Loading...
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 *
5 * This file contains the setup_arch() code, which handles the architecture-dependent
6 * parts of early kernel initialization.
7 */
8#include <linux/acpi.h>
9#include <linux/console.h>
10#include <linux/cpu.h>
11#include <linux/crash_dump.h>
12#include <linux/dma-map-ops.h>
13#include <linux/efi.h>
14#include <linux/ima.h>
15#include <linux/init_ohci1394_dma.h>
16#include <linux/initrd.h>
17#include <linux/iscsi_ibft.h>
18#include <linux/memblock.h>
19#include <linux/panic_notifier.h>
20#include <linux/pci.h>
21#include <linux/root_dev.h>
22#include <linux/hugetlb.h>
23#include <linux/tboot.h>
24#include <linux/usb/xhci-dbgp.h>
25#include <linux/static_call.h>
26#include <linux/swiotlb.h>
27#include <linux/random.h>
28
29#include <uapi/linux/mount.h>
30
31#include <xen/xen.h>
32
33#include <asm/apic.h>
34#include <asm/efi.h>
35#include <asm/numa.h>
36#include <asm/bios_ebda.h>
37#include <asm/bugs.h>
38#include <asm/cacheinfo.h>
39#include <asm/coco.h>
40#include <asm/cpu.h>
41#include <asm/efi.h>
42#include <asm/gart.h>
43#include <asm/hypervisor.h>
44#include <asm/io_apic.h>
45#include <asm/kasan.h>
46#include <asm/kaslr.h>
47#include <asm/mce.h>
48#include <asm/memtype.h>
49#include <asm/mtrr.h>
50#include <asm/realmode.h>
51#include <asm/olpc_ofw.h>
52#include <asm/pci-direct.h>
53#include <asm/prom.h>
54#include <asm/proto.h>
55#include <asm/thermal.h>
56#include <asm/unwind.h>
57#include <asm/vsyscall.h>
58#include <linux/vmalloc.h>
59
60/*
61 * max_low_pfn_mapped: highest directly mapped pfn < 4 GB
62 * max_pfn_mapped: highest directly mapped pfn > 4 GB
63 *
64 * The direct mapping only covers E820_TYPE_RAM regions, so the ranges and gaps are
65 * represented by pfn_mapped[].
66 */
67unsigned long max_low_pfn_mapped;
68unsigned long max_pfn_mapped;
69
70#ifdef CONFIG_DMI
71RESERVE_BRK(dmi_alloc, 65536);
72#endif
73
74
75unsigned long _brk_start = (unsigned long)__brk_base;
76unsigned long _brk_end = (unsigned long)__brk_base;
77
78struct boot_params boot_params;
79
80/*
81 * These are the four main kernel memory regions, we put them into
82 * the resource tree so that kdump tools and other debugging tools
83 * recover it:
84 */
85
86static struct resource rodata_resource = {
87 .name = "Kernel rodata",
88 .start = 0,
89 .end = 0,
90 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
91};
92
93static struct resource data_resource = {
94 .name = "Kernel data",
95 .start = 0,
96 .end = 0,
97 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
98};
99
100static struct resource code_resource = {
101 .name = "Kernel code",
102 .start = 0,
103 .end = 0,
104 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
105};
106
107static struct resource bss_resource = {
108 .name = "Kernel bss",
109 .start = 0,
110 .end = 0,
111 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
112};
113
114
115#ifdef CONFIG_X86_32
116/* CPU data as detected by the assembly code in head_32.S */
117struct cpuinfo_x86 new_cpu_data;
118
119struct apm_info apm_info;
120EXPORT_SYMBOL(apm_info);
121
122#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
123 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
124struct ist_info ist_info;
125EXPORT_SYMBOL(ist_info);
126#else
127struct ist_info ist_info;
128#endif
129
130#endif
131
132struct cpuinfo_x86 boot_cpu_data __read_mostly;
133EXPORT_SYMBOL(boot_cpu_data);
134
135#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
136__visible unsigned long mmu_cr4_features __ro_after_init;
137#else
138__visible unsigned long mmu_cr4_features __ro_after_init = X86_CR4_PAE;
139#endif
140
141#ifdef CONFIG_IMA
142static phys_addr_t ima_kexec_buffer_phys;
143static size_t ima_kexec_buffer_size;
144#endif
145
146/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
147int bootloader_type, bootloader_version;
148
149/*
150 * Setup options
151 */
152struct screen_info screen_info;
153EXPORT_SYMBOL(screen_info);
154struct edid_info edid_info;
155EXPORT_SYMBOL_GPL(edid_info);
156
157extern int root_mountflags;
158
159unsigned long saved_video_mode;
160
161#define RAMDISK_IMAGE_START_MASK 0x07FF
162#define RAMDISK_PROMPT_FLAG 0x8000
163#define RAMDISK_LOAD_FLAG 0x4000
164
165static char __initdata command_line[COMMAND_LINE_SIZE];
166#ifdef CONFIG_CMDLINE_BOOL
167char builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
168bool builtin_cmdline_added __ro_after_init;
169#endif
170
171#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
172struct edd edd;
173#ifdef CONFIG_EDD_MODULE
174EXPORT_SYMBOL(edd);
175#endif
176/**
177 * copy_edd() - Copy the BIOS EDD information
178 * from boot_params into a safe place.
179 *
180 */
181static inline void __init copy_edd(void)
182{
183 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
184 sizeof(edd.mbr_signature));
185 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
186 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
187 edd.edd_info_nr = boot_params.eddbuf_entries;
188}
189#else
190static inline void __init copy_edd(void)
191{
192}
193#endif
194
195void * __init extend_brk(size_t size, size_t align)
196{
197 size_t mask = align - 1;
198 void *ret;
199
200 BUG_ON(_brk_start == 0);
201 BUG_ON(align & mask);
202
203 _brk_end = (_brk_end + mask) & ~mask;
204 BUG_ON((char *)(_brk_end + size) > __brk_limit);
205
206 ret = (void *)_brk_end;
207 _brk_end += size;
208
209 memset(ret, 0, size);
210
211 return ret;
212}
213
214#ifdef CONFIG_X86_32
215static void __init cleanup_highmap(void)
216{
217}
218#endif
219
220static void __init reserve_brk(void)
221{
222 if (_brk_end > _brk_start)
223 memblock_reserve(__pa_symbol(_brk_start),
224 _brk_end - _brk_start);
225
226 /* Mark brk area as locked down and no longer taking any
227 new allocations */
228 _brk_start = 0;
229}
230
231#ifdef CONFIG_BLK_DEV_INITRD
232
233static u64 __init get_ramdisk_image(void)
234{
235 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
236
237 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
238
239 if (ramdisk_image == 0)
240 ramdisk_image = phys_initrd_start;
241
242 return ramdisk_image;
243}
244static u64 __init get_ramdisk_size(void)
245{
246 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
247
248 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
249
250 if (ramdisk_size == 0)
251 ramdisk_size = phys_initrd_size;
252
253 return ramdisk_size;
254}
255
256static void __init relocate_initrd(void)
257{
258 /* Assume only end is not page aligned */
259 u64 ramdisk_image = get_ramdisk_image();
260 u64 ramdisk_size = get_ramdisk_size();
261 u64 area_size = PAGE_ALIGN(ramdisk_size);
262
263 /* We need to move the initrd down into directly mapped mem */
264 u64 relocated_ramdisk = memblock_phys_alloc_range(area_size, PAGE_SIZE, 0,
265 PFN_PHYS(max_pfn_mapped));
266 if (!relocated_ramdisk)
267 panic("Cannot find place for new RAMDISK of size %lld\n",
268 ramdisk_size);
269
270 initrd_start = relocated_ramdisk + PAGE_OFFSET;
271 initrd_end = initrd_start + ramdisk_size;
272 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
273 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
274
275 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
276
277 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
278 " [mem %#010llx-%#010llx]\n",
279 ramdisk_image, ramdisk_image + ramdisk_size - 1,
280 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
281}
282
283static void __init early_reserve_initrd(void)
284{
285 /* Assume only end is not page aligned */
286 u64 ramdisk_image = get_ramdisk_image();
287 u64 ramdisk_size = get_ramdisk_size();
288 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
289
290 if (!boot_params.hdr.type_of_loader ||
291 !ramdisk_image || !ramdisk_size)
292 return; /* No initrd provided by bootloader */
293
294 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
295}
296
297static void __init reserve_initrd(void)
298{
299 /* Assume only end is not page aligned */
300 u64 ramdisk_image = get_ramdisk_image();
301 u64 ramdisk_size = get_ramdisk_size();
302 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
303
304 if (!boot_params.hdr.type_of_loader ||
305 !ramdisk_image || !ramdisk_size)
306 return; /* No initrd provided by bootloader */
307
308 initrd_start = 0;
309
310 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
311 ramdisk_end - 1);
312
313 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
314 PFN_DOWN(ramdisk_end))) {
315 /* All are mapped, easy case */
316 initrd_start = ramdisk_image + PAGE_OFFSET;
317 initrd_end = initrd_start + ramdisk_size;
318 return;
319 }
320
321 relocate_initrd();
322
323 memblock_phys_free(ramdisk_image, ramdisk_end - ramdisk_image);
324}
325
326#else
327static void __init early_reserve_initrd(void)
328{
329}
330static void __init reserve_initrd(void)
331{
332}
333#endif /* CONFIG_BLK_DEV_INITRD */
334
335static void __init add_early_ima_buffer(u64 phys_addr)
336{
337#ifdef CONFIG_IMA
338 struct ima_setup_data *data;
339
340 data = early_memremap(phys_addr + sizeof(struct setup_data), sizeof(*data));
341 if (!data) {
342 pr_warn("setup: failed to memremap ima_setup_data entry\n");
343 return;
344 }
345
346 if (data->size) {
347 memblock_reserve(data->addr, data->size);
348 ima_kexec_buffer_phys = data->addr;
349 ima_kexec_buffer_size = data->size;
350 }
351
352 early_memunmap(data, sizeof(*data));
353#else
354 pr_warn("Passed IMA kexec data, but CONFIG_IMA not set. Ignoring.\n");
355#endif
356}
357
358#if defined(CONFIG_HAVE_IMA_KEXEC) && !defined(CONFIG_OF_FLATTREE)
359int __init ima_free_kexec_buffer(void)
360{
361 if (!ima_kexec_buffer_size)
362 return -ENOENT;
363
364 memblock_free_late(ima_kexec_buffer_phys,
365 ima_kexec_buffer_size);
366
367 ima_kexec_buffer_phys = 0;
368 ima_kexec_buffer_size = 0;
369
370 return 0;
371}
372
373int __init ima_get_kexec_buffer(void **addr, size_t *size)
374{
375 if (!ima_kexec_buffer_size)
376 return -ENOENT;
377
378 *addr = __va(ima_kexec_buffer_phys);
379 *size = ima_kexec_buffer_size;
380
381 return 0;
382}
383#endif
384
385static void __init parse_setup_data(void)
386{
387 struct setup_data *data;
388 u64 pa_data, pa_next;
389
390 pa_data = boot_params.hdr.setup_data;
391 while (pa_data) {
392 u32 data_len, data_type;
393
394 data = early_memremap(pa_data, sizeof(*data));
395 data_len = data->len + sizeof(struct setup_data);
396 data_type = data->type;
397 pa_next = data->next;
398 early_memunmap(data, sizeof(*data));
399
400 switch (data_type) {
401 case SETUP_E820_EXT:
402 e820__memory_setup_extended(pa_data, data_len);
403 break;
404 case SETUP_DTB:
405 add_dtb(pa_data);
406 break;
407 case SETUP_EFI:
408 parse_efi_setup(pa_data, data_len);
409 break;
410 case SETUP_IMA:
411 add_early_ima_buffer(pa_data);
412 break;
413 case SETUP_RNG_SEED:
414 data = early_memremap(pa_data, data_len);
415 add_bootloader_randomness(data->data, data->len);
416 /* Zero seed for forward secrecy. */
417 memzero_explicit(data->data, data->len);
418 /* Zero length in case we find ourselves back here by accident. */
419 memzero_explicit(&data->len, sizeof(data->len));
420 early_memunmap(data, data_len);
421 break;
422 default:
423 break;
424 }
425 pa_data = pa_next;
426 }
427}
428
429static void __init memblock_x86_reserve_range_setup_data(void)
430{
431 struct setup_indirect *indirect;
432 struct setup_data *data;
433 u64 pa_data, pa_next;
434 u32 len;
435
436 pa_data = boot_params.hdr.setup_data;
437 while (pa_data) {
438 data = early_memremap(pa_data, sizeof(*data));
439 if (!data) {
440 pr_warn("setup: failed to memremap setup_data entry\n");
441 return;
442 }
443
444 len = sizeof(*data);
445 pa_next = data->next;
446
447 memblock_reserve(pa_data, sizeof(*data) + data->len);
448
449 if (data->type == SETUP_INDIRECT) {
450 len += data->len;
451 early_memunmap(data, sizeof(*data));
452 data = early_memremap(pa_data, len);
453 if (!data) {
454 pr_warn("setup: failed to memremap indirect setup_data\n");
455 return;
456 }
457
458 indirect = (struct setup_indirect *)data->data;
459
460 if (indirect->type != SETUP_INDIRECT)
461 memblock_reserve(indirect->addr, indirect->len);
462 }
463
464 pa_data = pa_next;
465 early_memunmap(data, len);
466 }
467}
468
469static void __init arch_reserve_crashkernel(void)
470{
471 unsigned long long crash_base, crash_size, low_size = 0;
472 char *cmdline = boot_command_line;
473 bool high = false;
474 int ret;
475
476 if (!IS_ENABLED(CONFIG_CRASH_RESERVE))
477 return;
478
479 ret = parse_crashkernel(cmdline, memblock_phys_mem_size(),
480 &crash_size, &crash_base,
481 &low_size, &high);
482 if (ret)
483 return;
484
485 if (xen_pv_domain()) {
486 pr_info("Ignoring crashkernel for a Xen PV domain\n");
487 return;
488 }
489
490 reserve_crashkernel_generic(cmdline, crash_size, crash_base,
491 low_size, high);
492}
493
494static struct resource standard_io_resources[] = {
495 { .name = "dma1", .start = 0x00, .end = 0x1f,
496 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
497 { .name = "pic1", .start = 0x20, .end = 0x21,
498 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
499 { .name = "timer0", .start = 0x40, .end = 0x43,
500 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
501 { .name = "timer1", .start = 0x50, .end = 0x53,
502 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
503 { .name = "keyboard", .start = 0x60, .end = 0x60,
504 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
505 { .name = "keyboard", .start = 0x64, .end = 0x64,
506 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
507 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
508 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
509 { .name = "pic2", .start = 0xa0, .end = 0xa1,
510 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
511 { .name = "dma2", .start = 0xc0, .end = 0xdf,
512 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
513 { .name = "fpu", .start = 0xf0, .end = 0xff,
514 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
515};
516
517void __init reserve_standard_io_resources(void)
518{
519 int i;
520
521 /* request I/O space for devices used on all i[345]86 PCs */
522 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
523 request_resource(&ioport_resource, &standard_io_resources[i]);
524
525}
526
527static bool __init snb_gfx_workaround_needed(void)
528{
529#ifdef CONFIG_PCI
530 int i;
531 u16 vendor, devid;
532 static const __initconst u16 snb_ids[] = {
533 0x0102,
534 0x0112,
535 0x0122,
536 0x0106,
537 0x0116,
538 0x0126,
539 0x010a,
540 };
541
542 /* Assume no if something weird is going on with PCI */
543 if (!early_pci_allowed())
544 return false;
545
546 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
547 if (vendor != 0x8086)
548 return false;
549
550 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
551 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
552 if (devid == snb_ids[i])
553 return true;
554#endif
555
556 return false;
557}
558
559/*
560 * Sandy Bridge graphics has trouble with certain ranges, exclude
561 * them from allocation.
562 */
563static void __init trim_snb_memory(void)
564{
565 static const __initconst unsigned long bad_pages[] = {
566 0x20050000,
567 0x20110000,
568 0x20130000,
569 0x20138000,
570 0x40004000,
571 };
572 int i;
573
574 if (!snb_gfx_workaround_needed())
575 return;
576
577 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
578
579 /*
580 * SandyBridge integrated graphics devices have a bug that prevents
581 * them from accessing certain memory ranges, namely anything below
582 * 1M and in the pages listed in bad_pages[] above.
583 *
584 * To avoid these pages being ever accessed by SNB gfx devices reserve
585 * bad_pages that have not already been reserved at boot time.
586 * All memory below the 1 MB mark is anyway reserved later during
587 * setup_arch(), so there is no need to reserve it here.
588 */
589
590 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
591 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
592 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
593 bad_pages[i]);
594 }
595}
596
597static void __init trim_bios_range(void)
598{
599 /*
600 * A special case is the first 4Kb of memory;
601 * This is a BIOS owned area, not kernel ram, but generally
602 * not listed as such in the E820 table.
603 *
604 * This typically reserves additional memory (64KiB by default)
605 * since some BIOSes are known to corrupt low memory. See the
606 * Kconfig help text for X86_RESERVE_LOW.
607 */
608 e820__range_update(0, PAGE_SIZE, E820_TYPE_RAM, E820_TYPE_RESERVED);
609
610 /*
611 * special case: Some BIOSes report the PC BIOS
612 * area (640Kb -> 1Mb) as RAM even though it is not.
613 * take them out.
614 */
615 e820__range_remove(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_TYPE_RAM, 1);
616
617 e820__update_table(e820_table);
618}
619
620/* called before trim_bios_range() to spare extra sanitize */
621static void __init e820_add_kernel_range(void)
622{
623 u64 start = __pa_symbol(_text);
624 u64 size = __pa_symbol(_end) - start;
625
626 /*
627 * Complain if .text .data and .bss are not marked as E820_TYPE_RAM and
628 * attempt to fix it by adding the range. We may have a confused BIOS,
629 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
630 * exclude kernel range. If we really are running on top non-RAM,
631 * we will crash later anyways.
632 */
633 if (e820__mapped_all(start, start + size, E820_TYPE_RAM))
634 return;
635
636 pr_warn(".text .data .bss are not marked as E820_TYPE_RAM!\n");
637 e820__range_remove(start, size, E820_TYPE_RAM, 0);
638 e820__range_add(start, size, E820_TYPE_RAM);
639}
640
641static void __init early_reserve_memory(void)
642{
643 /*
644 * Reserve the memory occupied by the kernel between _text and
645 * __end_of_kernel_reserve symbols. Any kernel sections after the
646 * __end_of_kernel_reserve symbol must be explicitly reserved with a
647 * separate memblock_reserve() or they will be discarded.
648 */
649 memblock_reserve(__pa_symbol(_text),
650 (unsigned long)__end_of_kernel_reserve - (unsigned long)_text);
651
652 /*
653 * The first 4Kb of memory is a BIOS owned area, but generally it is
654 * not listed as such in the E820 table.
655 *
656 * Reserve the first 64K of memory since some BIOSes are known to
657 * corrupt low memory. After the real mode trampoline is allocated the
658 * rest of the memory below 640k is reserved.
659 *
660 * In addition, make sure page 0 is always reserved because on
661 * systems with L1TF its contents can be leaked to user processes.
662 */
663 memblock_reserve(0, SZ_64K);
664
665 early_reserve_initrd();
666
667 memblock_x86_reserve_range_setup_data();
668
669 reserve_bios_regions();
670 trim_snb_memory();
671}
672
673/*
674 * Dump out kernel offset information on panic.
675 */
676static int
677dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
678{
679 if (kaslr_enabled()) {
680 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
681 kaslr_offset(),
682 __START_KERNEL,
683 __START_KERNEL_map,
684 MODULES_VADDR-1);
685 } else {
686 pr_emerg("Kernel Offset: disabled\n");
687 }
688
689 return 0;
690}
691
692void x86_configure_nx(void)
693{
694 if (boot_cpu_has(X86_FEATURE_NX))
695 __supported_pte_mask |= _PAGE_NX;
696 else
697 __supported_pte_mask &= ~_PAGE_NX;
698}
699
700static void __init x86_report_nx(void)
701{
702 if (!boot_cpu_has(X86_FEATURE_NX)) {
703 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
704 "missing in CPU!\n");
705 } else {
706#if defined(CONFIG_X86_64) || defined(CONFIG_X86_PAE)
707 printk(KERN_INFO "NX (Execute Disable) protection: active\n");
708#else
709 /* 32bit non-PAE kernel, NX cannot be used */
710 printk(KERN_NOTICE "Notice: NX (Execute Disable) protection "
711 "cannot be enabled: non-PAE kernel!\n");
712#endif
713 }
714}
715
716/*
717 * Determine if we were loaded by an EFI loader. If so, then we have also been
718 * passed the efi memmap, systab, etc., so we should use these data structures
719 * for initialization. Note, the efi init code path is determined by the
720 * global efi_enabled. This allows the same kernel image to be used on existing
721 * systems (with a traditional BIOS) as well as on EFI systems.
722 */
723/*
724 * setup_arch - architecture-specific boot-time initializations
725 *
726 * Note: On x86_64, fixmaps are ready for use even before this is called.
727 */
728
729void __init setup_arch(char **cmdline_p)
730{
731#ifdef CONFIG_X86_32
732 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
733
734 /*
735 * copy kernel address range established so far and switch
736 * to the proper swapper page table
737 */
738 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
739 initial_page_table + KERNEL_PGD_BOUNDARY,
740 KERNEL_PGD_PTRS);
741
742 load_cr3(swapper_pg_dir);
743 /*
744 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
745 * a cr3 based tlb flush, so the following __flush_tlb_all()
746 * will not flush anything because the CPU quirk which clears
747 * X86_FEATURE_PGE has not been invoked yet. Though due to the
748 * load_cr3() above the TLB has been flushed already. The
749 * quirk is invoked before subsequent calls to __flush_tlb_all()
750 * so proper operation is guaranteed.
751 */
752 __flush_tlb_all();
753#else
754 printk(KERN_INFO "Command line: %s\n", boot_command_line);
755 boot_cpu_data.x86_phys_bits = MAX_PHYSMEM_BITS;
756#endif
757
758#ifdef CONFIG_CMDLINE_BOOL
759#ifdef CONFIG_CMDLINE_OVERRIDE
760 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
761#else
762 if (builtin_cmdline[0]) {
763 /* append boot loader cmdline to builtin */
764 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
765 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
766 strscpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
767 }
768#endif
769 builtin_cmdline_added = true;
770#endif
771
772 strscpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
773 *cmdline_p = command_line;
774
775 /*
776 * If we have OLPC OFW, we might end up relocating the fixmap due to
777 * reserve_top(), so do this before touching the ioremap area.
778 */
779 olpc_ofw_detect();
780
781 idt_setup_early_traps();
782 early_cpu_init();
783 jump_label_init();
784 static_call_init();
785 early_ioremap_init();
786
787 setup_olpc_ofw_pgd();
788
789 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
790 screen_info = boot_params.screen_info;
791 edid_info = boot_params.edid_info;
792#ifdef CONFIG_X86_32
793 apm_info.bios = boot_params.apm_bios_info;
794 ist_info = boot_params.ist_info;
795#endif
796 saved_video_mode = boot_params.hdr.vid_mode;
797 bootloader_type = boot_params.hdr.type_of_loader;
798 if ((bootloader_type >> 4) == 0xe) {
799 bootloader_type &= 0xf;
800 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
801 }
802 bootloader_version = bootloader_type & 0xf;
803 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
804
805#ifdef CONFIG_BLK_DEV_RAM
806 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
807#endif
808#ifdef CONFIG_EFI
809 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
810 EFI32_LOADER_SIGNATURE, 4)) {
811 set_bit(EFI_BOOT, &efi.flags);
812 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
813 EFI64_LOADER_SIGNATURE, 4)) {
814 set_bit(EFI_BOOT, &efi.flags);
815 set_bit(EFI_64BIT, &efi.flags);
816 }
817#endif
818
819 x86_init.oem.arch_setup();
820
821 /*
822 * Do some memory reservations *before* memory is added to memblock, so
823 * memblock allocations won't overwrite it.
824 *
825 * After this point, everything still needed from the boot loader or
826 * firmware or kernel text should be early reserved or marked not RAM in
827 * e820. All other memory is free game.
828 *
829 * This call needs to happen before e820__memory_setup() which calls the
830 * xen_memory_setup() on Xen dom0 which relies on the fact that those
831 * early reservations have happened already.
832 */
833 early_reserve_memory();
834
835 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
836 e820__memory_setup();
837 parse_setup_data();
838
839 copy_edd();
840
841 if (!boot_params.hdr.root_flags)
842 root_mountflags &= ~MS_RDONLY;
843 setup_initial_init_mm(_text, _etext, _edata, (void *)_brk_end);
844
845 code_resource.start = __pa_symbol(_text);
846 code_resource.end = __pa_symbol(_etext)-1;
847 rodata_resource.start = __pa_symbol(__start_rodata);
848 rodata_resource.end = __pa_symbol(__end_rodata)-1;
849 data_resource.start = __pa_symbol(_sdata);
850 data_resource.end = __pa_symbol(_edata)-1;
851 bss_resource.start = __pa_symbol(__bss_start);
852 bss_resource.end = __pa_symbol(__bss_stop)-1;
853
854 /*
855 * x86_configure_nx() is called before parse_early_param() to detect
856 * whether hardware doesn't support NX (so that the early EHCI debug
857 * console setup can safely call set_fixmap()).
858 */
859 x86_configure_nx();
860
861 parse_early_param();
862
863 if (efi_enabled(EFI_BOOT))
864 efi_memblock_x86_reserve_range();
865
866#ifdef CONFIG_MEMORY_HOTPLUG
867 /*
868 * Memory used by the kernel cannot be hot-removed because Linux
869 * cannot migrate the kernel pages. When memory hotplug is
870 * enabled, we should prevent memblock from allocating memory
871 * for the kernel.
872 *
873 * ACPI SRAT records all hotpluggable memory ranges. But before
874 * SRAT is parsed, we don't know about it.
875 *
876 * The kernel image is loaded into memory at very early time. We
877 * cannot prevent this anyway. So on NUMA system, we set any
878 * node the kernel resides in as un-hotpluggable.
879 *
880 * Since on modern servers, one node could have double-digit
881 * gigabytes memory, we can assume the memory around the kernel
882 * image is also un-hotpluggable. So before SRAT is parsed, just
883 * allocate memory near the kernel image to try the best to keep
884 * the kernel away from hotpluggable memory.
885 */
886 if (movable_node_is_enabled())
887 memblock_set_bottom_up(true);
888#endif
889
890 x86_report_nx();
891
892 apic_setup_apic_calls();
893
894 if (acpi_mps_check()) {
895#ifdef CONFIG_X86_LOCAL_APIC
896 apic_is_disabled = true;
897#endif
898 setup_clear_cpu_cap(X86_FEATURE_APIC);
899 }
900
901 e820__reserve_setup_data();
902 e820__finish_early_params();
903
904 if (efi_enabled(EFI_BOOT))
905 efi_init();
906
907 reserve_ibft_region();
908 x86_init.resources.dmi_setup();
909
910 /*
911 * VMware detection requires dmi to be available, so this
912 * needs to be done after dmi_setup(), for the boot CPU.
913 * For some guest types (Xen PV, SEV-SNP, TDX) it is required to be
914 * called before cache_bp_init() for setting up MTRR state.
915 */
916 init_hypervisor_platform();
917
918 tsc_early_init();
919 x86_init.resources.probe_roms();
920
921 /* after parse_early_param, so could debug it */
922 insert_resource(&iomem_resource, &code_resource);
923 insert_resource(&iomem_resource, &rodata_resource);
924 insert_resource(&iomem_resource, &data_resource);
925 insert_resource(&iomem_resource, &bss_resource);
926
927 e820_add_kernel_range();
928 trim_bios_range();
929#ifdef CONFIG_X86_32
930 if (ppro_with_ram_bug()) {
931 e820__range_update(0x70000000ULL, 0x40000ULL, E820_TYPE_RAM,
932 E820_TYPE_RESERVED);
933 e820__update_table(e820_table);
934 printk(KERN_INFO "fixed physical RAM map:\n");
935 e820__print_table("bad_ppro");
936 }
937#else
938 early_gart_iommu_check();
939#endif
940
941 /*
942 * partially used pages are not usable - thus
943 * we are rounding upwards:
944 */
945 max_pfn = e820__end_of_ram_pfn();
946
947 /* update e820 for memory not covered by WB MTRRs */
948 cache_bp_init();
949 if (mtrr_trim_uncached_memory(max_pfn))
950 max_pfn = e820__end_of_ram_pfn();
951
952 max_possible_pfn = max_pfn;
953
954 /*
955 * Define random base addresses for memory sections after max_pfn is
956 * defined and before each memory section base is used.
957 */
958 kernel_randomize_memory();
959
960#ifdef CONFIG_X86_32
961 /* max_low_pfn get updated here */
962 find_low_pfn_range();
963#else
964 check_x2apic();
965
966 /* How many end-of-memory variables you have, grandma! */
967 /* need this before calling reserve_initrd */
968 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
969 max_low_pfn = e820__end_of_low_ram_pfn();
970 else
971 max_low_pfn = max_pfn;
972
973 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
974#endif
975
976 /* Find and reserve MPTABLE area */
977 x86_init.mpparse.find_mptable();
978
979 early_alloc_pgt_buf();
980
981 /*
982 * Need to conclude brk, before e820__memblock_setup()
983 * it could use memblock_find_in_range, could overlap with
984 * brk area.
985 */
986 reserve_brk();
987
988 cleanup_highmap();
989
990 memblock_set_current_limit(ISA_END_ADDRESS);
991 e820__memblock_setup();
992
993 /*
994 * Needs to run after memblock setup because it needs the physical
995 * memory size.
996 */
997 mem_encrypt_setup_arch();
998 cc_random_init();
999
1000 efi_find_mirror();
1001 efi_esrt_init();
1002 efi_mokvar_table_init();
1003
1004 /*
1005 * The EFI specification says that boot service code won't be
1006 * called after ExitBootServices(). This is, in fact, a lie.
1007 */
1008 efi_reserve_boot_services();
1009
1010 /* preallocate 4k for mptable mpc */
1011 e820__memblock_alloc_reserved_mpc_new();
1012
1013#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1014 setup_bios_corruption_check();
1015#endif
1016
1017#ifdef CONFIG_X86_32
1018 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1019 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1020#endif
1021
1022 /*
1023 * Find free memory for the real mode trampoline and place it there. If
1024 * there is not enough free memory under 1M, on EFI-enabled systems
1025 * there will be additional attempt to reclaim the memory for the real
1026 * mode trampoline at efi_free_boot_services().
1027 *
1028 * Unconditionally reserve the entire first 1M of RAM because BIOSes
1029 * are known to corrupt low memory and several hundred kilobytes are not
1030 * worth complex detection what memory gets clobbered. Windows does the
1031 * same thing for very similar reasons.
1032 *
1033 * Moreover, on machines with SandyBridge graphics or in setups that use
1034 * crashkernel the entire 1M is reserved anyway.
1035 *
1036 * Note the host kernel TDX also requires the first 1MB being reserved.
1037 */
1038 x86_platform.realmode_reserve();
1039
1040 init_mem_mapping();
1041
1042 /*
1043 * init_mem_mapping() relies on the early IDT page fault handling.
1044 * Now either enable FRED or install the real page fault handler
1045 * for 64-bit in the IDT.
1046 */
1047 cpu_init_replace_early_idt();
1048
1049 /*
1050 * Update mmu_cr4_features (and, indirectly, trampoline_cr4_features)
1051 * with the current CR4 value. This may not be necessary, but
1052 * auditing all the early-boot CR4 manipulation would be needed to
1053 * rule it out.
1054 *
1055 * Mask off features that don't work outside long mode (just
1056 * PCIDE for now).
1057 */
1058 mmu_cr4_features = __read_cr4() & ~X86_CR4_PCIDE;
1059
1060 memblock_set_current_limit(get_max_mapped());
1061
1062 /*
1063 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1064 */
1065
1066#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1067 if (init_ohci1394_dma_early)
1068 init_ohci1394_dma_on_all_controllers();
1069#endif
1070 /* Allocate bigger log buffer */
1071 setup_log_buf(1);
1072
1073 if (efi_enabled(EFI_BOOT)) {
1074 switch (boot_params.secure_boot) {
1075 case efi_secureboot_mode_disabled:
1076 pr_info("Secure boot disabled\n");
1077 break;
1078 case efi_secureboot_mode_enabled:
1079 pr_info("Secure boot enabled\n");
1080 break;
1081 default:
1082 pr_info("Secure boot could not be determined\n");
1083 break;
1084 }
1085 }
1086
1087 reserve_initrd();
1088
1089 acpi_table_upgrade();
1090 /* Look for ACPI tables and reserve memory occupied by them. */
1091 acpi_boot_table_init();
1092
1093 vsmp_init();
1094
1095 io_delay_init();
1096
1097 early_platform_quirks();
1098
1099 /* Some platforms need the APIC registered for NUMA configuration */
1100 early_acpi_boot_init();
1101 x86_init.mpparse.early_parse_smp_cfg();
1102
1103 x86_flattree_get_config();
1104
1105 initmem_init();
1106 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1107
1108 if (boot_cpu_has(X86_FEATURE_GBPAGES))
1109 hugetlb_cma_reserve(PUD_SHIFT - PAGE_SHIFT);
1110
1111 /*
1112 * Reserve memory for crash kernel after SRAT is parsed so that it
1113 * won't consume hotpluggable memory.
1114 */
1115 arch_reserve_crashkernel();
1116
1117 if (!early_xdbc_setup_hardware())
1118 early_xdbc_register_console();
1119
1120 x86_init.paging.pagetable_init();
1121
1122 kasan_init();
1123
1124 /*
1125 * Sync back kernel address range.
1126 *
1127 * FIXME: Can the later sync in setup_cpu_entry_areas() replace
1128 * this call?
1129 */
1130 sync_initial_page_table();
1131
1132 tboot_probe();
1133
1134 map_vsyscall();
1135
1136 x86_32_probe_apic();
1137
1138 early_quirks();
1139
1140 topology_apply_cmdline_limits_early();
1141
1142 /*
1143 * Parse SMP configuration. Try ACPI first and then the platform
1144 * specific parser.
1145 */
1146 acpi_boot_init();
1147 x86_init.mpparse.parse_smp_cfg();
1148
1149 /* Last opportunity to detect and map the local APIC */
1150 init_apic_mappings();
1151
1152 topology_init_possible_cpus();
1153
1154 init_cpu_to_node();
1155 init_gi_nodes();
1156
1157 io_apic_init_mappings();
1158
1159 x86_init.hyper.guest_late_init();
1160
1161 e820__reserve_resources();
1162 e820__register_nosave_regions(max_pfn);
1163
1164 x86_init.resources.reserve_resources();
1165
1166 e820__setup_pci_gap();
1167
1168#ifdef CONFIG_VT
1169#if defined(CONFIG_VGA_CONSOLE)
1170 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1171 vgacon_register_screen(&screen_info);
1172#endif
1173#endif
1174 x86_init.oem.banner();
1175
1176 x86_init.timers.wallclock_init();
1177
1178 /*
1179 * This needs to run before setup_local_APIC() which soft-disables the
1180 * local APIC temporarily and that masks the thermal LVT interrupt,
1181 * leading to softlockups on machines which have configured SMI
1182 * interrupt delivery.
1183 */
1184 therm_lvt_init();
1185
1186 mcheck_init();
1187
1188 register_refined_jiffies(CLOCK_TICK_RATE);
1189
1190#ifdef CONFIG_EFI
1191 if (efi_enabled(EFI_BOOT))
1192 efi_apply_memmap_quirks();
1193#endif
1194
1195 unwind_init();
1196}
1197
1198#ifdef CONFIG_X86_32
1199
1200static struct resource video_ram_resource = {
1201 .name = "Video RAM area",
1202 .start = 0xa0000,
1203 .end = 0xbffff,
1204 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1205};
1206
1207void __init i386_reserve_resources(void)
1208{
1209 request_resource(&iomem_resource, &video_ram_resource);
1210 reserve_standard_io_resources();
1211}
1212
1213#endif /* CONFIG_X86_32 */
1214
1215static struct notifier_block kernel_offset_notifier = {
1216 .notifier_call = dump_kernel_offset
1217};
1218
1219static int __init register_kernel_offset_dumper(void)
1220{
1221 atomic_notifier_chain_register(&panic_notifier_list,
1222 &kernel_offset_notifier);
1223 return 0;
1224}
1225__initcall(register_kernel_offset_dumper);
1226
1227#ifdef CONFIG_HOTPLUG_CPU
1228bool arch_cpu_is_hotpluggable(int cpu)
1229{
1230 return cpu > 0;
1231}
1232#endif /* CONFIG_HOTPLUG_CPU */
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 *
4 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
5 *
6 * Memory region support
7 * David Parsons <orc@pell.chi.il.us>, July-August 1999
8 *
9 * Added E820 sanitization routine (removes overlapping memory regions);
10 * Brian Moyle <bmoyle@mvista.com>, February 2001
11 *
12 * Moved CPU detection code to cpu/${cpu}.c
13 * Patrick Mochel <mochel@osdl.org>, March 2002
14 *
15 * Provisions for empty E820 memory regions (reported by certain BIOSes).
16 * Alex Achenbach <xela@slit.de>, December 2002.
17 *
18 */
19
20/*
21 * This file handles the architecture-dependent parts of initialization
22 */
23
24#include <linux/sched.h>
25#include <linux/mm.h>
26#include <linux/mmzone.h>
27#include <linux/screen_info.h>
28#include <linux/ioport.h>
29#include <linux/acpi.h>
30#include <linux/sfi.h>
31#include <linux/apm_bios.h>
32#include <linux/initrd.h>
33#include <linux/bootmem.h>
34#include <linux/memblock.h>
35#include <linux/seq_file.h>
36#include <linux/console.h>
37#include <linux/root_dev.h>
38#include <linux/highmem.h>
39#include <linux/module.h>
40#include <linux/efi.h>
41#include <linux/init.h>
42#include <linux/edd.h>
43#include <linux/iscsi_ibft.h>
44#include <linux/nodemask.h>
45#include <linux/kexec.h>
46#include <linux/dmi.h>
47#include <linux/pfn.h>
48#include <linux/pci.h>
49#include <asm/pci-direct.h>
50#include <linux/init_ohci1394_dma.h>
51#include <linux/kvm_para.h>
52#include <linux/dma-contiguous.h>
53
54#include <linux/errno.h>
55#include <linux/kernel.h>
56#include <linux/stddef.h>
57#include <linux/unistd.h>
58#include <linux/ptrace.h>
59#include <linux/user.h>
60#include <linux/delay.h>
61
62#include <linux/kallsyms.h>
63#include <linux/cpufreq.h>
64#include <linux/dma-mapping.h>
65#include <linux/ctype.h>
66#include <linux/uaccess.h>
67
68#include <linux/percpu.h>
69#include <linux/crash_dump.h>
70#include <linux/tboot.h>
71#include <linux/jiffies.h>
72
73#include <video/edid.h>
74
75#include <asm/mtrr.h>
76#include <asm/apic.h>
77#include <asm/realmode.h>
78#include <asm/e820.h>
79#include <asm/mpspec.h>
80#include <asm/setup.h>
81#include <asm/efi.h>
82#include <asm/timer.h>
83#include <asm/i8259.h>
84#include <asm/sections.h>
85#include <asm/io_apic.h>
86#include <asm/ist.h>
87#include <asm/setup_arch.h>
88#include <asm/bios_ebda.h>
89#include <asm/cacheflush.h>
90#include <asm/processor.h>
91#include <asm/bugs.h>
92#include <asm/kasan.h>
93
94#include <asm/vsyscall.h>
95#include <asm/cpu.h>
96#include <asm/desc.h>
97#include <asm/dma.h>
98#include <asm/iommu.h>
99#include <asm/gart.h>
100#include <asm/mmu_context.h>
101#include <asm/proto.h>
102
103#include <asm/paravirt.h>
104#include <asm/hypervisor.h>
105#include <asm/olpc_ofw.h>
106
107#include <asm/percpu.h>
108#include <asm/topology.h>
109#include <asm/apicdef.h>
110#include <asm/amd_nb.h>
111#include <asm/mce.h>
112#include <asm/alternative.h>
113#include <asm/prom.h>
114#include <asm/microcode.h>
115#include <asm/mmu_context.h>
116
117/*
118 * max_low_pfn_mapped: highest direct mapped pfn under 4GB
119 * max_pfn_mapped: highest direct mapped pfn over 4GB
120 *
121 * The direct mapping only covers E820_RAM regions, so the ranges and gaps are
122 * represented by pfn_mapped
123 */
124unsigned long max_low_pfn_mapped;
125unsigned long max_pfn_mapped;
126
127#ifdef CONFIG_DMI
128RESERVE_BRK(dmi_alloc, 65536);
129#endif
130
131
132static __initdata unsigned long _brk_start = (unsigned long)__brk_base;
133unsigned long _brk_end = (unsigned long)__brk_base;
134
135#ifdef CONFIG_X86_64
136int default_cpu_present_to_apicid(int mps_cpu)
137{
138 return __default_cpu_present_to_apicid(mps_cpu);
139}
140
141int default_check_phys_apicid_present(int phys_apicid)
142{
143 return __default_check_phys_apicid_present(phys_apicid);
144}
145#endif
146
147struct boot_params boot_params;
148
149/*
150 * Machine setup..
151 */
152static struct resource data_resource = {
153 .name = "Kernel data",
154 .start = 0,
155 .end = 0,
156 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
157};
158
159static struct resource code_resource = {
160 .name = "Kernel code",
161 .start = 0,
162 .end = 0,
163 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
164};
165
166static struct resource bss_resource = {
167 .name = "Kernel bss",
168 .start = 0,
169 .end = 0,
170 .flags = IORESOURCE_BUSY | IORESOURCE_SYSTEM_RAM
171};
172
173
174#ifdef CONFIG_X86_32
175/* cpu data as detected by the assembly code in head.S */
176struct cpuinfo_x86 new_cpu_data = {
177 .wp_works_ok = -1,
178};
179/* common cpu data for all cpus */
180struct cpuinfo_x86 boot_cpu_data __read_mostly = {
181 .wp_works_ok = -1,
182};
183EXPORT_SYMBOL(boot_cpu_data);
184
185unsigned int def_to_bigsmp;
186
187/* for MCA, but anyone else can use it if they want */
188unsigned int machine_id;
189unsigned int machine_submodel_id;
190unsigned int BIOS_revision;
191
192struct apm_info apm_info;
193EXPORT_SYMBOL(apm_info);
194
195#if defined(CONFIG_X86_SPEEDSTEP_SMI) || \
196 defined(CONFIG_X86_SPEEDSTEP_SMI_MODULE)
197struct ist_info ist_info;
198EXPORT_SYMBOL(ist_info);
199#else
200struct ist_info ist_info;
201#endif
202
203#else
204struct cpuinfo_x86 boot_cpu_data __read_mostly = {
205 .x86_phys_bits = MAX_PHYSMEM_BITS,
206};
207EXPORT_SYMBOL(boot_cpu_data);
208#endif
209
210
211#if !defined(CONFIG_X86_PAE) || defined(CONFIG_X86_64)
212__visible unsigned long mmu_cr4_features;
213#else
214__visible unsigned long mmu_cr4_features = X86_CR4_PAE;
215#endif
216
217/* Boot loader ID and version as integers, for the benefit of proc_dointvec */
218int bootloader_type, bootloader_version;
219
220/*
221 * Setup options
222 */
223struct screen_info screen_info;
224EXPORT_SYMBOL(screen_info);
225struct edid_info edid_info;
226EXPORT_SYMBOL_GPL(edid_info);
227
228extern int root_mountflags;
229
230unsigned long saved_video_mode;
231
232#define RAMDISK_IMAGE_START_MASK 0x07FF
233#define RAMDISK_PROMPT_FLAG 0x8000
234#define RAMDISK_LOAD_FLAG 0x4000
235
236static char __initdata command_line[COMMAND_LINE_SIZE];
237#ifdef CONFIG_CMDLINE_BOOL
238static char __initdata builtin_cmdline[COMMAND_LINE_SIZE] = CONFIG_CMDLINE;
239#endif
240
241#if defined(CONFIG_EDD) || defined(CONFIG_EDD_MODULE)
242struct edd edd;
243#ifdef CONFIG_EDD_MODULE
244EXPORT_SYMBOL(edd);
245#endif
246/**
247 * copy_edd() - Copy the BIOS EDD information
248 * from boot_params into a safe place.
249 *
250 */
251static inline void __init copy_edd(void)
252{
253 memcpy(edd.mbr_signature, boot_params.edd_mbr_sig_buffer,
254 sizeof(edd.mbr_signature));
255 memcpy(edd.edd_info, boot_params.eddbuf, sizeof(edd.edd_info));
256 edd.mbr_signature_nr = boot_params.edd_mbr_sig_buf_entries;
257 edd.edd_info_nr = boot_params.eddbuf_entries;
258}
259#else
260static inline void __init copy_edd(void)
261{
262}
263#endif
264
265void * __init extend_brk(size_t size, size_t align)
266{
267 size_t mask = align - 1;
268 void *ret;
269
270 BUG_ON(_brk_start == 0);
271 BUG_ON(align & mask);
272
273 _brk_end = (_brk_end + mask) & ~mask;
274 BUG_ON((char *)(_brk_end + size) > __brk_limit);
275
276 ret = (void *)_brk_end;
277 _brk_end += size;
278
279 memset(ret, 0, size);
280
281 return ret;
282}
283
284#ifdef CONFIG_X86_32
285static void __init cleanup_highmap(void)
286{
287}
288#endif
289
290static void __init reserve_brk(void)
291{
292 if (_brk_end > _brk_start)
293 memblock_reserve(__pa_symbol(_brk_start),
294 _brk_end - _brk_start);
295
296 /* Mark brk area as locked down and no longer taking any
297 new allocations */
298 _brk_start = 0;
299}
300
301u64 relocated_ramdisk;
302
303#ifdef CONFIG_BLK_DEV_INITRD
304
305static u64 __init get_ramdisk_image(void)
306{
307 u64 ramdisk_image = boot_params.hdr.ramdisk_image;
308
309 ramdisk_image |= (u64)boot_params.ext_ramdisk_image << 32;
310
311 return ramdisk_image;
312}
313static u64 __init get_ramdisk_size(void)
314{
315 u64 ramdisk_size = boot_params.hdr.ramdisk_size;
316
317 ramdisk_size |= (u64)boot_params.ext_ramdisk_size << 32;
318
319 return ramdisk_size;
320}
321
322static void __init relocate_initrd(void)
323{
324 /* Assume only end is not page aligned */
325 u64 ramdisk_image = get_ramdisk_image();
326 u64 ramdisk_size = get_ramdisk_size();
327 u64 area_size = PAGE_ALIGN(ramdisk_size);
328
329 /* We need to move the initrd down into directly mapped mem */
330 relocated_ramdisk = memblock_find_in_range(0, PFN_PHYS(max_pfn_mapped),
331 area_size, PAGE_SIZE);
332
333 if (!relocated_ramdisk)
334 panic("Cannot find place for new RAMDISK of size %lld\n",
335 ramdisk_size);
336
337 /* Note: this includes all the mem currently occupied by
338 the initrd, we rely on that fact to keep the data intact. */
339 memblock_reserve(relocated_ramdisk, area_size);
340 initrd_start = relocated_ramdisk + PAGE_OFFSET;
341 initrd_end = initrd_start + ramdisk_size;
342 printk(KERN_INFO "Allocated new RAMDISK: [mem %#010llx-%#010llx]\n",
343 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
344
345 copy_from_early_mem((void *)initrd_start, ramdisk_image, ramdisk_size);
346
347 printk(KERN_INFO "Move RAMDISK from [mem %#010llx-%#010llx] to"
348 " [mem %#010llx-%#010llx]\n",
349 ramdisk_image, ramdisk_image + ramdisk_size - 1,
350 relocated_ramdisk, relocated_ramdisk + ramdisk_size - 1);
351}
352
353static void __init early_reserve_initrd(void)
354{
355 /* Assume only end is not page aligned */
356 u64 ramdisk_image = get_ramdisk_image();
357 u64 ramdisk_size = get_ramdisk_size();
358 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
359
360 if (!boot_params.hdr.type_of_loader ||
361 !ramdisk_image || !ramdisk_size)
362 return; /* No initrd provided by bootloader */
363
364 memblock_reserve(ramdisk_image, ramdisk_end - ramdisk_image);
365}
366static void __init reserve_initrd(void)
367{
368 /* Assume only end is not page aligned */
369 u64 ramdisk_image = get_ramdisk_image();
370 u64 ramdisk_size = get_ramdisk_size();
371 u64 ramdisk_end = PAGE_ALIGN(ramdisk_image + ramdisk_size);
372 u64 mapped_size;
373
374 if (!boot_params.hdr.type_of_loader ||
375 !ramdisk_image || !ramdisk_size)
376 return; /* No initrd provided by bootloader */
377
378 initrd_start = 0;
379
380 mapped_size = memblock_mem_size(max_pfn_mapped);
381 if (ramdisk_size >= (mapped_size>>1))
382 panic("initrd too large to handle, "
383 "disabling initrd (%lld needed, %lld available)\n",
384 ramdisk_size, mapped_size>>1);
385
386 printk(KERN_INFO "RAMDISK: [mem %#010llx-%#010llx]\n", ramdisk_image,
387 ramdisk_end - 1);
388
389 if (pfn_range_is_mapped(PFN_DOWN(ramdisk_image),
390 PFN_DOWN(ramdisk_end))) {
391 /* All are mapped, easy case */
392 initrd_start = ramdisk_image + PAGE_OFFSET;
393 initrd_end = initrd_start + ramdisk_size;
394 return;
395 }
396
397 relocate_initrd();
398
399 memblock_free(ramdisk_image, ramdisk_end - ramdisk_image);
400}
401#else
402static void __init early_reserve_initrd(void)
403{
404}
405static void __init reserve_initrd(void)
406{
407}
408#endif /* CONFIG_BLK_DEV_INITRD */
409
410static void __init parse_setup_data(void)
411{
412 struct setup_data *data;
413 u64 pa_data, pa_next;
414
415 pa_data = boot_params.hdr.setup_data;
416 while (pa_data) {
417 u32 data_len, data_type;
418
419 data = early_memremap(pa_data, sizeof(*data));
420 data_len = data->len + sizeof(struct setup_data);
421 data_type = data->type;
422 pa_next = data->next;
423 early_memunmap(data, sizeof(*data));
424
425 switch (data_type) {
426 case SETUP_E820_EXT:
427 parse_e820_ext(pa_data, data_len);
428 break;
429 case SETUP_DTB:
430 add_dtb(pa_data);
431 break;
432 case SETUP_EFI:
433 parse_efi_setup(pa_data, data_len);
434 break;
435 default:
436 break;
437 }
438 pa_data = pa_next;
439 }
440}
441
442static void __init e820_reserve_setup_data(void)
443{
444 struct setup_data *data;
445 u64 pa_data;
446
447 pa_data = boot_params.hdr.setup_data;
448 if (!pa_data)
449 return;
450
451 while (pa_data) {
452 data = early_memremap(pa_data, sizeof(*data));
453 e820_update_range(pa_data, sizeof(*data)+data->len,
454 E820_RAM, E820_RESERVED_KERN);
455 pa_data = data->next;
456 early_memunmap(data, sizeof(*data));
457 }
458
459 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
460 memcpy(&e820_saved, &e820, sizeof(struct e820map));
461 printk(KERN_INFO "extended physical RAM map:\n");
462 e820_print_map("reserve setup_data");
463}
464
465static void __init memblock_x86_reserve_range_setup_data(void)
466{
467 struct setup_data *data;
468 u64 pa_data;
469
470 pa_data = boot_params.hdr.setup_data;
471 while (pa_data) {
472 data = early_memremap(pa_data, sizeof(*data));
473 memblock_reserve(pa_data, sizeof(*data) + data->len);
474 pa_data = data->next;
475 early_memunmap(data, sizeof(*data));
476 }
477}
478
479/*
480 * --------- Crashkernel reservation ------------------------------
481 */
482
483#ifdef CONFIG_KEXEC_CORE
484
485/* 16M alignment for crash kernel regions */
486#define CRASH_ALIGN (16 << 20)
487
488/*
489 * Keep the crash kernel below this limit. On 32 bits earlier kernels
490 * would limit the kernel to the low 512 MiB due to mapping restrictions.
491 * On 64bit, old kexec-tools need to under 896MiB.
492 */
493#ifdef CONFIG_X86_32
494# define CRASH_ADDR_LOW_MAX (512 << 20)
495# define CRASH_ADDR_HIGH_MAX (512 << 20)
496#else
497# define CRASH_ADDR_LOW_MAX (896UL << 20)
498# define CRASH_ADDR_HIGH_MAX MAXMEM
499#endif
500
501static int __init reserve_crashkernel_low(void)
502{
503#ifdef CONFIG_X86_64
504 unsigned long long base, low_base = 0, low_size = 0;
505 unsigned long total_low_mem;
506 int ret;
507
508 total_low_mem = memblock_mem_size(1UL << (32 - PAGE_SHIFT));
509
510 /* crashkernel=Y,low */
511 ret = parse_crashkernel_low(boot_command_line, total_low_mem, &low_size, &base);
512 if (ret) {
513 /*
514 * two parts from lib/swiotlb.c:
515 * -swiotlb size: user-specified with swiotlb= or default.
516 *
517 * -swiotlb overflow buffer: now hardcoded to 32k. We round it
518 * to 8M for other buffers that may need to stay low too. Also
519 * make sure we allocate enough extra low memory so that we
520 * don't run out of DMA buffers for 32-bit devices.
521 */
522 low_size = max(swiotlb_size_or_default() + (8UL << 20), 256UL << 20);
523 } else {
524 /* passed with crashkernel=0,low ? */
525 if (!low_size)
526 return 0;
527 }
528
529 low_base = memblock_find_in_range(low_size, 1ULL << 32, low_size, CRASH_ALIGN);
530 if (!low_base) {
531 pr_err("Cannot reserve %ldMB crashkernel low memory, please try smaller size.\n",
532 (unsigned long)(low_size >> 20));
533 return -ENOMEM;
534 }
535
536 ret = memblock_reserve(low_base, low_size);
537 if (ret) {
538 pr_err("%s: Error reserving crashkernel low memblock.\n", __func__);
539 return ret;
540 }
541
542 pr_info("Reserving %ldMB of low memory at %ldMB for crashkernel (System low RAM: %ldMB)\n",
543 (unsigned long)(low_size >> 20),
544 (unsigned long)(low_base >> 20),
545 (unsigned long)(total_low_mem >> 20));
546
547 crashk_low_res.start = low_base;
548 crashk_low_res.end = low_base + low_size - 1;
549 insert_resource(&iomem_resource, &crashk_low_res);
550#endif
551 return 0;
552}
553
554static void __init reserve_crashkernel(void)
555{
556 unsigned long long crash_size, crash_base, total_mem;
557 bool high = false;
558 int ret;
559
560 total_mem = memblock_phys_mem_size();
561
562 /* crashkernel=XM */
563 ret = parse_crashkernel(boot_command_line, total_mem, &crash_size, &crash_base);
564 if (ret != 0 || crash_size <= 0) {
565 /* crashkernel=X,high */
566 ret = parse_crashkernel_high(boot_command_line, total_mem,
567 &crash_size, &crash_base);
568 if (ret != 0 || crash_size <= 0)
569 return;
570 high = true;
571 }
572
573 /* 0 means: find the address automatically */
574 if (crash_base <= 0) {
575 /*
576 * kexec want bzImage is below CRASH_KERNEL_ADDR_MAX
577 */
578 crash_base = memblock_find_in_range(CRASH_ALIGN,
579 high ? CRASH_ADDR_HIGH_MAX
580 : CRASH_ADDR_LOW_MAX,
581 crash_size, CRASH_ALIGN);
582 if (!crash_base) {
583 pr_info("crashkernel reservation failed - No suitable area found.\n");
584 return;
585 }
586
587 } else {
588 unsigned long long start;
589
590 start = memblock_find_in_range(crash_base,
591 crash_base + crash_size,
592 crash_size, 1 << 20);
593 if (start != crash_base) {
594 pr_info("crashkernel reservation failed - memory is in use.\n");
595 return;
596 }
597 }
598 ret = memblock_reserve(crash_base, crash_size);
599 if (ret) {
600 pr_err("%s: Error reserving crashkernel memblock.\n", __func__);
601 return;
602 }
603
604 if (crash_base >= (1ULL << 32) && reserve_crashkernel_low()) {
605 memblock_free(crash_base, crash_size);
606 return;
607 }
608
609 pr_info("Reserving %ldMB of memory at %ldMB for crashkernel (System RAM: %ldMB)\n",
610 (unsigned long)(crash_size >> 20),
611 (unsigned long)(crash_base >> 20),
612 (unsigned long)(total_mem >> 20));
613
614 crashk_res.start = crash_base;
615 crashk_res.end = crash_base + crash_size - 1;
616 insert_resource(&iomem_resource, &crashk_res);
617}
618#else
619static void __init reserve_crashkernel(void)
620{
621}
622#endif
623
624static struct resource standard_io_resources[] = {
625 { .name = "dma1", .start = 0x00, .end = 0x1f,
626 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
627 { .name = "pic1", .start = 0x20, .end = 0x21,
628 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
629 { .name = "timer0", .start = 0x40, .end = 0x43,
630 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
631 { .name = "timer1", .start = 0x50, .end = 0x53,
632 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
633 { .name = "keyboard", .start = 0x60, .end = 0x60,
634 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
635 { .name = "keyboard", .start = 0x64, .end = 0x64,
636 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
637 { .name = "dma page reg", .start = 0x80, .end = 0x8f,
638 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
639 { .name = "pic2", .start = 0xa0, .end = 0xa1,
640 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
641 { .name = "dma2", .start = 0xc0, .end = 0xdf,
642 .flags = IORESOURCE_BUSY | IORESOURCE_IO },
643 { .name = "fpu", .start = 0xf0, .end = 0xff,
644 .flags = IORESOURCE_BUSY | IORESOURCE_IO }
645};
646
647void __init reserve_standard_io_resources(void)
648{
649 int i;
650
651 /* request I/O space for devices used on all i[345]86 PCs */
652 for (i = 0; i < ARRAY_SIZE(standard_io_resources); i++)
653 request_resource(&ioport_resource, &standard_io_resources[i]);
654
655}
656
657static __init void reserve_ibft_region(void)
658{
659 unsigned long addr, size = 0;
660
661 addr = find_ibft_region(&size);
662
663 if (size)
664 memblock_reserve(addr, size);
665}
666
667static bool __init snb_gfx_workaround_needed(void)
668{
669#ifdef CONFIG_PCI
670 int i;
671 u16 vendor, devid;
672 static const __initconst u16 snb_ids[] = {
673 0x0102,
674 0x0112,
675 0x0122,
676 0x0106,
677 0x0116,
678 0x0126,
679 0x010a,
680 };
681
682 /* Assume no if something weird is going on with PCI */
683 if (!early_pci_allowed())
684 return false;
685
686 vendor = read_pci_config_16(0, 2, 0, PCI_VENDOR_ID);
687 if (vendor != 0x8086)
688 return false;
689
690 devid = read_pci_config_16(0, 2, 0, PCI_DEVICE_ID);
691 for (i = 0; i < ARRAY_SIZE(snb_ids); i++)
692 if (devid == snb_ids[i])
693 return true;
694#endif
695
696 return false;
697}
698
699/*
700 * Sandy Bridge graphics has trouble with certain ranges, exclude
701 * them from allocation.
702 */
703static void __init trim_snb_memory(void)
704{
705 static const __initconst unsigned long bad_pages[] = {
706 0x20050000,
707 0x20110000,
708 0x20130000,
709 0x20138000,
710 0x40004000,
711 };
712 int i;
713
714 if (!snb_gfx_workaround_needed())
715 return;
716
717 printk(KERN_DEBUG "reserving inaccessible SNB gfx pages\n");
718
719 /*
720 * Reserve all memory below the 1 MB mark that has not
721 * already been reserved.
722 */
723 memblock_reserve(0, 1<<20);
724
725 for (i = 0; i < ARRAY_SIZE(bad_pages); i++) {
726 if (memblock_reserve(bad_pages[i], PAGE_SIZE))
727 printk(KERN_WARNING "failed to reserve 0x%08lx\n",
728 bad_pages[i]);
729 }
730}
731
732/*
733 * Here we put platform-specific memory range workarounds, i.e.
734 * memory known to be corrupt or otherwise in need to be reserved on
735 * specific platforms.
736 *
737 * If this gets used more widely it could use a real dispatch mechanism.
738 */
739static void __init trim_platform_memory_ranges(void)
740{
741 trim_snb_memory();
742}
743
744static void __init trim_bios_range(void)
745{
746 /*
747 * A special case is the first 4Kb of memory;
748 * This is a BIOS owned area, not kernel ram, but generally
749 * not listed as such in the E820 table.
750 *
751 * This typically reserves additional memory (64KiB by default)
752 * since some BIOSes are known to corrupt low memory. See the
753 * Kconfig help text for X86_RESERVE_LOW.
754 */
755 e820_update_range(0, PAGE_SIZE, E820_RAM, E820_RESERVED);
756
757 /*
758 * special case: Some BIOSen report the PC BIOS
759 * area (640->1Mb) as ram even though it is not.
760 * take them out.
761 */
762 e820_remove_range(BIOS_BEGIN, BIOS_END - BIOS_BEGIN, E820_RAM, 1);
763
764 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
765}
766
767/* called before trim_bios_range() to spare extra sanitize */
768static void __init e820_add_kernel_range(void)
769{
770 u64 start = __pa_symbol(_text);
771 u64 size = __pa_symbol(_end) - start;
772
773 /*
774 * Complain if .text .data and .bss are not marked as E820_RAM and
775 * attempt to fix it by adding the range. We may have a confused BIOS,
776 * or the user may have used memmap=exactmap or memmap=xxM$yyM to
777 * exclude kernel range. If we really are running on top non-RAM,
778 * we will crash later anyways.
779 */
780 if (e820_all_mapped(start, start + size, E820_RAM))
781 return;
782
783 pr_warn(".text .data .bss are not marked as E820_RAM!\n");
784 e820_remove_range(start, size, E820_RAM, 0);
785 e820_add_region(start, size, E820_RAM);
786}
787
788static unsigned reserve_low = CONFIG_X86_RESERVE_LOW << 10;
789
790static int __init parse_reservelow(char *p)
791{
792 unsigned long long size;
793
794 if (!p)
795 return -EINVAL;
796
797 size = memparse(p, &p);
798
799 if (size < 4096)
800 size = 4096;
801
802 if (size > 640*1024)
803 size = 640*1024;
804
805 reserve_low = size;
806
807 return 0;
808}
809
810early_param("reservelow", parse_reservelow);
811
812static void __init trim_low_memory_range(void)
813{
814 memblock_reserve(0, ALIGN(reserve_low, PAGE_SIZE));
815}
816
817/*
818 * Dump out kernel offset information on panic.
819 */
820static int
821dump_kernel_offset(struct notifier_block *self, unsigned long v, void *p)
822{
823 if (kaslr_enabled()) {
824 pr_emerg("Kernel Offset: 0x%lx from 0x%lx (relocation range: 0x%lx-0x%lx)\n",
825 kaslr_offset(),
826 __START_KERNEL,
827 __START_KERNEL_map,
828 MODULES_VADDR-1);
829 } else {
830 pr_emerg("Kernel Offset: disabled\n");
831 }
832
833 return 0;
834}
835
836/*
837 * Determine if we were loaded by an EFI loader. If so, then we have also been
838 * passed the efi memmap, systab, etc., so we should use these data structures
839 * for initialization. Note, the efi init code path is determined by the
840 * global efi_enabled. This allows the same kernel image to be used on existing
841 * systems (with a traditional BIOS) as well as on EFI systems.
842 */
843/*
844 * setup_arch - architecture-specific boot-time initializations
845 *
846 * Note: On x86_64, fixmaps are ready for use even before this is called.
847 */
848
849void __init setup_arch(char **cmdline_p)
850{
851 memblock_reserve(__pa_symbol(_text),
852 (unsigned long)__bss_stop - (unsigned long)_text);
853
854 early_reserve_initrd();
855
856 /*
857 * At this point everything still needed from the boot loader
858 * or BIOS or kernel text should be early reserved or marked not
859 * RAM in e820. All other memory is free game.
860 */
861
862#ifdef CONFIG_X86_32
863 memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
864
865 /*
866 * copy kernel address range established so far and switch
867 * to the proper swapper page table
868 */
869 clone_pgd_range(swapper_pg_dir + KERNEL_PGD_BOUNDARY,
870 initial_page_table + KERNEL_PGD_BOUNDARY,
871 KERNEL_PGD_PTRS);
872
873 load_cr3(swapper_pg_dir);
874 /*
875 * Note: Quark X1000 CPUs advertise PGE incorrectly and require
876 * a cr3 based tlb flush, so the following __flush_tlb_all()
877 * will not flush anything because the cpu quirk which clears
878 * X86_FEATURE_PGE has not been invoked yet. Though due to the
879 * load_cr3() above the TLB has been flushed already. The
880 * quirk is invoked before subsequent calls to __flush_tlb_all()
881 * so proper operation is guaranteed.
882 */
883 __flush_tlb_all();
884#else
885 printk(KERN_INFO "Command line: %s\n", boot_command_line);
886#endif
887
888 /*
889 * If we have OLPC OFW, we might end up relocating the fixmap due to
890 * reserve_top(), so do this before touching the ioremap area.
891 */
892 olpc_ofw_detect();
893
894 early_trap_init();
895 early_cpu_init();
896 early_ioremap_init();
897
898 setup_olpc_ofw_pgd();
899
900 ROOT_DEV = old_decode_dev(boot_params.hdr.root_dev);
901 screen_info = boot_params.screen_info;
902 edid_info = boot_params.edid_info;
903#ifdef CONFIG_X86_32
904 apm_info.bios = boot_params.apm_bios_info;
905 ist_info = boot_params.ist_info;
906#endif
907 saved_video_mode = boot_params.hdr.vid_mode;
908 bootloader_type = boot_params.hdr.type_of_loader;
909 if ((bootloader_type >> 4) == 0xe) {
910 bootloader_type &= 0xf;
911 bootloader_type |= (boot_params.hdr.ext_loader_type+0x10) << 4;
912 }
913 bootloader_version = bootloader_type & 0xf;
914 bootloader_version |= boot_params.hdr.ext_loader_ver << 4;
915
916#ifdef CONFIG_BLK_DEV_RAM
917 rd_image_start = boot_params.hdr.ram_size & RAMDISK_IMAGE_START_MASK;
918 rd_prompt = ((boot_params.hdr.ram_size & RAMDISK_PROMPT_FLAG) != 0);
919 rd_doload = ((boot_params.hdr.ram_size & RAMDISK_LOAD_FLAG) != 0);
920#endif
921#ifdef CONFIG_EFI
922 if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
923 EFI32_LOADER_SIGNATURE, 4)) {
924 set_bit(EFI_BOOT, &efi.flags);
925 } else if (!strncmp((char *)&boot_params.efi_info.efi_loader_signature,
926 EFI64_LOADER_SIGNATURE, 4)) {
927 set_bit(EFI_BOOT, &efi.flags);
928 set_bit(EFI_64BIT, &efi.flags);
929 }
930
931 if (efi_enabled(EFI_BOOT))
932 efi_memblock_x86_reserve_range();
933#endif
934
935 x86_init.oem.arch_setup();
936
937 iomem_resource.end = (1ULL << boot_cpu_data.x86_phys_bits) - 1;
938 setup_memory_map();
939 parse_setup_data();
940
941 copy_edd();
942
943 if (!boot_params.hdr.root_flags)
944 root_mountflags &= ~MS_RDONLY;
945 init_mm.start_code = (unsigned long) _text;
946 init_mm.end_code = (unsigned long) _etext;
947 init_mm.end_data = (unsigned long) _edata;
948 init_mm.brk = _brk_end;
949
950 mpx_mm_init(&init_mm);
951
952 code_resource.start = __pa_symbol(_text);
953 code_resource.end = __pa_symbol(_etext)-1;
954 data_resource.start = __pa_symbol(_etext);
955 data_resource.end = __pa_symbol(_edata)-1;
956 bss_resource.start = __pa_symbol(__bss_start);
957 bss_resource.end = __pa_symbol(__bss_stop)-1;
958
959#ifdef CONFIG_CMDLINE_BOOL
960#ifdef CONFIG_CMDLINE_OVERRIDE
961 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
962#else
963 if (builtin_cmdline[0]) {
964 /* append boot loader cmdline to builtin */
965 strlcat(builtin_cmdline, " ", COMMAND_LINE_SIZE);
966 strlcat(builtin_cmdline, boot_command_line, COMMAND_LINE_SIZE);
967 strlcpy(boot_command_line, builtin_cmdline, COMMAND_LINE_SIZE);
968 }
969#endif
970#endif
971
972 strlcpy(command_line, boot_command_line, COMMAND_LINE_SIZE);
973 *cmdline_p = command_line;
974
975 /*
976 * x86_configure_nx() is called before parse_early_param() to detect
977 * whether hardware doesn't support NX (so that the early EHCI debug
978 * console setup can safely call set_fixmap()). It may then be called
979 * again from within noexec_setup() during parsing early parameters
980 * to honor the respective command line option.
981 */
982 x86_configure_nx();
983
984 parse_early_param();
985
986 x86_report_nx();
987
988 /* after early param, so could get panic from serial */
989 memblock_x86_reserve_range_setup_data();
990
991 if (acpi_mps_check()) {
992#ifdef CONFIG_X86_LOCAL_APIC
993 disable_apic = 1;
994#endif
995 setup_clear_cpu_cap(X86_FEATURE_APIC);
996 }
997
998#ifdef CONFIG_PCI
999 if (pci_early_dump_regs)
1000 early_dump_pci_devices();
1001#endif
1002
1003 /* update the e820_saved too */
1004 e820_reserve_setup_data();
1005 finish_e820_parsing();
1006
1007 if (efi_enabled(EFI_BOOT))
1008 efi_init();
1009
1010 dmi_scan_machine();
1011 dmi_memdev_walk();
1012 dmi_set_dump_stack_arch_desc();
1013
1014 /*
1015 * VMware detection requires dmi to be available, so this
1016 * needs to be done after dmi_scan_machine, for the BP.
1017 */
1018 init_hypervisor_platform();
1019
1020 x86_init.resources.probe_roms();
1021
1022 /* after parse_early_param, so could debug it */
1023 insert_resource(&iomem_resource, &code_resource);
1024 insert_resource(&iomem_resource, &data_resource);
1025 insert_resource(&iomem_resource, &bss_resource);
1026
1027 e820_add_kernel_range();
1028 trim_bios_range();
1029#ifdef CONFIG_X86_32
1030 if (ppro_with_ram_bug()) {
1031 e820_update_range(0x70000000ULL, 0x40000ULL, E820_RAM,
1032 E820_RESERVED);
1033 sanitize_e820_map(e820.map, ARRAY_SIZE(e820.map), &e820.nr_map);
1034 printk(KERN_INFO "fixed physical RAM map:\n");
1035 e820_print_map("bad_ppro");
1036 }
1037#else
1038 early_gart_iommu_check();
1039#endif
1040
1041 /*
1042 * partially used pages are not usable - thus
1043 * we are rounding upwards:
1044 */
1045 max_pfn = e820_end_of_ram_pfn();
1046
1047 /* update e820 for memory not covered by WB MTRRs */
1048 mtrr_bp_init();
1049 if (mtrr_trim_uncached_memory(max_pfn))
1050 max_pfn = e820_end_of_ram_pfn();
1051
1052 max_possible_pfn = max_pfn;
1053
1054#ifdef CONFIG_X86_32
1055 /* max_low_pfn get updated here */
1056 find_low_pfn_range();
1057#else
1058 check_x2apic();
1059
1060 /* How many end-of-memory variables you have, grandma! */
1061 /* need this before calling reserve_initrd */
1062 if (max_pfn > (1UL<<(32 - PAGE_SHIFT)))
1063 max_low_pfn = e820_end_of_low_ram_pfn();
1064 else
1065 max_low_pfn = max_pfn;
1066
1067 high_memory = (void *)__va(max_pfn * PAGE_SIZE - 1) + 1;
1068#endif
1069
1070 /*
1071 * Find and reserve possible boot-time SMP configuration:
1072 */
1073 find_smp_config();
1074
1075 reserve_ibft_region();
1076
1077 early_alloc_pgt_buf();
1078
1079 /*
1080 * Need to conclude brk, before memblock_x86_fill()
1081 * it could use memblock_find_in_range, could overlap with
1082 * brk area.
1083 */
1084 reserve_brk();
1085
1086 cleanup_highmap();
1087
1088 memblock_set_current_limit(ISA_END_ADDRESS);
1089 memblock_x86_fill();
1090
1091 if (efi_enabled(EFI_BOOT)) {
1092 efi_fake_memmap();
1093 efi_find_mirror();
1094 }
1095
1096 /*
1097 * The EFI specification says that boot service code won't be called
1098 * after ExitBootServices(). This is, in fact, a lie.
1099 */
1100 if (efi_enabled(EFI_MEMMAP))
1101 efi_reserve_boot_services();
1102
1103 /* preallocate 4k for mptable mpc */
1104 early_reserve_e820_mpc_new();
1105
1106#ifdef CONFIG_X86_CHECK_BIOS_CORRUPTION
1107 setup_bios_corruption_check();
1108#endif
1109
1110#ifdef CONFIG_X86_32
1111 printk(KERN_DEBUG "initial memory mapped: [mem 0x00000000-%#010lx]\n",
1112 (max_pfn_mapped<<PAGE_SHIFT) - 1);
1113#endif
1114
1115 reserve_real_mode();
1116
1117 trim_platform_memory_ranges();
1118 trim_low_memory_range();
1119
1120 init_mem_mapping();
1121
1122 early_trap_pf_init();
1123
1124 setup_real_mode();
1125
1126 memblock_set_current_limit(get_max_mapped());
1127
1128 /*
1129 * NOTE: On x86-32, only from this point on, fixmaps are ready for use.
1130 */
1131
1132#ifdef CONFIG_PROVIDE_OHCI1394_DMA_INIT
1133 if (init_ohci1394_dma_early)
1134 init_ohci1394_dma_on_all_controllers();
1135#endif
1136 /* Allocate bigger log buffer */
1137 setup_log_buf(1);
1138
1139 reserve_initrd();
1140
1141#if defined(CONFIG_ACPI) && defined(CONFIG_BLK_DEV_INITRD)
1142 acpi_initrd_override((void *)initrd_start, initrd_end - initrd_start);
1143#endif
1144
1145 vsmp_init();
1146
1147 io_delay_init();
1148
1149 /*
1150 * Parse the ACPI tables for possible boot-time SMP configuration.
1151 */
1152 acpi_boot_table_init();
1153
1154 early_acpi_boot_init();
1155
1156 initmem_init();
1157 dma_contiguous_reserve(max_pfn_mapped << PAGE_SHIFT);
1158
1159 /*
1160 * Reserve memory for crash kernel after SRAT is parsed so that it
1161 * won't consume hotpluggable memory.
1162 */
1163 reserve_crashkernel();
1164
1165 memblock_find_dma_reserve();
1166
1167#ifdef CONFIG_KVM_GUEST
1168 kvmclock_init();
1169#endif
1170
1171 x86_init.paging.pagetable_init();
1172
1173 kasan_init();
1174
1175 if (boot_cpu_data.cpuid_level >= 0) {
1176 /* A CPU has %cr4 if and only if it has CPUID */
1177 mmu_cr4_features = __read_cr4();
1178 if (trampoline_cr4_features)
1179 *trampoline_cr4_features = mmu_cr4_features;
1180 }
1181
1182#ifdef CONFIG_X86_32
1183 /* sync back kernel address range */
1184 clone_pgd_range(initial_page_table + KERNEL_PGD_BOUNDARY,
1185 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1186 KERNEL_PGD_PTRS);
1187
1188 /*
1189 * sync back low identity map too. It is used for example
1190 * in the 32-bit EFI stub.
1191 */
1192 clone_pgd_range(initial_page_table,
1193 swapper_pg_dir + KERNEL_PGD_BOUNDARY,
1194 min(KERNEL_PGD_PTRS, KERNEL_PGD_BOUNDARY));
1195#endif
1196
1197 tboot_probe();
1198
1199 map_vsyscall();
1200
1201 generic_apic_probe();
1202
1203 early_quirks();
1204
1205 /*
1206 * Read APIC and some other early information from ACPI tables.
1207 */
1208 acpi_boot_init();
1209 sfi_init();
1210 x86_dtb_init();
1211
1212 /*
1213 * get boot-time SMP configuration:
1214 */
1215 if (smp_found_config)
1216 get_smp_config();
1217
1218 prefill_possible_map();
1219
1220 init_cpu_to_node();
1221
1222 init_apic_mappings();
1223 io_apic_init_mappings();
1224
1225 kvm_guest_init();
1226
1227 e820_reserve_resources();
1228 e820_mark_nosave_regions(max_low_pfn);
1229
1230 x86_init.resources.reserve_resources();
1231
1232 e820_setup_gap();
1233
1234#ifdef CONFIG_VT
1235#if defined(CONFIG_VGA_CONSOLE)
1236 if (!efi_enabled(EFI_BOOT) || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1237 conswitchp = &vga_con;
1238#elif defined(CONFIG_DUMMY_CONSOLE)
1239 conswitchp = &dummy_con;
1240#endif
1241#endif
1242 x86_init.oem.banner();
1243
1244 x86_init.timers.wallclock_init();
1245
1246 mcheck_init();
1247
1248 arch_init_ideal_nops();
1249
1250 register_refined_jiffies(CLOCK_TICK_RATE);
1251
1252#ifdef CONFIG_EFI
1253 if (efi_enabled(EFI_BOOT))
1254 efi_apply_memmap_quirks();
1255#endif
1256}
1257
1258#ifdef CONFIG_X86_32
1259
1260static struct resource video_ram_resource = {
1261 .name = "Video RAM area",
1262 .start = 0xa0000,
1263 .end = 0xbffff,
1264 .flags = IORESOURCE_BUSY | IORESOURCE_MEM
1265};
1266
1267void __init i386_reserve_resources(void)
1268{
1269 request_resource(&iomem_resource, &video_ram_resource);
1270 reserve_standard_io_resources();
1271}
1272
1273#endif /* CONFIG_X86_32 */
1274
1275static struct notifier_block kernel_offset_notifier = {
1276 .notifier_call = dump_kernel_offset
1277};
1278
1279static int __init register_kernel_offset_dumper(void)
1280{
1281 atomic_notifier_chain_register(&panic_notifier_list,
1282 &kernel_offset_notifier);
1283 return 0;
1284}
1285__initcall(register_kernel_offset_dumper);
1286
1287void arch_show_smap(struct seq_file *m, struct vm_area_struct *vma)
1288{
1289 if (!boot_cpu_has(X86_FEATURE_OSPKE))
1290 return;
1291
1292 seq_printf(m, "ProtectionKey: %8u\n", vma_pkey(vma));
1293}