
1888 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1889 aed->previousAllocExtLocation =
1890 cpu_to_le32(epos->block.logicalBlockNum);
1891 }
1892 aed->lengthAllocDescs = cpu_to_le32(0);
1893 if (UDF_SB(sb)->s_udfrev >= 0x0200)
1894 ver = 3;
1895 else
1896 ver = 2;
1897 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1898 sizeof(struct tag));
1899
1900 nepos.block = neloc;
1901 nepos.offset = sizeof(struct allocExtDesc);
1902 nepos.bh = bh;
1903
1904 /*
1905 * Do we have to copy current last extent to make space for indirect
1906 * one?
1907 */
1908 if (epos->offset + adsize > sb->s_blocksize) {
1909 struct kernel_lb_addr cp_loc;
1910 uint32_t cp_len;
1911 int cp_type;
1912
1913 epos->offset -= adsize;
1914 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1915 cp_len |= ((uint32_t)cp_type) << 30;
1916
1917 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1918 udf_write_aext(inode, epos, &nepos.block,
1919 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1920 } else {
1921 __udf_add_aext(inode, epos, &nepos.block,
1922 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDECS, 0);
1923 }
1924
1925 brelse(epos->bh);
1926 *epos = nepos;
1927
1928 return 0;
1929}
1930
1931/*
1932 * Append extent at the given position - should be the first free one in inode
1933 * / indirect extent. This function assumes there is enough space in the inode
1934 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
1935 */
1936int __udf_add_aext(struct inode *inode, struct extent_position *epos,
1937 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1938{
1939 struct udf_inode_info *iinfo = UDF_I(inode);
1940 struct allocExtDesc *aed;
1941 int adsize;
1942
1943 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1944 adsize = sizeof(struct short_ad);
1945 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1946 adsize = sizeof(struct long_ad);
1947 else
1948 return -EIO;
1949
1950 if (!epos->bh) {
1951 WARN_ON(iinfo->i_lenAlloc !=
1952 epos->offset - udf_file_entry_alloc_offset(inode));
1953 } else {
1954 aed = (struct allocExtDesc *)epos->bh->b_data;
1955 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
1956 epos->offset - sizeof(struct allocExtDesc));
1957 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
1958 }
1959
1960 udf_write_aext(inode, epos, eloc, elen, inc);
1961
1962 if (!epos->bh) {
1963 iinfo->i_lenAlloc += adsize;
1964 mark_inode_dirty(inode);
1965 } else {
1966 aed = (struct allocExtDesc *)epos->bh->b_data;
1967 le32_add_cpu(&aed->lengthAllocDescs, adsize);
1968 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1969 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
1970 udf_update_tag(epos->bh->b_data,
1971 epos->offset + (inc ? 0 : adsize));
1972 else
1973 udf_update_tag(epos->bh->b_data,
1974 sizeof(struct allocExtDesc));
1975 mark_buffer_dirty_inode(epos->bh, inode);
1976 }
1977
1978 return 0;
1979}
1980
1981/*
1982 * Append extent at given position - should be the first free one in inode
1983 * / indirect extent. Takes care of allocating and linking indirect blocks.
1984 */
1985int udf_add_aext(struct inode *inode, struct extent_position *epos,
1986 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
1987{
1988 int adsize;
1989 struct super_block *sb = inode->i_sb;
1990
1991 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1992 adsize = sizeof(struct short_ad);
1993 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1994 adsize = sizeof(struct long_ad);
1995 else
1996 return -EIO;
1997
1998 if (epos->offset + (2 * adsize) > sb->s_blocksize) {
1999 int err;
2000 udf_pblk_t new_block;
2001
2002 new_block = udf_new_block(sb, NULL,
2003 epos->block.partitionReferenceNum,
2004 epos->block.logicalBlockNum, &err);
2005 if (!new_block)
2006 return -ENOSPC;
2007
2008 err = udf_setup_indirect_aext(inode, new_block, epos);
2009 if (err)
2010 return err;
2011 }
2012
2013 return __udf_add_aext(inode, epos, eloc, elen, inc);
2014}
2015
2016void udf_write_aext(struct inode *inode, struct extent_position *epos,
2017 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2018{
2019 int adsize;
2020 uint8_t *ptr;
2021 struct short_ad *sad;
2022 struct long_ad *lad;
2023 struct udf_inode_info *iinfo = UDF_I(inode);
2024
2025 if (!epos->bh)
2026 ptr = iinfo->i_ext.i_data + epos->offset -
2027 udf_file_entry_alloc_offset(inode) +
2028 iinfo->i_lenEAttr;
2029 else
2030 ptr = epos->bh->b_data + epos->offset;
2031
2032 switch (iinfo->i_alloc_type) {
2033 case ICBTAG_FLAG_AD_SHORT:
2034 sad = (struct short_ad *)ptr;
2035 sad->extLength = cpu_to_le32(elen);
2036 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2037 adsize = sizeof(struct short_ad);
2038 break;
2039 case ICBTAG_FLAG_AD_LONG:
2040 lad = (struct long_ad *)ptr;
2041 lad->extLength = cpu_to_le32(elen);
2042 lad->extLocation = cpu_to_lelb(*eloc);
2043 memset(lad->impUse, 0x00, sizeof(lad->impUse));
2044 adsize = sizeof(struct long_ad);
2045 break;
2046 default:
2047 return;
2048 }
2049
2050 if (epos->bh) {
2051 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2052 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2053 struct allocExtDesc *aed =
2054 (struct allocExtDesc *)epos->bh->b_data;
2055 udf_update_tag(epos->bh->b_data,
2056 le32_to_cpu(aed->lengthAllocDescs) +
2057 sizeof(struct allocExtDesc));
2058 }
2059 mark_buffer_dirty_inode(epos->bh, inode);
2060 } else {
2061 mark_inode_dirty(inode);
2062 }
2063
2064 if (inc)
2065 epos->offset += adsize;
2066}
2067
2068/*
2069 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2070 * someone does some weird stuff.
2071 */
2072#define UDF_MAX_INDIR_EXTS 16
2073
2074int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2075 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2076{
2077 int8_t etype;
2078 unsigned int indirections = 0;
2079
2080 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2081 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
2082 udf_pblk_t block;
2083
2084 if (++indirections > UDF_MAX_INDIR_EXTS) {
2085 udf_err(inode->i_sb,
2086 "too many indirect extents in inode %lu\n",
2087 inode->i_ino);
2088 return -1;
2089 }
2090
2091 epos->block = *eloc;
2092 epos->offset = sizeof(struct allocExtDesc);
2093 brelse(epos->bh);
2094 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2095 epos->bh = udf_tread(inode->i_sb, block);
2096 if (!epos->bh) {
2097 udf_debug("reading block %u failed!\n", block);
2098 return -1;
2099 }
2100 }
2101
2102 return etype;
2103}
2104
2105int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2106 struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2107{
2108 int alen;
2109 int8_t etype;
2110 uint8_t *ptr;
2111 struct short_ad *sad;
2112 struct long_ad *lad;
2113 struct udf_inode_info *iinfo = UDF_I(inode);
2114
2115 if (!epos->bh) {
2116 if (!epos->offset)
2117 epos->offset = udf_file_entry_alloc_offset(inode);
2118 ptr = iinfo->i_ext.i_data + epos->offset -
2119 udf_file_entry_alloc_offset(inode) +
2120 iinfo->i_lenEAttr;
2121 alen = udf_file_entry_alloc_offset(inode) +
2122 iinfo->i_lenAlloc;
2123 } else {
2124 if (!epos->offset)
2125 epos->offset = sizeof(struct allocExtDesc);
2126 ptr = epos->bh->b_data + epos->offset;
2127 alen = sizeof(struct allocExtDesc) +
2128 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2129 lengthAllocDescs);
2130 }
2131
2132 switch (iinfo->i_alloc_type) {
2133 case ICBTAG_FLAG_AD_SHORT:
2134 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2135 if (!sad)
2136 return -1;
2137 etype = le32_to_cpu(sad->extLength) >> 30;
2138 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2139 eloc->partitionReferenceNum =
2140 iinfo->i_location.partitionReferenceNum;
2141 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2142 break;
2143 case ICBTAG_FLAG_AD_LONG:
2144 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2145 if (!lad)
2146 return -1;
2147 etype = le32_to_cpu(lad->extLength) >> 30;
2148 *eloc = lelb_to_cpu(lad->extLocation);
2149 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2150 break;
2151 default:
2152 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2153 return -1;
2154 }
2155
2156 return etype;
2157}
2158
2159static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
2160 struct kernel_lb_addr neloc, uint32_t nelen)
2161{
2162 struct kernel_lb_addr oeloc;
2163 uint32_t oelen;
2164 int8_t etype;
2165
2166 if (epos.bh)
2167 get_bh(epos.bh);
2168
2169 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2170 udf_write_aext(inode, &epos, &neloc, nelen, 1);
2171 neloc = oeloc;
2172 nelen = (etype << 30) | oelen;
2173 }
2174 udf_add_aext(inode, &epos, &neloc, nelen, 1);
2175 brelse(epos.bh);
2176
2177 return (nelen >> 30);
2178}
2179
2180int8_t udf_delete_aext(struct inode *inode, struct extent_position epos,
2181 struct kernel_lb_addr eloc, uint32_t elen)
2182{
2183 struct extent_position oepos;
2184 int adsize;
2185 int8_t etype;
2186 struct allocExtDesc *aed;
2187 struct udf_inode_info *iinfo;
2188
2189 if (epos.bh) {
2190 get_bh(epos.bh);
2191 get_bh(epos.bh);
2192 }
2193
2194 iinfo = UDF_I(inode);
2195 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2196 adsize = sizeof(struct short_ad);
2197 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2198 adsize = sizeof(struct long_ad);
2199 else
2200 adsize = 0;
2201
2202 oepos = epos;
2203 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2204 return -1;
2205
2206 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2207 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2208 if (oepos.bh != epos.bh) {
2209 oepos.block = epos.block;
2210 brelse(oepos.bh);
2211 get_bh(epos.bh);
2212 oepos.bh = epos.bh;
2213 oepos.offset = epos.offset - adsize;
2214 }
2215 }
2216 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2217 elen = 0;
2218
2219 if (epos.bh != oepos.bh) {
2220 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2221 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2222 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2223 if (!oepos.bh) {
2224 iinfo->i_lenAlloc -= (adsize * 2);
2225 mark_inode_dirty(inode);
2226 } else {
2227 aed = (struct allocExtDesc *)oepos.bh->b_data;
2228 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2229 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2230 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2231 udf_update_tag(oepos.bh->b_data,
2232 oepos.offset - (2 * adsize));
2233 else
2234 udf_update_tag(oepos.bh->b_data,
2235 sizeof(struct allocExtDesc));
2236 mark_buffer_dirty_inode(oepos.bh, inode);
2237 }
2238 } else {
2239 udf_write_aext(inode, &oepos, &eloc, elen, 1);
2240 if (!oepos.bh) {
2241 iinfo->i_lenAlloc -= adsize;
2242 mark_inode_dirty(inode);
2243 } else {
2244 aed = (struct allocExtDesc *)oepos.bh->b_data;
2245 le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2246 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2247 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2248 udf_update_tag(oepos.bh->b_data,
2249 epos.offset - adsize);
2250 else
2251 udf_update_tag(oepos.bh->b_data,
2252 sizeof(struct allocExtDesc));
2253 mark_buffer_dirty_inode(oepos.bh, inode);
2254 }
2255 }
2256
2257 brelse(epos.bh);
2258 brelse(oepos.bh);
2259
2260 return (elen >> 30);
2261}
2262
2263int8_t inode_bmap(struct inode *inode, sector_t block,
2264 struct extent_position *pos, struct kernel_lb_addr *eloc,
2265 uint32_t *elen, sector_t *offset)
2266{
2267 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2268 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2269 int8_t etype;
2270 struct udf_inode_info *iinfo;
2271
2272 iinfo = UDF_I(inode);
2273 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2274 pos->offset = 0;
2275 pos->block = iinfo->i_location;
2276 pos->bh = NULL;
2277 }
2278 *elen = 0;
2279 do {
2280 etype = udf_next_aext(inode, pos, eloc, elen, 1);
2281 if (etype == -1) {
2282 *offset = (bcount - lbcount) >> blocksize_bits;
2283 iinfo->i_lenExtents = lbcount;
2284 return -1;
2285 }
2286 lbcount += *elen;
2287 } while (lbcount <= bcount);
2288 /* update extent cache */
2289 udf_update_extent_cache(inode, lbcount - *elen, pos);
2290 *offset = (bcount + *elen - lbcount) >> blocksize_bits;
2291
2292 return etype;
2293}
2294
2295udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2296{
2297 struct kernel_lb_addr eloc;
2298 uint32_t elen;
2299 sector_t offset;
2300 struct extent_position epos = {};
2301 udf_pblk_t ret;
2302
2303 down_read(&UDF_I(inode)->i_data_sem);
2304
2305 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2306 (EXT_RECORDED_ALLOCATED >> 30))
2307 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2308 else
2309 ret = 0;
2310
2311 up_read(&UDF_I(inode)->i_data_sem);
2312 brelse(epos.bh);
2313
2314 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2315 return udf_fixed_to_variable(ret);
2316 else
2317 return ret;
2318}